
An Architecture Extension for
Efficient Geometry Processing

Radhika Thekkath,
Mike Uhler,

Chandlee Harrell,
Ying-wai Ho

MIPS Technologies, Inc.
1225 Charleston Road

Mountain View, CA 94043

An Architecture Extension for Efficient Geometry Processing 2

Talk Outline

 Motivation---why enhance the MIPS®
architecture

 Background on 3D graphics geometry
operations and current MIPS® architecture

 What are the enhancements?
 Performance and cost
 Summary

An Architecture Extension for Efficient Geometry Processing 3

Current 3D Rendering Limited by
Geometry Processing

 Front-end: Geometry and Lighting operations
 General-purpose processors: 0.5 - 2 M polygons/s.

Eg. R5000® (1996,200MHz), PIII (1999,500MHz).
 Back-end: Rendering

 Graphics processors: 6 - 8 M polygons/s.
Eg. ATI Rage 128(1999), 3Dfx Voodoo3(1999).

 Dedicated hardware, eg., Sony Emotion
Engine---silicon-intensive, but feeds higher
performance rendering engines.

An Architecture Extension for Efficient Geometry Processing 4

Our Solution

 Enhance the MIPS® architecture to improve 3D
geometry performance: MIPS-3D™ ASE
(Application Specific Extension) includes 13
new instructions

 Lower cost than dedicated geometry hardware
 Main processor improvements are leveraged

 technology/speed
 parallelism/pipelining

An Architecture Extension for Efficient Geometry Processing 5

Talk Outline

 Motivation---why enhance the MIPS®
architecture

 Background on 3D graphics geometry
operations and current MIPS® architecture

 What are the enhancements?
 Performance and cost
 Summary

An Architecture Extension for Efficient Geometry Processing 6

Geometry and Lighting Operations

 Vertex transformation (matrix multiplication)
 Clip-check (compare and branch)
 Transform to screen coordinates (perspective

division using reciprocal)
 Lighting: infinite and local (normalization using

reciprocal square root)

An Architecture Extension for Efficient Geometry Processing 7

Already in the MIPS Architecture

 Floating point operations
 MUL (S, D, PS)
 ADD (S, D, PS)
 MADD (S, D, PS)

(multiply-add)
 RECIP (S, D)
 RSQRT (S, D)

PS- Paired-Single, two singles

S S

64 bits

S - Single FP format (32 bits)
D - Double FP format (64 bits)

An Architecture Extension for Efficient Geometry Processing 8

Talk Outline

 Motivation---why enhance the MIPS®
architecture

 Background on 3D graphics geometry
operations and current MIPS® architecture

 What are the enhancements?
 Performance and cost
 Summary

An Architecture Extension for Efficient Geometry Processing 9

ADDR: for Vertex Transformation
x y z w m0 m4 m8 m12

m1 m5 m9 m13
m2 m6 m10 m14
m3 m7 m11 m15

* = xt yt zt wt

FP0 = [m1 | m0] FP1 = [m3 | m2]

Eg. xt = m0x + m1y + m2z + m3w

MUL.PS FP10, FP0, FP8 FP10 = [m1y | m0x]

*
FP8 = [y | x] FP9 = [w | z]

MADD.PS FP11, FP10, FP1, FP9

*

[m3w | m2z]+
FP11 = [m1y+m3w | m0x+m2z]

Reorganize register to enable add
ADD.PS ...

ADDR.PS FP11, FP?, FP11 FP11 = [yt | xt=m1y+m3w+m0x+m2z]

ADDR

An Architecture Extension for Efficient Geometry Processing 10

Clip Check (Compare)

x >= -w, x <= w
y >= -w, y <= w
z >= -w, z <= w

Set 6 Condition Code (CC) bits

Is the vertex within the viewing pyramid?

x	<=	w
y	<=	w
z	<=	w

Set only 3 CC bits

Observation : Can use magnitude compares.

An Architecture Extension for Efficient Geometry Processing 11

CABS: for Clip Check Compare

CABS.LE.PS |y|<=|w|?, |x|<=|w|?
CABS.LE.PS |w|<=|w|?, |z|<=|w|?

Transformed [w | z] [y | x] in FP registers
PUU.PS to get [w | w]

NEG.PS to get [-w | -w]
C.NGE.PS !(y >= -w)? !(x >= -w)?
C.NGE.S !(z >= -w)?
C.LE.PS y<=w? x<=w?
C.LE.S z<=w?

Replace with
absolute compares

An Architecture Extension for Efficient Geometry Processing 12

BC1ANY4F: for Clip Check Branch

 Without absolute compare, need 6 branch
instructions to check the 6 CC bits.

 With absolute compare, need 3 branch
instructions to check the 3 CC bits.

 New MIPS-3D™ ASE instruction --- BC1ANY4F,
a single branch instruction that checks 4 CC
bits.

