
Document Number: MD00052
Revision 1.03

December 18, 2000

MIPS Technologies, Inc.
1225 Charleston Road

Mountain View, CA 94043-1353

EC™ Interface Specification

Copyright © 2000 MIPS Technologies, Inc. All rights reserved.

Unpublished rights reserved under the Copyright Laws of the United States of America.

This document contains information that is proprietary to MIPS Technologies, Inc. (“MIPS Technologies”). Any
copying, modifyingof this information (in whole or in part) which is not expressly permitted in writing by MIPS
Technologies is strictly prohibited. At a minimum, this information is protected under unfair competition laws and the
expression of the information contained herein is protected under federal copyright laws. Violations thereof may result
in criminal penalties and fines.

MIPS Technologies reserves the right to change the information contained in this document to improve function, design
or otherwise. MIPS Technologies does not assume any liability arising out of the application or use of this information.
Any license under patent rights or any other intellectual property rights owned by MIPS Technologies or third parties
shall be conveyed by MIPS Technologies in a separate license agreement between.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the
United States government (“Government”), the use, duplication, reproduction, release, modification, disclosure, or
transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal
Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202
for military agencies. The use of this information by the Government is further restricted in accordance with the terms
of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies.

MIPS, R3000, R4000, R5000, R8000 and R10000 are among the registered trademarks of MIPS Technologies, Inc., and
R4300, R20K, MIPS16, MIPS32, MIPS64, MIPS-3D, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MDMX,
SmartMIPS, 4K, 4Kc, 4Km, 4Kp, 5K, 5Kc, 20K, 20Kc, EC, MGB, SOC-it, SEAD, YAMON, ATLAS, JALGO, CoreLV
and MIPS-based are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

EC™ Interface Specification, Revision 1.03

EC™ Interface Specification, Revision 1.03 3

Table of Contents

1 Introduction ..5
1.1 Features ..5
1.2 Basic Operation ..6

2 Signal List ..7
3 Timing Diagrams ...10

3.1 Single Read Transactions ...10
3.2 Single Write Transactions ..14
3.3 Back-to-back Read Transactions ...18
3.4 Back-to-back Write Transactions ..20
3.5 Read Transaction Followed by a Write Transaction ..21
3.6 Write Transaction Followed by a Read Transaction ..23
3.7 Burst Transactions ...26

4 External Write Buffers ...31
A Endianess ...31
B Lower Address Bit Generation ..33
C Revision History ..33

4 EC™ Interface Specification, Revision 1.03

EC™ Interface Specification, Revision 1.03 5

EC™ Interface Specification

1 Introduction

This document describes the EC™ interface designed for microprocessor cores. All MIPS cores implementing the EC
interface comply to this specification. Implementation-specific details can be found in the documentation accompanying
the core.

Use the EC interface to attach memory controllers, memory-mapped I/Os, etc. A bus controller must be included in cases
where multiple slaves connect to the EC interface.Figure 1 shows an example of the EC interface placement within a
system.

Figure 1 Example of the EC Interface in a System

1.1 Features

The EC interface has the following features:

• 32 or 64-bit data buses

• 36-bit addressing

• Separate read and write data buses

• All signals are unidirectional—no bidirectional or 3-state buses

• Fully registered, synchronous interface to the master

• Separate read and write bus error indications

• Separate address and data phases allow pipelining on the interface

• No limit on the number of outstanding transactions

• Number of outstanding transactions can be limited by the slave

• Support for variable burst length

• Sequential or sub-block ordering burst address sequences

• Indication of first and last address phase of a burst

• Request for emptying external write buffers and indication of external write buffers being empty

• Byte enable indication

Core

Bus
Controller

EC

Memory
Controller,

Etc.

Off-chip Interface

interface

6 EC™ Interface Specification, Revision 1.03

 EC™ Interface Specification

• Indication of instruction read (fetch)

• Address and data phases can complete the same cycle they are initiated (zero wait states)

• No limit on the number of wait states in address and data phases

• Independent read and write data phases. A read transaction can overtake a write transaction and vice versa.

• Only one master and one slave

1.2 Basic Operation

All inputs to the master are sampled at the rising edge of the Clock signal. Further the outputs from the master change
with respect to a rising edge of the Clock signal.

The EC interface does not include a signal to indicate reset. Therefore to reset the EC interface, reset the master and the
slave simultaneously. Whenever the EC interface is reset, all transactions are aborted and the bus returns to the idle state.
EB_ARdy, EB_AValid, EB_WDRdy, EB_RdVal, EB_Burst, EB_BFirst, EB_BLast, EB_RBErr, and EB_WBErr must
be driven inactive during reset.

Each transaction on the EC interface has anaddress phase and adata phase, which can have a number of wait states.

