
Godson-2E software manual

Contents
1 Godson-2E Micro Architecture...1

1.1 Godson Series Processors ...1

1.2 Godson-2E Micro Architecture Overview ..1

1.3 Fetching and Decoding ...4

1.4 Register Renaming ..5

1.5 Issuing and Reading operands...6

1.6 Execution and Functional Units ..8

1.7 Commit and Reorder Queue..9

1.8 Branch canceling and Branch Queue ..10

1.9 Memory Subsystem...11

2 Instruction Set Overview ..15

3 Memory Management...21

3.1 Translation Lookaside Buffer..21

3.1.1 Joint TLB...21

3.1.2 Instruction TLB ...22

3.1.3 Hits and Misses ...22

3.1.4 Multiple Matches...23

3.2 Processor modes..23

3.2.1 Processor Operating Modes...23

3.2.2 Addressing mode ...24

3.2.3 Instruction set mode ..24

3.2.4 Endian mode..24

3.2.5 Address Spaces..24

3.2.6 Virtual Address Space..24

3.2.7 Physical Address Space...24

3.2.8 Virtual-to-Physical Address Translation ...24

3.2.9 User Address Space...26

3.2.10 Supervisor Space ...27

3.2.11 Kernel Space..29

3.3 System Control Coprocessor...31

3.3.1 Format of a TLB Entry ..31

3.3.2 CP0 Registers ..33

3.3.3 Virtual-to-Physical Address Translation Process......................................33

3.3.4 TLB Exceptions...34

3.3.5 TLB Instructions..34

3.3.6 Code examples...35

4 Cache Organization and Operation...37

 I

Godson-2E software manual

4.1 Cache Overview..37

4.1.1 Non-Blocking Caches..37

4.1.2 Replacement Algorithm...38

4.1.3 Cache Attributes ..38

4.2 Primary Instruction Cache...39

4.2.1 Instruction Cache Organization...39

4.2.2 Accessing Instruction Cache..40

4.3 Primary Data Cache ..40

4.3.1 Data Cache Organization...41

4.3.2 Accessing the Data Cache ...42

4.3.3 Processing Data Cache Miss ...42

4.4 Secondary Cache...43

4.4.1 Secondary Cache Organization ...43

4.4.2 Accessing the Secondary Cache ..43

4.5 Cache Coherency ..44

4.5.1 Cache Coherency Attributes ..44

4.5.2 Uncached, Blocking (Coherency Code 2) ...45

4.5.3 Writeback (Coherency code 3) ..46

4.5.4 Uncached Accelerated (Coherency Code 7)..46

4.6 Cache Maintenance ...46

5 CP0..49

5.1 Index Register (0)..50

5.2 Random Register (1) ...51

5.3 EntryLo0 (2), and EntryLo1 (3) Registers ..51

5.4 Context (4) ..53

5.5 PageMask Register(5) ...54

5.6 Wired Register (6)...55

5.7 BadVAddr Register (8)..55

5.8 Count and Compare Registers(9 and 11) ...56

5.9 EntryHi Register (10) ..57

5.10 Status Register (12) ...57

5.11 Cause Register(13) ..60

5.12 Exception Program Counter (14) ..61

5.13 Processor Revision Identifier (PRID) Register ...62

5.14 Config Register (16)..63

5.15 Load Linked Address (LLAddr) Register (17)..64

5.16 Watch Register ..64

5.17 Xcontext Register(20) ...64

 II

Godson-2E software manual

5.18 Diagnostic Register(22) ..65

5.19 Performance Counter Registers (24,25)..66

5.20 TagLo (28) and TagHi (29) Registers..68

5.21 ErrorEPC Register(30) ..69

5.22 CP0 Instructions ..69

6 CPU Exceptions ..71

6.1 Causing and Returning from an Exceptions..71

6.2 Exception Vector Locations ..71

6.3 TLB Refill Vector Selection..72

6.4 Priority of Exceptions ...72

6.5 Cold Reset Exception..73

6.6 Soft Reset Exception ...74

6.7 NMI Exception..76

6.8 Address Error Exception ...77

6.9 TLB Exceptions ..77

6.10 TLB Refill Exceptions ..78

6.11 TLB Invalid Exception..79

6.12 TLB Modified Exception ..80

6.13 Bus Error Exception..81

6.14 Integer Overflow Exception..82

6.15 Trap Exception ..82

6.16 System Call Exception ..83

6.17 Breakpoint Exception..84

6.18 Reserved Instruction Exception ..85

6.19 Coprocessor Unusable Exception ...85

6.20 Floating-Point Exception ..86

6.21 Watch Exception ...87

6.22 Interrupt Exception..88

7 Floating-Point Unit ...91

7.1 Overview ...91

7.2 FPU Programming Model ...92

7.2.1 Floating-Point Registers ..92

7.2.2 Floating-Point Control Registers...93

7.3 FPU Instruction Set Overview ..96

7.4 FPU Formats ...99

7.4.1 Floating-Point Format ...99

7.4.2 Multimedia Format..100

7.5 FPU Instruction Pipeline Overview ..101

 III

Godson-2E software manual

7.6 FPU Exceptions...102

8 Privileged Instruction..109

8.1 CP0 Move Instructions..109

8.1.1 DMFC0 Instruction ...109

8.1.2 DMTC0 Instruction ...110

8.1.3 MFC0 Instruction ..110

8.1.4 MTC0 Instruction .. 111

8.1.5 Usable CP0 Move Instruction in User Mode .. 111

8.2 TLB Access Instructions ... 111

8.2.1 TLBP Instruction ... 111

8.2.2 TLBR Instruction...112

8.2.3 TLBWI Instruction ..113

8.2.4 TLBWR Instruction...113

8.3 ERET Instruction...114

8.4 CACHE Instruction...115

8.4.1 Index Invalidate (I) ..116

8.4.2 Index WriteBack Invalidate (D) ..116

8.4.3 Index WriteBack Invalidate (S) ...116

8.4.4 Index Load Tag (D) ...117

8.4.5 Index Load Tag (S) ..117

8.4.6 Index Store Tag (D) ...117

8.4.7 Index Store Tag (S)..118

8.4.8 Hit Invalidate (D) ..118

8.4.9 Hit Invalidate (S) ...118

8.4.10 Hit WriteBack Invalidate (D) ..119

8.4.11 Hit WriteBack Invalidate (S) ...119

8.4.12 Index Load Data (D)..119

8.4.13 Index Load Data (S) ..120

8.4.14 Index Store Data (D) ...120

8.4.15 Index Store Data (S) ..120

9 DDR SDRAM Control Interface ..121

9.1 DDR SDRAM Controller Functional Overview...121

9.2 DDR SDRAM Read Protocol ...122

9.3 DDR SDRAM Write Protocol...122

9.4 DDR SDRAM Configuration..123

9.5 DDR SDRAM Sampling Mode Configuration ...125

10 Performance Tuning..127

10.1 User instruction Latency and Repeat Rate ..127

 IV

Godson-2E software manual

10.2 Instruction extensions..128

10.3 Instruction Stream ...129

10.3.1 Instruction alignment...129

10.3.2 Branch handling ..129

10.3.3 Improving Instruction Stream density ...131

10.3.4 Instruction scheduling ...131

10.4 Memory accesses ..132

10.5 Other Tips..132

AppendixA Godson new integer instructions ..133

1. MULT.G — Multiply Word (Godson2) ...133

2. MULTU.G — Multiply Unsigned Word (Godson2)............................134

3. DMULT.G — DoubleWord Multiply (Godson2)135

4. DMULTU.G—Doubleword Multiply Unsigned (Godson2)136

5. DIV.G —Divide Word (Godson2) ...137

6. DIVU.G — Divide Unsigned Word (Godson2)138

7. DDIV.G — Doubleword Divide (Godson2)...139

8. DDIVU.G — Doubleword Divide Unsigned(Godson2)140

9. MOD.G —MOD Word (Godson2)...141

10. MODU.G — Mod Unsigned Word (Godson2)142

11. DMOD.G — Doubleword Mod (Godson2)..143

12. DMODU.G — Doubleword Mod Unsigned(Godson2)........................144

AppendixB Godson new float-point instructions ..145

1. MADD.fmt— Floating-Point Multiply Add...145

2. MSUB.fmt— Floating-Point Multiply Subtract146

3. NMADD.fmt— Floating-Point Negative Multiply Add147

4. NMSUB.fmt— Floating-Point Negative Multiply Subtract148

 V

Godson-2E software manual

Figure 1-1 Microarchitecture of Godson-2E..13

Figure 2-1 CPU Instruction Formats..15

Figure 3-1 Overview of a Virtual-to-Physical Address Translation............................25

Figure 3-2 64-bit Mode Virtual Address Translation ..26

Figure 3-3 User Virtual Address Space as viewed from User Mode27

Figure 3-4 User and Supervisor Address Spaces; viewed from Supervisor mode28

Figure 3-5 User, Supervisor, and Kernel Address Space viewed from Kernel mode .29

Figure 3-6 Format of a TLB Entry...31

Figure 3-7 EntryHi Register Format ..32

Figure 3-8 PageMask Register Format ..32

Figure 3-9 EntryLo0 and EntryLo1 Register Formats...32

Figure 3-10 TLB Address Translation...34

Figure 4-1 Instruction Cache Organization..39

Figure 4-2 Instruction Cache Line Format...39

Figure 4-3 Accessing the Instruction Cache ..40

Figure 4-4 Data Cache Organization ...41

Figure 4-5 Data Cache Line Format ..41

Figure 4-6 Accessing the Data Cache..42

Figure 4-7 Accessing the Secondary Cache...44

Figure 5-1 Index Register ..50

Figure 5-2 Random Register..51

Figure 5-3 Fields of the EntryLo0 and EntryLo1 Registers ..52

Figure 5-4 Context Register Format ..53

Figure 5-5 PageMask Register...54

Figure 5-6 Wired Register Boundary...55

Figure 5-7 Wired Register ...55

Figure 5-8 BadVAddr Register Format ...56

Figure 5-9 Count and Compare Registers..56

Figure 5-10 EntryHi Register...57

Figure 5-11 Status Register..58

Figure 5-12 Cause Register Format ...60

Figure 5-13 EPC Register Format..62

Figure 5-14 Processor Revision Identifier Register Format ..62

Figure 5-15 Config Register Format..63

 VII

Godson-2E software manual

Figure 5-16 Watch Register Formats ...64

Figure 5-17 XContext Register Format ...65

Figure 5-18 Diagnostic Register ..66

Figure 5-19 Performance Counter Registers Format ...66

Figure 5-20 TagLo and TagHi Register (P-cache) Formats ..69

Figure 5-21 ErrorEPC Register Format ...69

Figure 7-1 The organization of the functional units in Godson-2E’s architecture92

Figure 7-2 FP Control/Status Register Bit Assignments ...94

Figure 7-3 Floating-Point Format ..99

Figure 7-4 packed unsigned half-word format...101

Figure 7-5 packed signed half-word format...101

Figure 9-1 DDR SDRAM read protocol..122

Figure 9-2 DDR SDRAM write protocol...123

Figure 9-3 DDR SDRAM sampling mode when memory to core ratio is 1:10125

 VIII

Godson-2E software manual

Table 2-1 CPU Instruction Set: Load and Store Instructions.......................................17

Table 2-2 CPU Instruction Set: Arithmetic Instructions (ALU Immediate)17

Table 2-3 CPU Instruction Set: Arithmetic (3-Operand, R-Type)...............................18

Table 2-4 CPU Instruction Set: Multiply and Divide Instructions18

Table 2-5 CPU Instruction Set: Jump and Branch Instructions19

Table 2-6 CPU Instruction Set: Shift Instructions ...19

Table 2-7 CPU Instruction Set: Special Instructions ...20

Table 2-8 CPU Instruction Set: Exception Instructions...20

Table 2-9 CP0 Instructions...20

Table 3-1 Processor operating modes ..23

Table 3-2 TLB Page Coherency (C) Bit Values ..33

Table 3-3 Memory Management-Related CP0 Registers ..33

Table 3-4 TLB Instructions ..35

Table 4-1 Cache attributes ...38

Table 4-2 Godson-2E Cache Coherency Attribute ..45

Table 5-1 Coprocessor 0 Registers ..49

Table 5-2 Fields in the Index Register ...50

Table 5-3 Fields in the Random Register...51

Table 5-4 Description of EntryLo Registers’ Fields ..52

Table 5-5 Context Register Fields..53

Table 5-6 Mask Field Values for Page Sizes ...54

Table 5-7 Fields in the Wired Register Field ...55

Table 5-8 EntryHi Register Fields ...57

Table 5-9 Fields in the Status Register...58

Table 5-10 Fields in the Cause Register ..60

Table 5-11 Cause Register ExcCode Field...61

Table 5-12 PRId Register Fields ..62

Table 5-13 Fields in the Config Register ...63

Table 5-14 WatchHi and WatchLo Register Fields ..64

Table 5-15 Fields in the XContext Register...65

Table 5-16 Diagnostic Register Fields ...66

Table 5-17 Control Fields Format..67

Table 5-18 Count Enable Bit Definition ..67

Table 5-19 Counter 0 Events..67

 IX

Godson-2E software manual

Table 5-20 Counter 1 Events..68

Table 5-21 Cache Tag Register Fields ...69

Table 5-22 CP0 Instructions...69

Table 6-1 Exception Vector Addresses..71

Table 6-2 Exception Priority Order..73

Table 7-1 FCR0 Fields ...93

Table 7-2 Control/Status Register Fields ...94

Table 7-3 Rounding Mode Bit Decoding...96

Table 7-4 floating-point instructions in Godson-2E FPU ..97

Table 7-5 Paired-single (PS) instructions in Godson-2E FPU.....................................98

Table 7-6 Equations for Calculating Values in Single and Double-Precision
Floating-Point Format..100

Table 7-7 Floating-Point Format Parameter Values ..100

Table 7-8 Minimum and Maximum Floating-Point Values.......................................100

Table 7-9 Default FPU Exception Actions ..104

Table 8-1 Godson-2E Privileged Instructions..109

Table 8-2 CP0 Move Instructions ..109

Table 8-3 CACHE Instruction Op Field Encoding ..115

Table 9-1 DDR SDRAM chip supported ...121

Table 9-2 DDR SDRAM configuration register ..123

Table 9-3 Sample point configuration register...126

Table 10-1 Latencies and Repeat Rates for User Instructions127

 X

Godson-2E software manual

1 Godson-2E Micro Architecture

1.1 Godson Series Processors

The Godson processors include three series. The Godson-1 series of processors

and IPs mainly focus 32-bit embedded applications, the Godson-2 series of processors

mainly focus on 64-bit high-end embedded and desktop applications, while the

multiple-issue Godson-3 processors focus on server and high performance computing

applications.

Multiple levels of parallelism can be explored to improve performance of a

processor. In instruction level, out-of-order execution and superscalar technique allow

the processor to schedule the execution of instructions in a maximum throughput. In

data level, vector instructions that are implemented with SIMD technique enable the

processor to generate multiple results with one instruction. In thread level,

multithreading enables multiple threads to run simultaneously on a single or multiple

processors.

The Godson-1 processor implements single-issue out-of-order execution pipeline,

with static branch prediction and blocking cache; the Godson-2 processor implements

superscalar out-of-order execution pipeline, with dynamic branch prediction and

non-blocking cache, it also implements some fix-point SIMD instructions by reusing

the floating-point datapaths; and the Godson-3 processor will further implement

multiple core technology.

1.2 Godson-2E Micro Architecture Overview

Godson-2E is an enhanced version of the previous Godson-2[1] which is a

four-issue general-purpose RISC microprocessor that implements the 64-bit MIPS

instruction set. Its main architectural improvement over the previous Godson-2

includes increasing the number of entries of reorder buffer (from 32 to 64) and

memory queue (from 16 to 24) to reduce pipeline stall, upgrading two floating point

units (one for addition/subtraction and one for multiplication) to two MAC (multiply

and accumulation) floating point units, enhancing the memory performance with a

on-chip 512KB L2 cache and an on-chip memory controller, and some other

improvements such as speculative forwarding, prefetching and store fill buffer

 1

Godson-2E software manual

optimization[] to reduce memory access latency and memory bandwidth requirements.

Besides, Godson-2E is physically implemented and fabricated with the STmicro

90nm technology to reach the main frequency over 1GHz.

The four-way superscalar of Godson-2E raises extremely high requirements for

inter-instruction dependency resolving and instruction/data providing. Godson-2E

employs out-of-order execution and aggressive memory hierarchy design to improve

pipeline efficiency.

Out-of-order execution is a combination of the register renaming, dynamic

scheduling, and branch prediction techniques, which reduces pipeline stalls caused by

WAR (write after read) and WAW (write after write) hazards, RAW (read after write)

hazards, and control hazards respectively. Godson-2E has a 64-entry physical register

file for fix- and floating-point register renaming respectively. A 16-entry fix-point

reservation station and a 16-entry floating-point reservation station is responsible for

out-of-order instruction issuing, while a 64-entry ROQ (reorder queue) ensures that

out-of-order executed instructions are committed in the program order. For precise

branch prediction, a 16-entry BTB (branch target buffer), a 4K-entry BHT (branch

history table), a 9-bit GHR (global history register), and a 4-entry RAS (return

address stack) is used to record branch history information.

The memory hierarchy of Godson-2E processor also provides potential for high

performance. Godson-2E has a 64KB instruction cache, a 64KB data cache, and a

512KB level-two cache, all four-way set associative. The on-chip 333MHz DDR

memory controller allows Godson-2E to achieve high memory bandwidth with low

latency. The fully associative TLB of Godson-2E has 64 entries each maps an odd and

an even page. A 24-entry memory access queue that contains a content-addressable

memory for dynamic memory disambiguation allows Godson-2E to implement

out-of-order memory access, non-blocking cache, load speculation, and store

forwarding.

Godson-2E has two fix-point functional units, two floating-point functional units,

and one memory access unit. The floating-point units can also execute 32- or 64-bit

fix-point instructions and 8- or 16-bit SIMD fix-point instructions through extension

of the fmt field of the floating-point instructions.

The basic pipeline stages of Godson-2E include instruction fetch, pre-decode,

decode, register rename, dispatch, issue, register read, execution, and commit. Figure

1-1shows major sections of Godson-2E.

 2

Godson-2E software manual

In fetch stage, the instruction cache and instruction TLB (Translation Lookahead

Buffer) is read according to the content of PC (program counter). Four new

instructions are sent to IR (instruction register) if the instruction fetch is TLB hit and

cache hit.

In pre-decode stage, branch instructions are found and their branch directions are

dynamically predicted.

In decode stage, the four instructions in IR are decoded into internal format of

Godson-2E and are sent to the register renaming module.

In register rename stage, a new physical register is allocated for each logical

destination register, and the logical source register is renamed to the latest physical

register allocated for the same logical register. Inter-instruction dependencies among

four instructions mapped in the same cycle are also checked. The renamed

instructions are latched for being sent to reservation stations and queues in next cycle.

In dispatch stage, renamed instructions are dispatched to the fix- or floating-point

reservation station for being executed, and are sent to the reorder queue for in-order

graduation. Associated instructions are also sent to branch queue and memory queue.

Each empty entry of reservation stations and queues selects among four dispatched

instructions in this cycle.

In issue stage, one instruction with all required operands ready is selected from

the fix- or floating-point reservation station for each functional unit. When there are

multiple instructions ready for the same functional unit, the oldest one is selected.

Instructions with unready source operands snoop result and forward buses for their

operands.

In register read stage, the issued instruction reads its source operands from the

physical register file and is sent to the associated functional units. It may also get the

data directly from one of the result buses if its source register number matches the

destination register number of the result bus.

In execution stage, instructions are executed according to its type and execution

results are written back to the register file. Result buses are also sent to the reservation

station for snooping and to the register mapping table to notify that the associated

physical register is ready.

In commit stage, up to four instructions can be committed in program order per

cycle. Committed instructions are sent to the register mapping module to confirm the

mapping of its destination register and release the old one. They are also sent to the

 3

Godson-2E software manual

memory access queue to allow committed store instructions to write cache or

memory.

The Godson-2E processor has been physically implemented based on the ASIC

flow with some manual placement and a number of crafted cells and macros. To

reduce clock cycle time, some data path modules or modules with replicated structure

were manually mapped to the cell library from a structural Verilog model, and were

manually placed in a bit-sliced way. The crafted cells and macros include some basic

cells such as flip-flops, NANDs, NORs, AOIs, MUXs, buffers and inverters with

different sizes; some double height cells such as 4-, 6-, or 8-bit comparator, 4-bit

flip-flops, and full adder; a 64*64 register file with 4 write ports and 4 read ports; and

a special ram macro for TLB. The useful clock skew technique is used for critical path

pipeline stage to borrow time from adjacent pipeline stages.

Godson-2E was fabricated with STmicro’s 7-metal 90nm CMOS process. The

chip includes 47 million transistors, and the area of the chip is 6,800 micrometers by

5,200 micrometers. The highest frequency of the chip is 1.0GHz, in which the power

consumption is ranged from 5.0-7.0 watt depending on the applications.

The 1GHz Godson-2E has the peak performance of 4GFLOPS and 8GFLOPS

for double- and single-precision floating point calculation respectively. The SPEC

CPU2000 rate of Godson-2E is higher than 500. The prototype Linux-PC based on the

Godson-2E processor can smoothly run most of desktop applications such as Debian

windows system, Mozilla browser, OpenOffice, and mplayer media player, etc.

1.3 Fetching and Decoding

The Godson-2E pipeline begins with the fetch stage, in which four instructions

are fetched in parallel at any word alignment within an eight-word instruction cache

line. In each cycle, the processor compares tags read from the cache to physical

addresses translated from ITLB (instruction TLB) to select the data from the correct

way. On cache misses a refill request will be raised.

The sixteen-entry ITLB is a subset of the main TLB. It is different from the main

TLB that each ITLB entry maps only one page. When the ITLB misses, the processor

creates an internal Godson-2E instruction which looks for the entry in the main TLB

and fills the ITLB. Normal TLB exception will rise if the missing page is not in the

main TLB too.

In the following pre-decode and decode stages, the four instructions in IR are

 4

Godson-2E software manual

decoded into internal instruction format of Godson-2E and are sent to the register

renaming module. Only one branch instruction can be decoded in one cycle. BHT is

used for predicting direction of conditional branch, while BTB and RAS are used for

predicting target pc.

The BHT contains a 9-bit global history register (GHR) and 2K-entry pattern

history table (PHT). Each PHT entry has a 2-bit saturating up/down counter. The

counter is increased by one if the prediction is right, and is decreased by one

otherwise. The high order bit of the counter is used for branch prediction.

The 16-entry BTB predicts the target PC of the jump register instruction. Each

BTB entry contains the PC and target PC of the jump register instruction. Besides, a

2-bit saturating up/down counter is associated with each BTB entry. On replacement,

entries with counter values 0 or 1 will be replaced prior to others.

MIPS instruction set does not provide call or return instruction, it normally uses

branch/jump and link instruction and the “jump register 31” instruction instead.

Godson-2E implements a four-entry return address stack. The decoding of a branch

and link instruction causes its PC+8 to be pushed to the RAS, while the decoding of a

“jump register 31” instruction causes the target PC to be popped from the RAS. Each

branch instruction saves the top-of-stack pointer of the RAS to repair the top-of-stack

pointer of the RAS after branch misprediction.

1.4 Register Renaming

Godson-2E implements two 64-entry physical register file for fix-point and

floating-point register rename. Correspondingly, two 64-entry physical

register-mapping tables (PRMT) are maintained to build the relationship between

physical and architectural registers. Each PRMT entry has the following fields. (1)

State: each physical register is in one of four states, MAP_EMPTY, MAP_MAPPED,

MAP_WTBK, and MAP_COMMIT. (2) Name: the identifier of the associated

architectural register to which this physical register is allocated. (3) Valid: this bit is

used to mark the latest allocation of a given architectural register if more than one

physical registers are allocated to it. Besides, The PRMT also includes fields used to

restore the register mapping on mispredicted branch canceling.

In register rename stage, the PRMT is associatively looked up for the two source

register src1, src2 and the destination register dest of each instruction to find the

associated latest mapped physical register psrc1, psrc2, and odest. Besides, a free

 5

Godson-2E software manual

physical register pdest whose state is MAP_EMPTY is allocated to the destination

register dest, and the state of the newly allocated physical register is set to

MAP_MAPPED. The valid bit of the pdest entry is set to “1” and the valid bit of the

odest entry is set to “0” to reflecting that pdest becomes the latest allocated physical

register for the dest architectural register.

Since four instructions are mapped concurrently, inter-instruction dependencies

among instructions mapped at the same cycle should be checked. If the source register

src1 of an instruction is identical to the destination register dest of a previous

instruction mapped at the same cycle, the physical register corresponds to src1 should

be pdest of this previous instruction, rather than the psrc1 looked up from the PRMT.

This is also true for psrc2 and odest.

Since register renaming, the processor determines dependencies simply by

comparing physical register name. These physical register names psrc1, psrc2, and

pdest are sent to the reservation station, while the odest field is kept in the reorder

queue. After an instruction is executed, its associated PRMT entry is set to

MAP_WTBK state so that following instructions that read this physical register know

that the value is ready in the register file. When an instruction is committed, it sets the

pdest entry of PRMT to MAP_COMMIT state and the odest entry to MAP_EMPTY

state, which means its destination register contents is regarded as the processor state

and the previous contents for this destination register is discarded.

It can be seen from the above register rename process that there may be multiple

physical registers allocated to the same architectural register because a logical register

may have a sequence of values as it is written by instructions in the pipeline. Physical

registers assigned to the same logical register hold both committed values and

temporary results as instructions flow through the pipeline. A physical register is

written exactly once for each assignment of it.

1.5 Issuing and Reading operands

Register renamed instructions are latched and then sent to the reservation station

to be scheduled for execution. Godson-2E has two independent group reservation

stations. Fix-point and memory instructions are sent to the fix-point reservation

station. Floating-point instructions are sent to the floating-point reservation station.

Each reservation station has 16 entries and can accept as many as four instructions per

cycle.

 6

Godson-2E software manual

In the register rename stage, the PRMT is looked up to see whether the

associated operand has been generated and written back to the physical register. If the

PRMT indicates that operand is not ready, the reservation station snoops the result

buses and forward buses for that operand. The associated ready bit is set to ready if

the destination register of one of the snooped buses matches the source register of

incoming instructions or instructions in the reservation station.

Result and forward buses stem from the five functional units. The result buses

send out the execution results of functional units, while the forward buses forecast

which result will be sent out in next cycle. By snooping the forward buses, issued

instructions can get operands directly from the result buses before they are written

back to the register file. Hence, there is no delay slot for one-cycle instructions such

as fix-point add and subtract, shift, and logic instructions.

The reservation stations can issue as many as five operand-ready instructions to

the five functional units. If there are multiple operand-ready instructions for the same

functional unit, the oldest one is issued. To record the age of each instruction, an age

field is added to each entry of the reservation station. It is set to a low value when an

instruction enters the reservation station, and is increased by one each time an

instruction of the same functional unit enters the reservation station.

Issued instructions read their operands from the physical register file. Godson-2E

has one fix-point physical register file and one floating-point physical register file,

both with the size of 64*64. Issued instructions read operands from the register file

before they are sent to functional units for execution.

The fix-point register file has three write ports and seven read ports. The ALU1

fix-point unit uses one write port and three read ports (for move conditional

instructions), while the ALU2 and the memory unit uses one write port and two read

ports each. The floating-point register file has three write ports and seven read ports.

