2 Dec. '93. (Format change only). Design in common for the R4200 (VRX), R4600 (Orion), R4000PC and R4400PC Document development history: Rev. 0.1 18 June '93. Rev. 0.2 8 July '93. First customer release Rev. 1.0 11 Oct. '93. Rev. 1.1 This document is intended to guide system designers who wish to do a single system design which can be used with either the R4200 or R4600 processor. This would allow a system manufacturer to produce two different systems at different price/performance points from a single design. This is possible designing for either the 208-pin QFP package of R4200 and R4600, or the 179-pin PGA package of each. In the case of choosing the 179-pin package, the R4000PC and R4400PC processors will expand the choice and range of systems manufacturable from the single design even further. It is not intended that R4200 / R4600 CPU's would be interchangeable by the user in such a design. This document addresses the following differences which may be significant to system designers: ``` 1/ R4200 and R4600 pin-out (208-pin QFP package) 2/ R4200, R4600, R4000PC and R4400PC pin-out (179-pin PGA package) 3/ Primary cache differences (R4000PC, R4200, R4600 and R4400PC) 4/ TLB differences 5/ Pipeline comparisons 11 11 11 11 6/ System Interface comparisons 7/ Coprocessor 0 comparison 11 11 8/ Maximum ratings (R4200 \text{ and } R4600(3V)) 9/ Operating parameters 11 11 10/ Clock parameters 11/ System Interface parameters 11 11 ``` ## 1/ 208-pin QFP package R4200 and R4600 signals are the same where I/O is concerned but different in the areas of processor configuration and initialization. The majority of pins have an identical function. Those that have a difference are marked with a note. Where possible, conflicting functions were overlapped with NoConnects on the other processor. There are 16 such cases marked Note 1 & 2. In a few cases, functionally different pins were aligned such that inputs overlap inputs and outputs overlap outputs. Most of these cases can be dealt with trivially, ignoring optional or unused functionality. For the remaining 2 or 3 pins (depends on settings of configuration pins on R4200), it may be necessary either to have jumpers which can be set, or dual traces, one of which would filled at system manufacture time. Overlapping functionally different pins are marked Note 3 through Note 10. | | R4200 | R4600 | | 3/28 | |----------|-------------------|---------------|--------|------| | | ==== | ==== | | | | 1 | NC | NC | | | | 2 | NC | NC | | | | 3 | VSS | VSS | | | | 4 | VCC | VCC | | | | 5 | SysAD45 | SysAD45 | | | | 6 | SysAD13 | SysAD13 | | | | 7 | Status0 | FaultB | Note 3 | | | 8 | SysAD44 | SysAD44 | | | | 9 | VSSCore | VSS | | | | 10 | VCCCore | VCC | | | | 11 | SysAD12 | SysAD12 | | | | 12 | SysCmdP | SysCmdP | | | | 13 | SysAD43 | SysAD43 | | | | 14 | SysAD11 | SysAD11 | | | | 15 | VSS | VSS | | | | 16 | VCC | VCC | | | | 17 | SysCmd8 | SysCmd8 | | | | 18 | SysAD42 | SysAD42 | | | | 19 | SysAD10 | SysAD10 | | | | 20 | SysCmd7 | SysCmd7 | | | | 21 | VSS | VSS | | | | 22 | VCC | VCC | | | | 23 | SysAD41 | SysAD41 | | | | 24 | SysAD9 | SysAD9 | | | | 25 | SysCmd6 | SysCmd6 | | | | 26 | SysAD40 | SysAD40 | | | | 27 | VSSCore | NC | Note 1 | | | 28 | VCCCore | NC | Note 1 | | | 29 | VSS | VSS | | | | 30 | VCC | VCC | | | | 31 | SysAD8 | SysAD8 | | | | 32 | SysCmd5 | SysCmd5 | | | | 33 | SysADC4 | SysADC4 | | | | 34 | SysADC0 | SysADC0 | | | | 35 | VSS | VSS | | | | 36 | VCC | VCC | | | | 37 | SysCmd4 | SysCmd4 | | | | 38 | SysAD39 | SysAD39 | | | | 39 | SysAD7 | SysAD7 | | | | 40 | SysCmd3 | SysCmd3 | | | | 41 | VSS | VSS | | | | 42 | VCC | VCC | | | | 43 | SysAD38 | SysAD38 | | | | 44 | SysAD6 | SysAD6 | | | | 45 | Status1 | ModeClock | Note 4 | | | 46 | WrRdyB | WrRdyB | NOCE I | | | 47 | SysAD37 | SysAD37 | | | | 48 | SysAD57
SysAD5 | = | | | | 49 | VSS | SysAD5
VSS | | | | 49
50 | VSS
VCC | VCC | | | | 50
51 | | | | | | 51 | NC
NC | NC
