
Algorithmics P−5064
User´s Manual

algori thmics

© 2000 Algorithmics Ltd

Revision: 1.10
Dated: 1999/06/17

P−5064 is a single board computer which is mainly aimed at
embedded systems developers wanting to build system proto-
types and early-development platfor ms for applications using the
64-bit MIPS R5000 family of CPUs. P−5064 features a syn-
chronous DRAM local memory system running at the CPU clock
rate, and a PCI I/O system for easy expansion. It’s fast, efficient,
and economical, with excellent software support, and the design
can be licensed in whole or in part.

We all know that you only read the manual if all else fails. But
can we at least recommend that you read §1.2, ‘‘Key facts for the
impatient’’ and §2, ‘‘Getting Started’’.

This manual is ©1997, 1998 Algorithmics Ltd, but anyone may repr int this
document in whole or in part, so long as this copyr ight message is

preser ved.

Algor ithmics Ltd
3 Drayton Par k

London N5 1NU
ENGLAND.

Phone: +44 171 700 3301
Fax: +44 171 700 3400

Email: ask-algor@algor.co.uk

WWW: http://www.algor.co.uk/
FTP: ftp://ftp.algor.co.uk/pub/

2 P−5064 manual

Contents

Contents ...3

1. Introduction to the P−5064 and manual ...7
1.1. The R5xx0 CPU family ..7
1.2. Key facts for the impatient ...7
1.3. Manual Sections..8
1.4. What and why..9

Why not? ..10
1.5. A note on EMC..10

2. Getting started ..11
2.1. What’s in the box? ...11
2.2. Initial wiring up ..11
2.3. Switching on..12
2.4. Boxing a P−5064...12
2.5. Normal sign-on sequence and what it means ...13

Table 2.1: P−5064 ROM sign-on sequence..14
Star tup troubleshooting and switch flipping..14

2.6. Flash memory and socketed PROM ...15
2.7. PMON ...15

The environment store ...15
Table 2.2: P−5064 - typical PMON environment var iables ...15
Instant PMON...17

3. Over view and Block diagram ...18
3.1. CPU and memory..18

Figure 3.1 CPU, memor y and local I/O bus..18
3.2. PCI and I/O ...19

Figure 3.2 PCI, ISA, PCMCIA and PC-type I/O ...19

4. Memory map ..21
4.1. CPU’s memor y map ..21

Table 4.1: P−5064 physical address map...22
Table 4.2: PCI master’s windows onto local memory ...23
Figure 4.1 Defining an aperture onto PCI space..24

5. Programming P−5064 ..25
5.1. CPU...25

Differences between CPUs ..25
Daughterboards and on-motherboard CPUs ...26
Optional exter nal cache ...26
CPU configuration options..26

5.2. Local SDRAM memory..26
Modules and sizes ...27
Outcomes of out-of-range memory accesses ..27

5.3. Flash ROM and the boot ROM socket...28
Figure 5.1 Pinout of ROM socket ...28
The flash-programming endianness problem ...29

P−5064 manual Contents 3

Figure 5.2 How ROM bytes become CPU data..30
Table 5.1: Programming flash on big-endian CPU - ROM byte addressing30

5.4. P−5064-specific hardware registers..30
Table 5.2: Board configuration register fields ...31
Table 5.3: DRAM configuration register bits ...31
Figure 5.3 Memory configuration registers and DRAM types ..32

5.5. P−5064 interrupt controller..33
Table 5.4: Interrupt sources..34
Table 5.5: Interrupt controller registers...35
Notes on the interrupt request/enable registers ...35
Notes on the interrupt steering registers ..36

5.6. Local I/O..37
Being a Centronics peripheral ..37
Table 5.6: Centronics connections in ‘‘per ipheral’’ mode..37
Figure 5.4 Alphanumer ic Display Extended Character Set ..39
GPIO bits used for onboard functions ..40
Table 5.7: Parallel I/O bits and onboard functions ..40

5.7. PCI bus ..41
Table 5.8: IDSEL for PCI devices/slots...41
Table 5.9: PCI arbitration signals for devices ...42

5.8. Ethernet interface (DEC 21143) ..44
5.9. SCSI interface (Symbios 53C810A) ..44
5.10. ISA controller, ISA bus and IDE channels ...44
5.11. PC card slots (PCMCIA) ...45
5.12. PMON debug monitor compatibility...45

6. Board layout: locating connectors and jumpers ...47
Figure 6.1 P−5064 layout, connectors and jumpers..47
Notes on Figure 6.1...47

7. Jumpers: where and what for ...49
Table 7.1: All jumpers on P−5064 (including connectors called Jxx)...50

7.1. CPU clock synthesiser jumpers: J13, J14, J11, J12 ...50
Table 7.2: CPU clock rate setup ...50

7.2. CPU software and options jumper: J23, J24...51
Figure 7.1 CPU options and software options jumper blocks...51
Table 7.3: Selecting CPU clock divisor...51
Notes on CPU options..52

7.3. Software options jumper J23...52
Figure 7.2 Board revision/option links register and J23 settings ..52
Notes on software options and the options link register...52

8. Connectors: where, what and wiring ..54
8.1. CPU daughterboard connector ...54

Figure 8.1 CPU daughterboard module connector layout ..54
Table 8.1: Signal assignments on the CPU daughterboard connector...55
Table 8.2: Description of CPU daughterboard signals..57

8.2. DIMM memory slots (DIMM0/DIMM1)...57
8.3. PCI edge connectors (P8/P9) ...57
8.4. Ethernet (P12, P1) ..57

4 Contents P−5064 manual

Table 8.3: Pinout of ethernet connector P12 ..57
8.5. SCSI (P18) ..57

Table 8.4: SCSI connector (P18) pinout ...57
8.6. IDE ..58
8.7. RS232 (P3) ...58

Figure 8.2 Pinout of a PC-compatible serial connector (looking into pins).....................................58
8.8. Centronics (P2) ...59

Figure 8.3 Centronics/IEEE-1284 parallel port connector..59
8.9. Diskette (P21)..60
8.10. User-defined parallel I/O (P15)..60

Table 8.5: General purpose I/O connector (P15) pinout...60
8.11. PC-compatible keyboard and mouse (P5/P4) ...60
8.12. USB (P11) ...60

Figure 8.4 USB (P11) connector signals..60
8.13. IR ‘‘networ k’’ interface (P16)..61
8.14. LCD display connector (P23) ..61

Table 8.6: LCD display header (P23) pinout...61
8.15. Pow er supply connector (P14) ..61

Figure 8.5 ATX power supply connector pins ...61
8.16. Logic programming connector (P24) ...62

Figure 8.6 Xilinx-compatible connector (P24) for reprogramming P−5064 logic62
8.17. 12V fan power (P13) ...62

9. Cables supplied..63

10. Hardware debug and trace facilities ...64
10.1. The debug board ...64

Figure 10.1 DBG−5 layout and connector positions...65
Table 10.1: Signals from DBG−5..65
Figure 10.2 Connecting an HP or compatible analyser to DBG−5...65
Figure 10.3 Pin-by-pin analyser connection to DBG−5 ..66
Table 10.2: Signals on the ANTRIG PAL ..68
Table 10.3: Debug board internal signals connector J1 pinout...71

10.2. ROM emulators ...71
10.3. The debug switch ..71

11. Software from Algorithmics and third parties ...72
PMON boot ROM sources...72
SDE−MIPS for P−5064 ...72
Real-time OS on P−5064 ..72
Other OS on P−5064...72

Appendix A: MIPS CPUs and addresses ...73
Figure A.1 MIPS program address map ..73
Figure A.2 MIPS program address map (entire 64-bit space) ...74

Appendix B: References - Finding more infor mation..75
General MIPS infor mation..75
CPU var iants..75
SGI Technical Librar y...76

P−5064 manual Contents 5

Algor ithmics’ manuals ..76
Hardware infor mation on P−5064 ..76
Data sheets..76
Bus controllers ...76
PCI chips ...76
PC-compatible devices ..77
PC-compatible devices in revision B boards..77
Flash memory ..77
Display ...77
Odds and ends ..78
Memor y modules ...78
Standards ..78

Appendix C: Reading configuration infor mation from DIMM modules..79
How to read the DIMM’s EEPROM ..79
I2C access protocol ...79
Figure C.1 Command for an I2C slave device ...80
EEPROM write ..80
Acknowledge Polling ..81
Read ..81
Timing requirements..81
DIMM EEPROM data...82
Table C.1..82

Appendix D: Software-visible changes with different versions ...83
Revision B to C ..83
10/100Mbit Ethernet introduction...83
Change of Combi I/O chip ...83
Disappearance of Z80 GPIO controller..83
Interr upt system ...83
Revision C to D..84

6 Contents P−5064 manual

1. Introduction to the P−5064 and manual
We made P−5064 because embedded systems developers need a high-perfor mance target for big
ev aluation tasks and to support software development in parallel with embedded hardware design. We
believe that many embedded systems in design in 1998/99 will move to system interfaces running at
75-100MHz, synchronous DRAM local memory and a PCI-based I/O system; and no other product
allows you to explore the character istics of such a system.

This manual describes boards built to revision C and higher, featur ing 10/100Mbit ethernet. If you have
previously wor ked with a revision B board, refer to ‘‘Software-visible changes between revision B and
revision C boards’’ (Appendix D) on page 83.

1.1. The R5xx0 CPU family
How MIPS emerged from an academic project to lead the RISC charge is too long a story to tell here.
However, the 64-bit R4000 CPU, introduced in 1990 for high-end wor kstations, was reworked by a
design group called QED to make IDT’s simpler, low er-power and eminently embeddable R46001. The
R4600 turned out to be an ideal motor for Silicon Graphic’s low-cost ‘‘Indy’’ wor kstation, generating a
need for a successor product. That became the R5000.

The R5000’s ‘‘embedded’’ ancestr y and desktop leading application gives it a somewhat confused
identity, but an R5000-200 is a potent high-end embedded CPU. In ear ly 1997 QED (now a full-fledged
microprocessor company) introduced the RM5260, first of a range of R5000-derivative CPUs deliver ing
the power but at lower cost and power consumption. The QED family is growing, and is likely to be
joined by R5000-der ivative products by other MIPS vendors in 1998.

Read on to find why P−5064 is the right prototyping platfor m for all of them.

1.2. Key facts for the impatient
If you know quite a lot about MIPS already, and are familiar with programming at a low lev el, you’ll still
need the following parts of this manual:

• Block Diagram : you’ll probably find it helpful to glance at Figure 3.1 and Figure 3.2 on page 18.

• Memor y map : refer to Table 4.1 to find out what registers are where.

• Physical arrangement, location of connectors and jumpers : descr ibed in §6 on page 47 below.

• Board-specific programming : no matter how familiar you are with the devices we’ve used, to program
the board from scratch you’ll need to know about:

• The board configuration register: §5.4.1 on page 30.

• The DRAM configuration register: §5.4.2 on page 31.

• The interrupt controller:§5.5 on page §33.

• MIPS CPUs and their addresses : can be ver y confusing for the uninitiated. If you’re not familiar with
MIPS, do read Appendix A.

1 That wasn’t why they made it of course; this useful part was specified and funded
under the influence of a Microsoft-induced dream of MIPS-powered personal computers
running Windows/NT.

P−5064 manual 1.2. Ke y facts for the impatient 7

1.3. Manual Sections

• Getting started : what we’ve supplied, how to switch the board on, and set-up stuff.

• Over view and Block diagram : a look at how the board wor ks, at the kind of level of detail a programmer
might need.

• Memor y map : where to find memory regions and registers.

• Programming P−5064 : gor y details of registers and how devices are wired. For detailed programming
infor mation you’re normally referred to manufacturer’s data sheets.

• Board layout: locating connectors and jumpers : the physical picture.

• Jumpers: where and what for : just that.

• Connectors: where, what and wiring : we include pin-outs for all but the most familiar connectors.

• Cables supplied : what’s in the box, and what can be bought as extras.

• Debug and trace facilities : about the optional extra debug board.

• Software from Algorithmics and third parties : a running list - our web site might be more up to date.

• Board and logic revisions : P−5064 is an evolving design, as we keep up with new CPU introductions and
features, fix bugs and make customer-related improvements. Moreover, the soft-loadable FPGA logic can
ev olve separately from (and usually faster than) the logic built onto the board.

The board revision is a letter; revision ‘‘A’’ was an unshipped prototype, so production boards begin with
‘‘B’’. It’s to be found inscribed into the copper of the board, but is also encoded in a 4-bit software-readable
field through the ‘‘board revision’’ field of the software options register. The logic revision is a number,
retur ned by the logic revision level register. Both are described in section 5.4.3, which starts on page 32.

And then there’s some slightly more obscure infor mation relegated to the appendices:

• Appendix A - MIPS CPUs, program addresses, and physical addresses : how MIPS CPUs access exter nal
memor y and I/O. You really should read this unless you are already familiar with MIPS CPUs.

• Appendix B - Finding more infor mation : references to books and web sites.

• Appendix C - Reading configuration infor mation from DIMM modules : the DIMM memory modules we use
are equipped with a serial-access ROM full of infor mation about the DIMM and its components. This
infor mation is supposed to be a de-facto industry standard, and this appendix tells you how to read it.

• Appendix D - Software-visible changes between revision B and revision C boards : we’ve introduced
significant new functionality while slightly reducing the parts count. Here are the consequences, laid out for
the programmer who’s already got something wor king on one of the earlier boards.

8 1.3. Manual Sections P−5064 manual

1.4. What and why
Here’s the basic features of the product, and why it’s like that.

• Clock rates : embedded systems designers want CPU power on a par with desktop PCs. In 1998
that can’t be done without high clock rates in the CPU interface and memory controller. In 1998, a
system which can’t run at 75MHz is a toy and anything less than 100MHz means aiming for second
place. So P−5064 is designed to grow to 100MHz.

• CPU choice : P−5064 is intended to support a range of 64-bit MIPS CPUs.

CPU type/ Clock Onchip cache Exter nal
Manufacturer ext/int (I+D+secondary) cache

MIPS R5000 (NEC, IDT, NKK) 100/200 32K+32K to 2M
QED RM5260 67/133 16K+16K no
QED RM5270 83/166 16K+16K to 8M
QED RM7000 100/250 16K+16K+256K to 8M
NEC Vr5464 100/200 32K+32K no

83/250 32K+32K to 8MMIPS R10000/
R12000 (NEC)

The most popular CPU options will be available as motherboard options; less popular CPUs, later
CPUs, or those with secondary cache fitted, will be provided on small daughterboards plugged into
the connector which is fitted to all boards. An onboard CPU (if fitted) can be disabled when a
module is attached.

The R10000/R12000 module will be made only if we discover some demand for this beast in
embedded applications; we’re really hoping someone will take us up on this!

If demand exists we will also produce modules for ‘‘last-generation’’ CPUs such as IDT’s R4650.
Check our web pages or enquire for status.

• Local memory system : two industr y-standard 168-pin DIMM slots, for synchronous DRAM modules
(3.3V, unbuffered). The DRAM always runs at the CPU’s interface clock. The board’s designed
around 72-bit ‘‘ECC’’ types, but you can use 64-bit so long as you turn off CPU interface checking.
But note that you’ve got to have par ity DRAMs to use an R5000 secondary cache.

It’s a peculiar feature of the SDRAM market that 100MHz SDRAMs are unusable above 83MHz.
You’ll need modules one grade faster than the clock rate suggests.

• ROM : there’s a DIL ROM socket (32-pin) which will support uV-erasable or flash types up to 512K×8;
and a soldered-down 1M×8 flash ROM. The CPU can boot from either ROM. The ROMs are 8 bits
wide, but hardware feeds the CPU with as many bits as it wants; the CPU can run cached from ROM
too.

When your P−5064 is delivered the ROM socket is empty; it’s there for start-of-life bootstrapping,
emergency rebooting, and support of useful ROM emulator products.

• PCI : 33MHz, 32-bit, compliant with V2.1 of the PCI standard; three industry-standard edge-
connector slots.

• ISA slot : a single double-length card position for legacy PC cards.

• PC-card (PCMCIA) slots : connector for one or two cards, as used in portable PCs.

• Interr upt controller : custom design for maximum flexibility in interrupt routing and prior itising.

• Choice of I/O : a bit of everything: two ser ial por ts, Centronics, IDE, SCSI, 10/100Mbit ethernet2, PC
keyboard/mouse, USB, real time clock, LED display, optional ‘‘front-panel’’ type LCD display, user-

P−5064 manual 1.4. What and why 9

programmable parallel I/O.

• Re-programmable logic : P−5064 is built with high-speed CMOS MSI chips for the data path, controlled and
sequenced by logic in re-programmable FPGAs. The devices used (Xilinx 9500 family) are ‘‘flash’’ types,
and can be reloaded through an exter nal interface - a PC Centronics port and special cable is all the
hardware you need.

One advantage of this is that we can deliver hardware upgrades and bug-fixes over inter net.

• PC ‘‘ATX’’ for m factor : the board is physically compatible with an ‘‘ATX’’ motherboard. That should make it
easy for you to buy a compatible power supply, cables, and (if you need it) a case.

Why not?
When we build a board like this we have to stop somewhere. Here’s what we tur ned down:

• Wide ROM : the 8-bit onboard ROM minimises space requirements and cost, but means that when the CPU
runs from ROM it runs slow. We did this because we think that few applications using this class of CPUs
will run serious code from ROM (even wide ROM is much slower than SDRAM).

• EDO DRAM option : the SDRAM price premium is too small for conventional DRAM to be a sensible
alter native, and SDRAM is likely to be mainstream PC memory in 1998 anyway. It doesn’t make sense to
get such a fast CPU and then slow it down with 33MHz burst rate memory.

We’ll regret this decision if there’s an SDRAM famine in 1998.

• Faster or wider PCI : 33MHz 32-bit is the universal standard; faster or wider may nev er happen on a large
scale.

• Compact PCI : we think this would take up too much board space and be incompatible with the PC-
or ientated mechanics of our board. Let us know if you’d find some hybr id useful.

1.5. A note on EMC
The electronics industry in both Europe and the USA is now concer ned with stray emissions (and sensitivity to)
electromagnetic radiation, and the government regulations intended to prevent trouble with it. P−5064 is not
currently certified under European regulations, because it is not itself a system but only a component3. By
design, P−5064 is relatively insensitive to incoming radiation; it may be affected by pow er glitches, but it is the
power supply’s job to filter those.

Many of you will be using P−5064 open on a bench set up. Use of a 100MHz+ system without any overall
metal shielding is likely to produce radiated emissions which drastically exceed the levels permissible for office
(let alone domestic) equipment. European (and other national) regulations specifically provide for laborator y
set-ups, on the basis that it is your responsibility to ensure that no nuisance is caused to a third party. The
best shielding is distance; don’t set up your board a few feet away from someone else trying to watch TV!

P−5064 is designed to be compatible with widely available ‘‘PC’’ boxes, pow er supplies and cables, and its
radiation will be sharply reduced if those are of good quality. Algor ithmics may at some point issue a boxed
system product or specification, which would need to be certified under EC rules and ‘‘CE’’-mar ked. Write to
us if you need that. Meanwhile, the board is a component for use in laborator y environments, and the user is
responsible for managing radiated emissions.

2 Revision B boards (with serial numbers 1-21 or so) have only 10Mbit/s ethernet.
3 There is some debate in Europe about whether all assembled PCBs should be

covered by the ‘‘CE’’ registration scheme, but it’s still an open question.

10 1.5. A note on EMC P−5064 manual

2. Getting star ted
Most of you should read this section.

2.1. What’s in the box?
Ever ybody should find:

• P−5064 user’s manual : but you got that, because you’re reading it.

• PMON user’s manual : descr ibing the boot monitor and startup sequence. A useful reference for
when things go wrong, but many of you won’t really have much to do with it.

• P−5064 : configured with the CPU, and the amount and type of memory, you ordered.

• Tr ansition Cables : there will be some standard transition cables, which you can either use to bring
out connections for a board in a PC box, or to convert onboard connectors to industry standard ones.
Refer to §9 on page 63 if you need a list.

You may also find (if you ordered them):

• Extra cables : some are optional, see §9.

• Debug board : makes it much easier to watch addresses/data in your program. Invaluable for driver
and ROM-code debug; see §10.1 below.

• LCD display : an optional 16×2 alphanumer ic display supplied loose with a short transition cable. It is
valuable for prototyping applications which need a ‘‘front panel’’ of some kind (you may find the user-
defined programmable I/O port usable for the front panel inputs).

It’s up to you to organise physical support, or just leave it lying around. More infor mation in §8.14.

2.2. Initial wiring up
P−5064 is quite happy operating on a bench top. There are no dangerous voltages, and CPUs which
need it will be fitted with fanned heatsinks.

You’ll need to connect at least power, and possibly some other stuff.

• Po wer : ‘‘ATX’’ PC pow er supplies are cheap, electr ically safe, and plug right in.

• Ser ial por t(s) : if the connection from your computer terminates in a female 9-pin D-type (as it would
to connect to a 9-pin PC Por t), there’s a good chance that you can just plug them in. If not, refer to
Figure 8.2 below and settle in for the usual RS232 interface lead struggle.

The PROM monitor signs on at 9600 baud, sends 8-bit characters with no parity, and (in its default
configuration) accepts pretty much anything back again.

• Ether net : if you have 100BASE-T or 10BASE-T ‘‘twisted pair’’ ether net, it should plug straight in to
P1.

Alter natively, an AUI cable (the 10Mbit/s ‘‘transceiver’’ interface) connects to P12 via the supplied
transition cable.