An Architecture Extension for Efficient Geometry Processing 13

Geometry and Lighting Operations

 Vertex transformation (matrix multiplication)
 Clip-check (compare and branch)
 Transform to screen coordinates (perspective

division using reciprocal)
 Lighting: infinite and local (normalization using

reciprocal square root)

An Architecture Extension for Efficient Geometry Processing 14

Perspective Division and
Normalization

 In MIPS® IV architecture
 RECIP
 RSQRT

 Full precision
 Long latency
 Not fully pipeline-able
 Only S and D formats

 New MIPS-3D™ ASE
instructions:
 RECIP1
 RECIP2
 RSQRT1
 RSQRT2

 Reduced & full precision
 Pipeline-able
 S, D, and PS format

An Architecture Extension for Efficient Geometry Processing 15

Other Instruction Sets

 3DNow!™ Technology --
enhance 3D graphics and
multimedia
 2-packed FP SIMD (PS)
 PFACC - accumulate
 PFRCP, PFRCPIT1,

PFRCPIT2 - reciprocal
 PFRSQRT, PFRSQIT1 -

reciprocal square root
 PF2ID, PI2FD - convert

 AltiVec™ Technology
 4 SIMD (32-bits)
 vrefp, vnmsubfp, vmaddfp

- reciprocal
 vrsqrtefp, etc - reciprocal

square root
 vcmpbfp - bounds

compare
 vcfsx, vctsxs - convert

An Architecture Extension for Efficient Geometry Processing 16

Talk Outline

 Motivation---why enhance the MIPS®
architecture

 Background on 3D graphics geometry
operations and current MIPS® architecture

 What are the enhancements?
 Performance and cost
 Summary

An Architecture Extension for Efficient Geometry Processing 17

Implementation Cost

 Die Area (of the Ruby processor)
 Implementation of PS adds 6-7% to FP die area.
 MIPS-3D™ ASE adds 3% to the floating point die

area. (FP is less than 15% of the total die area).
 Logic/pipeline complexity

 ADDR, CABS, BC1ANY4F, etc. - minimal impact on
both die area and FP pipeline logic.

 RECIP1, RSQRT1 - 2x64 word lookup tables
contribute to most of the 3% die area increase.

An Architecture Extension for Efficient Geometry Processing 18

Performance: Number of Instructions

No PS +
No

MIPS-3D

PS +
No

MIPS-3D

PS +
MIPS-3D

Transform (matrix
transform + clip +
perspective divide)

29 28 20

Transform +
complex lighting 90 67 49

Note: Inner-loop instructions/vertex = cycles/vertex

An Architecture Extension for Efficient Geometry Processing 19

Experiment/Coding Assumptions

 FP pipeline has 4-cycle data dependency
 Loop interleaves computations of 2 vertices
 Transform constants locked in cache
 Vertex co-ordinates are pre-fetched from

memory to cache, every loop iteration
 Code uses full precision reciprocal and

reduced precision reciprocal square-root

An Architecture Extension for Efficient Geometry Processing 20

Performance : M polygons/s

0

5

10

15

20

25

30

no PS+ no ASE
PS+ no ASE
PS+ ASE

45%

83%

M polygons/s

Using today’s high-end desktop processor frequency---500MHz

transform+complex lighttransform

An Architecture Extension for Efficient Geometry Processing 21

Summary

 MIPS-3D™ ASE adds thirteen instructions to the
current MIPS64™ architecture

 Low cost (3% of FP die area)
 Increases polygons/sec count by 45% for the

transform code to obtain 25 M polygons/s
 Increases polygons/sec count by 83% for

transform together with complex lighting to
obtain 10 M polygons/s

An Architecture Extension for Efficient Geometry Processing 22

Appendix:Vertex Transformation Code

MUL.PS FP10,FP8,FP0 FP10 <-- m1*y | m0*x
MUL.PS FP11,FP8,FP2 FP11 <-- m5*y | m4*x
MUL.PS FP12,FP8,FP4 FP12 <-- m9*y | m8*x
MUL.PS FP13,FP8,FP6 FP13 <-- m13*y | m12*x
MADD.PS FP10,FP10,FP9,FP1 FP10 <-- m3*w+m1*y | m2*z+m0*x
MADD.PS FP11,FP11,FP9,FP3 FP11 <-- m7*w+m5*y | m6*z+m4*x
MADD.PS FP12,FP12,FP9,FP5 FP12 <-- m11*w+m9*y | m10*z+m8*x
MADD.PS FP13,FP13,FP9,FP7 FP13 <-- m15*w+m13*y | m14*z+m12*x

PLL.PS FP14,FP11,FP10
PUU.PS FP15,FP11,FP10
PLL.PS FP16,FP13,FP12
PUU.PS FP17,FP13,FP12
ADD.PS FP8, FP15,FP14
ADD.PS FP9,FP17,FP16

ADDR.PS FP8,FP11,FP10 FP8 <-- m4x+m5y+m6z+m7w | m0x+m1y+m2z+m3w
ADDR.PS FP9,FP13,FP12 FP9 <-- m12x+m13y+m14z+m15w |

m8x+m9y+m10z+m11w

FP0--FP7 hold m0--m15 in pair-single
FP8, FP9 hold x,y,z,w in pair-single

Replace with

An Architecture Extension for Efficient Geometry Processing 23

Appendix:The 13 MIPS-3D™ ASE Instructions

Type Mnemonic Valid Formats Description
ADDR PS Floating point reduction add

MULR PS Floating point reduction multiply

RECIP1 S, D, PS Reciprocal first step – reduced precision
RECIP2 S, D, PS Reciprocal second step – enroute to full precision

RSQRT1 S, D, PS Reciprocal square root first step – reduced precision

Arithmetic

RSQRT2 S, D, PS Reciprocal square root second step
CVT.PS.PW PW Convert a pair of 32-bit fixed point integers to a pair-

single floating point value
Format
Conversion

CVT.PW.PS PS Convert a paired-single floating point value to a pair of
32-bit fixed point integer values

Compare CABS S, D, PS Magnitude compare of floating point values

BC1ANY2F Branch if either one of two (consecutive) CC bits is F

BC1ANY2T Branch if either one of two (consecutive) CC bits is T

BC1ANY4F Branch if any one of four (consecutive) CC bits is F

Branch

BC1ANY4T Branch if any one of four (consecutive) CC bits is T

