
BONITO - PCI/SDRAM System Controller for Vr43xx
© 1998/1999 Algorithmics Ltd

Rev 2.7 of 1999/08/24

• Direct connection to any 32-bit MIPS R4x00 CPU.

• Direct connection to 32-bit 33MHz PCI bus, conforming to Rev2.1. PCI arbiter and other ‘‘host’’

functions available , but can also operate as a peripheral. Includes PCI mailbox registers for

intellig ent peripheral communication.

• Independent CPU and PCI input clocks.

• High-performance SDRAM memory system using standard PC-100 parts in either a 32- or 64-bit

array, including standard 100-, 144- and 168-pin DIMMs. Glueless for small systems, but by

adding synchronous buffers it allows large systems which are only one clock period slower.

• Local ROM, I/O bus connects ‘‘dumb’’ components, isolated from high-speed signals. DMA

suppor t for faster devices on the local I/O bus, including ‘‘UDMA’’ transfers as defined in the

ATA-4 standard for PC disk drives.

• Internal ‘‘cache’’ of local memory locations provides greatly enhanced PCI transfer

performance for device controllers which are PCI bus initiators.

• PCI/local-memor y copier for applications requiring bulk data transport.

• Configurable debug mode makes all cycles visible at a DIMM socket.

• Glueless support of CPU reset sequence.

• Includes useful generic interrupt controller.

• Can be configured from ROM, pins or PCI bus.

• Compact 352-pin 1.27mm pitch BGA package for reliable assembly.

• Bueno, bonito y barato!

S
D

R
A

M
6
4
−

b
it D

IM
M

CPU

32−bit, 33MHz PCI

data

R
O

M

a
d
d
re

s
s

controller

Vr43xx/5432
system interface

ONITOB

Figure 0.1 BONITO in a minimal system

BONITO - PCI/SDRAM System Controller for Vr43xx Page 1 of 47

1. Overview
This device has four ports: CPU, PCI, SDRAM and local ROM & I/O. Some SDRAM signals are used

dur ing some local ROM & I/O cycles, to provide more addresses. A minimal system block diagram is

shown in Figure 0.1.

The CPU-side and PCI clocks are independent inputs, and need have no timing relationship. The

SDRAM system is operated synchronously to the CPU-side clock, and should be fed, with the CPU itself,

with matched low-skew clock inputs.

BONITO can also be used in a larger system with exter nal buffers to allow the connection of bigger local

memor y arrays and more local I/O devices, as shown in Figure 1.1.

S
D

R
A

M
6
4
−

b
it D

IM
M

CPU

32−bit, 33MHz PCI

3
2
/6

4
 s

w
it

c
h

address (24)

re
g

is
te

r

S
D

R
A

M
6
4
−

b
it D

IM
M

is
o

la
ti

o
n

/

b
u

ff
e
r

control

data (8/16)

ROM + I/O bus

Vr43xx/5432
system interface

controller

BONITO

Figure 1.1 Buffered memory and expanded local I/O system

BONITO handles tasks which are common to many of those systems where a 32-bit MIPS CPU is used

with a PCI bus and a local memory system. Such systems always (or almost always) need logic for some

other functions, which are therefore also supported by BONITO:

• Managing the CPU reset sequence and supporting common configuration options.

• System bootstrap from local ROM or flash memory.

• High-speed transfer of data between local and PCI memory - the PCI copier, descr ibed in §3.2.

• A flexible and high-perfor mance interr upt controller, see §5.14.

• Minimal DMA support for local bus devices, see §2.4.1.

• A few general-pur pose I/O pins - required, for example, for access to the signature EEROM of a

memor y DIMM.

Within the confines of such a chip it does not make much sense to devote pins to specific I/O functions,

since (unlike the above) these var y greatly from application to application.

BONITO - PCI/SDRAM System Controller for Vr43xx Page 2 of 47

Compared to earlier MIPS system controllers, BONITO offers a simple, fast, memory controller for PC-100

SDRAMs, with few options, and a high level of integration to minimise glue logic.

2. Interfaces
One way to introduce this multi-faceted part is to go around its interfaces and describe each in turn. So

we’ll do that for the CPU, PCI, SDRAM, ROM and I/O, GPIO, test and debug interfaces.

2.1. CPU Port

BONITO connects directly to any Vr43xx or Vr5432 CPU1, and var iants are flexible enough to handle any

32-bit descendant of the R4000 ‘‘SysAD’’ bus. It will run with CPUs to 83MHz. For CPUs which support

it, parity is passed through to the local SDRAM system, and generated/checked on other cycles.

BONITO manages the CPU’s reset sequence. A complete reset of BONITO from its SysReset* pin - or the

PCI RESET* signal where BONITO is configured as a peripheral - causes the CPU to be driven through a

cold-reset sequence. BONITO suppor ts most MIPS CPU reset models, and can supply the ‘‘mode bits’’ for

CPU configuration when required. It’s also possible to do a cold-reset of the MIPS CPU by writing a

register bit; this can be used as a self-reset by CPUs which need to put themselves in a non-standard

configuration: see §4.3.1 for more infor mation.

In some cases a system may be managed by a host across PCI; it’s possible to configure BONITO to wait

with the local CPU stalled while an exter nal PCI host configures the chip and uploads software to local

memor y; see §4.3.2.

BONITO has an internal interrupt controller, and connects to two of the MIPS CPU interrupt inputs.

2.2. PCI por t

BONITO confor ms to the PCI specification (rev 2.1), can act as initiator or target on a PCI bus, and when

required can perfor m all host roles - it has a PCI arbiter onboard, can source the PCI reset signal, and

can initiate configuration cycles.

BONITO suppor ts CPU accesses to PCI space. CPU partial-word read or writes to PCI space are

signalled with exactly the byte enables you programmed. The byte enables (and byte lanes) used can

sur prise you when your CPU is ‘‘big-endian’’; see §4.2. CPU burst accesses (cache refills and write-

backs) are not implemented to PCI memory space; the different burst termination semantics of the buses

make this a hazardous and troublesome feature.

Both type 1 and type 2 configuration cycles are available through a pair of registers (one sets up the PCI

address bits, and the other is a data register for configuration cycles).

CPU writes to PCI are ‘‘posted’’; there’s a BONITO register pciMStat which software can read to check

when all posted writes have been completed on PCI.

BONITO’s PCI arbiter handles up to six exter nal initiators and operates in round-robin only. A

configuration-time option allows the arbiter to be disabled, for systems whose arbiter is elsewhere; in this

mode two of the arbiter signals are reconfigured to become BONITO’s own request/grant lines.

BONITO makes some or all of the memory attached to its memory por t available to exter nal PCI bus

masters. PCI initiator/local memory transfers go through the ‘‘I/O buffer cache’’, described in §3.1 below,

to maintain high throughput with minimal impact on the CPU’s access to local memory.

BONITO provides the standard configuration registers required by the PCI standard. Software running on

the local MIPS CPU can modify some of these register contents, so that BONITO can take on different

roles as part of an intelligent PCI controller; see §4.3.3.

1 The choice of CPU interface type is reconfigurable at reset time between

Vr4300-compatible and Vr5432-native-compatible.

BONITO - PCI/SDRAM System Controller for Vr43xx Page 3 of 47

BONITO can be configured to respond as a PCI target to four memory address regions. One is for the

BONITO’s own PCI-accessible registers, and two are used for access to attached local SDRAM or I/O

devices - the size, location and transfer character istics of these two windows are influenced by some

other registers. PCI access to the local I/O bus is expected to be used only for diagnostics and system

initialisation; no guarantees are made about perfor mance.

BONITO implements mailbox registers. A PCI write to a mailbox register generates an interrupt condition

for the CPU, which can retrieve the data through a locally-readable register.

2.3. SDRAM connection

The memory interface is optimised to run burst-mode SDRAM cycles in sub-block order using PC-100

compliant memory devices. It runs in synchronisation with the CPU interface to minimise CPU access

time. For small SDRAM systems - with a fan-out of 6 loads or less on all SDRAM control outputs - it is

glueless. Larger systems require high-drive registered buffers (ALVCH374 or similar) for the multiplexed

address lines and control signals which go to every DRAM device. When the registered buffers are used,

a configuration register must be set to delay all data timings by one clock.

For pin-count reasons, the SDRAM data bus is used to carry addresses for I/O accesses requiring more

than a small number of addresses - particular ly for ROM cycles. I/O cycles using the SDRAM data bus

cannot be run concurrently with an SDRAM access.

There’s no suppor t for SDRAM ‘‘open pages’’; the cache refill and write-back traffic from the CPU has little

locality of reference, and PCI traffic will be ferociously interleaved with CPU references. In this

environment open pages cannot be expected to make a big impact on perfor mance - but they make the

SDRAM controller much more complex.

The SDRAM controller is optimised for 8-word burst cycles (a ‘‘word’’ here and throughout this

specification is 32 bits), but also allows word-sized reads and writes. Memor y systems supporting parity

generally don’t directly support writing only some bytes of the SDRAM array, so BONITO implements

par tial-word writes with a read-merge-write sequence.

The SDRAM control signals are designed to attach to either a 32/36-bit or 64/72-bit array. Par ity

generation and checking are supported on 36-bit arrays, and are a diagnostics-only option on 72-bit

modules.

A single 64/72-bit SDRAM DIMM may be attached by commoning up the halves of the data bus,

controlling accesses using two data-mask DQMBHi/DQMBLo signals - for the high and low bank

respectively. But where the number of connections to the data bus grows too large, a control signal is

provided for a zero-delay FET switch bus multiplexer (Quality QS3390 or similar) which connects the

chips SDRAM data bus to either the high or low half of each DIMM.

In either case each cache line burst uses a single bank, so the banks are not switched at burst speed.

PCI traffic has unconditional prior ity for SDRAM, but PCI traffic is slow enough relative to the memory

system that there are always plenty of cycles left over for the CPU.

BONITO perfor ms refresh cycles as required.

You can configure BONITO to support any SDRAM with PC-100 compatible timing, and with up to 13 row

and/or column addresses. Configuration is software driven. System software can read an on-DIMM

configuration EEROM using two GPIO pins, and use that to figure out how to set up the memory

controller.

BONITO - PCI/SDRAM System Controller for Vr43xx Page 4 of 47

2.4. ROM and local I/O port

A dedicated local 16-bit I/O data bus is provided, with five dedicated I/O bus address bits. I/O bus cycles

requir ing more addresses find them on the SDRAM data bus. A single flash ROM device can be

connected directly, but for larger systems it’s desirable to isolate the I/O and ROM devices from the high-

speed SDRAM cycles; so a signal Isolate is provided to control a bus switch or simple buffer on the

address lines. It is always left disabled during SDRAM cycles.

BONITO generates Intel-style I/O device control signals, two ROM chip selects, and four I/O chip selects.

ROMs must be 120ns or faster. Two fixed I/O timings are supported, corresponding to read/write pulse

widths of approximately 200 and 800ns, respectively. There is no byte addressing for I/O devices; distinct

I/O bus addresses are at 4-byte intervals in CPU or PCI space.

A limited I/O bus DMA facility is offered, which is particular ly (but not uniquely) applicable to implementing

a low-cost, high-perfor mance IDE interface. It’s descr ibed in §2.4.1.

BONITO will perfor m multiple reads from a ROM to service CPU word or burst reads, allowing the system

to run - and to run cached - from a single 8- or 16-bit device. The assembly of ROM data into 32-bit

words on the CPU bus is done in a fixed order, regardless of programmed endianness; see §4.2 for why

this is probably a good idea.

2.4.1. ‘‘DMA’’ for local I/O

BONITO’s local I/O bus is, quite deliberately, highly compatible with the ‘‘ISA’’ bus found inside all PCs. In

tur n that means that it is also ver y similar to the ‘‘IDE’’ disk drive interface (which started life as ‘‘ISA on a

cable’’).

IDE peripherals are ver y cheap and widely available, and IDE disk drives offer ver y high perfor mance

where DMA is available. Recent standards like ‘‘ATA-4’’ have defined a series of improved DMA protocols,

and BONITO implements several up to and including ‘‘Ultra-DMA’’ with its 33Mbytes/s burst transfer rate.

BONITO’s DMA accelerator automatically cycles the local bus to read or write data in bursts of up to 32

bytes of data between a local bus DMA device and an on-chip DMA buffer. The DMA buffer can be

configured to auto-flush to or auto-fill from an incrementing local memory address to provide classic DMA.

Accelerator cycles on the I/O bus are requested with a DMARQ input and select the port to read/wr ite with

a DMACK* signal.

DMA I/O bus cycles don’t share any DRAM bus signals, so they can be overlapped with SDRAM

accesses.

2.5. Interrupts and general-purpose I/O (GPIO) pins

BONITO provides nine GPIO pins, programmable as input, output or tristate, and six dedicated input pins.

The input pins are particular ly good places to wire device interrupts, but some GPIO pins are available to

the interrupt controller too, as descr ibed in 5.14.

See the signal list for hardware connections.

2.6. Test interfaces

The chip has a JTAG interface for boundary scan testing.

BONITO - PCI/SDRAM System Controller for Vr43xx Page 5 of 47

2.7. Debug/diagnostic facilities

When bringing up software or fault-finding in an embedded system it can be ver y valuable to be able to

follow CPU, PCI and other transfers on a logic analyser.

BONITO is designed so that a ‘‘debug board’’ plugged into a DIMM socket can see the address and data of

any cycle in the system. The use of the SDRAM bus for this can slow down the system, so it is controlled

by a configuration register bit.

The debug board requires onboard logic - registers to capture address and data from the SDRAM pins,

and logic to interpret the SDRAM-like protocol and generate address/data triggers. It’s even possible to

build I/O devices onto the debug board, and have them accessible in the CPU’s memor y map.

Electr ically, the debug connector is similar to the DIMM module it supplants.

Debug signalling is described in Appendix C.

