
Algorithmics P−4032
User´s Manual

algori thmics

© 2000 Algorithmics Ltd

Revision: 2.5
Dated: 1999/08/17

P−4032 is a single board computer for prototyping and evaluat-
ing 32-bit MIPS R4x00 CPUs like NEC’s Vr4300, IDT’s R4640 or
QED’s RM5230 CPU for your application. It’s fast, efficient, and
economical, with excellent software support, and the design can
be licensed in whole or in part.

We all know that you only read the manual if all else fails. But
can we at least recommend that you read §1.1, ‘‘Key facts for the
impatient’’ and §2, ‘‘Getting Started’’.

This manual is ©1996,97,98 Algorithmics Ltd, but anyone may repr int this
document in whole or in part, so long as this copyr ight message is

preser ved.

Algor ithmics Ltd
3 Drayton Par k

London N5 1NU
ENGLAND.

Phone: +44 71 700 3301
Fax: +44 71 700 3400

Email: ask-algor@algor.co.uk

WWW: http://www.algor.co.uk/
FTP: ftp://ftp.algor.co.uk/pub/

2 P−4032 manual

Contents

Contents ...3

1. Introduction to the P−4032 ...7
1.1. Key facts for the impatient ...7
1.2. P−4032 evolution ...7
1.3. Features ..7
1.4. Block Diagram ...9

Figure 1.1 P−4032 block diagram ..9
Notes on the block diagram..9

1.5. A note on EMC..10

2. Getting started ..11
2.1. What’s in the box? ...11
2.2. Initial wiring up ..11
2.3. Boxing a P−4032...11
2.4. Normal sign-on sequence and what it means ...12

Table 2.1: P−4032 ROM sign-on sequence..13
Star tup troubleshooting and switch flipping..13

2.5. Flash memory and ROM socket..13
2.6. PMON ...14

The environment store ...14
Table 2.2: P−4032 - typical PMON environment var iables ...14
Instant PMON...15

3. Memory map ..16
3.1. R4x00 addressing - program and physical addresses ..16

Figure 3.1 MIPS program address map ...16
Figure 3.2 MIPS program address map (entire 64-bit space) ..17

3.2. Physical memory map ...17
Table 3.1: P−4032 physical address map...19

4. Processor and options ...20
4.1. Clock rate/Clock rate multiplier ..20
4.2. CPU daughterboard ..20
4.3. Endianness ...20

5. Local memory...22
5.1. DRAM configuration ..22

Modules and mixes supported ...22
Jumper configuration for DRAM type/speed...23
Figure 5.1 Software option jumper J22 (DRAM bits)..23
Table 5.1: Configuring SIMM module types..23
DRAM Configuration register ...23
Table 5.2: DRAM configuration register fields ..23
How to size the DRAM ...24
Table 5.3: How CPU addresses reach the DRAM SIMMs..24
Outcomes of out-of-range memory accesses ..25

5.2. 8-bit ROM ..25

P−4032 manual 3

Notes about writing to P−4032’s flash PROM ..26
5.3. Serial EEPROM ..27

Table 5.4: EEPROM signals and GPIO pins ..27

6. PCI interface ...28
6.1. PCI accesses ..28
6.2. PCI wiring ..28

Table 6.1: IDSEL for PCI devices/slots...28
Table 6.2: PCI arbitration signals for devices ...29

6.3. PCI interface registers...29
6.4. PCI startup ..29
6.5. PCI perfor mance notes ...29

7. Ethernet interface (DEC 21041) ...30

8. SCSI interface (Symbios 53C810) ...31

9. Onboard I/O ...32
9.1. Board configuration register ..32

Table 9.1: Board configuration register fields ...32
9.2. Option register...33

Figure 9.1 Option header/register (J22) ...33
9.3. Design revision register...33
9.4. Combination RS232/centronics/diskette interface ...34
9.5. Dual UARTS ..34
9.6. Centronics ...34

Table 9.2: Centronics connections in ‘‘per ipheral’’ mode..34
9.7. Diskette interface ...35
9.8. Real Time Clock (RTC) ...36
9.9. General-pur pose parallel I/O (PIO) ...36

Table 9.3: Parallel I/O bits and onboard functions ..36
9.10. LED or LCD display...36

LED display ..36
Figure 9.2 Alphanumer ic Display Extended Character Set ..36
LCD display ..37

9.11. PC keyboard controller..37

10. The Interrupt system ..38
Figure 10.1 Interrupt system block diagram ..38
Table 10.1: Interrupt register addresses..38
Table 10.2: Interrupt sources...39
Table 10.3: Interrupt assignments for PCI devices/slots..40
Figure 10.2 Interrupt register bit fields ..40
Notes on the interrupt registers...41

11. P−4032 layout and user-selectable options ...42
Figure 11.1 Board layout and jumper defaults...42

11.1. Notes on Figure 11.1...43
11.2. CPU options - newer boards ...43
11.3. CPU options - older boards...43

4 P−4032 manual

11.4. Jumper options..43
Figure 11.2 Hardware option jumper (J24) positions ...43
CPU adaptation options ...44
PCI clock source ..45
CPU system interface clock frequency ...45
Table 11.1: CPU clock rate setup ...45

12. CPU endianness ..46

13. Connectors and cables ...48
13.1. Cables supplied...48
13.2. CPU daughterboard connector ...49

Figure 13.1 CPU daughterboard layout..49
Table 13.1: Pinout of CPU daughterboard (MIPS names)..50

13.3. SIMM memory slots (SIMM0/SIMM1) ...50
13.4. PCI edge connectors (P8/P7) ...51
13.5. Ethernet (P1)...51

Table 13.2: Ethernet connector (P1) pinout..51
13.6. SCSI (P9) ..51

Table 13.3: SCSI connector (P9) pinout ...51
13.7. RS232 (P3/P5) ..52

Table 13.4: Serial connector (P3/P5) pinout...52
13.8. Centronics (P2/P10)..53

Table 13.5: Centronics host connector (P2) pinout ..53
Table 13.6: Centronics peripheral connector (P10) pinout ...53

13.9. Diskette (P11)..54
13.10. User-defined parallel I/O (P12)..54

Table 13.7: General purpose I/O connector (P12) pinout...54
13.11. PC-compatible keyboard (P4) ...54
13.12. LCD display connector (P13) ..54

Table 13.8: LCD display header (P13) pinout...54
13.13. Pow er supply connector (P6) ..55

Table 13.9: Pow er connector pinout ...55
13.14. 12V fan power (P16) ...55
13.15. Logic programming connector (P15) ...55

Figure 13.2 Xilinx-compatible connector (P15) for reprogramming P−4032 logic56

14. Logic analyser (debug) board...57
Figure 14.1 DBG−4 - P−4032’s debug board..57
Table 14.1: Signals from DBG−4...58
Figure 14.2 Connecting an HP or compatible analyser to DBG−4..58
Figure 14.3 Pin-by-pin analyser connection to DBG−4 ...58

14.1. DBG−4 option header (J4) ..59
Figure 14.4 The J4 option header - pins ..59
Reprogramming the ANTRIG PAL ..60

14.2. Pinout of debug connector (P14)...60
Table 14.2: Debug connector signal description...60
Table 14.3: Debug connector (P14) pinout...61

Appendix A: References and further reading ...62

P−4032 manual 5

General MIPS infor mation..62
CPU var iants..62
Algor ithmics’ manuals ..62
Other software ...62
Data sheets..62
Standards ..63

Appendix B: Software support..64
SDE−MIPS for P−4032 ..64
Real-time OS on P−4032...64
Other OS on P−4032 ...64

6 P−4032 manual

1. Introduction to the P−4032

1.1. Key facts for the impatient
If you know quite a lot about MIPS already, and are familiar with programming at a low lev el, you’ll still
need the following parts of this manual:

• Block Diagram : you’ll probably find it helpful to glance at Figure 1.1 on page 9.

• Memor y map : refer to Table 3.1 to find out what registers are where.

• Physical arrangement, connectors and jumpers : descr ibed in §11 on page 42 below.

• Board-specific programming : no matter how familiar you are with the devices we’ve used, to program
the board from scratch you’ll need to know about the board configuration register, descr ibed in §9.1
on page 32.

1.2. P−4032 evolution
Ear ly P−4032’s were fitted with either an NEC Vr4300-133 or IDT R4640 CPU as a build-time option.
More recent boards (built since Januar y 1997, serial number 1000-) provide for the QED RM5230 CPU
onboard and have a daughterboard interface for other choices.

This manual specifically describes the third revision of the daughterboard-ready P−4032. The hardware
of this board has been fair ly extensively redesigned, because the programmable logic device we used in
ear ly boards had become obsolete (thank you, Altera). However, apar t from the loss of a couple of
connectors which were really customer-specific, these changes should not affect use or programming of
the board.

1.3. Features

• Processor : any of QED’s RM5230/31, NEC Vr4300/4310 or IDT’s R4640 CPU running at a system
interface speed of 50, 60 or 66MHz. When we want to refer to any CPU we’ll call it R4x00.

These CPUs can be configured to run at a multiple of the system interface speed - usually twice.
The CPU has 64 bit registers and a complete 64-bit instruction set, but uses a 32-bit exter nal bus
interface to save cost and power.

Ear ly P−4032 boards have positions for either a Vr4300 or R4640 CPU; recent var iants bear the
name ‘‘P−4032Q’’ and accept either an RM5230/31 soldered down or a CPU daughterboard.
Daughterboards are available for the NEC Vr4300, IDT R4640, and RM5230/31 (for customers who
want to be able to change their CPU).

The CPUs are fair ly compatible, but there are software-visible differences:

Vr4300 100% compatible with earlier R4x00 CPUs; 16K I-cache and 8K D-cache, both direct
mapped. Floating point and integer pipelines combined, which slows floating point
operations somewhat but saves pow er and space.

R4640 Less compatible (lacks double-precision floating point, no hardware memory
management); 8K I- and D-caches, 2-way set associative with locking options. It features
an integer multiply-accumulate instruction, useful for some DSP-like algor ithms.

RM5230/31
upward compatible with everything including the R5000 and a full MIPSIV instruction set.
16K I- + 16K D-cache (double size on ’31), 2-way set associative. Includes
R4640-compatible multiply-accumulate.

Vr4100 low-power CPU likely to be used mostly as an ASIC core. No floating point hardware,
small caches, much slower. The hardware interface is rather different, and it will be

P−4032 manual 1.3. Features 7

difficult for customers to reconfigure P−4032 between Vr4100 and other CPUs. In fact,
there may be no Vr4100 support available in later boards; check with Algorithmics.

• Local Memory : suppor ts one or two industr y-standard 72-pin SIMMs. Any standard EDO or page-mode
32-bit module can be used - including 32-bit flash ROM modules if you want to prototype a ROM-based
application.

The size and type of memory is user-configurable. The maximum theoretically achievable memor y size is
256Mbytes, and is 128Mbytes with modules available in early 1996.

• Boot ROM : suppor ts both socketed conventional EPROM and flash PROM for economical, field-
upgradeable bootstrap.

• PCI expansion bus : is PCI2.1 compatible1, 33MHz, 32-bits wide. There are two PC-standard 5V edge
connector sockets.

• Ether net : implemented with the DEC 21041 controller, attached onboard via the PCI bus.

• High-perfor mance SCSI interface : using an onboard Symbios 53C810 controller, is available for local disk
or tape devices, or customer-specific SCSI peripherals.

• PC-compatible I/O : a combination I/O controller provides dual serial ports (16550 compatible), bidirectional
Centronics and a diskette interface. The Centronics port can play the role of a ‘‘per ipheral’’ to your PC host,
or a host to your printer or other peripheral.

So the board can talk to you when all else fails, there’s a 4-character alphanumer ic LED display used by
the boot ROM and other code which likes it. To bridge the software/hardware gulf there’s a general
pur pose parallel I/O (PIO) connector, which allows you to wiggle or watch any of 8 lines under software
control.

And we provide a PC-compatible keyboard controller, real-time clock, and an optional LCD ‘‘front panel’’
display.

• EEPROM : a simple serial device provides 4Kbits of non-volatile ‘‘environment’’ storage.

• Interr upt controller : a custom design which can be software-configured to suit a wide range of customer or
OS requirements.

• Field-reconfigurable logic : most of the board’s logic is implemented in re-programmable FPGA devices.
We can supply logic upgrades over inter net.

• Software support : delivered with the PMON boot monitor [PMON], for which full source code (including all
dr ivers) is available free on request. The standard bootstrap also includes a ROM-based power on self test
(‘‘AlgPOST’’). Algorithmics SDE−MIPS toolkit [SDE−MIPS] provides a librar y for P−4032.

Algor ithmics can supply BSP (‘‘board support packages’’) for real-time OS’ such as VxWor ks from Wind
River Systems and pSOS from ISI. Versions of freely-redistributable operating systems (notably OpenBSD
and Linux) are available too.

Free software for P−4032 can be found on our internet ftp server at ftp.algor.co.uk .

• Reset/debug switch : that little switch (SW1). It can be pushed left (away from the center of the board) for a
full reset, and right to produce a ‘‘debug’’ interr upt. The debug interrupt is wired into a regular interrupt, not
the NMI (non-maskable interrupt), and does interesting things to the boot-up sequence.

1 PCI is a fast-moving target; see the online errata for deviations. They don’t affect
ev eryday uses.

8 1.3. Features P−4032 manual

1.4. Block Diagram

q

SysAD

ad
dr

es
s

da
ta

D
R

A
M

D
R

A
M

PCI

Xdata

debug
connector

m
ux

/d
riv

e

3.3/5V conv

address regFIFO/buffer

read data reg

bus switch

21041
ethernet

32−bit
MIPS R4x00

CPU

8/
32

 b
it

co
nv

er
t

F
la

sh

R
T

C

combi
I/O

rs
23

2

ce
nt

ro
ni

cs

di
sk

et
te

rs
23

2

interrupt
control

PIO

E
2
PROM

slots
edge connector

53C810
SCSI

P
R

O
M

so
ck

et

control

I/O addr

control reg
keyboard

LED/LCD disp
options reg

user
GPIO

V3 V962PBC
PCI adapterPCI

arbiter

bus switch

Figure 1.1 P−4032 block diagram

Notes on the block diagram

• Buses : the CPU local bus (‘‘SysAD’’) is a 32-bit wide, 5V-signalled, multiplexed bus running
synchronously at the CPU’s interface clock rate - up to 67MHz.

CPU data passes through a write FIFO, allowing CPU cache writeback bursts to run at full speed.

The intermediate bus has a dual personality. Dur ing CPU/memor y transactions, it runs at CPU
interface speed; but during transfers to or from PCI it runs at one-half CPU speed, and with timings
compatible to the local bus of an Intel i960 CPU.

P−4032 manual 1.4. Block Diagram 9

• V3 V962PBC : is a local-bus/PCI converter, originally designed for i960 applications.

• Bus switch : decouples the PCI converter chip when the intermediate bus is carrying CPU/memory or
CPU/local I/O traffic.

• DRAM : two sockets for 32-bit SIMM modules.

• IO bus and Xdata : provides an 8-bit bus for onboard PC-type peripherals. The ‘‘8/32-bit converter’’ can
steer IO bus data to any byte lane of the read data register; when the CPU reads from the 8-bit ROM space
the hardware perfor ms four byte-wide reads and assembles them into a 32-bit word.

1.5. A note on EMC
The electronics industry in both Europe and the USA is now concer ned with stray emissions (and sensitivity to)
electromagnetic radiation. P−4032 is not currently certified under European regulations, because it is not itself
a system but only a component2. By design, P−4032 is relatively insensitive to incoming radiation; it may be
affected by pow er glitches, but it is the power supply’s job to filter those.

Many of you will be using P−4032 open on a bench set up. Use of a 100MHz+ system without any overall
metal shielding is likely to produce radiated emissions above the levels permissible for office (let alone
domestic) equipment. The European regulations specifically provide for laborator y set-ups, on the basis that it
is your responsibility to ensure that no nuisance is caused to a third party. The best shielding is distance; don’t
set up your board a few feet away from someone else trying to watch TV!