• Centronics for download : the most common PC-to-printer Centronics cables terminate in a
‘‘Centronics’’ style connector and are no good to you for connecting P−5064 to your PC. You should
have found (in the box) a cable with a PC-compatible 25-way male D-type connector at one end
wired pin-for-pin to a 25-way female D-type connector at the other end, ready to plug in to P−5064’s
‘‘Centronics Per ipheral’’ connector4. If it isn’t long enough, buy what your PC store will call a
‘‘Centronics extender’’ cable.

4 If your board is revision B or C then there’s a horr ible bug on the Centronics
interface, and you’ll probably also need a patch unit, available from Algorithmics.

P−5064 manual 2.2. Initial wiring up 11

2.3. Switching on
The recommended ATX power supply has a soft switch; when the mains power switch is first thrown only a
low-current ‘‘standby’’ +5V supply is sent to the board. To switch on the P−5064’s pow er supply toggle the
reset/debug switch to the ‘‘debug’’ position.

Some programs may provide a ‘‘switch off’’ command; otherwise you can turn the board off at the power supply
mains switch.

In Revision C and higher boards a fancy power-control system is provided by the combi I/O chip and retains
register-state across power-down. If you pow er-down such a board by switching off the power supply or pulling
the plug, then it will come straight up when AC pow er is restored.

2.4. Boxing a P−5064
P−5064 is designed to fit into PC ‘‘ATX’’ metalwor k and is PC-compatible in its size, fixing hole positions and
standard connectors (PCI, keyboard, power supply). PC metalwor k varies, so you may need some patience.

The metalwor k should have fixed or optional openings for the I/O connectors along the back of the board
(mouse, keyboard, serial ports, Centronics connectors and 10/100BASE-T ethernet). The SCSI cable we
supply is suitable for use in-box. You’ll need to make your own arrangements for other I/O.

Most PCs have a reset button lead, which will mate with the 2-pin header J22, allowing the board to be reset
from the front panel. ATX boxes will often have a pow er-on switch, which can be plugged into J21. The power
switch will now double as a ‘‘debug’’ interr upt button.

12 2.4. Boxing a P−5064 P−5064 manual

2.5. Normal sign-on sequence and what it means
From power up your P−5064 will show signs of life by writing enigmatic codes to its LED display (just in
case you expected English, it starts by saying ‘‘U*U* ’’). At the same time it’s sending rather more
meaningful messages to both serial ports. Here’s a typical example:

P−5064 says What it means

Notice: Integrated Tests

Info: Version: P5064L 711: \

Mon Jul 6 14:15:09 BST 1998

PROM sign-on. ‘‘P5064B’’ for big-endian,
‘‘P5064L’’ for little-endian. The number is the
AlgPOST version number. Note that the PROM
contains both the power-on self-test code
(AlgPOST) and the ROM monitor (PMON). This
is AlgPOST starting up.

And the ‘‘\’’ shows where I’ve folded a single line
which is too long for this table.

Info: Activity: ICU operation ‘‘Info:’’ denotes a test starting. If you get nothing
but ‘‘Info’’ and ‘‘Notice’’ lines from the power-on
tests, then they didn’t find anything really wrong.

Info: Activity: cache tests Star ted cache tests
Info: Dcache size 16 Kbytes (32/line)

Info: Icache size 16 Kbytes (32/line)

Info: Activity: dcache refill test

Info: Activity: dcache writeback test

Info: Activity: flash memory operation

Info: Flash: Am29F080

Info: Activity: RTC operation

Info: Date: Mon 6/7/1998 16:46:00

Info: Activity: quick memory address test

Info: Activity: memory byte address test

Info: Activity: memory halfword address \

test

Info: Activity: memory word random test

More often you only run the ‘‘quick’’ memor y
test; see PMON manual for how to choose which
ones run.

Info: Activity: ns16550 operation

Info: Activity: keyboard operation

Info: Activity: PCI operation

Info: V962 silicon revision 4 The PCI bridge chip. Revision 4 indicates the
par t which got renamed V360EPC - but V3 were
or iginally just going to call it rev C...

Info: Activity: SCSI operation

Info: SCSI: silicon revision 2

Notice: Integrated Tests Completed

Notice: Executing PROM package 6 Control is now being handed over from the
power-on tests to PMON.

P−5064 manual 2.5. Nor mal sign-on sequence and what it means 13

P−5064 says What it means

PCI slot 0/0: Digital Equipment DEC 21143 \

(network, ethernet)

PCI slot 1/0: NCR 53c810 (mass storage, \

SCSI)

PCI slot 2/0: Intel 82371SB PCI-ISA \

bridge(bridge, ISA)

PCI slot 2/1: Intel 82371SB IDE interface \

(mass storage, IDE)

PMON is probing for active PCI devices

PCI slot 2/2: Intel 82371SB USB interface \

(serialbus, USB)

de: 21143 [10-100Mb/s] pass 3.0 \

address 00:40:bc:04:00:64

en0: media: 1="10baseT" 2="Full Duplex \

10baseT" 3="AUI" 4="100baseTX" \

5="Full Duplex 100baseTX"

Ether net dr iver initialisation, prints ethernet
address and list of connected interfaces

PMON version 0.0.214 [P5064,EL,FP,NET] PROM monitor version and date
Algorithmics Ltd. Jul 6 1998 14:02:43

This software is not subject to copyright \

and may be freely copied.

Board Rev: C; FPGA Rev: 04; User Options: 7 Revision infor mation about your board - vital
when using Algorithmics’ support lines.

CPU type R5260. Rev 1.0. 166.63 \

MHz/83.31 MHz.

From CPU ID register and measurement of the
clock rate (which may sometimes be slightly off).

Memory size 32 MB. PMON should agree with AlgPOST
Icache size 16 KB, 32/line (2 way)

Dcache size 16 KB, 32/line (2 way)

These figures are right for the RM5260 and most
R5x00s, but others differ.

PMON> You’ve got a prompt

Table 2.1: P−5064 ROM sign-on sequence

Star tup troubleshooting and switch flipping
As the board powers up, the LED shows a code for each set of tests. The display blinks out briefly as each
individual test is started.

Lower-case codes are good, but upper case codes from AlgPOST are bad (at least, after it’s initial ‘‘U*U* ’’
stuff). Upper-case test names from AlgPOST mean a war ning or worse; always stay around for long enough
for you to read them; and are accompanied by a console message unless the console is not wor king or
configured off.

Confusingly, PMON puts upper-case messages on the display and those aren’t errors; but they tend to zoom
past really fast until you get a gently flashing ‘‘PMON’’ - and that indicates that the system is up to the PMON
prompt.

If the board seems to be expir ing really early, you may want to turn up the thoroughness and verbosity of the
power-on tests. Usually, this is controlled by environment var iables; but if you can’t reach the PMON prompt
you can’t change those. So you can do it by wiggling the debug/reset switch; reset the board in the usual way,
but instead of releasing the switch move the switch all the way over to its other (‘‘debug’’) position, and hold it
there for a couple of seconds. AlgPOST will now test everything (including some rather tedious memory tests)

14 2.5. Nor mal sign-on sequence and what it means P−5064 manual

and tell you pretty much everything about it.

2.6. Flash memor y and socketed PROM
P−5064 normally boots from an onboard 1M×8 flash memory, pre-loaded by Algor ithmics. You can
create and write your own bootstrap; software running out of DRAM can update the flash memory in
place.

If your board won’t boot and you believe that the flash memory may be corr upted, there is a socket
(U33) which accepts an alternative bootstrap source - a 512K×8 150ns ROM, in a 32-pin dual in-line
package. The board will use the ROM socket for its bootstrap if you insert jumper J17.

A copy of PMON in S-record for mat, ready to run in your board, can be downloaded from Algorithmics’
web site www.algor.co.uk . You can also download a program to run under PMON, which will write a
clean bootstrap image to your flash memory.

2.7. PMON
PMON is the bootstrap monitor program supplied in ROM, described much more fully in the ‘‘PMON
User’s Manual’’ which all board customers should have received. Many users will make use of only a
fraction of PMON’s facilities:

The environment store
The board environment is implemented in the top ‘‘page’’ of the onboard flash memory device. It is
intended to be shared by any software which wants to store small amounts of per-board configuration
infor mation. In PMON you use the ‘‘set’’ command to inspect or create environment entries. To edit
existing entries, the ‘‘eset’’ command gives you line editing.

Table 2.2 shows a typical dump of var iables from P−5064; we’ll explain what they mean.

P−5064 manual 2.7. PMON 15

PMON>set

netaddr = 192.168.1.7

ethaddr = 00:40:bc:04:00:09

itquick = y

hostname = comm7.comm.algor.co.uk

nameserver = 192.168.1.65

gateway = 192.168.1.65

bootaddr = gate

v = gate:/tftpboot/p5064/vx5260

m = cmemram

t = gate:/tftpboot/p5064

ittstlevel = 7

i = gate:/tftpboot/p5064/itram

itrom = gate:/tftpboot/p5064/fload.itrom

dlecho = off [off on lfeed]

dlproto = EtxAck [none XonXoff EtxAck]

hostport = tty1

heaptop = 80020000

moresz = 10

prompt = "PMON> "

brkcmd = "l -r @epc 1"

datasz = -b [-b -h -w -d]

inalpha = hex [hex symbol]

inbase = 16 [auto 8 10 16]

regstyle = sw [hw sw]

regsize = 32 [32 64]

rptcmd = trace [off on trace]

trabort = ˆK

ulcr = cr [cr lf crlf]

uleof = %

validpc = "_ftext etext"

showsym = yes [no yes]

fpfmt = both [both double single none]

fpdis = yes [no yes]

PMON>

Table 2.2: P−5064 - typical PMON environment var iables

What do all these mean?

• ethaddr : Without this, no networ k. The first part of the address (‘‘00:40:bc:04 ’’) is the same for all
P−5064s; the last four digits of the hex ether net number are the board’s ser ial number (but in hex); this
board is serial number 9, which is 0x0009 in hex; but the conversion gets a bit harder for bigger numbers!

• itquick : Suppresses long-running power-on memory tests. See PMON manual for how to ask for more
power-on tests.

• netaddr, hostname, nameser ver : You need either a ‘‘netaddr’’ or both a (suitably registered) ‘‘hostname’’
and ‘‘nameser ver’’ to be set up. Either gives the board an identity for communication over your local
networ k.

If you need more infor mation about setting up the networ k, read the PMON manual.

16 2.7. PMON P−5064 manual

• gateway : default gateway. Networ k data for any host which is not on the local networ k (figured out
by compar ing our IP address of that with the host, subject to the ‘‘netmask’’) will be sent here. Useful
if you keep your prototype boards on a separate subnet.

• bootaddr : default networ k host to use when using tftp. You can always give an explicit host name.

• v, m, t, i, itrom : typical programmer-set shortcuts, allowing you to just say (for example):

PMON> boot $v; g

to load and run the program.

• dlecho, dlproto : control download over ser ial or parallel link. P−5064 can echo characters (if the link
is bidirectional) or use a character-based flow control protocol.

• hostpor t : select which device is to be used for download. The device can either be shared with the
PMON console, or separate. Possible download device names are:

tty0 is the first serial port, ‘‘com1’’, also used for the PMON console.

tty1 is the second serial port, ‘‘com2’’.

tty2 is the Centronics port, using peripheral mode.

• heaptop : how much DRAM memory PMON uses, star ting from zero represented as a MIPS ‘‘kseg0’’
address in hex. This is the lowest address at which you can load your program. You can set
‘‘heaptop ’’ somewhat lower; but not to zero (PMON has to have some writable memory to operate
in) and PMON may be unable to do some things for you without enough free memory.

• moresz, prompt : PMON user interface controls.

• br kcmd etc : these var iables configure the operation of PMON as a debug monitor, and you’ll have to
look in the PMON manual for them

Instant PMON
There’s so much more in the PMON user manual, but wor th mentioning:

• Command editing : use emacs/unix style keys to move around and edit characters.

• Booting from ethernet : uses the ‘‘boot’’ command from PMON, and loads ELF object files.

• Booting from serial or parallel ports : use the ‘‘load’’ command of PMON, and can accept a var iety of
download for mats such as S-records.

P−5064 manual 2.7. PMON 17

3. Overview and Block diagram
The easiest way to understand the board is to appreciate that it’s built in two sections, joined at the PCI
controller. One includes the CPU, local memory, ROM and the ‘‘host’’ side of the PCI interface; the other
includes almost all the I/O system, and connects via the onboard PCI bus.

Actually a few signals (interrupts, device resets) do creep across the boundary. But it’s near enough right to
make it wor th drawing the block diagram in two sections.

3.1. CPU and memory

sdram dimm

ad
dr

 r
eg

IOA

PCI

ROM socket
Flash ROM
BCR
LED
interrupt control

4−1 bi mux
re

gi
st

er

re
gi

st
erCPU/

d’board
pci

bridge

re
gi

st
er

bu
s

sw
itc

h

CPU local bus
100MHz, 3.3V

DRAM bus
100MHz, 3.3V

Intermediate bus

register

mux/driver

de
bu

g
co

nn
ec

to
r

2−
1

bi
 m

ux

50MHz, 5V

Figure 3.1 CPU, memor y and local I/O bus

• CPU/daughterboard : P−5064 has both a position for a CPU on the motherboard and a socket for a small
daughterboard for var iant CPUs and/or CPUs with secondary cache RAMs.

• Data paths : the CPU local bus is connected to the DRAM data bus, and from there to the 32-bit
inter mediate bus and I/O system. The rationale for this is that CPU I/O operations are much less frequent
than DRAM cycles, so it creates little overhead to route them through the DRAM bus; and in that way the
cr itical high-speed CPU local bus has only one load point.

• Address paths : the CPU local bus - the MIPS designation is SysAD- is multiplexed, and the address
registers pick up and store the address of each cycle.

18 3.1. CPU and memory P−5064 manual

• SDRAM : P−5064 is designed entirely around synchronous DRAM (SDRAM) memory components,
fitted in DIMM modules. SDRAMs offer vastly better burst data rates than fast-page or EDO DRAMs
- to 100MHz instead of to about 33MHz. P−5064 exploits this perfor mance by having the SDRAM
system ver y tightly coupled to the CPU for the highest perfor mance achievable in this ‘‘discrete logic’’
design.

• Connection to intermediate bus : the SDRAM data bus is registered (for speed conversion) and
multipexed down to 32 bits5 wide to produce an intermediate bus. The bus has several pur poses:

- It provides a hospitable environment for the V360EPC PCI controller, which was designed for an
i960 bus;

- It makes a good home for the system ROM; it’s off the critical high-speed DRAM bus, but
accessible without the complex configuration necessary to get PCI running;

- It provides a point of compatibility with Algorithmics’ P−4032 design, which uses a similar bus.

• ROM and Local I/O : live on an 8-bit extension of the intermediate bus. Dur ing ROM cycles a byte at
a time gets read from the ROM and captured by each byte-lane of the intermediate bus register in
tur n. We also include devices here which are required so early in system initialisation that we’d
rather not have them beyond the PCI controller (because it requires fair ly complex initialisation).

• PCI bridge : this is a V360EPC device from V3 corporation. It’s familiar (it’s also used in
Algor ithmics’ P−4032 product) and wor ks OK.

3.2. PCI and I/O

USB

bridge
PCMCIA

SCSI

bridge
ISA

LCD

Combi I/O

PIO
Keyboard/mouse
RTC

buffer

buffer

buffer

ISA busISA
slot

PCMCIA
slots

IDE
socket

ethernet

PCI bus

PCI slots

Figure 3.2 PCI, ISA, PCMCIA and PC-type I/O

• PCI bus : 32-bit, 33MHz, PCI 2.1 compliant onboard bus and three PC-type expansion slots.

P−5064 does the PCI host role, supplying clocks and arbiter. You can use an exter nal arbiter
instead.

5 Here and elsewhere in the design bus width matching is done using ‘‘QuickSwitch’’
components to provide a completely bidirectional multiplexer/selector.

P−5064 manual 3.2. PCI and I/O 19

• Ether net : onboard 10/100Mbit/s ethernet controller, using the DECchip 211436. Two interfaces are
provided - one for twisted-pair (either speed) and one for 10Mbit/s transceiver. The interface type is
software-selected, and most drivers will automatically configure themselves to talk to an active connection.

• SCSI : 8-bit SCSI-2, using an NCR53C810 controller. There are active ter minators for the SCSI bus
onboard.

• ISA bridge : an Intel 82371 produces an old-fashioned ISA bus for old plug-in boards and onboard dumb
devices.

• USB : two connections, implemented by the i82371. P−5064 just has a header pin connector, and you’ll
need a transition cable to use standard peripherals. Note that this is a USB host function - USB is a highly
asymmetr ical bus.

• IDE interface : dual high-speed IDE channels for adding low-cost disks and other peripherals. Implemented
by the i82371 as a high perfor mance PCI bus master.

• ISA bus : single slot which can accommodate a long ISA bus card.

• PC-card (PCMCIA) bridge : uses a Vadem VG469 controller to support two slots for miniature add-in cards.

• Combi I/O controller : includes dual (16550-compatible) serial ports, diskette interface and PC-type
‘‘Centronics’’ parallel port with bidirectional operation extensions, and capable of playing both the host or
per ipheral role.

• ‘‘PC motherboard’’ I/O : includes PC-type keyboard/mouse controller, real-time clock chip and a general-
pur pose programmable parallel I/O controller for whatever users want.

6 Revision B boards (serial number up to 21) have only 10Mbit/s ethernet, with a
DECchip 21041.

20 3.2. PCI and I/O P−5064 manual

4. Memory map

4.1. CPU’s memor y map
The CPU generates a 36-bit address. But for compatibility with our 32-bit P−4032 board and general
unwillingness to widen the buses, we only decode bits 0−31 of that address, to give a 4Gbyte address
range. And then there are some MIPS facts of life which influence the map:

• Following a reset the CPU starts execution at 0x1FC0 0000 (physical), so this area must map to
onboard ROM.

The other ‘‘hard-wired’’ addresses in the MIPS architecture are the exception/interr upt entr y points,
which are in low physical memory. That means it’s impor tant to have high-speed program memor y at
the bottom of the map.

• Much system software finds it easier to operate in the kseg0 and kseg1 ‘‘unmapped’’ spaces
descr ibed in Appendix A, and such programs will only generate physical addresses up to and
including 0x1FFF FFFF (the low 512Mbytes of address space).

We’ve therefore arranged to map all onboard resources into that first 512Mbytes - the remaining
3.5Gbytes of address range are available for producing strange PCI bus addresses.

Note that revisions of this manual before 1.7 describe a different memory map, which turned out to
make ISA bus programming difficult. If you wrote software which used the original map, and don’t need
ISA bus access, the PMON boot monitor will restore the original map if the environment var iable
‘‘pcimap’’ is set to ‘‘old ’’.

In the memory map Table 4.1 a dagger (†) denotes that the address is software-configured at boot time
- the value given is recommended and fits in with the hardware decodings. You can change it, but the
consequences are your responsibility!

Base
Address

Size Class Description

0000 0000 256Mb Memory onboard DRAM memory

1000 0000 8Mb† ISA
via
PCI

ISA memory access window.

Actually, this is programmed as the start of a window on PCI space, but not used
for onboard devices, and should not be used by PCI-add-in cards. Unclaimed
PCI accesses are directed at the ISA bus (called ‘‘subtractive decoding’’ in PCI
jargon).

This only reaches half the ISA’s limited addressing range - but that should be
enough for most purposes.

1080 0000 8Mb† Reser ved. This range of memory, as decoded on the PCI bus, provides an
unmapped window onto local memory. If the MIPS CPU accessed these
locations nothing ver y useful would happen - the self-decode obstructs access to
the ISA bus

1100 0000 112Mb† Window on PCI memory space (by default, generates addresses 0x1000 0000
lower on the PCI bus). PCI devices get dynamically allocated addresses starting
at PCI address 0x0100 0000 which is CPU address 0x1100 0000 Although
PCI devices’ base addresses are programmable, you should normally leave them
where the bootstrap program left them. Find a particular device by reading PCI
configuration space and getting the values already programmed into the base
registers.

1800 0000 109Mb reserved

1d00 0000 16Mb†

PCI

PCI I/O space window: used (and probably only used) to access the I/O space of
the ‘‘ISA’’ bus and its PC-like per ipherals.

P−5064 manual 4.1. CPU’s memor y map 21

Base
Address

Size Class Description

1d00 0000 64K ISA br idge I/O space via PCI
1d00 0000 i82371 DMA channel 1
1d00 0020 i82371 ICU 1
1d00 0040 i82371 counter/timer
1d00 0060 keyboard data register (combi I/O chip)
1d00 0064 keyboard control register (combi I/O chip)
1d00 0070 real-time clock (address, combi I/O chip)
1d00 0071 real-time clock (data, combi I/O chip)
1d00 0060 keyboard controller (combi I/O chip)
1d00 0080 i82371 DMA address base registers
1d00 0092 SYSC_PORT
1d00 00a0 i82371 ICU 2
1d00 00c0 i82371 DMA channel 2
1d00 01f0 i82371 IDE registers
1d00 02f8 Combi I/O, ser ial por t 1
1d00 03f8 Combi I/O, ser ial por t 0
1d00 0378 Combi I/O, bidirectional Centronics
1d00 037c Centronics peripheral data input register, for use in old-fashioned Centronics

mode only.
1d00 03e2 2 reg Configuration registers for Vadem VG469 PC card controller. All other PC-card

locations are software-configurable and not yet fixed.
1d00 03f0 Combi I/O, diskette controller
1d00 ff00 Combi I/O, GPIO lines

ISA I/O

1ee0 0000 1Mb PCI PCI configuration space: access to PCI devices’ configuration registers. In
P−5064, PCI device IOSEL signals are derived from high PCI bus address bits -
see §5.7. (‘‘PCI bus’’) on page 41 for details. You need to configure V360EPC
before this will wor k.