3. Inside BONITO

Tw o significant pieces of hardware are not directly related to any one of BONITO’s por ts, so we haven’t

mentioned them yet. They’re:

• The I/O buffer cache, which is responsible for providing a temporar y home for data in transit between

local memory and an exter nal PCI initiator.

• The PCI copier, used to transfer data between local SDRAM memory and PCI-accessible locations

without (much) CPU intervention.

3.1. I/O buffer cache

The I/O buffer cache (‘‘IOBC’’) is a small internal cache of local SDRAM locations, but it does a job you’d

more often see given to a FIFO. It is used when exter nal PCI initiators read and write BONITO’s local

SDRAM memory; most PCI controllers are ‘‘bus masters’’ and this is a critical part of many system

workloads.

The IOBC translates the PCI’s stream-like data accesses to the aligned cache block transfers supported

by the local memory. It provides low-latency reads and writes for non-CPU transfers, and causes minimal

disr uption to the perfor mance-critical CPU/memory traffic. The IOBC uses heuristics to schedule

prefetches and write-backs to keep locally-sequential data flowing efficiently.

The IOBC has the following character istics:

• The memory transfer unit is equal to the CPU’s largest line size - 8×32-bit words.

• The cache-line-sized data stores are organised in pairs. Data from anywhere can use any of the four

pairs, but consecutive data blocks are kept together in the same pair; each contiguous data stream

from a PCI master device will tend to be buffered through one pair of entries.

• The cache is small, with just four pairs of entries. But in most applications it perfor ms well (with a low

‘‘miss rate’’) because PCI accesses show ver y strong locality of reference.

The IOBC is a write-back cache (data written from PCI into the cache is not immediately forwarded to

SDRAM), but has two par ticular differences from a CPU cache. The first is that the cache never reads

data from memory in order to service a write, as is common for CPU caches. Instead, the cache keeps

track of every byte which has been written by the I/O side; when the data is written back to memor y, the

IOBC perfor ms a read-merge-wr ite operation if any of the bytes in the line have not been written with I/O

data.

The second difference relates to how lines are chosen for replacement. When a CPU misses in its cache

and a new cache location is needed for the refill data, it’s nor mal to make some attempt to employ the

‘‘least recently used’’ suitable line. By contrast the IOBC keeps its lines in pairs, and tries to use just one

BONITO - PCI/SDRAM System Controller for Vr43xx Page 6 of 47

pair of lines for an active data stream.

When a PCI master reads or writes data from local memory through the ‘‘IO cacheable’’ area, the cache

automatically re-allocates the pair of the line involved in a transfer to the next sequential block of memor y.

If the pair line was ‘‘dir ty’’, the re-allocation causes it to be written back. If the PCI event was a read, the

cache starts a memory operation to pre-fetch data into the newly allocated line.

I/O buffer cache coherence management

Because the IOBC is a cache, we need to consider the implications for coherence between the CPU’s

view of local memory and that of PCI bus initiators.

The IOBC hardware ‘‘snoops’’ CPU/memor y traffic to ensure coherency for uncached accesses from the

CPU, so device drivers which use uncached memory regions to share memory with PCI masters will

continue to operate.

Snooping causes clean IOBC entries to be invalidated when the CPU writes a matching memory location;

dir ty entr ies will be written back before a matching CPU read is allowed to go ahead.

IOBC coherency with respect to cached (burst) CPU transfers can be turned on, as an option. This is a

useful debug/diagnostic feature - making it easy to test for device drivers which fail to handle the cache

correctly. But it is not recommended for real systems; it imposes a significant penalty on every CPU burst

transfer, which is a ver y poor perfor mance trade-off.

The CPU can control the state of lines in the I/O buffer cache. All I/O buffer cache lines can be written

back or invalidated on CPU command. The operations might typically be invoked from within the CPU

cache management functions of the board support package.

BONITO provides registers and operations which allow the CPU to inspect the state of each cache line

pair, and to write-back and/or invalidate a specified line. See 5.9.1 for some programming guidelines.

3.2. PCI copier

Some applications require PCI memory-to-memor y copy. These operations are not like conventional

DMA, because they are not controlled by DMA request signals.

In an ideal wor ld, it is good design practice to make sure that data is generated in the right place, not

generated somewhere else and moved; but sometimes it can’t be avoided. Such copies are problematic

on the bus, because large memory-to-memor y copies tend to absorb all available PCI bandwidth,

increasing worst-case latency for all other bus users. BONITO provides a relatively dumb copy engine

which can speed data between local SDRAM and another PCI-accessible memory.

To initiate a copy the CPU writes the (word-aligned) PCI address, the cache-block-aligned local SDRAM

address and a block count2. Flags determine the direction of the transfer and whether an interrupt should

be raised on completion of the transfer.

Copy requests are ‘‘double-buffered’’, so the CPU can set up a second transfer immediately it has started

the first. When the first finishes, the second will start immediately - and software can arrange to get an

interr upt to war n it to set up a third transfer and so on, to keep data flowing.

Once activated the copier transfers cache-line-sized lumps of data between the PCI and local memory,

until the count is exhausted. The block count is limited to 16 bits, corresponding to a 2Mbyte copy; larger

transfers must be made of a chain of smaller units.

The copier only bursts to/from PCI for data which fits inside a 32-byte memory ‘‘cache block’’. At block

boundar ies it drops the PCI bus request for at least one clock to per mit other PCI initiators, or other

activities within BONITO, to gain the bus, thus reducing its impact on system-wide PCI transfer latency.

2 If the data you want to copy is not suitably aligned in local memory, you will need to

copy the first few words using CPU reads/writes.

BONITO - PCI/SDRAM System Controller for Vr43xx Page 7 of 47

When a copy operation is completed (either its count has hit zero or there has been some non-retryable

bus problem) an interrupt will be raised. When a cycle has an error the copier always raises an interrupt

and stops itself.

The CPU can stop the block copier under software control (though any committed PCI access is

completed first). When stopped, internal registers become accessible to the CPU: they include the

current PCI address, the current local memory address, the remaining count, and a flags word describing

the outcome of the last PCI cycle.

BONITO - PCI/SDRAM System Controller for Vr43xx Page 8 of 47

4. Programming BONITO

We’re near ly at the point of defining registers; but there are three general issues to cover first. One is the

address map, which is to some extent used by any BONITO system; the second is the confusing issue of

endianness. The third brings together issues relevant to getting the system bootstrapped, at least to the

point where you’re running some software on the MIPS CPU.

There are hexadecimal addresses listed in the tables below, and register addresses in Appendix A; but

don’t re-type them! We’d like to encourage you to download a C header file from Algorithmics’ internet

ser ver at ftp://ftp.algor.co.uk/pub/bonito/bonito.h; it will save you hours of typing, reduce the

risk of mistakes, and means that the wor ldwide family of BONITO programmers will use the same register

and field names. As an additional incentive, the online version is more likely to be up-to-date3.

Where you see register names in bold fixed point font, they’re names used in the online header file.

And when you see a register name with a ‘‘dot’’ in it (e.g. sdcfg.awidth64), that means we’re talking

about the field called awidth64 in the register sdcfg.

4.1. Address maps

The view of the system from the CPU is somewhat different from that as seen by a PCI bus initiator. We

descr ibe both.

CPU access map

Base Size

Address (bytes)
Class Description

0000 0000 256M Memory local SDRAM memory

1000 0000 64M PCI_Lo0

1400 0000 64M PCI_Lo1

1800 0000 64M PCI_Lo2

PCI low-memor y bus window for most CPU accesses to PCI space. Each of the

three 64Mbyte windows can be separately positioned in PCI space with its own

base register.

1c00 0000 32M ROM (suitable for soldered flash) selected by ROMCS1*.

1e00 0000 24M unused

1f80 0000 4M

ROM

ROM (probably a socket, to provide a first-run bootstrap) selected by ROMCS0*.

1fc0 0000 1M Boot Bootstrap memory location - starts at the magic MIPS reset-time entry point.

According to reset-time configuration - see Table 5.2 - this can be mapped to 1M

of either ROM space (ROMCS0* or ROMCS1*),

1fd0 0000 1Mb PCI I/O PCI I/O space - window to the low megabyte of PCI address range: used (and

probably only used) to access the I/O space of an attached ‘‘ISA’’ bus.

1fe0 0000 256 BONITO BONITO’s own PCI configuration space registers available to other PCI bus

masters

1fe0 0100 256 BONITO BONITO’s inter nal registers.

1fe0 0200 unused

1fe8 0000 512K PCI PCI configuration space reads/writes. Low par ts of the address value driven on

PCI comes from this address; high order bits from the pcimap_cfg register.

1ff0 0000 256K

1ff4 0000 256K

1ff8 0000 256K

1ffc 0000 256K

Local I/O Local I/O bus devices decoded by IOCS0-3* respectively

2000 0000 1.5Gb PCI_1.5 Maps 1-1 onto PCI addresses. Most likely not ver y useful.

3 The great advantage of bonito.h is that we use it to build our software. But the

file might have obsolete or unused definitions in; we’ll try to zap them, but if the file

descr ibes something which isn’t in the manual, it quite likely isn’t in the chip either.

BONITO - PCI/SDRAM System Controller for Vr43xx Page 9 of 47

Base Size

Address (bytes)
Class Description

8000 0000 2Gb PCI_2 PCI access window. Optionally mapped with either 1-for-1 addresses, or

mapped down to the low 2Gb of PCI space. Available if you need access to a

larger region of PCI space than is available in the lower-memor y window.

You’ll need to program the MIPS TLB or use 64-bit pointers to get addresses

bigger than 0x2000 0000 out of the CPU.

Table 4.1: CPU/local bus address map

Notes on CPU memory map and guidelines for PCI windows

In an ideal PCI system, all memory locations are dynamically set up by the system host controller at boot

time. How ever, in many cases low PCI addresses cannot always be freely allocated; space below 1Mbyte

or 16Mbyte may be required for certain PC ‘‘legacy’’ adapters and PC-wor ld south bridge chips, which

map ISA’s 20- and 24-bit addresses into the lowest part of PCI space.

In a system which might want to use such legacy devices auto-configured PCI devices should be

allocated addresses from at least 1Mbyte and perhaps 16Mbytes up.

From-PCI map

You can see how it might go together in Figure 4.1.

0

8M

16M

0

256M

512M

0

256M

512M

16M

2G

PCI memory

2G

SDRAM

Local memory

Local SDRAM

boot ROM

ROM1

ROM2

Local I/O

PCI I/O

PCI_Lo0

PCI_Lo2

PCI_Lo1

PCI_1.5

PCI_2

Local memory

Local SDRAM

boot ROM

ROM1

ROM2

Local I/O

PCI I/O

PCI_Lo0

PCI_Lo2

PCI_Lo1

PCI_1.5

PCI_2

anywhere

via base

high half/
low half

to low PCI

I/O Mbyte

registers

(with cacheing)

(no cacheing)

8M

BONITO debug

BONITO registers SDRAMBONITO

 SDRAMBONITO

 ROM, I/O

BONITO registers

access to BONITO

BONITO debug

BONITO registers

reserved for

ISA space

often

pciBase2

pciBase0/1

eg for ISA DMA

pciBase0/1

pciBase0/1

pciBase0/1

Figure 4.1 Memory regions and mappings between local and PCI space

The PCI regions identified (wor king from the bottom up):

• Reser ved for ISA registers/memory : if your system uses an ISA bus, or (perhaps more cogent) any

controller which needs to offer a programming model compatible with some old PC hardware, then it

may need to use registers or memory locations in the low 16Mbytes, and quite likely the low 1Mbyte,

BONITO - PCI/SDRAM System Controller for Vr43xx Page 10 of 47

of PCI space. It’s therefore often wise to avoid using this region for anything else.

• For ISA DMA access to BONITO SDRAM (example) : more obscure. If your system may at some time

suppor t a DMA device which operates from an attached ISA bus, then that DMA device will itself only

be able to reach PCI addresses in the low 16Mbytes; so it’s useful to be able to map some of our

SDRAM to this location. You can see here that it’s possible to use one of the pciBase0-1 registers

with its mask and offset defined to access only 8Mbytes of local SDRAM.

• BONITO registers : here and subsequently, the name in bold (pciBase2) is a base register determined

at configuration time.

This region provides the PCI view of BONITO’s inter nal registers. All registers are mapped at the same

position relative to the PCI base as they are mapped in CPU space.

• BONITO ROM, I/O (example) : a view of the BONITO ROM and local I/O space. There’s nothing to stop

you trying to go through BONITO to that part of the PCI bus mapped into local memory - but it’s bizarre

and not much is guaranteed.

• BONITO SDRAM (with and without IO caching) (examples) : we show two large windows mapping all

the SDRAM - once for accesses where IO caching is undesirable, and once for accesses where IO

caching is a good idea. You can setup BONITO to provide a PCI window to any pow er-of-two sized

aligned region of local memory.

If BONITO attempts a transfer which should decode as a self-access (to either BONITO registers or its

attached local memory) then it will not respond on the PCI bus unless the access maps to local SDRAM

(where such cycles are useful for IO buffer cache diagnostics). In all other cases the cycle will finish with

a ‘‘Master Abort’’4.

4.2. Endianness

A system has ‘‘endianness’’ if it suppor ts both byte-wide and larger-integer accesses to the same memory

object. A little-endian system is one where the least significant bits of the larger integer are stored in the

lowest addresses, and a big-endian system is one where the most significant bits of the larger integer are

found at the higher addresses. Neither is right, though each is ‘‘obvious’’ in different circumstances; it’s a

curse of computing that different CPUs and buses adopt opposite conventions. It’s vir tuous to write

software which wor ks with either endianness, but virtue always demands sacrifice; porting a code-base

which has only ever run with one convention can be hard wor k.

The PCI bus is little-endian, and most PCI peripherals are little-endian in all their dealings over PCI5. A

MIPS CPU may be configured to run with either endianness. Although the presence of the PCI bus is a

good reason to make your CPU little-endian, sometimes an existing code base may sway the balance the

other way.

