
August 2007 Rev 1 1/201

UM0447
User manual

STLS2F01

Introduction
STLS processors are based on the Loongson CPU architecture licensed by
STMicroelectronics from the Institute of Computing Technology (ICT), which is part of the
Chinese Academy of Science. The STLS family is made up of 64-bit high-end processors
that target applications requiring high levels of performances efficiency in terms of cost,
power consumption and area.

The Loongson CPU architecture is MIPS III based and enables multiple levels of parallelism
to boost computing performance. At instruction level, out-of-order execution and superscalar
techniques allow STLS processors to schedule the execution of instructions for maximum
throughput. At data level, STLS processors generate multiple results with single vector
instructions using SIMD techniques.

STLS processors implement a superscalar, out-of-order execution pipeline with dynamic
branch prediction and non-blocking cache. They also implement some fixed-point SIMD
instructions by reusing the floating-point data paths.

www.st.com

http://www.st.com

Contents UM0447

2/201

Contents

1 STLS2F01 microprocessor architecture . 15

1.1 STLS2F01 microprocessor architecture overview 15

1.2 Fetching and decoding . 16

1.3 Register renaming . 17

1.4 Issuing and reading operands . 18

1.5 Execution and functional units . 18

1.6 Commit and reorder queue . 20

1.7 Branch canceling and branch queue . 20

1.8 Memory subsystem . 21

1.9 The STLS2F01 processor summary . 22

2 Instruction set overview . 23

2.1 CPU instruction formats . 23

3 Memory management . 29

3.1 Translation lookaside buffer . 29

3.1.1 Joint TLB . 29

3.1.2 Instruction TLB . 30

3.1.3 Hits and misses . 30

3.1.4 Multiple matches . 30

3.2 Processor modes . 30

3.2.1 Processor operating modes . 30

3.2.2 Addressing mode . 31

3.2.3 Instruction set mode . 31

3.2.4 Endian mode . 31

3.2.5 Address spaces . 31

3.2.6 Virtual address space . 31

3.2.7 Physical address space . 31

3.2.8 Virtual-to-physical address translation . 32

3.2.9 User address space . 33

3.2.10 Supervisor space . 34

3.2.11 Kernel space . 36

3.3 System control coprocessor . 38

UM0447 Contents

 3/201

3.3.1 Format of a TLB Entry . 38

3.3.2 CP0 registers . 41

3.3.3 Virtual-to-physical address translation process 41

3.3.4 TLB exceptions . 42

3.3.5 TLB instructions . 43

3.3.6 Code examples . 43

4 Cache organization and operation . 45

4.1 Cache overview . 45

4.1.1 Non-blocking caches . 45

4.1.2 Replacement algorithm . 46

4.1.3 Cache attributes . 46

4.2 Primary instruction cache . 46

4.2.1 Instruction cache organization . 46

4.2.2 Accessing instruction cache . 47

4.3 Primary data cache . 48

4.3.1 Data cache organization . 48

4.3.2 Accessing the data cache . 49

4.3.3 Processing data cache miss . 49

4.4 Secondary cache . 50

4.4.1 Secondary cache organization . 50

4.4.2 Accessing the secondary cache . 50

4.5 Cache coherency . 51

4.5.1 Cache coherency attributes . 51

4.5.2 Uncached, blocking (coherency code 2) . 52

4.5.3 Writeback (coherency code 3) . 52

4.5.4 Uncached accelerated (coherency code 7) . 53

4.6 Cache maintenance . 53

5 CP0 . 54

5.1 Index register (0) . 55

5.2 Random register (1) . 56

5.3 EntryLo0 (2), and EntryLo1 (3) registers . 56

5.4 Context (4) . 57

5.5 PageMask register (5) . 58

5.6 Wired register (6) . 59

Contents UM0447

4/201

5.7 BadVAddr register (8) . 60

5.8 Count and compare registers (9 and 11) . 60

5.9 EntryHi register (10) . 61

5.10 Status register (12) . 62

5.10.1 Status register format . 62

5.10.2 Status register modes and access states . 63

5.11 Cause register (13) . 64

5.12 Exception program counter (14) . 65

5.13 Processor revision identifier (PRID) register . 65

5.14 Config register (16) . 66

5.15 Load linked address (LLAddr) register (17) . 67

5.16 Watch register . 67

5.17 Xcontext register (20) . 68

5.18 Diagnostic register (22) . 69

5.19 Performance counter registers (24, 25) . 69

5.20 TagLo (28) and TagHi (29) registers . 71

5.21 ErrorEPC register (30) . 72

5.22 CP0 instructions . 73

5.22.1 Hazards . 73

6 CPU exceptions . 74

6.1 Causing and returning from an exceptions . 74

6.2 Exception vector locations . 74

6.3 TLB refill vector selection . 75

6.4 Priority of exceptions . 75

6.5 Cold reset exception . 76

6.5.1 Cold reset exception cause . 76

6.5.2 Cold reset exception processing . 76

6.5.3 Cold reset exception servicing . 77

6.6 Soft reset exception . 77

6.6.1 Soft reset exception cause . 77

6.6.2 Soft reset exception processing . 77

6.6.3 Soft reset exception servicing . 78

6.7 NMI exception . 78

UM0447 Contents

 5/201

6.7.1 NMI exception cause . 78

6.7.2 NMI exception processing . 78

6.7.3 NMI exception servicing . 79

6.8 Address error exception . 79

6.8.1 Address error exceptioncause . 79

6.8.2 Address error exception processing . 79

6.8.3 Address error exception servicing . 80

6.9 TLB exceptions . 80

6.10 TLB refill exceptions . 80

6.10.1 TLB refill exceptions cause . 80

6.10.2 TLB refill exceptions processing . 80

6.10.3 TLB refill exceptions servicing . 81

6.11 TLB invalid exception . 81

6.11.1 TLB invalid exception cause . 81

6.11.2 TLB invalid exception processing . 81

6.11.3 TLB invalid exception servicing . 81

6.12 TLB modified exception . 82

6.12.1 TLB modified exception cause . 82

6.12.2 TLB modified exception processing . 82

6.12.3 TLB modified exception servicing . 82

6.13 Bus error exception . 82

6.13.1 Bus error exception cause . 82

6.13.2 Bus error exception processing . 82

6.13.3 Bus error exception servicing . 83

6.14 Integer overflow exception . 83

6.14.1 Integer overflow exception cause . 83

6.14.2 Integer overflow exception processing . 83

6.14.3 Integer overflow exception servicing . 83

6.15 Trap exception . 84

6.15.1 Trap exception cause . 84

6.15.2 Trap exception processing . 84

6.15.3 Trap exception servicing . 84

6.16 System call exception . 84

6.16.1 System call exception cause . 84

6.16.2 System call exception processing . 84

6.16.3 System call exception servicing . 84

Contents UM0447

6/201

6.17 Breakpoint Exception . 85

6.17.1 Breakpoint exception cause . 85

6.17.2 Breakpoint exception processing . 85

6.17.3 Breakpoint exception servicing . 85

6.18 Reserved instruction exception . 85

6.18.1 Reserved instruction exception cause . 85

6.18.2 Reserved instruction exception processing . 86

6.18.3 Reserved instruction exception servicing . 86

6.19 Coprocessor unusable exception . 86

6.19.1 Coprocessor unusable exception cause . 86

6.19.2 Coprocessor unusable exception processing . 86

6.19.3 Coprocessor unusable exception servicing . 87

6.20 Floating-point exception . 87

6.20.1 Floating-point exception cause . 87

6.20.2 Floating-point exception processing . 87

6.20.3 Floating-point exception servicing . 87

6.21 Watch exception . 87

6.21.1 Watch exception cause . 87

6.21.2 Watch exception processing . 88

6.21.3 Watch exception servicing . 88

6.22 Interrupt exception . 88

6.22.1 Interrupt exception cause . 88

6.22.2 Interrupt exception processing . 88

6.22.3 Interrupt exception servicing . 89

7 Floating-point unit . 90

7.1 Overview . 90

7.2 FPU programming model . 91

7.2.1 Floating-point registers . 91

7.2.2 Floating-point control registers . 92

7.3 FPU instruction set overview . 94

7.4 FPU formats . 96

7.4.1 Floating-point format . 96

7.4.2 Multimedia format . 98

7.5 FPU instruction pipeline overview . 99

7.6 FPU exceptions . 99

UM0447 Contents

 7/201

7.6.1 Inexact exception (I) . 101

7.6.2 Invalid operation exception (V) . 102

7.6.3 Division-by-zero exception (Z) . 102

7.6.4 Overflow exception (O) . 102

7.6.5 Underflow exception (U) . 103

7.6.6 Unimplemented instruction exception (E) . 103

8 Privileged instruction . 104

8.1 CP0 move instructions . 104

8.1.1 DMFC0 instruction . 104

8.1.2 DMTC0 instruction . 105

8.1.3 MFC0 instruction . 105

8.1.4 MTC0 instruction . 105

8.1.5 Usable CP0 move instruction in user mode . 106

8.2 TLB access instructions . 106

8.2.1 TLBP instruction . 106

8.2.2 TLBR instruction . 106

8.2.3 TLBWI instruction . 107

8.2.4 TLBWR instruction . 107

8.3 ERET instruction . 108

8.4 CACHE instruction . 108

8.4.1 Index invalidate (I) . 109

8.4.2 Index writeback invalidate (D) . 109

8.4.3 Index writeback invalidate (S) . 109

8.4.4 Index load tag (D) . 110

8.4.5 Index load tag (S) . 110

8.4.6 Index store tag (D) . 110

8.4.7 Index store tag (S) . 111

8.4.8 Hit invalidate (D) . 111

8.4.9 Hit invalidate (S) . 111

8.4.10 Hit writeback invalidate (D) . 111

8.4.11 Hit writeback invalidate (S) . 111

8.4.12 Index load data (D) . 112

8.4.13 Index load data (S) . 112

8.4.14 Index store data (D) . 112

8.4.15 Index store data (S) . 112

Contents UM0447

8/201

9 Address window configuration . 113

10 DDR2 SDRAM control interface . 115

10.1 Function of DDR2 SDRAM controller . 115

10.2 Protocol of DDR2 SDRAM read . 115

10.3 Protocol of DDR2 SDRAM write . 116

10.4 Registers of DDR2 SDRAM controller . 117

11 Integrated IO controller . 127

11.1 Introduction of IO controller . 127

11.1.1 PCIX controller . 128

11.1.2 LocalIO controller . 129

11.1.3 Interrupt controller . 131

11.1.4 PCI/PCIX arbiter . 132

11.1.5 Video acceleration . 132

11.2 Register description . 133

11.2.1 Configuration Registers . 133

11.2.2 Video acceleration config registers . 138

12 Performance tuning . 140

12.1 User instruction latency and repeat rate . 140

12.2 Instruction extensions . 141

12.3 Instruction stream . 142

12.3.1 Instruction alignment . 142

12.3.2 Branch handling . 142

12.3.3 Improving instruction stream density . 143

12.3.4 Instruction scheduling . 143

12.4 Memory accesses . 144

12.5 Other tips . 144

13 MIPS compliancy . 145

13.1 The compliance overview . 145

13.2 The special CP0 features . 146

13.2.1 The ITLB flushing . 146

13.2.2 The diagnostic register . 147

13.2.3 The performance counter register . 148

UM0447 Contents

 9/201

13.2.4 The CacheErr exception . 148

13.2.5 Address translation for the kuseg segment when statusERL = 1 148

13.2.6 Exception return when statusERL = 1 . 148

13.2.7 Page size setting in the TLB entries . 148

13.2.8 The 64-bit address space . 149

13.3 The special CPU and FPU instructions features 149

13.3.1 The special feature for the load-to-zero instruction 149

13.3.2 The special feature for the floating point conversion instructions 150

Appendix A STLS2F01 new integer instructions . 152

A.1 MULT.G - multiply word (STLS2F01). 152

A.2 MULTU.G - multiply unsigned word (STLS2F01) 152

A.3 DMULT.G - doubleword multiply (STLS2F01) . 152

A.4 DMULTU.G - doubleword multiply unsigned (STLS2F01) 153

A.5 DIV.G - divide word (STLS2F01) . 153

A.6 DIVU.G - divide unsigned word (STLS2F01). 154

A.7 DDIV.G - doubleword divide (STLS2F01) . 154

A.8 DDIVU.G - doubleword divide unsigned (STLS2F01) 154

A.9 MOD.G - mod word (STLS2F01). 155

A.10 MODU.G - mod unsigned word (STLS2F01). 155

A.11 DMOD.G - doubleword mod (STLS2F01) . 156

A.12 DMODU.G - doubleword mod unsigned (STLS2F01) 156

Appendix B STLS2F01 new float-point instructions . 157

B.1 MADD.fmt - floating-point multiply add . 157

B.2 MSUB.fmt - floating-point multiply subtract . 158

B.3 NMADD.fmt - floating-point negative multiply add. 158

B.4 NMSUB.fmt - floating-point negative multiply subtract 159

Appendix C STLS2F01 multimedia technology . 160

C.1 Overview . 160

C.2 Instruction syntax . 160

C.3 Saturation and wraparound modes . 161

C.4 Loongson multimedia instructions. 162

C.5 PACKSSHB/PACKSSWH - pack with signed saturation 163

Contents UM0447

10/201

C.6 PACKUSHB - pack with unsigned saturation. 164

C.7 PADDB/PADDH/PADDW - add packed integers 164

C.8 PADDD - add packed doubleword integers . 166

C.9 PADDSB/PADDSH - add packed signed integers 166

C.10 PADDUSB/PADDUSH - add packed unsigned integers 167

C.11 PANDN - logical and not . 168

C.12 PAVGB/PAVGH - average packed integers . 168

C.13 PCMPEQB/PCMPEQH/PCMPEQW - compare packed data for equal. . 169

C.14 PCMPGTB/PCMPGTH/PCMPGTW - compare packed signed integers. 170

C.15 PEXTRH - extract halfword . 171

C.16 PINSRH - insert halfword . 171

C.17 PMADDHW - multiply and add packed integers 172

C.18 PMAXSH - maximum of packed signed halfword integers 173

C.19 PMAXUB - maximum of packed unsigned byte integers. 174

C.20 PMINSH - minimum of packed signed halfword integers 174

C.21 PMINUB - minimum of packed unsigned byte integers 175

C.22 PMOVMSKB - move byte mask. 175

C.23 PMULHUH - multiply packed unsigned integers and store high result . . 176

C.24 PMULHH - multiply packed signed integers and store high result 177

C.25 PMULLH - multiply packed signed integers and store low result 177

C.26 PMULUW - multiply packed unsignedword integers 178

C.27 PSADBH - compute sum of absolute differences 179

C.28 PSHUFH - shuffle packed halfwords. 180

C.29 PSLLH/PSLLW - shift packed data left logical. 181

C.30 PSRAH/PSRAW - shift packed data right arithmetic 182

C.31 PSRLH/PSRLW - shift packed data right logical 183

C.32 PSUBB/PSUBH/PSUBW - subtract packed integers 184

C.33 PSUBD - subtract packed doubleword integers 185

C.34 PSUBSB/PSUBSH - subtract packed signed integers 186

C.35 PSUBUSB/PSUBUSH - subtract packed unsigned integers 187

C.36 PUNPCKHBH/PUNPCKHHW/PUNPCKHWD - unpack high data 188

C.37 PUNPCKLBH/PUNPCKLHW/PUNPCKLWD - unpack low data 189

C.38 Add - add word . 191

UM0447 Contents

 11/201

C.39 Addu - add unsigned word . 191

C.40 Dadd - doubleword ADD . 192

C.41 Sub - sub word . 192

C.42 Subu - sub unsigned word. 193

C.43 Dsub - doubleword sub . 193

C.44 Or - or . 194

C.45 Sll - shift word left logical. 194

C.46 Dsll - doubleword shift left logical . 194

C.47 Xor - xor. 195

C.48 Nor - nor . 195

C.49 And - and. 196

C.50 Srl - shift word right logical . 196

C.51 Dsrl - doubleword shift right logical . 196

C.52 Sra - shift word right arithmetic . 197

C.53 Dsra - doubleword shift right arithmetic. 197

C.54 Sequ/seq/sltu/slt/sleu/sle - fixing-point compare set cc bit 198

14 Revision history . 200

List of tables UM0447

12/201

List of tables

Table 1. CPU instruction set: load and store instructions . 24
Table 2. CPU instruction set: arithmetic instructions (ALU immediate) . 25
Table 3. CPU instruction set: arithmetic (3-Operand, R-Type) . 25
Table 4. CPU instruction set: multiply and divide instructions . 26
Table 5. CPU instruction set: jump and branch instructions . 26
Table 6. CPU instruction set: shift instructions . 27
Table 7. CPU instruction set: special instructions. 27
Table 8. CPU instruction set: exception instructions . 28
Table 9. CP0 instructions . 28
Table 10. Processor operating modes . 31
Table 11. TLB page coherency (C) bit values . 41
Table 12. Memory management-related CP0 registers . 41
Table 13. TLB instructions . 43
Table 14. Attributes for the three caches . 46
Table 15. STLS2F01 cache coherency attribute . 52
Table 16. Coprocessor 0 registers . 54
Table 17. Fields in the index register . 55
Table 18. Fields in the random register . 56
Table 19. Description of EntryLo registers’ fields . 57
Table 20. Context register fields . 58
Table 21. Mask field values for page sizes. 59
Table 22. Wired register field descriptions . 60
Table 23. EntryHi register fields . 61
Table 24. Fields in the status register . 62
Table 25. Cause register fields . 64
Table 26. Cause register exccode field . 64
Table 27. PRId register fields . 66
Table 28. Fields in the config register . 67
Table 29. Watch register fields . 67
Table 30. XContext register fields. 68
Table 31. Diagnostic register fields. 69
Table 32. Control fields format . 70
Table 33. Count enable bit definition . 70
Table 34. Counter 0 events . 70
Table 35. Counter 1 events . 71
Table 36. Cache tag register fields . 72
Table 37. CP0 instructions . 73
Table 38. Exception vector addresses . 74
Table 39. Exception priority order . 76
Table 40. FCR0 fields . 92
Table 41. Control/status register fields . 93
Table 42. Rounding mode bit decoding . 94
Table 43. Floating point instructions in STLS2F01 FPU. 95
Table 44. Paired-single (PS) instructions in STLS2F01 FPU . 96
Table 45. Equations to calculate single & double precision FP format values 97
Table 46. Floating point format parameter values . 98
Table 47. Minimum and maximum floating point values. 98
Table 48. Default FPU exception actions . 101

UM0447 List of tables

 13/201

Table 49. STLS2F01 Privileged Instructions . 104
Table 50. CP0 move instructions . 104
Table 51. CACHE Instruction op field encoding . 109
Table 52. Address of the window configuration register . 113
Table 53. Formation of DDR SDRAM controller registers . 117
Table 54. IO controller address space . 127
Table 55. PCIX controller configuration header . 128
Table 56. Interrupt controller bit mappings . 131
Table 57. PCI bus arbitration line routing . 132
Table 58. Controller registers . 133
Table 59. Detailed description of config registers . 135
Table 60. Video acceleration config registers. 138
Table 61. Latencies and repeat rates for user instructions. 140
Table 62. Paired-single (PS) instructions in STLS2F01 FPU . 157
Table 63. Loongson multimedia instruction set summary (opcode = COP2) 162
Table 64. Loongson multimedia instruction set summary. 162
Table 65. Document revision history . 200

List of figures UM0447

14/201

List of figures

Figure 1. Microarchitecture of STLS2F01 . 22
Figure 2. Overview of a virtual-to-physical address translation . 32
Figure 3. 64-bit mode virtual address translation. 33
Figure 4. User virtual address space as viewed from user mode . 34
Figure 5. User and supervisor address spaces; viewed from supervisor mode. 35
Figure 6. User, supervisor, and kernel address space viewed from kernel mode 36
Figure 7. Format of a TLB entry . 39
Figure 8. TLB address translation . 42
Figure 9. Instruction cache organization . 47
Figure 10. Accessing the instruction cache . 47
Figure 11. Data cache organization . 48
Figure 12. Accessing the data cache. 49
Figure 13. Accessing the secondary cache . 51
Figure 14. Wired register boundary . 59
Figure 15. Count and compare registers . 61
Figure 16. The organization of the functional units in STLS2F01’s architecture 91
Figure 17. DDR2 SDRAM read protocol . 116
Figure 18. DDR2 SDRAM write protocol . 116
Figure 19. IO controller architecture . 127
Figure 20. Generation of configuration cycle address . 129
Figure 21. LocalIO read timing. 130
Figure 22. LocalIO write timing . 131
Figure 23. Video acceleration data path . 132
Figure 24. Operation of the PACKSSWH instruction using 64-bit operands 163
Figure 25. PMADDHW Execution model using 64-bit operands . 173
Figure 26. PMULHUH and PMULHH instruction operation using 64-bit operands 176
Figure 27. PMULLH instruction operation using 64-bit operands . 178
Figure 28. PSADBH instruction operation using 64-bit operands . 179
Figure 29. PSHUFH Instruction operation . 180
Figure 30. PSLLH, PSLLW instruction operation using 64-bit operand . 181
Figure 31. PSRAH and PSRAW instruction operation using a 64-bit operand 182
Figure 32. PSRLH, PSRLW instruction operation using 64-bit operand . 184
Figure 33. PUNPCKHBH instruction operation using 64-bit operands . 188
Figure 34. PUNPCKLBH instruction operation using 64-bit operands. 190

UM0447 STLS2F01 microprocessor architecture

 15/201

1 STLS2F01 microprocessor architecture

1.1 STLS2F01 microprocessor architecture overview
The STLS2F01 processor is an enhanced version of its earlier STLS2E02 cousin, and a
four-issue general-purpose RISC SoC. Its main architectural improvements include an
integrated DDR2 Memory Controller and a 133MHz PCI-X interface. The STLS2F01 is
fabricated with STMicroelectronics 90nm technology, and runs at a 1GHz or higher main
clock frequency.

STLS2F01 employs out-of-order execution and aggressive memory hierarchy design to
maximize pipeline efficiency.

Out-of-order execution is accomplished with a combination of register renaming, dynamic
scheduling, and branch prediction techniques. The result is fewer pipeline stalls caused by
WAR (write after read) and WAW (write after write) hazards, RAW (read after write) hazards,
and control hazards. The STLS2F01 has a 64-entry physical register file for fixed- and
floating-point register renaming, a 16-entry fixed-point reservation station, and a 16-entry
floating-point reservation station that is responsible for out-of-order instruction issuing. A 64-
entry ROQ (reorder queue) ensures that out-of-order executed instructions are committed in
the program order. For precise branch prediction, a 16-entry BTB (branch target buffer), a
4K-entry BHT (branch history table), a 9-bit GHR (global history register), and a 4-entry
RAS (return address stack) are used to record branch history information.

The STLS2F01 memory hierarchy is also engineered for high performance. There is a 64KB
instruction cache, a 64KB data cache, and a 512KB level-two cache; all four-way set
associative. The on-chip DDR2 memory controller implements the JESD79-2B standard
and allows the STLS2F01 to achieve high memory bandwidth with low latency. The fully
associative Translation Lookahead Buffer (TLB) has 64 entries, each mapping an odd and
even page. A 24-entry memory access queue contains a content-addressable memory for
dynamic memory disambiguation and allows the STLS2F01 to implement out-of-order
memory access, non-blocking cache, load speculation, and store forwarding.

The STLS2F01 has two fixed-point functional units, two floating-point functional units, and
one memory access unit. The floating-point units can also execute 32- or 64-bit fixed-point
instructions and 8- or 16-bit SIMD fixed-point instructions through extension of the fmt field
of the floating-point instructions.

The basic pipeline stages of the STLS2F01 include instruction fetch, pre-decode, decode,
register rename, dispatch, issue, register read, execution, and commit. Figure 1 shows
major sections of the STLS2F01.

● Fetch Stage: The instruction cache and TLB are read, according to the contents of the
program counter (PC). Four new instructions are sent to the instruction register (IR) if
the instruction fetch is a TLB hit and a cache hit.

● Pre-Decode Stage: Branch instructions are found and their branch directions are
dynamically predicted.

● Decode Stage: The four instructions in IR are decoded in the STLS2F01’s internal
format and sent to the register renaming module.

● Register Rename Stage: A new physical register is allocated for each logical
destination register, and the logical source register is renamed according to the latest
physical register allocated for the same logical register. Inter-instruction dependencies

STLS2F01 microprocessor architecture UM0447

16/201

among four instructions mapped in the same cycle are also checked. The renamed
instructions are latched to be sent to reservation stations and queues in next cycle.

● Dispatch Stage: Renamed instructions are dispatched to the fixed- or floating-point
reservation station to be executed, and are sent to the reorder queue for in-order
graduation. Associated instructions are also sent to branch queue and memory queue.
Each empty entry of reservation stations and queues selects among four dispatched
instructions in this cycle.

● Issue Stage: One instruction with all required operands ready is selected from the
fixed- or floating-point reservation station for each functional unit. When there are
multiple instructions ready for the same functional unit, the oldest one is selected.
Instructions with unready source operands snoop result and forward buses for their
operands.

● Register Read Stage: The issued instruction reads its source operands from the
physical register file and is sent to the associated functional units. It may also get the
data directly from one of the result buses if its source register number matches the
destination register number of the result bus.

● Execution Stage: Instructions are executed according to its type and execution results
are written back to the register file. Result buses are also sent to the reservation station
for snooping and to the register mapping table to notify that the associated physical
register is ready.

● Commit Stage: Up to four instructions can be committed in program order per cycle.
Committed instructions are sent to the register mapping module to confirm the mapping
of its destination register and release the old one. They are also sent to the memory
access queue to allow committed store instructions to write cache or memory.

1.2 Fetching and decoding
The STLS2F01 pipeline begins with the fetch stage, in which four instructions are fetched in
parallel at any word alignment within an eight-word instruction cache line. In each cycle, the
processor compares tags read from the cache to physical addresses translated from ITLB
(instruction TLB) to select the data from the correct way. On cache misses a refill request
will be raised.

The sixteen-entry ITLB is a subset of the main TLB. It is different from the main TLB that
each ITLB entry maps only one page. When the ITLB misses, the processor creates an
internal STLS2F01 instruction which looks for the entry in the main TLB and fills the ITLB.
Normal TLB exception will rise if the missing page is not in the main TLB too.

In the following pre-decode and decode stages, the four instructions in IR are decoded into
internal instruction format of the STLS2F01 and are sent to the register renaming module.
Only one branch instruction can be decoded in one cycle. BHT is used for predicting
direction of conditional branch, while BTB and RAS are used for predicting target pc.

The BHT contains a 9-bit global history register (GHR) and 2K-entry pattern history table
(PHT). Each PHT entry has a 2-bit saturating up/down counter. The counter is increased by
one if the prediction is right, and is decreased by one otherwise. The high order bit of the
counter is used for branch prediction.

The 16-entry BTB predicts the target PC of the jump register instruction. Each BTB entry
contains the PC and target PC of the jump register instruction. Besides, a 2-bit saturating
up/down counter is associated with each BTB entry. On replacement, entries with counter
values 0 or 1 will be replaced prior to others.

UM0447 STLS2F01 microprocessor architecture

 17/201

MIPS instruction set does not provide call or return instruction; it normally uses branch/jump
and link instruction and the “jump register 31” instruction instead. STLS2F01 implements a
four-entry return address stack. The decoding of a branch and link instruction causes its
PC+8 to be pushed to the RAS, while the decoding of a “jump register 31” instruction
causes the target PC to be popped from the RAS. Each branch instruction saves the top-of-
stack pointer of the RAS to repair the top-of-stack pointer of the RAS after branch
misprediction.

1.3 Register renaming
The STLS2F01 implements two 64-entry physical register file for fixed-point and floating-
point register rename. Correspondingly, two 64-entry physical register-mapping tables
(PRMT) are maintained to build the relationship between physical and architectural
registers. Each PRMT entry has the following fields. (1) State: each physical register is in
one of four states, MAP_EMPTY, MAP_MAPPED, MAP_WTBK, and MAP_COMMIT. (2)
Name: the identifier of the associated architectural register to which this physical register is
allocated. (3) Valid: this bit is used to mark the latest allocation of a given architectural
register if more than one physical registers are allocated to it. Besides, The PRMT also
includes fields used to restore the register mapping on mispredicted branch canceling.

In register rename stage, the PRMT is associatively looked up for the two source register
src1, src2 and the destination register dest of each instruction to find the associated latest
mapped physical register psrc1, psrc2, and odest. Besides, a free physical register pdest
whose state is MAP_EMPTY is allocated to the destination register dest, and the state of
the newly allocated physical register is set to MAP_MAPPED. The valid bit of the pdest entry
is set to “1” and the valid bit of the odest entry is set to “0” to reflecting that pdest becomes
the latest allocated physical register for the dest architectural register.

Since four instructions are mapped concurrently, inter-instruction dependencies among
instructions mapped at the same cycle should be checked. If the source register src1 of an
instruction is identical to the destination register dest of a previous instruction mapped at the
same cycle, the physical register corresponds to src1 should be pdest of this previous
instruction, rather than the psrc1 looked up from the PRMT. This is also true for psrc2 and
odest.

Since register renaming, the processor determines dependencies simply by comparing
physical register name. These physical register names psrc1, psrc2, and pdest are sent to
the reservation station, while the odest field is kept in the reorder queue. After an instruction
is executed, its associated PRMT entry is set to MAP_WTBK state so that following
instructions that read this physical register know that the value is ready in the register file.
When an instruction is committed, it sets the pdest entry of PRMT to MAP_COMMIT state
and the odest entry to MAP_EMPTY state, which means its destination register contents is
regarded as the processor state and the previous contents for this destination register is
discarded.

It can be seen from the above register rename process that there may be multiple physical
registers allocated to the same architectural register because a logical register may have a
sequence of values as it is written by instructions in the pipeline. Physical registers assigned
to the same logical register hold both committed values and temporary results as
instructions flow through the pipeline. A physical register is written exactly once for each
assignment of it.

STLS2F01 microprocessor architecture UM0447

18/201

1.4 Issuing and reading operands
Register renamed instructions are latched and then sent to the reservation station to be
scheduled for execution. STLS2F01 has two independent group reservation stations. Fixed-
point and memory instructions are sent to the fixed-point reservation station. Floating-point
instructions are sent to the floating-point reservation station. Each reservation station has
16 entries and can accept as many as four instructions per cycle.

In the register rename stage, the PRMT is looked up to see whether the associated operand
has been generated and written back to the physical register. If the PRMT indicates that
operand is not ready, the reservation station snoops the result buses and forward buses for
that operand. The associated ready bit is set to ready if the destination register of one of the
snooped buses matches the source register of incoming instructions or instructions in the
reservation station.

Result and forward buses stem from the five functional units. The result buses send out the
execution results of functional units, while the forward buses forecast which result will be
sent out in next cycle. By snooping the forward buses, issued instructions can get operands
directly from the result buses before they are written back to the register file. Hence, there is
no delay slot for one-cycle instructions such as fixed-point add and subtract, shift, and logic
instructions.

The reservation stations can issue as many as five operand-ready instructions to the five
functional units. If there are multiple operand-ready instructions for the same functional unit,
the oldest one is issued. To record the age of each instruction, an age field is added to each
entry of the reservation station. It is set to a low value when an instruction enters the
reservation station, and is increased by one each time an instruction of the same functional
unit enters the reservation station.

Issued instructions read their operands from the physical register file. STLS2F01 has one
fixed-point physical register file and one floating-point physical register file, both with the
size of 64*64. Issued instructions read operands from the register file before they are sent to
functional units for execution.

The fixed-point register file has three write ports and seven read ports. The ALU1 fixed-point
unit uses one write port and three read ports (for move conditional instructions), while the
ALU2 and the memory unit uses one write port and two read ports each. The floating-point
register file has three write ports and seven read ports. The FALU1 and FALU2 floating-point
unit uses one write port and three read ports (for MAC instruction) each. Besides, floating-
point load instructions use one write port and floating-point store instructions use one read
port of the floating-point register file.

Execution results are written back directly to the register file, and can also be bypassed to
following instructions which is RAW dependent on it.

1.5 Execution and functional units
Instructions are sent to functional or memory units for execution after reading operations.
STLS2F01 has two fixed-point functional units ALU1 and ALU2, and two floating-point
functional units FALU1 and FALU2.

The ALU1 unit executes fixed-point addition, subtraction, logical, shift, comparison, trap,
conditional move, and branch instructions. All ALU1 instructions are executed and written
back in one cycle and have no delay slot with the help of forwarding logic.

UM0447 STLS2F01 microprocessor architecture

 19/201

The ALU2 unit executes fixed-point addition, subtraction, logical, shift, comparison,
multiplication, and division instructions. Fixed-point multiplication is fully pipelined and has a
latency of four cycles. Fixed-point division uses the SRT algorithm and is not fully pipelined,
the latency of fixed-point division ranges from 4 to 37 cycles depending on the operands. All
other ALU2 instructions can be executed and written back in one cycle and have no delay
slot with the forwarding logic.

The fully pipelined FALU1 unit executes floating-point addition, subtraction, multiplication,
multiplication and accumulation, absolute, negation, conversion, comparison, and branch
instructions. The latency of floating-point absolute, negation, comparison and branch
instructions is two cycles. The latency of conversion instructions is four cycles. The latency
of floating-point addition, subtraction, multiplication, multiplication and accumulation
instructions is six cycles.

The FALU2 executes floating-point addition, subtraction, multiplication, multiplication and
accumulation, division, and square root instructions. The latency of fully pipelined floating-
point addition, subtraction, multiplication, multiplication and accumulation instructions is six
cycles. The division and square root instructions use the SRT algorithm and are not fully
pipelined. The latency of single/double precision floating-point division instructions ranges
from 4 to 10/17 cycles, while the latency of floating-point division instructions ranges from 4
to 16/31 cycles, depending on the operands.

The floating-point multiply-add-fused (FMAF) unit has been a key feature in many
commercial processors, which execute C±(A×B) as a single instruction with no intermediate
rounding. The standard floating-point add and floating-point multiply operations can be
performed using this FMAF unit by making B=1 for addition and C=0 for multiplication. The
STLS2F01’s FALU1 and FALU2 floating point units both have a FMAF unit, which executes
double or single precision floating-point multiply-add, multiply, and addition instructions. It
also supports the paired-single instructions which execute two single floating-point
multiplications, addition, multiply-add operation concurrently in one instruction. The FMAF is
partitioned in five pipeline stages. The first stage mainly operates the bit inversion and
alignment of the significant of C in parallel with the booth encoding of multiply. The second
stage uses two 14-2 CSA tree to compress the multiply partial products and the C operator
mantissa at the same time. As a consequence, the delay of stage-two and stage-three are
balanced in our proposed FMAF pipelined structure, and also we can easily support the
paired-single instructions by using two separate CSA tree to operate two single precision
operations with little change. To make the combination of addition and rounding possible, we
anticipate the normalization (LZA) in stage-three and detect the sign of addition results. The
fourth stage encodes the LZA outcome to normalize the carry-save product. In stage five a
51-bits dual adder is used to compute the most-significant bits and the remaining least-
significant bits are input to the logic for the calculation of the carry into the most-significant
part and for the calculation of the rounding and sticky bits. Finally the carry and the sticky
bits are used to select the two outputs of dual adder to be the result of multiply-add
operation.

Besides executing floating-point instructions, the floating-point functional units can also
execute 32- or 64-bit fix-point instructions (arithmetic, logic, shift, compare, and branch) and
8- or 16-bit SIMD fixed-point instruction through extension of the fmt field of the floating-
point instructions.

STLS2F01 microprocessor architecture UM0447

20/201

1.6 Commit and reorder queue
The reorder queue holds all instructions after register mapping and before they are
committed. After instructions are executed and written back, the reorder queue commits
them in the program order. The reorder queue can hold as many as 64 instructions
concurrently.

Reorder queue can accept as many as four mapped instructions per cycle. Newly entered
instructions are set to ROQ_MAPPED state. After the instruction is written back, its state in
reorder queue is set to ROQ_WTBK for ordinary instructions and ROQ_BRWTBK for branch
instructions. The state of branch instructions are set to ROQ_WTBK after the branch result
has been sent to other parts of the processor through the branch bus to justify branch
prediction tables and to cancel instructions following mispredicted branches. ROQ_WTBK
instructions can be committed if they reach the head of the reorder queue.

Reorder queue graduates as many as four ROQ_WTBK instructions in the queue head per
cycle. When an instruction graduates, its pdest and odest fields are sent to the register
mapping module to confirm the mapping of pdest entry as the processor state and to free
the mapping of odest entry, it also informs the memory queue that corresponding store
instructions can start to modify memory.

For precise exception handling, exceptions are not processed as soon as they occur. They
are recorded in the reorder queue instead. When the exception instruction reaches the head
of the reorder queue, the exception information is sent out through exception bus. All
following instructions are cancelled, exception information is recorded in the CP0 registers,
and the PC is set to the entry point of exception handler.

1.7 Branch canceling and branch queue
A branch instruction enters the branch queue at the same time it is sent to the reorder
queue and the reservation station. At most one branch instruction can be accepted by the
branch queue per cycle. The branch queue can hold as many as eight branch instructions
concurrently.

The branch queue provides information necessary for execution when a branch instruction
is issued to be executed. The information includes the PC value for branch and link
instructions, and the predicted taken bit for conditional branch instructions.

After a branch instruction is executed, execution results specific to branch instructions are
written back to the branch queue. The results include the target PC for JR and JALR
instructions, the branch direction for conditional branch instructions, and a bit indicating
whether the branch prediction is error. The branch instruction execution result should be
feedback to the instruction fetch part before it can be committed. Besides correcting
mispredicted branches, the branch execution result is also used to justify the BHT, BTB,
RAS, and GHR for branch prediction.

In case of incorrect prediction, instructions that following the mispredicted branch instruction
should be cancelled. The key issue is for each instruction in the pipeline to decide whether it
is before or after the mispredicted branch. STLS2F01 divides the continuous instruction
stream into basic blocks separated by branch instructions. Each instruction is assigned a
branch queue position identifier brqid that can be regarded as its basic block number. For
branch instruction, this identifier indicates its position in the branch queue; for ordinary
instruction, this identifier indicates its previous branch instruction position in the branch
queue. In this way, each instruction can determine its relative position to the mispredicted

UM0447 STLS2F01 microprocessor architecture

 21/201

branch by comparing its brqid with the brqid of the mispredicted branch. Delay slot
instructions should be paid special attention in branch canceling.

1.8 Memory subsystem
Memory references are issued out-of-order to the address calculation unit. The STLS2F01
memory access pipeline is split into four stages. (1) In the first stage, address is calculated
and the CAM of TLB is searched to form the index of TLB RAM. (2) In the second stage,
TLB RAM is accessed in parallel with cache RAM access. Tag compare is also performed at
this stage, but value selection according to tag compare result is delayed to next cycle. (3) In
the third stage, access value is formed according to the tag compare result of last stage,
memory access exception bits are also form at this stage. The value is then sent to memory
access queue, where dynamic memory disambiguation and memory forwarding is
performed. (4) Finally the results are written back when ready.

The 64-entry fully associative TLB contains a CAM part that is used to do associative search
of virtual addresses and a RAM part which stores physical page numbers and page protect
bits. The CAM lookup is done in address calculation stage to avoid the need of
asynchronous RAM. To reduce hardware cost, STLS2F01 uses 40-bit virtual address and
40-bit physical address instead of the rarely needed 64-bit.

The 64-KB four-way set associative primary data cache is virtually indexed and physically
tagged so that accesses can happen in parallel with TLB lookups. The replacement policy is
random, but two continuous replacement of the same block is avoided by hardware. To
reduce chip area and ease physical design, single port RAM is used for both tag and data.
STLS2F01 allows simultaneous loads and write-back of stores provided they access
different banks to alleviate cache access conflict. When cache port conflict does occur
among refills, loads (stores read only the tag array) and write-back of stores (which write
cache data only), refills have the highest priority while write-back of stores have the lowest
priority.

Memory access queue is the core unit of STLS2F01 memory subsystem. It can track up to
24 in-flight memory loads or stores. Loads and stores enter the queue out-of-order, but an
in-order architectural memory model is maintained. Multiple cache misses and hit under
miss are allowed. Using a physical address CAM, the memory access queue dynamically
performs disambiguation and forwarding between accesses. When a load enters the queue,
it checks all older stores for possible bypass for each byte it needs. When a store enters the
queue, it checks all younger loads in the queues until another younger store to the same
byte to decide whether to forward value to them. The queue snoops cache refill and replace
operations too.

The miss queue sits below the memory queue in the STLS2F01 memory hierarchy. It
connects instruction cache, data cache, L2 cache, DDR memory controller, and SysAD
system bus controller. The miss queue accepts both instruction miss requests and data
miss requests, accesses L2 cache on L1 cache miss, further accesses lower memory
hierarchy through processor interface on L2 cache miss, and deliver L2 cache or memory
access results to L1 and/or L2 cache. Miss queue implements the store fill buffer
optimization which gathers L1 miss store operations for full modified cache blocks and refill
the gathered cache block directly to L1 cache to avoid unnecessary memory access.

The 512KB L2 cache is four-way set associative. The block size of L2 cache is 32-byte
which is the same as that of the L1 cache. The L2 cache accepts L2 cache access or refill
request from miss queue, and sends access results back to miss queue. It also accepts L1
cache write back requests directly from L1 cache and sends L2 cache write back requests

STLS2F01 microprocessor architecture UM0447

22/201

directly to lower level memory hierarchy. The fully pipelined L2 cache of STLS2F01 runs at
the same frequency as the processor core and has an access latency of five cycles.

The on-chip DDR2 memory controller allows STLS2F01 to achieve high memory bandwidth
with low latency. The STLS2F01 CPU support 4 physical memory bank at most
(implemented by 4 chip select signal), with address bus of 18 bits (ddr2_a[14:0] and
ddr2_bank[2:0]).The integrated DDR2 controller of STLS2F02 CPU supports the dynamic
page management. The DDR2 controller decides the Open Page or Close Page all by the
hardware for the memory access, but not by the software designer.

1.9 The STLS2F01 processor summary
The STLS2F01 processor is a 64-bit, four-issue RISC SOC microprocessor which is MIPS
based. It implements the advanced out-of-order executions technologies (i.e. register
renaming, dynamic scheduling, and branch prediction) and Cache technologies (i.e. non-
blocking cache, load speculation, and store forwarding). It also integrates on-chip second-
level cache, DDR2 memory controller and I/O controller to enhance the pipeline efficiency
and I/O ability.

Figure 1. Microarchitecture of STLS2F01

L2 cache

 DDR2

333MHz DDR

 Controller

Cache Interface Writeback
Queue

 Miss
Queue

 Refill Bus

 Branch Bus

 BTB

 BHT

BRQ

Fix
RS

Float
RS

Integer
Register

File

Floating
Point

Register
File

Map Bus

ROQ

ALU1

ALU2

AGU

FPU1 TLB

TA
G

 C
om

pa
re

CP0
Queue

D-Cache
64KB

FPU2

ITLB

I-Cache
64KB

Commit Bus

Writeback BusReorder Queue

 P
C

 +
 1

6

 P
C

 P
re

-D
ec

od
er

D
ec

od
er

R
eg

is
te

r M
ap

pe
r

AXI Crossbar

133MHz PCIX Local IO GPIO, INT

IO Controller

AC00117

UM0447 Instruction set overview

 23/201

2 Instruction set overview

Each CPU instruction consists of a single 32-bit word, aligned on a word boundary. There
are three instruction formats-immediate (I-type), jump (J-type), and register (R-type)-as
shown in Section 2.1. The use of a small number of instruction formats simplifies instruction
decoding, allowing the compiler to synthesize more complicated (and less frequently used)
operations and addressing modes from these three formats as needed.

2.1 CPU instruction formats
I-Type (immediate)

J-Type (Jump)

R-Type (Register)

op 6-bit operation code
rs 5-bit source register specifier
rt 5-bit target (source/destination) register or branch condition
immediate 16-bit immediate value, branch displacement or address displacement
target 26-bit jump target address
rd 5-bit destination register specifier
sa 5-bit shift amount
funct 6-bit function field

The instruction set can be further divided into the following groupings:

● Load and Store instructions move data between memory and general registers. They
are all immediate (I-type) instructions, since the only addressing mode supported is
base register plus 16-bit, signed immediate offset.

● Computational instructions perform arithmetic, logical, shift, multiply, and divide
operations on values in registers. They include register (R-type, in which both the
operands and the result are stored in registers) and immediate (I-type, in which one
operand is a 16-bit immediate value) formats. STLS2F01 also implements self-defined
multiply, divide and modulus operations which have a single general purpose
destination register instead of the paired hi and lo registers.

● Jump and Branch instructions change the control flow of a program. Jumps are always
made to a paged, absolute address formed by combining a 26-bit target address with
the high order bits of the Program Counter (J-type format) or register address (R-type

31 26 25 21 20 16 15 0

op rs rt immediate

6 5 5 16

31 26 25 0

op target

6 26

31 26 25 21 20 16 15 11 10 6 5 0

op rs rt rd sa funct

6 5 5 5 5 6

Instruction set overview UM0447

24/201

format). Branches have 16-bit offsets relative to the program counter (I-type). Jump and
Link instructions save their return address in register 31.

● Coprocessor instructions perform operations in the coprocessors. Coprocessor load
and store instructions are I-type. STLS2F01 has two coprocessors: coprocessor 0
(system coprocessor) and coprocessor 1 (float pointer coprocessor).
Coprocessor 0 instructions perform operations on CP0 registers to control the memory
management and exception handling facilities of the processor. These are listed in
Table 9 .
Coprocessor 1 instructions include float pointer instructions, multi-media extended
instructions and Loongson-extended fixed pointer computational instructions. They all
operate on float pointer registers. Chapter 8 provides summary of these instructions
and Appendix B give complete description of each instruction.

● Special instructions perform system calls and breakpoint operations. These
instructions are always R-type.

● Exception instructions cause a branch to the general exception handling vector based
upon the result of a comparison. These instructions occur in both R-type (both the
operands and the result are registers) and I-type (one operand is a 16-bit immediate
value) formats.

Table 1 through Table 9 lists all prior instructions except coprocessor 1 instructions.