P−4032 is designed to be compatible with widely available ‘‘PC’’ boxes, pow er supplies and cables, and its
radiation will be sharply reduced if those are of good quality. Algor ithmics may at some point issue a boxed
system product or specification, which would need to be certified and ‘‘CE’’-mar ked. Write to us if you need
that. Meanwhile, the board is a component for use in laborator y environments, and the user is responsible for
managing radiated emissions.

2 There is some debate in Europe about whether all assembled PCBs should be
covered by the ‘‘CE’’ registration scheme, but it’s still an open question.

10 1.5. A note on EMC P−4032 manual

2. Getting star ted
Most of you should read this section.

2.1. What’s in the box?
Ever ybody should find:

• P−4032 user’s manual : but you got that, because you’re reading it.

• PMON user’s manual : descr ibing the boot monitor and startup sequence. A useful reference for
when things go wrong, but many of you won’t really have much to do with it.

• P−4032 : configured with the CPU, and the amount and type of memory, you ordered.

• Tr ansition Cables : there should be a bunch of standard transition cables, which you can either use to
br ing out connections for a board in a PC box, or just to mate with standard bought-in cables.

You may also find (if you ordered them):

• Extra cables : some are optional, see §13.1.

• Debug board : makes it much easier to watch addresses/data in your program. Invaluable for driver
and ROM-code debug; see §14 below.

• LCD display : an optional 16×2 alphanumer ic display supplied loose with a short transition cable. It’s
up to you to find a mounting point, or just leave it lying around. More infor mation in §13.12.

2.2. Initial wiring up
P−4032 is quite happy operating on a bench top. There are no dangerous voltages, and nothing will get
too hot. You’ll need to connect at least power, and possibly some other stuff.

• Po wer : PC pow er supplies are cheap, electr ically safe, and plug right in. The connector is in two
par ts, but put the black (ground) wires together and you’ll be safe.

• Ser ial por t(s) : if the connection from your computer terminates in a female D-type (9-pin for PCs, or
25-pin for old RS232 standard), then there’s a good chance that you can wire them up with the
supplied cables. If not, or you’ve lost the cables, refer to Table 13.4 below for the connections on
board.

The PROM monitor signs on at 9600 baud, sends 8-bit characters with no parity, and (in its default
configuration) accepts pretty much anything back again.

• Ether net : you need an exter nal transceiver. The supplied cable plugs in.

• Centronics for download : if you have a nor mal PC centronics cable then you’ll need the centronics
per ipheral transition cable, which is an optional extra.

2.3. Boxing a P−4032
P−4032 is designed to fit into PC metalwor k - older rather than ‘‘ATX’’ PCs - and matches a small PC
motherboard in its size, fixing hole positions and standard connectors (PCI, keyboard, power supply).
PC metalwor k varies, so you may need some patience.

The serial and centronics transition cables supplied with the board terminate on PC back-panel fingers.
The SCSI cable supplied is suitable for use in-box. You’ll need to make your own arrangements for
other I/O.

Most PCs have a reset button lead, which will mate with the 2-pin header J2, allowing the board to be
reset from the front panel.

P−4032 manual 2.3. Boxing a P−4032 11

2.4. Normal sign-on sequence and what it means
From power up your P−4032 will show signs of life by writing enigmatic codes to its LED display (just in case
you expected English, it starts by saying ‘‘U*U* ’’). At the same time it’s sending rather more meaningful
messages to both serial ports. Here’s a typical example:

P−4032 says What it means

Info: Version: P4032 (EB) 1.17: (chris) Thu \

Feb 13 13:35:05 GMT 1997

PROM sign-on. ‘‘(EB)’’ for big-endian, ‘‘(EL)’’ for
little-endian. Note that the PROM contains both
the power-on selftest code (AlgPOST) and the
ROM monitor (PMON). This is AlgPOST
star ting up.

And the ‘‘\’’ shows where I’ve folded a single line
which is too long for this table.

Info: Activity: ICU operation ‘‘Info:’’ denotes a test starting. If you get nothing
but ‘‘Info’’ and ‘‘Notice’’ lines from the power-on
tests, then they didn’t find anything really wrong.

Info: Activity: cache tests Star ted cache tests
Info: Dcache size 8 Kbytes (16/line)

Info: Icache size 16 Kbytes (32/line)

Info: Activity: dcache refill test

Info: Activity: dcache writeback test

Info: Activity: RTC operation

Info: Date: Fri 25/4/1997 10:38:00 UTC

Info: Memory Size 8Mb, Simm0 4Mb SIMM1 4Mb \

DCR 0xdd

‘‘DCR’’ is the hex value of the DRAM
configuration register, descr ibed in §5.1 below.

Info: Activity: quick memory address test More thorough tests are available, see PMON
manual for how to make them happen.

Info: Activity: flash memory operation

Info: Flash: Fujitsu 29F080

Info: Activity: ns16550 operation That’s the dual serial port controller
Info: Activity: keyboard operation

Notice: No keyboard attached

Info: Activity: PCI operation

Info: V962 silicon revision 2 The PCI bridge chip. Revision 2 indicates a
‘‘B.1’’ par t, which is not so good. See our web
site for bugs inherent in the B.1 chip, and let’s
hope your board announces a revision of 3 or
higher.

Notice: Integrated Tests Completed

Notice: Executing PROM package 6 Control is now being handed over from the
power-on tests to PMON.

PCI slot 5: Digital Equipment DECchip 21041 \

("Tulip Pass 3") (class: network, \

subclass: ethernet) PMON is probing for active PCI devices
PCI slot 8: NCR 53c810 (class: mass \

storage, subclass: SCSI)

Ether net dr iver initialisation.de0: P4032 DC21041 [10Mb/s] pass 1.1 Ethernet

address 00:40:bc:03:00:44

12 2.4. Nor mal sign-on sequence and what it means P−4032 manual

P−4032 says What it means

PMON version 3.1.155 [P4032,EB,FP,NET]

Algorithmics Ltd. Jan 24 1997 11:46:17
PROM monitor version and date

This software is not subject to copyright \

and may be freely copied.

CPU type R4300. Rev 2.0. 133.3 MHz. From CPU ID register and measurement.
Memory size 8 MB. PMON should agree with AlgPOST
Icache size 16 KB, 32/line.

Dcache size 8 KB, 16/line.

These figures are right for the Vr4300, others
differ

PMON> You’ve got a prompt

Table 2.1: P−4032 ROM sign-on sequence

Star tup troubleshooting and switch flipping
As the board powers up, the LED shows a code for each set of tests. The display blinks out briefly as
each individual test is started.

Lower-case codes are good, but upper case codes from AlgPOST are bad (at least, after it’s initial
‘‘U*U* ’’ stuff). Upper-case test names from AlgPOST mean a war ning or worse; always stay around for
long enough for you to read them; and are accompanied by a console message unless the console is
not wor king or configured off.

Confusingly, PMON puts upper-case messages on the display and those aren’t errors; but they tend to
zoom past really fast until you get a gently flashing ‘‘PMON’’ - and that indicates that the system is up to
the PMON prompt.

If the board seems to be expir ing really early, you may want to turn up the thoroughness and verbosity of
the power-on tests. Usually, this is controlled by environment var iables; but if you can’t reach the PMON
prompt you can’t change those. So you can do it by wiggling the debug/reset switch; reset the board in
the usual way, but instead of releasing the switch move the switch all the way over to its other (‘‘debug’’)
position, and hold it there for a couple of seconds. AlgPOST will now test everything (including some
rather tedious memory tests) and tell you pretty much everything about it.

2.5. Flash memor y and ROM socket
P−4032 normally boots from an onboard 1M×8 flash memory, pre-loaded by Algor ithmics with power-on
tests and the PMON ROM monitor program. You can create and write your own bootstrap; software
running out of DRAM can update the flash memory in place.

If your board won’t boot and you believe that the flash memory may be corr upted, there is a socket
(U18) which accepts an alternative bootstrap source. The device is usually a 512K×8 150ns EPROM, in
a 32-pin dual in-line package, but you can use a suitable flash part (AMD 29F040 or equivalent), by
changing the jumpers J9 and J10 from their default (2−3) position to (1−2).

The board will use the ROM socket for its bootstrap if you insert jumper J8.

A copy of PMON in S-record for mat, ready to run in your board, can be downloaded from Algorithmics’
web site www.algor.co.uk . You can also download a program to run under PMON, which will write a
clean bootstrap image to your flash memory.

Flash memory updates are perfor med through two separate address windows onto the onboard and
socketed devices.

P−4032 manual 2.5. Flash memory and ROM socket 13

2.6. PMON
PMON is the bootstrap monitor program supplied in ROM, described much more fully in the ‘‘PMON User’s
Manual’’ which all board customers should have received. Many users will make use of only a fraction of
PMON’s facilities:

The environment store
The board environment is implemented in an EEROM device separate from the main memory map, and is
intended to be shared by any software which wants to store small amounts of per-board configuration
infor mation. In PMON you use the ‘‘set’’ command to inspect or create environment entries. To edit existing
entr ies, the ‘‘eset’’ command gives you line editing.

Table 2.2 shows a typical dump of var iables from P−4032; we’ll explain what they mean.

PMON>set

ethaddr = 00:40:bc:03:00:44

itquick = t

netaddr = 192.168.1.67

hostname = comm67.comm.algor.co.uk

nameserver = 192.168.1.65

gateway = 192.168.1.65

tftphost = oval

v = gate:/vol/tornado/target/config/p4032/vxWorks

dlecho = off [off on lfeed]

dlproto = EtxAck [none XonXoff EtxAck]

hostport = tty1

heaptop = 80020000

moresz = 10

prompt = "PMON> "

brkcmd = "l @epc 1"

datasz = -b [-b -h -w -d]

bootp = no [no sec pri save]

inalpha = hex [hex symbol]

inbase = 16 [auto 8 10 16]

regstyle = sw [hw sw]

regsize = 32 [32 64]

rptcmd = trace [off on trace]

trabort = ˆK

ulcr = cr [cr lf crlf]

uleof = %

validpc = "_ftext etext"

Table 2.2: P−4032 - typical PMON environment var iables

What do all these mean?

• ethaddr : Without this, no networ k. The first part of the address (‘‘00:40:bc:03 ’’) is the same for all
boards; the last four digits of the hex ether net number are the board’s ser ial number (but in hex); this board
is serial 0068, which is ‘‘0044 ’’ in hex.

• itquick : Suppresses long-running power-on memory tests. See PMON manual for how to ask for more
power-on tests.

14 2.6. PMON P−4032 manual

• netaddr, hostname, nameser ver : You need either a ‘‘netaddr’’ or both a (suitably registered)
‘‘hostname’’ and ‘‘nameser ver’’ to be set up. Either gives the board an identity for communication.

If you need more infor mation about setting up the networ k, read the PMON manual.

• gateway : default gateway. Networ k data for any host which is not on the local networ k (does not
respond to ARP request) will be sent here. Useful if you keep your prototype boards on a separate
networ k.

• tftphost : default networ k host to use when using tftp. You can always give an explicit host name.

• v : a typical programmer-set shortcut, allowing you to just say:

PMON> boot $v; g

to load and run the program.

• dlecho, dlproto : control download over ser ial or parallel link. P−4032 can echo characters (if the link
is bidirectional) or use a character-based flow control protocol.

• hostpor t : select which device is to be used for download. The device can either be shared with the
PMON console, or separate. Possible download device names are:

tty0 is the first serial port, ‘‘com1’’, also used for the PMON console.

tty1 is the second serial port, ‘‘com2’’.

tty2 is the centronics port, using peripheral mode.

• heaptop : how much DRAM memory PMON uses, star ting from zero represented as a MIPS ‘‘kseg0’’
address in hex. This is the lowest address at which you can load your program. You can set
‘‘heaptop ’’ somewhat lower; but not to zero (PMON has to have some writable memory to operate
in) and PMON may be unable to do some things for you without enough free memory.

• moresz, prompt : PMON user interface controls.

• br kcmd etc : these var iables configure the operation of PMON as a debug monitor, and you’ll have to
look in the PMON manual for them

Instant PMON
There’s so much more in the PMON user manual, but wor th mentioning:

• Command editing : use emacs/unix style keys to move around and edit characters.

• Booting from ethernet : uses the ‘‘boot’’ command from PMON, and loads ELF object files.

• Booting from serial or parallel ports : use the ‘‘load’’ command of PMON, and can accept a var iety of
download for mats such as S-records.

P−4032 manual 2.6. PMON 15

3. Memory map

3.1. R4x00 addressing - program and physical addresses
In MIPS CPUs the addresses generated by your program3 are never the same as the physical addresses
which come out of the CPU and affect the rest of the system.

This is different from most familiar CISC architectures, and this often causes confusion. CISC CPUs often
have a mode bit which enables memory translation - and without that mode bit set the physical address is
exactly the same as the program address. MIPS has no such mode bit. Instead, the CPU’ program address
space is split into regions, as shown in Figure 3.1:

"unmapped" uncached (kseg1)

"unmapped" cached (kseg0)

mapped
(kseg2)kernel

supervisor

32−bit user space (kuseg)
2 Gbytes

0xE000 0000

0xC000 0000

0xA000 0000

0x8000 0000

0x0000 0000

Figure 3.1 MIPS program address map

The regions kuseg and kseg2 are designated for translation; addresses in these regions will be presented to
the hardware’s memor y translation unit (the TLB), and what happens then is beyond the scope of this section.
If you want to know more, read an architecture book such as [MIPS R4000] or [Using MIPS].

Embedded software more often runs in kseg0 and kseg1, each of which offers a window onto the low
512Mbyte of physical memory (cached and uncached respectively). kseg1 is essential to run startup code
(before the caches are initialised), and is also needed for access to hardware I/O registers. Once the system
is running most system code and data will be accessed through kseg0.

Actually, the picture shown above in Figure 3.1 is not complete. The R4x00 is, after all, a 64-bit CPU and not
32-bits, and the full program address space is 64 bits big. Figure 3.1 is useful because, so long as you only
use the 32-bit-compatible part of the MIPS instruction set, registers will only contain 64-bit values whose top
32 bits are all set to the same value as bit 31 - such values look like a ‘‘sign extension’’ of a 32-bit value.

So the 32-bit memory map is in fact the view you get of the whole 64-bit memory map when you leave the
middle out. Figure 3.2 shows the big picture:

3 Called program addresses here - the term vir tual address means exactly the same
thing but is unfamiliar outside the exotic realms of big operating systems

16 3.1. R4x00 addressing - program and physical addresses P−4032 manual

"unmapped" uncached (kseg1)

"unmapped" cached (kseg0)

0x0000 0000 0000 0000

0xFFFF FFFF 8000 0000

0xFFFF FFFF A000 0000

0xFFFF FFFF C000 0000

0xFFFF FFFF E000 0000 mapped
(kseg2)kernel

supervisor

32−bit user space (kuseg)
2 Gbytes

inaccessible with
32−bit pointers
(so only found

in R4x00 CPUs)

more user space
40 bytes2to

0x0000 00FF FFFF FFFF

0x4000 0000 0000 0000
40 bytes2

supervisor−accessible0x4000 00FF FFFF FFFF

0x9000 0000 0000 0000

window on physical mem
(cached)

window on physical mem
0x9800 0000 0000 0000

40 bytes2

(uncached)

0xC000 0000 0000 0000

0xC000 00FF FFFF FFFF kernel−accessible

Figure 3.2 MIPS program address map (entire 64-bit space)

Handling pointers as 64-bit objects is an extravagant use of memory space for an embedded software
application; and we reckon most users won’t bother. If you need access to the R4x00’s 32-bit physical
address range outside the low 512Mbytes (so can’t just use kseg0 and kseg1) you can use the TLB.