So BONITO’s ‘‘endianness’’ may be configured at reset time and changed at any time6 by a software-

wr itable 32-bit register. Endianness affects the interpretation of a MIPS CPU’s uncached partial-word

reads and writes, where it is necessary to steer read or write data to/from the correct byte lane of the

system bus, so BONITO must agree with the CPU’s configured endianness before any par tial-word

accesses can wor k.

4 This is only to be relied on for configuration space cycles.
5 Some PCI controllers do adver tise facilities to help out systems with big-endian

components; but everyone gets so confused about this stuff that our first

recommendation is to turn all those things off and sort the problem out using software

and BONITO’s facilities.
6 In practice you’ll change it (if at all) once ver y ear ly in the bootstrap process.

BONITO - PCI/SDRAM System Controller for Vr43xx Page 11 of 47

Endianness and the SDRAM port

Data is conve y ed between the CPU’s 32-bit data path and the SDRAM’s 32-bit data path through

corresponding bit numbers. No attempt is made to do anything sensible with data in SDRAM across an

endianness change; the results are undefined.

Endianness and ROM cycles

Local ROM data is always ‘‘little-endian’’ in that a byte whose address in the ROM device is 0 modulo 4

will always be presented to the CPU on SysAD0-7. This relationship is deliberately kept independent of

configured endianness. We do that because some MIPS CPUs (notably NEC’s Vr4300) can be set to

either endianness purely by software.

The ROM’s fixed bit-to-address mapping means that when you make sub-word accesses to ROM from a

big-endian CPU the address at the ROM pins is actually flipped (at the byte-within-word level) relative to

that coming out of the CPU.

Any read from ROM which can’t be achieved with a single ROM cycle is (for simplicity) implemented by

reading all four bytes and letting the CPU ignore the data it didn’t want. Only single-byte reads from an

8-bit device or half-word reads from a 16-bit device are guaranteed to result in a single cycle at the ROM

pins - something you need to know when programming most flash devices.

ROM write operations are only ever single-cycle.

Endianness and local I/O accesses

You are recommended to connect I/O bus device’s addresses to IOA2 and upwards, so that registers

appear on 4-byte-aligned locations. Access these registers with word-wide (32-bit) load and store

instr uctions for endianness-indpendent software. Of course, only the parts of the CPU’s data word which

is actually connected to the device data bus are important. During I/O reads and writes the data bus

IOD0-15 feeds or is fed by the CPU data bus SysAD0-15.

When you do byte or other partial-word transfers from a MIPS CPU the active byte lanes depend on the

CPU’s endianness, so byte- or partial-word accesses to the local I/O bus can only be programmed

correctly once you know the endianness of your CPU.

Endianness and I/O bus (IDE) DMA

The IDE disk bus - and any similar 16-bit data channel - has endianness; when two bytes of data are

passed along the IDE cable the byte on IOD7−0 is earlier in sequence than the byte on IOD15−8. To

preser ve this view of byte sequence for a big-endian CPU, there’s a swapper built into the IDE DMA

hardware; you can enable it at iodevCfg.wordswapbit_ide, descr ibed in Table 5.12.

Endianness and PCI transfers, CPU and bus-initiated

When the CPU and its interface are big-endian there is bound to be trouble with accessing devices and

memor y over PCI bus. In this case we recommend that all CPU reads and writes of PCI locations, and

PCI master accesses to local SDRAM, should be routed through BONITO’s byte-lane swapper. There are

two configuration bits to set, described in Table 5.3: bonGenCfg.mstrbyteswap and

bonGenCfg.byteswap.

With all PCI transfers swapped, your local CPU and PCI will share a common view of byte addressing, but

means that bigger-than-byte integers out in PCI wor ld - 32-bit device registers, for example - will appear

byte-swapped to the big-endian MIPS CPU; your software will need to cope.

The byte-lane swapper does not affect PCI accesses to internal BONITO registers; they’re defined as

32-bit aligned objects and are generally OK. Local CPU software should avoid doing byte or other partial

word transfers with BONITO registers.

BONITO - PCI/SDRAM System Controller for Vr43xx Page 12 of 47

Endianness and bootstrapping

When the system starts up BONITO is operating with undefined endianness. Since this may not match the

CPU’s ideas, you can not (at this stage) rely on BONITO correctly interpreting any par tial-word read or

wr ite operation from the CPU. You must program BONITO’s CPU configuration register really, really early!

4.3. Bootstrapping

From a cold start, some MIPS CPUs require a fair ly complex reset sequence; BONITO takes care of it.

Most MIPS CPUs require some reset-time configuration. Where this is static, your design needs to

include the appropriate pull-ups/downs; but some MIPS CPUs rely on clocking in a bit-stream from a

configuration ROM. The MIPS interface - the CPU drives the clock and looks for serial data - is

incompatible with low-cost serial ROMs. But here again BONITO will handle it.

In addition BONITO can perfor m a software-initiated reboot of the MIPS CPU, as if from a cold reset. This

can be valuable in that it permits a CPU to come up in some ‘‘default’’ configuration, set-up BONITO’s

inter nal registers with an alternate CPU configuration and then reset itself, ending up in a software-

deter mined configuration. See §4.3.1 below.

In most BONITO applications the MIPS CPU will bootstrap from a local ROM; you can specify either of the

ROM chip select options, and choose an 8-bit or 16-bit ROM. However, it’s also possible for a host

attached over the PCI bus to hold the local MIPS CPU while the remote host uploads software into local

SDRAM memory; described in §4.3.2.

4.3.1. CPU-specific reset options and ‘‘mode bits’’

All the MIPS CPUs compatible with BONITO are to some extent hardware-configured to match the system

they run in. Many of them retain a scheme first found in the MIPS R4000, which loads configuration bits

as a serial bit-stream at reset time7. The R4000 was introduced when serial ROMs were relatively rare,

and it’s just bad luck that the simple interface the CPUs require is annoyingly incompatible with low-cost

ser ial ROMs.

So BONITO provides a limited facility which - with most CPUs in most systems - will get the system up and

running with an absolute minimum of additional hardware.

From a hard BONITO reset, the first 32 bits of the data stream are obtained by inver ting the levels on the

(weakly pulled-up on chip) CPU data bus SysAD0-31, star ting with bit 0. Since the CPU will not be driving

the bus at this point an exter nal pull-down on any SysAD signal puts a ‘‘1’’ in the corresponding position in

the mode bits stream. Most CPUs can be at least brought into a minimal wor king mode with a

configuration with ver y fe w ‘‘1’’ bits.

If this allows you to get exactly the configuration you want, that’s fine; but if you need something more

subtle the CPU can now move on to reset itself using the bonGenCfg.cpuselfreset register bit. A CPU

self-reset does not reset BONITO and in this case the mode bit stream is fed from the register intPol,

which is borrowed for this purpose. So long as the SysAD-defined settings are enough to run a simple

piece of ROM software, the software can store the configuration of its choice into intPol and reconfigure

the CPU accordingly.

7 NEC’s Vr43x0 and Vr5432 CPUs don’t do this; they use only static configuration

augmented by inter nal software-wr itable registers.

BONITO - PCI/SDRAM System Controller for Vr43xx Page 13 of 47

4.3.2. Choice of boot memories and PCI-initiated bootstrap

BONITO can be configured to allow its attached CPU to bootstrap from either of the two ROM regions

provided in its standard address map (selected by ROMCS0* or ROMCS1*).

The two ROM regions are not equivalent; the ROMCS0* window is much smaller (4Mbytes maximum) and

is intended for a first-time-only bootstrap for designs which have flash memory soldered using ROMCS1*,

and need some way to get that flash device programmed in production.

However, it’s possible to build a BONITO system with no ROM, where the MIPS CPU bootstraps from local

DRAM memory. Booting from DRAM is only useful, of course, after someone has put a program into it;

and this could only have been done by a PCI bus master which has taken control of the system.

The sequence for a PCI bootstrap is fair ly complex, and the details are beyond the scope of this manual8.

But the basic sequence goes like this:

1. BONITO should be reset but configured to preset the bonPonCfg.romBoot field to the magic ‘‘11’’ value

- you’ll need pull-ups on a couple of IOD lines to get this effect.

With this setting, the MIPS CPU will be held in reset after BONITO comes up.

2. The PCI-located host can now program BONITO from the PCI side - remember, all BONITO registers

can be reached from PCI. The PCI host must initialise much of BONITO - in par ticular its SDRAM

controller.

3. The PCI-located host can now fill SDRAM memory with a bootstrap program.

4. The PCI host re-writes bonPonCfg.romBoot to the value ‘‘10’’. This will cause the MIPS CPU to be

taken through its normal reset sequence, but its normal start-up address will now map to local

SDRAM. From now on the MIPS CPU can take control.

4.3.3. Software-determined PCI configuration characters

The PCI specification lays down a standard ‘‘configuration space’’ and standard register for mat in every

controller, as par t of a larger scheme in support of automatic configuration of a large range of possible

systems - what PC software suppliers have called ‘‘plug and play’’. When a PCI system is reset one CPU

(the ‘‘PCI host’’) scans the bus reading configuration space, allocating memory space and enabling

dr ivers as required.

BONITO can be used in two roles. If the MIPS CPU is the PCI bus host, then BONITO’s configuration

space facilities are not ver y impor tant - only the host wr ites PCI configuration space, and most of the time

only the host reads it. But BONITO can also be used to build a subsystem - an intelligent controller. If, for

example, you build a RAID disk controller you would like the host reading BONITO configuration registers

to see a disk controller, not a ‘‘MIPS CPU bridge’’.

Three facilities in BONITO are available to help with this:

1. BONITO’s configuration-space registers - even those which the PCI specification assumes are only

ev er read by the host - may in fact be overwr itten by the MIPS host, thus changing its identity.

2. PCI configuration-space base registers are read by the host to establish the size of the memory

regions a PCI device will share with the bus, and written by the host to establish their location within

the overall PCI memory map.

BONITO’s windows onto its internal memory may be ver y large; large windows are essential for some

applications. But fixed-size large windows provide problems for the configuring host, which may run

out of PCI memory space to allocate.

8 Some BONITO-related software is available free from Algorithmics; see

http://www.algor.co.uk, ftp://ftp.algor.co.uk/pub/bonito/ or mail us at

bonito@algor.co.uk

BONITO - PCI/SDRAM System Controller for Vr43xx Page 14 of 47

So the apparent size of the regions mapped by BONITO’s base registers can be changed by the MIPS

CPU.

3. All this would be useless if the host were to complete its PCI bus initialisation before the local CPU

had got around to setting up new values in BONITO’s configuration-space registers. So there’s also an

BONITO option - available as a reset-time configuration bit bonPonCfg.configdis- which causes

BONITO to defer host processing, by responding with a PCI ‘‘retr y’’ to any configuration-space access.

Local software should hurry to fix up BONITO’s configuration space registers before the host software

times out.

BONITO - PCI/SDRAM System Controller for Vr43xx Page 15 of 47

5. Software-accessible Registers and programming
We’ll organise this programming guide starting at reset time and wor king forwards through the operations

of the chip.

BONITO’s functions are controlled through a collection of registers. Apar t from a few whose organisation

is dictated by the PCI specification the registers are all 32-bits in size, even where only some of those bits

have any meaning. They should always be read and written as whole 32-bit words.

All BONITO inter nal registers are accessible to both the CPU and an exter nal PCI master. Moreover,

within the relevant memory region, the register offsets are the same as seen from both sides. Of course,

the fact that it’s possible to access registers from both sides doesn’t commit us to solving problems

caused by simultaneous access - you can, but often you shouldn’t!

5.1. Register Summar y

Register What is itPage/figure

bonGenCfg 19/Table 5.3 Ear ly boot-time configuration, mostly PCI-

related

bonPonCfg 18/Table 5.2 Configuration bits which can be set either

way using IOD pullups

copCtrl 30/Figure 5.5

copDAddr 30

copGo 30/Figure 5.5

copPAddr 30

copStat 30/Figure 5.5

PCI copier registers

gpioData 36/Figure 5.8 GPIO level read/wr ite

gpioIE 36/Figure 5.8 GPIO input/output setting

intEdge 36/Table 5.13 Interr upts selected as level/edge triggered

intEn 37/5.14 Separate interrupt enable bits

intEnClr 37/5.14 Interr upt enables - per-bit clear

intEnSet 37/5.14 Interr upt enables - per-bit set

intISR 37/5.14 Readable interrupt inputs

intPol 37/5.14 Interrupt polarity

intSteer 37/5.14 Which of two CPU interrupt pins gets raised

by each interrupt condition

iodevCfg 34/Table 5.12 I/O bus cycle character istics

ldmaAddr 35

ldmaCtrl 35/Figure 5.7

ldmaGo 35/Figure 5.7

ldmaStat 35/Figure 5.7

I/O bus DMA, mostly for IDE

pciBase0 24/Table 5.5

pciBase1 24/Table 5.5

pciBase2 24/Table 5.5

Base registers in PCI configuration space,

which define what regions BONITO makes

available to other PCI initiators.

pciCacheCtrl 32/Table 5.10

pciCacheTag 32/Table 5.11

Registers for the I/O buffer cache (also

known as ‘‘PCI cache’’).

BONITO - PCI/SDRAM System Controller for Vr43xx Page 16 of 47

Register What is itPage/figure

pciClass 24/Table 5.5

pciCmd 26/Table 5.7

pciDid 24/Table 5.5

pciExpRBase 24/Table 5.5

pciInt 24/Table 5.5

pciLTimer 24/Table 5.5

Standard PCI configuration registers

pciMail0-3 36/5.12 Mailbox registers

pcimap 28/Table 5.9 Register to fix the windows available to the

local CPU to access PCI memory or devices.

pcimap_cfg 29/Figure 5.4 Used to complete the PCI address when the

local CPU is using BONITO to perfor m PCI

configuration cycles.

pcimembaseCfg 25/Figure 5.1 Used by local host to size and position the

PCI-accessible windows into BONITO’s local

memor y and local I/O.

pciMStat 29/Table 5.10 How many posted writes are still pending?

sdCfg 21/Table 5.4 Set up BONITO to match the SDRAM shape,

size, speed etc

Table 5.1: All registers

5.2. General principles for BONITO registers (read this)

Don’t type in these register or field names; as we already said at the start of §4 above , go to Algorithmics’

ftp site and download ftp://ftp.algor.co.uk/pub/bonito/bonito.h.