A wait state in the address phase is named anaddress wait state and is defined as a clock cycle where EB_AValid is
asserted and EB_ARdy was sampled deasserted in the beginning of the cycle.

An address phase begins in the clock cycle where the master asserts EB_AValid. An address phase ends on the positive
clock edge following an asserted sample of EB_ARdy. For maximum speed (no address wait states), EB_ARdy has to
be sampled asserted on the positive clock edge preceding the beginning of the address phase. During an address phase,
all signals driven by the master are unchanged and stable (except from the write data bus, EB_WData).

Due to the separate read and write data buses, two types of data phases exist: the read data phase and the write data phase.

A wait state in a data phase is named adata wait state. It is defined as a clock cycle where the corresponding address
phase has been started (and possibly ended) and:

• For a write data phase, EB_WDRdy is sampled deasserted at the beginning of the cycle

• For a read data phase, EB_RdVal is sampled deasserted at the end of the cycle

A read data phase begins in the clock cycle where the master starts the corresponding read address phase. However, if
there are outstanding read data phases when the read address phase begins, the corresponding read data phase does not
start until all of the preceding read data phases have ended. The read data phase ends at the positive clock edge where
EB_RdVal is sampled asserted. It can not end earlier than when the corresponding address phase ends.

A write data phase begins in the clock cycle where the master starts the corresponding write address phase. However, if
there are outstanding write data phases when the write address phase begins, the corresponding write data phase does
not start until all of the preceding write data phases have ended. The write data phase ends at the positive clock edge
following the positive clock edge where EB_WDRdy is sampled asserted. For maximum speed (no data wait states),
EB_WDRdy must be asserted on the positive clock edge preceding the beginning of the corresponding address phase. It
cannot end earlier than the corresponding address phase ends.

From these definitions, for a given transaction the number of data wait states must be greater than or equal to the number
of address wait states.

2 Signal List

EC™ Interface Specification, Revision 1.03 7

2 Signal List

Table 2 lists all of the EC interface signals in alphabetical order.Table 1 defines the signal directions.

Table 1 Signal Direction Key

Dir Description

I Input to the master. Unless otherwise noted, input
signals are sampled on the rising edge of the
appropriate CLK signal.

O Output from the master. Unless otherwise noted,
output signals are driven on the rising edge of the
appropriate CLK signal.

SI Static input to the master. These signals are normally
tied to either power or ground and should not change
state while RESET is deasserted.

Table 2 EC Interface Signals

Signal Name Dir Description

EB_A[35:2] O Address bus. Only valid when EB_AValid is asserted. Note that only
EB_A[35:3] address lines are used in 64-bit implementations.

EB_ARdy I
Assertion of this signal indicates whether the slave is ready for a new address.
The master does not complete the address phase until the clock cycle after
EB_ARdy is sampled asserted.

EB_AValid O
Assertion of this signal indicates that the values on the address bus and access
type lines are valid (signifying an address phase is ongoing). EB_AValid is
always valid and cannot be deasserted between address phases within a burst.

8 EC™ Interface Specification, Revision 1.03

 EC™ Interface Specification

EB_BE[3:0]
EB_BE[7:4]a O

Indicates which bytes of the EB_RData or EB_WData buses are involved in the
data phase corresponding to the current address phase. If an EB_BE signal is
asserted, the associated byte is being read or written. EB_BE lines are only valid
while EB_AValid is asserted.

During bursts all lines must be asserted.

During single transactions, if the master supports EB_BE patterns other than
the default ones listed in the two tables below, it must have an input signal that
makes it possible to force it into using the default patterns only.

EB_BFirst O Assertion of this signal indicates the address phase is the first address phase of
a burst. EB_BFirst is always valid.

EB_BLast O
Assertion of this signal indicates the address phase is the last address phase of
a burst. Note that the time for assertion of EB_BLast is determined by use of
EB_Burst, EB_BFirst, and EB_BLen. EB_BLast is always valid.

EB_BLen[1:0] O

EB_BLen[1:0] indicate the length (number of address/data phases) of the burst.
This signal is an implementation-specific static output.

Table 2 EC Interface Signals (Continued)

Signal Name Dir Description

Byte enables supported by default in 64-bit implementations

00000001 00000010 00000100 00001000

00010000 00100000 01000000 10000000

11000000 00110000 00001100 00000011

11100000 01110000 00001110 00000111

11110000 00001111 11111000 00011111

11111100 00111111 11111110 01111111

11111111

Byte enables supported by default in 32-bit implementations

0001 0010 0100 1000

1100 0011 0111 1110

1111

EB_BE
Signal

Read Data Bits
Sampled

Write Data Bits
Driven Valid

EB_BE[0] EB_RData[7:0] EB_WData[7:0]

EB_BE[1] EB_RData[15:8] EB_WData[15:8]

EB_BE[2] EB_RData[23:16] EB_WData[23:16]

EB_BE[3] EB_RData[31:24] EB_WData[31:24]

EB_BE[4]a EB_RData[39:32] EB_WData[39:32]

EB_BE[5]a EB_RData[47:40] EB_WData[47:40]

EB_BE[6]a EB_RData[55:48] EB_WData[55:48]

EB_BE[7]a EB_RData[63:56] EB_WData[63:56]

EB_BLength[1:0] Burst Length

0 reserved

1 4

2 8

3 reserved

2 Signal List

EC™ Interface Specification, Revision 1.03 9

EB_Burst
O Assertion of this signal indicates that the current address phase is for a cache fill

or a write burst. EB_Burst is always valid.