1ef0 0000 64Kb† V360EPC PCI controller’s inter nal registers

1ef1 0000 reser ved

1f80 0000 512Kb

1f90 0000 512Kb

1fa0 0000 1M

ROM
Byte-wr itable programming window on ROM: configured bootstrap, socket and
onboard flash respectively

1fc0 0000 512Kb Boot ROM location (accesses either ROM socket or flash locations, depending
on the setting of the boot jumper J17.)

1fd0 0000 512Kb EPROM in socket

1fe0 0000 1M

ROM

Onboard flash ROM - top 64K usually reserved environment

1ff0 0000 1 reg
1ff2 0010 4 reg LED display cells (leftmost has lowest address)

1ff3 0000 LCD display

1ff4 0000
1ff5 0000

Rev B boards only - Z80 GPIO controller registers (later boards have GPIO pins
on the combi I/O chip).
The 0x1ff5.0000 decode is used to emulate a Z80 interrupt acknowledge
cycle, to keep the chip happy.

1ff6 0000 UART on debug board (see §10.1)

1ff9 0000 9 reg Interrupt controller registers
1ff9 003c 1 reg Logic revision level register

1ffa 0000 board configuration bits 0
1ffb 0000 board configuration bits 1

1ffc 0000 DRAM configuration register bits

1ffd 0000 board revision and option links register

Local I/O

2000 0000 3.5Gb† PCI Av ailable if you need access to a larger region of PCI space than is available in
the lower-memor y window.

You’ll need to program the TLB or use 64-bit pointers to get addresses bigger
than 0x2000 0000 out of the CPU.

Table 4.1: P−5064 physical address map

22 4.1. CPU’s memor y map P−5064 manual

4.1.1. PCI and ISA ‘‘DMA’’ memor y map
PCI devices can be bus transfer initiators, and operate by moving data directly into and out of local
memor y - the onboard Ethernet and SCSI controllers wor k like that, and so may plug-in PCI devices.

In principle ISA bus devices can take advantage of the DMA service provided by the PCI/ISA bridge
chip, too. How ever, a combination of unexpected (but documented) behaviour by the Intel ISA bridge
chip and unexpected and undocumented behaviour by the V3 PCI controller means that use of ISA bus
DMA may cause a deadlock, and should be avoided. That may change in future versions of P−5064.

By default, the Algorithmics monitor defines two PCI-accessible windows onto local memory (called
‘‘aper tures’’ in the V3 documentation), as shown in Table 4.2.

Base Address
PCI CPU

Size Descr iption

0080 0000 0080 0000 8Mb Maps to 8Mbytes of local memory at the same
physical address. Use for ISA bus DMA (if it ever
works - see note above).

You may also find this window useful for a PCI device,
when an existing driver believes that PCI and
physical addresses are necessarily identical. But you
have to figure out whether it will be possible to restrict
it to operating in this range of addresses.

8000 0000 0000 0000 256Mb Window onto all possible local memory addresses.
The effect of a PCI access to addresses higher than
those supported by your board’s DRAM configuration
is undefined.

Table 4.2: PCI master’s windows onto local memory

4.1.2. PCI memor y map (CPU-initiated cycles)
To access a PCI location: you have to program an aper ture in the PCI bridge chip. An aper ture has
several components, as shown in Figure 4.1.

P−5064 manual 4.1. CPU’s memor y map 23

0x0000.0000

0xFFFF.FFFF

0x0000.0000

0xFFFF.FFFF

local bus
base address

PCI bus
base address

aperture size

Local bus addresses PCI bus addresses

Figure 4.1 Defining an aperture onto PCI space

Here’s what you need to define an aperture:

1) A local bus base address. Accesses to the region starting here will get decoded by the PCI bridge chip
and forwarded to PCI.

2) A size, implemented by a mask which determines what bits to check against the base address; that lets
you define apertures as small as 64Kbyte and as large as 256Mbyte.

3) A PCI base address which is used to relocate the bottom of the mapped region into PCI space.

4) Some infor mation on how the PCI access is to be carried out. This allows you to set up apertures to talk
to PCI I/O or configuration space, for example.

Cache refill or writeback cycles are not supported by the PCI subsystem. Since the MIPS CPU does accesses
cached or uncached according to the program address (see Appendix A), it’s the programmers responsibility to
make sure you do only UNCACHED accesses to PCI space.

You also need to map the PCI address into your aperture, adding the appropriate base address.

Table 4.1 shows Algorithmics’ default address setup for the PCI bus, and where you can locate onboard
devices. If you want to change it you can, but it is likely to confuse everyone.

24 4.1. CPU’s memor y map P−5064 manual

5. Programming P−5064
This chapter focusses on P−5064 from a programmer’s point of view.

5.1. CPU
P−5064 can support any MIPS CPU using a 64-bit derivative of the system interface introduced with the
R4000, and extended to support the R5000 on-bus secondary cache. Algor ithmics intend to provide
CPU daughterboards for all popular CPU/cache combinations.

CPUs announced to date in this class (and not plainly obsolete) include:

Date of max i/f Ext
intro clock cache?

Manufacturer/CPU Notes

IDT R4700 1994 67MHz MIPS III instruction set
IDT R4650 1995 67MHz Low-cost but cut-down CPU with no

double-precision floating point and no
memor y management hardware
(TLB). Integer multiply-accumulate
instr uctions.

MIPS R5000 1995 100MHz ✓ MIPS IV instruction set
MIPS R10000 1995 83MHz? ✓ MIPS IV instruction set
QED RM5260 1997 75MHz MIPS IV + integer multiply-accumulate
QED RM5270 1997 83MHz ✓ MIPS IV + integer multiply-accumulate
QED RM5261 1998 100MHz MIPS IV + integer multiply-accumulate
QED RM5271 1998 100MHz ✓ MIPS IV + integer multiply-accumulate
QED RM7000 1998 100MHz ✓ MIPS IV + integer multiply-

accumulate, prefetch, non-blocking
reads.

NEC Vr5464 1998 100MHz MIPS IV + integer multiply-
accumulate, 8-bit ‘‘MDMX’’, prefetch,
non-blocking reads, other
enhancements.

Of these the QED RM5270 and RM7000 are pin-compatible; RM5260, RM5270 and R5000 versions of
P−5064 are available now (Summer 1998). Versions for other CPUs are likely to be scheduled
according to customer demand.

Differences between CPUs
In software terms, there is little to choose between most of these processors; and what differences there
are, are mostly hidden by the compiler. How ever:

• R4650 : is a cut-down CPU whose lack of a TLB and double-precision floating point hardware make
it unsuitable for some applications; of course, the resulting small die and low price make it attractive
for others.

• MIPS III vs MIPS IV : the R5000 and later CPUs implement the MIPS IV version of the instruction
set, and both this and some implementation improvements make them likely to offer significantly
better perfor mance on floating-point intensive programs.

• Integer multiply/accumulate : available on all except the real ‘‘MIPS’’ CPUs, boosts perfor mance on
some ‘‘DSP’’-like algor ithms such as MPEG decoding.

MIPS IV CPUs have a floating point multiply/add instruction, which may provide a perfectly good
alter native.

P−5064 manual 5.1. CPU 25

• Dual-issue : the R5000 and its successors can all issue a floating point and an integer operation in the
same clock cycle. RM7000 and Vr5464 (quite different designs) can both dual-issue a much wider range of
instr uctions.

This has few software-visible effects. But R5000’s dual-issue shows up at the bus interface when running
uncached; the R5000 fetches 8 bytes of instruction data and (so long as they are both instructions in its
execution sequence) runs both of them. This habit has been criticised (the bootstrap memory must be 8
bytes wide and the system interface has to know the CPU endianness before you can run any code at all);
later RM5xxx CPUs fetch instructions one at a time. As a result, R5000 runs about twice as fast uncached;
rarely important, but may catch you out.

Daughterboards and on-motherboard CPUs
A P−5064 motherboard can accommodate one type of CPU directly; others are added on daughterboards.
CPUs with exter nal caches must be on daughterboards.

Optional external cache
Some daughterboards will include a CPU with an exter nal secondar y or tertiar y cache. Caches could be as
small as 256Kbytes or (for some CPUs) as large as 8Mbytes. The price list currently includes RM5270 and
R5000 CPUs with 2Mbyte caches.

CPU configuration options
The main input clock is der ived from a synthesiser IC and is set by a group of jumpers summarised in Table
7.2; likely choices are 75, 83 and 100MHz.

Options determined by the CPU itself are set up mostly on the jumper block J24 (described in §7.2), though
endianness is configured by one of the jumpers on J23 (described in §7.3).

• Basic clock rate : configure the clock synthesiser to any of its options in the range 50-83MHz.

Higher clock speeds are available by fitting a dedicated oscillator into position OSC1 and changing the
jumper J5 to 2-3.

• CPU clock multiplier : CPUs run internally at some multiple of the basic clock rate; see Table 7.3.

• Secondar y cache present/absent : R5000-like CPUs need to be told that a secondary cache is fitted; it’s all
in §7.2. (‘‘CPU software and options jumper: J23, J24’’) on page 51.

• Secondar y cache size : needs configuration on daughterboards; some may be pre-configured, others may
have links.

• Endianness : regardless of your CPU choice P−5064 can be set up either big-endian or little-endian.
Software binaries for big- and little-endian are different, and you will have to make sure that the boot ROM
program and any other software you want to run has been built to match the CPU’s configured endianness.

5.2. Local SDRAM memory
P−5064 uses synchronous DRAM 168-pin DIMM modules. These are 3.3V, ‘‘unbuffered’’, 72-bit (also called
‘‘ECC’’) types. DIMMs are fitted with encoding slots which match coded separators in the socket; so if your
DIMMs won’t fit in the sockets, the chances are they are the wrong type.

Speed grades for DIMM memories were rather confusing. You needed components at least one speed grade
higher than the CPU interface clock rate of your P−5064. However, there’s now a straightforward solution - you
should buy DIMMs described as ‘‘PC-100 compatible’’ and they should function in P−5064 up to 100MHz.

Apar t from these (manifest) features, there are also some options with no functional significance in a running
board, but where the memory controller on P−5064 must be configured correctly to match your particular
DIMMs.

26 5.2. Local SDRAM memory P−5064 manual

By a convention initiated by IBM and sanctified by PC-100, each DIMM carries ‘‘self-por trait’’ data
encoded in a in a tiny on-DIMM EEROM device, accessed through a compact 2-wire interface. P−5064
is equipped to access that data.

Most of the time, this will be done by Algor ithmics’ bootstrap monitor sequence at power-on and you
won’t have to touch it again; if you need to replace the bootstrap we suggest you approach Algorithmics
and get a copy of our code. But the sections below explain the options; you can find how to change the
memor y controller setup in the ‘‘DRAM configuration register’’ descr ibed in §5.4.2; we’ve even included
details of how to read and interpret DIMM EEROMs in Appendix C.

Modules and sizes
In each of P−5064’s two sockets:

• The DIMM module contains one or two sides of memory components, 72 bits wide. (We say ‘‘side’’
because the second set is usually assembled on the reverse side of the DIMM PCB, though it
doesn’t have to be).

• Each DRAM component is divided into 2 or 4 banks. It’s possible to overlap actions in different
banks in high-perfor mance memor y systems7.

• Each bank consists of an almost-square two-dimensional array of memor y locations. Applying the
row address to a DRAM causes a whole slice (a column) of the array to be fetched to an internal
holding store; the data can then be accessed by specifying a column address which picks the datum
you want from the internal store.

At the end of any access cycle, the entire column of data is written back to the main DRAM store8.

DIMMs of the same capacity may differ :

• There are var ious speed grades (P−5064 is likely to use 83, 100 and 125MHz components in DIMMs
mar ked as 67, 75, 83 or 100MHz). The DIMM speed grade tells you what speed of PC chip set it
works with; at the time of writing that means that all DIMMs tend to be described as ‘‘67MHz’’
because that’s how fast PCs go. Read the small print in the DIMM data manual, or ask Algorithmics.

• Some have one side, some have two.

• Some use 2-bank components, some use 4-bank components.

• Components var y in how big the columns are, and how many columns make up the array - that is,
how many row address bits and how many column address bits are valid.

In theory, all you do is to read and decode the DIMM configuration out of the EEPROM and write
appropr iate values into the DRAM configuration register (see §5.4.2).

Outcomes of out-of-range memor y accesses

Once the DRAM configuration register is set to match your SDRAM components, an out-of-range
memor y access in the DRAM region of the memory map will fail to select any DRAMs. The data bus will
therefore ‘‘float’’, and a read will usually return whatever doubleword value was last seen on the bus.
Quite commonly, this will come back with correct parity; but after a while the data will ‘‘decay’’ and you’ll
get a parity error. Software which probes for memory configurations should either disable parity error
checking or catch the parity exception.

7 P−5064 doesn’t do this. These facilities give little extra perfor mance for a lot of
extra complexity.

8 In fact, the main DRAM store is ‘‘leaky’’ and every column must be refreshed by
being accessed often enough to prevent the data from dribbling away to unreliability;
typically every column must be touched about 250 times per second. That’s why it’s
called ‘‘dynamic RAM’’.

P−5064 manual 5.2. Local SDRAM memory 27

If you do write and read-back memor y locations to sense the presence of DRAM, make sure that you write a
different doubleword bit pattern to somewhere between the write and read.

5.3. Flash ROM and the boot ROM socket
P−5064 normally bootstraps itself and runs its debug monitor out of a 1Mbyte flash ROM. But for its start-of-
life bootstrap, emergencies or to use a ROM emulator device it also supports a socket for a real dual-in-line
PROM.

Both devices are always visible in the memory map of the board at their own unique addresses. In addition,
whichever ROM is designated as the bootstrap device is mapped into memory at location 0x1fc0 0000
physical - which is where MIPS CPUs start execution when reset. Jumper J17 should be out to boot from
onboard flash, and in to boot from the socket.

5.3.1. Flash ROM
Flash ROMs can be reprogrammed under software control, but retain data indefinitely with no power.
However, you can’t just overwr ite the bytes you want; to re-write a flash part you must first erase it (using a
special software command sequence) and then program it (using yet more special sequences). The erase
operation wor ks not on individual bytes, but on large chunks (‘‘sectors’’) of the memory space9.

P−5064 features a 29F080 part, sometimes from AMD and sometimes from Fujitsu: it’s 1Mbyte in size, 8 bits
wide10, and is erasable in 64Kbyte sectors.

5.3.2. PROM socket
By default, this accepts a 512K×8 uV-erasable PROM, whose access time is 120ns or less. But by moving a
couple of links (specifically, moving J8 and J7 from their default ‘‘2-3’’ position to ‘‘1-2’’) you can also use an
AMD 29F040 or compatible flash device. If you want to use the socket for a ROM emulator or similar, you may
need the pinout so it’s shown in Figure 5.1.

9 On early devices you had to erase the whole contents of the device; it’s this erase-
ev erything-at-once feature which originally led to it being called ‘‘flash’’ memor y.

10 The Fujitsu part has a 16-bit bus, but we use an 8-bit compatibility mode.

28 5.3. Flash ROM and the boot ROM socket P−5064 manual

J8 1-2 = A18
J8 2-3 = +5V

1 17 D3

A16 2 18 D4
A15 3 19 D5
A12 4 20 D6

A7 5 21 D7
A6 6 22 CS*
A5 7 23 A10
A4 8 24 RD*
A3 9 25 A11
A2 10 26 A9
A1 11 27 A8
A0 12 28 A13
D0 13 29 A14
D1 14 30 A17

J7 1-2 = WE*
J7 2-3 = A18
J7 out = HI

D2 15 31

GND 16 32 +5V

Figure 5.1 Pinout of ROM socket

5.3.3. Programming flash memory
Before you do anything, note that Algorithmics’ PMON bootstrap ROM reserves the highest 64Kbyte
sector of the flash ROM to keep its ‘‘environment store’’, which holds important infor mation about the
board and shares it between different applications. Even if you’re putting completely different software
in the ROM, you should keep the environment store; you can get software to read and maintain it free
from Algorithmics.

An additional jumper J6 is normally fitted, but can be removed to write-protect a flash ROM fitted in the
socket (it disables the write strobe signal to the ROM socket.)

The flash-programming endianness problem

Whenever the CPU reads a ROM location on P−5064 the board runs eight byte-wide ROM reads and
assembles the bytes into a double-word - even if the CPU is only trying to read a byte or some other
sub-word quantity11.

The assembly process is in fact managed in two halves; four ROM bytes are built into 32-bit words on
the intermediate bus and two such words are collected at the intermediate bus/memor y bus interface.

For rather dubious historical reasons the assembly of ROM bytes into 32-bit words is done the same
way, regardless of the processor’s configured endianness; the ROM data with the lowest ROM address
is presented on the intermediate bus signals 0-7, and the highest-ROM-addressed byte on signals
24-31.

However, for compelling practical reasons the assembly of two 32-bit words into one 64-bit doubleword
is done according to CPU endianness; for a little-endian CPU this is consistent with the byte-within-word
organisation, but for a big-endian CPU it isn’t. Figure 5.2 shows what happens.

11 This is more reasonable than it first sounds, because the CPU can only read partial
words from the ROM when running uncached, which it should do only for a small part of
the early bootstrap sequence.

P−5064 manual 5.3. Flash ROM and the boot ROM socket 29

0

1

2

3

4

5

6

7

a

b

c

d

e

f

g

h

In ROM:

031

fgh e

abcd0

4

On intermediate bus

Memory bus (BE CPU)

Memory bus (LE CPU)

fgh e abcd

fgh eabcd

031

063

063

01234567

0 1 2 3 4 5 6 7

CPU addresses

CPU addresses

Figure 5.2 How ROM bytes become CPU data

You need to understand this organisation to be able to build a functioning ROM for a P−5064, but most ROM
preparation utilities are forgiving of hardware’s peculiar ities and are prepared to rearrange bytes appropriately.

However, the read-8-bytes-at-once mechanism, unproblematic for normal reads, offers no way of doing writes
and is quite unacceptable for the ‘‘polling’’ and other magic reads required as part of programming a flash
device. So we’ve provided a separate set of memory map windows onto the ROMs, where something else
happens which is more useful for programming.

In the ROM programming windows, only byte accesses are supported - the effect of wider accesses is
undefined. But in these windows, the CPU byte address is fed directly to the ROMs. For a little-endian CPU
this makes sense, but for a big-endian CPU the result is that within 8-byte aligned blocks the programming
view of the bytes is horribly scrambled with respect to the regular ROM-reading, program-executing view.

You can read off the relationship between the addresses from Figure 5.2; but it’s summar ised directly in Table
5.1 too.

Byte address in normal region 0 1 2 3 4 5 6 7

Programming address 3 2 1 0 7 6 5 4

Table 5.1: Programming flash on big-endian CPU - ROM byte addressing

5.4. P−5064-specific hardware registers

5.4.1. Board configuration register
An array of 1-bit write-only registers used to configure the board, and to hold var ious subsystems in reset. You
should access them with word writes, but only bit 0 of the data value is important. All the outputs of this
register are set to zero (logic low) following a board reset or power-up. Eleven bits are currently used; five
more are temptingly available for future use.

30 5.4. P−5064-specific hardware registers P−5064 manual

Offset Name set 1 to

0x0 0000 reser ved

0x0 0004 CENTPRINTER Use Centronics interface as a peripheral operating in ‘‘classic’’ old-

fashioned centronics mode

0x0 0008 LED_BLNK* Make LED display characters visible

0x0 000c PSU_OFF Rev B boards only - switch off power to the board. Later boards use

registers internal to the combi I/O chip.

0x0 0010 CPU_PE_EN* Disable parity checking by the CPU, when it reads from SDRAM memory.

You have to do this if you use non-ECC DIMM modules; you can’t do this

if you’re using a CPU with an R5000-type secondary cache.

0x0 0014 V3_PE_EN* Mask the V360EPC (PCI interface chip) parity error signal, which is

appropr iate when the local memory is not storing correct parity.

0x0 0018 reser ved

0x0 001c STERM_EN* Take P−5064’s SCSI terminators out of circuit. You should do this if

P−5064 is not at either end of the SCSI cable - but it normally will be.

0x1 0000 V3RESET* release the chip reset to the PCI bridge (V3 V360EPC)

0x1 0004 NCR_RESET* release the chip reset to the SCSI controller (NCR 53C810)

0x1 0008 DEC_RESET* release the chip reset to the ethernet controller (DEC 21143)

0x1 000c ISA_PWROK allow the ISA subsystem to power up in the normal way. With this signal

inactive, the ISA bridge will hold the ISA bus in reset.

Note that the ISA bridge chip waits a few mS after ISA_PWROK becomes

active before releasing reset; if you cycle this signal wait 10mS or so

before attempting any operation involving the ISA bus or ISA bridge.

0x1 0010 PCMCIA_RESET* release reset to the PC card (PCMCIA) controller and sockets.

0x1 0014

0x1 0018

0x1 001c

reser ved

Table 5.2: Board configuration register fields

5.4.2. DRAM configuration register
An 8-bit register which, consists of 8 individually-writable write-only bits. Six of these bits are used
together as a 6-bit field.

Offset Description

0x00

0x04

0x08

0x0c

0x10

0x14

6-bit configuration value for a DIMM module, LS bit first. In normal

operation, this configures the DIMM1 position.