Table 1. CPU instruction set: load and store instructions

OpCode Description MIPS ISA

LB Load Byte I

LBU Load Byte Unsigned I

LH Load Halfword I

LHU Load Halfword Unsigned I

LW Load Word I

LWU Load Word Unsigned I

LWL Load Word Left I

LWR Load Word Right I

LD Load Doubleword III

LDL Load Doubleword Left III

LDR Load Doubleword Right III

LL Load Linked I

LLD Load Linked Double III

SB Store Byte I

SH Store Halfword I

SW Store Word I

SWL Store Word Left I

SWR Store Word Right I

SD Store Doubleword III

SDL Store Doubleword Left III

UM0447 Instruction set overview

 25/201

SDR Store Doubleword Right III

SC Store Conditional I

SCD Store Conditional Double III

SYNC Sync I

Table 2. CPU instruction set: arithmetic instructions (ALU immediate)

OpCode Description MIPS ISA

ADDI Add Immediate I

DADDI Doubleword Add Immediate III

ADDIU Add Immediate Unsigned I

DADDIU Doubleword Add Immediate Unsigned III

SLTI Set on Less Than Immediate I

SLTIU Set on Less Than Immediate Unsigned I

ANDI And Immediate I

ORI Or Immedidate I

XORI Exclusive Or Immediate I

LUI Load Upper Immediate I

Table 3. CPU instruction set: arithmetic (3-Operand, R-Type)

OpCode Description MIPS ISA

ADD Add I

DADD Doubleword Add III

ADDU Add Unsigned I

DADDU Doubleword Add Unsigned III

SUB Subtract I

DSUB Doubleword Subtract III

SUBU Subtract Unsigned I

DSUBU Doubleword Subtract Unsigned III

SLT Set on Less Than I

SLTU Set on Less Than Unsigned I

AND And I

OR Or I

XOR Exclusive Or I

NOR Nor I

Table 1. CPU instruction set: load and store instructions (continued)

OpCode Description MIPS ISA

Instruction set overview UM0447

26/201

Table 4. CPU instruction set: multiply and divide instructions

OpCode Description MIPS ISA

MULT Multiply I

DMULT Doubleword Multiply III

MULTU Multiply unsigned I

DMULTU Doubleword Multiply Unsigned III

DIV Divide I

DDIV Doubleword Divide III

DIVU Divide unsigned I

DDIVU Doubleword Divide Unsigned III

MFHI Move From HI I

MTHI Move To HI I

MFLO Move From LO I

MTLO Move To LO I

MULTG STLS2F01 Multiply STLS2F01

DMULTG STLS2F01 Doubleword Multiply STLS2F01

MULTUG STLS2F01 Multiply unsigned STLS2F01

DMULTUG STLS2F01 Doubleword Multiply Unsigned STLS2F01

DIVG STLS2F01 Divide STLS2F01

DDIVG STLS2F01 Doubleword Divide STLS2F01

DIVUG STLS2F01 Divide unsigned STLS2F01

DDIVUG STLS2F01 Doubleword Divide Unsigned STLS2F01

MODG STLS2F01 Modulus STLS2F01

DMODG STLS2F01 Doubleword Modulus STLS2F01

MODUG STLS2F01 Modulus Unsigned STLS2F01

DMODUG STLS2F01 Doubleword Modulus Unsigned STLS2F01

Table 5. CPU instruction set: jump and branch instructions

Opcode Description MIPS ISA

J Jump I

JAL Jump and link I

JR Jump register I

JALR Jump and link register I

BEQ Branch on equal I

BNE Branch on not equal I

BLEZ Branch on less than or equal to zero I

BGTZ Branch on greater than zero I

UM0447 Instruction set overview

 27/201

BLTZ Branch on less than zero I

BGEZ Branch on greater than or equal to zero I

BLTZAL Branch on less than zero and link I

BGEZAL Branch on greater than or equal to zero and link I

BEQL Branch on equal likely II

BNEL Branch on not equal likely II

BLEZL Branch on less than or equal to zero likely II

BGTZL Branch on greater than zero likely II

BLTZL Branch on less than zero likely II

BGEZL Branch on greater than or equal to zero likely II

BLTZALL Branch on less than zero and link likely II

BGEZALL Branch on greater than or equal to zero and link likely II

Table 6. CPU instruction set: shift instructions

OpCode Description MIPS ISA

SLL Shift Left Logical I

SRL Shift Right Logical I

SRA Shift Right Arithmetic I

SLLV Shift Left Logical Variable I

SRLV Shift Right Logical Variable I

SRAV Shift Right Arithmetic Variable I

DSLL Doubleword Shift Left Logical III

DSRL Doubleword Shift Right Logical III

DSRA Doubleword Shift Right Arithmetic III

DSLLV Doubleword Shift Left Logical Variable III

DSRLV Doubleword Shift Right Logical Variable III

DSRAV Doubleword Shift Right Arithmetic Variable III

DSLL32 Doubleword Shift Left Logical + 32 III

DSRL32 Doubleword Shift Right Logical + 32 III

DSRA32 Doubleword Shift Right Arithmetic + 32 III

Table 7. CPU instruction set: special instructions

OpCode Description MIPS ISA

SYSCALL System Call I

BREAK Break I

Table 5. CPU instruction set: jump and branch instructions (continued)

Opcode Description MIPS ISA

Instruction set overview UM0447

28/201

Table 8. CPU instruction set: exception instructions

OpCode Description MIPS ISA

TGE Trap if Greater Than or Equal II

TGEU Trap if Greater Than or Equal Unsigned II

TLT Trap if Less Than II

TLTU Trap if Less Than Unsigned II

TEQ Trap if Equal II

TNE Trap if Not Equal II

TGEI Trap if Greater Than or Equal Immediate II

TGEIU Trap if Greater Than or Equal Immediate Unsigned II

TLTI Trap if Less Than Immediate II

TLTIU Trap if Less Than Immediate Unsigned II

TEQI Trap if Equal Immediate II

TNEI Trap if Not Equal Immediate II

Table 9. CP0 instructions

OpCode Description MIPS ISA

DMFC0 Doubleword Move From CP0 III

DMTC0 Doubleword Move To CP0 III

MFC0 Move From CP0 I

MTC0 Move To CP0 I

TLBR Read Indexed TLB Entry III

TLBWI Write Indexed TLB Entry III

TLBWR Write Random TLB Entry III

TLBP Probe TLB from Matching Entry III

CACHE Cache Operation III

ERET Exception Return III

UM0447 Memory management

 29/201

3 Memory management

The STLS2F01 processor provides a full-featured memory management unit (MMU) which
uses an on-chip translation lookaside buffer (TLB) to translate virtual addresses into
physical addresses.

This section describes the processor virtual and physical address spaces, the virtual-to-
physical address translation, the operation of the TLB in making these translations, the
cache memories, and those System Control Coprocessor (CP0) registers that provide the
software interface to the TLB.

3.1 Translation lookaside buffer
Mapped virtual addresses are translated into physical addresses using on-chip Translation
Lookaside Buffers (TLB). (a) The primary TLB is the Joint TLB (JTLB). In addition, the
STLS2F01 processor contains separate Instruction and Data TLBs to avoid contention for
the JTLB.

3.1.1 Joint TLB

For fast virtual-to-physical address translation, the STLS2F01 uses a large, fully associative
TLB that maps virtual pages to their corresponding physical addresses. As indicated by its
name, the Joint TLB, or JTLB is used for both instruction and data translations. The JTLB is
organized as pairs of even/odd entries, and maps a virtual address and address space
identifier into the large, 64GByte physical address space. By default, the JTLB is configured
as 64 pairs of even/odd entries to allow the mapping of 128 pages.

Two mechanisms are provided to assist in controlling the amount of mapped space and the
replacement characteristics of various memory regions. First, the page size can be
configured from 4KB to 16MB (in multiples of 4). A CP0 register, PageMask, is loaded with
the desired page size of a mapping, and that size is stored into the TLB along with the
virtual address when a new entry is written. Thus, operating systems can support different
page sizes for different purpose while only one specific page size at the run time. In the
future, STLS2F01 will support multiple page size at the run time. Thus, operating systems
can create special purpose maps; for example, a typical frame buffer can be memory
mapped using only one TLB entry.

The second mechanism controls the replacement algorithm when a TLB miss occurs. The
STLS2F01 provides a random replacement algorithm to select a TLB entry to be written with
a new mapping; however, the processor also provides a mechanism whereby a system
specific number of mappings can be locked into the TLB, thereby avoiding random
replacement. This mechanism allows the operating system to guarantee that certain pages
are always mapped for performance reasons and for deadlock avoidance. This mechanism
also facilitates the design of real-time systems by allowing deterministic access to critical
software.

The JTLB also contains information that controls the cache coherency protocol for each
page. Specifically, each page has attribute bits to determine whether the coherency
algorithm is: uncached, non-coherent write-back, or uncached accelerated.

a. There are virtual-to-physical address translations that occur outside of the TLB. For example, addresses in the kseg0 and
kseg1 spaces are unmapped translations. In these spaces the physical address is 0x0 0000 0000 || VA[28:0].

Memory management UM0447

30/201

3.1.2 Instruction TLB

The STLS2F01 uses an 8-entry instruction TLB, or ITLB, to minimize contention for the joint
TLB, eliminate the timing critical path of translating through a large associative array, and
save power. Each ITLB entry maps only one page and the page size is specified by
PageMask register. The ITLB improves performance by allowing instruction address
translation to occur in parallel with data address translation. When a miss occurs on an
instruction address translation by the ITLB, a randomly selected ITLB entry is filled from the
joint TLB. The operation of the ITLB is completely transparent to the user.

3.1.3 Hits and misses

If there is a virtual address match, or hit, in the TLB, the physical page number is extracted
from the TLB and concatenated with the offset to form the physical address.

If no match occurs (TLB miss), an exception is taken and software refills the TLB from the
page table resident in memory. Software can write over a selected TLB entry or use a
hardware mechanism to write into a random entry.

3.1.4 Multiple matches

The STLS2F01 processor does not provide any detection or shutdown mechanism for
multiple matches in the TLB. Unlike earlier MIPS designs, multiple matches do not
physically damage the TLB. Therefore, multiple match detection is not needed. The result of
this condition is undefined, and software is expected to never allow this to occur.

3.2 Processor modes
The STLS2F01 has three operating modes, but unlike other MIPS processors, it only
supports one addressing mode, one instruction set mode and one endian mode.

3.2.1 Processor operating modes

The three operating modes are listed in order of decreasing system privilege:

● Kernel mode (highest system privilege): can access and change any register. The
innermost core of the operating system runs in kernel mode.

● Supervisor mode: has fewer privileges and is used for less critical sections of the
operating system.

● User mode (lowest system privilege): prevents users from interfering with one another.

Selection between the three modes can be made by the operating system (when in Kernal
mode) by writing into Status register’s KSU field. The processor is forced into Kernel mode
when the processor is handling an error (the ERL bit is set) or an exception (the EXL bit is
set). Table 10 shows the selection of operating modes with respect to the KSU, EXL and
ERL bits; the blanks in the table indicate don’t cares.

UM0447 Memory management

 31/201

3.2.2 Addressing mode

STLS2F01 processor only supports 64-bit virtual memory addressing mode, but it is
compatible with 32-bit virtual memory addressing mode.

3.2.3 Instruction set mode

STLS2F01 processor implements a full feature MIPS III Instruction Set Architecture (ISA)
plus some MIPS IV ISA instructions, like paired single, move condition and multiply add.

3.2.4 Endian mode

The STLS2F01 processor can only operate in little-endian mode.

3.2.5 Address spaces

This section describes the virtual and physical address spaces and the manner in which
virtual addresses are converted or “translated” into physical addresses in the TLB.

3.2.6 Virtual address space

The STLS2F01 processor has three virtual address spaces: User address space,
Supervisor address space and Kernel address space. Each space is 64-bit and consists of
several discontinued segments. The maximum segment size is 1 terabyte(240).

3.2.7 Physical address space

Using a 36-bit address, the STLS2F01 processor physical address space encompasses 64
gigabytes.

Table 10. Processor operating modes

KSU

4:3

ERL

2

EXL

1
Description

10 0 0 User mode

01 0 0 Supervisor mode

00 0 0 Kernel mode

0 1 Exception level

1 Error level

Memory management UM0447

32/201

3.2.8 Virtual-to-physical address translation

Figure 2. Overview of a virtual-to-physical address translation

Converting a virtual address to a physical address begins by comparing the virtual address
from the processor with the virtual addresses in the TLB; there is a match when the virtual
page number (VPN) of the address is the same as the VPN field of the entry, and either:

● the Global (G) bit of the TLB entry is set, or

● the ASID field of the virtual address is the same as the ASID field of the TLB entry.

This match is referred to as a TLB hit. If there is no match, a TLB Miss exception is taken by
the processor and software is allowed to refill the TLB from a page table of virtual/physical
addresses in memory.

If there is a virtual address match in the TLB, the physical address is output from the TLB
and concatenated with the Offset, which represents an address within the page frame
space. The Offset does not pass through the TLB.

Figure 2 shows the translation of a virtual address into a physical address. As shown, the
virtual address is extended with an 8-bit address space identifier (ASID), which reduces the
frequency of TLB flushing when switching contexts. This 8-bit ASID is in the CP0 EntryHi
register. The Global bit (G) is in each TLB entry.

ASID VPN Offset

Virtual address

G ASID VPN

PFN

TLB

PFN

Physical address

TLB
Entry

Offset

Virtual address (VA) represented by the
virtual page number (VPN) is compared
with tag in TLB. The ASID portion of the
VA is held in EnHI Register.

If there is a match, the page frame
number (PFN) representing the upper
bits of the physical address (PA) is
output from the TLB.

The Offset, which does not pass through
the TLB, is then concatenated to the PFN.

1.

2.

3.

UM0447 Memory management

 33/201

Figure 3. 64-bit mode virtual address translation

Figure 3 shows the 64-bit mode virtual-to-physical-address translation. This figure illustrates
the two extremes in the range of possible page sizes: a 4-Kbyte page (12 bits) and a 16-
Mbyte page (24 bits).

The top portion of Figure 3 shows a virtual address with a 12-bit, or 4-Kbyte, page size,
labeled Offset. The remaining 28 bits of the address represent the VPN, and index the
256Mentry page table.

The bottom portion of Figure 3 shows a virtual address with a 24-bit, or 16-Mbyte, page
size, labeled Offset. The remaining 16 bits of the address represent the VPN, and index the
64Kentry page table.

3.2.9 User address space

In User address space, a single, uniform virtual address space-labeled Extended User
segment (xuseg), is available and its size is 1 terabyte (240 bytes) .

Figure 4 shows the range of User virtual address space. User space can be accessed from
user, supervisor, and kernel modes.

The User segment starts at address 0 and the current active user process resides in xuseg.
The TLB identically maps all references to xuseg from all modes, and controls cache
accessibility.

ASID VPN

71 64 63 62 61 40 39 12 11 0

0 or -1 Offset

28 bits = 256M pages

Virtual Address with 256M (228) 4-Kbyte pages

8 24 28 12

TLB

PFN Offset

36-bit Physical Address

35 0

Offset passed
unchanged to
physical
memory

ASID VPN

71 64 63 62 61 40 39 24 23 0

0 or -1 Offset

16 bits = 64K pages

8 24 16 24

Offset passed
unchanged to
physical
memory

TLB

Virtual to physical
translation in TLB

Virtual to physical
translation in TLB

Virtual Address with 64K (216) 16-Mbyte pages

Bits 62 and 63 of the virtual
address select user, supervisor,
or kernel address spaces

Memory management UM0447

34/201

Figure 4. User virtual address space as viewed from user mode

All valid User mode virtual addresses have bits 63:40 equal to 0; an attempt to reference an
address with bits 63:40 not equal to 0 causes an Address Error exception. TLB misses on
xuseg space address use the XTLB refill vector. In STLS2F01 processor, XTLB refill vector
has the same entry with TLB refill vector in 32-bit mode.

3.2.10 Supervisor space

Supervisor address space is designed for layered operating systems in which a true kernel
runs in Kernel mode, and the rest of the operating system runs in Supervisor mode. The
Supervisor address space provides code and data addresses for supervisor mode. TLB
misses on supervisor space addresses are handled by the XTLB refill exception handler.

Supervisor space can be accessed from supervisor mode and kernel mode.

The processor operates in Supervisor mode when the Status register contains the following
bit values:

● KSU = 012

● EXL = 0

● ERL = 0.

Figure 5 shows the User and Supervisor address spaces viewed from Supervisor mode.

64-bit supervisor, user space (xsuseg)

In Supervisor Mode when accessing User space and bits 63:62 of the virtual address are
set to 002, the xsuseg virtual address space is selected; it covers the full 240 bytes (1 Tbyte)
of the current user address space. The virtual address is extended with the contents of the
8-bit ASID field to form a unique virtual address.

This mapped space starts at virtual address 0x0000 0000 0000 0000 and runs through
0x0000 00FF FFFF FFFF.

64-bit

0xFFFF FFFF FFFF FFFF
Address

Error
0x0000 0100 0000 0000

1 TB
xuseg

0x0000 0000 0000 0000

UM0447 Memory management

 35/201

Figure 5. User and supervisor address spaces; viewed from supervisor mode

64-bit supervisor, current supervisor space (xsseg)

In Supervisor space, when bits 63:62 of the virtual address are set to 012, the xsseg current
supervisor virtual address space is selected. The virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address.

This mapped space begins at virtual address 0x4000 0000 0000 0000 and runs through
0x4000 00FF FFFF FFFF.

64-bit supervisor, separate supervisor space (csseg)

In Supervisor space, when bits 63:62 of the virtual address are set to 112, the csseg
separate supervisor virtual address space is selected. Addressing of the csseg is
compatible with addressing sseg in 32-bit mode. The virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address.

This mapped space begins at virtual address 0xFFFF FFFF C000 0000 and runs through
0xFFFF FFFF DFFF FFFF.

0xFFFF FFFF FFFF FFFF
Address

Error
0xFFFF FFFF E000 0000

0.5GB

mapped
cseg

0xFFFF FFFF C000 0000

Address

Error
0x4000 0100 0000 0000

1TB

Mapped
xsseg

0x4000 0000 0000 0000

Address

Error
0x0000 0100 0000 0000

1TB

Mapped
xsueg

0x0000 0000 0000 0000

Memory management UM0447

36/201

3.2.11 Kernel space

Figure 6. User, supervisor, and kernel address space viewed from kernel mode

0xFFFF FFFF FFFF FFFF
0.5GB

Mapped
ckseg3

0xFFFF FFFF E000 0000

0.5GB
Mapped

cksseg

0xFFFF FFFF C000 0000

0.5GB

Unmappe
d

ckseg1

0xFFFF FFFF A000 0000

0.5GB

Unmappe
d

ckseg0

0xFFFF FFFF 8000 0000

Address
Error

0xC000 00FF 8000 0000

Mapped xkseg

0xC000 0000 0000 0000

Unmappe
d

xkphys

0x8000 0000 0000 0000

Address
Error

0x4000 0100 0000 0000

1TB
Mapped

xksseg

0x4000 0000 0000 0000

Address
Error

0x0000 0100 0000 0000

1TB
Mapped

xkuseg

0x0000 0000 0000 0000

UM0447 Memory management

 37/201

The processor operates in Kernel mode when the Status register contains one of the
following values:

● KSU = 002

● EXL = 1

● ERL = 1

The processor enters Kernel mode whenever an exception is detected and it remains there
until an Exception Return (ERET) instruction is executed or the EXL bit is cleared. The
ERET instruction restores the processor to the address space existing prior to the
exception.

Kernel virtual address space is divided into regions differentiated by the high-order bits of
the virtual address, as shown in Figure 6 also lists the characteristics of the kernel mode
segments.

64-bit kernel, user space (xkuseg)

In Kernel mode when accessing User space and bits 63:62 of the 64-bit virtual address are
002, the xkuseg virtual address space is selected; it covers the current user address space.
The virtual address is extended with the contents of the 8-bit ASID field to form a unique
virtual address.

64-bit kernel, current supervisor space (xksseg)

In Kernel mode when accessing Supervisor space and bits 63:62 of the 64-bit virtual
address are 012, the xksseg virtual address space is selected; it is the current supervisor
virtual space. The virtual address is extended with the contents of the 8-bit ASID field to
form a unique virtual address.

64-bit kernel, physical spaces (xkphys)

In Kernel space, when bits 63:62 of the 64-bit virtual address are 102, the xkphys virtual
address space is selected; it is a set of eight 236-byte kernel physical spaces. Accesses
with address bits 58:36 not equal to zero cause an address error.

References to this space are not mapped; the physical address selected is taken from bits
35:0 of the virtual address. Bits 61:59 of the virtual address specify the cacheability and
coherency attributes, as shown in Figure 3.

64-bit kernel, kernel space (xkseg)

In Kernel space, when bits 63:62 of the 64-bit virtual address are 112, the address space
selected is one of the following:

● Kernel virtual space, xkseg, the current kernel virtual space; the virtual address is
extended with the contents of the 8-bit ASID field to form a unique virtual address.

● One of the four 32-bit kernel compatibility spaces, as described in the next section.

Memory management UM0447

38/201

64-bit kernel, compatibility spaces

In Kernel space, when bits 63:62 of the 64-bit virtual address are 112, and bits 61:31 of the
virtual address equal –1. The lower two bytes of address select one of the following 512-
Mbyte compatibility spaces.

● ckseg0. This 64-bit virtual address space is an unmapped region, compatible with the
32-bit address model kseg0. The K0 field of the Config register controls cacheability
and coherency.

● ckseg1. This 64-bit virtual address space is an unmapped and uncached, blocking
region, compatible with the 32-bit address model kseg1.

● cksseg. This 64-bit virtual address space is the current supervisor virtual space,
compatible with the 32-bit address model ksseg.

● ckseg3. This 64-bit virtual address space is kernel virtual space, compatible with the
32-bit address model kseg3.

3.3 System control coprocessor
The System Control Coprocessor (CP0) supports memory management, address
translation, exception handling, and other privileged operations. STLS2F01 CP0 contains a
64-entry TLB and 27 registers; each register has a unique identifier referred to as the
register number. The sections that follow provide the summary of the memory management-
related registers, Chapter 6 gives the complete description of each CP0 register.

3.3.1 Format of a TLB Entry

Figure 7 shows the TLB entry formats. Each field of an entry has a corresponding field in the
EntryHi, EntryLo0, EntryLo1, or PageMask registers.

UM0447 Memory management

 39/201

Figure 7. Format of a TLB entry

The format of the EntryHi, EntryLo0, EntryLo1, and PageMask registers are nearly the
same as the TLB entry. The one exception is the Global field (G bit), which is used in the
TLB, but is reserved in the EntryHi register.

255 217 216 205 204 192

0 MASK 0

39 12 13

191 190 189 168 167 141 140 139 136 135 128

R 0 VPN2 G 0 ASID

2 22 27 1 4 8

127 94 93 70 69 67 66 65 64

0 PFN C D V 0

34 24 3 1 1 1

63 30 29 6 5 3 2 1 0

0 PFN C D V 0

34 24 3 1 1 1

Memory management UM0447

40/201

EntryHi register format

PageMask register format

EntryLo0 and EntryLo1 register formats

The TLB page coherency attribute (C) bits specify whether references to the page should be
cached; if cached, the algorithm selects between several coherency attributes. Table 11
shows the coherency attributes selected by the C bits.

31 25 24 13 12 0

0 MASK 0

7 12 13

Mask.. Page comparison mask

0......... Reserved. Must be written as zeros, and return zereos when read

19 5 8

63 62 61 40 39 13 12 8 7 0

R FILL VPN2 0 ASID

2 22 27 5 8

VPN2.. Virtual page number divided by two (maps to two pages).

ASID
Address space ID field. An 8-bit field that lets multiple processes share the TLB;
each process has a distinct mapping of otherwise identical virtual page numbers,

R........ Region. (00 → user, 01 → supervisor, 11 → kernel) used to match vAddr63...62

Fill...... Reserved. Zero on read; ignored on write.

0......... Reserved. Must be written as zeros, and return zeros when read.

63 30 29 6 5 3 2 1 0

0 PFN C D V G

34 24 3 1 1 1

63 30 29 6 5 3 2 1 0

0 PFN C D V G

34 24 3 1 1 1

PFNPage frame number, the upper bits of the physical address.

C Specifies the TLB page coherency attribute.

D Dirty. If this bit is set, the page is marked as dirty and therefore, writable. This bit is actually a write-protect bit that
software can use to prevent alteration of data.

V Valid. If this bit is set, it indicates that the TLB entry is valid, otherwise, a TLB or TLBS miss occurs

G Global. If this bit is set in both Lo0 and Lo1, then the processor ignores the ASID during TLB lookup

0 Reserved. Must be written as zeros, and return zeros when read

UM0447 Memory management

 41/201

3.3.2 CP0 registers

Figure 4 lists the CP0 registers used by the MMU, Chapter 6 provides complete description
of each CP0 registers.

3.3.3 Virtual-to-physical address translation process

During virtual-to-physical address translation, the CPU compares the 8-bit ASID (if the
Global bit, G, is not set) of the virtual address to the ASID of the TLB entry to see if there is
a match. And the highest 15-to-27 bits (depending upon the page size) of the virtual address
are compared to the contents of the TLB virtual page number also. If a TLB entry matches,
the physical address and access control bits (C, D, and V) are retrieved from the matching
TLB entry. While the V bit of the entry must be set for a valid translation to take place, it is
not involved in the determination of a matching TLB entry.

Figure 8 illustrates the TLB address translation process.

Table 11. TLB page coherency (C) bit values

C(5:3) Value Page coherency attribute

0 Reserved

1 Reserved

2 Uncached

3 Cacheable noncoherent (Writeback)

4 Reserved

5 Reserved

6 Reserved

7 Uncached Accelerated

Table 12. Memory management-related CP0 registers

Register No. Register name

0 Index

1 Random

2 EntryLo0

3 EntryLo1

5 PageMask

6 Wired

10 EntryHi

15 PrID

16 Config

17 LLAdr

28 TagLo

29 TagHi

Memory management UM0447

42/201

3.3.4 TLB exceptions

If there is no TLB entry that matches the virtual address, a TLB miss exception occurs. If the
access control bits (D and V) indicate that the access is not valid, a TLB modification or TLB
invalid exception occurs. If the C bits equal 0102, the physical address that is retrieved
accesses main memory, bypassing the cache.

Figure 8. TLB address translation

For valid address space,
see the section describing
Operating Modes
in this chapter.

Virtual Address (Input)

Exception

MSBs=10? Unmapped
Access

Valid
Address?

User
Mode?

Sup
Mode?

Valid
Address?

Address
Error

No Yes No No NoAddress
Error

VPN
and

ASID

Exception

Valid
Address?

No

NoAddress
Error

Exception

Yes

Yes

Yes Yes

Yes

VPN
Match?

Yes

No

G
= 1?

ASID
Match?

No No

Global

Yes

V
= 1?

Yes
Valid

32-bit
Address

No

Yes

Write?
D

= 1?
No DirtyYes

Yes
No

C =
010?Yes

Non-cacheable
TLB
Mod

Exception

Access
Main

Memory

Physical Address (Output)

Access
Cache

No

TLB
Refill

XTLB
Refill

TLB
Invalid

Exception

Yes

No

UM0447 Memory management

 43/201

3.3.5 TLB instructions

Figure 5 lists the instructions that the CPU provides for working with the TLB.

3.3.6 Code examples

The first example is how to set up one TLB entry to map a pair of 4KB pages. A real time
kernel might do something similar. Such simple kernels are only using the MMU for memory
protection so the static mapping is sufficient. In statically mapped systems, all TLB
exceptions are considered error conditions (access violations).

mtc0 r0,C0_WIRED # make all entries available to random replacement
li r2, (vpn2<<13)|(asid & 0xff);
mtc0 r2, C0_ENHI # set the virtual address
li r2, (epfn<<6)|(coherency<<3)|(Dirty<<2)|Valid<<1|Global)
mtc0 r2, C0_ENLO0 # set the physical address for the even page
li r2, (opfn<<6)|(coherency<<3)|(Dirty<<2)|Valid<<1|Global)
mtc0 r2, C0_ENLO1 # set the physical address for the odd page
li r2, 0 # set the page size to 4KB
mtc0 r2,C0_PAGEMASK
li r2, index_of_some_entry # needed for tlbwi only
mtc0 r2, C0_INDEX # needed for tlbwi only
tlbwr # or tlbwi

True virtual memory operating systems (like UNIX) use the MMU for both memory
protection and swapping pages between main memory and a long term storage device. This
mechanism allows programs to address more memory than is physically allocated on the
system. This on demand paging mechanism requires dynamic mapping of pages. The
dynamic mapping is implemented through the different types of MMU exceptions. The TLB
Refill exception is the most common exception within such systems. The following is an
example of a possible TLB Refill exception handler.

refill_exception:
mfc0 k0,C0_CONTEXT
sra k0,k0,1 # index into the page table
lw k1,0(k0) # read page table
lw k0,4(k0)
sll k1,k1,6
srl k1,k1,6
mtc0 k1,C0_TLBLO0
sll k0,k0,6
srl k0,k0,6
mtc0 k0,C0_TLBLO1
tlbwr # write a random entry
eret

Table 13. TLB instructions

Op Code Description of instruction

TLBP Translation Lookaside Buffer Probe

TLBR Translation Lookaside Buffer Read

TLBWI Translation Lookaside Buffer Write Index

TLBWR Translation Lookaside Buffer Write Random

Memory management UM0447

44/201

This exception handler is kept very simple and short as it is executed often enough to affect
system performance. This is the reason that the TLB Refill exception is allocated its own
exception vector. This code assumes that the required mapping has been already set up in
the main page table held in main memory. If this is not true then a second exception, a TLB
Invalid exception, will be taken after the ERET instruction. The TLB Invalid exception
happens much less frequently, which is fortunate as it has to calculate the desired mapping,
possibly reading portions of the page table from long term storage. The TLB Mod exception
is used to implement read-only pages and to mark which pages have been modified for
process cleanup code. To further protect different processes and users from each other, true
virtual memory operating systems execute user programs in user mode. Below is an
example of how to enter user mode from kernel mode.

mtc0 r10, C0_EPC # assume r10 holds desired usermode address
mfc0 r1, C0_SR # get current value of Status register
and r1,r1, ~(SR_KSU || SR_ERL) # clear KSU and ERL field
or r1, r1, (KSU_USERMODE || SR_EXL) # set usermode and EXL bit
mtc0 r1, C0_SR

eret # jump to user mode

UM0447 Cache organization and operation

 45/201

4 Cache organization and operation

The STLS2F01 contains three separate caches:

● Primary Instruction Cache: This 64 Kbyte, 4-way set associative cache contains only
instruction information.

● Primary Data Cache: This 64 Kbyte, 4-way set associative cache contains only data
information.

● Secondary Cache: This on-chip, 512Kbyte, 4-way set associative,write-back cache
contains both instruction and data information.

4.1 Cache overview
The primary caches each require 4 cycles to access. Each primary cache has its own data
paths, allowing both caches to be accessed simultaneously. Primary instruction cache has
128-bit read path and 64-bit refill path, while primary data cache has 64-bit read, write and
refill data path all.

The secondary cache has a 256-bit data path and is accessed only on a primary cache
miss. The secondary cache cannot be accessed in parallel with either of the primary caches
and has an 11-cycle miss penalty on a primary cache miss. During a primary instruction or
data cache refill, the secondary cache provides 64 bits of data every cycle following the
initial 11-cycle latency.

The primary caches are virtually indexed and physically tagged, while the secondary cache
is physically indexed and tagged. For current version chips, operating system is obliged to
eliminate the potential for virtual aliasing. In the future, hardware would do it.

Having multiple cache hierarchies on-chip means that special consideration must be given
during a primary cache flush operation. Without secondary cache, flushing of the primary
caches causes the data to be moved to main memory. With secondary cache, using the
same code sequence moves data to the secondary cache and secondary cache must be
flushed in order to move the data to main memory.

4.1.1 Non-blocking caches

The STLS2F01 implements a non-blocking architecture for caches. Non-blocking caches
improve overall performance by allowing the cache to continue operating even though a
cache miss has occurred.

In a typical blocking-cache implementation, the processor executes out of the cache until a
miss occurs, at which time the processor stalls until the miss is resolved. The processor
initiates a memory cycle, fetches the requested data, places it in the cache, and resumes
execution. This operation can take many cycles depending on the design of the memory
system.

In a non-blocking implementation, the caches do not stall on a miss. The STLS2F01
supports at most 24 outstanding cache misses, which is limited by size of CP0 queue.

When a primary cache miss occurs, the processor checks the secondary cache to
determine if the requested data is present. If the data is not present a main memory access
is initiated.

Cache organization and operation UM0447

46/201

The non-blocking caches in the STLS2F01 allow for more efficient use of techniques such
as loop unrolling and software pipelining. To take maximum advantage of the caches, code
should be scheduled to move loads as early as possible, away from instructions that may
actually use the data.

To facilitate systems that have I/O devices which depend on in-order loads and stores, the
default setting for the STLS2F01 is to force uncached references to be blocking.

4.1.2 Replacement algorithm

The primary caches and secondary cache use random replacement algorithm.

4.1.3 Cache attributes

Table 14 shows the attributes for the three caches.

4.2 Primary instruction cache
The primary instruction cache is 64 Kbytes in size and implements a 4-way set associative
architecture. Line size is 32-bytes, or eight instructions. The 128-bit read path allows the
STLS2F01 to fetch four instructions per clock cycle which are passed to the superscalar
dispatch unit.

4.2.1 Instruction cache organization

The instruction cache is organized as shown in Figure 9. The cache is 4-way set associative
and contains 512 indexed locations. Each time the cache is indexed, the tag and data
portion of each set are accessed. Each of the four tag addresses are compared against the
translated portion of the virtual address to determine which set contains the correct data.

When the instruction cache is indexed, each of the four sets shown in Figure 9 returns a
single cache line. Each cache line consists of 32 bytes of data, a 28-bit physical tag
address, and 1 valid bit. Paragraph Instruction cache line format shows the instruction cache
line format.

Table 14. Attributes for the three caches

Attribute Instruction Data Secondary

Size 64KB 64KB 512KB

Associativity 4-way 4-way 4-way

Replacement Algorithm Random Random Random

Line size 32 byte 32 byte 32 byte

Index vAddr13..0 vAddr13..0 pAddr16..0

Tag pAddr39..12 pAddr39..12 pAddr39..17

Write policy n.a. Write-back Write-back

Read policy
Non-blocking (2

outstanding)
Non-blocking

(16 outstanding)
Non-blocking

(8 outstanding)

Read Order Critical word first Critical word first Critical word first

Write Order n.a. Sequential Sequential

UM0447 Cache organization and operation

 47/201

Figure 9. Instruction cache organization

Instruction cache line format

4.2.2 Accessing instruction cache

The STLS2F01 implements a 4-way set associative cache that is virtually indexed and
physically tagged. Figure 10 shows how the virtual address is divided on an instruction
cache access.

Figure 10. Accessing the instruction cache

27 0 63 0 63 0 63 0 63 0

V PTag Data Data Data Data

V Tag valid bit

PTag 28-bit physical address tag (bits 39:12 of the physical address)

Data Cache data

Data 3

Set 3

Tag 3Data 2

Set 2

Tag 2Data 1

Set 1

Tag 1Data 0

Set 0

Tag 0
Index 0

Index 512

32 bytes + tag
(1 cache line)

Upper Address Index Dword

ITLB

Tag

Tag

Data

Data

Set 3

Tag

Tag

Data

Data

Set 0

Tag

Tag

Data

Data

Set 2

Tag

Tag

Data

Data

Set 1

=

Hit/Miss

=

Hit/Miss

=

Hit/Miss

=

Hit/Miss

Address

39 13 514 4 3 2 0

Instruction Cache

Cache organization and operation UM0447

48/201

The lower 14 bits of address are used for indexing the instruction cache as shown in
Figure 10. Bits 13:5 are used for indexing one of the 512 locations. Within each set there are
four 64-bit doublewords of data. Bits 4:3 are used to index one of these four doublewords.
The tag for each cache line is accessed using address bits 13:5.

When the cache is indexed, the four blocks of data and corresponding physical address tags
are fetched from the cache at the same time the upper address is being translated. The
translated address from the instruction translation look-aside buffer (ITLB) is compared with
each of the four address tags. If any of the four tags yield a valid compare, the data from that
set is used. This is called a ‘primary cache hit’. If there is no match between the translated
address and any of the four address tags, the cycle is aborted and a secondary cache
access is initiated. This is called a ‘primary cache miss’.

4.3 Primary data cache
The primary data cache is 64 Kbytes in size and implements a 4-way set associative
architecture. Line size is 32-bytes, or eight words. The data cache contains both 64-bit read
path and write path. The data cache is used in write-back mode.

The data cache is virtually indexed and physically tagged. Operating system helps
eliminating the potential for virtual aliasing. The data cache is non-blocking, meaning that a
miss in the data cache does not stall the pipeline.

The normal write policy is write-back, where a store operation to the data cache does not
cause the secondary cache or main memory to be updated. The write-back protocol
increases overall system performance by reducing bus traffic. Data is written to the slower
memories only when a data cache line is replaced.

4.3.1 Data cache organization

The data cache is organized as shown in Figure 11. The cache is 4-way set associative and
contains 512 indexed locations. Each time the cache is indexed, the tag and data portion of
each set are accessed. Each of the four tag addresses are compared against the translated
portion of the virtual address to determine which set contains the correct data.

Figure 11. Data cache organization

When the data cache is indexed, each of the four sets shown in Figure 11 returns a single
cache line. Each cache line consists of 32 bytes, a 28-bit physical tag address, 1-bit dirty
and 2-bit cache status. See Data cache line format paragraph.

Data 3

Set 3

Tag 3Data 2

Set 2

Tag 2Data 1

Set 1

Tag 1Data 0

Set 0

Tag 0
Index 0

Index 512

32 bytes + tag
(1 line)

UM0447 Cache organization and operation

 49/201

Data cache line format

4.3.2 Accessing the data cache

The STLS2F01 implements a 4-way set associative data cache that is virtually indexed and
physically tagged. Figure 12 shows how the virtual address is divided on a data cache
access.

Figure 12. Accessing the data cache

The lower 14 bits of address are used for indexing the data cache as shown in Figure 12.
Bits 13:5 are used for indexing one of the 512 locations. Within each set there are four 64-bit
doublewords of data. Bits 4:3 are used to index one of these four doublewords. Bits 2:0 are
used to index one of the eight bytes within each doubleword. The tag for each cache line is
accessed using address bits 13:5.

4.3.3 Processing data cache miss

Data cache load miss accesses secondary cache. If secondary cache hits, the block is
fetched from secondary cache and is refill to data cache. If secondary cache misses,
memory is accessed. The block is fetched from memory and is refilled to both data cache
and secondary cache.

STORE FILL BUFFER policy that improves the bandwidth of microprocessor is adopted on
data cache store miss. Data cache store miss instructions are not blocked in CP0 queue to
wait for cache refill. If data cache store misses, store instructions committed exit from CP0

27 0 63 0 63 0 63 0 63 0

V CS PTag Data Data Data Data

W Writeback bit (set if cache line has been written)

CS Primary cache state
00 = INVALID
01 = SHARED
10 = EXCLUSIVE
11 = DIRTY

PTag 28-bit physical address tag (bits 39:12 of the physical address)

Data Cache data

Upper Address Index Dword

DTLB

Tag

Tag

Data

Data

Set 3

Tag

Tag

Data

Data

Set 0

Tag

Tag

Data

Data

Set 2

Tag

Tag

Data

Data

Set 1

=

Hit/Miss

=

Hit/Miss

=

Hit/Miss

=

Hit/Miss

Address

39 13 514 4 3 2 0

Data Cache

Byte

Cache organization and operation UM0447

50/201

queue and are sent to miss queue. Thus this policy decreases CP0 queue full rate. Data
cache store miss accesses secondary cache. If secondary cache hits, the block is fetched
from secondary cache and is combined with the value that store instruction writes. Then, the
block is refill to data cache. If secondary cache misses, secondary cache store miss
instruction waits for collecting to fully modified block in miss queue. Fully modified block
means that the whole block is written by store instructions. Fully modified blocks are refilled
to both data cache and secondary cache. Fully modified blocks need not access memory.
Hence, this policy avoids unnecessary memory traffic. When load instruction accesses the
same cache block, miss queue is full, SYNC instruction executes or cache instruction
executes, cache store miss entries are not wait for collecting to fully modified block and
access the memory. The block is fetched from memory and is combined with the value that
store instruction writes. Then, the block is refill to both data cache and secondary cache.

STLS2F01 implements STORE FILL BUFFER scheme in miss queue without adding
separate store buffer. It decreases the hardware overhead and avoids the query overhead
between miss queue and store buffer. STORE FILL BUFFER policy improves the bandwidth
of STLS2F01 significantly.

4.4 Secondary cache
The STLS2F01 implements an on-chip, four-way associative, write-back secondary cache.
The cache size is 512Kbyte, and the line size is 32 bytes.

4.4.1 Secondary cache organization

The secondary cache is four-way set associative cache that contains instruction and data
information. The STLS2F01 supports secondary cache sizes of 512Kbytes.

Each indexed location in the cache contains four 64-bit doublewords. Each time the cache is
indexed, the tag and data portion of each set are accessed. The tag address is compared
against the translated portion of the virtual address to determine if the data resides in the
cache.

When the secondary cache is indexed, each location contains a single cache line. Each
cache line consists of 32 bytes of data, a 23-bit physical tag address, and two cache status
bits.

4.4.2 Accessing the secondary cache

The secondary cache is only accessed on a primary cache miss. Once the processor has
determined that the requested address does not match the corresponding primary cache
tag, a secondary cache access is initiated. The secondary cache is physically indexed and
physically tagged. The accessing process of secondary cache is shown in Figure 13.

UM0447 Cache organization and operation

 51/201

Figure 13. Accessing the secondary cache

The lower bits of address are used for indexing the data cache as shown in Figure 13. Bits
16:5 are used for indexing secondary cache. Within each indexed entry there are four 64-bit
doublewords of data. Bits 4:3 are used to index one of these four doublewords. Bits 2:0 are
used to index one of the eight bytes within each doubleword. The tag for each cache line is
accessed using address bits 16:5.

4.5 Cache coherency
Systems using more than one master must have a mechanism to maintain data consistency
throughout the system. This mechanism is called a cache coherency protocol. The
STLS2F01 does not provide any hardware cache coherency. Cache coherency must be
handled by software.

4.5.1 Cache coherency attributes

Cache coherency attributes are necessary to ensure the consistency of data throughout the
system. Bits in the translation look-aside buffer (TLB) control coherency on a per-page
basis. Specifically, the TLB contains 3 bits per entry that provide the coherency attribute
types shown in Table 15.

The non-blocking coherencies implement a weakly ordered memory model. This model
allows the following behaviors:

● The processor does not have to stall if a processor load request has not completed.
Subsequent processor load or store operations may be started before the first has
completed.

● Memory transactions can occur on the external pin bus out of program order. Program
order of memory transactions can be enforced through the use of the SYNC instruction.

● Memory transactions can occur on the external pin bus even though the instructions
which caused the memory transactions are later nullified in the pipeline due to an
exception.

Such behaviors aid in achieving higher levels of processor throughput. However, some
peripheral devices require a strongly ordered memory model (memory transactions occur in
program order and only valid instructions can cause memory transactions). For this reason,

Upper Address Index Dword
Tag

Tag

Data

Data

Set 3

Tag

Tag

Data

Data

Set 0

Tag

Tag

Data

Data

Set 2

Tag

Tag

Data

Data

Set 1

=

Hit/Miss

=

Hit/Miss

=

Hit/Miss

=

Hit/Miss

Address

39 16 517 4 3 2 0

Secondary Cache

Byte

Cache organization and operation UM0447

52/201

it is strongly advised that such devices be referenced using the Uncached, Blocking
coherency (Coherency Code 2).

Processor read requests using this coherency stall the processor until the transaction
completes. Processor write requests using this coherency are given the highest priority for
accessing the external pin bus. These two properties ensure that processor load and store
instructions using this coherency are completed in program order. For this reason, kseg1
and the uncached section of xkphys use Coherency Code 2.

The following subsections describe each of the coherency attributes listed in Table 15.

4.5.2 Uncached, blocking (coherency code 2)

Lines within an Uncached page are never in a cache. When a page has the uncached
coherency attribute, the processor issues a doubleword, partial-doubleword, word, or
partial-word read or write request directly to main memory (bypassing all caches) for any
load or store to a location within that page. No caches are accessed when this coherency
attribute is active.

Processor read requests using this coherency stall the processor until the transaction
completes while processor write requests using this coherency are given the highest priority
for accessing the external pin bus. These two properties ensure that processor load and
store instructions using this coherency are completed in program order (strongly ordered
memory model).

4.5.3 Writeback (coherency code 3)

Lines with the Writeback attribute can reside in a cache. On a data cache store hit, only the
data cache is modified. The secondary cache, and main memory are only modified if the
cache line of a dirty block is needed for a newer access.

This mode allows the primary data cache to be filled on either a load miss or a store miss. A
primary cache store hit causes data to be written to the primary data cache only. The
secondary is modified only during block writebacks and line fills. Partial (non-blocking)
stores are never written to the secondary caches. Main memory is modified only for block
writebacks.

On a primary cache load or store miss, the STLS2F01 checks the secondary cache for the
requested address. If there is a secondary cache hit, the data is filled from the secondary
cache. If a secondary cache miss occurs, the STLS2F01 accesses the main memory with a

Table 15. STLS2F01 cache coherency attribute

Attribute type Coherency code

Reserved 0

Reserved 1

Uncached, Blocking 2

Writeback, non-blocking 3

Reserved 4

Reserved 5

Reserved 6

Uncached Accelerated 7

UM0447 Cache organization and operation

 53/201

block read request. Data is fetched from main memory and written to the secondary and
primary caches.

This coherency follows the weakly ordered memory model described in Section 4.5.1:
Cache coherency attributes.

4.5.4 Uncached accelerated (coherency code 7)

Uncached accelerated is used for sequential same type uncached stores at a consecutive
address space. A buffer is used to gather these stores until the buffer is full. The buffer size
is the same as the cache line. Store to the buffer is just like it does to the cache. When the
buffer is full, a block write is initiated. If the sequential store is intervened by other uncached
stores, individual uncached stores are executed for the buffer content.

Uncached accelerated attributes can accelerate sequential uncached accesses, which is
useful for accessing video memory.