EB_EWBE

I Indicates that all external write buffers are empty. The external write buffers
must deassert EB_EWBE in the cycle following the assertion of the
corresponding EB_WDRdy and keep EB_EWBE deasserted until the external
write buffers are empty. SeeSection 4, "External Write Buffers" on page 31for
more details.

EB_Instr
O Assertion of this signal indicates that the address is for an instruction fetch as

opposed to a data read. EB_Instr is only valid when EB_AValid is asserted.

EB_RBErr
I Bus error indicator for read transactions. EB_RBErr is always valid. Only assert

it in the same cycle that the corresponding EB_RdVal is asserted.

EB_RData[31:0]
EB_RData[63:32]a

I Read data bus. Valid at the end of a read data phase (on the rising clock edge
where EB_RdVal is sampled asserted).

EB_RdVal I
Assertion of this signal indicates that the slave is driving read data on EB_RData
(it ends a read data phase). EB_RdVal must always be valid. EB_RdVal must
never be asserted until after the corresponding EB_ARdy is sampled asserted.

EB_SBlock SI
When this signal is asserted, sub-block ordering is used for addressing bursts.
When this signal is deasserted, sequential addressing is used. SeeSection 3.7,
"Burst Transactions" on page 26 for details.

EB_WBErr I
Bus error indicator for write transactions. EB_WBErr is always valid. Only
assert it in the cycle following an asserted sample of the corresponding
EB_WDRdy.

EB_WData[31:0]
EB_WData[63:32]a O

Write data bus. Kept unchanged and stable during a write data phase until the
write data phase ends (the positive clock edge following an asserted sample of
EB_WDRdy).

EB_WDRdy I

Assertion of this signal indicates that the slave is ready to process a write; it ends
a write data phase and the EB_WData can change after the positive clock edge
that follows the positive clock edge where EB_WDRdy is sampled asserted.
EB_WDRdy is not sampled until the rising edge where the corresponding
EB_ARdy is sampled asserted.

EB_Write O
Assertion of this signal indicates that the address phase is for a write.
Deassertion of this signal indicates that the address phase is for a read. This
signal is only valid when EB_AValid is asserted.

EB_WWBE O

Assertion of this signal indicates that the master is waiting for external write
buffers to empty. EB_WWBE can be asserted when EB_EWBE is asserted, but
if EB_EWBE is deasserted and EB_WWBE is asserted, EB_EWBE must be
asserted eventually. SeeSection 4, "External Write Buffers" on page 31 for
more details.

a. Optional. Only used in 64-bit implementations.

Table 2 EC Interface Signals (Continued)

Signal Name Dir Description

10 EC™ Interface Specification, Revision 1.03

 EC™ Interface Specification

3 Timing Diagrams

The following sections provide examples of typical EC interface timing.

3.1 Single Read Transactions

Figure 2shows the basic timing relationships between signals during a simple (fastest) read transaction. When the master
is ready to begin a bus transaction (cycle 3), the address is driven on EB_A, the associated control information is driven
on EB_Instr, EB_Burst, EB_BFirst, EB_BLast, EB_BLen, EB_Write, and EB_BE, and EB_AValid is asserted. On the
same rising clock edge that these signals are driven out (end of cycle 2), the EB_ARdy signal state is sampled. If
EB_ARdy is sampled deasserted, the master maintains the transaction values on the previously mentioned signals. The
master continues driving valid and stable values on these interface signals until the rising clock edge following the one
that the EB_ARdy signal is sampled asserted.

Starting in the same cycle as the read transaction is initiated, the master samples EB_RdVal, EB_RData, and EB_RBErr.
These signals are sampled on each rising clock edge until the EB_RdVal signal is sampled asserted. The data values
sampled with this asserted EB_RdVal are considered valid. However, if EB_RBErr was sampled asserted in same cycle,
the transaction is considered failed.

Note that the data phase cannot end earlier than the corresponding address phase. EB_ARdy must be sampled asserted
at least one clock cycle before the corresponding EB_RdVal is sampled asserted.