NC | | | | JA | 11/ | IVC | | | | | R4200 | R4600 | | 4/28 | |-------|--------------------|--------------------|--------|------| | | ==== | ==== | | | | 53 | NC | NC | | | | 54 | NC | NC | | | | 55 | SysCmd2 | SysCmd2 | | | | 56 | SysAD36 | SysAD36 | | | | 57 | SysAD4 | SysAD4 | | | | 58 | SysCmd1 | SysCmd1 | | | | 59 | VSS | VSS | | | | 60 | VCC | VCC | | | | 61 | SysAD35 | SysAD35 | | | | 62 | SysAD3 | SysAD3 | | | | 63 | SysCmd0 | SysCmd0 | | | | 64 | SysAD34 | SysAD34 | | | | 65 | VSS | VSS | | | | 66 | VCC | VCC | | | | 67 | VSSCore | NC | Note 1 | | | 68 | VCCCore | NC | Note 1 | | | 69 | SysAD2 | SysAD2 | | | | 70 | NC | IntB5 | Note 2 | | | 71 | SysAD33 | SysAD33 | | | | 72 | SysAD1 | SysAD1 | | | | 73 | VSS | VSS | | | | 74 | VCC | VCC | | | | 75 | IntB4 | IntB4 | | | | 76 | SysAD32 | SysAD32 | | | | 77 | SysAD0 | SysAD0 | | | | 78 | IntB3 | IntB3 | | | | 79 | VSSCore | VSS | | | | 80 | VCCCore | VCC | | | | 81 | IntB2 | IntB2 | | | | 82 | SysAD16 | SysAD16 | | | | 83 | SysAD48 | SysAD48 | | | | 84 | IntB1 | IntB1 | | | | 85 | VSS | VSS | | | | 86 | VCC | VCC | | | | 87 | SysAD17 | SysAD17 | | | | 88 | SysAD49 | SysAD49 | | | | 89 | IntB0 | IntB0 | | | | 90 | SysAD18 | SysAD18 | | | | 91 | VSS | VSS | | | | 92 | VCC | VCC | | | | 93 | SysAD50 | SysAD50 | | | | 94 | ValidInB | ValidInB | | | | 95 | SysAD19 | SysAD19 | | | | 96 | SysAD51 | SysAD51 | | | | 97 | VSS | VSS | | | | 98 | VCC | VCC | | | | 99 | ValidOutB | ValidOutB | | | | 100 | SysAD20 | SysAD20 | | | | 100 | SysAD20
SysAD52 | SysAD20
SysAD52 | | | | 101 | ExtRqstB | ExtRqstB | | | | 102 | NC | NC | | | | 103 | NC | NC | | | | T O 1 | 110 | 110 | | | | | R4200 | R4600 | | 5/28 | |-----|------------|------------|--------|------| | | ==== | ==== | | | | 105 | NC | NC | | | | 106 | NC | NC | | | | 107 | VCCCore | NC | Note 1 | | | 108 | VSSCore | NC | Note 1 | | | 109 | VCC | VCC | | | | 110 | VSS | VSS | | | | 111 | SysAD21 | SysAD21 | | | | 112 | SysAD53 | SysAD53 | | | | 113 | RdRdyB | RdRdyB | | | | 114 | BigEndian | ModeIn | Note 5 | | | 115 | SysAD22 | SysAD22 | | | | 116 | SysAD54 | SysAD54 | | | | 117 | VCC | VCC | | | | 118 | VSS | VSS | | | | 119 | ReleaseB | ReleaseB | | | | 120 | SysAD23 | SysAD23 | | | | 121 | SysAD55 | SysAD55 | | | | 122 | NMIB | NMIB | | | | 123 | VCCCore | VCC | | | | 124 | VSSCore | VSS | | | | 125 | SysADC2 | SysADC2 | | | | 126 | SysADC6 | SysADC6 | | | | 127 | DataRateB | VCC | Note 6 | | | 128 | SysAD24 | SysAD24 | | | | 129 | VSS | VSS | | | | 130 | VCC | VCC | | | | 131 | SysAD56 | SysAD56 | | | | 132 | Status3 | NC | Note 1 | | | 133 | SysAD25 | SysAD25 | | | | 134 | SysAD57 | SysAD57 | | | | 135 | VCCCore | VCC | | | | 136 | VSSCore | VSS | | | | 137 | Status2 | IOOut | Note 7 | | | 138 | SysAD26 | SysAD26 | | | | 139 | SysAD58 | SysAD58 | | | | 140 | TestModeB | IOIn | Note 8 | | | 141 | VCC | VCC | | | | 142 | VSS | VSS | | | | 143 | SysAD27 | SysAD27 | | | | 144 | SysAD59 | SysAD59 | | | | 145 | ColdResetB | ColdResetB | | | | 146 | SysAD28 | SysAD28 | | | | 147 | VCC | VCC | | | | 148 | VSS | VSS | | | | 149 | SysAD60 | SysAD60 | | | | 150 | ResetB | ResetB | | | | 151 | SysAD29 | SysAD29 | | | | 152 | SysAD61 | SysAD61 | | | | 153 | VCC | VCC | | | | 154 | VSS | VSS | | | | 155 | NC | NC | | | | 156 | NC | NC | | | | • | - | - | | | | | R4200 | R4600 | | 6/28 | |-----|--------------|--------------|---------|------| | | ==== | ==== | | | | 157 | NC | NC | | | | 158 | NC | NC | | | | 159 | VSS | RClock0 | Note 9 | | | 160 | RClock | RClock1 | | | | 161 | SyncOut | SyncOut | | | | 162 | SysAD30 | SysAD30 | | | | 163 | VCC | VCC | | | | 164 | VSS | VSS | | | | 165 | SysAD62 | SysAD62 | | | | 166 | MasterOut | MasterOut | | | | 167 | SysAD31 | SysAD31 | | | | 168 | SysAD63 | SysAD63 | | | | 169 | -
VCCCore | VCC | | | | 170 | VSSCore | VSS | | | | 171 | Div2 | VccOK | Note 10 | | | 172 | SysADC3 | SysADC3 | | | | 173 | SysADC7 | SysADC7 | | | | 174 | VCC | VCC | | | | 175 | VSS | VSS | | | | 176 | BypassPLLB | NC | Note 1 | | | 177 | VCCP | NC | Note 1 | | | 178 | VSSP | NC | Note 1 | | | 179 | PLLCap0 | NC | Note 1 | | | 180 | PLLCap1 | NC | Note 1 | | | 181 | VCCP | VCCP | | | | 182 | VSSP | VSSP | | | | 183 | VCCP | NC | Note 1 | | | 184 | VSSP | NC | Note 1 | | | 185 | MasterClock | MasterClock | | | | 186 | VCCCore | VCC | | | | 187 | VSSCore | VSS | | | | 188 | Syncin | Syncin | | | | 189 | VCC | VCC | | | | 190 | VSS | VSS | | | | 191 | JTCK | JTCK | | | | 192 | SysADC5 | SysADC5 | | | | 193 | SysADC1 | SysADC1 | | | | 194 | -
JTDI | -
JTDI | | | | 195 | VCCCore | VCC | | | | 196 | VSSCore | VSS | | | | 197 | SysAD47 | SysAD47 | | | | 198 | SysAD15 | -