4.6 Cache maintenance
With multiple levels of on-chip memory, care must be taken to ensure that modified data has
reached external memory before a process task switch. To flush all on-chip write buffers,
software should use the SYNC instruction. This instruction will stall the processor until all
pending store operations have reached the external pin bus and all pending load operations
have completed by writing their destination registers.

The CACHE instruction is used when performing maintenance of the caches. STLS2F01
contains two “Hit” type cache operations for primary data cache:

● Hit_Invalidate

● Hit_Writeback_Invalidate.

The STLS2F01 treats the “Hit” type CACHE operation much like a load instruction and
allows the instruction to be pipelined. If there is no cache hit, the “Hit” type can be executed
without any pipeline stall. If there is a cache hit, but the cache line is clean, the only latency
incurred is that required for invalidating the tag RAM.

CP0 UM0447

54/201

5 CP0

This chapter describes the Coprocessor 0 operations, including the CP0 register definitions
and CP0 instructions implemented by the STLS2F01 processor. The Coprocessor 0 (CP0)
registers are used to control and represent the processor state. These registers can be read
using MFC0/DMFC0 instructions and written using MTC0/ DMTC0 instructions. CP0
registers are listed in Table 16.

Coprocessor 0 instructions are usable if the processor is in Kernel mode, or bit 28 (CU0) of
the Status register is set. Otherwise, executing one of these instructions generates a
Coprocessor 0 Unusable exception.

Table 16. Coprocessor 0 registers

Register
No.

Register
name

Description

0 Index Programmable register to select TLB entry for reading or writing

1 Random Pseudo-random counter for TLB replacement

2 EntryLo0 Low half of TLB entry for even VPN (Physical page number)

3 EntryLo1 Low half of TLB entry for odd VPN (Physical page number)

4 Context Pointer to kernel virtual PTE table in 32-bit addressing mode

5 PageMask Mask that decides the TLB page size

6 Wired
Number of wired TLB entries (lowest TLB entries not used for random
replacement)

7 Reserved

8 BadVaddr Bad virtual address

9 Count Clock counter

10 EntryHi High half of TLB entry (Virtual page number and ASID)

11 Compare Clock compare

12 Status Processor Status Register

13 Cause Cause of the last exception

14 EPC Exception Program Counter

15 PRID Processor Revision Identifier

16 Config Configuration Register (primary cache size, etc.)

17 LLAddr Load Linked memory address

18 WatchLo

19 WatchHi

20 Xcontext Pointer to kernel virtual PTE table in 64-bit addressing mode

21 Reserved

22 Diagnose Enable/disable BTB, RAS and flush ITLB

23 Reserved

UM0447 CP0

 55/201

5.1 Index register (0)
The Index register is a 32-bit, read/write register containing six bits to index an entry in the
TLB. The highest-order bit of the register indicates the success or failure of a TLB Probe
(TLBP) instruction.

The Index register also specifies the TLB entry accessed by TLB Read (TLBR) or TLB Write
Index (TLBWI) instructions.

See Index register paragraph;Table 17 describes the Index register fields.

Index register

24 PCLo Low half of Performance Counter

25 PCHi High half of Performance Counters

26 Reserved

27 Reserved

28 TagLo Cache Tag register - low bits

29 TagHi Cache Tag register - high bits

30 ErrorEPC Error Exception Program Counter

31

Table 16. Coprocessor 0 registers (continued)

Register
No.

Register
name

Description

31 30 6 5 0

P 0 Index

1 25 6

Table 17. Fields in the index register

Field Description

P
Probe failure. Set to 1 when the last TLBProbe

(TLBP) instruction was unsuccessful.

Index
Index to the TLB entry affected by the TLBRead and

TLBIWrite instructions

0
Reserved. Must be written as zeros, and returns zeros

when read.

CP0 UM0447

56/201

5.2 Random register (1)
The Random register is a read-only register of which the lowest six bits index an entry in the
TLB. This register decrements when any instruction graduates at that particular cycle, and
its value ranges between an upper and a lower bound, as follows:

● The lower bound is set by the number of TLB entries reserved for exclusive use by the
operating system (the content of the Wired register).

● The upper bound is set by the total number of TLB entries minus 1 (64 – 1 maximum).

The Random register specifies the entry in the TLB that is affected by the TLB Write
Random instruction. The register does not need to be read for this purpose; however, the
register is readable to verify proper operation of the processor.

To simplify testing, the Random register is set to the value of the upper bound upon system
reset. This register is also set to the upper bound when the Wired register is written.

See Random register paragraph; Table 18 describes the Random register fields.

Random register

5.3 EntryLo0 (2), and EntryLo1 (3) registers
The EntryLo register consists of two registers with identical formats:

● EntryLo0 is used for even virtual pages.

● EntryLo1 is used for odd virtual pages.

The EntryLo0 and EntryLo1 registers are read/write registers. They hold the physical page
frame number (PFN) of the TLB entry for even and odd pages respectively for TLB read and
write operations. See Fields of the EntryLo0 and EntryLo1 registers paragraph.

Fields of the EntryLo0 and EntryLo1 registers

The PFN fields of the EntryLo0 and EntryLo1 registers span bits 39:12 of the 40-bit physical
address.

Two additional bits for the mapped space’s uncached attribute can be loaded into bits 63:62
of the EntryLo register, which are then written into the TLB with a TLB Write. During the
address cycle of processor double/single/partial-word read and write requests, and during
the address cycle of processor uncached accelerated block write requests, the processor

31 6 5 0

0 Random

26 6

Table 18. Fields in the random register

Field Description

Random TLB random index

0 Reserved. Must be written as zeros, and returns zeros when read.

63 62 61 60 34 33 6 5 3 2 1 0

0 E 0 PFN C D V G

2 1 27 28 3 1 1 1

UM0447 CP0

 57/201

drives the uncached attribute on SysAD[59:58]. The same EntryLo registers are used for
the 64-bit and 32-bit addressing modes. In both modes the registers are 64 bits wide,
however when the MIPS III ISA is not enabled (32-bit User and Supervisor modes) only the
lower 32 bits of the EntryLo registers are accessible.

MIPS III is disabled when the processor is in 32-bit Supervisor or User mode. Loading of the
integer registers is limited to bits 31:0, sign-extended through bits 63:32. EntryLo[33:31] or
PFN[39:38] can only be set to all zeroes or all ones. In 32-and 64-bit modes, the UC and
PFN bits of both EntryLo registers are written into the TLB. The PFN bits can be masked by
setting bits in the FrameMask register (described in this chapter) but the UC bits cannot be
masked or initialized in 32-bit User or Supervisor modes. In 32-bit Kernel mode, MIPS III is
enabled and 64-bit operations are always available to program the UC bits.

There is only one G bit per TLB entry, and it is written with EntryLo0[0] and EntryLo1[0] on a
TLB write.

5.4 Context (4)
The Context register is a read/write register containing the pointer to an entry in the page
table entry (PTE) array; this array is an operating system data structure that stores virtual-
to-physical address translations.

When there is a TLB miss, the CPU loads the TLB with the missing translation from the PTE
array. Normally, the operating system uses the Context register to address the current page
map which resides in the kernel-mapped segment, kseg3. The Context register duplicates
some of the information provided in the BadVAddr register, but the information is arranged in
a form that is more useful for a software TLB exception handler.

See Context register format paragraph; Table 20 describes the Context register fields.

Table 19. Description of EntryLo registers’ fields

Field Description

E Non-execute1 means non-executable, 0 means executable.

PFN Page frame number; the higher bits of the physical address.

C Specifies the TLB page coherence attribute.

D
Dirty. If this bit is set, the page is marked as dirty and, therefore, writable. This bit is
actually a write-protect bit that software can use to prevent alteration of data.

V
Valid. If this bit is set, it indicates that the TLB entry is valid; otherwise, a TLBL or TLBS
invalid exception occurs.

G
Global. If this bit is set in both Lo0 and Lo1, then the processor ignores the ASID during
TLB lookup.

0 Reserved. Must be written as zeros, and returns zeros when read.

CP0 UM0447

58/201

Context register format

The 19-bit BadVPN2 field contains bits 31:13 of the virtual address that caused the TLB
miss; bit 12 is excluded because a single TLB entry maps to an even-odd page pair. For a 4-
Kbyte page size, this format can directly address the pair-table of 8-byte PTEs. For other
page and PTE sizes, shifting and masking this value produces the appropriate address.

5.5 PageMask register (5)
The PageMask register is a read/write register used for reading from or writing to the TLB; it
holds a comparison mask that sets the variable page size for each TLB entry, as shown in
Table 21. Format of the register is shown in PageMask register format paragraph.

TLB read and write operations use this register as either a source or a destination; when
virtual addresses are presented for translation into physical address, the corresponding bits
in the TLB identify which virtual address bits among bits 24:13 are used in the comparison.
When the Mask field is not one of the values shown in Table 21 the operation of the TLB is
undefined. The 0 field is reserved; it must be written as zeroes, and returns zeroes when
read.

PageMask register

63 23 22 4 3 0

PTEBase BadVPN2 0

41 19 4

Table 20. Context register fields

Field Description

BadVPN2
This field is written by hardware on a miss. It contains the virtual page number
(VPN) of the most recent virtual address that did not have a valid translation.

PTEBase
This field is a read/write field for use by the operating system. It is normally
written with a value that allows the operating system to use the Context
register as a pointer into the current PTE array in memory.

0 Reserved. Must be written as zeros, and returns zeros when read.

31 25 24 13 12 0

0 MASK 0

7 12 13

UM0447 CP0

 59/201

5.6 Wired register (6)
The Wired register is a read/write register that specifies the boundary between the wired
and random entries of the TLB as shown in Figure 14. Wired entries are fixed, no
replaceable entries, which cannot be overwritten by a TLB write operation. Random entries
can be overwritten

Figure 14. Wired register boundary

The Wired register is set to 0 upon system reset. Writing this register also sets the Random
register to its upper bound value (see Random register, above).

See Wired register paragraph; Table 22 describes the register fields.

Table 21. Mask field values for page sizes

Page size

(Mask)

Bit

24 23 22 21 20 19 18 17 16 15 14 13

4 Kbytes 0 0 0 0 0 0 0 0 0 0 0 0

16 Kbytes 0 0 0 0 0 0 0 0 0 0 1 1

64 Kbytes 0 0 0 0 0 0 0 0 1 1 1 1

256 Kbytes 0 0 0 0 0 0 1 1 1 1 1 1

1 Mbytes 0 0 0 0 1 1 1 1 1 1 1 1

4 Mbytes 0 0 1 1 1 1 1 1 1 1 1 1

16 Mbytes 1 1 1 1 1 1 1 1 1 1 1 1

Range of Random entries

Range of Wired entries

Wired Register

63

0 This entry is Random, not Wired

TLB

CP0 UM0447

60/201

Wired register

5.7 BadVAddr register (8)
The Bad Virtual Address register (BadVAddr) is a read-only register that displays the most
recent virtual address that caused either a TLB or Address Error exception. The BadVAddr
register remains unchanged during Soft Reset, NMI, or Cache Error exceptions. Otherwise,
the architecture leaves this register undefined.

See BadVAddr register format paragraph.

BadVAddr register format

5.8 Count and compare registers (9 and 11)
The Count and Compare registers are 32-bit read/write registers whose formats are shown
in Figure 15.

The Count register acts as a real-time timer. Like the R4400 implementation, the STLS2F01
Count register is incremented every other PClk cycle. However, unlike the R4400, the
STLS2F01 processor has no Timer Interrupt Enable boot-mode bit, so the only way to
disable the timer interrupt is to negate the interrupt mask bit, IM[7], in the Status register.
This means the timer interrupt cannot be disabled without also disabling the Performance
Counter interrupt, since they share IM[7].

The Compare register can be programmed to generate an interrupt at a particular time, and
is continually compared to the Count register. Whenever their values equal, the interrupt bit
IP[7] in the Cause register is set. This interrupt bit is reset whenever the Compare register is
written.

31 6 5 0

0 Wired

26 6

Table 22. Wired register field descriptions

Field Description

Wired TLB Wired boundary

0 Reserved. Must be written as zeros, and returns zeros when read.

63 0

Bad Virtual Address

64

UM0447 CP0

 61/201

Figure 15. Count and compare registers

5.9 EntryHi register (10)
The EntryHi register holds the high-order bits of a TLB entry for TLB read and write
operations.

The EntryHi register is accessed by the TLB Probe, TLB Write Random, TLB Write Indexed,
and TLB Read Indexed instructions.

EntryHi register paragraph shows the format of this register and Table 23 describes the
register’s fields.

EntryHi register

In 64-bit addressing mode, the VPN2 field contains bits 43:13 of the 44-bit virtual address.

In 32-bit addressing mode only the lower 32 bits of the EntryHi register are used, so the
format remains the same as in the R4400 processor’s 32-bit addressing mode. The FILL
field is ignored on write and read as zeroes, as it was in the R4400 implementation.

32-bit Counter (incremented every processor cycle)

31 0

32-bit Compare Value

31 0

32-bit Equal-to Comparator

Count (9)

Compare (11)

Set IP7 in Cause Register

63 62 61 13 12 8 7 0

R VPN2 0 ASID

2 49 5 8

Table 23. EntryHi register fields

Field Description

VPN2
Virtual page number divided by two (maps to two pages); upper bits of the
virtual address

ASID
Address space ID field. An 8-bit field that lets multiple processes share the
TLB; each process has a distinct mapping of otherwise identical virtual
page numbers.

R
Region. (00 → user, 01→ supervisor, 11 → kernel) used to match
vAddr63...62

0 Reserved. Must be written as zeros, and returns zeros when read.

CP0 UM0447

62/201

When either a TLB refill, TLB invalid, or TLB modified exception occurs, the EntryHi register
is loaded with the virtual page number (VPN2) and the ASID of the virtual address that did
not have a matching TLB entry.

5.10 Status register (12)
The Status register (SR) is a read/write register that contains the operating mode, interrupt
enabling, and the diagnostic states of the processor. The following list describes the more
important Status register fields; Status register shows the format of the entire register,
including descriptions of the fields. Some of the important fields include:

● The 8-bit Interrupt Mask (IM) field controls the enabling of eight interrupt conditions.
Interrupts must be enabled before they can be asserted, and the corresponding bits are
set in both the Interrupt Mask field of the Status register and the Interrupt Pending field
of the Cause register. For more information, refer to the Interrupt Pending (IP) field of
the Cause register.

● The 4-bit Coprocessor Usability (CU) field controls the usability of 4 possible
coprocessors. Regardless of the CU0 bit setting, CP0 is always usable in Kernel mode.

Status register

5.10.1 Status register format

See Status register paragraph. Table 24 describes the Status register fields.

31 28 27 26 25 24 23 22 21 20 19 16 15 8 7 5 4 3 2 1 0

CU
(cu3:cu0)

0 FR 0 nofdiv nofsqr BEV 0 SR 0 IM7-IM0 0 KSU ERL EXL IE

4 1 1 1 1 1 1 1 1 4 8 3 2 1 1 1

Table 24. Fields in the status register

Field Description

CU

Controls the usability of each of the four coprocessor units. CP0 is always usable
when in Kernel mode, regardless of the setting of the CU0 bit.

1 → usable
0 → unusable

0 Reserved 0.

FR
Enables additional floating-point registers

0 → 16 registers
1 → 32 registers

NOFDIV
Disable the floating-point division unit

1 - disable
0 - enable

NOFSQR
Disable the floating-point square-root unit

1 - disable
0 - enable

BEV
Controls the location of TLB refill and general exception vectors.

0 →normal
1→bootstrap

UM0447 CP0

 63/201

5.10.2 Status register modes and access states

Fields of the Status register set the modes and access states described in the sections that
follow.

Interrupt Enable: Interrupts are enabled when all of the following conditions are true:

● IE = 1

● EXL = 0

● ERL = 0

If these conditions are met, the settings of the IM bits enable the interrupt.

Operating Modes: The following CPU Status register bit settings are required for User,
Kernel, and Supervisor modes.

● The processor is in User mode when KSU = 102, EXL = 0, and ERL = 0.

● The processor is in Supervisor mode when KSU = 012, EXL = 0, and ERL = 0.

● The processor is in Kernel mode when KSU = 002, or EXL = 1, or ERL = 1.

32- and 64-bit Modes: STLS2F01 runs at 64-bit mode.

Kernel Address Space Accesses: Access to the kernel address space is allowed when
the processor is in Kernel mode.

SR 1→ Indicates a Reset* signal or NMI has caused a Soft Reset exception

IM

Interrupt Mask: controls the enabling of each of the external, internal, and
software interrupts. An interrupt is taken if interrupts are enabled, and the
corresponding bit is set in both the Interrupt Mask field of the Status register and
the Interrupt Pending field of the Cause register.

0 → disabled
1→ enabled

KSU

Mode bits
112 → Undefined
102 → User
012 → Supervisor
002 → Kernel

ERL

Error Level; set by the processor when Reset, Soft Reset, NMI, or Cache Error
exception are taken.

0 → normal
1 → error

EXL

Exception Level; set by the processor when any exception other than Reset, Soft
Reset, NMI, or Cache Error exception are taken.

0 → normal
1 → exception

IE
Interrupt Enable

0 → disable all interrupts
1 → enables all interrupts

Table 24. Fields in the status register (continued)

Field Description

CP0 UM0447

64/201

Supervisor Address Space Accesses: Access to the supervisor address space is allowed
when the processor is in Kernel or Supervisor mode, as described above in the section titled
Operating Modes.

User Address Space Accesses: Access to the user address space is allowed in any of the
three operating modes.

Status Register Reset: The contents of the Status register are 0x30400004 at reset.

5.11 Cause register (13)
The 32-bit read/write Cause register describes the cause of the most recent exception.

See Cause register format paragraph that shows the fields of this register; Table 25
describes the Cause register fields. A 5-bit exception code (ExcCode) indicates one of the
causes, as listed in Table 26.

All bits in the Cause register, with the exception of the IP[1:0] bits, are read-only; IP[1:0] are
used for software interrupts.

Cause register format

31 30 29 28 27 16 15 8 7 6 2 1 0

BD 0 CE 0 IP 0-7 0 Exc Code 0

1 1 2 12 8 1 5 2

Table 25. Cause register fields

Field Description

BD

Indicates whether the last exception taken occurred in a branch delay slot.

1 → delay slot
0 → normal

CE
Coprocessor unit number referenced when a Coprocessor Unusable exception is
taken. This bit is undefined for any other exception.

IP

Indicates an interrupt is pending. This bit remains unchanged for NMI, Soft
Reset, and Cache Error exceptions.
1 → interrupt pending

0 → no interrupt

ExcCode Exception code field

0 Reserved. Must be written as zeros, and returns zeros when read.

Table 26. Cause register exccode field

Exception
code value

Mnemonic Description

0 Int Interrupt

1 Mod TLB modification exception

2 TLBL TLB exception (load or instruction fetch)

3 TLBS TLB exception (store)

4 AdEL Address error exception (load or instruction fetch)

UM0447 CP0

 65/201

5.12 Exception program counter (14)
The Exception Program Counter (EPC)† is a read/write register that contains the address at
which processing resumes after an exception has been serviced.

For synchronous exceptions, the EPC register contains either:

● the virtual address of the instruction that was the direct cause of the exception, or

● the virtual address of the preceding branch or jump instruction (when the instruction is
in a branch delay slot, and the Branch Delay bit in the Cause register is set).

The processor does not write to the EPC register when the EXL bit in the Status register is
set to 1.

See EPC register format paragraph.

EPC register format

5.13 Processor revision identifier (PRID) register
The 32-bit, read-only Processor Revision Identifier (PRId) register contains information
identifying the implementation and revision level of the CPU and CP0. See Processor
revision identifier register format paragraph that shows the format of the PRId
register;Table 27 describes the PRId register fields.

5 AdES Address error exception (store)

6 IBE Bus error exception (instruction fetch)

7 DBE Bus error exception (data reference: load or store)

8 Sys Syscall exception

9 Bp Breakpoint exception

10 RI Reserved instruction exception

11 CpU Coprocessor Unusable exception

12 Ov Arithmetic Overflow exception

13 Tr Trap exception

14 - Reserved

15 FPE Floating point exception

16-22 - Reserved

23 WATCH Reference to WatchHi/WatchLo address

24-30 - Reserved

31 - Reserved

Table 26. Cause register exccode field (continued)

63 0

EPC

64

CP0 UM0447

66/201

Processor revision identifier register format

The low-order byte (bits 7:0) of the PRId register is interpreted as a revision number, and the
high-order byte (bits 15:8) is interpreted as an implementation number. “0x63” is the
implementation number of the STLS2F01 processor. The revision number is “0x02”. The
contents of the high-order half-word (bits 31:16) of the register are reserved.

The revision number can distinguish some chip revisions, however there is no guarantee
that changes to the chip will necessarily be reflected in the PRId register, or that changes to
the revision number necessarily reflect real chip changes. For this reason, software should
not rely on the revision number in the PRId register to characterize the chip.

5.14 Config register (16)
The Config register specifies various configuration options selected on STLS2F01
processors; Table 28 lists these options.

Some configuration options, as defined by Config bits 31:6, are set by the hardware during
reset and are included in the Config register as read-only status bits for the software to
access. Other configuration options are read/write (as indicated by Config register bits 5:0)
and controlled by software; on reset these fields are undefined.

Certain configurations have restrictions. The Config register should be initialized by software
before caches are used. Caches should be written back to memory before line sizes are
changed, and caches should be reinitialized after any change is made.

See Config register format paragraph;Table 28 describes the Config register fields.

Config register format

31 16 15 8 7 0

O Imp (0x09) Rev

16 8 8

Table 27. PRId register fields

Field Description

Imp Implementation number

Rev Revision number

0 Reserved. Must be written as zeros, and returns zeros when read.

31 18 17 16 15 12 11 9 8 6 5 4 3 2 0

0 1 1 0 IC DC IB DB 0 K0

14 1 1 4 3 3 1 1 1 3

UM0447 CP0

 67/201

5.15 Load linked address (LLAddr) register (17)
The read/write Load Linked Address (LLAddr) register contains the physical address read
by the most recent Load Linked instruction. It is not defined in STLS2F01.

5.16 Watch register
The Watch register is a 64-bit read/write register which contains a virtual address of a
doubleword in the virtual memory. If enabled, any attempt to read or write at this location
causes a Watch exception. This feature is used for debugging.

Watch register formats describes the format of the Watch register. Table 29 describes the
fields of the Watch register.

Watch register formats

Table 28. Fields in the config register

Field Description

0 Reserved. Must be written as zeroes, returns zeroes when read.

1 Reserved. Must be written as ones, returns ones when read.

IC Primary I-cache Size (I-cache size = 212+IC bytes).

DC Primary D-cache Size (D-cache size = 212+DC bytes).

IB

Primary I-cache line size

0 → 16 bytes
1 → 32 bytes
In STLS2F01, this bit is set to 1.

DB

Primary D-cache line size

0 → 16 bytes
1 → 32 bytes
In STLS2F01, this bit is set to 1.

K0 kseg0 coherence algorithm.

63 3 2 1 0

VADDR 0 R W

61 1 1 1

Table 29. Watch register fields

Field Description

VADDR Bits 63:3 of the virtual address

R Trap on load references if set to 1

W Trap on store references if set to 1

0 Reserved. Must be written as zeroes, and returns zeroes when read.

CP0 UM0447

68/201

5.17 Xcontext register (20)
The read/write XContext register contains a pointer to an entry in the page table entry (PTE)
array, an operating system data structure that stores virtual-to-physical address translations.
When there is a TLB miss, the operating system software loads the TLB with the missing
translation from the PTE array. The XContext register no longer shares the information
provided in the BadVAddr register, as it did in the R4400.

The XContext register is for use with the XTLB refill handler, which loads TLB entries for
references to a 64-bit address space, and is included solely for operating system use. The
operating system sets the PTE base field in the register, as needed. Normally, the operating
system uses the Context register to address the current page map, which resides in the
kernel-mapped segment kseg3.

See XContext register format paragraph;Table 30 describes the XContext register fields.

XContext register format

The 31-bit BadVPN2 field holds bits 43:13 of the virtual address that caused the TLB miss;
bit 12 is excluded because a single TLB entry maps to an even-odd page pair. For a 4-Kbyte
page size, this format may be used directly to address the pair table of 8-byte PTEs. For
other page and PTE sizes, shifting and masking this value produces the appropriate
address.

63 33 32 31 30 4 3 0

PTEBase R BadVPN2 0

31 2 27 4

Table 30. XContext register fields

Field Description

BadVPN2
The Bad Virtual Page Number/2 field is written by hardware on a miss. It
contains the VPN of the most recent invalidly translated virtual address.

R

The Region field contains bits 63:62 of the virtual address.
002 = user

012 = supervisor

112 = kernel.

0 Reserved. Must be written as zeros, and returns zeros when read.

PTEBase
The Page Table Entry Base read/write field is normally written with a value
that allows the operating system to use the Context register as a pointer into
the current PTE array in memory.

UM0447 CP0

 69/201

5.18 Diagnostic register (22)
CP0 register 22, the Diagnostic register, is a new 64-bit register for STLS2F01 specific
diagnostic functions. (Since this register is designed for local use, the diagnostic functions
are subject to change without notice.) Currently, this register helps handle the ITLB,
BTB(branch target buffer) and RAS(return address stack).

Diagnostic register

5.19 Performance counter registers (24, 25)
The STLS2F01 processor defines two performance counters, which are mapped into CP0
register 24 and 25. The associated control fields reside in CP0 register 24.

Each counter is a 32-bit read/write register and increments by one each time the countable
event, specified in its associated control field, occurs. Each counter can independently count
one type of event at a time.

Performance counter register (24)

Performance counter register (25)

The counter asserts an interrupt, IP[7], when its most significant bit (bit 31) becomes one
(the counter overflows) and the associated control field enables the interrupt . The counting
continues after counter overflows whether or not an interrupt is signaled.

63 8 7 6 5 4 3 2 1 0

0 W-CAC W-ISS S-ISS S-FET 0 ITLB BTB RAS

56 1 1 1 1 1 1 1 1

Table 31. Diagnostic register fields

Field Description

0 Reserved. Must be written as zeroes, and returns zeroes when read.

W-CAC Cancel the constraint on wait-cache operation.

W-ISS Cancel the constraint on wait-issue operation.

S-ISS Cancel the constraint on store-issue operation.

S-FET Cancel the constraint on store-fetch operation.

ITLB Write 1 to this bit to clear the ITLB.

BTB Write 1 to this bit to clear the BTB.

RAS Write 1 to this bit to disable the RAS.

63 13 12 9 8 5 4 3 2 1 0

Event1 Event0 IE U S K EXL

51 4 4 1 1 1 1 1

63 32 31 0

Counter 1 Counter 0

32 32

CP0 UM0447

70/201

See Performance counter register (24) and Performance counter register (25) paragraphs.
Table 32 describes control fields format and Table 33 describes count enable bit definition.
Table 34 and Table 35 describe events of counter 0 and counter 1 respectively.

Table 32. Control fields format

[12:9] [8:5] [4] [3:0]

Event 1 select Event 0 select IP[7] interrupt enable
Count enable bits

(K/S/U/EXL)

Table 33. Count enable bit definition

Count enable bit Count qualifier (CP0 status register fields)

K KSU = 0 (Kernel mode), EXL = 0, ERL = 0

S KSU = 1 (Supervisor mode), EXL = 0, ERL = 0

U KSU = 2 (User mode), EXL = 0, ERL = 0

EXL EXL = 1, ERL = 0

Table 34. Counter 0 events

Event Signal Description

0000 Cycles cycles

0001 Brbus.valid Branch instruction

0010 Jrcount JR instruction

0011 Jr31count JR instruction with field rs=31

0100
Imemread.valid&

imemread_allow
Primary instruction cache misses.

0101 Rissuebus0.valid Alu1 op issued

0110 Rissuebus2.valid Mem op issued

0111 Rissuebus3.valid Falu1 op issued

1000 Cp0fwd.valid CP0 queue forward loads

1001
Mreadreq.valid&
Mreadreq_allow

Reads from main memory

1010 Fxqfull Times of fix issue queue full

1011 Roqfull Times of reorder queue full

1100 Cp0qfull Times of CP0 queue full

1101 Exbus.ex & excode=34,35 Tlb Refill exception

1110
Exbus.ex &

Excode=0
Interrupt

1111
Exbus.ex &

Excode=63
Internal Exception

UM0447 CP0

 71/201

5.20 TagLo (28) and TagHi (29) registers
The TagLo and TagHi registers are 32-bit read/write registers that hold the tag and state of
primary cache or secondary cache. The Tag registers are written by the CACHE and MTC0
instructions.

TagLo register and TagLo register shows the format of these registers for primary cache
operations. Table 36 lists the field definitions of the TagLo and TagHi registers.

TagLo register

Table 35. Counter 1 events

Event Signal Description

0000 Cmtbus?.valid Commit ops

0001 Brbus.brerr Branch Misprediction

0010 Jrmiss JR Misprediction

0011 Jr31miss JR with rs=31 Misprediction

0100
Dmemread.valid&

Dmemread_allow
Primary Data cache misses

0101 Rissuebus1.valid Alu2 op issued

0110 Rissuebus4.valid Falu2 op issued

0111
Duncache_valid&
Duncache_allow

Uncached Accesses

1000 Dmemref.op=store Store ops

1001
Mwritereq.valid&

Mwritereq_allow
Writes to main memory

1010 Ftqfull Times of float pointer queue full

1011 Brqfull Times of branch queue full

1100
Exbus.ex &

Op==OP_TLBPI
Itlb misses

1101 Exbus.ex Total exceptions

1110 Mispec Load speculation misses

1111

31 8 7 6 5 4 3 0

PTAG[23:0] CS SCSETI O

24 2 2 4

CP0 UM0447

72/201

TagHi register

5.21 ErrorEPC register (30)
The ErrorEPC register is similar to the EPC register, except that ErrorEPC is used on ECC
and parity error exceptions. It is also used to store the program counter (PC) on Reset, Soft
Reset, and nonmaskable interrupt (NMI) exceptions.

The read/write ErrorEPC register contains the virtual address at which instruction
processing can resume after servicing an error. See ErrorEPC register format paragraph.

ErrorEPC register format

31 4 3 0

O PTAG[28:24]

24 4

Table 36. Cache tag register fields

Field Description

PTAG Specifies the physical address bits 39:12

CS Specifies the primary cache state

SCSETI Specifies the set of secondary cache

0 Reserved. Must be written as zeroes, and returns zeroes when read.

63 0

ErrorEPC

64

UM0447 CP0

 73/201

5.22 CP0 instructions
Table 37 lists the CP0 instructions defined for the STLS2F01 processor. Since they are
implementation dependent, they are included here and not in the MIPS ISA manual.

Table 37. CP0 instructions

5.22.1 Hazards

The processor detects most of the pipeline hazards in hardware, including CP0 hazards and
load hazards. No NOP instructions are required to correct instruction sequences.

OpCode Description

CACHE Cache operation

DMFC0 Doubleword move from CP0

DMTC0 Doubleword move to CP0

ERET Exception return

MFC0 Move from CP0

MTC0 Move to CP0

TLBP Probe TLB for matching entry

TLBR Read indexed TLB entry

TLBWI Write indexed TLB entry

TLBWR Write random TLB entry

CPU exceptions UM0447

74/201

6 CPU exceptions

This chapter describes the processor exceptions-a general view of the cause and return of
an exception, exception vector locations, and the types of exceptions that are supported,
including the cause, processing, and servicing of each exception.

6.1 Causing and returning from an exceptions
When the processor takes an exception, the EXL bit in the Status register is set to 1, which
means the system is in Kernel mode. After saving the appropriate state, the exception
handler typically changes the KSU bits in the Status register to Kernel mode and resets the
EXL bit back to 0. When restoring the state and restarting, the handler restores the previous
value of the KSU field and sets the EXL bit back to 1.

Returning from an exception also resets the EXL bit to 0 (see the ERET instruction in
Appendix A).

6.2 Exception vector locations
The Cold Reset, Soft Reset, and NMI exceptions are always vectored to the dedicated Cold
Reset exception vector at an uncached and unmapped address. Addresses for all other
exceptions are a combination of a vector offset and a base address.

The boot-time vectors (when BEV = 1 in the Status register) are at uncached and unmapped
addresses. During normal operation (when BEV = 0) the regular exceptions have vectors in
cached address spaces; Cache Error is always at an uncached address so that cache error
handling can bypass a suspect cache.

The exception vector assignments for the STLS2F01 processor shown in Table 38

Table 38. Exception vector addresses

BEV Exception type Exception vector address

Cold Reset/Soft Reset/ NMI 0xFFFFFFFF BFC00000

BEV = 0 TLB Refill (EXL=0) 0xFFFFFFFF 80000000

XTLB Refill (EXL=0) 0xFFFFFFFF 80000000

Cache Error 0xFFFFFFFF A0000100

Others 0xFFFFFFFF 80000180

BEV = 1 TLB Refill (EXL=0) 0xFFFFFFFF BFC00200

XTLB Refill (EXL=0) 0xFFFFFFFF BFC00200

Cache Error 0xFFFFFFFF BFC00300

Others 0xFFFFFFFF BFC00380

UM0447 CPU exceptions

 75/201

6.3 TLB refill vector selection
In all present implementations of the MIPS III ISA, there are two TLB refill exception vectors:

● one for references to 32-bit address space (TLB Refill)

● one for references to 64-bit address space (XTLB Refill)

Table 38 lists the exception vector addresses.

The TLB refill vector selection is based on the address space of the address (user,
supervisor, or kernel) that caused the TLB miss, and the value of the corresponding
extended addressing bit in the Status register (UX, SX, or KX). The current operating mode
of the processor is not important except that it plays a part in specifying in which address
space an address resides. The Context and Xcontext registers are entirely separate page-
table-pointer registers that point to and refill from two separate page tables, however these
two registers share BadVPN2 fields (see Chapter 6 for more information). For all TLB
exceptions (Refill, Invalid, TLBL or TLBS), the BadVPN2 fields of both registers are loaded
as they were in the R4400.

In contrast to the R10000, the R4400 processor selects the vector based on the current
operating mode of the processor (user, supervisor, or kernel) and the value of the
corresponding extended addressing bit in the Status register (UX, SX or KX). In addition, the
Context and XContext registers are not implemented as entirely separate registers; the
PTEbase fields are shared. A miss to a particular address goes through either TLB Refill or
XTLB Refill, depending on the source of the reference. There can be only be a single page
table unless the refill handlers execute address-deciphering and page table selection in
software.

Note: Refills for the 0.5 Gbyte supervisor mapped region, sseg/ksseg, are controlled by the value
of KX rather than SX. This simplifies control of the processor when supervisor mode is not
being used.

6.4 Priority of exceptions
The remainder of this chapter describes exceptions in the order of their priority shown in
Table 39 (with certain of the exceptions, such as the TLB exceptions and Instruction/Data
exceptions, grouped together for convenience). While more than one exception can occur
for a single instruction, only the exception with the highest priority is reported. Some
exceptions are not caused by the instruction executed at the time, and some exceptions may
be deferred. See the individual description of each exception in this chapter for more detail.

CPU exceptions UM0447

76/201

Generally speaking, the exceptions described in the following sections are handled
(processed) by hardware; these exceptions are then serviced by software.

6.5 Cold reset exception

6.5.1 Cold reset exception cause

The Cold Reset exception is taken for a power-on or “cold” reset; it occurs when the SysGnt*
signal is asserted while the SysReset* signal is also asserted.† This exception is not
maskable.

6.5.2 Cold reset exception processing

The CPU provides a special interrupt vector for this exception:

● location 0xBFC0 0000 in 32-bit mode

● location 0xFFFF FFFF BFC0 0000 in 64-bit mode

The Cold Reset vector resides in unmapped and uncached CPU address space, so the
hardware need not initialize the TLB or the cache to process this exception. It also means
the processor can fetch and execute instructions while the caches and virtual memory are in
an undefined state.

Table 39. Exception priority order

Cold Reset (highest priority)

Soft Reset

Nonmaskable Interrupt (NMI)

Cache error –– Instruction cache*
Cache error –– Data cache*

Cache error –– Secondary cache*

Cache error –– System interface*

Address error –– Instruction fetch

TLB refill –– Instruction fetch

TLB invalid –– Instruction fetch

Bus error –– Instruction fetch

Integer overflow, Trap, System Call, Breakpoint, Reserved Instruction, Coprocessor Unusable, or
floating point Exception

Address error –– Data access

TLB refill –– Data access

TLB invalid –– Data access

TLB modified –– Data write

Watch*

Bus error –– Data access

Interrupt (lowest priority)*

UM0447 CPU exceptions

 77/201

The contents of all registers in the CPU are undefined when this exception occurs, except
for the following register fields:

● In the Status register, SR and TS are cleared to 0, and ERL and BEV are set to 1. All
other bits are undefined.

● Config register is initialized with the boot mode bits read from the serial input.

● The Random register is initialized to the value of its upper bound.

● The Wired register is initialized to 0.

● The EW bit in the CacheErr register is cleared.

● The ErrorEPC register gets the PC.

● The FrameMask register is set to 0.

● Branch prediction bits are set to 0.

● Performance Counter register Event field is set to 0.

● All pending cache errors, delayed watch exceptions, and external interrupts are
cleared.

6.5.3 Cold reset exception servicing

The Cold Reset exception is serviced by:

● initializing all processor registers, coprocessor registers, caches, and the memory
system

● performing diagnostic tests

● bootstrapping the operating system

6.6 Soft reset exception

6.6.1 Soft reset exception cause

The Soft Reset exception occurs in response to a Soft Reset.

A Soft Reset exception is not maskable.

The processor differentiates between a Cold Reset and a Soft Reset as follows:

● A Cold Reset occurs when the SysGnt* signal is asserted while the SysReset* signal is
also asserted.

● A Soft Reset occurs if the SysGnt* signal remains negated when a SysReset* signal is
asserted.

In STLS2F01 processor, there is no way for software to differentiate between a Soft Reset
exception and an NMI exception.

6.6.2 Soft reset exception processing

When a Soft Reset exception occurs, the SR bit of the Status register is set, distinguishing
this exception from a Cold Reset exception.

When a Soft Reset is detected, the processor initializes minimum processor state. This
allows the processor to fetch and execute the instructions of the exception handler, which in
turn dumps the current architectural state to external logic. Hardware state that loses

CPU exceptions UM0447

78/201

architectural state is not initialized unless it is necessary to execute instructions from
unmapped uncached space that reads the registers, TLB, and cache contents.

The Soft Reset can begin on an arbitrary cycle boundary and can abort multicycle
operations in progress, so it may alter machine state. Hence, caches, memory, or other
processor states can be inconsistent: data cache blocks may stay at the refill state and any
cached loads/stores to these blocks will hang the processor. Therefore, CacheOps should
be used to dump the cache contents.

After the processor state is read out, the processor should be reset with a Cold Reset
sequence.

A Soft Reset exception preserves the contents of all registers, except for:

● ErrorEPC register, which contains the PC

● ERL bit of the Status register, which is set to 1

● SR bit of the Status register, which is set to 1 on Soft Reset or an NMI; 0 for a Cold
Reset

● BEV bit of the Status register, which is set to 1

● TS bit of the Status register, which is set to 0

● PC is set to the reset vector 0xFFFF FFFF BFC0 0000

● Clears any pending Cache Error exceptions

6.6.3 Soft reset exception servicing

A Soft Reset exception is intended to quickly reinitialize a previously operating processor
after a fatal error.

It is not normally possible to continue program execution after returning from this exception,
since a SysReset* signal can be accepted anytime.

6.7 NMI exception

6.7.1 NMI exception cause

The NMI exception is caused by assertion of the SysNMI* signal.

An NMI exception is not maskable.

In STLS2F01 processor, there is no way for software to differentiate between a Soft Reset
exception and an NMI exception.

6.7.2 NMI exception processing

When an NMI exception occurs, the SR bit of the Status register is set, distinguishing this
exception from a Cold Reset exception.

An exception caused by an NMI is taken at the instruction boundary. It does not abort any
state machines, preserving the state of the processor for diagnosis. The Cause register
remains unchanged and the system jumps to the NMI exception handler (see Table 38).

UM0447 CPU exceptions

 79/201

An NMI exception preserves the contents of all registers, except for:

● ErrorEPC register, which contains the PC

● ERL bit of the Status register, which is set to 1

● SR bit of the Status register, which is set to 1 on Soft Reset or an NMI; 0 for a Cold
Reset

● BEV bit of the Status register, which is set to 1

● TS bit of the Status register, which is set to 0

● PC is set to the reset vector 0xFFFF FFFF BFC0 0000

● Clears any pending Cache Error exceptions

6.7.3 NMI exception servicing

The NMI can be used for purposes other than resetting the processor while preserving
cache and memory contents. For example, the system might use an NMI to cause an
immediate, controlled shutdown when it detects an impending power failure.

It is not normally possible to continue program execution after returning from this exception,
since an NMI can occur during another error exception.

6.8 Address error exception

6.8.1 Address error exceptioncause

The Address Error exception occurs when an attempt is made to execute one of the
following:

● Reference to an illegal address space

● Reference the supervisor address space from User mode

● Reference the kernel address space from User or Supervisor mode

● Load or store a doubleword that is not aligned on a doubleword boundary

● Load, fetch, or store a word that is not aligned on a word boundary

● Load or store a halfword that is not aligned on a halfword boundary

This exception is not maskable.

6.8.2 Address error exception processing

The common exception vector is used for this exception. The AdEL or AdES code in the
Cause register is set, indicating whether the instruction caused the exception with an
instruction reference, load operation, or store operation shown by the EPC register and BD
bit in the Cause register.

When this exception occurs, the BadVAddr register retains the virtual address that was not
properly aligned or that referenced protected address space. The contents of the VPN field
of the Context, XContext, and EntryHi registers are undefined, as are the contents of the
EntryLo register.

The EPC register contains the address of the instruction that caused the exception, unless
this instruction is in a branch delay slot. If it is in a branch delay slot, the EPC register
contains the address of the preceding branch instruction and the BD bit of the Cause
register is set as indication.

CPU exceptions UM0447

80/201

6.8.3 Address error exception servicing

The process executing at the time is handed a UNIX SIGSEGV (segmentation violation)
signal. This error is usually fatal to the process incurring the exception.

6.9 TLB exceptions
Three types of TLB exceptions can occur:

● TLB Refill occurs when there is no TLB entry that matches an attempted reference to a
mapped address space.

● TLB Invalid occurs when a virtual address reference matches a TLB entry that is
marked invalid.

● TLB Modified occurs when a store operation virtual address reference to memory
matches a TLB entry which is marked valid but is not dirty (the entry is not writable).

Chapter 6.10, 6.11, 6.12 describe these TLB exceptions.

Note: TLB Refill vector selection is also described earlier in this chapter, in the section titled, TLB
Refill Vector Selection.

6.10 TLB refill exceptions

6.10.1 TLB refill exceptions cause

The TLB refill exception occurs when there is no TLB entry to match a reference to a
mapped address space. This exception is not maskable.

6.10.2 TLB refill exceptions processing

There are two special exception vectors for this exception; one for references to 32-bit
address spaces, and one for references to 64-bit address spaces. The UX, SX,and KX bits
of the Status register determine whether the user, supervisor or kernel address spaces
referenced are 32-bit or 64-bit spaces; the TLB refill vector is selected based upon the
address space of the address causing the TLB miss (user, supervisor, or kernel mode
address space), together with the value of the corresponding extended addressing bit in the
Status register (UX, SX, or KX). The current operating mode of the processor is not
important except that it plays a part in specifying in which space an address resides. An
address is in user space if it is in useg, suseg, kuseg, xuseg, xsuseg, or xkuseg (see the
description of virtual address spaces in Section 3.2.6). An address is in supervisor space if
it is in sseg, ksseg, xsseg or xksseg, and an address is in kernel space if it is in either kseg3
or xkseg. Kseg0, kseg1, and kernel physical spaces (xkphys) are kernel spaces but are not
mapped.

All references use these vectors when the EXL bit is set to 0 in the Status register. This
exception sets the TLBL or TLBS code in the ExcCode field of the Cause register. This code
indicates whether the instruction, as shown by the EPC register and the BD bit in the Cause
register, caused the miss by an instruction reference, load operation, or store operation.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers hold
the virtual address that failed address translation. The EntryHi register also contains the
ASID from which the translation fault occurred. The Random register normally contains a
valid location in which to place the replacement TLB entry. The contents of the EntryLo

UM0447 CPU exceptions

 81/201

register are undefined. The EPC register contains the address of the instruction that caused
the exception, unless this instruction is in a branch delay slot, in which case the EPC
register contains the address of the preceding branch instruction and the BD bit of the
Cause register is set.

6.10.3 TLB refill exceptions servicing

To service this exception, the contents of the Context or XContext register are used as a
virtual address to fetch memory locations containing the physical page frame and access
control bits for a pair of TLB entries. The two entries are placed into the EntryLo0/EntryLo1
register; the EntryHi and EntryLo registers are written into the TLB.

It is possible that the virtual address used to obtain the physical address and access control
information is on a page that is not resident in the TLB. This condition is processed by
allowing a TLB refill exception in the TLB refill handler. This second exception goes to the
common exception vector because the EXL bit of the Status register is set.

6.11 TLB invalid exception

6.11.1 TLB invalid exception cause

The TLB invalid exception occurs when a virtual address reference matches a TLB entry
that is marked invalid (TLB valid bit cleared). This exception is not maskable.

6.11.2 TLB invalid exception processing

The common exception vector is used for this exception. The TLBL or TLBS code in the
ExcCode field of the Cause register is set. This indicates whether the instruction, as shown
by the EPC register and BD bit in the Cause register, caused the miss by an instruction
reference, load operation, or store operation.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers contain
the virtual address that failed address translation. The EntryHi register also contains the
ASID from which the translation fault occurred. The Random register normally contains a
valid location in which to put the replacement TLB entry. The contents of the EntryLo
registers are undefined.

The EPC register contains the address of the instruction that caused the exception unless
this instruction is in a branch delay slot, in which case the EPC register contains the address
of the preceding branch instruction and the BD bit of the Cause register is set.

6.11.3 TLB invalid exception servicing

A TLB entry is typically marked invalid when one of the following is true:

● A virtual address does not exist

● The virtual address exists, but is not in main memory (a page fault)

● A trap is desired on any reference to the page (for example, to maintain a reference bit)

After servicing the cause of a TLB Invalid exception, the TLB entry is located with TLBP
(TLB Probe), and replaced by an entry with that entry’s Valid bit set.