3 Timing Diagrams

EC™ Interface Specification, Revision 1.03 11

Figure 2 Fastest Single Read Transaction Timing

1 2 3 4 5 6 7 8 109

Clock

EB_A

EB_Instr

EB_AValid

EB_ARdy

EB_BE

Cycle #

EB_Write

A1

Valid

BE1

EB_Burst

EB_BFirst

EB_BLast

EB_BLen Valid

EB_RData

EB_RBErr

EB_RDVal

EB_WData

EB_WBErr

EB_WDRdy

RD1

12 EC™ Interface Specification, Revision 1.03

 EC™ Interface Specification

Figure 3shows an example of a read transaction with three wait states in the data phase (indicated by the deassertion of
EB_RdVal for three clock cycles). EB_RdVal is sampled deasserted on the rising edges at the beginning of cycles 4, 5,
and 6 and then is asserted on cycle 7.

3 Timing Diagrams

EC™ Interface Specification, Revision 1.03 13

Figure 3 Single Read Transaction Timing (3 Data Wait States)

1 2 3 4 5 6 7 8 109

Clock

EB_A

EB_Instr

EB_AValid

EB_ARdy

EB_BE

Cycle #

EB_Write

A1

Valid

BE1

EB_Burst

EB_BFirst

EB_BLast

EB_BLen Valid

EB_RData

EB_RBErr

EB_RDVal

EB_WData

EB_WBErr

EB_WDRdy

RD1

14 EC™ Interface Specification, Revision 1.03

 EC™ Interface Specification

3.2 Single Write Transactions

Figure 4shows a zero wait state (fastest) write transaction. Like the read transaction when a write request is issued (cycle
3), the address and control information for the transaction are driven on EB_A, EB_Instr, EB_Burst, EB_BFirst,
EB_BLast, EB_BLen, EB_Write, and EB_BE. These signals remain unchanged until the rising clock edge after the
EB_ARdy signal is sampled asserted.

The write data is driven on the write data bus, EB_WData, in same cycle as the address is driven on EB_A. The write
data is held on the bus until the rising clock edge after EB_WDRdy is sampled asserted.

EB_WBErr is sampled on the first rising clock edge after the rising clock edge that EB_WDRdy is sampled asserted. If
EB_WBErr is asserted at this time, the bus transaction is considered failed.

Note that the data phase cannot end earlier than the corresponding address phase. EB_WDRdy must be sampled asserted
on the same clock edge or later than the clock edge where the corresponding EB_ARdy is sampled asserted.

3 Timing Diagrams

EC™ Interface Specification, Revision 1.03 15

Figure 4 Fastest Single Write Transaction Timing

1 2 3 4 5 6 7 8 109

Clock

EB_A

EB_Instr

EB_AValid

EB_ARdy

EB_BE

Cycle #

EB_Write

A1

Valid

BE1

EB_Burst

EB_BFirst

EB_BLast

EB_BLen Valid

EB_RData

EB_RBErr

EB_RDVal

EB_WData

EB_WBErr

EB_WDRdy

WD1

16 EC™ Interface Specification, Revision 1.03

 EC™ Interface Specification

Figure 5 shows an example of a write transaction with four data wait states, indicated by the deassertion of the
EB_WDRdy signal. EB_WDRdy is deasserted for four clock cycles and then asserted. Note that the address phase is
prolonged by one clock cycle because EB_ARdy is deasserted for one clock cycle (sampled deasserted at the end of cycle
2).

3 Timing Diagrams

EC™ Interface Specification, Revision 1.03 17

Figure 5 Single Write Transaction Timing (1 Address Wait State and 4 Data Wait States)

1 2 3 4 5 6 7 8 109

Clock

EB_A

EB_Instr

EB_AValid

EB_ARdy

EB_BE

Cycle #

EB_Write

A1

Valid

BE1

EB_Burst

EB_BFirst

EB_BLast

EB_BLen Valid

EB_RData

EB_RBErr

EB_RDVal

EB_WData

EB_WBErr

EB_WDRdy

WD1

18 EC™ Interface Specification, Revision 1.03

 EC™ Interface Specification

3.3 Back-to-back Read Transactions

Figure 6 shows an example of two consecutive read transactions, which shows the ability to pipeline read addresses
independent of data wait states. The pipeline depth is implementation specific. Through manipulation of the EB_ARdy
signal, the slave can limit the depth of the address pipelining.

3 Timing Diagrams

EC™ Interface Specification, Revision 1.03 19

Figure 6 Back-to-back Read Transaction Timing

RD1

1 2 3 4 5 6 7 8 109

Clock

EB_A

EB_Instr

EB_AValid

EB_ARdy

EB_BE

Cycle #

EB_Write

A1

Valid

BE1

EB_Burst

EB_BFirst

EB_BLast

EB_BLen Valid

EB_RData

EB_RBErr

EB_RDVal

EB_WData

EB_WBErr

EB_WDRdy

RD2

Valid

A2

BE2

Valid

20 EC™ Interface Specification, Revision 1.03

 EC™ Interface Specification

3.4 Back-to-back Write Transactions

Figure 7 shows an example of two consecutive write transactions. Similar to the read transactions, pipelining of write
addresses can occur regardless of data wait states.

