
Godson MultiMedia Technology

1.1 OVERVIEW

The media extensions for the Godson Architecture were designed to enhance
performance of advanced media and communication applications. The Godson
MultiMedia technology provides a new level of performance to computer platforms by
adding new instructions and defining new 64-bit data types, while preserving compatibility
with software and operating systems developed for the Godson Architecture. The Godson
MultiMedia technology introduces new general-purpose instructions. These instructions
operate in parallel on multiple data elements packed into 64-bit quantities. They perform
arithmetic and logical operations on the different data types. These instructions accelerate
the performance of applications with compute-intensive algorithms that perform localized,
recurring operations on small native data. This includes applications such as motion video,
combined graphics with video, image processing, audio synthesis, speech synthesis and
compression, telephony, video conferencing, 2D graphics, and 3D graphics.

The Godson MultiMedia instruction set has a simple and flexible software model with no
new mode or operating-system visible state. The Godson MultiMedia instruction set is
fully compatible with all Godson Architecture microprocessors. All existing software
continues to run correctly, without modification, on microprocessors that incorporate the
Godson MultiMedia technology, as well as in the presence of existing and new
applications that incorporate this technology.

The Godson MultiMedia technology uses the Single Instruction, Multiple Data (SIMD)
technique. This technique speeds up software performance by processing multiple data
elements in parallel, using a single instruction. The Godson MultiMedia technology
supports parallel operations on byte, halfword, and word data elements, and doubleword
integer data type.

Modern media, communications, and graphics applications now include sophisticated
algorithms that perform recurring operations on small data types. The Godson MultiMedia
technology directly addresses the need of these applications. For example, most audio
data is represented in 16-bit (halfword) quantities. The Godson MultiMedia instructions
can operate on four of these words simultaneously with one instruction. Video and
graphics information is commonly represented as palletized 8-bit (byte) quantities; one
Godson MultiMedia instruction can operate on eight of these bytes simultaneously.

1.2 INSTRUCTION SYNTAX

Instructions vary by:

 Data type: packed bytes, packed halfwords, packed words or doublewords
 Signed - Unsigned numbers
 Wraparound - Saturate arithmetic

A typical Godson MultiMedia instruction has this syntax:

 Prefix: P for Packed
 Instruction operation: for example - ADD, CMP, or XOR
 Suffix:

--US for Unsigned Saturation
--S for Signed saturation
--B, H, W, D for the data type: packed byte, packed halfword, packed word,
or doubleword.

Instructions that have different input and output data elements have two data-type suffixes.
For example, the conversion instruction converts from one data type to another. It has two
suffixes: one for the original data type and the second for the converted data type.
This is an example of an instruction mnemonic syntax :

PADDUSW (Packed Add Unsigned with Saturation for Word)
P = Packed
ADD = the instruction operation
US = Unsigned Saturation
W = Word

1.3 SATURATION AND WRAPAROUND MODES

When performing integer arithmetic, an operation may result in an out-of-range condition,
where the true result cannot be represented in the destination format. For example, when
performing arithmetic on signed halfword integers, positive overflow can occur causing the
true signed result is larger than 16 bits.

The Godson MultiMedia technology provides three ways of handling out-of-range
conditions:

 Wraparound arithmetic.
 Signed saturation arithmetic.
 Unsigned saturation arithmetic.

With wraparound arithmetic, a true out-of-range result is truncated (that is, the carry or
overflow bit is ignored and only the least significant bits of the result are returned to the
destination). Wraparound arithmetic is suitable for applications that control the range of
operands to prevent out-of-range results. If the range of operands is not controlled,
however, wraparound arithmetic can lead to large errors. For example, adding two large
signed numbers can cause positive overflow and produce a negative result.

With signed saturation arithmetic, out-of-range results are limited to the representable
range of signed integers for the integer size being operated on. For example, if positive
overflow occurs when operating on signed halfword integers, the result is “saturated” to
7FFFH, which is the largest positive integer that can be represented in 16 bits; if negative
overflow occurs, the result is saturated to 8000H.

With unsigned saturation arithmetic, out-of-range results are limited to the representable
range of unsigned integers for the integer size being operated on. So, positive overflow
when operating on unsigned byte integers results in FFH being returned and negative
overflow results in 00H being retuned.

Saturation arithmetic provides a more natural answer for many overflow situations. For
example, in color calculations, saturation causes a color to remain pure black or pure
white without allowing inversion. It also prevents wraparound artifacts from entering into
computations, when range checking of source operands it not used.

Godson MultiMedia instructions do not indicate overflow or underflow occurrence by
generating exceptions.

1.4 GODSON MULTIMEDIA INSTRUCTIONS

The Godson MultiMedia Technology defines 65 instructions(see Table 1-1). The
instructions are grouped into the following functional categories:

 Arithmetic Instructions
 Comparison Instructions
 Conversion Instructions
 Logical Instructions
 Shift Instructions

Table 1-1 Godson MultiMedia Instruction Set Summary
OP

Fmt
ADD SUB MUL DIV ABS

13 Or PASUBUB Dsll Dsrl
14 PEXTRH
15 PMADDHW Dsra

16
17
18 PAVGH PCMPEQW PSLLW PSRLW
19 PAVGB PCMPGTW PSLLH PSRLH
20 PMAXSH PCMPEQH PMULLH PSRAW BIADD
21 PMINSH PCMPGTH PMULHH PSRAH PMOVMASKB
22 PMAXUB PCMPEQB PMULUW PUNPCKLWD
23 PMINUB PCMPGTB PMULHUH PUNPCKHWD
24 PADDSH PSUBSH PSHUFH PUNPCKLHW
25 PADDUSH PSUBUSH PACKSSWH PUNPCKHHW
26 PADDH PSUBH PACKSSHB PUNPCKLBH
27 PADDW PSUBW PACKUSHB PUNPCKHBH
28 PADDSB PSUBSB Xor PINSRH_0
29 PADDUSB PSUBUSB Nor PINSRH_1
30 PADDB PSUBB And PINSRH_2
31 PADDD PSUBD PANDN PINSRH_3

PACKSSHB/PACKSSWH—Pack with Signed Saturation

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

PACKSSHB

11010

ft

fs

fd

MUL

000010
 6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

PACKSSWH

11001

ft

fs

fd

MUL

000010
 6 5 5 5 5 6

Format:

PACKSSHB fd,fs,ft
PACKSSWH fd,fs,ft

Description:

Converts packed signed halfword integers into packed signed byte integers (PACKSSHB) or
converts packed signed word integers into packed signed halfword integers (PACKSSWH),
using saturation to handle overflow conditions. See Figure 3-5 for an example of the packing
operation.