CPU exceptions UM0447

82/201

6.12 TLB modified exception

6.12.1 TLB modified exception cause

The TLB modified exception occurs when a store operation virtual address reference to
memory matches a TLB entry that is marked valid but is not dirty and therefore is not
writable. This exception is not maskable.

6.12.2 TLB modified exception processing

The common exception vector is used for this exception, and the Mod code in the Cause
register is set.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers contain
the virtual address that failed address translation. The EntryHi register also contains the
ASID from which the translation fault occurred. The contents of the EntryLo register are
undefined.

The EPC register contains the address of the instruction that caused the exception unless
that instruction is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction and the BD bit of the Cause register is set.

6.12.3 TLB modified exception servicing

The kernel uses the failed virtual address or virtual page number to identify the
corresponding access control information. The page identified may or may not permit write
accesses; if writes are not permitted, a write protection violation occurs.

If write accesses are permitted, the page frame is marked dirty/writable by the kernel in its
own data structures. The TLBP instruction places the index of the TLB entry that must be
altered into the Index register. The EntryLo register is loaded with a word containing the
physical page frame and access control bits (with the D bit set), and the EntryHi and
EntryLo registers are written into the TLB.

6.13 Bus error exception

6.13.1 Bus error exception cause

A Bus Error exception occurs when a processor block read, upgrade, or
double/single/partial-word read request receives an external ERR completion response, or a
processor double/single/partial-word read request receives an external ACK completion
response where the associated external double/single/partial-word data response contains
an uncorrectable error. This exception is not maskable.

6.13.2 Bus error exception processing

The common interrupt vector is used for a Bus Error exception. The IBE or DBE code in the
ExcCode field of the Cause register is set, signifying whether the instruction (as indicated by
the EPC register and BD bit in the Cause register) caused the exception by an instruction
reference, load operation, or store operation.

UM0447 CPU exceptions

 83/201

The EPC register contains the address of the instruction that caused the exception, unless it
is in a branch delay slot, in which case the EPC register contains the address of the
preceding branch instruction and the BD bit of the Cause register is set.

6.13.3 Bus error exception servicing

The physical address at which the fault occurred can be computed from information
available in the CP0 registers.

● If the IBE code in the Cause register is set (indicating an instruction fetch reference),
the instruction that caused the exception is located at the virtual address contained in
the EPC register (or 4+ the contents of the EPC register if the BD bit of the Cause
register is set).

● If the DBE code is set (indicating a load or store reference), the instruction that caused
the exception is located at the virtual address contained in the EPC register (or 4+ the
contents of the EPC register if the BD bit of the Cause register is set).

The virtual address of the load and store reference can then be obtained by interpreting the
instruction. The physical address can be obtained by using the TLBP instruction and
reading the EntryLo registers to compute the physical page number. The process executing
at the time of this exception is handed a UNIX SIGBUS (bus error) signal, which is usually
fatal.

6.14 Integer overflow exception

6.14.1 Integer overflow exception cause

An Integer Overflow exception occurs when an ADD, ADDI, SUB, DADD, DADDI or DSUB
instruction results in a 2’s complement overflow. This exception is not maskable.

6.14.2 Integer overflow exception processing

The common exception vector is used for this exception, and the OV code in the Cause
register is set.

The EPC register contains the address of the instruction that caused the exception unless
the instruction is in a branch delay slot, in which case the EPC register contains the address
of the preceding branch instruction and the BD bit of the Cause register is set.

6.14.3 Integer overflow exception servicing

The process executing at the time of the exception is handed a UNIX SIGFPE/
FPE_INTOVF_TRAP (floating-point exception/integer overflow) signal. This error is usually
fatal to the current process.

CPU exceptions UM0447

84/201

6.15 Trap exception

6.15.1 Trap exception cause

The Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI, TGEUI, TLTI,
TLTUI, TEQI, or TNEI instruction results in a TRUE condition. This exception is not
maskable.

6.15.2 Trap exception processing

The common exception vector is used for this exception, and the Tr code in the Cause
register is set.

The EPC register contains the address of the instruction causing the exception unless the
instruction is in a branch delay slot, in which case the EPC register contains the address of
the preceding branch instruction and the BD bit of the Cause register is set.

6.15.3 Trap exception servicing

The process executing at the time of a Trap exception is handed a UNIX
SIGFPE/FPE_INTOVF_TRAP (floating-point exception/integer overflow) signal. This error is
usually fatal.

6.16 System call exception

6.16.1 System call exception cause

A System Call exception occurs during an attempt to execute the SYSCALL instruction. This
exception is not maskable.

6.16.2 System call exception processing

The common exception vector is used for this exception, and the Sys code in the Cause
register is set.

The EPC register contains the address of the SYSCALL instruction unless it is in a branch
delay slot, in which case the EPC register contains the address of the preceding branch
instruction.

If the SYSCALL instruction is in a branch delay slot, the BD bit of the Status register is set;
otherwise this bit is cleared.

6.16.3 System call exception servicing

When the System Call exception occurs, control is transferred to the applicable system
routine. Additional distinctions can be made by analyzing the Code field of the SYSCALL
instruction (bits 25:6), and loading the contents of the instruction whose address the EPC
register contains.

To resume execution, the EPC register must be altered so that the SYSCALL instruction
does not re-execute; this is accomplished by adding a value of 4 to the EPC register (EPC
register + 4) before returning.

UM0447 CPU exceptions

 85/201

If a SYSCALL instruction is in a branch delay slot, a more complicated algorithm, beyond
the scope of this description, may be required.

6.17 Breakpoint Exception

6.17.1 Breakpoint exception cause

A Breakpoint exception occurs when an attempt is made to execute the BREAK instruction.
This exception is not maskable.

6.17.2 Breakpoint exception processing

The common exception vector is used for this exception, and the BP code in the Cause
register is set.

The EPC register contains the address of the BREAK instruction unless it is in a branch
delay slot, in which case the EPC register contains the address of the preceding branch
instruction.

If the BREAK instruction is in a branch delay slot, the BD bit of the Status register is set,
otherwise the bit is cleared.

6.17.3 Breakpoint exception servicing

When the Breakpoint exception occurs, control is transferred to the applicable system
routine. Additional distinctions can be made by analyzing the Code field of the BREAK
instruction (bits 25:6), and loading the contents of the instruction whose address the EPC
register contains. A value of 4 must be added to the contents of the EPC register (EPC
register + 4) to locate the instruction if it resides in a branch delay slot.

To resume execution, the EPC register must be altered so that the BREAK instruction does
not re-execute; this is accomplished by adding a value of 4 to the EPC register (EPC register
+ 4) before returning.

If a BREAK instruction is in a branch delay slot, interpretation of the branch instruction is
required to resume execution.

6.18 Reserved instruction exception

6.18.1 Reserved instruction exception cause

The Reserved Instruction exception occurs when one of the following conditions occurs:

● An attempt is made to execute an instruction with an undefined major opcode (bits
31:26)

● An attempt is made to execute a SPECIAL instruction with an undefined minor opcode
(bits 5:0)

● An attempt is made to execute a REGIMM instruction with an undefined minor opcode
(bits 20:16)

● An attempt is made to execute 64-bit operations in 32-bit mode when in User or
Supervisor modes

● An attempt is made to execute a COP1X when the MIPS IV ISA is not enabled

CPU exceptions UM0447

86/201

64-bit operations are always valid in Kernel mode regardless of the value of the KX bit in the
Status register.

This exception is not maskable.

6.18.2 Reserved instruction exception processing

The common exception vector is used for this exception, and the RI code in the Cause
register is set.

The EPC register contains the address of the reserved instruction unless it is in a branch
delay slot, in which case the EPC register contains the address of the preceding branch
instruction.

6.18.3 Reserved instruction exception servicing

No instructions in the MIPS ISA are currently interpreted. The process executing at the time
of this exception is handed a UNIX SIGILL/ILL_RESOP_FAULT (illegal instruction/reserved
operand fault) signal. This error is usually fatal.

6.19 Coprocessor unusable exception

6.19.1 Coprocessor unusable exception cause

The Coprocessor Unusable exception occurs when an attempt is made to execute a
coprocessor instruction for either:

● A corresponding coprocessor unit (CP1 or CP2) that has not been marked usable, or

● CP0 instructions, when the unit has not been marked usable and the process executes
in either User or Supervisor mode.

This exception is not maskable.

6.19.2 Coprocessor unusable exception processing

The common exception vector is used for this exception, and the CpU code in the Cause
register is set. The contents of the Coprocessor Usage Error field of the coprocessor Control
register indicate which of the four coprocessors was referenced. The EPC register contains
the address of the unusable coprocessor instruction unless it is in a branch delay slot, in
which case the EPC register contains the address of the preceding branch instruction.

UM0447 CPU exceptions

 87/201

6.19.3 Coprocessor unusable exception servicing

The coprocessor unit to which an attempted reference was made is identified by the
Coprocessor Usage Error field, which results in one of the following situations:

● If the process is entitled access to the coprocessor, the coprocessor is marked usable
and the corresponding user state is restored to the coprocessor.

● If the process is entitled access to the coprocessor, but the coprocessor does not exist
or has failed, interpretation of the coprocessor instruction is possible.

● If the BD bit is set in the Cause register, the branch instruction must be interpreted;
then the coprocessor instruction can be emulated and execution resumed with the EPC
register advanced past the coprocessor instruction.

● If the process is not entitled access to the coprocessor, the process executing at the
time is handed a UNIX SIGILL/ILL_PRIVIN_FAULT (illegal instruction/privileged
instruction fault) signal. This error is usually fatal.

6.20 Floating-point exception

6.20.1 Floating-point exception cause

The Floating-Point exception is used by the floating-point coprocessor. This exception is not
maskable.

6.20.2 Floating-point exception processing

The common exception vector is used for this exception, and the FPE code in the Cause
register is set.

The contents of the Floating-Point Control/Status register indicate the cause of this
exception.

6.20.3 Floating-point exception servicing

This exception is cleared by clearing the appropriate bit in the Floating-Point Control/Status
register.

6.21 Watch exception

6.21.1 Watch exception cause

A Watch exception occurs when a load or store instruction references the physical address
specified in the WatchLo/WatchHi System Control Coprocessor (CP0) registers. The
WatchLo register specifies whether a load or store initiated this exception.

A Watch exception violates the rules of a precise exception in the following way:

If the load or store reference which triggered the Watch exception has a cacheable address
and misses in the data cache, the line will then be read from memory into the secondary
cache if necessary, and refilled from the secondary cache into the data cache. In all other
cases, cache state is not affected by an instruction which takes a Watch exception.

The CACHE instruction never causes a Watch exception.

CPU exceptions UM0447

88/201

The Watch exception is postponed if either the EXL or ERL bit is set in the Status register. If
either bit is set, the instruction referencing the WatchLo/WatchHi address is executed and
the exception is delayed until the delay condition is cleared; that is, until ERL and EXL both
are cleared (set to 0). The EPC contains the address of the next unexecuted instruction.

A delayed Watch exception is cleared by system reset or by writing a value to the WatchLo
register.

Watch is maskable by setting the EXL or ERL bits in the Status register.

6.21.2 Watch exception processing

The common exception vector is used for this exception, and the Watch code in the Cause
register is set.

6.21.3 Watch exception servicing

The Watch exception is a debugging aid; typically the exception handler transfers control to
a debugger, allowing the user to examine the situation.

To continue program execution, the Watch exception must be disabled to execute the
faulting instruction. The Watch exception must then be re-enabled. The faulting instruction
can be executed either by interpretation or by setting breakpoints.

6.22 Interrupt exception

6.22.1 Interrupt exception cause

The Interrupt exception occurs when one of the eight interrupt conditions is asserted. The
significance of these interrupts is dependent upon the specific system implementation.

Each of the eight interrupts can be masked by clearing the corresponding bit in the Interrupt-
Mask (IM) field of the Status register, and all of the eight interrupts can be masked at once
by clearing the IE bit of the Status register.

6.22.2 Interrupt exception processing

The common exception vector is used for this exception, and the Int code in the Cause
register is set.

The IP field of the Cause register indicates current interrupt requests. It is possible that more
than one of the bits can be simultaneously set (or even no bits may be set) if the interrupt is
asserted and then disserted before this register is read.

On Cold Reset, an R4400 processor can be configured with IP[7] either as a sixth external
interrupt, or as an internal interrupt set when the Count register equals the Compare
register. There is no such option on the R10000 processor; IP[7] is always an internal
interrupt that is set when one of the following occurs:

● The Count register is equal to the Compare register

● Either one of the two performance counters overflows

Software needs to poll each source to determine the cause of the interrupt (which could
come from more than one source at a time). For instance, writing a value to the Compare
register clears the timer interrupt but it may not clear IP[7] if one of the performance

UM0447 CPU exceptions

 89/201

counters is simultaneously overflowing. Performance counter interrupts can be disabled
individually without affecting the timer interrupt, but there is no way to disable the timer
interrupt without disabling the performance counter interrupts.

6.22.3 Interrupt exception servicing

If the interrupt is caused by one of the two software-generated exceptions (described in
Chapter 6, the section titled “Software Interrupts”), the interrupt condition is cleared by
setting the corresponding Cause register bit, IP[1:0], to 0.

Software interrupts are imprecise. Once the software interrupt is enabled, program
execution may continue for several instructions before the exception is taken. Timer
interrupts are cleared by writing to the Compare register. The Performance Counter interrupt
is cleared by writing a 0 to bit 31, the overflow bit, of the counter.

Cold Reset and Soft Reset exceptions clear all the outstanding external interrupt requests,
IP[2] to IP[6].

If the interrupt is hardware-generated, the interrupt condition is cleared by correcting the
condition causing the interrupt pin to be asserted.

Floating-point unit UM0447

90/201

7 Floating-point unit

This section describes the floating-point unit (FPU) of the STLS2F01 processor, including
the programming model, instruction set and formats, instruction pipeline, and exceptions.
The FPU, with associated system software, fully conforms to the requirements of ANSI/IEEE
Standard 754–1985, IEEE Standard for Binary Floating-Point Arithmetic. In addition, the
STLS2F01’s FPU can execute SIMD fixed-point multimedia instructions.

7.1 Overview
The FPU operates as a coprocessor for the CPU (it is assigned coprocessor label CP1), and
extends the CPU instruction set to perform arithmetic operations on floating-point values.

The Floating-Point unit consists of the following functional units:

● FALU1 unit

● FALU2 unit

The FALU2 unit performs floating-point multiply-add, multiply, addition, subtraction, divide
and square-root operations. The FALU1 unit also performs floating-point multiply-add,
multiply, addition, subtraction operations and other floating-point operations. In addition, the
STLS2F01 FPU can perform PS (paired-single) and fixed-point multimedia instructions.
Figure 16 illustrates the organization of the functional units in STLS2F01’s architecture.

UM0447 Floating-point unit

 91/201

Figure 16. The organization of the functional units in STLS2F01’s architecture

The floating-point queue can issue one instruction to the FALU1 unit and one instruction to
the FALU2 unit each cycle. The FALU1 and FALU2 unit each have three dedicated read
ports and one dedicated write port in the floating-point register file.

7.2 FPU programming model
This section describes the set of FPU registers and their data organization. The FPU
registers include Floating-Point General Purpose registers (FGRs) and two control registers:
Control/Status and Implementation/Revision.

7.2.1 Floating-point registers

The Floating-Point Unit is the hardware implementation of Coprocessor 1 in the MIPS IV
Instruction Set Architecture. The MIPS IV ISA defines 32 logical floating-point general
registers (FGRs), Each FGR is 64 bits wide and can hold either 32-bit single-precision or

4-width
mapbusi

Fix
Reg
File

Alu1

Alu2

Fix
Reg
File

r issue

Write
back

Float
Issue

Queue

Float
Reg
File

Falu1

Falu2

Float
Reg
File

r issue

read

Write
back

Enter issue
queue select

ready instruction
to issue

Read register
file, enter
functional
units’ buf

Functional units
perform alu/falu
operations and
Write back to
register file

Fix
Issue

Queue

read

Floating-point unit UM0447

92/201

64-bit double-precision values. The hardware actually contains 64 physical 64-bit registers
in the Floating-Point Register File, from which the 32 logical registers are taken.

FP instructions use a 5-bit logical number to select an individual FGR. These logical
numbers are mapped to physical registers by the rename unit (regmap), before the Floating-
Point Unit executes them. Physical registers are selected using 6-bit addresses.

The FR bit (26) in the Status register determines the number of logical floating-point
registers available to the program, and it alters the operation of single precision load/store
instructions.

● FR is reset to 0 for compatibility with earlier MIPS I and MIPS II ISAs, and instructions
use only the 16 physical even-numbered floating-point registers (32 logical registers).
Each logical register is 32 bits wide.

● FR is set to 1 for normal MIPS III and MIPS IV operations, and all 32 of the 64-bit
logical registers are available.

7.2.2 Floating-point control registers

The MIPS IV ISA permits up to 32 control registers to be defined for each coprocessor, but
the STLS2F01’s Floating-Point Unit uses only two:

● Control register 0, the FP Implementation and Revision register

● Control register 31, the Floating-Point Status register (FSR)

The control registers (FCRs) can only be accessed by move operations. The
Implementation/Revision register (FCR0) holds revision information about the FPU, and the
Control/Status register (FCR31) controls and monitors exceptions, holds the result of
compare operations, and establishes rounding modes.

Implementation and revision register, (FCR0)

The read-only Implementation and Revision register (FCR0) specifies the implementation
and revision number of the FPU. This information can determine the coprocessor revision
and performance level, and can also be used by diagnostic software.

Table 40 describes the Implementation and Revision register (FCR0) fields.

Control/status register (FCR31)

The Control/Status register (FCR31) contains control and status information that can be
accessed by instructions in either Kernel or User mode. FCR31 also controls the arithmetic
rounding mode and enables User mode traps, as well as identifying any exceptions that may
have occurred in the most recently executed instruction, along with any exceptions that may
have occurred without being trapped.

FP control/status register bit assignments shows the format of the Control/Status register,
and Table 41 describes the Control/Status register fields.

Table 40. FCR0 fields

Field Description

Imp[15:8] Implementation number (0x05)

Rev[7:0] Revision number in the form of y.x (0x01)

0[31:16] Reserved. Must be written as zeroes, and returns zeroes when read.

UM0447 Floating-point unit

 93/201

FP control/status register bit assignments

Control/Status register condition bit

When a floating-point Compare operation takes place, the result is stored at bit 23, the
Condition bit, to save or restore the state of the condition line. The CC0 bit is set to 1 if the
condition is true; the bit is cleared to 0 if the condition is false. Bit 23 is affected only by
compare and Move Control to FPU instructions.

Control/status register cause bits

Bits 17:12 in the Control/Status register contain Cause bits, as shown in FP control/status
register bit assignments paragraph, which reflect the results of the most recently executed
instruction. The Cause bits are a logical extension of the CP0 Cause register; they identify
the exceptions raised by the last floating-point operation and raise an interrupt or exception
if the corresponding enable bit is set. If more than one exception occurs on a single
instruction, each appropriate bit is set.

The Cause bits are written by each floating-point operation (but not by load, store, or move
operations). The Unimplemented Operation (E) bit is set to a 1 if software emulation is
required, otherwise it remains 0. The other bits are set to 0 or 1 to indicate the occurrence or
non-occurrence (respectively) of an IEEE 754 exception.

When a floating-point exception is taken, no results are stored, and the only state affected is
the Cause bit.

Control/status register enable bits

A floating-point exception is generated any time a Cause bit and the corresponding Enable
bit are set. A floating-point operation that sets an enabled Cause bit forces an immediate
exception, as does setting both Cause and Enable bits with CTC1.

There is no enable for Unimplemented Operation (E). Setting Unimplemented Operation
always generates a floating-point exception.

31 25 24 23 22 18 17 12 11 7 6 2 1 0

CC7-CC1 FS CC0 0
Cause

E V Z O U I
Enables

V Z O U I
Flags

V Z O U I
RM

7 1 1 5 6 5 5 2

Table 41. Control/status register fields

Field Description

CC7-CC1
Condition bits 7-1. CC1 is set when the high part of paired-single compare
operation is true

FS
When set, denormalized results are flushed to 0 instead of causing an
unimplemented operation exception.

CC0 Condition bit. See description of Control/Status register Condition bit.

Cause Cause bits. See description of Control/Status register Cause bits.

Enables Enable bits. See description of Control/Status register Enable bits.

Flags Flag bits. See description of Control/Status register Flag bits.

RM
Rounding mode bits. See description of Control/Status register Rounding
Mode Control bits.

Floating-point unit UM0447

94/201

Before returning from a floating-point exception, software must first clear the enabled Cause
bits with a CTC1 instruction to prevent a repeat of the interrupt. Thus, User mode programs
can never observe enabled Cause bits set; if this information is required in a User mode
handler, it must be passed somewhere other than the Status register.

For a floating-point operation that sets only un-enabled Cause bits, no exception occurs and
the default result defined by IEEE 754 is stored. In this case, the exceptions that were
caused by the immediately previous floating-point operation can be determined by reading
the Cause field.

Control/status register flag bits

The Flag bits are cumulative and indicate that an exception was raised by an operation that
was executed since they were explicitly reset. Flag bits are set to 1 if an IEEE 754 exception
is raised, otherwise they remain unchanged. The Flag bits are never cleared as a side effect
of floating-point operations; however, they can be set or cleared by writing a new value into
the Status register, using a Move To Coprocessor Control instruction.

When a floating-point exception is taken, the flag bits are not set by the hardware; floating-
point exception software is responsible for setting these bits before invoking a user handler.

Control/status register rounding mode control bits

Bits 1 and 0 in the Control/Status register constitute the Rounding Mode (RM) field. As
shown in Table 42, these bits specify the rounding mode that the FPU uses for all floating-
point operations.

7.3 FPU instruction set overview
All FPU instructions are 32 bits long, aligned on a word boundary. The STLS2F01 FPU not
only performs floating-point instructions defined by MIPS standard, but also adds some
special instructions like multimedia and PS operations to enhance STLS2F01 CPU’s overall
performance. These special instructions use same opcode as floating-point instructions but

Table 42. Rounding mode bit decoding

Rounding

Mode

RM(1:0)

Mnemonic Description

0 RN
Round result to nearest representable value; round to value with
least-significant bit 0 when the two nearest representable values
are equally near.

1 RZ
Round toward 0: round to value closest to and not greater in
magnitude than the infinitely precise result.

2 RP
Round toward +∞: round to value closest to and not less than the
infinitely precise result.

3 RM
Round toward -∞: round to value closest to and not greater than
the infinitely precise result.

UM0447 Floating-point unit

 95/201

extend the fmt field to define these new instructions. The STLS2F01 FPU instruction set can
be divided into the following groups according to different formats:

● Single- or double-precision floating-point instructions (fmt =16, 17). These instructions
include multiply-add, add,sub,conversion,move,compare and branch instructions.
Table 43 lists these floating-point instructions.

● Paired-single (PS) floating-point instructions (fmt =11). PS instructions can perform a
pair of single-precision floating-point operations simultaneously, which include multiply-
add, add, sub, mul, abs, neg, move and compare instructions. Table 44 lists the details.

● Multimedia instructions (fmt =12~31). The media extensions for the STLS2F01
Architecture were designed to enhance performance of advanced media and
communication applications. The STLS2F01 multimedia instructions support parallel
operations on byte, half-word, and word data elements, and double-word integer data
type.

● Word or double-word Fixed-point instructions (fmt =12~31). These instructions are a
subset of MIPS fixed-point instructions. They perform fixed-point operations but share
floating-point registers and data path. In some sense they can be taken as a part of
multimedia instructions.

Table 43. Floating point instructions in STLS2F01 FPU

MADD ADD ROUND.L MFC1 CVT.S BC1F C.F C.SF

MSUB SUB TRUNC.L MTC1 CVT.D BC1T C.UN C.NGLE

NMADD MUL CEIL.L DMFC1 BC1FL C.EQ C.SEQ

NMSUB DIV FLOOR.L DMTC1 BC1TL C.UEQ C.NGL

SQRT ROUND.W CFC1 CVT.W C.OLT C.LT

ABS TRUNC.W CTC1 CVT.L C.ULT C.NGE

MOV CEIL.W C.OLE C.LE

NEG FLOOR.W C.ULE C.NGT

Floating-point unit UM0447

96/201

7.4 FPU formats

7.4.1 Floating-point format

The FPU performs both 32-bit (single-precision) and 64-bit (double-precision) IEEE
standard floating-point operations. The 32-bit single-precision format has a 24-bit signed-
magnitude fraction field (f+s) and an 8-bit exponent (e); The 64-bit double-precision format
has a 53-bit signed-magnitude fraction field (f+s) and an 11-bit exponent; The 64-bit paired-

Table 44. Paired-single (PS) instructions in STLS2F01 FPU

Fmt
Fmt=11

OP

ADD Add.ps

MADD MADD.ps

MSUB MSUB.ps

NMADD NMADD.ps

NMSUB NMSUB.ps

SUB Sub.ps

NEG Neg.ps

ABS Abs.ps

C.F C.F.ps

C.UN C.UN.ps

C.EQ C.EQ.ps

C.UEQ C.UEQ.ps

C.OLT C.OLT.ps

C.ULT C.ULT.ps

C.OLE C.OLE.ps

C.ULE C.ULE.ps

C.SF C.SF.ps

C.NGLE C.NGLE.ps

C.SEQ C.SEQ.ps

C.NGL C.NGL.ps

C.LT C.LT.ps

C.NGE C.NGE.ps

C.LE C.LE.ps

C.NGT C.NGT.ps

MUL MUL.ps

MOV MOV.ps

UM0447 Floating-point unit

 97/201

single format constraints two single-precision floating-point format. as shown in Single
precision format, Double precision format and Paired single format paragraphs.

Single precision format

Double precision format

Paired single format

As shown in the above figures, numbers in floating-point format are composed of three
fields:

● Sign field, s

● Biased exponent, e = E + bias

● Fraction, f = .b1b2....bp-1

The range of the unbiased exponent E includes every integer between the two values Emin
and Emax inclusive, together with two other reserved values:

● Emin - 1 (to encode±0 and denormalized numbers)

● Emax +1 (to encode±∞and NaNs [Not a Number])

For single- and double-precision formats, each representable nonzero numerical value has
just one encoding. For single- and double-precision formats, the value of a number, v, is
determined by the equations shown in Table 45.

For all floating-point formats, if v is NaN, the most-significant bit of f determines whether the
value is a signaling or quiet NaN: v is a signaling NaN if the most-significant bit of f is set,
otherwise, v is a quiet NaN.

31 30 23 22 0

S
Sign

E
Exponent

F
Fraction

1 8 23

63 62 52 51 0

S
Sign

E
Exponent

F
Fraction

1 11 52

63 62 55 54 32 31 30 23 22 0

S1
Sign

E1
Exponent

F1
Fraction

S0
Sign

E0
Exponent

F0
Fraction

1 8 23 1 8 23

Table 45. Equations to calculate single & double precision FP format values

NO. Equation

(1) if E = Emax+1 and f ≠ 0, then v = NaN, regardless of s

(2) if E = Emax+1 and f = 0, then v= (-1)s∞
(3) if Emin ≤ E ≤ Emax, then v = (-1)s 2E(1.f)

(4) if E = Emin-1 and f ≠ 0, then v= (-1)s 2Emin(0 .f)

(5) if E = Emin-1 and f = 0, then v = (-1)s 0

Floating-point unit UM0447

98/201

Table 46 defines the values for the format parameters; minimum and maximum floating-
point values are given inTable 47.

7.4.2 Multimedia format

The Multimedia technology introduces new packed data types, each 64 bits long. The data
elements can be:

● Eight packed, consecutive 8-bit bytes

● Four packed, consecutive 16-bit half-words

● Ttwo packed, consecutive 32-bit words

● One 64-bit double-word

The 64 bits are numbered 0 through 63. Bit 0 is the least significant bit (LSB), and bit 63 is
the most significant bit (MSB). The low-order bits are the lower part of the data element and
the high-order bits are the upper part of the data element. For example, a word contains 16
bits numbered 0 through 15, the byte containing bits 0-7 of the word is called the low byte,
and the byte containing bits 8-15 is called the high byte.

The packed integers are held in two formats, unsigned and signed. See Packed unsigned
half-word format and Packed signed half-word format paragraphs.

Table 46. Floating point format parameter values

Parameter
Format

Single Double

Emax +127 +1203

Emin -126 -1022

Exponent bias +127 +1023

Exponent width in bits 8 11

Integer bit Hidden Hidden

f (Fraction width in bits) 24 53

Format width in bits 32 64

Table 47. Minimum and maximum floating point values

Type Value

Float Minimum 1.40129846e-45

Float Minimum Norm 1.17549435e-38

Float Maximum 3.40282347e+38

Double Minimum 4.9406564584124654e-324

Double Minimum Norm 2.2250738585072014e-308

Double Maximum 1.7976931348623157e+308

UM0447 Floating-point unit

 99/201

Packed unsigned half-word format

Packed signed half-word format

7.5 FPU instruction pipeline overview
The FPU provides an instruction pipeline that parallels the CPU instruction pipeline. It
shares the same ten-stage pipeline architecture with the CPU. Each FPU instruction is
implemented in one of the two floating-point functional units: FALU1 unit or FALU2 unit. The
FALU2 unit performs multiply-add, mul, add, sub, div and sqrt instructions, and the FALU1
performs multiply-add, mul, sub, add and also all other FPU instructions.

Each FALU unit can receive one instruction every cycle, and output one result to the
floating-point register file. In FALU1 unit, the floating-point multiply-add, multiply, add, sub
operations have 6-cycle execution latency; the conversion between integer and float
operations have 4-cycle execution latency; all other operations in FALU1 (include cvt.d.s,
cvt.s.d) have 2-cycle execution latency. It means, for example, if the RAW dependency
exists in current floating-point add instruction and next floating-point instruction, the next
instruction will wait at least 7 cycles without forward before it can be executed. The FALU1
unit is fully pipelined, so it never need give stall signal to the front pipeline stage. But there is
possibility that two instructions with different execution cycles will be output at the same
cycle, in this case the instruction whose execution latency is short will be output to the result
bus firstly.

The FALU2 unit performs floating-point multiply-add, multiply, add, sub, divide and square-
root operations. In FALU2 unit, the floating-point multiply-add, multiply, add, sub operations
have 6-cycle execution latency; the floating-point division operation has 4~16 cycle
execution latency; the floating-point square root operation has 4~31 cycle execution latency.
The floating-point division and square root operations are not pipelined, so if there are two
division or sqrt instructions in the FALU2 unit, the FALU2 unit will give a stall signal to the
front pipeline stage and can’t receive more instructions till the division or sqrt instruction is
written back.

7.6 FPU exceptions
This section describes FPU floating-point exceptions. A floating-point exception occurs
whenever the FPU cannot handle either the operands or the results of a floating-point
operation in its normal way. The FPU responds by generating an exception to initiate a
software trap or by setting a status flag.

63 48 47 32 31 16 15 0

integer integer integer integer

16 16 16 16

63 62 48 47 46 32 31 30 16 15 14 0

sign integrer sign integrer sign integrer sign integrer

1 15 1 15 1 15 1 15

Floating-point unit UM0447

100/201

The FP Control/Status register contains an Enable bit for each exception type; exception
Enable bits determine whether an exception will cause the FPU to initiate a trap or set a
status flag.

● If a trap is taken, the FPU remains in the state found at the beginning of the operation
and a software exception handling routine executes.

● If no trap is taken, an appropriate value is written into the FPU destination register and
execution continues.

The FPU supports the five IEEE Standard 754 exceptions:

● Inexact (I)

● Underflow (U)

● Overflow (O)

● Division by Zero (Z)

● Invalid Operation (V)

The FPU adds a sixth exception type, Unimplemented Operation (E), to use when the FPU
cannot implement the standard MIPS floating-point architecture, including cases in which
the FPU cannot determine the correct exception behavior. This exception indicates the use
of a software implementation. The Unimplemented Operation exception has no Enable or
Flag bit; whenever this exception occurs, an unimplemented exception trap is taken (if the
FPU interrupt input to the CPU is enabled).

Each of the five IEEE Standard 754 exceptions (V, Z, O, U, I) is associated with a trap under
user control, and is enabled by setting one of the five Enable bits. When an exception
occurs, the corresponding Cause bit is set. If the corresponding Enable bit is not set, the
Flag bit is also set. If the corresponding Enable bit is set, the Flag bit is not set and the FPU
generates an interrupt to the CPU. Subsequent exception processing allows a trap to be
taken.

When no exception trap is signaled, floating-point coprocessor takes a default action,
providing a substitute value for the exception-causing result of the floating-point operation.
The particular default action taken depends upon the type of exception. Table 48 lists the
default action taken by the FPU for each of the IEEE exceptions.

UM0447 Floating-point unit

 101/201

The following describes the conditions that cause the FPU to generate each of its
exceptions, and details the FPU response to each exception-causing condition.

7.6.1 Inexact exception (I)

The FPU generates the inexact exception if one of the following occurs:

● The rounded result of an operation is not exact, or

● The rounded result of an operation overflows, or the rounded result of operation
underflows and both the Underflow and Inexact Enable bits are not set and the FS bit is
set.

Trap enabled results: If inexact exception traps are enabled, the result register is not
modified and the source registers are preserved. Since this mode of execution can impact
performance, inexact exception traps should be enabled only when necessary.

Trap disabled results: The rounded or overflowed result is delivered to the destination
register if no other software trap occurs.

Table 48. Default FPU exception actions

Field Description
Rounding

mode
Default action

I
Inexact

exception
Any Supply a rounded result

U
Underflow

exception
RN

Modify underflow values to 0 with the sign of
the intermediate result

RZ
Modify underflow values to 0 with the sign of
the intermediate result

RP
Modify positive underflows to the format’s
smallest positive finite number; modify
negative underflows to -0

RM
Modify negative underflows to the format’s
smallest negative finite number; modify
positive underflows to 0

O
Overflow

exception
RN

Modify overflow values to∞ with the sign of the
intermediate result

RZ
Modify overflow values to the format’s largest
finite number with the sign of the intermediate
result

RP
Modify negative overflows to the format’s most
negative finite number; modify positive
overflows to +∞

RM
Modify positive overflows to the format’s largest
finite number; modify negative overflows to – ∞

Z
Division by

zero
Any Supply a properly signed ∞

V
Invalid

operation
Any Supply a quiet not a number (NaN)

Floating-point unit UM0447

102/201

7.6.2 Invalid operation exception (V)

The Invalid Operation exception is signaled if one or both of the operands are invalid for an
implemented operation. When the exception occurs without a trap, the MIPS ISA defines the
result as a quiet Not a Number (NaN). The invalid operations are:

● Addition or subtraction: magnitude subtraction of infinities, such as: (+∞) + (–∞) or
(–∞) – (–∞)

● Multiplication: 0 times ∞, with any signs

● Division: 0/0, or ∞ / ∞ , with any signs

● Comparison of predicates involving < or > without ?, when the operands are unordered

● Comparison or a Convert From Floating-point Operation on a signaling NaN.

● Any arithmetic operation on a signaling NaN. A move (MOV) operation is not
considered to be an arithmetic operation, but absolute value (ABS) and negate (NEG)
are considered to be arithmetic operations and cause this exception if one or both
operands is a signaling NaN.

● Square root: √ x, where x is less than zero.

Software can simulate the Invalid Operation exception for other operations that are invalid
for the given source operands. Examples of these operations include IEEE Standard 754-
specified functions implemented in software, such as Remainder: x REM y, where y is 0 or x
is infinite; conversion of a floating-point number to a decimal format whose value causes an
overflow, is infinity, or is NaN; and transcendental functions, such as ln (–5) or cos–1(3).

Trap enabled results: The original operand values are undisturbed.

Trap disabled results: A quiet NaN is delivered to the destination register if no other
software trap occurs.

7.6.3 Division-by-zero exception (Z)

The Division-by-Zero exception is signaled on an implemented divide operation if the divisor
is zero and the dividend is a finite nonzero number. Software can simulate this exception for
other operations that produce a signed infinity, such as ln(0), sec(Π/2), csc(0), or 0–1.

Trap enabled results: The result register is not modified, and the source registers are
preserved.

Trap disabled results: The result, when no trap occurs, is a correctly signed infinity.

7.6.4 Overflow exception (O)

The Overflow exception is signaled when the magnitude of the rounded floating-point result,
with an unbounded exponent range, is larger than the largest finite number of the
destination format. (This exception also sets the inexact exception and Flag bits.)

Trap enabled results: The result register is not modified, and the source registers are
preserved.

Trap disabled results: The result, when no trap occurs, is determined by the rounding
mode and the sign of the intermediate result.

UM0447 Floating-point unit

 103/201

7.6.5 Underflow exception (U)

Two related events contribute to the Underflow exception:

● Creation of a tiny nonzero result between ±2Emin which can cause some later exception
because it is so tiny.

● Extraordinary loss of accuracy during the approximation of such tiny numbers by
denormalized numbers.

IEEE Standard 754 allows a variety of ways to detect these events, but requires they be
detected the same way for all operations.

Tininess can be detected by one of the following methods:

● After rounding (when a nonzero result, computed as though the exponent range were
unbounded, would lie strictly between ±2Emin)

● Before rounding (when a nonzero result, computed as though the exponent range and
the precision were unbounded, would lie strictly between±2Emin).

The MIPS architecture requires that tininess be detected after rounding.

Loss of accuracy can be detected by one of the following methods:

● Denormalization loss (when the delivered result differs from what would have been
computed if the exponent range were unbounded)

● Inexact result (when the delivered result differs from what would have been computed if
the exponent range and precision were both unbounded).

The MIPS architecture requires that loss of accuracy be detected as an inexact result.

Trap enabled results: If Underflow or Inexact traps are enabled, or if the FS bit is not set,
then an Unimplemented exception (E) is generated, and the result register is not modified.

Trap disabled results: If Underflow and Inexact traps are not enabled and the FS bit is set,
the result is determined by the rounding mode and the sign of the intermediate result .

7.6.6 Unimplemented instruction exception (E)

Any attempt to execute an instruction with an operation code or format code that has been
reserved for future definition sets the Unimplemented bit in the Cause field in the FPU
Control/Status register and traps. The operand and destination registers remain undisturbed
and the instruction is emulated in software. Any of the IEEE Standard 754 exceptions can
arise from the emulated operation, and these exceptions in turn are simulated. The
Unimplemented Instruction exception can also be signaled when unusual operands or result
conditions are detected that the implemented hardware cannot handle properly.

These include:

● Denormalized operand, except for Compare instruction

● Quiet Not a Number operand, except for Compare instruction

● Denormalized result or Underflow, when either Underflow or Inexact Enable bits are set
or the FS bit is not set.

Note: Denormalized and NaN operands are only trapped if the instruction is a convert or
computational operation. Moves do not trap if their operands are either denormalized or
NaNs.

Trap enabled results: The original operand values are undisturbed.

Trap disabled results: This trap cannot be disabled.

Privileged instruction UM0447

104/201

8 Privileged instruction

Table 49 lists those privileged instructions of STLS2F01.

8.1 CP0 move instructions
The STLS2F01 processor implements Coprocessor 0 move instructions, MTC0, MFC0,
DMTC0 and DMFC0. The exact operations of CP0 move instructions on 32/64-bit CP0
registers are summarized Table 50.

8.1.1 DMFC0 instruction

Doubleword Move From System Control Coprocessor

Doubleword move from system control coprocessor

Format: DMFC0 rt, rd

Table 49. STLS2F01 Privileged Instructions

OpCode Description

CACHE Cache Operation

DMFC0 Doubleword Move From CP0

DMTC0 Doubleword Move To CP0

ERET Exception Return

MFC0 Move From CP0

MTC0 Move To CP0

TLBP Prove TLB for Matching Entry

TLBR Read Indexed TLB Entry

TLBWI Write Indexed TLB Entry

TLBWR Write Random TLB Entry

Table 50. CP0 move instructions

Instruction CP0 register size Operation

MFC0 rt, rd 32 rt <- rd31..0

MTC0 rt, rd 32 rd <- rt31..0

DMFC0 rt, rd 64 rt <- rd63..0

DMTC0 rt,rd 64 rd <- rt63..0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP0
010000

DMT
00101

rt rd 0
00000000000

6 5 5 5 11

UM0447 Privileged instruction

 105/201

Description: The contents of coprocessor register rd of the CP0 are loaded into general register rt.
This operation is defined for the STLS2F01 operating in kernel mode. Execution of
these instruction in user or supervisor mode causes a coprocessor unusable
exception. All 64-bits of the general register destination are written from the
coprocessor register source.

Operation: GPR[rt] <- CPR[rd]

Exception: Coprocessor unusable exception

8.1.2 DMTC0 instruction

Doubleword move to system control coprocessor

Format: DMTC0 rt, rd

Description: The contents of general register rt are loaded into coprocessor register rd of the CP0.
This operation is defined for the STLS2F01 operating in kernel mode. Execution of
this instruction in user or supervisor mode causes a coprocessor unusable exception.
All 64-bits of the coprocessor register destination are written from the general register
source.

Operation: GPR[rd] <- CPR[rt]

Exception: Coprocessor unusable exception

8.1.3 MFC0 instruction

Move from system control coprocessor

Format: MFC0 rt, rd

Description: The contents of coprocessor register rd of the CP0 are loaded into general register rt.

Operation: GPR[rt] <- CPR[rd]

Exception: Coprocessor unusable exception

8.1.4 MTC0 instruction

Move to system control coprocessor

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP0
010000

DMT
00101 rt rd 0

00000000000

6 5 5 5 11

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP0
010000

MF
00000

rt rd 0
00000000000

6 5 5 5 11

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP0
010000

MT
00100

rt rd 0
00000000000

6 5 5 5 11

Privileged instruction UM0447

106/201

Format: MTC0 rt, rd

Description: The contents of general register rt are loaded into coprocessor register rd of the CP0.

Operation: GPR[rd] <- CPR[rt]

Exception: Coprocessor unusable exception

8.1.5 Usable CP0 move instruction in user mode

When users use DMFC0 or MFC0 to read the coprocessor 0 register No.24 or No.25 in
order to get the performance information of the STLS2F01 processor, this execution doesn’t
cause a coprocessor unusable exception.

8.2 TLB access instructions
The STLS2F01 processor implements TLB instructions, TLBP, TLBI, TLBWI and TLBWR.

8.2.1 TLBP instruction

Probe TLB for matching entry

Format: TLBP

Description: The Index register is loaded with the address of the TLB entry whose contents match
the contents of the EntryHi register. If no TLB entry matches, the high-order bit of the
Index register is set to 0x80000000.

Operation: Index<-1||025||undefined6

for I in 0..TLBEntries-1
if(TLB[i]171..141and not(015||TLB[i]216..205))
=EntryHi43..13) and not(015||TLB[i]216..205)) and
TLB[i]140 or (TLB[i]135..128=EntryHi7..0)) then
Index<=026||i5..0
endif
endfor

Exception: Coprocessor unusable exception

8.2.2 TLBR instruction

Read indexed TLB entry

Format: TLBR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP0
010000 CO1 0

0000000000000000000
TLBP

001000

6 1 19 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP0
010000

C
O
1

0
0000000000000000000

TLBR
000001

6 1 19 6

UM0447 Privileged instruction

 107/201

Description: The G bit (which controls ASID matching) read from the TLB is written into both of the
EntryLo0 and EntryLo1 registers. The EntryHi and EntryLo registers are loaded with
the contents of the TLB entry pointed at by the contents of the TLB Index register.
TLBR can be executed in mapped spaces.

Operation: PageMask<-TLB[Index5..0]255..192
EntryHi<- TLB[Index5..0]191..128 and not TLB[Index5..0]255..192
EntryLo1<- TLB[Index5..0]127..65|| TLB[Index5..0]140
EntryLo0<- TLB[Index5..0]63..1|| TLB[Index5..0]140

Exception: Coprocessor unusable exception

8.2.3 TLBWI instruction

Write indexed TLB entry

Format: TLBWI

Description: The G bit of the TLB is written with the logical AND of the G bits in the EntryLo0 and
EntryLo1 registers. The TLB entry pointed at by the contents of the TLB Index register
is loaded with the contents of the EntryHi and EntryLo registers. The operation is
invalid (and the results are unspecified) if the contents of the TLB Index register are
greater than the number of TLB entries in the processor.

Operation: TLB[Index5..0]<-PageMask||(EntryHi and not PageMask)||EntryLo1||EntryLo0

Exception: Coprocessor unusable exception

8.2.4 TLBWR instruction

Write random TLB entry

Format: TLBWR

Description: The G bit of the TLB is written with the logical AND of the G bits in the EntryLo0 and
EntryLo1 registers. The TLB entry pointed at by the contents of the TLB Random
register is loaded with the contents of the EntryHi and EntryLo registers.

Operation: TLB[Random5..0]<-PageMask||(EntryHi and not PageMask)||EntryLo1||EntryLo0

Exception: Coprocessor unusable exception

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP0
010000

C
O
1

0
0000000000000000000

TLBWI
000010

6 1 19 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP0
010000

C
O
1

0
0000000000000000000

TLBWR
000110

6 1 19 6

Privileged instruction UM0447

108/201

8.3 ERET instruction

Exception return

Format: ERET

Description: ERET is the instruction for returning from an interrupt, exception, or error trap. Unlike
a branch or jump instruction, ERET does not execute the next instruction. ERET must
not itself be placed in a branch delay slot. If the processor is servicing an error trap
(SR2 = 1), then load the PC from the ErrorEPC and clear the ERL bit of the Status
register (SR2). Otherwise (SR2 = 0), load the PC from the EPC, and clear the EXL bit
of the Status register (SR1). An ERET executed between a LL and SC also causes
the SC to fail. If there is no exception (EXL=0 and ERL=0 in the Status register),
execution of an ERET instruction is meaningless. Execution of an ERET when
ERL=0, regardless of the state of EXL, sets EXL to 0 and a jump is taken to the
address presently held in the EPC register, even when there is no exception.

