
Algorithmics P−6032

User´s Manual

algori thmics

© 2000 Algorithmics Ltd

Revision: DraftFor1.0

Dated: 100/9/22

P−6032 is a single board computer for embedded systems devel-

opers wanting to build system prototypes and early-development

platfor ms for applications using 32-bit versions of MIPS R4x00,

R5x00 and MIPS−32 CPUs - and particular ly for those using

Algor ithmics’ BONITO system controller.

P−6032 features a synchronous DRAM local memory system

running at the CPU clock rate, and a PCI I/O system for easy

expansion. It’s fast, efficient, and economical, with excellent soft-

ware support, and the design can be licensed in whole or in part.

We all know that you only read the manual if all else fails. But

can we at least recommend that you read §1.2, ‘‘Key facts for the

impatient’’ and §2, ‘‘Getting Started’’.

This manual is ©2000 Algorithmics Ltd, but anyone may repr int this

document in whole or in part, so long as this copyr ight message is

preser ved.

Algor ithmics Ltd

The Fruit Far m

Ely Road

Chitter ing

Cambr idge CB5 9PH

ENGLAND

Phone: +44 1223 706200

Fax: +44 1223 706250

Email: ask-algor@algor.co.uk

WWW: http://www.algor.co.uk/

FTP: ftp://ftp.algor.co.uk/pub/

2 P−6032 manual

Contents

Contents ...3

1. Introduction to the P−6032 and manual ...6

1.1. The R4xx0, R5xx0 CPU families ...6

1.2. Key facts for the impatient ...6

1.3. Manual Sections..6

1.4. What and why..7

Why not? ..8

1.5. A note on EMC..9

2. Getting started ..10

2.1. What’s in the box? ...10

2.2. Initial wiring up ..10

2.3. Switching on..10

2.4. Boxing a P−6032...10

2.5. Normal sign-on sequence and what it means ...11

Table 2.1: P−6032 ROM sign-on sequence..12

Star tup troubleshooting and switch flipping..12

2.6. Flash memory and socketed PROM ...12

2.7. PMON ...13

The environment store ...13

Table 2.2: P−6032 - typical PMON environment var iables ...13

Instant PMON...15

3. Over view and Block diagram ...16

Figure 3.1 P−6032 block diagram ...16

4. Memory map ..18

4.1. CPU’s memor y map ..18

Table 4.1: P−6032 physical address map...19

5. Programming P−6032 ..20

5.1. CPU...20

Differences between CPUs ..20

CPU configuration options..20

5.2. Local SDRAM memory..20

5.3. Flash ROM and the boot ROM socket...21

Figure 5.1 Pinout of ROM socket ...21

5.4. P−6032-specific hardware registers..22

5.5. LED display ...22

5.6. Software-configurable general purpose I/O...23

GPIO bits used for onboard functions ..23

Table 5.1: Parallel I/O bits and onboard functions ..23

GPIO signals for whatever you want ..23

5.7. PCI bus ..24

Table 5.2: IDSEL for PCI devices/slots...24

IDSEL generation ...24

PCI device interrupt assignments...24

P−6032 manual Contents 3

PCI device reset ...25

5.8. Ethernet interface (AMD AM79C973KC)...25

5.9. South bridge - local I/O bus, IDE, USB etc..26

5.10. Multi I/O controller ...27

Dual Serial port ...27

Centronics ..27

Diskette ..27

Real Time Clock (RTC) ..27

Ke yboard/mouse controller ..28

Po wer control (‘‘APC’’) ..28

IR interface ...28

Hardware options ...28

5.11. PMON debug monitor compatibility...28

6. Board layout: locating connectors and jumpers ...29

Figure 6.1 P−6032 layout, connectors and jumpers..29

Notes on Figure 6.1...29

7. Switches and jumpers: where and what for ..30

Table 7.1: All switches and jumpers on P−6032 (including connectors called Jxx)30

7.1. CPU master clock rate setting - SW1..30

Figure 7.1 CPU master clock rate setup with SW1 ..31

7.2. CPU type and software options switches: SW3, SW4, SW5...31

Figure 7.2 CPU type and options - SW3, SW4, SW5 ..31

Table 7.2: CPU types and SW4 switch settings ...31

Figure 7.3 CDIV settings and effect on NEC Vr43x0 CPU clock rate...32

8. Connectors: where, what and wiring ..33

8.1. CPU daughterboard connector ...33

Figure 8.1 CPU daughterboard layout..33

Table 8.1: Pinout of CPU daughterboard (MIPS names)..34

8.2. DIMM memory slots (DIMM0/DIMM1)...34

8.3. PCI edge connectors: P9, P10, P11, P8)..35

8.4. Ethernet (P2)...35

8.5. IDE ..35

8.6. RS232 (P4) ...35

Figure 8.2 Pinout of a PC-compatible serial connector (looking into pins).....................................35

8.7. Centronics (P3) ...36

Figure 8.3 Centronics/IEEE-1284 parallel port connector..36

8.8. Diskette (P15)..36

8.9. User-defined parallel I/O (P6)..36

Table 8.2: GPIO connector (P6) pinout ..36

8.10. PC-compatible keyboard/mouse connector (P5)...37

8.11. USB (P1) ...37

8.12. IR ‘‘networ k’’ interface (P7)..37

8.13. Pow er supply connector (P13) ..37

Figure 8.4 ATX power supply connector pins ...37

8.14. Logic programming connectors: P22, P14 ..38

Figure 8.5 Xilinx-compatible connectors P22, P14 for reprogramming P−6032 logic38

8.15. JTAG boundar y scan test connector: P12 ...38

4 Contents P−6032 manual

Figure 8.6 JTAG boundar y scan chain ...38

Table 8.3: Pinout of JTAG boundar y scan connector P12 ..39

9. Cables supplied..39

10. Hardware debug and trace facilities ...39

Table 10.1: Pinout of the debug connectors ..40

Table 10.2: Debug connector signals described..40

10.1. ROM emulators ...40

10.2. The debug switch ..41

11. Software from Algorithmics and third parties ...42

PMON boot ROM sources...42

SDE−MIPS for P−6032 ...42

Real-time OS on P−6032 ..42

Other OS on P−6032...42

Appendix A: MIPS CPUs and addresses ...43

Figure A.1 MIPS program address map ..43

Figure A.2 MIPS program address map (entire 64-bit space) ...44

Appendix B: References - Finding more infor mation..45

General MIPS infor mation..45

Data sheets..45

SGI Technical Librar y...45

Algor ithmics’ manuals ..45

Hardware infor mation on P−6032 ..45

Standards ..46

Appendix C: Reading configuration infor mation from DIMM modules..47

How to read the DIMM’s EEPROM ..47

I2C access protocol ...47

Figure C.1 Command for an I2C slave device ...48

EEPROM write ..48

Acknowledge Polling ..49

Read ..49

Timing requirements..49

DIMM EEPROM data...50

Table C.1..50

P−6032 manual Contents 5

1. Introduction to the P−6032 and manual
We made P−6032 initially as an evaluation and development vehicle for our BONITO system controller (both as

an ASIC and as customisable IP loaded into a Xilinx FPGA). But we’re familiar with supplying embedded

systems developers with high-perfor mance MIPS targets with rich I/O and excellent software and debugging

suppor t - and P−6032 should replace our P−4032 design in these markets.

This manual describes revision A boards.

1.1. The R4xx0, R5xx0 CPU families

How MIPS emerged from an academic project to lead the RISC charge is too long a story to tell here, so see

[Sweet99]1. Ever since NEC produced the Vr4300 to power the Nintendo−64 games console CPUs with the

full 64-bit MIPS architecture but a low-cost 32-bit bus interface have been price/perfor mance leaders in their

sector. The other major supplier of these CPUs is QED, whose RM523x has long been the perfor mance

leader. They’re widely used in printers and set-top boxes.

Read on to find why P−6032 is the right prototyping platfor m for all of them.

Programmers should make sure they also have the BONITO manual in front of them; if not, download it now

from ftp://ftp.algor-uk.com/pub/hardware/bonito/mips-controller.pdf.

1.2. Key facts for the impatient

If you know quite a lot about MIPS already, and are familiar with programming at a low lev el, you’ll still need the

following parts of this manual:

• Block Diagram : you’ll probably find it helpful to glance at Figure 3.1 on page 16.

• Memor y map : refer to the ‘‘Memor y Map’’ table in the BONITO manual as well as Table 4.1 to find out what

registers are where.

• Physical arrangement, location of connectors and jumpers : descr ibed in §6 on page 29 below.

• Board-specific programming : no matter how familiar you are with BONITO and the other devices on

P−6032, to program the board from scratch you’ll need to know about how programmable I/O pins are

wired for onboard use, as shown in §5.6.

• MIPS CPUs and their addresses : can be ver y confusing for the uninitiated. If you’re not familiar with MIPS,

do read Appendix A (and of course [Sweet99]).

1.3. Manual Sections

• Getting started : what we’ve supplied, how to switch the board on, and set-up stuff.

• Over view and Block diagram : a look at how the board wor ks, at the kind of level of detail a programmer

might need.

• Memor y map : where to find memory regions and registers. Some of this duplicates infor mation available in

the BONITO manual, but there’s more board-specific infor mation here.

• Programming P−6032 : gor y details of registers and how devices are wired. For detailed programming

infor mation you’re normally referred to manufacturer’s data sheets; we’ll provide a jump page with wor ld-

wide web URLs at http://www.algor.co.uk/algor/info/p6032-devices.html

• Board layout: locating connectors and jumpers : the physical picture.

• Jumpers: where and what for : just that.

1 Here and elsewhere the thing in square brackets is a reference, and you can find
them in the bibliography at the end of this manual.

6 1.3. Manual Sections P−6032 manual

• Connectors: where, what and wiring : we include pin-outs for all but the most familiar connectors.

• Cables supplied : what’s in the box, and what can be bought as extras.

• Debug and trace facilities : about the in-built debug unit, which allows you to see cycles in the system

with a logic analyser.

• Software from Algorithmics and third parties : a running list - our web site might be more up to date.

• Board revisions : P−6032 is an evolving design, as we keep up with new CPU introductions and

features, fix bugs and make customer-related improvements. Moreover, FPGA logic can evolve

separately from (and usually faster than) the logic built onto the board.

The board revision is a letter, star ting a ‘‘A’’. There will never be more than 20 revision A boards.

The board revision is printed on the board, but is also encoded in a 3-bit ‘‘bus’’ readable through

software-readable input ports on the south bridge device; see 5.9.

And then there’s some slightly more obscure infor mation relegated to the appendices:

• Appendix A - MIPS CPUs, program addresses, and physical addresses : how MIPS CPUs access

exter nal memor y and I/O. You really should read this unless you are already familiar with MIPS

CPUs.

• Appendix B - Finding more infor mation : references to books and web sites about MIPS

programming.

• Appendix C - Reading configuration infor mation from DIMM modules : the DIMM memory modules

we use are equipped with a serial-access ROM full of infor mation about the DIMM and its

components. This infor mation is supposed to be a de-facto industry standard, and this appendix

tells you how to read it.

1.4. What and why

Here’s the basic features of the product, and why it’s like that.

• Clock rates : embedded systems designers want CPU power on a par with desktop PCs, which

means fast memory systems. P−6032 will support CPUs and SDRAM at 100MHz (maybe 125MHz,

not tried yet), but you might want to try different clock rates: see 5.1.

• CPU choice : P−6032 is intended to support a range of 32-bit bus MIPS CPUs with full 64-bit

inter nals, which include:

CPU type/ Clock Onchip cache
Manufacturer ext/int (I+D)

QED RM5230 83/166 16K+16K no

QED RM5231 100/250 32K+32K no

NEC Vr43x0 66/133 16K+8K

NEC Vr5432 83/166 16K+16K

IDT R4640 66/133 8K+8K

IDT RC64474 100/200 16K+16K

IDT RC64574 100/200 16K+16K

CPUs are provided on small daughterboards. They are compatible with daughterboards for

Algor ithmics’ ear lier P−4032 product.

• BONITO system controller : largely invisible to software, BONITO glues the system together. While

P−6032 is partly intended to adver tise the wonders of this chip, it does a job which has to be done

somehow in any MIPS system.

P−6032 manual 1.4. What and why 7

You’ll program BONITO, and refer to its manual (all customers should have got one) when you set up the

memor y map, use its GPIO signals and handle interrupts.

• Local memory system : two industr y-standard 168-pin DIMM slots, for synchronous DRAM modules (3.3V,

unbuffered). The DRAM always runs at the CPU’s interface clock. Use PC-100 64-bit types - parity is not

available.