SysAD15 | | | | 199 | JTDO | JTDO | | | | 200 | SysAD46 | SysAD46 | | | | 201 | VCC | VCC | | | | 202 | VSS | VSS | | | | 203 | SysAD14 | SysAD14 | | | | 204 | JTMS | JTMS | | | | 205 | TClock | TClock0 | | | | 206 | NC | TClock1 | Note 2 | | | 207 | NC | NC | | | | 208 | NC | NC | | | | | | | | | Notes to Pin Assignments: A number of pins on each package are there for purposes such as testing, R4000PC compatibility, reserved for future use, or for optional use. As a result, there are a number of ways of handling these pins, the simplest being to tie them to VCC, VSS, or NoConnect. #### Note 1: The system design must implement the function intended in the R4200 design for this pin. R4600 has a NoConnect at this pin. (Relevant R4200 pins: Pin 27 VSSCore Pin 28 VCCCore Pin 67 VSSCore Pin 68 VCCCore Pin 107 VSSCore Pin 108 VCCCore Pin 132 Status3 Pin 176 BypassPLLB Pin 177 VCCP Pin 178 VSSP Pin 179 PLLCap0 Pin 180 PLLCap1 Pin 183 VCCP Pin 184 VSSP) Status3 on R4200 is optional; BypassPLLB will be tied to VCC in normal use. #### Note 2: The system design may implement the function intended in the R4600 design for this pin. R4200 has a NoConnect at these pins. It is recommended to make TClock1 a NoConnect and IntB5 tied to 0). (Relevant R4600 pins: Pin 70 IntB5 Pin 206 TClock1) The common board design will use only one RClock-TClock pair. This will be Pin 160 (RClock), Pin 205 (TClock). #### Note 3: Pin 7, Status0 (R4200) and FaultB (R4600) are both output pins. It is suggested that each be made a NoConnect. FaultB on R4600 exists primarily for compatibility with the R4000 and is not normally used in current designs. Monitoring the status pins on the R4200 is not required. #### Note 4: Pin 45, Status1 (R4200) and ModeClock (R4600) are both output pins. It is suggested that Status1 on the R4200 be made a NoConnect. Otherwise, implement system functionality for both and use jumpers or dual traces to select for one design of the other. ### Note 5: Pin 114, BigEndian (R4200) and ModeIn (R4600) are both input pins. Implement system functionality for both and use jumpers or dual traces to select for one design of the other. #### Note 6: Pin 127, DataRateB (R4200) and VCC (R4600) are both input pins. Make Vcc default input, using a jumper if necessary to set DatarateB to active low. #### Note 7: Pin 137, Status2 (R4200) and IOOut (R4600) are both output pins. It is suggested that this be made a NoConnect. If status pins on R4200 are implemented, ignore value in logic when R4600 is plugged in. #### Note 8: Pin 140, TestModeB (R4200) and IOIn (R4600) are both input pins. It is suggested that this pin be tied to VCC. In the R4200, this pin is reserved for cache test mode and should be tied to Vcc during normal operation. #### Note 9: Pin 159, Vss (R4200) is an input power ground pin and RClock0 (R4600) is an output pin. It is recommended to tie this pin position to VSS and clip off Pin 159 on the R4600 package. The common board design will use only one RClock-TClock pair. This will be Pin 160 (RClock), Pin 205 (TClock). #### Note 10: Pin 171, Div2 (R4200) and VccOK (R4600) are both input pins. Div2 functionality is reserved until further notice - for the R4200, the default is to have the pin tied high (VCC). This effectively means that it is sufficient to implement the functionality for VccOK only for this pin. ## 2/ 179-pin PGA package For the 179-pin package, the R4000PC is the compatibility reference. R4200 and R4600 signals are the same where I/O is concerned but different in the areas of processor configuration and initialization. It is possible to do a common design to accomodate either R4200 or R4600 processors without the use of any jumpers. The majority of pins have an identical function. Those that have a difference are marked with a note. Where possible, conflicting functions were overlapped with NoConnects on the other processor. There are 6 such cases marked Note 1. In a few cases, functionally different pins were aligned such that inputs overlap inputs and outputs overlap outputs. These cases can be dealt with trivially, ignoring optional or unused functionality. Overlapping, functionally different pins are marked Note 2 through Note 6. | | R4200 | R4600 | 10/28 | |-----|-----------|-----------|--------| | | ==== | ==== | | | A1 | No pin | No pin | | | A2 | Vcc | Vcc | | | A3 | Vss | Vss | | | A4 | Vcc | Vcc | | | A5 | SysCmd3 | SysCmd3 | | | Аб | Vss | Vss | | | A7 | Vcc | Vcc | | | A8 | Vss | Vss | | | A9 | Vcc | Vcc | | | A10 | Vss | Vss | | | A11 | Vcc | Vcc | | | A12 | Vss | Vss | | | A13 | Vcc | Vcc | | | A14 | Vss | Vss | | | A15 | SysAD43 | SysAD43 | | | A16 | Vcc | Vcc | | | A17 | Vss | Vss | | | A18 | Vss | Vss | | | B1 | Vss | Vss | | | B2 | SysCmd2 | SysCmd2 | | | В3 | SysAD37 | SysAD37 | | | В4 | N/C | Modeclock | Note 1 | | B5 | SysAD6 | SysAD6 | | | В6 | SysAD7 | SysAD7 | | | В7 | SysCmd4 | SysCmd4 | | | В8 | SysADC4 | SysADC4 | | | В9 | SysAD8 | SysAD8 | | | B10 | SysCmd6 | SysCmd6 | | | B11 | SysAD9 | SysAD9 | | | B12 | SysCmd7 | SysCmd7 | | | B13 | SysAD42 | SysAD42 | | | B14 | SysAD11 | SysAD11 | | | B15 | SysAD12 | SysAD12 | | | B16 | DatarateB | FaultB | Note 2 | | B17 | SysAD45 | SysAD45 | | | B18 | Vcc | Vcc | | | C1 | Vcc | Vcc | | | C2 | SysAD4 | SysAD4 | | | C3 | SysAD36 | SysAD36 | | | C4 | SysAD5 | SysAD5 | | | C5 | WrRdyB | WrRdyB | | | C6 | SysAD38 | SysAD38 | | | C7 | SysAD39 | SysAD39 | | | C8 | SysADC0 | SysADC0 | | | C9 | SysCmd5 | SysCmd9 | | | C10 | SysAD40 | SysAD40 | | | C11 | SysAD41 | SysAD41 | | | C12 | SysAD10 | SysAD10 | | | C13 | SysCmd8 | SysCmd8 | | | C14 | SysCmdP | SysCmdP | | | C15 | SysAD44 | SysAD44 | | | | | | | | | R4200 | R4600 | 11/28 | |------------|-------------|----------------|----------| | | ==== | ==== | 11/20 | | C16 | SysAD13 | SysAD13 | | | C17 | TClock0 | TClock0 | | | C18 | Vss | Vss | | | D1 | Vss | Vss | | | D1
D2 | SysAD35 | SysAD35 | | | D2 | SysCmd1 | SysCmd1 | | | D3
D16 | TClock1 | TClock1 | | | D10
D17 | SysAD14 | SysAD14 | | | D17
D18 | VCC | VCC | | | E1 | SysAD2 | SysAD2 | | | E2 | SysCmd0 | SysCmd0 | | | E2 | SysAD3 | - | | | E3
E16 | JTMS | SysAD3
JTMS | | | | | | | | E17 | SysAD46 | SysAD46 | | | E18 | SysAD15 | SysAD15 | | | F1 | VCC | Vcc | NTo to 1 | | F2 | N/C | Int5 | Note 1 | | F3 | SysAD34 | SysAD34 | | | F16 | JTDO | JTDO | | | F17 | SysAD47 | SysAD47 | | | F18 | Vss | Vss | | | G1 | Vss | Vss | | | G2 | SysAD1 | SysAD1 | | | G3 | SysAD33 | SysAD33 | | | G16 | JTDI | JTDI | | | G17 | SysADC1 | SysADC1 | | | G18 | Div2 | Vcc | Note 3 | | H1 | Vcc | Vcc | | | H2 | SysAD32 | SysAD32 | | | H3 | IntB4 | IntB4 | | | H16 | SysADC5 | SysADC5 | | | H17 | JTCK | JTCK | | | H18 | Vss
 | Vss | | | J1 | Vss | Vss | | | J2 | SysAD0 | SysAD0 | | | J3 | IntB3 | IntB3 | | | J16 | SyncIn | SyncIn | | | J17 | MasterClock | MasterClock | | | J18 | Vcc | Vcc | | | K1 | Vcc | Vcc | | | K2 | SysAD16 | SysAD16 | | | K3 | IntB2 | IntB2 | | | K16 | VssP | VssP | | | K17 | VccP | VccP | | | K18 | Vss | Vss | | | L1 | Vss | Vss | | | L2 | SysAD48 | SysAD48 | | | L3 | IntB1 | IntB1 | | | L16 | SysADC3 | SysADC3 | | | L17 | SysADC7 | SysADC7 | | | L18 | Vcc | Vcc | | | | | | | | | R4200 | R4600 | | 12/28 | |------------|------------|-----------------|--------|-------| | | ==== | ==== | | | | M1 | Vcc | Vcc | | | | M2 | SysAD17 | SysAD17 | | | | М3 | SysAD49 | SysAD49 | | | | M16 | SysAD31 | SysAD31 | | | | M17 | BypassPLLB | Vcc0k | Note 4 | | | M18 | Vss | Vss | | | | N1 | Vss | Vss | | | | N2 | IntB0 | IntB0 | | | | N3 | SysAD50 | SysAD50 | | | | N16 | SysAD62 | SysAD62 | | | | N17 | SysAD63 | SysAD63 | | | | N18 | Vcc | Vcc | | | | P1 | SysAD18 | SysAD18 | | | | P2 | ValidInB | ValidInB | | | | P3 | SysAD19 | SysAD19 | | | | P16 | SyncOut | SyncOut | | | | P17 | MasterOut | MasterOut | | | | P18 | Vss | Vss | | | | R1 | Vcc | Vcc | | | | R2 | SysAD51 | SysAD52 | | | | R3 | ValidOutB | ValidOut | | | | R16 | RClock1 | RClock1 | | | | R17 | SysAD30 | SysAD30 | | | | R18 | Vss | Vss | | | | T1 | Vss | Vss | | | | T2 | SysAD20 | SysAD20 | | | | T3 | SysAD52 | SysAD52 | | | | T4 | SysAD21 | SysAD21 | | | | T5 | RdRdyB | RdRdyB | | | | Тб | SysAD54 | SysAD54 | | | | T7 | SysAD55 | SysAD55 | | | | T8 | SysADC2 | SysADC2 | | | | T9 | N/C | Reserved I(Vcc) | Note 1 | | | T10 | | · · · | Note 1 | | | T11 | SysAD56 | SysAD56 | | | | | SysAD57 | SysAD57 | | | | T12 | SysAD26 | SysAD26 | Note 1 | | | T13 | N/C | IOIn | Note 1 | | | T14 | ColdResetB | ColdrestB | | | | T15 | SysAD60 | SysAD60 | | | | T16 | SysAD29 | SysAD29 | | | | T17 | RClock0 | RClock0 | | | | T18 | Vcc | Vcc | | | | U1 | Vcc | Vcc | | | | U2 | ExtRqstB | ExtRqstB | | | | U3 | SysAD53 | SysAD53 | | | | U 4 | N/C | ModeIn | Note 1 | | | U5 | SysAD22 | SysAD22 | | | | U6 | SysAD23 | SysAD23 | | | | บ7 | NMIB | NMIB | | | | U8 | SysADC6 | SysADC6 | | | | U9 | SysAD24 | SysAD24 | | | | | | | | | | | R4200 | R4600 | | |------------|-----------|-----------------|--------| | | ==== | ==== | | | U10 | BigEndian | Reserved (o)N/C | Note 5 | | U11 | SysAD25 | SysAD25 | | | U12 | N/C | IOOut | Note 1 | | U13 | SysAD58 | SysAD58 | | | U14 | SysAD27 | SysAD27 | | | U15 | SysAD28 | SysAD28 | | | U16 | ResetB | ResetB | | | U17 | SysAD61 | SysAD61 | | | U18 | Vss | Vss | | | V1 | Vss | Vss | | | V2 | Vss | Vss | | | V3 | Vcc | Vcc | | | V4 | Vss | Vss | | | V5 | ReleaseB | ReleaseB | | | V6 | Vcc | Vcc | | | V 7 | Vss | Vss | | | V8 | Vcc | Vcc | | | V9 | Vss | Vss | | | V10 | Vcc | Vcc | | | V11 | Vss | Vss | | | V12 | Vcc | Vcc | | | V13 | Vss | Vss | | | V14 | TestModeB | Vcc | Note 6 | | V15 | SysAD59 | SysAD59 | | | V16 | Vss | Vss | | | V17 | Vcc | Vcc | | | V18 | Vss | Vss | | Notes to 179-pin package Pin Assignments: A number of pins on each package are there for purposes such as testing, R4000PC compatibility, reserved for future use, or for optional use. As a result, there are a number of ways of handling these pins, the simplest being to to tie them to VCC, VSS, or NoConnect. #### Note 1: The system design must implement the function intended in the R4600 design for these pins. R4200 has a NoConnect at these pins. (Relevant R4600 pins: Pin B4 ModeClock Pin F2 Int5 Pin T9 Reserved I (VCC) Pin T13 IOIn Pin U4 ModeIn Pin U12 IOOut) (It is optional to actually use Int5; IOOut is frequently connected directly to IOIn for a trivial fix). #### Note 2: Pin B16, DatarateB (R4200) is an input pin and FaultB (R4600) is an output pin. It is recommended to make FaultB a NoConnect, perhaps by removing the pin on the R4600 processor. #### Note 3: Pin G18, Div2 (R4200) functionality is reserved until further notice - for normal use this pin should be tied to Vcc. This makes it the same as the R4600 pin. #### Note 4: Pin M17, BypassPLLB (R4200) and VccOk (R4600) are both input pins. Since BypassPLLB will be set high for normal PLL use in the R4200, the VccOk functionality for R4600 should be implemented at this pin. #### Note 5: Pin U10, BigEndian (R4200) is an input pin and Reserved(o) N/C is specified as an output pin. It is recommended to tie this pin to BigEndian setting and make Reserved(o) a NoConnect, perhaps by removing the pin on the R4600 processor. #### Note 6: Pin V14, TestModeB (R4200) functionality is reserved for cache test purposes - for normal use this pin should be tied to Vcc. This makes it the same as the R4600 pin. | | R4000PC | R4200 | R4600 | R4400PC | |---------------------------------|--|---|---|--| | Cache sizes: | 8KB I-cache
8KB D-cache | 16KB I-cache
8KB D-cache | 16KB I-cache
16KB D-cache | 16KB I-cache
16KB D-cache | | Cache Line
size: | Software
selectable
between 16B
and 32B | 32B I-cache
16B D-cache | 32B | Software
selectable
between 16B
and 32B | | Cache
organization: | Direct
mapped | Direct
mapped | 2-way set associative | Direct
mapped | | Cache index: | vAddr120 | vAddr130(I)
vAddr120(D) | vAddr120 | vAddr130 | | Cache tag: | pAddr3512 | pAddr3212 | pAddr3512 | pAddr3512 | | Data cache write policy: | Write-allocate
& write-back | Write-allocate
& write-back | Write-allocate
or not based
on TLB entry
Write-through
or not based
on TLB entry | Write-allocate
& write-back | | Data cache miss: | Stall, output address, copy dirty data to writeback buffer, refill cache, output writeback data. | Same | Same (refill set chosen by FIFO algorithm) | Same
(as R4000) | | Data order for block reads: | Sub-block
ordering | Sub-block
ordering
(trivial
because
only two) | Sub-block
ordering | Sub-block
ordering | | Data order for block writes: | Sequential | Same | Same | Same | | Instruction cache miss restart; | Restart after all data received and written to cache | Same | Same | Same | | | R4000PC | R4200 | R4600 | R4400 | |----------------------------|--|--------------|---|---------------| | | ====== | ===== | ===== | ===== | | Data cache
miss restart | Restart after
all data
received and
written to