Operation: If SR2=1 then
PC<-ErrorEPC
SR<-SR31..3||0||SR1..0
else
PC<-EPC
SR<-SR31..2||0||SR0
Endif
LLbit<-0

Exception: Coprocessor unusable exception

8.4 CACHE instruction

Cache intruction

Format: CACHE op, offset(base)

Description: The 16 bit offset is sign-extended and added to the contents of general register base
to form a CacheOp virtual address (VA). The VA is translated to a physical address
(PA) through the TLB, and the 5-bit opcode (decoded in Table 51) specifies a cache
operation for that address, together with the affected cache. Operation of this
instruction on any combination not listed in the tables below is undefined. The
operation of this instruction on uncached addresses is also undefined.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP0
010000

C
O
1

0
0000000000000000000

ERET
011000

6 1 19 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COPO
010000

base op offset

6 5 5 16

UM0447 Privileged instruction

 109/201

Operation: vAddr<-((offset15)48||offset15..0)+GPR[base]
(pAddr,uncached)<-AddressTranslation(vAddr,DATA)
CacheOp(op,vAddr,pAddr)

Exception: Coprocessor unusable exception

8.4.1 Index invalidate (I)

Index Invalidate (I) sets four blocks of four ways in the primary instruction cache to Invalid.
VA[13:5] defines the line address to be invalidated. The invalidation takes place by writing
the primary instruction cache state bit to 0 (Invalid).

8.4.2 Index writeback invalidate (D)

Index WriteBack Invalidate (D) sets a block in the primary data cache to Invalid. VA[13:5]
defines the address and VA[1:0] defines the way to be invalidated. The invalidation takes
place by writing the primary data cache state bit to 00 (Invalid). If this block in the primary
data cache is dirty, it must be written back to the secondary cache.

8.4.3 Index writeback invalidate (S)

Index WriteBack Invalidate (S) instruction sets a block in the secondary cache to Invalid and
writes back any dirty data to the System interface unit. This operation extends to any blocks
in the primary data or instruction caches which are subsets of the secondary cache block.
The CACHE instruction physical address, PA[16:5], defines the address and PA[1:0] defines
the way to be invalidated.

The invalidation occurs in the following sequence:

Table 51. CACHE Instruction op field encoding

Op field Cache instruction variation Target cache

00000 Index Invalidate (I)

00001 Index WriteBack Invalidate (D)

00101 Index Load Tag (D)

01001 Index Store Tag (D)

10001 Hit Invalidate (D)

10101 Hit WriteBack Invalidate (D)

11001 Index Load Data (D)

11101 Index Store Data (D)

00011 Index WriteBack Invalidate (S)

00111 Index Load Tag (S)

01011 Index Store Tag (S)

10011 Hit Invalidate (S)

10111 Hit WriteBack Invalidate (S)

11011 Index Load Data (S)

11111 Index Store Data (S)

Privileged instruction UM0447

110/201

1. The processor reads the STag and State bits from the secondary cache tag array. If
State = 00 (Invalid) no further activity takes place. If there is a valid entry, then the STag
is used to interrogate the primary instruction and data caches.

2. The processor reads each subset block from the primary instruction cache. If ITag =
STag and IState = 1 (Valid) then the block is invalidated by writing the IState bit to 0
(Invalid).

3. Read each subset block from the primary data cache. If DTag = STag and DState is not
equal to 00 (Invalid), then write the DState bits = 00 (Invalid). If the original block is
Dirty, also write this block back to the secondary cache.

4. Set the state of the secondary cache block to 00 (Invalid). If the secondary cache
block’s original State bits were 11 (Dirty), the block is written back to the system
interface unit.

8.4.4 Index load tag (D)

Index Load Tag (D) reads the primary data cache tag fields into the CP0 TagLo and TagHi
registers. VA[13:5] defines the address and VA[1:0] defines the way of the tag to be read.

The following mapping defines the operation:

TagLo[5:4] = SCWay

TagLo[7:6] = State bits

TagLo[31:8] = Tag[35:12]

TagHi[3:0] = Tag[39:36]

TagHi[31:29] = StateMod bits

All other CP0 TagLo and TagHi bits are set to 0.

8.4.5 Index load tag (S)

Index Load Tag (S) reads the secondary cache tag fields into the CP0 TagLo and TagHi
registers. The PA[16:5] defines the address and PA[1:0] defines the way to be read.

The following mapping defines the operation:

TagLo[11:10] = State bits

TagLo[31:13] = Tag[35:17]

TagHi[3:0] = Tag[39:36]

All other CP0 TagLo and TagHi bits are set to 0.

8.4.6 Index store tag (D)

Index Store Tag (D) stores the CP0 TagLo and TagHi registers into the primary data cache
tag array. VA[13:5] defines the address and VA[1:0] defines the way of the tag to be written.

The following mapping defines the operation:

SCWay = TagLo[5:4]

State bits = TagLo[7:6]

Tag[35:12] = TagLo[31:8]

UM0447 Privileged instruction

 111/201

Tag[39:36] = TagHi[3:0]

8.4.7 Index store tag (S)

Index Store Tag (S) stores fields from the CP0 TagLo and TagHi registers into the secondary
cache tag array. The PA[13:5] defines the address and PA[1:0] defines the way to be read.

The following mapping defines the operation:

State bits = TagLo[11:10]

Tag[35:17] = TagLo[31:13]

Tag[39:36] = TagHi[3:0]

8.4.8 Hit invalidate (D)

Hit Invalidate (D) invalidates an entry in the data cache which matches the PA of the CACHE
instruction. Both ways tags at VA[13:5] are read from the data cache. If the DState is not
equal to 00 (Invalid) and the PA of the CACHE instruction matches the DTag from the data
cache tag array, then the State bits are written to 00 (Invalid).

8.4.9 Hit invalidate (S)

Hit Invalidate (S) invalidates all entries in the secondary, primary instruction, and primary
data caches which match the PA of the CACHE instruction.

The following sequence takes place:

1. The processor reads the Tags from four ways of the secondary cache at the address
pointed to by the PA of the CACHE instruction. If the tag entry’s Stag matches the
CACHE instruction PA, and the State of the entry is not equal to 00 (Invalid), then a Hit
has occurred in that entry. If there is no Hit, the CACHE instruction completes.

2. The processor reads each subset block from the primary instruction cache. If ITag =
STag and IState = 1 (Valid) then the block is invalidated by writing the IState bit to 0
(Invalid).

3. Read each subset block from the primary data cache. If DTag = STag and DState is not
equal to 00 (Invalid), then write the DState bits = 00 (Invalid).

4. The processor sets the tag array entry of the secondary cache block which was hit to
State = 00 (Invalid) and Tag = PA of CACHE instruction.

8.4.10 Hit writeback invalidate (D)

Hit Writeback Invalidate (D) invalidates an entry in the primary data cache which matches
the PA of the CACHE instruction. In addition, it writes back to the secondary cache any dirty
data found in the primary data cache. Four way DTags at VA[13:5] are read from the data
cache. If the DState is not equal to 00 (Invalid) and PA of the CACHE instruction matches
the DTag, then the DState bits of the entry are set to 00 (Invalid).

8.4.11 Hit writeback invalidate (S)

Hit Writeback Invalidate (S) checks for a block which matches the CACHE instruction PA in
the secondary cache, invalidates it, and writes back any dirty data to the System interface
unit. This operation extends to any blocks in the primary data or instruction caches which
are subsets of the secondary cache block.

Privileged instruction UM0447

112/201

The operation takes place in the following sequence:

1. The processor reads the STag and State bits from four ways of the secondary tag array.
If the PA of the CACHE instruction matches the STag, and the State does not equal 00
(Invalid), a hit has occurred. If there is a hit, the STag is used to interrogate the primary
caches. If there is not a hit, the instruction ends.

2. The processor reads each subset block from the primary instruction cache. If there is a
match then invalidate the block by writing the IState bit to 0 (Invalid).

3. Read each subset block from the primary data cache. If there is a match then write the
DState bits = 00 (Invalid), and the DState parity bit = 0. If the original State of any
subset block is dirty, also write it back to the secondary cache.

4. Set the state of the secondary cache block to 00 (Invalid). If the secondary cache
block’s original State bits were 11 (Dirty), the block is written back to the system
interface unit.

8.4.12 Index load data (D)

Index Load Data (D) loads a doubleword of data into CP0 TagHi and TagLo. The address of
the target doubleword is VA[13:3] of the CACHE instruction. The way of the target
doubleword is VA[1:0] of the CACHE instruction.

8.4.13 Index load data (S)

Index Load Data (S) loads a doubleword of data into CP0 TagHi and TagLo. The address of
the target doubleword is VA[16:3] of the CACHE instruction. The way of the target
doubleword is VA[1:0] of the CACHE instruction.

8.4.14 Index store data (D)

Index Store Data (D) stores a doubleword of data into the data cache from the CP0 TagHi
and TagLo registers. The address where this doubleword will be written is defined by
VA[13:3] of the CACHE instruction. The way is defined by VA[1:0]. The data doubleword
comes from CP0 TagHi and TagLo.

8.4.15 Index store data (S)

Index Store Data (S) stores a doubleword of data into the second cache from the CP0 TagHi
and TagLo registers. The address where this doubleword will be written is defined by
VA[16:3] of the CACHE instruction. The way is defined by VA[1:0]. The data doubleword
comes from CP0 TagHi and TagLo.

UM0447 Address window configuration

 113/201

9 Address window configuration

The main purpose of the configure registers module is to configure the address window.
Each window contains three 64-bit registers, BASE, MASK and MMAP. The BASE register
is aligned to M bytes. The MASK register has the similar format with the network mask
which high bits are ones. The low 2-bit of MMAP register contains the corresponding ASL
number. The write to these configuration register can be done by the doubleword store
instruction.

Window match formula:

(IN_ADDR & MASK) == BASE

Address translation formula:

OUT_ADDR = (IN_ADDR & ~MASK) | {MMAP[63:20],20’h0}

Table 52. Address of the window configuration register

Address Name Description

3ff0 0000 M0_WIN0_BASE The BASE address of Master 0’s window 0

3ff0 0008 M0_WIN1_BASE The BASE address of Master 0’s window 1

3ff0 0010 M0_WIN2_BASE The BASE address of Master 0’s window 2

3ff0 0018 M0_WIN3_BASE The BASE address of Master 0’s window 3

3ff0 0020 M0_WIN0_SIZE The MASK of Master 0’s window 0

3ff0 0028 M0_WIN1_SIZE The MASK of Master 0’s window 1

3ff0 0030 M0_WIN2_SIZE The MASK of Master 0’s window 2

3ff0 0038 M0_WIN3_SIZE The MASK of Master 0’s window 3

3ff0 0040 M0_WIN0_MMAP The MMAP of Master 0’s window 0

3ff0 0048 M0_WIN1_MMAP The MMAP of Master 0’s window 1

3ff0 0050 M0_WIN2_MMAP The MMAP of Master 0’s window 2

3ff0 0058 M0_WIN3_MMAP The MMAP of Master 0’s window 3

3ff0 0060 M1_WIN0_BASE The BASE address of Master 1’s window 0

3ff0 0068 M1_WIN1_BASE The BASE address of Master 1’s window 1

3ff0 0070 M1_WIN2_BASE The BASE address of Master 1’s window 2

3ff0 0078 M1_WIN3_BASE The BASE address of Master 1’s window 3

3ff0 0080 M1_WIN0_SIZE The MASK of Master 1’s window 0

3ff0 0088 M1_WIN1_SIZE The MASK of Master 1’s window 1

3ff0 0090 M1_WIN2_SIZE The MASK of Master 1’s window 2

3ff0 0098 M1_WIN3_SIZE The MASK of Master 1’s window 3

3ff0 00a0 M1_WIN0_MMAP The MMAP of Master 1’s window 0

3ff0 00a8 M1_WIN1_MMAP The MMAP of Master 1’s window 1

3ff0 00b0 M1_WIN2_MMAP The MMAP of Master 1’s window 2

Address window configuration UM0447

114/201

3ff0 00b8 M1_WIN3_MMAP The MMAP of Master 1’s window 3

3ff0 00c0 M2_WIN0_BASE The BASE address of Master 2’s window 0

3ff0 00c8 M2_WIN1_BASE The BASE address of Master 2’s window 1

3ff0 00d0 M2_WIN2_BASE The BASE address of Master 2’s window 2

3ff0 00d8 M2_WIN3_BASE The BASE address of Master 2’s window 3

3ff0 00e0 M2_WIN0_MASK The MASK of Master 2’s window 0

3ff0 00e8 M2_WIN1_MASK The MASK of Master 2’s window 1

3ff0 00f0 M2_WIN2_MASK The MASK of Master 2’s window 2

3ff0 00f8 M2_WIN3_MASK The MASK of Master 2’s window 3

3ff0 0100 M2_WIN0_MMAP The MMAP of Master 2’s window 0

3ff0 0108 M2_WIN1_MMAP The MMAP of Master 2’s window 1

3ff0 0110 M2_WIN2_MMAP The MMAP of Master 2’s window 2

3ff0 0118 M2_WIN3_MMAP The MMAP of Master 2’s window 3

3ff0 0120 M3_WIN0_BASE The BASE address of Master 3’s window 0

3ff0 0128 M3_WIN1_BASE The BASE address of Master 3’s window 1

3ff0 0130 M3_WIN2_BASE The BASE address of Master 3’s window 2

3ff0 0138 M3_WIN3_BASE The BASE address of Master 3’s window 3

3ff0 0140 M3_WIN0_MASK The MASK of Master 3’s window 0

3ff0 0148 M3_WIN1_MASK The MASK of Master 3’s window 1

3ff0 0150 M3_WIN2_MASK The MASK of Master 3’s window 2

3ff0 0158 M3_WIN3_MASK The MASK of Master 3’s window 3

3ff0 0160 M3_WIN0_MMAP The MMAP of Master 3’s window 0

3ff0 0168 M3_WIN1_MMAP The MMAP of Master 3’s window 1

3ff0 0170 M3_WIN2_MMAP The MMAP of Master 3’s window 2

3ff0 0178 M3_WIN3_MMAP The MMAP of Master 3’s window 3

Table 52. Address of the window configuration register (continued)

Address Name Description

UM0447 DDR2 SDRAM control interface

 115/201

10 DDR2 SDRAM control interface

Design of the integrated DDR2 SDRAM controller of STLS2F01 obeys the JEDEC standard
(JESD79-2B). In the STLS2F01, all the memory reads or writes obey the STANDARD
JESD79-2B.

10.1 Function of DDR2 SDRAM controller
STLS2F01 CPU support up to 4 physical memory banks (implemented by the 4 chip select
signal), with an address bus of 18 bits (ddr2_a[14:0] and ddr2_bank[2:0]). The max
addressing space is 128 GB (237).

STLS2F01 CPU supports all types according to the JESD79-2B standard. Users can adjust
the configuration of the DDR2 controller to support different memory chip type. The max
number of CS_n is 4, RAS_n is 15, CAS_n is 14, BANK_n is 3.

The physical address sent by CPU will be transform to the CAS/RAS in the format below:

For example: in the 4GB memory space as follows:

number of CS_n = 4, number of bank = 8

number of RAS_n = 12 number of CAS_n = 12

Transform form CPU physical address to DDR2 SDRAM address

The integrated DDR2 controller of STLS2F01 CPU only accept memory read or write
request from CPU core or the peripheral device. In all memory read or write operation, the
DDR2 controller is in the Slave State.

The integrated DDR2 controller of STLS2F01 CPU supports the dynamic page
management. The DDR2 controller decides the Open Page or Close Page all by the
hardware for the memory access, but not by the software designer. The characters of the
integrated DDR2 controller as follows:

● Full pipelined address/data interface

● Unite of different memory access to improve the bandwidth

● Using register configuration to modify the memory access mode

● Integrated DCC for data send and receive

● ECC for auto correcting 1 bit error and detecting 2 bit error in the data path

● support for 133MHZ – 333MHZ DDR2

10.2 Protocol of DDR2 SDRAM read
Protocol of the DDR2 SDRAM read is as Figure 17. CMD in the figure is composed of
RAS_n, CAS_n and WE_n. For memory read, RAS_n = 1, CAS_n = 0, WE_n = 1.

In the figure, Cas Latency = 3, Read Latency = 3, Burst Length = 8°

36 35 34 20 19 17 16 3 2 0

Row Bank Column Datapath

DDR2 SDRAM control interface UM0447

116/201

Figure 17. DDR2 SDRAM read protocol

10.3 Protocol of DDR2 SDRAM write
Protocol of the DDR2 SDRAM write is as Figure 18. CMD in the figure is composed of
RAS_n, CAS_n and WE_n. For memory read, RAS_n = 1, CAS_n = 0, WE_n = 1. Be
different from memory read, the write operation needs DQM signals to indicate the write
mask. the DQM must be synchronous with the DQ signals°

In the figure, write latency = read latency -1 = 2, burst length = 4°

Figure 18. DDR2 SDRAM write protocol

CMD READ A NOP NOP NOP NOP NOP NOP NOP NOP

≤ tDQSCK

CL=3
RL=3

DOUTA1 DOUTA1 DOUTA2 DOUTA3 DOUTA4 DOUTA5 DOUTA6 DOUTA7

T0 T1 T2 T3 T4 T5 T6 T7 T8

CK/CK

DQS/DQS

DQS

CMD WRITE A NOP NOP NOP NOP NOP Precharge NOP Bank A
Activate

≤ tDQS6

WL = RL - 1 = 2

DINA0 DINA1 DINA2 DINA3

T0 T1 T2 T3 T4 T5 T6 T7 Tn

CK/CK

DQS/DQS

DQS

≥ WR ≥ tRP

Completion of
the Burst Write

UM0447 DDR2 SDRAM control interface

 117/201

10.4 Registers of DDR2 SDRAM controller
User must reconfigure the DDR2 SDRAM controller after the system reset to enable
different types of DDR2 SDRAM. The initialization of DDR2 SDRAM is presented in the
JESD79-2B, before the configuration, the DDR2 SDRAM is not usable. The sequence to
initialize the DDR2 SDRAM is as follows:

1. System reset, asresetn = 0, all registers of the DDR2 controller is reset to zero.

2. System reset done., aresetn = 1.

3. The doubleword write command should be issued to the DDR2 controller registers to
configure 29 registers. The parameter START of CTRL_03 should be written to 0 in this
phase.

4. The doubleword write command should be issued to the DDR2 controller register
CTRL_03. The parameter START of CTRL_03 should be written to 1 this time. Then
the DDR2 controller will start the initialization of the DDR2 SDRAM automatically.

For the STLS2F01, the configuration of DDR2 SDRAM controller should between the
initialization of the system board and the using of the memory. The base address of the
configuration registers is 0x000000000FFFFE00. One register may contain one or more
parameters of the controller. The parameters of the registers are listed as follows (the bits
not listed are all reserved). A configuration method of DDR2 667 is also given by the
Table 52. Users can reconfigure the registers to optimize the memory access.

Table 53. Formation of DDR SDRAM controller registers

Name Bit Default Range Description

CONF_CTL_00[31:0] Offset: 0x00 DDR2 667:0x00000101

AREFRESH 24:24 0x0 0x0-0x1
issue a auto refresh command
according to the parameter
auto_refresh_mode (WRITE ONLY)

AP 16:16 0x0 0x0-0x1
enable the auto-precharge mode of
the contoller

ADDR_CMP_EN 8:8 0x0 0x0-0x1
enable address collision detection of
command queue placement logic

ACTIVE_AGING 0:0 0x0 0x0-0x1
enable command aging in the
command queue

CONF_CTL_00[63:32] Offset: 0x00 DDR2 667:0x01000100

DDR2_SDRAM_MODE 56:56 0x0 0x0-0x1 ddr or ddr2 mode

CONCURRENTAP 48:48 0x0 0x0-0x1

allows to issue command to another
bank while a bank is in auto
precharge (many of dimms not
support this mode)

BANK_SPLIT_EN 40:40 0x0 0x0-0x1
enable bank splitting for command
queue placement

AUTO_REFRESH_MODE 32:32 0x0 0x0-0x1
set auto precharge will be next burst
or next command boundary

CONF_CTL_01[31:0] Offset: 0x10 DDR2 667:0x00010000

ECC_DISBALE_W_UC_ERR 24:24 0x0 0x0-0x1
disable the corruption or ECC when
an uncorrectable error occur

DDR2 SDRAM control interface UM0447

118/201

DQS_N_EN 16:16 0x0 0x0-0x1 enable the dqs_n

DLL_BYPASS_MODE 8:8 0x0 0x0-0x1 enable DLL BYPASS mode

DLLLOCKREG 0:0 0x0 0x0-0x1 indicate if DLL locked (READ ONLY)

CONF_CTL_01[63:32] Offset: 0x10 DDR2 667:0x00100000

FWC 56:56 0x0 0x0-0x1
force a write check, Xor
XOR_CHECK_BITS with ecc codes
and write to memory (WRITE ONLY)

FAST_WRITE 48:48 0x0 0x0-0x1
enable the fast write mode, to issue
write to memory as soon as the write
command is received

ENABLE_QUICK_SREFRESH 40:40 0x0 0x0-0x1
allow the user to interrupt memory
initialization to enter the self refresh
mode

EIGHT_BANK_MODE 32:32 0x0 0x0-0x1 if the number of banks is 8

CONF_CTL_02[31:0] Offset: 0x20 DDR2 667:0x00000000

NO_CMD_INIT 24:24 0x0 0x0-0x1
disable DRAM command until the
TDLL is expired during the
initialization

INTRPTWRITENA 16:16 0x0 0x0-0x1
allow the controller to interrupt the
combined write with auto precharge
with another write

INTRPTREADA 8:8 0x0 0x0-0x1
allow the controller to interrupt the
combined read with auto precharge
with another read

INTRPTAPBURST 0:0 0x0 0x0-0x1
allow the controller to interrupt the
auto precharge with command of
another bank

CONF_CTL_02[63:32] Offset: 0x20 DDR2 667:0x01000101

PRIORITY_EN 56:56 0x0 0x0-0x1
enable priority of the command
placement logic

POWER_DOWN 48:48 0x0 0x0-0x1 disable the CKE

PLACEMENT_EN 40:40 0x0 0x0-0x1 enable the command placement logic

ODT_ADD_TURN_CLK_EN 32:32 0x0 0x0-0x1
enable extra turn around clock
between back to back command to
different cs_n

CONF_CTL_03[31:0] Offset: 0x30 DDR2 667:0x01000000

RW_SAME_EN 24:24 0x0 0x0-0x1
enable the command grouping for
placement logic

REG_DIMM_EN 16:16 0x0 0x0-0x1
enable the registered DIMM operation
of controller

REDUC 8:8 0x0 0x0-0x1 enable the half data path feature

Table 53. Formation of DDR SDRAM controller registers (continued)

Name Bit Default Range Description

UM0447 DDR2 SDRAM control interface

 119/201

PWRUP_SREFRESH_EXIT 0:0 0x0 0x0-0x1
Power up by self refresh instead of
initialization

CONF_CTL_03[63:32] Offset: 0x30 DDR2 667:0x01010000

SWAP_PORT_RW_SAME_EN 56:56 0x0 0x0-0x1
enable the swapping between
command of same type from same
port

SWAP_EN 48:48 0x0 0x0-0x1 enable command swapping

START 40:40 0x0 0x0-0x1 start the DRAM initialization

SREFRESH 32:32 0x0 0x0-0x1 set the self refresh mode

CONF_CTL_04[31:0] Offset: 0x40 DDR2 667:0x00010101

WRITE_MODEREG 24:24 0x0 0x0-0x1 write EMRS data (WRITE ONLY)

WRITEINTERP 16:16 0x0 0x0-0x1
allow to interrupt write with a read
command

TREF_ENABLE 8:8 0x0 0x0-0x1
issue self refresh the DRAM every
TREF cycles

TRAS_LOCKOUT 0:0 0x0 0x0-0x1
allow to issue auto precharge before
TRAS_MIN

CONF_CTL_04[63:32] Offset: 0x40 DDR2 667:0x01000202

RTT_0 57:56 0x0 0x0-0x3 ODT resistance setting

CTRL_RAW 49:48 0x0 0x0-0x3

ECC mode:

2’b00 – ECC not used
2’b01 – ECC error reported, but not
corrected
2’b10 – no ECC ram available

2’b11 – ECC error reported and
corrected

AXI0_W_PRIORITY 41:40 0x0 0x0-0x3 priority of write command

AXI0_R_PRIORITY 33:32 0x0 0x0-0x3 priority of read command

CONF_CTL_05[31:0] Offset: 0x50 DDR2 667:0x04050202

COLUMN_SIZE 26:24 0x0 0x0-0x7
the different between the actual
number of the column size and 14

CASLAT 18:16 0x0 0x0-0x7 set the CAS latency

ADDR_PINS 10:8 0x0 0x0-0x7
the different between the actual
number of the address pins and 14

RTT_PAD_TERMINATION 1:0 0x0 0x0-0x3
set termination resistance of
controller pad

CONF_CTL_05[63:32] Offset: 0x50 DDR2 667:0x00000000

Q_FULLNESS 58:56 0x0 0x0-0x7 quantity that command queue is full

Table 53. Formation of DDR SDRAM controller registers (continued)

Name Bit Default Range Description

DDR2 SDRAM control interface UM0447

120/201

PORT_DATA_ERROR_TYPE 50:48 0x0 0x0-0x7

error type that caused the data
error(READ ONLY)
bit 0 – data overflow

bit 1 – write data interleaved

bit 2 – uncorrected data error

OUT_OF_RANGE_TYPE 42:40 0x0 0x0-0x7
error type that caused the out of
range error(READ ONLY)

MAX_CS_REG 34:32 0x4 0x0-0x4
the max number of cs_n(READ
ONLY)

CONF_CTL_06[31:0] Offset: 0x60 DDR2 667:0x03040203

TRTP 26:24 0x0 0x0-0x7 cycles from read to precharge

TRRD 18:16 0x0 0x0-0x7 cycles between different bank active

TEMRS 10:8 0x0 0x0-0x7 write emrs cycles

TCKE 2:0 0x0 0x0-0x7 the minimum cycles of CKE

CONF_CTL_06[63:32] Offset: 0x60 DDR2 667:0x0a040305

APREBIT 59:56 0x0 0x0-0xf
which bit of address pin to indicate
auto recharge

WRLAT 50:48 0x0 0x0-0x7
cycles between write command and
the first data

TWTR 42:40 0x0 0x0-0x7 cycles from write to read

TWR_INT 34:32 0x0 0x0-0x7 cycles form write to another active

CONF_CTL_07[31:0] Offset: 0x70 DDR2 667:0x000f090a

ECC_C_ID 27:24 0x0 0x0-0xf
ID of the correctable ECC
error(READ ONLY)

CS_MAP 19:16 0x0 0x0-0xf CS_n available

CASLAT_LIN_GATE 11:8 0x0 0x0-0xf
half cycles from read command to
gate open

CASLAT_LIN 3:0 0x0 0x0-0xf
half cycles from read command to
first data

CONF_CTL_07[63:32] Offset: 0x70 DDR2 667:0x00000400

MAX_ROW_REG 59:56 0xf 0x0-0xf
maximum number of rows(READ
ONLY)

MAX_COL_REG 51:48 0xe 0x0-0xe
maximum number of columns(READ
ONLY)

INITAREF 43:40 0x0 0x0-0xf
number of auto refresh when
initialization

ECC_U_ID 35:32 0x0 0x0-0xf
ID of the uncorrectable ECC
error(READ ONLY)

CONF_CTL_08[31:0] Offset: 0x80 DDR2 667:0x01020408

Table 53. Formation of DDR SDRAM controller registers (continued)

Name Bit Default Range Description

UM0447 DDR2 SDRAM control interface

 121/201

ODT_RD_MAP_CS3 27:24 0x0 0x0-0xf
enable the ODT of CS_n[3] when
CS_n[3] read

ODT_RD_MAP_CS2 19:16 0x0 0x0-0xf
enable the ODT of CS_n[2] when
CS_n[2] read

ODT_RD_MAP_CS1 11:8 0x0 0x0-0xf
enable the ODT of CS_n[1] when
CS_n[1] read

ODT_RD_MAP_CS0 3:0 0x0 0x0-0xf
enable the ODT of CS_n[0] when
CS_n[0] read

CONF_CTL_08[63:32] Offset: 0x80 DDR2 667:0x01020408

ODT_WR_MAP_CS3 59:56 0x0 0x0-0xf
enable the ODT of CS_n[3] when
CS_n[3] write

ODT_WR_MAP_CS2 51:48 0x0 0x0-0xf
enable the ODT of CS_n[2] when
CS_n[2] write

ODT_WR_MAP_CS1 43:40 0x0 0x0-0xf
enable the ODT of CS_n[1] when
CS_n[1] write

ODT_WR_MAP_CS0 35:32 0x0 0x0-0xf
enable the ODT of CS_n[0] when
CS_n[0] write

CONF_CTL_09[31:0] Offset: 0x90 DDR2 667:0x00000000

PORT_DATA_ERROR_ID 27:24 0x0 0x0-0xf ID of the data error(READ ONLY)

PORT_CMD_ERROR_TYPE 19:16 0x0 0x0-0xf

error type of the error
command(READ ONLY)

bit 0 – size too big

bit 1 – starting or ending of wrap
address not aligned

bit 2 – byte count of wrap command is
not log2 value

bit 3 – narrow transform error

PORT_CMD_ERROR_ID 11:8 0x0 0x0-0xf
ID of the command error(READ
ONLY)

OUT_OF_RANGE_SOURCE_ID 3:0 0x0 0x0-0xf
ID of the out of range error(READ
ONLY)

CONF_CTL_09[63:32] Offset: 0x90 DDR2 667:0x0000050b

OCD_ADJUST_PUP_CS0 60:56 0x0 0x0-0x1f value of OCD pull up when CS_n[0]

OCD_ADJUST_PDN_CS0 52:48 0x0 0x0-0x1f
value of OCD pull down when
CS_n[0]

TRP 43:40 0x0 0x0-0xf cycles of pre-charge operation

TDAL 35:32 0x0 0x0-0xf
cycles of write recovery with auto-
precharge

CONF_CTL_10[31:0] Offset: 0xa0 DDR2 667:0x3f130200

AGE_COUNT 29:24 0x0 0x0-0x3f
initial value of command aging of
placement logic

Table 53. Formation of DDR SDRAM controller registers (continued)

Name Bit Default Range Description

DDR2 SDRAM control interface UM0447

122/201

TRC 20:16 0x0 0x0-0x1f
cycles between active to the same
bank

TMRD 12:8 0x0 0x0-0x1f cycles to configure the MRD register

TFAW 4:0 0x0 0x0-0x1f tFAW from 8 banks

CONF_CTL_10[63:32] Offset: 0xa0 DDR2 667:0x1d1d1d3f

DLL_DQS_DELAY_2 62:56 0x0 0x0-0x7f
the percentage of the DQS2 delay, n
for n/128 cycle

DLL_DQS_DELAY_1 54:48 0x0 0x0-0x7f
the percentage of the DQS1 delay, n
for n/128 cycle

DLL_DQS_DELAY_0 46:40 0x0 0x0-0x7f
the percentage of the DQS0 delay, n
for n/128 cycle

COMMAND_AGE_COUNT 37:32 0x0 0x0-0x3f
initial value of individual command
aging count

CONF_CTL_11[31:0] Offset: 0xb0 DDR2 667:0x1d1d1d1d

DLL_DQS_DELAY_6 30:24 0x0 0x0-0x7f
the percentage of the DQS6 delay, n
for n/128 cycle

DLL_DQS_DELAY_5 22:16 0x0 0x0-0x7f
the percentage of the DQS5 delay, n
for n/128 cycle

DLL_DQS_DELAY_4 14:8 0x0 0x0-0x7f
the percentage of the DQS4 delay, n
for n/128 cycle

DLL_DQS_DELAY_3 6:0 0x0 0x0-0x7f
the percentage of the DQS3 delay, n
for n/128 cycle

CONF_CTL_11[63:32] Offset: 0xb0 DDR2 667:0x507f1d1d

WR_DQS_SHIFT 62:56 0x0 0x0-0x7f
the percentage of the clk_wr delay, n
for n/128 cycle

DQS_OUT_SHIFT 54:48 0x0 0x0-0x7f
the percentage of dqs_out delay, n for
n/128 cycle

DLL_DQS_DELAY_8 46:40 0x0 0x0-0x7f
the percentage of the DQS8 delay, n
for n/128 cycle

DLL_DQS_DELAY_7 38:32 0x0 0x0-0x7f
the percentage of the DQS7 delay, n
for n/128 cycle

CONF_CTL_12[31:0] Offset: 0xc0 DDR2 667:0x0e000000

TRAS_MIN 31:24 0x0 0x0-0xff
cycles of valid time of active
command

OUT_OF_RANGE_LENGTH 23:16 0x0 0x0-0xff
length of out of rang error
command(READ ONLY)

ECC_U_SYND 15:8 0x0 0x0-0xff
syndrome of uncorrectable
error(READ ONLY)

ECC_C_SYND 7:0 0x0 0x0-0xff
syndrome of correctable error(READ
ONLY)

CONF_CTL_12[63:32] Offset: 0xc0 DDR2 667:0x002a3305

Table 53. Formation of DDR SDRAM controller registers (continued)

Name Bit Default Range Description

UM0447 DDR2 SDRAM control interface

 123/201

DLL_DQS_DELAY_BYPASS_0 56:48 0x0
0x0-
0x1ff

value of DLL_DQS_DELAY_0 of DLL
bypass mode

TRFC 47:40 0x0 0x0-0xff cycles of the refresh command

TRCD_INT 39:32 0x0 0x0-0xff
cycles from active to read/write
command

CONF_CTL_13[31:0] Offset: 0xd0 DDR2 667:0x002a002a

DLL_DQS_DELAY_BYPASS_2 24:16 0x0 0x0-0x1
value of DLL_DQS_DELAY_2 of DLL
bypass mode

DLL_DQS_DELAY_BYPASS_1 8:0 0x0 0x0-0x1
value of DLL_DQS_DELAY_1 of DLL
bypass mode

CONF_CTL_13[63:32] Offset: 0xd0 DDR2 667:0x002a002a

DLL_DQS_DELAY_BYPASS_4 56:48 0x0
0x0-
0x1ff

value of DLL_DQS_DELAY_4 of DLL
bypass mode

DLL_DQS_DELAY_BYPASS_3 40:32 0x0
0x0-
0x1ff

value of DLL_DQS_DELAY_3 of DLL
bypass mode

CONF_CTL_14[31:0] Offset: 0xe0 DDR2 667:0x002a002a

DLL_DQS_DELAY_BYPASS_6 24:16 0x0
0x0-
0x1ff

value of DLL_DQS_DELAY_6 of DLL
bypass mode

DLL_DQS_DELAY_BYPASS_5 8:0 0x0
0x0-
0x1ff

value of DLL_DQS_DELAY_5 of DLL
bypass mode

CONF_CTL_14[63:32] Offset: 0xe0 DDR2 667:0x002a002a

DLL_DQS_DELAY_BYPASS_8 56:48 0x0
0x0-
0x1ff

value of DLL_DQS_DELAY_8 of DLL
bypass mode

DLL_DQS_DELAY_BYPASS_7 40:32 0x0
0x0-
0x1ff

value of DLL_DQS_DELAY_7 of DLL
bypass mode

CONF_CTL_15[31:0] Offset: 0xf0 DDR2 667:0x00000004

DLL_LOCK 24:16 0x0
0x0-
0x1ff

value of DLL lock when locked

DLL_INCREMENT 8:0 0x0
0x0-
0x1ff

increment value in DLL detecting
phase

CONF_CTL_15[63:32] Offset: 0xf0 DDR2 667:0x00b4000a

DQS_OUT_SHIFT_BYPASS 56:48 0x0
0x0-
0x1ff

value of DQS_OUT_SHIFT of DLL
bypass mode

DLL_START_POINT 40:32 0x0
0x0-
0x1ff

initial value in DLL detecting phase

CONF_CTL_16[31:0] Offset: 0x100 DDR2 667:0x00000087

INT_ACK 25:16 0x0
0x0-
0x3ff

interrupt acknowledge

WR_DQS_SHIFT_BYPASS 8:0 0x0
0x0-
0x1ff

value of WR_DQS_SHIFT of DLL
bypass mode

Table 53. Formation of DDR SDRAM controller registers (continued)

Name Bit Default Range Description

DDR2 SDRAM control interface UM0447

124/201

CONF_CTL_16[63:32] Offset: 0x100 DDR2 667:0x00000000

INT_STATUS 58:48 0x0
0x0-
0x7ff

interrupt cause(READ ONLY)
bit 0 – one command out of physical
address
bit 1 – more command out of physical
address
bit 2 – one ECC correctable error

bit 3 – more ECC correctable error

bit 4 – one ECC uncorrectable error
bit 5 – more ECC uncorrectable error

bit 6 – error of controller address
channel

bit 7 – error of controller data channel

bit 8 – initialization complete

bit 9 – DLL not locked
bit 10 – OR of lower bits

INT_MASK 42:32 0x0
0x0-
0x7ff

interrupt mask

CONF_CTL_17[31:0] Offset: 0x110 DDR2 667:0x0000181b

EMRS1_DATA 30:16 0x0
0x0-
0x7ff

value written to EMRS1 when
initialization

TREF 13:0 0x0
0x0-
0x3ff

cycles between two refresh command

CONF_CTL_17[63:32] Offset: 0x110 DDR2 667:0x00000000

EMRS2_DATA_1 62:48 0x0000
0x0-
0x7fff

value written to EMRS2 of CS[1]
when initialization

EMRS2_DATA_0 46:32 0x0000
0x0-
0x7fff

value written to EMRS2 of CS[0]
when initialization

CONF_CTL_18[31:0] Offset: 0x120 DDR2 667:0x00000000

EMRS2_DATA_3 30:16 0x0000
0x0-
0x7fff

value written to EMRS2 of CS[3]
when initialization

EMRS2_DATA_2 14:0 0x0000
0x0-
0x7fff

value written to EMRS2 of CS[2]
when initialization

CONF_CTL_18[63:32] Offset: 0x120 DDR2 667:0x001c0000

AXI0_EN_LT_WIDTH_INSTR 63:48 0x0000
0x0-
0xffff

enable narrow command

EMRS3_DATA 46:32 0x0000
0x0-
0x7fff

value written to EMRS3 when
initialization

CONF_CTL_19[31:0] Offset: 0x130 DDR2 667:0x00c8006b

TDLL 31:16 0x0000
0x0-
0xffff

cycles for DLL locking phase

Table 53. Formation of DDR SDRAM controller registers (continued)

Name Bit Default Range Description

UM0447 DDR2 SDRAM control interface

 125/201

TCPD 15:0 0x0000
0x0-
0xffff

cycles from CKE to precharge

CONF_CTL_19[63:32] Offset: 0x130 DDR2 667:0x48e10002

TRAS_MAX 63:48 0x0000
0x0-
0xffff

MAX cycles of active command

TPDEX 47:32 0x0000
0x0-
0xffff

cycles of power down exit

CONF_CTL_20[31:0] Offset: 0x140 DDR2 667:0x00c8002f

TXSR 31:16 0x0000
0x0-
0xffff

cycles of self refresh exit

TXSNR 15:0 0x0000
0x0-
0xffff

parameter tXSNR

CONF_CTL_20[63:32] Offset: 0x140 DDR2 667:0x00000000

XOR_CHECK_BITS 63:48 0x0000
0x0-
0xffff

value when force write check

VERSION 47:32 0x2041 0x2041 version of controller(READ ONLY)

CONF_CTL_21[31:0] Offset: 0x150 DDR2 667:0x00000036

ECC_C_ADDR[7:0] 31:24 0x0000
0x0-

0x1ffffffff
address[7:0] of the correctable ECC
error(READ ONLY)

TINIT 23:0 0x0000
0x0-
0xfffff

cycles of initialization

CONF_CTL_21[63:32] Offset: 0x150 DDR2 667:0x00000000

ECC_C_ADDR[36:8] 60:32 0x0
0x0-

0x1ffffffff
address[36:8] of the correctable ECC
error(READ ONLY)

CONF_CTL_22[31:0] Offset: 0x160 DDR2 667:0x00000000

ECC_U_ADDR[31:0] 31:0 0x0
0x0-

0x1ffffffff
address[31:0] of the uncorrectable
ECC error(READ ONLY)

CONF_CTL_22[63:32] Offset: 0x160 DDR2 667:0x00000000

ECC_U_ADDR[36:32] 36:32 0x0
0x0-

0x1ffffffff
address[36:32] of the uncorrectable
ECC error

(READ ONLY)

CONF_CTL_23[31:0] Offset: 0x170 DDR2 667:0x00000000

OUT_OF_RANGE_ADDR[31:0] 31:0 0x0
0x0-

0x1ffffffff
address[31:0] of the out of range
error(READ ONLY)

CONF_CTL_23[63:32] Offset: 0x170 DDR2 667:0x00000000

OUT_OF_RANGE_ADDR[36:32] 36:32 0x0
0x0-

0x1ffffffff
address[36:32] of the out of range
error(READ ONLY)

CONF_CTL_24[31:0] Offset: 0x180 DDR2 667:0x00000000

PORT_CMD_ERROR_ADDR[31
:0]

31:0 0x0
0x0-

0x1ffffffff
address[31:0] of the port cmd
error(READ ONLY)

Table 53. Formation of DDR SDRAM controller registers (continued)

Name Bit Default Range Description

DDR2 SDRAM control interface UM0447

126/201

Some presentation of the registers:

1. (CONF_CTL_00 AP
The parameter is used to enable the AUTOPRECHARGE, once AUTOPRECHARGE
enabled, DDR2 SDRAM will close page after every memory access. This will cause
performance descend when a lot of successive memory access.

2. CONF_CTL_00 CONCURRENTAP
The parameter is used to issue concurrent autoprecharge, but not all memory chip
support this mode.

3. CONF_CTL_03 SREFRESH
The parameter is used to force the DDR2 SDRAM into self refresh mode. User must
write 0 to this register when need to be back from self refresh.

4. CONF_CTL_07 CASLAT_LIN_GATE
The parameter is used to control the sample of memory read, usually half cycle less
than the parameter CASLAT_LIN. The parameter CASLAT_LIN is the number of half
cycles of CAS latency.

5. CONF_CTL_15 DLL_INCREMENT
The parameter should not be set to zero.

6. CONF_CTL_15 DLL_START_POINT
The parameter should not be set to zero or 1. And it must be less than one and a half of
DLL_LOCK_VALUE when locked.

7. CONF_CTL_28 UB_DIMM
The parameter should be set to 1 when unbuffered DIMM used, and should be set to 0
when memory chips are used.

CONF_CTL_24[63:32] Offset: 0x180 DDR2 667:0x00000000

PORT_CMD_ERROR_ADDR[36
:32]

36:32 0x0
0x0-

0x1ffffffff
address[36:32] of the port cmd
error(READ ONLY)

CONF_CTL_25[31:0] Offset: 0x190 DDR2 667:0x00000000

ECC_C_DATA[31:0] 31:0 0x0
0x0-

0x1ffffffff
data[31:0] of the correctable ECC
error(READ ONLY)

CONF_CTL_25[63:32] Offset: 0x190 DDR2 667:0x00000000

ECC_C_DATA[63:32] 63:32 0x0
0x0-

0x1ffffffff
data[63:32] of the correctable ECC
error(READ ONLY)

CONF_CTL_26[31:0] Offset: 0x1a0 DDR2 667:0x00000000

ECC_U_DATA[31:0] 31:0 0x0
0x0-

0x1ffffffff
data[31:0] of the uncorrectable ECC
error(READ ONLY)

CONF_CTL_26[63:32] Offset: 0x1a0 DDR2 667:0x00000000

ECC_U_DATA[63:32] 63:32 0x0
0x0-

0x1ffffffff
data[63:32] of the uncorrectable ECC
error(READ ONLY)

CONF_CTL_27[63:32] Offset: 0x1b0 DDR2 667:0x00000000

CKE_DELAY 2:0 0x0 0x0-0x7 CKE delay

CONF_CTL_28[63:32] Offset: 0x1c0 DDR2 667:0x00000001

UB_DIMM 0:0 0x0 0x0-0x1 enable unbuffered dimm mode

Table 53. Formation of DDR SDRAM controller registers (continued)

Name Bit Default Range Description

UM0447 Integrated IO controller

 127/201

11 Integrated IO controller

11.1 Introduction of IO controller
The STLS2F01 has built in PCI/PCIX controller, Local IO controller, GPIO, interrupt
controller and some video accelerate unit. These controllers share a slave port of cross bar,
see Figure 19. Requests coming from the CPU core walk though the cross bar, and send to
appropriate controller according to their address (refer to Table 54 for the address space).

Figure 19. IO controller architecture

Table 54. IO controller address space

Start address Size The space Access type Note

0x00000000 256M - -

0x10000000 64M PCI MEM Lo0 CDWHB (1)

0x13f00000 1M Video Acc CDWHB (2)

0x14000000 64M PCI MEM Lo1 CDWHB (1)

0x18000000 64M PCI MEM Lo2 CDWHB (1)

0x1c000000 32M LIO ROM CDWHB

0x1e000000 28M LIO IO CDWHB

0x1fc00000 1M BOOT ROM CDWHB

0x1fd00000 1M PCI IO WHB

0x1fe00000 256B Registers WHB

0x1fe00100 256B PCI Header WHB

Cross Bar

Registers Local IO Video Acc

Interrupt Arbiter PCI/X Mas

PCI/X Slave

Integrated IO Controllers

S M

M S

Integrated IO controller UM0447

128/201

11.1.1 PCIX controller

The PCIX controller of STLS2F01 conforms to PCI-X 1.0b and PCI 2.3 specification. It can
be configured as both host and agent mode. The configuration header located at
0x1fe00000, see Table 55.

Initiating configuration cycle

Before the application can initiate configuration cycle, the pcimap_cfg register must be
written with appropriate values, telling the controller what the configuration cycle type and
higher 16bits of the address cycle are. Following load/stores to 2K region starting at

0x1fe80000 2K PCI CONF WHB

0x1ff00000 1M LIO IO CDWHB (3)

0x20000000 1023.5G PCI MEM Hi CDWHB (1)

1. Block read is guarded by mem_win_base, mem_win_mask register pair.

2. Write only space, bypass when video acceleration not enabled.

3. Block read is guarded by liocfg.

Table 54. IO controller address space (continued)

Start address Size The space Access type Note

Table 55. PCIX controller configuration header

Byte 3 Byte 2 Byte 1 Byte 0 Offset

Device ID Vendor ID 00

Status Command 04

Class code Revision ID 08

BIST Header type Latency timer Cacheline size 0C

Base Address register 0 10

Base Address register 1 14

Base Address register 2 18

Base Address register 3 1C

Base Address register 4 20

Base Address register 5 24

28

Subsystem ID Subsystem Vendor ID 2C

30

Capabilities pointer 34

38

Maximum latency Minimum grant Interrupt pin Interrupt line 3C

PCIX Command Register E0

PCIX Status Register E4

UM0447 Integrated IO controller

 129/201

0x1fe80000 are map to the indicated PCI device(see Figure 20). The device number is a
priority encoding of pcimap_cfg[15:0].