3.2. Physical memory map
The CPU generates a 32-bit address. How ever:

• Following a reset the CPU starts execution at 0x1FC0 0000 (physical) - which must therefore map to
onboard ROM.

• Much system software finds it easier to operate in the kseg0 and kseg1 ‘‘unmapped’’ spaces
descr ibed above in §3.1, and such programs will only generate physical addresses up to and
including 0x1FFF FFFF (the low 512Mbytes of address space).

Note that revisions of this manual before 2.5 describe a different memory map, which turned out to
make ISA bus programming difficult. If you wrote software which used the original map, and don’t need
ISA bus access, the PMON boot monitor will restore the original map if the environment var iable
‘‘pcimap’’ is set to ‘‘old ’’.

In the memory map Table 3.1 a dagger (†) denotes that the address is software-configured at boot time
- the value given is recommended and fits in with the hardware decodings.

P−4032 manual 3.2. Physical memory map 17

Base

Address
Size Class Description

0000 0000 256Mb onboard DRAM memory

0400 0000 Flash SIMM module memory if fitted
Memor y

1000 0000 8Mb† ISA

via

PCI

‘‘ISA’’ memor y access window.

This is a window on the first 8Mbytes of PCI memory space, and should not be

allocated to either onboard or add-in PCI controllers.

It’s there because some PC legacy controllers - particular ly video cards - are

hard-wired to respond to some low addresses.

1080 0000 8Mb† Reser ved. This range of memory, as decoded on the PCI bus, provides an

unmapped window onto local memory. If the MIPS CPU accessed these

locations nothing ver y useful would happen - the self-decode obstructs access to

the ISA bus

1100 0000 112Mb† Window on PCI memory space (by default, generates addresses 0x1000 0000

lower on the PCI bus). PCI devices get dynamically allocated addresses starting

at PCI address 0x0100 0000 which is CPU address 0x1100 0000 Although

PCI devices’ base addresses are programmable, you should normally leave them

where the bootstrap program left them. Find a particular device by reading PCI

configuration space and getting the values already programmed into the base

registers.

1800 0000 109Mb reserved

1ed0 0000 1Mb PCI I/O space window†: you’ll only use PCI I/O space for PC ‘‘legacy’’ controllers,

but this space is reserved for it if needed.

1ee0 0000 1Mb

PCI

PCI configuration space: access to PCI devices’ configuration registers. In

P−4032, PCI device IOSEL signals are derived from high PCI bus address bits -

see §6.2. (‘‘PCI wiring’’) on page 28 for details. You need to program some

V962PBC registers to make this wor k.

1ef0 0000 64Kb† V962PBC PCI controller’s inter nal registers

1ef1 0000 reser ved

1fc0 0000 1Mb Boot ROM location. Reads either ROM socket (512Kb only) or flash locations,

depending on configuration)

1fd0 0000 512Kb Programming window for socketed flash memory

1fe0 0000 1Mb

ROM

Programming window for onboard flash.

1ff0 0000 1 reg Real time clock ‘‘pointer’’ register

1ff0 0004 1 reg Real time clock data

1ff1 0000 2 reg Keyboard controller

1ff2 0010 4 reg LED display cells (leftmost has lowest address)

1ff3 0000 x reg LCD display

1ff4 0000 x reg General-pur pose parallel I/O (GPIO)

PC-type

I/O

1ff8 07c0 x reg Diskette port

1ff8 0800 - unused (Games port)

1ff8 0be0 x reg com2 ser ial por t

1ff8 0fe0 x reg com1 ser ial por t

1ff8 0de0 x reg Centronics por t

Combi

I/O

chip

1ff9 0000 3 reg Interrupt requests/masks

1ff9 000c 3 reg Interrupt crossbar registers
ICU

18 3.2. Physical memory map P−4032 manual

Base

Address
Size Class Description

1ff9 001c 1 reg Ver P−4032 design revision

1ffa 0fd4 1 reg Diskette ‘‘DMA acknowledge’’

1ffb 0000 8×1-bit Board configuration register (1 bit/location)

1ffc 0000 8×1-bit DRAM configuration register (1 bit/location)

1ffd 0000 1 reg Option register

PC-type

I/O

2000 0000 3.5Gb PCI Use this if you have to (you’ll need to program the TLB or use 64-bit pointers)

Table 3.1: P−4032 physical address map

P−4032 manual 3.2. Physical memory map 19

4. Processor and options

4.1. Clock rate/Clock rate multiplier
The CPU’s input clock is der ived from a synthesiser IC and is set by a group of jumpers summarised in Table
11.1; likely choices are 50, 60 and 67MHz.

The CPU runs internally at a higher speed (2, 3, 4 or 5 times higher) than the system clock, according to the
setting of the ‘‘CDIV’’ field of the jumper J22, described in §9.2. (‘‘Option register’’) on page 33. Most often, the
CPU will run at at 2× or 3× the bus speed.

4.2. CPU daughterboard
Recent boards (serial 1000-) accept a wide range of CPU types, mounted on a small daughterboard.
Daughterboards are available for Vr4300, R4640, and RM5230/31. The daughterboard connector is described
in §13.2 below, and may be a useful place for looking at raw CPU signals.

The idea of the daughterboard is so we can configure and ship boards with a range of CPUs. We don’t want to
expose the CPU connector as an ‘‘open’’ interface, because the documentation job would be way beyond cost-
effective. Customers who want to be able to switch between two different CPUs should contact Algorithmics
for instr uctions.

But we can tell you that changing a CPU will involve some or all of the following:

• Change the daughterboard itself.

• Change the system logic, which is stored in ‘‘flash’’-programmable logic chips and can be downloaded
through the Centronics port using software and files obtained from Algorithmics’ web site.

Some pairs of CPUs (eg. R4640 and RM5230) share a common set of logic, and you may just need to
change a jumper.

• Change the CPU input clock rate by changing the clock control jumpers.

4.3. Endianness
All MIPS CPUs can be configured with either ‘‘endianness’’ - if you’re not sure what this means look at §12.
(‘‘CPU endianness’’) on page 46. With the exception of certain hand-crafted simple sequences, program
binar ies for big- and little-endian MIPS are different and incompatible; so you have to match the CPU
configuration with the software you’re running.

On P−4032 there are three pieces of hardware to configure:

• The CPU itself. The NEC Vr4300 is setup in software (it starts up big-endian, but changes sex with an
inter nal register bit). Other CPUs require some kind of reset-time hardware sequence.

The CPU’s endianness is set with the ‘‘BigEnd’’ jumper in the option register jumper block, described in
§9.2. (‘‘Option register’’) on page 33. It is always software-readable.

• The CPU bus interface, which interprets the CPU’s read and write commands. Par tial-word read/writes are
signalled by the CPU in an endianness-dependent way.

The CPU bus interface is set up by software, responding to a bit in the configuration register described in
§9.1 below. It’s initially little-endian, so big-endian CPUs must set this bit before attempting any par tial-
word accesses.

• The PCI bus interface. PCI is inherently little-endian, and it’s wise to have a byte lane swapper between
PCI and the rest of the system when the CPU is big-endian.

The V962PBC bridge chip provides a software-selectable byte lane swapper.

Of course, you also have to provide software (including a boot ROM) for the appropriate endianness. The
standard boot ROM will detect a mismatch between CPU and ROM endianness and give you a diagnostic

20 4.3. Endianness P−4032 manual

message.

Note that getting even this minimal ROM code to operate bi-endian requires that P−4032 be wired so
that CPU instructions (and 32-bit loads and stores) are consistently interpreted regardless of the state of
any of the above .

Note again: if the CPU and bus interface options don’t match, partial-word transfers will transfer
garbage.

P−4032 manual 4.3. Endianness 21

5. Local memor y

5.1. DRAM configuration
You can fit one or two 72-pin, 36-bit wide DRAM SIMMs - as used on most PCs. If you only have one SIMM, it
goes in SIMM0. If you are using a DRAM-compatible flash memory SIMM, it goes in SIMM1.

P−4032 handles a wide range of memories (size, type and speed). The most common options are software
selectable; larger sizes and more unusual DRAM types require a logic firmware var iant; contact
p4032@algor.co.uk .

Modules and mixes supported
With the standard decoding logic you can use single-bank or double-bank SIMM memory modules in sizes of
1M×32, 2M×32, 4M×32 and 8M×32 - the last must be a double-bank type. If you use two double-sided DRAM
modules they must be the same size.

You can use 70ns fast page mode or 60ns EDO modules; if two modules are fitted they must be of the same
type (a 60ns EDO will wor k with page mode timings, but slower).

You can fit a flash SIMM module (1M×32 or 2M×32 double-banked) in the second slot.

• DRAM size : some decoding changes are required to accommodate different sizes of DRAM SIMM, and a
range of common options can be setup by programming a set of write-only registers, documented below.
Algor ithmics’ star tup code figures out the sizes of the installed modules and configures the DRAM
controller accordingly.

• DRAM speed and type : P−4032 supports several different DRAM timing sets. The timing is configured
under software control by the DRAM configuration register (defined in §5.1 below); but to avoid confusion
software should always initialise the DRAM controller as instructed by the ‘‘Mem Type’’ and ‘‘Flash SIMM’’
fields of the option register, descr ibed in §9.2. (‘‘Option register’’) on page 33 below.

All timings are configured in CPU system interface clock cycles. The options are:

1. Fast page mode DRAM with 1-clock CAS (suitable for 50MHz system with 60/70ns DRAMs).

2. 60ns EDO DRAM with 1-clock CAS (for system at any speed).

There was to be a ‘‘burst’’ system, which would give the best memory perfor mance achievable with our
SIMM pinouts; but it has never been implemented.

3. Fast page mode DRAM with 2-clock CAS (required for 67MHz system).

4. Flash ROM - cur ious SIMM parts using multiplexed addressing. Initial access time is similar to 80ns
DRAM, but CAS cycling is much slower.

If flash ROM is fitted, it’s base address is always 64Mbytes (0x0400 0000).

22 5.1. DRAM configuration P−4032 manual

Jumper configuration for DRAM type/speed

4

5

6

7

DRAM
config
links

DRAM type 0

DRAM type 1

Flash SIMM

Slow

opt reg bit

16

14

12

109

11

13

15

Figure 5.1 Software option jumper J22 (DRAM bits)

In Algorithmics’ startup code the configuration bits relating to the type and speed of the SIMM modules
are copied from the ‘‘software option’’ jumper block to a write-only configuration register on power up.
The jumper positions are shown in Figure 5.1.

So long as this convention is maintained the links need to be set up to match the installed SIMM
modules, as shown in Table 5.1.

Jumper in/
Name out

Effect

Slow in 70ns DRAM on 67MHz system

J22 13-14 J22 11-12
out out reser ved
out in regular EDO
in out reser ved
in in fast page mode

DRAM type

Flash SIMM in Flash ROM module in SIMM1

Table 5.1: Configuring SIMM module types

DRAM Configuration register
Implemented as an array of single-bit registers. This is a bit odd - but you don’t expect to change it ver y
often.

In Table 5.2:

• BankSz : bank size of the memory array plugged into SIMM0. Accesses at and beyond ‘‘BankSz’’
will either go to SIMM1 (single-banked module in SIMM0) or the second bank on SIMM0.

If SIMM1 is single-banked, then the hardware doesn’t need to know it’s size; it extends all the way up
to the maximum DRAM address space limit. The software sizing routine can figure out what it really
is.

But if SIMM1 is double-sided, the hardware has to know when to switch to the second bank; and
under these circumstances SIMM1 is assumed to have the same bank size as SIMM0.

• Sngl0/Sngl1 : set 0 if the memory array in SIMM0/SIMM1 respectively has two separate 32-bit banks
using four separate RAS* signals.

P−4032 manual 5.1. DRAM configuration 23

Offset name Value Effect

0x1c Flash SIMM 1=DRAM, 0=flash 0 if SIMM1 module is a flash
ROM module

0x18 DRAM
0x14 type

0 0 = Page mode DRAM
0 1 = reser ved
1 0 = regular EDO
1 1 = reser ved.

Select type of DRAM in use

0x10 Slow 1=nor mal, 0=slow Set ‘‘slow’’ for 70ns DRAM in a
67MHz system

0x0c Sngl1

0x08 Sngl0 1=single, 0=double

SIMM1/SIMM0 module ‘‘double
banked’’ - it has a second bank of
DRAM on the module, accessed
by alter nate Ras* signals

0x04 Bank
0x00 Size 0

0 0 = reser ved
0 1 = 4 Mbyte
1 0 = 8 Mbyte
1 1 = 16 Mbyte

Bank size of SIMM0 module. For
single-bank modules, this is the
same as the module capacity; for
double-bank modules, it’s half of
the module capacity.

Table 5.2: DRAM configuration register fields

• Slow : set 0 to slow the DRAM access speed down, when using 70ns DRAM in a 67MHz system.

A 67MHz CPU’s burst read timing (for cycles not delayed by exter nal access or DRAM refresh) are as
follows:

DRAM type Access rate

70ns page mode 8-3-3-3
60ns EDO 7-2-2-2

How to siz e the DRAM
How should you establish how much memory of what type is fitted, in order to program the controller to talk to
it? First of all, look at Table 5.3, which shows how CPU addresses are fed to the DRAM SIMMs in the different
sizes:

DRAM address RAS-time CAS-time Bank
row+column bits bits size(s)

Type

1M×32 4Mbyte
2M×32† 2×4Mbyte

10+10 A12-21 A2-11

2M×32 11+10 A12-22 A2-11 8Mbyte

4M×32 16Mbyte
8M×32† 2×16Mbyte

11+11 A12-22 A2-11,23

8M×32 12+11 A12-22,24 A2-11,23 32Mbyte

16M×32 12+12 A12-22,24 A2-11,23,25 64Mbyte

Table 5.3: How CPU addresses reach the DRAM SIMMs

Some 2M×32 and 8M×32 modules (marked with †) use separate Ras* signals to access two banks of RAM on
the same module. We call these ‘‘double-banked’’ - they are often physically double-sided, with chips on both
sides of the module.

24 5.1. DRAM configuration P−4032 manual

Star tup code is expected to figure out whether each of the SIMM modules is double-sided, and their
bank sizes.

To sense what size banks you have , set up the board for the maximum DRAM size, and for single-bank
operation. If the real SIMMs are in fact smaller than the maximum size some address bits will get lost
and you will see the memory ‘‘wrap around’’.

The wraparound will happen at the first location which is too big for the actually-installed DRAM.

Once you’ve discovered and configured the bank size, set the double-bank configuration bit. If the
SIMM module is single-banked, you’ll now get a ‘‘hole’’ above the good bank addresses in which no
DRAM will respond. Take care not to get confused by ‘‘ghost’’ data, returned when a floating bus holds
the value you last wrote (see the note on ‘‘Outcomes of out-of-range memory accesses’’ below).

A Flash SIMM module is always accessible from 64Mbytes (0x0400 0000) and, if double-sided, is
assumed to have 4Mbyte banks.

Now repeat the process for SIMM1. The only irritation is that you can’t (yet) support a different bank
size for SIMM0 and SIMM1 when SIMM1 is double-banked.

A good algorithm for sizing a bank is:

• Set the word at the bank’s base address Base to some recognizable pattern such as 0x1234 5678 .

• For each n which is a plausible size for the SIMM memory size (star ting with the largest value) set
the word at physical address Base + n to the value n. The easiest way to generate the physical
address is to use the kseg1 address Base + n + 0xa000 0000 .

Plausible sizes start at 1Mbyte, and go up in multiples of 4.

• Read the word at physical address zero (ie 0xa000 0000) to obtain the size of the SIMM in bytes.

Outcomes of out-of-range memor y accesses

The memory controller responds to any access in the region dedicated to ‘‘onboard DRAM memory’’.
An access to any par t of the region for which DRAM is not configured and installed may result in any of
the following:

• Random data returned : the data returned is unpredictable. A wr ite to the location will have no effect.

