MII— S

TECHNOLOGIES

EC™ Interface Specification

Document Number: MD00052
Revision 1.03
December 18, 2000

MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043-1353

Copyright © 2000 MIPS Technologies, Inc. All rights reserved.
Unpublished rights reserved under the Copyright Laws of the United States of America.

This document contains information that is proprietary to MIPS Technologies, Inc. (“MIPS Technologies”). Any
copying, modifyingof this information (in whole or in part) which is not expressly permitted in writing by MIPS
Technologies is strictly prohibited. At a minimum, this information is protected under unfair competition laws and the
expression of the information contained herein is protected under federal copyright laws. Violations thereof may result
in criminal penalties and fines.

MIPS Technologies reserves the right to change the information contained in this document to improve function, design
or otherwise. MIPS Technologies does not assume any liability arising out of the application or use of this information.
Any license under patent rights or any other intellectual property rights owned by MIPS Technologies or third parties
shall be conveyed by MIPS Technologies in a separate license agreement between.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the
United States government (“Government”), the use, duplication, reproduction, release, modification, disclosure, or
transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal
Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202
for military agencies. The use of this information by the Government is further restricted in accordance with the terms
of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies.

MIPS, R3000, R4000, R5000, R8000 and R10000 are among the registered trademarks of MIPS Technologies, Inc., and
R4300, R20K, MIPS16, MIPS32, MIPS64, MIPS-3D, MIPS |, MIPS II, MIPS Ill, MIPS IV, MIPS V, MDMX,

SmartMIPS, 4K, 4Kc, 4Km, 4Kp, 5K, 5Kc, 20K, 20Kc, EC, MGB, SOC-it, SEAD, YAMON, ATLAS, JALGO, CoreLV

and MIPS-based are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

EC™ Interface Specification, Revision 1.03

Table of Contents

I a1 o T [T i o] TP OO PPPRTRTRR 5
L1 FRAIUIES ...ttt s o e oo oo oo oo e e e e e et et et e et ettt e ettt be b et et n s e e e e e e e e e e e e e e e e aaaaaeaes 5
2 o T (o @] o1 =140 PP PPPPP TR 6
AT (o] 4 F= VI 1 PP PPP TR 7
I 0ol TaTo DI T=To | =10 SO P PPT PR 10
3.1 SiNgle REAA TrANSACLIONSeiiiiiiiiiiiiiiiite ettt e e e e e ettt et e e e e e e s e s et bbb e eeeeeaaaaaeesaaaansnsbeseeeeaaaanns 10
3.2 SiNgle WIte TraNSACTHIONScooiiiiiiiiiiie ettt e e et e et e e e e e e e s s s e e e mmmenbbeseeeeaaeaeas 14
3.3 Back-to-back Read TranSACHONSueiiiiiiiiiiiiiiiitee et e e e e e e e bbb e e e e e e ae e e emmeeaeeeas 18
3.4 Back-t0-back WIte TraNSACLIONSciiiiiiiiiiiiiiiiiiie et e e ettt e e e e e e e e e et e e e e e e e e e e e e annnnneeaaaeeas 20
3.5 Read Transaction Followed by a Write TranSacCtionoooiiiiiiiiiiiiiiii e ecmeneeees 21
3.6 Write Transaction Followed by a Read TranSactionoooiiiiiiiiiiiiiiieoaiiieiee e ecmeneees 23
3.7 BUISE TFANSACLIONS ...eiiiiiiiiiiiiittt ettt e e e e ettt ettt et e e e e e e s s bbbt e e et eeaaaaeassa e nnbbbeeeeeaaaaeeaaansnbbeaneaaaaaanass 26
4 EXIErnal Wt BUFFEIS ...ttt ettt et e e e e e mmmmmmeeeenm e 222 e a2 e e e e nbnbbeeeees 31
F N = 0 To =TT TP PPPPRTPTR 31
B Lower AdAress Bit GENEIALIONuiiiiiiiiiiaiee ettt ettt et e e e e e e e e s 2 s om—— 11111111 b e 33
(O Y] (o] g I o 1153 (o] oY U PP T TP PPPPPI 33

EC™ Interface Specification, Revision 1.03 3

EC™ Interface Specification, Revision 1.03

EC™ Interface Specification

1 Introduction

This document describes the EC™ interface designed for microprocessor cores. All MIPS cores implementing the EC
interface comply to this specification. Implementation-specific details can be found in the documentation accompanying
the core.