• ROM : as supplied the board boots from a soldered-down 1M×82 flash ROM. There’s also a DIL ROM

socket (32-pin) for devices with access time 150ns or better, which will support any of:

- A uV-erasable or flash ROM usable as a bootstrap (that’s how we first fire up boards in manufacture);

- A ‘‘NetROM’’™ ROM emulator - a useful piece of equipment if you’re developing ROM code.

- A high-capacity ‘‘disk-on-chip’’™ flash memory unit.

The CPU can run cached from ROM.

• PCI : 33MHz, 32-bit, compliant with V2.1 of the PCI standard; four industry-standard edge-connector slots.

• Interr upt controller : built into BONITO.

• Choice of I/O : a bit of everything: two ser ial por ts, Centronics, IDE, 10/100Mbit ethernet, PC

keyboard/mouse, USB host, real time clock, 8-character LED display and user-programmable parallel I/O.

I/O is provided by an Intel ‘‘south bridge’’ chip (the Intel FW82371AB), a PC-style multi-I/O chip

(National PC97307−ICE/VUL), with the AMD AM79C973KC/W ethernet controller.

• Debug unit : you can plug in a logic analyser (directly, if it has 0.1’’ ‘‘mass termination’’ adapters compatible

with an HP unit) and watch the address and some of the data of all cycles in the system. The debug unit

uses BONITO’s debug mode and an FPGA to decode its somewhat cryptic outputs.

• Patchable logic : outside of the main system controller, P−6032’s logic is built around re-programmable

FPGAs. The devices used (Xilinx 9500 family) are ‘‘flash’’ types, and can be reloaded through an exter nal

interface.

• PC ‘‘ATX’’ for m factor : the board is physically compatible with an ‘‘ATX’’ motherboard. That should make it

easy for you to buy a compatible power supply, cables, and (if you need it) a case.

Why not?

When we build a board like this we have to stop somewhere. Here’s what we tur ned down:

• SCSI : our earlier computers have had SCSI controllers; but the controller we used has got obsolete, and

relatively few customers seemed to be using it. Low-cost plug-in PCI controllers are readily available, so

we swapped an extra PCI slot.

• Faster or wider PCI : this is a decision we already made for by BONITO: 33MHz 32-bit is the universal

standard. Wider PCI buses are not much used; faster ones slow to the speed of the slowest peripheral

(and we know of no south bridge or ethernet controller which runs at 66MHz).

• Compact PCI : we think this would take up too much board space and be incompatible with the PC-

or ientated mechanics of our board. Let us know if you’d find some hybr id useful.

2 The board can be built with 1M×16 flash memories, and probably will be once the
year-2000 flash famine eases.

8 1.4. What and why P−6032 manual

1.5. A note on EMC

The electronics industry in both Europe and the USA is now concer ned with stray emissions (and

sensitivity to) electromagnetic radiation, and the government regulations intended to prevent trouble with

it. P−6032 is not currently certified under European regulations, because it is not itself a system but

only a component3. By design, P−6032 is relatively insensitive to incoming radiation; it may be affected

by pow er glitches, but it is the power supply’s job to filter those.

Many of you will be using P−6032 open on a bench set up. Use of a 100MHz+ system without any

overall metal shielding is likely to produce radiated emissions which drastically exceed the levels

per missible for office (let alone domestic) equipment. European (and other national) regulations

specifically provide for laborator y set-ups, on the basis that it is your responsibility to ensure that no

nuisance is caused to a third party. The best shielding is distance; don’t set up your board a few feet

aw ay from someone else trying to watch TV!

P−6032 is designed to be compatible with widely available ‘‘PC’’ boxes, pow er supplies and cables, and

its radiation will be sharply reduced if those are of good quality. Algor ithmics may at some point issue a

boxed system product or specification, which would need to be certified under EC rules and

‘‘CE’’-mar ked. Write to us if you need that. Meanwhile, the board is a component for use in laborator y

environments, and the user is responsible for managing radiated emissions.

3 There is some debate in Europe about whether all assembled PCBs should be
covered by the ‘‘CE’’ registration scheme, but it’s still an open question.

P−6032 manual 1.5. A note on EMC 9

2. Getting star ted
Most of you should read this section.

2.1. What’s in the box?

Ever ybody should find:

• P−6032 user’s manual : but you got that, because you’re reading it.

• BONITO - PCI/SDRAM System Controller for MIPS CPUs : you’ll certainly need this manual to program the

board at a low lev el.

• PMON user’s manual : descr ibing the boot monitor and startup sequence. A useful reference for when

things go wrong, but many of you won’t really have much to do with it.

• P−6032 : configured with the CPU, and the amount and type of memory, you ordered.

2.2. Initial wiring up

P−6032 is quite happy operating on a bench top. There are no dangerous voltages, and these CPUs don’t

need heat sinks or fans.

You’ll need to connect at least power, and possibly some other stuff.

• Po wer : ‘‘ATX’’ PC pow er supplies are cheap, electr ically safe, and plug right in.

• Ser ial por t(s) : if the connection from your computer terminates in a female 9-pin D-type (as it would to

connect to a 9-pin PC Por t), there’s a good chance that you can just plug them in. If not, refer to Figure 8.2

below and settle in for the usual RS232 interface lead struggle.

The PROM monitor signs on at 9600 baud, sends 8-bit characters with no parity, and (in its default

configuration) accepts pretty much anything back again.

• Ether net : if you have 100BASE-T or 10BASE-T ‘‘twisted pair’’ ether net, it should plug straight in to P2.

2.3. Switching on

The recommended ATX power supply has a soft switch; when the mains power switch is first thrown only a

low-current ‘‘standby’’ +5V supply is sent to the board. To switch on the P−6032’s pow er supply toggle the

reset/debug switch to the ‘‘debug’’ position.

Some programs may provide a ‘‘switch off’’ command; otherwise you can turn the board off at the power supply

mains switch.

2.4. Boxing a P−6032

P−6032 is designed to fit into PC ‘‘ATX’’ metalwor k and is PC-compatible in its size, fixing hole positions and

standard connectors (PCI, keyboard, power supply). PC metalwor k varies, so you may need some patience.

The metalwor k should have fixed or optional openings for the I/O connectors along the back of the board

(mouse, keyboard, serial ports, USB, Centronics connectors and 10/100BASE-T ethernet).

Most PCs have a reset button lead, which will mate with the 2-pin header J4, allowing the board to be reset

from the front panel. ATX boxes will often have a pow er-on switch, which can be plugged into J5. The power

switch will now double as a ‘‘debug’’ interr upt button.

10 2.4. Boxing a P−6032 P−6032 manual

2.5. Normal sign-on sequence and what it means

From power up your P−6032 will show signs of life by writing enigmatic codes to its LED display (just in

case you expected English, it starts by saying ‘‘U*U*’’). At the same time it’s sending rather more

meaningful messages to both serial ports. Here’s a typical example:

P−6032 says What it means

Notice: Integrated Tests

Info: Version: P6032L xxx: \

Tue Sep 5 13:59:50 GMT/BST 2000

PROM sign-on. ‘‘P6032B’’ for big-endian,

‘‘P6032L’’ for little-endian. The number is the

AlgPOST version number. Note that the PROM

contains both the power-on self-test code

(AlgPOST) and the ROM monitor (PMON). This

is AlgPOST starting up.

And the ‘‘\’’ shows where I’ve folded a single line

which is too long for this table.

Info: Activity: ICU operation ‘‘Info:’’ denotes a test starting. If you get nothing

but ‘‘Info’’ and ‘‘Notice’’ lines from the power-on

tests, then they didn’t find anything really wrong.

Info: Activity: cache tests Star ted cache tests

Info: Dcache size 16 Kbytes (32/line)

Info: Icache size 16 Kbytes (32/line)

Info: Activity: dcache refill test

Info: Activity: dcache writeback test

Info: Activity: flash memory operation

Info: Flash: Am29F080

Info: Activity: RTC operation

Info: Date: Tue 5/9/2000 16:46:00

Info: Activity: quick memory address test

Info: Activity: memory byte address test

Info: Activity: memory halfword address \

test

Info: Activity: memory word random test

More often you only run the ‘‘quick’’ memor y

test; see PMON manual for how to choose which

ones run.

Info: Activity: ns16550 operation

Info: Activity: keyboard operation

Info: Activity: PCI operation

Notice: Integrated Tests Completed

Notice: Executing PROM package 6 Control is now being handed over from the

power-on tests to PMON.

PCI slot 0/0: Digital Equipment DEC 21143 \

(network, ethernet)

PCI slot 2/0: Intel 82371SB PCI-ISA \

bridge(bridge, ISA)

PCI slot 2/1: Intel 82371SB IDE interface \

(mass storage, IDE)

PMON is probing for active PCI devices

PCI slot 2/2: Intel 82371SB USB interface \

(serialbus, USB)

P−6032 manual 2.5. Nor mal sign-on sequence and what it means 11

P−6032 says What it means

de: 21143 [10-100Mb/s] pass 3.0 \

address 00:40:bc:04:00:64

en0: media: 1="10baseT" 2="Full Duplex \

10baseT" 3="AUI" 4="100baseTX" \

5="Full Duplex 100baseTX"

Ether net dr iver initialisation, prints ethernet

address and list of connected interfaces

PMON version 0.0.214 [P6032,EL,FP,NET] PROM monitor version and date

Algorithmics Ltd. Jul 6 1998 14:02:43

This software is not subject to copyright \

and may be freely copied.

Board Rev: C; FPGA Rev: 04; User Options: 7 Revision infor mation about your board - vital

when using Algorithmics’ support lines.

CPU type R5230. Rev 1.0. 166.63 \

MHz/83.31 MHz.

From CPU ID register and measurement of the

clock rate (which may sometimes be slightly off).

Memory size 32 MB. PMON should agree with AlgPOST

Icache size 16 KB, 32/line (2 way)

Dcache size 16 KB, 32/line (2 way)

These figures are right for the RM5260 and most

R5x00s, but others differ.

PMON> You’ve got a prompt

Table 2.1: P−6032 ROM sign-on sequence

Star tup troubleshooting and switch flipping

As the board powers up, the LED shows a code for each set of tests. The display blinks out briefly as each

individual test is started.

Lower-case codes are good, but upper case codes from AlgPOST are bad (at least, after it’s initial ‘‘U*U*’’

stuff). Upper-case test names from AlgPOST mean a war ning or worse; always stay around for long enough

for you to read them; and are accompanied by a console message unless the console is not wor king or

configured off.

Confusingly, PMON puts upper-case messages on the display and those aren’t errors; but they tend to zoom

past really fast until you get a gently flashing ‘‘PMON’’ - and that indicates that the system is up to the PMON

prompt.

If the board seems to be expir ing really early, you may want to turn up the thoroughness and verbosity of the

power-on tests. Usually, this is controlled by environment var iables; but if you can’t reach the PMON prompt

you can’t change those. So you can do it by wiggling the debug/reset switch; reset the board in the usual way,

but instead of releasing the switch move the switch all the way over to its other (‘‘debug’’) position, and hold it

there for a couple of seconds. AlgPOST will now test everything (including some rather tedious memory tests)

and tell you pretty much everything about it.

2.6. Flash memor y and socketed PROM

P−6032 normally boots from an onboard 1 or 2Mbyte flash memory, pre-loaded by Algor ithmics. You can

create and write your own bootstrap; software running out of DRAM can update the flash memory in place.

If your board won’t boot and you believe that the flash memory may be corr upted, there is a socket (U26)

which accepts an alternative bootstrap source - a 512K×8 150ns ROM, in a 32-pin dual in-line package. The

board will use the ROM socket for its bootstrap if you set the switch option shown in Figure 7.2.

12 2.6. Flash memory and socketed PROM P−6032 manual

A copy of PMON in S-record for mat, ready to run in your board, can be downloaded from Algorithmics’

web site www.algor.co.uk. You can also download a program to run under PMON, which will write a

clean bootstrap image to your flash memory.

2.7. PMON

PMON is the bootstrap monitor program supplied in ROM, described much more fully in the ‘‘PMON

User’s Manual’’ which all board customers should have received. Many users will make use of only a

fraction of PMON’s facilities:

The environment store

The board environment is implemented in the top ‘‘page’’ of the onboard flash memory device. It is

intended to be shared by any software which wants to store small amounts of per-board configuration

infor mation. In PMON you use the ‘‘set’’ command to inspect or create environment entries. To edit

existing entries, the ‘‘eset’’ command gives you line editing.

Table 2.2 shows a typical dump of var iables from P−6032; we’ll explain what they mean.