Figure 20. Generation of configuration cycle address

11.1.2 LocalIO controller

The LocalIO controller provides a simple interface for accessing legacy IO devices. It's built
for system booting and has two chip select pins. The data bus width and access delay can
be individually configured (refer to CR08 liocfg). The wait parameter is the low period of liord
or liowr signal measured in PCI clock cycles. See Figure 21 and Figure 22 for timing. When
the data bus width is 16bits, the address is derived with the physical address shifting one bit
right.

pci_ad[31..0]

015 710 8 1

0

31 16 11 2
Cont Type

enc

Register Number
Function Number
Device Number
IDSELs

pcimap_cfg

1516 0

address

1115 010

Integrated IO controller UM0447

130/201

Figure 21. LocalIO read timing

lioden

liodir

lioadlock

liocs

pciclk

lioaddr

lioad

liord

addr[7:0] addr[7:0]+1

addr[23..8] data data

UM0447 Integrated IO controller

 131/201

Figure 22. LocalIO write timing

11.1.3 Interrupt controller

There are several sources of interrupt in STLS2F01, both from inside the chip and pins. The
interrupt controller is in charge of handling the line enable, polarity, pulse recording for each
interrupt source. The polarities of all external interrupts are configurable, and reset to active
low. INT0-3 is connected directly to CPU core int0-3, since the core has six masks for each
external interrpt, the interrupt controller does not mask them. Other interrupts can be
disabled. Pulse form interrupt (e.g. PCI_SERR) can be recorded by setting the integer bit.
The recorded interrupt status can be clear by write the according bit at intenclr.

lioden

liodir

lioadlock

liocs

pciclk

lioaddr

lioad

liowr

addr[7:0] addr[7:0]+1

addr[23:8] data_0 data_1

Table 56. Interrupt controller bit mappings

Field
Register

Int. Source
intpol (acc/def) intedge (acc/def) inten (acc/def)

3 : 0 RW / 0 RW / 0 RW / 0 GPIO

7 : 4 RO / 0 RO / 0 RW / 0 PCI_INTn

8 RO / 1 RO / 0 RW / 0 PCI_PERR

Integrated IO controller UM0447

132/201

11.1.4 PCI/PCIX arbiter

The PCI/PCIX arbiter implements a two level round-robin arbitrating algorithm, bus parking
and broken master isolation. Its config and status register are pxarb_config and
pxarb_status.Table 57 describes the request lines from the view of arbiter.

11.1.5 Video acceleration

Media application maps poorly in superscalar general purpose processor. The color space
conversion and resize is such an example. They need only trivial computing, however, when
taken by the core, there won't be any idle time. These jobs are offloaded from the core in
Loongson 2F with small modification in data path (see Figure 23) to PCIX controller. When
enabled, writes to 0x13f00000~0x13ffffff would interpret as original YUV data of a frame.

Figure 23. Video acceleration data path

9 RO / 1 RO / 1 RW / 0 PCI_SERR

10 RO / 1 RO / 1 RW / 0 denali

14 : 11 RW / 0 RW / 0 RO / f INTn

31 : 15 Reserved

Table 56. Interrupt controller bit mappings (continued)

Field
Register

Int. Source
intpol (acc/def) intedge (acc/def) inten (acc/def)

Table 57. PCI bus arbitration line routing

Line Description

0 Internal request from PCI/PCIX bridge

7:1 External PCIREQ6~0

yuvq zoom yuv2rgb outbuf

videoacc

ov_path

UM0447 Integrated IO controller

 133/201

Given the simplicity of the hardware, the software shall take more job and responsibility.
Inappropriate setting would easily halt the controller. The ov_en (lease significant bit of
gencfg) is global enable bit. When cleared, the acceleration unit is transparent. Note that,
clearing this bit when the data is being send to graphic card frame buffer would be
dangerous. Before changing the config registers, make sure ov_ctrl.reset is set.

Under YUV422 mode, frame data shall be written in the unit of 64 pixels. It consists of 32*4
bytes, with 32 bytes of Y in the head, 32 bytes of U and V in the middle and 32 bytes of Y at
the tail.

Under YUV444 mode, frame data is also written as a unit of 64 pixels. It contains 32*6 bytes,
in the order of YUVYUV, 32 bytes each.

For video acceleration to be meaningful, the media player shall use TLB entry with Uncache
Accelerate property set.

11.2 Register description

11.2.1 Configuration Registers

All the configurable parts of IO controller except for PCI header is located at 256 bytes
starting from 0x1fe00100. See Table 58.

Table 58. Controller registers

Address Register Description

00 poncfg Power on config

04 gencfg General config

08 liocfg LocalIO config

0C - Reserved

10 pcimap PCI mapping config

14 pcix_bridge_cfg PCI/X bridge config

18 pcimap_cfg PCI configuration access config

1C gpio_data GPIO data

20 gpio_en GPIO input/output config

24 intedge Interrupt pulse mode

28 - Reserved

2C intpol Active interrupt level

30 intenset Set interrupt enable

34 intenclr Clear interrupt enable

38 inten Interrupt enable status

3C intisr Interrupt status register

40 mem_win_base_l Lower word of memory window base

44 mem_win_base_h Higher word of memory window base

48 mem_win_mask_l Lower word of memory window mask

Integrated IO controller UM0447

134/201

4C mem_win_mask_h Higher word of memory window mask

50 pci_hit0_sel_l Lower word of PCI image0 config

54 pci_hit0_sel_h Higher word of PCI image0 config

58 pci_hit1_sel_l Lower word of PCI image1 config

5C pci_hit1_sel_h Higher word of PCI image1 config

60 pci_hit2_sel_l Lower word of PCI image2 config

64 pci_hit2_sel_h Higher word of PCI image2 config

68 pxarb_config PCIX arbiter config

6C pxarb_status PCIX arbiter status

70 - Reserved

74 - Reserved

8 - Reserved

7C - Reserved

80 chip_config0 Chip config

84 pad1v8_ctrl Chip config

88 pad3v3_ctrl Chip config

8C - Reserved

90 comp_code Chip sample

94 chip_sample1 Chip sample

98 - Reserved

9C - Reserved

A0 ov_ctrl Video accelerate control

A4 ov_ori_size Original image size

A8 ov_zoom_size Scaled image size

AC ov_fb_base Start address of first pixel in frame buffer

B0 ov_fb_stride
Distance in bytes between two vertical consecutive pixels
in frame buffer

B4 ov_hor_zoom1 Horizontal zooming ctrl 1

B8 ov_hor_zoom2 Horizontal zooming ctrl 2

BC ov_ver_zoom Vertical zooming ctrl

C0 ov_x_pos X coordinate of left most pixel

C4 ov_x_width Screen width in pixels

C8 ov_fb_base Frame buffer memory base

CC ov_fb_mask Frame buffer memory mask

Table 58. Controller registers (continued)

Address Register Description

UM0447 Integrated IO controller

 135/201

Table 59. Detailed description of config registers

Field Name Access Default Description

CR00: poncfg

15:0 pcix_bus_dev RO lio_ad[7:0]
Initial bus/device number for PCIX agent
mode booting

15:8 - RO lio_ad[15:8] Reserved

23:16 pon_pci_configi RO pci_configi pci_configi pin value

31:24 - RO Reserved

CR04: gencfg

0 ov_en RW 0 Video accelerate enable

31:1 - RO 0 Reserved

CR08: liocfg

1:0 - RO 0 Reserved

6:2 rom_wait RW 5'b11111 Rom access delay cycles

7 rom_width RW pci_config[0]

Rom data width

0: 8 bits
1: 16 bits

12:8 io_wait RW 5'b11111 IO access delay cycles

13 io_width RW 1'b0

IO data width

0: 8 bits
1: 16 bits

14 iopf_en RW 1'b0
IO prefetch enable
0: no block read

1: block readable

31:15 - RO 0 Reserved

CR10: pcimap

5:0 trans_lo0 RW 0
Higher 6 bits of translated PCI address for
pci_mem_lo0 image

11:6 trans_lo1 RW 0
Higher 6 bits of translated PCI address for
pci_mem_lo1 image

17:12 trans_lo2 RW 0
Higher 6 bits of translated PCI address for
pci_mem_lo2 image

31:18 - RO 0 Reserved

CR14: pcix_bridge_cfg

5:0 pcix_rgate RW 6'h18 Read issue threshold in PCIX mode

6 pcix_ro_en RW 0 Relax order enable for PCIX bridge

31:18 - RO 0 Reserved

CR18: pcimap_cfg

15:0 dev_addr RW 0 Higher 16 bits in configuration access

Integrated IO controller UM0447

136/201

16 conf_type RW 0 PCI configuration cycle type

31:17 - RO 0 Reserved

CR1C: gpio_data

3:0 gpio_out RW 0 Output data source of GPIO

15:4 - RO 0 Reserved

19:16 gpio_in RW 0 GPIO input value

31:20 - RO 0 Reserved

CR20: gpio_en

3:0 gpio_en RW F GPIO input enable

31:4 - RO 0 Reserved

CR50,54/58,5C/60,64: pci_hit*_sel

0 - RO 0 Reserved

2:1 pci_img_size RW 2'b11 00: 32 bits; 10: 64 bits; else: invalid

3 pref_en RW 0 prefetch enable

11:4 - RO 0 Reserved

62:12 bar_mask RW 0 Bar size mask

63 burst_cap RW 1 Burst capable

CR68: pxarb_config

0 device_en RW 1 External PCI master enable

1 disable_broken RW 0 Disable broken master

2 default_mas_en RW 1
Park bus to default master
0: park to the last bus master
1: park to default master

5:3 default_master RW 0 Default master id

7:6 park_delay RW 0

Delay from no master requesting bus to
parking defalt master

00: 0 cycle

01: 8 cycles
10: 32 cycles

11: 128 cycles

15:8 level RW 8'h01 Masters on the first level

23:16 rude_dev RW 0 Device with bus holding requirement

31:13 - RO 0 Reserved

CR6C: pxarb_status

7:0 broken_master RO 0
Broken master (cleared when disable
broken policy)

10:8 last_master RO 0 ID of last master that use bus

Table 59. Detailed description of config registers (continued)

Field Name Access Default Description

UM0447 Integrated IO controller

 137/201

31:11 - RO 0 Reserved

CR80: core_config

2:0 freq_scale RW 3'b111 Frequency scale control

3 disable_scache RW 0 Disable second cache

4 imp_first RW 1 Import word first

7:5 - RW 0 Reserved

8
disable_ddr_co

nf
RW 0 Disable DDR2 config space

9 ddr_buffer_cpu RW 1 Buffer CPU write to DDR2

10 ddr_buffer_pci RW 1 Buffer PCI write to DDR2

31:11 - RO 0 Reserved

CR84: pad1v8_ctrl

0 compen RW 0

1 comptq RW 0

2 freeze RW 0

3 accurate RW 0

10:4 nasrc RW 7'b1111000

11 proga RW 1

12 progb RW 0

13 mod RW 0

14 strb RW 0

15 en RW 0

16 zoutproga RW 0

CR88: pad3v3_ctrl

0 compen RW 0

1 comptq RW 0

2 freeze RW 0

3 accurate RW 0

10:4 nasrc RW 7'b1111000

CR90: compcode

6:0 ddr2_asrc RO

7 - RO Reserved

14:8 pci_asrc RO

15 - RO Reserved

22:16 sys_asrc RO

Table 59. Detailed description of config registers (continued)

Field Name Access Default Description

Integrated IO controller UM0447

138/201

11.2.2 Video acceleration config registers

32:23 - RO Reserved

CR94: chip_sample1

9:0 sys_clksel RO sys_clksel Value of PLL control pins

31:10 - RO Reserved

Table 59. Detailed description of config registers (continued)

Field Name Access Default Description

Table 60. Video acceleration config registers

Field Name Access Default Description

ov_ctrl:Video accelerate control

0 reset RW 0
Reset video acceleration unit.

Writes shall delay long enough (e.g. 1ms) after
this bit cleared

1 Y2R_EN RW 0 YUV to RGB enable

2 ZoomEn RW 0 Zoom enable

4:3 inFMT RW 0
Input video format
01: YUV422

10: YUV444

6:5 outFMT RW 0

Output frame buffer data format

00: RGB16

01: RGB24
10: RGB32

10:7 resolution RW 0

Display resolution
0000: 320x200

0001: 320x350

0010: 360x400
0011: 640x200

0100: 640x350

0101: 640x480
0110: 720x350

0111: 720x400

1000: 800x600
1001:1024x768

1010:1280x1024

1011:1600x1200

ov_ori_size:Original image size

10:0 X RW 0

21:11 Y RW 0

ov_zoom_size:Scaled image size

10:0 X RW 0

UM0447 Integrated IO controller

 139/201

21:11 Y RW 0

ov_fb_base:Start address of first pixel in frame buffer

31:0 addr RW 0 The address of the first pixel in frame buffer

ov_fb_stride:Frame buffer stride

31:0 stride RW 0
Distance in bytes between two vertical
consecutive pixels in frame buffer

ov_hor_zoom1:Horizontal zooming ctrl 1

10:0 ov_seg_size RW 0
Size of 32 pixel segment after zoomed.
(32/ratio+1) rounded down.

27:11 ov_stepx RW 0
Horizontal zooming ratio. The original size
divides by output size. Store as 5.12 fixed point
binary.

ov_hor_zoom2:Horizontal zooming ctrl 2

10:0
ov_last_seg_si

ze
RW 0 The number of pixels in the last segment.

28:11
ov_size_mul_s

tep
RW 0 Equal to ov_segment_size mul ov_stepx.

ov_ver_zoom:Vertical zooming ctrl

16:0 ov_stepy RW 0
Same as ov_stepx, only binary less or equal to
17'b00001_0000_0000_0000 accepted

ov_x_pos: X coordinate of left most pixel

12:0 ov_x_pos RW 0
Coordinate of output image's left most
pixel(signed integer)

ov_x_width:Screen width in pixels

10:0 ov_x_width RW 0 Screen width in pixels

ov_fb_base:frame buffer memory base

31:0 ov_fb_base RW 0 Frame buffer memory base

ov_fb_mask: frame buffer memory mask

31:0 ov_fb_mask RW 0
Frame buffer memory mask

Writes outside this region will not send to PCI
bus.

Table 60. Video acceleration config registers (continued)

Field Name Access Default Description

Performance tuning UM0447

140/201

12 Performance tuning

This chapter describes some architecture impacts of STLS2F01 on software and ways to
make efficient software for STLS2F01. The STLS2F01 architecture, like all other RISC
architectures, depends on careful attention of data alignment and instruction scheduling to
achieve high performance.

12.1 User instruction latency and repeat rate
Table 61 shows the latencies and repeat rates for all user instructions executed in ALU1/2,
MEM, FALU1/2 functional units, kernel mode instructions and control instructions are not
included.

Table 61. Latencies and repeat rates for user instructions

Instructions Unit Latency Repeat Rate

Integer operations

Add/sub/logical/shift/lui/
cmp

ALU1/2 2 1

Trap/branch ALU1 2 1

MF/MT HI/LO ALU1/2 2 1

(D)MULT(U) ALU2 5 2(split)

(D)MULT(U)G ALU2 5 1

(D)DIV(U) ALU2 2-38 1-37

(D)DIV(U)G ALU2 2-38 1-37

(D)MOD(U)G ALU2 2-38 1-37

Load MEM 5 1

Store MEM - 1

Floating-point operations

(D)MTC1/(D)MFC1 MEM 5 1

Abs/Neg/C.cond/Bc1t/B
c1f/

Move/Cvt*
FALU1 3 1

Round/Trunc/Ceil/

Floor/Cvt*
FALU1 5 1

Add/Sub/Mul/Madd/Ms
ub/

Nmadd/Nmsub
FALU1/2 7 1

Div.s FALU2 5-11 4-10

Div.d FALU2 5-18 4-17

Sqrt.s FALU2 5-17 4-16

UM0447 Performance tuning

 141/201

Please note the following about Table 53:

● The latency of an execution pipeline is the number of cycles between the time an
instruction is issued and the time a dependent instruction(which uses its result as an
operand) can be issued.

● The repeat rate of the pipeline is the number of cycles that occur between the issuance
of one instruction and the issuance of the next instruction to the same execution unit.

● The latency of DIV* operations depends on the operand. It can be estimated as:
(lz(a) < lz(b))?(lz(b)-lz(a))/2 + 4 – ez(c) / 2 : 1
for a/b=c, lz: leading zero, ez: trailing zero.

● The repeat rate for load/store does not include load-link and store-conditional. LL/SC
are wait-issue operations, that is, they are not issued until they come to the head of
reorder queue and the cp0queue is empty.

● There is no special usage limit for HI/LO register, they are treated just the same as
other general purpose registers.

● CTC1/CFC1 is not included in this table. They are serialized like many other control
instructions.

● Multimedia instructions are not included in this table. Because they are implemented by
extending the FORMAT field of normal floating-point instructions, we can easily deduce
the function unit and latency of them.

12.2 Instruction extensions
STLS2F01 implements several instruction extensions.

● Fixed-point multiplies and divisions write only one result into general-purpose registers.
Including 12 instructions:

 (D)MULTG, (D)MULTUG, (D)DIVG

 (D)DIVUG, (D)MODG , (D)MODUG

Multiply and divisions of standard MIPS instruction set write two special registers (HI/LO) for
one operation, which is hard to implement in RISC pipelines. To use the results one has to
use additional instructions to fetch it from HI/LO into general-purpose register. What’s more,
many MIPS processors have limits on the usage of these instructions due to pipeline
problems. Our new instructions should be both faster and easier to use.

● Multimedia instruction extension

Documented in other manuals.

● Fixed-point operations using floating-point data path

When running integer programs the floating-point data path is often idle, these instructions
intend to provide a way to utilize them.

Sqrt.d FALU2 5-32 4-31

Lwc1,Ldc1 MEM 5 1

Swc1,Sdc1 MEM - 1

Table 61. Latencies and repeat rates for user instructions (continued)

Instructions Unit Latency Repeat Rate

Performance tuning UM0447

142/201

12.3 Instruction stream
The following sections describe considerations for the instruction stream.

12.3.1 Instruction alignment

Every cycle STLS2F01 can fetch four instructions from any word-aligned address within a
cache line. Basic block of frequently executed branch targets should avoid crossing the
cache line boundary by proper alignment. The branch instruction among the four instruction
fetched will affect the output. If the first instruction is a taken branch, then the last two
instructions are useless. If the last instruction is a branch, then even if the branch is taken
the processor has to wait for its delay slot instructions in the next cache line. If there were
two branch instructions in this bundle, it would take 2 cycles for the decoder to handle them,
because only one branch can be decoded each cycle.

12.3.2 Branch handling

In STLS2F01 processors, an unexpected change in I-stream address will result in about 10
lost cycles. "Unexpected" may mean any branch-taken or may mean a miss-predicted
branch. In current STLS2F01 implementation, even a correctly predicted taken branch will
be slower (waste one cycle because BTB would not give correct next PC for conditional
branches) than straight-line code.

Compilers should follow these rules to minimize unexpected branches:

● STLS2F01 branch prediction schemes are different from any other high performance
processors, and they vary a bit for different revisions. Based on execution profiles,
compilers should physically rearrange code so that it has matching behavior.

● Make basic blocks as big as possible. A good goal is 20 instructions on average
between branch-taken. This requires unrolling loops so that they contain at least 20
instructions, and putting subroutines of less than 20 instructions directly in line. It also
requires using execution profiles to rearrange code so that the frequent case of a
conditional branch falls through. For very high-performance loops, it will be profitable to
move instructions across conditional branches to fill otherwise wasted instruction issue
slots, even if the instructions moved will not always do useful work. Note that using the
Conditional Move instructions can sometimes avoid breaking up basic blocks.

● In an if-then-else construct whose execution profile is skewed even slightly away from
50%-50% (51-49 is enough), put the infrequent case completely out of line, so that the
frequent case encounters zero branch-takens, and the infrequent case encounters two
branch-takens. If the infrequent case is rare (5%), put it far enough away that it never
comes into the I-cache. If the infrequent case is extremely rare (error message code),
put it on a page of rarely executed code and expect that page never to be paged in.

Section 2.1 gives out a brief description of the fetch-decode unit. We can see that the
branch prediction scheme is composed of:

● Static prediction. For branch likely instructions and jump instructions.

● Gshare predictor. A 9-bit GHR plus 4K-entry PHT. For conditional branches.

● BTB. 16-entry fully associative. Used for predicting target PC of jump register
instructions.

● RAS. 4-entry. Used for predicting target PC of function return instruction (jr31).

There are several notes for software considerations.

UM0447 Performance tuning

 143/201

Be very careful to use branch likely instructions on STLS2F01 processors. Branch likely
instructions may be very useful for simple statically scheduled in-order scalar processors,
but not as useful for modern high performance processors. The branch prediction hardware
in modern high performance processors is so sophisticated that they can often correctly
predict the direction for more than 90% branches (E.g., current STLS2F01 processor can
correctly predict the direction of 85-100% conditional branches, with an average of 95%). In
this case compiler should not use branch likely instructions without a very high confidence
about the prediction. In fact we have found that gcc(version 3.3) often does better job with –
mno-branch-likely option.

The fetch-decode unit is split into three pipeline stages, and branch destinations are
calculated in the third stage. Taken branches have two cycle bubbles, that is, if a branch at
PC is fetched at cycle 0, cycle 1 will fetch PC+16, cycle 2 will fetch PC+32, correct
destination will be given to fetch unit at cycle 3. Minimize taken branches will help.

The BTB in STLS2F01 is used purely for jump register instructions (jr with exception of jr31,
and jalr).

Destinations of jr31 instructions are predicted via a four-entry return address stack. Efficient
prediction of function returns relies on software follow the convention of using jr31 as the
function return instruction.

12.3.3 Improving instruction stream density

Compilers should try to use profiles to make sure that almost 100% of the bytes brought into
the instruction cache are actually executed. This requires alignments of branch targets and
putting rarely executed code out of line.

12.3.4 Instruction scheduling

STLS2F01 has an instruction window to perform dynamic instruction scheduling. But since
the window size and other resources are limited, it is not perfected. Compiler can help here.
Modern compilers often have models to learn CPU's capability and they can act well upon
given information.

"Result latency" is defined as the number of CPU cycles that must elapse between an
instruction that writes a result register and one that uses that register, if execution-time stalls
are to be avoided. Thus, with a latency of zero, the instruction writes a result register and the
instruction that uses that register can be multiple-issued in the same cycle. With a latency of
2, if the writing instruction is issued at cycle N, the reading instruction can issue no earlier
than cycle N+2.

Latency is implementation specific. Most STLS2F01 instructions have non-zero latency.
Compilers should schedule code so that a result is not used too soon, at least in frequently
executed code (inner loops, as identified by execution profiles). In general, this will require
unrolling loops and inlining short procedures.

Compilers should try to schedule code to match the above latency rules and also to match
the multiple-issue rules. If doing both is impractical for a particular sequence of code, the
latency rules are more important.

Performance tuning UM0447

144/201

12.4 Memory accesses
The execution of load and store instructions can greatly affect performance. These
instructions are executed quickly if the required memory block is contained in the primary
data cache; they will be a bit slower if data are in L2 cache; otherwise they will be significant
delayed waiting for the access to the main memory. Out-of-order execution and non-blocking
caches reduce the performance loss due to these delays, however.

Current revisions of STLS2F01 have not directly provided prefetch instructions, but one can
use load-to-zero-register to achieve some kinds of prefetch effects. To reduce overhead
such instructions won't raise exceptions upon illegal addresses.

Compiler should try hard to eliminate unnecessary memory accesses. Memory access
latency is quite long in current STLS2F01 processors (even a cache-hit operation takes 5
cycle in STLS2F01), and the reorder queues are not big enough to tolerate all of it.

Software should pay enough attention to data alignment. Aggregates (arrays, some records,
subroutine stack frames) should be allocated on cache line aligned boundaries to take
advantage of cache line aligned data paths, and to decrease the number of cache fills. Items
within aggregates that are forced to be unaligned (records, common blocks) should
generate compile-time warning messages. Users must be educated that the warning
message means that they are taking a big performance hit. Compiled code for parameters
should assume that the parameters are aligned. Frequently used scalars should reside in
registers.

12.5 Other tips
● Utilize all floating-point registers. STLS2F01 has 32 64-bit floating-point registers, while

O32 ABI exposes only 16 to the user. Use N32 or N64 ABI should help.

● Use performance counters. STLS2F01’s performance counter can be used to monitor
real-time performance characters of programs. Compilers and software writers can
analysis the results to improve their code.

UM0447 MIPS compliancy

 145/201

13 MIPS compliancy

The design goal of STLS2F01 microprocessor is to be compatible to MIPS III architecture.
The ISA (Instruction Set Architecture) of STLS2F01 processor is almost the same with
MIPSIII ISA.; only a few unimportant differences still exist. On the contrary, MIPS III
architecture did not define its PRA (Privilege Resource Architecture). In practice, however,
OS kernel developers always use ‘traditional’ MIPS processors R4000 and R10000 as the
standard of MIPS privilege architecture. Moreover, in recent years, MIPS Inc. defines
MIPS64 ISA as the superset of MIPS III, in which the PRA is defined. STLS2F01 obeys
most of MIPS10000 privilege architecture as well as the MIPS64 PRA, but there are still
some significant differences. This chapter describes the STLS2F01 architecture’s difference
with ’traditional’ MIPS processors, including the following sections: the overview of the
STLS2F01 processor’s compatibility, the special CP0 features, and the special CPU and
FPU instruction features.

13.1 The compliance overview
The STLS2F01 processor is the enhanced version of Loongson-2E processor. The most
architecture design in STLS2F01 is same with the Loognson-2E processor. Some
incompatible features in the Loongson-2E processor are modified and this makes
STLS2F01 processor “more compatible” with MISP ISA 64 than Loongson-2E processor.

The STLS2F01 processor’s instruction set includes the whole MIPS III instruction set. It is
also extended with some new instructions to enhance the performance of the floating-point/
fixed-point computation and the multimedia application. The STLS2F01 processor’s
instruction set consists of two parts: MIPS III instructions instruction set and STLS2F01
enhanced instructions, including SIMD instructions for media and some other instructions. A
MIPS III binary program can run on STLS2F01 perfectly without any modification, while
programmers can further improve the software by adding STLS2F01’s special instructions.

Please be noted that Loongson2E cannot be categorized to ‘MIPS compatible’, as some of
its enhanced instructions occupies the reserved instruction encoding space of MIPS III. It is
still safe till the time being, but once MIPS Inc. defines some new instructions in these
reserved encoding slots and their semantics are different with what Loongson2E defines,
problem will occur. In the STLS2F01 processor, these enhanced instructions are transferred
to the safe encoding slots that are available to MIPS partner and can not trigger any problem
in the future MIPS instructions. The encoding of these instructions can be seen in the
Appendix.

In terms of user-level instruction set architecture, they are always similar among the MIPS
compatible processors or MIPS like processors such as STLS2F01. However, the privileged
instructions or resources for processor control used by the implementation-specific system
control coprocessor can be greatly different between difference processors as there is no
privilege resource architecture definition before MIPS32/64 standard. In practice, however,
MIPS processor designers always tried to make it similar with the implementation of
R4000/R10000. The STLS2F01 processor‘s privilege resource architecture is also more or
less similar with MIPS R4000/R10000. In the other hand, it still contains some special
features which are different with the mainstream MIPS III processors. These special CP0
features are described in Chapter 13.2 on page 146.

In user instruction architecture level, the STLS2F01’s MIPS III compliant instructions have
the same format and operation with the instruction defined in the MIPS III specification.

MIPS compliancy UM0447

146/201

These instructions run on the STLS2F01 processor and other MIPS III processors, such as
R4000 or R10000, behaving identically. For the implementation reasons, however, there are
two instructions that have slightly different semantics between STLS2F01 and MIPS
R10000. Although they are quite unimportant and almost ignorable, the programmers
should not presume they are 100% identical. These different points are described in
Chapter 13.3 on page 149.

The multimedia instructions are the Single Instruction Multiple Data (SIMD) instructions
which extend the STLS2F01 architecture to enhance the performance of advanced media
and communication application. These instructions are the SSE like instructions and
differentiate with all MIPS instructions. The description about the STLS2F01 processor’s
multimedia instructions can be seen in the Appendix C The STLS2F01 Multimedia
Technology.

The STLS2F01 processor implements several special MIPS IV instructions as the
supplement to the MIPS III instructions. These instructions include two MIPS IV instructions
(i.e. MOVZ and MOVNZ) and four MIPS IV like instructions which perform a combined
multiply-accumulate of FP value with three operands instead of the four operands in MIPS
IV specification. The description about the STLS2F01 processor’s special MIPS IV
instruction can be seen in the Appendix B STLS2F01 new floating point instruction.

The STLS2F01 processor defines twelve special fixed-point multiply and divide instructions
to extend the MIPS’s fixed-point multiply and divide instructions to enhance the performance
of fixed-point multiply and divide operation extensive applications. These instructions
perform the multiply, divide or module operation of 64-bit fixed-point values, and produce the
64-bit result instead of the 128-bit result. The descriptions about these fixed-point
instructions can be seen in the Appendix A STLS2F01 new integer instructions.

13.2 The special CP0 features
The MIPS defines the privilege architecture as the part of the specifications, i.e. CP0. To
allow flexibility in implementations, MIPS provides the subsetting rules to allow the designs
to only implement a set of required features to be compliant with MIPS architecture. The
STLS2F01 processor implements the part of MIPS privilege architecture as well as some
special features that may be not compliant with the MIPS privilege architecture
specifications. The programmers should consider this non-compatible privilege architecture
when porting the system software to the STLS2F01 processor. The following sections
describe the special features which differentiate with other MIPS III compatible processor’s
CP0, such as R4000 or R10000.

13.2.1 The ITLB flushing

The STLS2F01 contains the separate instruction TLB (i.e. ITLB) to minimize contention for
the joint TLB and to reduce power dissipation. When a miss occurs on an instruction
address translation by the ITLB, a randomly selected ITLB entry is filled from the joint TLB.
The refill and lookup operation of the ITLB is completely transparent to the user.

However, ITLB does not have auto-flush function. When the address mapping in the JTLB is
changed by the TLBWI or TLBWR instructions, ITLB can not be updated automatically by
the hardware to maintain the coherence with the JTLB. Therefore, programmers must use
instructions to flush the ITLB after writing to JTLB. For the same reason, whenever any field
in the JTLB entry which was already filled in the ITLB is modified, such as one page is
invalidated or the mask of page size is changed, ITLB must be flushed by software.

UM0447 MIPS compliancy

 147/201

The method to flush ITLB is to set the DiagI bit in CP0 diagnostic register.

Each ITLB entry can not be flushed individually, and flushing the whole ITLB is the unique
operation to discard the conflicting ITLB entry. The operation of the ITLB flushing can be
seen in the following example.

A TLB entry with different PFN values as supplied by the t1 and t0 parameters is created.
The old TLB entry indexed by t5 parameters is valid and is already filled in ITLB by the
previous execution. In R4000 and R10000’s TLB design, the old TLB entry will be filled by
the new TLB entry after the TLBWI instruction do a TLB write. Since in the STLS2F01
processor the ITLB can not be updated automatically by the hardware, after the new TLB
entry is written into JTLB by the TLBWI instruction, the ITLB must be flushed by software.

 /* The description of the parameters are

 t4 - 32 bit Virtual address

 t3 - ASID value

 t1 - 32 bit physical address for EntryLo0

 t0 - 32 bit physical address for EntryLo1

 attr0 - TLB attribute for EntryLo0

 attr1 - TLB attribute for EntryLo1

 t5 - Index value of the TLB entry

 t6 - temp register */

srl t6, t4, 13; /* Clean up lower order bits */
sll t6, t6, 13; /* Pad zeros */
or t6, t6, t3; /* Include the ASID value */
mtc0 t6, C0_EntryHi; /* Write to entry Hi register */
srl t6, t1, 6; /* align PFN for entry Lo reg */
sll t6, t6, 6;
ori t6, t6, attr0; /* Include the attribute field */
mtc0 t6, C0_EntryLo0; /* Write to entry lo0 reg */
srl t6, t0, 6; /* align PFN for entry Lo reg */
sll t6, t6, 6;
ori t6, t6, attr1; /* Include the attribute field */
mtc0 t6, C0_EntryLo1; /* Write to entry lo1 reg */
mtc0 t5, C0_Index; /* Write to Index register */
tlbwi; /* Do a TLB write */
li k1, (0x1 << 2); /* Set ITLB flushing bit */
mtc0 k1, C0_Diag /* Write to Diagnostic reg */

13.2.2 The diagnostic register

The Diagnostic register, CP0 register 22, is a supplemental 64-bit register for STLS2F01
specific diagnostic functions. This register handles ITLB flushing, BTB (branch target buffer)
flushing and RAS (return address stack) enabling. The I field (Bit 2) in the Diagnostic
register handles ITLB flushing. When write bit 1 into the DiagI bit, the ITLB is flushed. It
should be considered carefully that the unused fields in diagnostic register must be written
as zero, and return zero when read. The behavior of the STLS2F01 processor is
UNDEFINED if the unused fields of diagnostic register are not written as zero.

MIPS compliancy UM0447

148/201

13.2.3 The performance counter register

Two supplemental registers, CP0 register 24 and 25, are the powerful performance counter
registers specially implemented in the STLS2F01 processor. They are able to count many
kinds of important events or cycles in order for helping processor’s performance analysis.

In MIPS64 ISA compatible processors, CP0 register 24 is the DEPC register for the EJTAG
debug function. The CP0 register 25 are defined as Performance Counter register by the
MIPS specification. The STLS2F01 processor’s Performance Counter registers contain the
similar function fields with it but are mapped into the different select value. The detail
descriptions about the Performance Counter register can be seen in the Chapter 5: CP0.
The unused fields in STLS2F01 processor’s performance counter registers must be written
as zero, and return zero when read. The behavior of the STLS2F01 processor is
UNDEFINED if the unused fields are not written as zero.

13.2.4 The CacheErr exception

The STLS2F01 processor can not detect a cache tag or data error, or a parity or ECC error
on the system bus since the parity or ECC in the Cache, or on the system bus, is not
implemented. The Cache Error exception can not be generated in any conditions. The
CacheError register, CP0 register 27, is also reserved in the STLS2F01 processor.

13.2.5 Address translation for the kuseg segment when statusERL = 1

In the MIPS64 compatible processors, when a CacheError exception happens due to an
ECC error, the processor is able to bypass cache, fix them and keep running. Since the
exception handler has no register safely used, the processor provides one uncached and
unmapped window from 0 through 0x7FFFFFFF to help saving register values directly to
uncached memory by using base + offset address off zero register. Since the CacheErr
exception is not implemented, the STLS2F01 processor needs not to provide the support for
the cache error handler. Hence, the kuseg segment always becomes the mapped and
cached segment no matter what the ERL bit in the Status register is. The reference address
accessing the user space is translated by the TLB in all processor modes. If the address
translation is failed, the TLB exception will be generated immediately.

13.2.6 Exception return when statusERL = 1

The ERET instruction returns from the exception, interrupt or error trap. When a Reset, Soft
Reset, NMI or Cache Error exception is taken, the ERL bit is set by the processor. In the
MIPS64 compatible processor, when StatusERL = 1, the ERET instruction will clear
StatusERL bit and return form ErrorEPC register. In the STLS2F01 processor, when ERL of
Status register is set, the ERET instruction will clear StatusERL and return from CP0 EPC
register, not from the ErrorEPC register.

13.2.7 Page size setting in the TLB entries

The pages are defined as the blocks in which the translated virtual addresses retrieve the
data. In the STLS2F01 processor, the size of page is variable and may be selected from 4
Kbytes to 16 Mbytes inclusive, in power of 4 (that is, 4 Kbytes, 16 Kbytes, 64 Kbytes, 256
Kbytes, 1 Mbytes, 4 Mbytes or 16 Mbytes.). The page size can be set in TLB entry’s Mask
field, as described in the Chapter 3.3.1: Format of a TLB Entry. This field can be read or
written through the PageMask register, described in Chapter 5.5: PageMask register (5).

UM0447 MIPS compliancy

 149/201

It must be considered that in the STLS2F01 processor, all TLB entries share a unique Mask
field, and each TLB entry’s page size can not be set individually. That is, whenever the
comparison mask for the page size is set by using TLBWI or TLBWR instruction through the
PageMask register, the size of each page mapped in the TLB entries will be modified. It
should be considered carefully that the page size in all the TLB entries ahead will be
changed when the new page with the different page size is created in the TLB. It is
recommended that the page size should be not changed.

13.2.8 The 64-bit address space

In the MIPSISA64 compatible processors, the address space can be select from the 32-bit
or 64-bit memory address. The processor uses either 32-bit or 64-bit address space
depending on the operating mode (user, supervisor or kernel) and addressing mode set by
the Status register (i.e. UX, SX or KX bit). For example, the user space is 64-bit memory
address when the UX bit in the Status register is one, no matter what the operation mode of
the processor is. That is, at that time the user space xkuseg can be accessible when the
processor is in the kernel mode. When UX bit in the Status register is zero, the reference to
the user space (xuseg, xsuseg or xkuseg) is invalid, no matter what the operation mode of
processor is. The SX bit in the Status register control whether the supervisor space (xsseg
or xksseg) is accessible. The KX bit in the Status register control whether the reference for
the kernel space (kxseg or kxphys) is valid.

In the STLS2F01 processor, however, the 64-bit address space is always enabled. No
matter what the operation mode of processor is, the reference for the user space (xuseg,
xsuseg or xkuseg), the supervisor space (xsseg or xksseg) or the kernel space (kxseg or
kxphys) is always valid. The Chapter 3: Memory management describes the detail region of
the STLS2F01 processor’s virtual address spaces. The KX, SX or UX bit in the Status
register is always a one, and can not be written to zero by the software. Software can not
change the user/supervisor/kernel address space to 32-bit address.

Since the STLS2F01 processor can not invalidate the 64-bit address space, the default TLB
refill exception is the XTLB refill exception. When a TLB miss occurs, the choice of the
Exception Vector is not required to be determined by the 64-bit address enable. The TLB
Refill vector is used when the XTLB refill exception is taken. The XTLB Refill exception
vector in the STLS2F01 processor has the same location as the TLB refill exception vector,
i.e. 0x000. This STLS2F01 processor’s feature differentiates with other MIPSISA64
compatible processors.

13.3 The special CPU and FPU instructions features
ALL MIPS III instructions can be run on the STLS2F01 processor without any exceptions.
But for the implementation reasons, the STLS2F01 processor has the following two special
features which are different with other MIPS III processors: one is for the load-to-zero
instruction and other is for the floating point conversion instructions.

13.3.1 The special feature for the load-to-zero instruction

In normal operations, the load instruction will access the memory location and fetch the data
back into one of the general registers. When the reference address is not an effective
address or the address translation is failed, an address error or a TLB exception will be
generated. The zero register is the read-only register in MIPS architecture. All data written
into zero register will be ignored. In the STLS2F01 processor, a load instruction, such as

MIPS compliancy UM0447

150/201

LB/LH/LW/LD etc, whose target is zero register, will not lead to any exception even if the
reference address is not in TLB or is an error. Actually, the STLS2F01 processor uses load-
to-zero instruction to implement the prefetch function, while there is no dedicated prefetch
instruction. In the case that the reference address is error or not in the TLB, the operation of
load-to-zero instruction will be same as the nop instruction. For example, in the following
code the load-to-zero instruction has the different behaviors.

It is the assumption that TLB entry with Lo0 and Lo1 has the different PFN; no data in the
physical page mapped in TLB are in the Cache. The load-to-zero instruction will prefetch the
data to the Cache. When ASID is changed, any access to the mapped page should
generate TLB refill exception, except that the load-to-zero instruction will not. Since ASID is
different, the address translation of load-to-zero instruction will fail, and load instruction will
be same as the nop instruction.

/* the parameter is that: t2 - the Virtual address in the first page */

lb zero, 0x0(t2); # prefetch the data to cache
mfc0 t1, C0_EntryHi; # read the EntryHi reg
addiu t1, t1, 0x1; # Change the ASID value.
mtc0 t1, C0_EntryHi;
lb zero, 0x20(t2); # nop operation without TLB exception
addiu t2, t2, K_PageSize; # Use the next page for reference.
lb zero, 0x0(t2); # nop operation
lb t3, 0x20(t2); # generate the TLB exception

13.3.2 The special feature for the floating point conversion instructions

The floating point conversion instructions perform the conversions between the floating-
point data types and fixed-point data types in the floating point registers. The floating point
data types represent the numeric values, such as the following: normalized value, Non-
Numbers (SNan and QNan), Infinities (+8 or -8), zero (+0 or -0) etc. The fixed point data
types represent the word and longword fixed point data. For the conversion instructions
which convert the floating-point data types to fixed-point data types, the result can not be
represented correctly when the source value is Infinity, NaN, or rounds to an integer outside
the range that the fixed point data can be represent. In such conditions, an IEEE Invalid
Operation condition exists, and the STLS2F01 processor sets the Invalid Operation flag in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, the STLS2F01 processor
dose not write any result to the floating point destination register and an Invalid Operation
exception is taken immediately. Otherwise, the Loonson-2F processor will take the following
operation which is slightly different with the MIPS specifications. (MIPS specifications don’t
differentiate the positive and negative input values.)

● For the instructions converting floating point data to word fixed point data, such as
cvt.w.fmt, round.w.fmt, floor.w.fmt, ceil.w.fmt, trunk.w.fmt, when the source value is
Infinity, NaN, or rounds to an integer outside the range - to -1, and the Invalid
Operation Enable bit is not set in the FCSR, the STLS2F01 processor will not generate
the Invalid Operation exception. In this case, when the input operand is positive,
0x7FFFFFFF is written to the destination register. When the input operand is negative,
0x80000000 is written to the destination register.

● For the instructions converting floating point data to longword fixed point data, such as
cvt.l.fmt, round.l.fmt, floor.l.fmt, ceil.l.fmt, trunk.l.fmt, when the source value is Infinity,
NaN, or rounds to an integer outside the range - to -1, and the Invalid Operation
Enable bit is not set in the FCSR, the STLS2F01 processor will not generate the Invalid
Operation exception. In this case, when the input operand is positive,

UM0447 MIPS compliancy

 151/201

0x7FFFFFFFFFFFFFFF is written to the destination register. When the input operand
is negative, 0x8000000000000000 is written to the destination register.

STLS2F01 new integer instructions UM0447

152/201

Appendix A STLS2F01 new integer instructions

A.1 MULT.G - multiply word (STLS2F01)

Format: MULT.G rd, rs, rt

Purpose: To multiply 32-bit signed intergers.

Description: rd ⇓ rs * rt
The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating
both operands as signed values, to produce a 64-bit result. The low-order 32-bit word
of the result is placed into special register rd.
No arithmetic exception occurs under any circumstances.

Operation: prod ← GPR[rs]31..0 * GPR[rt]31..0

rd ← sign_extend(prod31..0)

Exception: None

A.2 MULTU.G - multiply unsigned word (STLS2F01)

Format: MULTU.G rd, rs, rt

Purpose: To multiply 32-bit unsigned intergers.

Description: rd ⇓ rs * rt
The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating
both operands as unsigned values, to produce a 64-bit result. The low-order 32-bit
word of the result is placed into special register rd.
No arithmetic exception occurs under any circumstances.

Operation: prod ← (0 || GPR[rs]31..0) * (0 || GPR[rt]31..0)
rd ← sign_extend(prod31..0)

Exception: None

A.3 DMULT.G - doubleword multiply (STLS2F01)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPECIAL2
011100

rs rt rd
0

00000
MULT.G
010000

6 5 5 10 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPECIAL2
011100

rs rt rd
0

00000
MULT.G
010010

6 5 5 10 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPECIAL2
011100

rs rt rd
0

00000
DMULT.G
010001

6 5 5 10 6

UM0447 STLS2F01 new integer instructions

 153/201

Format: DMULT.G rd, rs, rt

Purpose: To multiply 64-bit signed intergers.

Description: rd ⇓ rs * rt
The 64-bit word value in GPR rt is multiplied by the 64-bit value in GPR rs, treating
both operands as signed values, to produce a 128-bit result. The low-order 64-bit
word of the result is placed into special register rd.
No arithmetic exception occurs under any circumstances.

Operation: prod ← GPR[rs] * GPR[rt]
rd ← prod63..0

Exception: None

A.4 DMULTU.G - doubleword multiply unsigned (STLS2F01)

Format: DMULT.G rd, rs, rt

Purpose: To multiply 64-bit unsigned intergers.

Description: rd ⇓ rs * rt
The 64-bit word value in GPR rt is multiplied by the 64-bit value in GPR rs, treating
both operands as unsigned values, to produce a 128-bit result. The low-order 64-bit
word of the result is placed into special register rd.
No arithmetic exception occurs under any circumstances.

Operation: prod ← (0 || GPR[rs]) * (0 || GPR[rt])
rd ← prod63..0

Exception: None

A.5 DIV.G - divide word (STLS2F01)

Format: DIV.G rd, rs, rt

Purpose: To divide 32-bit signed intergers.

Description: rd ⇓ rs / rt
The 32-bit word value in GPR rs is divided by the 32-bit value in GPR rt, treating both
operands as signed values. The 32-bit quotient is placed into special register rd.
No arithmetic exception occurs under any circumstances.

Operation: q ← GPR[rs]31..0 div GPR[rt]31..0

LO ← sign_extend(q31..0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPECIAL2
011100

rs rt rd
0

00000
DMULTU.G

010011

6 5 5 10 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPECIAL2
011100

rs rt rd
0

00000
DIV.G

010100

6 5 5 10 6

STLS2F01 new integer instructions UM0447

154/201

Exception: None

A.6 DIVU.G - divide unsigned word (STLS2F01)

Format: DIVU.G rd, rs, rt

Purpose: To divide 32-bit unsigned intergers.

Description: rd ⇓ rs / rt
The 32-bit word value in GPR rs is divided by the 32-bit value in GPR rt, treating both
operands as unsigned values. The 32-bit quotient is placed into special register rd.
No arithmetic exception occurs under any circumstances.