Use the EC interface to attach memory controllers, memory-mapped I/Os, etc. A bus controller must be included in cases
where multiple slaves connect to the EC interf&igure 1shows an example of the EC interface placement within a

system.
r—— - - - - - - -7 - = = = = |
I |
| Core |
I |
I I
| ’ > Bus 4. | Memory | Off-chip Interface
| EC Controller | ! Controller, -
| interface Etc. |
I |
| I
Lo o J

Figure 1 Example of the EC Interface in a System

1.1 Features

The EC interface has the following features:

» 32 or 64-bit data buses

» 36-hit addressing

» Separate read and write data buses

« All signals are unidirectional—no bidirectional or 3-state buses

« Fully registered, synchronous interface to the master

» Separate read and write bus error indications

» Separate address and data phases allow pipelining on the interface
« No limit on the number of outstanding transactions

« Number of outstanding transactions can be limited by the slave
 Support for variable burst length

» Sequential or sub-block ordering burst address sequences

« Indication of first and last address phase of a burst

» Request for emptying external write buffers and indication of external write buffers being empty

« Byte enable indication

EC™ Interface Specification, Revision 1.03 5

EC™ Interface Specification

* Indication of instruction read (fetch)

» Address and data phases can complete the same cycle they are initiated (zero wait states)

* No limit on the number of wait states in address and data phases

 Independent read and write data phases. A read transaction can overtake a write transaction and vice versa.

* Only one master and one slave

1.2 Basic Operation

All inputs to the master are sampled at the rising edge of the Clock signal. Further the outputs from the master change
with respect to a rising edge of the Clock signal.

The EC interface does not include a signal to indicate reset. Therefore to reset the EC interface, reset the master and the
slave simultaneously. Whenever the EC interface is reset, all transactions are aborted and the bus returns to the idle state
EB_ARdy, EB_Avalid, EB_WDRdy, EB_RdVal, EB_Burst, EB_BFirst, EB_BLast, EB_RBErr, and EB_WBErr must

be driven inactive during reset.

Each transaction on the EC interface haaddress phasand adata phasewhich can have a number of wait states.

A wait state in the address phase is nameadaness wait statand is defined as a clock cycle where EB_AValid is
asserted and EB_ARdy was sampled deasserted in the beginning of the cycle.

An address phase begins in the clock cycle where the master asserts EB_AValid. An address phase ends on the positive
clock edge following an asserted sample of EB_ARdy. For maximum speed (no address wait states), EB_ARdy has to
be sampled asserted on the positive clock edge preceding the beginning of the address phase. During an address phas
all signals driven by the master are unchanged and stable (except from the write data bus, EB_WData).

Due to the separate read and write data buses, two types of data phases exist: the read data phase and the write data phe

A wait state in a data phase is namethta wait statelt is defined as a clock cycle where the corresponding address
phase has been started (and possibly ended) and:

» For a write data phase, EB_WDRdy is sampled deasserted at the beginning of the cycle

» For a read data phase, EB_RdVal is sampled deasserted at the end of the cycle

A read data phase begins in the clock cycle where the master starts the corresponding read address phase. However,
there are outstanding read data phases when the read address phase begins, the corresponding read data phase does
start until all of the preceding read data phases have ended. The read data phase ends at the positive clock edge whe
EB_RdVal is sampled asserted. It can not end earlier than when the corresponding address phase ends.

A write data phase begins in the clock cycle where the master starts the corresponding write address phase. However, if
there are outstanding write data phases when the write address phase begins, the corresponding write data phase do
not start until all of the preceding write data phases have ended. The write data phase ends at the positive clock edge
following the positive clock edge where EB_WDRdy is sampled asserted. For maximum speed (no data wait states),
EB_WDRdy must be asserted on the positive clock edge preceding the beginning of the corresponding address phase. |
cannot end earlier than the corresponding address phase ends.

From these definitions, for a given transaction the number of data wait states must be greater than or equal to the numbe
of address wait states.

6 EC™ Interface Specification, Revision 1.03

2 Signal List

2 Signal List

Table 2lists all of the EC interface signals in alphabetical ortedsle 1defines the signal directions.

Table 1 Signal Direction Key

Dir

Description

Input to the master. Unless otherwise noted, input
signals are sampled on the rising edge of the
appropriate CLK signal.

Output from the master. Unless otherwise noted,
output signals are driven on the rising edge of the
appropriate CLK signal.

Sl

Static input to the master. These signals are normally
tied to either power or ground and should not change
state while RESET is deasserted.

Table 2 EC Interface Signals

Signal Name

Dir

Description

EB_A[35:2]

Address bus. Only valid when EB_AValid is asserted. Note that only
EB_A[35:3] address lines are used in 64-bit implementations.

EB_ARdy

Assertion of this signal indicates whether the slave is ready for a new addgress.
The master does not complete the address phase until the clock cycle after

EB_ARdy is sampled asserted.

EB_AValid

Assertion of this signal indicates that the values on the address bus and access

type lines are valid (signifying an address phase is ongoing). EB_AValid is
always valid and cannot be deasserted between address phases within 3

EC™ Interface Specification, Revision 1.03

burst.