cache | restart on | Restart on first doubleword, send subsequent doublewords to response buffer | Same as R4000 | | Instruction tag: | 2-bit cache | 2-bit cache | 1-bit cache | 2-bit cache | | | state | state | state | state | | Cache miss overhead: | 5-8? cycles | TBD | 3 cycles | 5-8? cycles | | Instruction cache parity: | 1 parity bit | 1 parity bit | 1 parity bit | 1 parity bit | | | per 8 data | per 8 data | per 32 data | per 8 data | | | bits | bits | bits | bits | | Data cache parity: | 1 parity bit
per 8 data
bits | Same | Same | Same | ## 4/ TLB differences | | R4000PC
====== | R4200
===== | R4600
===== | R4400PC
====== | |--|--|--|--|--------------------------| | Instruction virtual address translation: | 2-entry I-TLB | 2-entry I-TLB | 2-entry I-TLB | 2-entry I-TLB | | JTLB: | even/odd page pairs, fully | 32 entries of even/odd page pairs, fully associative | even/odd page pairs, fully | even/odd
pairs, fully | | Page size: | 4KB, 16KB,
64KB, 256KB,
1MB, 4MB,
16MB | 4KB, 16MB | 4KB, 16KB,
64KB, 256KB,
1MB, 4MB,
16MB | | | | sets TS in
Status and
disables TLB
until Reset to
prevent damage | R4000 | No damage for multiple match no detection o shutdown implemented | ;R4000 | | Virtual addres size: | s VSIZE = 40
PSIZE = 36 | VSIZE = 40
PSIZE = 33 | VSIZE = 40
PSIZE = 36 | VSIZE = 40
PSIZE = 36 | | | R4000PC | R4200 | R4600 | R4400PC | |------------------------|-----------------------------------|--|--|-----------------------------------| | CPU/FPU: | Logically and physically separate | Logically separate; datapath shared | Logically and physically separate but with some cross-use | Logically and physically separate | | ALU latency: | 1 cycle | 1 cycle | 1 cycle | 1 cycle | | Load latency: | 3 cycles | 2 cycles | 2 cycles | 3 cycles | | Branch latency | :4 cycles | 2 cycles | 2 cycles | 4 cycles | | Store buffer: | 2 doublewords | 1 doubleword | 1 doubleword | 2 doublewords | | Uncached store buffer: | None | <pre>2 doublewords (1 address) - doubles as write buffer</pre> | 4 doublewords
(4 addresses)
- doubles as
write buffer | 1 doubleword | N.B. Store buffer refers to buffer for writes from pipeline to cache. Write buffer refers to buffer for writes from cache to external memory. Uncached store buffer refers to buffer for writes from pipeline to external memory. | <pre>Integer multiply:</pre> | Integer multiply hardware, 1 cycle to issue | done in adder/shifter, 12 cycles to issue | commondone in floating-point multiplier, 4 cycles to issue | 3 | |------------------------------|---|---|--|---| | Integer
divide: | Done in integer datapath adder, 69 cycles to issue. | | | done in integer datapath adder, 69 cycles to issue. | N.B. It's important to appreciate the difference between cycles to issue, and cycles to completion. For example, the R4000PC can issue an integer multiply in one cycle and issue a subsequent instruction in the next cycle. However that multiply does not complete until 10 cycles later. An integer divide on the other hand, causes subsequent instructions in the pipeline to slip resulting in a high issue latency. 19/28 | Integer
multiply: | R4000PC
======
HI and LO
available at
the same time | R4200 ====== N/A since no new instructions are issued before multiple completes | R4600
======
LO available
one cycle
before HI | R4400PC
======
HI and LO
available at
the same time | |---|---|---|---|---| | Integer
divide: | HI and LO available at the same time | N/A since
no new
instructions
are issued
before divide
completes | HI available
one cycle
before LO | HI and LO available at the same time | | HI and LO
hazards: | Yes, HI and LO written early in pipeline | Yes, at least a one-cycle hazard. Assume two-cycle hazard (same as R4000PC) until further notice. | written after | Yes, HI and LO written early in pipeline | | MFHI/MFLO latency: | 1 cycle | 1 cycle | 2 cycles | 1 cycle | | SLLV, SRLV
SRAV: | 2 cycles | 1 cycle | 1 cycle | 2 cycles | | DSLL, DSRL,
DSRA, DSLL32,
DSRL32, DSRA32
DSLLV, DSRLV, | 2 cycles | 1 cycle | 1 cycle | 2 cycles | DSRAC: writes: | | R4000PC | R4200
===== | R4600
===== | R4400PC
====== | |--------------------------------|--|---|---|--| | I/O: | | LVCMOS (3.3V+/-0.3V) | R4600(3V)
LVCMOS
(3.3V+/-0.3V) | R4400(3V)
LVCMOS
(3.3V+/-0.3V) | | | TTL-compatible (5V+/-0.5V) | | R4600(5V) TTL-compatible (5V+/-0.5V) | R4400(5V) TTL-compatible (5V+/-0.5V) | | Package: | 179-pin
C-PGA | 179-pin
C-PGA | 179-pin
C-PGA | 179-pin
C-PGA | | | | 208-pin
PQFP | 208-pin