Operation: q ← (0 || GPR[rs]31..0) div (0 || GPR[rt]31..0)
rd ← sign_extend(q31..0)

Exception: Reserved Instruction

A.7 DDIV.G - doubleword divide (STLS2F01)

Format: DDIV.G rd,rs, rt

Purpose: To divide 64-bit signed intergers.

Description: rd ⇓ rs / rt
The 64-bit doubleword in GPR rs is divided by the 64-bit doubleword in GPR rt,
treating both operands as signed values. The 64-bit quotient is placed into special
register rd.
No arithmetic exception occurs under any circumstances.

Operation: rd ← GPR[rs] div GPR[rt]

Exception: None

A.8 DDIVU.G - doubleword divide unsigned (STLS2F01)

Format: DDIVU.G rd, rs, rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPECIAL2
011100

rs rt rd
0

00000
DIVU.G
010110

6 5 5 10 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPECIAL2
011100

rs rt rd
0

00000
DDIV.G
010101

6 5 5 10 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPECIAL2
011100

rs rt rd
0

00000
DDIVU.G
010111

6 5 5 10 6

UM0447 STLS2F01 new integer instructions

 155/201

Purpose: To divide 64-bit unsigned intergers.

Description: rd ⇓ rs / rt
The 64-bit doubleword in GPR rs is divided by the 64-bit doubleword in GPR rt,
treating both operands as unsigned values. The 64-bit quotient is placed into special
register rd.
No arithmetic exception occurs under any circumstances.

Operation: rd ← (0 || GPR[rs]) div (0 || GPR[rt])

Exception: None

A.9 MOD.G - mod word (STLS2F01)

Format: MOD.G rd, rs, rt

Purpose: To mod 32-bit signed intergers.

Description: rd ⇓ rs % rt
The 32-bit word value in GPR rs is divided by the 32-bit value in GPR rt, treating both
operands as signed values. The 32-bit remainder is placed into special register rd.
No arithmetic exception occurs under any circumstances.

Operation: q ← GPR[rs]31..0 mod GPR[rt]31..0

HI ← sign_extend(q31..0)

Exception: None

A.10 MODU.G - mod unsigned word (STLS2F01)

Format: MODU.G rd, rs, rt

Purpose: To mod 32-bit unsigned intergers.

Description: rd ⇓ rs % rt
The 32-bit word value in GPR rs is divided by the 32-bit value in GPR rt, treating both
operands as unsigned values. The 32-bit remainder is placed into special register rd.
No arithmetic exception occurs under any circumstances.

Operation: q ← (0 || GPR[rs]31..0) mod (0 || GPR[rt]31..0)
rd ← sign_extend(q31..0)

Exception: Reserved Instruction

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPECIAL2
011100

rs rt rd
0

00000
MOD.G
011100

6 5 5 10 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPECIAL2
011100

rs rt rd
0

00000
MODU.G
011110

6 5 5 10 6

STLS2F01 new integer instructions UM0447

156/201

A.11 DMOD.G - doubleword mod (STLS2F01)

Format: DMOD.G rd, rs, rt

Purpose: To mod 64-bit signed intergers.

Description: rd ⇓ rs % rt
The 64-bit doubleword in GPR rs is divided by the 64-bit doubleword in GPR rt,
treating both operands as signed values. The 64-bit remainder is placed into special
register rd.
No arithmetic exception occurs under any circumstances.

Operation: rd ← GPR[rs] mod GPR[rt]

Exception: None

A.12 DMODU.G - doubleword mod unsigned (STLS2F01)

Format: DMODU.G rd, rs, rt

Purpose: To mod 64-bit unsigned intergers.

Description: rd ⇓ rs % rt
The 64-bit doubleword in GPR rs is divided by the 64-bit doubleword in GPR rt,
treating both operands as unsigned values. The 64-bit remainder is placed into
special register rd.
No arithmetic exception occurs under any circumstances.

Operation: rd ← (0 || GPR[rs]) mod (0 || GPR[rt])

Exception: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPECIAL2
011100

rs rt rd
0

00000
DMOD.G
011101

6 5 5 10 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPECIAL2
011100

rs rt rd
0

00000
DMODU.G

011111

6 5 5 10 6

UM0447 STLS2F01 new float-point instructions

 157/201

Appendix B STLS2F01 new float-point instructions

B.1 MADD.fmt - floating-point multiply add

Format: MADD.S fd, fs, ft
MADD.D fd, fs, ft

Purpose: To perform a combined multiply-then-add of FP values.

Description: fd ⇓ ((fs * ft) + fd)
The value in FPR fs is multiplied by the value in FPR ft to produce a product. The

Table 62. Paired-single (PS) instructions in STLS2F01 FPU

Fmt Op Fmt=22

ADD Add.ps

SUB Sub.ps

NEG Neg.ps

ABS Abs.ps

C.F C.F.ps

C.UN C.UN.ps

C.EQ C.EQ.ps

C.UEQ C.UEQ.ps

C.OLT C.OLT.ps

C.ULT C.ULT.ps

C.OLE C.OLE.ps

C.ULE C.ULE.ps

C.SF C.SF.ps

C.NGLE C.NGLE.ps

C.SEQ C.SEQ.ps

C.NGL C.NGL.ps

C.LT C.LT.ps

C.NGE C.NGE.ps

C.LE C.LE.ps

C.NGT C.NGT.ps

MUL MUL.ps

MOV MOV.ps

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPECIAL2
011100

Fmt ft fs fd
MADD
011000

6 5 5 5 5 6

STLS2F01 new float-point instructions UM0447

158/201

value in FPR fd is added to the product. The result sum is calculated to infinite
precision, rounded according to the current rounding mode in FCSR, and placed into
FPR fd. The operands and result are values in format fmt.

Operation: vfd ← ValueFPR(fd, fmt)
vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, vfd + vfs * vft)

Exception: Coprocessor Unusable
Reserved Instruction
Floating-Point
Inexact Unimplemented Operation Unimplemented Operation
Invalid Operation Overflow Overflow
Underflow

B.2 MSUB.fmt - floating-point multiply subtract

Format: MSUB.S fd, fs, ft
MSUB.D fd, fs, ft

Purpose: To perform a combined multiply-then-subtract of FP values.

Description: fd ⇓ (fs * ft) - fd
The value in FPR fs is multiplied by the value in FPR ft to produce an intermediate
product. The value in FPR fd is subtracted from the product. The subtraction result is
calculated to infinite precision, rounded according to the current rounding mode in
FCSR, and placed into FPR fd. The operands and result are values in format fmt.

Operation: vfd ← ValueFPR(fd, fmt)
vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, (vfs * vft)-vfd)

Exception: Coprocessor Unusable
Reserved Instruction
Floating-Point
Inexact Unimplemented Operation Unimplemented Operation
Invalid Operation Overflow Overflow
Underflow

B.3 NMADD.fmt - floating-point negative multiply add

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPECIAL2
011100

Fmt ft fs fd
MSUB
011001

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPECIAL2
011100

Fmt ft fs fd
NMADD
011010

6 5 5 5 5 6

UM0447 STLS2F01 new float-point instructions

 159/201

Format: NMADD.S fd, fs, ft
NMADD.D fd, fs, ft

Purpose: To negate a combined multiply-then-add of FP values.

Description: fd ⇓- ((fs * ft) + fd)
The value in FPR fs is multiplied by the value in FPR ft to produce an intermediate
product. The value in FPR fd is added to the product. The result sum is calculated to
infinite precision, rounded according to the current rounding mode in FCSR, negated
by changing the sign bit, and placed into FPR fd. The operands and result are values
in format fmt.

Operation: vfd ← ValueFPR(fd, fmt)
vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, -(vfd + vfs * vft))

Exception: Coprocessor Unusable
Reserved Instruction
Floating-Point
Inexact Unimplemented Operation Unimplemented Operation
Invalid Operation Overflow Overflow
Underflow

B.4 NMSUB.fmt - floating-point negative multiply subtract

Format: NMSUB.S fd, fs, ft
NMSUB.D fd, fs, ft

Purpose: To negate a combined multiply-then-subtract of FP values.

Description: fd ⇓ -((fs * ft) - fd)
The value in FPR fs is multiplied by the value in FPR ft to produce an intermediate
product. The value in FPR fd is subtracted from the product. The result is calculated
to infinite precision, rounded according to the current rounding mode in FCSR,
negated by changing the sign bit, and placed into FPR fd. The operands and result
are values in format fmt.

Operation: vfd ← ValueFPR(fd, fmt)
vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, -((vfs * vft)-vfd))

Exception: Coprocessor Unusable
Reserved Instruction
Floating-Point
Inexact Unimplemented Operation Unimplemented Operation
Invalid Operation Overflow Overflow
Underflow

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPECIAL2
011100

Fmt ft fs fd
NMSUB
011011

6 5 5 5 5 6

STLS2F01 multimedia technology UM0447

160/201

Appendix C STLS2F01 multimedia technology

C.1 Overview
The media extensions for the Loongson Architecture were designed to enhance
performance of advanced media and communication applications. The Loongson
Multimedia technology provides a new level of performance to computer platforms by adding
new instructions and defining new 64-bit data types, while preserving compatibility with
software and operating systems developed for the Loongson Architecture. The Loongson
Multimedia technology introduces new general-purpose instructions. These instructions
operate in parallel on multiple data elements packed into 64-bit quantities. They perform
arithmetic and logical operations on the different data types. These instructions accelerate
the performance of applications with compute-intensive algorithms that perform localized,
recurring operations on small native data. This includes applications such as motion video,
combined graphics with video, image processing, audio synthesis, speech synthesis and
compression, telephony, video conferencing, 2D graphics, and 3D graphics.

The Loongson Multimedia instruction set has a simple and flexible software model with no
new mode or operating-system visible state. The Loongson Multimedia instruction set is fully
compatible with all Loongson Architecture microprocessors. All existing software continues
to run correctly, without modification, on microprocessors that incorporate the Loongson
Multimedia technology, as well as in the presence of existing and new applications that
incorporate this technology.

The Loongson Multimedia technology uses the Single Instruction, Multiple Data (SIMD)
technique. This technique speeds up software performance by processing multiple data
elements in parallel, using a single instruction. The Loongson Multimedia technology
supports parallel operations on byte, halfword, and word data elements, and doubleword
integer data type.

Modern media, communications, and graphics applications now include sophisticated
algorithms that perform recurring operations on small data types. The Loongson Multimedia
technology directly addresses the need of these applications. For example, most audio data
is represented in 16-bit (halfword) quantities. The Loongson Multimedia instructions can
operate on four of these words simultaneously with one instruction. Video and graphics
information is commonly represented as palletized 8-bit (byte) quantities; one Loongson
Multimedia instruction can operate on eight of these bytes simultaneously.

C.2 Instruction syntax
Instructions vary by:

● Data type: packed bytes, packed half words, packed words or doublewords

● Signed - Unsigned numbers

● Wraparound - Saturate arithmetic

A typical Loongson Multimedia instruction has this syntax:

● Prefix: P for Packed

● Instruction operation: for example - ADD, CMP, or XOR

● Suffix:
--US for Unsigned Saturation
--S for Signed saturation

UM0447 STLS2F01 multimedia technology

 161/201

--B, H, W, D for the data type: packed byte, packed halfword, packed word, or
doubleword.

Instructions that have different input and output data elements have two data-type suffixes.
For example, the conversion instruction converts from one data type to another. It has two
suffixes: one for the original data type and the second for the converted data type.

This is an example of an instruction mnemonic syntax:

PADDUSW (Packed Add Unsigned with Saturation for Word)

P = Packed

ADD = the instruction operation

US = Unsigned Saturation

W = Word

C.3 Saturation and wraparound modes
When performing integer arithmetic, an operation may result in an out-of-range condition,
where the true result cannot be represented in the destination format. For example, when
performing arithmetic on signed halfword integers, positive overflow can occur causing the
true signed result is larger than 16 bits.

The Loongson Multimedia technology provides three ways of handling out-of-range
conditions:

● Wraparound arithmetic.

● Signed saturation arithmetic.

● Unsigned saturation arithmetic.

With wraparound arithmetic, a true out-of-range result is truncated (that is, the carry or
overflow bit is ignored and only the least significant bits of the result are returned to the
destination). Wraparound arithmetic is suitable for applications that control the range of
operands to prevent out-of-range results. If the range of operands is not controlled, however,
wraparound arithmetic can lead to large errors. For example, adding two large signed
numbers can cause positive overflow and produce a negative result.

With signed saturation arithmetic, out-of-range results are limited to the representable range
of signed integers for the integer size being operated on. For example, if positive overflow
occurs when operating on signed halfword integers, the result is “saturated” to 7FFFH,
which is the largest positive integer that can be represented in 16 bits; if negative overflow
occurs, the result is saturated to 8000H.

With unsigned saturation arithmetic, out-of-range results are limited to the representable
range of unsigned integers for the integer size being operated on. So, positive overflow
when operating on unsigned byte integers results in FFH being returned and negative
overflow results in 00H being retuned.

Saturation arithmetic provides a more natural answer for many overflow situations. For
example, in color calculations, saturation causes a color to remain pure black or pure white
without allowing inversion. It also prevents wraparound artifacts from entering into
computations, when range checking of source operands it not used.

Loongson Multimedia instructions do not indicate overflow or underflow occurrence by
generating exceptions.

STLS2F01 multimedia technology UM0447

162/201

C.4 Loongson multimedia instructions
The Loongson Multimedia Technology defines 65 instructions (see Table 63.). The
instructions are grouped into the following functional categories:

● Arithmetic Instructions

● Comparison Instructions

● Conversion Instructions

● Logical Instructions

● Shift Instructions

Table 63. Loongson multimedia instruction set summary (opcode = COP2)

FUN

Fmt

ADD

000000

SUB

000001

MUL

000010

DIV

000011

24 PADDSH PSUBSH PSHUFH PUNPCKLHW

25 PADDUSH PSUBUSH PACKSSWH PUNPCKHHW

26 PADDH PSUBH PACKSSHB PUNPCKLBH

27 PADDW PSUBW PACKUSHB PUNPCKHBH

28 PADDSB PSUBSB Xor PINSRH_0

29 PADDUSB PSUBUSB Nor PINSRH_1

30 PADDB PSUBB And PINSRH_2

31 PADDD PSUBD PANDN PINSRH_3

Table 64. Loongson multimedia instruction set summary

FUN

Fmt

ROUND.L

001000

TRUNC.L

001001

CEIL.L

001010

FLOOR.L

001011

24 PAVGH PCMPEQW PSLLW PSRLW

25 PAVGB PCMPGTW PSLLH PSRLH

26 PMAXSH PCMPEQH PMULLH PSRAW

27 PMINSH PCMPGTH PMULHH PSRAH

28 PMAXUB PCMPEQB PMULUW PUNPCKLWD

29 PMINUB PCMPGTB PMULHUH PUNPCKHWD

24 Addu Subu Sll Srl

25 Or PASUBUB Dsll Dsrl

26 Add Sub PEXTRH Sra

27 Dadd Dsub PMADDHW Dsra

28 Sequ Sltu Sleu BIADD

29 Seq Slt Sle PMOVMASKB

UM0447 STLS2F01 multimedia technology

 163/201

C.5 PACKSSHB/PACKSSWH - pack with signed saturation

Format: PACKSSHB fd,fs,ft
PACKSSWH fd,fs,ft

Description: Converts packed signed halfword integers into packed signed byte integers
(PACKSSHB) or converts packed signed word integers into packed signed halfword
integers (PACKSSWH), using saturation to handle overflow conditions. See Figure 24
for an example of the packing operation.

Figure 24. Operation of the PACKSSWH instruction using 64-bit operands

The PACKSSHB instruction converts 4 signed halfword integers from the first
operand and 4 signed halfword integers from the second operand into 8 signed byte
integers and stores the result in the destination operand. If a signed halfword integer
value is beyond the range of a signed byte integer (that is, greater than 7FH for a
positive integer or greater than 80H for a negative integer), the saturated signed byte
integer value of 7FH or 80H, respectively, is stored in the destination.
The PACKSSWH instruction packs 2 signed words from the first operand and 2
signed words from the second operand into 4 signed half words in the destination
operand (see Figure 24). If a signed word integer value is beyond the range of a
signed halfword (that is, greater than 7FFFH for a positive integer or greater than
8000H for a negative integer), the saturated signed halfword integer value of 7FFFH
or 8000H, respectively, is stored into the destination.

Operation: PACKSSHB
fd[7..0] ← SaturateSignedHalfwordToSignedByte fs[15..0];
fd[15..8] ← SaturateSignedHalfwordToSignedByte fs[31..16];
fd[23..16] ← SaturateSignedHalfwordToSignedByte fs[47..32];

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PACKSSHB
11010

ft fs fd
MUL

000010

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PACKSSWH
11010

ft fs fd
MUL

000010

6 5 5 5 5 6

D C

64-Bit src2

D C B A

B A

64-Bit src1

64-Bit DEST

STLS2F01 multimedia technology UM0447

164/201

fd[31..24] ← SaturateSignedHalfwordToSignedByte fs[63..48];
fd[39..32] ← SaturateSignedHalfwordToSignedByte ft[15..0];
fd[47..40] ← SaturateSignedHalfwordToSignedByte ft[31..16];
fd[55..48] ← SaturateSignedHalfwordToSignedByte ft[47..32];
fd[63..56] ← SaturateSignedHalfwordToSignedByte ft[63..48];

PACKSSWH
fd[15..0] ← SaturateSignedWordToSignedHalfWord fs[31..0];
fd[31..16] ← SaturateSignedWordToSignedHalfWord fs[63..32];
fd[47..32] ← SaturateSignedWordToSignedHalfWord ft[31..0];
fd[63..48] ← SaturateSignedWordToSignedHalfWord ft[63..32];

Exception: None.

C.6 PACKUSHB - pack with unsigned saturation

Format: PACKUSHB fd,fs,ft

Description: Converts 4 signed halfword integers from the first operand and 4 signed halfword
integers from the second operand into 8 unsigned byte integers and stores the result
in the destination operand. (See Figure 24 for an example of the packing operation.) If
a signed halfword integer value is beyond the range of an unsigned byte integer (that
is, greater than FFH or less than 00H), the saturated unsigned byte integer value of
FFH or 00H, respectively, is stored in the destination.
The PACKUSHB instruction operates on 64-bit operands.

Operation: PACKUSHB
fd[7..0] ← SaturateSignedHalfwordToUnsignedByte fs[15..0];
fd[15..8] ← SaturateSignedHalfwordToUnsignedByte fs [31..16];
fd[23..16] ← SaturateSignedHalfwordToUnsignedByte fs [47..32];
fd[31..24] ← SaturateSignedHalfwordToUnsignedByte fs [63..48];
fd[39..32] ← SaturateSignedHalfwordToUnsignedByte ft[15..0];
fd[47..40] ← SaturateSignedHalfwordToUnsignedByte ft[31..16];
fd[55..48] ← SaturateSignedHalfwordToUnsignedByte ft[47..32];
fd[63..56] ← SaturateSignedHalfwordToUnsignedByte ft[63..48];

Exception: None.

C.7 PADDB/PADDH/PADDW - add packed integers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PACKUSHB
11011

ft fs fd
MUL

000010

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PADDB
11110

ft fs fd
ADD

000000

6 5 5 5 5 6

UM0447 STLS2F01 multimedia technology

 165/201

Format: PADDB fd,fs,ft
PADDH fd,fs,ft
PADDW fd,fs,ft

Description: Performs a SIMD add of the packed integers from the first operand and the second
operand, and stores the packed integer results in the destination operand. Overflow is
handled with wraparound, as described in the following paragraphs.
These instructions operate on 64-bit operands.
The PADDB instruction adds packed byte integers. When an individual result is too
large to be represented in 8 bits (overflow), the result is wrapped around and the low
8 bits are written to the destination operand (that is, the carry is ignored).
The PADDH instruction adds packed halfword integers. When an individual result is
too large to be represented in 16 bits (overflow), the result is wrapped around and the
low 16 bits are written to the destination operand.
The PADDW instruction adds packed word integers. When an individual result is too
large to be represented in 32 bits (overflow), the result is wrapped around and the low
32 bits are written to the destination operand.
Note that the PADDB, PADDH, and PADDW instructions can operate on either
unsigned or signed (two's complement notation) packed integers; however, it does not
indicate overflow and/or a carry. To prevent undetected overflow conditions, software
must control the ranges of values operated on.

Operation: PADDB
fd[7..0] ← fs[7..0] + ft[7..0];
* repeat add operation for 2nd through 7th byte *;
fd[63..56] ← fs[63..56] + ft[63..56];

PADDH
fd[15..0] ← fs[15..0] + ft[15..0];
* repeat add operation for 2nd and 3th halfword *;
fd[63..48] ← fs[63..48] + ft[63..48];

PADDW
fd[31..0] ← fs[31..0] + ft[31..0];
fd[63..32] ← fs[63..32] + ft[63..32];

Exception: None.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PADDH
11010

ft fs fd
ADD

000000

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PADDW
11011

ft fs fd
ADD

000000

6 5 5 5 5 6

STLS2F01 multimedia technology UM0447

166/201

C.8 PADDD - add packed doubleword integers

Format: PADDD fd,fs,ft

Description: Adds the first operand to the second operand and stores the result in the destination
operand. The source operand can be a doubleword integer stored in a 64-bit register.
The destination operand can be a doubleword integer stored in a 64-bit register.
When a doubleword result is too large to be represented in 64 bits (overflow), the
result is wrapped around and the low 64 bits are written to the destination element
(that is, the carry is ignored).
Note that the PADDD instruction can operate on either unsigned or signed (two’s
complement notation) integers; however, it does not indicate overflow and/or a carry.
To prevent undetected overflow conditions, software must control the ranges of the
values operated on.

Operation: PADDD
fd[63..0] ← fs[63..0] + ft[63..0];

Exception: None.

C.9 PADDSB/PADDSH - add packed signed integers

Format: PADDSB fd,fs,ft
PADDSH fd,fs,ft

Description: Performs a SIMD add of the packed signed integers from the first operand and the
second operand, and stores the packed integer results in the destination operand.
Overflow is handled with signed saturation, as described in the following paragraphs.
These instructions operate on 64-bit operands.
The PADDSB instruction adds packed signed byte integers. When an individual byte
result is beyond the range of a signed byte integer (that is, greater than 7FH or less
than 80H), the saturated value of 7FH or 80H, respectively, is written to the
destination operand.
The PADDSH instruction adds packed signed halfword integers. When an individual
halfword result is beyond the range of a signed halfword integer (that is, greater than
7FFFH or less than 8000H), the saturated value of 7FFFH or 8000H, respectively, is
written to the destination operand.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PADDD
11111

ft fs fd
ADD

000000

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PADDSB
11100

ft fs fd
ADD

000000

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PADDSH
11000

ft fs fd
ADD

000000

6 5 5 5 5 6

UM0447 STLS2F01 multimedia technology

 167/201

Operation: PADDSB
fd[7..0] ← SaturateToSignedByte(fs[7..0] + ft[7..0]);
* repeat add operation for 2nd through 7th bytes *;
fd[63..56] ← SaturateToSignedByte(fs[63..56] + ft[63..56]);

PADDSH
fd[15..0] ← SaturateToSignedHalfword(fs[15..0] + ft[15..0]);
* repeat add operation for 2nd and 7th halfwords *;
fd[63..48] ← SaturateToSignedHalfword(fs[63..48] + ft[63..48]);

Exception: None.

C.10 PADDUSB/PADDUSH - add packed unsigned integers

Format: PADDUSB fd,fs,ft
PADDUSH fd,fs,ft

Description: Performs a SIMD add of the packed unsigned integers from the first operand and the
second operand, and stores the packed integer results in the destination operand.
Overflow is handled with unsigned saturation, as described in the following
paragraphs.
These instructions operate on 64-bit operands.
The PADDUSB instruction adds packed unsigned byte integers. When an individual
byte result is beyond the range of an unsigned byte integer (that is, greater than FFH),
the saturated value of FFH is written to the destination operand.
The PADDUSH instruction adds packed unsigned halfword integers. When an
individual halfword result is beyond the range of an unsigned halfword integer (that is,
greater than FFFFH), the saturated value of FFFFH is written to the destination
operand.

Operation: PADDUSB
fd[7..0] ← SaturateToUnsignedByte(fs[7..0] + ft[7..0]);
* repeat add operation for 2nd through 7th bytes *;
fd[63..56] ← SaturateToUnsignedByte(fs[63..56] + ft[63..56]);
PADDUSH
fd[15..0] ← SaturateToUnsignedHalfword(fs[15..0] + ft[15..0]);
* repeat add operation for 2nd and 3rd halfwords *;
fd[63..48] ← SaturateToUnsignedHalfword(fs[63..48] + ft[63..48]);

Exception: None.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PADDUSB
11101

ft fs fd
ADD

000000

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PADDUSH
11001

ft fs fd
ADD

000000

6 5 5 5 5 6

STLS2F01 multimedia technology UM0447

168/201

C.11 PANDN - logical and not

Format: PANDN fd,fs,ft

Description: Performs a bitwise logical NOT of the first operand, then performs a bitwise logical
AND of the second operand and the inverted destination operand. The result is stored
in the destination operand. The source operand can be a 64-bit register. The
destination operand can be a 64-bit register. Each bit of the result is set to 1 if the
corresponding bit in the first operand is 0 and the corresponding bit in the second
operand is 1; otherwise, it is set to 0.

Operation: PANDN
fd ← (NOT fs) AND ft;

Exception: None.

C.12 PAVGB/PAVGH - average packed integers

Format: PAVGB fd,fs,ft
PAVGH fd,fs,ft

Description: Performs a SIMD average of the packed unsigned integers from the first operand and
the second operand, and stores the results in the destination operand. For each
corresponding pair of data elements in the first and second operands, the elements
are added together, a 1 is added to the temporary sum, and that result is shifted right
one bit position. The source operand can be a 64-bit register. The destination
operand can be a 64-bit register.
The PAVGB instruction operates on packed unsigned bytes and the PAVGH
instruction operates on packed unsigned halfwords.

Operation: PAVGB
ft[7-0] ← (fs[7..0] + ft[7..0] + 1) >>; * temp sum before shifting is 9 bits *
* repeat operation performed for bytes 2 through 6 *;
ft[63-56] ← (fs[63..56] + ft[63..56] + 1) >>1;

PAVGH
ft[15-0] ← (fs[15..0] + ft[15..0] + 1) >>1; * temp sum before shifting is 17 bits *

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PANDN
11111

ft fs fd
MUL

000010

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PAVGB
11001

ft fs fd
ROUND.L
001000

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PAVGH
11000

ft fs fd
ROUND.L
001000

6 5 5 5 5 6

UM0447 STLS2F01 multimedia technology

 169/201

* repeat operation performed for halfwords 2 and 3 *;
ft[63-48] ← (fs[63..48] + ft[63..48] + 1) >>1;

Exception: None.

C.13 PCMPEQB/PCMPEQH/PCMPEQW - compare packed data for
equal

Format: PCMPEQB fd,fs,ft
PCMPEQH fd,fs,ft
PCMPEQW fd,fs,ft

Description: Performs a SIMD compare for equality of the packed bytes, halfwords, or words in the
first operand and the second operand. If a pair of data elements is equal, the
corresponding data element in the destination operand is set to all 1s; otherwise, it is
set to all 0s. The source operand can be a 64-bit register The destination operand can
be a 64-bit register.
The PCMPEQB instruction compares the corresponding bytes in the first and second
operands; the PCMPEQH instruction compares the corresponding halfwords in the
first and second operands; and the PCMPEQW instruction compares the
corresponding words in the first and second operands.

Operation: PCMPEQB
IF fs[7..0] =ft[7..0]
THEN fd[7..0] ← FFH;
ELSE fd[7..0] ← 0;
* Continue comparison of 2nd through 7th bytes in fs and ft *
IF fs[63..56] = ft[63..56]
THEN fd[63..56] ← FFH;
ELSE fd[63..56] ← 0;

PCMPEQH
IF fs[15..0] = ft[15..0]
THEN fd[15..0] ← FFFFH;
ELSE fd[15..0] ← 0;
* Continue comparison of 2nd and 3rd halfwords in fs and ft *
IF fs[63..48] = ft[63..48]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PCMPEQB
11100

ft fs fd
TRUNC.L
001001

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PCMPEQH
11010

ft fs fd
TRUNC.L
001001

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PCMPEQW
11000

ft fs fd
TRUNC.L
001001

6 5 5 5 5 6

STLS2F01 multimedia technology UM0447

170/201

THEN fd[63..48] ← FFFFH;
ELSE fd[63..48] ← 0;

PCMPEQW
IF fs[31..0] = ft[31..0]
THEN fd[31..0] ← FFFFFFFFH;
ELSE fd[31..0] ← 0;
IF fs[63..32] = ft[63..32]
THEN fd[63..32] ← FFFFFFFFH;
ELSE fd[63..32] ← 0;

Exception: None.

C.14 PCMPGTB/PCMPGTH/PCMPGTW - compare packed signed
integers

Format: PCMPGTB fd,fs,ft
PCMPGTH fd,fs,ft
PCMPGTW fd,fs,ft

Description: Performs a SIMD signed compare for the greater value of the packed byte, halfword,
or word integers in the first operand and the second operand. If a data element in the
first operand is greater than the corresponding date element in the second operand,
the corresponding data element in the destination operand is set to all 1s; otherwise,
it is set to all 0s. The source operand can be a 64-bit register. The destination
operand can be a 64-bit register.
The PCMPGTB instruction compares the corresponding signed byte integers in the
first and second operands; the PCMPGTH instruction compares the corresponding
signed halfword integers in the first and second operands; and the PCMPGTW
instruction compares the corresponding signed word integers in the first and second
operands.

Operation: PCMPGTB
IF fs[7..0] > ft[7..0]
THEN fd[7 0] ← FFH;
ELSE fd[7..0] ← 0;
* Continue comparison of 2nd through 7th bytes in fs and ft *

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PCMPGTB
11101

ft fs fd
TRUNC.L
001001

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PCMPGTH
11011

ft fs fd
TRUNC.L
001001

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PCMPGTW
11001

ft fs fd
TRUNC.L
001001

6 5 5 5 5 6

UM0447 STLS2F01 multimedia technology

 171/201

IF fs[63..56] > ft[63..56]
THEN fd[63..56] ← FFH;
ELSE fd[63..56] ← 0;

PCMPGTH
IF fs[15..0] > ft[15..0]
THEN fd[15..0] ← FFFFH;
ELSE fd[15..0] ← 0;
* Continue comparison of 2nd and 3rd halfwords in fs and ft *
IF fs[63..48] > ft[63..48]
THEN fd[63..48] ← FFFFH;
ELSE fd[63..48] ← 0;

PCMPGTW
IF fs[31..0] > ft[31..0]
THEN fd[31..0] ← FFFFFFFFH;
ELSE fd[31..0] ← 0;
IF fs[63..32] > ft[63..32]
THEN fd[63..32] ← FFFFFFFFH;
ELSE fd[63..32] ← 0;

Exception: None.

C.15 PEXTRH - extract halfword

Format: PEXTRH fd,fs,ft

Description: Copies the halfword in the first operand specified by the second operand to the
destination operand. The high halfword of the destination operand is cleared (set to
all 0s).

Operation: PEXTRH
SEL ← ft AND 3H;
TEMP ← (fs >> (SEL * 16)) AND FFFFH;
fd[15..0] ← TEMP[15..0];
fd[63..16] ← 00000000H;

Exception: None.

C.16 PINSRH - insert halfword

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PEXTRH
11010

ft fs fd
CEIL.W
001110

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PINSRH_0
11100

ft fs fd
DIV

000011

6 5 5 5 5 6

STLS2F01 multimedia technology UM0447

172/201

Format: PINSRH_0 fd,fs,ft
PINSRH_1 fd,fs,ft
PINSRH_2 fd,fs,ft
PINSRH_3 fd,fs,ft

Description: Copies a halfword from the second operand and inserts it in the first operand at the
location specified with the number of the instruction name. (The other halfwords in the
first register are left untouched.)

Operation: PINSRH_0
MASK ← 000000000000FFFFH;
fd ← (fs AND NOT MASK) OR (((ft << (0 *16)) AND MASK);

PINSRH_1
MASK ← 00000000FFFF0000H;
fd ← (fs AND NOT MASK) OR (((ft <<(1 *16)) AND MASK);

PINSRH_2
MASK ← 0000FFFF00000000H;
fd ← (fs AND NOT MASK) OR (((ft <<(2 *16)) AND MASK);

PINSRH_3
MASK ← FFFF000000000000H;
fd ← (fs AND NOT MASK) OR (((ft <<(3 *16)) AND MASK);

Exception: None.

C.17 PMADDHW - multiply and add packed integers

Format: PMADDHW fd,fs,ft

Description: Description:Multiplies the individual signed halfwords of the first operand by the
corresponding signed halfwords of the second operand, producing temporary signed,

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PINSRH_1
11101

ft fs fd
DIV

000011

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PINSRH_2
11110

ft fs fd
DIV

000011

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PINSRH_3
11111

ft fs fd
DIV

000011

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PMADDHW
11011

ft fs fd
CEIL.W
001110

6 5 5 5 5 6

UM0447 STLS2F01 multimedia technology

 173/201

and word results. The adjacent word results are then summed and stored in the
destination operand. For example, the corresponding low-order halfwords (15-0) and
(31-16) in the first and second operands are multiplied by one another and the word
results are added together and stored in the low word of the destination register (31-
0). The same operation is performed on the other pairs of adjacent halfwords.
(Figure 25 shows this operation when using 64-bit operands.) The source operands
can be a 64-bit register. The destination operand can be a 64-bit register.
The PMADDHW instruction wraps around only in one situation: when the 2 pairs of
halfwords being operated on in a group are all 8000H. In this case, the result wraps
around to 80000000H.

Figure 25. PMADDHW Execution model using 64-bit operands

Operation: PMADDHW
fd[31..0] ← (fs[15..0] * ft[15..0]) + (fs[31..16] * ft[31..16]);
fd[63..32] ← (fs[47..32] * ft[47..32]) + (fs[63..48] * ft[63..48]);

Exception: None.

C.18 PMAXSH - maximum of packed signed halfword integers

Format: PMAXSH fd,fs,ft

Description: Performs a SIMD compare of the packed signed halfword integers in the first operand
and the second operand, and returns the maximum value for each pair of halfword
integers to the destination operand. The source operands can be a 64-bi register. The
destination operand can be a 64-bi register.

Operation: PMAXSH
IF (fs[15..0] > ft[15..0]) THEN
fd[15..0] ← fs[15..0];
ELSE
fd[15..0] ← ft[15..0];

X3 X2src1 X1 X0

Y3 Y2src2 Y1 Y0

X2 * Y2 X1 * Y1 X0 * Y0X3 * Y3TEMP

(X3*Y3) + X2*Y2)DEST (X1*Y1) + X0*Y0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PMAXSH
11010

ft fs fd
ROUND.L

00100

6 5 5 5 5 6

STLS2F01 multimedia technology UM0447

174/201

FI
* repeat operation for 2nd and 3rd halfwords in first and second operands *
IF (fs[63..48] >ft[63..48]) THEN
fd[63..48] ← fs[63..48];
ELSE
fd[63..48] ← ft[63..48];
FI

Exception: None.

C.19 PMAXUB - maximum of packed unsigned byte integers

Format: PMAXUB fd,fs,ft

Description: Performs a SIMD compare of the packed unsigned byte integers in the first operand
and the second operand, and returns the maximum value for each pair of byte
integers to the destination operand. The source operands can be a 64-bit register.
The destination operand can be a 64-bit register.

Operation: PMAXUB
IF (fs[7..0] > ft[7..0]) THEN
fd[7..0] ← fs[7..0];
ELSE
fd[7..0] ← ft[7..0];
FI
* repeat operation for 2nd through 7th bytes in first and second operands *
IF (fs[63..56] > ft[63..56]) THEN
fd[63..56] ← fs[63..56];
ELSE
fd[63..56] ← ft[63..56];
FI

Exception: None.

C.20 PMINSH - minimum of packed signed halfword integers

Format: PMINSH fd,fs,ft

Description: Performs a SIMD compare of the packed signed halfword integers in the first operand
and the second operand, and returns the minimum value for each pair of halfword
integers to the destination operand. The source operands can be a 64-bit register.
The destination operand can be a 64-bit register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PMAXUB
11100

ft fs fd
ROUND.L
001000

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PMINSH
11011

ft fs fd
ROUND.L
001000

6 5 5 5 5 6

UM0447 STLS2F01 multimedia technology

 175/201

Operation: Operation:PMINSH
IF (fs[15..0] < ft[15..0]) THEN
fd[15..0] ← fs[15..0];
ELSE
fd[15..0] ← ft[15..0];
FI
* repeat operation for 2nd and 3rd halfwords in first and second operands *
IF (fs[63..48] < ft[63..48]) THEN
fd[63..48] ← fs[63..48];
ELSE
fd[63..48] ← ft[63..48];
FI

Exception: None.

C.21 PMINUB - minimum of packed unsigned byte integers

Format: PMINUB fd,fs,ft

Description: Performs a SIMD compare of the packed unsigned byte integers in the first operand
and the second operand, and returns the minimum value for each pair of byte integers
to the destination operand. The source operands can be a 64-bit register. The
destination operand can be a 64-bit register.

Operation: PMINUB
IF (fs[7..0] < ft[7..0]) THEN
fd[7..0] ← fs[7..0];
ELSE
fd[7..0] ← ft[7..0];
FI
* repeat operation for 2nd through 7th bytes in first and second operands *
IF (fs[63..56] < ft [63..56]) THEN
fd[63..56] ← fs[63..56];
ELSE
fd[63..56] ← ft[63..56];
FI

Exception: None.

C.22 PMOVMSKB - move byte mask

Format: PMOVMSKB fd,fs

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PMINUB
11101

ft fs fd
ROUND.L
001000

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PMOVMSKB
11101

0
00000

fs fd
FLOOR.W

001111

6 5 5 5 5 6

STLS2F01 multimedia technology UM0447

176/201

Description: Creates a mask made up of the most significant bit of each byte of the first operand
and stores the result in the low byte of the destination operand. The source operand
is a 64-bit register. When operating on 64-bit operands, the byte mask is 8 bits.

Operation: PMOVMSKB
fd[0] ← fs[7];
fd[1] ← fs[15];
* repeat operation for bytes 2 through 6 *
fd[7] ← fs[63];
fd[63..8] ← 00000000000000H;

Exception: None.

C.23 PMULHUH - multiply packed unsigned integers and store
high result

Format: PMULHUH fd,fs,ft

Performs a SIMD unsigned multiply of the packed unsigned halfword integers in the first
operand and the second operand, and stores the high 16 bits of each 32-bit intermediate
results in the destination operand. (Figure 26 shows this operation when using 64-bit
operands.) The source operands can be a 64-bit register. The destination operand can be a
64-bit register.

Figure 26. PMULHUH and PMULHH instruction operation using 64-bit operands

Operation: PMULHUH
TEMP0[31..0] ← fs[15..0] * ft[15..0]; * Unsigned multiplication *
TEMP1[31..0] ← fs[31..16] * ft[31..16];
TEMP2[31..0] ← fs[47..32] * ft[47..32];
TEMP3[31..0] ← fs[63..48] * ft[63..48];

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PMULHUH
11101

ft fs fd
CEIL.L
001010

6 5 5 5 5 6

X3 X2src1 X1 X0

Y3 Y2src2 Y1 Y0

Z2 = X2 * Y2 Z1 = X1 * Y1 Z0 = X0 * Y0Z3 = X3 * Y3TEMP

Z3[31-16]DEST Z2[31-16] Z1[31-16] Z0[31-16]

UM0447 STLS2F01 multimedia technology

 177/201

fd[15..0] ← TEMP0[31..16];
fd[31..16] ← TEMP1[31..16];
fd[47..32] ← TEMP2[31..16];
fd[63..48] ← TEMP3[31..16];

Exception: None.

C.24 PMULHH - multiply packed signed integers and store high
result

Format: PMULHH fd,fs,ft

Description: Performs a SIMD signed multiply of the packed signed halfword integers in the first
operand and the second operand, and stores the high 16 bits of each intermediate
32-bit result in the destination operand. (Figure 26 shows this operation when using
64-bit operands.) The source operands can be a 64-bit register. The destination
operand can be a 64-bit register.

Operation: PMULHH
TEMP0[31..0] ← fs[15..0] * ft[15..0]; * Signed multiplication *
TEMP1[31..0] ← fs[31..16] * ft[31..16];
TEMP2[31..0] ← fs[47..32] * ft[47..32];
TEMP3[31..0] ← fs[63..48] * ft[63..48];
fd[15..0] ← TEMP0[31..16];
fd[31..16] ← TEMP1[31..16];
fd[47..32] ← TEMP2[31..16];
fd[63..48] ← TEMP3[31..16];

Exception: None

C.25 PMULLH - multiply packed signed integers and store low
result

Format: PMULLH fd,fs,ft

Performs a SIMD signed multiply of the packed signed halfword integers in the first operand
and the second operand, and stores the low 16 bits of each intermediate 32-bit result in the
destination operand. (Figure 26 shows this operation when using 64-bit operands.) The
source operand can be a 64-bit register. The destination operand can be a 64-bit register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PMULHH
11011

ft fs fd
CEIL.L
001010

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PMULLH
11010

ft fs fd
CEIL.L
001010

6 5 5 5 5 6

STLS2F01 multimedia technology UM0447

178/201

Figure 27. PMULLH instruction operation using 64-bit operands

Operation: PMULLH
TEMP0[31..0] ← fs[15..0] * ft[15..0]; * Signed multiplication *
TEMP1[31..0] ← fs[31..16] * ft[31..16];
TEMP2[31..0] ← fs[47..32] * ft[47..32];
TEMP3[31..0] ← fs[63..48] * ft[63..48];
fd[15..0] ← TEMP0[15..0];
fd[31..16] ← TEMP1[15..0];
fd[47..32] ← TEMP2[15..0];
fd[63..48] ← TEMP3[15..0];

Exception: None.

C.26 PMULUW - multiply packed unsignedword integers

Format: PMULUW fd,fs,ft

Description: Multiplies the first operand by the second operand and stores the result in the
destination operand. The source operands can be an unsigned word integer stored in
the low word of a 64-bit register. The result is an unsigned doubleword integer stored
in the destination a 64-bit register. When a doubleword result is too large to be
represented in 64 bits (overflow), the result is wrapped around and the low 64 bits are
written to the destination element (that is, the carry is ignored).

Operation: PMULUW
fd[63..0] ← fs[31..0] * ft[31..0];

Exception: None.

X3 X2src1 X1 X0

Y3 Y2src2 Y1 Y0

Z2 = X2 * Y2 Z1 = X1 * Y1 Z0 = X0 * Y0Z3 = X3 * Y3TEMP

Z3[15-0]DEST Z2[15-0] Z1[15-0] Z0[15-0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PMULUW
11100

ft fs fd
CEIL.L
001010

6 5 5 5 5 6

UM0447 STLS2F01 multimedia technology

 179/201

C.27 PSADBH - compute sum of absolute differences

Format: PASUBUB fd,fs,ft
BIADD fd,fs

Description: PSADBH instruction computes the absolute value of the difference of 8 unsigned byte
integers from the first operand and from the second operand. These 8 differences are
then summed to produce an unsigned halfword integer result that is stored in the
destination operand. The source operand can be a 64-bit register. The destination
operand can be a 64-bit register. Figure 28 shows the operation of the PSADBH
instruction when using 64-bit operands. When operating on 64-bit operands, the
halfword integer result is stored in the low halfword of the destination operand, and
the remaining bytes in the destination operand are cleared to all 0s.

Figure 28. PSADBH instruction operation using 64-bit operands

Note: PSADBH instruction is divided into two instructions, PASUBUB and BIADD. PASUBUB
instruction computes the absolute value of the difference of 8 unsigned byte integers from
the first operand and from the second operand. BIADD computes the sum of 8 unsigned
byte integers of the source operand.

Operation: PASUBUB
fd[7..0] ← ABS(fs[7..0] - ft[7..0]);
* repeat operation for bytes 2 through 6 *
fd[63..56] ← ABS(fs[63..56] - ft[63..56]);

BIADD
fd[15..0] ← SUM(fs[7..0]... fs[63..56]);
fd[63..16] ← 000000000000H;

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PASUBUB
11001

ft fs fd
TRUNC.W

001101

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

BIADD
11100

0
00000

fs fd
FLOOR.W

001111

6 5 5 5 5 6

X3 X2 X1 X0

ABS(X7-Y7)TEMP

DEST

src1

src2

X7 X6 X5 X4

Y3 Y2 Y1 Y0Y7 Y6 Y5 Y4

00H 00H SUM(TEMP7...TEMP0)00H 00H 00H 00H

ABS(X6-Y6) ABS(X5-Y5) ABS(X4-Y4) ABS(X3-Y3) ABS(X2-Y2) ABS(X1-Y1) ABS(X0-Y0)

STLS2F01 multimedia technology UM0447

180/201

Exception: None.

C.28 PSHUFH - shuffle packed halfwords

Format: PSHUFH fd,fs,ft

Description: Copies halfwords from the first operand and inserts them in the destination operand
at halfword locations selected with the second operand(order operand). This
operation is illustrated in Figure 29. For the PSHUFH instruction, each 2-bit field in
the second operand selects the contents of one halfword location in the destination
operand. The encodings of the second operand fields select halfwords from the first
operand to be copied to the destination operand.
The first operand can be a 64-bit register. The destination operand is a 64-bit register.
The order operand is a 64-bit register.
Note that this instruction permits a halfword in the first operand to be copied to more
than one halfword location in the destination operand.

Figure 29. PSHUFH Instruction operation

Operation: PSHUFH
fd[15..0] ← (fs >> (ft[1..0] * 16))[15..0]
fd[31..16] ← (fs >> (ft[3..2] * 16))[15..0]
fd[47..32] ← (fs >> (ft[5..4] * 16))[15..0]
fd[63..48] ← (fs >> (ft[7..6] * 16))[15..0]

Exception: None.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PSHUFH
11000

ft fs fd
MUL

000010

6 5 5 5 5 6

7 6 5 4

Encoding
of Fields in

ORDER
Operand

Y3 Y2 Y1 Y0

X3 X2 X1 X0

3 2 1 0

SRC

DEST

ORDER

00B - X0
01B - X1
10B - X2
11B - X3

UM0447 STLS2F01 multimedia technology

 181/201

C.29 PSLLH/PSLLW - shift packed data left logical

Format: PSLLH fd,fs,ft
PSLLW fd,fs,ft

Description: Shifts the bits in the individual data elements (halfwords, words) in the first operand to
the left by the number of bits specified in the second operand (count operand). As the
bits in the data elements are shifted left, the empty low-order bits are cleared (set to
0). If the value specified by the count operand is greater than 15 (for halfwords), 31
(for words), then the destination operand is set to all 0s. (Figure 30 gives an example
of shifting words in a 64-bit operand.).