Figure 3-5. Operation of the PACKSSWH Instruction Using 64-bit Operands.

The PACKSSHB instruction converts 4 signed halfword integers from the first operand and 4
signed halfword integers from the second operand into 8 signed byte integers and stores the
result in the destination operand. If a signed halfword integer value is beyond the range of a
signed byte integer (that is, greater than 7FH for a positive integer or greater than 80H for a
negative integer), the saturated signed byte integer value of 7FH or 80H, respectively, is
stored in the destination.

The PACKSSWH instruction packs 2 signed words from the first operand and 2 signed
words from the second operand into 4 signed halfwords in the destination operand (see
Figure 3-5). If a signed word integer value is beyond the range of a signed halfword (that is,
greater than 7FFFH for a positive integer or greater than 8000H for a negative integer), the
saturated signed halfword integer value of 7FFFH or 8000H, respectively, is stored into the
destination.
The PACKSSHB and PACKSSWH instructions operate on 64-bit operands.

Operation:

PACKSSHB
fd[7..0] ← SaturateSignedHalfwordToSignedByte fs[15..0];
fd[15..8] ← SaturateSignedHalfwordToSignedByte fs[31..16];
fd[23..16] ← SaturateSignedHalfwordToSignedByte fs[47..32];
fd[31..24] ← SaturateSignedHalfwordToSignedByte fs[63..48];
fd[39..32] ← SaturateSignedHalfwordToSignedByte ft[15..0];
fd[47..40] ← SaturateSignedHalfwordToSignedByte ft[31..16];
fd[55..48] ← SaturateSignedHalfwordToSignedByte ft[47..32];
fd[63..56] ← SaturateSignedHalfwordToSignedByte ft[63..48];

PACKSSWH

fd[15..0] ← SaturateSignedWordToSignedHalfWord fs[31..0];
fd[31..16] ← SaturateSignedWordToSignedHalfWord fs[63..32];
fd[47..32] ← SaturateSignedWordToSignedHalfWord ft[31..0];
fd[63..48] ← SaturateSignedWordToSignedHalfWord ft[63..32];

Exceptions:

 None.

PACKUSHB—Pack with Unsigned Saturation

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

PACKUSHB

11011

ft

fs

fd

MUL

000010
 6 5 5 5 5 6

Format:

PACKUSHB fd,fs,ft

Description:

Converts 4 signed halfword integers from the first operand and 4 signed halfword integers
from the second operand into 8 unsigned byte integers and stores the result in the destination
operand. (See Figure 3-5 for an example of the packing operation.) If a signed halfword
integer value is beyond the range of an unsigned byte integer (that is, greater than FFH or less
than 00H), the saturated unsigned byte integer value of FFH or 00H, respectively, is stored in
the destination.
The PACKUSHB instruction operates on 64-bit operands.

Operation:

PACKUSHB
fd[7..0] ← SaturateSignedHalfwordToUnsignedByte fs[15..0];
fd[15..8] ← SaturateSignedHalfwordToUnsignedByte fs [31..16];
fd[23..16] ← SaturateSignedHalfwordToUnsignedByte fs [47..32];
fd[31..24] ← SaturateSignedHalfwordToUnsignedByte fs [63..48];
fd[39..32] ← SaturateSignedHalfwordToUnsignedByte ft[15..0];
fd[47..40] ← SaturateSignedHalfwordToUnsignedByte ft[31..16];
fd[55..48] ← SaturateSignedHalfwordToUnsignedByte ft[47..32];
fd[63..56] ← SaturateSignedHalfwordToUnsignedByte ft[63..48];

Exceptions:

 None.

PADDB/PADDH/PADDW—Add Packed Integers

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

PADDB
11110

ft

fs

fd

ADD

000000
 6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

PADDH
11010

ft

fs

fd

ADD

000000
 6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

PADDW

11011

ft

fs

fd

ADD

000000
 6 5 5 5 5 6

Format:

PADDB fd,fs,ft
PADDH fd,fs,ft
PADDW fd,fs,ft

Description:

Performs a SIMD add of the packed integers from the first operand and the second operand,
and stores the packed integer results in the destination operand. Overflow is handled with
wraparound, as described in the following paragraphs.
These instructions operate on 64-bit operands.
The PADDB instruction adds packed byte integers. When an individual result is too large to
be represented in 8 bits (overflow), the result is wrapped around and the low 8 bits are written
to the destination operand (that is, the carry is ignored).
The PADDH instruction adds packed halfword integers. When an individual result is too
large to be represented in 16 bits (overflow), the result is wrapped around and the low 16 bits
are written to the destination operand.
The PADDW instruction adds packed word integers. When an individual result is too large to

be represented in 32 bits (overflow), the result is wrapped around and the low 32 bits are
written to the destination operand.
Note that the PADDB, PADDH, and PADDW instructions can operate on either unsigned or
signed (two's complement notation) packed integers; however, it does not indicate overflow
and/or a carry. To prevent undetected overflow conditions, software must control the ranges
of values operated on.

Operation:

PADDB
fd[7..0] ← fs[7..0] + ft[7..0];
* repeat add operation for 2nd through 7th byte *;
fd[63..56] ← fs[63..56] + ft[63..56];

PADDH
fd[15..0] ← fs[15..0] + ft[15..0];
* repeat add operation for 2nd and 3th halfword *;
fd[63..48] ← fs[63..48] + ft[63..48];

PADDW
fd[31..0] ← fs[31..0] + ft[31..0];
fd[63..32] ← fs[63..32] + ft[63..32];

Exceptions:

 None.

PADDD—Add Packed Doubleword Integers

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

PADDD
11111

ft

fs

fd

ADD

000000
 6 5 5 5 5 6

Format:

PADDD fd,fs,ft

Description:

Adds the first operand to the second operand and stores the result in the destination operand.
The source operand can be a doubleword integer stored in a 64-bit register. The destination
operand can be a doubleword integer stored in a 64-bit register. When a doubleword result is
too large to be represented in 64 bits (overflow), the result is wrapped around and the low 64
bits are written to the destination element (that is, the carry is ignored).
Note that the PADDD instruction can operate on either unsigned or signed (two’s
complement notation) integers; however, it does not indicate overflow and/or a carry. To
prevent undetected overflow conditions, software must control the ranges of the values
operated on.

Operation:

PADDD
fd[63..0] ← fs[63..0] + ft[63..0];

Exceptions:

 None.