MQUAD | | | JTAG | Yes | Yes | No | Yes | | Block transfer sizes: | 16B or 32B | 16B (D)
32B (I) | 32B | 16B or 32B | | Sclock divisor | :2,3 or 4 | 2 or 4 | 2 (3-8 later) | 2,3,4,6 or 8 | | Non-block writes: | max throughput of 1 per 4 sclock cycles | max throughput of 1 per 4 sclock cycles | two new system interface protocol options that also support 2 sclock cycle throughput | max throughput of 1 per 4 sclock cycles | | Serial configuration: | As described
in R4000
User's Guide | Four configuration options hardwired through dedicated pins | Advance Information (different to | As described
in R4000
User's Guide | | Address bits 6356 on reads and | zero | zero | bits 19
of virtual
address | | 21/28 | | R4000PC | R4200
===== | R4600
===== | R4400PC
====== | |---|---|--|--|---| | Uncached and write-through stores: | stall until
sent on system
interface | <pre>buffered in 1-entry write buffer (write-through</pre> | in 4-entry | buffered in
ed 1-entry
dedicated | | SysADC | Parity | Parity | Parity | Parity | | SysADC for non-data cycles: | Zero | Parity | Zero | Parity | | - | Use Cache
Error exception | Use Cache
Error
exception | output bad
parity | Use cache
Error exception | | Error bit in data identifier of read responses: | Bus error if rerror bit set for any doubleword | Bus error if error bit set for any doubleword | Only check error bit of first doubleword; all other error bits are ignored. | Bus error if error bit set for any doubleword | | Parity error on read data: | Bus Error if parity error in any doubleword | Take Cache
error
exception | Bad parity written to cache; take Cache Error exception if bad parity occurs on doublewords the the processor is waiting for | at | | Block writes | 1-2 null
cycles
between address
and data | 0 cycles
between
s address and
data | 0 cycles
between
address and
data | 1-2 null
cycles
between address
and data | | Release after read request: | Variable
latency | 0 latency | 0 latency | Variable latency | 22/28 | | R4000PC | R4200 | R4600 | R4400PC | |--|---|---|---|----------------------------------| | SysAD value
for x cycles
of writeback
data pattern: | Data bus
undefined | Data bus
maintains last
D cycle value | data bus
maintains last
D cycle value | Data bus
undefined | | SysAD bus use after last D cycle of writeback: | ? | Unused for trailing x cycles (e.g. DxxDxx) | Unused for trailing x cycles (e.g. DDxxDDxx) | ? | | Output slew rate: | Dynamic
feedback
control | None | Simple CMOS
output buffers
with 2-bit
static strength
control | control | | IOOut output | output slew rate control feedback loop output | No pin | Driven high, do not connect reserved for future output) | rate control
feedback loop | | IOIn input | output slew rate control input | No pin | Should be driven high (reserved for future input) | output slew rate control input | | GrpRunB
output: | do not connect | No pin | do not connect | do not connect | | GrpStallB
input: | Should be
connected to
Vcc | No pin | Should be connected to Vcc | Should be connected to Vcc | | FaultB
output: | Indicates
compare
mismatch | No pin | Driven high,
do not connect
(reserved for
future outout) | Indicates
compare
mismatch | # 7/ Coprocesssor 0 comparisons | | R4000PC | R4200PC | R4600
===== | R4400PC
====== | |--------------------------------|---|---|--|---| | WatchLo,
WatchHi: | Implemented | Implemented | Unimplemented | Implemented | | Config: | As described in
R4000 User's
Guide | nSubset | Subset | As described in R4000 User's Guide | | Status: | As described in R4000 User's Guide, but RP not functional | nAs described in
R4000 User's
Guide, RP
functional
and new ITS
bit | n No TS or RP | As described in R4000 User's Guide, but RP not functional | | Low-power mode: | No | 1)Reduced-power mode (1/4 speed) 2)Instant-off mode | instruction
disables | No | | MFC0/MTC0
hazard: | Only hazardous for certain cp0 register combinations | Only hazardous
for a subset
of the R4000PC
cp0 register
combinations | hazardous - | Only hazardous
for certain
cp0 register
combinations | | EntryLo0,
EntryLo1: | As described in MIPS R-series architecture | As described in MIPS R-series architecture | Two new cache algorithms added to C field for non-coherent write-through | As described in MIPS R-series architecture | | TagLo, TagHi,
ECC, Cacherr: | R4000SC bits implemented but meaningless | Only bits