EC™ Interface Specification

Table 2 EC Interface Signals (Continued)

Signal Name Dir Description
Indicates which bytes of the EB_RData or EB_WData buses are involved in the
data phase corresponding to the current address phase. If an EB_BE signal is
asserted, the associated byte is being read or written. EB_BE lines are onlyvalid
while EB_AValid is asserted.
During bursts all lines must be asserted.
During single transactions, if the master supports EB_BE patterns otherthan
the default ones listed in the two tables below, it must have an input signal|that
makes it possible to force it into using the default patterns only.
Byte enables supported by default in 64-bit implementations
00000001 00000010 00000100 00001000
00010000 00100000 01000000 10000000
11000000 00110000 00001100 00000011
11100000 01110000 00001110 00000111
11110000 00001111 11111000 00011111
11111100 00111111 11111110 01111111
11111111
EB_BE[3:0
EB_BE[7'4 o
—) Byte enables supported by default in 32-bit implementations
0001 0010 0100 1000
1100 0011 0111 1110
1111
EB_BE Read Data Bits Write Data Bits
Signal Sampled Driven Valid
EB_BE[0] EB_RData[7:0] EB_WData[7:0]
EB_BE[1] EB_RData[15:8] EB_WData[15:8]
EB_BE[2] EB_RData[23:16] EB_WData[23:16]
EB_BE[3] EB_RData[31:24] EB_WData[31:24]
EB_BE[4F EB_RData[39:32] EB_WData[39:32]
EB_BE[SF |EB_RData[47:40] EB_WData[47:40]
EB_BE[6F |EB_RData[55:48] EB_WData[55:48]
EB_BE[7F EB_RData[63:56] EB_WData[63:56]
EB BFirst o Assertion of this signal indicates the address phase is the first address phpse of
— a burst. EB_BFirst is always valid.
Assertion of this signal indicates the address phase is the last address phase of
EB_BLast O | aburst. Note that the time for assertion of EB_BLast is determined by usg of
EB_Burst, EB_BFirst, and EB_BLen. EB_BLast is always valid.
EB_BLen[1:0] indicate the length (number of address/data phases) of the hurst.
This signal is an implementation-specific static output.
EB_BLength[1:0] Burst Length
EB_BLen[1:0] 0 0 reserved
1 4
2 8
3 reserved

EC™ Interface Specification, Revision 1.03

2

Signal List

Table 2 EC Interface Signals (Continued)

Signal Name

Dir

Description

EB_Burst

or a write burst. EB_Burst is always valid.

Assertion of this signal indicates that the current address phase is for a cache fill

EB_EWBE

must deassert EB_EWBE in the cycle following the assertion of the

write buffers are empty. Se&ection 4, "External Write Buffers" on page &
more details.

Indicates that all external write buffers are empty. The external write buffers

corresponding EB_WDRdy and keep EB_EWBE deasserted until the external

EB_Instr

Assertion of this signal indicates that the address is for an instruction fetgh as
opposed to a data read. EB_Instr is only valid when EB_AValid is asserted.

EB_RBEIr

it in the same cycle that the corresponding EB_RdVal is asserted.

Bus error indicator for read transactions. EB_RBEtrr is always valid. Only agsert

EB_RData[31:0]
EB_RData[63:37

Read data bus. Valid at the end of a read data phase (on the rising clock
where EB_RdVal is sampled asserted).

edge

EB_RdVal

Assertion of this signal indicates that the slave is driving read dataon EB_R

Data

(it ends a read data phase). EB_RdVal must always be valid. EB_RdVal must
never be asserted until after the corresponding EB_ARdy is sampled asserted.

EB_SBlock

SI

When this signal is deasserted, sequential addressing is us&tclea 3.7,
"Burst Transactions" on page & details.

When this signal is asserted, sub-block ordering is used for addressing bursts.

EB_WBErr

assert it in the cycle following an asserted sample of the corresponding
EB_WDRdy.

Bus error indicator for write transactions. EB_WBErr is always valid. Only

EB_WnData[31:0]
EB_WData[63:37]

Write data bus. Kept unchanged and stable during a write data phase un
write data phase ends (the positive clock edge following an asserted sam
EB_WDRdy).

til the
ble of

EB_WDRdy

Assertion of this signal indicates that the slave is ready to process a write; it
that follows the positive clock edge where EB_WDRdy is sampled assert

EB_ARdy is sampled asserted.

EB_WDRdy is not sampled until the rising edge where the corresponding

ends

a write data phase and the EB_WData can change after the positive clock|edge

ed.

EB_Write

Assertion of this signal indicates that the address phase is for a write.
Deassertion of this signal indicates that the address phase is for a read.
signal is only valid when EB_AValid is asserted.

This

EB_WWBE

asserted eventually. S8ection 4, "External Write Buffers” on ' page 8t
more details.

Assertion of this signal indicates that the master is waiting for external wijite
buffers to empty. EB_WWBE can be asserted when EB_EWBE is asserted, but
if EB_EWBE is deasserted and EB_ WWBE is asserted, EB_EWBE must be

a. Optional. Only used in 64-bit implementations.

EC™ Interface Specification, Revision 1.03

EC™ Interface Specification

3 Timing Diagrams

10

The following sections provide examples of typical EC interface timing.