Figure 7 Back-to-back Write Transaction Timing

1 2 3 4 5 6 7 8 109

Clock

EB_A

EB_Instr

EB_AValid

EB_ARdy

EB_BE

Cycle #

EB_Write

A2

Valid

BE2

EB_Burst

EB_BFirst

EB_BLast

EB_BLen Valid

EB_RData

EB_RBErr

EB_RDVal

EB_WData

EB_WBErr

EB_WDRdy

Valid

A1

BE1

Valid

WD1 WD2

3 Timing Diagrams

EC™ Interface Specification, Revision 1.03 21

3.5 Read Transaction Followed by a Write Transaction

Figure 8 shows the relationship between a read transaction and a subsequent write transaction. A write transaction
following a read transaction behaves as described for the single write transaction. Completion of these transactions out
of order is allowed.

Figure 8 Read Transaction Followed by a Write Transaction

A1

1 2 3 4 5 6 7 8 109

Clock

EB_A

EB_Instr

EB_AValid

EB_ARdy

EB_BE

Cycle #

EB_Write

A2

Valid

BE2

EB_Burst

EB_BFirst

EB_BLast

EB_BLen Valid

EB_RData

EB_RBErr

EB_RDVal

EB_WData

EB_WBErr

EB_WDRdy

Valid

BE1

Valid

WD2

RD1

22 EC™ Interface Specification, Revision 1.03

 EC™ Interface Specification

Figure 9shows an example of a read transaction followed by a write transaction where the write transaction is completed
prior to the read transaction (out of order).

Figure 9 Read Transaction Followed by a Write Transaction with Reordering

RD1

A1

1 2 3 4 5 6 7 8 109

Clock

EB_A

EB_Instr

EB_AValid

EB_ARdy

EB_BE

Cycle #

EB_Write

A2

Valid

BE2

EB_Burst

EB_BFirst

EB_BLast

EB_BLen Valid

EB_RData

EB_RBErr

EB_RDVal

EB_WData

EB_WBErr

EB_WDRdy

Valid

BE1

Valid

WD2

3 Timing Diagrams

EC™ Interface Specification, Revision 1.03 23

3.6 Write Transaction Followed by a Read Transaction

Figure 10shows an example of a write transaction followed by a read. As in the case of a write following a read, a read
transaction following a write transaction is not affected by the behavior of the write transaction. Completion of these
transactions out of order is allowed.

Figure 10 Write Transaction Followed by a Read Transaction

RD2

A1

1 2 3 4 5 6 7 8 109

Clock

EB_A

EB_Instr

EB_AValid

EB_ARdy

EB_BE

Cycle #

EB_Write

A2

Valid

BE2

EB_Burst

EB_BFirst

EB_BLast

EB_BLen Valid

EB_RData

EB_RBErr

EB_RDVal

EB_WData

EB_WBErr

EB_WDRdy

Valid

BE1

Valid

WD1

24 EC™ Interface Specification, Revision 1.03

 EC™ Interface Specification

Figure 11shows an example of a write transaction followed by a read transaction where the read transaction is completed
prior to the write transaction (out of order).

3 Timing Diagrams

EC™ Interface Specification, Revision 1.03 25

Figure 11 Write Transaction Followed by a Read Transaction with Reordering

RD2

A1

1 2 3 4 5 6 7 8 109

Clock

EB_A

EB_Instr

EB_AValid

EB_ARdy

EB_BE

Cycle #

EB_Write

A2

Valid

BE2

EB_Burst

EB_BFirst

EB_BLast

EB_BLen Valid

EB_RData

EB_RBErr

EB_RDVal

EB_WData

EB_WBErr

EB_WDRdy

Valid

BE1

Valid

WD1

26 EC™ Interface Specification, Revision 1.03

 EC™ Interface Specification

3.7 Burst Transactions

A burst transaction initiates the transfer of multiple related transfers. Read bursts are used to read data to be placed in
the instruction or data cache. Write bursts are used to empty the contents of the write buffers.

Note that initiated bursts are always completed. The burst transaction cannot be aborted before reaching the burst beat
count (indicated by EB_BLen) except in the case where the EC interface is reset.