0x18 A 0→1 transition loads configuration values into the internal register

which configures the DIMM2 position.

0x1c Reser ved

Table 5.3: DRAM configuration register bits

So DIMM2 values must be loaded first and pushed into place by writing a 1 to offset 0x18 . The data for
each DIMM module is now inter preted as shown in Figure 5.3.

P−5064 manual 5.4. P−5064-specific hardware registers 31

register

offset 0x14 0x10 0x0c 0x08 0x04 0x00

Sides Banks/DRAM Column address width Row address width

0 = 1

1 = 2

0 = 2

1 = 4

00 = 8 bits

01 = 9 bits

10 = 10 bits

11 = 11 bits

00 = ‘‘default’’

01 = 11 bits

10 = 12 bits

11 = 13 bits

Figure 5.3 Memory configuration registers and DRAM types

5.4.3. Board (motherboard) revision
You can read this on four bits of the ‘‘software options’’ register described in §7.3. Value ‘‘0’’ indicates revision
‘‘A’’ and so on.

Note that the motherboard’s identity is also defined by its serial number (Algorithmics keep a list of the revision
level of all boards); the serial number is in turn directly related to the ethernet address, which is available as
par t of the PMON boot monitor’s ‘‘environment’’ store.

5.4.4. Logic version
An 8-bit register, which tracks the version of the system logic loaded into P−5064’s flash-programmable Xilinx
logic devices. It is incremented with new releases of the logic (a separate sequence for each board artwor k
and corresponding board revision register value). We don’t always publicise what gets changed; but
sometimes board errata will be reported for a specific revision, and fixed by a higher one.

It will always help us resolve suppor t quer ies if you tell us the board and logic revision levels of your board.
Their value is reported by the bootstrap ROM at power up.

32 5.4. P−5064-specific hardware registers P−5064 manual

5.5. P−5064 interrupt controller
This flexible controller is implemented in one of P−5064’s programmable logic devices, and has the
potential to be customised to user’s requirements. This section describes the standard version.

P−5064 has a lot of different possible interrupt inputs, which need to be collected, controlled and fed into
one of the MIPS CPU’s five usable interrupt inputs. Although the CPU inputs are identically treated in
the MIPS architecture, it’s common practice in MIPS software to use any CPU input to group only
interr upts whose software handlers run with the same prior ity12.

Given the diversity of operating systems available on P−5064, a good interrupt system should be able to
provide something close to arbitrar y steer ing of incoming interrupts onto CPU inputs. So we do that, at
least for four out of six CPU interrupt inputs.

In addition, the interrupt controller:

• Allows each incoming interrupt signal’s state to be read in an ‘‘interr upt request register’’ or IRR;

• Allows each interrupt to be individually enabled (disabled interrupts can’t cause an active interr upt to
the CPU);

• Latches interrupts which occur transiently, and provides a way for the latched value to be cleared
down by the interrupt handler.

5.5.1. CPU interrupts
There are seven CPU interrupt pins on most MIPS CPUs: Int0-5* and NMI.

P−5064’s interr upt controller divides them up as follows:

• Int0-3* are treated identically, and any nor mal interr upt input can be directed to any one of these
under software control. These interrupt signals should be used for grouping together most interrupts
into the CPU.

• Int4* is reserved for high-prior ity (‘‘panic’’) interrupts - fatal, serious error or other beyond-nor mal-
device events.

• Int5* is not used at all; MIPS CPUs after R4000 have a useful internal timer which can and usually
does take over this interrupt input.

• NMI* is not driven by the standard interrupt controller, but is wired in to be available for customers
specials.

5.5.2. Interrupt sources
The different events which can potentially cause interrupts in P−5064 are listed out in Table 5.4; it also
lists the signal name as used in the schematics. Signals ending with a ‘‘* ’’ are active low - which
doesn’t normally matter to the programmer.

Name Signal Significance

berr BUSERR* Timeout on intermediate bus cycle.

DBGINT* From input on debug board, intended for trigger outputs from logic
analysers or other hardware debug assistants.

DEBUG* Debug/power-on switch pulse

debug

isanmi ISA_NMI Interr upt from the ISA bridge, intended to connect to an Intel-
compatible CPU’s NMI ‘‘non-maskable’’ interr upt input.

12 In a fixed-pr ior ity interr upt scheme, two interr upt handlers have the same prior ity if
neither is allowed to pre-empt the other.

P−5064 manual 5.5. P−5064 interrupt controller 33

Name Signal Significance

pfail PWRGD 5V and 3.3V power OK signal, can create an interrupt when it goes
inactive to give advance war ning of power loss.

IOperr V3_PERR* Parity error detected by PCI bridge

ide0 DDIRQ14

ide1 DDIRQ15
Pr imary and secondary IDE ports, respectively

ETH_INT*eth
e_mdint

Ether net interr upts. ETH_INT* is the interrupt from DECchip 21143
ether net controller ; MDINT* is from the 100baseT codec (QS6612 chip).
They are separately enabled, and independently visible in the interrupt
request register, but are steered to a CPU interrupt input together, by
the ‘‘eth’’ field of the steering register ‘‘XBAR4’’.

In practice, we don’t expect anyone to enable MDINT*; it was only
included to allow users to implement a suggested wor k-round to an
obscure QS6612 errata.

e_wake ETH_WAKEUP Connected to the 21143’s extra-interr upt pin; one function of this is to
recognise a particular kind of packet arr ival, even when the ethernet
chip is dozing. Intended to implement deep power-down modes for
ser ver functions in intermittent use. Not available on 21143 parts
before the ‘‘TD’’ revision.

This signal is a positive-going edge, and the interrupt controller
contains latch-and-clear logic.

e_coderr QS6612_ERR Error indication from the 100baseT codec chip. A positive-going edge;
the interrupt controller contains latch-and-clear logic. You probably
won’t need this.

isabr ISA_INTR Interr upt from i82371 ISA bridge

kbd LIRQ1 keyboard/mouse controller

mouse MSEIRQ separate mouse interrupt from keyboard/mouse controller, if required.
The standard controller combines mouse and keyboard interrupts, into
the event we’ll call mkbd.

com1 LIRQ4 ser ial por t 1

com2 LIRQ3 ser ial por t 2

flp LIRQ6 floppy disk controller

cent LIRQ7 Centronics/IEEE1284 controller. Note that in some of the simpler
modes the signal is a pulse, and the interrupt controller contains logic
to latch the signal and clear it down under software control.

rtc LIRQ8* Real-time clock

pci0-3 PCIIRQ0-3* PCI slot signals

scsi SCSI_INT* Symbios 53C810 SCSI controller

usb USB_INT* USB controller (part of i82371)

pcibr V3IRQ* V3 V360EPC PCI bridge chip

Table 5.4: Interrupt sources

34 5.5. P−5064 interrupt controller P−5064 manual

5.5.3. Register map

Interrupt request/enable registers
Offs register Dir/ Data bits
(hex) name Function 7 6 5 4 3 2 1 0

Rd: IRR
Wr : IntEn

0x0 LOCINT rtc 0 cent com2 com1 mkbd flp pcibr

Rd: IRR 0 isanmi pfail

Wr : ClearInt cent × ×
0x4 PANIC e_coderr e_wake IOperr berr debug

Rd: IRR
Wr : IntEn

0x8 PCIINT pci3 pci2 pci1 pci0 usb scsi eth e_mdint

Rd: IRR
Wr : IntEn

0xC ISAINT × × × × × ide1 ide0 isabr

Rd: IRR
Wr : ClearInt

0x24 KBDINT × × × × × × mouse kbd

Interrupt steering registers

0x10 XBAR0 Wr : Steer com1 mkbd flp pcibr

0x14 XBAR1 Wr : Steer timer × cent com2

0x18 XBAR2 Wr : Steer pci3 pci2 pci1 pci0

0x1C XBAR3 Wr : Steer × KE† ide1 ide0 isabr

0x20 XBAR4 Wr : Steer usb scsi eth ×

† This bit doesn’t steer an interrupt, but configures the keyboard interrupt as edge- rather than level-
sensitive.

Table 5.5: Interrupt controller registers

Notes on the interrupt request/enable registers

A ‘‘1’’ in any IRR register means that the corresponding interrupt signal is active (or in the case of
latched signals, an edge has been detected). Some of the interrupt signals are active-low, and some
active-high, but the software can’t see that; an active interr upt is always a ‘‘1’’ bit.

No interrupt will be passed to the CPU unless the corresponding bit is set ‘‘1’’ in the IntEn register. You
can’t read the IntEn registers (the IRRs occupy the same IO addresses); so you may need to keep a
soft copy of the register value if you want to be able to update the bits independently. The IntEn

registers are cleared to zero (disabling all interrupts through them) on power-up.

Most of the non-panic device interrupts in P−5064 are ‘‘level-tr iggered’’ - that is, once the device has
raised the interrupt condition some kind of software intervention at the device is necessary to get it to
de-asser t its interrupt signal.

The first exception is the Centronics interface interrupt which (in the simplest mode) does not behave
like this; the data-ready interrupt signal is a pulse. The interrupt controller stores the pulse event, and
once you’ve ser viced the Centronics port it needs to be cleared out by writing a ‘‘1’’ to the appropriate bit
of the ‘‘panic’’ ClearInt register.

The keyboard/mouse controller interrupts also are best handled as edges, and that’s an option from
logic revision 4 onward. You need to set the xbar3(KE) bit to make this happen, and then write to
kbdint to clear out interrupts once they’ve been detected. You can still only enable and steer the
mouse/keyboard interrupt together.

P−5064 manual 5.5. P−5064 interrupt controller 35

None of the ‘‘panic’’ interr upts can be masked at the interrupt controller; the CPU interrupt Int4* will be
activated whenever any of these conditions happen. But some interrupts (berr, debug, IOperr, and centronics)
occur as pulses and are stored by the interrupt controller. You can clear them out (individually or together) by
wr iting to the panic register in its ClearInt function - write a ‘‘1’’ to clear the corresponding stored interrupt.

Although the latched interrupts are all forced to the inactive state following a system reset, it’s probably
sensible to clear all of them again during software initialisation.

Notes on the interrupt steering registers

Device interrupts may be individually signalled on any of the CPU interrupt lines Int0-3*; just write a binary
value 0-3 to the two-bit field provided in one of the steering registers. At system reset the steering registers
are all reset to zero, directing all interrupts towards Int0*. This is more by accident than design, and is unlikely
to be useful.

36 5.5. P−5064 interrupt controller P−5064 manual

5.6. Local I/O
There are a whole bunch of simple ‘‘dumb’’ I/O devices on P−5064, to help you wire up a var iety of
possible peripherals. Suppor t for ‘‘IDE’’ disks and the USB bus are provided by the ISA bridge chip, and
are described in §5.10. Some of these peripherals are attached more or less directly to the intermediate
bus, and some to the onboard relation of the ISA bus called the ‘‘X-bus’’ on PCs. You may need to be
aw are of the location of devices sometimes.

5.6.1. Dual Serial port
The dual serial port is one of the functions of a National Semiconductor PC93707 multi-function
controller13; from a software point of view it’s just like programming two independent 16550 UARTs.

You’ll need to know:

• The serial port timing source is a 24MHz crystal, which is divided by 13 to give a UART clock of
1.846154 MHz. This is only 0.16% higher then the usual PC UART clock of 1.8432 MHz (well within
RS232 tolerances).

• When you wire up a serial port, important signals which you don’t connect are generally pulled up
into the least-disruptive state. That makes it easy to communicate with P−5064 along a 3-wire cable,
if that’s your choice.

• See Figure 8.2 in the connectors chapter 8 for a list of what signals are supported.

Programming is PC-compatible; or refer to the sample drivers.

5.6.2. Debug board serial port
Some debug ports will carry a ser ial por t; it’s there because the normal serial port (on the ISA bus)
requires a great deal of the board’s logic to be functional before it will wor k. The debug board port is
mainly intended for commissioning at Algorithmics, and most debug boards will be built without it.
Enquire if you have a need for it.

5.6.3. Centronics
The Combi I/O chip implements a subset of the ISA Extended Capabilities Por t (ECP) interface
standard, defined by Microsoft and HP; with appropriate software it can support the full set of modes
descr ibed in the IEEE1284 standard.

Being a Centronics peripheral

The controller was conceived to implement the host-side interface, and not the printer side. But on
P−5064 the port also provides a peripheral interface on a second connector (to support functions such
as downloading from a PC to the board). Table 5.6 shows how the controller signals are re-deployed
when in peripheral mode.

13 Rev B boards used a Winbond W83787F.

P−5064 manual 5.6. Local I/O 37

Controller Centronics
Signal Signal

nStrobe → nAck

nAuto → Busy

nInit → PError

nSelectIn → nSelect

nAck ← nStrobe

Busy ← nAuto

PError ← nInit

nSelect ← nSelectIn

PIO(B0) → nFault

Table 5.6: Centronics connections in ‘‘per ipheral’’ mode

These connections allow the controller’s FIFO-based, high-speed handshaking to continue to wor k in ECP
mode.

Note that since there are normally 5 printer→host inputs, but only 4 host→pr inter outputs, we need one extra
output bit in peripheral mode; one of the general-pur pose PIO controller’s outputs, called B0 in §5.6.6, is used
to drive Centronics nFault.

There are some particular difficulties exper ienced when being a peripheral to the old-fashioned ‘‘compatible’’
mode:

• The compatible mode requires that the Busy signal should be asserted immediately (you have less than 1µs
to do this) after the host has sent data by asser ting Strobe. This is too fast for software, so P−5064
provides some exter nal logic which asserts Busy after every datum is received, and de-asserts Busy again
when you program an nAck response.

The auto-busy logic is not required in the P1284 fancy bidirectional modes; but when you’re emulating an
old-fashioned printer you can enable this logic by writing a bit in the board configuration register, descr ibed
in §5.4. (‘‘P−5064-specific hardware registers’’) on page 30. When the ‘‘auto-busy’’ logic is enabled, we
don’t need a controller output for Busy (we’re in peripheral mode so that’s the signal called nAuto on the
schematics, or AutoFd in the controller documentation). Auto-busy is enabled from board reset, on the
assumption that the most primitive use of the port is to download software from a PC.

• In compatible mode it’s common to hold data on the bus for only a ver y shor t while after the active
(negative-going) edge of nStrobe, because most printers capture the data through an edge-triggered
register. P−5064 has an extra register which captures the Centronics data bus and should be used when
receiving in this mode; it’s called ‘‘Centronics peripheral data input register’’ in the memory map table Table
4.1.

• The Centronics interrupt does not remain active until serviced, but consists of a pulse. It is latched by the
interr upt controller, and can be cleared by writing the appropriate bit to the ‘‘Interr upt Clear’’ register
descr ibed in §5.5. (‘‘P−5064 interrupt controller’’) on page 33.

ECP/EPP programming is complicated; ask Algorithmics whether they’ve got any driver software which will
help you.

5.6.4. LED display
The LED display is a Siemens DLR2416 or equivalent - a four-character ASCII display. Each display position
is accessed as a separate writable 7-bit register (the most significant bit is don’t care) - curiously, the lowest-
addressed register is the rightmost character position.

38 5.6. Local I/O P−5064 manual

Each position can display any of 128 characters. A familiar US ASCII character set is used for character
values of 0x20-0x7e (’ ’ − ’˜’). In addition 32 special European and graphic characters are available in
character positions 0x00-0x1f, somewhat as shown in Figure 5.4.

0 1 2 3 4 5 6 7 8 9 A B C D E F
0-0xF

ì ↑ ← ↓ → ¿ À Φ φ Ò Ù n ç ê É é

0x10-0x1F
è Æ æ Å å Ä ä Ö ö Ü ü C F ß £ ¥

Figure 5.4 Alphanumer ic Display Extended Character Set

The sample driver conve ys longer messages by scrolling at a human-readable speed.

The LED display is attached to the board’s inter mediate bus, so that it wor ks regardless of the
programming of the (complicated) PCI and ISA bus subsystems. That helps it do one of its main jobs,
which is to pass infor mation back from the power-on test sequence.

5.6.5. LCD display
The LCD display is a 16×2 back-lit LCD display suitable for panel mounting, based on the Hitachi
HD44780 or compatible controller.

It should be connected to the header P23 with a short ribbon cable. The connection and adjustments
are described in §8.14.

You can no doubt get manufacturer’s data sheets, but we found programming infor mation on the wor ld-
wide web (see Appendix B, page 77).

5.6.6. Software-configurable general purpose I/O
This part of the functions of the combi I/O chip goes beyond standard PC clone operation, and you’ll
need to read the datasheet.

Older boards used a separate Z80 family PIO chip, the Z84C2008PEC.

In both cases some of the I/O pins are used for onboard requirements for extra I/O bits, and as a bonus
remaining signals are made available on a connector. This should help customers who need to build
custom processor-controlled interfaces consisting of a few input and output lines; it can be a godsend
when you need to wor k around a bug in a piece of exper imental hardware, or when using hardware test
equipment to trace software execution.

The connector provides an 8-bit bank of I/O pins, individually controlled as to direction, with var ious
latching options. The header pinout is in Table 8.5 on page 60.

P−5064 manual 5.6. Local I/O 39

GPIO bits used for onboard functions

Signal See
Name section

Port/Bit In/Out Used for

GPIO20 nFault Out 5.6.3 Dr ives this Centronics peripheral interface
signal.

GPIO25 SDA_OE* Out
GPIO26 SCL Out
GPIO27 SDA BiDir

App C

GPIO25-27 are used to read and write the serial
EEPROM devices on P−5064’s memor y DIMM
modules.

This is not done directly because the combi
chip has 5V signalling and the SDRAM
modules are 3.3V only; the signals are staged
through a programmable logic chip, which
alters the semantics somewhat.

Table 5.7: Parallel I/O bits and onboard functions

5.6.7. Diskette
This is provided by the combi I/O chip, and emulates the NEC µPD765 device used in PCs since time began.
For programming infor mation get the combi I/O chip documentation; see Appendix B, page 77. The floppy por t
uses DMA service, provided by the i82371 ISA bridge.

5.6.8. Real Time Clock (RTC)
Part of the combi I/O chip (except on rev B boards) the PC-compatible real-time clock remembers the date and
time with a resolution of 1 second. It provides a programmable tick and alarm which can cause an interrupt.
On Rev B boards there is a SQW output, programmed at 32kHz by the firmware, which must not be changed -
it is used to generate DRAM refresh timing.

The RTC also provides a small amount (242 bytes) of read/write memory which is retained over pow er-down;
the monitor ROM does not use this space, but for historical reasons some OS ports do - VxWor ks, for one.

The RTC chip uses a long-lifetime battery (BT1) to keep time when system power is off. The battery can be
replaced when it eventually runs down; buy a 1’’ lithium ‘‘coin’’ type. Revision B boards used a soldered-in
batter y, a Var ta 3/V60H Ni-MH or equivalent, with a 3-pin footpr int.

5.6.9. Keyboard/mouse controller
par t of the combi I/O chip, this provides a standard PC interface. Revision B boards used a separate keyboard
controller - a standard pre-programmed microcontroller from ‘‘Amer ican Megatrends’’. Refer to the sample
dr ivers for a software interface.

40 5.6. Local I/O P−5064 manual

5.7. PCI bus
The PCI interface provides three standard slots for expansion cards, as well as hosting the ISA bridge
and on-board ethernet and SCSI controllers. PCI runs at 33MHz (irrespective of the processor
operating frequency)14.

The PCI interface is built using a V3 V360EPC15 device which is designed to convert between an Intel
i960’s local bus and PCI; for programming infor mation you’ll need V3’s manual - see Appendix B, on
page 76.

Custom interface logic converts all the CPU’s non-DRAM bus cycles into a for m which is compatible with
the V360EPC’s ‘‘i960’’ signalling and its half-CPU-rate interface clock. The DRAM is effectively dual-
por ted to the local bus, and thus accessible from PCI bus masters.

5.7.1. PCI accesses
The CPU can access PCI devices through the ‘‘aper ture’’ programmed into the PCI controller. This
provides some simple high-address-substitution memory mapping. The CPU can read and write any
PCI space in single cycles, but the CPU-to-PCI logic does not support bursts, so you can’t access PCI
through cached space.

PCI masters can access the local memory, again through the apertures programmed into the PCI
controller. PCI master burst cycles will result in burst accesses in the local DRAM.

5.7.2. PCI configuration space, IDSELs and interrupt assignments
In normal use, PCI devices respond to accesses relative to base addresses set up by initialisation
software. There must be some way of programming devices before they are set up, so PCI defines a
‘‘configuration space16’’ where devices are addressed by means of per-device IDSEL signals provided by
the motherboard hard-wired decoding. In P−5064 PCI IDSELs are obtained from individual PCI AD
lines, as shown in Table 5.8 below.

AD line used Interr upts
for IDSEL INTA INTB INTC INTD

Device

PCI slot 1 29 PCIIRQ2 PCIIRQ3 PCIIRQ0 PCIIRQ1
PCI slot 2 28 PCIIRQ3 PCIIRQ0 PCIIRQ1 PCIIRQ2
PCI slot 3 27 PCIIRQ0 PCIIRQ1 PCIIRQ2 PCIIRQ3
ISA bridge 26 - - -
SCSI ctrlr 25 - - -
Ether net ctr lr 24 - - -

Table 5.8: IDSEL for PCI devices/slots

In all cases the IDSEL line is connected to the corresponding AD line through a 47Ω resistor. The value
on the AD bus is mostly ‘‘don’t care’’ dur ing configuration cycles, so to direct a configuration cycle at the

14 It is theoretically possible to configure P−5064 with a half-CPU-rate PCI clock, but
that will usually be too fast.

15 Revision B boards used a V3 V962PBC rev B.2, which sounds different but almost
identical in P−5064. The V360EPC adds features, par ticularly support of the ‘‘I2O’’
standard, which are valuable in some markets but largely irrelevant to P−5064.