3.1 Single Read Transactions

Figure 2shows the basic timing relationships between signals during a simple (fastest) read transaction. When the master
is ready to begin a bus transaction (cycle 3), the address is driven on EB_A, the associated control information is driven
on EB_Instr, EB_Burst, EB_BFirst, EB_BLast, EB_BLen, EB_Write, and EB_BE, and EB_AValid is asserted. On the
same rising clock edge that these signals are driven out (end of cycle 2), the EB_ARdy signal state is sampled. If
EB_ARdy is sampled deasserted, the master maintains the transaction values on the previously mentioned signals. The
master continues driving valid and stable values on these interface signals until the rising clock edge following the one
that the EB_ARdy signal is sampled asserted.

Starting in the same cycle as the read transaction is initiated, the master samples EB_RdVal, EB_RData, and EB_RBEtr.
These signals are sampled on each rising clock edge until the EB_RdVal signal is sampled asserted. The data values
sampled with this asserted EB_RdVal are considered valid. However, if EB_RBErr was sampled asserted in same cycle,
the transaction is considered failed.

Note that the data phase cannot end earlier than the corresponding address phase. EB_ARdy must be sampled assert
at least one clock cycle before the corresponding EB_RdVal is sampled asserted.

EC™ Interface Specification, Revision 1.03

3 Timing Diagrams

Cycle # 1 2 3 4 5 6 7 8 9

Clock| | | | | | | | | |

10

EB_ARdy|X

EB_A AL

EB_Avalid

EB_Instr Valid

EB_Write

EB_BE BEL

EB_Burst B

EB_BFirst |

EB_BlLast|

EB_BLen Valid

EB_RData RDlW

EB_RBErr

EB_RDVal

EB_WData

EB_WBErr|

EB_WDRdy><

Figure 2 Fastest Single Read Transaction Timing

EC™ Interface Specification, Revision 1.03

11

EC™ Interface Specification

Figure 3shows an example of a read transaction with three wait states in the data phase (indicated by the deassertion of
EB_RdVal for three clock cycles). EB_RdVal is sampled deasserted on the rising edges at the beginning of cycles 4, 5,
and 6 and then is asserted on cycle 7.

12 EC™ Interface Specification, Revision 1.03

3 Timing Diagrams

Cycle # 1 2 3 4 5 6 7 8 9

Clock| | | | | | | | | |

10

EB_ARdy|X

EB_A AL

EB_Avalid

EB_Instr Valid

EB_Write

EB_BE BEL

EB_Burst B

EB_BFirst |

EB_BlLast|

EB_BLen Valid

EB_RData RDlW

EB_RBErr

EB_RDVal

EB_WData

EB_WBErr|

EB_WDRdy><

Figure 3 Single Read Transaction Timing (3 Data Wait States)

EC™ Interface Specification, Revision 1.03

13

EC™ Interface Specification

14

3.2 Single Write Transactions

Figure 4shows a zero wait state (fastest) write transaction. Like the read transaction when a write request is issued (cycle
3), the address and control information for the transaction are driven on EB_A, EB_Instr, EB_Burst, EB_BFirst,
EB_BLast, EB_BLen, EB_Write, and EB_BE. These signals remain unchanged until the rising clock edge after the
EB_ARdy signal is sampled asserted.

The write data is driven on the write data bus, EB_WData, in same cycle as the address is driven on EB_A. The write
data is held on the bus until the rising clock edge after EB_WDRdy is sampled asserted.

EB_WBETrr is sampled on the first rising clock edge after the rising clock edge that EB_WDRdy is sampled asserted. If
EB_WABET"r is asserted at this time, the bus transaction is considered failed.

Note that the data phase cannot end earlier than the corresponding address phase. EB_WDRdy must be sampled assert
on the same clock edge or later than the clock edge where the corresponding EB_ARdy is sampled asserted.

EC™ Interface Specification, Revision 1.03

3 Timing Diagrams

Cycle #

Clock

EB_ARdy

10

EB_A

Al

EB_Avalid

EB_Instr

Valid

EB_Write

EB_BE

BE1

EB_Burst B

EB_BFirst |

EB_BlLast|

EB_BLen

Valid

EB_RData

EB_RBErr|

EB_RDVal|

EB_WData

wD1

EB_WBErr

EB_WDRdy

Figure 4 Fastest Single Write Transaction Timing

EC™ Interface Specification, Revision 1.03

15

EC™ Interface Specification

Figure 5shows an example of a write transaction with four data wait states, indicated by the deassertion of the
EB_WDRdy signal. EB_WDRdy is deasserted for four clock cycles and then asserted. Note that the address phase is
prolonged by one clock cycle because EB_ARdy is deasserted for one clock cycle (sampled deasserted at the end of cycle

2).

16 EC™ Interface Specification, Revision 1.03

3 Timing Diagrams

Cycle #

Clock

EB_ARdy

10

EB_A

Al

EB_Avalid

EB_Instr

EB_Write

EB_BE

EB_Burst B

EB_BFirst |

EB_BLast

EB_BLen

EB_RData

EB_RBErr|

EB_RDVal|

EB_WData

EB_WBErr

EB_WDRdy

alid

BE1

alid

wD1

—

Figure 5 Single Write Transaction Timing (1 Address Wait State and 4 Data Wait States)

EC™ Interface Specification, Revision 1.03

17

EC™ Interface Specification

3.3 Back-to-back Read Transactions
Figure 6shows an example of two consecutive read transactions, which shows the ability to pipeline read addresses

independent of data wait states. The pipeline depth is implementation specific. Through manipulation of the EB_ARdy
signal, the slave can limit the depth of the address pipelining.

