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• Synthesisab le reusab le Verilog design. This document describes the functions realised in a
Xilinx ‘ ‘Vir te x-E’’ FPGA, but the y have also been pr oven as a 32-bit ASIC.

• Direct connection to MIPS CPU using an y known v ariant of the ‘ ‘SysAD’ ’ interface . FPGA
implementations of B ONITO64 run at 100MHz or higher .

• Direct connection to 32-bit 33MHz PCI b us, conf orming to Re v2.1. Independent CPU and PCI
input c loc ks. PCI arbiter and other ‘ ‘host’ ’ functions a vailab le , but can also operate as a
peripheral. Inc ludes PCI mailbo x register s for intellig ent peripheral comm unication.

• High-perf ormance sync hronous DRAM memor y system using one or tw o industr y-standar d
modules or equiv alent onboar d c ircuit. External clock generator required f or SDRAM c loc ks.

• Local b us f or ROM and simple I/O connects ‘ ‘dumb’ ’ components, isolated fr om high-speed
signals b y external CMOS s witc h. I/O bus DMA suppor ts ‘ ‘UDMA’ ’ t ransf ers on an attac hed IDE
disk drive , as defined in the A TA-4 standar d for PC disk drives.

• Unique ‘ ‘I/O buff er cac he’’ (IOBC) cac hes local memor y locations to enhance PCI transf er
perf ormance f or de vice contr oller s whic h are PCI bus initiator s. The IOBC cac hes are kept
coherent with main memor y by the har dware , so the IOBC is in visib le to run-time software .

• Configurab le deb ug mode makes all c ycles visib le at a DIMM soc ket.

• Glueless suppor t of CPU reset sequence .

• Po werful, simple interrupt contr oller and GPIO pins.

• System can be initialised and the MIPS CPU run fr om local R OM or o ver PCI. Configuration
options whic h can’t be in software use pullups on data b uses.
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1. Overview and Intr oduction
This device has four ports: the CPU’s SysAD, PCI, SDRAM and local ROM & I/O. In some packaging
options some SDRAM signals are used during some local ROM & I/O cycles to provide more addresses.
A minimal system block diagram is shown in the figure on page 1.

The CPU-side and PCI clocks are independent inputs, and need have no timing relationship. The
SDRAM system is operated synchronously to the CPU-side clock and should be fed (with the CPU and
BONITO64) with matched low-skew clock inputs.

BONITO64 handles tasks which are common to many of those systems where a MIPS CPU is used with a
PCI bus and a local memory system, including:

• Managing the CPU reset sequence and supporting common configuration options.

• System bootstrap from local ROM/flash or over PCI.

• A flexible and high-perfor mance interr upt controller, see §5.15.

• A few general-pur pose I/O pins - sufficient, for example, to provide access to the signature EEROM of
a memor y DIMM.

BONITO64 itself does not include any specific I/O device - not even a UART. It’s cheap and easy to add
such devices on the I/O bus.

Compared to other MIPS system controllers, BONITO64 offers a simple, fast, memory controller,
outstanding real-life PCI perfor mance, and a high level of integration to minimise glue logic.

BONITO64 is available for license from Algorithmics as reusable Ver ilog code.

Manual r oad map
The sections are like this

• Interfaces : goes through each port in tur n descr ibing what they do

• Inside BONITO64 : descr ibes the I/O buffer cache (used for PCI master accesses into local memory)
and the PCI copier (used to move data from local memory to other PCI locations).

• BONITO64 system infor mation : memor y maps, endianness, bootstrapping and PCI options

• Software-accessible registers and programming : all the registers and programming how-tos.

• Hardware description : signals, pinout and packaging.

• Appendices : A: register address summary; B: debug interface and the debug board; C: IDE interface
design infor mation; D: hardware timing and the programmer

Conventions
Software register names are written in bold-monospace ; register names have no spaces and are not
meant to be case-sensitive. Signals are written in SmallItalics and active-low signals are indicated by an
aster isk suffix: ActiveLow*. Web addresses (URLs) are shown as monospace .
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2. Interfaces
One way to introduce this multi-faceted part is to go around its interfaces and describe each in turn. So
we’ll do that for the CPU, PCI, SDRAM, ROM and I/O, GPIO, test and debug interfaces.

2.1. CPU Port
BONITO64 connects directly to the MIPS ‘‘SysAD’’ bus. Par ity is passed through to the local SDRAM
system, and generated/checked on other cycles; but parity checking can be disabled if you’d rather use
64-bit (not 72-bit) memory.

BONITO64 manages the CPU’s reset sequence. A complete reset of BONITO64 from its SYSRESET* pin -
or the PCI RESET* signal where BONITO64 is configured as a peripheral - causes the CPU to be driven
through a cold-reset. It’s also possible to do a cold-reset of the MIPS CPU by writing a register bit; this
can be used as a self-reset by CPUs which need to put themselves in a non-standard configuration: see
§4.3 for more infor mation.

In some cases a system may be managed by a host across PCI; it’s possible to configure BONITO64 to
wait with the local CPU stalled while an exter nal PCI host configures the chip and uploads software to
local memory; see §4.4.

BONITO64 has an internal interrupt controller which connects to two of the MIPS CPU interrupt inputs.

2.2. PCI por t
BONITO64 confor ms to the PCI specification (rev 2.1), can act as initiator or target on a PCI bus, and
when required can perfor m all host roles other than clock generation - it has a PCI arbiter onboard, can
source the PCI reset signal, and can initiate configuration cycles.

The CPU can directly read or write PCI space. CPU partial-word read or writes to PCI space are signaled
with exactly the byte enables you programmed. The byte enables (and byte lanes) used can surpr ise you
when your CPU is ‘‘big-endian’’; see §4.2. CPU burst accesses to PCI are supported to the extent
necessar y to run any software uncached (some 32-bit CPUs use bursts to implement uncached 64-bit
loads/stores), but software needs to be aware that PCI accesses may fail, and monitor for bus errors (on
reads) and PCI errors reported by interr upts and BONITO64 registers (on writes).

PCI ‘‘configuration space’’ provides special address ranges used to initialise devices. BONITO64 can
configure devices on the local PCI bus (type 1 cycles) and also devices connected via a PCI bridge
(which need ‘‘type 2’’ configuration cycles). Configuration cycles are programmed through a pair of
registers (one sets up the PCI address bits, and the other is a data register).

CPU writes to PCI are ‘‘posted’’; there’s a BONITO64 register pcimstat which software can read to check
when all posted writes have been completed on PCI1.

CPU reads from PCI space may be quite slow. Although BONITO64 handles the reads in sequence,
CPUs adver tised as supporting ‘‘non-blocking reads’’ or ‘‘multiple outstanding requests’’ can continue to
run while waiting for data. BONITO64 will continue to provide the CPU with access to local DRAM and I/O
space. But PCI operations, how ever delayed, are always completed in the order in which they were
submitted.

BONITO64’s PCI arbiter handles up to six exter nal initiators (seven bus masters including BONITO64 itself)
and operates in round-robin only. A configuration-time option allows the arbiter to be disabled, for
systems whose arbiter is elsewhere; in this mode two of the arbiter signals are reconfigured to become
BONITO64’s own request/grant lines.

1 Posted writes can cause software porting problems: see Appendix D for a
discussion of problems and solutions.
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BONITO64 makes some or all its local DRAM memory available to exter nal PCI bus masters. PCI
initiator/local memory transfers go through the ‘‘I/O buffer cache’’ (IOBC), described in §3.1 below, to
maintain high throughput with minimal impact on the CPU’s access to local memory.

BONITO64 provides all the mandatory standard PCI-visible configuration registers. But software running
on the local MIPS CPU can modify some of these register contents and arrange that the registers are not
visible until they have been changed, so that BONITO64 can take on a different identity as part of an
intelligent PCI controller; see §4.5.

BONITO64 can be configured to respond as a PCI target to three PCI address regions. One is hard-wired
for BONITO64’s own PCI-accessible registers, and two are used for access to attached local SDRAM or
I/O devices - the size, location and transfer character istics of these two windows are configurable. PCI
access to the local I/O bus is provided for diagnostics and system initialisation; no guarantees are made
about perfor mance.

BONITO64 implements mailbox registers. A PCI write to a mailbox register generates an interrupt
condition for the CPU, which can retrieve the data through a locally-readable register.

2.3. SDRAM connection
The memory interface is optimised to run burst-mode SDRAM cycles in CPU native word order (sub-block
or linear) using industry-standard modules. It is synchronised in frequency and phase with the CPU
interface to minimise CPU access time. It can drive systems with a fan-out of up to 8 loads on each
DRAM control output. Larger systems require high-drive registered buffers (74ALVCH16374 or similar)
for the multiplexed address lines and address-time control signals (which go to every DRAM device).
When the registered buffers are used, you must configure the SDRAM controller to delay all data timings
by one clock.

In many package options the SDRAM data bus is also used to carry addresses for I/O accesses requiring
more than a few address bits; in particular, for ROM cycles. BONITO64’s Isolate signal can be used to
control a bus-switch device for this purpose - see the box called ‘‘isolation’’ in the figure on page 1. Where
this trick is used ROM and other I/O cycles using the SDRAM data bus cannot - of course - be run
concurrently with an SDRAM access; but most I/O device accesses need only the hard-wired addresses.

There’s no suppor t for DRAM ‘‘open pages’’; the cache refill and write-back traffic from the CPU has little
locality of reference, and PCI traffic will be ferociously interleaved with CPU references. In this
environment open pages cannot be expected to make a big impact on perfor mance - but they make the
SDRAM controller much more complex.

The SDRAM controller is optimised for 8×doubleword burst cycles (here and throughout this manual a
‘‘word’’ is 32 bits and a ‘‘doubleword’’ is 64 bits). The controller also runs single 64-bit reads or writes.
Memor y systems supporting parity generally don’t directly support writing only some bytes of the SDRAM
array, so BONITO64 implements writes smaller than a doubleword with a read-merge-write sequence - not
visible to software but relatively slow. Programmers are not expected to use uncached accesses to
SDRAM except for bootstrapping and diagnostics.

The SDRAM control signals are designed to attach to a 64/72-bit array. Par ity generation and checking
are supported so long as (as is usual) the CPU bus is the same width as the DRAM bus.

PCI traffic has unconditional prior ity over CPU traffic for SDRAM, but PCI traffic is slow enough relative to
the memory system that there are always plenty of cycles left over for the CPU.

BONITO64 perfor ms DRAM refresh cycles in pairs at regular intervals - optimally about 15	 s. Like many
other timings in BONITO64 the refresh interval can be set accurately only if you set up the pre-scaler
iodevcfg.cpuclockperiod as described on page 27.

You can configure BONITO64 to support synchronous PC-100 SDRAMs or PC-200 DDR SDRAMs. It will
suppor t devices with up to 13 row and/or column addresses. Configuration is software driven, and is
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detailed in §5.5 on page 29. If your system uses DIMMs which include the industry-standard ‘‘self-
por trait’’ EEROM, then system software can read the on-DIMM configuration EEROM using two GPIO
pins, and use that to figure out how to set up the memory controller.

2.4. ROM and local I/O por t
A dedicated local 16-bit I/O data bus is provided, with five dedicated I/O bus address bits. I/O bus cycles
requir ing more addresses find them multiplexed (according to how BONITO64 is configured at build time)
either on the I/O data bus lines at the start of the I/O cycle, or on the SDRAM data bus.

When the addresses are provided on the I/O data bus you need a latch to capture and drive the
addresses.

When the SDRAM data bus is used, it’s desirable to isolate the I/O and ROM devices from the high-speed
SDRAM cycles; so a signal Isolate is provided to control a bus switch or simple buffer on the address lines.
It is always left disabled during SDRAM cycles.

BONITO64 generates Intel-style I/O device control signals, two ROM chip selects, and four I/O chip
selects. ROMs must be 160ns or faster. Two fixed I/O timings are supported, corresponding to read/write
pulse widths of approximately 200 and 600ns, respectively. BONITO64 does not aim to support byte
addressing for I/O devices; 8-bit controllers should be wired to data bus bits IOD0−7 and should get
addresses from IOA2 upwards. That means that device registers will be at 4-byte intervals in CPU or PCI
space.

BONITO64 will perfor m multiple reads from a ROM to service CPU word or burst reads, allowing the
system to run - and to run cached - from a single 8- or 16-bit device. The order with which ROM data is
retur ned in a burst needs to match the CPU’s preferred burst order, which can be either ‘‘sequential’’
(MGB Link CPUs) or ‘‘sub-block’’ (SysAD CPUs), under the control of the bonponcfg.burstorder register
bit - see Table 5.2 below.

The assembly of ROM bytes or half-words into 64-bit words on the CPU bus is done in a peculiar way
which is not simply related to the ‘‘endianness’’ of the CPU; see §4.2 for an explanation.

Multi-cycle ROM transfers may be interr upted by SDRAM cycles, so that a CPU running from ROM does
not cause unacceptable PCI access delays.

2.4.1. ‘‘DMA’ ’ for local I/O

This function may not be needed, or provided, by all Bonito implementations.

BONITO64’s local I/O bus is, quite deliberately, highly compatible with the ‘‘ISA’’ bus found inside all PCs.
In turn that means that it is also ver y similar to the ‘‘IDE’’ disk drive interface (which started life as ‘‘ISA on
a cable’’).

IDE peripherals are ver y cheap and widely available, and IDE disk drives offer ver y high perfor mance
where DMA is available. Recent standards like ‘‘ATA-4’’ have defined a series of improved DMA protocols,
and BONITO64 implements several up to and including ‘‘UDMA’’ (‘‘Ultra-DMA’’) with its 33-100Mbytes/s
burst transfer rates.

BONITO64’s DMA accelerator automatically cycles the local bus to read or write data in bursts of up to 32
bytes of data between a local bus DMA device and an on-chip DMA buffer. The DMA buffer can be
configured to auto-flush to or auto-fill from an incrementing local memory address to provide classic DMA.

Accelerator cycles on the I/O bus are requested with a DMARQ input and select the port to read/wr ite with
a DMACK* signal.

DMA I/O bus cycles don’t share any DRAM bus signals, so they can be overlapped with SDRAM
accesses.

BONITO64 - ‘‘nor th br idge’’ controller for 64-bit MIPS CPUs Page 8 of 64



2.5. Interrupts and g eneral-purpose I/O (GPIO) pins
BONITO64 provides nine GPIO pins, programmable as input, output or tristate, and six dedicated input
pins. The input pins are particular ly good places to wire device interrupts, but some bidirectional pins are
available to the interrupt controller too, as descr ibed in 5.15.

See the signal list for hardware connections.

2.6. Test interfaces
The chip has a JTAG interface for boundary scan testing.

2.7. Debug/dia gnostic facilities
When bringing up software or fault-finding in an embedded system it can be ver y valuable to be able to
follow CPU, PCI and other transfers on a logic analyser.

BONITO64 is designed so that a ‘‘debug board’’ plugged into a DIMM socket can see the address and data
of any cycle in the system. The use of the SDRAM bus for this has some effect on perfor mance, so
debug tracing can be disabled with a configuration bit.

The debug board requires onboard logic - registers to capture address and data from the SDRAM pins,
and logic to interpret the SDRAM-like protocol and generate address/data triggers. It’s even possible to
build I/O devices onto the debug board, and have them accessible in the CPU’s memor y map.

Electr ically, the debug connector is similar to the DIMM module it supplants.

Debug signaling and the debug board is described in Appendix B.
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3. Inside BONITO64 - they I/O buff er cac he and copier
Tw o significant pieces of hardware are not directly related to any one of BONITO64’s por ts, so we haven’t
mentioned them yet. They’re:

• the I/O buffer cache (‘‘IOBC’’), which is responsible for providing a temporar y home for data in transit
between local memory and an exter nal PCI initiator;

• The PCI Copier, which provides a way to transfer large blocks of data between PCI and local memory
with only the occasional involvement of the CPU.

3.1. The I/O buff er cac he

July 2001: a major redesign of the IOBC coming soon will change this software interface
substantially, and make software-dr iven invalidation and writebacks unnecessary. More
ambitiously, it will wor k together with CPUs offer ing hardware cache coherence to produce a
completely software-transparent cache system.

The IOBC is a small internal cache of local SDRAM locations, but it does a job you’d more often see given
to a FIFO. It is used when exter nal PCI initiators read or write BONITO64’s local SDRAM memory; most
PCI controllers are ‘‘bus masters’’ and this is a critical part of many system wor kloads.

The IOBC translates the PCI’s stream-like data accesses to the aligned cache block transfers supported
by the local memory. It provides low-latency reads and writes for non-CPU transfers, and causes minimal
disr uption to the perfor mance-critical CPU/memory traffic. The IOBC uses heuristics to schedule
prefetches and write-backs to keep locally-sequential data flowing efficiently.

The IOBC has the following character istics:

• There are only four lines, each with its own address tag and set of state flags.

• Each line holds two 8×64-bit buffers for data, which are used in ‘‘ping-pong’’ fashion so one buffer can
be filling from or writing back to memor y while the other is involved in a PCI transfer.

• All IOBC memory fills and writebacks are done as 8×64-bit bursts.

Although the cache is small - absurdly small, by CPU cache standards - it perfor ms well (with a low ‘‘miss
rate’’) because PCI accesses show ver y strong locality of reference.