• Ghost data returned : the data returned is the same as the last data written to ANY location in the
DRAM system. A write to the location will have no effect. Take care that these ‘‘ghost’’ values don’t
confuse your memory-sizing code into believing that memory must be there.

• Access wraps around : an access to an address higher than any legitimately configured and installed
may read or write another location, whose address is typically a large power of 2 low er than the
address produced by the CPU.

Software which computes the size of the onboard memory at initialisation must be designed to cope with
any of these behaviors. To detect wrap-around you can use an address-in-address test; to avoid being
confused by ghost data you should separate the write and read back of a test location with a cycle which
wr ites the bitwise complement of the test data to some other location.

5.2. 8-bit ROM
P−4032 is bootstrapped from one of a pair of 8-bit ROM devices.

CPU word-size reads from ROM space are accomplished by reading four consecutive bytes from ROM
and presenting them on the data bus. Note that byte 0 of PROM is always presented on bits 0-7 of the
data bus, regardless of CPU or board ‘‘endianness’’.

To update the flash ROM you need to grapple with some strange effects caused by the ROM’s
endianness; see below.

P−4032 manual 5.2. 8-bit ROM 25

5.2.1. Boot PROM socket
Accepts a 32-pin uV-erasable or flash PROM of up to 512Kbytes (4Mbits). Add the jumper J8 to map this part
into the MIPS startup location 0x1fbc0000 . With the jumper out, the board will bootstrap from the onboard
flash PROM.

By default, your board is setup for a uV-erasable ROM. To use a flash device (AMD 29F040 or equivalent)
Change the jumpers J9 and J10 from their default (2−3) position to (1−2).

5.2.2. Flash PROM
One 1M×8-bit flash memory device is provided onboard. Your board will have been delivered with bootstrap
monitor code in flash. Refer to the monitor manual for infor mation on how to upgrade the software.

For peculiar reasons a CPU running big-endian can only read the flash ROM’s own mapped regions as words,
or cached. Uncached reads to the flash area are handled oddly, and return the wrong byte for normal
pur poses.

If your board is set up to boot from flash, the flash ROM behaves proper ly when read through the boot window.

Notes about writing to P−4032’s flash PROM

Flash memories require special programming sequences to erase and write data.

There are special commands available to erase the ROM (a ‘‘sector’’, usually 64Kbytes, at a time), to prepare it
for programming. The programming routine loops programming a location until a status port bit indicates
success. Programming is described in the data sheet [FlashData], or you can obtain example software from
Algor ithmics.

It’s only possible to write one byte at a time to the flash PROM.

ROM data stored at ROM address 0 mod 4 is always sent to or received from the CPU on data bus lines 0-7.
By making this association independent of CPU endianness, the ROM can support ‘‘bi-endian’’ code for its
bootstrap4.

This is exactly what a little-endian CPU would want to see, but is not consistent with the normal conventions for
big-endian data.

When reading from the ‘‘bootstrap’’ memor y region (which reads flash memory or ROM socket depending on a
jumper setting), the ROM control logic always reads a whole word; the logic actually reads four bytes from the
ROM and assembles them for the CPU. A MIPS CPU doing a partial-word read then selects the byte(s) it
wants, and will be happy.

We can’t use the same technique for writing, or for reading flash memory status. So byte accesses to the flash
memor y programming windows are handled specially; the byte-within-word address fed to the flash ROM is
taken directly from the CPU bus.

The net effect is that a big-endian CPU sees its data swapped in the flash ROM when it’s reading or writing
bytes, and sees correct data when it’s reading any other memory size. In general, you can’t run code from the
flash ROMs own memory window on a big-endian CPU - byte reads would return the wrong value. Note that
you can run cached code (cache refills always fetch whole words) and you could write a special routine
avoiding all byte operations...

When programming the flash ROM on a big-endian CPU, we recommend that you build up aligned 32-bit
words of PROM data, and then copy it to flash in four 8-bit chunks, with bits 0-7 going to the low-addressed
byte and bits 24-31 to the high-addressed byte.

4 This wor ks because MIPS instructions are aligned 32-bit objects, always read 32
bits at a time. Think of instructions as an array of words, and then pack bits 0-7 of the
first word into byte 0 and so on.

26 5.2. 8-bit ROM P−4032 manual

5.3. Serial EEPROM
P−4032 is fitted with an 4Kbit 93x66-type serial PROM, controlled through some of the PIO controller’s
pins (see §9.9. (‘‘General-pur pose parallel I/O (PIO)’’) on page 36). Refer to the sample driver which
implements a simple ‘‘environment store’’. This is used by Algor ithmics’ power-up test software, and
boot monitor, to store essential infor mation like the ethernet address. If your software needs to store
parameters in non-volatile memory, this provides a good way to do it.

Here’s the relationship between PIO controller pins and EEPROM bus signals:

GPIO EEPROM
pin pin

EEPROM function

B4 DI Data to be written to EEPROM
B5 CS EEPROM chip select
B6 SK EEPROM data clock
B7 DO data from EEPROM

Table 5.4: EEPROM signals and GPIO pins

For use of the chip refer to a data sheet. We used [Atmel93C66].

P−4032 manual 5.3. Ser ial EEPROM 27

6. PCI interface
The PCI interface provides two standard slots for expansion cards, as well as hosting the on-board ethernet
and SCSI controllers. PCI runs at 33MHz (irrespective of the processor operating frequency).

The PCI interface is built using a V3 V962PBC device [V962PBC] which is designed to convert between an
Intel i960’s local bus and PCI. Custom interface logic converts all the CPU’s non-DRAM bus cycles into a for m
which is compatible with the V962PBC’s ‘‘i960’’ signalling and its half-CPU-rate interface clock. The DRAM is
effectively dual-ported to the local bus, and thus accessible from PCI bus masters.

There are two PC-style PCI edge connector sockets.

6.1. PCI accesses
The CPU can access PCI devices through the ‘‘aper ture’’ programmed into the PCI controller. This provides
some simple high-address-substitution memory mapping. The CPU can read and write any PCI space in
single cycles, but the CPU-to-PCI logic does not support bursts, so you can’t access PCI through cached
space.

PCI masters can access the local memory, again through the apertures programmed into the PCI controller.
PCI master burst cycles will result in burst accesses, up to 8 words long, in the local DRAM.

6.2. PCI wiring

6.2.1. PCI configuration space, IDSELs and interrupt assignments
In normal use, PCI devices respond to accesses relative to base addresses set up by initialisation software.
There must be some way of programming devices before they are set up, so PCI defines a ‘‘configuration
space5’’ where devices are addressed by means of per-device IDSEL signals provided by the motherboard
hard-wired decoding. In P−4032 PCI IDSELs are obtained from individual PCI AD lines, as shown in Table 6.1
below.

Interr upts
INTA INTB INTC INTD

Device AD line

Ether net ctr lr 16 PCIIRQ1 - - -
PCI slot 1 17 PCIIRQ2 PCIIRQ3 PCIIRQ0 PCIIRQ1
PCI slot 2 18 PCIIRQ3 PCIIRQ0 PCIIRQ1 PCIIRQ2
SCSI ctrlr 19 PCIIRQ0 - - -
Custom extended connector 21 PCIIRQ0 PCIIRQ1 PCIIRQ2 PCIIRQ3

Table 6.1: IDSEL for PCI devices/slots

In all cases the IDSEL line is connected to the corresponding AD line through a resistor. The value on the AD
bus is mostly ‘‘don’t care’’ dur ing configuration cycles, so to direct a configuration cycle at the ethernet
controller you’d set the PCI address to something like 0x0001.0000 - which would set AD16 to a ‘‘1’’ and
AD17-22 to ‘‘0’’.

PCI devices typically connect to one interrupt line, and the signal used is by convention related to the IDSEL
number.

5 The original PCI configuration mechanism (based on what are now called ‘‘Type 0
configuration cycles’’) proved inadequate to handle large systems using multiple buses
connected by bridge chips. PCI 2.1 includes an additional ‘‘Type 1 configuration cycle’’
which wor ks across bridges. P−4032 does not ever provide nice support for Type 1
cycles, and boards fitted with ‘‘B.1’’ revision PCI controllers don’t do Type 1 at all. If you
need Type 1 cycles, contact Algorithmics.

28 6.2. PCI wiring P−4032 manual

P−4032 has four separate interrupt lines, as recommended by the PCI standard (interrupts are not part
of the for mal PCI specification, so this is just a recommendation). PCI add-in cards are offered a choice
of four interrupt signals; single-function cards also use only the ‘‘INTA’’ position, but multi-function cards
can use any interr upt signal.

To generate an IDSEL for PCI slot 1, you need to generate a host address which is:

a) within the ‘‘PCI configuration space’’ window as shown in Table 3.1 above; AND

b) translates to a PCI address where bit 17 is a ‘‘1’’, and bits 16 and 18-22 are ‘‘0’’.

You will need to program the PCI configuration space window base address register within the PCI
converter device; see [V962PBC] for details6.

6.2.2. PCI arbitration
Arbitration should be invisible to the programmer, and usually is. But see Table 6.2 for which signal is
attached to which device/slot.

Arbitration signal Device

PCIGNT0˜ Ether net

PCIGNT1˜ SCSI

PCIGNT2˜ PCI Slot 1

PCIGNT3˜ PCI Slot 2

PCIGNT4˜ Extended customer slot (P7)

Table 6.2: PCI arbitration signals for devices

6.3. PCI interface registers
Extensively documented in [V962PBC]. One day we may summar ise this here; meanwhile Algorithmics
will supply customers with C code examples on request.

6.4. PCI star tup
From system reset the PCI bus reset is asserted, and is held until it is explicitly cleared by writing a
V962PBC register. V962PBC has no PCI-accessible ‘‘configuration space’’, but can be configured by
the CPU in its own local-space window. You need to fully configure the chip before releasing the PCI
bus reset signal.

Note that the PCI bus reset is used for the PCI slots, but is not wired to the onboard ethernet and SCSI
controllers; they are held in reset by dedicated signals from the board configuration register (see §9.1).

6.5. PCI performance notes
PCI is capable of deliver ing very high throughput. It’s also capable of perfor ming miserably. What do
you need to get good perfor mance on P−4032?

There are two dimensions of perfor mance.

• Latency : the delay exper ienced when making a single access over the bus, typically character ised
as the time taken to read one location.

• Bandwidth : the rate at which data is transferred across the bus between a data source and sink.

6 If you have the ‘‘SDE−MIPS’’ toolkit from Algorithmics, you should find you have
sample code to do this as part of board initialisation.

P−4032 manual 6.5. PCI perfor mance notes 29

Most high-bandwidth PCI peripherals are ‘‘bus masters’’ - they initiate data transfer cycles on PCI and read
or write P−4032’s local memory.

By the standards of onboard buses, PCI is built for fair ly high bandwidth (133Mbytes/s) but latency can also be
quite high (a few µs is quite normal). Getting good bandwidth in the face of transfer delays is quite an art.
Unfor tunately, the data buffers in P−4032’s PCI chip are inadequate in size and poorly designed; so
20-30Mbyte/s is pretty good in this environment.

But much worse than that is possible. The bridge chip and local i960-like bus protocols will impose a
significant delay on retur ning read data to a remote initiator. If this delay exceeds 16 PCI clocks for the first
word, or 8 PCI clocks between words in a burst, then PCI rules require the current transfer to be stopped
(‘‘disconnected’’). When the delays are wor king against you, you can end up transferr ing data across the bus
one word at a time; and you’ll be lucky to see 2Mbyte/s like that.

Here’s some simple recommendations:

• If you can, program your PCI bus master to attempt bursts of 16 or 32 bytes, and try to set up your buffers
to get those ‘‘naturally’’ aligned to 16- or 32-byte memory boundar ies.

• Pushing data (where the initiator is writing memory) is much faster than pulling (initiator reading). If you
only had the choice...

• To speed transfers from memory to PCI device, enable ‘‘prefetch’’ in the PCI bridge chip’s local memory
aper ture. Unfor tunately, the bridge chip has had some bugs which make this difficult; consult the online
bug list.

There’s also a PCI bridge control bit called something like ‘‘RD_POST_INH’’. In PCI terminology a ‘‘read
post’’ is a read cycle which is deliberately and promptly terminated with read retry by a target which has
reason to believe that it can’t get the data back within 16 clocks. P−4032’s PCI bridge will do this for every
exter nal read from local memory unless you set the RD_POST_INH bit to ‘‘1’’.

• When P−4032 runs code out of its boot ROM, each cache line refill turns into 32 separate byte reads, and
occupies the local bus for over 4µs. This can cause big delay problems for PCI devices trying to access
local memory. Run your code out of DRAM - the boot ROM really is just for booting.

7. Ethernet interface (DEC 21041)
See the manufacturer’s data sheet [DEC21041] and user guide, or the software driver examples provided by
Algor ithmics, for the use of this part.

In P−4032:

• Ether net clock : is defined by a dedicated 20MHz crystal.

• Ether net controller reset : is a programmable signal dedicated to the DEC controller, from the board
configuration register, descr ibed in §9.1.

• Interface signals : the chip is protected by a transfor mer.

• PCI connections : the DEC 21041’s IDSEL signal is derived from PCI address line AD16, and it’s interr upt
output is wired to PCIIRQ1˜, as shown in Table 6.1.

• Tr ansceiver power : +12V is provided on the interface, protected by a 0.75A fuse.

• Shield ground : nor mally connected to board ground, the shield signals can be isolated by removing jumper
J1.

• EEPROM interface : (provided by the chip) is not used in this design.

30 7. Ether net interface (DEC 21041) P−4032 manual

8. SCSI interface (Symbios 53C810)
Once again, this is too complicated to describe. You can read the manufacturer’s documentation
[Symbios53C810] to find out more, or use the sample drivers.

SCSI signal timing relies on the SCLK input to the 53C810 chip, which on P−4032 runs at the CPU input
clock frequency (usually 67MHz, but may be anywhere down to 50MHz).

The board has active SCSI termination, which can be disabled (by removing jumper J5) if P−4032 is not
attached at the end of the SCSI cable.

A +5V power source for remote termination is provided by default, but can be disconnected by removing
jumper J6; but it’s diode protected, so it’s probably always safe to leave the jumper in. The terminator
power supply is protected by a self-resetting fuse; if you should short it out disconnect the SCSI cables
and wait a while before trying again.

The SCSI chip reset input is a dedicated signal from the board configuration register, descr ibed in §9.1.

P−4032 manual 8. SCSI interface (Symbios 53C810) 31

9. Onboard I/O
You will not find ver y much infor mation here about programming the onboard I/O devices. But the good news
is:

• You can obtain C include files describing their registers, and simple polled-mode drivers, free from
Algor ithmics.

• Better still, the same basic drivers are available as part of Algor ithmics’ SDE−MIPS cross-compiler
package. You can build simple example programs for P−4032 (either to download under PMON, or to run
on the raw hardware) straight out of the box.

SDE−MIPS is available at a special price to P−4032 purchasers. See ‘‘SDE−MIPS for P−4032’’ on page
64.

• Since most of the minor devices are compatible with PC clones, freely redistributable drivers are available
as part of var ious operating systems which run on PC hardware; look at Linux, NetBSD and FreeBSD.

• We’ve included references to the device manufacturer’s data sheets in Appendix A (‘‘References and
fur ther reading’’) on page 62.

One significant difference from the PC standard is the way interr upts are handled; see §10 below.

9.1. Board configuration register
The board configuration register consists of an array of single-bit registers described in Table 9.1; on a write
only bit zero of the data supplied is significant. All bits are cleared to zero by system reset.

Offset Name set 1 to

0x00 PCICRst Release PCI controller from reset

0x04 PrAutoBsy Enable centronics ‘‘auto-busy’’ logic, see
§9.6

0x08 LedOn Unblank LED alphanumer ic display

0x0c SCSIRst Release SCSI controller from reset

0x10 FlpTC Asser t TC to diskette controller; used to
mar k the last DMA acknowledge cycle of
a block

0x14 EthRst Release ether net controller from reset

0x18 LE Set bus interface for big-endian

Table 9.1: Board configuration register fields

Here’s what the bits do:

• PCICRst : when 0 (as it is from power-up) it resets V962PBC and hence the whole PCI subsystem.
V962PBC (designed to operate in a specific i960 environment) appears to be unhappy about the power-on
reset sequence. To be safe, the firmware deliberately cycles reset to the controller during system startup.