PADDSB/PADDSH—Add Packed Signed Integers with Signed

Saturation

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

PADDSB

11100

ft

fs

fd

ADD

000000
 6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

PADDSH

11000

ft

fs

fd

ADD

000000
 6 5 5 5 5 6

Format:

PADDSB fd,fs,ft
PADDSH fd,fs,ft

Description:

Performs a SIMD add of the packed signed integers from the first operand and the second
operand, and stores the packed integer results in the destination operand. Overflow is handled
with signed saturation, as described in the following paragraphs.
These instructions operate on 64-bit operands.
The PADDSB instruction adds packed signed byte integers. When an individual byte result is
beyond the range of a signed byte integer (that is, greater than 7FH or less than 80H), the
saturated value of 7FH or 80H, respectively, is written to the destination operand.
The PADDSH instruction adds packed signed halfword integers. When an individual
halfword result is beyond the range of a signed halfword integer (that is, greater than 7FFFH
or less than 8000H), the saturated value of 7FFFH or 8000H, respectively, is written to the
destination operand.

Operations:

PADDSB
fd[7..0] ← SaturateToSignedByte(fs[7..0] + ft[7..0]) ;
* repeat add operation for 2nd through 7th bytes *;
fd[63..56] ← SaturateToSignedByte(fs[63..56] + ft[63..56]);

PADDSH
fd[15..0] ← SaturateToSignedHalfword(fs[15..0] + ft[15..0]);
* repeat add operation for 2nd and 7th halfwords *;
fd[63..48] ← SaturateToSignedHalfword(fs[63..48] + ft[63..48]);

Exceptions:

 None.

PADDUSB/PADDUSH—Add Packed Unsigned Integers with

Unsigned Saturation

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

PADDUSB

11101

ft

fs

fd

ADD

000000
 6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

PADDUSH

11001

ft

fs

fd

ADD

000000
 6 5 5 5 5 6

Format:

PADDUSB fd,fs,ft
PADDUSH fd,fs,ft

Description:

Performs a SIMD add of the packed unsigned integers from the first operand and the second
operand, and stores the packed integer results in the destination operand. Overflow is handled
with unsigned saturation, as described in the following paragraphs.
These instructions operate on 64-bit operands.
The PADDUSB instruction adds packed unsigned byte integers. When an individual byte
result is beyond the range of an unsigned byte integer (that is, greater than FFH), the
saturated value of FFH is written to the destination operand.
The PADDUSH instruction adds packed unsigned halfword integers. When an individual
halfword result is beyond the range of an unsigned halfword integer (that is, greater than
FFFFH), the saturated value of FFFFH is written to the destination operand.

Operation:

PADDUSB

fd[7..0] ← SaturateToUnsignedByte(fs[7..0] + ft[7..0]) ;
* repeat add operation for 2nd through 7th bytes *;
fd[63..56] ← SaturateToUnsignedByte(fs[63..56] + ft[63..56]);

PADDUSH
fd[15..0] ← SaturateToUnsignedHalfword(fs[15..0] + ft[15..0]);
* repeat add operation for 2nd and 3rd halfwords *;
fd[63..48] ← SaturateToUnsignedHalfword(fs[63..48] + ft[63..48]);

Exceptions:

 None.

PANDN—Logical AND NOT

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

PANDN
11111

ft

fs

fd

MUL

000010
 6 5 5 5 5 6

Format:

PANDN fd,fs,ft

Description:

Performs a bitwise logical NOT of the first operand, then performs a bitwise logical AND of
the second operand and the inverted destination operand. The result is stored in the
destination operand. The source operand can be a 64-bit register. The destination operand can
be a 64-bit register. Each bit of the result is set to 1 if the corresponding bit in the first
operand is 0 and the corresponding bit in the second operand is 1; otherwise, it is set to 0.

Operation:

PANDN
fd ← (NOT fs) AND ft;

Exceptions:

 None.

PAVGB/PAVGH—Average Packed Integers

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

PAVGB
10011

ft

fs

fd

ADD

000000
 6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

PAVGH
10010

ft

fs

fd

ADD

000000
 6 5 5 5 5 6

Format:

PAVGB fd,fs,ft
PAVGH fd,fs,ft

Description:

Performs a SIMD average of the packed unsigned integers from the first operand and the
second operand, and stores the results in the destination operand. For each corresponding pair
of data elements in the first and second operands, the elements are added together, a 1 is
added to the temporary sum, and that result is shifted right one bit position. The source
operand can be a 64-bit register. The destination operand can be a 64-bit register.
The PAVGB instruction operates on packed unsigned bytes and the PAVGH instruction
operates on packed unsigned halfwords.

Operation:

PAVGB
ft[7-0] ← (fs[7..0] + ft[7..0] + 1) >> 1; * temp sum before shifting is 9 bits *
* repeat operation performed for bytes 2 through 6 *;
ft[63-56] ← (fs[63..56] + ft[63..56] + 1) >> 1;

PAVGH
ft[15-0] ← (fs[15..0] + ft[15..0] + 1) >> 1; * temp sum before shifting is 17 bits *

* repeat operation performed for halfwords 2 and 3 *;
ft[63-48] ← (fs[63..48] + ft[63..48] + 1) >> 1;

Exceptions:

 None.

PCMPEQB/PCMPEQH/PCMPEQW— Compare Packed Data for

Equal

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

PCMPEQB

10110

ft

fs

fd

SUB

000001
 6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

PCMPEQH

10100

ft

fs

fd

SUB

000001
 6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

PCMPEQW

10010

ft

fs

fd

SUB

000001
 6 5 5 5 5 6

Format:

PCMPEQB fd,fs,ft
PCMPEQH fd,fs,ft
PCMPEQW fd,fs,ft

Description:

Performs a SIMD compare for equality of the packed bytes, halfwords, or words in the first
operand and the second operand. If a pair of data elements is equal, the corresponding data
element in the destination operand is set to all 1s; otherwise, it is set to all 0s. The source
operand can be a 64-bit register The destination operand can be a 64-bit register.
The PCMPEQB instruction compares the corresponding bytes in the first and second
operands; the PCMPEQH instruction compares the corresponding halfwords in the first and
second operands; and the PCMPEQW instruction compares the corresponding words in the
first and second operands.

Operation:

PCMPEQB
IF fs[7..0] = ft[7..0]

THEN fd[7..0] ← FFH;
ELSE fd[7..0] ← 0;

* Continue comparison of 2nd through 7th bytes in fs and ft *
IF fs[63..56] = ft[63..56]

THEN fd[63..56] ← FFH;
ELSE fd[63..56] ← 0;

PCMPEQH
IF fs[15..0] = ft[15..0]

THEN fd[15..0] ← FFFFH;
ELSE fd[15..0] ← 0;

* Continue comparison of 2nd and 3rd halfwords in fs and ft *
IF fs[63..48] = ft[63..48]

THEN fd[63..48] ← FFFFH;
ELSE fd[63..48] ← 0;

PCMPEQW
IF fs[31..0] = ft[31..0]

THEN fd[31..0] ← FFFFFFFFH;
ELSE fd[31..0] ← 0;

IF fs[63..32] = ft[63..32]
THEN fd[63..32] ← FFFFFFFFH;
ELSE fd[63..32] ← 0;

Exceptions:

 None.