The IOBC is a wr ite-back cache: data written from PCI into the cache is not simultaneously forwarded to
SDRAM, but retained in the cache for a while.

CPU write-back caches are usually wr ite-allocate - when the CPU writes data to a location which is not
currently in the cache, the cache-line is first read in from memory and the data written on top to create a
complete and perfect copy of the data.

But the IOBC is not write-allocate; the IOBC never reads data from memory to ser vice a write. Instead,
the cache keeps track of every byte which has been written by the PCI side; when the IOBC line data is
ev entually written back to memor y, the IOBC perfor ms a read-merge-wr ite operation if the line is
incomplete.

The IOBC relies on two heur istics to improve throughput:

• Read-ahead : whenever a PCI master reads local memory (loading an 8×64-bit block of data into the
IOBC) the IOBC will automatically schedule a read of the following block of memor y into the other half
of the cache line. For sequential transfers, this means that the memory access and the PCI transfer
operate concurrently.

• Wr ite-behind : when a PCI master writes local memory the IOBC will automatically schedule a write-
back of a line when it detects a PCI write to an address in the immediately following block of memor y.
This allows a sequential transfer to be handled efficiently while just occupying one line of the IOBC.
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Software mana gement
Uncached MIPS CPU reads and writes to memory are ‘‘snooped’’ by the IOBC controller to ensure that
the IOBC and local memory remain coherent.

But the snooping has a perfor mance impact, so it isn’t done for cached accesses. As a result the IOBC’s
operation is visible to drivers for PCI ‘‘bus master’’ devices, and the driver must sometimes intervene to
prevent data being lost.

Software management is only required for I/O buffers which are cacheable to the MIPS CPU, where the
dr iver must also intervene to writeback and/or invalidate MIPS cache contents.

The IOBC management required is this:

• After a PCI bus master writes into local memory, any IOBC line holding data from the transfer must be
wr itten back to memor y;

• Before a PCI bus master reads from local memory, any IOBC line holding an old copy of data from the
buffer must be invalidated.

The IOBC provides means for software to discover what data is in which line, and to invalidate or write-
back any line. See §5.10. (‘‘Registers for IOBC management’’) on page 41 for programming details.

3.2. PCI copier
Some applications need to copy large chunks of memory between local and PCI memory. This process
can be carried out by the CPU, but the high latency and burst semantics of PCI make this inefficient, so
it’s useful to have an automated engine which can carry out the copy and interrupt the CPU on
completion. Such facilities are often described as ‘‘DMA’’ but we prefer to reserve that acronym to
descr ibe transfers which are device-tr iggered.

Memor y-to-memor y copies are problematic on the PCI bus, because large memory-to-memor y copies
tend to absorb all available PCI bandwidth, increasing worst-case latency for all other bus users.
BONITO64 tries to avoid this by using relatively short bursts for the copier, and giving the copier the lowest
pr ior ity of any onchip process competing for the PCI or SDRAM. The short bursts are cache-line sized,
which simplifies the memory controller too.

To initiate a copy the CPU writes the (word-aligned) PCI address, the cache-block-aligned local SDRAM
address and a block count2. Flags determine the direction of the transfer and whether an interrupt should
be raised on completion of the transfer.

Copy requests are ‘‘double-buffered’’, so the CPU can set up a second transfer immediately it has started
the first. When the first finishes, the second will start immediately - and software can arrange to get an
interr upt to war n it to set up a third transfer and so on, to keep data flowing.

Once activated the copier transfers cache-line-sized lumps of data between the PCI and local memory,
until the count is exhausted. The block count is limited to 16 bits, corresponding to a 2Mbyte copy; larger
transfers must be made of a chain of smaller units.

The copier only bursts to/from PCI for data which fits inside a 32-byte memory ‘‘cache block’’. At block
boundar ies it drops the PCI bus request for at least one clock to per mit other PCI initiators, or other
activities within BONITO64, to gain the bus, thus reducing its impact on system-wide PCI transfer latency.

When a copy operation is completed (either its count has hit zero or there has been some non-retryable
bus problem) an interrupt will be raised if the programmer asked for it. When a cycle has an error the
copier always raises an interrupt and stops itself.

2 If the data you want to copy is not suitably aligned in local memory, you will need to
copy the first few words using CPU reads/writes.
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The CPU can stop the block copier under software control (though any committed PCI access is
completed first). When stopped, internal registers become accessible to the CPU: they include the
current PCI address, the current local memory address, the remaining count, and a flags word describing
the outcome of the last PCI cycle.
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4. BONITO64 system inf ormation
We’re near ly at the point of defining registers; but there are three general issues to cover first. One is the
address map, which is to some extent forced on any BONITO64 system; the second is the confusing issue
of endianness. The third brings together issues relevant to getting the system bootstrapped, at least to
the point where you’re running some software on the MIPS CPU.

There are hexadecimal addresses listed in the tables below, and register addresses in Appendix A; but
don’t re-type them! We’d like to encourage you to download a C header file from Algorithmics’ internet
ser ver at ftp://ftp.algor.co.uk/pub/bonito/bonito64.h ; it will save you hours of typing, reduce the
risk of mistakes, and means that the wor ldwide family of BONITO64 programmers will use the same
register and field names. As an additional incentive, the online version is more likely to be up-to-date3.

Where you see register names in bold fixed point font, they’re names used in the online header file.
And when you see a register name with a ‘‘dot’’ in it (e.g. sdcfg.awidth64 ), that means we’re talking
about the field called awidth64 in the register sdcfg .

4.1. Address maps
The view of the system from the CPU is somewhat different from that as seen by a PCI bus initiator. We
descr ibe both.

CPU access map
Table 4.1 shows how CPU accesses are decoded to local and PCI resources.

In an ideal PCI system, all memory locations are dynamically set up by the system host controller at boot
time. How ever, in many cases low PCI addresses cannot always be freely allocated; space below 1Mbyte
or 16Mbyte may be required for certain PC ‘‘legacy’’ adapters and PC-wor ld south bridge chips, which
map ISA’s 20- and 24-bit addresses into the lowest part of PCI space.

In a system which might want to use such legacy devices auto-configured PCI devices should be
allocated addresses from at least 1Mbyte and perhaps 16Mbytes up.

From-PCI map
You can see how it might go together in Figure 4.1. The PCI regions identified (wor king from the bottom
up):

• Reser ved for ISA registers/memory : if your system uses an ISA bus, or (perhaps more cogent) any
controller which needs to offer a programming model compatible with some old PC hardware, then it
may need to use registers or memory locations in the low 16Mbytes, and quite likely the low 1Mbyte,
of PCI space. It’s therefore often wise to avoid using this region for anything else.

• For ISA DMA access to BONITO64 SDRAM (example) : more obscure. If your system may at some
time support a DMA device which operates from an attached ISA bus, then that DMA device will itself
only be able to reach PCI addresses in the low 16Mbytes; so it’s useful to be able to map some of our
SDRAM to this location. You can see here that it’s possible to use one of the pcibase0-1 registers
with its mask and offset defined to access only 8Mbytes of local SDRAM.

• BONITO64 registers : here and subsequently, the name in bold (pcibase2 ) is a base register
deter mined at configuration time.

3 The great advantage of bonito64.h is that we use it to build our software, so has
to be fair ly up to date. Of course, it might have obsolete or unused definitions in; we’ll
tr y to zap them, but if the file describes something which isn’t in the manual, it quite
likely isn’t in the chip either.
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Base Size
Address (bytes)

Class Description

0000 0000 256M Memory local SDRAM memory

1000 0000 64M PCI_Lo0

1400 0000 64M PCI_Lo1

1800 0000 64M PCI_Lo2

PCI low-memor y bus window for most CPU accesses to PCI space. Each of the
three 64Mbyte windows can be separately positioned in PCI space with its own
base register.

1c00 0000 56M ROM (suitable for soldered flash) selected by ROMCS1*.
1f80 0000 4M

ROM
ROM (probably a socket, to provide a first-run bootstrap) selected by ROMCS0*.

1fc0 0000 1M Boot Bootstrap memory location - starts at the magic MIPS reset-time entry point.
According to reset-time configuration - see Table 5.2 - this can be mapped to the
low 1M of either ROM space (ROMCS0* or ROMCS1*),

1fd0 0000 1Mb PCI I/O PCI I/O space - window to the low megabyte of PCI address range: used (and
probably only used) to access the I/O space of an attached ‘‘ISA’’ bus.

1fe0 0000 256 BONITO64 BONITO64’s own PCI configuration space registers available to other PCI bus
masters

1fe0 0100 256 BONITO64 BONITO64’s inter nal registers.
1fe0 0200 unused

1fe8 0000 512K PCI PCI configuration space reads/writes. Low par ts of the address value driven on
PCI comes from this address; high order bits from the pcimap_cfg register.

1ff0 0000 256K
1ff4 0000 256K
1ff8 0000 256K
1ffc 0000 256K

Local I/O Local I/O bus devices decoded by IOCS0-3* respectively

2000 0000 1.5Gb PCI_1.5 Maps 1-1 onto PCI addresses. Most likely not ver y useful.

8000 0000 2Gb PCI_2 PCI access window. Optionally mapped with either 1-for-1 addresses, or
mapped down to the low 2Gb of PCI space. Available if you need access to a
larger region of PCI space than is available in the lower-memor y window.

You’ll need to program the MIPS TLB or use 64-bit pointers to get addresses
bigger than 0x2000 0000 out of the CPU.

1 0000 0000† ?? Memory vast quantities of space for larger local memories. The first 256Mbytes is a
duplicate of the low par t of the address map.

Table 4.1: CPU/local bus address map

This region provides the PCI view of BONITO64’s inter nal registers. All registers are mapped at the
same position relative to the PCI base as they are mapped in CPU space.

• BONITO64 ROM, I/O (example) : a view of the BONITO64 ROM and local I/O space. There’s nothing to
stop you trying to go through BONITO64 to that part of the PCI bus mapped into local memory - but it’s
bizarre and not much is guaranteed.

• BONITO64 SDRAM (with and without IO caching) (examples) : we show two large windows mapping all
the SDRAM - once for accesses with the IOBC ‘‘disabled’’ in the sense described above , and one with
IOBC caching fully enabled. You can setup BONITO64 to provide a PCI window to any pow er-of-two
sized aligned region of local memory.

There’s nothing to stop BONITO64 as initiator on the PCI bus targeting itself - such cycles are legal and
retur n the expected data.

† For BONITO64 the implicit limitation to 256Mbytes of physical memory is
unacceptable. How ever, the MIPS boot vector location makes it impossible to define as
much as 512Mbytes consecutive memor y star ting at zero, and the MIPS run-time vector
location makes it mandatory to have some local memory from address zero. The way
we’ve done it in this memory map is not guaranteed to to be for real.
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Figure 4.1 Memory regions and mappings between local and PCI space

4.2. Endianness and b us-to-b us transf ers
A system has ‘‘endianness’’ if it suppor ts both byte-wide and larger-integer accesses to the same memory
object. A little-endian system is one where the least significant bits of the larger integer are stored in the
lowest addresses, and a big-endian system is one where the most significant bits of the larger integer are
found at the higher addresses. Neither is any more right than the other, though each is ‘‘obvious’’ in
different circumstances; it’s a curse of computing that different CPUs and buses adopt opposite
conventions. It’s vir tuous to write software which wor ks with either endianness, but virtue always
demands sacrifice; porting a code-base which has only ever run with one convention can be hard wor k.

The PCI bus is little-endian; you can see that because the data bytes which travel over the byte lane
AD0-7 are the lowest-addressed bytes in the word.

Some PCI controllers do adver tise facilities to help out systems with big-endian components; but
ev eryone gets so confused about this stuff that our recommendation is to turn all those things off and sort
the problem out using software and BONITO64’s facilities.

A MIPS CPU may be configured to run with either endianness. If you setup your CPU little-endian, you
need read no further. But sometimes an existing code base may sway the balance the other way.

BONITO64 and PCI with a big-endian CPU
BONITO64’s operation is endianness-dependent in ways:

• CPU interface : the MIPS interface will not operate correctly unless BONITO64 and the CPU are both
configured to the same endianness4. So the register bit which makes BONITO64 big-endian

4 This is not quite true if the CPU uses a 32-bit bus; such CPUs can wor k in a limited
fashion with a wrongly-configured BONITO64; enough to bootstrap themselves and
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bonponcfg.cpubigend can be preset before an instruction is ever executed, as described in §5.2.
(‘‘Pow er-on settable configuration register - bonponcfg ’’) on page 23.

• PCI bus : is inherently little-endian.

• IDE disk attachment : the data is organised little-endian. Though on a hard disk which is only ever
read and written through BONITO64, it won’t matter so long as it’s consistent.

First mantra (repeat until you believe it):

When a big-endian CPU is used with a little-endian bus or peripherals, hardware can’t make the
endianness problem disappear.

But hardware can give you a choice: either the CPU and PCI bus will agree about the
addresses and sequence of bytes, OR they will agree about the addresses, sequence and
organisation of aligned 32-bit words.

You get a choice - but we ver y strongly recommend you follow the golden rule:

When using a big-endian CPU enable BONITO64’s byte-lane swappers, so that PCI and CPU
have a consistent view of byte addresses and sequence.

There are three separate register bits5 to set to achieve this: bongencfg.mstrbyteswap and
bongencfg.byteswap (see Table 5.3 on p.25) for PCI transfers, and iodevcfg.wordswapbit_ide (see
Table 5.4 on p.27) for the IDE interface.

Endianness and the SDRAM por t - nothing to do
In hardware terms, data is always conve y ed between the CPU’s data path and the SDRAM’s data path
through corresponding bit numbers. So long as you don’t reconfigure your CPU endianness ‘‘live’’ and
expect to read data you wrote beforehand, nothing happens. If you should do anything so odd, the
peculiar consequences are all inside the CPU: consult a MIPS CPU book!

Endianness and R OM cycles
BONITO64 allows MIPS CPUs to boot and run from narrow (8- and 16-bit) ROMs; when the CPU reads
the ROM, BONITO64 perfor ms multiple reads and assembles the bytes or 16-bit quantities to the width
required.

Fur ther, BONITO64 allows the CPU to run cached from ROM: when the CPU does a burst read from ROM
for cache refill, BONITO64 perfor ms enough ROM reads to provide a whole cache-line wor th of data -
usually 4×64-bits.

Because narrow ROM data must be unpacked to a wider bus, you can enquire into the relationship
between the ROM address of an 8- or 16-bit piece of data, and the byte lane it occupies when being
loaded across the CPU interface. The construction of ROM bytes (or 16-bit chunks) into a 32-bit word is
fixed, with low-addressed bytes going to low-numbered byte lanes. How ever, the assembly of two 32-bit
words into a 64-bit unit depends on the CPU’s endianness; see Figure 4.2.

change the endianness bits in software.

But that doesn’t wor k for 64-bit bus CPUs.
5 It isn’t ver y sensible to have two separate bits, but that’s how the original 32-bit

Bonito grew up.
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MIPS SysAD bus byte lanes
63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

B7 B6 B5 B4 B3 B2 B1 B0 8-bit ROM

H3 H2 H1 H0 16-bit ROM
little-endian CPU

B3 B2 B1 B0 B7 B6 B5 B4 8-bit ROM

H1 H0 H3 H2 16-bit ROM
big-endian CPU

Figure 4.2 ROM data for the CPU - ROM addresses and byte lanes

In Figure 4.2 the ‘‘B0’’ etc numbers represent the byte address modulo 8 fed to an 8-bit ROM: the
numbers ‘‘H06’’ etc represent the word address modulo 4 fed to a 16-bit ROM.

The effect on the I/O bus of CPU reads of var ious width are shown in Table 4.2.

Number of Cycles on ROM bus
8-bit ROM 16-bit ROM

CPU read width

1 (byte) 1 1
2 (half-word) 2 1

3 (tr ibyte) 4 2
4 (word) 4 2

5 8  4
6 8  4
7 8  4

8 (doubleword) 8 4
burst 8×4 4×4

Table 4.2: CPU reads and resulting ROM cycles

That is, any read from ROM which can’t be achieved with a single ROM cycle is (for simplicity)
implemented by reading at least 32 bits of data - the CPU will ignore the data it didn’t want. Only single-
byte reads from an 8-bit device or half-word reads from a 16-bit device are guaranteed to result in a single
cycle at the ROM pins - something you need to know when programming most flash devices.

When you’re programming flash memories, some reads from ROM have side-effects - in particular, the
status read which tells you whether the ROM is ready for another operation. In that case you must read
only data to the width of the ROM, or you will get confused.

Similar ly ROM write operations - required for flash memories, of course - will only wor k at all if the CPU
wr ite matches the width of the ROM device; bytes for 8-bit devices, and 16-bit writes for 16-bit devices.
You can always discover the width of the attached ROMs by reading the register bits
bonponcfg.comcs1width /bonponcfg.comcs0width (defined on p.23).

Endianness and local I/O accesses
Connect I/O bus device’s addresses to IOA2 and upwards, so that registers appear on 4-byte-aligned
locations. Access these registers with word-wide (32-bit) load and store instructions for endianness-
independent software. Of course, only the parts of the CPU’s data word which correspond to the I/O bus
data bits wired to the device’s data bus are important.

6 Old MIPS terminology: 16 bits is a ‘‘half-word’’, abbreviated ‘‘H’’.
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When you do byte or other partial-word transfers from a MIPS CPU the active byte lanes depend on the
CPU’s endianness, so byte- or partial-word accesses to the local I/O bus can only be programmed
correctly once you know the endianness of your CPU.