• PrAutoBsy : used when operating the centronics port in unidirectional ‘‘per ipheral’’ mode; but you should
read §9.6. (‘‘Centronics’’) on page 34 for details.

• LedOn : set 0 to make the display dar k, 1 to enable.

• SCSIRst, EthRst : active-low resets for the SCSI and ethernet subsystems. Write a 1 to permit these
systems to operate normally.

• FlpTC : signal to simulate the ‘‘ter minal count’’ output of a PC-compatible DMA controller during diskette
data transfers. Should be asserted as soon as the penultimate byte of a block has been acknowledged.
See §9.7. (‘‘Diskette interface’’) on page 35 for details.

32 9.1. Board configuration register P−4032 manual

• LE : sets the CPU interface up to adapt to a little-endian CPU. The CPU’s own endianness is
controlled separately, either by an inter nal register or by hardware; the PCI byte swapper (which
should be set to swap when the CPU is in big-endian mode) is implemented by the PCI controller.

9.2. Option register
This is a link-defined read-only register. Most bits have no hardware effect. Non-readable options
which affect the hardware are setup in J24, described in §11.4. (‘‘Jumper options’’) on page 43 below.

The software register returns the values setup on the jumper J22. Note that it reads 0 for jumper in, and
1 for jumper out.

data bus bits

0

1

2

3

4

5

6

7

DRAM
config
links

BigEnd

User0

User1

User2

DRAM type 0

DRAM type 1

Flash SIMM

Slow

Figure 9.1 Option header/register (J22)

Where:

• User0-2 : no fixed function - available for OS/user functions. See software manuals and help screens
for existing uses.

• BigEnd : 1 (jumper out) for big-endian, 0 (jumper in) for little-endian. This is a software-only bit for
the Vr4300 CPU, which sets its endianness in software. ‘‘Bisexual’’ star tup code should read this bit
to decide whether to be big or little.

Note that even where the CPU is hardware-configured by this bit, the exter nal logic is controlled
separately by the board configuration register LE bit defined in Table 9.1 above , and by byte swap
registers inside the PCI controller.

The highest four bits (Reserved, Flash SIMM, and DRAM type) are software-only, but by convention are
copied by reset-time software to the corresponding bits of the DRAM configuration register (described in
§5.1). You should read that section for their definitions; but note that the ‘‘Reser ved’’ jumper should be
left out.

The ‘‘default’’ setting shown in Figure 9.1 is for a little-endian CPU with standard 60ns EDO DRAM.

9.3. Design revision register
The revision register (actually implemented by the same FPGA as the interrupt controller) returns an
8-bit number which helps get you appropriate support by tracking changes in P−4032’s design. Ever y
bug-fix or feature enhancement leads to a unique value in this register. How ever, the revision register
itself was only introduced in boards from serial number around 1100 onwards.

Our convention is:

• This location returns a zero value on all boards prior to the proper implementatino of the revision
register.

• Circuit changes are reflected in the top two bits of the register, with the value zero denoting the ‘‘D’’
ar twor k revision current when the register was first implemented.

P−4032 manual 9.3. Design revision register 33

• Logic updates within a particular circuit revision are reflected in the rest of the register.

One day soon the PMON monitor will report the revision register’s value on startup.

9.4. Combination RS232/centronics/diskette interface
The Winbond W83787F/W83877F provides two (16550-compatible) serial ports, a centronics parallel port, and
a diskette drive controller. It’s descr ibed in [Winbond]. There really are two different parts used, and some
programming is slightly different.

Because this is built to implement standard DOS serial and parallel ports, basic programming is compatible
with every PC in the universe. Because the chips it emulates are originally separate functions, they’re
descr ibed separately in the next three sections.

9.5. Dual UARTS
The serial ports are software-compatible with the 16550 (like the 16550, they have useful-sized data transmit
and receive FIFOs), and operate at speeds up to 115Kbaud. The serial port timing source is a 24MHz crystal,
which is divided by 13 to give a UART clock of 1.846154 MHz. This is only 0.16% higher then the usual PC
UART clock of 1.8432 MHz (well within RS232 tolerances).

Programming is PC-compatible; or refer to the sample drivers.

9.6. Centronics
The Winbond chip implements a subset of the ISA Extended Capabilities Por t (ECP) interface standard,
defined by Microsoft and HP [Centronics ECP]; with appropriate software it can support the full set of modes
descr ibed in the IEEE1284 standard.

The controller was conceived to implement the host-side interface, and not the printer side. But on P−4032 the
por t also provides a peripheral interface on a second connector (to support functions such as downloading
from Windows/95 to the board)7. Table 9.2 shows how the controller signals are re-deployed when in
per ipheral mode.

Controller Centronics
Signal Signal

nStrobe → nAck

nAuto → Busy

nInit → PError

nSelectIn → nSelect

nAck ← nStrobe

Busy ← nAuto

PError ← nInit

nSelect ← nSelectIn

PIO(B0) → nFault

Table 9.2: Centronics connections in ‘‘per ipheral’’ mode

In ‘‘per ipheral’’ mode the Winbond controller lines are wired to the connector to exchange the roles of
complementar y signals, as shown in Table 9.2.

These connections allow the Winbond’s FIFO-based, high-speed handshaking to continue to wor k in ECP
mode.

7 Alas, we’ve had a lot of trouble making this wor k well, though it is reliable with
Windows95 if you configure your PC to use the ‘‘ECP’’ driver. Read the online buglist, or
contact Algorithmics, if you have trouble.

34 9.6. Centronics P−4032 manual

Note that since there are normally 5 printer→host inputs, but only 4 host→pr inter outputs, we need one
extra output bit in peripheral mode; the general-pur pose PIO controller’s B0 output (described in §9.9
below) is used to drive Centronics nFault.

Moreover, in per ipheral mode the Centronics protocol (even the simplest ‘‘compatible’’ mode), require
that the Busy signal should be asserted immediately (you have less than 1µs to do this) after the host
has sent data by asser ting Strobe. This is too fast for software, so P−4032 provides some exter nal logic
which asserts Busy after every datum is received, and de-asserts Busy again when you program an Ack
response.

This logic is not required in the P1284 fancy bidirectional modes; but when you’re being an old-
fashioned printer you can enable this logic by by writing a bit in the board configuration register,
descr ibed in §9.1. (‘‘Board configuration register’’) on page 32. When the ‘‘auto-busy’’ logic is enabled,
the Busy output (we’re in peripheral mode so that’s AutoFd from the Winbond chip) is ignored. Auto-busy
is enabled from board reset.

No DMA controller is provided on the local bus, so the DMA features of the Centronics interface can’t be
used. You can do everything with the CPU - and the Winbond chip’s FIFO will reduce the interrupt load.

The Centronics interrupt does not remain active until serviced, but consists of a pulse. It is latched by
the interrupt controller, and can be cleared by writing the appropriate bit to the ‘‘Interr upt Clear’’ register
descr ibed in §10. (‘‘The Interrupt system’’) on page 38.

9.7. Diskette interface
This emulates the NEC µPD765 device used in PCs since time began; see [Winbond] for details8. The
floppy por t uses ‘‘DMA’’ ser vice; although there is no DMA controller available for this device, there’s
enough hardware support to simulate DMA cycles using a fast, simple, high-pr ior ity interr upt routine,
which responds to DMA requests by reading or writing diskette data. The interrupt routine has to
respond within about 16µs - this requires a ver y low-level routine, and you must avoid disabling
interr upts for significant periods. But looking on the bright side, the DMA crisis time is enough for the
CPU to run two thousand instructions!

Simulating DMA requires three things:

• Diskette ‘‘DMA requests’’, indicating that the chip is ready to accept or supply diskette data, are
implemented as the interrupt called DRQ2 in Table 10.2.

The service routine is simplified because you can set up the interrupt controller so that this is the
only interrupt cause on this CPU input.

• On early boards (serial no 190 and less): read from the diskette data port to obtain a byte of data.

• Acknowledge the DMA request with a read from the ‘‘DMA acknowledge’’ por t shown in the memory
map (Table 3.1). On later boards, this will also do the data transfer.

• Dur ing the last pseudo-DMA acknowledge cycle of a block, you need to stop the diskette controller
by asser ting its TC signal. This is under software control as part of the ‘‘board configuration register’’
descr ibed in §9.1.

8 There are significant differences in programming the diskette interface on the two
variant Winbond chips. Consult Algorithmics if you are changing the Winbond
programming on a P−4032 board whose serial number is 0190 or lower.

P−4032 manual 9.7. Diskette interface 35

9.8. Real Time Clock (RTC)
The real-time clock remembers the date and time with a resolution of 1 second, and uses a PC-compatible
Benchmarq BQ3285E device. It provides a programmable tick and alarm which can cause an interrupt. Note
that the SQW output is programmed at 32kHz by the firmware and must not be changed - it is used to generate
DRAM refresh timing.

It also provide a small amount (242 bytes) of read/write memory which is retained over pow er-down.

The RTC chip uses a long-lifetime 3.6V battery (BT1) to keep time when system power is off. The battery can
be replaced when it eventually runs down; most boards use a Var ta 3/V60H Ni-MH (3-pin footpr int) - a few
ear ly-production par ts used a 2-pin type.

The real time clock is connected on P−4032 so that it takes two cycles to make any register access. Write the
relevant register number to the ‘‘register select’’ address, and then read/write the data at the ‘‘data’’ address.

In normal use jumper J12 is set to short 1-2, to feed battery pow er to the RTC. But it can also be set 2-3,
which has the effect of resetting the RTC clock registers and non-volatile RAM; or left out entirely, which leaves
the battery open-circuit - which saves running the battery down while the board is in storage.

9.9. General-purpose parallel I/O (PIO)
This chip is provided because it is both a cost-effective way to fulfill some onboard requirements for extra I/O
bits, and it can also help customers who need to build custom processor-controlled interfaces consisting of a
fe w input and output lines; it can be a godsend when you need to wor k around a bug in a piece of exper imental
hardware, or when using hardware test equipment to trace software execution.

It provides two 8-bit bidirectional ports, with var ious latching options and the ability to generate an interrupt on
various input conditions. Outputs and inputs are brought to a pin header.

9.9.1. GPIO bits used for onboard functions

Port/Bit Signal Name In/Out See section Used for

B0 nFault Out 9.6 Dr ives this Centronics interface
signal when the interface is being
used in peripheral mode.

B4 DI Out
B5 CS Out
B6 SK Out
B7 DO In

5.3
Used to read/write the serial
E2PROM, as described in that
section.

Table 9.3: Parallel I/O bits and onboard functions

9.10. LED or LCD display
These are two separate devices, and in principle both could be fitted; in practice only one will be.

LED display
The LED display is a Siemens DLR2416 or equivalent - a four-character ASCII display. Each display position
is accessed as a separate writable 7-bit register (the most significant bit is don’t care) - curiously, the lowest-
addressed register is the rightmost character position.

Each position can display any of 128 characters. A familiar US ASCII character set is used for character
values of 0x20-0x7e (’ ’ − ’˜’). In addition 32 special European and graphic characters are available in
character positions 0x00-0x1f, as shown in Figure 9.2.

36 9.10. LED or LCD display P−4032 manual

0 1 2 3 4 5 6 7 8 9 A B C D E F
0-0xF

ì ↑ ← ↓ → ? À Φ φ Ò Ù n ç ê É é

0x10-0x1F
è Æ æ Å å Ä ä Ö ö Ü ü C F ß £ ¥

Figure 9.2 Alphanumer ic Display Extended Character Set
The sample driver conve ys longer messages by scrolling at a human-readable speed.

LCD display
The LCD display is a 16×2 back-lit LCD display suitable for panel mounting, based on the Hitachi
HD44780 or compatible controller.

It should be connected to the header P13 with a short ribbon cable. The connection and adjustments
are described in §13.12.

You can no doubt get manufacturer’s data sheets, but we found programming infor mation on the wor ld-
wide web [LCD-Ouwehand].

9.11. PC keyboard controller
Uses a standard pre-programmed microcontroller, usually from ‘‘Amer ican Megatrends’’. Refer to the
sample drivers for a software interface.

P−4032 manual 9.11. PC keyboard controller 37

10. The Interrupt system

CPU

8742
Keybd

IRQ1

IRQ3,4,6,7

Z80PIO

21041
Ethernet

BQ3285
RTC

Interrupt
control

PLD

Powerfail

combi
I/O

W83777

read/write I/O register

INTR0−4*

DEBUG switch

V3
V962PBC

PCIIRQ0−3*

53C810
SCSI

I/O bus

IRQ8*

IRQ5*

DRQ2
P

C
IIR

Q
0*

P
C

IIR
Q

1*

Figure 10.1 Interrupt system block diagram

The interrupt system is pictured in Figure 10.1. The interrupt control PLD takes in all the possible interrupt
signals and provides:

• Interr upt request registers (IRR) : software readable locations which return the current level of any device
interr upt.

• Interr upt mask registers (IMR) : provides an individual enable/disable for most of the interrupt inputs (but
not the high-prior ity ‘‘panic’’ inputs). A ‘‘1’’ enables, and ‘‘0’’ disables, a par ticular interr upt.

• Interr upt crossbar registers (IXR) : for most of the interrupts, a two-bit field determines which of the CPU
interr upt inputs Intr0-3* will be asserted when it is active and unmasked. Some interr upts (panics and the
diskette interface’s ‘‘pseudo-DMA’’) have fixed assignments to CPU inputs.

• Interr upt clear register (ICR) : most interrupt inputs are ‘‘level-tr iggered’’; they remain in the active state until
programmed otherwise by the device driver. But three of the interrupt inputs (the debug switch, the bus
error indication, and the interrupt from the Centronics controller) are signalled with pulses, and the
interr upts are latched in the interrupt controller. You need to write to the ICR register to un-latch them; a
‘‘1’’ written to the appropriate bit clears the interrupt, a ‘‘0’’ leaves it unchanged.

All the registers are 8 bit wide. The interrupt registers are summarised in Table 10.1; the interrupt signals are
summar ised in Table 10.2; and the register layouts are defined in Figure 10.2.

38 10. The Interrupt system P−4032 manual

Register
Read Write

Address

1ff9 0000 8-bit device IRR 8-bit device IMR
1ff9 0004 Panic IRR ICR
1ff9 0008 PCI IRR PCI IMR
1ff9 000c - local IXR 0
1ff9 0010 - local IXR 1
1ff9 0014 - PCI IXR

Table 10.1: Interrupt register addresses

What Signal From Device CPU input

R4x00 timer inside CPU Int5

Po werfail PWRGD PSU
Bus timeout BUSERR˜ bus logic (latched)
Debug DBGSW˜ switch (latched)

Int4

Diskette ‘‘DMA’’ DRQ2 W83787F Int3 or masked

SCSI/PCI slot PCIIRQ0 53C810
Ether net/PCI slot PCIIRQ1 DEC21041
PCI slots PCIIRQ2-3 PCI devices
PCI bridge V3IRQ˜ V962PBC
Ke yboard IRQ1 8742
Ser ial por ts com1/com2 IRQ4/3 W83787F
Diskette IRQ6 W83787F
Centronics port IRQ7 W83787F (latched)
User GPIO port IRQ5 Z0842004PS
RTC tick IRQ8 BQ3285E

configure to any of
Int0-3.
Int3 is usable only if the
diskette ‘‘DMA’’ interr upt
is disabled.

Table 10.2: Interrupt sources

Notes on Table 10.2, ‘‘Interrupt sources’’

The interrupts are as follows:

• R4x00 timer : all R4x00 CPUs (to date) have contained a simple, flexible, programmable timer
attached to the CPU Int5 interface signal. Some CPUs gave you the option of using Int5 for an
exter nal interr upt, but the Vr4300 does not even have the interface pin. So on P−4032 the timer is
always enabled.