To avoid lengthening the whole manual with endless repetition, the following general rules apply to the

use of BONITO’s registers:

• All registers are writable unless explicitly stated to be read-only.

• Wherever it is reasonable to do so - and unless the detailed description says otherwise - you can read

back the value you last wrote to a BONITO register.

• Some options affect BONITO’s suppor t for the CPU bootstrapping itself, so must be settable at reset

time. Register fields representing these options take their values by sampling the signals IOD0-15 (the

IO data bus) while the system reset SYSRESET* is still active. BONITO has a weak internal pull-down

on each IOD signal line, so to set one of these register fields to 1 your system should have an exter nal

pull-up resistor on the corresponding line; a 4.7KΩ resistor to 3.3V is recommended.

These configurable bits are gathered together into the bonPonCfg register.

Even earlier in reset, some MIPS CPUs use a serial data stream (‘‘mode bits’’) to load configuration

infor mation; see §4.3.1 for where those bits come from.

• Many other register bit-fields are forced to a fixed level (most often zero, occasionally 1) following

reset. However, this manual will document that only when it’s impor tant to early operation. Your

software should take responsibility for programming all relevant registers to reasonable values early in

the bootstrap sequence.

• Register bit fields which are not defined in this manual are just that - undefined; they will be marked

with a ‘‘×’’ in the tables. They’ll most often read zero, but that’s not guaranteed; and they should

always be written zero. Absolutely anything might happen if you write them to something other than

BONITO - PCI/SDRAM System Controller for Vr43xx Page 17 of 47

zero.

We make only one promise about these values. In read/wr ite registers it will always be safe to write

an undefined field with the data you just read from it.

5.3. Configuration register

The bonPonCfg register brings together BONITO control bits which may be set to either 1/0 at reset time.

To get a 1 value following reset in a bonPonCfg field, you need a pull-up on the corresponding IOD0-15

signal; to get a zero, make sure that all devices connected to the line are tri-state during reset (they

nor mally will be). In fact, bonPonCfg is really 18 bits long, and the two highest bits show the reset-time

value of ROMCS0-1*; like other bits in the register which have no hardware effect, they could be used for

software configuration infor mation. Here are the fields which have a hardware effect:

bonPonCfg register

Bit(s) Name Value / Effect

14 CPUbigend 1 to suppor t big-endian MIPS CPU; see §4.2 for a full description

of the consequences. A wrongly-configured BONITO is still capable

of being used by a MIPS CPU which avoids all sub-word accesses

- so it’s possible for your system to leave this to the default setting

so long as early software changes it to match the CPU.

13 CPUparity 1 to enable per-byte parity checking; 0 to disable checks. It will not

usually be necessary to set this bit from power-on. Note that

BONITO always passes SDRAM parity straight through, and

generates parity for I/O and PCI data.

11 romCs1fast

10 romCs0fast

Select ‘‘faster’’ operation on the ROM attached to these select

signals; slow ROM has an access time of 12 CPU clocks, while fast

ROM cycles in 9 CPU clock per iods. Don’t change these fields

while running from the affected ROM.

9 romCs1width

8 romCs0width
read-only - 1 for 16-bit ROM, 0 for 8-bit

read-only - where CPU boots from; picks which memory region will

be selected for accesses in MIPS’ traditional 0x1FC0.0000 star t

address.

00 from ROM attached to ROMCS1*.

01 from ROM attached to ROMCS0*.

10 from local SDRAM. This wor ks only if some other part of

the system has filled it with appropriate MIPS code, of

course; you’ll start with the next value:

11

7-6 romBoot

from local SDRAM; but also the MIPS CPU is held in reset

until this field is changed to another value - usually ‘‘10’’ as

above . Used for a system which expects to have software

uploaded into SDRAM at power-on.

5 config_dis when set 1, BONITO responds as target to any PCI bus

configuration cycle with a ‘‘retr y’’ response. This allows your

system to hold off configuration by an exter nal PCI host while the

local CPU’s bootstrap software patches the standard PCI

configuration registers. You should not leave this set for more than

a few ms, or your host may give up on you; dangerous but useful.

4 is_arbiter when set 1, BONITO operates as PCI arbiter. When 0, the roles of

the zero-th request and grant signals are reversed, and BONITO will

use the services of an exter nal arbiter.

BONITO - PCI/SDRAM System Controller for Vr43xx Page 18 of 47

bonPonCfg register

Bit(s) Name Value / Effect

3 pcireset If BONITO is acting as PCI bus controller (ie controlling the reset

signal), this is where you can set it. A zero value asserts the

active-low PCI Reset* signal; a ‘‘1’’ deasser ts it.

Note that in early specifications, this bit was used to configure

BONITO as PCI bus controller. But that’s now done with the

dedicated signal SysController*.

What kind of CPU is attached?

000 NEC Vr4300

001 NEC Vr5432

100
2-0 CPUtype

Most other compatible CPUs with wide command bus,

R4000-her itage reset, and ‘‘mode bits’’ configuration. See

§4.3.1 for where the configuration mode bits come from.

Table 5.2: Fields in bonPonCfg

5.4. Mostly-PCI configuration - not affected by pullups

The bonGenCfg register brings together early-bootstrap options, but which power-up from reset to a fixed

state - most often zero. Almost all of them are PCI-related.

bonGenCfg register

Bit(s) Name Value Effect

16 noretrytimeout 0/1 Nor mally (with this field 0), BONITO will not retry indefinitely on

a locally-initiated PCI cycle where the target returns a ‘‘retr y’’

response; eventually BONITO gives up and returns a PCI error.

Sometimes the target may just be ver y slow, and software can

catch the error condition and re-try the cycle manually.

Set this field 1 to disable that timeout. This risks lock-up, but

makes the software simpler.

15 buserren 0/1 Set 1 to cause any CPU-initiated PCI bus read which

ter minates without data to cause a MIPS ‘‘bus error’’ exception.

14 mstrbyteswap Set 1 to enable the PCI byte-lane swapper for transfers

between PCI and local memory or CPU, when BONITO is the

PCI bus initiator (master).

Except in bizarre circumstances and after deep thought, this

should be set 1 if and only if your CPU is big-endian. Only in

ev en more bizarre circumstances should it ever be set

differently from the byteswap bit described below, which

controls transfers where BONITO acts as target on the PCI bus.

13 cachestop 0/1 When 1, all PCI-initiated accesses to local memory are denied

with a ‘‘retr y’’ signal, so that the I/O buffer cache state can only

be affected by CPU activity. Probably only for IOBC test code.

12 ciqueue

11-10 cachealg
More IOBC diagnostic fields

IOBC write-behind control

0 Data written by a PCI initiator to BONITO’s local memory is

immediately forwarded to the memory controller.

1

9 wbehinden

Wr ite data is retained in the IOBC until the line is recycled;

much more efficient for normal purposes.

BONITO - PCI/SDRAM System Controller for Vr43xx Page 19 of 47

bonGenCfg register

Bit(s) Name Value Effect

8 prefetchen 0/1 IOBC read prefetch control. Set 1 to allow BONITO to read

ahead by a cache line. When a PCI initiator is reading a

stream of data from local memory, this greatly improves

perfor mance by fetching what will probably be the next line of

data from memory in parallel with the PCI transfer.

7 uncached 0/1 Set 1 to enable the IOBC. 0 is for diagnostic code only.

6 byteswap 0/1 Set 1 to enable the PCI byte-lane swapper for transfers

between PCI and local memory or CPU, when BONITO is acting

as the PCI bus target (slave).

Like the mstrbyteswap bit described above , this should be set

1 if and only if your CPU is big-endian.

Should BONITO’s interr upt controller be connected to the PCI

interr upt signal INTA*?

0 No; INTA* (if an output at all), will be explicitly controlled by the

MIPS CPU.

1

5 irqa_from_int1

Yes; INTA* (if set as output), will track the level from the

interr upt controller (see §5.14) which is driven on the CPU’s

second interrupt signal, Int1*.

4 irqa_isout 0/1 1 to drive INTA*, 0 for it to be an interrupt. It is readable as one

of the input conditions of the interrupt controller, see §5.14.

3 force_irqa 0/1 Set 1 to drive INTA* active. Note that since PCI interrupt

signals are defined ‘‘open-collector’’ they are only in fact driven

low; in the absence of any drive by any of possibly multiple

connected devices a pull-up produces a high level. So the 0

value means ‘‘don’t drive the signal’’.

2 cpuselfreset 0/1 Wr ite a ‘‘1’’ to cause BONITO to cold-reset the MIPS CPU.

Likely to be used only ver y soon after a real power-on reset, in

systems where the CPU configuration is changed by software

very ear ly in bootstrap.

1 snoopen 0/1 Set 1 to enable the IOBC to snoop uncached CPU accesses.

Sometimes helpful and usually harmless. Should normally be

set.

0 debugmode 0/1 Po wers-up to 1. Enable debug mode, in which all CPU

accesses and some PCI ones become visible on an attached

debug board - see §2.7. There may be some cost in

perfor mance or power, so tur n this off in a system if you know

no debug board will be used.

Table 5.3: Fields in bonGenCfg

5.5. SDRAM configuration

BONITO can be configured with a range of SDRAM memory systems. We need some standard names for

talking about the chunks of SDRAM you build the system out of, and the SDRAMs themselves already

have ‘‘banks’’ and ‘‘rows’’ inside. So by analogy with the DIMM modules (which many designs will use)

we’ll talk about modules each of which has one or two sides9. Sides can be 64- or 32-bits wide; where we

9 Some DIMM modules provide two chunks of DRAM all soldered to the same side of

the board, while others have a single chunk of DRAM split between top and bottom; but

we’d still call the chunks ‘‘sides’’ if they share a chip select. Sorr y; we have to call them

something.

BONITO - PCI/SDRAM System Controller for Vr43xx Page 20 of 47

want to talk about one of the 32-bit halves of a 64-bit side we’ll call it a half-side.

If you solder the chips to the board then you may complain about the use of the word ‘‘module’’ - but it’s

the best we could think of.

BONITO can directly support two modules - 32- or 64-bits wide - and each may have two sides. BONITO

needs to be set up so that the memory map extends from zero to the whole SDRAM system size with no

holes or wrap-arounds. So the relevant parameters of the SDRAM system are:

• Is there just one, or are there two modules?

And for each module:

• Is it 64- or 32-bits wide?

• Does it have one or two sides?

• How many inter nal banks are there in its constituent SDRAM components - two or four?

• How many MuxAD addresses does the SDRAM decode in its first (Ras*) phase? Components

suppor ted by BONITO decode between 11 and 14.

• How many MuxAD addresses does the SDRAM decode in its second (Cas*) phase? BONITO can wor k

with between 8 and 11.

That’s quite complicated to allow for in the design, but also quite complicated for software to find out

about.

By a convention initiated by IBM and sanctified by PC-100, modern DIMM modules carry ‘‘self-por trait’’

data encoded in a tiny on-DIMM EEROM device, accessed through a compact 2-wire interface. Software

can drive BONITO’s GPIO pins to access the data.

Memor ies built onboard or with proprietar y modules will not usually have such infor mation in EEROM -

the board designer should consider how much infor mation is needed and how software should detect any

variation in DRAM types.

To complete configuration of BONITO’s SDRAM controller you’re also going to need some timing

infor mation, deter mined by your hardware design engineer, such as whether the memory array uses

exter nal registers to provide higher drive for address and control signals.

The controller can handle four physical groups of SDRAMs. But inspired by the organisation of DIMMs,

BONITO’s registers assume that the two sides within each module are always identically organised.

The first module’s sides are selected by the signals DCS0L*/DCS0H* and the second module’s sides by

DCS1L*/DCS1H*.

Modules can be either 32/36- or 64/72-bits wide, but BONITO has only a 36-bit SDRAM data bus so wide

modules are wired with the high and low data halves commoned together; transfers to wide modules are

qualified by the assertion of only one of the two mask signals DQMBLo/DQMBHi.

BONITO always implements parity on the memory array - it passes parity through on CPU cycles, and

generates/checks it on all other cycles. How ever, unless a 72-bit memory is set up so that half of the

par ity bits are always enabled with the appropriate half of the data bus (and 72-bit DIMMs don’t do this)

par ity won’t wor k correctly. With wide modules you can still use parity for diagnostic and test purposes -

par ity should be correctly stored and returned for either the lower or upper half of the normal range of this

memor y module, according to whether DQMBLo or DQMBHi enables the parity bits on your module.

You tell BONITO about the character istics of each module through the register sdCfg, shown in Table 5.4.

† Some SDRAM manufacturers count an internal bank-select address - the same as

the BONITO signals called DBA0-1 - into their ‘‘row’’ and ‘‘column’’ address counts, so

you’ll need to subtract one from those values before programming Read carefully.

BONITO - PCI/SDRAM System Controller for Vr43xx Page 21 of 47

sdCfg register

Bit(s) Name Value Effect

23 dramparity 0/1 Set 1 to enable parity generation/checking in the DRAM

system.

22 dramextregs 0/1 Set 1 if your system uses high-drive registers to boost

multiplexed addresses and shared control signals to the

SDRAM modules.

21 dramreset 0 TBD - leave 0 for now

20-19 extraswidth Timing option‡

18 extprech Timing option‡

17 extrascas Timing option‡

16 extrddata Timing option‡

SDRAM shape fields - ’a’ for the first module, selected by

DCS0L*/DCS0H*, and ’b’ for the second, selected by

DCS1L*/DCS1H*.

15 bwidth64 b module data width.