EB_Burst is asserted during the entire burst address sequence. EB_BFirst is driven asserted during the first address phase
of the burst and is deasserted with each of the remaining address phases. EB_BLast is driven asserted during the last
address phase and is deasserted with all prior address phases. Apart from EB_Burst, EB_BFirst and EB_BLast behavior,
and the deterministic address sequence, the multiple transfers of a burst transaction behave like that of back-to-back
single transactions, which simplifies interfacing to systems that do not support burst transactions. Note that it is possible
in the presence of data wait states, for all of the burst address phases to complete before the first data phase of the burst
(or even of a preceding transaction) has completed. If this behavior is undesirable, EB_ARdy can be used to control the
pace at which the addresses are transferred.

Note that EB_AValid cannot be deasserted between address phases within a burst and that all bits in EB_BE must be
asserted in all address phases within a burst.

Figure 12shows an example of a read burst transaction. EB_BLen indicates the length of the burst (seeSection 2, "Signal
List" on page 7 for further information on EB_BLen). The data requested is always an aligned block according to the
EB_BLen signal. The order of the words within the block varies depending on which word in the block is being requested
and the value of EB_SBlock (seeTable 3 throughTable 6 for further information on the refill scheme).

3 Timing Diagrams

EC™ Interface Specification, Revision 1.03 27

Figure 12 Burst Read Transaction Timing

RD1

1 2 3 4 5 6 7 8 109

Clock

EB_A

EB_Instr

EB_AValid

EB_ARdy

EB_BE

Cycle #

EB_Write

A1

Valid

All asserted

EB_Burst

EB_BFirst

EB_BLast

EB_BLen

EB_RData

EB_RBErr

EB_RDVal

EB_WData

EB_WBErr

EB_WDRdy

RD2

A2 A3 A4

Valid Valid Valid

RD3 RD4

Valid

28 EC™ Interface Specification, Revision 1.03

 EC™ Interface Specification

Table 3 throughTable 6 show the possible sequences for the least significant address bits during a burst.

Table 3 Burst Order for Sequential Ordering (4 Beat Bursts)

Req Word
(DWorda)
Address

a. Optional. Only used in 64-bit implementations.

EB_A[3:2] (EB_A[4:3]a) Sequence

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

Table 4 Burst Order for Sub-block Ordering (4 Beat Bursts)

Req Word
(DWorda)
Address

a. Optional. Only used in 64-bit implementations.

EB_A[3:2] (EB_A[4:3]a) Sequence

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

Table 5 Burst Order for Sequential Ordering (8 Beat Bursts)

Req Word
(DWorda)
Address

a. Optional. Only used in 64-bit implementations.

EB_A[4:2] (EB_A[5:3]a) Sequence

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 0

2 2 3 4 5 6 7 0 1

3 3 4 5 6 7 0 1 2

4 4 5 6 7 0 1 2 3

5 5 6 7 0 1 2 3 4

6 6 7 0 1 2 3 4 5

7 7 0 1 2 3 4 5 6

3 Timing Diagrams

EC™ Interface Specification, Revision 1.03 29

Table 6 Burst Order for Sub-block Ordering (8 Beat Bursts)

Req Word
(DWorda)
Address

a. Optional. Only used in 64-bit implementations.

EB_A[4:2] (EB_A[5:3]a) Sequence

0 0 1 2 3 4 5 6 7

1 1 0 3 2 5 4 7 6

2 2 3 0 1 6 7 4 5

3 3 2 1 0 7 6 5 4

4 4 5 6 7 0 1 2 3

5 5 4 7 6 1 0 3 2

6 6 7 4 5 2 3 0 1

7 7 6 5 4 3 2 1 0

30 EC™ Interface Specification, Revision 1.03

 EC™ Interface Specification

Figure 13 shows a burst write. Burst write transactions are used to empty write buffers. Write burst addresses always
start at the lowest address of an address block according to the EB_BLen indication.

Note that like single transactions, burst read and write transactions can complete out of order. Burst reads can overtake
burst writes and vice versa.

Figure 13 Burst Write Transaction Timing

WD1

1 2 3 4 5 6 7 8 109

Clock

EB_A

EB_Instr

EB_AValid

EB_ARdy

EB_BE

Cycle #

EB_Write

A1

Valid

All asserted

EB_Burst

EB_BFirst

EB_BLast

EB_BLen

EB_RData

EB_RBErr

EB_RDVal

EB_WData

EB_WBErr

EB_WDRdy

A2 A3 A4

Valid Valid Valid

Valid

WD3WD2 WD4

4 External Write Buffers

EC™ Interface Specification, Revision 1.03 31

4 External Write Buffers

Some systems might have external write buffers to increase bus efficiency and system performance. The EC interface
has a simple two-signal protocol that allows the master to have some control over the external write buffers. When it
asserts EB_WWBE, the master signals that it is waiting for EB_EWBE (External Write Buffers Empty) to be asserted.
The master uses EB_EWBE to ensure that all pending writes have completed before it begins a new transaction.

If no external write buffers exist, tie EB_EWBE HIGH.