• Po werfail : generated by the power-monitor ing circuit to give a few ms’ advance war ning of loss of
power.

• Bus timeout : occurs when you produce an address which doesn’t match anything local or a PCI
‘‘aper ture’’. The interr upt will usually happen after the offending load/store, sometimes a fair ly long
way after - this is mostly a diagnostic interrupt. There is no simple way of reconstr ucting the
offending address after a timeout.

This interrupt is latched inside the interrupt controller, and you need to write to the ICR register to
make it go away.

• Debug : happens when you push the button. There’s no hardware ‘‘de-bounce’’ logic, so if you
ser vice the interrupt ver y fast it may appear to happen again. Latched, cleared with the ICR register.

• Diskette DMA : can be used to drive a low-level interr upt routine to transfer diskette data between the
controller and memory, using a magic read/write data register. The interrupt is active dur ing

P−4032 manual 10. The Interrupt system 39

reads/wr ites, when the controller wants to transfer data. See §9.7 for details.

• PCI Ints : the signals PCIIRQ0-3 are connected to the onboard PCI devices (SCSI and ethernet) and to the
expansion slots as shown in Table 10.3 (the same infor mation is summarised in Table 6.1 above .) PCI
interr upts may be shared; but if they are your interrupt handler will have to use some device-specific way of
finding out which device is asserting a particular interrupt signal.

• PCI bridge : the PCI controller generates interrupts in var ious circumstances; see the manual [V962PBC]
for details.

• Ke yboard : from the PC-compatible keyboard controller.

• Ser ial por ts : from the dual serial port in the Combi chip. Note that IRQ4 comes from com1, and IRQ3 from
com2.

• Diskette : from the PC-compatible diskette controller in the Combi chip.

• Centronics port : from the centronics port. The Centronics interrupt signal is a pulse in some modes, so it
is latched inside the interrupt controller and cleared with the ICR register.

• User GPIO port : from the general-pur pose I/O controller. None of the onboard ‘‘por t B’’ functions uses
interr upts - the interrupt is available for events happening through the interface.

• RTC tick : delivered at a programmable rate by the real-time clock unit.

Interr upts
INTA INTB INTC INTD

Device

Ether net ctr lr PCIIRQ1 - - -
PCI slot 1 PCIIRQ2 PCIIRQ3 PCIIRQ0 PCIIRQ1
PCI slot 2 PCIIRQ3 PCIIRQ0 PCIIRQ1 PCIIRQ2
SCSI ctrlr PCIIRQ0 - - -

Table 10.3: Interrupt assignments for PCI devices/slots

7 6 5 4 3 2 1 0

8-bit device IRR RTC Centr- COM COM Key- Disk- PCI read
8-bit device IMR tick onics 2 1 board ette ctr lr wr ite

GPIO

Bus Pow er- Debug
Error fail Switch

Error IRR 0 0 0 0 0 read

Centr- Bus Debug
onics Error Switch

ICR × × × × × wr ite

E’net/ SCSI/ 0PCI IRR read

PCI IMR DskDMA wr itePCIIRQ1 PCIIRQ0
PCIIRQ3 PCIIRQ2 0 0 0

8-bit device IXR0 COM1 Keyboard Diskette PCI ctr lr wr ite

8-bit device IXR1 RTC GPIO Centronics COM2 wr ite

PCI IXR PCIIRQ3 PCIIRQ2 PCIIRQ1 PCIIRQ0 wr ite

Figure 10.2 Interrupt register bit fields

40 10. The Interrupt system P−4032 manual

Notes on the interrupt registers
All writable interrupt registers are undefined from power up or reset.

• IRR : a ‘‘1’’ indicates that the interrupt request is active.

• IMR : a ‘‘1’’ enables the request to cause an interrupt.

• IXR : each two-bit field encodes the number of the CPU interrupt Intr0-3 which will be asserted when
the interrupt is active and enabled.

It’s common practice to have a number of different devices set to interrupt on any par ticular CPU
input. However, when the diskette DMA interrupt is enabled, it takes over CPU input Intr3 and no
other interrupt will occur there.

P−4032 manual 10. The Interrupt system 41

11. P−4032 layout and user-selectable options
In P−4032, many of the functions which might usually be found on option jumpers are software selectable and
programmed through two registers described respectively in §9.1. (‘‘Board configuration register’’) on page 32
and ‘‘DRAM Configuration register’’ on page 23.

But some options are still setup by jumpers, and they’re described here.

The board layout is shown in Figure 11.1.

kbd

GPIO port

 −
 S

C
S

I c
on

ne
ct

or

remote
reset conn

enet
conn
gnd

reset

debug

 − Power

SIMM0

SIMM1

SW1

co
m

1
co

m
2

1

CPU
daughterboard

+

B
at

te
ry

L1

LCD disp conn

Ext. Clock

= pin 1

 −
 P

C
I s

lo
t 2

 −
 P

C
I s

lo
t 1

P
1−

 e
’n

et

P
2−

 h
os

t c
en

t. P
3

P6

P
5

P
9

P
10

 −
 p

er
ip

he
ra

l c
en

tr
on

ic
s

P
11

−
 d

is
ke

tte

P12

P13

J3

power
fan

P16

P4
P

7

P
8

 − debug connectorP14

J21

U
18

 −
 E

P
R

O
M

J29
fpga program
enable

J28
program fpga
through centr.

J5
SCSI
term on

J31
module
present

J18
J17
J16
J15
J14

J9/10
Sktd ROM
type

J4

J22

P15 −
FPGA pgm (Xilinx)

J19 J20

J23

CPU master
clock rate

J13

J30

J25

LED
display

J12

3.3V regulator
VR1

J7 − backlight

R57
contrast

VR2
2.5V regulator

R97
"2.5V"
adjust

J26/27

 J6
scsi term
power

J24

Hardware
options

J8 − boot
select

black

blue

orange

purple

red

yellow

green

white

Xilinx cable
colours:

Figure 11.1 Board layout and jumper defaults

42 11. P−4032 layout and user-selectable options P−4032 manual

11.1. Notes on Figure 11.1

• Pin1 on connectors : is shown with a diamond.

• 2/3-way jumpers : the default setup is shown.

11.2. CPU options - newer boards
If your board is marked ‘‘P−4032Q’’ and carries a serial number of 1000 and up, it is designed to accept
any of a var iety of CPU types on a personality module.

There is a position for one CPU type soldered directly to the motherboard - currently the RM5230.
However, P−4032 can carry the CPU on a small daughterboard. Several daughterboards are available:

• P4300MOD : for the NEC Vr4300 CPU.

• P4640MOD : IDT’s RV4640 CPU.

• P4100MOD : NEC’s Vr4100 CPU (if still available).

• P5230MOD : QED’s RM5230 on a daughterboard.

It is possible to reconfigure a P−4032 to use a different CPU type. This will usually involve changing the
system logic ROM, and a number of jumpers.

11.3. CPU options - older boards
Your board may be fitted with either a Vr4300 or R4640 CPU. CPUs are soldered down when the board
is built, and the two types use slightly different system logic.

11.4. Jumper options

• J22 : an 8-way jumper array readable by software (jumper in = ‘‘0’’, out = ‘‘1’’). It’s fully described in
§9.2. (‘‘Option register’’) on page 33. Some functions are of significance to the hardware; all are
readable by software.

• J24 : a 3-link jumper, whose link layout is shown in Figure 11.2.

CDIV0

CDIV1

CPU0

CPU1

Figure 11.2 Hardware option jumper (J24) positions

The fields are used as follows:

Field name Link position Effect

out out CPU runs at input clock × 3
in out CPU runs at input clock × 2 (default)
out in CPU runs at input clock × 1.5
in in CPU runs at input clock × 1

CDIV0,1

out out reser ved
in out R4640 CPU
out in Vr4300 CPU
in in RM5230 CPU

CPU0,1

The ‘‘CPU type’’ field will not always be meaningful; in particular the NEC Vr4300 uses a different
version of system logic and the CPU type is then irrelevant.

P−4032 manual 11.4. Jumper options 43

• J26, J27 : deter mine whether the CPU (whether onboard or on-module) runs entirely from 3.3V (jumpers
set 1-2), or gets a lower core voltage supply (jumpers set 2-3). Caution : setting dual-voltage with a single-
voltage CPU or module is likely to result in damage to the CPU, the board, or both; setting single-voltage
with a dual-voltage CPU may damage the CPU. Don’t change these lightly.

• J8 : deter mines whether the system boots from the socketed ROM (jumper in) or the onboard flash ROM
(jumper out).

• J9, J10 : allow the board to use either a JEDEC 32-pin uV-erasable ROM (2-3, default) or a
29F040-compatible 32-pin DIL flash device (both 1-2).

• J29 : Make it possible to reload the board’s logic patterns into the reprogrammable logic devices. Required
only when upgrading the logic, which you should not do without guidance from Algorithmics.

• J28 : Inser t to select the Centronics ‘‘per ipheral’’ connector as the logic reprogramming source. To make
this wor k you’ll need to pull the jumpers J4.

• J4 : remove only when you want to update the board’s logic using the Centronics cable. Removing these
jumpers isolates the Centronics lines used for logic reprogramming from the onboard Centronics controller.

• J3 : jumper attached to the keyboard controller, conventionally read to establish whether a PC had a
monochrome or color display. May disappear from future versions. Meanwhile, you can use it as an
additional software-readable configuration bit.

• J12 : a 3-pin link whose center pin feeds battery pow er to the real-time clock chip. Three options for the
jumper :

2-3 (normal operation) feed battery pow er to the RTC chip.

1-2 connects the RTC battery input to ground, which has the effect of resetting it’s registers and internal
SRAM.

out isolates the battery, saving battery life when the board is not being used for a long period of time.

• J6 : remove this jumper to isolate the SCSI bus ‘‘ter minator power’’ signal from the onboard supply. Used
when another SCSI device is feeding terminator power; conventionally, the host provides the power and
per ipherals use it, so you will only need to do this when attaching another ‘‘host’’ to your SCSI bus.

CPU adaptation options
These are only available on later boards, distinguished by ser ial numbers from 1000 upwards. Users would
not usually alter these settings, but since this board is designed for grown-ups here’s what they do:

• R97 : dual-voltage CPUs are increasingly common. Usually they require 2.5V supply for the CPU core
functions (the I/O pins use 3.3V power). But some CPUs may use voltage levels higher or lower than the
2.5V nominal value, and you can adjust it here.

The safest approach is to first move J30 to (1-2), which disconnects most of the CPU’s I/Os. Then take the
jumpers J26 and J27 out, isolating the core power. Monitor the voltage level on pin 1 of J26, and adjust to
the desired value. With board main power off put J26 and J27 back in the (2-3) position, and replace J30.

• J30 : allows you to power-down the ‘‘QuickSwitch’’ components which surround the CPU, isolating CPU
inputs while the voltage is adjusted. J30(2-3) is normal, while connecting 1-2 isolates the CPU.

• J17 : move this jumper from its default position (2-3) to (1-2) to supply the CPU master clock from an
exter nal frequency generator via the BNC input connector J21. The input is terminated with a 50Ω resistor.

44 11.4. Jumper options P−4032 manual

• J18, J25, J23 : adapt the CPU clocking scheme to cope with the Vr4100 CPU, which has special
requirements. How ever, Vr4100 support is questionable in later boards; ask Algorithmics. If they
work, you should set these jumpers as follows:

Jumper Vr4100 setting All other CPUs

J18 2-3 1-2
J25 1-2 2-3
J23 out

Vr4100 expects to generate the system interface clock, whereas all other CPUs are fed with an input
clock which itself defines CPU interface transitions (there are multiple CPU interface clocks
generated by a low-skew or PLL buffer). J18 feeds the raw oscillator output into the Vr4100 CPU,
and J25 manages the Vr4100 reset sequence.

The 2-pin jumper J23 selects between two possible clock buffer setups - ‘‘in’’ for the same low-skew
buffer used in earlier P−4032 units, and ‘‘out’’ to use a smart PLL clock buffer. With Vr4100 the PLL
buffer is mandatory; with other CPUs it’s optional.

Lastly, Vr4100 CPUs run at 40MHz or less, so it makes sense to run the intermediate bus at the
same speed as the CPU, not half speed as normal. You can do this by inser ting jumper J19.

PCI clock source
The PCI clock is driven by the frequency synthesiser IC, and is fixed at 33MHz.

CPU system interface clock frequency

Jumper setting CPU Clock
J16 J15 J14 rate

2-3 2-3 2-3 50 MHz
2-3 2-3 1-2 60 MHz
2-3 1-2 2-3 66.67 MHz
1-2 2-3 2-3 55 MHz
1-2 2-3 1-2 75 MHz
1-2 1-2 2-3 83 MHz
1-2 1-2 1-2 no clock

Table 11.1: CPU clock rate setup

Probably fair ly self-explanator y. Most P−4032 CPUs will run at 67MHz.

Later boards have a miniature BNC connector which can be used to inject a different or var iable clock
frequency; you’ll need to alter the jumper J17 too.

P−4032 manual 11.4. Jumper options 45

12. CPU endianness
MIPS CPUs are conceived as being statically configured as either big-endian or little-endian. This has two
effects:

• Software : it changes the way bytes are packed into multi-byte quantities (such as a 32-bit C unsigned int,
or a 64-bit machine register). In the big-endian CPU low-address bytes are found in the most significant
(high-numbered) bits; in a little-endian CPU the low-addressed bytes are found in the least significant (low-
numbered) bits.

This has no effect on the hardware, but big effects on software.

• Hardware : it changes the way data is transferred on the CPU system interface data lines. For a big-endian
CPU, a byte whose address is 0 mod 4 is transferred on the SysAD24-31 byte lane; for a little-endian CPU, a
byte whose address is 0 mod 4 is transferred on SysAD0-7.

Interface hardware has to know about this change, in order that it can identify the active byte lane(s) during
par tial-word transfers.

However, the MIPS switch-over is accomplished in such a way that transfers of aligned 32-bit words are
unaffected by endianness. Since all instr uctions are aligned 32-bit words, that makes it possible to write
chunks of code whose operation is unaffected by the CPU’s endianness - you just have to avoid using any
par tial-word data. MIPS code which uses partial-word data is inherently endianness-specific; if you want to
build a ‘‘bisexual’’ boot ROM, it will probably contain a hand-crafted bisexual start-up and two copies of
ev erything else.

The Vr4300 CPU is the first ever MIPS device whose endianness is configured by a software-wr itable internal
register bit. It starts up big-endian.

In P−4032 a configuration register bit (see §9.1 above) is used to adapt the CPU interface logic to either a big-
endian or little-endian CPU. It also is reset to big-endian from power-up or system reset.

Dur ing per iods when the two bits are set inconsistently (as is bound to happen transiently when putting the
system into little-endian mode) partial-word transfers don’t wor k at all - reading or writing garbage.

When you wire up a system with changeable endianness, you have two choices about how a memor y or
per ipheral is attached:

• Bit-order preserving : in this case full-bus-width transfers (ie of 32-bit words) continue to wor k, and aligned
32-bit data is transferred in an endianness-independent way. But byte strings get mangled (the bytes in
each word get swapped around); and misaligned data gets really messed up.

• Byte-order preserving : that makes strings wor k, but now all multi-byte quantities will need to be byte
sw apped between the CPU and the target.

In P−4032:

• The ROM, DRAM and local devices are wired to preserve bit-order. So if you want to write endianness-
independent code which accesses local devices, always read/wr ite words and pick the bits you need.

• All local 8-bit devices are always read/wr itten over the low bits (D0-7) of the CPU data bus.

• The PCI bus should be configured to preserve byte-order (so ethernet and other DMA data ends up with
the correct byte order). The V962PBC PCI controller has an inbuilt byte-swapper which should be enabled
when the CPU is configured as big-endian.