7 awidth64 a module data width

0 32 bits wide

1 64 bits wide

14 babsent 0/1 Set if no memory is fitted in the B module

6 aabsent Not implemented yet - ignored!

13 bsides

5 asides
‘‘sides’’ in this module - separate bits for sides 0 and 1

0 just side 0 fitted (or none)

1 both sides fitted

12 bbankbit

4 abankbit
No of internal banks in SDRAM components

0 Tw o

1 four

11-10 bcolbits no of column addresses at SDRAM†

3-2 acolbits

00 8

01 9

10 10

11 11

9-8 browbits

1-0 arowbits
no of row addresses at SDRAM†

00 11

00 12

00 13

00 14

Table 5.4: Fields in sdCfg

The whole register is cleared to zero on power-up.

Note that from system reset sdCfg is cleared. This is intended to leave the SDRAM configuration in a

default state which will yield 4Mbytes of functioning memory, so long as any usable devices are connected

to the chip-select DCS0L*. This can be used for some bootstrap functions - but the contents of memory in

this default configuration may be scattered all over the address map by the time you’ve installed the

‡ SDRAM timing is obscure. Ear ly users should not change the values set up by

Algor ithmics’ power-up code.

BONITO - PCI/SDRAM System Controller for Vr43xx Page 22 of 47

correct configuration.

BONITO - PCI/SDRAM System Controller for Vr43xx Page 23 of 47

5.6. BONITO registers available in PCI configuration space

These registers, shown in Table 5.5 confor m to the PCI 2.1 standard10. BONITO does not use any non-

standard configuration space registers; all the device-dependent programming is accessed through the

‘‘Bonito Registers’’ region, at a PCI address determined by the setting of the pciBase2 base register.

As well as being available to other PCI initiators through PCI configuration space cycles, these registers

can be read and written by the CPU; they’re available to the local CPU in the lowest 256 bytes of

BONITO’s inter nal register block. Some registers which are read-only from the PCI side are writable from

the local side.

By reset-time option, BONITO can be caused to initially reject configuration cycles with a ‘‘retr y’’ response.

This is intended to provide time for a local CPU to write non-standard values into the configuration

registers. You need to do this ver y ear ly in the bootstrap sequence, or the configuration host may time

out.

31 16 15 0

pciDiD Device ID Vendor ID 00h

pciCmd Status Command 04h

pciClass Class Code Revision ID 08h

Header Latency

Type Timer
pciLTimer 0 0 0Ch

Base address registers

pciBase0 BONITO register bank, 64Kbyte 10h

pciBase1 Local SDRAM memory (not IO-cached), 256Mbyte 14h

pciBase2 Local SDRAM memory (IO-cached), 256Mbyte 18h

unused 1Ch

× 28h

0 0 2Ch

pciExpRBase ‘‘Expansion ROM’’ Base Address

(window into 64Kbytes of boot ROM)
30h

34h

38h
Reser ved

Interr upt Interr upt

Pin = 1 Line
pciInt Max_Lat Min_Gnt 3Ch

Table 5.5: Standard PCI configuration space registers

5.6.1. BONITO device and vendor ID

Not yet settled. FPGA controllers have an unauthor ised vendor ID of 0xDF53, while we figure out

something more sensible.

10 Note that the FPGA version of BONITO will be delinquent; because it is a soft-logic

par t it will take some 40ms after power-on before it functions. If the host attempts PCI

configuration during this time, BONITO will not respond.

BONITO - PCI/SDRAM System Controller for Vr43xx Page 24 of 47

5.6.2. Base address registers and PCI

The PCI specification requires that base address registers behave like this:

31 4 3 2 1 0

Base Address P 00 0

Table 5.6: PCI configuration space base address register

The ‘‘P’’ bit is set for memory regions which are memory-like (always retur n a whole word of data

regardless of byte enables, reads have no side effects, and writes can be arbitrar ily merged and

combined).

Address regions on PCI are always expected to be naturally aligned by their size (being a power of 2) - a

256Mbyte memory region may only be allocated on a 256Mbyte boundary, for example. Configuration

hosts figure out how much memory can be mapped by a par ticular base register by writing an all-ones

patter n, and reading it back; address bits which are don’t-care when matching the base address return 0.

So for a 256Mbyte region, you write 0xFFFF.FFF0 and read back 0xF000.0000.

5.6.3. BONITO base address registers

BONITO can map regions as large as all of its local memory - up to 256Mbytes. But offer ing a space that

big can cause problems to the configuration host, because it can’t really do anything except map the

whole region - and that may consume so much address space that configuration fails.

So by default BONITO’s memor y regions each only offer a 16Mbyte window; the window can be

repositioned within BONITO’s local memory using an offset programmed in the register pcimembaseCfg.

Moreover, the local host can also change the apparent size of the windows in systems where it can

change pcimembaseCfg before the configuration host sees it; the bonPonCfg.config_dis big (see Table

5.2 on page 18) may help here.

The pciBase2 region provides access to all the programmable registers inside BONITO - all accessible

either via the PCI bus or from the local CPU.

The pciBase0 and pciBase1 regions’ behaviour depends on the setting of the register pcimembaseCfg,

which is shown as Figure 5.1. pcimembaseCfg

31 24 23 22 21 17 16 12 11 10 9 5 4 0

pciBase1 options pciBase0 options

io cached trans mask io cached trans mask
0

Figure 5.1 Fields in pcimembaseCfg

Where the fields are as follows:

io: 0 to map this window into BONITO local SDRAM, 1 to select the upper part of the local map (which

contains ROM and local I/O) - you can think of this as just setting bit 28 of the local address used for this

access.

cached: 1 to make use of the IOBC for memory accesses - essential for good perfor mance. You can set a

memor y region with this bit 0 when you want local memory transfers to happen synchronously with PCI

transfers; sometimes useful for diagnostics or to find problems. See the IOBC section §5.9.1 for more

about this subject.

trans/mask: two six-bit fields which determine bits 27-22 of the local address used for accesses in this

region. The PCI address is first masked to remove bits 31-28, and then PCI address bits 27-22 are first

ANDed with the complement of the mask field, then ORed with the trans field.

BONITO - PCI/SDRAM System Controller for Vr43xx Page 25 of 47

The mask field has another effect, in that it alters the subsequent behaviour of the corresponding

configuration space register. If the local CPU programs the mask fields in pcimembaseCfg before enabling

incoming configuration cycles, the mask value will be fed back to the configuration host as the size of the

available window.

5.6.4. Command Register Options

The PCI standard command register is used to negotiate some decisions about bus use to a PCI host,

which might choose to take some actions in the light of them. A couple of these are writable. Note that

the PCI standard ‘‘Status’’ register is the other half of this register, and is described in Table 5.8 below.

pciCmd register

Bit(s) Name Value Effect

15-10 0 Unimplemented bits

9 0 Fast back-to-back transfer enable - always 0, nev er done

Repor ting of address-time parity errors - writable

0 Do nothing

1

8

Dr ive SERR* signal when detected.

7 0 Address/data stepping - always 0, nev er done

Response to parity errors on PCI bus - writable

0 Ignore parity errors

16 Respond to PCI parity errors. Note them in

pConfSC.Status, and generate an interrupt if

unmasked; drive the PERR* signal.

5 0 ‘‘VGA graphics controller option’’ - PC specific, always

zero.

4 0 Memor y wr ite and invalidate. Always 0, BONITO only

does plain writes.

3 0 Special cycles - always 0, BONITO doesn’t issue special

cycles

Master enable - writable

0 Don’t initiate PCI bus cycles

1
2 mstren

Initiator role enabled. BONITO almost certainly needs

this bit set.

Memor y space enable - writable

0 Disable target functions. Host should not leave this zero.

1 Allow BONITO to respond on PCI

1 memen

0 0 PCI I/O space enable - BONITO never responds to I/O

space cycles.

Table 5.7: Fields in pciCmd - PCI configuration space ‘‘Command’’ register

BONITO - PCI/SDRAM System Controller for Vr43xx Page 26 of 47

5.6.5. Status Register

This is also a PCI-blessed standard register. It can be read as the high bits of the pConfSC register.

pciCmd register

Bit(s) Name Value Effect

31 1 Detected a parity error - as initiator (reading) or as target

receiving write data. Unaffected by the enable bit in

pConfSC(Command).

30 1 BONITO is driving SERR*, having noticed an address

par ity error

29 1 ‘‘Master-Abor t’’ signalled

BONITO initiated a read or write but no target responded

with DEVSEL*(Master-Abor t in the PCI specification)

28 1 Target abort received

BONITO initiated a read or write but the target couldn’t do

it and doesn’t want the transaction retried (STOP*

asser ted and DEVSEL* deasser ted).

27 0 Target abort signalled. Always 0 - BONITO never

responds with a target abort.

26-25 01 DEVSEL* speed. Always this value - BONITO always

responds as target on the second clock.

24 1 Initiator-noted parity error. Set when there’s a par ity

error (whether noticed by us or signalled by a receiver)

on one of our read/write operations, but only where the

enabling pciCmd bit is set.

23 0 Fast back-to-back transactions - not supported

22 0 ‘‘User-definable features’’ - not supported

21 0 66MHz operation - not supported

20-16 0 Reser ved by PCI specification rev 2.1

Table 5.8: PCI configuration space ‘‘Status’’ register

5.7. CPU access to PCI

The MIPS CPU maps all PCI-accessible registers and memory into its own address space as shown in

Table 4.1 on page 9. The PCI interface does not support burst cycles for CPU cache refill and write-back,

so the CPU cannot access PCI locations through cached space - the results are undefined.

Caution: Vr4300 and Vr5432 CPUs use burst cycles for uncached accesses when executing a load/store

instr uction for an integer double (long long) or floating point double (double). Such load/stores to

PCI-mapped locations will have undefined effects; so don’t regard PCI locations as simple program

memor y.

BONITO - PCI/SDRAM System Controller for Vr43xx Page 27 of 47

5.7.1. PCI address regions

The CPU’s windows onto PCI space are mapped using a ‘‘window’’ register called pcimap, shown in Table

5.9.

pcimap register

Bit(s) Name Value Effect

18 pcimap_2 0/1 Controls the 2Gbyte top-half-of-memory PCI region; it

allows you to choose only whether this 2Gbyte window is

to the high (1) or low (0) half of PCI address space.

17-12 pcimap_lo2

11-6 pcimap_lo1

5-0 pcimap_lo0

base6

Map the 64Mbyte regions marked ‘‘PCI_Lo’’ in the CPU’s

memor y map, each of which can be assigned to any

64Mbyte-aligned region of PCI memory. The address

appear ing on the PCI bus consists of the low 26 bits of

the CPU physical address, with the high 6 bits coming

from the appropriate base6 field. Each of the three

regions is an independent window onto PCI memory,

and can be positioned on any 64Mbyte boundary in PCI

space.

Table 5.9: Fields in pcimap

Note that the PCI I/O region is hard-wired to access the lowest 1Mbyte of PCI I/O space, and the

‘‘PCI_1.5’’ region is not mapped at all.

5.7.2. PCI reads

Nor mal PCI reads are synchronous; the CPU interface is held in wait states until the data is returned.

Don’t assume that the address presented on the PCI bus is exactly the same as that produced by the

CPU pins - and since it’s a MIPS CPU, remember that the address on the CPU pins is already different

from the software address.

The MIPS CPU can perfor m 32-bit, aligned 16-bit, 8-bit and ‘‘tr i-byte’’ single accesses to PCI space. The

PCI byte enables reflect the width of the transfer ; note that the relationship between the CPU width code

and address on the one hand, and the PCI byte enables and lanes used on the other, depends on the

endianness configuration - see section 4.2.

5.7.3. PCI writes

PCI writes are always posted; the address and data for the transaction are stored inside BONITO and the

CPU interface is then released for the next transaction.

There’s a relatively short FIFO for posted PCI cycles; when it fills up, the CPU interface will be stalled until

a PCI write can be completed.

The CPU may need to check that a particular write has actually been perfor med on the PCI bus; do that

by reading the pciMStat register, see page 29.

5.7.4. PCI error conditions on CPU-initiated cycles

If the PCI cycle finishes with any kind of error:

• Status bits for conditions like target aborts or master aborts (that’s PCI-speak for ‘‘nobody responded’’)

get set in the PCI-standard configuration space register fields - part of the pciCmd register and shown

in Table 5.8 above .

BONITO - PCI/SDRAM System Controller for Vr43xx Page 28 of 47

• If the CPU is stalled waiting for a read it will receive a MIPS ‘‘bus error’’.

If the failing cycle was a write, an interr upt condition is indicated by pulsing the internal signal

mastererr. The pulse is caught by the interrupt controller’s latch and may be detected and cleared

there - see §5.14.

One possible outcome of a PCI cycle is that the target terminates the cycle with a retry request; the

master is supposed to just keep retrying until the transfer goes through. But that means BONITO can be

deadlocked (more or less) if for some reason a defective target responds with retry forever. BONITO is

therefore equipped with a retry counter ; after 256 attempts at a read, or a much larger number of attempts

at a write, the transaction is abandoned. The PCI error interrupt is raised, but no bit is set in pciCmdStat.

It’s legal - within the PCI specification - for a target to signal ‘‘retr y’’ to 256 consecutive reads and still

recover later ; so software can catch the condition and do more retries if appropriate. BONITO’s write-retr y

limit is set large enough that it’s occurrence should be seen as fatal.

31 5 4 3 0

pciMStat PME × FIFOlevel

Figure 5.2 Fields in pciMStat - PCI master status register

The important field here is pciMStat.FIFOlevel which goes to zero when BONITO has no posted writes

left queued. Software will wnt to read this field when it’s vital to make sure that something out in PCI

space has actually been written.

pciMStat.PME is for diagnostic and test software only, and may not be present in production units.

5.7.5. Accessing PCI configuration space

PCI configuration cycles require specially-for matted values to be driven on the bus at address time.