The FALU1 and FALU2 floating-point unit uses one write port and three read ports

(for MAC instruction) each. Besides, floating-point load instructions use one write

port and floating-point store instructions use one read port of the floating-point

register file.

Execution results are written back directly to the register file, and can also be

bypassed to following instructions which is RAW dependent on it.

 7

Godson-2E software manual

1.6 Execution and Functional Units

Instructions are sent to functional or memory units for execution after reading

operations. Godson-2E has two fix-point functional units ALU1 and ALU2, and two

floating-point functional units FALU1 and FALU2.

The ALU1 unit executes fix-point addition, subtraction, logical, shift,

comparison, trap, conditional move, and branch instructions. All ALU1 instructions

are executed and written back in one cycle and have no delay slot with the help of

forwarding logic.

The ALU2 unit executes fix-point addition, subtraction, logical, shift,

comparison, multiplication, and division instructions. Fix-point multiplication is fully

pipelined and has a latency of four cycles. Fix-point division uses the SRT algorithm

and is not fully pipelined, the latency of fix-point division ranges from 4 to 37 cycles

depending on the operands. All other ALU2 instructions can be executed and written

back in one cycle and have no delay slot with the forwarding logic.

The fully pipelined FALU1 unit executes floating-point addition, subtraction,

multiplication, multiplication and accumulation, absolute, negation, conversion,

comparison, and branch instructions. The latency of floating-point absolute, negation,

comparison and branch are two cycles. The latency of conversion instructions is four

cycles. The latency of floating-point addition, subtraction, multiplication,

multiplication and accumulation are six cycles.

The FALU2 executes floating-point addition, subtraction, multiplication,

multiplication and accumulation, division, and square root instructions. The latency of

fully pipelined floating-point addition, subtraction, multiplication, multiplication and

accumulation are six cycles. The division and square root use the SRT algorithm and

are not fully pipelined. The latency of single/double precision floating-point division

ranges from 4 to 10/17 cycles, the latency of floating-point division ranges from 4 to

16/31 cycles, depending on the operands.

 The floating-point multiply-add-fused (FMAF) unit has been a key feature in

many commercial processors, which executes C±(A×B) as a single instruction, with

no intermediate rounding. The standard operations floating-point add and

floating-point multiply can be performed using this unit by making B=1 for addition

and C=0 for multiplication. In godson-2E processors, both FALU1 and FALU2

floating point unit have a FMAF unit, which executes double or single precision

floating-point multiply-add, multiply and addition instructions. It also supports the

 8

Godson-2E software manual

paired-single instructions which execute two single floating-point multiplication,

addition, multiply-add operation concurrently in one instruction. The FMAF is

partitioned in five pipeline stages. The first stage mainly operates the bit inversion and

alignment of the significant of C in parallel with the booth encoding of multiply. The

second stage uses two 14-2 CSA tree to compress the multiply partial products and the

C operator mantissa at the same time. As a consequence, the delay of stage-two and

stage-three are balanced in our proposed FMAF pipelined structure, and also we can

easily support the paired-single instructions by using two separate CSA tree to operate

two single precision operations with little change. To make the combination of

addition and rounding possible, we anticipate the normalization (LZA) in stage-three

and detect the sign of addition results. The fourth stage encodes the LZA outcome to

normalize the carry-save product. In stage five a 51-bits dual adder is used to compute

the most-significant bits, and the remaining least-significant bits are input to the logic

for the calculation of the carry into the most-significant part and for the calculation of

the rounding and sticky bits. Finally the carry and the sticky bits are used to select the

two outputs of dual adder to be the result of multiply-add operation.

Besides executing floating-point instructions, the floating-point functional units

can also execute 32- or 64-bit fix-point instructions (arithmetic, logic, shift, compare,

and branch) and 8- or 16-bit SIMD fix-point instruction through extension of the fmt

field of the floating-point instructions.

1.7 Commit and Reorder Queue

The reorder queue holds all instructions after register mapping and before they

are committed. After instructions are executed and written back, the reorder queue

commits them in the program order. The reorder queue can hold as many as 64

instructions concurrently.

Reorder queue can accept as many as four mapped instructions per cycle. Newly

entered instructions are set to ROQ_MAPPED state. After the instruction is written

back, its state in reorder queue is set to ROQ_WTBK for ordinary instructions and

ROQ_BRWTBK for branch instructions. The state of branch instructions are set to

ROQ_WTBK after the branch result has been sent to other parts of the processor

through the branch bus to justify branch prediction tables and to cancel instructions

following mispredicted branches. ROQ_WTBK instructions can be committed if they

reach the head of the reorder queue.

 9

Godson-2E software manual

Reorder queue graduates as many as four ROQ_WTBK instructions in the queue

head per cycle. When an instruction graduates, its pdest and odest fields are sent to

the register mapping module to confirm the mapping of pdest entry as the processor

state and to free the mapping of odest entry, it also informs the memory queue that

corresponding store instructions can start to modify memory.

For precise exception handling, exceptions are not processed as soon as they

occur. They are recorded in the reorder queue instead. When the exception instruction

reaches the head of the reorder queue, the exception information is sent out through

exception bus. All following instructions are cancelled, exception information is

recorded in the CP0 registers, and the PC is set to the entry point of exception handler.

1.8 Branch canceling and Branch Queue

A branch instruction enters the branch queue at the same time it is sent to the

reorder queue and the reservation station. At most one branch instruction can be

accepted by the branch queue per cycle. The branch queue can hold as many as eight

branch instructions concurrently.

The branch queue provides information necessary for execution when a branch

instruction is issued to be executed. The information includes the PC value for branch

and link instructions, and the predicted taken bit for conditional branch instructions.

After a branch instruction is executed, execution results specific to branch

instructions are written back to the branch queue. The results include the target PC for

JR and JALR instructions, the branch direction for conditional branch instructions,

and a bit indicating whether the branch prediction is error. The branch instruction

execution result should be feedback to the instruction fetch part before it can be

committed. Besides correcting mispredicted branches, the branch execution result is

also used to justify the BHT, BTB, RAS, and GHR for branch prediction.

In case of incorrect prediction, instructions that following the mispredicted

branch instruction should be cancelled. The key issue is for each instruction in the

pipeline to decide whether it is before or after the mispredicted branch. Godson-2E

divides the continuous instruction stream into basic blocks separated by branch

instructions. Each instruction is assigned a branch queue position identifier brqid that

can be regarded as its basic block number. For branch instruction, this identifier

indicates its position in the branch queue; for ordinary instruction, this identifier

indicates its previous branch instruction position in the branch queue. In this way,

 10

Godson-2E software manual

each instruction can determine its relative position to the mispredicted branch by

comparing its brqid with the brqid of the mispredicted branch. Delay slot instructions

should be paid special attention in branch canceling.

1.9 Memory Subsystem

Memory references are issued out-of-order to the address calculation unit. The

Godson-2E memory access pipeline is split into four stages. (1) In the first stage,

address is calculated and the CAM of TLB is searched to form the index of TLB

RAM. (2) In the second stage, TLB RAM is accessed in parallel with cache RAM

access. Tag compare is also performed at this stage, but value selection according to

tag compare result is delayed to next cycle. (3) In the third stage, access value is

formed according to the tag compare result of last stage, memory access exception

bits are also form at this stage. The value is then sent to memory access queue, where

dynamic memory disambiguation and memory forwarding is performed. (4) Finally

the results are written back when ready.

The 64-entry fully associative TLB contains a CAM part that is used to do

associative search of virtual addresses and a RAM part which stores physical page

numbers and page protect bits. The CAM lookup is done in address calculation stage

to avoid the need of asynchronous RAM. To reduce hardware cost, Godson-2E uses

40-bit virtual address and 40-bit physical address instead of the rarely needed 64-bit.

The 64-KB four-way set associative primary data cache is virtually indexed and

physically tagged so that accesses can happen in parallel with TLB lookups. The

replacement policy is random, but two continuous replacement of the same block is

avoided by hardware. To reduce chip area and ease physical design, single port RAM

is used for both tag and data. Godson-2E allows simultaneous loads and write-back of

stores provided they access different banks to alleviate cache access conflict. When

cache port conflict does occur among refills, loads (stores read only the tag array) and

write-back of stores (which write cache data only), refills have the highest priority

while write-back of stores have the lowest priority.

Memory access queue is the core unit of Godson-2E memory subsystem. It can

track up to 24 in-flight memory loads or stores. Loads and stores enter the queue

out-of-order, but an in-order architectural memory model is maintained. Multiple

cache misses and hit under miss are allowed. Using a physical address CAM, the

memory access queue dynamically performs disambiguation and forwarding between

 11

Godson-2E software manual

accesses. When a load enters the queue, it checks all older stores for possible bypass

for each byte it needs. When a store enters the queue, it checks all younger loads in

the queues until another younger store to the same byte to decide whether to forward

value to them. The queue snoops cache refill and replace operations too.

The miss queue sits below the memory queue in the Godson-2E memory

hierarchy. It connects instruction cache, data cache, L2 cache, DDR memory

controller, and SysAD system bus controller. The miss queue accepts both instruction

miss requests and data miss requests, accesses L2 cache on L1 cache miss, further

accesses lower memory hierarchy through processor interface on L2 cache miss, and

deliver L2 cache or memory access results to L1 and/or L2 cache. Miss queue

implements the store fill buffer optimization which gathers L1 miss store operations

for full modified cache blocks and refill the gathered cache block directly to L1 cache

to avoid unnecessary memory access.

The 512KB L2 cache is four-way set associative. The block size of L2 cache is

32-byte which is the same as that of the L1 cache. The L2 cache accepts L2 cache

access or refill request from miss queue, and sends access results back to miss queue.

It also accepts L1 cache write back requests directly from L1 cache and sends L2

cache write back requests directly to lower level memory hierarchy. The fully

pipelined L2 cache of Godson-2E runs at the same frequency as the processor core

and has a access latency of five cycles.

The 64-bit on-chip DDR memory controller allows Godson-2E to achieve high

memory bandwidth with low latency. The 64-bit SysAD processor interface supports

up to eight split transactions and remote memory access capability.

 12

Godson-2E software manual

Figure 1-1 Microarchitecture of Godson-2E

Decoder

BTB

BHT

ITLB

ICACHE

PC

Pre-

Decoder

Fix

RS.

Register

Mapper

Reorder Queue

Floating

Point

Register

File

ALU1

ALU2

FALU1

FALU2

Float

RS

PC
+16

TAG

Compare

CP0

Queue

CACHE

TLB

refill bus

Miss Queue

ROQ BRQ

General

Register

File

commit bus

write back bus
branch bus

map bus

MEM

SCACHE

scacheres scacheref

SysAD64 DDR

DDRARBIO

srefill0,1

imemread dmemread duncache

suncache, smemread

dmemwrite

smemwrite

 13

Godson-2E software manual

2 Instruction Set Overview

Each CPU instruction consists of a single 32-bit word, aligned on a word

boundary. There are three instruction formats—immediate (I-type), jump (J-type), and

register (R-type)—as shown in Figure 2-1. The use of a small number of instruction

formats simplifies instruction decoding, allowing the compiler to synthesize more

complicated (and less frequently used) operations and addressing modes from these

three formats as needed.

Figure 2-1 CPU Instruction Formats

The instruction set can be further divided into the following groupings:

• Load and Store instructions move data between memory and general registers.

 15

Godson-2E software manual

They are all immediate (I-type) instructions, since the only addressing mode

supported is base register plus 16-bit, signed immediate offset.

• Computational instructions perform arithmetic, logical, shift, multiply, and

divide operations on values in registers. They include register (R-type, in which both

the operands and the result are stored in registers) and immediate (I-type, in which

one operand is a 16-bit immediate value) formats. Godson-2E also implements

self-defined multiply , divide and modulus operations which have a single general

purpose destination register instead of the paired hi and lo registers.

• Jump and Branch instructions change the control flow of a program. Jumps

are always made to a paged, absolute address formed by combining a 26-bit target

address with the highorder bits of the Program Counter (J-type format) or register

address (R-type format). Branches have 16-bit offsets relative to the program counter

(I-type). Jump And Link instructions save their return address in register 31.

• Coprocessor instructions perform operations in the coprocessors. Coprocessor

load and store instructions are I-type. Godson-2E has two coprocessors: coprocessor 0

(system coprocessor) and coprocessor 1 (float pointer coprocessor).

Coprocessor 0 instructions perform operations on CP0 registers to control the

memory management and exception handling facilities of the processor. These are

listed in Table 2-9.

Coprocessor 1 instructions include float pointer instructions, multi-media

extended instructions and Godson-extended fix pointer computational instructions.

They all operate on float pointer registers. Chapter 8 provides summary of these

instructions and Appendix B-D give complete description of each instruction.

• Special instructions perform system calls and breakpoint operations. These

instructions are always R-type.

• Exception instructions cause a branch to the general exception handling vector

based upon the result of a comparison. These instructions occur in both R-type (both

the operands and the result are registers) and I-type (one operand is a 16-bit

immediate value) formats.

Tables 2-1 through 2-9 list all prior instructions except coprocessor 1

instructions.

 16

Godson-2E software manual

Table 2-1 CPU Instruction Set: Load and Store Instructions
OpCode Description MIPS ISA
LB Load Byte I
LBU Load Byte Unsigned I
LH Load Halfword I
LHU Load Halfword Unsigned I
LW Load Word I
LWU Load Word Unsigned I
LWL Load Word Left I
LWR Load Word Right I
LD Load Doubleword III
LDL Load Doubleword Left III
LDR Load Doubleword Right III
LL Load Linked I
LLD Load Linked Double III
SB Store Byte I
SH Store Halfword I
SW Store Word I
SWL Store Word Left I
SWR Store Word Right I
SD Store Doubleword III
SDL Store Doubleword Left III
SDR Store Doubleword Right III
SC Store Conditional I
SCD Store Conditional Double III
SYNC Sync I

Table 2-2 CPU Instruction Set: Arithmetic Instructions (ALU Immediate)
OpCode Description MIPS ISA
ADDI Add Immediate I
DADDI Doubleword Add Immediate III
ADDIU Add Immediate Unsigned I
DADDIU Doubleword Add Immediate Unsigned III
SLTI Set on Less Than Immediate I
SLTIU Set on Less Than Immediate Unsigned I
ANDI And Immediate I
ORI Or Immedidate I
XORI Exclusive Or Immediate I
LUI Load Upper Immediate I

 17

Godson-2E software manual

Table 2-3 CPU Instruction Set: Arithmetic (3-Operand, R-Type)
OpCode Description MIPS ISA
ADD Add I
DADD Doubleword Add III
ADDU Add Unsigned I
DADDU Doubleword Add Unsigned III
SUB Subtract I
DSUB Doubleword Subtract III
SUBU Subtract Unsigned I
DSUBU Doubleword Subtract Unsigned III
SLT Set on Less Than I
SLTU Set on Less Than Unsigned I
AND And I
OR Or I
XOR Exclusive Or I
NOR Nor I

Table 2-4 CPU Instruction Set: Multiply and Divide Instructions
OpCode Description MIPS ISA
MULT Multiply I
DMULT Doubleword Multiply III
MULTU Multiply unsigned I
DMULTU Doubleword Multiply Unsigned III
DIV Divide I
DDIV Doubleword Divide III
DIVU Divide unsigned I
DDIVU Doubleword Divide Unsigned III
MFHI Move From HI I
MTHI Move To HI I
MFLO Move From LO I
MTLO Move To LO I
MULTG Godson-2E Multiply GODSON-2E
DMULTG Godson-2E Doubleword Multiply GODSON-2E
MULTUG Godson-2E Multiply unsigned GODSON-2E
DMULTUG Godson-2E Doubleword Multiply Unsigned GODSON-2E
DIVG Godson-2E Divide GODSON-2E
DDIVG Godson-2E Doubleword Divide GODSON-2E
DIVUG Godson-2E Divide unsigned GODSON-2E
DDIVUG Godson-2E Doubleword Divide Unsigned GODSON-2E
MODG Godson-2E Modulus GODSON-2E
DMODG Godson-2E Doubleword Modulus GODSON-2E
MODUG Godson-2E Modulus Unsigned GODSON-2E
DMODUG Godson-2E Doubleword Modulus Unsigned GODSON-2E

 18

Godson-2E software manual

Table 2-5 CPU Instruction Set: Jump and Branch Instructions
Opcode Description MIPS ISA
J Jump I
JAL Jump and Link I
JR Jump Register I
JALR Jump And Link Register I
BEQ Branch on Equal I
BNE Branch on Not Equal I
BLEZ Branch on Less Than or Equal to Zero I
BGTZ Branch on Greater Than Zero I
BLTZ Branch on Less Than Zero I
BGEZ Branch on Greater Than or Equal to Zero I
BLTZAL Branch on Less Than Zero And Link I
BGEZAL Branch on Greater Than or Equal to Zero And Link I
BEQL Branch on Equal Likely II
BNEL Branch on Not Equal Likely II
BLEZL Branch on Less Than or Equal to Zero Likely II
BGTZL Branch on Greater Than Zero Likely II
BLTZL Branch on Less Than Zero Likely II
BGEZL Branch on Greater Than or Equal to Zero Likely II
BLTZALL Branch on Less Than Zero And Link Likely II
BGEZALL Branch on Greater Than or Equal to Zero And Link

Likely
II

Table 2-6 CPU Instruction Set: Shift Instructions
OpCode Description MIPS ISA
SLL Shift Left Logical I
SRL Shift Right Logical I
SRA Shift Right Arithmetic I
SLLV Shift Left Logical Variable I
SRLV Shift Right Logical Variable I
SRAV Shift Right Arithmetic Variable I
DSLL Doubleword Shift Left Logical III
DSRL Doubleword Shift Right Logical III
DSRA Doubleword Shift Right Arithmetic III
DSLLV Doubleword Shift Left Logical Variable III
DSRLV Doubleword Shift Right Logical Variable III
DSRAV Doubleword Shift Right Arithmetic Variable III
DSLL32 Doubleword Shift Left Logical + 32 III
DSRL32 Doubleword Shift Right Logical + 32 III
DSRA32 Doubleword Shift Right Arithmetic + 32 III

 19

Godson-2E software manual

Table 2-7 CPU Instruction Set: Special Instructions
OpCode Description MIPS ISA
SYSCALL System Call I
BREAK Break I

Table 2-8 CPU Instruction Set: Exception Instructions
OpCode Description MIPS ISA
TGE Trap if Greater Than or Equal II
TGEU Trap if Greater Than or Equal Unsigned II
TLT Trap if Less Than II
TLTU Trap if Less Than Unsigned II
TEQ Trap if Equal II
TNE Trap if Not Equal II
TGEI Trap if Greater Than or Equal Immediate II
TGEIU Trap if Greater Than or Equal Immediate Unsigned II
TLTI Trap if Less Than Immediate II
TLTIU Trap if Less Than Immediate Unsigned II
TEQI Trap if Equal Immediate II
TNEI Trap if Not Equal Immediate II

Table 2-9 CP0 Instructions
OpCode Description MIPS ISA
DMFC0 Doubleword Move From CP0 III
DMTC0 Doubleword Move To CP0 III
MFC0 Move From CP0 I
MTC0 Move To CP0 I
TLBR Read Indexed TLB Entry III
TLBWI Write Indexed TLB Entry III
TLBWR Write Random TLB Entry III
TLBP Probe TLB from Matching Entry III
CACHE Cache Operation III
ERET Exception Return III

 20

Godson-2E software manual

3 Memory Management

The Godson-2E processor provides a full-featured memory management unit

(MMU) which uses an on-chip translation lookaside buffer (TLB) to translate virtual

addresses into physical addresses.

This section describes the processor virtual and physical address spaces, the

virtual-to-physical address translation, the operation of the TLB in making these

translations, the cache memories, and those System Control Coprocessor (CP0)

registers that provide the software interface to the TLB.

3.1 Translation Lookaside Buffer

Mapped virtual addresses are translated into physical addresses using on-chip

Translation Lookaside Buffers (TLB).
1 The primary TLB is the Joint TLB (JTLB). In

addition, the Godson-2E processor contains separate Instruction and Data TLBs to

avoid contention for the JTLB.

3.1.1 Joint TLB

For fast virtual-to-physical address translation, the Godson-2E uses a large, fully

associative TLB that maps virtual pages to their corresponding physical addresses. As

indicated by its name, the Joint TLB, or JTLB is used for both instruction and data

translations. The JTLB is organized as pairs of even/odd entries, and maps a virtual

address and address space identifier into the large, 64GByte physical address space.

By default, the JTLB is configured as 64 pairs of even/odd entries to allow the

mapping of 128 pages.

Two mechanisms are provided to assist in controlling the amount of mapped

space and the replacement characteristics of various memory regions. First, the page

size can be configured from 4KB to 16MB (in multiples of 4). A CP0 register,

PageMask, is loaded with the desired page size of a mapping, and that size is stored

into the TLB along with the virtual address when a new entry is written. Thus,

operating systems can support different page sizes for different purpose while only

1 There are virtual-to-physical address translations that occur outside of the TLB. For

example, addresses in the kseg0 and kseg1 spaces are unmapped translations. In these spaces the

physical address is 0x0 0000 0000 || VA[28:0].

 21

Godson-2E software manual

one specific page size at the run time. In the future, Godson-2E will support multiple

page size at the run time. Thus, operating systems can create special purpose maps;

for example, a typical frame buffer can be memory mapped using only one TLB

entry.

The second mechanism controls the replacement algorithm when a TLB miss

occurs. The Godson-2E provides a random replacement algorithm to select a TLB

entry to be written with a new mapping; however, the processor also provides a

mechanism whereby a system specific number of mappings can be locked into the

TLB, thereby avoiding random replacement. This mechanism allows the operating

system to guarantee that certain pages are always mapped for performance reasons

and for deadlock avoidance. This mechanism also facilitates the design of real-time

systems by allowing deterministic access to critical software.

The JTLB also contains information that controls the cache coherency protocol

for each page. Specifically, each page has attribute bits to determine whether the

coherency algorithm is: uncached, non-coherent write-back, or uncached accelerated.

3.1.2 Instruction TLB

The Godson-2E use a 8-entry instruction TLB, or ITLB, to minimize contention

for the joint TLB, eliminate the timing critical path of translating through a large

associative array, and save power. Each ITLB entry maps only one page and the page

size is specified by PageMask register. The ITLB improves performance by allowing

instruction address translation to occur in parallel with data address translation. When

a miss occurs on an instruction address translation by the ITLB, a randomly selected

ITLB entry is filled from the joint TLB. The operation of the ITLB is completely

transparent to the user.

3.1.3 Hits and Misses

If there is a virtual address match, or hit, in the TLB, the physical page number is

extracted from the TLB and concatenated with the offset to form the physical address.

If no match occurs (TLB miss), an exception is taken and software refills the

TLB from the page table resident in memory. Software can write over a selected TLB

entry or use a hardware mechanism to write into a random entry.

 22

Godson-2E software manual

3.1.4 Multiple Matches

The Godson-2E processor does not provide any detection or shutdown

mechanism for multiple matches in the TLB. Unlike earlier MIPS designs, multiple

matches do not physically damage the TLB. Therefore, multiple match detection is

not needed. The result of this condition is undefined, and software is expected to

never allow this to occur.

3.2 Processor modes

The Godson-2E has three operating modes, but unlike other mips processors, it

only supports one addressing mode, one instruction set mode and one endian mode.

3.2.1 Processor Operating Modes

The three operating modes are listed in order of decreasing system privilege:

• Kernel mode (highest system privilege): can access and change any register.

The innermost core of the operating system runs in kernel mode.

• Supervisor mode: has fewer privileges and is used for less critical sections of

the operating system.

• User mode (lowest system privilege): prevents users from interfering with one

another.

Selection between the three modes can be made by the operating system (when

in Kernal mode) by writing into Status register’s KSU field. The processor is forced

into Kernel mode when the processor is handling an error (the ERL bit is set) or an

exception (the EXL bit is set). Table 3-1 shows the selection of operating modes with

respect to the KSU, EXL and ERL bits; the blanks in the table indicate don’t cares.

Table 3-1 Processor operating modes
KSU
4:3

ERL
2

EXL
1

Description

10 0 0 User mode
01 0 0 Supervisor mode
00 0 0 Kernel mode
 0 1 Exception level
 1 Error level

 23

Godson-2E software manual

3.2.2 Addressing mode

Godson-2E processor only supports 64-bit virtual memory addressing mode, but

it is compatible with 32-bit virtual memory addressing mode.

3.2.3 Instruction set mode

Godson-2E processor implements a full feature MIPS III Instruction Set

Architecture (ISA) plus some MIPS IV ISA instructions, like paired single, move

condition and multiply add.

3.2.4 Endian mode

The Godson-2E processor can only operate in little-endian mode.

3.2.5 Address Spaces

This section describes the virtual and physical address spaces and the manner in

which virtual addresses are converted or “translated” into physical addresses in the

TLB.

3.2.6 Virtual Address Space

The Godson-2E processor has three virtual address spaces: User address space,

Supervisor address space and Kernel address space. Each space is 64-bit and consists

of several discontinued segments. The maximum segment size is 1 terabyte(240).

Section 4.3.4 to 4.3.6 describes these virtual address spaces separately.

3.2.7 Physical Address Space

Using a 36-bit address, the Godson-2E processor physical address space

encompasses 64 gigabytes.

3.2.8 Virtual-to-Physical Address Translation

 24

Godson-2E software manual

Figure 3-1 Overview of a Virtual-to-Physical Address Translation

Converting a virtual address to a physical address begins by comparing the

virtual address from the processor with the virtual addresses in the TLB; there is a

match when the virtual page number (VPN) of the address is the same as the VPN

field of the entry, and either:

• the Global (G) bit of the TLB entry is set, or

• the ASID field of the virtual address is the same as the ASID field of the TLB

entry.

This match is referred to as a TLB hit. If there is no match, a TLB Miss exception

is taken by the processor and software is allowed to refill the TLB from a page table

of virtual/physical addresses in memory.

If there is a virtual address match in the TLB, the physical address is output from

the TLB and concatenated with the Offset, which represents an address within the

page frame space. The Offset does not pass through the TLB.

Figure 3-1shows the translation of a virtual address into a physical address. As

shown, the virtual address is extended with an 8-bit address space identifier (ASID),

which reduces the frequency of TLB flushing when switching contexts. This 8-bit

ASID is in the CP0 EntryHi register. The Global bit (G) is in each TLB entry.

 25

Godson-2E software manual

Figure 3-2 64-bit Mode Virtual Address Translation

Figure 3-2 shows the 64-bit mode virtual-to-physical-address translation. This

figure illustrates the two extremes in the range of possible page sizes: a 4-Kbyte page

(12 bits) and a 16-Mbyte page (24 bits).

• The top portion of Figure 3-2 shows a virtual address with a 12-bit, or 4-Kbyte,

page size, labeled Offset. The remaining 28 bits of the address represent the VPN, and

index the 256Mentry page table.

• The bottom portion of Figure 3-2 shows a virtual address with a 24-bit, or

16-Mbyte, page size, labeled Offset. The remaining 16 bits of the address represent

the VPN, and index the 64Kentry page table.

3.2.9 User Address Space

In User address space, a single, uniform virtual address space—labeled Extended

User segment (xuseg), is available and its size is 1 terabyte (240 bytes) .

Figure 3-3 shows the range of User virtual address space. User space can be

accessed from user, supervisor, and kernel modes.

The User segment starts at address 0 and the current active user process resides

in xuseg. The TLB identically maps all references to xuseg from all modes, and

controls cache accessibility.