PCMPGTB/PCMPGTH/PCMPGTW—Compare Packed Signed

Integers for Greater Than

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

PCMPGTB

10111

ft

fs

fd

SUB

000001
 6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

PCMPGTH

10101

ft

fs

fd

SUB

000001
 6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

PCMPGTW

10011

ft

fs

fd

SUB

000001
 6 5 5 5 5 6

Format:

PCMPGTB fd,fs,ft
PCMPGTH fd,fs,ft
PCMPGTW fd,fs,ft

Description:

Performs a SIMD signed compare for the greater value of the packed byte, halfword, or word
integers in the first operand and the second operand. If a data element in the first operand is
greater than the corresponding date element in the second operand, the corresponding data
element in the destination operand is set to all 1s; otherwise, it is set to all 0s. The source
operand can be a 64-bit register. The destination operand can be a 64-bit register.
The PCMPGTB instruction compares the corresponding signed byte integers in the first and
second operands; the PCMPGTH instruction compares the corresponding signed halfword
integers in the first and second operands; and the PCMPGTW instruction compares the
corresponding signed word integers in the first and second operands.

Operation:

PCMPGTB
IF fs[7..0] > ft[7..0]

THEN fd[7 0] ← FFH;
ELSE fd[7..0] ← 0;

* Continue comparison of 2nd through 7th bytes in fs and ft *
IF fs[63..56] > ft[63..56]

THEN fd[63..56] ← FFH;
ELSE fd[63..56] ← 0;

PCMPGTH
IF fs[15..0] > ft[15..0]

THEN fd[15..0] ← FFFFH;
ELSE fd[15..0] ← 0;

* Continue comparison of 2nd and 3rd halfwords in fs and ft *
IF fs[63..48] > ft[63..48]

THEN fd[63..48] ← FFFFH;
ELSE fd[63..48] ← 0;

PCMPGTW
IF fs[31..0] > ft[31..0]

THEN fd[31..0] ← FFFFFFFFH;
ELSE fd[31..0] ← 0;

IF fs[63..32] > ft[63..32]
THEN fd[63..32] ← FFFFFFFFH;
ELSE fd[63..32] ← 0;

Exceptions:

 None.

PEXTRH—Extract Halfword

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

PEXTRH

01110

ft

fs

fd

MUL

000010
 6 5 5 5 5 6

Format:

PEXTRH fd,fs,ft

Description:

Copies the halfword in the first operand specified by the second operand to the destination
operand. The high halfword of the destination operand is cleared (set to all 0s).

Operation:

PEXTRH
SEL ← ft AND 3H;
TEMP ← (fs >> (SEL ∗ 16)) AND FFFFH;
fd[15..0] ← TEMP[15..0];
fd[63..16] ← 00000000H;

Exceptions:

 None.

PINSRH—Insert Halfword

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PINSRH_0 ft fs fd DIV
010001 11100 000011

 6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PINSRH_1 ft fs fd DIV
010001 11101 000011

 6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

Format:

PINSRH_0 fd,fs,ft
PINSRH_1 fd,fs,ft
PINSRH_2 fd,fs,ft
PINSRH_3 fd,fs,ft

Description:

Copies a halfword from the second operand and inserts it in the first operand at the location
specified with the number of the instruction name. (The other halfwords in the first register

COP1 PINSRH_2
11110

ft

fs

fd

DIV

010001 000011
 6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PINSRH_3 ft fs fd DIV
010001 11111 000011

 6 5 5 5 5 6

are left untouched.)

Operation:

PINSRH_0
 MASK ← 000000000000FFFFH;

fd ← (fs AND NOT MASK) OR (((ft << (0 ∗ 16)) AND MASK);
PINSRH_1
 MASK ← 00000000FFFF0000H;

fd ← (fs AND NOT MASK) OR (((ft << (1 ∗ 16)) AND MASK);
PINSRH_2
 MASK ← 0000FFFF00000000H;

fd ← (fs AND NOT MASK) OR (((ft << (2 ∗ 16)) AND MASK);
PINSRH_3
 MASK ← FFFF000000000000H;

fd ← (fs AND NOT MASK) OR (((ft << (3 ∗ 16)) AND MASK);

Exceptions:

 None.

PMADDHW—Multiply and Add Packed Integers

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PMADDHW ft fs fd MUL
010001 01111 000010

 6 5 5 5 5 6

Format:

PMADDHW fd,fs,ft

Description:

Multiplies the individual signed halfwords of the first operand by the corresponding signed
halfwords of the second operand, producing temporary signed, word results. The adjacent
word results are then summed and stored in the destination operand. For example, the
corresponding low-order halfwords (15-0) and (31-16) in the first and second operands are
multiplied by one another and the word results are added together and stored in the low word
of the destination register (31-0). The same operation is performed on the other pairs of
adjacent halfwords. (Figure 3-6 shows this operation when using 64-bit operands.) The
source operands can be a 64-bit register. The destination operand can be a 64-bit register.
The PMADDHW instruction wraps around only in one situation: when the 2 pairs of
halfwords being operated on in a group are all 8000H. In this case, the result wraps around to
80000000H.

Figure 3-6. PMADDHW Execution Model Using 64-bit Operands

Operation:

PMADDHW
fd[31..0] ← (fs[15..0] ∗ ft[15..0]) + (fs[31..16] ∗ ft[31..16]);
fd[63..32] ← (fs[47..32] * ft[47..32]) + (fs[63..48] * ft[63..48]);

Exceptions:

 None.

PMAXSH—Maximum of Packed Signed Halfword Integers

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PMAXSH ft fs fd ADD
010001 10100 000000

 6 5 5 5 5 6

Format:

PMAXSH fd,fs,ft

Description:

Performs a SIMD compare of the packed signed halfword integers in the first operand and
the second operand, and returns the maximum value for each pair of halfword integers to the
destination operand. The source operands can be a 64-bi register. The destination operand
can be a 64-bi register.

Operation:

PMAXSH
IF (fs[15..0] > ft[15..0]) THEN

fd[15..0] ← fs[15..0];
ELSE

fd[15..0] ← ft[15..0];
FI
* repeat operation for 2nd and 3rd halfwords in first and second operands *
IF (fs[63..48] > ft[63..48]) THEN

fd[63..48] ← fs[63..48];
ELSE

fd[63..48] ← ft[63..48];
FI

Exceptions:

 None.