Figure 5.3 shows what is needed:

31 24 23 16 15 11 10 8 7 2 1 0

Function Register

Number Number
0 0

AD31-11 value - system dependent - to create

correct IDSEL

Fields for ‘‘Type 0’’ cycles

Bus Device Function Register

Number Number Number Number 0 1

AD31-24 value as

needed to create

correct IDSEL

Fields for ‘‘Type 1’’ cycles

Figure 5.3 PCI address-time values for configuration cycles

To make configuration cycles happen you need to setup the register pcimap_cfg, shown in Figure 5.4:

31 17 16 15 0

pcimap_cfg × Type1 AD16UP

Figure 5.4 Fields in pcimap_cfg

The fields are as follows:

• Type1 : should be set 0 for normal configuration cycles, and to 1 for ‘‘type 1’’ cycles (required when

configur ing something on the other side of a PCI-to-PCI bridge).

BONITO - PCI/SDRAM System Controller for Vr43xx Page 29 of 47

• AD16UP : defines the bits written to AD31-16 dur ing a configuration cycle.

The result is that a word read/write with MIPS physical address addr in the range 0x01FE.8000 to

0x01FE.FFFC causes a configuration read/write on PCI, and the PCI AD bus will be driven to:

31 16 15 2 1 0

pcimap_cfg.AD16UP addr15-2 0 pcimap_cfg.Type1

5.7.6. Accessing PCI I/O space

PCI I/O space is available through a special region of CPU space. Its use is deprecated for most

pur poses, and it is generally only used to make devices PC-compatible. PCI I/O space writes are posted

(and reads may be posted) exactly like any other PCI accesses. BONITO’s window only gives access to

the first 1Mbyte of I/O space - but since this is more than enough to handle ISA bus legacy devices, that

should be OK.

5.8. The PCI copier

This is an autonomous engine which shuffles blocks of data between PCI-accessible memory and local

DRAM. Copier transfers generally have low er prior ity than any other transfers, so the (potentially ver y

long) stream defers to CPU or PCI master transfers.

The CPU can issue a second copier command at once, so that as soon as one copy is finished BONITO

immediately begins the second transfer ; software can use this to ‘‘chain’’ copier transfers to keep data

flowing as fast as the PCI environment will permit. Two inter nal signals copyrdy and copyempty are fed

through to the interrupt controller and may be read there or used to cause an interrupt; copyempty is

high/‘‘1’’ whenever the copier has no wor k at all to do, and copyrdy is high/‘‘1’’ whenever the copier can

accept one more request.

A third internal signal copyerr is generated only when the transfer encounters a PCI bus error; under these

circumstances the copier freezes. At that point software can find out how much of the transfer has

happened, and should then reset the copier to clear the error.

You submit a copier command by writing the copDAddr/copPAddr registers, which define the local DRAM

star ting address and the PCI starting address respectively. Write the direction and the number of blocks

to copy into copGo. Finally write copCtrl to start the transfer.

The copier only deals in whole 32-byte blocks from local DRAM, aligned to a 32-byte memory boundar y.

The PCI transfer can start at any word-aligned address; note that the PCI address in the copier is not

mapped like CPU→PCI cycles, but is a PCI physical address.

The copCtrl register is shown in Figure 5.5.

31 30 29 17 16 15 0

copCtrl star t reset ×

copStat stopped reset ×

copGo × wr ite? size (blocks)

Figure 5.5 Fields in copCtrl, copStat, copGo"

The register is usually called copStat when reading, to emphasise the fact that the fields don’t just read

back:

BONITO - PCI/SDRAM System Controller for Vr43xx Page 30 of 47

• reset: set this bit to reset the copier - halt the current transfer and discard any pending entries (after

completing any committed PCI transfer of not more than 8 words). This bit is set from system reset.

Wr ite this bit zero before trying to submit a copier entry.

• write: direction - ‘‘1’’ to transfer from DRAM to PCI.

• copCtrl.size: the number of 32-byte blocks to transfer.

• copStat.size: the number of 32-byte blocks remaining to be transferred in the request currently being

processed. Note that this may not be related to the ‘‘size’’ field you just programmed, since your

request may still be queued behind an earlier one. More precisely, only if copyrdy is active is copStat

repor ting on the transfer you last submitted.

• copCtrl.start: set ‘‘1’’ when writing copCtrl to submit an entry (you will only ever write this bit zero

when un-resetting the copier).

• copStat.stopped: is only interesting after you’ve star ted a transfer, when it should go to zero; it

changes to a ‘‘1’’ when the copier stops - either because your transfer is complete, or because the

copier encountered an error.

5.9. PCI access to SDRAM

PCI initiators can access local SDRAM through either of BONITO’s two programmable regions associated

with the PCI base registers pciBase0-1. Either of these windows can be set to map the whole of the

maximum possible SDRAM configuration of 256Mbytes.

PCI initiators access SDRAM through the I/O Buffer Cache - IOBC for shor t. You’ll also sometimes see it

called the ‘‘PCI cache’’. The IOBC keeps copies of local memory data in 8-word chunk, 8-word-aligned in

local memory space; the chunks are the same size and alignment as CPU cache line blocks. All traffic

between the local memory and the IOBC are 8-word bursts at full memory speed11. Each of the IOBC’s

four cache lines holds two 8-word chunks of data. One is ‘‘current’’ and the other may hold prefetched

data (if the last PCI request in this memory region was a read) or data waiting to be written back to

memor y (if the last PCI request in this region was a write).

As described in §5.6.3, a window can be marked as either ‘‘I/O cacheable’’ or ‘‘I/O uncacheable’’.

‘‘Cacheable’’ accesses will trigger read-aheads and gather multiple PCI writes into a single memory write

burst, which will considerably improve perfor mance for accesses which are predominantly sequential. A

window mar ked as ‘‘uncacheable’’ might be suitable for devices which are only accessing an odd word,

but is probably suitable only for diagnostics.

5.9.1. IOBC management

The operation of the IOBC is not software-transparent. Software intervention is required:

1. To ensure the IOBC is ‘‘clean’’ when the system starts up (invalidate all line);

2. To ensure that ‘‘stale’’ memor y data is not retained in the IOBC after it has been overwr itten by the

CPU; any line matching memory locations which may be read by a PCI bus initiator should be

invalidated before the initiator starts;

3. To ensure that the tail end of data written by a PCI initiator does not lurk invisibly inside BONITO, but is

pushed out into memory; any line matching locations which may have been written by a PCI bus

initiator should be written back before the CPU reads that data.

While this discipline is similar to that already required for the MIPS CPU’s own caches, it’s not the same;

there are times when the IOBC needs attention when the MIPS caches are safe. See §5.9.2 below for

11 Actually, it sometimes happens that IOBC lines must be written back to local

memor y ev en though not all the words have been written from PCI; this then produces a

somewhat slower read-merge-wr ite sequence.

BONITO - PCI/SDRAM System Controller for Vr43xx Page 31 of 47

some suggestions as to how and when to program devices for correct IOBC operation.

The IOBC needs to be initialised by software before it can be used. Tr ansfers happen in the basic 8-word

storage unit, which is BONITO’s preferred transfer unit in and out of SDRAM. Each of the IOBC’s four

cache lines holds two 8-word chunks of data.

The CPU may want to be able to either invalidate IOBC line (ensuring that any copies of memory data

held in the line are discarded, and must be re-read from SDRAM if required), or wr ite-back an IOBC line,

causing any PCI-wr itten data held in the line to be written back to SDRAM.

Management is done with the register pciCacheCtrl, which is written to make something happen; and

the register pciCacheTag, used to read or write tag fields.

The control fields are shown in Table 5.10. The register fields are somewhat different when reading or

wr iting it.

31 6 5 4 3 2 1 0

cmdexec write

done read
pciCacheCtrl × cmdline × cmd

Table 5.10: PCI Cache control register

The fields are as follows:

• cmd: a value encoding what kind of action to carry out:

0 Invalidate

1 Write-back & invalidate

2 Read tag

3 No-op

‘‘No-op’’ is more useful than it looks; all actions except ‘‘invalidate’’ cause a command to be sent from

the IOBC to the memory controller, and the IOBC to wait until it returns, so a ‘‘no-op’’ can be used to

ensure that there are no older write-backs pending.

• cmdline: which of the four cache lines are being operated on.

For diagnostic purposes you might want to root around in the IOBC to see what data has got stashed

there. You must first issue a ‘‘read tag’’ command for a particular line, and then read the (read-only)

pciCacheTag register, whose fields are shown in Table 5.11.

pciCacheTag register

Bit(s) Name Meaning when ‘‘1’’

30 wback wr iteback pending

29 pfpend prefetch or write-behind pending

28 pend update pending.

27 mod line modified, either buffer

26 pfdval read pre-fetch data valid.

25 dval read data valid - this line has been read from local

memor y.

24 aval address valid - this line is genuinely allocated to the

block whose address follows.

23-0 tagaddr28-5 Local SDRAM address of data block being kept in this

cache line.

Table 5.11: PCI Cache Tag register

BONITO - PCI/SDRAM System Controller for Vr43xx Page 32 of 47

You probably won’t understand all of the fields in pciCacheTag; we’ll only explain them in this manual as

they tur n out to be necessary.

5.9.2. Por ting drivers to use the IOBC

Dr ivers for any PCI device which reads or writes the local memory may need some adjustment to wor k

correctly.

5.10. Local I/O configuration

BONITO has a local I/O bus which is used to access ROMs, but is otherwise mostly independent of its

other ports. Four CPU memory regions correspond to four different possible chip selects (IOCS0-3*) - and

of course there are the ROM regions.

The local I/O bus has a 16-bit data bus with word-or ientated addresses (the I/O bus does not see CPU

address bits 0-1 - ROM cycles excepted - thus evading any endianness questions). Accesses to it should

always be word-wide.

The bus uses a simple Intel-style signalling system, where chip selects qualify addresses but devices

respond only when they see either of the separate read and write strobes. The timing diagram Figure 5.6

shows the basic attributes of the cycle.

IOWr*

IORD*

IOCS0*

Write data
Read
dataIOD0-15

write addressread addressIOA0-4

Programmed IORd* width

Peripheral data response time

Figure 5.6 Local I/O bus read and write cycles

You can see that the address and chip select signal - IOCS0* in this case - have a comfor table setup,

nominally two CPU clock per iods, to the read or write strobe IORD*/IOWR*. This means that complex

designs needing more decodes or a different protocol have time to decode the chip selects and

addresses and provide a clean signal before the strobe is activated.

Read data is sampled by BONITO at the rising edge of the IORD* signal. The chip select and address

lines are held for about one CPU clock time after the rising edge.

Wr ite data is driven by BONITO with the same timing as addresses. Devices differ on when they sample

the write data; at latest, they will accept data on the rising (deasserting) edge of IOWR*, but many devices

will acquire data sometime during the strobe.

The only configurable timing in this structure is the width of the read/write pulse. This may be one of two

values; nominally 200ns and 800ns, corresponding to ‘‘fast’’ and ‘‘slow’’ devices.

In addition, the read/write pulse can be extended by using the IORDY signal. It should be taken low at

least two CPU clock times before the cycle would normally have ended - the cycle will end quite quickly

once IORDY is returned to the high state, but note that BONITO still samples data on the rising edge of

BONITO - PCI/SDRAM System Controller for Vr43xx Page 33 of 47

IORD* for nor mal cycles.

Configuration for the different local I/O bus decodes is handled by registers as shown in Table 5.12:

iodevCfg register

Bit(s) Name Value Effect

24-21 dmaoff_ide 0-2 Another UDMA transfer rate; set same as dmaon_ide.

0-2 UDMA ‘‘mode’’ - transfer rate from BONITO→disk,

defined by the half-clock time (since UDMA uses both

edges of the clock):

0 120ns (mode 0, 16Mbytes/s)

1 80ns (mode 1, 25Mbytes/s)

2 60ns (mode 2, 33Mbytes/s)

20-16 dmaon_ide

15 modebit_ide 0/1 Set 1 to enable ‘‘UDMA’’ transfers to an IDE disk. Set 0

to use conventional DMA. The disk may be programmed

for either word-at-a-time or multiple DMA.

14 wordswapbit_ide 0/1 Set 1 to swap bytes when DMA’ing from the I/O data

bus. You should probably set this when using an IDE

disk with a big-endian MIPS CPU.

11 moreabits_cs3 0/1

8 moreabits_cs2 0/1

5 moreabits_cs1 0/1

2 moreabits_cs0 0/1

set 1 to drive the whole CPU address on DD31-0 dur ing

an I/O access; set 0 to rely on the addresses on IOA4-0.

9 buffbit_cs3 0/1

6 buffbit_cs2 0/1

3 buffbit_cs1 0/1

0 buffbit_cs0 0/1

set 1 if the device selected by this chip select is located

behind a ’245-type bidirectional buffer controlled by

IODIR and IODEN*; 0 otherwise.

10 speedbit_cs3 0/1

7 speedbit_cs2 0/1

4 speedbit_cs1 0/1

1 speedbit_cs0 0/1

set 1 if this is a ‘‘fast’’ device (nominal 200ns read/write

strobe); 0 for a ‘‘slow’’ device (nominal 800ns).

Table 5.12: Fields in iodevCfg

ROM cycles are different. The IORD* pulse width for ROM is nominally 120ns, since flash memories are

faster than most peripherals. Secondly, the address bits IOA0-4 are not only valid for ROM cycles but

count up to support burst reads from ROM when the CPU is running cached. Dur ing ROM cycles the

whole ROM address is always available on the SDRAM data bus DD0-31. See the note in the endianness

section (§4.2) on how I/O byte addresses relate to CPU addresses.

BONITO - PCI/SDRAM System Controller for Vr43xx Page 34 of 47

5.11. Local I/O DMA control

BONITO provides a DMA facility on its local I/O bus, strongly - if not quite solely - orientated to the needs

of an attached ‘‘IDE’’ bus. BONITO can read or write a stream of (16-bit) half-words on the IOD bus,

collecting them up for transfer in or out of local SDRAM. Devices taking advantage of this facility must be

able to use the DMARQ/DMACK* signals as prescribed by IDE bus specifications and folklore. No

‘‘ter minal count’’ signal is provided.