P−6032 manual 2.7. PMON 13

PMON> set

netaddr = 192.168.1.7

ethaddr = 00:40:bc:04:00:09

itquick = y

hostname = comm7.comm.algor.co.uk

nameserver = 192.168.1.65

gateway = 192.168.1.65

bootaddr = gate

v = gate:/tftpboot/p5064/vx5260

m = cmemram

t = gate:/tftpboot/p5064

ittstlevel = 7

i = gate:/tftpboot/p5064/itram

itrom = gate:/tftpboot/p5064/fload.itrom

dlecho = off [off on lfeed]

dlproto = EtxAck [none XonXoff EtxAck]

hostport = tty1

heaptop = 80020000

moresz = 10

prompt = "PMON> "

brkcmd = "l -r @epc 1"

datasz = -b [-b -h -w -d]

inalpha = hex [hex symbol]

inbase = 16 [auto 8 10 16]

regstyle = sw [hw sw]

regsize = 32 [32 64]

rptcmd = trace [off on trace]

trabort = ˆK

ulcr = cr [cr lf crlf]

uleof = %

validpc = "_ftext etext"

showsym = yes [no yes]

fpfmt = both [both double single none]

fpdis = yes [no yes]

PMON>

Table 2.2: P−6032 - typical PMON environment var iables

What do all these mean?

• ethaddr : Without this, no networ k. The first part of the address (‘‘00:40:bc:04’’) is the same for all

P−6032s; the last four digits of the hex ether net number are the board’s ser ial number (but in hex); this

board is serial number 9, which is 0x0009 in hex; but the conversion gets a bit harder for bigger numbers!

• itquick : Suppresses long-running power-on memory tests. See PMON manual for how to ask for more

power-on tests.

• netaddr, hostname, nameser ver : You need either a ‘‘netaddr’’ or both a (suitably registered) ‘‘hostname’’

and ‘‘nameser ver’’ to be set up. Either gives the board an identity for communication over your local

networ k.

If you need more infor mation about setting up the networ k, read the PMON manual.

14 2.7. PMON P−6032 manual

• gateway : default gateway. Networ k data for any host which is not on the local networ k (figured out

by compar ing our IP address of that with the host, subject to the ‘‘netmask’’) will be sent here. Useful

if you keep your prototype boards on a separate subnet.

• bootaddr : default networ k host to use when using tftp. You can always give an explicit host name.

• v, m, t, i, itrom : typical programmer-set shortcuts, allowing you to just say (for example):

PMON> boot $v; g

to load and run the program.

• dlecho, dlproto : control download over ser ial or parallel link. P−6032 can echo characters (if the link

is bidirectional) or use a character-based flow control protocol.

• hostpor t : select which device is to be used for download. The device can either be shared with the

PMON console, or separate. Possible download device names are:

tty0 is the first serial port, ‘‘com1’’, also used for the PMON console.

tty1 is the second serial port, ‘‘com2’’.

tty2 is the Centronics port, using peripheral mode.

• heaptop : how much DRAM memory PMON uses, star ting from zero represented as a MIPS ‘‘kseg0’’

address in hex. This is the lowest address at which you can load your program. You can set

‘‘heaptop’’ somewhat lower; but not to zero (PMON has to have some writable memory to operate

in) and PMON may be unable to do some things for you without enough free memory.

• moresz, prompt : PMON user interface controls.

• br kcmd etc : these var iables configure the operation of PMON as a debug monitor, and you’ll have to

look in the PMON manual for them

Instant PMON

There’s so much more in the PMON user manual, but wor th mentioning:

• Command editing : use emacs/unix style keys to move around and edit characters.

• Booting from ethernet : uses the ‘‘boot’’ command from PMON, and loads ELF object files.

• Booting from serial ports : use the ‘‘load’’ command of PMON, and can accept a var iety of download

formats such as S-records.

P−6032 manual 2.7. PMON 15

3. Overview and Block diagram

SDRAM DIMM

PCI bus

clock synth

reset

MIPS
CPU

4 x PCI
slots

2 x IDE
host USB
interrupt expansion

2 x SDRAM 168 DIMMS

Bonito
module connector

I/O bus

GPIO

Bonito

buffer

local IDE

LED

"ISA" bus

ethernet south
bridge

Intel
1

M
 x

 1
6

fl
a

s
h

A
M

2
9

L
V

1
6

0

multi I/O

National
PC97307

2 x UART
Bi−Centronics
real−time clock

power control
PC keyboard

AM79C973 82371EB

s
o

c
k

e
t

"f
la

s
h

 d
is

k
"

R
O

M
/

CPLD

backup
arbiter

power

debug unit

fl
a

s
h

A
M

2
9

F
0

8
0

1
M

 x
 8

10/100baseT

CPU
daughterboard

Figure 3.1 P−6032 block diagram

• CPU/daughterboard : P−6032 has the CPU on a small daughterboard, available for var iant CPUs. Boards

are available for the NEC Vr43x0, QED RM5231, IDT 79RV4640, IDT 79R64474, and IDT 79R64574. If

you want some other similar CPU supported, ask.

• BONITO : everything is held together here - all major data and control paths go through the system

controller. Note that a connector allows for var iant BONITO controllers to be plugged in and tried out - the

plug-in controller is implemented in an FPGA, providing a vehicle for prototyping new system controller

features.

• SDRAM : two DIMM sockets for PC-100 parts. The SDRAM bus also connects the debug unit.

• ROM and Local I/O : live on a dedicated 16-bit data bus, but borrow the SDRAM data bus for addresses.

The only device on this bus in P−6032 is the 8-character LED display.

• PCI bus : 32-bit, 33MHz, PCI 2.1 compliant onboard bus and four PC-type expansion slots.

Of course P−6032 does the PCI host role, supplying clocks and arbiter.

16 3. Over view and Block diagram P−6032 manual

• Ether net : onboard 10/100Mbit/s ethernet controller, using the AMD AM79C973 controller. The same

connector provides either 10 or 100Mbit operation.

• South bridge : an Intel FW82371AB (‘‘PIIX 4’’) south bridge provides an onboard-only bus something

like an old ‘‘ISA’’ bus for legacy peripherals, and other functions built-in:

• USB : two connections, implemented by the south bridge. P−6032 has a dual connector on the back

panel. Note that this is a USB host function - USB is a highly asymmetrical bus.

• IDE interface : dual high-speed IDE channels for adding low-cost disks and other peripherals.

Implemented by the south bridge as a high perfor mance PCI bus master.

A third IDE interface is implemented directly by BONITO and should be used only to prototype

BONITO systems.

• Mouse/keyboard interface : standard PC programming, implemented by the 82371.

• Multi I/O controller : a National Semiconductor PC97307−ICE/VUL controller. It includes dual

(16550-compatible) serial ports, diskette interface, real-time clock and PC-type ‘‘Centronics’’ parallel

por t with bidirectional operation extensions, and capable of playing both the host or peripheral role.

P−6032 manual 3. Over view and Block diagram 17

4. Memory map

4.1. CPU’s memor y map

Although these CPUs internally generate large address ranges, they only produce a 32-bit physical address, to

give a 4Gbyte address range. And then there are some MIPS facts of life which influence the map:

• Following a reset the CPU starts execution at 0x1FC0 0000 (physical), so this area must map to onboard

ROM.

The other ‘‘hard-wired’’ addresses in the MIPS architecture are the exception/interr upt entr y points, which

are in low physical memory. That means it’s impor tant to have high-speed program memor y at the bottom

of the map.

• Much system software finds it easier to operate in the kseg0 and kseg1 ‘‘unmapped’’ spaces described in

Appendix A, and such programs will only generate physical addresses up to and including 0x1FFF FFFF

(the low 512Mbytes of address space).

We’ve therefore arranged to map all onboard resources into that first 512Mbytes - the remaining 3.5Gbytes

of address range are available for mapping extra PCI bus addresses.

In the memory map Table 4.1 a dagger (†) denotes that the address is software-configured at boot time - the

value given is recommended and fits in with the hardware decodings. You can change it, but the
consequences are your responsibility!

Base Size
Address (bytes)

Class Description

0000 0000 256M Memory local SDRAM memory

1000 0000 64M PCI_Lo0

1400 0000 64M PCI_Lo1

1800 0000 64M PCI_Lo2

PCI low-memor y bus window for most CPU accesses to PCI space. Each of the

three 64Mbyte windows can be separately positioned in PCI space with its own

base register.

1c00 0000 32M soldered-down flash memory - either 1M×8 or 1M×16. You can find out which by

reading bonponcfg.romCs0width, which is in turn initialised by a pullup/pulldown

installed together with the flash device.

1e00 0000 24M unused

1f80 0000 4M

ROM

ROM socket for emergency bootstrap, NetROM or high capacity ‘‘vir tual disk’’

flash module.

1fc0 0000 1M Boot Bootstrap memory location - starts at the magic MIPS reset-time entry point. The

position of the fifth slider on SW3 determines whether this maps to onboard flash

memor y or the ROM socket; see Figure 7.2.

1fd0 0000 1Mb PCI I/O PCI I/O space - window to the low megabyte of PCI address range: used (and

probably only used) to access the I/O space of an attached device which is

compatible with some old PC ‘‘ISA’’ device.

1fe0 0000 256 BONITO BONITO’s own PCI configuration space registers available to other PCI bus

masters

1fe0 0100 256 BONITO BONITO’s inter nal registers.

1fe0 0200 unused

1fe8 0000 512K PCI PCI configuration space reads/writes. Low par ts of the address value driven on

PCI comes from this address; high order bits from BONITO’s pcimap_cfg register.

1ff0 0000 256K Any register defined in the ‘‘CPLD_ARB’’ chip which provides backup logic for this

board. An 8-bit register at address zero seems to write and read back. If there’s

any ser ious logic in future versions, there will be a logic revision register here.

1ff4 0000 256K the HDSP-2532 8-character LED display

1ff8 0000 256K

1ffc 0000 256K

Local I/O

Chip selects 0 and 1 (respectively) on the ‘‘BONITO IDE connector’’ P20.

2000 0000 1.5Gb PCI_1.5 Maps 1-1 onto PCI addresses. Most likely not ver y useful.

18 4.1. CPU’s memor y map P−6032 manual

Base Size
Address (bytes)

Class Description

8000 0000 2Gb PCI_2 PCI access window. Optionally mapped with either 1-for-1 addresses, or

mapped down to the low 2Gb of PCI space. Available if you need access to a

larger region of PCI space than is available in the lower-memor y window.

You’ll need to program the MIPS TLB or use 64-bit pointers to get addresses

bigger than 0x2000 0000 out of the CPU.

Table 4.1: P−6032 physical address map

4.1.1. PCI memor y maps

To see how PCI masters view local memory, or the MIPS CPU sees PCI locations, refer to the BONITO

manual chapter ‘‘Address Maps’’.

P−6032 manual 4.1. CPU’s memor y map 19

5. Programming P−6032
This chapter focusses on P−6032 from a programmer’s point of view.

5.1. CPU

P−6032 can support any MIPS CPU using a 32-bit derivative of the system interface (‘‘SysAD’’) which was

introduced with the R4000. Algor ithmics will provide daughterboards for all sufficiently popular compatible

CPUs.

Differences between CPUs

In software terms, these CPUs look rather similar. They have different caches (size and set-associativity), but

there are a few instr uction set differences too:

• R4640 : is a cut-down CPU whose lack of a TLB and double-precision floating point hardware make it

unsuitable for some applications; of course, the resulting small die and low price make it attractive for

others.

• MIPS III vs MIPS IV : the R5000 introduced the instruction set version called ‘‘MIPS IV’’, and CPUs included

RM5231, Vr5432 and RV64574 are MIPS IV compatible. They’re likely to offer somewhat better

perfor mance, par ticularly on floating-point intensive programs.

• Integer multiply/accumulate : available on all except the Vr43x0, boosts perfor mance on some ‘‘DSP’’-like

algor ithms.

MIPS IV CPUs have a floating point multiply/add instruction, which may provide a perfectly good

alter native.

• Dual-issue : the R5000 and its successors can all issue a floating point and an integer operation in the

same clock cycle. Vr5432 CPUs can dual-issue a much wider range of instructions.

This has few software-visible effects.

CPU configuration options

The main input clock is der ived from a synthesiser IC and is set by the switches on SW1; likely choices are 75,

83 and 100MHz.

Other CPU options are configured by SW4 and SW5, as described in Figure 7.2.

• CPU clock multiplier : CPUs run internally at some multiple of the basic master clock rate; see Figure 7.3;

you set them using SW5.

• Endianness : regardless of your CPU choice P−6032 can be set up either big-endian or little-endian.

Software binaries for big- and little-endian are different, and you will have to make sure that the boot ROM

program and any other software you want to run has been built to match the CPU’s configured endianness.

Most supported CPUs require a hardware strap to change their endianness, which can be achieved with a

switch on SW4. But the NEC Vr43x0 is changed just by software.