18 EC™ Interface Specification, Revision 1.03

3 Timing Diagrams

Cycle # 1 2 3

Clock | | |

10

EB_ARdy|X

EB_A AL

A2

EB_Avalid

EB_Instr Valid

alid

EB_Write

EB_BE BEL

BE2

EB_Burst B

EB_BFirst |

EB_BlLast|

EB_BLen Valid

alid

EB_RData

EB_RBErr

RD2

EB_RDVal

EB_WData

EB_WBErr|

EB_WDRdy><

Figure 6 Back-to-back Read Transaction Timing

EC™ Interface Specification, Revision 1.03

19

EC™ Interface Specification

3.4 Back-to-back Write Transactions

Figure 7shows an example of two consecutive write transactions. Similar to the read transactions, pipelining of write
addresses can occur regardless of data wait states.

Cycle # 1 2 3 4 5 6 7 8 9 10

Clock | | | | | | | | | | |
EB_ARdy|X

EB_A AL A2

EB_Avalid

EB_Instr alid Valid

EB_Write

EB_BE BEL BE2

EB_Burst B

EB_BFirst|

EB_BlLast|

EB_BLen alid Valid

EB_RData

EB_RBErr|

EB_RDVal|

EB_WData wD1 WD2

EB_WBErr

EB_WDRdy| X __

Figure 7 Back-to-back Write Transaction Timing

20 EC™ Interface Specification, Revision 1.03

3 Timing Diagrams

3.5 Read Transaction Followed by a Write Transaction
Figure 8shows the relationship between a read transaction and a subsequent write transaction. A write transaction

following a read transaction behaves as described for the single write transaction. Completion of these transactions out
of order is allowed.

Cycle # 1 2 3 4 5 6 7 8 9 10

Clock | | | | | | | | | | |

EB_ARdy><

EB_A AL A2

EB_Avalid

EB_Instr Valid Valid

EB_Write

EB_BE BE1 BE2

EB_Burst B

EB_BFirst|

EB_BlLast|

EB_BLen Valid Valid

EB_RData RDlW

EB_RBErr

EB_RDVal

EB_WData WD2

EB_WBErr

EB_WDRdy><

Figure 8 Read Transaction Followed by a Write Transaction

EC™ Interface Specification, Revision 1.03 21

EC™ Interface Specification

Figure 9shows an example of a read transaction followed by a write transaction where the write transaction is completed
prior to the read transaction (out of order).

Cycle # 1 2 3 4 5 6 7 8 9 10

Clock | | | | | | | | | | |
EB_ARdy|X

EB_A AL A2

EB_AValid

EB_Instr Valid Valid

EB_Write

EB_BE BE1 BE2

EB_Burst B

EB_BFirst |

EB_BlLast|

EB_BLen Valid Valid

EB_RData RDlW

EB_RBErr

EB_RDVal

EB_WData WD2

EB_WBErr

EB_WDRdy><

Figure 9 Read Transaction Followed by a Write Transaction with Reordering

22 EC™ Interface Specification, Revision 1.03

3 Timing Diagrams

3.6 Write Transaction Followed by a Read Transaction
Figure 10shows an example of a write transaction followed by a read. As in the case of a write following a read, a read

transaction following a write transaction is not affected by the behavior of the write transaction. Completion of these
transactions out of order is allowed.

Cycle # 1 2 3 4 5 6 7 8 9 10

Clock | | | | | | | | | | |

EB_ARdy><

EB_A AL A2

EB_Avalid

EB_Instr Valid Valid

EB_Write

EB_BE BE1 BE2

EB_Burst B

EB_BFirst|

EB_BlLast|

EB_BLen Valid Valid

EB_RData RDZW

EB_RBErr

EB_RDVal

EB_WData wD1

EB_WBErr

EB_WDRdy| X

Figure 10 Write Transaction Followed by a Read Transaction

EC™ Interface Specification, Revision 1.03 23

EC™ Interface Specification

Figure 11shows an example of a write transaction followed by a read transaction where the read transaction is completed
prior to the write transaction (out of order).

24 EC™ Interface Specification, Revision 1.03

3 Timing Diagrams

Cycle #

Clock

EB_ARdy|X

EB_A

EB_Avalid

EB_Instr

EB_Write

EB_BE

EB_Burst|
EB_BFirst |

EB_BLast|

EB_BLen

EB_RData

EB_RBErr

EB_RDVal

EB_WData

EB_WBErr

EB_WDRdy| X

Figure 11 Write Transaction Followed by a Read Transaction with Reordering

EC™ Interface Specification, Revision 1.03

1 3 4 10
Al A2
Valid Valid
BE1 BE2
Valid Valid
RDZW
WD1

25

EC™ Interface Specification

26

3.7 Burst Transactions

A burst transaction initiates the transfer of multiple related transfers. Read bursts are used to read data to be placed in
the instruction or data cache. Write bursts are used to empty the contents of the write buffers.