 26

Godson-2E software manual

64-bit

0xFFFF FFFF FFFF FFFF
Address

Error
0x0000 0100 0000 0000

1 TB

 xuseg

0x0000 0000 0000 0000

Figure 3-3 User Virtual Address Space as viewed from User Mode

All valid User mode virtual addresses have bits 63:40 equal to 0; an attempt to

reference an address with bits 63:40 not equal to 0 causes an Address Error exception.

TLB misses on xuseg space address use the XTLB refill vector. In Godson-2E

processor, XTLB refill vector has the same entry with TLB refill vector in 32-bit

mode.

3.2.10 Supervisor Space

Supervisor address space is designed for layered operating systems in which a

true kernel runs in Kernel mode, and the rest of the operating system runs in

Supervisor mode. The Supervisor address space provides code and data addresses for

supervisor mode. TLB misses on supervisor space addresses are handled by the

XTLB refill exception handler.

Supervisor space can be accessed from supervisor mode and kernel mode.

The processor operates in Supervisor mode when the Status register contains the

following bitvalues:

• KSU = 012

• EXL = 0

• ERL = 0.

Figure 3-4 shows the User and Supervisor address spaces viewed from

Supervisor mode.

64-bit Supervisor, User Space (xsuseg)
In Supervisor Mode when accessing User space and bits 63:62 of the virtual

address are set to 002, the xsuseg virtual address space is selected; it covers the full

240 bytes (1 Tbyte) of the current user address space. The virtual address is extended

with the contents of the 8-bit ASID field to form a unique virtual address.

 27

Godson-2E software manual

This mapped space starts at virtual address 0x0000 0000 0000 0000 and runs

through 0x0000 00FF FFFF FFFF.

0xFFFF FFFF FFFF FFFF
Address

Error 0xFFFF FFFF E000 0000
0.5GB

Mapped
csseg

0xFFFF FFFF C000 0000
Address

Error
0x4000 0100 0000 0000

1TB

Mapped
xsseg

0x4000 0000 0000 0000
Address

Error
0x0000 0100 0000 0000

1TB

Mapped
xsueg

0x0000 0000 0000 0000

Figure 3-4 User and Supervisor Address Spaces; viewed from Supervisor mode

64-bit Supervisor, Current Supervisor Space (xsseg)
In Supervisor space, when bits 63:62 of the virtual address are set to 012, the

xsseg current supervisor virtual address space is selected. The virtual address is

extended with the contents of the 8-bit ASID field to form a unique virtual address.

This mapped space begins at virtual address 0x4000 0000 0000 0000 and runs

through 0x4000 00FF FFFF FFFF.

64-bit Supervisor, Separate Supervisor Space (csseg)
In Supervisor space, when bits 63:62 of the virtual address are set to 112, the

csseg separate supervisor virtual address space is selected. Addressing of the csseg is

compatible with addressing sseg in 32-bit mode. The virtual address is extended with

the contents of the 8-bit ASID field to form a unique virtual address.

This mapped space begins at virtual address 0xFFFF FFFF C000 0000 and runs

through 0xFFFF FFFF DFFF FFFF.

 28

Godson-2E software manual

3.2.11 Kernel Space

0.5GB

Mapped

0.5GB

Mapped

0.5GB

Unmapped

0.5GB

Unmapped

Address

Error

Mapped

Unmapped

Address

Error

1TB

Mapped

Address

Error

1TB

Mapped

0xFFFF FFFF 8000 0000

0xFFFF FFFF A000 0000

0xFFFF FFFF C000 0000

0xFFFF FFFF E000 0000

0xFFFF FFFF FFFF FFFF

0x0000 0000 0000 0000

0x0000 0100 0000 0000

0x4000 0000 0000 0000

0x4000 0100 0000 0000

0x8000 0000 0000 0000

0xC000 0000 0000 0000

0xC000 00FF 8000 0000

xkseg

cksseg

xkuseg

xksseg

ckseg3

ckseg1

ckseg0

xkphys

Figure 3-5 User, Supervisor, and Kernel Address Space viewed from Kernel mode

The processor operates in Kernel mode when the Status register contains one of

the following values:

• KSU = 002

• EXL = 1

• ERL = 1

 29

Godson-2E software manual

The processor enters Kernel mode whenever an exception is detected and it

remains there until an Exception Return (ERET) instruction is executed or the EXL
bit is cleared. The ERET instruction restores the processor to the address space

existing prior to the exception.

Kernel virtual address space is divided into regions differentiated by the

high-order bits of the virtual address, as shown in Figure 3-5. Figure 3-5 also lists the

characteristics of the kernel mode segments.

64-bit Kernel, User Space (xkuseg)
In Kernel mode when accessing User space and bits 63:62 of the 64-bit virtual

address are 002, the xkuseg virtual address space is selected; it covers the current user

address space. The virtual address is extended with the contents of the 8-bit ASID

field to form a unique virtual address.

64-bit Kernel, Current Supervisor Space (xksseg)
In Kernel mode when accessing Supervisor space and bits 63:62 of the 64-bit

virtual address are 012, the xksseg virtual address space is selected; it is the current

supervisor virtual space. The virtual address is extended with the contents of the 8-bit

ASID field to form a unique virtual address.

64-bit Kernel, Physical Spaces (xkphys)
In Kernel space, when bits 63:62 of the 64-bit virtual address are 102, the xkphys

virtual address space is selected; it is a set of eight 236-byte kernel physical spaces.

Accesses with address bits 58:36 not equal to zero cause an address error.

References to this space are not mapped; the physical address selected is taken

from bits 35:0 of the virtual address. Bits 61:59 of the virtual address specify the

cacheability and coherency attributes, as shown in Table 3-2.

64-bit Kernel, Kernel Space (xkseg)
In Kernel space, when bits 63:62 of the 64-bit virtual address are 112, the

address space selected is one of the following:

• kernel virtual space, xkseg, the current kernel virtual space; the virtual address

is extended with the contents of the 8-bit ASID field to form a unique virtual address.

• one of the four 32-bit kernel compatibility spaces, as described in the next

section.

64-bit Kernel, Compatibility Spaces
In Kernel space, when bits 63:62 of the 64-bit virtual address are 112, and bits

61:31 of the virtual address equal –1. The lower two bytes of address select one of the

 30

Godson-2E software manual

following 512-Mbyte compatibility spaces.

• ckseg0. This 64-bit virtual address space is an unmapped region, compatible

with the 32-bit address model kseg0. The K0 field of the Config register controls

cacheability and coherency.

• ckseg1. This 64-bit virtual address space is an unmapped and uncached,

blocking region, compatible with the 32-bit address model kseg1.

• cksseg. This 64-bit virtual address space is the current supervisor virtual space,

compatible with the 32-bit address model ksseg.

• ckseg3. This 64-bit virtual address space is kernel virtual space, compatible

with the 32-bit address model kseg3.

3.3 System Control Coprocessor

The System Control Coprocessor (CP0) supports memory management, address

translation, exception handling, and other privileged operations. Godson-2E CP0

contains a 64-entry TLB and 27 registers; each register has a unique identifier referred

to as the register number. The sections that follow provide the summary of the

memory management-related registers, Chapter 6 gives the complete description of

each CP0 register.

3.3.1 Format of a TLB Entry

Figure 3-6 shows the TLB entry formats. Each field of an entry has a corresponding

field in the EntryHi, EntryLo0, EntryLo1, or PageMask registers.

Figure 3-6 Format of a TLB Entry

 31

Godson-2E software manual

The format of the EntryHi, EntryLo0, EntryLo1, and PageMask registers are

nearly the same as the TLB entry. The one exception is the Global field (G bit), which

is used in the TLB, but is reserved in the EntryHi register. Figure 3-7, Figure 3-8, and

Figure 3-9 describe the formats for the PageMask, EntryHi, EntryLo0/EntryLo1

registers.

Figure 3-7 EntryHi Register Format

Figure 3-8 PageMask Register Format

Figure 3-9 EntryLo0 and EntryLo1 Register Formats

The TLB page coherency attribute (C) bits specify whether references to the

page should be cached; if cached, the algorithm selects between several coherency

attributes. Table 3-2 shows the coherency attributes selected by the C bits.

 32

Godson-2E software manual

Table 3-2 TLB Page Coherency (C) Bit Values
C(5:3) Value Page Coherency Attribute
0 Reserved
1 Reserved
2 Uncached
3 Cacheable noncoherent (Writeback)
4 Reserved
5 Reserved
6 Reserved
7 Uncached Accelerated

3.3.2 CP0 Registers

Table 3-3 lists the CP0 registers used by the MMU, chapter 6 provides complete

description of each CP0 registers..

Table 3-3 Memory Management-Related CP0 Registers
Register No. Register Name
0 Index
1 Random
2 EntryLo0
3 EntryLo1
5 PageMask
6 Wired
10 EntryHi
15 PrID
16 Config
17 LLAdr
28 TagLo
29 TagHi

3.3.3 Virtual-to-Physical Address Translation Process

During virtual-to-physical address translation, the CPU compares the 8-bit ASID

(if the Global bit, G, is not set) of the virtual address to the ASID of the TLB entry to

see if there is a match. And the highest 15-to-27 bits (depending upon the page size)

of the virtual address are compared to the contents of the TLB virtual page number

also. If a TLB entry matches, the physical address and access control bits (C, D, and

V) are retrieved from the matching TLB entry. While the V bit of the entry must be set

for a valid translation to take place, it is not involved in the determination of a

matching TLB entry.

 33

Godson-2E software manual

Figure 3-10 illustrates the TLB address translation process.

3.3.4 TLB Exceptions

If there is no TLB entry that matches the virtual address, a TLB miss exception

occurs. If the access control bits (D and V) indicate that the access is not valid, a TLB

modification or TLB invalid exception occurs. If the C bits equal 0102, the physical

address that is retrieved accesses main memory, bypassing the cache.

Figure 3-10 TLB Address Translation

3.3.5 TLB Instructions

Table 3-4 lists the instructions that the CPU provides for working with the TLB.

 34

Godson-2E software manual

Table 3-4 TLB Instructions
Op Code Description of Instruction
TLBP Translation Lookaside Buffer Probe
TLBR Translation Lookaside Buffer Read
TLBWI Translation Lookaside Buffer Write Index
TLBWR Translation Lookaside Buffer Write Random

3.3.6 Code examples

The first example is how to set up one TLB entry to map a pair of 4KB pages. A

real time kernel might do something similar. Such simple kernels are only using the

MMU for memory protection so the static mapping is sufficient. In statically mapped

systems, all TLB exceptions are considered error conditions (access violations).

mtc0 r0,C0_WIRED # make all entries available to random replacement

li r2, (vpn2<<13)|(asid & 0xff);

mtc0 r2, C0_ENHI # set the virtual address

li r2, (epfn<<6)|(coherency<<3)|(Dirty<<2)|Valid<<1|Global)

mtc0 r2, C0_ENLO0 # set the physical address for the even page

li r2, (opfn<<6)|(coherency<<3)|(Dirty<<2)|Valid<<1|Global)

mtc0 r2, C0_ENLO1 # set the physical address for the odd page

li r2, 0 # set the page size to 4KB

mtc0 r2,C0_PAGEMASK

li r2, index_of_some_entry # needed for tlbwi only

mtc0 r2, C0_INDEX # needed for tlbwi only

tlbwr # or tlbwi

True virtual memory operating systems (like UNIX) use the MMU for both

memory protection and swapping pages between main memory and a long term

storage device. This mechanism allows programs to address more memory than is

physically allocated on the system. This ondemand paging mechanism requires

dynamic mapping of pages. The dynamic mapping is implemented through the

different types of MMU exceptions. The TLB Refill exception is the most common

exception within such systems. The following is an example of a possible TLB Refill

exception handler.

 35

Godson-2E software manual

refill_exception:

mfc0 k0,C0_CONTEXT

sra k0,k0,1 # index into the page table

lw k1,0(k0) # read page table

lw k0,4(k0)

sll k1,k1,6

srl k1,k1,6

mtc0 k1,C0_TLBLO0

sll k0,k0,6

srl k0,k0,6

mtc0 k0,C0_TLBLO1

tlbwr # write a random entry

eret

This exception handler is kept very simple and short as it is executed often

enough to affect system performance. This is the reason that the TLB Refill exception

is allocated its own exception vector. This code assumes that the required mapping

has been already set up in the main page table held in main memory. If this is not true

then a second exception, a TLB Invalid exception, will be taken after the ERET

instruction. The TLB Invalid exception happens much less frequently, which is

fortunate as it has to calculate the desired mapping, possibly reading portions of the

page table from long term storage. The TLB Mod exception is used to implement

read-only pages and to mark which pages have been modified for process cleanup

code. To further protect different processes and users from each other, true virtual

memory operating systems execute user programs in user mode. Below is an example

of how to enter user mode from kernel mode.

mtc0 r10, C0_EPC # assume r10 holds desired usermode address

mfc0 r1, C0_SR # get current value of Status register

and r1,r1, ~(SR_KSU || SR_ERL) # clear KSU and ERL field

or r1, r1, (KSU_USERMODE || SR_EXL) # set usermode and EXL bit

mtc0 r1, C0_SR

eret # jump to user mode

 36

Godson-2E software manual

4 Cache Organization and Operation

The Godson-2E contains three separate caches:

• Primary Instruction Cache: This 64 Kbyte, 4-way set associative cache contains

only instruction information.

• Primary Data Cache: This 64 Kbyte, 4-way set associative cache contains only

data information.

• Secondary Cache: This on-chip, 512Kbyte, 4-way set associative，write-back

cache contains both instruction and data information.

4.1 Cache Overview

The primary caches each require 4 cycles to access. Each primary cache has its

own data paths, allowing both caches to be accessed simultaneously. Primary

instruction cache has 128-bit read path and 64-bit refill path, while primary data cache

has 64-bit read, write and refill data path all.

The secondary cache has a 256-bit data path and is accessed only on a primary

cache miss. The secondary cache cannot be accessed in parallel with either of the

primary caches and has a 11-cycle miss penalty on a primary cache miss. During a

primary instruction or data cache refill, the secondary cache provides 64 bits of data

every cycle following the initial 11-cycle latency.

The primary caches are virtually indexed and physically tagged, while the

secondary cache is physically indexed and tagged. For current version chips,

operating system is obliged to eliminate the potential for virtual aliasing. In the future,

hardware would do it.

Having multiple cache hierarchies on-chip means that special consideration must

be given during a primary cache flush operation. Without secondary cache, flushing

of the primary caches causes the data to be moved to main memory. With secondary

cache, using the same code sequence moves data to the secondary cache and

secondary cache must be flushed in order to move the data to main memory.

4.1.1 Non-Blocking Caches

The Godson-2E implements a non-blocking architecture for caches.

Non-blocking caches improve overall performance by allowing the cache to continue

operating even though a cache miss has occurred.

 37

Godson-2E software manual

In a typical blocking-cache implementation, the processor executes out of the
cache until a miss occurs, at which time the processor stalls until the miss is resolved.
The processor initiates a memory cycle, fetches the requested data, places it in the
cache, and resumes execution. This operation can take many cycles depending on the
design of the memory system.

In a non-blocking implementation, the caches do not stall on a miss. The
Godson-2E supports at most 24 outstanding cache misses, which is limited by size of
CP0 queue.

When a primary cache miss occurs, the processor checks the secondary cache to
determine if the requested data is present. If the data is not present a main memory
access is initiated.

The non-blocking caches in the Godson-2E allow for more efficient use of
techniques such as loop unrolling and software pipelining. To take maximum
advantage of the caches, code should be scheduled to move loads as early as possible,
away from instructions that may actually use the data.

To facilitate systems that have I/O devices which depend on in-order loads and
stores, the default setting for the Godson-2E is to force uncached references to be
blocking.

4.1.2 Replacement Algorithm

The primary caches and secondary cache use random replacement algorithm.

4.1.3 Cache Attributes

Table 4-1 shows the attributes for the three caches.

Table 4-1 Cache attributes
Attribute Instruction Data Secondary
Size 64KB 64KB 512KB
Associativity 4-way 4-way 4-way
Replacement
Algorithm

Random Random Random

Line size 32 byte 32 byte 32 byte
Index vAddr13..0 vAddr13..0 pAddr16..0

Tag pAddr39..12 pAddr39..12 pAddr39..17

Write policy n.a. Write-back Write-back
Read policy Non-blocking (2

outstanding)
Non-blocking (16
outstanding)

Non-blocking (8 outstanding)

Read Order Critical word first Critical word first Critical word first
Write Order n.a. Sequential Sequential

 38

Godson-2E software manual

4.2 Primary Instruction Cache

The primary instruction cache is 64 Kbytes in size and implements a 4-way set

associative architecture. Line size is 32-bytes, or eight instructions. The 128-bit read

path allows the Godson-2E to fetch four instructions per clock cycle which are passed

to the superscalar dispatch unit.

4.2.1 Instruction Cache Organization

The instruction cache is organized as shown in Figure 4-1. The cache is 4-way

set associative and contains 512 indexed locations. Each time the cache is indexed,

the tag and data portion of each set are accessed. Each of the four tag addresses are

compared against the translated portion of the virtual address to determine which set

contains the correct data.

When the instruction cache is indexed, each of the four sets shown in Figure 4-1

returns a single cache line. Each cache line consists of 32 bytes of data, a 28-bit

physical tag address, and 1 valid bit. Figure 4-2 shows the instruction cache line

format.

Figure 4-1 Instruction Cache Organization

Figure 4-2 Instruction Cache Line Format

 39

Godson-2E software manual

4.2.2 Accessing Instruction Cache

The Godson-2E implements a 4-way set associative cache that is virtually

indexed and physically tagged. Figure 4-3 shows how the virtual address is divided on

an instruction cache access.

Figure 4-3 Accessing the Instruction Cache

The lower 14 bits of address are used for indexing the instruction cache as shown

in Figure 4-3.Bits 13:5 are used for indexing one of the 512 locations. Within each set

there are four 64-bit doublewords of data. Bits 4:3 are used to index one of these four

doublewords. The tag for each cache line is accessed using address bits 13:5.

When the cache is indexed, the four blocks of data and corresponding physical

address tags are fetched from the cache at the same time the upper address is being

translated. The translated address from the instruction translation look-aside buffer

(ITLB) is compared with each of the four address tags. If any of the four tags yield a

valid compare, the data from that set is used. This is called a ‘primary cache hit’. If

there is no match between the translated address and any of the four address tags, the

cycle is aborted and a secondary cache access is initiated. This is called a ‘primary

cache miss’.

4.3 Primary Data Cache

The primary data cache is 64 Kbytes in size and implements a 4-way set

associative architecture. Line size is 32-bytes, or eight words. The data cache contains

both 64-bit read path and write path. The data cache is used in write-back mode.

The data cache is virtually indexed and physically tagged. Operating system

 40

Godson-2E software manual

helps eliminating the potential for virtual aliasing. The data cache is non-blocking,

meaning that a miss in the data cache does not stall the pipeline.

The normal write policy is write-back, where a store operation to the data cache

does not cause the secondary cache or main memory to be updated. The write-back

protocol increases overall system performance by reducing bus traffic. Data is written

to the slower memories only when a data cache line is replaced.

4.3.1 Data Cache Organization

The data cache is organized as shown in Figure 4-4. The cache is 4-way set

associative and contains 512 indexed locations. Each time the cache is indexed, the

tag and data portion of each set are accessed. Each of the four tag addresses are

compared against the translated portion of the virtual address to determine which set

contains the correct data.

Figure 4-4 Data Cache Organization

When the data cache is indexed, each of the four sets shown in Figure 4-4 returns

a single cache line. Each cache line consists of 32 bytes, a 28-bit physical tag address,

1-bit dirty and 2-bit cache status. Figure 4-5 shows the data cache line format.

Figure 4-5 Data Cache Line Format

 41

Godson-2E software manual

4.3.2 Accessing the Data Cache

The Godson-2E implements a 4-way set associative data cache that is virtually

indexed and physically tagged. Figure 4-6 shows how the virtual address is divided on

a data cache access.

Figure 4-6 Accessing the Data Cache

The lower 14 bits of address are used for indexing the data cache as shown in

Figure 4-6. Bits 13:5 are used for indexing one of the 512 locations. Within each set

there are four 64-bit doublewords of data. Bits 4:3 are used to index one of these four

doublewords. Bits 2:0 are used to index one of the eight bytes within each

doubleword. The tag for each cache line is accessed using address bits 13:5.

4.3.3 Processing Data Cache Miss

Data cache load miss accesses secondary cache. If secondary cache hits, the

block is fetched from secondary cache and is refill to data cache. If secondary cache

misses, memory is accessed. The block is fetched from memory and is refilled to both

data cache and secondary cache.

STORE FILL BUFFER policy that improves the bandwidth of microprocessor is

adopted on data cache store miss. Data cache store miss instructions are not blocked

in CP0 queue to wait for cache refill. If data cache store misses, store instructions

committed exit from CP0 queue and are sent to miss queue. Thus this policy

decreases CP0 queue full rate. Data cache store miss accesses secondary cache. If

secondary cache hits, the block is fetched from secondary cache and is combined with

the value that store instruction writes. Then, the block is refill to data cache. If

secondary cache misses, secondary cache store miss instruction waits for collecting to

fully modified block in miss queue. Fully modified block means that the whole block

 42

Godson-2E software manual

is written by store instructions. Fully modified blocks are refilled to both data cache

and secondary cache. Fully modified blocks need not access memory. Hence, this

policy avoids unnecessary memory traffic. When load instruction accesses the same

cache block, miss queue is full, SYNC instruction executes or cache instruction

executes, cache store miss entries are not wait for collecting to fully modified block

and access the memory. The block is fetched from memory and is combined with the

value that store instruction writes. Then, the block is refill to both data cache and

secondary cache.

Godson-2E implements STORE FILL BUFFER scheme in miss queue without

adding separate store buffer. It decreases the hardware overhead and avoids the query

overhead between miss queue and store buffer. STORE FILL BUFFER policy

improves the bandwidth of Godson-2E significantly.

4.4 Secondary Cache

The Godson-2E implements an on-chip, four-way associative, write-back

secondary cache. The cache size is 512Kbyte, and the line size is 32 bytes.

4.4.1 Secondary Cache Organization

The secondary cache is four-way set associative cache that contains instruction

and data information. The Godson-2E supports secondary cache sizes of 512Kbytes.

Each indexed location in the cache contains four 64-bit doublewords. Each time

the cache is indexed, the tag and data portion of each set are accessed. The tag address

is compared against the translated portion of the virtual address to determine if the

data resides in the cache.

When the secondary cache is indexed, each location contains a single cache line.

Each cache line consists of 32 bytes of data, a 23-bit physical tag address, and two

cache status bits.

4.4.2 Accessing the Secondary Cache

The secondary cache is only accessed on a primary cache miss. Once the

processor has determined that the requested address does not match the corresponding

primary cache tag, a secondary cache access is initiated. The secondary cache is

physically indexed and physically tagged. The accessing process of secondary cache

is shown in Figure 4-7.

 43

Godson-2E software manual

Figure 4-7 Accessing the Secondary Cache

The lower bits of address are used for indexing the data cache as shown in Figure

4-7. Bits 16:5 are used for indexing secondary cache. Within each indexed entry there

are four 64-bit doublewords of data. Bits 4:3 are used to index one of these four

doublewords. Bits 2:0 are used to index one of the eight bytes within each

doubleword. The tag for each cache line is accessed using address bits 16:5.

4.5 Cache Coherency

Systems using more than one master must have a mechanism to maintain data

consistency throughout the system. This mechanism is called a cache coherency

protocol. The Godson-2E does not provide any hardware cache coherency. Cache

coherency must be handled by software.

4.5.1 Cache Coherency Attributes

Cache coherency attributes are necessary to ensure the consistency of data

throughout the system. Bits in the translation look-aside buffer (TLB) control

coherency on a per-page basis. Specifically, the TLB contains 3 bits per entry that

provide the coherency attribute types shown in Table 4-2.

The non-blocking coherencies implement a weakly ordered memory model. This

model allows the following behaviors:

• The processor does not have to stall if a processor load request has not

completed. Subsequent processor load or store operations may be started before the

first has completed.

• Memory transactions can occur on the external pin bus out of program order.

Program order of memory transactions can be enforced through the use of the SYNC

instruction.

 44

Godson-2E software manual

• Memory transactions can occur on the external pin bus even though the

instructions which caused the memory transactions are later nullified in the pipeline

due to an exception.

Such behaviors aid in achieving higher levels of processor throughput. However,

some peripheral devices require a strongly ordered memory model (memory

transactions occur in program order and only valid instructions can cause memory

transactions). For this reason, it is strongly advised that such devices be referenced

using the Uncached, Blocking coherency (Coherency Code 2).

Processor read requests using this coherency stall the processor until the

transaction completes. Processor write requests using this coherency are given the

highest priority for accessing the external pin bus. These two properties ensure that

processor load and store instructions using this coherency are completed in program

order. For this reason, kseg1 and the uncached section of xkphys use Coherency Code

2.

Table 4-2 Godson-2E Cache Coherency Attribute
Attribute Type Coherency Code
Reserved 0
Reserved 1
Uncached, Blocking 2
Writeback, non-blocking 3
Reserved 4
Reserved 5
Reserved 6
Uncached Accelerated 7

The following subsections describe each of the coherency attributes listed in

Table 4-2.

4.5.2 Uncached, Blocking (Coherency Code 2)

Lines within an Uncached page are never in a cache. When a page has the

uncached coherency attribute, the processor issues a doubleword, partial-doubleword,

word, or partial-word read or write request directly to main memory (bypassing all

caches) for any load or store to a location within that page. No caches are accessed

when this coherency attribute is active.

Processor read requests using this coherency stall the processor until the

transaction completes while processor write requests using this coherency are given

the highest priority for accessing the external pin bus. These two properties ensure

 45

Godson-2E software manual

that processor load and store instructions using this coherency are completed in

program order (strongly ordered memory model).

4.5.3 Writeback (Coherency code 3)

Lines with the Writeback attribute can reside in a cache. On a data cache store hit,

only the data cache is modified. The secondary cache, and main memory are only

modified if the cache line of a dirty block is needed for a newer access.

This mode allows the primary data cache to be filled on either a load miss or a

store miss. A primary cache store hit causes data to be written to the primary data

cache only. The secondary is modified only during block writebacks and line fills.

Partial (non-blocking) stores are never written to the secondary caches. Main memory

is modified only for block writebacks.

On a primary cache load or store miss, the Godson-2E checks the secondary

cache for the requested address. If there is a secondary cache hit, the data is filled

from the secondary cache. If a secondary cache miss occurs, the Godson-2E accesses

the main memory with a block read request. Data is fetched from main memory and

written to the secondary and primary caches.

This coherency follows the weakly ordered memory model described in section

4.5.1, “Cache Coherency Attributes”.

4.5.4 Uncached Accelerated (Coherency Code 7)

Uncached accelerated is used for sequential same type uncached stores at a

consecutive address space. A buffer is used to gather these stores until the buffer is

full. The buffer size is the same as the cache line. Store to the buffer is just like it does

to the cache. When the buffer is full, a block write is initiated. If the sequential stores

is intervened by other uncached store, individual uncached stores are executed for the

buffer content.

Uuncached accelerated attribute can accelerate sequential uncahced access, and it

is useful for access to video memory.

4.6 Cache Maintenance

With multiple levels of on-chip memory, care must be taken to ensure that

modified data has reached external memory before a process task switch. To flush all

on-chip write buffers, software should use the SYNC instruction. This instruction will

 46

Godson-2E software manual

stall the processor until all pending store operations have reached the external pin bus

and all pending load operations have completed by writing their destination registers.