PMAXUB—Maximum of Packed Unsigned Byte Integers

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PMAXUB ft fs fd ADD
010001 10110 000000

 6 5 5 5 5 6

Format:

PMAXUB fd,fs,ft

Description:

Performs a SIMD compare of the packed unsigned byte integers in the first operand and the
second operand, and returns the maximum value for each pair of byte integers to the
destination operand. The source operands can be a 64-bit register. The destination operand
can be a 64-bit register.

Operation:

PMAXUB
IF (fs[7..0] > ft[7..0]) THEN

fd[7..0] ← fs[7..0];
ELSE

fd[7..0] ← ft[7..0];
FI
* repeat operation for 2nd through 7th bytes in first and second operands *
IF (fs[63..56] > ft[63..56]) THEN

fd[63..56] ← fs[63..56];
ELSE

fd[63..56] ← ft[63..56];
FI

Exceptions:

 None.

PMINSH—Minimum of Packed Signed Halfword Integers

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PMINSH ft fs fd ADD
010001 10101 000000

 6 5 5 5 5 6

Format:

PMINSH fd,fs,ft

Description:

Performs a SIMD compare of the packed signed halfword integers in the first operand and
the second operand, and returns the minimum value for each pair of halfword integers to the
destination operand. The source operands can be a 64-bit register. The destination operand
can be a 64-bit register.

Operation:

PMINSH
IF (fs[15..0] < ft[15..0]) THEN

fd[15..0] ← fs[15..0];
ELSE

fd[15..0] ← ft[15..0];
FI
* repeat operation for 2nd and 3rd halfwords in first and second operands *
IF (fs[63..48] < ft[63..48]) THEN

fd[63..48] ← fs[63..48];
ELSE

fd[63..48] ← ft[63..48];
FI

Exceptions:

 None.

PMINUB—Minimum of Packed Unsigned Byte Integers

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PMINUB ft fs fd ADD
010001 10111 000000

 6 5 5 5 5 6

Format:

PMINUB fd,fs,ft

Description:

Performs a SIMD compare of the packed unsigned byte integers in the first operand and the
second operand, and returns the minimum value for each pair of byte integers to the
destination operand. The source operands can be a 64-bit register. The destination operand
can be a 64-bit register.

Operation:

PMINUB
IF (fs[7..0] < ft[7..0]) THEN

fd[7..0] ← fs[7..0];
ELSE

fd[7..0] ← ft[7..0];
FI
* repeat operation for 2nd through 7th bytes in first and second operands *
IF (fs[63..56] < ft[63..56]) THEN

fd[63..56] ← fs[63..56];
ELSE

fd[63..56] ← ft[63..56];
FI

Exceptions:

 None.

PMOVMSKB—Move Byte Mask

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PMOVMSKB 0 fs fd ABS
010001 10101 00000 000101

 6 5 5 5 5 6

Format:

PMOVMSKB fd,fs

Description:

Creates a mask made up of the most significant bit of each byte of the first operand and stores
the result in the low byte of the destination operand. The source operand is a 64-bit register.
When operating on 64-bit operands, the byte mask is 8 bits.

Operation:

PMOVMSKB
fd[0] ← fs[7];
fd[1] ← fs[15];
* repeat operation for bytes 2 through 6 *
fd[7] ← fs[63];
fd[63..8] ← 00000000000000H;

Exceptions:

 None.

PMULHUH—Multiply Packed Unsigned Integers and Store

High Result

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PMULHUH ft fs fd MUL
010001 10111 000010

 6 5 5 5 5 6

Format:

PMULHUH fd,fs,ft

Description:

Performs a SIMD unsigned multiply of the packed unsigned halfword integers in the first
operand and the second operand, and stores the high 16 bits of each 32-bit intermediate
results in the destination operand. (Figure 3-7 shows this operation when using 64-bit
operands.) The source operands can be a 64-bit register. The destination operand can be a
64-bit register.

Figure 3-7. PMULHUH and PMULHH Instruction Operation Using 64-bit

Operands

Operation:

PMULHUH
TEMP0[31..0] ← fs[15..0] ∗ ft[15..0]; * Unsigned multiplication *

TEMP1[31..0] ← fs[31..16] ∗ ft[31..16];
TEMP2[31..0] ← fs[47..32] ∗ ft[47..32];
TEMP3[31..0] ← fs[63..48] ∗ ft[63..48];
fd[15..0] ← TEMP0[31..16];
fd[31..16] ← TEMP1[31..16];
fd[47..32] ← TEMP2[31..16];
fd[63..48] ← TEMP3[31..16];

Exceptions:

 None.

PMULHH—Multiply Packed Signed Integers and Store High

Result

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PMULHH ft fs fd MUL
010001 10101 000010

 6 5 5 5 5 6

Format:

PMULHH fd,fs,ft

Description:

Performs a SIMD signed multiply of the packed signed halfword integers in the first operand
and the second operand, and stores the high 16 bits of each intermediate 32-bit result in the
destination operand. (Figure 3-7 shows this operation when using 64-bit operands.) The
source operands can be a 64-bit register. The destination operand can be a 64-bit register.

Operation:

PMULHH
TEMP0[31..0] ← fs[15..0] ∗ ft[15..0]; * Signed multiplication *
TEMP1[31..0] ← fs[31..16] ∗ ft[31..16];
TEMP2[31..0] ← fs[47..32] ∗ ft[47..32];
TEMP3[31..0] ← fs[63..48] ∗ ft[63..48];
fd[15..0] ← TEMP0[31..16];
fd[31..16] ← TEMP1[31..16];
fd[47..32] ← TEMP2[31..16];
fd[63..48] ← TEMP3[31..16];

Exceptions:

 None.

PMULLH—Multiply Packed Signed Integers and Store Low

Result

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PMULLH ft fs fd MUL
010001 10100 000010

 6 5 5 5 5 6

Format:

PMULLH fd,fs,ft

Description:

Performs a SIMD signed multiply of the packed signed halfword integers in the first operand
and the second operand, and stores the low 16 bits of each intermediate 32-bit result in the
destination operand. (Figure 3-7 shows this operation when using 64-bit operands.) The
source operand can be a 64-bit register. The destination operand can be a 64-bit register.