Endianness and the I/O b us
The I/O data bus has endianness if you use the 16-bit width; when two bytes of data are passed in
parallel along these IOD7−0 might be either earlier or later in byte sequence than the one found on
IOD15−8.

Intel-type devices are likely to assume this bus is little-endian, if anything, but there’s no byte-lane
sw apper for CPU accesses. The bus is slow enough that the software overhead of doing swapping is
acceptable.

When you program DMA on the I/O bus (usually for an IDE disk interface) a byte-lane swapper is
available and should usually be switched on when the MIPS CPU is big-endian: see
iodevcfg.wordswapbit_ide (on p.27).

Endianness and PCI transf ers, CPU and b us-initiated
When the CPU and its interface are big-endian there is bound to be trouble with accessing devices and
memor y over PCI bus, even though you’ve followed our advice and used BONITO64’s byte-lane swapper,
as described above .

With all PCI transfers swapped, your local CPU and PCI will share a common view of byte addressing, but
bigger-than-byte integers out in PCI wor ld - 32-bit device registers, for example - will appear byte-
sw apped to the big-endian MIPS CPU; your software will need to cope.

The byte-lane swapper does not affect either local CPU or PCI initiator accesses to internal BONITO64
registers; they’re defined as 32-bit aligned objects and are unaffected by endianness. Software should
never access BONITO64 registers with anything except 32-bit reads and writes.

4.3. Reset-time options and ‘ ‘mode bits’ ’
From a cold start, some MIPS CPUs require a fair ly complex reset sequence; BONITO64 takes care of it.
Most MIPS CPUs require some reset-time configuration. Where this is through dedicated configuration
pins, your design will need to pull those pins up or down as appropriate and BONITO64 has no role there.

But some MIPS CPUs use a couple of dedicated pins to read a stream of configuration bits at reset time.
The mechanism was invented for the R4000 CPU in 1990 and is not directly compatible with low-cost
ser ial ROMs. But here BONITO64 will handle it. All the MIPS CPUs compatible with BONITO64 require
some hardware configuration to match the system they run in. Many of them retain a scheme first found
in the MIPS R4000, which loads configuration bits as a serial bit-stream at reset time7. The R4000 was
introduced when serial ROMs were relatively rare, and it’s just bad luck that the simple interface the CPUs
require is annoyingly incompatible with low-cost serial ROMs.

So BONITO64 provides a limited facility which - with most CPUs in most systems - will get the system up
and running with an absolute minimum of additional hardware.

From a hard BONITO64 reset, the first 32 bits of the data stream are obtained by inver ting the levels on
the (weakly pulled-up on chip) CPU data bus SysAD0-31, star ting with bit 0. Since the CPU will not be
dr iving the bus at this point an exter nal pull-down on any SysAD signal puts a ‘‘1’’ in the corresponding
position in the mode bits stream. Most CPUs can be at least brought into a minimal wor king mode with a
configuration with ver y fe w ‘‘1’’ bits.

7 Some R4xx0 CPUs (such as NEC’s Vr43x0 and Vr5432) don’t do this; they use only
static configuration augmented by inter nal software-wr itable registers.
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If this allows you to get exactly the configuration you want, that’s fine; but if you need something more
subtle the CPU can now move on to reset itself using the bongencfg.cpuselfreset register bit. By
wr iting the bonponcfg.CPUtype field to the special value 010 , you specify that the CPU reset sequence
caused by the self-reset operation will provide mode bits from the register intpol , borrowed for the
pur pose.

So long as the SysAD-defined settings are enough to run a simple piece of ROM software, the software
can store the configuration of its choice into the intpol register and reconfigure the CPU accordingly.

And for ver y complex or controllable settings, it’s also possible to configure BONITO64 to accept a simple
stream of bits and use it without change.

4.4. Where to boot fr om? Two ROMs or PCI-initiated bootstrap
In most BONITO64 applications the MIPS CPU will bootstrap from a local ROM; you can specify either of
the ROM chip select options, and choose an 8-bit or 16-bit ROM. This can’t be done by software, so is
par t of the bonponcfg register which can be pre-configured by selective pullups on the I/O data bus: see
§5.2. (‘‘Pow er-on settable configuration register - bonponcfg ’’) on page 23.

BONITO64 can be configured to allow its attached CPU to bootstrap from either of the two ROM regions
provided in its standard address map (selected by ROMCS0* or ROMCS1*).

The two ROM regions are not equivalent. The ROMCS1* window is bigger, and the smaller ROMCS0*
window (4Mbytes maximum) is intended for a first-time-only bootstrap, which can be ver y useful if your
nor mal boot memory is to be programmed on the board in production.

However, it’s possible to build a BONITO64 system with no ROM, where the MIPS CPU bootstraps from
local DRAM memory. Booting from DRAM is only useful, of course, after someone has put a program into
it; and this could only have been done by a PCI bus master which has taken control of the system.

The sequence for a PCI bootstrap is fair ly complex, and the details are beyond the scope of this manual8.
But the basic sequence goes like this:

1. BONITO64 should be reset but configured to preset the bonponcfg.romBoot field to the magic ‘‘11 ’’
value - you’ll need pull-ups on a couple of IOD lines to get this effect.

With this setting, the MIPS CPU will be held in reset after BONITO64 comes up.

2. The PCI-located host can now program BONITO64 from the PCI side - remember, all BONITO64
registers can be reached from PCI. The PCI host must initialise much of BONITO64 - in particular its
SDRAM controller.

3. The PCI-located host can now fill SDRAM memory with a bootstrap program.

4. The PCI host re-writes bonponcfg.romBoot to the value ‘‘10 ’’. This will cause the MIPS CPU to be
taken through its normal reset sequence, but its normal start-up address will now map to local
SDRAM. From now on the MIPS CPU can take control.

4.5. Reprogramming B ONITO64’s PCI identity
The PCI specification lays down a standard ‘‘configuration space’’ and standard register for mat in every
controller, as par t of a larger scheme in support of automatic configuration of a large range of possible
systems - what PC software suppliers have called ‘‘plug and play’’. When a PCI system is reset one CPU
(the ‘‘PCI host’’) scans the bus reading configuration space, allocating memory space and enabling
dr ivers as required.

8 Some BONITO64-related software is available free from Algorithmics; see
http://www.algor.co.uk , ftp://ftp.algor.co.uk/pub/bonito/ or mail us at
bonito@algor.co.uk
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BONITO64 can be used in two roles. If the local MIPS CPU is the PCI bus host, then BONITO64’s
configuration space facilities are not ver y impor tant - only the host wr ites PCI configuration space, and
most of the time only the host reads it. But BONITO64 can also be used to build a subsystem - an
intelligent controller. If, for example, you build a RAID disk controller you would like the host reading
BONITO64 configuration registers to see a disk controller, not a ‘‘MIPS CPU bridge’’.

Three facilities in BONITO64 are available to help with this:

1. BONITO64’s configuration-space registers - even those which the PCI specification assumes are only
ev er read by the host - may in fact be overwr itten by the local host, thus changing its identity.

2. PCI configuration-space base registers are read by the host to establish the size of the memory
regions a PCI device will share with the bus, and written by the host to establish their location within
the overall PCI memory map.

BONITO64’s windows onto its internal memory may be ver y large; large windows are essential for
some applications. But fixed-size large windows provide problems for the configuring host, which may
run out of PCI memory space to allocate.

So the apparent size of the regions mapped by BONITO64’s base registers can be changed by the
MIPS CPU; see the pcimembasecfg register described on p.34.

3. All this would be useless if the host were to complete its PCI bus initialisation before the local CPU
had got around to setting up new values in BONITO64’s configuration-space registers. So there’s also
an BONITO64 option - available as a reset-time configuration bit bonponcfg.configdis - which
causes BONITO64 to defer host processing, by responding with a PCI ‘‘retr y’’ to any configuration-
space access. Local software should hurry to fix up BONITO64’s configuration space registers before
the host software times out.
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5. Software-accessib le register s and pr ogramming
We’ll organise this programming guide starting at reset time and wor king forwards through the operations
of the chip.

BONITO64’s functions are controlled through a collection of registers. Apar t from a few whose
organisation is dictated by the PCI specification the registers are all 32-bits in size, even where only some
of those bits have any meaning. They should always be read and written as whole 32-bit words.

All BONITO64 internal registers are accessible to both the CPU and an exter nal PCI master9. Moreover,
within the relevant memory region, the register offsets are the same as seen from both sides. Of course,
the fact that it’s possible to access registers from both sides doesn’t commit us to solving problems
caused by simultaneous access - you can, but often you shouldn’t!

5.1. Register Summar y
Table 5.1 names all the software-accessible registers of BONITO64 with a quick note as to what they do
and a reference where to find them in this manual.

Register What is itPage/figure

bongencfg 25/Table 5.3 Ear ly boot-time configuration, mostly PCI-
related

bonponcfg 23/Table 5.2 Configuration bits which can be set either
way using IOD pullups

copctrl 40/Figure 5.5

copdaddr 40

copgo 40/Figure 5.5

coppaddr 40

copstat 40/Figure 5.5

PCI copier registers

gpiodata 44/Figure 5.7 GPIO level read/wr ite

gpioie 44/Figure 5.7 GPIO input/output setting

intedge 45/Table 5.14 Interr upts selected as level/edge triggered

inten 46/5.15 Separate interrupt enable bits

intenclr 46/5.15 Interr upt enables - per-bit clear

intenset 46/5.15 Interr upt enables - per-bit set

intisr 45/5.15 Readable interrupt inputs

intpol 46/5.15 Interrupt polarity

intsteer 46/5.15 Which of two CPU interrupt pins gets raised
by each interrupt condition

iodevcfg 27/Table 5.4 I/O bus cycle character istics

ldmaaddr 43

ldmactrl 43/Figure 5.6

ldmago 43/Figure 5.6

ldmastat 43/Figure 5.6

I/O bus DMA, mostly for IDE

pcibadaddr 38/5.7.4 PCI address associated with some PCI cycle
ending with an error

9 A build-time option in BONITO64 allows exter nal accesses to be denied by a pin-
strap; in some systems this is an anti-piracy requirement.
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Register What is itPage/figure

pcibase0 33/Table 5.7

pcibase1 33/Table 5.7

pcibase2 33/Table 5.7

Base registers in PCI configuration space,
which define what regions BONITO64 makes
available to other PCI initiators.

pcicachectrl 42/Table 5.12

pcicachetag 42/Table 5.13
Registers for the I/O buffer cache (also
known as ‘‘PCI cache’’).

pciclass 33/Table 5.7

pcicmd 35/Table 5.9

pcidid 33/Table 5.7

pciexprbase 33/Table 5.7

pciint 33/Table 5.7

pciltimer 33/Table 5.7

Standard PCI configuration registers

pcimail0-3 44/5.13 Mailbox registers

pcimap 37/Table 5.11 Register to fix the windows available to the
local CPU to access PCI memory or devices.

pcimap_cfg 39/Figure 5.4 Used to complete the PCI address when the
local CPU is using BONITO64 to perfor m PCI
configuration cycles.

pcimembasecfg 34/Figure 5.1 Used by local host to size and position the
PCI-accessible windows into BONITO64’s
local memory and local I/O.

pcimstat 38/Table 5.12 How many posted writes are still pending?

sdcfg 30/Table 5.6 Set up BONITO64 to match the SDRAM
shape, size, speed etc

timercfg 47/Table 5.15 Simple timer, mainly intended to let software
figure out how fast system clocks are
running.

Table 5.1: All registers

General principles f or B ONITO64 register s (read this)
Don’t re-type these register or field names; as we already said at the start of §4 above , go to Algorithmics’
ftp site and download ftp://ftp.algor.co.uk/pub/bonito/bonito64.h .

You’ll find all the definitions in that file:

• Are all in upper-case, an ancient C convention for ‘‘#define ’’ constants.

• Are prefixed with ‘‘BONITO_’’.

• In the case of register bits, fur ther include the register name.

So a register field in the header file might be called ‘‘BONITO_BONPONCFG_CPUTYPE’’. I’m reliably
infor med that 21st-century programmers like typing, but long upper-case names look pretty ugly in text, so
we’ll leave it as bonponcfg.cputype .

To avoid lengthening the whole manual with endless repetition, the following general rules apply to the
use of BONITO64’s registers:

• All registers are writable unless explicitly stated to be read-only.
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• Wherever it is reasonable to do so - and unless the detailed description says otherwise - you can read
back the value you last wrote to a BONITO64 register.

• Some options affect BONITO64’s suppor t for the CPU bootstrapping itself, so must already be correctly
set when the system first comes out of reset. Register fields representing these options take their
values by sampling the signals IOD0-15 (the IO data bus) while the reset input SYSRESET* is still
active. BONITO64 has a weak internal pull-down on each IOD signal line, so to set one of these
register fields to 1 your system should have an exter nal pull-up resistor on the corresponding line; a
4.7kΩ resistor to 3.3V is recommended.

These configurable bits are gathered together into the bonponcfg register.

Even earlier in reset, some MIPS CPUs use a serial data stream (‘‘mode bits’’) to load configuration
infor mation; see §4.3 for details on how those bits can be set by pull-downs on the SysAD bus, and set
to more complicated values for use after a self-reset.

• Many other register bit-fields are forced to a fixed level (most often zero, occasionally 1) following
reset. However, this manual will document those initial values only when they are important to early
operation. Your software should take responsibility for programming all relevant registers to
reasonable values early in the bootstrap sequence.

• Register bit fields which are not defined in this manual are just that - undefined; they will be marked
with a ‘‘×’’ in the tables. They’ll most often read zero, but that’s not guaranteed; and they should
always be written zero. Absolutely anything might happen if you write them to something other than
zero.

We make only one promise about these values: in read/write registers it will always be safe to write an
undefined field with the data you just read from it.

5.2. Power-on settab le configuration register - bonponcfg

The bonponcfg register brings together BONITO64 control bits which may be set to either 1/0 at reset
time. To get a 1 value following reset in a bonponcfg field, you need a pull-up on the corresponding
IOD0-15 signal; to get a zero, make sure that all devices connected to the line are tri-state during reset
(they nor mally will be). In fact, the presettable section of bonponcfg is really 18 bits long, and the two
highest bits get their reset-time value from the ROM chip select signals ROMCS0-1*.

bonponcfg register

Bit(s) Name Value / Effect

18 syscontrollerrd Read-only bit - 1 if the SysController* input is tied low, allowing
BONITO64 to drive the PCI RESET* line.

17-16 romcssamp1-0 This field has no hardware effect, but returns the power-on level
of ROMCS1-0*, so could be used to set up some software option.

14 cpubigend 1 to suppor t big-endian MIPS CPU; see §4.2 for a full description
of the consequences.

13 cpuparity 1 to enable per-byte parity checking; 0 to disable checks. It will
not usually be necessary to set this bit from power-on. Note that
BONITO64 always passes SDRAM parity straight through, and
generates parity for I/O and PCI data.

You’ll normally set this if and only if you have a 72-bit wide
memor y system to hold the parity bits. SDRAM configuration is
discussed in §5.5. (‘‘SDRAM configuration’’) on page 29 below.
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bonponcfg register

Bit(s) Name Value / Effect

12 burstorder Set one of two options for the order data is returned from SDRAM
to BONITO64 and thence to the CPU in a cache-line-sized burst.
A value of 0 selects ‘‘sub-block’’ (traditional for MIPS CPUs with a
SysAD interface); a value of 1 selects sequential, which may be
used in some var iant CPUs.

The SDRAM mode is automatically set during BONITO64 reset.
Changing this value in software won’t have any effect (on the
SDRAMs) until you issue an SDRAM mode-set command, as
descr ibed in §5.5.1 below.

Note that this value is also used to determine how ROM data is
passed back to the CPU (when running cached from ROM) - and
that takes effect immediately.

11 romCs1fast

10 romCs0fast

Select ‘‘faster’’ operation on the ROM attached to these select
signals; slow ROM requires an access time of 160ns, while fast
ROM is expected to be 90ns. Don’t change these fields while
running from the affected ROM.

9 romCs1width

8 romCs0width
read-only - 1 for 16-bit ROM, 0 for 8-bit

Where CPU boots from; picks which memory region will be
selected for accesses in MIPS’ traditional 0x1FC0.0000 star t
address.
00 from the low 4Mbyte of ROM attached to ROMCS1*.
01 from ROM attached to ROMCS0*.
10 from local SDRAM. This wor ks only if some other part of

the system has filled it with appropriate MIPS code, of
course; you’ll start with the next value:

11

7-6 romBoot

the MIPS CPU is held in reset until this field is changed to
another value - usually ‘‘10 ’’ as above . Used for a system
which expects to have software uploaded into SDRAM at
power-on.

5 config_dis when set 1, BONITO64 responds as target to any PCI bus
configuration cycle with a ‘‘retr y’’ response. This allows your
system to hold off configuration by an exter nal PCI host while the
local CPU’s bootstrap software patches the standard PCI
configuration registers. You should not leave this set for more
than a few ms, or your host may give up on you; dangerous but
useful.

See the discussion of PCI memory allocation §5.6. (‘‘BONITO64
registers available in PCI configuration space’’) on page 34 for
why this might be useful.