Figure 30. PSLLH, PSLLW instruction operation using 64-bit operand

The PSLLH instruction shifts each of the halfwords in the first operand to the left by
the number of bits specified in the count operand; the PSLLW instruction shifts each
of the words in the first operand.

Operation: PSLLH
IF (ft[6..0] > 15)
THEN
fd[64..0] ← 0000000000000000H
ELSE
fd[15..0] ← ZeroExtend(fs[15..0] << ft[6..0]);
* repeat shift operation for 2nd and 3rd words *;
fd[63..48] ← ZeroExtend(fs[63..48] << ft[6..0]);
FI;

PSLLW

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PSLLH
11001

ft fs fd
CEIL.L
001010

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PSLLW
11000

ft fs fd
CEIL.L
001010

6 5 5 5 5 6

X3 << COUNTDEST X2 << COUNT X1 << COUNT X0 << COUNT

X3 X2 X1 X0SRC

Shift Left
with Zero

Extension

STLS2F01 multimedia technology UM0447

182/201

IF (ft[6..0] > 31)
THEN
fd[64..0] ← 0000000000000000H
ELSE
fd[31..0] ← ZeroExtend(fs[31..0] << ft[6..0]);
fd[63..32] ← ZeroExtend(fs[63..32] << ft[6..0]);
FI;

Exception: None.

C.30 PSRAH/PSRAW - shift packed data right arithmetic

Format: PSRAH fd,fs,ft
PSRAW fd,fs,ft

Description: Shifts the bits in the individual data elements (halfwords or words) in the first operand
to the right by the number of bits specified in the second operand (count operand). As
the bits in the data elements are shifted right, the empty high-order bits are filled with
the initial value of the sign bit of the data element. If the value specified by the count
operand is greater than 15 (for halfwords) or 31 (for words), each destination data
element is filled with the initial value of the sign bit of the element. (Figure 31 gives an
example of shifting halfwords in a 64-bit operand.)

Figure 31. PSRAH and PSRAW instruction operation using a 64-bit operand

The PSRAH instruction shifts each of the halfwords in the first operand to the right by
the number of bits specified in the count operand, and the PSRAW instruction shifts
each of the words in the first operand.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PSRAH
11011

ft fs fd
FLOOR.L
001011

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PSRAW
11010

ft fs fd
FLOOR.L
001011

6 5 5 5 5 6

X3 >> COUNTDEST X2 >> COUNT X1 >> COUNT X0 >> COUNT

X3 X2 X1 X0SRC

Shift Right
with Sign

Extension

UM0447 STLS2F01 multimedia technology

 183/201

Operation: PSRAH
IF (ft[6..0] > 15)
THEN ft[6..0] ← 16;
FI;
fd[15..0] ← SignExtend(fs[15..0] >> ft[6..0]);
* repeat shift operation for 2nd and 3rd halfwords *;
fd[63..48] ← SignExtend(fs[63..48] >> ft[6..0]);

PSRAW
IF (ft[6..0] > 31)
THEN ft[6..0] ←32;
FI;
fd[31..0] ← SignExtend(fs[31..0] >> ft[6..0]);
fd[63..32] ← SignExtend(fs[63..32] >>ft[6..0]);
None.

C.31 PSRLH/PSRLW - shift packed data right logical

Format: PSRLH fd,fs,ft
PSRLW fd,fs,ft

Description: Shifts the bits in the individual data elements (halfwords, words) in the first operand to
the right by the number of bits specified in the second operand (count operand). As
the bits in the data elements are shifted right, the empty high-order bits are cleared
(set to 0). If the value specified by the count operand is greater than 15 (for
halfwords), 31 (for words), then the destination operand is set to all 0s. (Figure 32
gives an example of shifting halfwords in a 64-bit operand.)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PSRLH
11001

ft fs fd
FLOOR.L
001011

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PSRLW
11000

ft fs fd
FLOOR.L
001011

6 5 5 5 5 6

STLS2F01 multimedia technology UM0447

184/201

Figure 32. PSRLH, PSRLW instruction operation using 64-bit operand

The PSRLH instruction shifts each of the halfwords in the first operand to the right by
the number of bits specified in the count operand; the PSRLW instruction shifts each
of the words in the first operand.

Operation: PSRLH
IF (ft[6..0] > 15)
THEN
fd[64..0] ← 0000000000000000H
ELSE
fd[15..0] ← ZeroExtend(fs[15..0] >> ft[6..0]);
* repeat shift operation for 2nd and 3rd halfwords *;
fd[63..48] ← ZeroExtend(fs[63..48] >> ft[6..0]);
FI;

PSRLW
IF (COUNT > 31)
THEN
fd[64..0] ← 0000000000000000H
ELSE
fd[31..0] ← ZeroExtend(fs[31..0] >> ft[6..0]);
fd[63..32] ← ZeroExtend(fs[63..32] zz ft[6..0]);
FI;

Exception: None.

C.32 PSUBB/PSUBH/PSUBW - subtract packed integers

X3 >> COUNTDEST X2 >> COUNT X1 >> COUNT X0 >> COUNT

X3 X2 X1 X0SRC

Shift Right
with Zero

Extension

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PSUBB
11110

ft fs fd
SUB

000001

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PSUBH
11010

ft fs fd
SUB

000001

6 5 5 5 5 6

UM0447 STLS2F01 multimedia technology

 185/201

Format: PSUBB fd,fs,ft
PSUBH fd,fs,ft
PSUBW fd,fs,ft

Description: Performs a SIMD subtract of the packed integers of the second operand from the
packed integers of the first operand, and stores the packed integer results in the
destination operand. Overflow is handled with wraparound, as described in the
following paragraphs. These instructions operate on 64-bit operands.
The PSUBB instruction subtracts packed byte integers. When an individual result is
too large or too small to be represented in a byte, the result is wrapped around and
the low 8 bits are written to the destination element.
The PSUBH instruction subtracts packed halfword integers. When an individual result
is too large or too small to be represented in a halfword, the result is wrapped around
and the low 16 bits are written to the destination element.
The PSUBW instruction subtracts packed word integers. When an individual result is
too large or too small to be represented in a word, the result is wrapped around and
the low 32 bits are written to the destination element.
Note that the PSUBB, PSUBW, and PSUBD instructions can operate on either
unsigned or signed (two's complement notation) packed integers; however, it does not
indicate overflow and/or a carry. To prevent undetected overflow conditions, software
must control the ranges of values operated on.

Operation: PSUBB
fd[7..0] ← fs[7..0] - ft[7..0];
* repeat subtract operation for 2nd through 7th byte *;
fd[63..56] ← fs[63..56] - ft[63..56];

PSUBH
fd[15..0] ← fs[15..0] - ft[15..0];
* repeat subtract operation for 2nd and 3rd halfword *;
fd[63..48] ← fs[63..48] - ft[63..48];

PSUBW
fd[31..0] ← fs[31..0] - ft[31..0];
fd[63..32] ← fs[63..32] - ft[63..32];

Exception: None.

C.33 PSUBD - subtract packed doubleword integers

Format: PSUBD fd,fs,ft

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PSUBW
11011

ft fs fd
SUB

000001

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PSUBD
11111

ft fs fd
SUB

000001

6 5 5 5 5 6

STLS2F01 multimedia technology UM0447

186/201

Description: Subtracts the second operand from the first operand and stores the result in the
destination operand. When packed doubleword operands are used, a SIMD subtract
is performed. When a doubleword result is too large to be represented in 64 bits
(overflow), the result is wrapped around and the low 64 bits are written to the
destination element (that is, the carry is ignored).
Note that the PSUBD instruction can operate on either unsigned or signed (two’s
complement notation) integers; however, it does not indicate overflow and/or a carry.
To prevent undetected overflow conditions, software must control the ranges of the
values operated on.

Operation: PSUBD
fd[63..0] ← fs[63..0] - ft[63..0];

Exception: None.

C.34 PSUBSB/PSUBSH - subtract packed signed integers

Format: PSUBSB fd,fs,ft
PSUBSH fd,fs,ft

Description: Performs a SIMD subtract of the packed signed integers of the second operand from
the packed signed integers of the first operand, and stores the packed integer results
in the destination operand. Overflow is handled with signed saturation, as described
in the following paragraphs. These instructions operate on 64-bit.
The PSUBSB instruction subtracts packed signed byte integers. When an individual
byte result is beyond the range of a signed byte integer (that is, greater than 7FH or
less than 80H), the saturated value of 7FH or 80H, respectively, is written to the
destination operand.
The PSUBSH instruction subtracts packed signed halfword integers. When an
individual halfword result is beyond the range of a signed halfword integer (that is,
greater than 7FFFH or less than 8000H), the saturated value of 7FFFH or 8000H,
respectively, is written to the destination operand.

Operation: PSUBSB
fd[7..0] ← SaturateToSignedByte(fs[7..0] - ft[7..0]) ;
* repeat subtract operation for 2nd through 7th bytes *;
fd[63..56] ← SaturateToSignedByte(fs[63..56] - ft[63..56]);

PSUBSH
fd[15..0] ← SaturateToSignedHalfword(fs[15..0] - ft[15..0]);
* repeat subtract operation for 2nd and 7th halfwords *;
fd[63..48] ← SaturateToSignedHalfword(fs[63..48] - ft[63..48]);

Exception: None.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PSUBSB
11100

ft fs fd
SUB

000001

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PSUBSH
11000

ft fs fd
SUB

000001

6 5 5 5 5 6

UM0447 STLS2F01 multimedia technology

 187/201

C.35 PSUBUSB/PSUBUSH - subtract packed unsigned integers

Format: PSUBUSB fd,fs,ft
PSUBUSH fd,fs,ft

Description: Performs a SIMD subtract of the packed unsigned integers of thesecond operand
from the packed unsigned integers of the first operand, and stores the packed
unsigned integer results in the destination operand. Overflow is handled with
unsigned saturation, as described in the following paragraphs. These instructions
operate on 64-bit operands.
The PSUBUSB instruction subtracts packed unsigned byte integers. When an
individual byte result is less than zero, the saturated value of 00H is written to the
destination operand.
The PSUBUSH instruction subtracts packed unsigned halfword integers. When an
individual halfword result is less than zero, the saturated value of 0000H is written to
the destination operand.

Operation: PSUBUSB
fd[7..0] ← SaturateToUnsignedByte(fs[7..0] - ft[7..0]) ;
* repeat add operation for 2nd through 7th bytes *;
fd[63..56] ← SaturateToUnsignedByte(fs[63..56] - ft[63..56]);

PSUBUSH
fd[15..0] ← SaturateToUnsignedHalfword(fs[15..0] - ft[15..0]);
* repeat add operation for 2nd and 3rd halfwords *;
fd[63..48] ← SaturateToUnsignedHalfword(fs[63..48] - ft[63..48]);

Exception: None.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PSUBUSB
11101

ft fs fd
SUB

000001

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PSUBUSH
11001

ft fs fd
SUB

000001

6 5 5 5 5 6

STLS2F01 multimedia technology UM0447

188/201

C.36 PUNPCKHBH/PUNPCKHHW/PUNPCKHWD - unpack high
data

Format: PUNPCKHBH fd,fs,ft
PUNPCKHHW fd,fs,ft
PUNPCKHWD fd,fs,ft

Description: Unpacks and interleaves the high-order data elements (bytes,halfwords, words) of the
first operand and second operand into the destination operand. (Figure 33 shows the
unpack operation for bytes in 64-bit operands.). The low-order data elements are
ignored.

Figure 33. PUNPCKHBH instruction operation using 64-bit operands

The PUNPCKHBH instruction interleaves the high-order bytes of the first and second
operands, the PUNPCKHHW instruction interleaves the high-order halfwords of the
first and second operands, the PUNPCKHWD instruction interleaves the high-order
word (or words) of first and second operands.
These instructions can be used to convert bytes to halfwords, halfwords to words,
words to doublewords, respectively, by placing all 0s in the second operand. Here, if
the second operand contains all 0s, the result (stored in the destination operand)
contains zero extensions of the high-order data elements from the original value in
the first operand. For example, with the PUNPCKHBH instruction the high-order bytes
are zero extended (that is, unpacked into unsigned halfword integers), and with the

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PUNPCKHBH
11011

ft fs fd
DIV

000011

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PUNPCKHHW
11001

ft fs fd
DIV

000011

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PUNPCKHWD
11101

ft fs fd
FLOOR.L
001011

6 5 5 5 5 6

Y7 X7 Y6 X6 Y5 X5 Y4 X4DEST

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0SRC2 X7 X6 X5 X4 X3 X2 X1 X0 SRC1

UM0447 STLS2F01 multimedia technology

 189/201

PUNPCKHHW instruction, the high-order halfwords are zero extended (unpacked into
unsigned word integers).

Operation: PUNPCKHBH
fd[7..0] ← fs[39..32];
fd[15..8] ← ft[39..32];
fd[23..16] ← fs[47..40];
fd[31..24] ← ft[47..40];
fd[39..32] ← fs[55..48];
fd[47..40] ← ft[55..48];
fd[55..48] ← fs[63..56];
fd[63..56] ← ft[63..56];

PUNPCKHHW
fd[15..0] ← fs[47..32];
fd[31..16] ← ft[47..32];
fd[47..32] ← fs[63..48];
fd[63..48] ← ft[63..48];

PUNPCKHWD
fd[31..0] ← fs[63..32]
fd[63..32] ← ft[63..32];

Exception: None.

C.37 PUNPCKLBH/PUNPCKLHW/PUNPCKLWD - unpack low data

Format: PUNPCKLBH fd,fs,ft
PUNPCKLHW fd,fs,ft
PUNPCKLWD fd,fs,ft

Description: Unpacks and interleaves the low-order data elements (bytes, halfwords, words) of the
first operand and second operand into the destination operand. (Figure 34 shows the
unpack operation for bytes in 64-bit operands.). The high-order data elements are
ignored.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PUNPCKLBH
11010

ft fs fd
DIV

000011

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PUNPCKLHW
11000

ft fs fd
DIV

000011

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

PUNPCKLWD
11100

ft fs fd
FLOOR.L
001011

6 5 5 5 5 6

STLS2F01 multimedia technology UM0447

190/201

Figure 34. PUNPCKLBH instruction operation using 64-bit operands

The PUNPCKLBH instruction interleaves the low-order bytes of the first and second
operands, the PUNPCKLHW instruction interleaves the low-order halfwords of the
first and second operands, the PUNPCKLWD instruction interleaves the low-order
word of the first and second operands.
These instructions can be used to convert bytes to halfwords, halfwords to words,
words to doublewords, respectively, by placing all 0s in the second operand. Here, if
the second operand contains all 0s, the result (stored in the destination operand)
contains zero extensions of the high-order data elements from the original value in
the first operand. For example, with the PUNPCKLBH instruction the high-order bytes
are zero extended (that is, unpacked into unsigned halfword integers), and with the
PUNPCKLHW instruction, the high-order halfwords are zero extended (unpacked into
unsigned word integers).

Operation: PUNPCKLBH
fd[63..56] ← ft[31..24];
fd[55..48] ← fs[31..24];
fd[47..40] ← ft[23..16];
fd[39..32] ← fs[23..16];
fd[31..24] ← ft[15..8];
fd[23..16] ← fs[15..8];
fd[15..8] ← ft[7..0];
fd[7..0] ← fs [7..0];

PUNPCKLHW
fd[63..48] ← ft[31..16];
fd[47..32] ← fs[31..16];
fd[31..16] ← ft[15..0];
fd[15..0] ← fs[15..0];

PUNPCKLWD
fd[63..32] ← ft[31..0];
fd[31..0] ← fs[31..0];

Exception: None.

Y3 X3 Y2 X2 Y1 X1 Y0 X0DEST

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0SRC2 X7 X6 X5 X4 X3 X2 X1 X0 SRC1

UM0447 STLS2F01 multimedia technology

 191/201

C.38 Add - add word

Format: Add fd, fs,ft

Purpose: To add 32-bit integers. If overflow occurs, then trap

Description: fd ← fs+ft
The 32-bit word value in FPR ft is added to the 32-bit value in FPR fs to produce a 32-
bit result. If the addition results in 32-bit 2’s complement arithmetic overflow then the
destination register is not modified and an Integer Overflow exception occurs. If it
does not overflow, the 32-bit result is placed into FPR fd.

Operation: If(NotWordValue(FPR[fs]) or NotWordValue(FPR[ft])) then UndefinedResult() endif
temp← FPR [fs]+FPR[ft]
if(32_bit_arithmetic_overflow) then
SignalException(IntegerOverflow)
else
FPR[fd]←sign_extend(temp31..0)
endif

Exception: Integer Overflow

C.39 Addu - add unsigned word

Format: Add fd, fs,ft

Purpose: To add 32-bit integers.

Description: fd ← fs+ft
The 32-bit word value in FPR ft is added to the 32-bit value in FPR fs and the 32-bit
arithmetic result is placed into FPR fd.
No Integer Overflow exception occurs under any circumstances..

Operation: If(NotWordValue(FPR[fs]) or NotWordValue(FPR[ft])) then UndefinedResult() endif
temp← FPR[fs]+FPR[ft]
FPR[fd] ←sign_extend(temp31..0)

Exception: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

fmt
11010

ft fs fd
ROUND.W

001100

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

fmt
11000

ft fs fd
ROUND.W

001100

6 5 5 5 5 6

STLS2F01 multimedia technology UM0447

192/201

C.40 Dadd - doubleword ADD

Format: Dadd fd, fs,ft

Purpose: To add 64-bit integers. If overflow occurs, then trap

Description: fd ← fs+ft
The 64-bit word value in FPR ft is added to the 64-bit value in FPR fs to produce a 64-
bit result. If the addition results in 64-bit 2’s complement arithmetic overflow then the
destination register is not modified and an Integer Overflow exception occurs. If it
does not overflow, the 64-bit result is placed into FPR fd.

Operation: 64-bit processors
temp← FPR[fs]+FPR[ft]
if(64_bit_arithmetic_overflow) then
SignalException(IntegerOverflow)
else
FPR[fd] ← temp
endif

Exception: Integer Overflow

C.41 Sub - sub word

Format: Sub fd, fs,ft

Purpose: To subtract 32-bit integers. If overflow occurs, then trap

Description: fd ← fs - ft
The 32-bit word value in FPR ft is subtracted from the 32-bit value in FPR fs to
produce a 32-bit result. If the subtraction results in 32-bit 2’s complement arithmetic
overflow then the destination register is not modified and an Integer overflow
exception occurs. If it does not overflow, the 32-bit result is placed into FPR fd.

Operation: If(NotWordValue(FPR[fs]) or NotWordValue(FPR[ft])) then UndefinedResult() endif
temp← FPR[fs] - FPR[ft]
if(32_bit_arithmetic_overflow) then
SignalException(IntegerOverflow)
else
FPR[fd] ← temp
endif

Exception: Integer Overflow

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

fmt
11011

ft fs fd
ROUND.W

001100

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

fmt
11010

ft fs fd
TRUNC.W

001101

6 5 5 5 5 6

UM0447 STLS2F01 multimedia technology

 193/201

C.42 Subu - sub unsigned word

Format: Sub fd, fs,ft

Purpose: To subtract 32-bit integers.

Description: fd ← fs - ft
The 32-bit word value in FPR ft is subtracted from the 32-bit value in FPR fs and the
32-bit arithmetic result is placed into FPR fd.
No Integer Overflow exception occurs under any circumstances.

Operation: If(NotWordValue(FPR[fs]) or NotWordValue(FPR[ft])) then UndefinedResult() endif
temp← FPR[fs]-FPR[ft]
FPR[fd] ← temp

Exception: None

C.43 Dsub - doubleword sub

Format: Dsub fd, fs,ft

Purpose: To add 64-bit integers. If overflow occurs, then trap

Description: fd ← fs-ft
The 64-bit word value in FPR ft is subtracted from the 64-bit value in FPR fs to
produce a 64-bit result. If the addition results in 64-bit 2’s complement arithmetic
overflow then the destination register is not modified and an Integer overflow
exception occurs. If it does not overflow, the 64-bit result is placed into FPR fd.

Operation: 64-bit processors
temp← FPR[fs]-FPR[ft]
if(64_bit_arithmetic_overflow) then
SignalException(IntegerOverflow)
else
FPR[fd] ←temp
endif

Exception: Integer Overflow

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

fmt
11000

ft fs fd
TRUNC.W

001101

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

fmt
11011

ft fs fd
TRUNC.W

001101

6 5 5 5 5 6

STLS2F01 multimedia technology UM0447

194/201

C.44 Or - or

Format: Or fd, fs,ft

Purpose: To do a bitwise logic or

Description: fd ← fs Or ft
The contents of FPR fs are combined with the contents of FPR ft in a bitwise logic OR
operation. The result is placed into FPR fd.

Operation: FPR[fd] ←FPR[fs] or FPR[ft]

Exception: None

C.45 Sll - shift word left logical

Format: Sll fd,fs,ft

Description: fd ← mfs << Value(FPR[ft])
The contents of the low-order 32-bit word of FPR fs are shifted left, inserting zeros
into the emptied bits; the word result is placed in FPR fd. the bit shift count is
specified by Value of FPR ft, the result word is sign-extended.

Operation: s ← Value(FPR[ft])
if s >= 32 then
FPR[fd] ← 064

else
Temp ← FPR[fs](31-s)..0|| 0s

FPR[fd]←sign_extend(temp)

Exception: None.

C.46 Dsll - doubleword shift left logical

Format: fd ← fs << Value(FPR[ft])
Sll fd,fs,ft

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

fmt
11011

ft fs fd
ROUND.W

001100

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

fmt
11000

ft fs fd
CEIL.W
001110

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

fmt
11001

ft fs fd
CEIL.W
001110

6 5 5 5 5 6

UM0447 STLS2F01 multimedia technology

 195/201

Description: The contents of the low-order 64-bit word of FPR fs are shifted left, inserting zeros
into the emptied bits; the result is placed in FPR fd. the bit shift count is specified by
value of FPR ft.

Operation: s ← Value(FPR[ft])
if s > = 64 then
FPR[fd] ← 064

else
Temp ← FPR[fs](63-s)..0|| 0s

FPR[fd] ← temp

Exception: None.

C.47 Xor - xor

Format: Xor fd, fs,ft

Purpose: To do a bitwise logic Xor

Description: fd ← fs Xor ft
The contents of FPR fs are combined with the contents of FPR ft in a bitwise logic
XOR operation. The result is placed into FPR fd.

Operation: FPR[fd] ← FPR[fs] xor FPR[ft]

Exception: None

C.48 Nor - nor

Format: Nor fd, fs,ft

Purpose: To do a bitwise logic Nor

Description: fd ← fs Nor ft
The contents of FPR fs are combined with the contents of FPR ft in a bitwise logic
NOR operation. The result is placed into FPR fd.

Operation: FPR[fd] ← FPR[fs] nor FPR[ft]

Exception: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

fmt
11000

ft fs fd
MUL

000010

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

fmt
11001

ft fs fd
MUL

000010

6 5 5 5 5 6

STLS2F01 multimedia technology UM0447

196/201

C.49 And - and

Format: And fd, fs,ft

Purpose: To do a bitwise logic And

Description: fd ← fs And ft
The contents of FPR fs are combined with the contents of FPR ft in a bitwise logic
AND operation. The result is placed into FPR fd.

Operation: FPR[fd] ← FPR[fs] and FPR[ft]

Exception: None

C.50 Srl - shift word right logical
 Format:Srlfd,fs,ft

Format: Srl
fd,fs,ft

Description: fd ← fs >> Value(FPR[ft])
The contents of the low-order 32-bit word of FPR ft are shifted right, inserting zeros
into the emptied bits; the word result is placed in FPR fd. the bit shift count is
specified by Value of FPR ft, the result word is sign-extended.

Operation: s ← Value(FPR[ft])
if s >= 32 then
FPR[fd] ← 064

else
Temp ← 0s || FPR[fs](31-s)..0
FPR[fd] ← sign_extend(temp)

Exception: None.

C.51 Dsrl - doubleword shift right logical
 Format:Srlfd,fs,ft

Format: DSrl
fd,fs,ft

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

fmt
11110

ft fs fd
MUL

000010

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

fmt
11000

ft fs fd
FLOOR.W

001111

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

fmt
11001

ft fs fd
FLOOR.W

001111

6 5 5 5 5 6

UM0447 STLS2F01 multimedia technology

 197/201

Description: fd ← fs >> Value(FPR[ft])
The contents of the low-order 64-bit word of FPR ft are shifted right, inserting zeros
into the emptied bits; the result is placed in FPR fd. the bit shift count is specified by
Value of FPR ft.

Operation: s ← Value(FPR[ft])
if s > = 64 then
FPR[fd] ← 064

else
Temp ← 0s || FPR[ft](63-s)..0
FPR[fd] ← temp

Exception: None.

C.52 Sra - shift word right arithmetic
 Format:Srlfd,fs,ft

Format: Srl
fd,fs,ft

Description: fd ← fs >> Value(FPR[ft]) (arithmetic)
The contents of the low-order 32-bit word of FPR ft are shifted right, duplicating the
sign-bit (bit 31) in the emptied bits; the word result is placed in FPR fd. the bit shift
count is specified by Value of FPR ft, the result word is sign-extended.

Operation: If (NotWordValue(FPR[fs]) then undefinedResult() endif
s ← Value(FPR[ft])
if s > = 32 then
FPR[fd] ← (FPR[fs]31)64

else
Temp ← (FPR[fs]31)s || FPR[fs](31-s)..0
FPR[fd] ← sign_extend(temp)

Exception: None.

C.53 Dsra - doubleword shift right arithmetic
 Format:Srlfd,fs,ft

Format: DSra
fd,fs,ft

Description: fd ← fs >> Value(FPR[ft])
The contents of the low-order 64-bit word of FPR ft are shifted right, duplicating the
sign-bit (bit 63) in the emptied bits; the result is placed in FPR fd. The bit shift count is
specified by Value of FPR ft.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

fmt
11001

ft fs fd
FLOOR.W

001111

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

fmt
11011

ft fs fd
FLOOR.W

001111

6 5 5 5 5 6

STLS2F01 multimedia technology UM0447

198/201

Operation: s ← Value(FPR[ft])
if s > = 64 then
FPR[fd] ← (FPR[fs]63)64

else
Temp ← (FPR[fs]63)s || FPR[ft](63-s)..0
FPR[fd] ← tempNone.

Exception: None.

C.54 Sequ/seq/sltu/slt/sleu/sle - fixing-point compare set cc bit
 Format:Srlfd,fs,ft

 Format:Srlfd,fs,ft

 Format:Srlfd,fs,ft

 Format:Srlfd,fs,ft

 Format:Srlfd,fs,ft

 Format:Srlfd,fs,ft

Format: Sequ
fs, ft
Sltu
fs, ft
Sleu
fs, ft
Seq
fs, ft
Slt
fs, ft

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

Sequ
11100

ft fs fd
ROWND.W

001100

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

Sltu
11100

ft fs fd
TRUNC.W

001101

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

Sleu
11100

ft fs fd
CEIL.W
001110

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

Seq
11101

ft fs fd
ROUND.W

001100

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

Slt
11101

ft fs fd
TRUNC.W

001101

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP2
010010

Sle
11101

ft fs fd
CEIL.W
001110

6 5 5 5 5 6

UM0447 STLS2F01 multimedia technology

 199/201

Sle
fs, ft

Description: Description: The value in FPR fs is compared to the value in FPR ft. The comparison
is exact and neither overflows nor underflows. The result is written into condition code
cc, true is 1 and false is 0.

Operation: Sequ/seq
condition ← ValueFPR(fs,fmt) = ValueFPR(ft,fmt)
FCC[cc] ← condition

Sltu/slt
condition ← ValueFPR(fs,fmt) < ValueFPR(ft,fmt)
FCC[cc] ← condition

Sleu/sle
condition ← ValueFPR(fs,fmt) <= ValueFPR(ft,fmt)
FCC[cc] ← condition

Exception: None.

Revision history UM0447

200/201

14 Revision history

Table 65. Document revision history

Date Revision Changes

6-Aug-2007 1 Initial release.

UM0447

 201/201

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 STLS2F01 microprocessor architecture
	1.1 STLS2F01 microprocessor architecture overview
	1.2 Fetching and decoding
	1.3 Register renaming
	1.4 Issuing and reading operands
	1.5 Execution and functional units
	1.6 Commit and reorder queue
	1.7 Branch canceling and branch queue
	1.8 Memory subsystem
	1.9 The STLS2F01 processor summary
	Figure 1. Microarchitecture of STLS2F01

	2 Instruction set overview
	2.1 CPU instruction formats
	Table 1. CPU instruction set: load and store instructions
	Table 2. CPU instruction set: arithmetic instructions (ALU immediate)
	Table 3. CPU instruction set: arithmetic (3-Operand, R-Type)
	Table 4. CPU instruction set: multiply and divide instructions
	Table 5. CPU instruction set: jump and branch instructions
	Table 6. CPU instruction set: shift instructions
	Table 7. CPU instruction set: special instructions
	Table 8. CPU instruction set: exception instructions
	Table 9. CP0 instructions

	3 Memory management
	3.1 Translation lookaside buffer
	3.1.1 Joint TLB
	3.1.2 Instruction TLB
	3.1.3 Hits and misses
	3.1.4 Multiple matches

	3.2 Processor modes
	3.2.1 Processor operating modes
	Table 10. Processor operating modes

	3.2.2 Addressing mode
	3.2.3 Instruction set mode
	3.2.4 Endian mode
	3.2.5 Address spaces
	3.2.6 Virtual address space
	3.2.7 Physical address space
	3.2.8 Virtual-to-physical address translation
	Figure 2. Overview of a virtual-to-physical address translation
	Figure 3. 64-bit mode virtual address translation

	3.2.9 User address space
	Figure 4. User virtual address space as viewed from user mode

	3.2.10 Supervisor space
	Figure 5. User and supervisor address spaces; viewed from supervisor mode

	3.2.11 Kernel space
	Figure 6. User, supervisor, and kernel address space viewed from kernel mode

	3.3 System control coprocessor
	3.3.1 Format of a TLB Entry
	Figure 7. Format of a TLB entry
	Table 11. TLB page coherency (C) bit values

	3.3.2 CP0 registers
	Table 12. Memory management-related CP0 registers

	3.3.3 Virtual-to-physical address translation process
	3.3.4 TLB exceptions
	Figure 8. TLB address translation

	3.3.5 TLB instructions
	Table 13. TLB instructions

	3.3.6 Code examples

	4 Cache organization and operation
	4.1 Cache overview
	4.1.1 Non-blocking caches
	4.1.2 Replacement algorithm
	4.1.3 Cache attributes
	Table 14. Attributes for the three caches

	4.2 Primary instruction cache
	4.2.1 Instruction cache organization
	Figure 9. Instruction cache organization

	4.2.2 Accessing instruction cache
	Figure 10. Accessing the instruction cache

	4.3 Primary data cache
	4.3.1 Data cache organization
	Figure 11. Data cache organization

	4.3.2 Accessing the data cache
	Figure 12. Accessing the data cache

	4.3.3 Processing data cache miss

	4.4 Secondary cache
	4.4.1 Secondary cache organization
	4.4.2 Accessing the secondary cache
	Figure 13. Accessing the secondary cache

	4.5 Cache coherency
	4.5.1 Cache coherency attributes
	Table 15. STLS2F01 cache coherency attribute

	4.5.2 Uncached, blocking (coherency code 2)
	4.5.3 Writeback (coherency code 3)
	4.5.4 Uncached accelerated (coherency code 7)

	4.6 Cache maintenance

	5 CP0
	Table 16. Coprocessor 0 registers
	5.1 Index register (0)
	Table 17. Fields in the index register

	5.2 Random register (1)
	Table 18. Fields in the random register

	5.3 EntryLo0 (2), and EntryLo1 (3) registers
	Table 19. Description of EntryLo registers’ fields

	5.4 Context (4)
	Table 20. Context register fields

	5.5 PageMask register (5)
	Table 21. Mask field values for page sizes

	5.6 Wired register (6)
	Figure 14. Wired register boundary
	Table 22. Wired register field descriptions

	5.7 BadVAddr register (8)
	5.8 Count and compare registers (9 and 11)
	Figure 15. Count and compare registers

	5.9 EntryHi register (10)
	Table 23. EntryHi register fields

	5.10 Status register (12)
	5.10.1 Status register format
	Table 24. Fields in the status register

	5.10.2 Status register modes and access states

	5.11 Cause register (13)
	Table 25. Cause register fields
	Table 26. Cause register exccode field

	5.12 Exception program counter (14)
	5.13 Processor revision identifier (PRID) register
	Table 27. PRId register fields

	5.14 Config register (16)
	Table 28. Fields in the config register

	5.15 Load linked address (LLAddr) register (17)
	5.16 Watch register
	Table 29. Watch register fields

	5.17 Xcontext register (20)
	Table 30. XContext register fields

	5.18 Diagnostic register (22)
	Table 31. Diagnostic register fields

	5.19 Performance counter registers (24, 25)
	Table 32. Control fields format
	Table 33. Count enable bit definition
	Table 34. Counter 0 events
	Table 35. Counter 1 events

	5.20 TagLo (28) and TagHi (29) registers
	Table 36. Cache tag register fields

	5.21 ErrorEPC register (30)
	5.22 CP0 instructions
	Table 37. CP0 instructions
	5.22.1 Hazards

	6 CPU exceptions
	6.1 Causing and returning from an exceptions
	6.2 Exception vector locations
	Table 38. Exception vector addresses

	6.3 TLB refill vector selection
	6.4 Priority of exceptions
	Table 39. Exception priority order

	6.5 Cold reset exception
	6.5.1 Cold reset exception cause
	6.5.2 Cold reset exception processing
	6.5.3 Cold reset exception servicing

	6.6 Soft reset exception
	6.6.1 Soft reset exception cause
	6.6.2 Soft reset exception processing
	6.6.3 Soft reset exception servicing

	6.7 NMI exception
	6.7.1 NMI exception cause
	6.7.2 NMI exception processing
	6.7.3 NMI exception servicing

	6.8 Address error exception
	6.8.1 Address error exceptioncause
	6.8.2 Address error exception processing
	6.8.3 Address error exception servicing

	6.9 TLB exceptions
	6.10 TLB refill exceptions
	6.10.1 TLB refill exceptions cause
	6.10.2 TLB refill exceptions processing
	6.10.3 TLB refill exceptions servicing

	6.11 TLB invalid exception
	6.11.1 TLB invalid exception cause
	6.11.2 TLB invalid exception processing
	6.11.3 TLB invalid exception servicing

	6.12 TLB modified exception
	6.12.1 TLB modified exception cause
	6.12.2 TLB modified exception processing
	6.12.3 TLB modified exception servicing

	6.13 Bus error exception
	6.13.1 Bus error exception cause
	6.13.2 Bus error exception processing
	6.13.3 Bus error exception servicing

	6.14 Integer overflow exception
	6.14.1 Integer overflow exception cause
	6.14.2 Integer overflow exception processing
	6.14.3 Integer overflow exception servicing

	6.15 Trap exception
	6.15.1 Trap exception cause
	6.15.2 Trap exception processing
	6.15.3 Trap exception servicing

	6.16 System call exception
	6.16.1 System call exception cause
	6.16.2 System call exception processing
	6.16.3 System call exception servicing

	6.17 Breakpoint Exception
	6.17.1 Breakpoint exception cause
	6.17.2 Breakpoint exception processing
	6.17.3 Breakpoint exception servicing

	6.18 Reserved instruction exception
	6.18.1 Reserved instruction exception cause
	6.18.2 Reserved instruction exception processing
	6.18.3 Reserved instruction exception servicing

	6.19 Coprocessor unusable exception
	6.19.1 Coprocessor unusable exception cause
	6.19.2 Coprocessor unusable exception processing
	6.19.3 Coprocessor unusable exception servicing

	6.20 Floating-point exception
	6.20.1 Floating-point exception cause
	6.20.2 Floating-point exception processing
	6.20.3 Floating-point exception servicing

	6.21 Watch exception
	6.21.1 Watch exception cause
	6.21.2 Watch exception processing
	6.21.3 Watch exception servicing

	6.22 Interrupt exception
	6.22.1 Interrupt exception cause
	6.22.2 Interrupt exception processing
	6.22.3 Interrupt exception servicing

	7 Floating-point unit
	7.1 Overview
	Figure 16. The organization of the functional units in STLS2F01’s architecture

	7.2 FPU programming model
	7.2.1 Floating-point registers
	7.2.2 Floating-point control registers
	Table 40. FCR0 fields
	Table 41. Control/status register fields
	Table 42. Rounding mode bit decoding

	7.3 FPU instruction set overview
	Table 43. Floating point instructions in STLS2F01 FPU
	Table 44. Paired-single (PS) instructions in STLS2F01 FPU

	7.4 FPU formats
	7.4.1 Floating-point format
	Table 45. Equations to calculate single & double precision FP format values
	Table 46. Floating point format parameter values
	Table 47. Minimum and maximum floating point values

	7.4.2 Multimedia format

	7.5 FPU instruction pipeline overview
	7.6 FPU exceptions
	Table 48. Default FPU exception actions
	7.6.1 Inexact exception (I)
	7.6.2 Invalid operation exception (V)
	7.6.3 Division-by-zero exception (Z)
	7.6.4 Overflow exception (O)
	7.6.5 Underflow exception (U)
	7.6.6 Unimplemented instruction exception (E)

	8 Privileged instruction
	Table 49. STLS2F01 Privileged Instructions
	8.1 CP0 move instructions
	Table 50. CP0 move instructions
	8.1.1 DMFC0 instruction
	8.1.2 DMTC0 instruction
	8.1.3 MFC0 instruction
	8.1.4 MTC0 instruction
	8.1.5 Usable CP0 move instruction in user mode

	8.2 TLB access instructions
	8.2.1 TLBP instruction
	8.2.2 TLBR instruction
	8.2.3 TLBWI instruction
	8.2.4 TLBWR instruction

	8.3 ERET instruction
	8.4 CACHE instruction
	Table 51. CACHE Instruction op field encoding
	8.4.1 Index invalidate (I)
	8.4.2 Index writeback invalidate (D)
	8.4.3 Index writeback invalidate (S)
	8.4.4 Index load tag (D)
	8.4.5 Index load tag (S)
	8.4.6 Index store tag (D)
	8.4.7 Index store tag (S)
	8.4.8 Hit invalidate (D)
	8.4.9 Hit invalidate (S)
	8.4.10 Hit writeback invalidate (D)
	8.4.11 Hit writeback invalidate (S)
	8.4.12 Index load data (D)
	8.4.13 Index load data (S)
	8.4.14 Index store data (D)
	8.4.15 Index store data (S)

	9 Address window configuration
	Table 52. Address of the window configuration register

	10 DDR2 SDRAM control interface
	10.1 Function of DDR2 SDRAM controller
	10.2 Protocol of DDR2 SDRAM read
	Figure 17. DDR2 SDRAM read protocol

	10.3 Protocol of DDR2 SDRAM write
	Figure 18. DDR2 SDRAM write protocol

	10.4 Registers of DDR2 SDRAM controller
	Table 53. Formation of DDR SDRAM controller registers

	11 Integrated IO controller
	11.1 Introduction of IO controller
	Figure 19. IO controller architecture
	Table 54. IO controller address space
	11.1.1 PCIX controller
	Table 55. PCIX controller configuration header
	Figure 20. Generation of configuration cycle address

	11.1.2 LocalIO controller
	Figure 21. LocalIO read timing
	Figure 22. LocalIO write timing

	11.1.3 Interrupt controller
	Table 56. Interrupt controller bit mappings

	11.1.4 PCI/PCIX arbiter
	Table 57. PCI bus arbitration line routing

	11.1.5 Video acceleration
	Figure 23. Video acceleration data path

	11.2 Register description
	11.2.1 Configuration Registers
	Table 58. Controller registers
	Table 59. Detailed description of config registers

	11.2.2 Video acceleration config registers
	Table 60. Video acceleration config registers

	12 Performance tuning
	12.1 User instruction latency and repeat rate
	Table 61. Latencies and repeat rates for user instructions

	12.2 Instruction extensions
	12.3 Instruction stream
	12.3.1 Instruction alignment
	12.3.2 Branch handling
	12.3.3 Improving instruction stream density
	12.3.4 Instruction scheduling

	12.4 Memory accesses
	12.5 Other tips

	13 MIPS compliancy
	13.1 The compliance overview
	13.2 The special CP0 features
	13.2.1 The ITLB flushing
	13.2.2 The diagnostic register
	13.2.3 The performance counter register
	13.2.4 The CacheErr exception
	13.2.5 Address translation for the kuseg segment when statusERL = 1
	13.2.6 Exception return when statusERL = 1
	13.2.7 Page size setting in the TLB entries
	13.2.8 The 64-bit address space

	13.3 The special CPU and FPU instructions features
	13.3.1 The special feature for the load-to-zero instruction
	13.3.2 The special feature for the floating point conversion instructions

	Appendix A STLS2F01 new integer instructions
	A.1 MULT.G - multiply word (STLS2F01)
	A.2 MULTU.G - multiply unsigned word (STLS2F01)
	A.3 DMULT.G - doubleword multiply (STLS2F01)
	A.4 DMULTU.G - doubleword multiply unsigned (STLS2F01)
	A.5 DIV.G - divide word (STLS2F01)
	A.6 DIVU.G - divide unsigned word (STLS2F01)
	A.7 DDIV.G - doubleword divide (STLS2F01)
	A.8 DDIVU.G - doubleword divide unsigned (STLS2F01)
	A.9 MOD.G - mod word (STLS2F01)
	A.10 MODU.G - mod unsigned word (STLS2F01)
	A.11 DMOD.G - doubleword mod (STLS2F01)
	A.12 DMODU.G - doubleword mod unsigned (STLS2F01)

	Appendix B STLS2F01 new float-point instructions
	Table 62. Paired-single (PS) instructions in STLS2F01 FPU
	B.1 MADD.fmt - floating-point multiply add
	B.2 MSUB.fmt - floating-point multiply subtract
	B.3 NMADD.fmt - floating-point negative multiply add
	B.4 NMSUB.fmt - floating-point negative multiply subtract

	Appendix C STLS2F01 multimedia technology
	C.1 Overview
	C.2 Instruction syntax
	C.3 Saturation and wraparound modes
	C.4 Loongson multimedia instructions
	Table 63. Loongson multimedia instruction set summary (opcode = COP2)
	Table 64. Loongson multimedia instruction set summary

	C.5 PACKSSHB/PACKSSWH - pack with signed saturation
	Figure 24. Operation of the PACKSSWH instruction using 64-bit operands

	C.6 PACKUSHB - pack with unsigned saturation
	C.7 PADDB/PADDH/PADDW - add packed integers
	C.8 PADDD - add packed doubleword integers
	C.9 PADDSB/PADDSH - add packed signed integers
	C.10 PADDUSB/PADDUSH - add packed unsigned integers
	C.11 PANDN - logical and not
	C.12 PAVGB/PAVGH - average packed integers
	C.13 PCMPEQB/PCMPEQH/PCMPEQW - compare packed data for equal
	C.14 PCMPGTB/PCMPGTH/PCMPGTW - compare packed signed integers
	C.15 PEXTRH - extract halfword
	C.16 PINSRH - insert halfword
	C.17 PMADDHW - multiply and add packed integers
	Figure 25. PMADDHW Execution model using 64-bit operands

	C.18 PMAXSH - maximum of packed signed halfword integers
	C.19 PMAXUB - maximum of packed unsigned byte integers
	C.20 PMINSH - minimum of packed signed halfword integers
	C.21 PMINUB - minimum of packed unsigned byte integers
	C.22 PMOVMSKB - move byte mask
	C.23 PMULHUH - multiply packed unsigned integers and store high result
	Figure 26. PMULHUH and PMULHH instruction operation using 64-bit operands

	C.24 PMULHH - multiply packed signed integers and store high result
	C.25 PMULLH - multiply packed signed integers and store low result
	Figure 27. PMULLH instruction operation using 64-bit operands

	C.26 PMULUW - multiply packed unsignedword integers
	C.27 PSADBH - compute sum of absolute differences
	Figure 28. PSADBH instruction operation using 64-bit operands

	C.28 PSHUFH - shuffle packed halfwords
	Figure 29. PSHUFH Instruction operation

	C.29 PSLLH/PSLLW - shift packed data left logical
	Figure 30. PSLLH, PSLLW instruction operation using 64-bit operand

	C.30 PSRAH/PSRAW - shift packed data right arithmetic
	Figure 31. PSRAH and PSRAW instruction operation using a 64-bit operand

	C.31 PSRLH/PSRLW - shift packed data right logical
	Figure 32. PSRLH, PSRLW instruction operation using 64-bit operand

	C.32 PSUBB/PSUBH/PSUBW - subtract packed integers
	C.33 PSUBD - subtract packed doubleword integers
	C.34 PSUBSB/PSUBSH - subtract packed signed integers
	C.35 PSUBUSB/PSUBUSH - subtract packed unsigned integers
	C.36 PUNPCKHBH/PUNPCKHHW/PUNPCKHWD - unpack high data
	Figure 33. PUNPCKHBH instruction operation using 64-bit operands

	C.37 PUNPCKLBH/PUNPCKLHW/PUNPCKLWD - unpack low data
	Figure 34. PUNPCKLBH instruction operation using 64-bit operands

	C.38 Add - add word
	C.39 Addu - add unsigned word
	C.40 Dadd - doubleword ADD
	C.41 Sub - sub word
	C.42 Subu - sub unsigned word
	C.43 Dsub - doubleword sub
	C.44 Or - or
	C.45 Sll - shift word left logical
	C.46 Dsll - doubleword shift left logical
	C.47 Xor - xor
	C.48 Nor - nor
	C.49 And - and
	C.50 Srl - shift word right logical
	C.51 Dsrl - doubleword shift right logical
	C.52 Sra - shift word right arithmetic
	C.53 Dsra - doubleword shift right arithmetic
	C.54 Sequ/seq/sltu/slt/sleu/sle - fixing-point compare set cc bit

	14 Revision history
	Table 65. Document revision history