5.2. Local SDRAM memory

P−6032 uses synchronous DRAM 168-pin DIMM modules compliant with the PC-100 specification. These are

3.3V, ‘‘unbuffered’’, 64-bit types. They must also support a CAS latency of 2 cycles - now common with

PC-100 SDRAMs. DIMMs are fitted with encoding slots which match coded separators in the socket; so if your

DIMMs won’t fit in the sockets, they are the wrong type.

Apar t from these (manifest) features, there are also some options with no functional significance in a running

board, but where the memory controller on BONITO must be configured correctly to match your particular

DIMMs. By a convention initiated by IBM and sanctified by PC-100, each DIMM carries ‘‘self-por trait’’ data

20 5.2. Local SDRAM memory P−6032 manual

encoded in a in a tiny on-DIMM EEROM device, accessed through a compact 2-wire interface. BONITO is

equipped to access that data.

Most of the time, this will be done by Algor ithmics’ bootstrap monitor sequence at power-on and you

won’t have to touch it again; if you need to replace the bootstrap we suggest you approach Algorithmics

and get a copy of our code. Otherwise, get out your BONITO manual and read the section on ‘‘SDRAM

Configuration’’.

5.3. Flash ROM and the boot ROM socket

P−6032 normally bootstraps itself and runs its debug monitor out of the onboard flash memory. But for

its start-of-life bootstrap, emergencies or to use a ROM emulator device it also supports a socket for a

real dual-in-line PROM.

Both devices are always visible in the memory map of the board at their own unique addresses. In

addition, whichever ROM is designated as the bootstrap device is mapped into memory at location

0x1fc0 0000 physical - which is where MIPS CPUs start execution when reset. Switch SW3.5 should

be ‘‘on’’ to boot from onboard flash, and ‘‘off ’’ to boot from the socket.

5.3.1. Flash ROM

Flash ROMs can be reprogrammed under software control, but retain data indefinitely with no power.

However, you can’t just overwr ite the bytes you want; to re-write a flash part you must first erase it (using

a special software command sequence) and then program it (using yet more special sequences). The

erase operation wor ks not on individual bytes, but on large chunks (‘‘sectors’’) of the memory space4.

P−6032 features either:

• a 29F080 part, sometimes from AMD and sometimes from Fujitsu: 1Mbyte in size, 8 bits wide5, and

is erasable in 64Kbyte sectors; OR

• an AM29LV160 part from AMD: 2Mbytes organised as 1M×16.

You can tell which arrangement your board has by inspecting the register bit bonponcfg.romCs1width;

it will be ‘‘1’’ for a 16-bit ROM, and ‘‘0’’ for an 8-bit ROM.

Flash programming software is included as part of Algor ithmics’ ‘‘SDE−MIPS’’ toolkit, whose home page

is http://www.algor.co.uk/algor/info/sde-benefits.html.

5.3.2. PROM socket

By default, this accepts a 512K×8 uV-erasable PROM, whose access time is 120ns or less. But by

moving a couple of links (specifically, moving J12 and J13 from their default ‘‘2-3’’ position to ‘‘1-2’’) and

ensur ing J11 is installed, you can also use an AMD 29F040 or compatible flash device. If you want to

use the socket for a ROM emulator or similar, you may need the pinout so it’s shown in Figure 5.1.

4 On early devices you had to erase the whole contents of the device; it’s this erase-
ev erything-at-once feature which originally led to it being called ‘‘flash’’ memor y.

5 The Fujitsu ‘‘29F080’’ has a 16-bit bus, but we use an 8-bit compatibility mode.

P−6032 manual 5.3. Flash ROM and the boot ROM socket 21

J12 1-2 = A18

J12 2-3 = +5V
1 17 D3

A16 2 18 D4

A15 3 19 D5

A12 4 20 D6

A7 5 21 D7

A6 6 22 CS*

A5 7 23 A10

A4 8 24 RD*

A3 9 25 A11

A2 10 26 A9

A1 11 27 A8

A0 12 28 A13

D0 13 29 A14

D1 14 30 A17

J13 1-2 = WE*

J13 2-3 = A18

J13 out = HI

D2 15 31

GND 16 32 +5V

Figure 5.1 Pinout of ROM socket

5.3.3. Notes on programming flash memory

Before you do anything, note that Algorithmics’ PMON bootstrap ROM reserves the highest 64Kbyte sector of

the onboard flash ROM to keep its ‘‘environment store’’, which holds important infor mation about the board and

shares it between different applications. Even if you’re putting completely different software in the ROM, you

should keep the environment store; you can get software to read and maintain it free from Algorithmics.

An additional jumper J11 is normally fitted, but can be removed to write-protect a flash ROM fitted in the socket

(it disables the write strobe signal to the ROM socket.)

Refer to the BONITO manual section ‘‘Endianness and ROM cycles’’ to understand the relationship between

programming and reading flash data - it’s not always obvious.

Flash programming is complex, so you might like to consider getting software which does it already, perhaps

as part of Algor ithmics’ SDE−MIPS product, see http://www.algor.co.uk/algor/info/sde-

benefits.html.

5.4. P−6032-specific hardware registers

There aren’t any of these: everything goes through one of the complicated chips. BONITO, the south bridge

and the multi I/O controller all have programmable general-pur pose I/O pins to spare.

5.5. LED display

The LED display is an Agilent6 HDSP-2532 or equivalent - an eight-character ASCII display.

The sample driver conve ys longer messages by scrolling at a human-readable speed.

The LED display is attached to BONITO’s local I/O bus and chip select IOCS1*, so that it wor ks regardless of

the programming of the (complicated) PCI and south bridge subsystems. That helps it do one of its main jobs,

which is to pass infor mation back from the power-on test sequence.

The LED display requires six I/O addresses (IOA7-2 on the schematics) so BONITO must be set up to generate

extra addresses with this particular chip select.

6 Former ly the component division of Hewlett-Packard, now floated as a separate
company.

22 5.5. LED display P−6032 manual

5.6. Software-configurable general purpose I/O

Three devices on P−6032 provide programmable I/O pins: BONITO, the south bridge and the multi I/O

controller. Some of these are used for fixed onboard functions, and some are made available for user

applications on the connector P6.

GPIO bits used for onboard functions

Signal See
Name section

Port/Bit In/Out Used for

Bonito GPIN0 ISA_NMI In South br idge Error condition (‘‘non-maskable

interr upt’’ on a PC) from the south

br idge when it detects var ious kinds of

bus error.

Bonito GPIN1 ISA_INTR In South br idge summar y interr upt output from the

south bridge’s inter nal interr upt

controller.

Bonito GPIN2 ETH_INT˜ In ethernet interr upt notification (active low) from

the ethernet controller

Bonito GPIN3 BONIDE_INT In BONITO IDE interr upt input from BONITO’s own IDE

channel at the P20 connector.

Bonito GPIN4-5 IRQ3-4 In Multi I/O IRQ3-4 signals from the multi I/O chip.

The multi I/O interrupts are also wired

into the south bridge chip, so you have

the option of dealing with their

interr upts using south bridge facilities.

Bonito GPIO0-3 PCIIRQA-D˜ In PCI bus PCI interrupts. These too are also

wired to the south bridge chip; they’re

all active low and should be level-

tr iggered.

Bonito GPIO4 ExtPCIArbEn Out Software-controlled enable for the

backup PCI arbiter.

South bridge GPI13-16 ModState0-3 In Used to record PCB modifications in a

software-readable version

South bridge GPI17-19 PCBRev0-2 In major design issue number, changes

with new PCB artwor k. Reads all-low

for rev ‘‘A’’ PCB.

South bridge GPI21 In Diskette change detectionDiskette

connector

Table 5.1: Parallel I/O bits and onboard functions

GPIO signals for whatever you want

Connector P6 brings a mix of BONITO and multi-I/O chip programmable I/Os for whatever you need.

See Table 8.2 on page 36 for connection details.

P−6032 manual 5.6. Software-configurable general purpose I/O 23

5.7. PCI bus

The PCI interface provides four standard slots for expansion cards, as well as hosting the south bridge and on-

board ethernet controller. PCI runs at 33MHz (irrespective of the processor operating frequency).

5.7.1. PCI accesses

The CPU can access PCI devices - usually through one of the ‘‘PCI_Lo’’ windows set up in BONITO. The CPU

can read and write any PCI space in single cycles, but BONITO does not support bursts, so you can’t access

PCI through cached space.

Some CPUs (notably NEC’s Vr43x0 and Vr5432) use a 2-word burst to carry uncached
load/store operations with 64-bit data - double-precision floating point values, or double integer

data. Such transfers do not wor k to PCI space.

PCI masters can access the local memory, as descr ibed in the BONITO manual.

5.7.2. PCI configuration space, IDSELs and interrupt assignments

In normal use, PCI devices respond to accesses relative to base addresses set up by initialisation software.

There must be some way of programming devices before they are set up, so PCI defines a ‘‘configuration

space’’ where devices are addressed by means of per-device IDSEL signals, generated in some system-

specific manner. The BONITO manual describes how to perfor m configuration cycles, but you also need to

know how P−6032 generates each device’s IDSEL from the PCI AD lines - it’s shown in Table 5.2 below.

AD line used Interr upt controller input for
for IDSEL INTA# INTB# INTC# INTD#

Device

PCI slot P9 24 GPIO0 GPIO1 GPIO2 GPIO3

PCI slot P10 25 GPIO1 GPIO2 GPIO3 GPIO0

PCI slot P11 26 GPIO2 GPIO3 GPIO0 GPIO1

PCI slot P8 29 GPIO3 GPIO0 GPIO1 GPIO2

south bridge 28 GPIO0 GPIO1 GPIO2 GPIO3

ether net controller 27 GPIN2

Table 5.2: IDSEL for PCI devices/slots

IDSEL generation

In all cases the IDSEL line is connected to the corresponding AD line through a 47Ω resistor. The value on the

AD bus is mostly ‘‘don’t care’’ dur ing configuration cycles, so to direct a configuration cycle at the ethernet

controller you’d set the PCI address to something like 0x0080.00XX - which would set AD27 to a ‘‘1’’ and all

other high-order AD lines to ‘‘0’’. The low address selects the particular configuration space register.

If you have the ‘‘SDE−MIPS’’ toolkit from Algorithmics, you should find you have sample code to do this as part

of board initialisation.

PCI device interrupt assignments

PCI devices typically connect to one interrupt line; the ethernet controller has just one interrupt output wired

into BONITO’s interr upt controller as shown above .

However, the PCI expansion slots provide a choice of four separate interrupt lines to accommodate multi-

function boards. By convention, the assignment of motherboard interrupt signals to expansion slot positions is

rotated for successive slots so that simple one-function boards (which should always interr upt through the PCI

slot signal IntA#) will get independent interrupts.

24 5.7. PCI bus P−6032 manual

PCI device reset

In P−6032 the PCI reset signal PCIRESET˜ is driven by the south bridge chip7 and acts to reset all other

PCI slots and the onboard ethernet controller.

5.7.3. PCI interface registers

See BONITO manual.

5.7.4. PCI performance notes

PCI is capable of deliver ing very high throughput. It’s also capable of perfor ming miserably. What do

you need to get good perfor mance on P−6032?

There are two dimensions of perfor mance.

• Latency : the delay exper ienced when making a single access over the bus, typically character ised

as the time taken to read one location.

• Bandwidth : the rate at which data is transferred across the bus between a data source and sink.

Most high-bandwidth PCI peripherals are ‘‘bus masters’’ - they initiate data transfer cycles on PCI

and read or write P−6032’s local memory.

By the standards of onboard buses, PCI is built for fair ly high bandwidth (peak 133Mbytes/s) but latency

can also be quite high (a few µs is quite normal). Getting good bandwidth in the face of transfer delays

is quite an art; BONITO’s ‘‘I/O buffer cache’’ should wor k well for you. But don’t expect to see an average

of 133Mbytes/s from a PCI master into local memory - the CPU needs some memory cycles too!

Here’s some simple recommendations:

• If you can, program your PCI bus master to attempt bursts of 16 or 32 bytes, and try to set up your

buffers to get those ‘‘naturally’’ aligned to 16- or 32-byte memory boundar ies.

• Pushing data (where the initiator is writing memory) is much faster than pulling (initiator reading). If

you only had the choice...

• Don’t expect to mix high-throughput PCI master I/O with ROM accesses; ROM accesses occupy

BONITO’s local bus for painfully long periods, stalling the PCI bus transfer. P−6032 is just not meant

to run more than bootstraps from ROM.

• Always, always enable the I/O caching features in BONITO.

5.8. Ethernet interface (AMD AM79C973KC)

It’s ver y complicated, and won’t be described here. See the manufacturer’s hardware manual or

software driver examples provided by Algor ithmics.