DMA is under the control of a set of registers, whose names all start with ldma-. To star t a transfer :

• Make sure the DMA controller is out of reset - see ldmaCtrl;

• Wr ite the starting address in local SDRAM into ldmaAddr;

• Wr ite the transfer count and direction into ldmaGo.

• Wr ite ldmaCtrl to set the start bit. But nothing happens yet unless the device has already asserted

DMARQ.

• Program your myster ious device to do its thing and transfer data.

Like the copier, the DMA controller allows two transfers to be outstanding at any one time, and when the

hardware finishes one transfer it will automatically proceed with the queued one. You can track its

progress, or arrange to get interrupts, from the internal signals dmardy/dmaempty, which are wired to the

interr upt controller. dmardy is high when the DMA controller could accept another entry (ev en if one is

already in progress), and dmaempty is high when the DMA controller has finished all outstanding transfers.

The registers ldmaCtrl and its alias (for reading) ldmaStat are shown in Figure 5.7.

31 30 29 17 16 15 0

ldmaCtrl star t reset ×

ldmaStat stopped reset ×

ldmaGo × wr ite? size (words)

Figure 5.7 ldmaStat and ldmaCtrl register layouts

The fields in both registers as shown in Figure 5.7 are as follows:

• ldmaCtrl.reset: write a ‘‘1’’ here to reset the DMA subsystem, stop everything, and discard any

queued entries. This bit is set ‘‘1’’ from system reset, and must be written zero to use DMA.

• ldmaCtrl.start: write a ‘‘1’’ to star t a transfer - you must have set up the address first! In fact you

only ever write a zero to this bit when resetting or un-resetting DMA.

• ldmaStat.stopped: reads ‘‘0’’ when you’ve star ted a DMA, but it hasn’t finished; and changes to ‘‘1’’

when the DMA completes.

• write: direction bit - set ‘‘1’’ for a transfer from SDRAM to the I/O bus.

• size: holds the transfer count as a number of half-words. When you read the ldmaStat.size field it

retur ns the current transfer count of the active entr y; note that because you can queue a transfer

request, this may not be the transfer you just programmed.

BONITO - PCI/SDRAM System Controller for Vr43xx Page 35 of 47

5.12. PCI Mailbox registers

Four mailbox registers pciMail0-3 may be read and written; only the lowest 3 bits are implemented, and

carr y data between the parties. Any write to one of these registers pulses the corresponding internal

’signal’, which can be caught in the interrupt controller as an interrupt; you’ll need to program the interrupt

controller to respond to a positive-going edge, and to clear down the stored interrupt when you’ve done

with it. See §5.14 for details.

5.13. GPIO pins

Are programmed simply through a pair of bit-per-signal registers, one for read/writing each pin’s logic

level, and one for controlling the direction of each signal.

31 25 24 16 15 10 9 0

gpinr gpior gpiow

readGPIN5-0 pins GPIO8-0 pins GPIO8-0 readbacks

× × wr ite
gpioData ×

GPIO levels

1111111 0 = output

(inputs) 1 = input
gpioIE ×

Figure 5.8 Fields in gpioData and gpioIE

The input-only GPIN pins are handled at the same time, though the corresponding gpioIE bits (where

wr iting a 1 makes the corresponding bit an input) are hard-wired to 1.

The GPIO pins appear twice in the read-data register; the high-order bits reflect the logic level at the pin,

while the low-order bits is a readback from the GPIO register. The two will be different when the

corresponding gpioIE (input enable) bit is a 1, or may be different because of logic-level contention.

5.14. Interrupt control

BONITO contains a simple, flexible interrupt controller. In addition to a number of input interrupts signalled

through the GPIn and GPIO inputs, it also manages interrupts caused by inter nally-detected ev ents.

All the interrupt registers have the same layout, in which each potential interrupt source has one bit:

intXXX register

Bit(s) Name What are they?

30-25 gpins The general-pur pose input pins GPIN5-0.

24-20 Not connected

29-16 gpios The general-pur pose I/O pins GPIO3-0.

15-14 Not connected

13 pciMTimeout A PCI cycle initiated by BONITO has been abandoned after too many

retr ies. See §5.7.4.

12 dramperr Parity error detected by SDRAM controller, when enabled.

11 systemerr PCI error in cycle when BONITO is target.

10 mastererr PCI error in cycle when BONITO is initiator.

9 pciirq Active lev el on PCI interrupt pin IRQA*.

BONITO - PCI/SDRAM System Controller for Vr43xx Page 36 of 47

intXXX register

Bit(s) Name What are they?

8 copyerr

7 copyempty

6 copyrdy

Copier (see §5.8) internal signals, all reported as levels.

copyerr indicates a PCI error on a copier transfer ; the copier has

stopped and and can only be restarted after a software reset.

copyempty is asserted when the copier has finished all requested

transfers.

copyrdy is asserted as soon as it’s possible to program another

copier transfer.

5 dmaempty

4 dmardy

DMA (see §5.11) internal signals, all levels.

dmaempty means that all programmed DMA has finished, whereas

dmardy just invites you to give it some more wor k.

3-0 mboxes Interr upts caused by non-zero data in one of the four PCI mailbox

registers

Table 5.13: Fields in intXXX registers

The interrupts are configured for polarity and edge/level sensing as follows.

• intISR (read-only) has a bit set for any interr upt condition which is active - in the case of exter nal

interr upts configured as edge-sensitive, it retur ns the state of the internal latch.

When you’re just using the signal as a program-readable input, you read its value here and leave the

corresponding intEn bit clear so it takes no further part in the interrupt system.

• intEn (which may not be directly writable) has a bit set for any interr upt which is enabled. You most

often manipulate the interrupt enables by writing either intEnSet which sets only intEn bits

corresponding to a ‘‘1’’ data bit, or intEnClr which zeroes any bits corresponding to a ‘‘1’’ data bit.

As a useful side effect, writing intEnClr also resets the edge-detecting latch of any exter nal interr upt.

• intPol can be used to invert selected exter nal interr upts. The inversion happens before the edge-

detecting latch.

• intEdge can be used to program each exter nal interr upt source from level (bit 0) to edge (bit 1).

Effectively it does this by selecting either the direct pin input, or the state of the edge-detecting latch.

The latch is still there, and its state is not affected by the programming of this register.

• intSteer causes an active, enabled interrupt condition to affect either of two outputs intended for

MIPS CPU interrupt inputs: either Int0* (corresponding bit 0), or Int1* when the corresponding bit is set

to 1. Note that the interrupt output can also appear on the PCI line INTA* by setting the

bonGenCfg(irqa_from_int1) register bit, shown in Table 5.3 above .

Some BONITO implementations may not offer all options on all interrupts. As for the GPIO system, some

register bits may become quietly read-only. For example, intPol bits corresponding to internal interrupt

sources (whose activity level is always nominally high) will always read 0. Similar ly, intEdge bits

corresponding to interrupt sources which must always be latched may always read 1.

BONITO - PCI/SDRAM System Controller for Vr43xx Page 37 of 47

6. Hardware description

6.1. Signals

The controller has about 235 active pins, and is accommodated in a 352-pin BGA package12. The signals

on this chip are as follows:

Signal Name Type Description

Clock buffer signals

Clockin In Raw clock input when BONITO is acting as clock buffer. Not connected to anything else, so

an exter nal clock buffer could be used instead.

ClockOut0-5 Out Six identical buffered versions of Clockin; they should inherently have low skew between

themselves, but have no defined relationship to Clockin. They should each have only one

load, and should be arranged to be the same length of track. One of them should be

connected (only) back into BONITO’s own MasterClock input, one to the CPU’s clock input;

the others are available for SDRAM banks.

CPU interface signals

SysAD0-31

SysADC0-3

SysCmd0-8

Bi
MIPS multiplexed bus, par ity check bits (SysADC), and transfer type code (SysCmd).

Note that Vr4300 systems and others which make no use of parity won’t connect SysADC.

OutEValid*/

ValidIn*

Pulsed when BONITO is driving the CPU bus.

In Pulsed when CPU is driving the CPU busPValid*/

ValidOut*

EOK* Out CPU cycle flow control. For CPU with separate RdRdy* and WrRdy* pins, RdRdy* should be

held permanently active and this signal connected to WrRdy*.

InPMaster*/

Release*

Shows when CPU stops driving the bus in a read cycle

CPUClock In Identical to CPU’s MasterClock.

SysReset* In Reset for BONITO and perhaps other circuits. Often connected to the active-high power-

good signal from a power supply.

SysController* In Dedicated configuration signal. If it’s low, BONITO dr ives the PCI Reset* signal; if it’s high,

PCI Reset* becomes an input and itself resets all functions in BONITO. Unlike all other

BONITO configuration signals, it must be stable at all times.

CPUColdReset*

CPUReset*
out Controls for CPU’s two-stage reset sequence.

VCCOk Out Some MIPS CPUs use this (active-high) signal in their reset sequence. For CPUs without

such an input, it can be ignored.

Warning: designated as an input in versions of this spec up to and including v2.1.

ModeClock In

ModeIn out

Clock from some CPUs, used to shift out ‘‘mode bits’’ to select reset options. The mode

bits themselves are fetched from the boot ROM, and are presented in turn on ModeIn.

Int0-1* Out BONITO’s interr upt lines to CPU

PCI interface signals

CLK In PCI bus clock, 33MHz nominal

12 FPGA prototypes are in a larger package with a completely different pin-out.

BONITO - PCI/SDRAM System Controller for Vr43xx Page 38 of 47

Signal Name Type Description

AD0-31

PAR
PCI address/data plus parity

CBE0-3*

Bi

PCI cycle type (address time) and active-low byte enables (data time)

DEVSEL*

FRAME*

IRDY*

STOP*

TRDY*

Bi PCI cycle control signals

LOCK* In PCI exclusive-access control. Not provided as an output - MIPS CPUs have no notion of

an atomic read-modify-write sequence. Nor is anything done with it as an input.

PERR* Bi PCI parity reporting signal. A par ity error during one of our cycles causes an interrupt or

bus error to be returned to the MIPS CPU.

SERR* Bi PCI general error reporting signal. Can generate an interrupt to the MIPS CPU.

RESET* Bi PCI bus reset. Can be configured as an output, normally when BONITO is responsible for

host functions on the PCI bus; in this mode it is asserted from system reset and

subsequently controlled by software.

When active, the PCI bus interface is held in reset, and no PCI shared signals are driven.

IDSEL In Marks incoming configuration cycles

IRQA* Bi May be driven by CPU command. Useful to peripherals wishing to generate an attention

interr upt to a remote CPU.

REQ0-5* In

GNT0-5* Out

When BONITO is serving as PCI bus arbiter, these are the PCI request/grant signals for

use by other potential PCI initiators.

When we’re using an exter nal arbiter, GNT0* acts as BONITO’s PCI request, and REQ0*

acts as its grant (swapping roles means we can leave some signals as pure inputs).

SDRAM interface signals

MUX0-13 Out Multiplexed addresses.

If you configure BONITO to use an exter nal FCT374 high-drive register (or similar

component) to drive more SDRAM loads you should pass all the shared signals through

the register - that’s MUX0-13, DBA0-1, DRAS*, DCAS*, DWE*, DCKE, DCS0-1H*and DCS0-1L.

DBA0-1 Out Bank select - an additional address line into SDRAM components

DD0-31 SDRAM data bus.

Dur ing ROM or I/O accesses these signals act as an address bus (but they don’t count up

dur ing ‘‘burst’’ ROM cycles - you need to connect your ROM to IOA0-4 for that.)

DDP0-3 Parity/check bits for data bus

Bi

DRAS*

DCAS*

DWE*

DCKE

Out
SDRAM cycle control signals: RAS, CAS, write-enable and clock enable. Typically

common to all DRAMs.

DCS0-1H*

DCS0-1L*
Out DRAM chip selects, typically driven in pairs

BONITO - PCI/SDRAM System Controller for Vr43xx Page 39 of 47

Signal Name Type Description

DQMBLo

DQMBHi
Out

Byte ‘‘masks’’ - that is, byte enables. Used to select one or other 32-bit half of the

SDRAM. Par tial-word writes to memory are actually implemented inside BONITO using a

read-modify-wr ite cycle.

Each signal is attached to four of the byte masks going into the DIMM.

DDMuxHi*

DDMuxLo*
Out

Output signal to enable DRAM data to come from the high/low half of a 64-bit DIMM’s data

bus respectively. Wire to the select pins of a QS3390 or compatible component.

I/O and ROM interface signals

IOD0-15 Bi Separate data bus enables some I/O transactions (particular ly DMA) to be completed

without using the SDRAM signals.

Note these signals are inputs while SysReset* is active, and are then used to make pre-

reset chip configuration choices.

IOA0-4 Out CPU address bits 0-4, valid during I/O (including ROM) cycles. IOA0-4 count during ROM

bursts, and are thus the only correct signals to use for low ROM address bits.

Isolate Out High to isolate ROM signals from the high-speed SDRAM data bus. Suitable for use as

input to a QS3245 or similar switch.

Also usable as an enable for a buffer for address-time signals on the local I/O data bus.

RomCS0-1* Bi

IOCS0-3* Out

Chip selects for 2 memory devices - often one ROM socket (for first-time bootstrap) and

one flash ROM - and some I/O devices.

If you need more ROM chip selects, you can generate them by qualifying ROMCS1* with

some high address bits - which during ROM cycles are available on DD0-31. The ROM

timings are sloppy enough to give you 10-15ns to do this while still maintaining setup time

before the IORD*/IOWR* strobe.

ROMCS1* is the ‘‘default’’ bootstrap region, and the natural place for your standard

bootstrap memory.

IORd* Out

IOWr* Out

Intel-style read and write strobes for ROM and I/O. Addresses and chip selects have

enough setup and hold time from the active strobes to allow exter nal logic to generate

more chip selects from the addresses.