Figure 3-8. PMULLH Instruction Operation Using 64-bit Operands

Operation:

PMULLH
TEMP0[31..0] ← fs[15..0] ∗ ft[15..0]; * Signed multiplication *
TEMP1[31..0] ← fs[31..16] ∗ ft[31..16];
TEMP2[31..0] ← fs[47..32] ∗ ft[47..32];

TEMP3[31..0] ← fs[63..48] ∗ ft[63..48];
fd[15..0] ← TEMP0[15..0];
fd[31..16] ← TEMP1[15..0];
fd[47..32] ← TEMP2[15..0];
fd[63..48] ← TEMP3[15..0];

Exceptions:

 None.

PMULUW—Multiply Packed Unsignedword Integers

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PMULUW ft fs fd MUL
010001 10110 000010

 6 5 5 5 5 6

Format:

PMULUW fd,fs,ft

Description:

Multiplies the first operand by the second operand and stores the result in the destination
operand. The source operands can be a unsigned word integer stored in the low word of a
64-bit register. The result is an unsigned doubleword integer stored in the destination a 64-bit
register. When a doubleword result is too large to be represented in 64 bits (overflow), the
result is wrapped around and the low 64 bits are written to the destination element (that is, the
carry is ignored).

Operation:

PMULUW
fd[63..0] ← fs[31..0] ∗ ft[31..0];

Exceptions:

 None.

PSADBH—Compute Sum of Absolute Differences

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PASUBUB ft fs fd SUB
010001 01101 000001

 6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

COP1 BIADD 0 fs fd ABS
010001 10100 00000 000101

 6 5 5 5 5 6

Format:

PASUBUB fd,fs,ft
BIADD fd,fs

Description:

PSADBH instruction computes the absolute value of the difference of 8 unsigned byte
integers from the first operand and from the second operand. These 8 differences are then
summed to produce an unsigned halfword integer result that is stored in the destination
operand. The source operand can be a 64-bit register. The destination operand can be a 64-bit
register. Figure 3-9 shows the operation of the PSADBH instruction when using 64-bit
operands. When operating on 64-bit operands, the halfword integer result is stored in the low
halfword of the destination operand, and the remaining bytes in the destination operand are
cleared to all 0s.

Figure 3-9. PSADBH Instruction Operation Using 64-bit Operands
Note: PSADBH instruction is divided into two instruction, PASUBUB and BIADD.
PASUBUB instruction computes the absolute value of the difference of 8 unsigned byte
integers from the first operand and from the second operand. BIADD computes the sum of 8
unsigned byte integers of the source operand.

Operation:

PASUBUB
fd[7..0] ← ABS(fs[7..0] − ft[7..0]);
* repeat operation for bytes 2 through 6 *
fd[63..56] ← ABS(fs[63..56] − ft[63..56]);

BIADD
fd[15..0] ← SUM(fs[7..0]... fs[63..56]);
fd[63..16] ← 000000000000H;

Exceptions:

 None.

PSHUFH—Shuffle Packed Halfwords

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PSHUFH ft fs fd MUL
010001 11000 000010

 6 5 5 5 5 6

Format:

PSHUFH fd,fs,ft

Description:

Copies halfwords from the first operand and inserts them in the destination operand at
halfword locations selected with the second operand(order operand). This operation is
illustrated in Figure 3-10. For the PSHUFH instruction, each 2-bit field in the second operand
selects the contents of one halfword location in the destination operand. The encodings of the
second operand fields select halfwords from the first operand to be copied to the destination
operand.
The first operand can be a 64-bit register. The destination operand is a 64-bit register. The
order operand is a 64-bit register.
Note that this instruction permits a halfword in the first operand to be copied to more than
one halfword location in the destination operand.

Figure 3-10. PSHUFH Instruction Operation

Operation:

PSHUFH
fd[15..0] ← (fs >> (ft[1..0] ∗ 16))[15..0]
fd[31..16] ← (fs >> (ft[3..2] ∗ 16))[15..0]
fd[47..32] ← (fs >> (ft[5..4] ∗ 16))[15..0]
fd[63..48] ← (fs >> (ft[7..6] ∗ 16))[15..0]

Exceptions:

 None.

PSLLH/PSLLW—Shift Packed Data Left Logical

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PSLLH ft fs fd MUL
010001 10011 000010

 6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PSLLW ft fs fd MUL
010001 10010 000010

 6 5 5 5 5 6

Format:

PSLLH fd,fs,ft
PSLLW fd,fs,ft

Description:

Shifts the bits in the individual data elements (halfwords, words) in the first operand to the
left by the number of bits specified in the second operand (count operand). As the bits in the
data elements are shifted left, the empty low-order bits are cleared (set to 0). If the value
specified by the count operand is greater than 15 (for halfwords), 31 (for words), then the
destination operand is set to all 0s. (Figure 3-11 gives an example of shifting words in a
64-bit operand.)

Figure 3-11. PSLLH, PSLLW Instruction Operation Using 64-bit Operand
The PSLLH instruction shifts each of the halfwords in the first operand to the left by the
number of bits specified in the count operand; the PSLLW instruction shifts each of the
words in the first operand.

Operation:

PSLLH
IF (ft[6..0] > 15)
THEN

fd[64..0] ← 0000000000000000H
ELSE

fd[15..0] ← ZeroExtend(fs[15..0] << ft[6..0]);
* repeat shift operation for 2nd and 3rd words *;
fd[63..48] ← ZeroExtend(fs[63..48] << ft[6..0]);

FI;
PSLLW

IF (ft[6..0] > 31)
THEN

fd[64..0] ← 0000000000000000H
ELSE

fd[31..0] ← ZeroExtend(fs[31..0] << ft[6..0]);
fd[63..32] ← ZeroExtend(fs[63..32] << ft[6..0]);

FI;

Exceptions:

 None.

PSRAH/PSRAW—Shift Packed Data Right Arithmetic

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PSRAH ft fs fd DIV
010001 10101 000011

 6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PSRAW ft fs fd DIV
010001 10100 000011

 6 5 5 5 5 6

Format:

PSRAH fd,fs,ft
PSRAW fd,fs,ft

Description:

Shifts the bits in the individual data elements (halfwords or words) in the first operand to the
right by the number of bits specified in the second operand (count operand). As the bits in the
data elements are shifted right, the empty high-order bits are filled with the initial value of
the sign bit of the data element. If the value specified by the count operand is greater than 15
(for halfwords) or 31 (for words), each destination data element is filled with the initial value
of the sign bit of the element. (Figure 3-12 gives an example of shifting halfwords in a 64-bit
operand.)

Figure 3-12. PSRAH and PSRAW Instruction Operation Using a 64-bit Operand
The PSRAH instruction shifts each of the halfwords in the first operand to the right by the
number of bits specified in the count operand, and the PSRAW instruction shifts each of the

words in the first operand.