Note that initiated bursts are always completed. The burst transaction cannot be aborted before reaching the burst bes
count (indicated by EB_BLen) except in the case where the EC interface is reset.

EB_Burstis asserted during the entire burst address sequence. EB_BFirstis driven asserted during the first address phas
of the burst and is deasserted with each of the remaining address phases. EB_BLast is driven asserted during the last
address phase and is deasserted with all prior address phases. Apart from EB_Burst, EB_BFirst and EB_BLast behavior,
and the deterministic address sequence, the multiple transfers of a burst transaction behave like that of back-to-back
single transactions, which simplifies interfacing to systems that do not support burst transactions. Note that it is possible
in the presence of data wait states, for all of the burst address phases to complete before the first data phase of the burs
(or even of a preceding transaction) has completed. If this behavior is undesirable, EB_ARdy can be used to control the
pace at which the addresses are transferred.

Note that EB_AValid cannot be deasserted between address phases within a burst and that all bits in EB_BE must be
asserted in all address phases within a burst.

Figure 12shows an example of a read burst transaction. EB_BLen indicates the length of the biBstfase2, "Signal

List" on page #or further information on EB_BLen). The data requested is always an aligned block according to the
EB_BLensignal. The order of the words within the block varies depending on which word in the block is being requested
and the value of EB_SBIlock (s&able 3throughTable 6for further information on the refill scheme).

EC™ Interface Specification, Revision 1.03

3 Timing Diagrams

Cycle # 1 2 3

Clock | | |

10

EB_ARdy|X

EB_A AL

A2

A3

A4

EB_Avalid

EB_Instr Valid

Valid

Valid

Valid

EB_Write

EB_BE

All

sserted

EB_Burst

EB_BFirst

EB_BLast

EB_BLen

alid

EB_RData

RD2

EB_RBErr

RD4

EB_RDVal

EB_WData

EB_WBErr|

EB_WDRdy><

Figure 12 Burst Read Transaction Timing

EC™ Interface Specification, Revision 1.03

27

EC™ Interface Specification

Table 3throughTable 6show the possible sequences for the least significant address bits during a burst.

28

Table 3 Burst Order for Sequential Ordering (4 Beat Bursts)

Req Word EB_A[3:2] (EB_A[4:3]% Sequence
(DWord?)
Address
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

a. Optional. Only used in 64-bit implementations.

Table 4 Burst Order for Sub-block Ordering (4 Beat Bursts)

Req Word EB_A[3:2] (EB_A[4:3]%) Sequence
(DWord #)
Address
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

a. Optional. Only used in 64-bit implementations.

Table 5 Burst Order for Sequential Ordering (8 Beat Bursts)

Req Word EB_A[4:2] (EB_A[5:3]%) Sequence
(DWord®)
Address
0 0 1 2 3 4 6 7
1 1 2 3 4 5 7 0
2 2 3 4 5 6 0 1
3 3 4 5 6 7 1 2
4 4 5 6 7 0 2 3
5 5 6 7 0 1 3 4
6 6 7 0 1 2 4 5
7 7 0 1 2 3 5 6

a. Optional. Only used in 64-bit implementations.

EC™ Interface Specification, Revision 1.03

3 Timing Diagrams

Table 6 Burst Order for Sub-block Ordering (8 Beat Bursts)

Req Word EB_A[4:2] (EB_A[5:3]%) Sequence
(DWord @)
Address

0 0 1 2 3 4 5 6 7

1 1 0 3 2 5 4 7 6

2 2 3 0 1 6 7 4 5

3 3 2 1 0 7 6 5 4

4 4 5 6 7 0 1 2 3

5 5 4 7 6 1 0 3 2

6 6 7 4 5 2 3 0 1

7 7 6 5 4 3 2 1 0

a. Optional. Only used in 64-bit implementations.

EC™ Interface Specification, Revision 1.03

29

EC™ Interface Specification

Figure 13shows a burst write. Burst write transactions are used to empty write buffers. Write burst addresses always
start at the lowest address of an address block according to the EB_BLen indication.

Note that like single transactions, burst read and write transactions can complete out of order. Burst reads can overtake
burst writes and vice versa.

Cycle # 1 2 3 4 5 6 7 8 9 10

Clock | | | | | | | | | | |
EB_ARdy|X

EB_A Al A2 A3 A4

EB_Avalid

EB_Instr Valid Valid Valid Valid

EB_Write

EB_BE All asserted

EB_Burst

EB_BFirst

EB_BLast

EB_BLen alid

EB_RData

EB_RBErr|

EB_RDVal|

EB_WData wD1 wWD2 WD3 WD4

EB_WBEIr _><_
EB_WDRdy| X _/___

Figure 13 Burst Write Transaction Timing

30 EC™ Interface Specification, Revision 1.03

4 External Write Buffers

4 External Write Buffers

Some systems might have external write buffers to increase bus efficiency and system performance. The EC interface
has a simple two-signal protocol that allows the master to have some control over the external write buffers. When it
asserts EB. WWBE, the master signals that it is waiting for EB_ EWBE (External Write Buffers Empty) to be asserted.
The master uses EB_EWBE to ensure that all pending writes have completed before it begins a new transaction.