However, you may need the following P−6032-related facts:

• Interface : 10/100baseT socket only. All previous Algorithmics boards have had an old-fashioned

‘‘transceiver’’ interface - but we believe none of you use that any more.

• Ether net clock : is defined by a dedicated 25MHz crystal.

• Ether net controller reset : is the bussed PCIReset* signal driven by the south bridge.

• Interface signals : the connection is protected by a transfor mer.

• PCI connections : the AM79C973KC’s IDSEL signal is derived from PCI address line AD27, and it’s

interr upt output is readable at BONITO’s GPIN2 input.

7 It would be driven by BONITO, but there’s a chip bug in the 32-bit ASIC used on
P−6032 which means that doesn’t wor k proper ly.

P−6032 manual 5.8. Ether net interface (AMD AM79C973KC) 25

• EEROM interface : (provided by the chip) is connected to a EEROM device, which drivers may use.

However the board’s ether net address (at least) is defined by a PMON environment var iable (see Table 2.2

above), which overr ides any value set in the local memory.

• LAN wakeup and magic packets : P−6032 is built to be able to be powered up from the LAN. The ethernet

controller can be kept powered from the ‘‘standby’’ pow er supply, available when the main 5V and 3.3V

supplies are off; it will detect a ‘‘magic packet’’ and signal the event through its RWU pin, which eventually

reaches the multi I/O controller’s pow er-up circuit. This facility is not fully implemented in most revision A

boards.

• LEDs : four are provided as shown on Figure 6.1. Three show receive, transmit and link activity, but the

four th (called LED2 in the AMD manuals) is programmable.

5.9. South bridg e - local I/O bus, IDE, USB etc

The Intel FW82371AB south bridge component (it’s software manuals call it by the type name of ‘‘PIIX 4’’)

provides:

• Tw o IDE disk/peripheral channels. By default these operate as slave-only ports (like an old PC’s IDE bus),

but they can be reconfigured into high-speed ports which take advantage of DMA over the PCI bus.

• A host port for the emerging USB (‘‘universal serial bus’’) interconnect standard for low-speed devices.

• Po wer-up and reset control.

• Real-time clock. On revision A boards this is not battery driven; use the RTC in the multi-I/O controller

instead.

• ‘‘SMB’’ ser ial bus, which is I2C by another name. It’s used to get infor mation from the two SDRAM DIMMs

and the ICS9148 clock generator which provides the selectable master clock for the CPU.

• The PCI arbiter is unused.

• The use of some of the general-pur pose programmable inputs and outputs are documented in §5.6 below.

• Interr upt controller (PC legacy compatible) which is connected up to PC legacy devices, though some of

them are also connected directly to the master interrupt controller provided by BONITO.

• A PC-like environment, the ‘‘Xbus’’, which connects the multi I/O chip and its serial ports, centronics, floppy

and real-time clock.

The PC emulation includes address decoding, DMA provision and maintenance of miscellaneous and

semi-mythological signals on the ISA bus. You probably don’t want to know about most of these.

The part is designed for use in PC-clone systems which implement all I/O through a PCI bridge chip. It gains

quite a lot of complexity from the necessity, in these systems, for the hardware to ‘‘hide’’ the existence of the

PCI bus from early bootstrap software; such a machine must look like a PC with a directly-connected ‘‘ISA’’ bus

before the south bridge chip has been programmed.

You will not often have to reprogram the ISA device base addresses; access to the I/O registers of devices

lying on the onboard PC bus or ISA slot just requires you to add the appropriate base address.

When you need to tackle functions provided by the i82371, remember that the part has to be software-

compatible with the old PC devices it supplants (so to do DMA get ‘‘PC DMA’’ driver software). An excellent

(but lengthy) manual is available from Intel, online as well as in paper. See Appendix B for leads.

Choices made in P−6032’s use of the chip include:

• Clocks : standard. The OSC input gets a 14.318MHz crystal, and USBCLK a 48MHz clock.

• Controller reset : is run by the signal called ISA_PWROK (it’s inactive low lev el holds the chip in reset). It’s

der ived from an onboard power-monitor on the 3.3V line, or forced inactive by operation of the ‘‘reset’’

switch SW2.

26 5.9. South bridge - local I/O bus, IDE, USB etc P−6032 manual

You should give the south bridge a substantial amount of time to recover its poise after asserting

ISA_PWROK, before expecting it to do anything sensible. 10ms or so seems reasonable.

• Interr upt output : the output INTR (called ISA_INTR in the P−6032 schematics) is wired into BONITO’s

master interrupt controller through the GPIN2 input. So is NMI - see §5.6.

• PCI connection : the south bridge controller’s IDSEL comes from AD28.

5.10. Multi I/O controller

A National Semiconductor PC97307−ICE/VUL multi-function controller provides a var iety of useful

per ipherals: a dual serial port, parallel port, real-time clock, power control and PC mouse/keyboard

controller.

Dual Serial port

Programming the dual serial port is just like programming two independent 16550 UARTs.

You’ll need to know:

• The serial port timing source is a 48MHz clock sourced from the standard clock generator. It can be

divided by 26 to give a UART clock of 1.846154 MHz. This is only 0.16% higher then the usual PC

UART clock of 1.8432 MHz (well within RS232 tolerances).

• When you wire up a serial port, important signals which you don’t connect are generally pulled up

into the least-disruptive state. That makes it easy to communicate with P−6032 along a 3-wire cable,

if that’s your choice.

• See Figure 8.2 in the connectors chapter 8 for a list of what signals are supported.

Programming is PC-compatible; or refer to the sample drivers.

Centronics

The multi I/O chip implements a subset of the ISA Extended Capabilities Por t (ECP) interface standard,

defined by Microsoft and HP; with appropriate software it can support the full set of modes described in

the IEEE1284 standard.

But note: P−6032 is not able to behave like a traditional centronics ‘‘per ipheral’’ as Algor ithmics ear lier

boards are. Let us know if that causes you trouble.

Diskette

This is provided by the multi I/O chip, and emulates the NEC µPD765 device used in PCs since time

began. For programming infor mation get the multi I/O chip documentation; see Appendix B, page 27.

The floppy por t uses DMA service, provided by the south bridge.

The multi I/O’s interface has no way of monitor ing the disk change signal, so that’s wired into a general-

pur pose programmable input port GPI21 on the south bridge.

Real Time Clock (RTC)

The PC-compatible real-time clock remembers the date and time with a resolution of 1 second. It

provides a programmable tick and alarm which can cause an interrupt.

The RTC also provides a small amount (242 bytes) of read/write memory which is retained over pow er-

down; the monitor ROM does not use this space, but for historical reasons some OS ports do -

VxWor ks, for one.

The RTC circuit uses a long-lifetime battery (BT1) to keep time when system power is off. The battery

can be replaced when it eventually runs down; buy a 1’’ lithium ‘‘coin’’ type.

P−6032 manual 5.10. Multi I/O controller 27

Keyboard/mouse controller

par t of the multi I/O chip, this provides a standard PC interface. Refer to the sample drivers for a software

interface.

Po wer control (‘‘APC’’)

The ‘‘ATX’’ pow er supplies compatible with P−6032 provide a continuous low-current +5V supply (called VSTBY
on the P−6032 schematics) whenever the mains is connected. The standby supply is used to power the reset

circuitr y, and the VCCH input of the multi-I/O chip. Circuits on the PC97307 are responsible for bringing up the

main power when the reset/debug switch SW2 is toggled to the ‘‘debug’’ position.

P−6032 is built to permit the ethernet controller subsystem to be run off standby pow er, so that the board can

be powered up by sending it a ‘‘magic packet’’. This facility is not fully implemented in most revision A boards.

IR interface

A separate set of signals are available for infra-red connections. They’re brought to a connector P7, and the

rest is up to you.

Hardware options

multi I/O signals SOUT1/CFG0, RTS1*/BADDR1 and SOUT2/CFG3 are pulled up with 10KΩ resistors. The results

are documented in the PC97307 manual thus:

• CFG0 set 1: ‘‘FDC, KBC and RTC wake up active’’.

• CFG1 set 0: ‘‘no X-bus data buffer’’.

• CFG3-2 set 10: ‘‘clock source is 48MHz fed via X1 pin’’. Seems wrong; X1 is really connected to a

32.768Khz crystal.

• BADDR1-0 set 10: ‘‘PnP motherboard, wake in Config state, Index 015Ch’’.

5.11. PMON debug monitor compatibility

PMON loads:

• Executable fully-resolved ELF object files from an IP-networ k tftp ser ver, accessible over ether net. PMON

can use a standard domain name server and communicate via a default gateway.

The ELF object files must be compatible with MIPS-ABI. A symbol table, if present, will be loaded and

used for PMON debugging.

• A var iety of ‘‘plain text’’ download for mats (including Motorola S-records) loaded via serial port or

Centronics link. It’s possible to share a single serial port for download and console operation; but it’s not

very much fun. Ser ial por t download is ver y slow for large files unless your host’s por t will run at 36Kbaud

or more. PMON on P−6032 will run up to 56Kbaud (perhaps even 115Kbaud - none of our hosts go that

fast).

PMON provides a ‘‘debug monitor’’ ser vice to host-based debuggers over ether net (MIPS protocol) or serial

por t (gdb or MIPS protocol).

28 5.11. PMON debug monitor compatibility P−6032 manual

6. Board layout: locating connectors and jumpers
A diagram of what’s where on P−6032 is Figure 6.1.

0 1 2 3 4 5

cm

0 1 2 3 4 5

inches

A C

B
D

1
4

1
0

0

12
5

0

4
9

12
5

0

4
9

1
4

1
0

0
9

7

ethernet

Serial portsCent. host (upper, fem)
Cent. peripheral (lower, male)

reset

ON/debug

(port 1 below 2)

B
a

tt
e

ry

+

dual

USB

PMON Run

P8 P9 P10 P11

P14

"LED2" from Am79C973

LINK
TX

RX

10/100baseT
mouse (lower)

kbd (upper)

P2
P1P4P3

P6

P7

P12 boundary jtag

System

Controller

Daughtercard

connector

23
2

1

3
1

3
4

3
3

6
3

6
4

6
5

9
5

6
6

9
6

9
7

9
8

1
2

7

1
2

8

CPU

daughterboard

J2

J6

J7

J3

J4 J5

SW4 SW5

P15

P17

P21

P25

P19

P24

P23

P22

J10J9

J13
J11

J12

DIS1

DIMM0

DIMM1

U26 ROM socketJ8

P20

P16

P18

SW1

C
_F

S
0

C
_F

S
1

C
_F

S
2

C
_M

O
D

E

=0

=1

CPU core
supply adjust

RV1

SW2

onoff

SW3

C
P

U
 c

o
re

 s
u
p
p
ly

Bonito IDE

S bridge secondary IDE

S bridge primary IDE

alphanumeric

display

Rom type = uV

JTMS

JTDO
JTDI

JTCLK

GND
+5V

debug FPGA loader

GPIO pins

IRDA conn

main FPGA loader

JTMS

JTDO
JTDI

JTCLK

GND
+5V

diskette

P14 ATX power

low addresses

high addresses

control/status

low data

high data

debug spare

P5

Figure 6.1 P−6032 layout, connectors and jumpers

Notes on Figure 6.1

• Connector orientation : pin 1 positions are usually marked with a diamond. For components where

all pins are shown, the square pad marks pin 1 (the same convention is used on the PCB itself).

• Connector pin-outs : are described in §8 below (but we don’t usually document industry-standard

connectors where the standard is effective and you can ‘‘just plug in’’).

• Switches and jumpers : functions and defaults are described in §7 below.

• Adjustable components : RV1 is used to set the ‘‘adjustable’’ CPU core power-supply voltage for

those CPUs which use dual power supplies. It will be factor y-set to match the CPU fitted to the

board, if required - but most CPUs will be accommodated by one of the three fixed settings (1.8V,

2.1V, 2.5V) available at the flick of a switch.

CPUs can be damaged by incorrect voltages, and it will normally be wise to adjust the CPU core

voltage before fitting the CPU daughterboard.

P−6032 manual 6. Board layout: locating connectors and jumpers 29

7. Switches and jumpers: where and what for
First let’s summar ise all the options in Table 7.1.

Ref Default Description

SW2 Tw o functions. In one direction, this is a system reset switch.

Push the other way to wor k both as a power-up switch and (once the

system is switched on) as a ‘‘debug’’ high-pr ior ity interr upt button. The

power-up switch relies on power-on features of the multi-I/O controller.

The interrupt goes directly to the CPU’s Int3* input.

SW3

SW4

SW5

6-way switch blocks, see Figure 7.2.