4 is_arbiter when set 1, BONITO64 operates as PCI arbiter. When 0, the
roles of the zero-th request and grant signals are reversed, and
BONITO64 will use the services of an exter nal arbiter.

3 pcireset If BONITO64 is acting as PCI bus controller (ie controlling the
reset signal), this is where you can set it. A zero value asserts
the active-low PCI Reset* signal; a ‘‘1’’ deasser ts it.

Note that in early specifications, this bit was used to configure
BONITO64 as PCI bus controller. But that’s now done with the
dedicated signal SysController*.
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bonponcfg register

Bit(s) Name Value / Effect

What kind of CPU is attached?
Undefined so far in BONITO64.

2-0 CPUtype

Table 5.2: Fields in bonponcfg

5.3. Configuration bits with po wer-on defaults - bongencfg

The bongencfg register brings together early-bootstrap options, but which power-up from reset to a fixed
state - most often zero. Almost all of them are PCI-related.

bongencfg register

Bit(s) Name Value Effect

17 shortcopytimeout 0/1 Nor mally (this field 0), BONITO64 will abort a locally-initiated
PCI cycle if it gets a ‘‘retr y’’ response 4000 times running - on a
quiet 33MHz PCI bus this will take about 800
 s.

Change this field to ‘‘1’’ if that’s not enough, and raise the
number of retries to 16000.

16 noretrytimeout 0/1 Nor mally (with this field 0), BONITO64 will not retry indefinitely
on a locally-initiated PCI cycle but will time out as described
above .

Set this field 1 to disable that timeout. This risks lock-up, but
makes the software simpler.

15 buserren 0/1 Set 1 to cause any CPU-initiated PCI bus read which
ter minates without data to cause a MIPS ‘‘bus error’’ exception.

14 mstrbyteswap Set 1 to enable the PCI byte-lane swapper for transfers
between PCI and local memory or CPU, when BONITO64 is the
PCI bus initiator (master).

Except in bizarre circumstances and after deep thought, this
should be set 1 if and only if your CPU is big-endian; see §4.2.
Only in even more bizarre circumstances should it ever be set
differently from the byteswap bit described below, which
controls transfers where BONITO64 acts as target on the PCI
bus.

13 cachestop† 0/1 When 1, all PCI-initiated accesses to local memory are denied
with a ‘‘retr y’’ signal, so that the I/O buffer cache state can only
be affected by CPU activity. Probably only for IOBC test code.

12 pciqueue† 1 Wr ite 1; the zero value is solely for IOBC diagnostics.

11-10 cachealg† Diagnostics only - leave these alone

9 wbehinden† 1 Value 0 is for IOBC diagnostics only.

If you set this zero, data written by a PCI initiator to BONITO64’s
local memory is not automatically written back when the next
cache-line sized chunk of memory is written.

† July2001: fields in Table 5.3 marked with a ‘‘†’’ (dagger) are IOBC related and likely
to change quite soon. Check header files and software examples.
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bongencfg register

Bit(s) Name Value Effect

8 prefetchen† 1 Value 0 is for IOBC diagnostics only.

IOBC read prefetch control. Set 1 to allow BONITO64 to read
ahead by a cache line. When a PCI initiator is reading a
stream of data from local memory, this greatly improves
perfor mance by fetching what will probably be the next line of
data from memory in parallel with the PCI transfer.

7 uncached† 0/1 Set 1 to enable the IOBC. 0 is for diagnostic code only.

6 byteswap 0/1 Set 1 to enable the PCI byte-lane swapper for transfers
between PCI and local memory or CPU, when BONITO64 is
acting as the PCI bus target (slave).

Like the mstrbyteswap bit described above , this should be set
1 if and only if your CPU is big-endian.

5 irqa_from_int1 0/1 set 1 to cause the PCI interrupt signal INTA* (as an output) to
be driven from the second, Int1*, output from BONITO64’s
interr upt controller.

If set to 0 INTA* (if it’s an output at all), will be explicitly
controlled by the special ‘‘interr upt enable’’ bit inten.irqa . It’s
cheating to use this register (all its other bits control interrupt
masking) but convenient because that register bit can be set
and cleared by single write cycles to the intenclr /intenset

addresses.

For compatibility reasons many BONITO64 implementations will
OR that value with the value of bongencfg.force_irqa , but
that’s deprecated.

4 irqa_isout 0/1 1 to drive INTA*, 0 for it to be an interrupt. It is readable as one
of the input conditions of the interrupt controller, see §5.15.

3 force_irqa 0/1 Set 1 to drive INTA* active. Note that since PCI interrupt
signals are defined ‘‘open-collector’’ they are only in fact driven
low; in the absence of any drive by any of possibly multiple
connected devices a pull-up produces a high level. So the 0
value means ‘‘don’t drive the signal’’.

2 cpuselfreset 0/1 Wr ite a ‘‘1’’ to cause BONITO64 to cold-reset the MIPS CPU.
Likely to be used only ver y soon after a real power-on reset, in
systems where the CPU configuration is changed by software
very ear ly in bootstrap.

1 snoopen 0/1 Set 1 to enable the IOBC to snoop uncached CPU accesses.
Sometimes helpful and usually harmless. Should normally be
set.

0 debugmode 0/1 Po wers-up to 1. Enable debug mode, in which all CPU
accesses and some PCI ones become visible on an attached
debug board - see §2.7. There may be some cost in
perfor mance or power, so tur n this off in a system if you know
no debug board will be used.

Table 5.3: Fields in bongencfg
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5.4. Local I/O configuration
BONITO64 has a local I/O bus which is used to access ROMs, but is otherwise mostly independent of its
other ports. Four CPU memory regions correspond to four different possible chip selects (IOCS0-3*) - and
of course there are the ROM regions.

The local I/O bus has a 16-bit data bus. ROMs are treated specially, and when read look like 64-bit-wide
byte-addressed memory. But the rest of the I/O space - used for device registers - looks ver y much like a
chunk of 32-bit memory, with only (at most) the lower 16 bits of any word populated. We strongly
recommend that you program it with word-wide accesses.

The bus uses a simple Intel-style signaling system, where chip selects qualify addresses but devices
respond only when they see one of the separate read and write strobes IORD*/IOWR* go active.

Addresses, chip selects and (for writes) data are valid for some time before the falling edge of the strobe,
and are held stable until some time after the rising edge of the strobe - where ‘‘some time’’ is two CPU
clock per iods plus or minus a little skew. This means that complex designs needing more decodes or a
different protocol have time to decode the chip selects and addresses and provide a clean signal before
the strobe is activated.

Read data is sampled by BONITO64 at the rising edge of the IORD* signal.

Wr ite data is driven by BONITO64 with the same timing as addresses. Devices differ on when they
sample the write data; at latest, they will accept data on the rising (deasserting) edge of IOWR*, but many
devices will acquire data sometime during the strobe.

The only configurable timing in this structure is the width of the read/write pulse. This may be one of two
values; nominally 200ns and 600ns, corresponding to ‘‘fast’’ and ‘‘slow’’ devices.

In addition, the read/write pulse can be extended by using the IORDY signal. To slow the cycle IORDY
should be driven low at least two CPU clock times before the cycle would normally have ended - the cycle
will end quite quickly once IORDY is returned to the high state, but note that BONITO64 still samples data
on the rising edge of IORD* for nor mal cycles.

Configuration for the different local I/O bus decodes is handled by registers as shown in Table 5.4.

iodevcfg register

Bit(s) Name Value Effect

31-26 cpuclockperiod Set this register to the period of the master clock ClockIn,
rounded to the nearest nanosecond, to make the I/O bus
timings and DRAM refresh period reasonably accurate.
Low values (zero, in par ticular) are not interpreted, and
result in slow I/O cycles and over-frequent refreshes -
har mless as a default, but not efficient.

You can set this field as low as 8 (corresponding to
125MHz).

25 udma_tenv_ide 0/1 Adds an extra clock per iod into part of the UDMA
protocol (the ‘‘tENV’’ minimum). Must be set ‘‘1’’ when
the CPU is running above 100MHz.
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iodevcfg register

Bit(s) Name Value Effect

24-21 dmaoff_ide 0-2 IDE transfer timing: a value of n:

In UDMA modes : sets the UDMA pause-to-stop time
(‘‘tRP’’ in our copy of the UDMA specification) to n CPU
clocks.

In regular DMA modes sets the period between
successive DMA transfer to (2 × n) CPU clocks.

20-16 dmaon_ide 0-2 IDE data transfer rate control: a value of n:

UDMA modes: sets the UDMA to write at one half-word
per (n + 1) CPU clock per iods. The UDMA read speed is
deter mined by the disk drive and the speed at which
BONITO64 can write the data received to memory.

Regular DMA sets the width of the IORD*/IOWR* strobes
to (2 × n) CPU clock per iods.

15 modebit_ide 0/1 Set 1 to enable ‘‘UDMA’’ transfers to an IDE disk. Set 0
to use conventional DMA, either ‘‘word at a time’’ or what
the disk manuals call ‘‘multiple’’ DMA.

14 wordswapbit_ide 0/1 Set 1 to swap bytes when DMA’ing from the I/O data
bus. You should probably set this when using an IDE
disk with a big-endian MIPS CPU.

13 speedbit_ide not implemented
12 buffbit_ide not implemented

11 moreabits_cs3 0/1
8 moreabits_cs2 0/1
5 moreabits_cs1 0/1
2 moreabits_cs0 0/1

set 1 to drive the whole CPU address on DD31-0 dur ing
an I/O access associated with each of the I/O chip
selects IOCS0-3*, independently; set 0 when the device
only needs the addresses on IOA4-0.

10 speedbit_cs3 0/1
7 speedbit_cs2 0/1
4 speedbit_cs1 0/1
1 speedbit_cs0 0/1

set 1 if this is a ‘‘fast’’ device (nominal 200ns read/write
strobe); 0 for a ‘‘slow’’ device (nominal 600ns).

9 buffbit_cs3 0/1
6 buffbit_cs2 0/1
3 buffbit_cs1 0/1
0 buffbit_cs0 0/1

set 1 if the device selected by this chip select is located
behind a bidirectional buffer controlled by the ’245-type
signals IODIR and IODEN*; 0 otherwise.

Table 5.4: Fields in iodevcfg

ROM cycles are different. The IORD* pulse width for ROM is also programmable to either 90ns or 160ns
(nominal), but is set up in the bonponcfg register described in section Table 5.2 - ROM speed is important
from the ver y first cycles.

The address bits IOA0-5 are not only valid for simple ROM cycles but count up to support burst reads from
ROM when the CPU is running cached. Dur ing ROM cycles the whole ROM address is always available
on the SDRAM data bus DD0-31. See the note in the endianness section (§4.2) on how I/O byte
addresses relate to CPU addresses.
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5.5. SDRAM configuration
BONITO64 can be configured with a range of SDRAM memory systems. We need some standard names
for talking about the chunks of SDRAM you build the system out of, and the SDRAMs themselves already
have ‘‘banks’’ and ‘‘rows’’ inside. So by analogy with the DIMM modules (which many designs will use)
we’ll talk about modules each of which has one or two sides (distinguished by separate chip selects)10.
Where we want to talk about one of the 32-bit halves of a 64-bit side we’ll call it a half-side. In this manual
we’ll talk about modules ‘‘A’’ and ‘‘B’’, and sides ‘‘0’’ and ‘‘1’’.

If you solder the chips to the board then you may complain about the use of the word ‘‘module’’ - but it’s
the best we could think of.

BONITO64 can directly support two modules - 32- or 64-bits wide - and each may have two sides - that is,
there are four chip selects. The chip sets are called DCS0L*/DCS0H* and DCS1L*/DCS1H*, which can be
confusing - the names match those used on DIMM modules better than they match the conventions of this
manual. They connect like this:

Side
0 1

Module A DCS0L* DCS0H*

Module B DCS1L* DCS1H*

Table 5.5: Modules, sides and chip selects

You’ll probably prefer to set up BONITO64 so that the memory map includes the whole SDRAM system
size with no holes or wrap-arounds. So the relevant parameters of the SDRAM system are:

• Is there just one, or are there two modules?

• Does this design use a registered driver to buffer multiplexed addresses and other control signals11

(useful for larger memory arrays?)

And for each module:

• What (if any) unusual configuration options must be fed to the SDRAMs at power-up (by writing the
SDRAM ‘‘mode register’’)? PC-100/133 SDRAMs, for example, can return data either 2 or 3 clock
per iods after the column address - but the actual timing to be used must be programmed into the parts
when the whole system is initialised after reset.

Other configuration settings in the mode register are available by running a special cycle: see §5.5.1
below.

• Does it have one or two sides?

• How many inter nal banks are there in its constituent SDRAM components - two or four?

• How many MuxAD addresses does the SDRAM decode in its first (Ras*) phase? Components
suppor ted by BONITO64 decode between 11 and 14.

• How many MuxAD addresses does the SDRAM decode in its second (Cas*) phase? BONITO64 can
work with between 8 and 11.

That’s quite complicated to allow for in the design, but also quite complicated for software to find out
about.

10 Some DIMM modules provide two chunks of DRAM all soldered to the same side
of the board, while others have a single chunk of DRAM split between top and bottom;
but we’d still call use the word ‘‘side’’ for any any DRAM or group of DRAMs which share
a chip select. Sorr y; we have to call them something.

11 Even DDR SDRAMs have control signals which are presented on the rising edges
of the supplied clock - only the data burst uses both clock edges.
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By a convention initiated by IBM and sanctified by PC-100, modern DIMM modules carry ‘‘self-por trait’’
data encoded in a tiny on-DIMM EEROM device, accessed through a 2-wire interface. Software can drive
BONITO64’s GPIO pins read and write the EEROM.

Memor ies built onboard or with proprietar y modules will not usually have such infor mation in EEROM -
the board designer should consider how much infor mation is needed and how software should detect any
variation in DRAM types.

To complete configuration of BONITO64’s SDRAM controller you’re also going to need some timing
infor mation, deter mined by your hardware design engineer, such as whether the memory array uses
exter nal registers to provide higher drive for address and control signals.

The controller can handle four physical groups of SDRAMs. But inspired by the organisation of DIMMs,
BONITO64’s registers assume that the two sides within each module have identical organisation and
timing.

Modules must be 64/72-bits wide.

BONITO64 implements parity checking on the memory array - it passes parity through on CPU cycles
(MIPS CPUs will check the incoming parity), and generates/checks it on all other cycles. You can disable
par ity checking if your memory is only 64 bits wide - it’s done through the bonponcfg.cpuparity bit
descr ibed on p.23.

You tell BONITO64 about the character istics of each module through the register sdcfg shown in Table
5.6. The whole register is cleared to zero on power-up.

sdcfg register

Bit(s) Name Value Effect

31 drammodeset_done 0/1 Read as part of controlling an SDRAM mode-set command, as
descr ibed in 5.5.1 below.

Sets the interval between pairs of SDRAM refresh cycles, as multiples
of a nominal value of 7.8� s. (The correctness of the nominal value
depends in turn on your setting of iodevcfg.cpuclockperiod shown in
Table 5.4.

0 3.9� s
1 7.8� s
2 15.6� s (default value from reset)
3 31.2� s

27-26 dramrfshmult

25-24 dramburstlen Used to program the SDRAM chips for their burst length, as described
in 5.5.1 below. This is only important if you set the SDRAMs into
‘‘sequential’’ burst order (see bonponcfg.burstorder ).

0 1 data phase
1 2 data phases (default)
2 4 data phases
3 8 data phases

23 dramparity 0/1 Set 1 to enable parity generation/checking in the DRAM system.

22 dramextregs 0/1 Set 1 if your system uses high-drive registers to boost multiplexed
addresses and shared control signals to the SDRAM modules.

21 drammodeset 0/1 Used to run an SDRAM mode-set command, as described in 5.5.1
below.

20-19 extraswidth 0-1 set 1 to extend the minimum DRAM cycle time from 5 to 6 clocks. The
default (0 → 5 clocks) wor ks with PC-100 SDRAMs at 100MHz.

May be required when 5× your clock per iod isn’t enough to meet the
DRAM parameter often called tRP.

Values 2-3 lead to undefined results.
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sdcfg register

Bit(s) Name Value Effect

18 extprech 0/1 Usually 0, which should be fine for PC-100 SDRAMs at up to 100MHz.

A value of 1 inserts an extra clock in the precharge period (the
minimum period between SDRAM cycles), when 2× your clock per iod
isn’t enough to meet the SDRAMs tRP timing parameter.

17 extrascas 0/1 Set 1 to add another clock per iod between the row address (row-select
command) and column address (read/write command) phases. Has
no effect on writes.

PC-100 SDRAMs don’t need this set at 100MHz. Your system needs it
if 2× your clock per iod is less than the minimum value of the SDRAM’s
tRCD timing parameter.

16 extrddata 0/1 CAS latency for SDRAMs; to make this effective you need to run a
SDRAM mode-set command, as described in 5.5.1 below.

PC-100 SDRAMs requiring both CAS latency 2 and CAS latency 3 at
100MHz are available.

0 CAS latency 2 clocks.
1 CAS latency 3 clocks (power-on default)

SDRAM shape fields - ’a’ for the first module, selected by
DCS0L*/DCS0H*, and ’b’ for the second, selected by DCS1L*/DCS1H*.