meaningful on
R4000PC
implemented | Only bits
meaningful on
R4000PC
implemented | R4400SC bits implemented but meaningless | | | R4000PC | R4200
===== | R4600
===== | R4400
===== | |------------------------------|--|--|--|--| | TagLo: | As described in MIPS R-series architecture | Bits 3129 defined as zero since physical address size is 3 bits shorter than R4000PC | Bits 53
used for
reserved bits
ITag2825
bit 2 used for
F bit. | As described in MIPS R-series architecture | | Exceptions: | As described in MIPS R-series architecture (VCEI and VCED not possible in R4000PC) | As R4000PC
but different
order of
priority | VCEI, VCED
and WATCH
exceptions not
implmented | As described
in MIPS
R-series
architecture
(VCEI and VCED
not possible
in R4400PC) | | Index CACHE ops: | Use vAddr124 to select line | Use vAddr134 (I-cache) vAddr123 (D-cache) to select line | Use vAddr13 to select set, vAddr125 to select line of set | Use
vAddr134
to select
line | | Index Store
Tag CACHE op: | Status.CE
ignored | TagLo.P stored if Status.CE set | TagLo.P stored if Status.CE set | Status.CE
ignored | | PRId | Imp=0x04 | Imp=0x0A | Imp=0x20 | Imp=0x04 | ### N.B. The ratings given below are for comparison purposes only. Please consult the full specifications for complete information, conditions under which these figures are considered valid, etc. | Supply | R4200
===== | R4600(3V) | |--|-----------------------------|-----------------------------| | <pre>voltage(VCC): (min.) (max.)</pre> | 3.0V
3.6V | 3.0V
3.6V | | Terminal voltage w.r.t. ground (Vterm): | | -0.5 to 4.6V | | <pre>Input voltage(VIN): (min.) (max.)</pre> | -0.5V
VCC+0.5V | -0.5V
VCC+0.5V | | <pre>Storage temperature(Tst): (min.) (max.)</pre> | -65 deg. C.
+150 deg. C. | -55 deg. C.
+125 deg. C. | | Operating temperature: (min.) (max.) | 0 deg. C.
+85 deg. C. | 0 deg. C.
+85 deg. C. | ## 9/ Operating parameters (spec'd not measured) | ======= | ======================================= | | = | |--|---|-------------------------|-----------------| | | | R4200
===== | R4600(3V) | | Output HI voltage(| | 2.4V | 2.4V | | Clock out
HIGH volt
(min.) | put
age(VOHC): | 2.7V | | | Output LO voltage('(max.) | | 0.4V | 0.4V | | Input HIG
voltage(
(min.) | | 2V | 0.7VCC | | (max.) | | VCC +0.5V | VCC +0.5V | | <pre>Input LOW voltage(' (min.) (max.)</pre> | | -0.5V
0.8V | -0.5V
0.2VCC | | MasterClo
Input HIG
voltage | Н | 0.8 x VCC
VCC + 0.5V | | | MasterClo
Input LOW
voltage | | -0.5V
0.2V x VCC | | | ~ | | | | | Input Cap (max.) | acitance | 10 pF | 10 pF | | Output Car
(max.) | pacitance | 10 pF | 10 pF | | Operating (ICC) (m | | 0.67A | 1.2A | | Input lea
(ILeak) (| | 10uA | | | Input/out | put | | | | (IOLeak) | (max.) | 20uA | | ## 10/ Master clock and clock parameters (spec'd not measured) | | R4200
===== | R4600(3V) | |---|------------------|------------------| | <pre>MasterClock High: TmcHigh (min.):</pre> | 6 ns | 4 ns | | MasterClock Low TmcLow (min.): | 6 ns | 4 ns | | <pre>MasterClock Freq (min.) (max.)</pre> | 10 MHz
40 MHz | 25 MHz
50 MHz | | <pre>MasterClock Period Tmcp (min.):</pre> | 25 ns
100 ns | 20 ns
40 ns | | <pre>Clock Jitter for Master Clock (Tmcjitter) (max.):</pre> | | +/-250ps | | <pre>Clock Jitter for MasterOut, TClock, RClock (Tmcjitter) (max.):</pre> | +/-500ps | +/-500ps | | <pre>MasterClock Rise Time (Tmcrise) (max.):</pre> | 5 ns | 5 ns | | <pre>MasterClock Fall Time (Tmcfall) (max.):</pre> | 5 ns | 5 ns | | ModeClock Period
Tmodeckp (max.) | N/A | 256 * Tmcp | | JTAG Clock period (TJTAGCKP) (min.) | 4 * Tmcp | 4 * Tmcp | # 11/ System Interface parameters (spec'd not measured) | | R4200
===== | R4600(3V) | |---|-----------------|-----------------| | <pre>Data output Tdo (min.): (max.):</pre> | 3.5 ns
10 ns | 1.0 ns
10 ns | | Data Setup Tds (min.): | 3.5 ns | 3.5 ns | | <pre>Data Hold Tdh (min.):</pre> | 1.5 ns | 1.5 ns | | <pre>Status output Tso (min.): (max.):</pre> | 3.5 ns
7 ns | N/A
N/A | | <pre>Clock Rise Time Tcorise (max.):</pre> | 5 ns | | | <pre>Clock Fall Time Tcofall (max.):</pre> | 5 ns | | | Clock High Time Tcohigh (min.): | 6 ns | | | <pre>Clock Low Time Tcolow (min.):</pre> | 6 ns | | | <pre>Mode data setup (Tds) (min.):</pre> | N/A | 3 ns | | <pre>Mode data hold ((Tdh) (min.):</pre> | N/A | 0 ns | | <pre>Capacitive Load Deration (CLD) (max.):</pre> | 2 ns/25pF | 2 ns/25pF |