The CACHE instruction is used when performing maintenance of the caches.

Godson-2E contains two “Hit” type cache operations for primary data cache:

Hit_Invalidate and Hit_Writeback_Invalidate. The Godson-2E treats the “Hit” type

CACHE operation much like a load instruction and allows the instruction to be

pipelined. If there is no cache hit, the “Hit” type can be executed without any pipeline

stall. If there is a cache hit, but the cache line is clean, the only latency incurred is that

required for invalidating the tag RAM.

 47

Godson-2E software manual

5 CP0

This chapter describes the Coprocessor 0 operations, including the CP0 register
definitions and CP0 instructions implemented by the Godson-2E processor. The
Coprocessor 0 (CP0) registers are used to control and represent the processor state.
These registers can be read using MFC0/DMFC0 instructions and written using
MTC0/ DMTC0 instructions. CP0 registers are listed in Table 5-1.

Coprocessor 0 instructions are usable if the processor is in Kernel mode, or bit
28 (CU0) of the Status register is set. Otherwise, executing one of these instructions
generates a Coprocessor 0 Unusable exception.

Table 5-1 Coprocessor 0 Registers
Register No. Register Name Description

0 Index Programmable register to select a TLB entry for
reading or writing

1 Random Pseudo-random counter for the TLB replacement
2 EntryLo0 Low half of the TLB entry for the even VPN

(Physical page number)
3 EntryLo1 Low half of the TLB entry for the odd VPN (Physical

page number)
4 Context Pointer to the kernel virtual PTE table in the 32-bit

addressing mode
5 Page Mask Mask that decides the TLB page size
6 Wired Number of wired TLB entries (the floor of the

random replacement range, that is, the lowest TLB entry
that can be used for random replacement)

7 Reserved
8 BadVaddr Bad virtual address
9 Count Clock counter
10 EntryHi High half of the TLB entry (Virtual page number and

ASID)
11 Compare Counter compare
12 Status Processor Status Register
13 Cause Cause of the last exception
14 EPC Exception Program Counter
15 PRID Processor Revision Identifier
16 Config Configuration Register (primary cache size, etc.)
17 LLAddr Load Linked memory address
18 WatchLo
19 WatchHi
20 Xcontext Pointer to the kernel virtual PTE table in the 64-bit

addressing mode

 49

Godson-2E software manual

Register No. Register Name Description
21 Reserved
22 Diagnose Enable/disable BTB, RAS and flush ITLB
23 Reserved
24 PCLo Low half of Performance Counter
25 PCHi High half of Performance Counters
26 Reserved
27 Reserved
28 TagLo Cache Tag register - low bits
29 TagHi Cache Tag register - high bits
30 ErrorEPC Error Exception Program Counter
31

5.1 Index Register (0)

The Index register is a 32-bit, read/write register containing six bits to index an

entry in the TLB. The highest-order bit of the register indicates the success or failure

of a TLB Probe (TLBP) instruction.

The Index register also specifies the TLB entry accessed by TLB Read (TLBR)

or TLB Write Index (TLBWI) instructions.

Figure 5-1 shows the format of the Index register; Table 5-2 describes the Index

register fields.

Figure 5-1 Index Register

Table 5-2 Fields in the Index Register
Field Description

P Probe failure. Set to 1 when the last TLBProbe
(TLBP) instruction was unsuccessful.

Index Index to the TLB entry accessed by the TLBRead and
TLBIWrite instructions

0 Reserved. Must be written as zeroes, and returns zeroes
when read.

 50

Godson-2E software manual

5.2 Random Register (1)

The Random register is a read-only register of which the lowest six bits index an

entry in the TLB. This register decrements when any instruction graduates at that

particular cycle, and its value ranges between an upper and a lower bound, as follows:

• The lower bound is set by the number of TLB entries reserved for exclusive use

by the operating system (the content of the Wired register).

• The upper bound is set by the total number of TLB entries minus 1 (64 – 1

maximum).

The Random register specifies the entry in the TLB that is affected by the TLB

Write Random instruction. The register does not need to be read for this purpose;

however, the register is readable to verify proper operation of the processor.

To simplify testing, the Random register is set to the value of the upper bound

upon system reset. This register is also set to the upper bound when the Wired register

is written.

Figure 5-2 shows the format of the Random register;Table 5-3 describes the

Random register fields.

Figure 5-2 Random Register

Table 5-3 Fields in the Random Register
Field Description

Random TLB random index
0 Reserved. Must be written as zeroes, and returns zeroes when read.

5.3 EntryLo0 (2), and EntryLo1 (3) Registers

The EntryLo register consists of two registers with identical formats:

• EntryLo0 is used for even virtual pages.

• EntryLo1 is used for odd virtual pages.

The EntryLo0 and EntryLo1 registers are read/write registers. They hold the

physical page frame number (PFN) of the TLB entry for even and odd pages

 51

Godson-2E software manual

respectively for TLB read and write operations.Figure 5-3 shows the format of these

registers.

EntryLo0 and EntryLo1 Registers

63 62 61 60 34 33 6 5 3 2 1 0

0 E 0 PFN C D V G

2 1 27 28 3 1 1 1

Figure 5-3 Fields of the EntryLo0 and EntryLo1 Registers

The PFN fields of the EntryLo0 and EntryLo1 registers span bits 39:12 of the

40-bit physical address.

Two additional bits for the mapped space’s uncached attribute can be loaded into

bits 63:62 of the EntryLo register, which are then written into the TLB with a TLB

Write. During the address cycle of processor double/single/partial-word read and

write requests, and during the address cycle of processor uncached accelerated block

write requests, the processor drives the uncached attribute on SysAD[59:58]. The

same EntryLo registers are used for the 64-bit and 32-bit addressing modes. In both

modes the registers are 64 bits wide, however when the MIPS III ISA is not enabled

(32-bit User and Supervisor modes) only the lower 32 bits of the EntryLo registers are

accessible.

Table 5-4 Description of EntryLo Registers’ Fields
Field Description
E Non-executable. 1 means non-executable, 0 means executable.
PFN Page frame number; the higher bits of the physical address.
C Specifies the TLB page coherence attribute.
D Dirty. If this bit is set, the page is marked as dirty and, therefore,

writable. This bit is actually a write-protect bit that software can use to
prevent alteration of data.

V Valid. If this bit is set, it indicates that the TLB entry is valid;
otherwise, a TLBL or TLBS invalid exception occurs.

G Global. If this bit is set in both Lo0 and Lo1, then the processor
ignores the ASID during TLB lookup.

0 Reserved. Must be written as zeroes, and returns zeroes when read.

MIPS III is disabled when the processor is in 32-bit Supervisor or User mode.

Loading of the integer registers is limited to bits 31:0, sign-extended through bits

63:32. EntryLo[33:31] or PFN[39:38] can only be set to all zeroes or all ones. In

32-and 64-bit modes, the UC and PFN bits of both EntryLo registers are written into

 52

Godson-2E software manual

the TLB. The PFN bits can be masked by setting bits in the FrameMask register

(described in this chapter) but the UC bits cannot be masked or initialized in 32-bit

User or Supervisor modes. In 32-bit Kernel mode, MIPS III is enabled and 64-bit

operations are always available to program the UC bits.

There is only one G bit per TLB entry, and it is written with EntryLo0[0] and

EntryLo1[0] on a TLB write.

5.4 Context (4)

The Context register is a read/write register containing the pointer to an entry in

the page table entry (PTE) array; this array is an operating system data structure that

stores virtual-to-physical address translations.

When there is a TLB miss, the CPU loads the TLB with the missing translation

from the PTE array. Normally, the operating system uses the Context register to

address the current page map which resides in the kernel-mapped segment, kseg3. The

Context register duplicates some of the information provided in the BadVAddr register,

but the information is arranged in a form that is more useful for a software TLB

exception handler.

Figure 5-4 shows the format of the Context register;Table 5-5 describes the

Context register fields.

Figure 5-4 Context Register Format

Table 5-5 Context Register Fields
Field Description
BadVPN2 This field is written by hardware on a miss. It contains the virtual page

number (VPN) of the most recent virtual address that did not have a valid
translation.

PTEBase This field is a read/write field for use by the operating system. It is
normally written with a value that allows the operating system to use the
Context register as a pointer into the current PTE array in memory.

0 Reserved. Must be written as zeroes, and returns zeroes when read.

 53

Godson-2E software manual

The 19-bit BadVPN2 field contains bits 31:13 of the virtual address that caused

the TLB miss; bit 12 is excluded because a single TLB entry maps to an even-odd

page pair. For a 4-Kbyte page size, this format can directly address the pair-table of

8-byte PTEs. For other page and PTE sizes, shifting and masking this value produces

the appropriate address.

5.5 PageMask Register(5)

The PageMask register is a read/write register used for reading from or writing

to the TLB; it holds a comparison mask that sets the variable page size for each TLB

entry, as shown in Table 5-6. Format of the register is shown inFigure 5-5.

TLB read and write operations use this register as either a source or a destination;

when virtual addresses are presented for translation into physical address, the

corresponding bits in the TLB identify which virtual address bits among bits 24:13 are

used in the comparison. When the Mask field is not one of the values shown in Table

5-6, the operation of the TLB is undefined. The 0 field is reserved; it must be written

as zeroes, and returns zeroes when read.

Figure 5-5 PageMask Register

Table 5-6 Mask Field Values for Page Sizes
Bit Page Size

(Mask) 24 23 22 21 20 19 18 17 16 15 14 13

4Kbytes 0 0 0 0 0 0 0 0 0 0 0 0

16 Kbytes 0 0 0 0 0 0 0 0 0 0 1 1

64 Kbytes 0 0 0 0 0 0 0 0 1 1 1 1

256 Kbytes 0 0 0 0 0 0 1 1 1 1 1 1

1 Mbytes 0 0 0 0 1 1 1 1 1 1 1 1

4 Mbytes 0 0 1 1 1 1 1 1 1 1 1 1

16M bytes 1 1 1 1 1 1 1 1 1 1 1 1

 54

Godson-2E software manual

5.6 Wired Register (6)

The Wired register is a read/write register that specifies the boundary between

the wired and random entries of the TLB as shown inFigure 5-6. Wired entries are

fixed, nonreplaceable entries, which cannot be overwritten by a TLB write operation.

Random entries can be overwritten.

Figure 5-6 Wired Register Boundary

The Wired register is set to 0 upon system reset. Writing this register also sets the

Random register to its upper bound value (see Random register, above).

Figure 5-7 Wired Register

Figure 5-7 shows the format of the Wired register;Table 5-7 describes the register

fields.

Figure 5-7 Wired Register

Table 5-7 Fields in the Wired Register Field
Field Description
Wired TLB Wired boundary
0 Reserved. Must be written as zeroes, and returns zeroes when read.

5.7 BadVAddr Register (8)

The Bad Virtual Address register (BadVAddr) is a read-only register that

displays the most recent virtual address that caused either a TLB or Address Error

 55

Godson-2E software manual

exception. The BadVAddr register remains unchanged during Soft Reset, NMI, or

Cache Error exceptions. Otherwise, the architecture leaves this register undefined.

Figure 5-8 shows the format of the BadVAddr register.

Figure 5-8 BadVAddr Register Format

5.8 Count and Compare Registers(9 and 11)

The Count and Compare registers are 32-bit read/write registers whose formats

are shown inFigure 5-9.

The Count register acts as a real-time timer. Like the R4400 implementation, the

Godson-2E Count register is incremented every other PClk cycle. However, unlike

the R4400, the Godson-2E processor has no Timer Interrupt Enable boot-mode bit, so

the only way to disable the timer interrupt is to negate the interrupt mask bit, IM[7],

in the Status register. This means the timer interrupt cannot be disabled without also

disabling the Performance Counter interrupt, since they share IM[7].

The Compare register can be programmed to generate an interrupt at a particular

time, and is continually compared to the Count register. Whenever their values equal,

the interrupt bit IP[7] in the Cause register is set. This interrupt bit is reset whenever

the Compare register is written.

Figure 5-9 Count and Compare Registers

 56

Godson-2E software manual

5.9 EntryHi Register (10)

The EntryHi register holds the high-order bits of a TLB entry for TLB read and

write operations.

The EntryHi register is accessed by the TLB Probe, TLB Write Random, TLB

Write Indexed, and TLB Read Indexed instructions.

Figure 5-10 shows the format of this register and Table 5-8 describes the

register’s fields.

63 62 61 13 12 8 7 0

R VPN2 0 ASID

2 49 5 8

Figure 5-10 EntryHi Register

Table 5-8 EntryHi Register Fields
Field Description

VPN2 Virtual page number divided by two (maps to two pages); upper bits
of the virtual address

ASID Address space ID field. An 8-bit field that lets multiple processes
share the TLB; each process has a distinct mapping of otherwise identical
virtual page numbers.

R Region. (00 → user, 01 → supervisor, 11 → kernel) used to match
vAddr63...62

0 Reserved. Must be written as zeroes, and returns zeroes when read.

In 64-bit addressing mode, the VPN2 field contains bits 43:13 of the 44-bit

virtual address.

In 32-bit addressing mode only the lower 32 bits of the EntryHi register are used,

so the format remains the same as in the R4400 processor’s 32-bit addressing mode.

The FILL field is ignored on write and read as zeroes, as it was in the R4400

implementation.

When either a TLB refill, TLB invalid, or TLB modified exception occurs, the

EntryHi register is loaded with the virtual page number (VPN2) and the ASID of the

virtual address that did not have a matching TLB entry.

5.10 Status Register (12)

The Status register (SR) is a read/write register that contains the operating mode,

interrupt enabling, and the diagnostic states of the processor. The following list

 57

Godson-2E software manual

describes the more important Status register fields;Figure 5-11 shows the format of

the entire register, including descriptions of the fields. Some of the important fields

include:

• The 8-bit Interrupt Mask (IM) field controls the enabling of eight interrupt

conditions. Interrupts must be enabled before they can be asserted, and the

corresponding bits are set in both the Interrupt Mask field of the Status register and

the Interrupt Pending field of the Cause register. For more information, refer to the

Interrupt Pending (IP) field of the Cause register.

• The 4-bit Coprocessor Usability (CU) field controls the usability of 4 possible

coprocessors. Regardless of the CU0 bit setting, CP0 is always usable in Kernel

mode.

Status Register
31 28 27 26 25 24 23 22 21 20 19 16 15 8 7 5 4 3 2 1 0

CU

(cu3:cu0)

0 FR 0 nofdiv nofsqr BEV 0 SR 0 IM7-IM0 0 KSU ERL

EXL IE

4 1 1 1 1 1 1 1 1 4 8 3 2 1 1 1

Figure 5-11 Status Register

Status Register Format

Figure 5-11 shows the format of the Status register.Table 5-9 describes the Status

register fields.

Table 5-9 Fields in the Status Register
Field Description

CU Controls the usability of each of the four coprocessor units. CP0 is always
usable when in Kernel mode, regardless of the setting of the CU0 bit.

1 → usable
0 → unusable

0 Reserved 0.
FR Enables additional floating-point registers

0 → 16 registers
1 → 32 registers

NOFDIV Disable the floating-point division unit
1 - disable
0 - enable

NOFSQR Disable the floating-point square-root unit
1 - disable
0 - enable

BEV Controls the location of TLB refill and general exception vectors.
0 →normal

 58

Godson-2E software manual

Field Description
1→bootstrap

SR 1→ Indicates a Reset* signal or NMI has caused a Soft Reset exception
IM Interrupt Mask: controls the enabling of each of the external, internal, and

software interrupts. An interrupt is taken if interrupts are enabled, and the
corresponding bit is set in both the Interrupt Mask field of the Status register
and the Interrupt Pending field of the Cause register.

0 → disabled
1→ enabled

KSU Mode bits

112 → Undefined

102 → User

012 → Supervisor

002 → Kernel

ERL Error Level; set by the processor when Reset, Soft Reset, NMI, or Cache
Error exception are taken.

0 → normal
1 → error

EXL Exception Level; set by the processor when any exception other than
Reset, Soft Reset, NMI, or Cache Error exception are taken.

0 → normal
1 → exception

IE Interrupt Enable
0 → disable all interrupts
1 → enables all interrupts

Status Register Modes and Access States

Fields of the Status register set the modes and access states described in the

sections that follow.

Interrupt Enable: Interrupts are enabled when all of the following conditions

are true:

• IE = 1

• EXL = 0

• ERL = 0

If these conditions are met, the settings of the IM bits enable the interrupt.

Operating Modes: The following CPU Status register bit settings are required

for User, Kernel, and Supervisor modes.

 59

Godson-2E software manual

• The processor is in User mode when KSU = 102, EXL = 0, and ERL = 0.

• The processor is in Supervisor mode when KSU = 012, EXL = 0, and ERL = 0.

• The processor is in Kernel mode when KSU = 002, or EXL = 1, or ERL = 1.

32- and 64-bit Modes: Godson-2E runs at 64-bit mode.

Kernel Address Space Accesses: Access to the kernel address space is allowed

when the processor is in Kernel mode.

Supervisor Address Space Accesses: Access to the supervisor address space is

allowed when the processor is in Kernel or Supervisor mode, as described above in

the section titled Operating Modes.

User Address Space Accesses: Access to the user address space is allowed in

any of the three operating modes.

Status Register Reset: The contents of the Status register are 0x30400004 at

reset.

5.11 Cause Register(13)

The 32-bit read/write Cause register describes the cause of the most recent

exception.

Figure 5-12 shows the fields of this register;Table 5-10 describes the Cause

register fields. A 5-bit exception code (ExcCode) indicates one of the causes, as listed

in Table 5-11.

All bits in the Cause register, with the exception of the IP[1:0] bits, are

read-only; IP[1:0] are used for software interrupts.

Figure 5-12 Cause Register Format

Table 5-10 Fields in the Cause Register
Field Descriptions
BD Indicates whether the last exception taken occurred in a branch delay

slot.
1 → delay slot
0 → normal

 60

Godson-2E software manual

CE Coprocessor unit number referenced when a Coprocessor Unusable
exception is taken. This bit is undefined for any other exception.

IP Indicates an interrupt is pending. This bit remains unchanged for NMI,
Soft Reset, and Cache Error exceptions.

1 → interrupt pending
0 → no interrupt

ExcCode Exception code field (see Table 5-11)
0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 5-11 Cause Register ExcCode Field
Exception

Code Value
Mnemonic Description

0 Int Interrupt
1 Mod TLB modification exception
2 TLBL TLB exception (load or instruction fetch)
3 TLBS TLB exception (store)
4 AdEL Address error exception (load or instruction fetch)
5 AdES Address error exception (store)
6 IBE Bus error exception (instruction fetch)
7 DBE Bus error exception (data reference: load or store)

8 Sys Syscall exception
9 Bp Breakpoint exception
10 RI Reserved instruction exception

11 CpU Coprocessor Unusable exception
12 Ov Arithmetic Overflow exception

13 Tr Trap exception
14 - Reserved
15 FPE Floating-Point exception

16－22 - Reserved

23 WATCH Reference to WatchHi/WatchLo address
24－30 - Reserved
31 - Reserved

5.12 Exception Program Counter (14)

The Exception Program Counter (EPC)† is a read/write register that contains the

address at which processing resumes after an exception has been serviced.

For synchronous exceptions, the EPC register contains either:

• the virtual address of the instruction that was the direct cause of the exception,

or

 61

Godson-2E software manual

• the virtual address of the immediately preceding branch or jump instruction

(when the instruction is in a branch delay slot, and the Branch Delay bit in the Cause

register is set).

The processor does not write to the EPC register when the EXL bit in the Status

register is set to 1.

Figure 5-13 shows the format of the EPC register.

Figure 5-13 EPC Register Format

5.13 Processor Revision Identifier (PRID) Register

The 32-bit, read-only Processor Revision Identifier (PRId) register contains

information identifying the implementation and revision level of the CPU and CP0.

Figure 5-14 shows the format of the PRId register;Table 5-12 describes the PRId

register fields.

Figure 5-14 Processor Revision Identifier Register Format

Table 5-12 PRId Register Fields
Field Description

Imp Implementation number
Rev Revision number
0 Reserved. Must be written as zeroes, and returns zeroes when read.

The low-order byte (bits 7:0) of the PRId register is interpreted as a revision

number, and the high-order byte (bits 15:8) is interpreted as an implementation

number. The implementation number of the Godson-2E processor is 0x63. The

revision number is 0x02. The content of the high-order halfword (bits 31:16) of the

 62

Godson-2E software manual

register are reserved.

The revision number can distinguish some chip revisions, however there is no

guarantee that changes to the chip will necessarily be reflected in the PRId register, or

that changes to the revision number necessarily reflect real chip changes. For this

reason, software should not rely on the revision number in the PRId register to

characterize the chip.

5.14 Config Register (16)

The Config register specifies various configuration options selected on

Godson-2E processors;Table 5-13 lists these options.

Some configuration options, as defined by Config bits 31:6, are set by the

hardware during reset and are included in the Config register as read-only status bits

for the software to access. Other configuration options are read/write (as indicated by

Config register bits 5:0) and controlled by software; on reset these fields are

undefined.

Certain configurations have restrictions. The Config register should be initialized

by software before caches are used. Caches should be written back to memory before

line sizes are changed, and caches should be reinitialized after any change is made.

Figure 5-15 shows the format of the Config register;Table 5-13 describes the

Config register fields.

31 18 17 16 15 12 11 9 8 6 5 4 3 2 0

0 1 1 0 IC DC IB DB 0 K0

14 1 1 4 3 3 1 1 1 3

Figure 5-15 Config Register Format

Table 5-13 Fields in the Config Register
Field Descriptions
0 Reserved. Must be written as zeroes, returns zeroes when read.
1 Reserved. Must be written as ones, returns ones when read.

Primary I-cache Size (I-cache size = 212+IC bytes). IC

Primary D-cache Size (D-cache size = 212+DC bytes). DC
IB Primary I-cache line size

0 → 16 bytes
1 → 32 bytes
In Godson-2E, this bit is set to 1.

DB Primary D-cache line size
0 → 16 bytes

 63

Godson-2E software manual

Field Descriptions
1 → 32 bytes
In Godson-2E, this bit is set to 1.
kseg0 coherence algorithm. K0

5.15 Load Linked Address (LLAddr) Register (17)

The read/write Load Linked Address (LLAddr) register contains the physical

address read by the most recent Load Linked instruction. It is not defined in

Godson-2E.

5.16 Watch Register

The Watch register is a 64-bit read/write register which contains a virtual address

of a doubleword in the virtual memory. If enabled, any attempt to read or write at this

location causes a Watch exception. This feature is used for debugging.

Figure 5-16 describes the format of the Watch register.Table 5-14 describes the

fields of the Watch register.

63 3 2 1 0

VADDR 0 R W

61 1 1 1

Figure 5-16 Watch Register Formats

Table 5-14 Watch Register Fields
Field Description
VADDR Bits 63:3 of the virtual address
R Trap on load references if set to 1
W Trap on store references if set to 1
0 Reserved. Must be written as zeroes, and returns zeroes when read.

5.17 Xcontext Register(20)

The read/write XContext register contains a pointer to an entry in the page table

entry (PTE) array, an operating system data structure that stores virtual-to-physical

address translations. When there is a TLB miss, the operating system software loads

the TLB with the missing translation from the PTE array. The XContext register no

longer shares the information provided in the BadVAddr register, as it did in the

R4400.

 64

Godson-2E software manual

The XContext register is for use with the XTLB refill handler, which loads TLB

entries for references to a 64-bit address space, and is included solely for operating

system use. The operating system sets the PTE base field in the register, as needed.

Normally, the operating system uses the Context register to address the current page

map, which resides in the kernel-mapped segment kseg3.

Figure 5-17 shows the format of the XContext register;Table 5-15 describes the

XContext register fields.

Figure 5-17 XContext Register Format

The 31-bit BadVPN2 field holds bits 43:13 of the virtual address that caused the

TLB miss; bit 12 is excluded because a single TLB entry maps to an even-odd page

pair. For a 4-Kbyte page size, this format may be used directly to address the pairtable

of 8-byte PTEs. For other page and PTE sizes, shifting and masking this value

produces the appropriate address.

Table 5-15 Fields in the XContext Register
Field Description
BadVPN2 The Bad Virtual Page Number/2 field is written by hardware on a

miss. It
contains the VPN of the most recent invalidly translated virtual

address.
R The Region field contains bits 63:62 of the virtual address.

002 = user

012 = supervisor

112 = kernel.

0 Reserved. Must be written as zeroes, and returns zeroes when read.
PTEBase The Page Table Entry Base read/write field is normally written with

a value that allows the operating system to use the Context register as a
pointer into the current PTE array in memory.

5.18 Diagnostic Register(22)

CP0 register 22, the Diagnostic register, is a new 64-bit register for Godson-2E

 65

Godson-2E software manual

specific diagnostic functions. (Since this register is designed for local use, the

diagnostic functions are subject to change without notice.) Currently, this register

helps handle the ITLB, BTB(branch target buffer) and RAS(return address stack).

Diagnostic Register
63 8 7 6 5 4 3 2 1 0

0 W-CAC W-ISS S-ISS S-FET 0 ITLB BTB RAS

56 1 1 1 1 1 1 1 1

Figure 5-18 Diagnostic Register

Table 5-16 Diagnostic Register Fields
Field Description
0 Reserved. Must be written as zeroes, and returns zeroes when read.
W-CAC cancel the constraint on wait-cache operation
W-ISS cancel the constraint on wait-issue operation
S-ISS cancel the constraint on store-issue operation
S-FET cancel the constraint on store-fetch operation
ITLB write 1 to this bit to clear the ITLB
BTB write 1 to this bit to clear the BTB
RAS write 1 to this bit to disable the RAS

5.19 Performance Counter Registers (24,25)

The Godson-2E processor defines two performance counters, which are mapped

into CP0 register 24 and 25. The associated control fields reside in CP0 register 24.

Each counter is a 32-bit read/write register and increments by one each time the

countable event, specified in its associated control field, occurs. Each counter can

independently count one type of event at a time.

Performance Counter Register 24

63 13 12 9 8 5 4 3 2 1 0

0 Event1 Event0 IE U S K EXL

51 1 1 1 1 1 1 1

Performance Counter Register 25

63 32 31 0

Counter1 Counter0

32 32

Figure 5-19 Performance Counter Registers Format

The counter asserts an interrupt, IP[7], when its most significant bit (bit 31)

 66

Godson-2E software manual

becomes one (the counter overflows) and the associated control field enables the

interrupt . The counting continues after counter overflows whether or not an interrupt

is signalled.

The format of the control registers are shown inFigure 5-19.Table 5-17 describes

control fields format and Table 5-18 describes count enable bit definition. Table

5-19 and Table 5-20 describe events of counter 0 and counter 1 respectively.

Table 5-17 Control Fields Format
[12:9] [8:5] [4] [3:0]

Event 1 select Event 0 select IP[7] interrupt enable Count enable bits
(K/S/U/EXL)

Table 5-18 Count Enable Bit Definition
Count Enable Bit Count Qualifier(CP0 Status Register Fields)
K KSU = 0 (Kernel mode), EXL = 0, ERL = 0
S KSU = 1 (Supervisor mode), EXL = 0, ERL = 0
U KSU = 2 (User mode), EXL = 0, ERL = 0
EXL EXL = 1, ERL = 0

Table 5-19 Counter 0 Events
Event Signal Description

0000 Cycles cycles
0001 Brbus.valid Branch instruction
0010 Jrcount JR instruction
0011 Jr31count JR instruction with field rs=31
0100 Imemread.valid&

imemread_allow
Primary instruction cache misses.