SW1 4-way switch block for CPU clock rate etc, see Figure 7.1

J11 in Remove to write-protect flash memory fitted in the socket (if any).

J13 2-3

J12 2-3

Configure ROM socket for flash. The default position 2-3 is for uV-

erasable ROM; change both links to 1-2 for a 29040-compatible flash

device.

outJ3/

J2

Usually provides an attachment point either side of a 9mΩ precision

resistor in series with the 3.3V supply to the CPU, for measuring the

current being used. You can short these links out if you’re worr ied about

the effect of the resistance on the 3.3V supply.

outJ7/

J6

Attachment point for measuring CPU ‘‘core’’ current, through a 9mΩ
precision resistor.

J5 Connector to attach a remote instantaneous-on switch which will

perfor m the same combined power-on and ‘‘debug’’ function as SW2.

J4 Connector to attach a remote reset switch to perfor m the same function

as the ‘‘reset’’ direction of SW2.

J9

J10
- Reser ved for debug unit

Table 7.1: All switches and jumpers on P−6032 (including connectors called Jxx)

7.1. CPU master clock rate setting - SW1

C
_F

S
0

C
_F

S
1

C
_F

S
2

100Mhz

133Mhz

112Mhz

83Mhz

67Mhz

75Mhz

50Mhz

C
_F

S
0

C
_F

S
1

C
_F

S
2

Figure 7.1 CPU master clock rate setup with SW1

30 7.1. CPU master clock rate setting - SW1 P−6032 manual

Use the diagram Figure 6.1 to locate the switch, if necessary. You’re unlikely to find a CPU which won’t

run at 67MHz, and 83 and 100MHz are common. BONITO is (in theory) at its limits at 100MHz - but

112MHz is certainly wor th a try!

The last switch of SW1 should never be moved from its normal (‘‘0’’) position.

7.2. CPU type and software options switches: SW3, SW4, SW5

These three switches - all shown in Figure 7.2 - tell the logic what kind of CPU is fitted, and set the

CPU’s hardware-deter mined character istics.

onoff

SW3
core=adj

core=1.8V

SW4 SW5

boot: from flash from ROM socket

0 1

0

2
cputype 1

config_dis: normal disabled

== 0 bootmode 12== 1
bootmode 21== 1== 0
CPU endiannessbiglittle
Bonito drives PCI Reset*?no yes

cdiv
1
0

== 0== 1
== 0== 1

cpu_opt
0
1 == 0

== 0== 1
== 1
== 0
== 0
== 0 == 1

== 1
== 1

core=2.1V
core=2.5V

Figure 7.2 CPU type and options - SW3, SW4, SW5

The fields are as follows:

• core=?? : many new er CPUs have dual power supply: 3.3V (VCCIO) for the I/O pins, but a lower

voltage (VCORE) for the CPU core. P−6032 supports 2.5V, 2.1V and 1.8V options, and also has an

adjustable setting (tweak RV1 with the CPU socket out).

3.3V-only CPU modules are wired to take all power from the VCCIO pins of the module. In this case

all these switches should be set to the ‘‘off ’’ position - on some of those modules the VCCIO and

VCORE pins are all connected together.

• boot from... : set to allow bootstrap from either the onboard flash (normal) or the ROM socket.

• cpu_opt : reser ved, please leave ‘‘off ’’.

• cputype : the three CPUTYPE0-2 switches in the block SW4 are there to select for different types of

CPU. This is best done by settings wired into the CPU module which is plugged into the board, but

older CPU modules won’t do this - so you’ve got switches too. Setting any switch ‘‘on’’ pulls up the

corresponding BONITO configuration signal IOD0-2; the BONITO manual is authoritative for how to set

these, but popular settings are:

cputype switches
2 1 0

CPU

NEC Vr4300 off off off

NEC Vr5432 off off on

QED or IDT CPU on off off

Table 7.2: CPU types and SW4 switch settings

P−6032 manual 7.2. CPU type and software options switches: SW3, SW4, SW5 31

• config_dis : reser ved, please leave ‘‘off ’’.

• bootmode12, bootmode21 : used to configure two of the serial configuration bits fed to QED and IDT CPUs

at reset time. The bootmode21 bit should be set when you use a QED RM523x CPU.

• CPU endianness : is sometimes software-settable (with NEC’s Vr4300 CPU, for example); in that case,

leave this switch ‘‘off ’’.

When the CPU is settable with a static configuration pin, this switch will do it. Note that BONITO will (soon

after boot-up) need to be set up to match the CPU, but that needs to be done by software.

• Bonito drives PCI reset : on revision A boards this is reserved and should be set to ‘‘no’’ (‘‘off ’’).

• cdiv : NEC CPUs select the ratio between the master clock and the internal CPU clock with static

configuration signals CDIV1-0, and you can set them here. The following table is correct for the NEC

Vr43x0 CPU:

Field name Link position Effect

off off CPU runs at input clock × 3

on off CPU runs at input clock × 2 (default)

off on CPU runs at input clock × 1.5 (Vr4310 only)

on on CPU runs at input clock × 1

CDIV0,1

Figure 7.3 CDIV settings and effect on NEC Vr43x0 CPU clock rate

32 7.2. CPU type and software options switches: SW3, SW4, SW5 P−6032 manual

8. Connectors: where, what and wiring

8.1. CPU daughterboard connector

The CPU daughterboard connector is made up of 2mm dual socket str ip/headers, in four banks each of

2×16 pins, as shown in Figure 8.1. The signals on the connector are shown in Table 8.1. You probably

won’t have to know this ver y often.

1

2

3

4

31

32

3334

6364

65

66

95

96

97 98

127 128

CPU

Figure 8.1 CPU daughterboard layout

P−6032 manual 8.1. CPU daughterboard connector 33

Pin Signal Pin Signal Pin Signal Pin Signal

1 CDIV1 33 ModeIn 65 NMI* 97 NC

2 CDIV0 34 RdRdy* 66 EReq* 98 NC

3 VCCIO 35 EOK*/WrRdy* 67 Reset* 99 NC

4 GND 36 EValid* 68 ColdReset* 100 NC

5 SysAD4 37 PValid* 69 VccOK 101 VCCIO

6 SysAD5 38 PMaster*/Release* 70 BigEndian 102 GND

7 VCORE 39 VCCQ 71 VCCIO 103 SysAD28

8 GND 40 VSSQ 72 GND 104 SysAD29

9 SysAD6 41 ClkIN 73 SysAD16 105 VCORE

10 SysAD7 42 VCORE 74 VCORE 106 GND

11 SysAD8 43 GND 75 GND 107 SysAD30

12 SysAD9 44 SysCmd0 76 SysAD17 108 SysAD31

13 VCCIO 45 SysCmd1 77 SysAD18 109 SysAD34

14 GND 46 SysCmd2 78 SysAD19 110 VCORE

15 SysAD10 47 SysCmd3 79 VCORE 111 GND

16 SysAD11 48 VCCIO 80 GND 112 SysAD35

17 VCORE 49 GND 81 SysAD20 113 VCCIO

18 GND 50 SysCmd4 82 SysAD21 114 GND

19 SysAD12 51 SysCmd5 83 VCCIO 115 SysAD32

20 SysAD13 52 GND 84 GND 116 SysAD33

21 SysAD14 53 SysCmd6 85 SysAD22 117 SysAD0

22 VCORE 54 SysCmd7 86 SysAD23 118 SysAD1

23 GND 55 SysCmd8 87 SysAD24 119 VCORE

24 SysAD15 56 SysCmdP 88 SysAD25 120 GND

25 VCCIO 57 VCORE 89 VCORE 121 SysAD2

26 GND 58 GND 90 GND 122 SysAD3

27 ModeClk 59 Int0* 91 SysAD26 123 VCCIO

28 QJTDO 60 Int1* 92 SysAD27 124 GND

29 QJTDI 61 Int2* 93 VCCIO 125 PReq*

30 QJTCK 62 Int3* 94 GND 126 TClk

31 QJTMS 63 Int4* 95 ModPres* 127 NC

32 VCCIO 64 Int5* 96 NC 128 MClkOut

Table 8.1: Pinout of CPU daughterboard (MIPS names)

8.2. DIMM memor y slots (DIMM0/DIMM1)

These are pretty much industry standard, so we won’t define them here. Note that the DIMM memories are

unbuffered synchronous 3.3V 64-bit (non-ECC) types.

34 8.2. DIMM memory slots (DIMM0/DIMM1) P−6032 manual

8.3. PCI edg e connectors: P9, P10, P11, P8)

Industr y standard connectors, not defined here.

However, you will need to know how the IDSEL and interrupt lines are assigned; see Table 5.2 on page

24.

8.4. Ethernet (P2)

The 10/100Mbit/s ethernet has a 10/100baseT connector P2. The active ether net interface signals are

transfor mer-coupled to the controller to reduce the risk of damage to the board through mis-connection

or extreme electrical noise.

8.5. IDE

There are primar y and secondary IDE channels (P16, P18), connected up to the south bridge controller.

There is a third channel on the P20 connector, wired directly to BONITO’s IDE port. The BONITO por t is

simpler and will probably give better perfor mance, but you’re much more likely to find an OS driver for

the south bridge IDE channels.

8.6. RS232 (P4)

Dual serial ports implemented with a double connector. Por t 1 is the lower (nearest the board) and port

2 the higher; both are standard PC-compatible 9-pin male D-type, and the pinout is shown in Figure 8.2.

DCD TXDRXD DTR GND

DSR RTS CTS RI

1 2 3 4 5

6 7 8 9

Figure 8.2 Pinout of a PC-compatible serial connector (looking into pins)

Notes on the serial port signals:

Signal Description

RXD, TXD asynchronous serial data into and out from P−6032, respectively. In many cases,

you need only connect these and ground to have a wor king interface.

CTS ‘‘clear to send’’: input which can be used for flow control, stopping P−6032 from

sending data if inactive - whether this is actually done is down to software. We

pull it up, so that when you don’t make a connection to this pin it will appear

active.

DSR ‘‘data set ready’’: signal into the board, sometimes used for flow control instead of

CTS.

DTR ‘‘data terminal ready’’: programmable output - usually wired to DSR at the other

end.

RTS ‘‘request to send’’: programmable output, usually wired to CTS at the other end.

DCD ‘‘data carrier detect’’: used by a modem to indicate that it has an active

connection. Rarely needed when a modem not fitted.

RI ‘‘ring indicator’’: input activated by modem when the connected phone rings.

Rarely used for anything.

P−6032 manual 8.6. RS232 (P4) 35

8.7. Centronics (P3)

A double-stacked connector offer ing either a ‘‘host’’ connector (same as you’ll find on your PC) or a

‘‘per ipheral’’ connector (suitable for connecting up to a PC for download). There’s only one port, so don’t try to

use both at once!

Figure 8.3 shows the pinouts.

12345678910111213

141516171819202122232425

1 2 3 4 5 6 7 8 9 10 11 12 13

D0 D7D1 D2 D3 D4 D5 D6

D0D7 D1D2D3D4D5D6

Centronics host (female)

Centronics peripheral (male)

nStrobe

nAck

nAck

nStrobe

nAuto

nInit

nSelectIn

nSelect

PError

Busy

14 15 16 17 18 19 20 21 22 23 24 25

GNDGNDGNDGNDGNDGNDGNDGNDSEL

Busy PError

nFault

GNDGNDGNDGNDGNDGNDGNDGND nAutonInit

nSelectIn nFault

Figure 8.3 Centronics/IEEE-1284 parallel port connector

8.8. Diskette (P15)

Standard PC-type diskette header; not described here.

8.9. User-defined parallel I/O (P6)

This 8×2 pin header brings together individually programmable I/O signals - GPIO5-8 from BONITO and

GPIO10-17 from the multi I/O controller. They’re available for whatever function you like, such as:

• Polling an exter nal logic level.

• Dr iving some simple exter nal device.

• Software-controlled trigger for test equipment...

• Detecting an interrupt on a low or high level, or a rising or falling edge.

Anything you like. The pinout is in Table 8.2.

multi I/O BONITO

GPIOs GPIOs

13 12 11 10 8 6

GND GND

15 13 11 9 7 5 3 1

pins

16 14 12 10 8 6 4 2

17 16 15 14 7 5

VCC VCC multi I/O BONITO

GPIOS GPIOS

Table 8.2: GPIO connector (P6) pinout

36 8.9. User-defined parallel I/O (P6) P−6032 manual

8.10. PC-compatible keyboard/mouse connector (P5)

A dual small (‘‘PS/2’’ type) DIN connector. If your keyboard has a big DIN connector as used in older

PCs, converters are readily available.