Note that EB_WWBE is not used to ensure coherency. If a write transaction is to the external write buffer, the master
can generate a read request to the given address without asserting EB_WWBE (because the master has no knowledge of
the external write buffers). Therefore any write buffers in the system must maintain coherency with reads.

A Endianess

The EC interface has no signal that indicates little- or big-endian operation. If the slave requires this information, for
example, to generate the lower address bits that are not supplied with the EC interface, consult the documentation that
comes with the core.

To help understand the use of endianess,Table 7andTable 8show some cases of how stores appear on the EC interface
in little-endian and big-endian mode in a 32-bit and a 64-bit implementation of the EC interface.

Table 7 Endian Examples, 32-bit Implementation

Internal
Addr[1:0]

Big-endian Little-endian

EB_D[31:0] EB_BE[3:0] EB_D[31:0] EB_BE[3:0]

lui t0, 0x789a
ori t0, t0, 0xbcde

sb t0, 0x0(r0) 0 0xdeXXXXXX 1000 0xXXXXXXde 0001

sb t0, 0x1(r0) 1 0xXXdeXXXX 0100 0xXXXXdeXX 0010

sb t0, 0x2(r0) 2 0xXXXXdeXX 0010 0xXXdeXXXX 0100

sb t0, 0x3(r0) 3 0xXXXXXXde 0001 0xdeXXXXXX 1000

sh t0, 0x0(r0) 0 0xbcdeXXXX 1100 0xXXXXbcde 0011

sh t0, 0x2(r0) 2 0xXXXXbcde 0011 0xbcdeXXXX 1100

swl t0, 0x1(r0) 1 0xXX789abc 0111 0xXXXX789a 0011

swl t0, 0x2(r0) 2 0xXXXX789a 0011 0xXX789abc 0111

swr t0, 0x1(r0) 1 0xbcdeXXXX 1100 0x9abcdeXX 1110

swr t0, 0x2(r0) 2 0x9abcdeXX 1110 0xbcdeXXXX 1100

sw t0, 0x0(r0) 0 0x789abcde 1111 0x789abcde 1111

32 EC™ Interface Specification, Revision 1.03

 EC™ Interface Specification

Table 8 Endian Examples, 64-bit Implementation

Internal
Addr[2:0]

Big-endian Little-endian

EB_D[63:0] EB_BE
[7:0]

EB_D[63:0] EB_BE
[7:0]

lui t0, 0x0123
ori t0, t0, 0x4567
dsll t0, t0, 16
ori t0, t0, 0x89ab
dsll t0, t0, 16
ori t0, t0, 0xcdef