IORDY In ‘‘I/O channel ready’’ - perhaps more clearly seen as an active-low request for extra wait

states. If you don’t want this facility, this signal must be pulled up or connected to 3.3V.

In a DMA mode intended for support of Ultra DMA IDE, this signal becomes a source-

synchronous clock for DMA read data.

I/O bus DMA and IDE support

DMARQ In DMA per ipheral is ready to transfer data.

DMACK* Out Identifies a cycle as being DMA with a particular peripheral; operates much like an extra

chip select.

IODIR Out Direction control (high for write) suitable for a ’245 buffer used to buffer the data bus.

IODEN* Out Enable control for an IOD data buffer.

Programmable IO signals

GPIO0-8 Bi General purpose programmable I/O

GPIn0-5 In Interr upt/General purpose input pins. These signals are weakly pulled down and with a

link to VDD can be used to implement software-readable link or switch settings.

GPIn5 is reserved in anticipation of being connected to internal logic to implement a

reference clock, for systems which have significant configurability of the master clock rate.

BONITO - PCI/SDRAM System Controller for Vr43xx Page 40 of 47

Signal Name Type Description

JTCK In

JTDI In

JTDO Out

JTMS In

JTAG test pins. In FPGA version, double up as device programming inputs.

Po wer and generic signals

GND System ground

VDD Po wer signal - this is a pure 3.3V part

VD5 Separate power for PC bus I/Os. Can be either 5V or 3.3V, to match your PCI signalling

environment.

Table 6.1: Signals definitions

BONITO - PCI/SDRAM System Controller for Vr43xx Page 41 of 47

6.2. Pinout

Figure 6.1 shows the connections to BONITO. The layout corresponds to a PCB pad layout, looking at it

from the BGA’s point of view. The table is (inevitably) too big to print comfor tably, even with ver y small

pr int; so we’ve shor tened many signal names, as shown in Table 6.2.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26

gnd gnd pclk vdd vd5 ad19 ad16 trdy˜ devsl˜ perr˜ cbe1˜ gnd ad11 gnd vd5 ad5 ad2 gnd iod3 iod6 iod9 iod12 iod14 iod15 gpio0 gnd

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 B26

cbe3˜ gnd gnd ad23 ad20 ad18 cbe2˜ gnd stop˜ serr˜ ad15 ad14 ad10 vdd cbe0˜ ad4 vdd iod0 iod2 iod5 iod8 iod11 gpio1 gpio2 gnd gnd

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26

ad24 vd5 gnd ad22 ad21 ad17 frame˜ vdd vd5 par vdd ad13 ad9 vd5 ad7 ad3 ad1 vd5 iod1 vdd iod7 iod10 iod13 gnd gpio3 gpio4

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26

ad26 ad25 gnd gnd gnd vdd irdy˜ gnd gnd vd5 vdd ad12 ad8 gnd ad6 vdd gnd ad0 gnd iod4 vdd gnd gnd gpio5 gpin0 gpio6

E1 E2 E3 E4 E23 E24 E25 E26

ad29 ad28 ad27 vd5 gpin1 gpio7 gpin2 gpin3

F1 F2 F3 F4 F23 F24 F25 F26

ad31 ad30 vdd vdd vdd gpio8 tck smc

G1 G2 G3 G4 G23 G24 G25 G26

req2˜ req1˜ req0˜ gnd gpin4 gpin5 trst vdd

H1 H2 H3 H4 H23 H24 H25 H26

req4˜ vd5 req3˜ gnd iocs0˜ tms isolat tdo

J1 J2 J3 J4 J23 J24 J25 J26

gnt1˜ vdd gnt0˜ req5˜ gnd tdi iocs1˜ iodir

K1 K2 K3 K4 K23 K24 K25 K26

gnt3˜ gnd gnt2˜ gnd gnd ioden˜ rmcs1˜ iocs2˜

L1 L2 L3 L4 L23 L24 L25 L26

gnt5˜ vd5 gnt4˜ vdd vdd iocs3˜ iord˜ rmcs0˜

M1 M2 M3 M4 M23 M24 M25 M26

irqa˜ reset˜ lock˜ vdd ioa1 dmack˜ ioa0 iowr˜

N1 N2 N3 N4 N23 N24 N25 N26

nc vd5 ma13 gnd clckt1 ioa3 clckt0 ioa2

P1 P2 P3 P4 P23 P24 P25 P26

idsel ma12 vd5 gnd ioa4 clckt3 clckt2

R1 R2 R3 R4 R23 R24 R25 R26

ma11 ma10 ma9 ma8 gnd clckt4 clockn vdd

T1 T2 T3 T4 T23 T24 T25 T26

ma7 ma6 ma5 vdd vdd clckt5 dmarq mdclck

U1 U2 U3 U4 U23 U24 U25 U26

ma4 gnd ma3 ma2 iordy ssctl˜ modein test1

V1 V2 V3 V4 V23 V24 V25 V26

dcsh0˜ ma1 dcsh1˜ gnd test2 test0 evald˜ vccok

W1 W2 W3 W4 W23 W24 W25 W26

dcsl0˜ dcsl1˜ dba1 ma0 gnd cprst˜ eok˜ cdrst˜

Y1 Y2 Y3 Y4 Y23 Y24 Y25 Y26

vdd dwe˜ dqmbhi dras˜ int0˜ srest˜ vdd pvald˜

AA1 AA2 AA3 AA4 AA23 AA24 AA25 AA26

dqmblo dba0 ddmxl˜ vdd vdd int1˜ scmd2 pmstr˜

AB1 AB2 AB3 AB4 AB23 AB24 AB25 AB26

dcas˜ dcke ddmxh˜ vdd sadc1 scmd6 scmd1 scmd0

AC1 AC2 AC3 AC4 AC5 AC6 AC7 AC8 AC9 AC10 AC11 AC12 AC13 AC14 AC15 AC16 AC17 AC18 AC19 AC20 AC21 AC22 AC23 AC24 AC25 AC26

dd31 gnd dd27 gnd dd21 vdd dd14 gnd dd7 dd3 vdd gnd gnd sad27 sad23 vdd sad16 gnd sad10 sad6 vdd gnd gnd scmd5 tmd2 gnd

AD1 AD2 AD3 AD4 AD5 AD6 AD7 AD8 AD9 AD10 AD11 AD12 AD13 AD14 AD15 AD16 AD17 AD18 AD19 AD20 AD21 AD22 AD23 AD24 AD25 AD26

dd30 dd29 gnd dd24 dd20 dd17 dd13 dd10 dd6 dd2 vdd sad31 sad30 sad26 sad22 sad19 sad15 sad13 sad9 sad5 sad3 sad0 sadc0 gnd cpuclk tmd1

AE1 AE2 AE3 AE4 AE5 AE6 AE7 AE8 AE9 AE10 AE11 AE12 AE13 AE14 AE15 AE16 AE17 AE18 AE19 AE20 AE21 AE22 AE23 AE24 AE25 AE26

gnd gnd dd26 dd23 dd19 dd16 dd12 dd9 dd5 dd1 ddp3 ddp1 sad29 sad25 sad21 sad18 gnd sad12 sad8 sad4 sad2 sadc3 scmd8 scmd4 gnd tmd0

AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 AF16 AF17 AF18 AF19 AF20 AF21 AF22 AF23 AF24 AF25 AF26

gnd dd28 dd25 dd22 dd18 dd15 dd11 dd8 dd4 dd0 ddp2 ddp0 sad28 sad24 sad20 sad17 sad14 sad11 sad7 vdd sad1 sadc2 scmd7 scmd3 gnd gnd

Figure 6.1 BONITO (352-pin BGA) pinout

BONITO - PCI/SDRAM System Controller for Vr43xx Page 42 of 47

Or iginally Abbrev Originally Abbrev Originally Abbrev

CLOCKIN clockn CLOCKOUT0-5 clckt0-5 CPUCOLDRESET˜ cdrst˜

CPURESET˜ cprst˜ DDMUXHI˜ ddmxh˜ DDMUXLO˜ ddmxl˜

EVALID˜ evald˜ SysController˜ ssctl˜ ISOLATE isolat

MODECLOCK mdclck MUXAD0-13 ma0-13 PCIAD0-31 ad0-31

PCICBE0-3˜ cbe0-3˜ PCICLK pclk PCIDEVSEL˜ devsl˜

PCIFRAME˜ frame˜ PCIGNT0-5˜ gnt0-5˜ PCIIDSEL idsel

PCIIRDY˜ irdy˜ PCIIRQA˜ irqa˜ PCILOCK˜ lock˜

PCIPAR par PCIPERR˜ perr˜ PCIREQ0-5˜ req0-5˜

PCIRESET˜ reset˜ PCISERR˜ serr˜ PCISTOP˜ stop˜

PCITRDY˜ trdy˜ PMASTER˜ pmstr˜ PVALID˜ pvald˜

ROMCS0-1˜ rmcs0-1˜ SYSAD0-31 sad0-31 SYSADC0-3 sadc0-3

SYSCMD0-8 scmd0-8 SYSRESET˜ srest˜

Table 6.2: Abbreviated names used in pinout diagram Figure 6.1

BONITO - PCI/SDRAM System Controller for Vr43xx Page 43 of 47

6.3. Package information

The following page - Figure 6.2 - shows the 352-pin BGA package and is borrowed with

acknowledgements from NEC’s ASIC data book.

Plastic BGA

10

Package Drawing 352-Pin Plastic BGA (35x35mm)

Top View Bottom View

NOTE

Each lead centerline is located within 0.3 mm (0.012 inch) of

its true position (T.P.) at maximum material condition.

ITEM MILLIMETERS INCHES

A

B

C

D

E

F

G

H

I

35.0±0.2

30.0

1.27 (T.P.)

0.6±0.1

0.56

30.0

0.3

 0.75±0.15

1.73±0.15

M

C 4.0

35.0±0.2

1.62

P

1.378±0.008

1.181

1.378±0.008

0.064

0.050 (T.P.)

0.024

0.022

0.068±0.006

 0.03

0.012

C 0.157

1.181

R 30° 30°

φ φ

φ

+0.004
–0.005

φ

2.5S 0.098

φ M

A

B

H

C D

S

Index mark

J
I

GF E

ML

K

R

P

J 2.33±0.25 0.092 +0.010
–0.011

K 0.15 0.006

L +0.006
–0.007

S352S1-F6-1

Figure 6.2 352-pin BGA infor matino for BONITO

BONITO - PCI/SDRAM System Controller for Vr43xx Page 44 of 47

Index
TBA.

BONITO - PCI/SDRAM System Controller for Vr43xx Page 45 of 47

Appendix A: Register Addresses

Registers in address order Registers in name order

register address register address

pcidid 1FE00000 bongencfg 1FE00104

pcicmd 1FE00004 bonponcfg 1FE00100

pciclass 1FE00008 copctrl 1FE00300

pciltimer 1FE0000C copdaddr 1FE00308

pcibase0 1FE00010 copgo 1FE0030C

pcibase1 1FE00014 coppaddr 1FE00304

pcibase2 1FE00018 copstat 1FE00300

pciexprbase 1FE00030 gpiodata 1FE0011C

pciint 1FE0003C gpioie 1FE00120

bonponcfg 1FE00100 intedge 1FE00124

bongencfg 1FE00104 inten 1FE00138

iodevcfg 1FE00108 intenclr 1FE00134

sdcfg 1FE0010C intenset 1FE00130

pcimap 1FE00110 intisr 1FE0013C

pcimembasecfg 1FE00114 intpol 1FE0012C

pcimap_cfg 1FE00118 intsteer 1FE00128

gpiodata 1FE0011C iodevcfg 1FE00108

gpioie 1FE00120 ldmaaddr 1FE00204

intedge 1FE00124 ldmactrl 1FE00200

intsteer 1FE00128 ldmago 1FE00208

intpol 1FE0012C ldmastat 1FE00200

intenset 1FE00130 pcibase0 1FE00010

intenclr 1FE00134 pcibase1 1FE00014

inten 1FE00138 pcibase2 1FE00018

intisr 1FE0013C pcicachectrl 1FE00150

pcimail0 1FE00140 pcicachetag 1FE00154

pcimail1 1FE00144 pciclass 1FE00008

pcimail2 1FE00148 pcicmd 1FE00004

pcimail3 1FE0014C pcidid 1FE00000

pcicachectrl 1FE00150 pciexprbase 1FE00030

pcicachetag 1FE00154 pciint 1FE0003C

pcimstat 1FE0015C pciltimer 1FE0000C

ldmactrl 1FE00200 pcimail0 1FE00140

ldmastat 1FE00200 pcimail1 1FE00144

ldmaaddr 1FE00204 pcimail2 1FE00148

ldmago 1FE00208 pcimail3 1FE0014C

copctrl 1FE00300 pcimap 1FE00110

copstat 1FE00300 pcimap_cfg 1FE00118

coppaddr 1FE00304 pcimembasecfg 1FE00114

copdaddr 1FE00308 pcimstat 1FE0015C

copgo 1FE0030C sdcfg 1FE0010C

BONITO - PCI/SDRAM System Controller for Vr43xx Page 46 of 47

Appendix B: FPGA prototype of BONITO

The FPGA prototype is built in a Xilinx ‘‘Ver tex’’ device. It has some big differences:

• It’s in a bigger package - a 432-pin BGA instead of a 352-pin. The pinout is completely different.

• It implements none of BONITO’s boundar y and other signal test features, since it can rely on those built

into the FPGA.

• It is a soft-loaded part, requiring a logic program exceeding 2Mbits in size. This is loaded at about

60MHz, and is completed quite rapidly - but from power-up it is in the Xilinx-defined reset condition

with most I/Os floating.

We’ve avoided re-using any signals used in the loading process.

BONITO - PCI/SDRAM System Controller for Vr43xx Page 47 of 47

Appendix C: BONITO’s debug interface

BONITO - PCI/SDRAM System Controller for Vr43xx Page 48 of 47