15 bwidth64 b module data width.
7 awidth64 a module data width

0 32 bits wide
1 64 bits wide

14 babsent 0/1 Set this if no memory is fitted in the B chip selects (‘‘module’’)
6 aabsent Set this if no memory is fitted to the A chip selects (‘‘module’’).

Required if the memory is all in the B module.

13 bsides

5 asides
‘‘sides’’ in this module - separate bits for sides 0 and 1

0 just side 0 fitted (or none)
1 both sides fitted

12 bbankbit

4 abankbit
No of internal banks in SDRAM components

0 Tw o
1 four

11-10 bcolbits no of column addresses at SDRAM†
3-2 acolbits

00 8
01 9
10 10
11 11

9-8 browbits

1-0 arowbits
no of row addresses at SDRAM†

00 11
01 12
10 13
11 14

Table 5.6: Fields in sdcfg

Note that from system reset sdcfg is cleared. This is intended to leave the SDRAM configuration in a
default state which will yield 4/8Mbytes of functioning memory, so long as any usable devices are

† Some SDRAM manufacturers count an internal bank-select address - the same as
the BONITO64 signals called DBA0-1 - into their ‘‘row’’ and ‘‘column’’ address counts, so
you’ll need to subtract one from those values before programming Read carefully.
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connected to the chip-select DCS0L*. This can be used for some bootstrap functions.

5.5.1. Configuring (setting modes in) the SDRAM c hips
SDRAM devices have some interface options which are usually programmed into the chip when the
system is powered up, and then left alone. Regular SDRAMs have only three options of any interest at all
to BONITO64 systems:

• CAS latency : defines how soon the first data of a burst should be returned. The SDRAM chip doesn’t
know its own access time, and you may need to set this as either 2 or 3 clocks. Your hardware
designer should know which. BONITO64 defaults to a 3-clock per iod - safe, but maybe you could go
faster.

This is controlled by the register bit sdcfg.extrddata , set 0 for latency=2 and 1 for latency=3.

• Data burst order : SDRAMs can return burst data either sequentially (wrapping at the end of an
alignment unit) or in ‘‘sub-block’’ order. You need to program this to match the requirements of your
CPU - all the MIPS CPUs we can tell you about use sub-block order.

This is controlled by the register bit bonponcfg.burstorder ; 0 for sub-block, 1 for sequential

• Data burst length : if you selected sequential order, you also need to tell the SDRAM how big your
cache lines are, so it knows when to wrap.

To set up your SDRAMs, you need to

1. Write the values of your choice to the register fields above .

2. Set the sdcfg.drammodeset bit to 1. This will cause the SDRAM mode-set command to be
scheduled at the end of the next SDRAM refresh operation. You may have to wait as much as 30� s
for this to happen.

3. Poll the sdcfg.drammodeset_done bit, looking for a value of 1. When you see it, the mode-set
operation has happened.

4. Set the sdcfg.drammodeset bit back to zero.
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5.6. BONITO64 register s availab le in PCI configuration space
The registers shown in Table 5.7 confor m to the PCI 2.1 standard12. BONITO64 does not use any non-
standard configuration space registers; all the device-dependent programming is accessed through the
‘‘Bonito Registers’’ region, at a PCI address determined by the setting of the pcibase2 base register.

As well as being available to other PCI initiators through PCI configuration space cycles, these registers
can be read and written by the CPU; they’re available to the local CPU in the lowest 256 bytes of
BONITO64’s inter nal register block. Some registers which are read-only from the PCI side are writable
from the local side.

By reset-time option, BONITO64 can be caused to initially reject configuration cycles with a ‘‘retr y’’
response. This is intended to provide time for a local CPU to write non-standard values into the
configuration registers. You need to do this ver y ear ly in the bootstrap sequence, or the configuration host
may time out.

31 16 15 0

Device ID Vendor ID
00D5h DF53 †

pciDiD 00h

pcicmd Status Command 04h

pciclass Class Code Revision ID 08h

Header Latency
Type Timer

pciltimer 0 0 0Ch

Base ad dress register s

pcibase0 Local SDRAM or I/O, up to 256Mbyte 10h

pcibase1 Local SDRAM or I/O, up to 256Mbyte 14h

pcibase2 BONITO64 register bank, 64Kbyte 18h

unused 1Ch

× 28h

0 0 2Ch

unused

34h
38h

Reser ved

Interr upt Interr upt
Pin = 1 Line

pciint Max_Lat Min_Gnt 3Ch

Table 5.7: Standard PCI configuration space registers

5.6.1. BONITO64 device and vendor ID
FPGA controllers used by Algor ithmics in development return an unauthor ised vendor ID of 0xDF53 .

The pciDiD register can be written with a new value to reflect the vendor and device ID code of a
subsystem supplier.

12 Note that FPGA versions of BONITO64 will be delinquent; because it is a soft-logic
par t it will take some 40ms after power-on before it functions. If the host attempts PCI
configuration during this time, BONITO64 will not respond.

† The value shown is the unauthorised ‘‘vendor ID’’ Algor ithmics put in FPGA
prototypes. Most BONITO64 users would put their own vendor ID here.
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5.6.2. Base address register s and PCI
The PCI specification requires that base address registers behave like this:

31 4 3 2 1 0

Base Address P 00 0

Table 5.8: PCI configuration space base address register

The ‘‘P’’ bit is set for memory regions which are memory-like (always retur n a whole word of data
regardless of byte enables, reads have no side effects, and writes can be arbitrar ily merged and
combined).

Address regions on PCI are always expected to be naturally aligned by their size (being a power of 2) - a
256Mbyte memory region may only be allocated on a 256Mbyte boundary, for example. Configuration
hosts figure out how much memory can be mapped by a par ticular base register by writing an all-ones
patter n, and reading it back; address bits which are don’t-care when matching the base address return 0.
So for a 256Mbyte region, you write 0xFFFF.FFF0 and read back 0xF000.0000 .

5.6.3. BONITO64 base ad dress register s
BONITO64 can map regions of up to 256Mbytes. But offer ing a space that big can cause problems to the
configuration host, because it can’t really do anything except map the whole region - and that may
consume so much address space that configuration fails.

So by default BONITO64’s memor y regions each only offer a 8Mbyte window; the window can be re
positioned within BONITO64’s local memory using an offset programmed in the register pcimembasecfg .
Moreover, the local host can also change the apparent size of the windows in systems where it can
change pcimembasecfg before the configuration host sees it; set the register bit bonponcfg.config_dis

to hold off the host’s configuration cycles while you get in and change it; you can arrange to set that bit
from system reset, as described in §5.2. (‘‘Pow er-on settable configuration register - bonponcfg ’’) on
page 23.

The pcibase2 region provides access from PCI to all the programmable registers inside BONITO64 - all
accessible either via the PCI bus or from the local CPU.

The pcibase0 and pcibase1 regions’ behaviour depends on the setting of the register pcimembasecfg ,
which is shown as Figure 5.1.

31 24 23 22 21 17 16 12 11 10 9 5 4  0

pcibase1 options pcibase0 options

io cached trans mask io cached trans mask
0

Figure 5.1 Fields in pcimembasecfg

Where the fields are as follows:

io : 0 to map this window into BONITO64 local SDRAM, 1 to select the upper part of the local map (which
contains ROM and local I/O) - you can think of this as just setting bit 28 of the local address used for this
access.

cached : 1 to make use of the IOBC for memory accesses - essential for good perfor mance. You can set a
memor y region with this bit 0 when you want local memory transfers to happen synchronously with PCI
transfers; sometimes useful for diagnostics or to find problems. See the IOBC section §5.10 for more
about this subject.

trans/mask : two five-bit fields which determine bits 27-23 of the local address generated by accesses in
this region. The PCI address is first masked to remove bits 31-28, and then PCI address bits 27-23 are
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first ANDed with the complement of the mask field, then ORed with the trans field.

The mask field has another effect, in that it alters the subsequent behaviour of the corresponding
configuration space register. If the local CPU programs the mask fields in pcimembasecfg before enabling
incoming configuration cycles, the mask value will be fed back to the configuration host as the size of the
available window.

5.6.4. Command Register Options
The PCI standard command register is used to negotiate some decisions about bus use to a PCI host,
which might choose to take some actions in the light of them. A couple of these are writable. Note that
the PCI standard ‘‘Status’’ register is the other half of this register, and is described in Table 5.10 below.

pcicmd register

Bit(s) Name Value Effect

15-10 0 Unimplemented bits

9 0 Fast back-to-back transfer enable - always 0, nev er done

Repor ting of address-time parity errors - writable
0 Do nothing
1

8 serren

Dr ive SERR* signal when detected.

7 astepen 0 Address/data stepping - always 0, nev er done

Response to parity errors on PCI bus - writable
0 Ignore parity errors
16 perrrespen Respond to PCI parity errors. Note them in

pConfSC.Status , and generate an interrupt if
unmasked; drive the PERR* signal.

5 0 ‘‘VGA graphics controller option’’ - PC specific, always
zero.

4 0 Memor y wr ite and invalidate. Always 0, BONITO64 only
does plain writes.

3 0 Special cycles - always 0, BONITO64 doesn’t issue
special cycles

Master enable - writable
0 Don’t initiate PCI bus cycles
1

2 mstren
Initiator role enabled. BONITO64 almost certainly needs
this bit set.

Memor y space enable - writable
0 Disable target functions. Host should not leave this zero.
1 Allow BONITO64 to respond on PCI

1 memen

0 0 PCI I/O space enable - BONITO64 never responds to I/O
space cycles.

Table 5.9: Fields in pcicmd - PCI configuration space ‘‘Command’’ register

BONITO64 - ‘‘nor th br idge’’ controller for 64-bit MIPS CPUs Page 35 of 64



5.6.5. Status/(Err or Clear) Register
This is also a PCI-blessed standard register. It can be read as the high bits of the pConfSC register. You
can write it to clear down any error flag or set of flags, by writing a 1 into the bitfield corresponding to the
flag(s) you want to clear..

pcicmdStat register

Bit(s) Name Value Effect

31 perr_clr 1 Detected a parity error - as initiator (reading) or as target
receiving write data. Unaffected by the enable bit in
pConfSC(Command) .

30 serr_clr 1 BONITO64 is driving SERR*, having noticed an address
par ity error

29 mabort_clr 1 ‘‘Master-Abor t’’ signaled
BONITO64 initiated a read or write but no target
responded with DEVSEL*(Master-Abor t in the PCI
specification)

28 mtabort_clr 1 Target abort received
BONITO64 initiated a read or write but the target couldn’t
do it and doesn’t want the transaction retried (STOP*
asser ted and DEVSEL* deasser ted).

27 tabort_clr 0 Target abort signaled. Always 0 - BONITO64 never
responds with a target abort.

26-25 01 DEVSEL* speed. Always this value - BONITO64 always
responds as target on the second clock.

24 mperr_clr 1 Initiator-noted parity error. Set when there’s a par ity
error (whether noticed by us or signaled by a receiver)
on one of our read/write operations, but only where the
enabling pcicmd bit is set.

23 0 Fast back-to-back transactions - not supported

22 0 ‘‘User-definable features’’ - not supported

21 0 66MHz operation - not supported

20-16 0 Reser ved by PCI specification rev 2.1

Table 5.10: PCI configuration space ‘‘Status’’ register

5.6.6. Latenc y t imer
This 8-bit field in pciltimer sets the maximum period (in PCI clock cycles) for which BONITO64 will
occupy the PCI bus13 when it’s the initiator of a transfer. The counter runs down to zero before firing, so a
value of 7 leads to an 8-clock time limit. BONITO64 doesn’t trouble to implement the low 3 bits of the
register field, always star ting the count with all-ones in those positions - the time doesn’t need to be
defined so accurately. That means the latency timer can be set only to values 8, 24, 40 etc. In most
systems it will make sense to set the register to 32, for a maximum burst length of 40 cycles.

13 PCI rules only require this to be enforced when the PCI initiator can see that it will
not gain the bus again for a subsequent transfer (that is, it’s bus grant signal has been
deasser ted). But BONITO64 applies the programmed limit to all transfers.
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5.7. CPU access to PCI
The MIPS CPU maps all PCI-accessible registers and memory into its own address space as shown in
Table 4.1 on page 13.

5.7.1. PCI address regions
The CPU’s windows onto PCI space are mapped using a ‘‘window’’ register called pcimap , shown in Table
5.11.

pcimap register

Bit(s) Name Value Effect

18 pcimap_2 0/1 Controls the 2Gbyte top-half-of-memory PCI region; it
allows you to choose only whether this 2Gbyte window is
to the high (1) or low (0) half of PCI address space.

17-12 pcimap_lo2

11-6 pcimap_lo1

5-0 pcimap_lo0

base6

Map the 64Mbyte regions marked ‘‘PCI_Lo’’ in the CPU’s
memor y map, each of which can be assigned to any
64Mbyte-aligned region of PCI memory. The address
appear ing on the PCI bus consists of the low 26 bits of
the CPU physical address, with the high 6 bits coming
from the appropriate base6 field. Each of the three
regions is an independent window onto PCI memory,
and can be positioned on any 64Mbyte boundary in PCI
space.

Table 5.11: Fields in pcimap

Note that the PCI I/O region is hard-wired to access the lowest 1Mbyte of PCI I/O space, and the
‘‘PCI_1.5’’ region is not mapped at all.

5.7.2. PCI reads
BONITO64 doesn’t try to overlap PCI reads; the PCI controller waits for the data to return. If your MIPS
CPU supports multiple outstanding reads, it might be able to go on to perfor m other non-PCI accesses or
to post PCI writes (which will not be carried out until after the blocked read). You can either use the data
you just loaded, or use the MIPS sync instr uction if your program must wait until the load is really
completed and the data returned.

Don’t assume that the address presented on the PCI bus is exactly the same as that produced by the
CPU pins - and since it’s a MIPS CPU, remember that the address on the CPU pins is already different
from the software address.

The MIPS CPU can perfor m 32-bit, aligned 16-bit, 8-bit and ‘‘tr i-byte’’ single accesses to PCI space. The
PCI byte enables reflect the width of the transfer ; note that the relationship between the CPU width code
and address on the one hand, and the PCI byte enables and lanes used on the other, depends on the
endianness configuration - see section 4.2.

64-bit CPU accesses to PCI memory wor k too. Some CPUs automatically break the access into two
separate cycles; otherwise BONITO64 will convert it into a 2-word PCI burst. This suppor ts device code
which maps PCI locations as normal memory, then does doubleword accesses. Burst accesses to PCI
longer than 2 words may wor k, but will behave peculiar ly in the face of PCI cycles which are terminated
ear ly, and are not recommended.
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5.7.3. PCI writes
PCI writes are always posted; the address and data for the transaction are stored inside BONITO64 and
the CPU interface is then released for the next transaction.

There’s a relatively short FIFO for posted PCI cycles; when it fills up, the CPU interface will be stalled until
a PCI write can be completed.

The CPU may need to check that a particular write has actually been perfor med on the PCI bus; do that
by reading the pcimstat register14, see page 38.

5.7.4. PCI error conditions on CPU-initiated c ycles
If the PCI cycle finishes with any kind of error:

• The address of the failing cycle is stashed in the pciBadAddr register.

• Status bits for conditions like target aborts or master aborts (that’s PCI-speak for ‘‘nobody responded’’)
get set in the PCI-standard configuration space register fields - part of the pcicmd register and shown
in Table 5.10 above .

• If the CPU is stalled waiting for a read it will receive a MIPS ‘‘bus error’’.

But in any case an interrupt condition is indicated by pulsing the internal signal mastererr. The pulse is
caught by the interrupt controller’s latch and may be detected and cleared there - see §5.15.

One possible outcome of a PCI cycle is that the target terminates the cycle with a retry request; the
master is supposed to just keep retrying until the transfer goes through. But that means BONITO64 can
be deadlocked (more or less) if for some reason a defective target responds with retry forever. BONITO64
is therefore equipped with a retry counter ; after 256 attempts at a read, or a much larger number of
attempts at a write, the transaction is abandoned. The PCI error interrupt is raised, but no bit is set in
pcicmdStat .

It’s legal - within the PCI specification - for a target to signal ‘‘retr y’’ to 256 consecutive reads and still
recover later ; so software can catch the condition and do more retries if appropriate. BONITO64’s write-
retr y limit is set large enough that it’s occurrence should be seen as fatal.

31 5 4 3 0

pcimstat PME × FIFOlevel

Figure 5.2 Fields in pcimstat - PCI master status register

The important field here is pcimstat.FIFOlevel which goes to zero when BONITO64 has no posted
wr ites left queued. Software will want to read this field when it’s vital to make sure that something out in
PCI space has actually been written.

pcimstat.PME is for diagnostic and test software only, and may not be present in production units.

14 This area of operation is in need of a rethink. The existing scheme might take an
arbitrar ily long time to resolve if the PCI interface is ver y busy.
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5.7.5. Accessing PCI configuration space
PCI configuration cycles require specially-for matted values to be driven on the bus at address time.
Figure 5.3 shows what bits have to be set on the PCI AD bus:

AD31 24 23 16 15 11 10 8 7 2 1 AD0

Function Register
Number Number

0 0
AD31-11 value - system dependent - to create

correct IDSEL

Fields f or ‘ ‘Type 0’ ’ cycles

Bus Device Function Register
Number Number Number Number 0 1

AD31-24 value as
needed to create

correct IDSEL

Fields f or ‘ ‘Type 1’ ’ cycles

Figure 5.3 PCI address-time values for configuration cycles

To make configuration cycles happen you need to setup the register pcimap_cfg , shown in Figure 5.4:

31 17 16 15 0

pcimap_cfg × Type1 AD16UP

Figure 5.4 Fields in pcimap_cfg

The fields are as follows:

• Type1 : should be set 0 for normal configuration cycles, and to 1 for ‘‘type 1’’ cycles (required when
configur ing something on the other side of a PCI-to-PCI bridge).