0101 Rissuebus0.valid Alu1 op issued
0110 Rissuebus2.valid Mem op issued
0111 Rissuebus3.valid Falu1 op issued
1000 Cp0fwd.valid CP0 queue forward loads
1001 Mreadreq.valid&

Mreadreq_allow
Reads from main memory

1010 Fxqfull Times of fix issue queue full
1011 Roqfull Times of reorder queue full
1100 Cp0qfull Times of CP0 queue full
1101 Exbus.ex &

excode=34,35
Tlb Refill exception

1110 Exbus.ex & Interrupt

 67

Godson-2E software manual

Event Signal Description
Excode=0

1111 Exbus.ex &
Excode=63

Internal Exception

Table 5-20 Counter 1 Events
Event Signal Description

0000 Cmtbus?.valid Commit ops
0001 Brbus.brerr Branch Misprediction
0010 Jrmiss JR Misprediction
0011 Jr31miss JR with rs=31 Misprediction
0100 Dmemread.valid&

Dmemread_allow
Primary Data cache misses

0101 Rissuebus1.valid Alu2 op issued
0110 Rissuebus4.valid Falu2 op issued
0111 Duncache_valid&

Duncache_allow
Uncached Accesses

1000 Dmemref.op=store Store ops
1001 Mwritereq.valid&

Mwritereq_allow
Writes to main memory

1010 Ftqfull Times of float pointer queue full
1011 Brqfull Times of branch queue full
1100 Exbus.ex &

Op==OP_TLBPI
Itlb misses

1101 Exbus.ex Total exceptions
1110 Mispec Load speculation misses
1111

5.20 TagLo (28) and TagHi (29) Registers

The TagLo and TagHi registers are 32-bit read/write registers that hold the tag

and state of primary cache or secondary cache. The Tag registers are written by the

CACHE and MTC0 instructions.

Figure 5-20 shows the format of these registers for primary cache operations.

Table 5-21 lists the field definitions of the TagLo and TagHi registers.

TagLo Register

31 8 7 6 5 4 3 0

PTAG[23：0] CS SCSETI 0

24 2 2 4

TagHi Register

 68

Godson-2E software manual

31 4 3 0

0 PTAG[28：24]

28 4

Figure 5-20 TagLo and TagHi Register (P-cache) Formats

Table 5-21 Cache Tag Register Fields
Field Description

PTAG Specifies the physical address bits 39:12
CS Specifies the primary cache state
SCSETI Specifies the set of secondary cache
0 Reserved. Must be written as zeroes, and returns zeroes when read.

5.21 ErrorEPC Register(30)

The ErrorEPC register is similar to the EPC register, except that ErrorEPC is

used on ECC and parity error exceptions. It is also used to store the program counter

(PC) on Reset, Soft Reset, and nonmaskable interrupt (NMI) exceptions.

The read/write ErrorEPC register contains the virtual address at which

instruction processing can resume after servicing an error.Figure 5-21 shows the

format of the ErrorEPC register.

Figure 5-21 ErrorEPC Register Format

5.22 CP0 Instructions

Table 5-22 lists the CP0 instructions defined for the Godson-2E processor. Since

they are implementation dependent, they are included here and not in the MIPS ISA

manual.

Table 5-22 CP0 Instructions
OpCode Description

 69

Godson-2E software manual

CACHE Cache Operation
DMFC0 Doubleword Move From CP0
DMTC0 Doubleword Move To CP0
ERET Exception Return
MFC0 Move From CP0
MTC0 Move To CP0
TLBP Prove TLB for Matching Entry
TLBR Read Indexed TLB Entry
TLBWI Write Indexed TLB Entry
TLBWR Write Random TLB Entry

Hazards

The processor detects most of the pipeline hazards in hardware, including CP0

hazards and load hazards. No NOP instructions are required to correct instruction

sequences.

 70

Godson-2E software manual

6 CPU Exceptions

This chapter describes the processor exceptions—a general view of the cause and
return of an exception, exception vector locations, and the types of exceptions that are
supported, including the cause, processing, and servicing of each exception.

6.1 Causing and Returning from an Exceptions

When the processor takes an exception, the EXL bit in the Status register is set to
1, which means the system is in Kernel mode. After saving the appropriate state, the
exception handler typically changes the KSU bits in the Status register to Kernel mode
and resets the EXL bit back to 0. When restoring the state and restarting, the handler
restores the previous value of the KSU field and sets the EXL bit back to 1.

Returning from an exception also resets the EXL bit to 0 (see the ERET
instruction in Appendix A).

6.2 Exception Vector Locations

The Cold Reset, Soft Reset, and NMI exceptions are always vectored to the
dedicated Cold Reset exception vector at an uncached and unmapped address.
Addresses for all other exceptions are a combination of a vector offset and a base
address.

The boot-time vectors (when BEV = 1 in the Status register) are at uncached and
unmapped addresses. During normal operation (when BEV = 0) the regular exceptions
have vectors in cached address spaces; Cache Error is always at an uncached address
so that cache error handling can bypass a suspect cache.

The exception vector assignments for the Godson-2E processor shown in Table
6-1。

Table 6-1 Exception Vector Addresses
BEV Exception Type Exception Vector Address
 Cold Reset/Soft Reset/ NMI 0xFFFFFFFF BFC00000

TLB Refill (EXL=0) 0xFFFFFFFF 80000000
XTLB Refill (EXL=0) 0xFFFFFFFF 80000000
Cache Error 0xFFFFFFFF A0000100

BEV = 0

Others 0xFFFFFFFF 80000180
TLB Refill (EXL=0) 0xFFFFFFFF BFC00200
XTLB Refill (EXL=0) 0xFFFFFFFF BFC00200
Cache Error 0xFFFFFFFF BFC00300

BEV = 1

Others 0xFFFFFFFF BFC00380

 71

Godson-2E software manual

6.3 TLB Refill Vector Selection

In all present implementations of the MIPS III ISA, there are two TLB refill

exception vectors:

• one for references to 32-bit address space (TLB Refill)

• one for references to 64-bit address space (XTLB Refill)

Table 6-1 lists the exception vector addresses.

The TLB refill vector selection is based on the address space of the address (user,

supervisor, or kernel) that caused the TLB miss, and the value of the corresponding

extended addressing bit in the Status register (UX, SX, or KX). The current operating

mode of the processor is not important except that it plays a part in specifying in

which address space an address resides. The Context and Xcontext registers are

entirely separate page-table-pointer registers that point to and refill from two separate

page tables, however these two registers share BadVPN2 fields (see Chapter 6 for

more information). For all TLB exceptions (Refill, Invalid, TLBL or TLBS), the

BadVPN2 fields of both registers are loaded as they were in the R4400.

In contrast to the R10000, the R4400 processor selects the vector based on the

current operating mode of the processor (user, supervisor, or kernel) and the value of

the corresponding extended addressing bit in the Status register (UX, SX or KX). In

addition, the Context and XContext registers are not implemented as entirely separate

registers; the PTEbase fields are shared. A miss to a particular address goes through

either TLB Refill or XTLB Refill, depending on the source of the reference. There

can be only be a single page table unless the refill handlers execute

address-deciphering and page table selection in software.

NOTE: Refills for the 0.5 Gbyte supervisor mapped region, sseg/ksseg, are

controlled by the value of KX rather than SX. This simplifies control of the processor

when supervisor mode is not being used.

6.4 Priority of Exceptions

The remainder of this chapter describes exceptions in the order of their priority

shown in Table 6-2 (with certain of the exceptions, such as the TLB exceptions and

Instruction/Data exceptions, grouped together for convenience). While more than one

exception can occur for a single instruction, only the exception with the highest

priority is reported. Some exceptions are not caused by the instruction executed at the

 72

Godson-2E software manual

time, and some exceptions may be deferred. See the individual description of each

exception in this chapter for more detail.

Table 6-2 Exception Priority Order
Exception Priority Order
Cold Reset (highest priority)
Soft Reset
Nonmaskable Interrupt (NMI)‡
Cache error –– Instruction cache*
Cache error –– Data cache*
Cache error –– Secondary cache*
Cache error –– System interface*
Address error –– Instruction fetch
TLB refill –– Instruction fetch
TLB invalid –– Instruction fetch
Bus error –– Instruction fetch
Integer overflow, Trap, System Call, Breakpoint, Reserved Instruction, Coprocessor

Unusable, or Floating-Point Exception
Address error –– Data access
TLB refill –– Data access
TLB invalid –– Data access
TLB modified –– Data write
Watch*
Bus error –– Data access
Interrupt (lowest priority)*

Generally speaking, the exceptions described in the following sections are

handled (“processed”) by hardware; these exceptions are then serviced by software.

6.5 Cold Reset Exception

Cause

The Cold Reset exception is taken for a power-on or “cold” reset; it occurs when

the SysGnt* signal is asserted while the SysReset* signal is also asserted.† This

exception is not maskable.

Processing

The CPU provides a special interrupt vector for this exception:

• location 0xBFC0 0000 in 32-bit mode

• location 0xFFFF FFFF BFC0 0000 in 64-bit mode

 73

Godson-2E software manual

The Cold Reset vector resides in unmapped and uncached CPU address space, so

the hardware need not initialize the TLB or the cache to process this exception. It also

means the processor can fetch and execute instructions while the caches and virtual

memory are in an undefined state.

The contents of all registers in the CPU are undefined when this exception

occurs, except for the following register fields:

• In the Status register, SR and TS are cleared to 0, and ERL and BEV are set to 1.

All other bits are undefined.

• Config register is initialized with the boot mode bits read from the serial input.

• The Random register is initialized to the value of its upper bound.

• The Wired register is initialized to 0.

• The EW bit in the CacheErr register is cleared.

• The ErrorEPC register gets the PC.

• The FrameMask register is set to 0.

• Branch prediction bits are set to 0.

• Performance Counter register Event field is set to 0.

• All pending cache errors, delayed watch exceptions, and external interrupts are

cleared.

Servicing

The Cold Reset exception is serviced by:

• initializing all processor registers, coprocessor registers, caches, and the

memory system

• performing diagnostic tests

• bootstrapping the operating system

6.6 Soft Reset Exception

Cause

The Soft Reset exception occurs in response to a Soft Reset.

A Soft Reset exception is not maskable.

The processor differentiates between a Cold Reset and a Soft Reset as follows:

• A Cold Reset occurs when the SysGnt* signal is asserted while the SysReset*

signal is also asserted.

• A Soft Reset occurs if the SysGnt* signal remains negated when a SysReset*

 74

Godson-2E software manual

signal is asserted.

In Godson-2E processor, there is no way for software to differentiate between a

Soft Reset exception and an NMI exception.

Processing

When a Soft Reset exception occurs, the SR bit of the Status register is set,

distinguishing this exception from a Cold Reset exception.

When a Soft Reset is detected, the processor initializes minimum processor state.

This allows the processor to fetch and execute the instructions of the exception

handler, which in turn dumps the current architectural state to external logic.

Hardware state that loses architectural state is not initialized unless it is necessary to

execute instructions from unmapped uncached space that reads the registers, TLB,

and cache contents.

The Soft Reset can begin on an arbitrary cycle boundary and can abort

multicycle operations in progress, so it may alter machine state. Hence, caches,

memory, or other processor states can be inconsistent: data cache blocks may stay at

the refill state and any cached loads/stores to these blocks will hang the processor.

Therefore, CacheOps should be used to dump the cache contents.

After the processor state is read out, the processor should be reset with a Cold

Reset sequence.

A Soft Reset exception preserves the contents of all registers, except for:

• ErrorEPC register, which contains the PC

• ERL bit of the Status register, which is set to 1

• SR bit of the Status register, which is set to 1 on Soft Reset or an NMI; 0 for a

Cold Reset

• BEV bit of the Status register, which is set to 1

• TS bit of the Status register, which is set to 0

• PC is set to the reset vector 0xFFFF FFFF BFC0 0000

• clears any pending Cache Error exceptions

Servicing

A Soft Reset exception is intended to quickly reinitialize a previously operating

processor after a fatal error.

It is not normally possible to continue program execution after returning from

 75

Godson-2E software manual

this exception, since a SysReset* signal can be accepted anytime.

6.7 NMI Exception

Cause

The NMI exception is caused by assertion of the SysNMI* signal.

An NMI exception is not maskable.

In Godson-2E processor, there is no way for software to differentiate between a

Soft Reset exception and an NMI exception.

Processing

When an NMI exception occurs, the SR bit of the Status register is set,

distinguishing this exception from a Cold Reset exception.

An exception caused by an NMI is taken at the instruction boundary. It does not

abort any state machines, preserving the state of the processor for diagnosis. The

Cause register remains unchanged and the system jumps to the NMI exception

handler (see Table 6-1).

An NMI exception preserves the contents of all registers, except for:

• ErrorEPC register, which contains the PC

• ERL bit of the Status register, which is set to 1

• SR bit of the Status register, which is set to 1 on Soft Reset or an NMI; 0 for a

Cold Reset

• BEV bit of the Status register, which is set to 1

• TS bit of the Status register, which is set to 0

• PC is set to the reset vector 0xFFFF FFFF BFC0 0000

• clears any pending Cache Error exceptions

Servicing

The NMI can be used for purposes other than resetting the processor while

preserving cache and memory contents. For example, the system might use an NMI to

cause an immediate, controlled shutdown when it detects an impending power failure.

It is not normally possible to continue program execution after returning from

this exception, since an NMI can occur during another error exception.

 76

Godson-2E software manual

6.8 Address Error Exception

Cause

The Address Error exception occurs when an attempt is made to execute one of

the following:

• reference to an illegal address space

• reference the supervisor address space from User mode

• reference the kernel address space from User or Supervisor mode

• load or store a doubleword that is not aligned on a doubleword boundary

• load, fetch, or store a word that is not aligned on a word boundary

• load or store a halfword that is not aligned on a halfword boundary

This exception is not maskable.

Processing

The common exception vector is used for this exception. The AdEL or AdES

code in the Cause register is set, indicating whether the instruction caused the

exception with an instruction reference, load operation, or store operation shown by

the EPC register and BD bit in the Cause register.

When this exception occurs, the BadVAddr register retains the virtual address

that was not properly aligned or that referenced protected address space. The contents

of the VPN field of the Context, XContext, and EntryHi registers are undefined, as are

the contents of the EntryLo register.

The EPC register contains the address of the instruction that caused the

exception, unless this instruction is in a branch delay slot. If it is in a branch delay slot,

the EPC register contains the address of the preceding branch instruction and the BD

bit of the Cause register is set as indication.

Servicing

The process executing at the time is handed a UNIX SIGSEGV (segmentation

violation) signal. This error is usually fatal to the process incurring the exception.

6.9 TLB Exceptions

Three types of TLB exceptions can occur:

• TLB Refill occurs when there is no TLB entry that matches an attempted

 77

Godson-2E software manual

reference to a mapped address space.

• TLB Invalid occurs when a virtual address reference matches a TLB entry that

is marked invalid.

• TLB Modified occurs when a store operation virtual address reference to

memory matches a TLB entry which is marked valid but is not dirty (the entry is not

writable).

The following three sections describe these TLB exceptions.

NOTE: TLB Refill vector selection is also described earlier in this chapter, in

the section titled, TLB Refill Vector Selection.

6.10 TLB Refill Exceptions

Cause

The TLB refill exception occurs when there is no TLB entry to match a reference

to a mapped address space. This exception is not maskable.

Processing

There are two special exception vectors for this exception; one for references to

32-bit address spaces, and one for references to 64-bit address spaces. The UX,

SX,and KX bits of the Status register determine whether the user, supervisor or kernel

address spaces referenced are 32-bit or 64-bit spaces; the TLB refill vector is selected

based upon the address space of the address causing the TLB miss (user, supervisor,

or kernel mode address space), together with the value of the corresponding extended

addressing bit in the Status register (UX, SX, or KX). The current operating mode of

the processor is not important except that it plays a part in specifying in which space

an address resides. An address is in user space if it is in useg, suseg, kuseg, xuseg,

xsuseg, or xkuseg (see the description of virtual address spaces in Chapter 16). An

address is in supervisor space if it is in sseg, ksseg, xsseg or xksseg, and an address is

in kernel space if it is in either kseg3 or xkseg. Kseg0, kseg1, and kernel physical

spaces (xkphys) are kernel spaces but are not mapped.

All references use these vectors when the EXL bit is set to 0 in the Status register.

This exception sets the TLBL or TLBS code in the ExcCode field of the Cause register.

This code indicates whether the instruction, as shown by the EPC register and the BD

bit in the Cause register, caused the miss by an instruction reference, load operation,

or store operation.

 78

Godson-2E software manual

When this exception occurs, the BadVAddr, Context, XContext and EntryHi

registers hold the virtual address that failed address translation. The EntryHi register

also contains the ASID from which the translation fault occurred. The Random

register normally contains a valid location in which to place the replacement TLB

entry. The contents of the EntryLo register are undefined. The EPC register contains

the address of the instruction that caused the exception, unless this instruction is in a

branch delay slot, in which case the EPC register contains the address of the

preceding branch instruction and the BD bit of the Cause register is set.

Servicing

To service this exception, the contents of the Context or XContext register are

used as a virtual address to fetch memory locations containing the physical page

frame and access control bits for a pair of TLB entries. The two entries are placed into

the EntryLo0/EntryLo1 register; the EntryHi and EntryLo registers are written into the

TLB.

It is possible that the virtual address used to obtain the physical address and

access control information is on a page that is not resident in the TLB. This condition

is processed by allowing a TLB refill exception in the TLB refill handler. This second

exception goes to the common exception vector because the EXL bit of the Status

register is set.

6.11 TLB Invalid Exception

Cause

The TLB invalid exception occurs when a virtual address reference matches a

TLB entry that is marked invalid (TLB valid bit cleared). This exception is not

maskable.

Processing

The common exception vector is used for this exception. The TLBL or TLBS

code in the ExcCode field of the Cause register is set. This indicates whether the

instruction, as shown by the EPC register and BD bit in the Cause register, caused the

miss by an instruction reference, load operation, or store operation.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi

registers contain the virtual address that failed address translation. The EntryHi

 79

Godson-2E software manual

register also contains the ASID from which the translation fault occurred. The

Random register normally contains a valid location in which to put the replacement

TLB entry. The contents of the EntryLo registers are undefined.

The EPC register contains the address of the instruction that caused the

exception unless this instruction is in a branch delay slot, in which case the EPC

register contains the address of the preceding branch instruction and the BD bit of the

Cause register is set.

Servicing

A TLB entry is typically marked invalid when one of the following is true:

• a virtual address does not exist

• the virtual address exists, but is not in main memory (a page fault)

• a trap is desired on any reference to the page (for example, to maintain a

reference bit)

After servicing the cause of a TLB Invalid exception, the TLB entry is located

with TLBP (TLB Probe), and replaced by an entry with that entry’s Valid bit set.

6.12 TLB Modified Exception

Cause

The TLB modified exception occurs when a store operation virtual address

reference to memory matches a TLB entry that is marked valid but is not dirty and

therefore is not writable. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Mod code in the

Cause register is set.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi

registers contain the virtual address that failed address translation. The EntryHi

register also contains the ASID from which the translation fault occurred. The

contents of the EntryLo register are undefined.

The EPC register contains the address of the instruction that caused the

exception unless that instruction is in a branch delay slot, in which case the EPC

register contains the address of the preceding branch instruction and the BD bit of the

Cause register is set.

 80

Godson-2E software manual

Servicing

The kernel uses the failed virtual address or virtual page number to identify the

corresponding access control information. The page identified may or may not permit

write accesses; if writes are not permitted, a write protection violation occurs.

If write accesses are permitted, the page frame is marked dirty/writable by the

kernel in its own data structures. The TLBP instruction places the index of the TLB

entry that must be altered into the Index register. The EntryLo register is loaded with a

word containing the physical page frame and access control bits (with the D bit set),

and the EntryHi and EntryLo registers are written into the TLB.

6.13 Bus Error Exception

Cause

A Bus Error exception occurs when a processor block read, upgrade, or

double/single/partial-word read request receives an external ERR completion response,

or a processor double/single/partial-word read request receives an external ACK

completion response where the associated external double/single/partial-word data

response contains an uncorrectable error. This exception is not maskable.

Processing

The common interrupt vector is used for a Bus Error exception. The IBE or DBE

code in the ExcCode field of the Cause register is set, signifying whether the

instruction (as indicated by the EPC register and BD bit in the Cause register) caused

the exception by an instruction reference, load operation, or store operation.

The EPC register contains the address of the instruction that caused the

exception, unless it is in a branch delay slot, in which case the EPC register contains

the address of the preceding branch instruction and the BD bit of the Cause register is

set.

Servicing

The physical address at which the fault occurred can be computed from

information available in the CP0 registers.

• If the IBE code in the Cause register is set (indicating an instruction fetch

reference), the instruction that caused the exception is located at the virtual address

 81

Godson-2E software manual

contained in the EPC register (or 4+ the contents of the EPC register if the BD bit of

the Cause register is set).

• If the DBE code is set (indicating a load or store reference), the instruction that

caused the exception is located at the virtual address contained in the EPC register (or

4+ the contents of the EPC register if the BD bit of the Cause register is set).

The virtual address of the load and store reference can then be obtained by

interpreting the instruction. The physical address can be obtained by using the TLBP

instruction and reading the EntryLo registers to compute the physical page number.

The process executing at the time of this exception is handed a UNIX SIGBUS (bus

error) signal, which is usually fatal.

6.14 Integer Overflow Exception

Cause

An Integer Overflow exception occurs when an ADD, ADDI, SUB, DADD,

DADDI or DSUB instruction results in a 2’s complement overflow. This exception is

not maskable.

Processing

The common exception vector is used for this exception, and the OV code in the

Cause register is set.

The EPC register contains the address of the instruction that caused the

exception unless the instruction is in a branch delay slot, in which case the EPC

register contains the address of the preceding branch instruction and the BD bit of the

Cause register is set.

Servicing

The process executing at the time of the exception is handed a UNIX SIGFPE/

FPE_INTOVF_TRAP (floating-point exception/integer overflow) signal. This error is

usually fatal to the current process.

6.15 Trap Exception

Cause

The Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI,

TGEUI, TLTI, TLTUI, TEQI, or TNEI instruction results in a TRUE condition. This

 82

Godson-2E software manual

exception is not maskable.

Processing

The common exception vector is used for this exception, and the Tr code in the

Cause register is set.

The EPC register contains the address of the instruction causing the exception

unless the instruction is in a branch delay slot, in which case the EPC register contains

the address of the preceding branch instruction and the BD bit of the Cause register is

set.

Servicing

The process executing at the time of a Trap exception is handed a UNIX

SIGFPE/FPE_INTOVF_TRAP (floating-point exception/integer overflow) signal.

This error is usually fatal.

6.16 System Call Exception

Cause

A System Call exception occurs during an attempt to execute the SYSCALL

instruction. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Sys code in the

Cause register is set.

The EPC register contains the address of the SYSCALL instruction unless it is in

a branch delay slot, in which case the EPC register contains the address of the

preceding branch instruction.

If the SYSCALL instruction is in a branch delay slot, the BD bit of the Status

register is set; otherwise this bit is cleared.

Servicing

When the System Call exception occurs, control is transferred to the applicable

system routine. Additional distinctions can be made by analyzing the Code field of the

SYSCALL instruction (bits 25:6), and loading the contents of the instruction whose

address the EPC register contains.

 83

Godson-2E software manual

To resume execution, the EPC register must be altered so that the SYSCALL

instruction does not re-execute; this is accomplished by adding a value of 4 to the

EPC register (EPC register + 4) before returning.

If a SYSCALL instruction is in a branch delay slot, a more complicated

algorithm, beyond the scope of this description, may be required.

6.17 Breakpoint Exception

Cause

A Breakpoint exception occurs when an attempt is made to execute the BREAK

instruction. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the BP code in the

Cause register is set.

The EPC register contains the address of the BREAK instruction unless it is in a

branch delay slot, in which case the EPC register contains the address of the

preceding branch instruction.

If the BREAK instruction is in a branch delay slot, the BD bit of the Status

register is set, otherwise the bit is cleared.

Servicing

When the Breakpoint exception occurs, control is transferred to the applicable

system routine. Additional distinctions can be made by analyzing the Code field of the

BREAK instruction (bits 25:6), and loading the contents of the instruction whose

address the EPC register contains. A value of 4 must be added to the contents of the

EPC register (EPC register + 4) to locate the instruction if it resides in a branch delay

slot.

To resume execution, the EPC register must be altered so that the BREAK

instruction does not re-execute; this is accomplished by adding a value of 4 to the

EPC register (EPC register + 4) before returning.

If a BREAK instruction is in a branch delay slot, interpretation of the branch

instruction is required to resume execution.

 84

Godson-2E software manual

6.18 Reserved Instruction Exception

Cause

The Reserved Instruction exception occurs when one of the following conditions

occurs:

• an attempt is made to execute an instruction with an undefined major opcode

(bits 31:26)

• an attempt is made to execute a SPECIAL instruction with an undefined minor

opcode (bits 5:0)

• an attempt is made to execute a REGIMM instruction with an undefined minor

opcode (bits 20:16)

• an attempt is made to execute 64-bit operations in 32-bit mode when in User or

Supervisor modes

• an attempt is made to execute a COP1X when the MIPS IV ISA is not enabled

64-bit operations are always valid in Kernel mode regardless of the value of the

KX bit in the Status register.

This exception is not maskable.

Processing

The common exception vector is used for this exception, and the RI code in the

Cause register is set.

The EPC register contains the address of the reserved instruction unless it is in a

branch delay slot, in which case the EPC register contains the address of the

preceding branch instruction.

Servicing

No instructions in the MIPS ISA are currently interpreted. The process executing

at the time of this exception is handed a UNIX SIGILL/ILL_RESOP_FAULT (illegal

instruction/reserved operand fault) signal. This error is usually fatal.

6.19 Coprocessor Unusable Exception

Cause

The Coprocessor Unusable exception occurs when an attempt is made to execute

a coprocessor instruction for either:

 85

Godson-2E software manual

• a corresponding coprocessor unit (CP1 or CP2) that has not been marked usable,

or

• CP0 instructions, when the unit has not been marked usable and the process

executes in either User or Supervisor mode.

This exception is not maskable.

Processing

The common exception vector is used for this exception, and the CpU code in

the Cause register is set. The contents of the Coprocessor Usage Error field of the

coprocessor Control register indicate which of the four coprocessors was referenced.

The EPC register contains the address of the unusable coprocessor instruction unless

it is in a branch delay slot, in which case the EPC register contains the address of the

preceding branch instruction.

Servicing

The coprocessor unit to which an attempted reference was made is identified by

the Coprocessor Usage Error field, which results in one of the following situations:

• If the process is entitled access to the coprocessor, the coprocessor is marked

usable and the corresponding user state is restored to the coprocessor.

• If the process is entitled access to the coprocessor, but the coprocessor does not

exist or has failed, interpretation of the coprocessor instruction is possible.

• If the BD bit is set in the Cause register, the branch instruction must be

interpreted; then the coprocessor instruction can be emulated and execution resumed

with the EPC register advanced past the coprocessor instruction.

• If the process is not entitled access to the coprocessor, the process executing at

the time is handed a UNIX SIGILL/ILL_PRIVIN_FAULT (illegal

instruction/privileged instruction fault) signal. This error is usually fatal.

6.20 Floating-Point Exception

Cause

The Floating-Point exception is used by the floating-point coprocessor. This

exception is not maskable.

 86

Godson-2E software manual

Processing

The common exception vector is used for this exception, and the FPE code in the

Cause register is set.