sb t0, 0x0(r0) 0 0xefXXXXXXXXXXXXXX 10000000 0xXXXXXXXXXXXXXXef 00000001

sb t0, 0x1(r0) 1 0xXXefXXXXXXXXXXXX 01000000 0xXXXXXXXXXXXXefXX 00000010

sb t0, 0x2(r0) 2 0xXXXXefXXXXXXXXXX 00100000 0xXXXXXXXXXXefXXXX 00000100

sb t0, 0x3(r0) 3 0xXXXXXXefXXXXXXXX 00010000 0xXXXXXXXXefXXXXXX 00001000

sb t0, 0x4(r0) 4 0xXXXXXXXXefXXXXXX 00001000 0xXXXXXXefXXXXXXXX 00010000

sb t0, 0x5(r0) 5 0xXXXXXXXXXXefXXXX 00000100 0xXXXXefXXXXXXXXXX 00100000

sb t0, 0x6(r0) 6 0xXXXXXXXXXXXXefXX 00000010 0xXXefXXXXXXXXXXXX 01000000

sb t0, 0x7(r0) 7 0xXXXXXXXXXXXXXXef 00000001 0xefXXXXXXXXXXXXXX 10000000

sh t0, 0x0(r0) 0 0xcdefXXXXXXXXXXXX 11000000 0xXXXXXXXXXXXXcdef 00000011

sh t0, 0x2(r0) 2 0xXXXXcdefXXXXXXXX 00110000 0xXXXXXXXXcdefXXXX 00001100

sh t0, 0x4(r0) 4 0xXXXXXXXXcdefXXXX 00001100 0xXXXXcdefXXXXXXXX 00110000

sh t0, 0x6(r0) 6 0xXXXXXXXXXXXXcdef 00000011 0xcdefXXXXXXXXXXXX 11000000

swl t0, 0x1(r0) 1 0xXX89abcdXXXXXXXX 01110000 0xXXXXXXXXXXXX89ab 00000011

swl t0, 0x2(r0) 2 0xXXXX89abXXXXXXXX 00110000 0xXXXXXXXXXX89abcd 00000111

swl t0, 0x5(r0) 5 0xXXXXXXXXXX89abcd 00000111 0xXXXX89abXXXXXXXX 00110000

swl t0, 0x6(r0) 6 0xXXXXXXXXXXXX89ab 00000011 0xXX89abcdXXXXXXXX 01110000

swr t0, 0x1(r0) 1 0xcdefXXXXXXXXXXXX 11000000 0xXXXXXXXXabcdefXX 00001110

swr t0, 0x2(r0) 2 0xabcdefXXXXXXXXXX 11100000 0xXXXXXXXXcdefXXXX 00001100

swr t0, 0x5(r0) 5 0xXXXXXXXXcdefXXXX 00001100 0xabcdefXXXXXXXXXX 11100000

swr t0, 0x6(r0) 6 0xXXXXXXXXabcdefXX 00001110 0xcdefXXXXXXXXXXXX 11000000

sw t0, 0x0(r0) 0 0x89abcdefXXXXXXXX 11110000 0xXXXXXXXX89abcdef 00001111

sw t0, 0x4(r0) 4 0xXXXXXXXX89abcdef 00001111 0x89abcdefXXXXXXXX 11110000

sdl t0, 0x1(r0) 1 0xXX0123456789abcd 01111111 0xXXXXXXXXXXXX0123 00000011

sdl t0, 0x2(r0) 2 0xXXXX0123456789ab 00111111 0xXXXXXXXXXX012345 00000111

sdl t0, 0x3(r0) 3 0xXXXXXX0123456789 00011111 0xXXXXXXXX01234567 00001111

sdl t0, 0x4(r0) 4 0xXXXXXXXX01234567 00001111 0xXXXXXX0123456789 00011111

sdl t0, 0x5(r0) 5 0xXXXXXXXXXX012345 00000111 0xXXXX0123456789ab 00111111

sdl t0, 0x6(r0) 6 0xXXXXXXXXXXXX0123 00000011 0xXX0123456789abcd 01111111

B Lower Address Bit Generation

EC™ Interface Specification, Revision 1.03 33

B Lower Address Bit Generation

Figure 14shows a Verilog example of how the lower address bits can be generated for use with a SysAD interface. Note
that this case requires that only the default EB_BE patterns are used.

Figure 14 Example of Generating Low Address Bit

C Revision History

sdr t0, 0x1(r0) 1 0xcdefXXXXXXXXXXXX 11000000 0x23456789abcdefXX 11111110

sdr t0, 0x2(r0) 2 0xabcdefXXXXXXXXXX 11100000 0x456789abcdefXXXX 11111100

sdr t0, 0x3(r0) 3 0x89abcdefXXXXXXXX 11110000 0x6789abcdefXXXXXX 11111000

sdr t0, 0x4(r0) 4 0x6789abcdefXXXXXX 11111000 0x89abcdefXXXXXXXX 11110000

sdr t0, 0x5(r0) 5 0x456789abcdefXXXX 11111100 0xabcdefXXXXXXXXXX 11100000

sdr t0, 0x6(r0) 6 0x23456789abcdefXX 11111110 0xcdefXXXXXXXXXXXX 11000000

sd t0, 0x0(r0) 0 0x0123456789abcdef 11111111 0x0123456789abcdef 11111111

Revision Date Comments

01.00 00/03/01 First official release.

01.01 00/07/04 Added revision history and changed page 2, footer and the setup for conversion to pdf
format.

01.02 00/10/09 Removed copyright notice from footer.

01.03 00/12/18 Converted document to new template. Editorial changes only.

Table 8 Endian Examples, 64-bit Implementation (Continued)

Internal
Addr[2:0]

Big-endian Little-endian

EB_D[63:0] EB_BE
[7:0]

EB_D[63:0] EB_BE
[7:0]

// Low address bit generation
 wire [1:0] my_a_1_0 = (BigEndian == 1’b1
 ?
 // big endian
 (EB_BE[3] ? 2’d0 :
 EB_BE[2] ? 2’d1 :
 EB_BE[1] ? 2’d2 :
 2’d3)
 :
 // little endian
 (EB_BE[0] ? 2’d0 :
 EB_BE[1] ? 2’d1 :
 EB_BE[2] ? 2’d2 :
 2’d3)
 ;

34 EC™ Interface Specification, Revision 1.03

 EC™ Interface Specification

	EC™ Interface Specification
	1� Introduction
	1.1� Features
	1.2� Basic Operation

	2� Signal List
	3� Timing Diagrams
	3.1� Single Read Transactions
	3.2� Single Write Transactions
	3.3� Back-to-back Read Transactions
	3.4� Back-to-back Write Transactions
	3.5� Read Transaction Followed by a Write Transaction
	3.6� Write Transaction Followed by a Read Transaction
	3.7� Burst Transactions

	4� External Write Buffers
	A� Endianess
	B� Lower Address Bit Generation
	C� Revision History