If no external write buffers exist, tie EB_ EWBE HIGH.

Note that EB_ WWBE is not used to ensure coherency. If a write transaction is to the external write buffer, the master
can generate a read request to the given address without asserting EB_ WWBE (because the master has no knowledge ¢
the external write buffers). Therefore any write buffers in the system must maintain coherency with reads.

A Endianess

The EC interface has no signal that indicates little- or big-endian operation. If the slave requires this information, for

example, to generate the lower address bits that are not supplied with the EC interface, consult the documentation tha
comes with the core.

To help understand the use of endian@afje 7andTable 8show some cases of how stores appear on the EC interface
in little-endian and big-endian mode in a 32-bit and a 64-bit implementation of the EC interface.

Table 7 Endian Examples, 32-bit Implementation

Internal Big-endian Little-endian
Addr[1:0]
EB_DI[31:0] EB_BE[3:0] EB_DJ[31:0] | EB_BE[3:0]
lui t0, Ox789a
ori t0, t0, Oxbcde
sb t0, 0x0(r0) 0 OxdeXXXXXX 1000 OXXXXXXXde 0001
sb t0, 0x1(r0) 1 OXXXdeXXXX 0100 OXXXXXdeXX 0010
sb t0, 0x2(r0) 2 OXXXXXdeXX 0010 OxXXdeXXXX 0100
sb t0, 0x3(r0) 3 OXXXXXXXde 0001 OxdeXXXXXX 1000
sh t0, 0x0(r0) 0 OxbcdeXXXX 1100 OxXXXXbcde 0011
sh t0, 0x2(r0) 2 OXXXXXbcde 0011 OxbcdeXXXX 1100
swl t0, 0x1(r0) 1 0xXX789abc 0111 OXXXXX789a 0011
swl t0, 0x2(r0) 2 OXXXXX789a 0011 0xXX789abc 0111
swr t0, 0x1(r0) 1 OxbcdeXXXX 1100 0x9abcdeXX 1110
swr t0, 0x2(r0) 2 0x9abcdeXX 1110 OxbcdeXXXX 1100
sw t0, 0x0(r0) 0 0x789abcde 1111 0x789abcde 1111

EC™ Interface Specification, Revision 1.03

31

EC™ Interface Specification

Table 8 Endian Examples, 64-bit Implementation

Internal Big-endian Little-endian
Addr[2:0]
EB_D[63:0] EB_BE EB_D[63:0] EB_BE
[7:0] [7:0]