16 The original PCI configuration mechanism (based on what are now called ‘‘Type 0
configuration cycles’’) proved inadequate to handle large systems using multiple buses
connected by bridge chips. PCI 2.1 defines an additional ‘‘Type 1 configuration cycle’’
which wor ks across bridges. P−5064’s PCI controller supports ‘‘Type 1’’ cycles, in an
ugly sort of a way; see the V3 manual.

P−5064 manual 5.7. PCI bus 41

ether net controller you’d set the PCI address to something like 0x0010.0000 - which would set AD24 to
a ‘‘1’’ and all of AD25-29 to ‘‘0’’.

You will need to program the PCI configuration space window base address register within the PCI converter
device; see the V3 manual for details17.

PCI devices typically connect to one interrupt line; all P−5064’s onboard devices have dedicated interrupt
outputs which are handled by the interrupt controller, descr ibed in §5.5.

However, the PCI expansion slots provide a choice of four separate interrupt lines to accommodate multi-
function boards. By convention, the assignment of motherboard interrupt signals to expansion slot positions is
rotated for successive slots so that simple one-function boards (which should always interr upt through the PCI
slot signal IntA#) will get independent interrupts.

5.7.3. PCI arbitration
Arbitration should be invisible to the programmer, and usually is. But see Table 5.9 for which signal is attached
to which device/slot.

Arbitration signal Device

PCIGNT0˜ Ether net

PCIGNT1˜ SCSI

PCIGNT2˜ PCI Slot 1

PCIGNT3˜ PCI Slot 2

PCIGNT4˜ PCI Slot 3

PCIGNT5˜ ISA bridge

V3GNT˜ V360EPC PCI controller

Table 5.9: PCI arbitration signals for devices

Arbitration is round-robin; the prior ity list gets rotated each time a new master gains the bus, with the last
winner always having the lowest prior ity.

5.7.4. PCI interface registers
Extensively documented in V3’s manual. One day we may summar ise this here; meanwhile Algorithmics will
supply customers with C code examples on request.

5.7.5. PCI star tup
From system reset the PCI controller itself is held in reset by the signal V3RESET˜ until released through the
board configuration register; see §5.4.1. Once that reset is released, the PCI bus controller keeps the PCI bus
reset is asserted until it is explicitly cleared by writing a V360EPC register.

V360EPC has no PCI-accessible ‘‘configuration space’’ (in PCI language it can’t act as a target of configuration
cycles) but must be configured by the CPU through its own local-space window. You need to fully configure
the chip before releasing the PCI bus reset signal.

Note that the PCI bus reset is used for the PCI slots, but is not wired to the onboard ethernet and SCSI
controllers; they are held in reset by dedicated signals from the board configuration register (see §5.4.1).

17 If you have the ‘‘SDE−MIPS’’ toolkit from Algorithmics, you should find you have
sample code to do this as part of board initialisation.

42 5.7. PCI bus P−5064 manual

5.7.6. PCI performance notes
PCI is capable of deliver ing very high throughput. It’s also capable of perfor ming miserably. What do
you need to get good perfor mance on P−5064?

There are two dimensions of perfor mance.

• Latency : the delay exper ienced when making a single access over the bus, typically character ised
as the time taken to read one location.

• Bandwidth : the rate at which data is transferred across the bus between a data source and sink.

Most high-bandwidth PCI peripherals are ‘‘bus masters’’ - they initiate data transfer cycles on PCI
and read or write P−5064’s local memory.

By the standards of onboard buses, PCI is built for fair ly high bandwidth (133Mbytes/s) but latency can
also be quite high (a few µs is quite normal). Getting good bandwidth in the face of transfer delays is
quite an art. Unfor tunately, the data buffers in P−5064’s PCI chip are inadequate in size and poorly
designed; so 20-30Mbyte/s is pretty good in this environment.

But much worse than that is possible. The bridge chip and local i960-like bus protocols will impose a
significant delay on retur ning read data to a remote initiator. If this delay exceeds 16 PCI clocks for the
first word, or 8 PCI clocks between words in a burst, then PCI rules require the current transfer to be
stopped (‘‘disconnected’’). When the delays are wor king against you, you can end up transferr ing data
across the bus one word at a time; and you’ll be lucky to see 2Mbyte/s like that.

Here’s some simple recommendations:

• If you can, program your PCI bus master to attempt bursts of 16 or 32 bytes, and try to set up your
buffers to get those ‘‘naturally’’ aligned to 16- or 32-byte memory boundar ies.

• Pushing data (where the initiator is writing memory) is much faster than pulling (initiator reading). If
you only had the choice...

• To speed transfers from memory to PCI device, enable ‘‘prefetch’’ in the PCI bridge chip’s local
memor y aper ture. Unfor tunately, the bridge chip has had some bugs which make this difficult;
consult the online bug list.

There’s also a PCI bridge control bit called something like ‘‘RD_POST_INH’’. In PCI terminology a
‘‘read post’’ is a read cycle which is deliberately and promptly terminated with read retry by a target
which has reason to believe that it can’t get the data back within 16 clocks. P−5064’s PCI bridge will
do this for every exter nal read from local memory unless you set the RD_POST_INH bit to ‘‘1’’.

• When P−5064 runs code out of its boot ROM, each cache line refill turns into 32 separate byte
reads, and occupies the local bus for nearly 4µs. This can cause big delay problems for PCI devices
tr ying to access local memory. Run your code out of DRAM - the boot ROM really is just for booting.

P−5064 manual 5.7. PCI bus 43

5.8. Ethernet interface (DEC 21143)
See the manufacturer’s hardware manual (hints on getting it in Appendix B on page 76), or software driver
examples provided by Algor ithmics, for the use of this part.

In P−5064:

• Ether net clock : is defined by a dedicated 25MHz crystal.

• Ether net controller reset : is a programmable signal dedicated to the DEC controller, from the board
configuration register, descr ibed in §5.4.1.

• Interface signals : both the transceiver and twisted pair connections are protected by transfor mers.

• PCI connections : the DEC 21143’s IDSEL signal is derived from PCI address line AD24, and it’s interr upt
output is dedicated.

• Tr ansceiver power : +12V is provided on the interface, protected by a 0.75A fuse.

• Shield ground : nor mally connected to board ground, the shield signals can be isolated by removing jumper
J1.

• EEPROM interface : (provided by the chip) is not used by P−5064 yet, but may appear in a Revision D.
Algor ithmics’ dr ivers will use the EEPROM if it’s there.

5.9. SCSI interface (Symbios 53C810A)
Once again, this is too complicated to describe. You can read the manufacturer’s documentation to find out
more - leads to Symbios manuals are in Appendix B on page 77, or use the sample drivers. You’ll need to
know the following board-specific infor mation:

• Timing clock : SCSI signal timing relies on the SCLK input to the 53C810 chip, which on P−5064 is 48MHz
(it borrows the USB subsystem’s master clock, which is fixed at this rate).

• SCSI controller reset : is a dedicated signal from the board configuration register, descr ibed in §5.4.1.

• PCI connections : the 53C810’s IDSEL comes from AD25, and it has a dedicated interrupt line into the
interr upt controller.

• SCSI cable termination : the board has active ter minators for the SCSI cable, controlled by a jumper and a
software-wr itable register. The terminators must be enabled if P−5064 is at one end of the cable, and
disabled if it’s in the middle.

Most often the SCSI terminators are enabled under software control by a control bit in the board
configuration register described in §5.4.1; but if you want the terminators to go on wor king while P−5064 is
powered down or reset, you’ll need to move the J15 jumper; see Table 7.1 on page 49.

• SCSI terminator power : nor mally, P−5064 feeds +5V power for remote termination into the SCSI cable; the
line is protected by a 1.1A self-resetting fuse and a diode. How ever, where you know that some other SCSI
bus host is providing power, you can disconnect the line completely by removing J16.

5.10. ISA controller, ISA bus and IDE channels
The i82371 ISA bridge component provides:

• One ISA bus socket for those ‘‘legacy’’ cards you can’t easily plug in anywhere else.

• A PC-like environment, the ‘‘Xbus’’, which is used to connect several different onboard I/O devices. They
include the combi I/O chip which integrates serial ports, centronics, floppy and real-time clock. But there’s
also a connector for a small alphanumer ic LCD which may be useful for prototyping simple ‘‘front-panel’’
applications.

The PC emulation includes address decoding, DMA provision and maintenance of miscellaneous and
semi-mythological signals on the ISA bus. You probably don’t want to know about most of these.

44 5.10. ISA controller, ISA bus and IDE channels P−5064 manual

• Tw o IDE disk/peripheral channels. By default these operate as slave-only ports (like an old PC’s IDE
bus), but they can be reconfigured into high-speed ports which take advantage of DMA over the PCI
bus.

• A host port for the emerging USB (‘‘universal serial bus’’) interconnect standard for low-speed
devices.

The part is designed for use in PC-clone systems which implement all I/O through a PCI bridge chip. It
gains quite a lot of complexity from the necessity, in these systems, for the hardware to ‘‘hide’’ the
existence of the PCI bus from early bootstrap software; such a machine must look like a PC with a
directly-connected ISA bus before the bridge chip has been programmed.

You will not often have to reprogram the ISA bridge; access to the I/O registers of devices lying on the
onboard PC bus or ISA slot just requires you to add the appropriate base address.

When you need to tackle functions provided by the i82371, remember that the part has to be software-
compatible with the old PC devices it supplants (so to do DMA get ‘‘PC DMA’’ driver software). An
excellent (but lengthy) manual is available from Intel, online as well as in paper. See Appendix B, page
76 for leads.

Choices made in P−5064’s use of the chip include:

• Clocks : standard. The OSC input gets a 14.318MHz crystal, and USBCLK a 48MHz clock.

• Controller reset : is run by the signal called PWROK (it’s inactive low lev el holds the chip in reset). It
is under software control, coming from the board configuration register as shown in Table 5.2. The
controller doesn’t expect this to be under software control, and you should give it a substantial
amount of time to recover its poise after asserting PWROK, before expecting it to do anything
sensible. 10ms or so seems reasonable.

• Interr upt output : wired straight into the main interrupt controller.

• PCI connection : the controller’s IDSEL comes from AD26.

• Dual-use pins : P−5064’s use is ver y conventional; the dual-use signals DD12-15 and LA17-23 are all
used just as data/address bits.

5.11. PC card slots (PCMCIA)
A dual PC card (the PC Card standard was for merly known as ‘‘PCMCIA’’) connector is attached via the
onboard ISA bus and a Vadem VG469 PC-card controller. P−5064 implements the PC-card features for
software control of power to the cards, to allow ‘‘hot swapping’’ - with appropriate software support PC
cards can be safely inserted and removed with the system powered up. You’ll need to read Vadem’s
documentation find out how to do this stuff; look in Appendix B on page 76.

5.12. PMON debug monitor compatibility
PMON loads:

• Executable fully-resolved ELF object files from an IP-networ k tftp ser ver, accessible over ether net.
PMON can use a standard domain name server and communicate via a default gateway.

The ELF files must be MIPS-ABI or compatible version. A symbol table, if present, is read and is
available for PMON debugging.

• A var iety of ‘‘plain text’’ download for mats (including Motorola S-records) loaded via serial port or
Centronics link. It’s possible to share a single serial port for download and console operation; but it’s
not ver y much fun. Ser ial por t download is ver y slow for large files unless your host’s por t will run at
36Kbaud or more. PMON on P−5064 will run up to 56Kbaud (perhaps even 115Kbaud - none of our
hosts go that fast).

P−5064 manual 5.12. PMON debug monitor compatibility 45

PMON provides a ‘‘debug monitor’’ ser vice to host-based debuggers over ether net (MIPS protocol) or serial
por t (gdb or MIPS protocol).

46 5.12. PMON debug monitor compatibility P−5064 manual

6. Board layout: locating connectors and jumpers
A diagram of what’s where on P−5064 is Figure 6.1.

reset

L1

P2

CPU

P3P1

P
23

P
6

P4 P5

O
S

C
1

P22

P13

USB

ISA

PCI 1 PCI 2 PCI 3

ISA clock rate
PCI clock fix
CPU clock select

Boot from
ROM skt

SW1

ID
E

 a
ct

iv
e

ex
t r

es
et

Space for CPU module

CPU core
supply adjustC

P
U

 2
.5

V
 s

up
pl

y

P14

Ethernet
shield gnd

Debug

CPU/cache module
Space for Extended

twisted−pair
ethernet

Serial ports

mouse kbd

ethernet
(xcvr conn)

Dual PCMCIA

P
19

ID
E

 (prim
ary)

P
20

ID
E

 (secondary)

P
18

S
C

S
I

P
21

floppy

clock
CPU ext

fan
power

LC
D

 display
conn

SCSI
term on

P
16

IR
 port

Cent. host (upper, fem)
Cent. peripheral (lower, male)

CPU oscillator
(optional)

memory

LED displayex
t O

N
/d

eb
ug

ON/debug

(port 1 below 2)ethernet status

10
bT

 li
nk

ac
tiv

ity
T

P
−

F
D

X
T

P
−

S
P

D
T

P
−

A
C

T
T

P
−

LI
N

K

J1
Battery

+

U
ser−

defined
parallel I/O

P
15

J9
remove for
FPGA programming

J10
J12

J11,14,13

U
33

 −
 R

O
M

 s
kt

F
lash skt

w
ritable

J6
R

O
M

 skt
uV

/F
lash?

J7−8

J15

J16

J17

J20−22

DIMM 0DIMM 1

J25 J24 J26 J27

P24

P7

J2

J5

P12

SCSI
term pwr

LC
D

 contrast

LCD
backlight

Software−
readable
configuration

CPU
options

J23

for logic
reprogramming

J3−4
shown for
2.5V module

PC "ATX"
power connector shown for

2.5V CPUJ28−29

Figure 6.1 P−5064 layout, connectors and jumpers

Notes on Figure 6.1

• Connector orientation : pin 1 positions are usually marked with a diamond. For components where
all pins are shown, the square pad marks pin 1 (the same convention is used on the PCB itself).

• Connector pin-outs : are described in §8 below. But we don’t usually document industry-standard
connectors.

• Jumper : functions and defaults are described in §7 below.

• Optional components : such as the CPU oscillator (only required for CPUs running at clock rates
beyond the reach of the clock synthesiser), or the CPU daughterboard, are marked with dotted
outlines.

P−5064 manual 6. Board layout: locating connectors and jumpers 47

• Adjustable components : R224 is a multi-tur n adjustable resistor used to adjust the contrast of an LCD
display, if you’ve fitted one.

R85 is used to set the CPU core power-supply voltage for those CPUs which use dual power supplies. It
will be factor y-set to match the CPU fitted to the board, if required. CPUs can be damaged by incorrect
voltages, and it will normally be wise to adjust the CPU core voltage before fitting the CPU daughterboard.

48 6. Board layout: locating connectors and jumpers P−5064 manual

7. Jumpers: where and what for
First let’s summar ise all the options in Table 7.1.

Ref Default Description

J1 in Connects ethernet ‘‘shield’’ grounds to board. Nor mally done, but some
systems have a ground on the transceiver unit.

J5 1-2 The CPU usually runs from an onboard clock synthesiser. 100MHz
CPUs (above the range of the clock synthesiser IC) need OSC1 fitted
and this link set 2-3.

J2 1-2 Move this to 2-3 to inject a master CPU clock through the P7 connector,
allowing you to run the CPU at peculiar speeds.

J6 in Remove to write-protect flash memory fitted in the socket (if any).

J8 2-3

J7 2-3

Configure ROM socket for flash. The default position 2-3 is for uV-
erasable ROM; change both links to 1-2 for a 29040-compatible flash
device.

J12 2-3 PCI clock set around 33MHz. 1-2 synchronises PCI to half the CPU
clock rate - almost always a really bad idea.

J13 1-2

J14 1-2

J11 2-3

CPU clock synthesiser rate selection (control inputs called S2-0 on the
synthesiser data sheet). See Table 7.2 for settings.

J15 2-3 Enable active SCSI terminators at software command. If you set this
jumper 1-2 the terminators are always enabled; essential if you want to
have the terminators wor k with the P−5064 powered down.

J16 in P−5064 supplies SCSI terminator power - remove if some other device
on the SCSI cable does that job.

J17 out Boot from flash. Inser t this jumper to boot from socketed ROM.

J27 out Make it possible to reload the board’s logic patterns into the
reprogrammable logic devices. Required only when upgrading the logic,
which you should not do without guidance from Algorithmics.

J26 TBA Inser t to select the Centronics ‘‘per ipheral’’ connector as the logic
reprogramming source. To make this wor k you’ll need to pull the
jumpers J9.

J9 in remove when you want to update the board’s logic using the Centronics
cable. Removing these jumpers isolates the Centronics lines used for
logic reprogramming from the onboard Centronics controller.

J20 n/a Not a jumper; connects optional exter nal IDE activity LED. Pin 1 is +ve.

J21 n/a Not a jumper; connects optional exter nal ‘‘on/debug’’ switch (make to
tur n on, or generate a ‘‘debug’’ interr upt.)

J22 n/a Not a jumper; connects optional exter nal reset switch (make-to-reset)

J24 CPU configuration - 5-way jumper block. Described in 7.2.

J25 out If in, powers LCD backlight (supplying 5V to connector pin 15). Not all
LEDs have backlights.

J10 in Run ISA clock at the ‘‘safe’’ lev el of about 8MHz. ‘‘Out’’ increases ISA
bus clock to 11MHz or so (PCI/3). That’s generally a bad idea - ISA
cards are not always reliable above 8MHz.

P−5064 manual 7. Jumpers: where and what for 49

Ref Default Description

J23 Software-readable configuration - 4-way jumper block. Described in
Table 7.4. In revision B boards this is an 8-position jumper block, and
the four extra positions are used for the board revision register; in later
boards the board revision field, although read through the same
location, is hard-wired.

J28

J29

Set 1-2 for CPUs requiring only 3.3V power; set 2-3 for CPUs needing a
separate (lower) core power supply. Will be set at the factor y to meet
the requirements of the onboard CPU.

J4

J3

Separately configurable core power for CPU daughterboard (if fitted) -
introduced in Rev D. Set 1-2 for daughterboards requiring only 3.3V
power; set 2-3 for daughterboards needing a separate (lower) core
power supply.

J19

J18

Probably wire links on most boards, these jumpers feed power to the
core of the programmable logic devices - may be 5V or 3.3V, depending
on the generation and speed grade of those devices.

Table 7.1: All jumpers on P−5064 (including connectors called Jxx)

7.1. CPU clock synthesiser jumpers: J13, J14, J11, J12

Jumper setting CPU Clock
J13 J14 J11 rate

2-3 2-3 2-3 50 MHz
2-3 2-3 1-2 60 MHz
2-3 1-2 2-3 66.67 MHz
1-2 2-3 2-3 55 MHz
1-2 2-3 1-2 75 MHz
1-2 1-2 2-3 83 MHz
1-2 1-2 1-2 no clock

Table 7.2: CPU clock rate setup

Probably fair ly self-explanator y. Most P−5064 CPUs will either run at 75 or 83 MHz, or faster from a dedicated
oscillator - in which case the setting of these jumpers isn’t relevant.

50 7.1. CPU clock synthesiser jumpers: J13, J14, J11, J12 P−5064 manual

7.2. CPU software and options jumper: J23, J24
The two main jumper blocks for CPU and board options are located at the lower RH side of the board,
and their individual jumpers are shown in Figure 7.1.

Software
options

little−endian

1

7

3

8
5

4
2

6

user−defined

J23:

reserved reserved

1
3

7
9

2
4

8
10

CPU
options

J24:

5 6

RM7000 options

Figure 7.1 CPU options and software options jumper blocks

The CPU options bits wor k together to tell the onboard logic what type of CPU and secondary cache is
fitted; some of these functions are essential, so that a mismatch with the CPU may prevent the board
from wor king.

J24(7-8,9-10) should be fitted when you are using an RM7000 CPU and want the internal secondary
cache to wor k (you probably do); they have the side-effect of enabling a set of different clock multiplier
rates supported by the RM7000 - see column of Table 7.3 marked ‘‘RM7000/SC’’. These jumpers are
probably harmless with other CPU types, but play safe - take them out.

Add-in CPU modules for P−5064 (with or without secondary cache) use some of their module pins to
send configuration infor mation, inter preted by the logic at startup, which communicates the presence,
size and type of an exter nal cache.

The CPU options links are connected directly into the reprogrammable system logic, and their meanings
may evolve with later logic revisions. Combinations of settings which don’t exactly match some
combination recommended here may do strange things.

Do not change any other links from the state in which they’re delivered to you, without consulting
Algor ithmics first18.

J24 jumpers CPU clock ratio

3-4 1-2 RM7000/SC other CPUs
Notes

in in × 2 × 2

in out × 3 × 3

out in × 2.5 × 4

out out × 3.5 × 5 Not available on revision B
boards

Table 7.3: Selecting CPU clock divisor

18 When I wrote these words we envisaged that the CPU module would be married
up to a motherboard in production and never removed; the module was intended to be a
build-time option. Since then sales pressure has persuaded us to ship modules
separately, and some confusion can result. Go carefully and ask our advice if you think
you need it.