The contents of the Floating-Point Control/Status register indicate the cause of

this exception.

Servicing

This exception is cleared by clearing the appropriate bit in the Floating-Point

Control/Status register.

6.21 Watch Exception

Cause

A Watch exception occurs when a load or store instruction references the

physical address specified in the WatchLo/WatchHi System Control Coprocessor

(CP0) registers. The WatchLo register specifies whether a load or store initiated this

exception.

A Watch exception violates the rules of a precise exception in the following way:

If the load or store reference which triggered the Watch exception has a

cacheable address and misses in the data cache, the line will then be read from

memory into the secondary cache if necessary, and refilled from the secondary cache

into the data cache. In all other cases, cache state is not affected by an instruction

which takes a Watch exception.

The CACHE instruction never causes a Watch exception.

The Watch exception is postponed if either the EXL or ERL bit is set in the Status

register. If either bit is set, the instruction referencing the WatchLo/WatchHi address

is executed and the exception is delayed until the delay condition is cleared; that is,

until ERL and EXL both are cleared (set to 0). The EPC contains the address of the

next unexecuted instruction.

A delayed Watch exception is cleared by system reset or by writing a value to

the WatchLo register.†

Watch is maskable by setting the EXL or ERL bits in the Status register.

Processing

The common exception vector is used for this exception, and the Watch code in

 87

Godson-2E software manual

the Cause register is set.

Servicing

The Watch exception is a debugging aid; typically the exception handler

transfers control to a debugger, allowing the user to examine the situation.

To continue program execution, the Watch exception must be disabled to execute

the faulting instruction. The Watch exception must then be reenabled. The faulting

instruction can be executed either by interpretation or by setting breakpoints.

6.22 Interrupt Exception

Cause

The Interrupt exception occurs when one of the eight interrupt conditions is

asserted. The significance of these interrupts is dependent upon the specific system

implementation.

Each of the eight interrupts can be masked by clearing the corresponding bit in

the Interrupt-Mask (IM) field of the Status register, and all of the eight interrupts can

be masked at once by clearing the IE bit of the Status register.

Processing

The common exception vector is used for this exception, and the Int code in the

Cause register is set.

The IP field of the Cause register indicates current interrupt requests. It is

possible that more than one of the bits can be simultaneously set (or even no bits may

be set) if the interrupt is asserted and then deasserted before this register is read.

On Cold Reset, an R4400 processor can be configured with IP[7] either as a

sixth external interrupt, or as an internal interrupt set when the Count register equals

the Compare register. There is no such option on the R10000 processor; IP[7] is

always an internal interrupt that is set when one of the following occurs:

• the Count register is equal to the Compare register

• either one of the two performance counters overflows

Software needs to poll each source to determine the cause of the interrupt (which

could come from more than one source at a time). For instance, writing a value to the

Compare register clears the timer interrupt but it may not clear IP[7] if one of the

performance counters is simultaneously overflowing. Performance counter interrupts

 88

Godson-2E software manual

can be disabled individually without affecting the timer interrupt, but there is no way

to disable the timer interrupt without disabling the performance counter interrupt.

Servicing

If the interrupt is caused by one of the two software-generated exceptions

(described in Chapter 6, the section titled “Software Interrupts”), the interrupt

condition is cleared by setting the corresponding Cause register bit, IP[1:0], to 0.

Software interrupts are imprecise. Once the software interrupt is enabled,

program execution may continue for several instructions before the exception is taken.

Timer interrupts are cleared by writing to the Compare register. The Performance

Counter interrupt is cleared by writing a 0 to bit 31, the overflow bit, of the counter.

Cold Reset and Soft Reset exceptions clear all the outstanding external interrupt

requests, IP[2] to IP[6].

If the interrupt is hardware-generated, the interrupt condition is cleared by

correcting the condition causing the interrupt pin to be asserted.

 89

Godson-2E software manual

7 Floating-Point Unit

This section describes the floating-point unit (FPU) of the Godson-2E processor,

including the programming model, instruction set and formats, instruction pipeline,

and exceptions. The FPU, with associated system software, fully conforms to the

requirements of ANSI/IEEE Standard 754–1985, IEEE Standard for Binary

Floating-Point Arithmetic. In addition, the Godson-2E’s FPU can execute SIMD

fixed-point multimedia instructions.

7.1 Overview

The FPU operates as a coprocessor for the CPU (it is assigned coprocessor label

CP1), and extends the CPU instruction set to perform arithmetic operations on

floating-point values.

The Floating-Point unit consists of the following functional units:

 FALU1 unit

 FALU2 unit

The FALU2 unit performs floating-point multiply-add, multiply, addition,

subtraction, divide and square-root operations. The FALU1 unit also performs

floating-point multiply-add, multiply, addition, subtraction operations and other

floating-point operations. In addition, the Godson-2E FPU can perform PS

(paired-single) and fixed-point multimedia instructions. Figure 7-1 illustrates the

organization of the functional units in Godson-2E’s architecture.

 91

Godson-2E software manual

Figure 7-1 The organization of the functional units in Godson-2E’s architecture

The floating-point queue can issue one instruction to the FALU1 unit and one

instruction to the FALU2 unit each cycle. The FALU1 and FALU2 unit each have

three dedicated read ports and one dedicated write port in the floating-point register

file.

7.2 FPU Programming Model

This section describes the set of FPU registers and their data organization. The

FPU registers include Floating-Point General Purpose registers (FGRs) and two

control registers: Control/Status and Implementation/Revision.

7.2.1 Floating-Point Registers

The Floating-Point Unit is the hardware implementation of Coprocessor 1 in the

MIPS IV Instruction Set Architecture. The MIPS IV ISA defines 32 logical

floating-point general registers (FGRs), Each FGR is 64 bits wide and can hold either

32-bit single-precision or 64-bit double-precision values. The hardware actually

contains 64 physical 64-bit registers in the Floating-Point Register File, from which

the 32 logical registers are taken.

FP instructions use a 5-bit logical number to select an individual FGR. These

 92

Godson-2E software manual

logical numbers are mapped to physical registers by the rename unit (regmap), before

the Floating-Point Unit executes them. Physical registers are selected using 6-bit

addresses.

The FR bit (26) in the Status register determines the number of logical

floating-point registers available to the program, and it alters the operation of single

precision load/store instructions.

 FR is reset to 0 for compatibility with earlier MIPS I and MIPS II ISAs, and

instructions use only the 16 physical even-numbered floating-point registers

(32 logical registers). Each logical register is 32 bits wide.

 FR is set to 1 for normal MIPS III and MIPS IV operations, and all 32 of the

64-bit logical registers are available.

7.2.2 Floating-Point Control Registers

The MIPS IV ISA permits up to 32 control registers to be defined for each

coprocessor, but the Godson-2E’s Floating-Point Unit uses only two:

 Control register 0, the FP Implementation and Revision register

 Control register 31, the Floating-Point Status register (FSR)

The control registers (FCRs) can only be accessed by move operations. The

Implementation/Revision register (FCR0) holds revision information about the FPU,

and the Control/Status register (FCR31) controls and monitors exceptions, holds the

result of compare operations, and establishes rounding modes.

Implementation and Revision Register, (FCR0)

The read-only Implementation and Revision register (FCR0) specifies the

implementation and revision number of the FPU. This information can determine the

coprocessor revision and performance level, and can also be used by diagnostic

software.

Table 7-1 describes the Implementation and Revision register (FCR0) fields.

Table 7-1 FCR0 Fields
Field Description

Imp[15:8] Implementation number (0x05)
Rev[7:0] Revision number in the form of y.x (0x01)
0[31:16] Reserved. Must be written as zeroes, and

returns zeroes when read.

 93

Godson-2E software manual

Control/Status Register (FCR31)

The Control/Status register (FCR31) contains control and status information that

can be accessed by instructions in either Kernel or User mode. FCR31 also controls

the arithmetic rounding mode and enables User mode traps, as well as identifying any

exceptions that may have occurred in the most recently executed instruction, along

with any exceptions that may have occurred without being trapped.

Figure 7-2 shows the format of the Control/Status register, and Table 7-2

describes the Control/Status register fields.

Figure 7-2 FP Control/Status Register Bit Assignments

Table 7-2 Control/Status Register Fields
Field Description

CC7-CC1 Condition bits 7-1. CC1 is set when the high part of paired-single compare
operation is true

FS When set, denormalized results are flushed to 0 instead of causing an
unimplemented operation exception.

CC0 Condition bit. See description of Control/Status register Condition bit.
Cause Cause bits. See description of Control/Status register Cause bits.

Enables Enable bits. See description of Control/Status register Enable bits.
Flags Flag bits. See description of Control/Status register Flag bits.
RM Rounding mode bits. See description of Control/Status register Rounding

Mode Control bits.

Control/Status Register Condition Bit

When a floating-point Compare operation takes place, the result is stored at bit

23, the Condition bit, to save or restore the state of the condition line. The CC0 bit is

set to 1 if the condition is true; the bit is cleared to 0 if the condition is false. Bit 23 is

affected only by compare and Move Control to FPU instructions.

Control/Status Register Cause Bits

Bits 17:12 in the Control/Status register contain Cause bits, as shown in Figure

7-2, which reflect the results of the most recently executed instruction. The Cause bits

are a logical extension of the CP0 Cause register; they identify the exceptions raised

by the last floating-point operation and raise an interrupt or exception if the

 94

Godson-2E software manual

corresponding enable bit is set. If more than one exception occurs on a single

instruction, each appropriate bit is set.

The Cause bits are written by each floating-point operation (but not by load,

store, or move operations). The Unimplemented Operation (E) bit is set to a 1 if

software emulation is required, otherwise it remains 0. The other bits are set to 0 or 1

to indicate the occurrence or non-occurrence (respectively) of an IEEE 754 exception.

When a floating-point exception is taken, no results are stored, and the only state

affected is the Cause bit.

Control/Status Register Enable Bits

A floating-point exception is generated any time a Cause bit and the

corresponding Enable bit are set. A floating-point operation that sets an enabled

Cause bit forces an immediate exception, as does setting both Cause and Enable bits

with CTC1.

There is no enable for Unimplemented Operation (E). Setting Unimplemented

Operation always generates a floating-point exception.

Before returning from a floating-point exception, software must first clear the

enabled Cause bits with a CTC1 instruction to prevent a repeat of the interrupt. Thus,

User mode programs can never observe enabled Cause bits set; if this information is

required in a User mode handler, it must be passed somewhere other than the Status

register.

For a floating-point operation that sets only unenabled Cause bits, no exception

occurs and the default result defined by IEEE 754 is stored. In this case, the

exceptions that were caused by the immediately previous floating-point operation can

be determined by reading the Cause field.

Control/Status Register Flag Bits

The Flag bits are cumulative and indicate that an exception was raised by an

operation that was executed since they were explicitly reset. Flag bits are set to 1 if an

IEEE 754 exception is raised, otherwise they remain unchanged. The Flag bits are

never cleared as a side effect of floating-point operations; however, they can be set or

cleared by writing a new value into the Status register, using a Move To Coprocessor

Control instruction.

When a floating-point exception is taken, the flag bits are not set by the hardware;

 95

Godson-2E software manual

floating-point exception software is responsible for setting these bits before invoking

a user handler.

Control/Status Register Rounding Mode Control Bits

Bits 1 and 0 in the Control/Status register constitute the Rounding Mode (RM)

field. As shown in Table 7-3, these bits specify the rounding mode that the FPU uses

for all floating-point operations.

Table 7-3 Rounding Mode Bit Decoding
Rounding

Mode
RM(1:0)

Mnemonic

Description

0

RN
Round result to nearest representable value; round to

value with least-significant bit 0 when the two nearest
representable values are equally near.

1 RZ Round toward 0: round to value closest to and not
greater in magnitude than the infinitely precise result.

2 RP Round toward +∞: round to value closest to and not
less than the infinitely precise result.

3 RM Round toward –∞: round to value closest to and not
greater than the infinitely precise result.

7.3 FPU Instruction Set Overview

All FPU instructions are 32 bits long, aligned on a word boundary. The

Godson-2E FPU not only performs floating-point instructions defined by MIPS

standard, but also adds some special instructions like multimedia and PS operations to

enhance Godson-2E CPU’s overall performance. These special instructions use same

opcode as floating-point instructions but extend the fmt field to define these new

instructions. The Godson-2E FPU instruction set can be divided into the following

groups according to different formats:

 Single- or double-precision floating-point instructions (fmt =16, 17).

These instructions include multiply-add, add，sub，conversion，move，

compare and branch instructions. Table 7-4 lists these floating-point

instructions.

 Paired-single (PS) floating-point instructions (fmt =11). PS instructions

can perform a pair of single-precision floating-point operations

simultaneously, which include multiply-add, add, sub, mul, abs, neg, move

and compare instructions. Table 7-5 lists the details.

 96

Godson-2E software manual

 Multimedia instructions (fmt =12~31). The media extensions for the

Godson-2E Architecture were designed to enhance performance of advanced

media and communication applications. The Godson-2E multimedia

instructions support parallel operations on byte, half-word, and word data

elements, and double-word integer data type.

 Word or double-word Fixed-point instructions (fmt =12~31). These

instructions are a subset of MIPS fixed-point instructions. They perform

fixed-point operations but share floating-point registers and data path. In

some sense they can be taken as a part of multimedia instructions.

Table 7-4 floating-point instructions in Godson-2E FPU
MADD ADD ROUND.L MFC1 CVT.S BC1F C.F C.SF

MSUB SUB TRUNC.L MTC1 CVT.D BC1T C.UN C.NGLE

NMADD MUL CEIL.L DMFC1 BC1FL C.EQ C.SEQ

NMSUB DIV FLOOR.L DMTC1 BC1TL C.UEQ C.NGL

 SQRT ROUND.W CFC1 CVT.W C.OLT C.LT

 ABS TRUNC.W CTC1 CVT.L C.ULT C.NGE

 MOV CEIL.W C.OLE C.LE

 NEG FLOOR.W C.ULE C.NGT

 97

Godson-2E software manual

Table 7-5 Paired-single (PS) instructions in Godson-2E FPU
Fmt

OP
Fmt=11

ADD Add.ps

 MADD MADD.ps
MSUB MSUB.ps
NMADD NMADD.ps
NMSUB NMSUB.ps

SUB Sub.ps

 NEG Neg.ps
 ABS Abs.ps

C.F C.F.ps
C.UN C.UN.ps

C.EQ C.EQ.ps

 C.UEQ C.UEQ.ps
 C.OLT C.OLT.ps

C.ULT C.ULT.ps
C.OLE C.OLE.ps

C.ULE C.ULE.ps

 C.SF C.SF.ps
 C.NGLE C.NGLE.ps

C.SEQ C.SEQ.ps
C.NGL C.NGL.ps
C.LT C.LT.ps

 C.NGE C.NGE.ps
 C.LE C.LE.ps

C.NGT C.NGT.ps
MUL MUL.ps
MOV MOV.ps

 98

Godson-2E software manual

7.4 FPU Formats

7.4.1 Floating-Point Format

The FPU performs both 32-bit (single-precision) and 64-bit (double-precision)

IEEE standard floating-point operations. The 32-bit single-precision format has a

24-bit signed-magnitude fraction field (f+s) and an 8-bit exponent (e); The 64-bit

double-precision format has a 53-bit signed-magnitude fraction field (f+s) and an

11-bit exponent; The 64-bit paired-single format constraints two single-precision

floating-point format. as shown in Figure 7-3 respectively.

 Single-precision format Double-precision format

Paired-single format

Figure 7-3 Floating-Point Format

As shown in the above figures, numbers in floating-point format are composed

of three fields:

 sign field, s

 biased exponent, e = E + bias

 fraction, f = .b1b2....bp–1

The range of the unbiased exponent E includes every integer between the two

values Emin and Emax inclusive, together with two other reserved values:

 Emin - 1 (to encode±0 and denormalized numbers)

 Emax +1 (to encode±∞and NaNs [Not a Number])

For single- and double-precision formats, each representable nonzero numerical

value has just one encoding. For single- and double-precision formats, the value of a

number, v, is determined by the equations shown in Table 7-6.

 99

Godson-2E software manual

Table 7-6 Equations for Calculating Values in Single and Double-Precision Floating-Point Format
NO. Equation
(1) if E = Emax+1 and f≠0, then v = NaN, regardless of s

if E = Emax+1 and f = 0, then v= (–1)s∞　 (2)
if Emin≤E≤Emax, then v = (–1)s2E(1.f) (3)

if E = Emin–1 and f≠0, then v= (–1)s2Emin(0 .f) (4)
if E = Emin–1 and f = 0, then v = (–1)s0 (5)

For all floating-point formats, if v is NaN, the most-significant bit of f

determines whether the value is a signaling or quiet NaN: v is a signaling NaN if the

most-significant bit of f is set, otherwise, v is a quiet NaN.

Table 7-7 defines the values for the format parameters; minimum and maximum

floating-point values are given in Table 7-8.

Table 7-7 Floating-Point Format Parameter Values
Format Parameter

Single Double
Emax +127 +1203
Emin -126 -1022

Exponent bias +127 +1023
Exponent width in bits 8 11

Integer bit Hidden Hidden
f (Fraction width in bits) 24 53

Format width in bits 32 64

Table 7-8 Minimum and Maximum Floating-Point Values
Type Value

Float Minimum 1.40129846e–45
Float Minimum Norm 1.17549435e–38

Float Maximum 3.40282347e+38
Double Minimum 4.9406564584124654e–324

Double Minimum Norm 2.2250738585072014e–308
Double Maximum 1.7976931348623157e+308

7.4.2 Multimedia Format

The Multimedia technology introduces new packed data types, each 64 bits long.

The data elements can be:

 eight packed, consecutive 8-bit bytes

 100

Godson-2E software manual

 four packed, consecutive 16-bit half-words

 two packed, consecutive 32-bit words

 one 64-bit double-word

The 64 bits are numbered 0 through 63. Bit 0 is the least significant bit (LSB),

and bit 63 is the most significant bit (MSB). The low-order bits are the lower part of

the data element and the high-order bits are the upper part of the data element. For

example, a word contains 16 bits numbered 0 through 15, the byte containing bits 0-7

of the word is called the low byte, and the byte containing bits 8-15 is called the high

byte.

The packed integers are held in two formats, unsigned and signed. For example,

Figure 7-4 illustrates packed unsigned half-word format and Figure 7-5 illustrates

packed signed half-word format.

Figure 7-4 packed unsigned half-word format

Figure 7-5 packed signed half-word format

7.5 FPU Instruction Pipeline Overview

The FPU provides an instruction pipeline that parallels the CPU instruction

pipeline. It shares the same ten-stage pipeline architecture with the CPU. Each FPU

instruction is implemented in one of the two floating-point functional units: FALU1

unit or FALU2 unit. The FALU2 unit performs multiply-add, mul, add, sub, div and

sqrt instructions, and the FALU1 performs multiply-add, mul, sub, add and also all

other FPU instructions.

Each FALU unit can receive one instruction every cycle, and output one result to

the floating-point register file. In FALU1 unit, the floating-point multiply-add,

multiply, add, sub operations have 6-cycle execution latency; the conversion between

integer and float operations have 4-cycle execution latency; all other operations in

FALU1 (include cvt.d.s, cvt.s.d) have 2-cycle execution latency. It means, for

 101

Godson-2E software manual

example, if the RAW dependency exists in current floating-point add instruction and

next floating-point instruction, the next instruction will wait at least 7 cycles without

forward before it can be executed. The FALU1 unit is fully pipelined, so it never need

give stall signal to the front pipeline stage. But there is possibility that two

instructions with different execution cycles will be output at the same cycle, in this

case the instruction whose execution latency is short will be output to the result bus

firstly.

The FALU2 unit performs floating-point multiply-add, multiply, add, sub, divide

and square-root operations. In FALU2 unit, the floating-point multiply-add, multiply,

add, sub operations have 6-cycle execution latency; the floating-point division

operation has 4~16 cycle execution latency; the floating-point square root operation

has 4~31 cycle execution latency. The floating-point division and square root

operations are not pipelined, so if there are two division or sqrt instructions in the

FALU2 unit, the FALU2 unit will give a stall signal to the front pipeline stage and

can’t receive more instructions till the division or sqrt instruction is written back.

7.6 FPU Exceptions

This section describes FPU floating-point exceptions. A floating-point exception

occurs whenever the FPU cannot handle either the operands or the results of a

floating-point operation in its normal way. The FPU responds by generating an

exception to initiate a software trap or by setting a status flag.

The FP Control/Status register contains an Enable bit for each exception type;

exception Enable bits determine whether an exception will cause the FPU to initiate a

trap or set a status flag.

 If a trap is taken, the FPU remains in the state found at the beginning of the

operation and a software exception handling routine executes.

 If no trap is taken, an appropriate value is written into the FPU destination

register and execution continues.

The FPU supports the five IEEE Standard 754 exceptions:

 Inexact (I)

 Underflow (U)

 Overflow (O)

 Division by Zero (Z)

 Invalid Operation (V)

 102

Godson-2E software manual

The FPU adds a sixth exception type, Unimplemented Operation (E), to use

when the FPU cannot implement the standard MIPS floating-point architecture,

including cases in which the FPU cannot determine the correct exception behavior.

This exception indicates the use of a software implementation. The Unimplemented

Operation exception has no Enable or Flag bit; whenever this exception occurs, an

unimplemented exception trap is taken (if the FPU interrupt input to the CPU is

enabled).

Each of the five IEEE Standard 754 exceptions (V, Z, O, U, I) is associated with

a trap under user control, and is enabled by setting one of the five Enable bits. When

an exception occurs, the corresponding Cause bit is set. If the corresponding Enable

bit is not set, the Flag bit is also set. If the corresponding Enable bit is set, the Flag bit

is not set and the FPU generates an interrupt to the CPU. Subsequent exception

processing allows a trap to be taken.

When no exception trap is signaled, floating-point coprocessor takes a default

action, providing a substitute value for the exception-causing result of the

floating-point operation. The particular default action taken depends upon the type of

exception. Table 7-9 lists the default action taken by the FPU for each of the IEEE

exceptions.

 103

Godson-2E software manual

Table 7-9 Default FPU Exception Actions
Field

Description

Rounding

Mode
Default action

I Inexact
exception

Any Supply a rounded result

RN Modify underflow values to 0 with the
sign of the intermediate result

RZ Modify underflow values to 0 with the
sign of the intermediate result

RP Modify positive underflows to the
format’s smallest positive finite number;

modify negative underflows to -0

U

Underflow
exception

RM Modify negative underflows to the
format’s smallest negative finite number;

modify positive underflows to 0
RN Modify overflow values to∞ with the

sign of the intermediate result
RZ Modify overflow values to the

format’s largest finite number with the sign
of the intermediate result

RP Modify negative overflows to the
format’s most negative finite number;

modify positive overflows to +∞

O

Overflow
exception

RM Modify positive overflows to the
format’s largest finite number; modify

negative overflows to –∞
Z Division by

zero
Any Supply a properly signed∞

V Invalid
operation

Any Supply a quiet Not a Number (NaN)

The following describes the conditions that cause the FPU to generate each of its

exceptions, and details the FPU response to each exception-causing condition.

Inexact Exception (I)

The FPU generates the inexact exception if one of the following occurs:

 the rounded result of an operation is not exact, or

 the rounded result of an operation overflows, or the rounded result of an

operation underflows and both the Underflow and Inexact Enable bits are not set

and the FS bit is set.

 104

Godson-2E software manual

Trap Enabled Results: If inexact exception traps are enabled, the result register

is not modified and the source registers are preserved. Since this mode of execution

can impact performance, inexact exception traps should be enabled only when

necessary.

Trap Disabled Results: The rounded or overflowed result is delivered to the

destination register if no other software trap occurs.

Invalid Operation Exception (V)

The Invalid Operation exception is signaled if one or both of the operands are

invalid for an implemented operation. When the exception occurs without a trap, the

MIPS ISA defines the result as a quiet Not a Number (NaN). The invalid operations

are:

 Addition or subtraction: magnitude subtraction of infinities, such as: (+

∞) + (–∞) or (–∞) – (–∞)

 Multiplication: 0 times∞, with any signs

 Division: 0/0, or ∞/∞, with any signs

 Comparison of predicates involving<or>without ?, when the operands

are unordered

 Comparison or a Convert From Floating-point Operation on a signaling

NaN.

 Any arithmetic operation on a signaling NaN. A move (MOV) operation

is not considered to be an arithmetic operation, but absolute value (ABS) and

negate (NEG) are considered to be arithmetic operations and cause this exception

if one or both operands is a signaling NaN.

 Square root: x , where x is less than zero.

Software can simulate the Invalid Operation exception for other operations that

are invalid for the given source operands. Examples of these operations include IEEE

Standard 754-specified functions implemented in software, such as Remainder: x

REM y, where y is 0 or x is infinite; conversion of a floating-point number to a

decimal format whose value causes an overflow, is infinity, or is NaN; and

transcendental functions, such as ln (–5) or cos–1(3).

Trap Enabled Results: The original operand values are undisturbed.

Trap Disabled Results: A quiet NaN is delivered to the destination register if no

other software trap occurs.

 105

Godson-2E software manual

Division-by-Zero Exception (Z)

The Division-by-Zero exception is signaled on an implemented divide operation

if the divisor is zero and the dividend is a finite nonzero number. Software can

simulate this exception for other operations that produce a signed infinity, such as

ln(0), sec(∏/2), csc(0), or 0–1.

Trap Enabled Results: The result register is not modified, and the source

registers are preserved.

Trap Disabled Results: The result, when no trap occurs, is a correctly signed

infinity.

Overflow Exception (O)

The Overflow exception is signaled when the magnitude of the rounded

floating-point result, with an unbounded exponent range, is larger than the largest

finite number of the destination format. (This exception also sets the inexact

exception and Flag bits.)

Trap Enabled Results: The result register is not modified, and the source

registers are preserved.

Trap Disabled Results: The result, when no trap occurs, is determined by the

rounding mode and the sign of the intermediate result.

Underflow Exception (U)

Two related events contribute to the Underflow exception:

 Creation of a tiny nonzero result between ±2Emin which can cause some

later exception because it is so tiny

 Extraordinary loss of accuracy during the approximation of such tiny

numbers by denormalized numbers.

IEEE Standard 754 allows a variety of ways to detect these events, but requires

they be detected the same way for all operations.

Tininess can be detected by one of the following methods:

 After rounding (when a nonzero result, computed as though the exponent

range were unbounded, would lie strictly between±2Emin)

 Before rounding (when a nonzero result, computed as though the

exponent range and the precision were unbounded, would lie strictly between±

 106

Godson-2E software manual

2Emin).

The MIPS architecture requires that tininess be detected after rounding.

Loss of accuracy can be detected by one of the following methods:

 Denormalization loss (when the delivered result differs from what would

have been computed if the exponent range were unbounded)

 Inexact result (when the delivered result differs from what would have

been computed if the exponent range and precision were both unbounded).

The MIPS architecture requires that loss of accuracy be detected as an inexact

result.

Trap Enabled Results: If Underflow or Inexact traps are enabled, or if the FS

bit is not set, then an Unimplemented exception (E) is generated, and the result

register is not modified.

Trap Disabled Results: If Underflow and Inexact traps are not enabled and the

FS bit is set, the result is determined by the rounding mode and the sign of the

intermediate result .

Unimplemented Instruction Exception (E)

Any attempt to execute an instruction with an operation code or format code that

has been reserved for future definition sets the Unimplemented bit in the Cause field

in the FPU Control/Status register and traps. The operand and destination registers

remain undisturbed and the instruction is emulated in software. Any of the IEEE

Standard 754 exceptions can arise from the emulated operation, and these exceptions

in turn are simulated.