• AD16UP : defines the bits written to AD31-16 dur ing a configuration cycle.

The result is that a word read/write with MIPS physical address addr in the range 0x01FE.8000 to
0x01FE.FFFC causes a configuration read/write on PCI, and the PCI AD bus will be driven to:

31 16 15 2 1 0

pcimap_cfg.AD16UP addr15-2 0 pcimap_cfg.Type1

5.7.6. Accessing PCI I/O space
PCI I/O space is available through a special region of CPU space. Its use is deprecated for most
pur poses, and it is generally only used to make devices PC-compatible. PCI I/O space writes are posted
exactly like any other PCI accesses. BONITO64’s window only gives access to the first 1Mbyte of I/O
space - but since this is more than enough to handle ISA bus legacy devices, that should be OK.
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5.8. The PCI copier
This is an autonomous engine which shuffles blocks of data between PCI-accessible memory and local
DRAM. The (potentially ver y long) stream will be interleaved with any CPU or PCI master transfers.

Each command can copy up to 64K 32-byte chunks (2Mbyte) of data; to copy more data, issue multiple
commands. The copier registers are ‘‘double-buffered’’ so that the CPU can start a chain of transfers by
issuing two commands; as soon as the first copy is finished BONITO64 immediately begins the second,
raising an interrupt so the CPU can go in and write another new entr y. Repeat as necessary to keep data
flowing as fast as the PCI environment will permit.

Copier interrupts/status
Three internal signals copyrdy, copyempty and copyerr are fed from the copier to the interrupt controller (see
§5.15. (‘‘Interr upt control’’) on page 45) and may be read there or used to cause an interrupt.

copyempty is high/‘‘1’’ whenever the copier has no wor k at all to do, and copyrdy is high/‘‘1’’ whenever the
copier can accept one more request.

copyerr is generated only when the transfer encounters a PCI bus error; under these circumstances the
copier freezes. At that point software can find out how much of the transfer has happened, and should
then reset the copier to clear the error.

Copier ad dress register s
You submit a copier command by writing the write-only copdaddr /coppaddr registers, which define the
local DRAM starting address and the PCI starting address respectively. The DRAM starting address must
be on a 32-byte boundary - use the CPU to copy any unaligned odds and ends. The PCI address in the
copier is not mapped like CPU→PCI cycles, but is a PCI physical address. The PCI transfer can start at
any word-aligned address.

Copier contr ol/status register s
The other registers are shown in Figure 5.5 below. Write the direction and the number of blocks to copy
into copgo . Finally write copctrl to start the transfer. Both are write-only

The only readable register in the copier is copstat ; you won’t normally refer to it unless there’s some kind
of error.

31 30 29 28 27 26 17 16 15 0

copctrl star t reset ×

copgo × wr ite? size (blocks)

stopped/ count

copyempty (blocks)
copstat reset × copyrdy copyerr ×

Figure 5.5 Fields in copctrl , copstat , copgo

Notes on fields shown in Figure 5.5:

• reset : set this bit to reset the copier - halt the current transfer and discard any pending entries (after
completing any committed PCI transfer of not more than 8 words). This bit is set from system reset.
You have to clear this bit before the copier will accept an entry.

• write : direction - ‘‘1’’ to transfer from DRAM to PCI.
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• copgo.size : the number of 32-byte blocks to transfer.

• copstat.count : the number of 32-byte blocks remaining to be transferred in the request currently
being processed. Note that this may not be related to the ‘‘size ’’ field you just programmed, since
your request may still be queued behind an earlier one. More precisely, only if copyrdy is active is
copstat repor ting on the transfer you last submitted.

• copctrl.start : set ‘‘1’’ when writing copctrl to submit an entry. In fact, there’s not usually any
reason to write copctrl except to submit an entry, so you will only ever write this bit zero when un-
resetting the copier).

• copstat.stopped : is only interesting after you’ve star ted a transfer, when it should go to zero; it
changes to a ‘‘1’’ when the copier stops - either because your transfer is complete, or because the
copier encountered an error. It’s in fact identical to the internal signal copyempty you can read through
the interrupt controller.

5.9. PCI access to SDRAM and IOBC pr ogramming
PCI initiators can access local SDRAM through either of BONITO64’s two programmable regions
associated with the PCI base registers pcibase0-1 . Either of these windows can be set to map the
whole of the maximum possible SDRAM configuration of 256Mbytes15.

PCI initiators access SDRAM through the I/O Buffer Cache - IOBC for shor t, descr ibed in 3.1 above . The
IOBC keeps copies of local memory data in chunks which are the same size and alignment as CPU
cache line blocks. All traffic between the local memory and the IOBC are cache-line-sized bursts at full
memor y speed.

You should make sure you’ve enabled the IOBC-related control bits bongencfg.cachestop (which must
be zero); and bongencfg.uncached, bongencfg.wbehinden and bongencfg.prefetchen (which should
all be 1).

As described in §5.6.3, an access window has associated flags and the. So if the first PCI access
windows is to be used for bulk data transfer should have pcimembasecfg.membase0_cached set (see on
p.34). You just might want to set up a window ‘‘uncached’’, if it’s one where a PCI master device just
reads and writes flags. Try it and see.

PCI initiator writes only result in a burst to memory after a whole ‘‘line’’ of data is provided (the writeback
is usually triggered when the PCI transfer runs on to the succeeding line in memory).

5.10. Register s for IOBC mana gement

Expect lots of changes to this section as coherent operation is prototyped and introduced.

Tr ansfers happen in the basic 8-word storage unit, which is BONITO64’s preferred transfer unit in and out
of SDRAM. Each of the IOBC’s four cache lines holds two 8-word chunks of data. See §3.1. (‘‘The I/O
buffer cache’’) on page 10 for an overall description of the cache.

The CPU may want to be able to either invalidate IOBC line (ensuring that any copies of memory data
held in the line are discarded, and must be re-read from SDRAM if required), or wr ite-back an IOBC line,
causing any PCI-wr itten data held in the line to be written back to SDRAM.

Typically, you want to writeback or invalidate any entr y containing data in some particular range. While
you could do that by blindly invalidating all the lines, that seems likely to be inefficient when there’s a lot of
PCI traffic - which is when it matters. So we recommend that you first look at the line to see whether it
contains the data you’re interested in, and only writeback/invalidate it if it does.

15 Access to more than 256Mbytes SDRAM needs to be possible, but is not defined
yet.
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Commands on the IOBC are run by writing to pcicachectrl ; poll the same register to check that the
command has completed. Commands typically take less than a microsecond to run, so it’s not wor th
waiting for an interrupt.

Where you need to read tag data from a cache entry the register pcicachetag is used as a staging point.

The control fields are shown in Table 5.12. The register fields are somewhat different when reading or
wr iting it.

31 6 5 4 3 2 1  0

cmdexec write

done read
pcicachectrl × cmdline × cmdexec

Table 5.12: PCI Cache control register

The fields are as follows:

• cmdexec : a value encoding what kind of action to carry out:

0 Invalidate
1 Write-back & invalidate
2 Read tag
3 No-op

‘‘No-op’’ is more useful than it looks; all actions except ‘‘invalidate’’ cause a command to be sent from
the IOBC to the memory controller, and the IOBC to wait until it returns, so a ‘‘no-op’’ can be used to
ensure that there are no older write-backs pending.

• cmdline : which of the four cache lines are being operated on.

After a ‘‘read tag’’ command for a particular line, the (read-only) pcicachetag register holds the line state
formatted as in Table 5.13

pcicachetag register

Bit(s) Name Meaning when ‘‘1’’

30 wback† wr iteback pending
29 pfpend† prefetch or write-behind pending
28 pend† update pending.
27 mod contains data written from PCI but not in memory yet
26 pfdval† read pre-fetch data valid.
25 dval† read data valid - this line has been read from local

memor y.
24 aval address valid - this line is genuinely allocated to the

block whose address follows.

23-0 tagaddr28-5 Local SDRAM address of data block being kept in this
cache line.

Table 5.13: Fields in the pcicachetag register

To check whether a cache line is used in some particular buffer you should:

1. Issue a ‘‘read tag’’ command by writing pcicachectrl .

2. Wait for the command to be finished, by polling until pcicachectrl.done is set.

† The meaning of these fields is obscure, mostly for diagnostics, and may change.
You shouldn’t use them except for diagnostics.
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3. Check that pcicachetag.aval is set (otherwise there’s nothing valid in this line).

4. Check whether the 32-byte memory chunk whose address (divided by 32) starts at
pcicachectrl.tagaddr over laps with the memory region you’re interested in.

You can obtain sample IOBC management routines for drivers to use from Algorithmics Ltd.

5.11. PCI access to local I/O
PCI hosts can read and write addresses on BONITO64’s I/O bus, and do absolutely anything. Either PCI
access window can be programmed to a base address which maps to I/O. This is useful for diagnostics
and bootstrapping, but probably a really bad idea for running software.

5.12. Local I/O DMA contr ol
BONITO64 provides a DMA facility on its local I/O bus, strongly - if not quite solely - orientated to the
needs of an attached ‘‘IDE’’ bus. BONITO64 can read or write a stream of (16-bit) half-words on the IOD
bus, collecting them up for transfer in or out of local SDRAM. Devices taking advantage of this facility
must be able to use the DMARQ/DMACK* signals as prescribed by IDE bus specifications and folklore. No
‘‘ter minal count’’ signal is provided.

DMA cycle signaling must be IDE-compatible in DMA, MDMA or UDMA modes. Timing is programmable
too - IDE cycle options are configured in iodevcfg register defined on p.27.

DMA is under the control of a set of registers, whose names all start with ldma -. To star t a transfer :

• Make sure the DMA controller is out of reset: that requires that ldmactrl.reset is zero.

• Wr ite the starting address in local SDRAM into ldmaaddr . Star ting addresses must be 2-byte-aligned.

• Wr ite the transfer count and direction into ldmago . It counts half-words (16-bit data). You can only
transfer an odd count of half-words if you know that the DMA transfer will finish there; that is, you’re
not expecting it to chain.

• Wr ite ldmaCtrl.start to one. Even so, nothing happens until and unless the device asserts DMARQ.

• Program your IDE-compatible device to do its thing and transfer data.

Like the copier, the DMA controller allows two transfers to be outstanding at any one time, and when the
hardware finishes one transfer it will automatically proceed with the queued one (‘‘chaining’’). You can
track its progress, or arrange to get interrupts, from the internal signals dmardy/dmaempty, which are wired
to the interrupt controller. dmardy is high when the DMA controller could accept another entry (ev en if one
is already in progress), and dmaempty is high when the DMA controller has finished all outstanding
transfers.

The register ldmactrl is write/read, though it’s nor mal to call it ldmastat for reading. ldmago is write-
only. They’re all shown in Figure 5.6.

31 30 29 28 17 16 15 0

ldmactrl star t reset 0 ×

ldmago × wr ite? size (half-words)

31 30 29 28 27 20 19 16 15 0

dma-

empty
ldmastat reset × dmardy × wordcount count (half-words)

Figure 5.6 ldmastat and ldmaCtrl register layouts
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The fields in the registers shown in Figure 5.6 are as follows:

• ldmactrl.reset : write a ‘‘1’’ here to reset the DMA subsystem, stop everything, and discard any
queued entries. This bit is set ‘‘1’’ from system reset, and must be written zero to use DMA.

• ldmactrl.start : write a ‘‘1’’ to star t a transfer - you must have set up the address first! In fact you
only ever write a zero to this bit when resetting or un-resetting DMA.

• ldmastat.dmaempty reads ‘‘0’’ when you’ve star ted a DMA, but it hasn’t finished; and changes to ‘‘1’’
when the DMA completes.

• write : direction bit - set ‘‘1’’ for a transfer from SDRAM to the I/O bus.

• size : holds the transfer count as a number of half-words. When you read the ldmastat.size field it
retur ns the current transfer count of the active entr y; note that because you can queue a transfer
request, this may not be the transfer you just programmed (it may be the one before).

5.13. PCI Mailbo x register s
Four mailbox registers pcimail0-3 may be read and written; 8 bits are implemented in each, and carry
data between the parties. Any write to one of these registers pulses the corresponding internal ’signal’,
which can be caught in the interrupt controller as an interrupt; you’ll need to program the interrupt
controller to respond to a positive-going edge, and to clear down the stored interrupt when you’ve done
with it. See §5.15 for details.

5.14. GPIO pins
Are programmed simply through a pair of bit-per-signal registers, one for read/writing each pin’s logic
level, and one for controlling the direction of each signal16.

31 25 24 16 15 10 9 0
gpinr gpior gpiow

readGPIN5-0 pins GPIO8-0 pins GPIO8-0 readbacks
× × wr ite

gpiodata ×
GPIO levels

1111111 0 = output
(inputs) 1 = input

gpioie ×

Figure 5.7 Fields in gpiodata and gpioie

The input-only GPIN pins are handled at the same time, though the corresponding gpioie bits (where
wr iting a 1 makes the corresponding bit an input) are hard-wired to 1.

The GPIO pins appear twice in the read-data register; the high-order bits reflect the logic level at the pin,
while the low-order bits is a readback from the GPIO register. The two will be different when the
corresponding gpioie (input enable) bit is a 1, or may be different because of logic-level contention.

16 The number of GPIO and GPIN pins, the split between them, and how many of
them are available as interrupts is implementation-dependent. The numbers here are
correct for both the Bonito32 ASIC and the FPGA BONITO64 at the time of writing.
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5.15. Interrupt contr ol
BONITO64 contains a simple, flexible interrupt controller. In addition to a number of input interrupts
signaled through the GPIn and GPIO inputs, it also manages interrupts caused by inter nally-detected
ev ents.

All the interrupt registers have the same layout, in which each potential interrupt source has one bit:

intXXX register

Bit(s) Name What are they?

31 irqa Only in inten , intenclr and intenset ; doesn’t really belong here;
this controls the PCI interrupt INTA* when it’s configured as an
output (see bongencfg ). It’s in the inten register because single
bits can be changed by a single write.

30-25 gpins The general-pur pose input pins GPIN5-0.

24-20 Not connected

19-16 gpios The general-pur pose I/O pins GPIO3-0.

15 Not connected

14 IntTimer A pulse produced by the internal reference timer while the timer
value is equal to the ‘‘compare’’ value. It should be configured as
‘‘active high’’ and latched - see intpol and intedge respectively.

13 retryerr A PCI cycle initiated by BONITO64 has been abandoned after too
many retr ies. See §5.7.4.

This field was called ‘‘pciMTimeout ’’ in ear lier versions of this
manual.

12 dramperr Parity error detected by SDRAM controller, when enabled.

11 systemerr PCI error in cycle when BONITO64 is target.

10 mastererr PCI error in cycle when BONITO64 is initiator.

9 pciirq Active lev el on PCI interrupt pin IRQA*.

8 copyerr

7 copyempty

6 copyrdy

Copier (see §5.8) internal signals, all reported as levels.

copyerr indicates a PCI error on a copier transfer ; the copier has
stopped and and can only be restarted after a software reset.
copyempty is asserted when the copier has finished all requested
transfers.
copyrdy is asserted as soon as it’s possible to program another
copier transfer.

5 dmaempty

4 dmardy

DMA (see §5.12) internal signals, all levels.

dmaempty means that all programmed DMA has finished, whereas
dmardy just invites you to give it some more wor k.

3-0 mboxes Pulsed when mailboxes are written (see §5.13. (‘‘PCI Mailbox
registers’’) on page 44). You need to configure these interrupts as
active-high and edge-triggered.

Table 5.14: Fields in intXXX registers

The interrupts are configured for polarity and edge/level sensing with the following registers:

• intisr (read-only) has a bit set for any interr upt condition which is active - in the case of exter nal
interr upts configured as edge-sensitive, it retur ns the state of the internal latch.
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When you’re just using the signal as a program-readable input, you read its value here and leave the
corresponding inten bit clear so it takes no further part in the interrupt system.

• inten (which may not be directly writable) has a bit set for any interr upt which is enabled. You most
often manipulate the interrupt enables by writing either intenset which sets only inten bits
corresponding to a ‘‘1’’ data bit, or intenclr which zeroes any bits corresponding to a ‘‘1’’ data bit.

As a useful side effect, writing a ‘‘1’’ bit to intenclr also resets the edge-detecting latch of the
corresponding interrupt.

• intpol sets the polarity of each interrupt source; a ‘‘1’’ bit for active-high, and a ‘‘0’’ bit for active-low.
The inversion happens before the edge-detecting latch.

Since intpol is forced to all-zeroes by a system reset, you need to program it to avoid getting
spur ious interr upts from active-high signals - and the ‘‘inter nal’’ interr upt signals are all active high.

• intedge can be used to program each exter nal interr upt source from level (bit 0) to edge (bit 1).
Effectively it does this by selecting either the direct pin input, or the state of the edge-detecting latch.
The latch is still there, and its state is not affected by the programming of this register.