P−5064 manual 7.2. CPU software and options jumper: J23, J24 51

Notes on CPU options
Some things aren’t obvious:

• CPU type : in principle, some of the jumpers in the J24 block are there to select for different types of CPU.
In fact, P−5064 so far supports one type of onboard CPU (the RM5260) and three plug-in CPUs (R5000,
RM5270, RM7000) - and only the RM7000 needs any links; connect 7−8 and 9−10 to take advantage of
the RM7000’s onchip secondary cache.

That may change with future versions of the board, so other settings of J24 links 5−6, 7−8 and 9−10 are
reser ved.

• CPU Clock multiple : P−5064 boards are built for at least a 75MHz clock rate, so the ×4 & ×5 clock multiplier
options are required only for CPUs running at more than 225MHz.

• Secondar y cache size : secondar y cache size settings have no hardware effect; they are effectively a
Silicon Graphics-defined convention for passing configuration infor mation to the bootstrap software which
software-configures the CPU. They are also unnecessary, since it’s possible to detect the secondary cache
and figure out its size with a simple software algorithm.

However, configuration bits are now defined on the daughterboard and made available to onboard logic
when required.

• Endianness : is (for histor ical reasons) defined in the ‘‘software jumper’’ - even though it’s a hardware-only
option on all 64-bit-bus MIPS CPUs19.

7.3. Software options jumper J23
This is a 4-way jumper block and 4 hard-wired links (8 jumpers on revision B boards) which are readable by
software; just one of the jumpers is also sensed by the hardware at power-up and used to set the CPU’s
endianness.

A link which is in reads as a ‘‘0’’, but a link which is out reads as ‘‘1’’.

The connections are in Table 7.4.

bit no 7 6 5 4 3 2 1 0

J23 link 7-8 5-6 3-4 1-2

use board revision LE user-defined

Figure 7.2 Board revision/option links register and J23 settings

Notes on software options and the options link register
This register provides links which can be read by software at the ‘‘option links register’’ position, but is also the
place where the CPU is configured as either big- or little-endian.

Here are what the fields shown in Table 7.4 do:

• board revision : will return a value which reflects the artwor k and hardware revision level of the P−5064.
The value is hard-wired into the board when it is assembled (except on revision B boards, which had a
larger jumper block with extra links you should not move). It is reported by the PMON startup sequence,
which interprets it as a ‘‘board revision’’ letter. Production P−5064 revisions start with ‘‘B’’.

19 It’s a feature of the R4000/R5000 system interface that it isn’t possible to run even
a limited subset of instructions without the CPU and the system interface agreeing on
the CPU’s endianness - so it’s not possible to defer the endianness option for software
configuration.

52 7.3. Software options jumper J23 P−5064 manual

• LE : endianness - in for little-endian, out for big-endian. For CPUs requiring reset-time endianness
configuration (most of them) this determines both how the CPU is brought up, and how the CPU
interface interprets CPU signals. You can read this in the register, of course, but it will often be more
useful to read the endianness bit in the CPU’s inter nal configuration register.

• user-defined : free for your application to use.

P−5064 manual 7.3. Software options jumper J23 53

8. Connectors: where, what and wiring

8.1. CPU daughterboard connector
CPU daughter cards plug in to a connector made up of five banks of 25×2 2mm pitch socket str ip. Four of the
banks are set in a square around the CPU, and for m a suitable connector for CPU-only daughterboards, with
the fifth some distance away adding mechanical support, extra pow er and ground and extra signals to support
a secondar y cache. The physical layout of the connector, and where each pin number is located, is shown in
Figure 8.1.

We know the pin number ing is peculiar; don’t worr y about it, it’s just an artefact of the way our CAE system
numbers connectors.

1

50
51

100

101

150

151

201

200

250202

249

edge of CPU−only module

space for secondary
cache

Figure 8.1 CPU daughterboard module connector layout

The signals on the CPU connector are laid out as follows:

Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal

1 3.3V 2 VCORE 3 VCORE 4 3.3V 5 GND

6 SysAD4 7 SysAD36 8 SysAD5 9 SysAD37 10 3.3V

11 GND 12 SysAD6 13 SysAD38 14 3.3V 15 GND

16 SysAD7 17 SysAD39 18 SysAD8 19 SysAD40 20 3.3V

54 8.1. CPU daughterboard connector P−5064 manual

Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal

21 GND 22 SysAD9 23 SysAD41 24 3.3V 25 GND

26 SysAD10 27 SysAD42 28 SysAD11 29 SysAD43 30 3.3V

31 GND 32 SysAD12 33 SysAD44 34 3.3V 35 GND

36 SysAD13 37 SysAD45 38 SysAD14 39 SysAD46 40 3.3V

41 GND 42 SysAD15 43 SysAD47 44 3.3V 45 GND

46 ModeClk 47 JTDO 48 JTDI 49 JTCK 50 JTMS

51 3.3V 52 GND 53 VCORE 54 VCORE 55 VCORE

56 3.3V 57 GND 58 ModeIn 59 RdRdy* 60 WrRdy*

61 ValidIn* 62 ValidOut* 63 Release* 64 65 ModPres*

66 ModClk0 67 3.3V 68 GND 69 3.3V 70 GND

71 3.3V 72 GND 73 SysCmd0 74 SysCmd1 75 SysCmd2

76 SysCmd3 77 3.3V 78 GND 79 SysCmd4 80 SysCmd5

81 3.3V 82 GND 83 SysCmd6 84 SysCmd7 85 SysCmd8

86 SysCmdP 87 3.3V 88 GND 89 3.3V 90 GND

91 3.3V 92 GND 93 Int0* 94 Int1* 95 Int2*

96 Int3* 97 Int4* 98 Int5* 99 3.3V 100 GND

101 VCORE 102 VCORE 103 VCORE 104 VCORE 105 3.3V

106 NMI* 107 ExtRqst* 108 Reset* 109 ColdReset* 110 VDDOK

111 BigEndian 112 3.3V 113 GND 114 SysAD16 115 SysAD48

116 3.3V 117 GND 118 SysAD17 119 SysAD49 120 SysAD18

121 SysAD50 122 3.3V 123 GND 124 SysAD19 125 SysAD51

126 3.3V 127 GND 128 SysAD20 129 SysAD52 130 SysAD21

131 SysAD53 132 3.3V 133 GND 134 SysAD22 135 SysAD54

136 3.3V 137 GND 138 SysAD23 139 SysAD55 140 SysAD24

141 SysAD56 142 3.3V 143 GND 144 SysAD25 145 SysAD57

146 3.3V 147 GND 148 SysAD26 149 SysAD58 150 SysAD27

151 SysAD59 152 3.3V 153 GND 154 VCORE 155 VCORE

156 GND 157 VCORE 158 VCORE 159 VCORE 160 VCORE

161 3.3V 162 GND 163 SysAD28 164 SysAD60 165 SysAD29

166 SysAD61 167 3.3V 168 GND 169 SysAD30 170 SysAD62

171 3.3V 172 GND 173 SysAD31 174 SysAD63 175 SysADC2

176 SysADC6 177 3.3V 178 GND 179 SysADC3 180 SysADC7

181 3.3V 182 GND 183 SysADC0 184 SysADC4 185 3.3V

186 GND 187 SysADC1 188 SysADC5 189 SysAD0 190 SysAD32

191 3.3V 192 GND 193 SysAD1 194 SysAD33 195 3.3V

196 GND 197 SysAD2 198 SysAD34 199 SysAD3 200 SysAD35

201 PRqst* 202 PAck* 203 RspSwap* 204 RdType 205

206 207 208 209 TcDOE* 210 TcTCE*

211 TcMatch 212 TcWord0 213 TcWord1 214 TcWord2 215 3.3V

216 GND 217 3.3V 218 GND 219 3.3V 220 GND

221 SC_DCD* 222 SC_SIZE1 223 SC_SIZE0 224 ModClk1 225 SC_REVB*

226 227 228 229 230 3.3V

231 GND 232 233 234 235

236 237 238 239 240 3.3V

241 GND 242 243 244 245

246 247 248 249 3.3V 250 GND

Table 8.1: Signal assignments on the CPU daughterboard connector

P−5064 manual 8.1. CPU daughterboard connector 55

The var ious signals have the following meanings:

Signal Name Descr iption

3.3V Fixed 3.3V power supply
BigEndian Some CPUs have a dedicated signal to configure CPU endianness
ColdReset* Used to cycle the CPU through a from-scratch reset, including resynchronising phased-

locked clocks and reading the configuration bit stream.
ExtRqst* System logic can use this signal to request the SysAD bus from the CPU; not used on

P−5064.
GND Board ground
Int5-0* MIPS interrupt inputs. P−5064, and some CPUs, don’t implement Int5*; even if available,

it’s most often unused because the corresponding interrupt is dedicated to the internal
timer.

JTCK

JTDI

JTDO

JTMS

JTAG signals for CPU and/or cache RAM boundary scan. Only for testing.

ModPres* Pulled up on motherboard, grounded on module; used by motherboard logic to sense that
a daughterboard has been fitted.

ModClk1-0 CPU input clock MasterClock, duplicated to manage loading in the secondary cache.
ModeClk Output clock from CPUs which need a configuration bitstream from cold reset
ModeIn Data bitstream in response to ModeClk above .
NMI* MIPS CPU non-maskable interrupt, unused in P−5064
PAck*

PRqst*
RM7000-specific signals for extended bus protocols. See CPU manual for definitions.

RdRdy* Signals MIPS CPU that the system logic can hold a read address, and the CPU can move
on.

RdType RM7000-specific signal unsupported on P−5064 up to rev C; see CPU manual for details.
Release* Pulsed by CPU when it expects the system logic (or secondary cache) to drive the SysAD

bus.
Reset* CPU logic reset, which can be used independently of ColdReset* to reset the CPU but

retain configuration. But on P−5064, the two resets are always cycled together
RspSwap* RM7000-specific signal unsupported on P−5064 up to rev C; see CPU manual for details.
SC_DCD* Configuration bit - low if daughterboard uses ‘‘double-cycle-deselect’’ (R5000-special)

cache RAMs. Most boards use ‘‘single-cycle-deselect’’ (Pentium-compatible) RAMs.
SC_REVB* Configuration bit - low if daughterboard provides valid SC_SIZE1-0 signals.
SC_SIZE1-0 Encode size of exter nal cache fitted to this board. Often unnecessary.
SysAD63-0

SysADC7-0

64-bit multiplexed bus, used on all 64-bit MIPS CPUs so far. SysADC7-0 are check bits,
and usually carry per-byte parity on P−5064.

SysCmd8-0

SysCmdP

Encoded cycle type, used on all 64-bit MIPS CPUs. SysCmdP carr ies par ity on the
command bus, but is a don’t care on input for most CPUs.

TcDOE*

TcMatch

TcTCE*

TcWord2-0

Signals used for an R5000-style secondary cache; a similar secondary cache is used on
the QED RM5270 and RM7000 CPUs

VCCOK Signal telling MIPS CPU that power is stable and it can come out of reset.
VCORE Adjustable low-voltage ‘‘core’’ supply for CPUs which need it. Will probably usually be set

at 2.5V or 2.9V.
ValidIn* MIPS R4x00 output meaning ‘‘I’ve put something on the bus in this clock cycle’’.

56 8.1. CPU daughterboard connector P−5064 manual

Signal Name Descr iption

ValidOut* MIPS R4x00 input asking the CPU to take note of the bus this cycle
WrRdy* Signals MIPS CPU that the system logic can accept a write address, and the CPU can

move straight on to present the data

Table 8.2: Description of CPU daughterboard signals

8.2. DIMM memor y slots (DIMM0/DIMM1)
These are pretty much industry standard, so we won’t define them here. Note that the DIMM memories
are unbuffered synchronous 3.3V 72-bit (ECC) types.

8.3. PCI edg e connectors (P8/P9)
Industr y standard connectors, not defined here.

However, you will need to know how the IDSEL and interrupt lines are assigned; see Table 5.8 on page
41.

8.4. Ethernet (P12, P1)
The 10Mbit/s ethernet can be connected either with the 10baseT connector P1 or by connecting a
standard transceiver (directly or indirectly) to the transition cable supplied, which mates with the on-
board header connector P12. The onboard connector is an 8×2 0.1’’ pin grid, polarised to match our
cable.

If you need to replace your transition cable, the pinout of P12 is shown in Table 8.3.

OPTGND 1 2 COLPRES*
COLPRES 3 4 TRANSMIT*

TRANSMIT 5 6 OPTGND
OPTGND 7 8 RECEIVE*
RECEIVE 9 10 E12V

GND 11 12 OPTGND
OPTGND 13 14 -

- 15 16 -

Table 8.3: Pinout of ethernet connector P12

where:

• OPTGND signals must be grounded at only one end of the transceiver interface, nor mally at the host
end. But if you meet a transceiver which has local grounds on these lines they can be disconnected
from board ground by removing jumper J1 (called ‘‘enet conn gnd’’ on the board layout diagram
Figure 6.1.)

• The E12V line, which provides 12V power to a transceiver, is protected by a self-resetting fuse.

• The active ether net interface signals are transfor mer-coupled to the controller to reduce the risk of
damage to the board through mis-connection or extreme electrical noise.

8.5. SCSI (P18)
A 25×2 0.1’’ pin grid, laid out to allow a ribbon cable to common peripherals; we include an unshielded
cable which will connect two disk/tape units within an enclosure or on a bench.

This should plug right in to your SCSI device, but the pinout is shown in Table 8.4.

P−5064 manual 8.5. SCSI (P18) 57

GND 1 2 DB0*

GND 3 4 DB1*

GND 5 6 DB2*

GND 7 8 DB3*

GND 9 10 DB4*

GND 11 12 DB5*

GND 13 14 DB6*

GND 15 16 DB7*

GND 17 18 PAR*

GND 19 20 GND

GND 21 22 GND

GND 23 24 GND

- 25 26 TermPo wer

GND 27 28 GND

GND 29 30 GND

GND 31 32 ATN*

GND 33 34 GND

GND 35 36 BSY*

GND 37 38 ACK*

GND 39 40 RST*

GND 41 42 MSG*

GND 43 44 SEL*

GND 45 46 C_D*

GND 47 48 REQ*

GND 49 50 I_O*

Table 8.4: SCSI connector (P18) pinout

Note that the TermPo wer is a 5V supply protected by a fuse and diode, connected to P−5064’s 5V supply
through the jumper J16. There is normally one ‘‘host’’ on a SCSI bus which supplies terminator power, but the
jumper should be removed if any other SCSI bus device is driving the power line - which is likely to be the case
when P−5064 is acting as a SCSI peripheral.

P−5064 has an active ter minator unit - active ter mination is highly recommended when running SCSI
reasonably fast. When P−5064 is not at one end of the SCSI cable, the terminators can be effectively taken
out of circuit by moving the ‘‘ter minator enable’’ jumper J15 from its default position.

8.6. IDE
Pr imary and secondary IDE channels, connected up to the i82371 controller.

8.7. RS232 (P3)
Dual serial ports implemented with a double connector. Por t 1 is the lower (nearest the board) and port 2 the
higher ; both are standard PC-compatible 9-pin male D-type, and the pinout is shown in Figure 8.2.

DCD TXDRXD DTR GND

DSR RTS CTS RI

1 2 3 4 5

6 7 8 9

Figure 8.2 Pinout of a PC-compatible serial connector (looking into pins)

58 8.7. RS232 (P3) P−5064 manual

Notes on the serial port signals:

Signal Description

RXD, TXD asynchronous serial data into and out from P−5064,
respectively. In many cases, you need only connect
these and ground to have a wor king interface.

CTS ‘‘clear to send’’: input which can be used for flow
control, stopping P−5064 from sending data if
inactive - whether this is actually done is down to
software. We pull it up, so that when you don’t make
a connection to this pin it will appear active.

DSR ‘‘data set ready’’: signal into the board, sometimes
used for flow control instead of CTS.

DTR ‘‘data terminal ready’’: programmable output - usually
wired to DSR at the other end.

RTS ‘‘request to send’’: programmable output, usually
wired to CTS at the other end.

DCD ‘‘data carrier detect’’: used by a modem to indicate
that it has an active connection. Rarely needed when
a modem not fitted.

RI ‘‘ring indicator’’: input activated by modem when the
connected phone rings. Rarely used for anything.

8.8. Centronics (P2)
A double-stacked connector offer ing either a ‘‘host’’ connector (same as you’ll find on your PC) or a
‘‘per ipheral’’ connector (suitable for connecting up to a PC for download). There’s only one port, so don’t
tr y to use both at once!

Unfor tunately, on many boards (rev C as well as rev B) the Centronics interface is wrongly wired; the
shor ter row of signals being reversed20. Ask Algorithmics for a correction cable. Rev D and higher
boards are correctly wired, as shown in Figure 8.3.

12345678910111213

141516171819202122232425

1 2 3 4 5 6 7 8 9 10 11 12 13

D0 D7D1 D2 D3 D4 D5 D6

D0D7 D1D2D3D4D5D6

Centronics host (female)

Centronics peripheral (male)

nStrobe

nAck

nAck

nStrobe

nAuto

nInit

nSelectIn

nSelect

PError

Busy

14 15 16 17 18 19 20 21 22 23 24 25

GNDGNDGNDGNDGNDGNDGNDGNDSEL

Busy PError

nFault

GNDGNDGNDGNDGNDGNDGNDGND nAutonInit

nSelectIn nFault

Figure 8.3 Centronics/IEEE-1284 parallel port connector

20 Sur prisingly, this doesn’t stop it wor king as a dumb peripheral.

P−5064 manual 8.8. Centronics (P2) 59

8.9. Diskette (P21)
Standard PC-type diskette header; not described here.

8.10. User-defined parallel I/O (P15)
An 8×2 header making ‘‘por t A’’ of the parallel I/O controller available for user functions. These include:

• Polling an exter nal logic level.

• Dr iving some simple exter nal device.

• Software-controlled trigger for test equipment...

Anything you like. The pinout is in Table 8.5.

1 2
3 4

PA0 5 6 PA4
PA1 7 8 PA5
PA2 9 10 PA6
PA3 11 12 PA7

GND 13 14 +5V
GND 15 16 +5V

Table 8.5: General purpose I/O connector (P15) pinout

The signals PA0-7 correspond to those described as GPIO10-17 in the PC97307 combi I/O chip documentation.

8.11. PC-compatible keyboard and mouse (P5/P4)
Both use small (‘‘PS/2’’ type) DIN connectors21. If your keyboard has a big DIN connector as used in older
PCs, converters are readily available.

8.12. USB (P11)
A host port for ‘‘universal serial bus’’ implemented by the i82371 ISA bridge should permit the attachment of
USB peripherals, just emerging as the first P−5064 boards ship. Ask Algorithmics about software support.
The connector is a 2×4 pin 0.1’’ pin grid, with signals as shown in Figure 8.4.

+5V 1 2 +5V
USBP0˜ 3 4 USBP1˜
USBP0 5 6 USBP1

GND 7 8 GND

Figure 8.4 USB (P11) connector signals

21 Revision B boards (serial numbers up to 20, probably) have the signals on these
connectors reversed; they will be supplied with some patch leads. Sorr y.

60 8.12. USB (P11) P−5064 manual

8.13. IR ‘‘network’’ interface (P16)
We’re now really getting down into the far end of feasible. The combi I/O controller can recycle the
signals from one of the serial ports into an IR connector standard used by some hand-held computers.
This is for exper imentation only, but P16 is a 5-pin 0.1’’ SIL header with pin 2 missing for orientation. It’s
connections are as follows:

Pin Signal

1 VCC

3 IRRX

4 GND

5 IRTX

8.14. LCD display connector (P23)
This simple I/O port on an 8×2 header is designed to attach an LCD alphanumer ic display on a shor t
ribbon cable. You may even be able to use it for something else, with ingenuity. It’s pinout is in Table
8.6.

GND 1 2 +5V
LCD_BRIGHT 3 4 LCD_A2

LCD_W* 5 6 LCD_E
LCD_D0 7 8 LCD_D1
LCD_D2 9 10 LCD_D3
LCD_D4 11 12 LCD_D5
LCD_D6 13 14 LCD_D7

BackLight 15 16

Table 8.6: LCD display header (P23) pinout

Note that in Table 8.6:

• The 8-bit IO data bus LCD_D0-7 is buffered to protect P−5064 circuitry and help drive the LCD cable.

• The brightness of the LCD illumination is controlled by LCD_BRIGHT, which can be var ied between 0
and 5V by adjusting R224.

• Signal LCD_W* is a direction signal (low for write); and LCD_E is a kind of combined chip select and
transfer strobe. LCD_A2 is the least-significant register address (8-bit IO registers on P−5064 are
always at least 4 bytes apart), supporting a princely two registers. BackLight can be connected to the
+5V supply through the jumper J25, if your LCD display has this feature.

8.15. Power supply connector (P14)
Compatible with PC motherboards built to the ‘‘ATX’’ standard; we used this because it’s the most
available standard which features 3.3V and 5V power. You should find it easy enough to come by an
appropr iate power supply, but if you can’t Figure 8.5 shows the pinout.

+5V +5V -5V GND GND GND On* GND -12V +3.3V

20 19 18 17 16 15 14 13 12 11

10 9 8 7 6 5 4 3 2 1

+12V VStdBy PwrGd GND +5V GND +5V GND +3.3V +3.3V

Figure 8.5 ATX power supply connector pins

P−5064 manual 8.15. Po wer supply connector (P14) 61

In Figure 8.5 the signals are as follows:

• +5V, +3.3V, -5V, +12V, -12V, GND : pow er rails. ‘‘ATX’’ supplies provide lots of +5V and +3.3V, a decent
amount of +12V (used for PC disc drives) and just a little -12V and -5V.