Operation:

PSRAH
IF (ft[6..0] > 15)

THEN ft[6..0] ← 16;
FI;
fd[15..0] ← SignExtend(fs[15..0] >> ft[6..0]);
* repeat shift operation for 2nd and 3rd halfwords *;
fd[63..48] ← SignExtend(fs[63..48] >> ft[6..0]);

PSRAW
IF (ft[6..0] > 31)

THEN ft[6..0] ← 32;
FI;
fd[31..0] ← SignExtend(fs[31..0] >> ft[6..0]);
fd[63..32] ← SignExtend(fs[63..32] >> ft[6..0]);

Exceptions:

 None.

PSRLH/PSRLW—Shift Packed Data Right Logical

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PSRLH ft fs fd DIV
010001 10011 000011

 6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PSRLW ft fs fd DIV
010001 10010 000011

 6 5 5 5 5 6

Format:

PSRLH fd,fs,ft
PSRLW fd,fs,ft

Description:

Shifts the bits in the individual data elements (halfwords, words) in the first operand to the
right by the number of bits specified in the second operand (count operand). As the bits in the
data elements are shifted right, the empty high-order bits are cleared (set to 0). If the value
specified by the count operand is greater than 15 (for halfwords), 31 (for words), then the
destination operand is set to all 0s. (Figure 3-13 gives an example of shifting halfwords in a
64-bit operand.)

Figure 3-13. PSRLH, PSRLW Instruction Operation Using 64-bit Operand
The PSRLH instruction shifts each of the halfwords in the first operand to the right by the
number of bits specified in the count operand; the PSRLW instruction shifts each of the
words in the first operand.

Operation:

PSRLH
IF (ft[6..0] > 15)
THEN

fd[64..0] ← 0000000000000000H
ELSE

fd[15..0] ← ZeroExtend(fs[15..0] >> ft[6..0]);
* repeat shift operation for 2nd and 3rd halfwords *;
fd[63..48] ← ZeroExtend(fs[63..48] >> ft[6..0]);

FI;
PSRLW

IF (COUNT > 31)
THEN

fd[64..0] ← 0000000000000000H
ELSE

fd[31..0] ← ZeroExtend(fs[31..0] >> ft[6..0]);
fd[63..32] ← ZeroExtend(fs[63..32] >> ft[6..0]);

FI;

Exceptions:

 None.

PSUBB/PSUBH/PSUBW—Subtract Packed Integers

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PSUBB ft fs fd SUB
010001 11110 000001

 6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PSUBH ft fs fd SUB
010001 11010 000001

 6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PSUBW ft fs fd SUB
010001 11011 000001

 6 5 5 5 5 6

Format:

PSUBB fd,fs,ft
PSUBH fd,fs,ft
PSUBW fd,fs,ft

Description:

Performs a SIMD subtract of the packed integers of the second operand from the packed
integers of the first operand, and stores the packed integer results in the destination operand.
Overflow is handled with wraparound, as described in the following paragraphs. These
instructions operate on 64-bit operands.
The PSUBB instruction subtracts packed byte integers. When an individual result is too large
or too small to be represented in a byte, the result is wrapped around and the low 8 bits are
written to the destination element.
The PSUBH instruction subtracts packed halfword integers. When an individual result is too
large or too small to be represented in a halfword, the result is wrapped around and the low
16 bits are written to the destination element.
The PSUBW instruction subtracts packed word integers. When an individual result is too

large or too small to be represented in a word, the result is wrapped around and the low 32
bits are written to the destination element.
Note that the PSUBB, PSUBW, and PSUBD instructions can operate on either unsigned or
signed (two's complement notation) packed integers; however, it does not indicate overflow
and/or a carry. To prevent undetected overflow conditions, software must control the ranges
of values operated on.

Operation:

PSUBB
fd[7..0] ← fs[7..0] − ft[7..0];
* repeat subtract operation for 2nd through 7th byte *;
fd[63..56] ← fs[63..56] − ft[63..56];

PSUBH
fd[15..0] ← fs[15..0] − ft[15..0];
* repeat subtract operation for 2nd and 3rd halfword *;
fd[63..48] ← fs[63..48] − ft[63..48];

PSUBW
fd[31..0] ← fs[31..0] − ft[31..0];
fd[63..32] ← fs[63..32] − ft[63..32];

Exceptions:

 None.

PSUBD—Subtract Packed Doubleword Integers

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PSUBD ft fs fd SUB
010001 11111 000001

 6 5 5 5 5 6

Format:

PSUBD fd,fs,ft

Description:

Subtracts the second operand from the first operand and stores the result in the destination
operand. When packed doubleword operands are used, a SIMD subtract is performed. When
a doubleword result is too large to be represented in 64 bits (overflow), the result is wrapped
around and the low 64 bits are written to the destination element (that is, the carry is
ignored).
Note that the PSUBD instruction can operate on either unsigned or signed (two’s
complement notation) integers; however, it does not indicate overflow and/or a carry. To
prevent undetected overflow conditions, software must control the ranges of the values
operated on.

Operation:

PSUBD
fd[63..0] ← fs[63..0] − ft[63..0];

Exceptions:

 None.

PSUBSB/PSUBSH—Subtract Packed Signed Integers with

Signed Saturation

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PSUBSB ft fs fd SUB
010001 11100 000001

 6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PSUBSH ft fs fd SUB
010001 11000 000001

 6 5 5 5 5 6

Format:

PSUBSB fd,fs,ft
PSUBSH fd,fs,ft

Description:

Performs a SIMD subtract of the packed signed integers of the second operand from the
packed signed integers of the first operand, and stores the packed integer results in the
destination operand. Overflow is handled with signed saturation, as described in the
following paragraphs. These instructions operate on 64-bit.
The PSUBSB instruction subtracts packed signed byte integers. When an individual byte
result is beyond the range of a signed byte integer (that is, greater than 7FH or less than 80H),
the saturated value of 7FH or 80H, respectively, is written to the destination operand.
The PSUBSH instruction subtracts packed signed halfword integers. When an individual
halfword result is beyond the range of a signed halfword integer (that is, greater than 7FFFH
or less than 8000H), the saturated value of 7FFFH or 8000H, respectively, is written to the
destination operand.

Operation:

PSUBSB
fd[7..0] ← SaturateToSignedByte(fs[7..0] − ft[7..0]) ;
* repeat subtract operation for 2nd through 7th bytes *;
fd[63..56] ← SaturateToSignedByte(fs[63..56] − ft[63..56]);

PSUBSH
fd[15..0] ← SaturateToSignedHalfword(fs[15..0] − ft[15..0]);
* repeat subtract operation for 2nd and 7th halfwords *;
fd[63..48] ← SaturateToSignedHalfword(fs[63..48] − ft[63..48]);

Exceptions:

 None.