8.11. USB (P1)

A host port for ‘‘universal serial bus’’ implemented by the south bridge should permit the attachment of

USB peripherals, just emerging as the first P−6032 boards ship. Ask Algorithmics about software

suppor t. The two sockets in the dual connector are wired identically.

8.12. IR ‘‘network’’ interface (P7)

We’re now really getting down into the far end of feasible. The multi I/O controller provides signals to

dr ive an infra-red transceiver supporting a standard used by some hand-held computers. This is for

exper imentation only, but P7 is a 9-pin 0.1’’ SIL header. It’s connections are as follows (signal names

are as used in the PC97307 manual):

Pin Signal

1 +5V

2 -

3 IRRX

4 GND

5 IRTX

6 IRRX2/ID0

7 IRSL1

8 IRSL2

9 -

8.13. Power supply connector (P13)

Compatible with PC motherboards built to the ‘‘ATX’’ standard; we used this because it’s the most

available standard which features 3.3V and 5V power. You should find it easy enough to come by an

appropr iate power supply, but if you can’t Figure 8.4 shows the pinout.

+5V +5V -5V GND GND GND On* GND -12V +3.3V

20 19 18 17 16 15 14 13 12 11

10 9 8 7 6 5 4 3 2 1

+12V VStdBy PwrGd GND +5V GND +5V GND +3.3V +3.3V

Figure 8.4 ATX power supply connector pins

In Figure 8.4 the signals are as follows:

• +5V, +3.3V, -5V, +12V, -12V, GND : pow er rails. ‘‘ATX’’ supplies provide lots of +5V and +3.3V, a

decent amount of +12V (used for PC disc drives) and just a little -12V and -5V.

• VStdBy : ATX supplies are software-switchable. When the PSU is off the main supply rails are all

disconnected, but the VStdBy provides a small amount of +5V power to feed some power-up circuitry.

On P−6032 that just allows the debug/reset switch to be pulled to the debug position to switch on the

power.

• On* : enables the main power rails when it’s taken low and draws some current. You switch off the

PSU by taking this signal high.

P−6032 manual 8.13. Po wer supply connector (P13) 37

• PwrGd : is retur ned high by the power supply when all rails have switched on and are stable, and goes low

to provide early war ning of a power failure. PwrGd is fed into P−6032’s reset circuitry, and its low-going

transition can be used to generate an interrupt.

8.14. Logic programming connectors: P22, P14

P−6032 has two Xilinx 9500 series programmable logic devices. One is dedicated to the debug unit (see §10),

and the other is available as a programmable resource for fixing bugs or providing extra functions in

exper imental applications of the board.

These chips retain their logic programs using ‘‘flash’’ ROM storage, but can be reprogrammed in-circuit with a

JTAG cable. The instructions given here assume you’re using a Xilinx download cable (not too expensive).

The Xilinx-compatible connectors are 9-pin 0.1’’ SIL header strips, and the pinout is shown in Figure 8.5. The

Xilinx cable terminates with eight colour-coded individual cables.

signal colour code

JTMS 1 pur ple

2 white

JTDI 3 orange

JTDO 4 green

5 blue

JTCLK 6 yellow

7

GND 8 black

+5V 9 red

Figure 8.5 Xilinx-compatible connectors P22, P14 for reprogramming P−6032 logic

8.15. JTAG boundar y scan test connector: P12

The scan test chain threads through the CPU module, ether net controller and Bonito ASIC, as shown in Figure

8.6.

ethernet BonitoCPU module
JTDI

JTD1JTD0 JTD2

JTD2

JTRST
JTMS

JTCLK_2

TMS TCK TRSTTMS TCK TMS TCK

Figure 8.6 JTAG boundar y scan chain

The signals of the chain are accessible through the P12 connector shown in Table 8.3:

JTMS 1 2 GND
JTCLK_2 3 4 GND

JTDI 5 6 5V
7 8 5V

38 8.15. JTAG boundar y scan test connector: P12 P−6032 manual

9 10

JTD2 11 12

JTD1† 13 14

JTD0† 15 16 JTRST

Table 8.3: Pinout of JTAG boundar y scan connector P12

9. Cables supplied
With your P−6032 you should have received a couple of cables:

• IDE : two ribbon cables supplied to attach drives, though perhaps they’re rather short for peripherals

not in the same box.

• Floppy : one cable with connectors for two drives.

Ever ything else you should need to get your system up and running should be readily available from

your local PC superstore.

10. Hardware debug and trace facilities
Since P−6032 is principally meant as a development aid, debug assistance is important. Most software

development hours go into high-level functions where software tools are all-important, so P−6032

provides the communication channels those software tools need.

But you may also need to prototype and debug software on a level where software monitors can’t reach;

and then you’ll need to be able to observe and interrupt the execution of your program using tools which

don’t depend on being able to run a program on the main CPU.

At that point you’ll be reaching for a logic analyser; the debug unit 10 gives you somewhere to plug it in;

and most of this chapter describes it and how it’s used. But we’ve also got notes in about the humble

debug switch (which sends an interrupt to the CPU which can be used by debug monitor software) and

the socket which allows you to use a ROM emulator.

The debug unit has logic analyser connectors which present all CPU cycles and PCI cycles accessing

local memory. It buffers and re-registers the buses, so that even a relatively slow analyser will have no

trouble following P−6032’s buses up to 100MHz. The connectors are pinned out to allow HP logic

analyser ‘‘mass terminator pods’’ to be plugged straight in, but can be wired pin-by-pin to any kind of

analyser.

1 2 1 2 1 2

ATRIG 3 4 SPARE1 ATRIG 3 4 A15 3 4 D15
SPARE0 5 6 AMUX13 A14 5 6 A13 D14 5 6 D13
AMUX12 7 8 BE3 A12 7 8 A11 D12 7 8 D11

BE2 9 10 BE1 A10 9 10 A9 D10 9 10 D9
BE0 11 12 DP3 A8 11 12 A7 D8 11 12 D7
DP2 13 14 DP1 A6 13 14 A5 D6 13 14 D5
DP0 15 16 WR A4 15 16 A3 D4 15 16 D3

SIZE2 17 18 SIZE1 A2 17 18 A1 D2 17 18 D1

† In the revision A P−6032, a bug means that the signals JTD0-1 are inadver tently
shared with the corresponding JTAG signals of the debug FPGA, normally driven from
the programming connector P22. This bug is not critical because the JTMS and JTAG
clock signals are not shared; so long as the debug FPGA is kept in a state where its
JTAG output is tristate, everything still wor ks.

P−6032 manual 10. Hardware debug and trace facilities 39

SIZE0 19 20 GND A0 19 20 GND D0 19 20 GND

P25 P21 P17

1 2 1 2

3 4 A31 3 4 D31
A30 5 6 A29 D30 5 6 D29
A28 7 8 A27 D28 7 8 D27
A26 9 10 A25 D26 9 10 D25
A24 11 12 A23 D24 11 12 D23
A22 13 14 A21 D22 13 14 D21
A20 15 16 A19 D20 15 16 D19
A18 17 18 A17 D18 17 18 D17
A16 19 20 GND D16 19 20 GND

P23 P19

Table 10.1: Pinout of the debug connectors

The signals on the debug connectors are as follows:

Signal Description

A31-0 Address of this cycle

ATRIG Analyser trigger - rising edge on this signal denotes something wor th

captur ing.

BE3-0 Byte enables, where BE0 shows a valid transfer on D7-0 (etc)

D31-0 Data bus

DP3-0 Parity on data bus, if suppor ted.

WR High for a write, low for a read.

GND Board ground to connect to analyser pod ground

AMUX13-12 SDRAM multiplexed addresses

SIZE2-0 Encoded transfer size

Table 10.2: Debug connector signals described

10.1. ROM emulators

ROM emulators plug into the 32-pin ROM socket, described in §5.3. (‘‘Flash ROM and the boot ROM socket’’)

on page 21 with the pinout in Figure 5.18. As well as providing a source of boot-time code, some ROM

emulator products provide a simple networ k connection and console; not perhaps really needed with P−6032.

However, if you want to use any extended functions you’ll probably need to be able to write to the ROM socket

position; note that only single byte write cycles are supported.

8 P−6032 revision A boards have a problem with some ROM emulators. The
emulators may have resistive pull-ups on their data lines, which are joined to BONITO’s
I/O data bus IOD0-7. But BONITO uses pullups on those lines to configure some
impor tant chip features, so when you plug in the ROM emulator chaos ensues.

This will probably be fixed in later versions of P−6032.

40 10.1. ROM emulators P−6032 manual

10.2. The debug switch

P−6032’s reset flip-switch is two-way; push it the other way and it powers on the unpowered board, or

delivers a debug interrupt when the board is already powered up.

Note that if you attach a remote power-on switch to J5 it will double up as a remote debug interrupt

switch.

It’s up to the debug monitor, hanging off one of the MIPS exception handlers, to receive the interrupt and

do something useful with it.

P−6032 manual 10.2. The debug switch 41

11. Software from Algorithmics and third par ties
This infor mation is necessarily a snapshot; we’ll try to keep updated infor mation on our web site.

PMON boot ROM sources

Are available free from Algorithmics’ web site, at somewhere like

ftp://ftp.algor.co.uk/pub/software/pmon/pmonsrc-970821.tar.gz. There may be a new er version by

the time you look, of course.

The package is configured to build using Algorithmics’ SDE−MIPS tools on a Unix host. Use of another

toolchain should not be too bad, so long as it supports MIPS-standard assembly code; but building on DOS or

any version of Windows with only short file names is painful.

Note that PMON, while freely redistributable source code, is not supported by Algor ithmics.

SDE−MIPS for P−6032

Probably the best MIPS compiler toolkit in the wor ld9. You can find out more on Algorithmics web site.

SDE−MIPS has built-in support for P−6032, as it does for all Algorithmics prototyping boards and a good range

of MIPS boards from third parties.

Real-time OS on P−6032

Our policy is that no reasonable RTOS should be unavailable; but license conditions can make this difficult. If

you don’t see what you want, please ask.

• VxWor ks/Tor nado : a BSP (‘‘board support package’’) for Wind River System’s OS is available. With all

CPUs known so far, P−6032 is compatible with the version of VxWor ks/Tor nado built for MIPS R4x00

CPUs. A native R5x00 version might offer better perfor mance, but is not essential.

• Linux : the MIPS version is much better than it was a year ago (written September 2000). We expect to

make a reasonable port available with early boards, and offer some support and help to customers.

• AlgRTX : Algor ithmics’ own RTOS is a minimal microker nel suppor ting a POSIX threads implementation.

It’s available on reasonable terms with source code available and no per-unit royalties.

One particular feature of ARTX is its ‘‘Transputer-replacement’’ librar y, which is a librar y of functions which

emulate the de-facto standard C binding used for the scheduling functions built into the Inmos Transputer

architecture. Could be useful if you’re converting Transputer code.

Other OS on P−6032

These are less strongly in demand, and will be provided as and when customer demand meets resource

availability.

• Windows CE : Microsoft’s baby OS has not really taken off (yet) outside those applications where Microsoft

provide all the software. But if you are interested in Windows CE and P−6032, then Algorithmics are

‘‘Systems Integrators’’ for Windows CE, and have delivered board support packages (‘‘OAL’’ s) for our

P−4032 and P−5064 boards.

• OpenBSD : one of the public-domain BSD-derivative OS factions, and the one we’ve had most success

with.

• pSOS : a major Algorithmics customer for the P−4032 use pSOS, and it may be extended to the P−6032 -

ask.

9 Algor ithmics’ product, of course.

42 11. Software from Algorithmics and third parties P−6032 manual

Appendix A: MIPS CPUs and addresses

In MIPS CPUs the addresses generated by your program10 are never the same as the physical

addresses which come out of the CPU and affect the rest of the system.

This is different from most familiar CISC architectures, and this often causes confusion. CISC CPUs

often have a mode bit which enables memory translation - and without that mode bit set the physical

address is exactly the same as the program address. MIPS has no such mode bit. Instead, the CPU’

program address space is split into regions, as shown in Figure A.1:

"unmapped" uncached (kseg1)

"unmapped" cached (kseg0)

mapped
(kseg2)kernel

supervisor

32−bit user space (kuseg)

2 Gbytes

0xE000 0000

0xC000 0000

0xA000 0000

0x8000 0000

0x0000 0000

Figure A.1 MIPS program address map

The regions kuseg and kseg2 are designated for translation; addresses in these regions will be

presented to the hardware’s memor y translation unit (the TLB), and what happens then is beyond the

scope of this section. If you want to know more, read an architecture book as recommended in

Appendix B below.

Embedded software more often runs in kseg0 and kseg1, each of which offers a window onto the low

512Mbyte of physical memory (cached and uncached respectively). kseg1 is essential to run startup

code (before the caches are initialised), and is also needed for access to hardware I/O registers. Once

the system is running most system code and data will be accessed through kseg0.