If you want to write endianness-independent code which accesses PCI devices, always think of it as
read/wr iting a group of bytes.

PCI is a little-endian bus, so if the CPU is being big-endian you’ll need to byte swap multi-byte integer
values (eg when programming a base address or count in the ethernet controller).

46 12. CPU endianness P−4032 manual

On P−4032, the 8-bit boot ROM and flash ROMs are designed to be read as 32-bit words - every time
you read the ROM special ROM interface logic reads four bytes and assembles a 32-bit quantity for the
CPU. The ROM byte assembly logic is not affected by the CPU endianness (otherwise you couldn’t
wr ite the little bits of bisexual code which are essential to setting up a little-endian CPU). Instead, the
contents of ROM address zero are always passed to the CPU on SysAD0-7. You’ll need to remember
that when setting up your PROM programmer, or downloading code into the flash ROM.

P−4032 manual 12. CPU endianness 47

13. Connectors and cables
Most connector pin-outs are defined here. Where they’re not, and you really need to know, ask Algorithmics
for a set of schematics.

Although many connections are made with non-standard dual-in line headers, Algor ithmics supply a set of
shor t cables with each board which convert to recognised standard connectors.

13.1. Cables supplied
Ever y board comes with a pack of shor t transition cables, designed to interface to ‘‘standard’’ cables and
devices. On flat cables, you can recognise pin 1 by the red line on the outer strand of the cable.

• Ether net : connects from onboard header to standard 15-way D-type transceiver connection.

• SCSI : a 50-way ribbon cable to connect one or two exter nal SCSI devices to P−4032.

• Floppy : the 34-wire flat cable is for a standard 3.5’’ diskette.

• Centronics host : converts from the onboard header to a 25-way D-type female connector.

• 2×RS232 : convert from the onboard header to a pair of D-type connectors, 9-pin male and 25-way male,
as used on PCs.

The serial and parallel cables go through back panels.

Not included in the standard pack, but an optional extra:

• Centronics peripheral : convert from the onboard ‘‘reverse host’’ connector to the Centronics connector
used on most PC-wor ld pr inters.

48 13.1. Cables supplied P−4032 manual

13.2. CPU daughterboard connector
The CPU daughterboard connector is made up of 2mm dual socket str ip/headers, in four banks each of
2×16 pins, as shown in Figure 13.1. The signals on the connector are shown in Table 13.1. You
probably won’t have to know this ver y often.

1

2

3

4

31

32

3334

6364

65

66

95

96

97 98

127 128

CPU

Figure 13.1 CPU daughterboard layout

P−4032 manual 13.2. CPU daughterboard connector 49

Pin Signal Pin Signal Pin Signal Pin Signal

1 CDIV1 33 ModeIn 65 NMI* 97 NC

2 CDIV0 34 RdRdy* 66 EReq* 98 NC

3 VDD 35 EOK*/WrRdy* 67 Reset* 99 NC

4 GND 36 EValid* 68 ColdReset* 100 NC

5 SysAD4 37 PValid* 69 VccOK 101 VDD

6 SysAD5 38 PMaster*/Release* 70 BigEndian 102 GND

7 VCORE 39 VCCQ 71 VDD 103 SysAD28

8 GND 40 VSSQ 72 GND 104 SysAD29

9 SysAD6 41 ClkIN 73 SysAD16 105 VCORE

10 SysAD7 42 VCORE 74 VCORE 106 GND

11 SysAD8 43 GND 75 GND 107 SysAD30

12 SysAD9 44 SysCmd0 76 SysAD17 108 SysAD31

13 VDD 45 SysCmd1 77 SysAD18 109 SysAD34

14 GND 46 SysCmd2 78 SysAD19 110 VCORE

15 SysAD10 47 SysCmd3 79 VCORE 111 GND

16 SysAD11 48 VDD 80 GND 112 SysAD35

17 VCORE 49 GND 81 SysAD20 113 VDD

18 GND 50 SysCmd4 82 SysAD21 114 GND

19 SysAD12 51 SysCmd5 83 VDD 115 SysAD32

20 SysAD13 52 GND 84 GND 116 SysAD33

21 SysAD14 53 SysCmd6 85 SysAD22 117 SysAD0

22 VCORE 54 SysCmd7 86 SysAD23 118 SysAD1

23 GND 55 SysCmd8 87 SysAD24 119 VCORE

24 SysAD15 56 SysCmdP 88 SysAD25 120 GND

25 VDD 57 VCORE 89 VCORE 121 SysAD2

26 GND 58 GND 90 GND 122 SysAD3

27 ModeClk 59 Int0* 91 SysAD26 123 VDD

28 QJTDO 60 Int1* 92 SysAD27 124 GND

29 QJTDI 61 Int2* 93 VDD 125 PReq*

30 QJTCK 62 Int3* 94 GND 126 TClk

31 QJTMS 63 Int4* 95 ModPres* 127 NC

32 VDD 64 Int5* 96 NC 128 MClkOut

Table 13.1: Pinout of CPU daughterboard (MIPS names)

13.3. SIMM memor y slots (SIMM0/SIMM1)
Take standard SIMM devices with up to 12 multiplexed addresses and 4 Ras* signals - which would be
128Mbytes per SIMM. They don’t come that big yet.

Read §5.1. (‘‘DRAM configuration’’) on page 22 to find out how to get P−4032 to wor k with different types of
module.

50 13.3. SIMM memory slots (SIMM0/SIMM1) P−4032 manual

13.4. PCI edg e connectors (P8/P7)
These are two standard PCI Rev 2 high density edge connector sockets: 5V, 32-bit, 33MHz. The pinout
is not documented here - see [PCI Standard] for signal description, and section 6.2.1 of this manual for
P−4032’s PCI setup.

13.5. Ethernet (P1)
A 7×2 0.1’’ pin grid, laid out to allow a simple ribbon cable to an IDC 15-way D-type socket,
implementing the ethernet-standard transceiver cable connector - a conversion cable is included in the
standard set. The onboard connection pinout is in Table 13.2.

OPTGND 1 2 COLPRES˜
COLPRES 3 4 TRANSMIT˜

TRANSMIT 5 6 OPTGND
OPTGND 7 8 RECEIVE˜
RECEIVE 9 10 E12V

GND 11 12 OPTGND
OPTGND 13 14 -

Table 13.2: Ethernet connector (P1) pinout

where:

• OPTGND signals should be grounded at only one end of the transceiver interface (normally here); but
if so required they can be disconnected from board ground by removing jumper J1 (called ‘‘enet conn
gnd’’ on the board layout diagram Figure 11.1.

• The E12V signal is protected by a self-resetting fuse.

• The active ether net interface signals are transfor mer-coupled to the controller to reduce the risk of
damage to the board through misconnection or extreme electrical noise.

13.6. SCSI (P9)
A 25×2 0.1’’ pin grid, laid out to allow a ribbon cable to common peripherals; we include an unshielded
cable which will connect two disk/tape units within an enclosure or on a bench.

This should plug right in to your SCSI device, but the pinout is shown in Table 13.3.

P−4032 manual 13.6. SCSI (P9) 51

GND 1 2 DB0˜

GND 3 4 DB1˜

GND 5 6 DB2˜

GND 7 8 DB3˜

GND 9 10 DB4˜

GND 11 12 DB5˜

GND 13 14 DB6˜

GND 15 16 DB7˜

GND 17 18 PAR˜

GND 19 20 GND

GND 21 22 GND

GND 23 24 GND

- 25 26 TermPo wer

GND 27 28 GND

GND 29 30 GND

GND 31 32 ATN˜

GND 33 34 GND

GND 35 36 BSY˜

GND 37 38 ACK˜

GND 39 40 RST˜

GND 41 42 MSG˜

GND 43 44 SEL˜

GND 45 46 C_D˜

GND 47 48 REQ˜

GND 49 50 I_O˜

Table 13.3: SCSI connector (P9) pinout

Note that the TermPo wer signal (currently called STPWRC on the schematics) is a 5V supply protected by a fuse
and via the jumper J6. There is normally one ‘‘host’’ on a SCSI bus which supplies terminator power, but the
jumper could be removed so long as some other SCSI bus device is driving the power line - which is likely to
be the case when P−4032 is acting as a SCSI peripheral.

P−4032 is fitted with an active SCSI terminator. The terminator should be disabled if P−4032 is connected to a
mid-point of your SCSI cable, by removing jumper J5.

13.7. RS232 (P3/P5)
These are 5×2 0.1’’ pin headers, and a ribbon cable connector to a 9-pin male D-type implements the PC 9-pin
ser ial connector (the nearest thing to a standard which RS232 has ever seen.) The pinout of each IDC
connector is shown in Table 13.4.

DCD 1 2 DSR
RXD 3 4 RTS
TXD 5 6 CTS
DTR 7 8 RI
GND 9 10 -

Table 13.4: Serial connector (P3/P5) pinout

52 13.7. RS232 (P3/P5) P−4032 manual

13.8. Centronics (P2/P10)
There are two connectors provided, with almost identical signal sets.

nStrobe 1 2 nAuto
D0 3 4 nERROR
D1 5 6 nInit
D2 7 8 nSelectIn
D3 9 10 GND
D4 11 12 GND
D5 13 14 GND
D6 15 16 GND
D7 17 18 GND

nAck 19 20 GND
Busy 21 22 GND

PAPEMT 23 24 GND
nSelect 25 26 -

Table 13.5: Centronics host connector (P2) pinout

nAck/nStrobe 1 2 GND
D0 3 4 GND
D1 5 6 GND
D2 7 8 GND
D3 9 10 GND
D4 11 12 GND
D5 13 14 GND
D6 15 16 GND
D7 17 18 GND

nStrobe/nAck 19 20 GND
nAuto/Busy 21 22 GND

nInit/PError 23 24 GND
nSelectIn/nSelect 25 26 PAPEMT/nInit

Busy/nAuto 27 28 PIO(B0)/nFault

- 29 30 -
- 31 32 -
- 33 34 -
- 35 36 nSelect/nSelectIn

Table 13.6: Centronics peripheral connector (P10) pinout

• Host connector (P2) : pinned out for a ribbon cable to the 25-way male D-type traditionally for the
Centronics connector on PCs; shown in Table 13.5.

• Peripheral connector (P10) : a 20×2 header, pinned out for a ribbon cable to the big 38-way shrouded
male connector traditionally used on parallel printers. It’s shown as Table 13.6.

In general, as related in §9.6 above , the standard control signals in peripheral mode are connected
to the complementary signal on the Winbond IO device. Where this happens the ‘‘standard’’ name is
shown in Table 13.6 in courier typeface.

Signal names are currently an uneasy mixture of IEEE1284 and local schematic
versions.

P−4032 manual 13.8. Centronics (P2/P10) 53

The centronics controller does not drive any output which can reasonably be used to implement the
per ipheral’s nFault signal, so this is provided by the port B, data line 0, signal from the general-pur pose
parallel IO port descr ibed in §9.9. (‘‘General-pur pose parallel I/O (PIO)’’) on page 36.

13.9. Diskette (P11)
a 17×2 header matching the connector found on every PC. This is so standard that we won’t bother to print
the signals.

13.10. User-defined parallel I/O (P12)
An 8×2 header making ‘‘por t A’’ of the parallel I/O controller available for user functions. These include:

• Allowing a user’s logic to generate an interrupt;

• Polling an exter nal logic level.

• Dr iving some simple exter nal device.

• Software-controlled trigger for test equipment...

Anything you like. The pinout is in Table 13.7.

ASTB˜ 1 2 BSTB˜
ARDY 3 4 BRDY

PA0 5 6 PA4
PA1 7 8 PA5
PA2 9 10 PA6
PA3 11 12 PA7

GND 13 14 VCC
GND 15 16 VCC

Table 13.7: General purpose I/O connector (P12) pinout

13.11. PC-compatible keyboard (P4)
Plug your PC/AT-compatible keyboard into this 5-pin DIN socket, and it should wor k. P−4032 does not support
PS/2 keyboards, or any kind of keyboard-compatible mouse. The wor ld is, for tunately, overr un with
RS232-interfaced mice. We won’t bother with the pinout.

13.12. LCD display connector (P13)
This simple I/O port on an 8×2 header is designed to attach an LCD alphanumer ic display [LCD-Ouwehand]
on a short ribbon cable. You may even be able to use it for something else, with ingenuity. It’s pinout is in
Table 13.8.

GND 1 2 VCC
BRIGHT 3 4 XA2

LIOR_W˜ 5 6 Enable
XD0 7 8 XD1
XD2 9 10 XD3
XD4 11 12 XD5
XD6 13 14 XD7

Table 13.8: LCD display header (P13) pinout

Note that in Table 13.8:

54 13.12. LCD display connector (P13) P−4032 manual

• Connections to the 8-bit IO data bus XD0-7 are made via 22Ω resistors, to provide some protection
and noise suppression.

• The brightness of the LCD illumination is controlled by BRIGHT, which can be var ied between 0 and
5V by adjusting R57.

• Signal LIOR_W˜ is a direction signal (low for write); and Enable is a kind of combined chip select and
transfer strobe. XA2 is the least-significant register address (8-bit IO registers on P−4032 are always
at least 4 bytes apart), supporting a princely two registers.

13.13. Power supply connector (P6)
A PC-compatible power connector. PC supply mating connectors are supposed to be encoded to make
it impossible to plug in the wrong way round, but impatient people often seem to cut the encoding lugs
off. Place the black wires together to be safe.

The pinout is shown in Table 13.9, if you’re unlucky enough to have to make your own. On second
thoughts, don’t; you can buy a perfectly wor kable PC-clone power supply for $40 or less, so it can’t be
worth the time you’ll spend making up the connector!

Pin Name

1 Pow er on reset
2 NC
3 +12 Volts
4 -12 Volts
5 0 Volts (GND)
6 0 Volts (GND)
7 0 Volts (GND)
8 0 Volts (GND)
9 -5 Volts (Unused)

10 +5 Volts (VCC)
11 +5 Volts (VCC)
12 +5 Volts (VCC)

Table 13.9: Pow er connector pinout

13.14. 12V fan power (P16)
A socket providing a fused +12V supply (and ground) to connect a PC-type cooling fan. Pin 1 is +12V
and pin 2 is GND. Most CPUs fitted to P−4032 do not need a fan when run open at room temperature
with no forced air movement; it will not be necessary to fit a fan to the CPU when the CPU is running at
133MHz or below, unless airflow is ver y restr icted. Use any fan designed for ‘‘Pentium’’ class CPUs in
PC clones.

13.15. Logic programming connector (P15)
P−4032’s logic is mostly implemented in a number of Xilinx 9500 series programmable logic devices.
These chips retain their logic programs using ‘‘flash’’ ROM storage, but can be reprogrammed in-circuit.

Reprogramming is possible either with a Xilinx download cable, or via a Centronics cable from a PC
running appropriate software. The jumper J29 must be fitted. To download from the Centronics
connector you should also fit jumper J28 and remove the jumpers J4.

P−4032 manual 13.15. Logic programming connector (P15) 55

The Xilinx-compatible connector is P15, and is shown in Figure 13.2. It matches Xilinx’ supplied module, so
the signals connect across one to one.

JTMS 1 pur ple
2 white

JTDI 3 orange
JTDO 4 green

5 blue
JTCLK 6 yellow

7
GND 8 black
+5V 9 red

Figure 13.2 Xilinx-compatible connector (P15) for reprogramming P−4032 logic

56 13.15. Logic programming connector (P15) P−4032 manual

14. Logic analyser (debug) board
P−4032 is equipped with a connector P14 and an optional additional board DBG−4 which allows you to
hook up a logic analyser to P−4032’s main address and data bus with minimal interference with normal
function of the logic. DBG−4 has several functions:

• Registers address/data so your test equipment doesn’t need to be able to keep up with the 67MHz
clock rate, nor to capture signals with ver y shor t setup and hold times.