• VStdBy : ATX supplies are software-switchable. When the PSU is off the main supply rails are all
disconnected, but the VStdBy provides a small amount of +5V power to feed some power-up circuitry. On
P−5064 that just allows the debug/reset switch to be pulled to the debug position to switch on the power.

• On* : enables the main power rails when it’s taken low and draws some current. You switch off the PSU by
taking this signal high.

• PwrGd : is retur ned high by the power supply when all rails have switched on and are stable, and goes low
to provide early war ning of a power failure. PwrGd is fed into P−5064’s reset circuitry, and its low-going
transition can be used to generate an interrupt.

8.16. Logic programming connector (P24)
P−5064’s logic is mostly implemented in a number of Xilinx 9500 series programmable logic devices. These
chips retain their logic programs using ‘‘flash’’ ROM storage, but can be reprogrammed in-circuit.

Reprogramming is possible either with a Xilinx download cable, or via a Centronics cable from a PC running
appropr iate software. The jumper J27 must be fitted. To download from the Centronics connector you should
also fit jumper J26 and remove the jumpers J9.

The Xilinx-compatible connector is P24, and is shown in Figure 8.6. It matches Xilinx’ supplied module, so the
signals connect across one to one.

JTMS 1
2

JTDI 3
JTDO 4

5
JTCLK 6

7
GND 8
+5V 9

Figure 8.6 Xilinx-compatible connector (P24) for reprogramming P−5064 logic

8.17. 12V fan power (P13)
A socket providing a fused +12V supply (and ground) to connect a PC-type fanned heatsink. Pin 1 is +12V and
pin 2 is GND. Some low-power CPUs fitted to P−5064 do not need a fan when run open at room temperature
with no forced air movement. If you have to fit one, use any fan designed for ‘‘Pentium’’ class CPUs in PC
clones.

62 8.17. 12V fan power (P13) P−5064 manual

9. Cables supplied
With your P−5064 you should have received a basic set of cables. Everything else you should need to
get your system up and running should be readily available from your local PC superstore.

Here’s the cables you’ll find in the box:

• Ether net AUI : converts the onboard (dual header strip) connector to the usual 15-way D-type, which
will plug right into a cheap and cheerful transceiver or mate with a longer AUI cable for attachment to
your building networ k.

Of course, if you were using 10baseT ethernet you could plug right in and ignore this cable.

• IDE : two ribbon cables supplied to attach drives, though perhaps they’re rather short for peripherals
not in the same box.

• SCSI : one ribbon cable supporting two per ipherals.

• Floppy : one cable with connectors for two drives.

• Centronics download : we supply a ‘‘straight-through’’ cable with a 25-way D-type male on one end
(plugs into your PC), and a female on the other (plugs into the ‘‘centronics peripheral’’ connector on
P−5064). These cables are sold by PC suppliers as ‘‘pr inter cable extenders’’.

P−5064 manual 9. Cables supplied 63

10. Hardware debug and trace facilities
Since P−5064 is principally meant as a development aid, debug assistance is important. Most software
development hours go into high-level functions where software tools are all-important, so P−5064 provides the
communication channels those software tools need.

But you may also need to prototype and debug software on a level where software monitors can’t reach; and
then you’ll need to be able to observe and interrupt the execution of your program using tools which don’t
depend on being able to run a program on the main CPU.

At that point you’ll be reaching for a logic analyser; the debug board DBG−5 helps you plug it in; and most of
this chapter describes it and how it’s used. But we’ve also got notes in about the humble debug switch (which
sends an interrupt to the CPU which can be used by debug monitor software) and the socket which allows you
to use a ROM emulator.

10.1. The debug board
DBG−5 is a somewhat inelegant board which plugs into the edge connector behind the DIMM memory slots.
The edge connector is like those used to hold plug-in cache modules on PCs, and its 160 pins are enough to
connect P−5064’s wide buses. DBG−5 provides you with:

• Logic analyser connections : present all CPU cycles and PCI cycles accessing local memory. DBG−5
buffers and re-registers the buses, so that even a relatively slow analyser will have no trouble following
P−5064’s buses up to 100MHz. The connectors are pinned out to allow HP logic analyser ‘‘mass
ter minator pods’’ to be plugged straight in, but can be wired pin-by-pin to any kind of analyser.

• Address/data trigger PLD : DBG−5 is fitted with a programmable logic device (a PAL or GAL22V10) whose
inputs are bus cycle status signals, and generates trigger signals which will capture address or data. The
PAL is socketed, and may be replaced with a custom version.

• Tr igger input : takes a standard BNC trigger line from your test equipment, and feeds it as the HPTRIG
signal into P−5064 in parallel with the usual ‘‘debug switch’’ signal. That allows you to break into your
software debug monitor when a significant hardware even occurs.

• Optional dual serial port : potentially useful to a customer who wants to reprogram the PCI/ISA system in a
way which temporar ily or permanently obstructs access to the serial ports.

The layout of DBG−5 is shown in Figure 10.1. It’s fitted with the connectors facing the CPU; but the connector
is keyed and non-reversible.

1

2

3

45

68

9

10

11

12

13

14

15

16

17

18

19

20

7

J1

tr
ig

ge
r

P
A

L

P1 P2

P3 P4

P5 P6

P7 P8

P9

P11
External trigger in

P10
dual serial
port

Pinout for the analyser
connectors

Figure 10.1 DBG−5 layout and connector positions

64 10.1. The debug board P−5064 manual

10.1.1. Debug board analyser connectors
The signals available on the standard analyser connectors of DBG−5 are summarised in Table 10.1.
Some more signals (rarely of use to anyone who is not messing with P−5064’s inter nals) are available
on the J1 connector and listed in §10.1.3 below.

Signal Description

A0-31 Addresses on the intermediate bus (where there are only 32 address bits). For
CPU cycles, you’ll see the low 32 bits of the CPU’s address; PCI cycles’
addresses get mapped through the PCI controllers ‘‘aper ture’’ base registers.

Low address bits during bigger-than-byte or block transfers may look like
anything; ignore them.

ATr ig One rising edge per cycle; captures valid address and data (one data item only if
the transfer is a burst. Generated by the debug board trigger PLD.

BE0-7* Byte enables - BE0* indicates valid data on D0-7 etc.

Block* Active (low) if this cycle is a burst.

D0-63 Data
DP0-7 Parity for each data byte lane

GND System ground pin

IOGnt* Inactive for CPU-initiated cycles; active for cycles initiated by PCI master devices
(or the PCI bridge’s DMA channel, if you’re brave enough to use it).

Rd* Low for read, high for write.

RdRdy*
Rlse*
SysCmd0-8
ValIn*
ValOut*
WrRdy*

MIPS CPU signals, if you need to watch the system interface. These signals
track the CPU at all time, so may well change on every CPU clock edge. They
run one register stage behind the CPU.

Table 10.1: Signals from DBG−5

If you are using an HP or compatible analyser with mass terminator probes which plug right into the
connectors P1-9, then the signals get laid out for your convenience as shown in Figure 10.2.

P−5064 manual 10.1. The debug board 65

Tr ig 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P1 ATr ig IOGnt* Block* Rd* BE7-0*

P2 D47-32

P3 D63-48

P4 A31-16

P5 D31-16

P6 ATr ig A15-0

P7 SysCmd8-0 Rlse* WrRdy* RdRdy* ValOut*ValIn*

P8 D15-0

P9 DP7-0

Figure 10.2 Connecting an HP or compatible analyser to DBG−5

Those of you who haven’t got an HP or compatible analyser can still use the connectors, of course; but you’ll
probably find Figure 10.3 more helpful.

66 10.1. The debug board P−5064 manual

P1 P2 P3

- 1 2 - - 1 2 - - 1 2 -

ATr ig 3 4 - - 3 4 D47 - 3 4 D63

- 5 6 - D46 5 6 D45 D62 5 6 D61

- 7 8 - D44 7 8 D43 D60 7 8 D59

IOGnt* 9 10 Block* D42 9 10 D41 D58 9 10 D57

Rd* 11 12 BE7* D40 11 12 D39 D56 11 12 D55

BE6* 13 14 BE5* D38 13 14 D37 D54 13 14 D53

BE4* 15 16 BE3* D36 15 16 D35 D52 15 16 D51

BE2* 17 18 BE1* D34 17 18 D33 D50 17 18 D49

BE0* 19 20 GND D32 19 20 GND D48 19 20 GND

P4 P5 P6

- 1 2 - - 1 2 - - 1 2 -

- 3 4 A31 - 3 4 D31 ATr ig 3 4 A15

A30 5 6 A29 D30 5 6 D29 A14 5 6 A13

A28 7 8 A27 D28 7 8 D27 A12 7 8 A11

A26 9 10 A25 D26 9 10 D25 A10 9 10 A9

A24 11 12 A23 D24 11 12 D23 A8 11 12 A7

A22 13 14 A21 D22 13 14 D21 A6 13 14 A5

A20 15 16 A19 D20 15 16 D19 A4 15 16 A3

A18 17 18 A17 D18 17 18 D17 A2 17 18 A1

A16 19 20 GND D16 19 20 GND A0 19 20 GND

P7 P8 P9

- 1 2 - - 1 2 - - 1 2 -

- 3 4 - - 3 4 D15 - 3 4 -

- 5 6 SysCmd8 D14 5 6 D13 - 5 6 -

SysCmd7 7 8 SysCmd6 D12 7 8 D11 - 7 8 -

SysCmd5 9 10 SysCmd4 D10 9 10 D9 - 9 10 -

SysCmd3 11 12 SysCmd2 D8 11 12 D7 - 11 12 DP7

SysCmd1 13 14 SysCmd0 D6 13 14 D5 DP6 13 14 DP5

ValIn* 15 16 Rlse* D4 15 16 D3 DP4 15 16 DP3

WrRdy* 17 18 RdRdy* D2 17 18 D1 DP2 17 18 DP1

ValOut* 19 20 GND D0 19 20 GND DP0 19 20 -

Figure 10.3 Pin-by-pin analyser connection to DBG−5

P−5064 manual 10.1. The debug board 67

10.1.2. The trigger PAL; connections and standard version
DBG−5’s trigger PAL is an electrically reprogrammable 22V10, 24-pin 0.3’’ DIP shape, 7.5ns speed grade. We
usually use a Lattice GAL22V10, but any 22V10 will do if it’s fast enough. Table 10.2 list the signals connected
in and out of the PAL; and then we’ll show you the logic equations. If you want to see those signals, they’re
also available on the J1 connector, whose pinout is Table 10.3.

Signal Name
Schems Equations

Descr iption

Inputs

dbgclk The CPU bus interface clock. The CPU/memor y region of
P−5064 all runs synchronously to this clock.

mstrrq* Cycle starting.
Rd* mstrrd* Low for a read, high for a write
Block* mstrblock* Low for a block transfer, high for just one word

mstrlast* Low for the last word of a block transfer, or the data of a single-
word transfer

mstrdval* Data valid on write
slvdval* data valid on read
slvdone* slave has finished the transaction

IOGnt* iomgnt* when active, this cycle is being done by an I/O master - that is,
it’s a memor y cycle being run by a PCI initiator. All other
cycles are CPU-initiated.

ioclk half-rate clock. Usually the same as v3lclk.
v3lclk Clock defining events signalled to/from the PCI interface chip.

Usually synchronised to half the CPU interface clock; the PAL
uses it to qualify half-speed signals to/from the PCI chip.

dbgrst Logic reset from motherboard reset circuit.
HPTRIG That’s the signal from the exter nal tr igger connector.

Outputs

addrclk Local version of dbgclk, buffered and somewhat delayed. That
means the debug board registers sample a few ns later than
the motherboard, loosening up timing requirements.

Note that this only wor ks because the debug board isn’t trying
to send any synchronous signals back to the motherboard.

dbg_aclken*

dbg_dclken*

Clock enable for debug board address and data registers,
respectively. Active (low) to sample data at the next clock
edge; inactive to hold.

ATrig Tr igger for user’s analyser. In the standard PAL, this is set to
capture addresses of both CPU cycles and PCI-initiated
memor y cycles.

DBGINT* Interr upt to CPU, can be used to feed back a hardware trigger
condition so that the software stops too.

Table 10.2: Signals on the ANTRIG PAL

Probably the easiest thing is to show you the ‘‘Abel’’ source of the PAL we currently fit.

68 10.1. The debug board P−5064 manual

module ANTRIG

" (c) 1992,1993,1994 Algorithmics Ltd

title ’CPU boot time mode bit generator’

antrig device ’P22V10’;

"*** Pin Definitions ***

" Inputs

dbgclk pin 1;

!mstrrq pin 2;

!mstrrd pin 3;

!mstrblock pin 4;

!mstrlast pin 5;

!mstrdval pin 6;

!slvdval pin 7;

!slvdone pin 8;

!iom_gnt pin 9;

ioclk pin 10;

v3lclk pin 11;

dbgrst pin 13;

hptrig pin 23;

" Outputs

addrclk pin 20;

!dbg_aclken pin 19;

!dbg_dclken pin 18;

atrig pin 17;

!dbgint pin 14;

" Internal

as0 pin 22;

mreq_off pin 15;

"*** Macros ***

x = .X.;

astate = [dbg_aclken, dbg_dclken, atrig, as0];

IDLE = [0,0,0,0];

STRT = [1,1,0,0];

AHLD = [0,1,0,0];

DHLD = [0,0,0,1];

TRIG0 = [0,0,1,0];

TRIG1 = [0,0,1,1];

P−5064 manual 10.1. The debug board 69

Equations

addrclk = dbgclk;

mreq_off :=

(astate != IDLE) & (

!mstrrq #

mreq_off

);

astate :=

!dbgrst & (

(astate == IDLE) & (

mstrrq & (!iom_gnt # iom_gnt & !v3lclk) & STRT #

!mstrrq & IDLE

) #

(astate == STRT) & (

!iom_gnt & (

mstrlast & slvdone & AHLD #

!(mstrlast & slvdone) & STRT

) #

iom_gnt & (

slvdone & AHLD #

!slvdone & STRT

)

) #

(astate == AHLD) & (

DHLD

) #

(astate == DHLD) & (

TRIG0

) #

(astate == TRIG0) & (

TRIG1

) #

(astate == TRIG1) & (

!mstrrq & IDLE #

mstrrq & (

mreq_off & IDLE #

!mreq_off & TRIG1

)

)

);

end ANTRIG

Can you be expected to understand all that? Let’s walk you through it:

• Signal names : we write Abel with all-lower-case names. Active low signals, which are usually called XX*
when we’re referr ing to the schematics, are defined with a leading ‘‘!’’ (exclamation mark) in Abel.

• Macros and vectors : the assignment (‘‘=’’) operators appearing before the magic line ‘‘equations’’ are macro
definitions which are interpreted by simple textual substitution.

In Abel lists of signal names or levels enclosed in brackets ‘‘[]’’ are vectors. When you use a vector in a
logic equation, you are implicitly defining a bitwise operation across all bits in the vector at once. If the
operator is a logical and (‘‘&’’) or logical or (‘‘#’’) the result is a vector too; if the operator is something like a
compar ision (‘‘==’’) then the result is true/false.

• = and := : in Abel the ‘‘:=’’ assignment implies that the computed logic result is captured in a register (in this
type of device, always sampled on the rising edge of the clock fed into pin 1).

70 10.1. The debug board P−5064 manual

• astate := : this equation actually defines a finite state machine. It’s a vector (the state vector)
assigned through a register; and each of the main terms describes transitions from a particular state.
Abel has a syntax specially defined for finite state machines, but it’s ver y inefficient so we don’t use
it.

The ‘‘astate’’ state machine tracks cycles on the intermediate bus, and particular transitions of ‘‘astate’’
mar k points at which we can usefully sample address and data into the registers, and other points at
which we can trigger the attached logic analyser. The encoding of ‘‘astate’’ is chosen so that the
constituent output signals control the exter nal logic as they should.

10.1.3. The J1 connector: looking inside P−5064

- 1 2 -

- 3 4 -

- 5 6 IOGnt*

BSLVDONE* 7 8 BSLVDVAL*

BMSTRDVAL* 9 10 BMSTRLAST*

Block* 11 12 Rd*

BMSTRRQ* 13 14 V3LCLK

V3BTERM* 15 16 V3RDY*

V3W_R* 17 18 V3BLAST*

V3ADS* 19 20 GND

Table 10.3: Debug board internal signals connector J1 pinout

Perhaps there’ll be more about these signals in a later edition.

10.2. ROM emulators
ROM emulators plug into the 32-pin ROM socket, described in §5.3. (‘‘Flash ROM and the boot ROM
socket’’) on page 28 with the pinout in Figure 5.1. As well as providing a source of boot-time code,
some ROM emulator products provide a simple networ k connection and console; not perhaps really
needed with P−5064. However, if you want to use any extended functions you’ll probably need to be
able to write to the ROM socket position; note that only single byte write cycles are supported.

10.3. The debug switch
P−5064’s reset flip-switch is two-way; push it the other way and it powers on the unpowered board, or
delivers a debug interrupt when the board is already powered up.

Note that if you attach a remote power-on switch to J21 it will double up as a remote debug interrupt
switch.

It’s up to the debug monitor, hanging off one of the MIPS exception handlers, to receive the interrupt and
do something useful with it.

P−5064 manual 10.3. The debug switch 71

11. Software from Algorithmics and third par ties
This infor mation is necessarily a snapshot; we’ll try to keep updated infor mation on our web site.

PMON boot ROM sources
Are available free from Algorithmics’ web site, at somewhere like
ftp://ftp.algor.co.uk/pub/software/pmon/pmonsrc-970821.tar.gz . There may be a new er version by
the time you look, of course.

The package is configured to build using Algorithmics’ SDE−MIPS tools on a Unix host. Use of another
toolchain should not be too bad, so long as it supports MIPS-standard assembly code; but building on DOS or
any version of Windows with only short file names is painful.

Note that PMON, while freely redistributable source code, is not supported by Algor ithmics.

SDE−MIPS for P−5064
Probably the best MIPS compiler toolkit in the wor ld22. You can find out more on Algorithmics web site.
SDE−MIPS has built-in support for P−5064, as it does for all Algorithmics prototyping boards and a good range
of MIPS boards from third parties.

Real-time OS on P−5064
Our policy is that no reasonable RTOS should be unavailable; but license conditions can make this difficult. If
you don’t see what you want, please ask.

• Windows CE : perhaps not really real-time, but it’s clear that Microsoft’s baby will get significant use in
embedded systems, star ting with those where a user interface or ability to run third-party software are
impor tant. Algor ithmics are now ‘‘Systems Integrators’’ for Windows CE, and at the time of writing we are
developing support for P−5064, and we expect to maintain it for all future boards. Check out our web site
or ask us.

• VxWor ks/Tor nado : a BSP (‘‘board support package’’) for Wind River System’s OS is available. With all
CPUs known so far, P−5064 is compatible with the version of VxWor ks/Tor nado built for MIPS R4x00
CPUs. A native R5x00 version might offer better perfor mance, but is not essential.

• pSOS : Algor ithmics are in touch with ISI and intend to make sure this becomes available.

• ARTX : Algor ithmics’ own RTOS is a minimal microker nel suppor ting a POSIX threads implementation. It’s
available on reasonable royalty-free terms.

One particular feature of ARTX is its ‘‘Transputer-replacement’’ librar y, which is a librar y of functions which
emulate the de-facto standard C binding used for the scheduling functions built into the Inmos Transputer
architecture. Could be useful if you’re converting Transputer code.

Other OS on P−5064

• OpenBSD : one of the public-domain BSD-derivative OS factions, and the one we’ve had most success
with. Running now.

• Linux : the MIPS version exists in a state of considerable activity. A por t exists for Algorithmics’ P−4032
board, and we intend to move it over to P−5064 when we can.

22 Algor ithmics’ product, of course.

72 11. Software from Algorithmics and third parties P−5064 manual

Appendix A: MIPS CPUs and addresses
In MIPS CPUs the addresses generated by your program23 are never the same as the physical
addresses which come out of the CPU and affect the rest of the system.

This is different from most familiar CISC architectures, and this often causes confusion. CISC CPUs
often have a mode bit which enables memory translation - and without that mode bit set the physical
address is exactly the same as the program address. MIPS has no such mode bit. Instead, the CPU’
program address space is split into regions, as shown in Figure A.1:

"unmapped" uncached (kseg1)

"unmapped" cached (kseg0)

mapped
(kseg2)kernel

supervisor

32−bit user space (kuseg)
2 Gbytes

0xE000 0000

0xC000 0000

0xA000 0000

0x8000 0000

0x0000 0000

Figure A.1 MIPS program address map

The regions kuseg and kseg2 are designated for translation; addresses in these regions will be
presented to the hardware’s memor y translation unit (the TLB), and what happens then is beyond the
scope of this section. If you want to know more, read an architecture book as recommended in
Appendix B below.

Embedded software more often runs in kseg0 and kseg1, each of which offers a window onto the low
512Mbyte of physical memory (cached and uncached respectively). kseg1 is essential to run startup
code (before the caches are initialised), and is also needed for access to hardware I/O registers. Once
the system is running most system code and data will be accessed through kseg0.

Actually, the picture shown above in Figure A.1 is not complete. The R4x00 is, after all, a 64-bit CPU
and not 32-bits, and the full program address space is 64 bits big. Figure A.1 is useful because, so long
as you only use the 32-bit-compatible part of the MIPS instruction set, registers will only contain 64-bit
values whose top 32 bits are all set to the same value as bit 31 - such values look like a ‘‘sign extension’’
of a 32-bit value.