• intsteer causes an active, enabled interrupt condition to affect either of two outputs intended for
MIPS CPU interrupt inputs: either Int0* (corresponding bit 0), or Int1* when the corresponding bit is set
to 1. The interrupt output Int1* can also appear on the PCI line INTA* by setting the
bongencfg.irqa_from_int1 register bit, shown in Table 5.3 above .

Some BONITO64 implementations may not offer all options on all interrupts. As for the GPIO system,
some register bits may become quietly read-only. For example, intpol bits corresponding to internal
interr upt sources (whose activity level is always nominally high) will always read 1. Similar ly, intedge bits
corresponding to interrupt sources which must always be latched may always read 1.

Initialising the interrupt contr oller
To avoid spurious interrupts, you must initialise the ICU’s intpol and intedge registers as part of system
star t-up. You should then disable all the interrupts by writing all-ones to intenclr , which has the side
effect of making sure that all the edge-detecting latches are clear. Once that’s done you can enable
interr upts at the CPU, and each device driver can enable its own interrupt as required.

5.16. BONITO64 reference timer
This simple timer lacks the sophistication, ease of programming, range and precision of the on-CPU timer
found on all compatible MIPS CPUs. So a running OS is unlikely to use this as a timer: but by connecting
BONITO64’s own timer to a fixed clock frequency, software can use it to calibrate the main system clock
which is likely to change over product var iants or lifetime - and that’s ver y useful to some systems.

The timer itself can be fed by a clock from a number of different sources, to give you a choice of ways of
wir ing your system. You may be able to use your PCI bus clock if:

1. Your PCI bus clock is known to run always (the PCI spec permits it to be stopped);

2. Your PCI bus clock really runs at a constant and accurate rate. Note that popular PC-wor ld clock
synthesisers often provide different approximations to a 33MHz PCI bus clock at different settings.

More useful is probably an exter nal clock, which can be wired to either of GPIO7-8; a good choice might
be a clock from a networ k controller, or any fixed crystal-controlled frequency from your board.

When enabled, the timer counts up until it reaches the value programmed into the
timercfg.timercompare field, from where it clears to zero on the next clock edge. While the counter
value is equal to the compare value, an inter nal signal IntTimer is asserted and fed to the interrupt
controller, where it can be seen, latched and used as an interrupt.
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iodevcfg register

Bit(s) Name Value Effect

31-25 Not used

24 Reserved

23 timerenable 0/1 Set ‘‘1’’ to allow timer to free-run - otherwise it runs to
zero and stops.

0 Exter nal clock (if selected) is taken from GPIO7.
1

22 timerrefclksrc
Exter nal clock (if selected) is taken from GPIO8.

1 Clock every second edge of ClockIn.
2 Run timer from the PCI clock CLK.
321-20 timerclocksrc Run timer from one of GPIO7-8; which of them is used

depends on the setting of timercfg.timerrefclksrc ,
descr ibed above .

19-0 timercompare 0-1M Wr ite the ‘‘compare’’ value here. When timer reaches
this number, it wraps around to zero and generates a
1-clock pulse on the onchip signal IntTimer fed to the
interr upt controller.
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6. Hardware description
This section describes BONITO64 as implemented in a Xilinx ‘‘Vir tex’’ FPGA - the XCV400E6FG676, and
with the pinout used in Algorithmics’ P−6064 prototyping board.

This FPGA can be configured to match a range of I/O standards, but not old-fashioned 5V TTL - the high
levels permitted on 5V TTL are liable to damage it if enough current flows. On the prototyping boards
pins connected to 5V signals are defended either with voltage-limiting ‘‘Quick-Switch’’ gates or with series
resistors.

6.1. Signals
The signals on this chip are as follows:

Signal Name Type Description

CPU interface signals

SysAD0-63

SysADC0-7

SysCmd0-8
Bi

MIPS multiplexed bus, par ity check bits (SysADC), and transfer type code
(SysCmd).

Note that Vr4300 systems and others which make no use of parity won’t
connect SysADC.

ValidIn* Out Pulsed when BONITO64 is driving the CPU bus.

In Pulsed when CPU is driving the CPU busValidOut*

WrRdy* Out CPU write cycle flow control. MIPS CPUs usually have a separate RdRdy*

pin, which should be strapped permanently active.

Release* In Pulsed as CPU stops driving the bus in a read cycle

CPUClock In master clock for BONITO64 which must be precisely aligned with the CPU’s
input clock. SysReset*:In:T{ Reset for BONITO64 and perhaps other
circuits. Often connected to the active-high power-good signal from a
power supply.

CPUColdReset*

CPUReset*
out Controls for CPU’s two-stage reset sequence.

VCCOk Out Some MIPS CPUs use this (active-high) signal in their reset sequence. For
CPUs without such an input, it can be ignored.

Warning : designated as an input in versions of this spec up to and
including v2.1.

ModeClock In

ModeIn out

Clock from some CPUs, used to shift out ‘‘mode bits’’ to select reset
options. The mode bits themselves are fetched from the boot ROM, and
are presented in turn on ModeIn.

Int0-1* Out BONITO64’s interr upt lines to CPU

NMI* Out MIPS non-maskable interrupt. For strange debug purposes only; please
ignore.

PAck* Out

PReq* In

RdType In

RspSwap˜ In

TcMatch In

TcTCE˜ In

Extra CPU interface signals for RM70xx CPU - see CPU manual if you’re
interested.

May be recycled to other extra-pin sets for CPUs with slightly different
buses.

PCI interface signals
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Signal Name Type Description

CLK In PCI bus clock, 33MHz nominal

AD0-31

PAR
PCI address/data plus parity

CBE0-3*

Bi

PCI cycle type (address time) and active-low byte enables (data time)

DEVSEL*

FRAME*

IRDY*

STOP*

TRDY*

Bi PCI cycle control signals

PERR* Bi PCI parity reporting signal. A par ity error during one of our cycles causes
an interrupt or bus error to be returned to the MIPS CPU.

SERR* Bi PCI general error reporting signal. Can generate an interrupt to the MIPS
CPU.

RESET* Bi PCI bus reset. Can be configured as an output, normally when BONITO64
is responsible for host functions on the PCI bus; in this mode it is asserted
from system reset and subsequently controlled by software.

When active, the PCI bus interface is held in reset, and no PCI shared
signals are driven.

IDSEL In Marks incoming configuration cycles

IRQA* Bi Can either be configured as an input (to BONITO64’s interr upt controller) or
made an open-collector output, which is then controlled by writing the
intenclr /intenset registers.

REQ0-5* In

GNT0-5* Out

When BONITO64 is serving as PCI bus arbiter, these are the PCI
request/grant signals for use by other potential PCI initiators.

When we’re using an exter nal arbiter, GNT0* acts as BONITO64’s PCI
request, and REQ0* acts as its grant (swapping roles means we can leave
some signals as pure inputs).

Note that BONITO64’s arbiter is enabled/disabled by a software-wr itable
register bit bonponcfg.is_arbiter , but it can be preset on as described in
§5.2. (‘‘Pow er-on settable configuration register - bonponcfg ’’) on page 23.

SDRAM interface signals

MUXAD0-13 Out Multiplexed addresses.

DBA0-2 Out Bank select - up to three additional address lines into SDRAM components.
Most use one or two of them.

DD0-63 SDRAM data bus.

Dur ing ROM or I/O accesses these signals act as an address bus (but they
don’t count up during ‘‘burst’’ ROM cycles - you need to connect your ROM
to IOA0-4 for that.)

DDP0-7 Parity/check bits for data bus

Bi

DQS0-8 Bi Source-provided strobes for DDR data transfer, multiplied up so as to
provide an independent signal per byte lane - one per active chip if the
72-bit wide memory is built from ×8 components.
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Signal Name Type Description

DRAS*

DCAS*

DWE*

DCKE0-1

Out
SDRAM cycle control signals: RAS, CAS, write-enable and clock enable.
Typically common to all DRAMs. Clock-enable duplicated for fan-out
reasons.

DCS0-1H*

DCS0-1L*
Out DRAM chip selects for four ‘‘sides’’ (physical banks) of SDRAM.

DQMBLo0-1

DQMBHi0-1
Out

Byte ‘‘masks’’ - that is, byte enables. Used in groups of four as word
enables for the 32-bit halves of the SDRAM. Wr ites less than 32-bits to
memor y are implemented inside BONITO64 using a read-modify-write cycle.

Each signal is attached to four of the byte masks going into the DIMM.

I/O and ROM interface signals

IOD0-15 Bi Separate data bus enables some I/O transactions (particular ly DMA) to be
completed without using the SDRAM signals.

Note these signals are inputs while SysReset* is active, and are then used to
make pre-reset chip configuration choices.

In some configurations, I/O addresses (IOA5-20) are multiplexed on these
pins.

IOD16-31 Bi Data bus extension found on some parts configured to wor k with wide ROM
system.

IOA0-4 Out CPU address bits 0-4, valid during I/O (including ROM) cycles. IOA0-4

count during ROM bursts, and are thus the only correct signals to use for
low ROM address bits.

IOAHI_CLK Out Demultiplexing signal when obtaining I/O address from IOD0-15. It’s suitable
for use either with a transparent latch (’373 or similar), or it can wor k as an
active-high clock enable valid with reference to the CPU/SDRAM clocks.

Isolate Out High to isolate ROM signals from the high-speed SDRAM data bus.
Suitable for use as input to a QS3245 or similar switch.

Also usable as an enable for a buffer for address-time signals on the local
I/O data bus.

RomCS0-1* Bi

IOCS0-3* Out

Chip selects for 2 memory devices - often one ROM socket (for first-time
bootstrap) and one flash ROM - and some I/O devices.

If you need more ROM chip selects, you can generate them by qualifying
ROMCS1* with some high address bits - which during ROM cycles are
available on DD0-31. The ROM timings are sloppy enough to give you
10-15ns to do this while still maintaining setup time before the IORD*/IOWR*

strobe.

ROMCS1* is the ‘‘default’’ bootstrap region, and the natural place for your
standard bootstrap memory.

The levels on ROMCS0-1* are sampled at reset-time into the bonponcfg

register, and you could use a 10K pullup or its lack that for a software-
readable link.

IODIR Out Direction control (high for write) suitable for a ’245 buffer used to buffer the
data bus - most often used to buffer IDE disk connection.
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Signal Name Type Description

IODEN* Out Enable control for an IOD data buffer - most often used to buffer IDE disk
connection.

IORd* Out

IOWr* Out

Intel-style read and write strobes for ROM and I/O. Addresses and chip
selects have enough setup and hold time from the active strobes to allow
exter nal logic to generate more chip selects from the addresses.

IORDY

UDMA_DSTROBE

In

These two signals are usually connected together; if you configure an I/O
bus DMA mode to support UDMA IDE, this signal becomes a source-
synchronous clock for DMA read data, and at high speed it’s essential to
wire them to one of the FPGA’s ‘‘global clock’’ pins - called
UDMA_DSTROBE.

However ‘‘I/O channel ready’’ has another role in slower I/O cycles, where
it’s an active-low request for extra wait states. If you don’t use it in this role,
you must make sure this signal is always high during I/O cycles.

I/O bus DMA and IDE suppor t

DMARQ In DMA per ipheral is ready to transfer data.

DMACK* Out DMA acknowledge ‘‘decode’’ distinguishing I/O bus reads or writes for DMA
(with no chip select).

Programmab le IO signals

GPIO0-8 Bi General purpose programmable I/O. Note that GPIO0-3 (only) are usable as
interr upt inputs, and GPIO7-8 (only) may be used as clock inputs for the
reference timer described in §5.16.

GPIn8 may also be used to supply a modebit stream to feed options into a
MIPS CPU, when you need to have full control over more than 32
configuration bits.

GPIn0-5 In Interr upt/General purpose input pins. These signals are weakly pulled
down and with a link to VDD can be used to implement software-readable
link or switch settings.

Test and dedicated configuration signals

SysController* In Dedicated configuration signal. If it’s low, BONITO64 drives the PCI Reset*

signal; if it’s high, PCI Reset* becomes an input and itself resets all functions
in BONITO64. Unlike all other BONITO64 configuration signals, it must be
stable at all times.

enable_outputs* in When inactive, float everything. Board test feature.

MOD_TYPE0-3 In Av ailable to allow the FPGA to be configured to support different CPU
interfaces. On Algor ithmics’ ev aluation board the levels on these signals
are typically determined by presets on each var iant CPU daughterboard.

FPGA_SPARE0-15 Bi Signals unused in standard logic; on Algorithmics’ prototyping board these
are brought out to a header for use when exper imenting with different FPGA
logic programs.

JTCK In

JTDI In

JTDO Out

JTMS In

JTAG boundar y test pins.

Po wer and g eneric signals
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Signal Name Type Description

GND System ground

V1V25 1.25V reference signal for DDR SDRAM (SSTL2) interface signals.

V1_8V 1.8V power, used for most of FPGA logic

VDD 3.3V power used for most I/Os.

Note that the XCV400E part is not 5V tolerant, which makes the evaluation
boards more complicated.

FPGA-specific signals

FPGA_CCLK In

FPGA_CS˜

FPGA_D1-7

FPGA_DIN_D0

FPGA_DONE

FPGA_DOUT_BUSY

FPGA_DXN

FPGA_DXP

FPGA_INIT˜

FPGA_M0-2

FPGA_PROGRAM˜

FPGA_WRITE˜

Signals used to program the FPGA (which is a soft device which receives
its logic ‘‘program’’ when the system is reset).

Some of them can be reconfigured for I/O, but on Algorithmics’ evaluation
boards these signals are not used for any other purpose.

HWDEBUG_CAP_CLK

HWDEBUG_CAP_EN

HWDEBUG_RST

HWDEBUG_TRIG

Xilinx FPGA logic debugging interface. Available as a test header on
Algor ithmics’ ev aluation board.

IOxx You’ll see these names on the pin-out diagram, marking where the FPGA
has unused I/O pins. Treat as NC.
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6.2. Pinout
Currently the 676-pin FPGA is pinned out like this: this is the pinout as seen looking at the PCB pads.
See below for signal name abbreviations - essential to get it on the page.
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Figure 6.1 676-pin FPGA pinout for BONITO64

BONITO64 - ‘‘nor th br idge’’ controller for 64-bit MIPS CPUs Page 53 of 64

hmc
h

hmc
h

hmc
h

hmc
h

hmc
h

hmc
h

hmc
L

hmc
L



Signal name abbre viations used in pinout tab le

Or iginally Abbrev Originally Abbrev Originally Abbrev

CPUClock CClock CPUColdReset˜ CdRst˜ CPUReset˜ CRest˜

DEVSEL˜ DEVSL˜ DQMBHi0-1 DQMBH0-1 DQMBLo0-1 DQMBL0-1

FPGA_CCLK XCCLK FPGA_CS˜ XCS˜ FPGA_D1-7 XD1-7

FPGA_DIN_D0 XDIND0 FPGA_DONE XDONE FPGA_DOUT_BUSY XDTBSY

FPGA_DXN XDXN FPGA_DXP XDXP FPGA_INIT˜ XINIT˜

FPGA_M0-2 XM0-2 FPGA_PROGRAM˜ XPrg˜˜ FPGA_SPARE0-15 XSPAR0-9,XSPR10-15

FPGA_WRITE˜ XWRIT˜ HWDEBUG_CAP_CLK DbgCPC HWDEBUG_CAP_EN DbgCPN

HWDEBUG_RST DbgRST HWDEBUG_TRIG DbgTRG IOAHI_CLK IOHCLK

Isolate Isolat MOD_TYPE0-3 MDTYP0-3 MUXAD10-13 MUXD10-13

ModeClock MdClck Release˜ Reles˜ RspSwap˜ RSwap˜

SysAD0-63 SAD0-63 SysADC0-7 SADC0-7 SysCmd0-8 SCmd0-8

SysController˜ SCtrl˜ SysReset˜ SRest˜ TcMatch TcMtch

UDMA_DSTROBE UDStb VDD_FPGA1-2 Vbnk1-2 ValidIn˜ Valdn˜

ValidOut˜ Valdt˜ enable_outputs˜ EnOut˜

6.3. Package information
BONITO64 is implemented with a Xilinx ‘‘Vir tex-E’’ par t - the XCV400E6FG676, and you can get physical
design infor mation from http://www.xilinx.com/partinfo/pkgs_pdf/fg676.pdf . Xilinx’ drawing
shows the bottom of the chip (caution: Algorithmics’ pin-layout drawing in Figure 6.1 above shows the
PCB pad layout, as if looking ‘‘through’’ the mounted chip.