• Isolates P−4032’s high-speed buses from any detr imental effect which test probe cabling might have
on operation.

• Provides convenient headers for attaching logic probes; it connects directly to HP logic analyser pod
adaptors.

• DBG−4’s PAL device (a dual in-line GAL26CV12-7) generates strobes to capture address and data,
and to trigger your test equipment. But you can also reprogram the device with custom triggers; a
very pow erful tool for catching fast and obscure events.

With the standard PAL the trigger signal ATRIG fires once for every cycle, with timing which will capture
both the address and one word of data - by default, the last of a block. To see a different word of data
inside a block, set the option header J4 as described below.

The debug board’s connectors are shown in Figure 14.1.

J1

J2

J5

J6

J3 J7

1

2

3

4 5

6 8

9

10

11

12

13

14

15

16

17

18

19

20

7

J4

tr
ig

ge
r

P
A

L

Figure 14.1 DBG−4 - P−4032’s debug board

The signals available on DBG−4 are summarised in Table 14.1.

P−4032 manual 14. Logic analyser (debug) board 57

Signal Description

A2-31
BE0-3˜

Address and byte enables for any transaction. Note that BE0˜
active (low) indicates that D0-7 will carry valid data in this
transaction.

These signals are caught on an edge-triggered register and
held through the cycle by the signal DBG_AHLD, generated by
the debug board control PAL ANTRIG.

D0-31 data, captured by an edge-tr iggered register and held by
DBG_DHLD.

ATRIG Rising-edge trigger timed to sample address, cycle qualifiers,
and data into your analyser.

W_R˜ Raw direction signal (low to read) from intermediate bus.
HLDA When 1, indicates that this is not a CPU cycle, so it must be a

PCI-initiated cycle. This signal is not latched, so potentially
runs a bit ahead of the address/data; but it’s valid at the
ATRIG rising edge.

BLOCK Active dur ing a multi-word (block or burst) transfer.

BLADS˜
BLRDY˜
BLW_R˜
BLBLAST˜
BLBTERM˜
BHLDA

i960-like control signals on the intermediate bus, delayed by
one LCLK register stage (LCLK is the half-rate clock which
runs the local bus side of the V962PBC PCI controller).

BPVALID˜
BEVALID˜
BEOK˜
BSYSCMD0-4
PREQ˜
BPMASTER˜

MIPS CPU signals (Vr4300 names) delayed by one CPU bus
interface clock register stage

Table 14.1: Signals from DBG−4

The connectors J1-3, J5-7 are compatible with HP logic analyser multi-way pod headers; with an HP or
compatible analyser you can connect it as shown in Figure 14.2.

Tr ig 15 14 13 12 11 7 6 5 4 3 2 1 0

J1 pod ATRIG A15-2 0 0

J2 pod A31-16

BPMAS- BPVAL BEVAL- BSYSCMD BL- BL- BL- BL- BL-
TER˜ ID˜ ID˜ 0-4 RDY˜ ADS˜ BLAST˜ BTERM˜ W_R˜

J3 pod BEOK˜ PREQ˜ BHLDA

J5 pod D15-0

J6 pod D31-16

J7 pod ATRIG HLDA BLOCK W_R˜ BE3-0˜

Figure 14.2 Connecting an HP or compatible analyser to DBG−4

You can of course connect up any logic analyser pin-by-pin. The signals are available as shown in Figure
14.3.

58 14. Logic analyser (debug) board P−4032 manual

J1 J2 J3

- 1 2 - - 1 2 - - 1 2 -

ATRIG 3 4 A15 - 3 4 A31 - 3 4 BPMASTER˜

A14 5 6 A13 A30 5 6 A29 BPVALID˜ 5 6 BEVALID˜

A12 7 8 A11 A28 7 8 A27 BEOK˜ 7 8 BSYSCMD0

A10 9 10 A9 A26 9 10 A25 BSYSCMD1 9 10 BSYSCMD2

A8 11 12 A7 A24 11 12 A23 BSYSCMD3 11 12 BSYSCMD4

A6 13 14 A5 A22 13 14 A21 PREQ˜ 13 14 BLRDY˜

A4 15 16 A3 A20 15 16 A19 BLADS˜ 15 16 BLBLAST˜

A2 17 18 GND A18 17 18 A17 BHLDA 17 18 BLBTERM˜

GND 19 20 GND A16 19 20 GND BLW_R˜ 19 20 GND

J5 J6 J7

- 1 2 - - 1 2 - - 1 2 -

- 3 4 D15 - 3 4 D31 ATRIG 3 4 -

D14 5 6 D13 D30 5 6 D29 - 5 6 -

D12 7 8 D11 D28 7 8 D27 - 7 8 -

D10 9 10 D9 D26 9 10 D25 - 9 10 -

D8 11 12 D7 D24 11 12 D23 - 11 12 -

D6 13 14 D5 D22 13 14 D21 HLDA 13 14 BLOCK

D4 15 16 D3 D20 15 16 D19 W_R˜ 15 16 BE3˜

D2 17 18 D1 D18 17 18 D17 BE2˜ 17 18 BE1˜

D0 19 20 GND D16 19 20 GND BE0˜ 19 20 GND

Figure 14.3 Pin-by-pin analyser connection to DBG−4

14.1. DBG−4 option header (J4)

DATA0 1 2 GND
DATA1 3 4 GND
DATA2 5 6 GND
ATRIG 7 8 GND

Figure 14.4 The J4 option header - pins

Where:

• DATA0-2 encode the initial binary value of a down counter (one per data transfer) which picks the data
word to be captured in a burst read. The signals DATA0-2 are pulled up onboard and grounded by the
link, so each bit is set ‘‘1’’ for no link, and ‘‘0’’ for link in. By default (no links in) the initial value is 7
and the last word of a block is always captured.

If you elect to reprogram the PAL ANTRIG you can use these lines for any pur pose. You could even
use them to carry exter nal signals into the PAL - the pull-ups are 4.7KΩ and won’t cause any trouble
if you don’t want them.

• ATRIG is provided again here, in case you want to connect up more than one piece of test
equipment.

J4 may be pressed into more mundane use as a supply of extra ground pins.

P−4032 manual 14.1. DBG−4 option header (J4) 59

Reprogramming the ANTRIG PAL
Star t from Algorithmics’ standard PAL, available on request to any P−4032 customer. All the signals presented
to the PAL are described below in Table 14.2. Your job is to generate the trigger signal ATRIG and the latch-
closing signals DBG_AHLD and DBG_DHLD.

14.2. Pinout of debug connector (P14)
For those of you who might want to do your own debug board, Table 14.2 describes the signals available and
Table 14.3 describes where the signals are available on this 96-pin ‘‘SBus’’-type straight female connector.
The right-angled mating connector used by Algor ithmics to build DBG−4 is available as Honda part number
‘‘PCS-96LMD’’.

Signal Description

DBGCLK
CPUCLK3

Tw o CPU bus interface clocks: DBGCLK is for the use of the
debug board; CPUCLK3 is a spare, but is already used by four
onboard registers.

PVALID˜
EVALID˜
EOK˜
PMASTER˜
PREQ˜
SYSCMD0-4

MIPS CPU control signals, see CPU manual for meanings. Note
that while these signals come straight from the CPU (apart from
voltage conversion), the address and data lines are two register
stages separated from the CPU (more for write data).

LCMD2 The Vr4300 CPU signal SYSCMD2 is low for single- or partial-
word transfers, and high for bursts. LCMD2 is latched with the
address bus LADDR2-31 with the same meaning.

LCLK The clock for the local bus side of the V962PBC PCI bus
controller ; the basic clock for i960-like transactions on the local
bus

LADDR2-31 Addresses
MD0-31 Data - endianness as for the CPU
LBE0-3˜ Byte enables: LBE0˜ indicates that the byte lane MD0-7 is being

used for data in this transaction
LADS˜ synchronous ‘‘address strobe’’ indicating the start of a cycle
LRDY˜ activated to indicate that there’s valid data on (some of) MD0-31.
LBTERM˜ The target’s signal for terminating a burst transfer. The transfer

completes on this or the next clock edge where LRDY˜ is active.
LBLAST˜ Initiator’s signal for terminating a block transfer, meaning that the

next data transfer will be the last.
LW_R˜ Direction (low for read)
HLDA high when this is a PCI-initiated cycle
LRESET˜ active-low reset

SLVGO˜
SLVDVAL˜
SLVLAST˜
SLVREAD˜

signals from the bus control state machine

Table 14.2: Debug connector signal description

60 14.2. Pinout of debug connector (P14) P−4032 manual

1 GND 49 VCC
2 DBGCLK 50 LADDR8

3 LCMD2 51 LADDR9
4 LADDR2 52 LADDR10

5 LADDR3 53 LADDR11
6 LADDR4 54 LADDR12

7 LADDR5 55 LADDR13
8 LADDR6 56 LADDR14

9 LADDR7 57 LADDR15
10 LBE0˜ 58 LBE1˜

11 LADDR16 59 LADDR24
12 LADDR17 60 LADDR25

13 LADDR18 61 LADDR26
14 LADDR19 62 LADDR27

15 LADDR20 63 LADDR28
16 LADDR21 64 LADDR29

17 LADDR22 65 LADDR30
18 LADDR23 66 LADDR31

19 LBE2˜ 67 LBE3˜
20 LADS˜ 68 LCLK

21 LW_R˜ 69 HLDA
22 LRDY˜ 70 LRESET˜

23 LBTERM˜ 71 LBLAST˜
24 GND 72 EOK˜

25 PVALID˜ 73 EVALID˜
26 PREQ˜ 74 PMASTER˜

27 SYSCMD0 75 SYSCMD2
28 SYSCMD1 76 SYSCMD3

29 CPUCLK3 77 SYSCMD4
30 SLVLAST˜ 78 SLVREAD˜

31 SLVGO˜ 79 SLVDVAL˜
32 MD0 80 MD8

33 MD1 81 MD9
34 MD2 82 MD10

35 MD3 83 MD11
36 MD4 84 MD12

37 MD5 85 MD13
38 MD6 86 MD14

39 MD7 87 MD15
40 MD16 88 MD24

41 MD17 89 MD25
42 MD18 90 MD26

43 MD19 91 MD27
44 MD20 92 MD28

45 MD21 93 MD29
46 MD22 94 MD30

47 MD23 95 MD31
48 GND 96 VCC

Table 14.3: Debug connector (P14) pinout

P−4032 manual 14.2. Pinout of debug connector (P14) 61

Appendix A: References and further reading
Most of all, we encourage you to visit our web site at www.algor.co.uk ; look at the ‘‘Documents and
software to download’’ section.

General MIPS information

• MIPS architecture and programming : Dominic Sweetman, See MIPS Run published by Morgan Kaufmann,
ISBN 1-55860-410-3.

• Using MIPS : Erin Farquhar and Philip Bunce, The MIPS Programmer’s Handbook published by Morgan
Kaufmann, ISBN 1-55860-297-6.

• MIPS R4000 : Joe Heinrich/Gerr y Kane, MIPS R4000 Microprocessor User’s Manual, published Prentice
Hall, ISBN 0-13-1059254.

CPU variants

• NEC Vr4300 : datasheets available from NEC offices wor ldwide.

• IDT R4640 : from IDT distributors. How ever, you can get IDT manuals over inter net (www.idt.com) in
Adobe ‘‘.pdf ’’ for mat; you can read them online and print them using Adobe’s ‘‘Acrobat’’ software (free for
PC and other common platfor ms). If you don’t have a common platfor m, then recent versions of the free
‘‘ghostscr ipt’’ suite also reads PDF files, and are available from Aladdin Software.

• QED RM5230 : available from QED (www.qedinc.com). We believe online manuals will be available at
some point.

Algorithmics’ manuals

• PMON : PMON: Users Manual, Algor ithmics Ltd/LSI Logic Corporation, 1994.

• P−4032 schematics : P−4032: Schematics, Algor ithmics Ltd 1996.

• P−4032 pals : P−4032: PAL (programmable logic) listings, Algor ithmics Ltd 1996.

For more infor mation about Algorithmics, and updated infor mation including a P−4032 buglist and the latest
version of this manual in postscript for m, star t at Algorithmics’ WWW home page: www.algor.co.uk .

Other software

• VxWor ks : there’s lots of official documentation, but you could start at www.wrs.com .

Data sheets

• Atmel93C66 : descr ibes the EEPROM. Available in Atmel’s ‘‘Non-volatile Memory data book’’, 1995/96
edition.

• LCD-Ouwehand : If you want to program the LCD display, read Peer Ouwehand’s WWW page currently at
http://www.iaehv.nl/users/pouweha/lcd.htm . If it’s moved, keywords ‘‘Ouwehand’’ and
‘‘HD44780’’ should get you something.

• FlashData : AMD parts are 29F040 (in the socket) or 29F080 (possibly fitted on the motherboard). Look at
the reference page http://www.amd.com/products/nvd/techdocs/techdocs.html .

The onboard flash memory is often a Fujitsu MBM29F080, datasheet listed on the products page:
http://www.fujitsumicro.com/products/memory/flash.html .

• V962PBC : there’s a ‘‘User’s Manual’’ from V3 Corporation of Toronto, Canada. The manual we used is
mar ked ‘‘Revision 1.0 of June 1995’’. They’re on the web at www.vcubed.com .

62 Appendix A: References and further reading P−4032 manual

• DEC21041 : documentation on the DECchip 21041 PCI Ethernet LAN controller. This includes:

Hardware Reference Manual, Apr il 1995 (preliminary), DEC Order Number EC-QAWXA-TE.
Oddly enough, this is where to look for programming infor mation.

Product Brief, DEC Order number EC-QAWVA-TE.

Data Sheet, DEC Order number EC-QAWWA-TE.

Web: Digital Semiconductor’s Documentation Librar y is at:

http://ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html

• Symbios53C810 : Symbios Logic produce the 53C810 chip, originally developed by NCR. You can
find them online at www.symbios.com , and they have a reasonably useful range of sample drivers.

• Centronics ECP : Extended Capabilities Por t Protocol and ISA interface standard, Microsoft/HP. We
used revision 1.14 dated July 14th, 1993.

• Winbond : a PC-wor ld manufacturer of our W83877F combi I/O chip (W83777F on early boards).
Online at www.winbond.com.tw . We can supply an ‘‘acrobat’’ for mat data sheet if you can’t get
one.

Standards

• PCI Local Bus Specification, Revision : from the PCI Special Interest Group, PO Box 14070,
Portland, Oregon 97214 USA.

P−4032 manual Appendix A: References and further reading 63

Appendix B: Software support

SDE−MIPS for P−4032
Algor ithmics’ SDE−MIPS cross-development toolkit provides an easy way to get started programming the
P−4032. SDE−MIPS is a comprehensive toolkit based on the GNU C compiler, running on most favour ite
hosts. But it also contains specific support code for the P−4032; there is enough in the standard SDE release
to allow you to build either a PROM or downloadable ‘‘hello wor ld’’ application for the P−4032.

For technical and sales infor mation about SDE−MIPS contact Algorithmics on sales@algor.co.uk (internet
email), +44 171 700 3301 (voice), or +44 171 700 3400 (fax).

SDE’s P−4032 support files are as follows:

include/p4032

kit/...
kit/P4032/sbdreset.sx assembler board support functions
kit/P4032/sbd.c C board support functions
...

Real-time OS on P−4032

• VxWor ks/Tor nado : runs on the board on Vr4300 and RM5320 CPUs. BSPs (‘‘board support packages’’)
are available from Algorithmics. Unsuppor ted sources are free to VxWor ks licensees.

• pSOS : in dev elopment at the time of writing. Contact Algor ithmics for details.

Other OS on P−4032

• OpenBSD : (a close relative of NetBSD, FreeBSD etc) is a freely-redistributable unix system which runs on
P−4032 on Vr4300 and RM5320 CPUs. Contact Algorithmics to get sources.

• Linux : for P−4032 is under development.

64 Appendix B: Software support P−4032 manual