So the 32-bit memory map is in fact the view you get of the whole 64-bit memory map when you leave
the middle out. Figure A.2 shows the big picture:

23 Called program addresses here - the term vir tual address means exactly the same
thing but is unfamiliar outside the exotic realms of big operating systems

P−5064 manual Appendix A: MIPS CPUs and addresses 73

"unmapped" uncached (kseg1)

"unmapped" cached (kseg0)

0x0000 0000 0000 0000

0xFFFF FFFF 8000 0000

0xFFFF FFFF A000 0000

0xFFFF FFFF C000 0000

0xFFFF FFFF E000 0000 mapped
(kseg2)kernel

supervisor

32−bit user space (kuseg)
2 Gbytes

inaccessible with
32−bit pointers
(so only found

in R4x00 CPUs)

more user space
40 bytes2to

0x0000 00FF FFFF FFFF

0x4000 0000 0000 0000
40 bytes2

supervisor−accessible0x4000 00FF FFFF FFFF

0x9000 0000 0000 0000

window on physical mem
(cached)

window on physical mem
0x9800 0000 0000 0000

40 bytes2

(uncached)

0xC000 0000 0000 0000

0xC000 00FF FFFF FFFF kernel−accessible

Figure A.2 MIPS program address map (entire 64-bit space)

Handling pointers as 64-bit objects is an extravagant use of memory space for an embedded software
application; and we reckon most users won’t bother. If you need access to the R4x00’s 32-bit physical address
range outside the low 512Mbytes (so can’t just use kseg0 and kseg1) you can use the TLB.

74 Appendix A: MIPS CPUs and addresses P−5064 manual

Appendix B: References - Finding more information
The wor ld-wide-web is your best and first resource. Most MIPS semiconductor partners and most
suppliers of software or hardware add-ons have web sites, and most have extensive documentation
there. How ever, large documents and books are not much fun online, so only those of you with the right
sor t of printers will use those sources for the bigger documents; we’ll quote all the infor mation we can as
we go along.

And of course we’d like to encourage you to visit our web site at www.algor.co.uk ; star t at the
‘‘Documents and software to download’’ section.

General MIPS information

• MIPS architecture and programming : Dominic Sweetman, See MIPS Run published by Morgan
Kaufmann, ISBN 1-55860-410-3.

• Using MIPS : Erin Farquhar and Philip Bunce, The MIPS Programmer’s Handbook published by
Morgan Kaufmann, ISBN 1-55860-297-6.

A readable introduction to the practice of programming MIPS at the low lev el, by the author of
PMON. Strengths: lots of examples; weakness: leaves out some big pieces of the architecture (such
as memory management, floating point and advanced caches) because they didn’t feature in the LSI
‘‘embedded’’ products this book was meant to partner.

• MIPS R4000 : Joe Heinrich/Gerr y Kane, MIPS R4000 Microprocessor User’s Manual, published
Prentice Hall, ISBN 0-13-1059254.

The bible of the MIPS architecture; lots of details, but sometimes hard to find. It also takes a rather
rigid view as to what is implementation specific, and can thus be left out. You can probably find a
version of this to download from SGI’s technical librar y.

CPU variants

• R5000 : a 64-bit MIPS CPU designed by QED but made by NEC and IDT from 1995 onward.
Av ailable at up to 200MHz internal speed, on a 100MHz bus, it features limited dual-issue of
instr uctions - essentially, it can fire off a floating-point and integer instruction simultaneously. It has
dual 32Kbyte caches onchip, and onchip control for an exter nal secondar y cache attached to the
system bus.

Online documentation is only available at IDT, as far as we can determine, and it’s fair ly out of date.
Still, look around IDT’s document librar y. A datasheet is at http://www.idt.com/docs/3517.pdf at
the time of writing.

NEC has not got around to the web much. You may be able to find some data starting at
http://www.nec.com/necel/ .

• QED RM5260, RM5270 : R5000 derivative products, designed for lower cost. The pr imary caches
are trimmed to 16K+16K, and the RM5260 has no secondary cache controller; expect speeds up to
about 166MHz internal, 83MHz interface. Launched in 1997, faster versions may be available in
1998.

QED keep datasheets online, star t at http://www.qedinc.com/ and keep looking; they want you to
sign your name to get in, but it’s not a password, just a visitor’s book.

• QED RM7000 : next-generation product (but pin-compatible with RM5270) featur ing a large onchip
secondar y cache and a more symmetric dual-issue pipeline; the first is ver y welcome - R5xx0
implementations have generally been cache-limited - but the second is of more dubious value. Buy a
module for your P−5064 and try it for yourself!

P−5064 manual Appendix B: References - Finding more infor mation 75

SGI Technical Library
At http://techpubs.sgi.com/library/ you’ll find infor mation on MIPS-designed CPUs (look under the
‘‘hardware’’ menu) and the only available description of MIPS assembler language - that will be under var ious
‘‘Ir ix’’ versions, and you may be best off using the oldest version, starting at ‘‘Ir ix 5.3’’.

Algorithmics’ manuals
Most of Algorithmics’ manuals are freely available for download from our web server in either PDF (‘‘Acrobat’’)
or gzipped postscript for mats. Star t at http://www.algor.co.uk/algor/info/ftplist.html .

You’ll find this manual there, and also one for PMON - a refor mat of the original LSI manual, which has been
updated (though probably not enough). If you’ve bought a P−5064, you’ll have a PMON manual.

Hardware information on P−5064
This is not quite freely available. We’ll send the following to those who’ve bought a P−5064 on request (or
send you a password and let you download them). Here’s what you could have:

• P−5064 schematics : just the circuit diagrams.

• P−5064 logic equations : the logic equations, in Abel, for the whole of the board.

• P−5064 design : a theor y of operation manual - which isn’t actually available yet, but should be one day
soon.

Note that all of these remain our copyr ight, which means you need to ask us before you use chunks of our
design in your product; though if you do ask, we’ll be ver y nice to you and find a way to let you do it.

Data sheets
If you’re serious about programming P−5064 you’re going to have to tackle the programmable devices. Here’s
what we know about.

Bus controllers

• V360EPC PCI bridge : V360EPC (V962PBC-40LP Rev B.2 in revision B boards). You can download a
reasonable manual from V3’s web site. A list of what’s available is at
http://www.vcubed.com/databook.htm .

• Intel i82371 PCI→ISA adapter : look on the http://developer.intel.com/ web site. At the time of
wr iting you could get links to download the data sheet on the page
http://developer.intel.com/design/intarch/datashts/290562.htm .

• Vadem VG469 PC card controller : look at http://www.vadem.com/download/ for a list of files to access.

• Micrel MIC2563A-0 PC card power controller : this is controlled almost entirely by the VG469 to cycle power
to the PC card slots in accordance with the hot-swap rules. You probably won’t need any additional data;
but if you do there is a http://www.micrel.com/pcmcia.html and datasheets underneath it.

PCI chips

• DEC21143 ethernet controller : despite the name, these products are now being marketed by Intel as part
of Intel’s acquisition of DEC’s foundr ies. You can find data under http://developer.intel.com/ , at the
time of writing listed on the page http://www.intel.com/design/network/new21/techdocs/index.htm .

If you have a revision B board (serial number 21 or lower) with a 10Mbit/s DEC21041 ethernet controller,
you’ll find infor mation in the same place.

• Quality Semiconductor QS6612 ethernet physical-layer chip : go to
http://www.qualitysemi.com/products/network.html and follow the link to the QS6612 manual.

76 Appendix B: References - Finding more infor mation P−5064 manual

• Symbios 53C810A SCSI controller : Symbios have a summar y page for their SCSI controller chips at
http://www.symbios.com/semi/scsi1.htm , but they’re recent converts to online data and older
products like this one don’t have online manuals. They have a web-based literature request for m,
and they probably think that the US postal service encompasses the universe.

PC-compatible devices
Most P−5064’s are built with a National Semiconductor PC97307 combi I/O controller, which combines
two ser ial por ts, parallel port, floppy disk controller, real-time clock, PC keyboard and mouse, and a
general-pur pose parallel I/O port. However, before you go off and fetch the manual bear in mind that
this part has been carefully designed to operate as part of PC clone hardware; once it has been
initialised by the standard ROM at power-up it behaves pretty much like any other PC hardware.

If you need details, star t at http://www.national.com/design/ , and search on the part number
‘‘PC97307’’.

PC-compatible devices in revision B boards
The revision B boards were built with a lower-integration ‘‘Winbond’’ combi I/O chip, with separate real-
time clock, keyboard and parallel I/O controllers. Here’s infor mation for those customers; but do note
that for most purposes all these devices can be programmed as generic PC clone hardware.

• Winbond combi I/O for ISA : it’s the W83877F. It used to be difficult to get Winbond data; but now
Winbond have a web presence at www.winbond.com.tw , and there’s a manual at
http://www.winbond.com.tw/sheet/W83877F.pdf . You may not be able to go straight to the
manual without filling in a visitors-book for m.

• Benchmarq BQ3285E real-time clock : it’s basic operation is just like every PC batter y-backed-up
clock calendar there’s ever been, but there’s data online at
http://www.benchmarq.com/prod/bq3285E_L.html

• AMI Key-2WP keyboard/mouse controller : supplied by Amer ican Megatrends, who program chips
which (underneath the AMI logo) are Intel 8742 microcontrollers. These are compatible with all PC
keyboard controllers - Intel used to call the standard ‘‘UPI-41’’. AMI make more money out of BIOS
software and more sexy stuff these days, and it’s hard to get documentation.

However, Intel’s dev eloper web site claims it will post you a manual to an earlier, largely-compatible
product; go and visit http://developer.intel.com/design/periphrl/manuals/

Flash memory

• AMD flash : 29F040 (in the socket) or 29F080 (possibly fitted on the motherboard). Look at the
reference page http://www.amd.com/products/nvd/techdocs/techdocs.html .

• Fujitsu flash : MBM29F080, datasheet listed on the products page:
http://www.fujitsumicro.com/products/memory/flash.html

Display

• LCD display : ignore the manufacturer’s data, refer instead to Peer Ouwehand’s online application
note: http://www.iaehv.nl/users/pouweha/lcd.htm

• Siemens DLR2416 LED display : don’t seem to be able to find much about that. Rely on our drivers,
or find it yourself.

P−5064 manual Appendix B: References - Finding more infor mation 77

Odds and ends

• Centronics ECP : there ought to be some standards online, but probably aren’t. There’s a good summary
at http://www.lvr.com/parport.htm

• Z80 PIO controller (Z84C2006PSC) : fitted only on revision B boards; later boards exploit the parallel I/O
features of the PC97307 combi I/O chip.

For programming infor mation, ask Zilog at www.zilog.com for a data sheet.

Memor y modules
Particular ly for 100MHz, unbuffered SDRAM DIMMs can be problematic. Intel have spoken as to the required
standards, and you can take advantage of their effor ts by looking at
http://developer.intel.com/design/pcisets/memory/index.htm .

Standards

• PCI Local Bus Specification, Revision : irr itatingly, this isn’t available online because the PCI consortium
fund themselves by charging $100 or so for the hard copy. The delay and complication this causes for
those of us outside the USA are considerable.

78 Appendix B: References - Finding more infor mation P−5064 manual

Appendix C: Reading configuration information from DIMM
modules
IBM defined a specification for 168-pin DIMM modules which seems to have progressed to being a de-
facto industry standard. This involves use of a small EEPROM device to store a bunch of infor mation
about the SDRAM size and organisation. P−5064 depends on this, in that the supplied bootstrap
program reads out this infor mation to decide how to program the memory controller.

This appendix tells you both how to read the ROM values, and what the ones which are significant to
P−5064 mean.

How to read the DIMM’s EEPROM
The DIMMs use a 2-wire interface to read (and if necessary, write) the EEPROM devices. The interface
is sometimes called ‘‘I2C’’ and was pioneered by Xicor.

Each DIMM socket’s EEPROM has an address to which only it responds, configured by static voltage
levels on the three DIMM inputs called SA0-2. In P−5064, the DIMM1 slot gets the address 1, and
DIMM2 gets the address 0.

The two signals used for reads and writes are data and clock: SDA and SCL. On the P−5064 schematics
these are called D_SDA and SCK respectively.

The EEPROM signals are wired using signals controlled by the general-pur pose I/O (GPIO) port,
descr ibed in §5.6.6. It would be fair ly straightforward to route those signals directly to the DIMMs; but
unfor tunately the GPIO chip is a 5V device and the EEPROM needs 3.3V levels. So instead the
interface goes via one of the FPGA devices.

The signals concerned are:

GPIO signal I2C function Notes

B5 SDA dr iven open-collector. Set B5 to low to
disable (which will allow SDA’s to be pulled up
to a high), and high to actively pull SDA to a
low

B6 SCL I2C clock
B7 SDA Read data. When sending to the EEPROM,

a logic fossil requires that you make this
signal into an output from the GPIO chip and
program it low.

I2C access protocol
The basic I2C transfer uses SDA to conve y a bit-stream of commands or data, using successive SCL
high periods to sample SDA. SDA is defined as ‘‘open collector’’ and pulled up with a high-value resistor.

Dur ing data transfers SDA is always stable before, dur ing and after each SCL high pulse. So a change
on SDA while SCL is high can be used as a recognisable condition, used to delimit transfers. So the
basic bit-level coding is:

• Star t condition : a low-to-high transition of SDA with SCL high. Once the start condition timing
requirements are met, it is then usual to lower SCL, ready for the first data bit.

• Stop condition : a high-to-low transition of SDA while SCL is high.

• Wr iting data : output value to be transferred on SDA , wait a while, raise SCL, wait a while, and lower
SCL.

P−5064 manual Appendix C: Reading configuration infor mation from DIMM modules 79

• Reading data : low er SCL, wait a while, raise SCL, pick up data on SDA, wait a while.

Once you can send bits, you can communicate. First of all, there is a rule for avoiding hurling bits into a black
hole:

• Byte acknowledgement : most commands are organised as a number of 8-bit transfers. After each 8-bit
transfer the EEPROM will try to send a ‘‘0’’ back to you to prove it is there. You should release the data line
(changing it into input mode) immediately the 8th bit is safely sent.

If you don’t see an acknowledgement, the EEPROM isn’t talking to you and nothing is happening. Perhaps
the EEPROM is still busy stashing away some data you just wrote...

Whenever the EEPROM sends you a byte of data, you have to acknowledge it, send a stop, or send a start.

• Inter preting data : 8-bit groups are interpreted with the first-transmitted bit regarded as the most significant
(bit 7) (this is the opposite convention to most serial communications).

Now you can send 8-bit groups to the device, we can define commands and responses.

Each transfer starts with a command like this:

Device type 001=DIMM1 0=write
1 0 1 0 000=DIMM2 1=read

Figure C.1 Command for an I2C slave device

Where:

Device type this is a fixed code which is decoded by EEPROM devices of the particular type used on the
DIMMs.

Select another fixed code, this time to match the configuration of the SA2-0 pins of the DIMM; as
mentioned above this should be binary 1 for DIMM0, and binary 0 for DIMM2.

read/wr ite deter mines whether the next command is a read or a write.

If the EEPROM processes the command it will send an acknowledgement.

After a read/write command you need to specify an address - the 256×8 store requires an 8-bit address, and
you’ve given one bit already. Don’t forget that the address is sent most significant bit first.

EEPROM write
In fact, you should never write the EEPROM on one of P−5064’s DIMMs, since the infor mation stored therein is
impor tant configuration infor mation. But you can’t run the protocol without doing a zero-length write...

The sequence goes like this:

• issue start

• send write command

• EEPROM ack

• send byte address

• EEPROM ack

• send data

• EEPROM ack

• issue stop

The EEPROM has an internal counter, and it is possible to write from one to 8 bytes of data by sending more
data before issuing the stop. Only the low three bits of address count up, so a burst which goes over an 8-byte
boundar y will ‘‘wrap round’’ - perhaps not what you wanted.

80 Appendix C: Reading configuration infor mation from DIMM modules P−5064 manual

Acknowledg e Polling
After you complete a write of 1-8 bytes, the EEPROM goes off-line while it does its internal write cycle
(typically 5ms). If you have more transactions to perfor m with it you can poll for it’s completion by
repeatedly sending a write command, and testing for the ACK.

Read
You can’t directly supply an address for a read command. Read data is obtained from an internal
‘‘current address’’ register set by writes and incremented by reads.

Unless the last access was to the byte before the one you want, you have to setup the internal register
with a ‘‘wr ite’’ without any data, then issue another ‘‘star t’’. So to perfor m a read:

• issue start

• send write command

• EEPROM ack

• send byte address

• EEPROM ack

• issue start

• send read command

• EEPROM ack

• EEPROM data

At this point you can either issue a stop (to read just one byte) or an acknowledge (in which case the
EEPROM will continue with the next byte). It is possible to read through the whole of a 256-byte ‘‘page’’
of the EEPROM like this.

Timing requirements
You need some software mechanism for policing the frequent 5µs minimum timings. Take par ticular
care when doing I/O writes to change the SCL and SDA signals, since the CPU’s write buffer (and other
‘‘wr ite posting’’ buffers in the PCI bridge and ISA bridge) can cause successive writes to come out closer
together than you expected.

• SCL frequency : a maximum of 100kHz - so at least 10µs must elapse between successive rising
and falling edges.

In practice, you should keep all low and high periods of SCL over 5µs. It is easy to get programmed
I/O from a MIPS CPU to go faster than this!

• Data setup and hold : change the data ‘‘as soon as possible’’ after the falling edge of SCL and data
timing will take care of itself.

The actual rules are that data must be stable for at least 250ns before the rising edge of SCL; and
must remain stable until after SCL falls.

• Star t/stop condition rules : SCL must be high 5µs before and after the SDA transition

• Wr ites take a long time : after you write to the EEPROM it goes away and stores the data in its non-
volatile locations. This takes about 5ms, and during this period it takes no notice of you. Once you
have accomplished a write you should expect to see no acknowledgement of a subsequent
command for a while (see the ‘‘wr ite polling’’ command above).

P−5064 manual Appendix C: Reading configuration infor mation from DIMM modules 81

DIMM EEPROM data
The data provided by a DIMM module which is important to P−5064 are as follows:

Descr iptionByte
Addr

Typical
Values

0 Number of bytes reserved for this table 128

1 8Number of bytes in the EEPROM device (divided by 32,
so the usual 256-byte size becomes 8)

2 Memor y type = SDRAM 4

3 Number of row address bits 11-13

4 Number of column address bits 8-11

5 Number of sides 1-2

17 Banks/DRAM 2,4

31 Module size/side (4 = 16Mbytes) 4

Table C.1

A full description of all the 32 bytes actually used on Micron DIMMs is available in the manufacturer’s data
sheet.

82 Appendix C: Reading configuration infor mation from DIMM modules P−5064 manual

Appendix D: Software-visible chang es with different versions

Revision B to C

10/100Mbit Ethernet introduction
The 21143 is a new controller, and there are many detailed differences. It also has significant extra
functionality. Having said that, it is clearly a member of the same family as the Revision B’s 21041 chip,
and many drivers will already be configurable to the new par t.

Algor ithmics can supply a number of example drivers showing how the changes are made in var ious
contexts.

Chang e of Combi I/O chip
The National Semiconductor PC97307 used in Revision C and later boards replaces several
components from the Revision B: the Winbond combi I/O, the keyboard controller, and the real-time
clock (RTC).

• RTC : although it still has 256 bytes of non-volatile memory, access to the top 128 bytes needs
different handling. If you use Algorithmics’ SDE−MIPS routines the change is transparent.

• Po wer-off : is now controlled by a register in the PC97307 ‘‘APC’’ module. The APC is more
sophisticated than the simple control circuit on Revision B, and stores options in battery-backed-up
registers.

For example, if you power-down the P−5064 by removing the mains supply (without executing a
software power-down command) the APC remembers that the board was switched on and will restart
the board as soon as power retur ns. In the same circumstances the Revision B board would have
required to be switched on with the on/debug switch.

• Star t-up configuration : a lot of the ISA devices in the PC97307 need to be configured and enabled
by software. This is handled in the startup code in the supplied boot ROM, but something similar will
need to be reproduced by any customer fitting a different ROM.

In particular, note that the address of the Centronics-compatible parallel port is programmed by
star tup to be compatible with the Revision B board - it defaults to something different.

Disappearance of Z80 GPIO controller
The Revision B’s GPIO controller functions are taken over by the GPIO pins of the PC97307 combi chip.
The PIO port address is set to 0xff00 in our startup code.

The interface to the SDRAM DIMM’s ID ROMs is now built with the new GPIO controller.

Interrupt system
There is no longer an interrupt which can be generated from the user GPIO port - that was a unique
feature of the Z80 PIO chip.

The new ether net chip adds three new interr upts: MDINT˜, ETH_WAKEUP, and QS6612_ERR. See the
interr upts section §5.5 for how they’re programmed.

P−5064 manual Appendix D: Software-visible changes with different versions 83

Revision C to D
There are no systematic changes wrought between these two boards; the most pressing reason for the
change was incorrect wiring to the Centronics connectors - rev C boards require the use of a special ‘‘fixer’’
cable when you’re using all the Centronics signals.

However, logic revision 4 has brought a change to the interrupt system, described in this version of the
manual; the keyboard and mouse interrupts can now be more reliably handled by making the interrupt
controller detect edges on these signals. You need to set a register bit to obtain this desirable behaviour ; by
default, the board continues to act as it always did. It’s laid out in section 5.5.

84 Appendix D: Software-visible changes with different versions P−5064 manual