The Unimplemented Instruction exception can also be signaled when unusual

operands or result conditions are detected that the implemented hardware cannot

handle properly.

These include:

 Denormalized operand, except for Compare instruction

 Quiet Not a Number operand, except for Compare instruction

 Denormalized result or Underflow, when either Underflow or

Inexact Enable bits are set or the FS bit is not set.

NOTE: Denormalized and NaN operands are only trapped if the instruction is a

convert or computational operation. Moves do not trap if their operands are either

denormalized or NaNs.

 107

Godson-2E software manual

Trap Enabled Results: The original operand values are undisturbed.

Trap Disabled Results: This trap cannot be disabled.

 108

Godson-2E software manual

8 Privileged Instruction

Table 8-1 lists those privileged instructions of Godson-2E.

Table 8-1 Godson-2E Privileged Instructions
OpCode Description
CACHE Cache Operation
DMFC0 Doubleword Move From CP0
DMTC0 Doubleword Move To CP0
ERET Exception Return
MFC0 Move From CP0
MTC0 Move To CP0
TLBP Prove TLB for Matching Entry
TLBR Read Indexed TLB Entry
TLBWI Write Indexed TLB Entry
TLBWR Write Random TLB Entry

8.1 CP0 Move Instructions

The Godson-2E processor implements Coprocessor 0 move instructions, MTC0,

MFC0, DMTC0 and DMFC0. The exact operations of CP0 move instructions on

32/64-bit CP0 registers are summarized Table 8-2.

Table 8-2 CP0 Move Instructions
Instruction CP0 Register Size Operation

MFC0 rt, rd 32 rt <- rd31..0

MTC0 rt, rd 32 rd <- rt31..0

DMFC0 rt, rd 64 rt <- rd63..0

DMTC0 rt,rd 64 rd <- rt63..0

8.1.1 DMFC0 Instruction

Doubleword Move From System Control Coprocessor

31 26 25 21 20 16 15 11 10 6 5 0

COP0

010000

DMF

00001

rt

rd

0

00000000000

Format：DMFC0 rt, rd

Description：The contents of coprocessor register rd of the CP0 are loaded into

general register rt. This operation is defined for theGodson-2E operating in kernel

 109

Godson-2E software manual

mode. Execution of thes instruction in user or supervisor mode causes a coprocessor

unusable exception. All 64-bits of the general register destination are written from the

coprocessor register source.

Operation：GPR[rt] <- CPR[rd]

Exceptions：Coprocessor unusable exception

8.1.2 DMTC0 Instruction

Doubleword Move To System Control Coprocessor

Format：DMTC0 rt, rd

Description：The contents of general register rt are loaded into coprocessor

register rd of the CP0. This operation is defined for the Godson-2E operating in kernel

mode. Execution of this instruction in user or supervisor mode causes a coprocessor

unusable exception. All 64-bits of the coprocessor register destination are written

from the general register source.

Operation：GPR[rd] <- CPR[rt]

Exceptions：Coprocessor unusable exception

8.1.3 MFC0 Instruction

Move From System Control Coprocessor

31 26 25 21 20 16 15 11 10 6 5 0

COP0
010000

DMT
00101

rt

rd

0

00000000000
 6 5 5 5 11

31 26 25 21 20 16 15 11 10 6 5 0

COP0
010000

MF

00000

rt

rd

0

00000000000
 6 5 5 5 11

Format：MFC0 rt, rd

Description：The contents of coprocessor register rd of the CP0 are loaded into

general register rt.

Operation：GPR[rt] <- CPR[rd]

Exceptions：Coprocessor unusable exception

 110

Godson-2E software manual

8.1.4 MTC0 Instruction

Move To System Control Coprocessor

Format：MTC0 rt, rd

Description：The contents of general register rt are loaded into coprocessor

register rd of the CP0.

Operation：GPR[rd] <- CPR[rt]

Exceptions：Coprocessor unusable exception

8.1.5 Usable CP0 Move Instruction in User Mode

When users use DMFC0 or MFC0 to read the coprocessor 0 register No.24 or

No.25 in order to get the performance information of the Godson-2E processor, this

excution doesn’t cause a coprocessor unusable exception.

8.2 TLB Access Instructions

The Godson-2E processor implements TLB instructions, TLBP, TLBI, TLBWI

and TLBWR.

8.2.1 TLBP Instruction

Probe TLB For Matching Entry

31 26 25 21 20 16 15 11 10 6 5 0

COP0
010000

MT

00100

rt

rd

0

00000000000
 6 5 5 5 11

31 26 25 24 6 5 0

 6 1 19 6

COP0

010000

CO
1

0

0000000000000000000

TLBP

001000

Format：TLBP

Description：The Index register is loaded with the address of the TLB entry

whose contents match the contents of the EntryHi register. If no TLB entry matches,

the high-order bit of the Index register is set to 0x80000000.

 111

Godson-2E software manual

Operation：

Index<-1||025||undefined6

for I in 0..TLBEntries-1

if(TLB[i]171..141and not(015||TLB[i]216..205))

=EntryHi43..13) and not(015||TLB[i]216..205)) and

TLB[i]140 or (TLB[i]135..128=EntryHi7..0)) then

 Index<=026||i5..0

endif

endfor

Exceptions：Coprocessor unusable exception

8.2.2 TLBR Instruction

Read Indexed TLB Entry

 6 1 19 6

31 26 25 24 6 5 0

COP0
010000

CO
1

0

0000000000000000000

TLBR
000001

Format：TLBR

Description：The G bit (which controls ASID matching) read from the TLB is

written into both of the EntryLo0 and EntryLo1 registers. The EntryHi and EntryLo

registers are loaded with the contents of the TLB entry pointed at by the contents of

the TLB Index register. TLBR can be executed in mapped spaces.

Operation：

PageMask<-TLB[Index5..0]255..192

EntryHi<- TLB[Index5..0]191..128 and not TLB[Index5..0]255..192

EntryLo1<- TLB[Index5..0]127..65|| TLB[Index5..0]140

EntryLo0<- TLB[Index5..0]63..1|| TLB[Index5..0]140

Exceptions：Coprocessor unusable exception

 112

Godson-2E software manual

8.2.3 TLBWI Instruction

Write Indexed TLB Entry

 6 1 19 6

COP0

010000

CO
1

0

0000000000000000000

TLBWI
000010

31 26 25 24 6 5 0

Format：TLBWI

Description：The G bit of the TLB is written with the logical AND of the G bits

in the EntryLo0 and EntryLo1 registers. The TLB entry pointed at by the contents of

the TLB Index register is loaded with the contents of the EntryHi and EntryLo

registers. The operation is invalid (and the results are unspecified) if the contents of

the TLB Index register are greater than the number of TLB entries in the processor.

Operation：

TLB[Index5..0]<-PageMask||(EntryHi and not PageMask)||EntryLo1||EntryLo0

Exceptions：Coprocessor unusable exception

8.2.4 TLBWR Instruction

Write Random TLB Entry

 6 1 19 6

COP0

010000

CO
1

0

0000000000000000000

TLBWR
000110

31 26 25 24 6 5 0

Format：TLBWR

Description：The G bit of the TLB is written with the logical AND of the G bits

in the EntryLo0 and EntryLo1 registers. The TLB entry pointed at by the contents of

the TLB Random register is loaded with the contents of the EntryHi and EntryLo

registers.

Operation：

TLB[Random5..0]<-PageMask||(EntryHi and not PageMask)||EntryLo1||EntryLo0

Exceptions：Coprocessor unusable exception

 113

Godson-2E software manual

8.3 ERET Instruction

Exception Return

 6 1 19 6

COP0

010000

CO
1

0

0000000000000000000

ERET
011000

31 26 25 24 6 5 0

Format：ERET

Description：ERET is the instruction for returning from an interrupt, exception,

or error trap. Unlike a branch or jump instruction, ERET does not execute the next

instruction. ERET must not itself be placed in a branch delay slot. If the processor is

servicing an error trap (SR2 = 1), then load the PC from the ErrorEPC and clear the

ERL bit of the Status register (SR2). Otherwise (SR2 = 0), load the PC from the EPC,

and clear the EXL bit of the Status register (SR1). An ERET executed between a LL

and SC also causes the SC to fail. If there is no exception (EXL=0 and ERL=0 in the

Status register), execution of an ERET instruction is meaningless. Execution of an

ERET when ERL=0, regardless of the state of EXL, sets EXL to 0 and a jump is taken

to the address presently held in the EPC register, even when there is no exception.

Operation：

If SR2=1 then

PC<-ErrorEPC

SR<-SR31..3||0||SR1..0

else

PC<-EPC

SR<-SR31..2||0||SR0

Endif

LLbit<-0

Exceptions：Coprocessor unusable exception

 114

Godson-2E software manual

8.4 CACHE Instruction

COP0

010000

base

op

offset

 6 5 5 16

31 26 25 21 20 16 15 11 10 6 5 0

Format：CACHE op, offset(base)

Description：The 16 bit offset is sign-extended and added to the contents of

general register base to form a CacheOp virtual address (VA). The VA is translated to

a physical address (PA) through the TLB, and the 5-bit opcode (decoded in Table 8-3)

specifies a cache operation for that address, together with the affected cache.

Operation of this instruction on any combination not listed in the tables below is

undefined. The operation of this instruction on uncached addresses is also undefined.

Table 8-3 CACHE Instruction Op Field Encoding
Op Field CACHE Instruction Variation Target Cache

00000 Index Invalidate (I)
00001 Index WriteBack Invalidate (D)
00101 Index Load Tag (D)
01001 Index Store Tag (D)
10001 Hit Invalidate (D)
10101 Hit WriteBack Invalidate (D)
11001 Index Load Data (D)
11101 Index Store Data (D)
00011 Index WriteBack Invalidate (S)
00111 Index Load Tag (S)
01011 Index Store Tag (S)
10011 Hit Invalidate (S)
10111 Hit WriteBack Invalidate (S)
11011 Index Load Data (S)
11111 Index Store Data (S)

Operation：

vAddr<-((offset15)48||offset15..0)+GPR[base]

(pAddr,uncached)<-AddressTranslation(vAddr,DATA)

CacheOp(op,vAddr,pAddr)

Exceptions：Coprocessor unusable exception

 115

Godson-2E software manual

8.4.1 Index Invalidate (I)

Index Invalidate (I) sets four blocks of four ways in the primary instruction cache

to Invalid. VA[13:5] defines the line address to be invalidated. The invalidation takes

place by writing the primary instruction cache state bit to 0 (Invalid).

8.4.2 Index WriteBack Invalidate (D)

Index WriteBack Invalidate (D) sets a block in the primary data cache to Invalid.

VA[13:5] defines the address and VA[1:0] defines the way to be invalidated. The

invalidation takes place by writing the primary data cache state bit to 00 (Invalid). If

this block in the primary data cache is dirty, it must be written back to the secondary

cache.

8.4.3 Index WriteBack Invalidate (S)

Index WriteBack Invalidate (S) instruction sets a block in the secondary cache to

Invalid and writes back any dirty data to the System interface unit. This operation

extends to any blocks in the primary data or instruction caches which are subsets of

the secondary cache block. The CACHE instruction physical address, PA[16:5],

defines the address and PA[1:0] defines the way to be invalidated.

The invalidation occurs in the following sequence:

1. The processor reads the STag and State bits from the secondary cache tag

array. If State = 00 (Invalid) no further activity takes place. If there is a valid

entry, then the STag is used to interrogate the primary instruction and data

caches.

2. The processor reads each subset block from the primary instruction cache. If

ITag = STag and IState = 1 (Valid) then the block is invalidated by writing

the IState bit to 0 (Invalid).

3. Read each subset block from the primary data cache. If DTag = STag and

DState is not equal to 00 (Invalid), then write the DState bits = 00 (Invalid).

If the original block is Dirty, also write this block back to the secondary

cache.

4. Set the state of the secondary cache block to 00 (Invalid). If the secondary

cache block’s original State bits were 11 (Dirty), the block is written back to

the system interface unit.

 116

Godson-2E software manual

8.4.4 Index Load Tag (D)

Index Load Tag (D) reads the primary data cache tag fields into the CP0 TagLo

and TagHi registers. VA[13:5] defines the address and VA[1:0] defines the way of the

tag to be read.

The following mapping defines the operation:

TagLo[5:4] = SCWay

TagLo[7:6] = State bits

TagLo[31:8] = Tag[35:12]

TagHi[3:0] = Tag[39:36]

TagHi[31:29] = StateMod bits

All other CP0 TagLo and TagHi bits are set to 0.

8.4.5 Index Load Tag (S)

Index Load Tag (S) reads the secondary cache tag fields into the CP0 TagLo and

TagHi registers. The PA[16:5] defines the address and PA[1:0] defines the way to be

read.

The following mapping defines the operation:

TagLo[11:10] = State bits

TagLo[31:13] = Tag[35:17]

TagHi[3:0] = Tag[39:36]

All other CP0 TagLo and TagHi bits are set to 0.

8.4.6 Index Store Tag (D)

Index Store Tag (D) stores the CP0 TagLo and TagHi registers into the primary

data cache tag array. VA[13:5] defines the address and VA[1:0] defines the way of the

tag to be written.

The following mapping defines the operation:

SCWay = TagLo[5:4]

State bits = TagLo[7:6]

Tag[35:12] = TagLo[31:8]

Tag[39:36] = TagHi[3:0]

 117

Godson-2E software manual

8.4.7 Index Store Tag (S)

Index Store Tag (S) stores fields from the CP0 TagLo and TagHi registers into the

secondary cache tag array. The PA[13:5] defines the address and PA[1:0] defines the

way to be read.

The following mapping defines the operation:

State bits = TagLo[11:10]

Tag[35:17] = TagLo[31:13]

Tag[39:36] = TagHi[3:0]

8.4.8 Hit Invalidate (D)

Hit Invalidate (D) invalidates an entry in the data cache which matches the PA of

the CACHE instruction. Both ways tags at VA[13:5] are read from the data cache. If

the DState is not equal to 00 (Invalid) and the PA of the CACHE instruction matches

the DTag from the data cache tag array, then the State bits are written to 00 (Invalid).

8.4.9 Hit Invalidate (S)

Hit Invalidate (S) invalidates all entries in the secondary, primary instruction,

and primary data caches which match the PA of the CACHE instruction.

The following sequence takes place:

1. The processor reads the Tags from four ways of the secondary cache at the

address pointed to by the PA of the CACHE instruction. If the tag entry’s

Stag matches the CACHE instruction PA, and the State of the entry is not

equal to 00 (Invalid), then a Hit has occurred in that entry. If there is no Hit,

the CACHE instruction completes.

2. The processor reads each subset block from the primary instruction cache. If

ITag = STag and IState = 1 (Valid) then the block is invalidated by writing the

IState bit to 0 (Invalid).

3. Read each subset block from the primary data cache. If DTag = STag and

DState is not equal to 00 (Invalid), then write the DState bits = 00 (Invalid).

4. The processor sets the tag array entry of the secondary cache block which

was hit to State = 00 (Invalid) and Tag = PA of CACHE instruction.

 118

Godson-2E software manual

8.4.10 Hit WriteBack Invalidate (D)

Hit Writeback Invalidate (D) invalidates an entry in the primary data cache

which matches the PA of the CACHE instruction. In addition, it writes back to the

secondary cache any dirty data found in the primary data cache. Four way DTags at

VA[13:5] are read from the data cache. If the DState is not equal to 00 (Invalid) and

PA of the CACHE instruction matches the DTag, then the DState bits of the entry are

set to 00 (Invalid).

8.4.11 Hit WriteBack Invalidate (S)

Hit Writeback Invalidate (S) checks for a block which matches the CACHE

instruction PA in the secondary cache, invalidates it, and writes back any dirty data to

the System interface unit. This operation extends to any blocks in the primary data or

instruction caches which are subsets of the secondary cache block.

The operation takes place in the following sequence:

1. The processor reads the STag and State bits from four ways of the secondary

tag array. If the PA of the CACHE instruction matches the STag, and the

State does not equal 00 (Invalid), a hit has occurred. If there is a hit, the STag

is used to interrogate the primary caches. If there is not a hit, the instruction

ends.

2. The processor reads each subset block from the primary instruction cache. If

there is a match then invalidate the block by writing the IState bit to 0

(Invalid).

3. Read each subset block from the primary data cache. If there is a match then

write the DState bits = 00 (Invalid), and the DState parity bit = 0. If the

original State of any subset block is dirty, also write it back to the secondary

cache.

4. Set the state of the secondary cache block to 00 (Invalid). If the secondary

cache block’s original State bits were 11 (Dirty), the block is written back to

the system interface unit.

8.4.12 Index Load Data (D)

Index Load Data (D) loads a doubleword of data into CP0 TagHi and TagLo. The

address of the target doubleword is VA[13:3] of the CACHE instruction. The way of

 119

Godson-2E software manual

the target doubleword is VA[1:0] of the CACHE instruction.

8.4.13 Index Load Data (S)

Index Load Data (S) loads a doubleword of data into CP0 TagHi and TagLo. The

address of the target doubleword is VA[16:3] of the CACHE instruction. The way of

the target doubleword is VA[1:0] of the CACHE instruction.

8.4.14 Index Store Data (D)

Index Store Data (D) stores a doubleword of data into the data cache from the

CP0 TagHi and TagLo registers. The address where this doubleword will be written is

defined by VA[13:3] of the CACHE instruction. The way is defined by VA[1:0]. The

data doubleword comes from CP0 TagHi and TagLo.

8.4.15 Index Store Data (S)

Index Store Data (S) stores a doubleword of data into the second cache from the

CP0 TagHi and TagLo registers. The address where this doubleword will be written is

defined by VA[16:3] of the CACHE instruction. The way is defined by VA[1:0]. The

data doubleword comes from CP0 TagHi and TagLo.

 120

Godson-2E software manual

9 DDR SDRAM Control Interface

The built-in memory controller of Godson-2E processor fully conforms to DDR

SDRAM industry standard JESD79C. All memory read/writes are implemented

according to JESD79C specification.

9.1 DDR SDRAM Controller Functional Overview

Godson-2E processor supports a maximum of 4 physical memory banks (there

are 4 DDR SDRAM chip selects). Address bus is 15 bits width, i.e., 13 bits of column

row address and 2 bits of logical bank address.

Godson-2E processor supports memory chip type specified in JESD79C, see

table 9-1.

Table 9-1 DDR SDRAM chip supported
BITS Density Org. Row Addr. Col Addr.

64Mb 16Mb X 4 0000
128Mb 16Mb X 8

DA[11:0] DA[9:0]

64Mb 8Mb X 8 0001
128Mb 8Mb X 16

DA[11:0] DA[8:0]

0010 64Mb 4Mb X 16 DA[11:0] DA[7:0]
0011 128Mb 32Mb X 4 DA[11:0] DA[11],DA[9:0]

256Mb 64Mb X 4 0100
512Mb 64Mb X 8

DA[12:0] DA[11],DA[9:0]

256Mb 32Mb X 8 0101
512Mb 32Mb X 16

DA[12:0] DA[9:0]

0110 256Mb 16Mb X 16 DA[12:0] DA[8:0]
0111 512Mb 128Mb X 4 DA[12:0] DA[12:11],DA[9:0]
1000 1Gb 256Mb X 4 DA[13:0] DA[12:11],DA[9:0]
1001 1Gb 128Mb X 8 DA[13:0] DA[11],DA[9:0]
1010 1Gb 64Mb X 16 DA[13:0] DA[9:0]

The only memory read/write requests accepted by the built-in memory controller

are those generated from inside the processor or memory request of external device.

In all memory operation, the controller runs in slave state.

The built-in memory controller implements a dynamic page management strategy.

For any memory access, the selection of Open Page or Close Page strategy is handled

by the hardware, which is transparent to software designers.

 121

Godson-2E software manual

9.2 DDR SDRAM Read Protocol

DDR SDRAM read protocol is described in figure 9-1. In the figure, the

COMMAND signal is made up of RAS, CAS and WE. For read, RAS=1, CAS=0 and

WE=1; ADDRESS signal consist of MCS, MBA and MSA.

Figure 9-1 DDR SDRAM read protocol

9.3 DDR SDRAM Write Protocol

DDR SDRAM write protocol is described in figure 9-2. In the figure, the

COMMAND signal is made up of RAS, CAS and WE. For write, RAS=1, CAS=0

and WE=0; ADDRESS signal consist of MCS, MBA and MSA. The bytes to write are

masked by MDM, which is different to read operation.

 122

Godson-2E software manual

Figure 9-2 DDR SDRAM write protocol

9.4 DDR SDRAM Configuration

The system may be installed with different types of DDR SDRAM chips;

therefore, configuration is needed after power-on reset. In JESD79C, detailed

configuration procedures are specified.

In the design of Godson-2E processor, DDR SDRAM configuration is dealt with

after the initialization of system board, before memory is needed. The configuration is

done with writing 32-bit config register at physical address 40’h1FF0008. Table 9-2

list each bit’s meaning.

Table 9-2 DDR SDRAM configuration register
Bit Field Name Access Description
31：30 Undefined R/W Undefined

29 DIMM_dic R/W Memory module presented in DIMM_slot0:
0: no, 1: yes

28:27 DIMM_M
ODULE_NUM

R/W No. of module in DIMM0/DIMM1:
2’b00: DIMM1: 1; DIMM0: 1
2’b01: DIMM1: 1; DIMM0: 2
2’b10: DIMM1: 2; DIMM0: 1
2’b11: DIMM1: 2; DIMM0: 2

26 IS_SEQ R/W Burst mode intra-block sequencing:
1’b0: sequential
1’b1: interleaved

25:22 DDR Type R/W See table 9-1.
21:10 tREF R/W SDRAM refresh interval count (100MHz):

 123

Godson-2E software manual

Bit Field Name Access Description
780 7.8us
1560 15.6us
SDRAM refresh interval count (133MHz):
1040 7.8us
2080 15.6us
SDRAM refresh interval count (166MHz);
1300 7.8us
2600 15.6us

9 TRCD R/W Cycles between row address valid and
column address valid

1’b0 2 cycles (DDR100)
1’b1 3 cycles (DDR266, DDR333）

8:7 TRFC R/W Cycles between AUTO_REFRESH and
ACTIVE

2’b00 Null
2’b01 8 cylces （DDR100）
2’b10 10 cycles（DDR266）
2’b11 12 cycles（DDR333）

6 TRAS R/W Cycles between ACTIVE and PRECHARGE
1’b0 5 cycles（DDR100）
1’b1 7 cycles（DDR266、DDR333）

5:4 TCAS R/W Cycles between read request and arrival of
the first data:

2’b00 1.5 cycles
2’b01 2 cycles
2’b10 2.5 cycles
2’b11 3 cycles

3 TWR R/W Cycles between last data written and
PRECHARGE:

1’b0 2 cycles (DDR100)
1’b1 3 cycles (DDR266, DDR333)

2 TRP R/W Cycles of PRECHARGE command duration
1’b0 2 cycles (DDR100)
1’b1 3 cycles (DDR266,DDR333)

1:0 TRC R/W Cycles between ACTIVE command and
ACTIVE/AUTO_REFRESH command

2’b00 Null
2’b01 7 cycles (DDR100)
2’b10 9 cycles (DDR266)
2’b11 10cycles (DDR333)
Note: The sum of PRECHARGE, RAS and

CAS latency are equivalent to TRC, thus it was
ignored by the controller.

 124

Godson-2E software manual

9.5 DDR SDRAM Sampling Mode Configuration

The return of valid data from memory is asynchronously marked by DQS, which

means sampling clock is not synchronized to data. Usually, a memory controller needs

a DLL (Delay-locked loop) to do this, i.e., through adjusting the phase of sampling

clock to find a suitable sampling point. Using DLL to solve this would not only

required a DLL IP, but also arouse the problem of synchronize the sampling clock to

processor core clock. Because the sampling clock is adjusted by DLL, a mechanism

of inter clock domain data transfer like FIFO is needed.

In Godson-2E processor, the memory clock output is divided from the core clock

and forms a 1:6, 1:8, 1:10 or 1:12 relationship. Regarding the core clock is a high

multiple of memory clock, we propose a flexible and efficient strategy using core

clock to sample data directly. Sample point is set by software, and the clock is the

processor core clock. This design can save both DLL IP and the delay caused by intra

clock domain data transfer. Following is an example of the proposed strategy where

the ratio of DDR SDRAM clock frequency to the core’s is 1:10.

As shown in figure 3-3, core clock frequency is 10 times of memory clock

frequency. DQS*_dly is latched from DQS*, and sample point is generated via

counting how many times DQS*_dly go valid. The counting number is set by

software, thus achieved the goal of software tuning.

sampled sampled sampledsampled

Coreclock

sampled

DDR_clk

MDQS0

MDQS0_dly

MDQS0_valid

MDQS1

MDQS1_dly

MDQS1_valid

valid_to_core

sampled sampled sampled

Figure 9-3 DDR SDRAM sampling mode when memory to core ratio is 1:10

 125

Godson-2E software manual

In Godson-2E processor, the configuration of memory read sample point is

carried out after the system board finished initialization, just before using memory.

It’s done by writing 2 bits of valid parameter into 32-bit register at physical address

40’h1FF00030. The parameter (sample_point)is located on the least significant two

bits of the register, see table 9-3 for details.

Table 9-3 Sample point configuration register
Sample point
register

Description

2’b00 Sample at 1 clock after DQS valid.
2’b01 Sample at 2 clocks after DQS valid.
2’b10 Sample at 3 clocks after DQS valid.
2’b11 Invalid

In Godson-2E, the frequency ratio of memory controller clock output to core

frequency is 1:6, 1:8, 1:10 and 1:12. For general case, sample point is set by default

value, i.e., when the ratio is 1:6, sample point register is 2’b00, sampling at 1 clock

after DQS valid; when the ratio is 1:8 and 1:10, sample point register is 2’b01,

sampling 2 clocks later; when the ratio is 1:12, sample point register is 2’b10, 3

clocks later.

 126

Godson-2E software manual

10 Performance Tuning

This chapter describes some architecture impacts of Godson-2E on software and

ways to make efficient software for godson-2E. The Godson-2E architecture, like all

other RISC architectures, depends on careful attention of data alignment and

instruction scheduling to achieve high performance.

10.1 User instruction Latency and Repeat Rate

Table 10-1 shows the latencies and repeat rates for all user instructions executed

in ALU1/2, MEM, FALU1/2 functional units, kernel mode instructions and control

instructions are not included.

Table 10-1 Latencies and Repeat Rates for User Instructions
Instrutions unit latency repeat rate

Integer operations
Add/sub/logical/shift/lui/cmp ALU1/2 2 1
Trap/branch ALU1 2 1
MF/MT HI/LO ALU1/2 2 1
(D)MULT(U) ALU2 5 2(split)
(D)MULT(U)G ALU2 5 1
(D)DIV(U) ALU2 2-38 1-37
(D)DIV(U)G ALU2 2-38 1-37
(D)MOD(U)G ALU2 2-38 1-37
Load MEM 5 1
Store MEM - 1

Floating-point operations
(D)MTC1/(D)MFC1 MEM 5 1
Abs/Neg/C.cond/Bc1t/Bc1f/
Move/Cvt*

FALU1 3 1

Round/Trunc/Ceil/
Floor/Cvt*

FALU1 5 1

Add/Sub/Mul/Madd/Msub/
Nmadd/Nmsub

FALU1/2 7 1

Div.s FALU2 5-11 4-10
Div.d FALU2 5-18 4-17
Sqrt.s FALU2 5-17 4-16
Sqrt.d FALU2 5-32 4-31
Lwc1,Ldc1 MEM 5 1
Swc1,Sdc1 MEM - 1

 127

Godson-2E software manual

Please note the following about table 10-1:

 The latency of an execution pipeline is the number of cycles

between the time an instruction is issued and the time a dependent

instruction(which uses its result as an operand) can be issued.