lui t0, 0x0123
T
T e
ori t0, t0, Oxcdef
sb t0, 0x0(r0) 0 OXEFX XXX XXX XXX XXXX 10000000 | OXXXXXXXXXXXXXXXef 00000001
sb t0, 0x1(r0) 1 OXXXEfXXXXXXXXXXXX |01000000 | OXXXXXXXXXXXXXefXX 00000010
sb t0, 0x2(r0) 2 OXXXXXEFX XXX XXXXXX 00100000 | OXXXXXXXXXXXefX XXX 00000100
sb t0, 0x3(r0) 3 OXXX XXX XEFXXXXXXXX 00010000 | OXXXXXXXXXefXXXXXX 00001000
sb t0, 0x4(r0) 4 OXXXX XXX XXX XXXXX 00001000 | OXXXXXXXefXXXXXXXX 00010000
sb t0, 0x5(r0) 5 OXXXXXXXXXXXefX XXX 00000100 | OXXXXXefXXXXXXXXXX 00100000
sb t0, 0x6(r0) 6 OXXXX XXX XXX XX XefXX 00000010 | OXXXefXXXXXXXXXXXX 01000000
sb t0, 0x7(r0) 7 OXXXXXXXXXXXXXXXef 00000001 | OxefXXXXXXXXXXXXXX 10000000
sh t0, 0x0(r0) 0 OxcdefX XXX XXX XX XXX 11000000 | OXXXXXXXXXXXXXcdef 00000011
sh t0, 0x2(r0) 2 OXXXXXcdefX XXX XXXX 00110000 | OXXXXXXXXXcdefXXXX 00001100
sh t0, 0x4(r0) 4 OXXXXXXXXXcdefX XXX 00001100 | OxXXXXcdefXXXXXXXX 00110000
sh t0, 0x6(r0) 6 OXXXXXXXXXXXXXcdef 00000011 | OxcdefXXXXXXXXXXXX 11000000
swl t0, 0x1(r0) 1 OxXX89abcd X XXXXXXX 01110000 | OXXXXXXXXXXXXX89ab 00000011
swl t0, 0x2(r0) 2 OXXXXX89abXXXXXXXX | 00110000 [OXXXXXXXXXXX89abcd 00000111
swl t0, 0x5(r0) 5 OXXXXXXXXXXX89abcd 00000111 | OxXXXX89abXXXXXXXX 00110000
swl t0, 0x6(r0) 6 OXXX XXX XXX XXX X89ab 00000011 | OxXX89abcdXXXXXXXX 01110000
swr t0, 0x1(r0) 1 OXcdefX XX XXX XXX XXX 11000000 | OXXXXXXXXXabcdefXX 00001110
swr t0, 0x2(r0) 2 OxabcdefX XXXXXXXXX 11100000 | OXXXXXXXXXcdefXXXX 00001100
swr t0, 0x5(r0) 5 OXXXXXXXXXcdefX XXX 00001100 | OxabcdefXXXXXXXXXX 11100000
swr t0, 0x6(r0) 6 OXXXXXXXXXabcdefXX 00001110 | OxcdefXXXXXXXXXXXX 11000000
sw t0, 0x0(r0) 0 0x89abcdef X XXXXXXX 11110000 OxXXXXXXXX89abcdef 00001111
sw t0, 0x4(r0) 4 OXXXXXXXXX89abcdef 00001111| 0x89abcdefXXXXXXXX 1111000
sdl t0, 0x1(r0) 1 0xXX0123456789abcd 01111111 OXXXXXXXXXXXXX0123 0000001
sdl t0, 0x2(r0) 2 OxXXXX0123456789ab 00111111 OXXXXXXXXXXX012345 0000011
sdl t0, 0x3(r0) 3 OXXXXXXX0123456789 00011117 OXXXXXXXXX01234567 0000111
sdl t0, Ox4(r0) 4 OXXXXXXXXX01234567 00001111| OXxXXXXXX0123456789 0001111
sdl t0, 0x5(r0) OXXXXXXXXXXX012345 00000111 | OxXXXX0123456789ab 0011111
sdl t0, 0x6(r0) 6 OXXXXAKXXXXXXXXX0123 00000011 | 0xXX0123456789abcd 0111111

32

EC™ Interface Specification, Revision 1.03

B Lower Address Bit Generation

Table 8 Endian Examples, 64-bit Implementation (Continued)

Internal Big-endian Little-endian
Addr[2:0]
EB_D[63:0] EB BE EB_D[63:0] EB_BE
[7:0] [7:0]
sdr t0, 0x1(r0) 1 OxcdefX XXX XXX XXXXX 11000000 | 0x23456789abcdefXX 11111110
sdr t0, 0x2(r0) 2 OxabcdefX XX XXXXXXX 11100000 | 0x456789abcdefXXXX 11111100
sdr t0, 0x3(r0) 3 0x89abcdef X XX XXXXX 11110000 0x6789abcdefXXXXXX 11111000
sdr t0, 0x4(r0) 4 0x6789abcdef X XX XXX 11111000 0x89abcdef X XXXXXXX 11110000
sdr t0, Ox5(r0) 5 0x456789abcdefX XXX 1111110 Oxabcdef X XXX XXXXXX 11100000
sdr t0, Ox6(r0) 6 0x23456789abcdefXX 1111111P OxcdefX XX XXX XXX XXX 11000000
sd t0, 0x0(r0) 0 0x0123456789abcdef 111111311 0x0123456789abcdef 11111111

B Lower Address Bit Generation

Figure 14shows a Verilog example of how the lower address bits can be generated for use with a SysAD interface. Note
that this case requires that only the default EB_BE patterns are used.

/I Low address bit generation
wire [1:0] my_a 1 0= (BigEndian==1b1
?

/I big endian
(EB_BE[3]?2d0:
EB_BE[2]?2d1:
EB_BE[1]?2d2:
2d3)

// litle endian
(EB_BE[0]? 2'd0:
EB_BE[1]?2d1:
EB_BE[2]? 2d2:
2d3)

Figure 14 Example of Generating Low Address Bit

C Revision History

Revision Date Comments
01.00 00/03/01 First official release.

01.01 00/07/04 %AoorlroTI%? revision history and changed page 2, footer and the setup for conversion to pdf

01.02 00/10/09 Removed copyright notice from footer.

01.03 00/12/18 Converted document to new template. Editorial changes only.

EC™ Interface Specification, Revision 1.03 33

EC™ Interface Specification

34

EC™ Interface Specification, Revision 1.03

	EC™ Interface Specification
	1� Introduction
	1.1� Features
	1.2� Basic Operation

	2� Signal List
	3� Timing Diagrams
	3.1� Single Read Transactions
	3.2� Single Write Transactions
	3.3� Back-to-back Read Transactions
	3.4� Back-to-back Write Transactions
	3.5� Read Transaction Followed by a Write Transaction
	3.6� Write Transaction Followed by a Read Transaction
	3.7� Burst Transactions

	4� External Write Buffers
	A� Endianess
	B� Lower Address Bit Generation
	C� Revision History