It’s an 1mm pitch BGA, a fully-populated 26×26 square (the inner pads are all power and ground, and are
mostly provided for heat dissipation). Fine pitch BGAs can present a challenge to PCB layout and
routing, and Xilinx have an application note on their web page about this: see
http://www.xilinx.com/xapp/xapp157.pdf or browse the application notes master page
http://www.xilinx.com/apps/virtexapp.htm .
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Appendix A: Register Ad dresses

Registers in address order Registers in name order
register address register address

pcidid 1FE00000 bongencfg 1FE00104
pcicmd 1FE00004 bonponcfg 1FE00100
pciclass 1FE00008 copctrl 1FE00300
pciltimer 1FE0000C copdaddr 1FE00308
pcibase0 1FE00010 copgo 1FE0030C
pcibase1 1FE00014 coppaddr 1FE00304
pcibase2 1FE00018 copstat 1FE00300
pciexprbase 1FE00030 gpiodata 1FE0011C
pciint 1FE0003C gpioie 1FE00120

bonponcfg 1FE00100 intedge 1FE00124
bongencfg 1FE00104 inten 1FE00138
iodevcfg 1FE00108 intenclr 1FE00134
sdcfg 1FE0010C intenset 1FE00130
pcimap 1FE00110 intisr 1FE0013C
pcimembasecfg 1FE00114 intpol 1FE0012C
pcimap_cfg 1FE00118 intsteer 1FE00128
gpiodata 1FE0011C iodevcfg 1FE00108
gpioie 1FE00120 ldmaaddr 1FE00204
intedge 1FE00124 ldmactrl 1FE00200
intsteer 1FE00128 ldmago 1FE00208
intpol 1FE0012C ldmastat 1FE00200
intenset 1FE00130 pcibadaddr 1FE00158
intenclr 1FE00134 pcibase0 1FE00010
inten 1FE00138 pcibase1 1FE00014
intisr 1FE0013C pcibase2 1FE00018
pcimail0 1FE00140 pcicachectrl 1FE00150
pcimail1 1FE00144 pcicachetag 1FE00154
pcimail2 1FE00148 pciclass 1FE00008
pcimail3 1FE0014C pcicmd 1FE00004
pcicachectrl 1FE00150 pcidid 1FE00000
pcicachetag 1FE00154 pciexprbase 1FE00030
pcibadaddr 1FE00158 pciint 1FE0003C
pcimstat 1FE0015C pciltimer 1FE0000C
timercfg 1FE00160 pcimail0 1FE00140

ldmactrl 1FE00200 pcimail1 1FE00144
ldmastat 1FE00200 pcimail2 1FE00148
ldmaaddr 1FE00204 pcimail3 1FE0014C
ldmago 1FE00208 pcimap 1FE00110

copctrl 1FE00300 pcimap_cfg 1FE00118
copstat 1FE00300 pcimembasecfg 1FE00114
coppaddr 1FE00304 pcimstat 1FE0015C
copdaddr 1FE00308 sdcfg 1FE0010C
copgo 1FE0030C timercfg 1FE00160
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Appendix B: B ONITO64’s debug interface
When you set debug mode in BONITO64, controlled by bongencfg.debugmode

• The address for all CPU cycles, and all PCI cycles accessing BONITO64 local memory or registers, are
dr iven out on the SDRAM data bus at the start of what looks like a SDRAM read/write.

• Cycle data is presented on the memory data bus at what looks like SDRAM data time.

• A few other SDRAM control signals are taken over for other purposes.

• When the cycle being reported is not really an SDRAM cycle no DRAM module/side select is active.

A par t of the memory map which would have selected the SDRAM bank which the debug board
replaces - decoded by one of the top chip selects DCS1H*/DCS1L* - is available to access 8-bit devices
on the debug board. However, Algor ithmics standard 64-bit DIMM debug board doesn’t provide any
debug board I/O, and customers should definitely ask before relying on the existence of such a
feature.

Debug mode is somewhat intrusive, and can alter system timings because I/O and PCI register accesses
are reported on the debug interface, and that can hold up DRAM accesses. More precisely:

• DRAM cycles run the same way they always did;

• any IO cycle that needs to take some addresses from the DRAM data bus is unaffected (effectively,
debug mode is always on for these cycles).

• With debug mode on all other IO cycles will use the SDRAM bus to report themselves. In par ticular
this means accesses to Bonito’s inter nal registers and CPU PCI reads/writes become visible.

How debug c ycles w ork
The debug protocol provides address infor mation (mostly) on the SDRAM data bus in the first cycle when
Ras* is asserted - which is well before any data is transferred on a real SDRAM read or write.
(Remember, the debug protocol is active on SDRAM cycles as well as all others). The debug board sees
data too; real SDRAM cycles have data, of course, but debug-only cycles deliver data using the Cas*
strobe.

The debug board has a set of registers which capture the SDRAM bus in two stages - typically the first-
captured value is the address, and the last-captured the data. However, because the debug board uses
programmable logic devices you can’t see the registers...

Algorithmics’ DIMM deb ug boar d
The standard 64-bit BONITO64 debug board is designed to plug into a 168-pin DIMM socket (as
configured for standard PC synchronous memory: 3.3V un-buffered type). The debug board provides you
with logic analyser connectors which present all the cycles which pass through BONITO64. The debug
board buffers and re-registers the buses, so that even a relatively slow analyser will have no trouble
following BONITO64’s buses up to 83MHz. The connectors are pinned out to allow HP logic analyser
‘‘mass terminator pods’’ to be plugged straight in, but can be wired pin-by-pin to any kind of analyser.

Figure B.1 shows the layout of the board.
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6.3.1. Debug boar d analyser connector s
The signals available on the standard analyser connectors of the debug board are summarised in Table
B.1.

Signal Description

A31-0 Address of cycle
AM13-12 Raw value of SDRAM multiplexed addresses
ATRIG Rising-edge trigger to capture cycle
BE7-0˜ independent active-low byte enables - BE0˜ selects D7-0 etc.
D63-0
DP7-0

Data bus and byte-wide parity

SIZE2-0 Encodes size of current transfer - a value of n means n+1 bytes
SRC1-0 tells you who is initiating the transfer :

0 → CPU initiated DRAM cycle.
1 → IDE DMA or PCI copier initiated DRAM cycle.
2 → PCI initiated DRAM cycle.
3 → IO or CPU -> PCI cycle

WR High if this transfer is a write.

Table B.1: Signals available from debug board

Connector pin-outs
The DIMM debug board can have high-density ‘‘Mictor’’ connectors as used by new er HP analysers - but
they’re hard to buy in the US, so are not always fitted. Let us know if they’re important to you.

Most of you will therefore connect into the 20-pin 0.1’’ dual headers as used on older and cheaper
analysers - and they’re also usable if your test equipment needs to be attached pin-by-pin.

If you are using an HP or compatible analyser with mass terminator probes which plug right into the

BONITO64 - ‘‘nor th br idge’’ controller for 64-bit MIPS CPUs Page 57 of 64



connectors,then the signals get laid out for your convenience17 as shown in Figure B.2.

Tr ig 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P1 D47-32

P3 D63-48

P4 ATRIG AM13-12 BE7-0˜ WR SRC1-0 SIZE2-0

P6 DP7-0

P7 D31-16

P9 D15-0

P10 A31-16

P12 ATRIG A15-0

Figure B.2 Connecting an HP or compatible analyser to debug board

Those of you who haven’t got an HP or compatible analyser can still use the connectors, of course; but
you’ll probably find Figure B.3 more helpful.

17 Caution: some designs may swap memor y data lines around for cleaner routing
(for BONITO64, memory data connections can be arbitrar ily swizzled within the low and
high words). That might be fixable by a CPLD change on the debug board; so some
debug boards somewhere may be different from this.
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P10 P7 P4 P1

- 1 2 - - 1 2 - - 1 2 - - 1 2 -

- 3 4 A31 - 3 4 D31 ATRIG 3 4 AMUX13 - 3 4 D47

A30 5 6 A29 D30 5 6 D29 AMUX12 5 6 BE7˜ D46 5 6 D45

A28 7 8 A27 D28 7 8 D27 BE6˜ 7 8 BE5˜ D44 7 8 D43

A26 9 10 A25 D26 9 10 D25 BE4˜ 9 10 BE3˜ D42 9 10 D41

A24 11 12 A23 D24 11 12 D23 BE2˜ 11 12 BE1˜ D40 11 12 D39

A22 13 14 A21 D22 13 14 D21 BE0˜ 13 14 WR D38 13 14 D37

A20 15 16 A19 D20 15 16 D19 SRC1 15 16 SRC0 D36 15 16 D35

A18 17 18 A17 D18 17 18 D17 SIZE2 17 18 SIZE1 D34 17 18 D33

A16 19 20 GND D16 19 20 GND SIZE0 19 20 GND D32 19 20 GND

P12 P9 P6 P3

- 1 2 - - 1 2 - - 1 2 - - 1 2 -

ATRIG 3 4 A15 - 3 4 D15 - 3 4 - - 3 4 D63

A14 5 6 A13 D14 5 6 D13 - 5 6 - D62 5 6 D61

A12 7 8 A11 D12 7 8 D11 - 7 8 - D60 7 8 D59

A10 9 10 A9 D10 9 10 D9 - 9 10 - D58 9 10 D57

A8 11 12 A7 D8 11 12 D7 - 11 12 DP7 D56 11 12 D55

A6 13 14 A5 D6 13 14 D5 DP6 13 14 DP5 D54 13 14 D53

A4 15 16 A3 D4 15 16 D3 DP4 15 16 DP3 D52 15 16 D51

A2 17 18 A1 D2 17 18 D1 DP2 17 18 DP1 D50 17 18 D49

A0 19 20 GND D0 19 20 GND DP0 19 20 GND D48 19 20 GND

Figure B.3 Pin-by-pin analyser connection to debug board
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Appendix C: - IDE interface and UDMA transf ers
The UDMA hardware definitions appear in the ‘‘ATA-4’’ specification. For mally, this is an industry standard
and full copies are available only at a price. How ever, free versions of drafts of the standard - adequate
for many pur poses - are available on the web from some of the companies who participated in the
standards activity.

Under the standard, ‘‘UDMA’’ is a high-speed block data transfer protocol which may be negotiated for use
in conjunction with the ‘‘ATA’’, SCSI-like, high-level command set. But many (most?) ATA-4 compatible
disk drives are also willing to use UDMA bursts for normal disk data DMA cycles, which may be much
easier to program.

An intr oduction to UDMA
The IDE disk interface started life as really just an extension of the ISA bus, buffered so it could be shared
down a ribbon cable. It’s accreted more and more options down the years as disk drive perfor mance
increased, and as the interface was opportunistically used to connect other kinds of device.

To make high speed transfer wor k on IDE is difficult, because the cable layout is not ver y good, it’s hard to
control cable quality, ter mination is uncertain and who knows what might be attached. UDMA uses
several tricks to try to improve data transfer :

• Source synchronous transfers : synchronous transfers go faster. But with a single clock, skew and
uncer tainty about clock transitions means that data being received by the clock driver is always more
marginal than that being sent. UDMA always defines bursts with a clock supplied by the data provider.

It’s not clear whether this is necessary or sensible at UDMA’s modest speeds, but it was a ver y
popular scheme in the late 90s.

• Clocking data on both edges : halves the highest frequency on the cable, which reduces EMC
emission problems.

• Per-burst CRC check : ensures that if we overreach the capacity of the cable, we get to find out about
it. Note that the CRC check is always perfor med by the disk drive, so that it can be reported through
the same register-orientated mechanism as an on-drive data error; bizarre, but might reduce the effor t
of porting device driver software.

In practice, if anything goes wrong on UDMA it will be down to data hold time; it seems that disk drives do
not always provide the required 6ns data hold time from the strobe. You should be careful not to delay the
strobe by more than the data - so, for example, we don’t recommend putting an extra buffer component
between the cable IORDY signal and BONITO64.

UDMA cab le termination guidelines
Where BONITO64’s IDE interface is used, we recommend that you use a 245-type buffer between the IDE
cable and the IOD0-15 data bus, controlled by BONITO64’s IODIR and IODEN* signals.

To try to keep the cable quiet, you’re recommended to provide resistive ter mination on the IDE signals.
Ser ies ter minators should be close to the buffer or the BONITO64 pin; pullups and pulldowns can be
anywhere (within reason).
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Signal Value (Ω) Descr iption

IORDY 1K Pull-up to +5V.

DMARQ 5K6
INTRQ 10K

Pull down to ground, to ensure that the
signal is ‘‘inactive’’ when no disk is
attached.

DD7 10K Make sure bit 7 reads 1 on register access
to non-fitted disk drive. Can be used for
auto-sense software.

DD0-16
DA0-3

33

CS0-1˜ ˆ
other outputs 22

ser ies resistors

DMARQ
INTRQ
IORDY

82 series resistors for inputs

Table C.1: UDMA signal termination recommendations
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Appendix D: - Har dware timing and the pr ogrammer
In the past few years a gap has opened up between the perfor mance of CPUs and their attached I/O
systems. A MIPS CPU might be able to execute 50-100 instructions (from its cache) in the time that it
takes to complete a single-word transfer over PCI.

In an attempt to lessen the impact of this perfor mance difference, BONITO64 does a number of things:

• Wr ites are ‘‘posted’’, everywhere. The CPU runs on leaving its writes queued somewhere in
BONITO64 - or, if not still there, they may be queued in a PCI peripheral controller or bridge.
Ever ything uses write posting...

• Tr ansfers to different memory regions (local SDRAM, local I/O and ROM, PCI, internal registers) use
separate queues.

• Many new er MIPS CPUs will continue to run with a read cycle outstanding. The CPU stops only when
it tries to use the data obtained from the read.

At worse, exter nal cycles can occur in a different sequence from that programmed. Even when that
doesn’t happen, the interval between cycles (seen exter nally) may bear little relationship to the interval
between the execution of the load/store instructions which they are servicing.

BONITO64 makes some promises about this cycle re-organising.

There are three different memory regions in BONITO64 for this purpose:

• Local SDRAM.

• Local I/O, ROM and BONITO64’s inter nal registers.

• PCI locations.

The golden rule : reads and writes to any one region are always carr ied out in the order in which they
show up on the CPU interface.

Is that enough to make the hardware sequence invisible to programmers? No, it isn’t: here are some
examples where you can get caught out, with our recommended solutions:

• Clear ing a PCI interrupt : typically, you clear an interrupt by writing some control register on your PCI
controller. It’s ver y often the last register access the driver makes. By the time the write hits the
device and causes it to de-assert the interrupt signal, the CPU will have executed 50-100 instructions -
which may well be enough for it to emerge from the interrupt routine, implicitly re-enabling the device
interr upt.

The result can be a second bogus interrupt, wasting time and confusing your device driver.

The best solution to this is to do device interrupt signaling through mailbox registers. But not many
controllers can be persuaded to do that.

You can make sure your driver will shrug off bogus interrupts, and just let them happen. You system
will spin taking interrupts until the write finally gets through and the interrupt is deasserted. This has
the advantage of providing a window of oppor tunity for a higher-pr ior ity interr upt, if any such is active.

You can read a device register (after the interrupt-clear ing wr ite); that will stall the CPU until the read
chases the write through the PCI queues, and returns a value.

• Local register write which affects PCI transfers : most BONITO64 functions are configured by software-
accessible registers. Cycles aimed at the registers themselves are kept in sequence, but if a write to a
register affects cycles on other ports (like PCI or SDRAM) you can get trouble.

Solution: if you’re writing a local register which has side-effects on other ports:

1. Issue a dummy read to the affected port and wait for its value. That will ensure that no CPU
transfers to the port are still queued.
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2. Write your BONITO64 register.

3. Read your BONITO64 register back again and wait for the value. That way, your program won’t
continue until the write has really happened.

You’ll need to be even more careful if you reconfigure local registers in a way which might affect DMA
or PCI-master cycles, since those can happen at any time.
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Appendix E: - software-visib le chang es from the B ONITO ASIC
Most of these changes are backward compatible.

SDRAM Configuration
You can now set SDRAM options (eg the ‘‘cache latency’’ which the ASIC always set to ‘‘2’’. It’s mostly
done by changes in sdcfg (see Table 5.6 on page 30), but one of the register bits is located in the power-
on-settable bonponcfg register.

The changes are:

• The field in sdcfg which used to be called ‘‘dramreset’’ is now sdcfg.drammodeset . The mode-set
command will be issued at the next convenient SDRAM refresh time.

• Adding a flag sdcfg.drammodeset_done . so the CPU can wait for the SDRAM mode-set command to
finish. Refresh time might not come around for 30á s or so.

• adding a bonponcfg.burstorder field to indicate that the CPU requires cache bursts to be provided
as sequential with wrap-around, not in sub-block order. The SDRAMs are capable of supporting
either.

This flag affects the order ROM burst data is provided, too†.

• adding a sdcfg.dramburstlen field to tell the SDRAMs how long the bursts are; when wor king in
sequential order the SDRAM has to know when to wrap-around.

• a new sdcfg.dramrfhmult field controls the refresh rate. New bigger SDRAMs need more frequent
refreshes.

CPU cloc k rate independence
ROM/IO cycle times and DRAM refresh intervals are now scaled according to the CPU clock rate, so they
don’t get too short for fast CPUs or too slow for slower ones.

To make this wor k you have to program iodevcfg.cpuclockperiod to the CPU clock cycle time (so
83MHz = 12, 100MHz = 10, 125MHz = 8).

If you don’t program it it will power up to zero, which is treated as a special case - I/O bus cycle times will
then be ver y slow, and DRAM refreshes ver y frequent.

See Table 5.4 on 27.

Timer
There’s a new timer controlled by register ’timercfg’ whose main intended use is to accept a fixed-rate
clock input and allow you to figure out how fast the CPU timer is running. The clock can be the PCI clock
or a special clock fed in through GPIO8. See See Table 5.15 on 47.

† I’m not sure why this bit is in bonponcfg. That’s usually for things which must be set
before the CPU can boot, but on the face of it it’s only required once the CPU is running
cached, so could have been s/w set.
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