 The repeat rate of the pipeline is the number of cycles that occur

between the issuance of one instruction and the issuance of the next instruction

to the same execution unit.

 The latency of DIV* operations depends on the operand. It can be

estimated as:

 (lz(a) < lz(b))?(lz(b)-lz(a))/2 + 4 – ez(c) / 2 : 1

 for a/b=c, lz: leading zero, ez: trailing zero.

 The repeat rate for load/store does not include load-link and

store-conditional. LL/SC are wait-issue operations, that is, they are not issued

until they come to the head of reorder queue and the cp0queue is empty.

 There is no special usage limit for HI/LO register, they are treated

just the same as other general purpose registers.

 CTC1/CFC1 is not included in this table. They are serialized like

many other control instructions.

 Multimedia instructions are not included in this table. Because they

are implemented by extending the FORMAT field of normal floating-point

instructions, we can easily deduce the function unit and latency of them.

10.2 Instruction extensions

 Godson-2E implements several instruction extensions.

 Fix point multiply and division that write only one result into

general-purpose registers. Including 12 instructions:

 (D)MULTG, (D)MULTUG, (D)DIVG

 (D)DIVUG, (D)MODG , (D)MODUG

Multiply and divisions of standard MIPS instruction set write two special

registers (HI/LO) for one operation, which is hard to implement in RISC

pipelines. To use the results one has to use additional instructions to fetch

it from HI/LO into general-purpose register. What’s more, many MIPS

processors have limits on the usage of these instructions due to pipeline

problems. Our new instructions should be both faster and easier to use.

 128

Godson-2E software manual

 Multimedia instruction extension

Documented in other manuals.

 Fix-point operations using floating-point data path

When running integer programs the floating-point data path is often

idle, these instructions intend to provide a way to utilize them.

10.3 Instruction Stream

The following sections describe considerations for the instruction stream.

10.3.1 Instruction alignment

Every cycle Godson-2E can fetch four instructions from any word-aligned

address within a cache line. Basic block of frequently executed branch targets should

avoid crossing the cache line boundary by proper alignment. The branch instruction

among the four instruction fetched will affect the output. If the first instruction is a

taken branch, then the last two instructions are useless. If the last instruction is a

branch, then even if the branch is taken the processor has to wait for its delay slot

instructions in the next cache line. If there were two branch instructions in this bundle,

it would take 2 cycles for the decoder to handle them, because only one branch can be

decoded each cycle.

10.3.2 Branch handling

In godson-2E processors, an unexpected change in I-stream address will result in

about 10 lost cycles. "Unexpected" may mean any branch-taken or may mean a

miss-predicted branch. In current godson-2E implementation, even a correctly

predicted taken branch will be slower (waste one cycle because BTB would not give

correct next PC for conditional branches) than straight-line code.

Compilers should follow these rules to minimize unexpected branches:

 Godson-2E branch prediction schemes are different from any other high

performance processors, and they vary a bit for different revisions. Based on

execution profiles, compilers should physically rearrange code so that it has

matching behavior.

 Make basic blocks as big as possible. A good goal is 20 instructions on

average between branch-taken. This requires unrolling loops so that they

contain at least 20 instructions, and putting subroutines of less than 20

 129

Godson-2E software manual

instructions directly in line. It also requires using execution profiles to

rearrange code so that the frequent case of a conditional branch falls through.

For very high-performance loops, it will be profitable to move instructions

across conditional branches to fill otherwise wasted instruction issue slots,

even if the instructions moved will not always do useful work. Note that using

the Conditional Move instructions can sometimes avoid breaking up basic

blocks (not yet implemented in current revision-Godson-2EC, but they will

show up in godson-2ED).

 In an if-then-else construct whose execution profile is skewed even

slightly away from 50%-50% (51-49 is enough), put the infrequent case

completely out of line, so that the frequent case encounters zero branch-takens,

and the infrequent case encounters two branch-takens. If the infrequent case is

rare (5%), put it far enough away that it never comes into the I-cache. If the

infrequent case is extremely rare (error message code), put it on a page of

rarely executed code and expect that page never to be paged in.

Section 2.1 gives out a brief description of the fetch-decode unit. We can see that

the branch prediction scheme is composed of:

 Static prediction. For branch likely instructions and jump

instructions.

 Gshare predictor. A 9-bit GHR plus 4K-entry PHT. For conditional

branches.

 BTB. 16-entry fully associative. Used for predicting target PC of

jump register instructions.

 RAS. 4-entry. Used for predicting target PC of function return

instruction (jr31).

There are several notes for software considerations.

Be very careful to use branch likely instructions on godson-2E processors.

Branch likely instructions may be very useful for simple statically scheduled in-order

scalar processors, but not as useful for modern high performance processors. The

branch prediction hardware in modern high performance processors is so

sophisticated that they can often correctly predict the direction for more than 90%

branches (E.g., current godson-2E processor can correctly predict the direction of

85-100% conditional branches, with an average of 95%). In this case compiler should

not use branch likely instructions without a very high confidence about the prediction.

 130

Godson-2E software manual

In fact we have found that gcc(version 3.3) often does better job with

–mno-branch-likely option.

The fetch-decode unit is split into three pipeline stages, and branch destinations

are calculated in the third stage. Taken branches have two cycle bubbles, that is, if a

branch at PC is fetched at cycle 0, cycle 1 will fetch PC+16, cycle 2 will fetch PC+32,

correct destination will be given to fetch unit at cycle 3. Minimize taken branches will

help.

The BTB in godson-2E is used purely for jump register instructions (jr with

exception of jr31, and jalr).

Destinations of jr31 instructions are predicted via a four-entry return address

stack. Efficient prediction of function returns relies on software follow the convention

of using jr31 as the function return instruction.

10.3.3 Improving Instruction Stream density

Compilers should try to use profiles to make sure that almost 100% of the bytes

brought into the instruction cache are actually executed. This requires alignments of

branch targets and putting rarely executed code out of line.

10.3.4 Instruction scheduling

Godson-2E has an instruction window to perform dynamic instruction

scheduling. But since the window size and other resources are limited, it is not

perfected. Compiler can help here. Modern compilers often have models to learn

CPU's capability and they can act well upon given information.

"Result latency" is defined as the number of CPU cycles that must elapse

between an instruction that writes a result register and one that uses that register, if

execution-time stalls are to be avoided. Thus, with a latency of zero, the instruction

writes a result register and the instruction that uses that register can be multiple-issued

in the same cycle. With a latency of 2, if the writing instruction is issued at cycle N,

the reading instruction can issue no earlier than cycle N+2.

Latency is implementation specific. Most godson-2E instructions have non-zero

latency. Compilers should schedule code so that a result is not used too soon, at least

in frequently executed code (inner loops, as identified by execution profiles). In

general, this will require unrolling loops and inlining short procedures.

Compilers should try to schedule code to match the above latency rules and also

 131

Godson-2E software manual

to match the multiple-issue rules. If doing both is impractical for a particular sequence

of code, the latency rules are more important.

10.4 Memory accesses

The execution of load and store instructions can greatly affect performance.

These instructions are executed quickly if the required memory block is contained in

the primary data cache; they will be a bit more slow if data are in L2 cache; otherwise

they will be significant delayed waiting for the access to the main memory.

Out-of-order execution and non-blocking caches reduce the performance loss due to

these delays, however.

Current revisions of Godson-2E have not directly provided prefetch instructions,

but one can use load-to-zero-register to achieve some kinds of prefetch effects. To

reduce overhead such instructions won't raise exceptions upon illegal addresses.

Compiler should try hard to eliminate unnecessary memory accesses. Memory

access latency is quite long in current godson-2E processors (even a cache-hit

operation takes 5 cycle in godson-2E), and the reorder queues are not big enough to

tolerate all of it.

Software should pay enough attention to data alignment. Aggregates (arrays, some

records, subroutine stack frames) should be allocated on cache line aligned boundaries to take

advantage of cache line aligned data paths, and to decrease the number of cache fills. Items

within aggregates that are forced to be unaligned (records, common blocks) should generate

compile-time warning messages. Users must be educated that the warning message means

that they are taking a big performance hit. Compiled code for parameters should assume that

the parameters are aligned. Frequently used scalars should reside in registers.

10.5 Other Tips

 Utilize all floating-point registers. Godson-2E has 32 64-bit

floating-point registers, while O32 ABI exposes only 16 to the user. Use N32 or

N64 ABI should help.

 Use performance counters. Godson-2E’s performance counter can be

used to monitor real-time performance characters of programs. Compilers and

software writers can analysis the results to improve their code.

 132

Godson-2E software manual

AppendixA Godson new integer instructions

1. MULT.G — Multiply Word (Godson2)

 Format:

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
011111

rs

rt

rd

0
00000

MULT.G
011000

 6 5 5 10 6

MULT.G rd, rs, rt
 Purpose:

To multiply 32-bit signed intergers.

 Description:

rd rs * rt
The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs,

treating both operands as signed values, to produce a 64-bit result. The low-order

32-bit word of the result is placed into special register rd.

No arithmetic exception occurs under any circumstances.

 Operation:

prod ← GPR[rs]31..0 * GPR[rt]31..0

rd ← sign_extend(prod31..0)

 Exceptions:

None

 133

Godson-2E software manual

2. MULTU.G — Multiply Unsigned Word (Godson2)

 Format:

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
011111

rs

rt

rd

0
00000

MULTU.G
011001

 6 5 5 10 6

MULTU.G rd, rs, rt
 Purpose:

To multiply 32-bit unsigned intergers.

 Description:

rd rs * rt
The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs,

treating both operands as unsigned values, to produce a 64-bit result. The low-order

32-bit word of the result is placed into special register rd.

No arithmetic exception occurs under any circumstances.

 Operation:

prod ← (0 || GPR[rs]31..0) * (0 || GPR[rt]31..0)

rd ← sign_extend(prod31..0)

 Exceptions:

None

 134

Godson-2E software manual

3. DMULT.G — DoubleWord Multiply (Godson2)

 Format:

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
011111

rs

rt

rd

0
00000

DMULT.G
011100

 6 5 5 10 6

DMULT.G rd, rs, rt
 Purpose:

To multiply 64-bit signed intergers.

 Description:

rd rs * rt
The 64-bit word value in GPR rt is multiplied by the 64-bit value in GPR rs,

treating both operands as signed values, to produce a 128-bit result. The low-order

64-bit word of the result is placed into special register rd.

No arithmetic exception occurs under any circumstances.

 Operation:

prod ← GPR[rs] * GPR[rt]

rd ← prod63..0

 Exceptions:

None

 135

Godson-2E software manual

4. DMULTU.G—Doubleword Multiply Unsigned (Godson2)

 Format:

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
011111

rs

rt

rd

0
00000

DMULTU.G
011101

 6 5 5 10 6

DMULT.G rd, rs, rt
 Purpose:

To multiply 64-bit unsigned intergers.

 Description:

rd rs * rt
The 64-bit word value in GPR rt is multiplied by the 64-bit value in GPR rs,

treating both operands as unsigned values, to produce a 128-bit result. The low-order

64-bit word of the result is placed into special register rd.

No arithmetic exception occurs under any circumstances.

 Operation:

prod ← (0 || GPR[rs]) * (0 || GPR[rt])

rd ← prod63..0

 Exceptions:

None

 136

Godson-2E software manual

5. DIV.G —Divide Word (Godson2)

 Format:

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
011111

rs

rt

rd

0
00000

DIV.G
011010

 6 5 5 10 6

DIV.G rd, rs, rt
 Purpose:

To divide 32-bit signed intergers.

 Description:

rd rs / rt
The 32-bit word value in GPR rs is divided by the 32-bit value in GPR rt,

treating both operands as signed values. The 32-bit quotient is placed into special

register rd.

No arithmetic exception occurs under any circumstances.

 Operation:

q ← GPR[rs]31..0 div GPR[rt]31..0

LO ← sign_extend(q31..0)

 Exceptions:

None

 137

Godson-2E software manual

6. DIVU.G — Divide Unsigned Word (Godson2)

 Format:

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
011111

rs

rt

rd

0
00000

DIVU.G
011011

 6 5 5 10 6

DIVU.G rd, rs, rt
 Purpose:

To divide 32-bit unsigned intergers.

 Description:

rd rs / rt
The 32-bit word value in GPR rs is divided by the 32-bit value in GPR rt,

treating both operands as unsigned values. The 32-bit quotient is placed into special

register rd.

No arithmetic exception occurs under any circumstances.

 Operation:

q ← (0 || GPR[rs]31..0) div (0 || GPR[rt]31..0)

rd ← sign_extend(q31..0)

 Exceptions:

Reserved Instruction

 138

Godson-2E software manual

7. DDIV.G — Doubleword Divide (Godson2)

 Format:

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
011111

rs

rt

rd

0
00000

DDIV.G
011110

 6 5 5 10 6

DDIV.G rd,rs, rt
 Purpose:

To divide 64-bit signed intergers.

 Description:

rd rs / rt
The 64-bit doubleword in GPR rs is divided by the 64-bit doubleword in GPR rt,

treating both operands as signed values. The 64-bit quotient is placed into special

register rd.

No arithmetic exception occurs under any circumstances.

 Operation:

rd ← GPR[rs] div GPR[rt]

 Exceptions:

None

 139

Godson-2E software manual

8. DDIVU.G — Doubleword Divide Unsigned(Godson2)

 Format:

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
rs

rt

rd

0
00000

DDIVU.G
011111 011111

 6 5 5 10 6

DDIVU.G rd, rs, rt
 Purpose:

To divide 64-bit unsigned intergers.

 Description:

rd rs / rt
The 64-bit doubleword in GPR rs is divided by the 64-bit doubleword in GPR rt,

treating both operands as unsigned values. The 64-bit quotient is placed into special

register rd.

No arithmetic exception occurs under any circumstances.

 Operation:

rd ← (0 || GPR[rs]) div (0 || GPR[rt])

 Exceptions:

None

 140

Godson-2E software manual

9. MOD.G —MOD Word (Godson2)

 Format:

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
011111

rs

rt

rd

0
00000

MOD.G
100010

 6 5 5 10 6

MOD.G rd, rs, rt
 Purpose:

To mod 32-bit signed intergers.

 Description:

rd rs % rt
The 32-bit word value in GPR rs is divided by the 32-bit value in GPR rt,

treating both operands as signed values. The 32-bit remainder is placed into special

register rd.

No arithmetic exception occurs under any circumstances.

 Operation:

q ← GPR[rs]31..0 mod GPR[rt]31..0

HI ← sign_extend(q31..0)

 Exceptions:

None

 141

Godson-2E software manual

10. MODU.G — Mod Unsigned Word (Godson2)

 Format:

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
011111

rs

rt

rd

0
00000

MODU.G
100011

 6 5 5 10 6

MODU.G rd, rs, rt
 Purpose:

To mod 32-bit unsigned intergers.

 Description:

rd rs % rt
The 32-bit word value in GPR rs is divided by the 32-bit value in GPR rt,

treating both operands as unsigned values. The 32-bit remainder is placed into special

register rd.

No arithmetic exception occurs under any circumstances.

 Operation:

q ← (0 || GPR[rs]31..0) mod (0 || GPR[rt]31..0)

rd ← sign_extend(q31..0)

 Exceptions:

Reserved Instruction

 142

Godson-2E software manual

11. DMOD.G — Doubleword Mod (Godson2)

 Format:

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
011111

rs

rt

rd

0
00000

DMOD.G
100110

 6 5 5 10 6

DMOD.G rd, rs, rt
 Purpose:

To mod 64-bit signed intergers.

 Description:

rd rs % rt
The 64-bit doubleword in GPR rs is divided by the 64-bit doubleword in GPR rt,

treating both operands as signed values. The 64-bit remainder is placed into special

register rd.

No arithmetic exception occurs under any circumstances.

 Operation:

rd ← GPR[rs] mod GPR[rt]

 Exceptions:

None

 143

Godson-2E software manual

12. DMODU.G — Doubleword Mod Unsigned(Godson2)

 Format:

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
011111

rs

rt

rd

0
00000

DMODU.G
100111

 6 5 5 10 6

DMODU.G rd, rs, rt
 Purpose:

To mod 64-bit unsigned intergers.

 Description:

rd rs % rt
The 64-bit doubleword in GPR rs is divided by the 64-bit doubleword in GPR rt,

treating both operands as unsigned values. The 64-bit remainder is placed into special

register rd.

No arithmetic exception occurs under any circumstances.

 Operation:

rd ← (0 || GPR[rs]) mod (0 || GPR[rt])

 Exceptions:

None

 144

Godson-2E software manual

AppendixB Godson new float-point instructions

1. MADD.fmt— Floating-Point Multiply Add

 Format:

MADD.S fd, fs, ft

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

Fmt

ft

fs

fd

MADD
011000

 6 5 5 5 5 6

MADD.D fd, fs, ft

 Purpose:

To perform a combined multiply-then-add of FP values.

 Description:

fd ((fs * ft) + fd)
The value in FPR fs is multiplied by the value in FPR ft to produce a product.

The value in FPR fd is added to the product. The result sum is calculated to infinite

precision, rounded according to the current rounding mode in FCSR, and placed into

FPR fd. The operands and result are values in format fmt.

 Operation:

vfd ← ValueFPR(fd, fmt)

vfs ← ValueFPR(fs, fmt)

vft ← ValueFPR(ft, fmt)

StoreFPR(fd, fmt, vfd + vfs * vft)

 Exceptions:

Coprocessor Unusable

Reserved Instruction

Floating-Point

Inexact Unimplemented Operation Unimplemented Operation

Invalid Operation Overflow Overflow

 Underflow

 145

Godson-2E software manual

2. MSUB.fmt— Floating-Point Multiply Subtract

 Format:

MSUB.S fd, fs, ft

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

Fmt

ft

fs

fd

MSUB
011001

 6 5 5 5 5 6

MSUB.D fd, fs, ft

 Purpose:

To perform a combined multiply-then-subtract of FP values.

 Description:

fd (fs * ft) - fd
The value in FPR fs is multiplied by the value in FPR ft to produce an

intermediate product. The value in FPR fd is subtracted from the product. The

subtraction result is calculated to infinite precision, rounded according to the current

rounding mode in FCSR, and placed into FPR fd. The operands and result are values

in format fmt.

 Operation:

vfd ← ValueFPR(fd, fmt)

vfs ← ValueFPR(fs, fmt)

vft ← ValueFPR(ft, fmt)

StoreFPR(fd, fmt, (vfs * vft)-vfd)

 Exceptions:

Coprocessor Unusable

Reserved Instruction

Floating-Point

Inexact Unimplemented Operation Unimplemented Operation

Invalid Operation Overflow Overflow

 Underflow

 146

Godson-2E software manual

3. NMADD.fmt— Floating-Point Negative Multiply Add

 Format:

NMADD.S fd, fs, ft

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

Fmt

ft

fs

fd

NMADD
011010

 6 5 5 5 5 6

NMADD.D fd, fs, ft

 Purpose:

To negate a combined multiply-then-add of FP values.

 Description:

fd - ((fs * ft) + fd)
The value in FPR fs is multiplied by the value in FPR ft to produce an

intermediate product. The value in FPR fd is added to the product. The result sum is

calculated to infinite precision, rounded according to the current rounding mode in

FCSR, negated by changing the sign bit, and placed into FPR fd. The operands and

result are values in format fmt.

 Operation:

vfd ← ValueFPR(fd, fmt)

vfs ← ValueFPR(fs, fmt)

vft ← ValueFPR(ft, fmt)

StoreFPR(fd, fmt, -(vfd + vfs * vft))

 Exceptions:

Coprocessor Unusable

Reserved Instruction

Floating-Point

Inexact Unimplemented Operation Unimplemented Operation

Invalid Operation Overflow Overflow

 Underflow

 147

Godson-2E software manual

4. NMSUB.fmt— Floating-Point Negative Multiply Subtract

 Format:

NMSUB.S fd, fs, ft

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

Fmt

ft

fs

fd

NMSUB
011011

 6 5 5 5 5 6

NMSUB.D fd, fs, ft

 Purpose:

To negate a combined multiply-then-subtract of FP values.

 Description:

fd -((fs * ft) - fd)
The value in FPR fs is multiplied by the value in FPR ft to produce an

intermediate product. The value in FPR fd is subtracted from the product. The result is

calculated to infinite precision, rounded according to the current rounding mode in

FCSR, negated by changing the sign bit, and placed into FPR fd. The operands and

result are values in format fmt.

 Operation:

vfd ← ValueFPR(fd, fmt)

vfs ← ValueFPR(fs, fmt)

vft ← ValueFPR(ft, fmt)

StoreFPR(fd, fmt, -((vfs * vft)-vfd))

 Exceptions:

Coprocessor Unusable

Reserved Instruction

Floating-Point

Inexact Unimplemented Operation Unimplemented Operation

Invalid Operation Overflow Overflow

 Underflow

 148

	1 Godson-2E Micro Architecture
	1.1 Godson Series Processors
	1.2 Godson-2E Micro Architecture Overview
	1.3 Fetching and Decoding
	1.4 Register Renaming
	1.5 Issuing and Reading operands
	1.6 Execution and Functional Units
	1.7 Commit and Reorder Queue
	1.8 Branch canceling and Branch Queue
	1.9 Memory Subsystem

	2 Instruction Set Overview
	3
	3 Memory Management
	3.1 Translation Lookaside Buffer
	3.1.1 Joint TLB
	3.1.2 Instruction TLB
	3.1.3 Hits and Misses
	3.1.4 Multiple Matches

	3.2 Processor modes
	3.2.1 Processor Operating Modes
	3.2.2 Addressing mode
	3.2.3 Instruction set mode
	3.2.4 Endian mode
	3.2.5 Address Spaces
	3.2.6 Virtual Address Space
	3.2.7 Physical Address Space
	3.2.8 Virtual-to-Physical Address Translation
	3.2.9 User Address Space
	3.2.10 Supervisor Space
	3.2.11 Kernel Space

	3.3 System Control Coprocessor
	3.3.1 Format of a TLB Entry
	3.3.2 CP0 Registers
	3.3.3 Virtual-to-Physical Address Translation Process
	3.3.4 TLB Exceptions
	3.3.5 TLB Instructions
	3.3.6 Code examples

	3
	4 Cache Organization and Operation
	4.1 Cache Overview
	4.1.1 Non-Blocking Caches
	4.1.2 Replacement Algorithm
	4.1.3 Cache Attributes

	4.2 Primary Instruction Cache
	4.2.1 Instruction Cache Organization
	4.2.2 Accessing Instruction Cache

	4.3 Primary Data Cache
	4.3.1 Data Cache Organization
	4.3.2 Accessing the Data Cache
	4.3.3 Processing Data Cache Miss

	4.4 Secondary Cache
	4.4.1 Secondary Cache Organization
	4.4.2 Accessing the Secondary Cache

	4.5 Cache Coherency
	4.5.1 Cache Coherency Attributes
	4.5.2 Uncached, Blocking (Coherency Code 2)
	4.5.3 Writeback (Coherency code 3)
	4.5.4 Uncached Accelerated (Coherency Code 7)

	4.6 Cache Maintenance

	4
	5 CP0
	5.1 Index Register (0)
	5.2 Random Register (1)
	5.3 EntryLo0 (2), and EntryLo1 (3) Registers
	5.4 Context (4)
	5.5 PageMask Register(5)
	5.6 Wired Register (6)
	5.7 BadVAddr Register (8)
	5.8 Count and Compare Registers(9 and 11)
	5.9 EntryHi Register (10)
	5.10 Status Register (12)
	5.11 Cause Register(13)
	5.12 Exception Program Counter (14)
	5.13 Processor Revision Identifier (PRID) Register
	5.14 Config Register (16)
	5.15 Load Linked Address (LLAddr) Register (17)
	5.16 Watch Register
	5.17 Xcontext Register(20)
	5.18 Diagnostic Register(22)
	5.19 Performance Counter Registers (24,25)
	5.20 TagLo (28) and TagHi (29) Registers
	5.21 ErrorEPC Register(30)
	5.22 CP0 Instructions

	5
	6 CPU Exceptions
	6.1 Causing and Returning from an Exceptions
	6.2 Exception Vector Locations
	6.3 TLB Refill Vector Selection
	6.4 Priority of Exceptions
	6.5 Cold Reset Exception
	6.6 Soft Reset Exception
	6.7 NMI Exception
	6.8 Address Error Exception
	6.9 TLB Exceptions
	6.10 TLB Refill Exceptions
	6.11 TLB Invalid Exception
	6.12 TLB Modified Exception
	6.13 Bus Error Exception
	6.14 Integer Overflow Exception
	6.15 Trap Exception
	6.16 System Call Exception
	6.17 Breakpoint Exception
	6.18 Reserved Instruction Exception
	6.19 Coprocessor Unusable Exception
	6.20 Floating-Point Exception
	6.21 Watch Exception
	6.22 Interrupt Exception

	6
	7 Floating-Point Unit
	7.1 Overview
	7.2 FPU Programming Model
	7.2.1 Floating-Point Registers
	7.2.2 Floating-Point Control Registers

	7.3 FPU Instruction Set Overview
	7.4 FPU Formats
	7.4.1 Floating-Point Format
	7.4.2 Multimedia Format

	7.5 FPU Instruction Pipeline Overview
	7.6 FPU Exceptions

	7
	8 Privileged Instruction
	8.1 CP0 Move Instructions
	8.1.1 DMFC0 Instruction
	8.1.2 DMTC0 Instruction
	8.1.3 MFC0 Instruction
	8.1.4 MTC0 Instruction
	8.1.5 Usable CP0 Move Instruction in User Mode

	8.2 TLB Access Instructions
	8.2.1 TLBP Instruction
	8.2.2 TLBR Instruction
	8.2.3 TLBWI Instruction
	8.2.4 TLBWR Instruction

	8.3 ERET Instruction
	8.4 CACHE Instruction
	8.4.1 Index Invalidate (I)
	8.4.2 Index WriteBack Invalidate (D)
	8.4.3 Index WriteBack Invalidate (S)
	8.4.4 Index Load Tag (D)
	8.4.5 Index Load Tag (S)
	8.4.6 Index Store Tag (D)
	8.4.7 Index Store Tag (S)
	8.4.8 Hit Invalidate (D)
	8.4.9 Hit Invalidate (S)
	8.4.10 Hit WriteBack Invalidate (D)
	8.4.11 Hit WriteBack Invalidate (S)
	8.4.12 Index Load Data (D)
	8.4.13 Index Load Data (S)
	8.4.14 Index Store Data (D)
	8.4.15 Index Store Data (S)

	9 DDR SDRAM Control Interface
	9.1 DDR SDRAM Controller Functional Overview
	9.2 DDR SDRAM Read Protocol
	9.3 DDR SDRAM Write Protocol
	9.4 DDR SDRAM Configuration
	9.5 DDR SDRAM Sampling Mode Configuration

	10 Performance Tuning
	10.1 User instruction Latency and Repeat Rate
	10.2 Instruction extensions
	10.3 Instruction Stream
	10.3.1 Instruction alignment
	10.3.2 Branch handling
	10.3.3 Improving Instruction Stream density
	10.3.4 Instruction scheduling

	10.4 Memory accesses
	10.5 Other Tips

	