Actually, the picture shown above in Figure A.1 is not complete. The R4x00 is, after all, a 64-bit CPU

and not 32-bits, and the full program address space is 64 bits big. Figure A.1 is useful because, so long

as you only use the 32-bit-compatible part of the MIPS instruction set, registers will only contain 64-bit

values whose top 32 bits are all set to the same value as bit 31 - such values look like a ‘‘sign extension’’

of a 32-bit value.

So the 32-bit memory map is in fact the view you get of the whole 64-bit memory map when you leave

the middle out. Figure A.2 shows the big picture:

10 Called program addresses here - the term vir tual address means exactly the same
thing but is unfamiliar outside the exotic realms of big operating systems

P−6032 manual Appendix A: MIPS CPUs and addresses 43

"unmapped" uncached (kseg1)

"unmapped" cached (kseg0)

0x0000 0000 0000 0000

0xFFFF FFFF 8000 0000

0xFFFF FFFF A000 0000

0xFFFF FFFF C000 0000

0xFFFF FFFF E000 0000 mapped

(kseg2)kernel

supervisor

32−bit user space (kuseg)

2 Gbytes

inaccessible with
32−bit pointers
(so only found

in R4x00 CPUs)

more user space
40 bytes2to

0x0000 00FF FFFF FFFF

0x4000 0000 0000 0000
40 bytes2

supervisor−accessible
0x4000 00FF FFFF FFFF

0x9000 0000 0000 0000

window on physical mem

(cached)

window on physical mem

0x9800 0000 0000 0000

40 bytes2

(uncached)

0xC000 0000 0000 0000

0xC000 00FF FFFF FFFF
kernel−accessible

Figure A.2 MIPS program address map (entire 64-bit space)

Handling pointers as 64-bit objects is an extravagant use of memory space for an embedded software

application; and we reckon most users won’t bother. If you need access to the R4x00’s 32-bit physical address

range outside the low 512Mbytes (so can’t just use kseg0 and kseg1) you can use the TLB.

44 Appendix A: MIPS CPUs and addresses P−6032 manual

Appendix B: References - Finding more information

The wor ld-wide-web is your best and first resource. Most MIPS semiconductor partners and most

suppliers of software or hardware add-ons have web sites, and most have extensive documentation

there. How ever, large documents and books are not much fun online, so only those of you with the right

sor t of printers will use those sources for the bigger documents; we’ll quote all the infor mation we can as

we go along.

And of course we’d like to encourage you to visit our web site at www.algor.co.uk; star t at the

‘‘Documents and software to download’’ section.

General MIPS information

• MIPS architecture and programming : [Sweet99] Dominic Sweetman, See MIPS Run published by

Morgan Kaufmann, ISBN 1-55860-410-3.

• MIPS R4000 : [R4000man] Joe Heinrich/Gerr y Kane, MIPS R4000 Microprocessor User’s Manual,
published Prentice Hall, ISBN 0-13-1059254.

The bible of the MIPS architecture; lots of details, but sometimes hard to find. It also takes a rather

rigid view as to what is implementation specific, and can thus be left out. You can probably find a

version of this to download from SGI’s technical librar y.

Data sheets

There’s a jump page at http://www.algor.co.uk/algor/info/p6032-devices.html, and you should

go there and browse.

SGI Technical Library

At http://techpubs.sgi.com/library/ you’ll find infor mation on MIPS-designed CPUs (look under

the ‘‘hardware’’ menu) and the only available description of MIPS assembler language - that will be

under var ious ‘‘Ir ix’’ versions, and you may be best off using the oldest version, starting at ‘‘Ir ix 5.3’’.

Algorithmics’ manuals

Most of Algorithmics’ manuals are freely available for download from our web server in either PDF

(‘‘Acrobat’’) or gzipped postscript for mats. Star t at

http://www.algor.co.uk/algor/info/ftplist.html.

You’ll find this manual there, and also one for PMON - a refor mat of the original LSI manual, which has

been updated (though probably not enough). If you’ve bought a P−6032, you’ll have a PMON manual.

Hardware information on P−6032

This is not quite freely available. We’ll send the following to those who’ve bought a P−6032 on request

(or send you a password and let you download them). Here’s what you could have:

• P−6032 schematics : just the circuit diagrams.

• P−6032 logic equations : the logic equations, in Ver ilog, for the add-on logic.

Note that all of these remain our copyr ight, which means you need to ask us before you use chunks of

our design in your product; though if you do ask, we’ll be ver y nice to you and find a way to let you do it.

P−6032 manual Appendix B: References - Finding more infor mation 45

Standards

• PCI Local Bus Specification, Revision : irr itatingly, this isn’t available online because the PCI consortium

fund themselves by charging $100 or so for the hard copy. The delay and complication this causes for

those of us outside the USA are considerable.

• Centronics ECP : there ought to be some standards online, but probably aren’t. There’s a good summary

at http://www.lvr.com/parport.htm

46 Appendix B: References - Finding more infor mation P−6032 manual

Appendix C: Reading configuration information from DIMM
modules

IBM defined a specification for 168-pin DIMM modules which seems to have progressed to being a de-

facto industry standard. This involves use of a small EEPROM device to store a bunch of infor mation

about the SDRAM size and organisation. P−6032 depends on this, in that the supplied bootstrap

program reads out this infor mation to decide how to program the memory controller.

This appendix tells you both how to read the ROM values, and what the ones which are significant to

P−6032 mean.

How to read the DIMM’s EEPROM

The DIMMs use a 2-wire interface to read (and if necessary, write) the EEPROM devices. The interface

is sometimes called ‘‘I2C’’ and was pioneered by Xicor.

Each DIMM socket’s EEPROM has an address to which only it responds, configured by static voltage

levels on the three DIMM inputs called SA0-2. In P−6032, the DIMM1 slot gets the address 1, and

DIMM2 gets the address 0.

The two signals used for reads and writes are data and clock: SDA and SCL. On the P−6032 schematics

these are called D_SDA and SCK respectively.

The EEPROM signals are wired using the ‘‘SMB’’ signals of the south bridge device, as descr ibed in

§5.9. It would be fair ly straightforward to route those signals directly to the DIMMs; but unfor tunately the

GPIO chip is a 5V device and the EEPROM needs 3.3V levels. So instead the interface goes via one of

the FPGA devices.

The signals concerned are:

GPIO signal I2C function Notes

B5 SDA dr iven open-collector. Set B5 to low to

disable (which will allow SDA’s to be pulled up

to a high), and high to actively pull SDA to a

low

B6 SCL I2C clock

B7 SDA Read data. When sending to the EEPROM,

a logic fossil requires that you make this

signal into an output from the GPIO chip and

program it low.

I2C access protocol

The basic I2C transfer uses SDA to conve y a bit-stream of commands or data, using successive SCL
high periods to sample SDA. SDA is defined as ‘‘open collector’’ and pulled up with a high-value resistor.

Dur ing data transfers SDA is always stable before, dur ing and after each SCL high pulse. So a change

on SDA while SCL is high can be used as a recognisable condition, used to delimit transfers. So the

basic bit-level coding is:

• Star t condition : a low-to-high transition of SDA with SCL high. Once the start condition timing

requirements are met, it is then usual to lower SCL, ready for the first data bit.

• Stop condition : a high-to-low transition of SDA while SCL is high.

• Wr iting data : output value to be transferred on SDA , wait a while, raise SCL, wait a while, and lower

SCL.

P−6032 manual Appendix C: Reading configuration infor mation from DIMM modules 47

• Reading data : low er SCL, wait a while, raise SCL, pick up data on SDA, wait a while.

Once you can send bits, you can communicate. First of all, there is a rule for avoiding hurling bits into a black

hole:

• Byte acknowledgement : most commands are organised as a number of 8-bit transfers. After each 8-bit

transfer the EEPROM will try to send a ‘‘0’’ back to you to prove it is there. You should release the data line

(changing it into input mode) immediately the 8th bit is safely sent.

If you don’t see an acknowledgement, the EEPROM isn’t talking to you and nothing is happening. Perhaps

the EEPROM is still busy stashing away some data you just wrote...

Whenever the EEPROM sends you a byte of data, you have to acknowledge it, send a stop, or send a start.

• Inter preting data : 8-bit groups are interpreted with the first-transmitted bit regarded as the most significant

(bit 7) (this is the opposite convention to most serial communications).

Now you can send 8-bit groups to the device, we can define commands and responses.

Each transfer starts with a command like this:

Device type 001=DIMM1 0=write

1 0 1 0 000=DIMM2 1=read

Figure C.1 Command for an I2C slave device

Where:

Device type this is a fixed code which is decoded by EEPROM devices of the particular type used on the

DIMMs.

Select another fixed code, this time to match the configuration of the SA2-0 pins of the DIMM; as

mentioned above this should be binary 1 for DIMM0, and binary 0 for DIMM2.

read/wr ite deter mines whether the next command is a read or a write.

If the EEPROM processes the command it will send an acknowledgement.

After a read/write command you need to specify an address - the 256×8 store requires an 8-bit address, and

you’ve given one bit already. Don’t forget that the address is sent most significant bit first.

EEPROM write

In fact, you should never write the EEPROM on one of P−6032’s DIMMs, since the infor mation stored therein is

impor tant configuration infor mation. But you can’t run the protocol without doing a zero-length write...

The sequence goes like this:

• issue start

• send write command

• EEPROM ack

• send byte address

• EEPROM ack

• send data

• EEPROM ack

• issue stop

The EEPROM has an internal counter, and it is possible to write from one to 8 bytes of data by sending more

data before issuing the stop. Only the low three bits of address count up, so a burst which goes over an 8-byte

boundar y will ‘‘wrap round’’ - perhaps not what you wanted.

48 Appendix C: Reading configuration infor mation from DIMM modules P−6032 manual

Acknowledg e Polling

After you complete a write of 1-8 bytes, the EEPROM goes off-line while it does its internal write cycle

(typically 5ms). If you have more transactions to perfor m with it you can poll for it’s completion by

repeatedly sending a write command, and testing for the ACK.

Read

You can’t directly supply an address for a read command. Read data is obtained from an internal

‘‘current address’’ register set by writes and incremented by reads.

Unless the last access was to the byte before the one you want, you have to setup the internal register

with a ‘‘wr ite’’ without any data, then issue another ‘‘star t’’. So to perfor m a read:

• issue start

• send write command

• EEPROM ack

• send byte address

• EEPROM ack

• issue start

• send read command

• EEPROM ack

• EEPROM data

At this point you can either issue a stop (to read just one byte) or an acknowledge (in which case the

EEPROM will continue with the next byte). It is possible to read through the whole of a 256-byte ‘‘page’’

of the EEPROM like this.

Timing requirements

You need some software mechanism for policing the frequent 5µs minimum timings. Take par ticular

care when doing I/O writes to change the SCL and SDA signals, since the CPU’s write buffer (and other

‘‘wr ite posting’’ buffers in BONITO and the south bridge) can cause successive writes to come out closer

together than you expected.

• SCL frequency : a maximum of 100kHz - so at least 10µs must elapse between successive rising

and falling edges.

In practice, you should keep all low and high periods of SCL over 5µs. It is easy to get programmed

I/O from a MIPS CPU to go faster than this!

• Data setup and hold : change the data ‘‘as soon as possible’’ after the falling edge of SCL and data

timing will take care of itself.

The actual rules are that data must be stable for at least 250ns before the rising edge of SCL; and

must remain stable until after SCL falls.

• Star t/stop condition rules : SCL must be high 5µs before and after the SDA transition

• Wr ites take a long time : after you write to the EEPROM it goes away and stores the data in its non-

volatile locations. This takes about 5ms, and during this period it takes no notice of you. Once you

have accomplished a write you should expect to see no acknowledgement of a subsequent

command for a while (see the ‘‘wr ite polling’’ command above).

P−6032 manual Appendix C: Reading configuration infor mation from DIMM modules 49

DIMM EEPROM data

The data provided by a DIMM module which is important to P−6032 are as follows:

Descr iptionByte
Addr

Typical
Values

0 Number of bytes reserved for this table 128

1 8Number of bytes in the EEPROM device (divided by 32,

so the usual 256-byte size becomes 8)

2 Memor y type = SDRAM 4

3 Number of row address bits 11-13

4 Number of column address bits 8-11

5 Number of sides 1-2

17 Banks/DRAM 2,4

31 Module size/side (4 = 16Mbytes) 4

Table C.1

A full description of all the 32 bytes actually used on Micron DIMMs is available in the manufacturer’s data

sheet.

50 Appendix C: Reading configuration infor mation from DIMM modules P−6032 manual