PSUBUSB/PSUBUSH—Subtract Packed Unsigned Integers

with Unsigned Saturation

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PSUBUSB ft fs fd SUB
010001 11101 000001

 6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PSUBUSH ft fs fd SUB
010001 11001 000001

 6 5 5 5 5 6

Format:

PSUBUSB fd,fs,ft
PSUBUSH fd,fs,ft

Description:

Performs a SIMD subtract of the packed unsigned integers of thesecond operand from the
packed unsigned integers of the first operand, and stores the packed unsigned integer results
in the destination operand. Overflow is handled with unsigned saturation, as described in the
following paragraphs. These instructions operate on 64-bit operands.
The PSUBUSB instruction subtracts packed unsigned byte integers. When an individual byte
result is less than zero, the saturated value of 00H is written to the destination operand.
The PSUBUSH instruction subtracts packed unsigned halfword integers. When an individual
halfword result is less than zero, the saturated value of 0000H is written to the destination
operand.

Operation:

PSUBUSB
fd[7..0] ← SaturateToUnsignedByte(fs[7..0] − ft[7..0]) ;

* repeat add operation for 2nd through 7th bytes *;
fd[63..56] ← SaturateToUnsignedByte(fs[63..56] − ft[63..56]);

PSUBUSH
fd[15..0] ← SaturateToUnsignedHalfword(fs[15..0] − ft[15..0]);
* repeat add operation for 2nd and 3rd halfwords *;
fd[63..48] ← SaturateToUnsignedHalfword(fs[63..48] − ft[63..48]);

Exceptions:

 None.

PUNPCKHBH/PUNPCKHHW/PUNPCKHWD—Unpack High

Data

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PUNPCKHBH ft fs fd DIV
010001 11011 000011

 6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PUNPCKHHW ft fs fd DIV
010001 11001 000011

 6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PUNPCKHWD ft fs fd DIV
010001 10111 000011

 6 5 5 5 5 6

Format:

PUNPCKHBH fd,fs,ft
PUNPCKHHW fd,fs,ft
PUNPCKHWD fd,fs,ft

Description:

Unpacks and interleaves the high-order data elements (bytes,halfwords, words) of the first
operand and second operand into the destination operand. (Figure 3-14 shows the unpack
operation for bytes in 64-bit operands.). The low-order data elements are ignored.

Figure 3-14. PUNPCKHBH Instruction Operation Using 64-bit Operands

The PUNPCKHBH instruction interleaves the high-order bytes of the first and second
operands, the PUNPCKHHW instruction interleaves the high-order halfwords of the first and
second operands, the PUNPCKHWD instruction interleaves the high-order word (or words)
of first and second operands.
These instructions can be used to convert bytes to halfwords, halfwords to words, words to
doublewords, respectively, by placing all 0s in the second operand. Here, if the second
operand contains all 0s, the result (stored in the destination operand) contains zero extensions
of the high-order data elements from the original value in the first operand. For example,
with the PUNPCKHBH instruction the high-order bytes are zero extended (that is, unpacked
into unsigned halfword integers), and with the PUNPCKHHW instruction, the high-order
halfwords are zero extended (unpacked into unsigned word integers).

Operation:

PUNPCKHBH
fd[7..0] ← fs[39..32];
fd[15..8] ← ft[39..32];
fd[23..16] ← fs[47..40];
fd[31..24] ← ft[47..40];
fd[39..32] ← fs[55..48];
fd[47..40] ← ft[55..48];
fd[55..48] ← fs[63..56];
fd[63..56] ← ft[63..56];

PUNPCKHHW
fd[15..0] ← fs[47..32];
fd[31..16] ← ft[47..32];
fd[47..32] ← fs[63..48];
fd[63..48] ← ft[63..48];

PUNPCKHWD
fd[31..0] ← fs[63..32]
fd[63..32] ← ft[63..32];

Exceptions:

 None.

PUNPCKLBH/PUNPCKLHW/PUNPCKLWD—Unpack Low Data

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PUNPCKLBH ft fs fd DIV
010001 11010 000011

 6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PUNPCKLHW ft fs fd DIV
010001 11000 000011

 6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

COP1 PUNPCKLWD ft fs fd DIV
010001 10110 000011

 6 5 5 5 5 6

Format:

PUNPCKLBH fd,fs,ft
PUNPCKLHW fd,fs,ft
PUNPCKLWD fd,fs,ft

Description:

Unpacks and interleaves the low-order data elements (bytes, halfwords, words) of the first
operand and second operand into the destination operand. (Figure 3-15 shows the unpack
operation for bytes in 64-bit operands.). The high-order data elements are ignored.

Figure 3-15. PUNPCKLBH Instruction Operation Using 64-bit Operands
The PUNPCKLBH instruction interleaves the low-order bytes of the first and second
operands, the PUNPCKLHW instruction interleaves the low-order halfwords of the first and
second operands, the PUNPCKLWD instruction interleaves the low-order word of the first
and second operands.
These instructions can be used to convert bytes to halfwords, halfwords to words, words to
doublewords, respectively, by placing all 0s in the secondoperand. Here, if the second
operand contains all 0s, the result (stored in the destination operand) contains zero extensions
of the high-order data elements from the original value in the first operand. For example,
with the PUNPCKLBH instruction the high-order bytes are zero extended (that is, unpacked
into unsigned halfword integers), and with the PUNPCKLHW instruction, the high-order
halfwords are zero extended (unpacked into unsigned word integers).

Operation:

PUNPCKLBH
fd[63..56] ← ft[31..24];
fd[55..48] ← fs[31..24];
fd[47..40] ← ft[23..16];
fd[39..32] ← fs[23..16];
fd[31..24] ← ft[15..8];
fd[23..16] ← fs[15..8];
fd[15..8] ← ft[7..0];
fd[7..0] ← fs [7..0];

PUNPCKLHW
fd[63..48] ← ft[31..16];
fd[47..32] ← fs[31..16];
fd[31..16] ← ft[15..0];
fd[15..0] ← fs[15..0];

PUNPCKLWD
fd[63..32] ← ft[31..0];
fd[31..0] ← fs[31..0];

Exceptions:

 None.

	Godson MultiMedia Technology
	1.1 OVERVIEW
	1.2 INSTRUCTION SYNTAX
	1.3 SATURATION AND WRAPAROUND MODES
	1.4 GODSON MULTIMEDIA INSTRUCTIONS
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operations:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:
	Format:
	Description:
	Operation:
	Exceptions:

