
PMON

Users Manual

algori thmics

© 1998 Algorithmics Ltd
© 1992,1993 LSI Logic Corporation

Revision: 1.4
Dated: 1998/01/30

Algor ithmics’ MIPS architecture single-board computers
come equipped with the PMON PROM bootstrap/monitor
program. This manual tells you how to wor k with PMON to
load and run programs.

The original version of the PMON program was written by Phil Bunce for LSI
Logic Inc, who have kindly made the sources freely reusable without royalty.

Algor ithmics will provide any customer (on request) with sources of our version of
PMON for a media charge only - free for those with internet ftp access. Call
Algor ithmics for suppor t or assistance with porting to your hardware. US cus-
tomers may also be able to get support from Phil Bunce: email pjb@carmel.por-
tal.com or call (408) 625 1247.

The PMON program includes software developed by the University of Califor nia,
Ber keley and its contributors. Specifically, the ethernet UDP/IP protocol stack
and its support software come from the BSD4.3/net software release.

The following manual was derived from LSI Logic Corporation’s PMON V4.0
manual, and thus constitutes a derivative wor k.

Algor ithmics Ltd
3 Drayton Par k

London N5 1NU
ENGLAND.

Phone: +44 71 700 3301
Fax: +44 71 700 3400

Email: sales@algor.co.uk, pmon@algor.co.uk

LSI Logic Corporation
1551 McCarthy boulevard

Milpitas
CA 95035

USA.

PMON Manual 2

Contents

Contents ..3

Summar y of PMON ...6

1. Introduction..7
1.1. PROM Monitor Commands ..8

Table 1.1: PROM Monitor Commands...9
1.2. Features ...10

2. Monitor Environment ...10
Table 2.1: PROM Monitor Environment Var iables and Default Values10

3. Download Record Types ...13

4. Downloading Files via RS-232C..13
Choosing the Number of Target Por ts ..13
Choosing and Setting Baud Rates ...14
Flow Control ...14
Table 4.1: Flow control protocols ..14
Examples ..15
Single-Por t Mode ..15
Tw o-Por t Mode ...16

5. Connecting to Ethernet ...17
5.1. Configuring the Board ..17

Minimum setup ..17
Using a Name Server ..17
Selecting the Default Gateway ..18
Testing the Connection..18

5.2. Configuring the TFTP Server ...18
UNIX Wor kstation..18
DOS/Windows PC ...19

5.3. Downloading Files via Ethernet ..19

6. Monitor Command Summary ..20
Table 6.1: PROM Monitor Command Summary ...25

7. Alphabetic Command Listing...26
b command ...27
boot command ...29
bt command ...30
c command ...31
call command ...32
copy command ...33
d command ...34
date command ..35
db command ...36
debug command ...37

PMON Manual Contents 3

dump command ..38
eset command ..40
fill command ...41
flush command ...42
g command ...43
h command ...44
hi command ..45
l command ..46
load command ..47
ls command ..49
m command ..50
more command ...52
mt command ...53
ping command ..54
off command ..56
r command ...57
reboot command ..59
search command ..60
set command ..61
sh command ...63
stty command ...66
sym command ..68
t command ...69
tlb command ...70
tr command ..71
unset command ..72

8. Using PMON with SDE−MIPS...73
Compiling Example ..73
Remote Debugging with a Networ k..73
Remote Debugging Without a Networ ked ..74
PMON Machine-level Debugging ...74

9. AlgPOST - selftest code in boot PROMs ...75
9.1. About this Chapter..75
9.2. AlgPOST introduction and overview...75
9.3. The test sequence..76

What faults will AlgPOST miss? ..76
What AlgPOST does not test ..76
Using hardware testability features ...77

9.4. How AlgPOST communicates with you ..77
Diagnostic Display...77
The console or consoles ...77
Environment var iable ...77
Test equipment triggers ...78
Repor ting strategy ...78

9.5. Controlling tests - environment var iables used by AlgPOST ..78
Table 9.1: Boot test environment var iables..78
Table 9.2: itloglevel settings...78
Forcing AlgPOST to execute all of the tests ..79

PMON Manual Contents 4

9.6. AlgPOST diagnostics in detail ..79
Table 9.3: Test Sequence in brief ..79
Notes on the test sequence...79
Table 9.4: Catastrophic exception codes...82
Table 9.5: Mnemonic Displays and Associated Messages..84
Activity messages..85
General messages ..85
Message for mats...85

9.7. Programming AlgPOST..89
Table 9.6: For mat of package record...90
Table 9.7: PROM structure ..91
Table 9.8: NVRAM environment structure ...92

10. Glossary ..93

11. References ..95

PMON Manual Contents 5

Summar y of PMON

This manual describes PMON, a PROM Monitor originally written for LSI Logic and made avail-
able as re-usable source code. Algor ithmics have extended and adapted PMON to run on prod-
ucts such as the P−4000i prototyping board, and will give you support and advice on applying
PMON to your own hardware platfor m. This document contains the following sections:

• Section 1, Introduction

• Section 2, Monitor Environment

• Section 3, Download Record Types

• Section 4, Downloading Files via RS-232C

• Section 5, Connecting to Ethernet

• Section 6, Monitor Command Summary

• Section 7, Alphabetic Command Listing

• Section 8, Using PMON with SDE−MIPS

• Section 9, Pow er-on self-test description

• Section 10, Glossary of frequently-used words and acronyms

• Section 11, Reference list (other literature which may be relevant).

PMON Manual Summary of PMON 6

1. Introduction

PMON provides a fundamental set of commands for debugging software applications that run
on MIPS architecture microprocessors. LSI originally commissioned it to run on the LR33000
Self-Embedding(TM) processor and its derivatives; Algorithmics adapted PMON to run on the
64-bit R4x00 family.

PMON is provided in PROM on the P−4000i.

Use of PMON involves three basic steps:

1. Users first develop code on their own wor kstations or PCs, and cross-compile the code on
these host machines.

2. Users then download their code to the target board using either an RS−232C or Ethernet
link.

3. PMON’s debugging facilities permit users to:

- star t and stop program execution at any point via hardware and software breakpoints
and single-step execution support.

- read any register contents and set any register to a new value.

- read data and disassemble code from main memory.

- copy memor y contents from one area to another, fill areas of memory with a particular
byte or string, or search memory for a particular byte or string.

PMON provides a flexible environment for users to perfor m debugging. Command history, com-
mand-line editing, and downloadable symbols are only a few of PMON’s features. A scr ipt fea-
ture lets users execute a specified sequence of PROM Monitor commands after reaching a
breakpoint, or on reset. If the user enters an illegal command, on-line help provides syntactic
infor mation. PMON can also function as the target system back-end for a symbolic debugger
running on a host machine; compatible debuggers include gdb (as provided in Algorithmics’
SDE−MIPS toolkit, or in GNU toolchains obtained from the Free Software Foundation), or the
MIPS/SGI version of dbx. In the rest of this document we will refer only to gdb.

Users can incorporate any of the code from the PMON source package into their own products
with no redistribution or royalty fees. PMON software support, porting and installation help are
available from Algorithmics.

Separate from PMON, but part of the PROM software provided with most of Algorithmics’ board-
level products, is the AlgPOST self-test suite. Section 9 tells you about the test software − in
this manual, the version which runs on the P−4000i board.

PMON Manual 1. Introduction 7

1.1. PROM Monitor Commands

PMON supports 34 commands. The commands can be grouped into the following four cate-
gor ies:

• Execution Control

b (breakpoint), c (continue), call, db (display or delete breakpoints), g (go), t (trace), and
to (trace over).

• Display and Modify

boot (networ k loader), bt (stack backtrace), copy, d (display), dump, fill, l (disassem-
ble), load (download), m (memor y display/modify), r (register display/modify), search

(search memory for pattern), and tlb (display tlb entries).

• Environment

date (display/set date & time), hi (histor y), ls (list symbols), more (screen-at-a-time dis-
play), set (set environment var iables), sh (command shell), stty (set terminal options),
sym (set symbolic name), and unset (remove environment var iables).

• Miscellaneous

debug (enter remote debug mode). flush (flush data and/or instruction cache), h (help),
mt (memor y test), off (switch off machine, if it has a soft off-switch), ping (networ k test),
reboot (reboot PMON), and tr (transparent mode).

Table 1.1 lists the commands available in PMON, indicates their functional category, and refers
the reader to more infor mation about the command later in this document. Readers may wish to
keep a photocopy of Table 1.1 as a loose-leaf marker in the book for fast reference.

PMON Manual 1.1. PROM Monitor Commands 8

Page Execution Display &
No Control Modify

Command Function Environment Miscellaneous

b 27 Breakpoint ×

boot 29 Download binary via Ethernet ×

bt 30 Stack backtrace ×

c 31 Continue ×

call 32 Call ×

copy 33 Copy ×

d 34 Display ×

date 35 Display/set date and time ×

db 36 Delete breakpoint ×

debug 37 Debug ×

dump 38 Upload via RS232/Ethernet ×

eset 40 Edit var iable ×

fill 41 Fill ×

flush 42 Flush data and/or instruction cache ×

g 43 Go ×

h 44 Help ×

hi 45 Histor y ×

l 46 List (disassemble) ×

load 47 Download via RS232/Ethernet ×

ls 49 List symbols ×

m 50 Memor y display/modify ×

more 52 More ×

mt 53 Memor y test ×

off 56 Switch off ×

ping 54 Networ k setup test ×

r 57 Register display/modify ×

reboot 59 reboot PMON ×

search 60 Search ×

set 61 Set var iable ×

sh 63 Command shell ×

stty 66 Display/set terminal options ×

sym 68 Set symbolic name ×

t 69 Trace (single step) ×

tlb 70 Display TLB entries ×

to 69 Tr ace (step over) ×

tr 71 Tr ansparent mode ×

unset 72 Remove variable ×

Table 1.1: PROM Monitor Commands

PMON Manual 1.1. PROM Monitor Commands 9

1.2. Features

PMON offers:

• No redistribution or royalty fees;

• Complete source code for PMON available on request (but note this does not include code
for AlgPOST);

• Dr ivers for standard UARTs;

• Register display and set with named fields;

• Memor y display and set in hexadecimal notation;

• Memor y disassembly;

• Memor y copy, fill, and search;

• Motorola S-record upload and download facility;

• Exclusive high-speed download for mat (the FastLoad For mat);

• Download of ELF or ECOFF binary (object) files over Ether net via TFTP;

• C Shell-style command history suppor t;

• Emacs-style command line editing;

• Downloadable symbol tables to support symbolic addresses;

• On-line help;

• 32 software breakpoints;

• Hardware breakpoint (if supported by your CPU var iant).

• User-defined command list execution on breakpoint;

• Single-step execution;

• Source-level debugging using MIPS-targeted versions of gdb;

• Local, remote, and transparent connection modes to a host;

• Entr y points for user I/O service requests;

• Initialisation via NVRAM;

2. Monitor Environment

PMON defines a number of environment var iables, which influence the interpretation and execu-
tion of var ious commands. These environment var iables are listed in Table 2.1, together with the
default values set for the var iables in PMON and the possible values allowed for the var iables.

The environment var iables are stored in non-volatile memory, so that they are retained even
when the board is switched off. In addition to those var iables required by PMON, the user may
define additional var iables in which to save arbitrar y str ings, such as file names, command
str ings, etc.

PMON Manual 2. Monitor Environment 10

Environment
Variable

Default Value Contents

autoboot command list
bootaddr inter net address
bootdelay 20 1−60
bootfile str ing
brkcmd "l @epc 1" command list
broadcast inter net address
datasz -b [-b|-h|-w|-d]
dlecho off [off|on|lfeed]
dlproto EtxAck [none|XonXoff|EtxAck]
ethaddr 00:40:bc:03:00:00 ethernet address
gateway inter net address
heaptop 80020000 string
hostname str ing
hostport tty1 tty0−9
inalpha hex [hex|symbol]
inbase 16 [auto|8|10|16]
loglevel notice [debug|info|notice|war ning|err|crit|aler t|emerg]
moresz 10 0−n
nameserver inter net address
netaddr inter net address
netmask inter net address
prompt "PMON> " str ing
regstyle sw [hw|sw]
regsize 32 [32|64]
rptcmd trace [off|on|trace]
tftphost inter net address
trabort ˆK char
tty0 9600 baudrate
tty1 9600 baudrate
ulcr cr [cr|lf|crlf]
uleof % str ing
validpc "_ftext etext" string

Table 2.1: PROM Monitor Environment Var iables and Default Values

Environment var iables can be displayed and specified using the set command (see the
descr iption of the set command later in this chapter). User-defined var iables can be removed
when no longer required by using the unset command.

Br ief descr iptions of each of the var iables in Table 2.1 follow, together with references to their
complete descriptions later in this chapter.

• autoboot − This var iable, if defined, is a list of commands to be executed automatically
when the board is reset. For example, it could load a program over the networ k, and start it
running.

• bootaddr − This var iable specifies an Internet host from which to load files, if one is not
specified on the boot command line.

• bootdelay − This var iable specifies how many seconds to wait after a reset before execut-
ing the command line in the autoboot variable (default: 20 seconds). The user can inter-
rupt the delay by pressing any key. This var iable is ignored if autoboot is not defined.

• bootfile − This var iable gives the name of a file to be loaded by the networ k loader boot
command, if no file name is specified on the command line. See page 29.

• brkcmd − This var iable specifies a sequence of Monitor commands that are executed when
a breakpoint halts program execution. See the b command on page 27.

PMON Manual 2. Monitor Environment 11

• broadcast − This var iable, if defined, overr ides the default internet broadcast address for
this board. See page 17 for more infor mation about connecting the board to Ethernet.

• datasz − This var iable controls whether data is displayed in byte, half-word, word or double-
word groups. See the d command on page 34.

• dlecho − This var iable controls whether the target board echoes on downloads. An entire
line can be echoed, a single line-feed character can be echoed, or there can be no echo at
all. See the load command on page 47 and the section on downloading on page 13.

• dlproto − This var iable selects the download protocol for transfers via RS-232C. The Moni-
tor supports Xon/Xoff and EtxAck download protocols. See the load command on page 47
and the section on downloading on page 13.

• ethaddr − This var iable specifies the hardware Ethernet address. See the boot command
on page 29 and the section on setting up Ethernet on page 17.

• gateway − This var iable, if defined, is the internet host to which packets should be sent if
they are addressed to other networ ks (the default gateway). See page 17 for more infor ma-
tion about connecting the board to Ethernet.

• heaptop − This var iable specifies the highest allowable address in the heap maintained by
PMON. See the load command on page 47, and the boot command on page 29.

• hostname − This var iable gives the symbolic Internet host name of this board. See page 17
for more infor mation about connecting the board to Ethernet.

• hostport − This var iable selects whether tty0 or tty1 is used as the default port for down-
loading, uploading and remote debugging. See the load command on page 47, the dump

command on page 38, the debug command on page 37, and the section on downloading on
page 13.

• loglevel − This var iable selects how talkative the networ king code should be. The above
list of options are a set of prior ities, in order of increasing severity. Any message of the spec-
ified prior ity or above will be displayed on the console.

• inalpha − This var iable selects whether strings starting with the ASCII characters ‘a’
through ‘f’ are interpreted as symbols or hexadecimal numbers. See the sh command on
page 63.

• inbase − This var iable selects the default input base for numer ic values. Users can input
octal, decimal, or hexadecimal numbers by changing this var iable. See the sh command on
page 63.

• moresz − This var iable specifies how many lines to display dur ing screen-at-a-time display.
See the more command on page 52.

• nameserver − This var iable, if defined, specifies the numer ic Inter net address (in standard
dot-notation) of the local domain’s DNS name server. See page 17 for more infor mation
about connecting the board to Ethernet.

• netaddr − This var iable specifies the numer ic Inter net address (in standard dot-notation)
for this board. See page 17 for more infor mation about connecting the board to Ethernet.

• netmask − This var iable, if defined, overr ides the default Internet netmask for this board.
See page 17 for more infor mation about connecting the board to Ethernet.

• prompt − This var iable defines the Monitor prompt. See the sh command on page 63.

• regsize − This var iable specifies whether CPU registers should be displayed as 32-bits or
64-bits wide. See the r command on page 57. Note that although PMON supports R4000
64-bit registers, it does not support 64-bit addressing mode.

PMON Manual 2. Monitor Environment 12

• regstyle − This var iable defines whether hardware or software names are displayed for
the CPU registers in the l command. See the l command on page 46.

• rptcmd − When this var iable is set to ‘‘on’’, the previous command is executed again when
the user enters an empty line. When it is set to ‘‘trace’’, then the previous command is
executed again only if it was t or to. See the sh command on page 63.

• tftphost − If set, this var iable specifies a default internet hostname to use for TFTP net-
work file accesses.

• trabort − This var iable selects the character that terminates transparent mode and returns
the Monitor to command mode. See the tr command on page 71.

• tty0 − If specified, then this gives the default baud rate for the tty0 RS232-C port.

• tty1 − If specified, then this gives the default baud rate for the tty1 RS232-C port.

• ulcr − This var iable defines whether there is a carriage return, a line feed, or both at the
end of the line during dumps. See the dump command on page 38.

• uleof − This var iable specifies a string that is sent to the host after a dump to the target has
completed. See the dump command on page 38.

• validpc −This var iable specifies the range of valid PC values during program tracing. It
consists of up to 5 pairs of addresses, and an EPC register must lie within the one of these
pairs to be considered valid. See the trace command on page 69, and the bt command
on page 30.

3. Download Record Types

PMON supports four download for mats: LSI Logic’s FastLoad For mat, Motorola S−records, and
(via Ethernet) ELF and ECOFF binary object files. All these for mats can support the download-
ing of symbols, which is useful for debugging.

The FastLoad For mat uses a compressed ASCII for mat that permits files to be downloaded in
less than half the time taken for Motorola S-records. Motorola S-records have been extended to
include a non-standard S4−record containing an address and a symbol.

4. Downloading Files via RS-232C

This section provides infor mation on downloading programs and data from a host machine to a
target board using a serial RS-232C link.

The next three subsections address the following topics:

• Choosing the Number of Target Por ts

• Choosing and Setting Baud Rates

• Flow Control

• Examples

Choosing the Number of Target Por ts

You may use one or two por ts on the target board. In single-port mode, a single port on the host
system is connected to tty0 on the target. Communication with the target system for issuing
PROM Monitor commands and transferr ing files is perfor med using a terminal emulation pro-
gram on the host.

In two-por t mode, you can connect either a dumb terminal or a terminal emulation program to
tty0 on the target board, with the transfer of files perfor med on the second serial port (tty1)
using, for example, the SDE−MIPS edown program.

PMON Manual 4. Downloading Files via RS-232C 13

For single-por t mode, set the environment var iable hostport to ‘‘tty0’’. For two-por t mode,
set hostport to ‘‘tty1’’.

Choosing and Setting Baud Rates

To minimize download time, use the highest mutually acceptable baud rate for the host and tar-
get.

On the target, use the stty command to set the baud rate. For example, to set the baud rate on
the target board’s tty1 port to 19200 baud, enter the following command line on the target:

PMON> stty tty1 19200

You can also change the baudrate permanently, using the tty0 and tty1 environment var i-
ables:

PMON> set tty1 19200

On the host, the way the user sets the baud rate depends on the host type and the downloading
method. If you are using tip, for example, you can specify the host’s baud rate on the com-
mand line while initiating a download. For example, to download via tip at 19200 baud, enter
the following command line on the host:

% tip -19200 hardwire

You can also specify the host’s baud rate default value for tip in the file /etc/remote.

You can also specify the host’s baud rate for the edown command on the command line while
initiating a download.

Refer to your UNIX documentation for more infor mation on the tip command. For more infor-
mation on edown, see the description in the SDE−MIPS manual.

Flow Control

A flow-control protocol is selected to ensure that the host does not send data too fast for the tar-
get to receive. Although the target system may be able to read a record at 9600 baud, the target
system may need time to process that record before it can read the next record.

The environment var iables dlproto and dlecho specify the flow-control protocol. Table 4.1
summar izes the four protocols supported by the PROM Monitor.

Host Sends Target Returns Set Application
Echoes same line.Line terminated by

carr iage retur n.
dlecho = on
dlproto = none

tip in single-port mode;
UNIX host in single-port mode.

Line terminated by
carr iage retur n.

Retur ns line-feed
character.

dlecho = lfeed
dlproto = none

CrossTalk running on IBM PC.

Line terminated by
carr iage retur n.

Retur ns Xoff and Xon
characters.

dlecho = off
dlproto = XonXoff

cat in dual-port mode;
UNIX host in dual-port mode.

Line terminated by
ETX character.

Retur ns ACK
character.

dlecho = off
dlproto = EtxAck

edown in dual-port mode

Table 4.1: Flow control protocols

The following paragraphs describe the four supported flow-control protocols. In each case, the
protocol itself is first described. An example showing how to set the dlecho and dlproto

PMON Manual 4. Downloading Files via RS-232C 14

environment var iables follows. Concluding each description is an indication of the suggested
application cases for the protocol.

• The host sends one line terminated by a carr iage-return character. The host then waits for
the target to echo the line before sending the next line.

PMON> set dlecho on
PMON> set dlproto none

This protocol is appropriate for use with tip in single-port mode and with UNIX host sys-
tems operating in single-port mode.

• The host sends one line terminated by a carr iage-return character. The host then waits for
the target to echo a line-feed character before sending the next line.

PMON> set dlecho lfeed
PMON> set dlproto none

This protocol is appropriate for use with CrossTalk running on an IBM PC in single port-
mode.

• The host sends each line terminated by a carr iage-return character. Xoff (ˆS) and Xon (ˆQ)
characters sent from the target are used to pause the host between lines.

PMON> set dlecho off
PMON> set dlproto XonXoff

This protocol is appropriate for use with cat in two-por t mode. The user can also use this
mode for UNIX host systems operating in dual-port mode.

• The host sends one line terminated by ETX and waits for ACK before continuing.

PMON> set dlecho off
PMON> set dlproto EtxAck

This protocol is appropriate for use with edown in two-por t mode. The user can also use this
mode instead of the last mode for UNIX and PC hosts systems operating in dual-port mode.

Examples

This section provides examples of downloading files using single-port and two-por t modes.

Single-Por t Mode

If the target board is operating in single-port mode, you can use the UNIX tip command to
download compiled and linked files from your host machine.

The following example illustrates how to perfor m this procedure step by step.

% make-sde ex4ram Compile and link on host.
% tip hardwire Establish connection with target.
PMON> set hostport tty0 Initial setup on target
PMON> set dlecho on (only required once).
PMON> set dlproto none
PMON> load Prepare for download.
PMON> ˜> bubble.lsi Star t download.
PMON> g Run the downloaded program.

PMON Manual 4. Downloading Files via RS-232C 15

Tw o-Por t Mode

If the target board is operating in two-por t mode, you can use the edown command to download
compiled and linked files from your host machine. The following example illustrates how to per-
form this procedure step by step.

% make-sde ex4ram Compile and link on host.
PMON> set hostport tty1 Initial setup on target.
PMON> set dlecho off (only required once).
PMON> set dlproto XonXoff
PMON> load Prepare for download.
% edown -d /dev/ttyb bubble.lsi Star t download.
PMON> g Run the downloaded program.

PMON Manual 4. Downloading Files via RS-232C 16

5. Connecting to Ethernet

This section contains infor mation on setting up your board on an Ethernet so that you can down-
load programs from a host machine to the target board using a high-speed Ethernet link.

5.1. Configuring the Board

PMON uses several environment var iables to control its access to Ethernet. Some of these
must be set to fit in with your local networ k, and you may need to ask your networ k manager.

See the set and eset commands, on pages 61 and 40 respectively, for details of how to set
and change environment var iables. After you change any networ k related var iables you must
then reset the board before they will have any effect.

Minimum setup

The essential var iables that will have to be set before you can perfor m any networ k communica-
tion are:

• ethaddr defines the board’s Ether net address, uniquely assigned to the board when it was
made. This var iable is configured at the factor y and will only need to be reset if the NVRAM
contents have got lost.

For Algor ithmics’ boards the ethernet number always takes the for m
‘‘00:40:bc:xx:yy:zz’’; ‘‘00:40:bc’’ is Algor ithmics’ allocated Ethernet block, and
‘‘xx:yy:zz’’ should be written on a label found on or near the ethernet controller logic. Eth-
er net addresses are allocated based on the board model and serial number, and in despera-
tion can be confirmed from Algorithmics.

• netaddr holds the board’s Inter net address. This address will be allocated to you by your
networ k manager. It should be in the standard dot-notation for m, e.g. ‘‘a.b.c.d’’, where
‘‘a’’, ‘‘b’’, etc. are decimal numbers between 1 and 254, inclusive.

Most networ ks will use class C addressing, which means that the first three fields of the Internet
address identify the networ k, and leaves only the last field for allocation to individual host IDs
(i.e. a maximum of 254 hosts IDs). By default PMON wor ks out what class of networ k address-
ing to use based on the value of netaddr, but occasionally you will come across a networ k
setup which breaks the standard number ing rules, and you will need to force PMON to allow two
or three fields for the host IDs. In this case you also have to set the netmask and broadcast

variables. If these are required, then they should be specified in the standard dot-notation, as
used for netaddr above .

The following would be valid on Algorithmics’ networ k (though the setting of netmask and
broadcast is redundant):

PMON> set ethaddr 00:40:bc:00:21:08
PMON> set netaddr 193.117.190.224
PMON> set netmask 255.255.255.0
PMON> set broadcast 193.117.190.255

Using a Name Server

If your local networ k is equipped with a (‘‘DNS’’) name server, then PMON can use it. This
allows you to enter the names of networ k systems, rather than the networ k number. To config-
ure the board for DNS, follow these steps:

1) Set nameserver to the Internet (numer ic) address of the host on which the name server
runs.

PMON Manual 5.1. Configur ing the Board 17

2) The hostname variable should be set to the fully qualified hostname of this board, as allo-
cated by your networ k manager. This means it must include the full domain name (e.g.
‘‘p4000.hwnet.xyzinc.com’’).

From now on, you can use symbolic names wherever a command requires an Internet address.
Algor ithmics’ TFTP server (for loading software) is called ‘‘temple’’, so we can say:

PMON> boot temple:/usr/pmon/test

If you do not have a name server, then you must specify Internet addresses numer ically (e.g.
‘‘193.117.190.222’’). But you can always store commonly used addresses in environment var i-
ables, e.g.:

PMON> set temple 193.117.190.220
PMON> boot $temple:/usr/pmon/test

Selecting the Default Gateway

In a large organisation, your target board and your host development system may be on different
subnets. In such cases there should an internet gateway which forwards packets between the
subnets. To allow communication with other subnets, set the gateway variable to the internet
name or address of the relevant gateway on the board’s local subnet. PMON does not keep
proper routing tables, but at least it will now send to that gateway any packets whose internet
address does not match its own subnet.

Testing the Connection

At each stage of configuring the connection use the ping command, described on page 54, to
test your current setup. Attempt to ping machines on your local subnet (using their numer ic
address); ping the name server; ping the gateway, and finally the remote machine(s) from which
you intend to load your software.

5.2. Configuring the TFTP Server

PMON downloads and uploads by acting as a client in the TFTP (Trivial File Transfer Protocol);
see the boot, load and dump for details. TFTP requires only the simple, connection-less UDP
‘‘transpor t’’ protocol. You need to make sure that there is a TFTP server up and running on your
chosen host system.

Note that most systems already have some other mechanism (such as NFS) for sharing files; so
the host system from which you download may not actually be the host where the files physically
reside. You don’t have to worr y about that.

UNIX Workstation

Setting up the TFTP server on a Unix wor kstation is a job for the local system manager. The
use of TFTP does not require an account or password on the remote system. Due to the lack of
authentication infor mation, the server will allow only publicly readable files to be accessed. Files
may be written only if they already exist and are publicly writable. Note that this extends the
concept of ‘‘public’’ to include all users on all hosts that can be reached through the networ k; this
may not be appropriate on all systems, and its implications should be considered before
enabling TFTP service. The server should have the user ID with the lowest possible privilege.

The TFTP server, tftpd(8), is normally started by the inetd(8) program. In many implementa-
tions, access to files may be restr icted by invoking tftpd with a list of directories by including
pathnames as server program arguments in /etc/inetd.conf. In this case access is

PMON Manual 5.2. Configur ing the TFTP Server 18

restr icted to files whose names are prefixed by the one of the given directories.

Because tftpd can be a security problem, systems are often shipped with it disabled by default.
You’ll often find the appropriate line commented out in /etc/inetd.conf. Rely on your Unix
Networ k Guide for full details of tftpd(8) and inetd.conf(4).

DOS/Windows PC

DOS and Windows PCs provide a number of TCP/IP networ king solutions. There are a number
of commercial products: SunSoft’s PC-NFS, FTP Software’s PC/TCP, and many others. Alter na-
tively there are ‘‘shareware’’ products such as Peter Tattam’s TCP/IP for DOS and Windows (the
author’s email address is peter@psychnet.psychol.utas.edu.au).

The essential requirement for use with PMON is, of course, that the product includes a TFTP
ser ver. In most cases (under DOS, if not Windows) the TFTP server will not run as background
task. You’ll probably have to star t it manually every time that you want to download or upload
over the networ k. For example, using PC/TCP (and assuming the PC’s Inter net address is
193.117.189.8) would require a sequence of commands something like this:

DOS C:\SDE\EXAMPLES\EX4> make ex4ram Build example program
DOS C:\SDE\EXAMPLES\EX4> tftp serve Star t the TFTP server
PMON> boot 193.117.189.8:ex4ram Load the program onto the board
PMON> g Star t the program
q (on the PC) Terminate the TFTP server

5.3. Downloading Files via Ethernet

In summary, to download and run a program via Ethernet, perfor m the following steps:

1. Setup your board and your host’s TFTP server, as descr ibed ear lier in this chapter.

2a. Use the boot command to load your program. If your networ k has a DNS name server,
then you can specify the host name symbolically:

PMON> boot myhost:/usr/local/sde/examples/ex4/ex4ram

2b. If your networ k does not have a DNS name server, then you must specify the host numer i-
cally. To save having to remember it, you can store it in the bootaddr environment var i-
able:

PMON> set bootaddr 193.117.190.21
PMON> boot /usr/local/sde/examples/ex4/ex4ram

2b. If you are repeatedly loading the same program, then you can store its name in the boot-

file environment var iable:

PMON> set bootaddr 193.117.190.21
PMON> set bootfile /usr/local/sde/examples/ex4/ex4ram
PMON> boot

3. Run the downloaded program.

PMON> g

PMON Manual 5.3. Downloading Files via Ethernet 19

6. Monitor Command Summary

This section summarizes all the commands supported by the PROM Monitor. Table 6.1 summa-
rizes all PROM Monitor commands available on the P−4000i. Table 6.1 uses the following con-
ventions:

• The caret symbol (‘‘ˆ’’) indicates that the control key should be held while pressing the other
keys in the command. For example, ‘‘ˆP’’ means hold the control key down and press the ‘‘P’’
key.

• Optional arguments are enclosed in square brackets. The square brackets are not part of the
command.

• Arguments take spaces as delimiters.

For more infor mation, see the Alphabetic Command Listing in Section 6.

Command Function and Options Descr iption and Comments
b [-rw] [adr] [-s str]... Set breakpoint(s) Lists breakpoints if specified with no options. Up to 32

software breakpoints and a hardware break point are
suppor ted.

[-r] Hardware breakpoint for data read only.
[-w] Hardware breakpoint for data write only.
[-s str] Executes the command string when the breakpoint is

reached.
[adr] Address for breakpoint.

Networ k bootstrapboot [-bensy] [[host:]file] Loads an executable object file over Ether net using TFTP
[-b] Suppress breakpoint deletion.
[-e] Do not clear exception handlers.
[-n] Do not load symbols.
[-s] Do not clear symbol table.
[-y] Only load the symbol table.

The internet hostname and filename.[[host:]file]

bt [-v] [cnt] Stack backtrace Displays a function call stack backtrace.
[-v] Include stack frame address and size.
[cnt] Number of lines to display.

c [bptadr] Continue execution Continues from current address after updating shadow
registers.

[bptadr] A single temporar y breakpoint.

call adr [val|-s str]... Call a function Continues like the c command but does not update shadow
registers.

adr Function starting address.
[val] Value to pass to function.
[-s str] Str ing to pass to function.

copy from to siz Copy memor y Copies from base up when copying to lower address and
vice versa.

from Start address for source.
to Start address for destination.
siz Number of bytes to copy.

PMON Manual 6. Monitor Command Summary 20

Command Function and Options Descr iption and Comments
Displayd [-b|h|w|s] adr [cnt|-rreg] datasz sets default word size. moresz sets default screen

length.
[-b] Display bytes.
[-h] Display 16-bit words.
[-w] Display 32-bit words.
[-d] Display 64-bit words.
[-s] Display as a null terminated string.
adr Base address for display.
[cnt] Number of lines to display.
[-rreg] Display as register reg.

date Display date and time
[yymmddhhmm.ss] Sets new date and time.

db [numb|*] ... Delete breakpoint(s) Lists all breakpoints if no option specified.
[numb] Breakpoint number(s) to delete.
[*] Delete all breakpoints.

debug [-svV] [-- args] Enter remote debug mode Displays in terse mode by default.
[-s] Do not set client stack pointer.
[-v] Report protocol errors.
[-V] Set verbose mode.
[-- args] Pass remaining args to client.

dump adr siz [por t] Dump memory to host Memory is dumped to hostport.
adr Dump from base address adr.
siz Dump a total of siz bytes.
[por t] Send to this device or file.

eset name Edit var iable Displays the named var iable and allows it to be edited (see
sh command for editing details).

name] Select var iable named name.

fill from to {val|-s str}... Fill memor y Fills memory block with numer ic or string value. Note that
from must be lower than to.

from Fill from base address from.
to Fill to end address to.
[val] Fill with hexadecimal byte val.
[-s str] Fill with ASCII string str. Enclose multiple words in double

quotes.

flush [-di] Flush caches Flushes both caches by default.
[-d] Flush data cache only.
[-i] Flush instr uction cache only.

Go (start execution)g [-s] [-b bptadr]
[-e adr] [-- args]

Star ts at EPC address and sets stack pointer to beginning
of stack by default.

[-e adr] Star t at address adr.
[-b bptadr] Set temporar y breakpoint at address bptadr.
[-s] Do not set client stack pointer.
[-- args] Pass remaining args arguments to client.

h [*|cmd...] Help Lists all available commands by default.
[*] List all help.
[cmd] Help on command cmd.

hi [cnt] Histor y display Display last 200 commands.
[cnt] Display last cnt commands.

PMON Manual 6. Monitor Command Summary 21

Command Function and Options Descr iption and Comments
l [-bct] [adr [cnt]] List (disassemble) Disassembles from EPC address and pipes output to more

command by default.
[-b] List only branches.
[-c] List only calls.
[-t] List trace buffer.
adr Star t disassembly from address adr.
cnt Disassemble cnt lines.

Load memory from host Uses current baud rate by default.
[-a] Do not add offset to symbols.

load [-abeist] [-c cmdstr]
[-o offset] [-u baud] [por t]

[-b] Suppress breakpoint deletion.
[-c cmdstr] Send cmdstr to host.
[-e] Do not clear exception handlers.
[-i] Ignore checksum errors.
[-o offset] Load at offset offset.
[-s] Do not clear symbol table.
[-t] Load at top of memory.
[-u baud] Set baud rate for transfer.
[por t] Read from this device or file.

ls [-ln] [sym|-[va] adr] List symbols Lists all symbols in descending address order without
showing addresses by default.

[-l] Show long listing with addresses or offsets.
[-n] List in numer ic order.
[sym] Show symbols matching sym patter n filter. Wildcards * and

? suppor ted.
[-v] Compute symbol values.
[-a] Show next low est address in symbolic for m.
[adr] Show symbols from address adr.

m [adr [hexval|-s str]...] Modify memor y Enters interactive mode by default, displaying current
address and value.

adr Modify address adr without entering interactive mode.
hexval Set current address to hexval and move forward one byte.
-s str Copy str ing str to current address.
<CR> In interactive mode, move forward one byte with no other

change.
= In interactive mode, read current address again.
ˆ|- In interactive mode, move back one byte.
. Exit interactive mode.

more Paginate to screen (Embedded command) scroll MORESZ lines. Setting
MORESZ to zero disables automatic scroll pauses.

/str Search for string str.
n Repeat last search.
<SPACE> Show next page.
<CR> Show next line.
ˆs|ˆq Pause scrolling.
q|ˆc Quit.

mt [-c] [[addr] size] Memor y test Tests all memory by default.
[-c] Tests continuously.
[addr] Use address addr as base address.
[size] Perfor m test on size bytes.

off off command Switch off power supply on soft-switchable boards. Not
implemented otherwise.

PMON Manual 6. Monitor Command Summary 22

Command Function and Options Descr iption and Comments
Test net connection Bounce ethernet packets back and for th between the board

and another host.
[-l preload]

ping [-nqv] [-l preload]
[-s size] host

Send the first preload packets fast, then revert to nor mal.
[-n] Numeric − display addresses numer ically.
[-q] Quiet − nothing is displayed except summary.
[-s size] Use packets of size bytes (default=56).
[-v] Verbose − display all ICMP messages, not just echo replies.
host Inter net host address to send packets to.

r [reg|* [val|field val]] Display or set register Lists general-pur pose registers by default.
* Display all except floating-point registers.
f* Display all floating-point registers.
reg val Set specified register reg to value val.
reg field val Set specified field field in register reg to value val.

reboot simulate reset Jump to the MIPS start location 0xBFC0.0000, which is
likely to restart PMON. But it won’t do a complete hardware
reset.

search from to {val|-s str}... Search memor y To search for a multiple-word string, enclose the string in
double quotation marks.

from Star t search from address from.
to Stop search at address to.
val Search for value val.
-s str Search for string str.

set [name [value]] Display or set var iable Lists all current var iables by default. Entering a var iable by
itself displays the var iable value.

[name] Select var iable named name.
[value] Set var iable to value value.

PMON Manual 6. Monitor Command Summary 23

Command Function and Options Descr iption and Comments
sh Command shell (Embedded command) process command prompt using

ASCII character input and special characters listed below.
INBASE sets the default numer ic base for the shell. Setting
INALPHA to ‘‘hex’’ makes the Monitor process the input as
a hexadecimal number if possible. The PROMPT var iable
defines the command prompt string, with the metacharacter
‘‘!’’ replaced by the current history number. When RPTCMD
is set to ‘‘on’’, the previous command is repeated when the
user enters a blank line. When RPTCMD is set to ‘‘trace’’,
only trace commands are repeated.

ˆC Abort execution of current command.
ˆS Pause output stream.
ˆQ Restart output stream after pause.
ˆP Recall previous command.
ˆN Recall next command.
ˆF Move cursor right.
ˆB Move cursor left.
ˆA Move cursor far left.
ˆE Move cursor far right.
ˆD Delete character at cursor.
ˆH Delete character before cursor.
ˆK Delete whole line to right of cursor
; Treat input after semicolon as a new command.
!! Repeat last command.
!str Recall and execute the last command that commenced with

str ing str.
!num Recall and execute command num.
+ - / () Execute algebraic operator.
ˆaddr Substitute contents of address for address addr.
@name Substitute contents of register for named register.
&name Substitute value of symbol for symbol name.
$name Substitute value of environment var iable name.
0xnum Treat num as hexadecimal number.
0onum Treat num as octal number.

Set terminal options Displays the terminal type and baud rate by default.
[device] Use either "tty0" or "tty1" (tty0 is default).
[-v] List possible baud rates and terminal types.

stty [device] [-va] [baud]
[sane] [ter m]
[ixany|-ixany] [ixoff|-ixoff]

[-a] List all settings.
[baud] Set baud rate.
[sane] Set sane settings.
[ter m] Set terminal type.
[ixany] Allow any char to restart output.
[-ixany] Allow only START to restar t output.
[ixoff] Enable tandem mode.
[-ixoff] Disable tandem mode.

sym name value Define symbol Defines symbol value. Note that you can display symbols
with the ls command.

name Change value for symbol name.
value Change symbol to value value.

PMON Manual 6. Monitor Command Summary 24

Command Function and Options Descr iption and Comments
Tr ace (single step) Execute command addressed by EPC by default.
[-v] List each step (verbose).
[-b] Capture only branches.

t [-vbci] [-m adr val]
[-M adr val] [-r reg val]
[-R reg val] [cnt]

[-c] Capture only calls (jal instructions).
[-i] Stop on invalid program counter.
[-m adr val] Stop when memory at address adr is equal to value val.
[-M adr val] Stop when memory address adr is not equal to value val.
[-r reg val] Stop when register reg is equal to value val.
[-R reg val] Stop when register reg is not equal to value val.
[cnt] Trace cnt instr uctions.

tlb [entry] display TLB Show the contents of the ‘‘TLB’’, the memory management
unit which stores translations for MIPS program addresses
in the ‘‘mapped’’ regions. The display for mat depends on
the CPU type.

With no entry number, it will display all entries (typically 32
to 64 of them).

Tr ace (step over)to [-vbci] [-m adr val]
[-M adr val] [-r reg val]
[-R reg val] [cnt]

Identical to the t command, except individual procedures
are treated as a single step.

tr Transparent mode Copies keyboard characters to hostport, and copies
characters from hostport to screen. Var iable trabort sets
the termination character.

unset name ... Delete variable(s) Makes all matching var iables disappear.
name Variable name to delete. Wildcards * and ? supported.

Table 6.1: PROM Monitor Command Summary

PMON Manual 6. Monitor Command Summary 25

7. Alphabetic Command Listing

This section contains an alphabetic listing of the commands supported by PMON. Each com-
mand description starts at the top of a new page. The name of the described command is in
bold type in the top left hand corner of the first page. Each command description contains the
following three sections:

• Command Summary − A single-sentence summary of the command function accompanies
each description at the top of the first page, next to the command name.

• Format − A for mat descr iption follows the single-sentence summary, with a brief description
of each parameter and argument supported by the command. At the end of the for mat
descr iption, default values for optional var iables are described where applicable.

• Functional Description − A complete description of the command function follows the for mat,
with examples where appropriate. Related commands are listed at the end of the functional
descr iption where applicable.

Some command descriptions contain a final section that describes a var iable specific to the
command.

PMON Manual 7. Alphabetic Command Listing 26

b The b command sets and displays breakpoints.

Format The for mat for this command is:

b [-r|w] adr...

b adr -s str

b [adr...]

where:

-r set a hardware breakpoint which will trigger on reads.

-w set a hardware breakpoint which will trigger on writes.

-s str executes the command string when the breakpoint is hit.

adr specifies an address for the breakpoint. Up to 32 software
breakpoints addresses can be set, and one hardware breakpoint
(on R4000, R4200, and R4400 processors only).

Invoking the b command with no options causes the Monitor to print a list of
the current breakpoints. If neither the -r nor -w option is specified, then a soft-
ware breakpoint is set.

Functional

Description

The b command sets a hardware or software breakpoint at the specified
address or addresses. Multiple addresses may be specified. Specified
addresses must be word-aligned. For software breakpoints, the specified
addresses must be in RAM.

The Monitor automatically assigns a number to each breakpoint. The Monitor
allocates the lowest available breakpoint number from 0 to 31 to any new
breakpoint.

The Monitor reports a new breakpoint’s number immediately after the break-
point is declared (see the examples at the end of this subsection for illustra-
tion of this). The assigned numbers can be used in the db (Delete Break-
point) command.

If neither the -r nor the -w options are specified, software breakpoints are set
by default. The Monitor implements software breakpoints by replacing the
instr uction at the specified address with a break instr uction. Execution is then
halted when the break instruction is executed.

The brkcmd Vari-

able

When a breakpoint is reached, the command list specified in the environment
variable brkcmd is executed. The default setting for brkcmd is ‘‘l @epc 1’’

The first two words, ‘‘l @epc’’, specify that a breakpoint will occur at the
address in the EPC register. The final ‘‘1’’ specifies that the Monitor will list
one line when the breakpoint is reached. See the l command on page 46.

You can change the breakpoint command var iable with the set command.
For example, you can include additional monitor commands in the brkcmd

variable. You should separate additional commands on the command line
with a semicolon. For example, enter ing the following command lists one line
after reaching a breakpoint, and then displays all the register values.

PMON Manual 7. Alphabetic Command Listing 27

PMON> set brkcmd "l @epc 1;r *"

By default, breakpoints are cleared when the load or boot commands are
executed. See pages 29 and 47 for details on how to overr ide automatic
breakpoint clearing.

Some examples illustrating the use of the b command follow.

PMON> b a002000c Set a software breakpoint at 0xA002.000C.
Bpt 0 = a002000c

PMON> b Display all breakpoints.
Bpt 0 = a002000c

PMON> b -r a0020020 Set a hardware breakpoint on data read.
Bpt 32 = a0020020

PMON> b Display all breakpoints.
Bpt 0 = a002000c

Bpt 32 = a0020020

See also the db, set, load and boot commands for more infor mation on
breakpoints.

PMON Manual 7. Alphabetic Command Listing 28

boot The boot command loads binary object files over Ether net.

Format The for mat for this command is:

boot [-bensy] [host:[path]]

where:

-b suppresses deletion of all breakpoints before the download.

-e suppresses clearing of the exception handlers.

-n suppresses the loading of symbols from the file.

-s suppresses clearing of the symbol table before the download.

-y loads only the symbols from the file.

host is the internet host from which to read the file.

path is the file name to be loaded from the host.

Invoking the boot command with no parameters or arguments clears the
symbol table, deletes all current breakpoints, and attempts to load the pro-
gram found in the host and file specified by the bootaddr and bootfile

environment var iables.

Functional

Description

The boot command uses the TFTP (Trivial File Transfer Protocol) to load an
executable binary file from a remote host over Ether net. It can read files in
ELF for mat (as used in Algorithmics’ SDE−MIPS, new er SGI compilers, and
systems compliant with the MIPS/ABI standard), and also the older MIPS
ECOFF for mat. PMON extracts any symbol table infor mation from these
files, and adds it to the target symbol table.

The boot command normally clears the symbol table, exception handlers,
and all breakpoints. The -s and -b options suppress the clearing of the sym-
bol table and breakpoints, respectively. The value of the EPC register is set
automatically to the entry point of the program. Therefore, to execute the
downloaded program, only the g command is required.

The boot command may retur n a large number of different error messages,
relating to networ k problems or file access permissions on the remote host.
For a file to be loaded via TFTP it must be publicly readable, and it may have
to be in a directory which is acceptable to the remote server. See page 18 for
more infor mation about setting up and using TFTP.

When reading the symbol table PMON may complain that it does not have
enough room to store the program’s symbols. To increase the size of the
heap, use the set heaptop command to reserve more space and, if neces-
sar y, relink your program with a higher base address. The boot command
will also detect cases where the program being loaded would overwr ite
PMON’s crucial data or heap: again relinking your program at a different
address will cure the problem.

Whilst it is loading each section of the file, boot displays the memory
address (in hex) and size (in decimal) of that section. Typically these sec-
tions will be in the order .text, .data and .bss.

PMON Manual 7. Alphabetic Command Listing 29

bt The bt command displays a function call backtrace.

Format The for mat for this command is:

bt [-v] [cnt]

where:

-v specifies that each function’s stackframe base address and size
should be displayed.

cnt specifies the number of lines to be displayed.

When invoking this command with no options, the backtrace displays the
names and up to four arguments for each level of stackframe.

Functional

Description

The bt command displays a list of function calls, star ting with the function in
which the EPC register currently lies, and finishing when a return address
becomes ‘‘invalid’’. An address is deemed invalid if it does not lie within one
of the ranges specified by the validpc environment var iable.

Each line of output gives the current position in a function, and up to four of
its arguments. The arguments can only be retrieved if they are saved within
the function prologue, and this is unlikely to be the case for assembler func-
tions and optimised C code. If you want to be able to see the arguments to C
functions, then compile your program with optimisation disabled.

If the -v option is given, then the command additionally displays the stack-
frame base address and size for each function. It will also indicate the
amount of dynamic stack space allocated using C’s alloca function, or
equivalent.

The output of this command is passed to the more command, letting the user
view one screenful of output at a time. Optionally, the user can specify cnt,
which limits the number of lines to that number. An example illustrating the
use of the bt command follows.

PMON> c write+10
write+0x0010 3c09a07f lui t1,0xa07f

PMON> bt
write+0x0010 (0x00000001,0xa0030300,0x0000001c)

flsbuf+0x0234 (0xa0030300,0xa0029030)

printf+0x045c (0xa0025490,0xa0020000,0x000000001,0x00000010)

main+0x0138 (0x00000001,0xa07ffffe0)

_start+0x0040 ()

See also the more command on page 52.

PMON Manual 7. Alphabetic Command Listing 30

c The c command makes program execution continue after a breakpoint has
stopped program execution.

Format The for mat for this command is:

c [bptadr]

where:

bptadr specifies a single breakpoint. The breakpoint is removed when
execution halts at this specified address.

Invoking the c command with no arguments causes the program execution to
continue from the address specified in the EPC register.

Functional

Description

When the user enters the c command, program execution starts at the
address pointed to by the EPC register’s current value. Use the g command
to start program execution from an address specified on the command line.

As an option, a single temporar y breakpoint may be specified. The temporar y
breakpoint is removed when execution halts. The temporar y breakpoint is
removed if another breakpoint stops program execution first.

An example of the c command follows.

PMON> c a0020104 Continue execution until 0xA002.0104.

PMON Manual 7. Alphabetic Command Listing 31

call The call command executes a function.

Format The for mat of the call command is:

call adr [val|-s str]

where:

adr is the starting address of a function.

val is the value to pass to the function.

-s str is the string to pass to the function.

Functional

Description

The call command executes the function whose address was specified as
the first argument. Up to four optional arguments, if specified, are passed to
the function in registers a0 to a3.

The call command is similar to the c (continue) command, except the call

command does not update the shadow registers with new values after the
function is completed.

An example of the call function follows. In this example, the call command
executes the function at 0x8002.0304, passing the single argument
0x8002.236C (converted into binary) to the function via register a0.

PMON> call 80020304 8002236c

PMON Manual 7. Alphabetic Command Listing 32

copy The copy command copies a specified number of bytes from one location in
memor y to another.

Format The for mat of the copy command is:

copy from to siz

where:

from declares the source address location.

to declares the target address location.

siz is the size of the block of memor y to be moved. This quantity is
specified in bytes.

If to is less than from, then copying is perfor med in ascending order starting
at from. If from is less than to, then copying is perfor med in descending order
star ting at from+siz.

Functional

Description

The copy command replicates a specified number of bytes from one place in
memor y to another.

When moving a data block down, the source data is copied from the bottom
of the block upwards: and when moving a data block up, the source data is
copied from the top of the block downwards. By this technique, there is no
risk of copying over data in overlapping block move operations; as the data in
the overlapping area is copied first.

The following example shows how to copy a block of memor y, 4 Kbytes in
size, with a base address of 0x8002.0000, to another 4-Kbyte area starting at
the address 0x8006.0000.

PMON> copy 80020000 80060000 4000

PMON Manual 7. Alphabetic Command Listing 33

d The d command displays memory contents in hex or ASCII for mat.

Format The for mat for this command is:

d [-b|h|w|s] adr [cnt|-rreg]

where:

-b displays the memory contents in groups of 8-bit bytes.

-h displays the memory contents in 16-bit half-word groups.

-w displays the memory contents in 32-bit word groups.

-d displays the memory contents in 64-bit double-word groups.

-s displays the memory contents as a null terminated string.

adr specifies the base address from which data is displayed.

cnt specifies the number of lines to be displayed.

-rreg displays the contents of memory as register reg.

Functional

Description

The d command displays memory, star ting at the specified address, in hex-
adecimal or ASCII for mat. A -b, -h, -w, or -s option, if specified, sets how the
data is displayed. See the examples at the end of this section for illustration
of the possible display for mats. The output of this command is passed to the
more command, letting the user view one screenful of output at a time.
Optionally, the user can specify cnt, which limits the number of lines to that
number.

The datasz Vari-

able

If invoked without a -b, -h, -w, -d or -s option, the datasz variable sets the
display for mat. Setting datasz to ‘‘-b’’, ‘‘-h’’, ‘‘-w’’ or ‘‘-d’’ has the same effect
as the command line options of the same names described in this section.
The datasz variable does not effect any other command displays.

The following example displays memory star ting at 0x001.0000.

PMON> d a0010000
a0010000 bf c0 2b 00 bf c0 2b 00 bf c0 2b 00 bf c0 2b 3c ..+...+...+...+<

a0010010 bf c0 2b 3c bf c0 2b 3c bf c0 2b 20 bf c0 2b 20 ..+<..+<..+...+.

a0010020 bf c0 2b 20 bf c0 2b a8 bf c0 2b 78 bf c0 2b 60 ..+...+...+x..+‘

a0010030 bf c0 2b 48 bf c0 2b a8 bf c0 2b a8 bf c0 2b a8 ..+H..+...+...+.

a0010040 bf c0 2b 78 bf c0 2b 60 bf c0 2b 48 bf c0 2e 78 ..+x..+‘..+H...x

a0010050 bf c0 2f 08 bf c0 2e c4 bf c0 2e 80 bf c0 2f 90 ../.........../.

a0010060 bf c0 2f 90 bf c0 2f 90 bf c0 2e 78 bf c0 2e 78 ../.../....x...x

a0010070 bf c0 2e 78 00 00 00 00 00 00 00 00 00 00 00 00 ...x............

See also the more command on page 52.

PMON Manual 7. Alphabetic Command Listing 34

date The date command displays or sets the date and time.

Format The for mat of the date command is:

date [yymmddHHMM.SS]

where:

yymmddHHMM.SS

is the new date and time.

Functional

Description

The date command with no arguments displays the current date and time as
stored in the board’s batter y-backed clock/calendar device. If an argument is
given, then this sets the current date and time.

The optional argument is a string of pairs of digits, with the following mean-
ing:

yy year (modulo 100)

mm month (Januar y = 1)

dd day of month

HH hour (24 hour clock)

MM minute

.SS seconds

When setting the date and time, you only need to enter as much as needs
changing, starting with the minutes, then hours, then day, etc. Any value
which is omitted is unchanged, except for seconds, which will be set to zero if
omitted.

Some examples of the date command follow.

PMON> date Display current time
Wed Feb 23 13:29:33 1994

PMON> date 32 Change minutes
Wed Feb 23 13:32:00 1994

PMON> date 1405 Change hours and minutes
Wed Feb 23 14:05:00 1994

PMON> date 9402241103 New date and time
Thu Feb 24 11:03:00 1994

PMON Manual 7. Alphabetic Command Listing 35

db The db command deletes the specified breakpoints.

Format The for mat for this command is:

db [numb|*]

where:

numb is the breakpoint number to be deleted.

* deletes all breakpoints.

Enter ing db without any parameters lists all existing breakpoints. Enter ing an
aster isk (‘‘*’’) instead of a breakpoint number deletes all the existing break-
points.

Functional

Description

The db command deletes one or more specified breakpoints.

Examples illustrating the use of the db command follow.

PMON> db 3 Delete breakpoint 3.
PMON> db 4 6 Delete breakpoints 4 and 6.
PMON> db Display all breakpoints.
Bpt 0 = a002000c

PMON> db * Delete all breakpoints.

PMON Manual 7. Alphabetic Command Listing 36

debug The debug command initiates the Monitor’s remote debug mode.

Format The for mat for this command is:

debug [-svV] [-- args]

where:

-s does not set client stack pointer.

-v shows communication errors.

-V sets the verbose option.

-- args indicates that the remaining argument or arguments args are to
be passed to the client program. If the first argument does not
star t with a ‘‘-’’, then the ‘‘--’’ separator can be omitted.

Functional

Description

The debug command causes the Monitor to enter remote debugging mode.
The -V option selects verbose mode. In verbose mode, each of the messages
sent to and received from the remote debugger are displayed on the terminal
screen. It is not possible to leave verbose mode without leaving remote
debug mode and restarting it without the -V option. By default, the Monitor
does not display any messages.

See the g command on page 43 for a detailed explanation of the optional
args list.

Examples illustrating the use of the debug command with the gdb remote
debugger follow.

PMON> set hostport tty1 Specify protocol and port for download.
PMON> set dlproto EtxAck
PMON> set dlecho off
PMON> load Prepare for download.
% edown -d /dev/ttyb test1.lsi Star t the download.
% gdb-sde test1 Invoke gdb.
(gdb) target dbgmon /dev/ttyb Wait for connection from target.
PMON> debug Star t communication with gdb.
(gdb) break main Optionally set breakpoint at main.
(gdb) cont Prepare for execution.

See also the set command for the setup of the environment var iables.

PMON Manual 7. Alphabetic Command Listing 37

dump The dump command uploads data to the host.

Format The for mat for this command is:

dump [-B] adr siz [port]

where:

-B selects binary mode for networ k upload.

adr is the base address of the data to be uploaded.

siz is the number of bytes to be uploaded.

por t is the name of the device or remote filename to send the data to.

Functional

Description

The dump command uploads S-records to the host. All uploaded S-records
except the terminating S-record are S3-records. The terminating S-record is
an S7-record.

By default, if por t is not specified, then dump sends uploads to the device
specified in the hostport variable.

On a networ ked board you can upload to a remote file using TFTP, by speci-
fying por t as ‘‘host:filename’’. When used in this way the -B option will
cause dump to write a raw binar y file, instead of S-records. Note that the
TFTP protocol requires that the destination file must already exist, and be
publicly writable. See page 18 for more infor mation about setting up and
using TFTP.

The uleof and

ulcr Variables

After the dump is completed, the string specified in uleof will be transmitted.
The default value for uleof is ‘‘%’’.

If the var iable ulcr is set to ‘‘cr’’, then the lines will be terminated by a car-
riage return (‘\r’) character ;

If ulcr is set to ‘‘lf’’, then the lines will be terminated by a linefeed (‘\n’)
character ;

If ulcr is set to ‘‘crlf’’, then the lines will be terminated by a carr iage retur n
and a linefeed character

The default value for ulcr is ‘‘cr’’.

The following example of the dump command uploads 128 bytes starting at
0x9FC0.0000 in S-record for mat to the serial port named in the hostport

variable.

PMON Manual 7. Alphabetic Command Listing 38

PMON> dump 9FC00000 80
S3159FC002403C09A07F3C08003C3529FF203508C62FB6

S3159FC00250AD2800003C09A07F3529FF102408002542

S3159FC00260AD2800003C02004040826000408068008C

S3159FC002703C1D800127BD8B403C01A00003A1E82502

S3159FC002800FF005BC240400000FF005BC2404000138

S3159FC002903C0280003C03800124426AB024633C2018

S3159FC002A024420010AC40FFF00043082AAC40FFF444

S3159FC003308D28000025290004012A082A256B000460

S7030000FC

The following example uploads 256 bytes in binary for mat to a remote file
over Ethernet.

myhost % touch /tmp/upload
myhost % chmod a+rw /tmp/upload
PMON> dump -B 9FC00000 100 myhost:/tmp/upload

PMON Manual 7. Alphabetic Command Listing 39

eset The eset command edits environment var iables.

Format The for mat for this command is:

eset name...

where:

name is the name of the environment var iable to edit.

Functional

Description

The eset command is used to edit environment var iable values. For each
variable name given as an argument the eset command displays the var iable
name and its value. and then allows you to edit it using the same line-editing
facilities available in the sh command, as described on page 63. When you
press carriage-retur n, the new value is stored.

When using this command you should not place quotation marks around a
multiple-word value; otherwise the quotation marks will be stored with the
variable, which is probably not what you want.

See also the set and unset commands, on pages 61 and 72 respectively.

PMON Manual 7. Alphabetic Command Listing 40

fill The fill command writes a hexadecimal pattern or str ing to a block of
memor y.

Format The for mat for this command is:

fill from to {val|-s str}...

where:

from is the base address for the fill operation.

to is the end address for the fill operation.

val is the hexadecimal value of the byte that is written to the area to
be filled.

-s str specifies that the memory block should be filled with an ASCII
str ing rather than a particular value. Str ing str is the ASCII string
to be written to the memory block dur ing the fill operation if the -s

parameter is specified.

Functional

Description

The fill command fills an area of memory with a specified hexadecimal
patter n or repeating string. The pattern can be a single byte or multiple bytes.
For the fill command to wor k correctly, to must be greater than from. If the
-s option is specified, then the next parameter is interpreted as an ASCII
str ing. Multiple-word strings may be specified by enclosing them in quotes.

For example, to clear an area of memory from 0xA002.0000 to 0xA002.1000,
enter :

PMON> fill a0020000 a0021000 0

To fill an area of memory from 0xA002.0000 to 0xA002.1000 with the string of
values 0x41, 0x42, 0x43, 0x44, and 0x45, enter:

PMON> fill a0020000 a00210000 41 42 43 44 45

To fill an area of memory from 0xA002.0000 to 0xA002.1000 with the ASCII
str ing "hello world", enter :

PMON> fill a0020000 a0021000 -s "hello world"

PMON Manual 7. Alphabetic Command Listing 41

flush The flush command flushes the data and/or instruction cache.

Format The for mat for this command is:

flush [-di]

where:

-d flushes the data cache only.

-i flushes the instruction cache only.

Enter ing flush without any parameters flushes both caches.

Functional

Description
The flush command flushes the data and/or instruction cache. On an
R4x00 processor, flushing the instruction cache requires only that it be invali-
dated, whilst flushing the data cache perfor ms both a write-back and invali-
date.

PMON Manual 7. Alphabetic Command Listing 42

g The g command starts program execution.

Format The for mat for this command is:

g [-s] [-b bptadr] [-e adr] [-- args...]

where:

-b bptadr is a breakpoint address where program execution is to be
stopped. This breakpoint is removed the next time that execution
halts.

-e adr is the address of the first instruction to be executed.

-s is a flag indicating that the stack pointer, sp, should not be set.

-- args indicates that the remaining argument or arguments args are to
be passed to the client program. If the first argument does not
star t with a ‘‘-’’, then the ‘‘--’’ separator can be omitted.

By default, the g command starts program execution at the address in the
EPC register, and sets the stack pointer, sp, to the top of the stack area.

Functional

Description

The g command starts program execution. If the user does not specify the
star ting address with -e, then execution starts at the current value of the EPC
register, otherwise it starts at adr.

If the -b option is specified, then a temporar y breakpoint is set at bptadr. The
temporar y breakpoint remains in effect only until the next time that program
execution is halted.

If the user specifies args, then the Monitor passes them to the client program
by the following method. It places the number of arguments (argc) in register
a0. It also places the address of an array of pointers to the command-argu-
ment strings (argv) in register a1. The first array entr y will point to the string
‘‘g’’ (this command). If you use start-up code which preserves registers a0
and a1, then function main will receive argc and argv so that it can read
options from the command line,

Examples illustrating the use of the g command follow.

PMON> g Star t executing at the current
value of the EPC register.

PMON> g -e a0020000 Star t executing at 0xA002.0000.
PMON> g -b a0020008 Star t executing at EPC

break at 0xA002.0008.
PMON> g -e a0020000 -b a0020008 Star t executing at 0xA002.0000

and break at 0xA002.0008.

PMON Manual 7. Alphabetic Command Listing 43

h The h command provides on-line help.

Format The for mat for this command is:

h [*|cmd...]

where:

* provides detailed help on all the commands.

cmd is a command. The Monitor then provides help on the stated
command.

If the command is executed without any parameters, then the Monitor lists all
the available commands.

Functional

Description
The

command provides on-line help. If issued without arguments, all commands
are listed. If issued with one or more command names as an option, it pro-
duces more detailed help on those commands.

The * option produces detailed help on all the commands, using the more

command to control output on the screen.

Examples illustrating the use of the h command follow.

PMON> h

h on-line help hi display command history

m modify memory r display/set register

d display memory l list (disassemble) memory

copy copy memory fill fill memory

search search memory tr transparent mode

g go execute c continue execution

t trace (single step) to trace (step over)

b set breakpoint(s) db delete breakpoint(s)

load load from hostport dump dump to hostport

set display/set variable stty set terminal options

sym define symbol ls list symbols

flush flush cache debug enter remote debug mode

mt memory test call call function

PMON> h stty

stty [tty] [-va] [baud] [sane] [term] set terminal options

PMON Manual 7. Alphabetic Command Listing 44

hi The hi command lists the command history.

Format The for mat for this command is:

hi [cnt]

where:

cnt is the number of commands to list.

Enter ing the command with no parameters lists the last 200 executed com-
mand lines to the screen.

Functional

Description

The hi command shows the command history, together with the history num-
ber for each command, in reverse order (the last command entered is listed
first; the first command entered is listed last). The command numbers are
reset to zero each time the system is reset.

Enter ing the hi command with no arguments lists the last 200 commands.
This option is useful for determining the history number for a particular com-
mand.

The user can page through the output of the hi command, one screen at a
time.

The optional cnt parameter selects a set number of lines to be output. The
histor y list is intentionally in the reverse order to that used in a C shell, so that
the latest entry is displayed first. If a command line is identical to the previous
command, it is not added to the command history.

Examples illustrating the use of the hi command follow.

PMON> hi 3 Display the three last commands.
14 hi 3

13 hi

12 l

PMON> hi Display the entire history, using more

13 hi to control the screen output.
12 l

11 to

10 t

9 l

8 g start main

7 hi

6 g

5 ls -a @epc

4 d Pmon+200+0t13*4

more... q

See also the sh command, which maintains a command history.

PMON Manual 7. Alphabetic Command Listing 45

l The l command disassembles instructions from memory.

Format The for mat for this command is:

l [-b|c|t] [adr [cnt]]

where:

-b lists only branches.

-c lists only calls.

-t lists the trace buffer.

adr is the base address from which to disassemble instructions.

cnt is the number of lines to disassemble.

When invoking this command with no options, disassembly starts at the
address in the EPC register and is output to the more command.

Functional

Description

The l command disassembles the memory contents, star ting either at the
EPC register’s current value or at the specified address. The output of this
command is passed to the more command, letting the user view one screen-
ful of disassembled output at a time. Optionally, the user can specify a count
value, which limits the number of disassembled lines to that number.

The regstyle Vari-

able

The regstyle environment var iable determines whether the Monitor dis-
plays hardware or software register names. Hardware register names are
simply $0 through $31. Software registers are defined by the MIPS software
conventions. Set regstyle to ‘‘hw’’ for hardware register names. Set
regstyle to ‘‘sw’’ for software register names.

Examples illustrating the use of the l command follow.

PMON> set regstyle sw Select s/w names
PMON> l 9fc00240 4 Disassemble 4 instructions
Pmon+0x240 3c020040 lui v0,0x40

Pmon+0x244 40826000 mtc0 v0,C0_SR

Pmon+0x248 3c048001 lui a0,0x8001

Pmon+0x248 8c850080 lw a1,128(a0)

PMON> set regstyle hw Select h/w names
PMON> l 9fc00240 4
Pmon+0x240 3c020040 lui $2,0x40

Pmon+0x244 40826000 mtc0 $2,$12

Pmon+0x248 3c048001 lui $4,0x8001

Pmon+0x248 8c850080 lw $5,128($4)

See also the more command on page 52.

PMON Manual 7. Alphabetic Command Listing 46

load The load command downloads programs and data from the host.

Format The for mat for this command is:

load [-abeist] [-c cmdstr] [-o offset] [-u baud] [port]

where:

-a suppresses addition of an offset to symbols.

-b suppresses deletion of all breakpoints before the download.

-c cmdstr sets a command string that the Monitor sends to the host to start
a download operation. Note that cmdstr must be enclosed in
quotation marks if it contains any spaces.

-e suppresses clearing of the exception handlers.

-i ignores checksum errors.

-o offset loads at the specified offset.

-s suppresses clearing of the symbol table before the download.

-t loads at the top of memory.

-u baud sets the baud rate for transfer.

por t is the device or remote file to download from.

Invoking the load command with no parameters or arguments clears the sym-
bol table, deletes all current breakpoints, allows the Monitor to receive pro-
grams or data from the host. via the device specified in the hostport vari-
able.

Functional

Description

The load command accepts programs and data from the host in LSI Logic’s
propr ietary FastLoad for mat, Motorola S-record. The user can set environ-
ment var iables to change the data port, the for mat, and the transfer protocol.

By default, if por t is not specified, then load reads downloads from the
device specified in the hostport variable.

On a networ ked board you can download from a remote S-record or Fast-
Load file using TFTP, by specifying por t as ‘‘host:filename’’. See page 18
for more infor mation about setting up and using TFTP.

The load command normally clears the symbol table, exception handlers,
and all breakpoints. The -s and -b options suppress the clearing of the sym-
bol table and breakpoints, respectively. The value of the EPC register is set
automatically to the entry point of the program. Therefore, to execute the
downloaded program, only the g command is required.

For RS232 download, the -c option permits a command string to be sent to
the host when the load command is issued. This is intended for use in con-
junction with the transparent mode. Note that if the command string contains
multiple words, the command must be enclosed in double quotation marks,
as shown in the example below.

The load command returns the error message ‘‘out of memory’’ if there is
insufficient space in the heap for the program’s global symbols. To increase

PMON Manual 7. Alphabetic Command Listing 47

the size of the heap, use the set heaptop command to reserve more space
in the heap and, if necessary, relink your program with a higher start address.

The dlecho,

dlproto, and host-

por t Variables

The dlecho, dlproto and hostport variables control operation of the
download. Table 7.1 shows how these environment var iables affect the oper-
ation of the load command.

See the section on downloading beginning on page 13 for more infor mation
on these var iables and the use of the load command.

Table 7.1: Setting
Variables for
Download Oper-
ation

Variable Action
dlecho off Do not echo the lines
dlecho on Echo the lines
dlecho lfeed Echo only a linefeed for each line
dlproto none Do not use a protocol
dlproto EtxAck Send Xon and Xoff to control the host
dlproto XonXoff Expect Etx as end of record, send Ack
hostpor t tty0 Select tty0 as the port to which the host is connected
hostpor t tty1 Select tty1 as the port to which the host is connected

Examples illustrating the use of the load command follow.

Tw o-Por t Mode

PMON> set hostport tty1
PMON> set dlecho off
PMON> set dlproto EtxAck
PMON> load Prepare for download.
% edown -d /dev/ttyb ex4ram.lsi Star t download on host.
Total = 0x00043C00 bytes

Single-Por t Mode

PMON> set hostport tty0
PMON> set dlecho off
PMON> set dlproto XonXoff
PMON> load -c "cat ex4ram.lsi" Send command ‘‘cat
Total = 0x00043C00 bytes ex4ram.lsi’’ to the host.

Networ k Mode

PMON> load myhost:ex4ram.lsi Star t networ k download
Total = 0x00043C00 bytes

See also the set command for the setup of the environment var iables.

PMON Manual 7. Alphabetic Command Listing 48

ls The ls command lists the current symbols in the symbol table.

Format The for mat for this command is:

ls [-ln] [sym|-v|-a adr]

where:

-l provides a long listing, showing the address value for each sym-
bol.

-n lists the symbols in ascending order of address.

sym is a pattern filter for the symbols to be shown. Both character
wildcards (‘‘?’’) and word wildcards (‘‘*’’) are permitted.

-v is the verbose option, showing the value in hexadecimal, deci-
mal, and octal.

-a shows the address in symbolic for m.

adr is the address for which a symbol or offset from a symbol is
sought.

Invoking the ls command without any options or parameters lists the sym-
bols in descending order of address without displaying the actual address for
each symbol.

Functional

Description

The ls command lists the symbols in the symbol table in alphabetical order.

The -l option produces a long listing, which includes the address value of
each symbol. The -n option causes the symbols to be listed in ascending
order of address. The -a adr option lists the symbol at the next lowest
address. The -v adr option prints the result in hex, decimal, and octal. The -v

option is useful for computing the value of an expression that may include
registers, symbols, and absolute values.

Examples illustrating the use of the ls command follow.

PMON> ls List symbols in alphabetic order.
flush_cache start

PMON> ls -l List symbols in alphabetic order with
9fc016f0 flush_cache addresses.
9fc00240 start

PMON> ls -ln List symbols and addresses in
9fc00240 start ascending order of address.
9fc016f0 flush_cache

PMON> ls s* List symbols starting with the letter ‘‘s’’.
start

PMON> ls -a 9fc00260 List symbol at the next lowest address.
9fc00240 start+0x20

PMON> ls -a @epc List symbol at the next lowest address
a0020020 = start+0x20 from EPC.
PMON> ls -v @t0+0t10*4 Display the value of the expression
0x800222e8 = 0t-2147343640 = 0o20000421350

PMON Manual 7. Alphabetic Command Listing 49

m The m command displays and modifies memory.

Format The for mat for this command is:

m [adr [hexval|-s str]...]

where:

adr is the memory address to display or modify without entering
interactive mode.

hexval is the value to insert at the specified address.

-s is a flag signifying that the following parameter is a string value.

str is a string value to copy to the specified address.

<CR> enters interactive mode.

= in interactive mode, reads current address again.

ˆ|- in interactive mode, moves back one word.

. exits interactive mode.

Enter ing no values with this command causes the command to operate in
interactive mode.

Functional

Description

This command can display and then modify memory locations interactively.
This command can also set memory to a specified value directly.

If invoked with one or more values following the address, the command is
executed immediately, without entering the interactive mode.

If the command is invoked without a value, the command enters the interac-
tive memor y mode. In interactive memor y mode, the user enters a command
at the cursor. The interactive memor y mode first displays the address and its
current value. Interactive memor y mode then lets the user select one of the
commands listed in Table 7.2.

Table 7.2: Inter-
active Memor y
Mode Com-
mands

Command Action
hex value Set memor y to hexadecimal value and then move forward one byte.
<CR> Move forward one byte.
= Stay at the same address and display the address again.
ˆ or - Move backwards one byte.
. Exit the m command.

If the -s option is specified, then the Monitor displays the memory contents as
an ASCII string. A multiple-word string may be specified by enclosing the
multiple-word string in quotation marks.

Examples illustrating the use of the m command follow.

PMON> m a0020000 Display memor y at address in
interactive mode.

a0020000 00 _ User can enter command at cursor (_).
PMON> m a0020000 1 2 3 4 Set address 0xA002.0000 to 1, address

0xA002.0001 to 2, etc., in noninteractive mode.

PMON Manual 7. Alphabetic Command Listing 50

PMON> m a0020000 Display memor y at 0xA002.0000.
a0020000 01 <CR>
a0020001 02 <CR>
a0020002 03 <CR>
a0020003 04 .
PMON> m a0020000 22 Set address 0xA002.0000 to 0x22.
PMON> m a0020000 Display memor y at 0xA002.0000.
a0020000 22 44
a0020001 00 <CR>
a0020002 00 55
a0020003 00 66
a0020004 00 ˆ
a0020003 66 <CR>
a0020004 00 .
PMON> m 80020000 -s even Set memory star ting at 0x8002.0000 to

the string ‘‘even’’.
PMON> m 80030100 -s "PROM Monitor"

Set memory star ting at 0x8003.0100 to
the string ‘‘PROM Monitor’’.

PMON Manual 7. Alphabetic Command Listing 51

more The more command provides screen-at-a-time control for user input.

Format The more command is an embedded command and is not accessible to the
user on the command line.

Functional

Description
The more command is not specified by the user on the command line, but is
implicitly used by cer tain commands. After displaying the number of lines
according to the value of the moresz environment var iable, the more com-
mand displays the prompt ‘‘more...’’ Commands that use the more com-
mand include h, d, l, search, and ls.

The user can enter the following commands at the ‘‘more...’’ prompt:

Table 7.3: The
more Commands

Command Action
Space Print one more page.
/str Search forward for string str.
n Repeat the last executed search.
<CR> Show next line.
q Quit from the more prompt and return to the Monitor prompt.

The moresz Vari-

able

The moresz variable sets how many lines are displayed on one screen dur-
ing screen-at-a-time output. If moresz is set to zero, then the screen scrolls
continuously. The ˆS or ˆQ control sequence must be used to pause the out-
put, and the ˆC control sequence must be used to terminate output.

For example, to set the default number of lines output by the more command
to 12, enter:

PMON> set moresz 12

See also the set command for the setup of the environment var iables.

PMON Manual 7. Alphabetic Command Listing 52

mt The mt command executes the memory test.

Format The for mat for this command is:

mt [-c] [[addr] size]

where:

-c implements a continuous test.

addr is the base address from which to perfor m the memory test.

siz e is the number of bytes, in hexadecimal, on which to execute the
memor y test.

Enter ing this command with no parameters tests all memory.

Functional

Description

The mt command tests the available memory. By default, this command tests
the memory at 0xA002.0000 to 0xA00F.FFFF.

If siz e is specified, then only that number of bytes are tested. If addr is also
specified, then testing starts at the specified address.

Both addr and siz e are rounded down to the nearest word address. If the user
specifies a siz e of zero, the test executes on the entire memory and does not
ter minate.

The mt memor y test is not an exhaustive test. In the mt test, a single ‘‘walk-
ing one’’ is written to each word and cleared in turn. Then, to test other bits in
the word, each word is loaded with its own address and then read back.
Because this test writes an exclusive value to every word, it is sufficient to
find most stuck-at faults and shorts. How ever, this test is not adequate to find
patter n sensitivity and leakage faults.

Examples illustrating the use of the mt command follow.

PMON> mt Test from 0xA002.0000 to 0xA00F.FFFF.
PMON> mt 2000 Test 8 Kbytes starting at 0xA002.0000.
PMON> mt a0030000 4000 Test 16 Kbytes starting at 0xA003.0000.

PMON Manual 7. Alphabetic Command Listing 53

ping The ping command ‘‘bounces’’ a packet to and from a specified networ k
host.

Format The for mat for this command is:

ping [-nqv] [-i wait]] [-s size] [-l preload] host

where:

-i wait Wait wait seconds between sending each packet . The default is
to wait for one second between each packet.

-l preload If preload is specified, ping sends that many packets as fast as
possible before falling into its normal mode of behavior.

-n Numer ic output only. No attempt will be made to lookup sym-
bolic names for host addresses.

-q Quiet output. Nothing is displayed except the summary lines at
star tup time and when finished.

-s siz e Specifies the number of data bytes to be sent. The default is 56,
which translates into 64 ICMP data bytes when combined with
the 8 bytes of ICMP header data.

-v Verbose output. ICMP packets other than ECHO_RESPONSE
that are received are listed. ‘‘Echo Replies’’ are displayed sym-
bolically.

Functional

Description

The ping command is used to ver ify ether net networ k connections and
setup. It makes use of a feature of the ‘‘ICMP’’ protocol, which is used by
hosts and gateways for low-level administrative chores. Each ICMP host is
required to respond to an ECHO_REQUEST datagram with an
ECHO_RESPONSE. ECHO_REQUEST datagrams (‘‘pings’’) have an IP and
ICMP header, followed by a time and then an arbitrar y number of ‘‘pad’’ bytes
used to fill out the packet. The command continues pinging until interrupted
by a Control-C.

When using ping for fault isolation, start by pinging ‘‘127.0.0.1’’ (a universal
self-address, by inter net convention.) This verifies that at least the onboard
setup is wor kable. Then, hosts and gateways further and further away should
be ‘‘pinged’’. Round-trip times and packet loss statistics are computed. If
duplicate packets are received, they are not included in the packet loss calcu-
lation, although the round trip time of these packets is used in calculating the
minimum/average/maximum round-trip time numbers. When the program is
ter minated by a Control-C a brief summary is displayed.

Ping will report duplicate and damaged packets. Duplicate packets ‘‘should
never happen’’: they’d have to be gateway problems. Tell your networ k man-
ager.

Damaged packets (data doesn’t look like it should) are serious cause for
alar m and often indicate broken hardware somewhere in the ping packet’s
path (in the networ k or in the hosts).

PMON Manual 7. Alphabetic Command Listing 54

The ‘‘TTL’’ field of an IP packet is used to count the number of times the
packet passes through a router; once it gets down to zero the packet is dis-
carded, which prevents accidental internet loops from recycling the same old
packets forever. It’s common practice for each router in the Internet to decre-
ment the TTL field by exactly one. The biggest possible value of TTL is 255,
and most Unix systems set the TTL field of ICMP ECHO_REQUEST packets
to 255. This could, conceivably, mean that you can ‘‘ping’’ some hosts, but
not reach them with tftp.

In normal operation ping prints the TTL value from the packet it receives.
When a remote system receives a ping packet, it can do one of three things
with the TTL field in its response:

• Not change it; this is what Berkeley Unix systems did before the 4.3 tahoe
release. In this case the TTL value in the received packet will be 255
minus the number of routers in the round-trip path.

• Set it to 255; this is what current Berkeley Unix systems do. In this case
the TTL value in the received packet will be 255 minus the number of
routers in the path from the remote system to the ping host.

• Set it to some other value. Some machines use the same value for ICMP
packets that they use for TCP packets, for example either 30 or 60. Oth-
ers may use completely wild values.

PMON Manual 7. Alphabetic Command Listing 55

off The off command switches off the power to the board, if your board and
power supply have a soft switch. By convention this is the last command of a
session.

Format The for mat for this command is simply:

off

PMON Manual 7. Alphabetic Command Listing 56

r The r command sets or displays register values.

Format The for mat for this command is:

r [reg|* [val|field val]]

where:

reg is the name of the register or registers (specified by wildcard
characters) to display or modify.

val is the value to which the specified register or registers should be
modified.

field val is the value to which the specified field in the specified register
should be modified.

* displays the contents of all registers except floating-point regis-
ters.

f* displays the contents of all floating-point registers.

Invoking the r command without any parameters or arguments displays a list
of all the general-pur pose registers.

Functional

Description
The r command sets or displays register values. The character and word
wildcards, ‘‘*’’ and ‘‘?’’, can be used in the register name. This command
accepts both hardware and software names.

See also the l command for disassembling instructions from memory on
page 46.

The regsize Vari-

able

The regsize variable selects how many bits to display for the general-pur-
pose registers (i.e. $0 to $31), and some Coprocessor 0 registers (e.g. EPC).
If regsize is set to ‘‘32’’ then 32-bits will be displayed, and if it is set to ‘‘64’’
then 64-bits will be displayed.

Note that regsize does not affect how the floating point registers are dis-
played. These will be displayed as 64-bit registers only if the FR bit is set in
the CPU’s Status register (called sr or C0_SR).

Examples illustrating the use of the r command follow.

PMON> r Display all general-pur pose registers.
PMON> r * Display all register values.
PMON> r 8 Display $8 (t0).
PMON> r t0 Display t0 ($8).
PMON> r t* Display t0 through t9.
PMON> r epc Display EPC register.
PMON> r epc start Set EPC register to the symbol start value.
PMON> r 4 45 Set register 4 to 45.
PMON> r t0 45 Set register t0 to 45.
PMON> r sr 0 Set SR to zero.
PMON> r sr bev 1 Set the BEV bit of SR to one.

PMON Manual 7. Alphabetic Command Listing 57

PMON> r epc a0020000 Set EPC to A002.0000.

The following illustration shows how the r command to display the register
contents across the entire screen:

PMON> set regsize 32
PMON> r

zero at v0 v1 a0 a1 a2 a3

$0- 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

t0 t1 t2 t3 t4 t5 t6 t7

$8- 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

s0 s1 s2 s3 s4 s5 s6 s7

$16- 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

t8 t9 k0 k1 gp sp s8 ra

$24- 00000000 00000000 00000000 00000000 00000000 80008b40 00000000 00000000

PMON> r *
$0- 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

$8- 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

$16- 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

$24- 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

C0_EPC=a0020000 C0_BADADDR=00000000

C0_SR: CU BEV TS PE CM PZ SWC ISC IM&SW KUo IEo KUp IEp KUc IEc

0000 0 0 0 0 0 0 0 00000000 0 0 0 0 0 0

C0_CAUSE: BD CE IP SW EXCODE

0 0 000000 00 Int

C0_PRID: IMP Rev

0 0

PMON> r sr iec 1 Set IEC bit of SR to 1

PMON> r sr
C0_SR: CU BEV TS PE CM PZ SWC ISC IM&SW KUo IEo KUp IEp KUc IEc

0000 1 0 0 0 0 0 0 00000000 0 0 0 0 0 1

PMON> set regsize 64
PMON> r

zero at v0 v1

$0- 0000000000000000 0000000000000000 0000000000000000 0000000000000000

a0 a1 a2 a3

$4- 0000000000000000 0000000000000000 0000000000000000 0000000000000000

t0 t1 t2 t3

$8- 0000000000000000 0000000000000000 0000000000000000 0000000000000000

t4 t5 t6 t7

$12- 0000000000000000 0000000000000000 0000000000000000 0000000000000000

s0 s1 s2 s3

$16- 0000000000000000 0000000000000000 0000000000000000 0000000000000000

s4 s5 s6 s7

$20- 0000000000000000 0000000000000000 0000000000000000 0000000000000000

t8 t9 k0 k1

$24- 0000000000000000 0000000000000000 0000000000000000 0000000000000000

gp sp s8 ra

$28- 0000000000000000 ffffffff80008b40 0000000000000000 0000000000000000

PMON Manual 7. Alphabetic Command Listing 58

reboot The reboot command attempts to restart the PMON monitor (and any other
code which runs before PMON at bootstrap time) by jumping to 0xBFC0.0000
- the MIPS restart location. If your system initialisation depends on some
device receiving a hardware reset, this may not wor k.

Format The for mat for this command is just

reboot

PMON Manual 7. Alphabetic Command Listing 59

search The search command executes a search for a memory patter n.

Format The for mat for this command is:

search from to {val|-s str}...

where:

from is the start address for the search operation.

to is the end address for the search operation.

val is the hexadecimal value that is the object of the search.

-s str specifies that the search operation is for a string str.

Functional

Description

The search command searches memory for a pattern. The pattern may be a
single byte, multiple bytes, or an ASCII string.

If the -s option is specified, then the next parameter is interpreted as an
ASCII string. To search for a multiple-word string, enclose the string in double
quotation marks.

The output of this command is printed to the screen via the more command.

The following example searches for 3c and d4 from 0xA002.0000 to
0xA003.0000:

PMON> search a0020000 a0030000 3c d4

The following example searches or ‘‘ABC’’ from 0xA002.0000 to 0xA003.0000:

PMON> search a0020000 a0030000 -s "ABC"

See also the more command.

PMON Manual 7. Alphabetic Command Listing 60

set The set command sets and displays environment var iables.

Format The for mat for this command is:

set [name [value]]

where:

name is the name of the environment var iable to set.

value is the string to which the environment var iable is set.

Enter ing the set command with no arguments displays all the current envi-
ronment var iables.

Functional

Description

The set command is used to set or display environment var iable values,
which are stored in NVRAM.

In some cases, when the Monitor displays a var iable’s current value, the Mon-
itor prints a list of allowed values enclosed in square brackets; in other cases,
no list is shown. In general, when the value is a numer ic value, or when the
value has an unlimited range of possible values, no list is shown.

Where a var iable has a list of values, the set command will check that the
specified value is in the list. Most other values will only be checked when a
command uses a var iable.

To set a var iable to a multiple-word value, enclose the value in single or dou-
ble quotation marks.

See also the eset and unset commands, on pages 40 and 72 respectively.

Examples illustrating the use of the set command follow.

PMON> set Display all current values.
brkcmd "l @epc 1"

datasz -b [-b -h -w]

dlecho off [off on lfeed]

dlproto EtxAck [none XonXoff EtxAck]

ethaddr 00:40:bc:03:00:00

heaptop 80020000

hostport tty1

inalpha hex [hex symbol]

inbase 16 [auto 8 10 16]

moresz 10

prompt "PMON> "

regstyle sw [hw sw]

rptcmd trace [off on trace]

trabort ˆK

ulcr cr [cr lf crlf]

uleof %

validpc "_ftext etext"

PMON Manual 7. Alphabetic Command Listing 61

PMON> set moresz Display current moresz.
moresz = 10

PMON> set moresz 20 Set moresz to 20 decimal.

PMON> set brkcmd "l @epc 1;r cause;r"
Set brkcmd to the str ing
‘‘l @epc 1;r cause;r’’

PMON Manual 7. Alphabetic Command Listing 62

sh The sh command is an embedded command that executes the Monitor com-
mand typed following the prompt.

Format The for mat for this command is:

sh

Functional

Description
The following syntactic rules apply to all command lines entered at the Moni-
tor prompt.

• Multiple commands can appear on one line if each command is separated
by a semicolon (;).

• Register names are replaced by their contents if the register name is pre-
fixed with an ‘‘at’’ symbol (@).

• Symbol names are replaced by their value if the symbol name is prefixed
with an ampersand symbol (&).

• Environment var iable names are replaced by their value if the symbol
name is prefixed with a dollar symbol ($).

• Control-S pauses the output stream.

• Control-Q restarts the output stream.

• Control-C aborts the current command.

The shell also maintains a command history. Previous command lines are
recalled either with Emacs-like commands or with C Shell ‘‘!’’ notation. Table
7.4 lists the commands that are supported by the Monitor.

Table 7.4: Com-
mand Shell Fea-
tures

Command Action
ˆP Recall previous command.
ˆN Recall next command.
ˆF Move cursor one character to the right (forward).
ˆB Move the cursor one character to the left (back).
ˆA Move the cursor to the beginning of the line.
ˆE Move the cursor to the end of the line.
ˆD Delete character at cursor position.
ˆH Delete character to the left of the cursor.
ˆK Delete whole line of characters to right of cursor
!str Recall and execute last command that started with string str.
!num Recall and execute command num.
!! Repeat last command.
+ − / () Execute algebraic operator.
ˆaddr Substitute contents of address for address addr.
@name Substitute contents of named register.
&name Substitute value of symbol for symbol name.
$name Substitute value of named environment var iable.
0xnum Treat num as a hexadecimal number.
0onum Treat num as an octal number.

PMON Manual 7. Alphabetic Command Listing 63

The inbase, inal-

pha, prompt and

rptcmd variables

The following paragraphs describe the inbase, inalpha, prompt, and
rptcmd environment var iables:

inbase − This var iable selects the default input base for numer ic values. A
value of 8, 10, or 16 selects that base as the assumed default. If ‘‘auto’’ is
specified, the base is determined according to the usual C language rules (0x
= hex, leading 0 = octal, otherwise decimal).

If inbase is set to 8, 10, or 16, then values starting with zero through nine
are assumed to be values in the specified base. If inbase is set to ‘‘auto’’,
then values starting with zero are assumed to be octal, and numbers starting
with one through nine are assumed to be decimal.

Table 7.5 lists the rules that hold in setting the default numer ic base.

Table 7.5: Setting
the Default
Numer ic Base

Inbase Base
0x Hexadecimal
0t Decimal
0o Octal
[g-zG-z$_.] Symbol
& Symbol
@ Register

inalpha − This var iable selects whether arguments starting with letters ‘a’
though ‘f’ are interpreted as symbols or as hexadecimal numbers.

Setting inalpha to ‘‘hex’’ causes the Monitor interpret the argument as a
hexadecimal value, if possible. If the argument cannot be interpreted as a
hexadecimal value, then the Monitor checks the symbol table to see if the
argument is a known symbol.

Setting inalpha to ‘‘symbol’’ causes the Monitor to check the symbol table
first.

It is also possible to specify values using simple expressions using the arith-
metic operators +, −, *, and /. Expressions do not take spaces between the
numerals and operators. For example,

PMON> b printf+4

sets a breakpoint at (printf+4). Any combination of register names, symbols,
and values may be used. The precedence order of operators is the same as
that defined by the C language. Two examples showing the use of simple
ar ithmetic operators follow:

PMON> ls -v start+0x240 Show the actual address.
PMON> d map+0t10*4 Dump memory at (map+(10*4)).

prompt − This var iable specifies the command prompt string. The metachar-
acter ‘!’ is replaced by the current history number. For example,

PMON> set prompt "!> "
23> _

It is not possible to display system var iables in the prompt.

PMON Manual 7. Alphabetic Command Listing 64

rptcmd − When this environment var iable is set to ‘‘on’’, the previous com-
mand is repeated when the user enters a blank line. When set to ‘‘trace’’,
only trace commands (t or to) are repeated.

See also the hi (command history) and set (setup and display environment
variables) commands.

PMON Manual 7. Alphabetic Command Listing 65

stty The stty command displays and sets terminal options.

Format The for mat for this command is:

stty [device][-av] [baud] [sane] [term]
[ixany|-ixany] [ixoff|-ixoff]

where:

device is either tty0 or tty1. The default is tty0.

-a gives a long listing showing all current settings.

-v displays the possible choices for baud rate and terminal type.

baud sets the baud rate.

sane resets terminal settings to the default.

term sets the terminal emulation type.

ixany allows any character to restart the output.

-ixany allows only START to restar t the output.

ixoff enables the tandem mode.

-ixoff disables the tandem mode.

When invoking the stty command with no parameters, the Monitor displays
the terminal type and baud rate for the tty0 port.

Functional

Description
The stty command displays and sets the terminal options, such as terminal
emulation type, baud rate, and ioctl settings. First, to display the current ter-
minal type, baud rate, and ioctl settings for tty0, enter:

PMON> stty -a

To display the same infor mation for tty1, enter:

PMON> stty tty1 -a

To change the baud rate or terminal type for tty0, simply enter the new setting
after stty. Precede the new setting with ‘‘tty1’’ to change the settings for
tty1.

Examples illustrating the use of this command follow.

PMON> stty Display ter minal type and baud rate for
term=tvi920 baud=9600 tty0.
PMON> stty -a Display ter minal type, baud rate, and
term=tvi920 baud=9600 ioctl settings for tty0.
canon echo echoe onlcr icrnl istrip ixon

erase=ˆH stop=ˆS start=ˆQ eol=ˆJ eol2=ˆC vintr=ˆC

PMON> stty 9600 Set baud rate for tty0 to 9600.
PMON> stty -v List available baud rates.
Baud rates:

50 75 110 134 200 150 300 600 1200

PMON Manual 7. Alphabetic Command Listing 66

1800 2400 4800 9600 19200 38400

PMON> stty tvi920 Set terminal type for tty0 to tvi920.
PMON> stty tvi920 9600 Set terminal type and baud rate for tty0

to tvi920 and 9600 baud.
PMON> stty tty1 sane Reset ioctl settings for tty1.
PMON> stty tty1 19200 Set tty1 to 19200 baud.

PMON Manual 7. Alphabetic Command Listing 67

sym The sym command sets a symbolic name for a var iable.

Format The for mat for this command is:

sym name value

where:

name is the name of the var iable for which a value is to be set.

value is the value to which the var iable is set.

Functional

Description
The sym command sets a symbolic name to the specified value. Nor mally the
load and boot commands clears the symbol table. How ever, there is an
option to overr ide the clearing of the symbol table (see pages 29 and 47 for
details).

Symbols can be displayed using the ls command.

Examples illustrating the use of this command follow.

PMON> sym start 9fc00240
PMON> sym flush_cache 9fc016f0
PMON> l start 4
start:

start+0x240 3c09a07f lui t1,0xa07f

start+0x244 3c08003c lui t0,0x3c

start+0x248 3529ff20 ori t1,t1,0xff20

PMON> l 9fc0027c 5
start+0x27c 03a1e825 or sp,sp,at

start+0x280 0ff005bc jal flush_cache

start+0x284 24040000 addiu a0,zero,0x0

start+0x288 0ff005bc jal flush_cache

start+0x28c 24040001 addiu a0,zero,0x1

See also the ls, boot, load, l, and sh commands.

PMON Manual 7. Alphabetic Command Listing 68

t The t command initiates a trace procedure.

Format The for mat for this command is:

t [-vbci] [-m adr val] [-M adr val] [-r reg val]
[-R reg val] [cnt]

or :

to [-vbci] [-m adr val] [-M adr val] [-r reg val]
[-R reg val] [cnt]

where:

-v lists each step (verbose).

-b captures only branches.

-c captures only calls (jal instruction).

-i stops on invalid program counter.

-m adr val stops when memory at address adr is equal to value val.

-M adr val stops when memory at address adr is not equal to value val.

-r reg val stops when register reg is equal to value val.

-R reg val stops when register reg is not equal to value val.

cnt traces cnt instr uctions.

Functional

Description

The t command executes the instruction addressed by the current value of
the EPC register. The to command is similar to the t command, except that
the to command treats an entire procedure as a single step. For example, if
the current instruction at EPC is a jump and link instruction, jal, the next stop
is at EPC+8.

The command or commands that are executed on completion of the single
step is determined by the value of the environment var iable brkcmd.

An example illustrating the use of this command follows.

PMON> t
Pmon+0x240 3c09a07f lui t1,0xa07f

PMON Manual 7. Alphabetic Command Listing 69

tlb The tlb command is used for displaying the contents of the MIPS CPU’s
memor y management unit translation table, the TLB.

Format The for mat for this command is

tlb [entryno]

where entr yno is a number between 0 and the highest entry in your CPU’s
TLB (31, 47 or 63 on different CPU types). If you just invoke tlb with no
parameters, you’ll get a list of all entries in the TLB.

Functional

Description
The tlb command shows TLB entries; either one you select, or the whole
lot.

Examples illustrating the use of the tlb command follow.

PMON> tlb Display the whole TLB
PMON> tlb 5 Display the TLB entry whose index is 5

Here’s some example output from the tlb command:

PMON> tlb
0: vpn=0xa005e000 asid=0x0 sz=4K 0x00000000 vdgc 0x00000000 vdgc

1: vpn=0xa005c000 asid=0x0 sz=4K 0x00000000 vdgc 0x00000000 vdgc

2: vpn=0xa005a000 asid=0x0 sz=4K 0x00000000 vdgc 0x00000000 vdgc

3: vpn=0xa0058000 asid=0x0 sz=4K 0x00000000 vdgc 0x00000000 vdgc

4: vpn=0xa0056000 asid=0x0 sz=4K 0x00000000 vdgc 0x00000000 vdgc

...

This is an R4000 or derivative CPU, since each entry has one virtual address
(vpn/asid) and two output addresses. ‘vpn’’ and ‘‘asid’’ are fields read through
the Entr yHi register ; the ‘‘sz’’ is the page size, read through the PageSize reg-
ister ; and the output fields come from the two registers Entr yLo0 and
Entr yLo1.

The field shown as ‘‘vdgc’’ represents the flags stored with each possible
translation, and the possible letters are these:

v/V valid flag: upper-case for a valid mapping, lower-case otherwise.

d/D wr iteable flag (called ‘‘dir ty’’ for obscure reasons): lower-case for a read-
only page.

g/G global flag; upper-case is a translation which is ‘‘global’’ and matches an
address irrespective of the setting of the ASID field in Entr yHi.

c/U cacheability field; ‘‘U’’ for uncacheable, and ‘‘c’’ for all var ieties of
cacheable.

PMON Manual 7. Alphabetic Command Listing 70

tr The tr command selects transparent mode.

Format The for mat for this command is:

tr

Functional

Description

The tr command selects transparent mode. In transparent mode, the Moni-
tor copies any characters typed on the keyboard to the hostport and then
copies characters arriving at the hostport to the screen. The tr command
lets the user run the Monitor on the same serial port that is used as a login
line.

The trabort Vari-

able

The environment var iable trabort selects the character that terminates the
transparent mode and returns the Monitor to the default command mode.

See also the set command for the setup of the environment var iables.

PMON Manual 7. Alphabetic Command Listing 71

unset The unset command removes environment var iables.

Format The for mat for this command is:

unset name...

where:

name is the name of an environment var iable to remove . Both charac-
ter wildcards ‘‘?’’ and word wildcards ‘‘*’’ are permitted.

Functional

Description

The unset command removes environment var iables that are no longer
required. For each var iable name given as an argument the unset com-
mand removes all var iables which match that name.

If you attempt to remove an environment var iables which has a pervasive
standard use within PMON, then it is not removed, but is reset to its default
value.

See also the eset and set commands, on pages 40 and 61 respectively.

Examples illustrating the use of the unset command follow.

PMON> unset bootfile Remove bootfile variable.
PMON> unset datasz Reset datasz variable to default.
PMON> unset it* Remove all var iables starting with ‘‘it’’

PMON Manual 7. Alphabetic Command Listing 72

8. Using PMON with SDE−MIPS

Most of the examples in the preceding sections of this manual assume that your are using the
Algor ithmics’ SDE−MIPS cross-compiler and embedded system toolkit.

PMON makes it easy to load, debug and run programs developed using SDE−MIPS. Refer ini-
tially to the SDE−MIPS installation and programmers’ guide for detailed infor mation on the
example programs, and then follow the steps described below to compile and run Example 1
(Hello Wor ld!). Note that these examples assume that you are using the Unix version of
SDE−MIPS; if you are using DOS, then there will be minor differences, so check your
SDE−MIPS programmer’s guide for the equivalent commands.

Note that the exception handling facilities in the SDE−MIPS Release 1.4 toolkit will completely
take over from the PMON exception handler, and this will disable PMON’s debug facilities. If
your program uses any of the SDE−MIPS exception, interrupt or floating-point trap handlers,
then you have no choice but to use SDE−MIPS’s own remote debug mechanism, as described
in the Release 1.4 documentation. More recent releases of SDE−MIPS interwor k with PMON’s
exception handling, so that you can use PMON’s low-level or remote debugging, as described
here, on all programs.

Compiling Example

On the host

% cd /usr/local/sde/examples/ex1 Change to example directory
% make clean Remove old binaries.
% make SBD=P4000 ram Build downloadable ex1ram for P−4000i.

Remote Debugging with a Network

These instructions assume that you have already set up a TFTP server on your Unix wor ksta-
tion. See page 18 for more infor mation about setting up and using TFTP for both Unix and
DOS. They also assume that your host is a Unix wor kstation, which has a link for its serial port
/dev/ttyx (where ‘x’ is a one or two character port identifier), to the P−4000i’s tty1 por t. On
DOS the serial port would be called COMn, where ‘n’ is digit 0 - 3.

On the host

% gdb-sde ex1ram Star t gdb debugger.
(gdb) target dbgmon /dev/ttyx Aw ait response from P−4000i
Remote MIPS DBGMON debugging using /dev/ttyx

On the P−4000i

PMON> boot myhost:/usr/local/sde/examples/ex1ram
PMON> debug

On the host

0x80020020 in __start() gdb displays the current function.
(gdb) b main Set an initial breakpoint.
Breakpoint 1 at 0x80021669: file ex1.c, line 80

(gdb) c Continue to breakpoint.
Breakpoint 1, main() at ex1.c:80 gdp stops and displays
80 volatile int a = 5 the current line.

PMON Manual 8. Using PMON with SDE−MIPS 73

(gdb) s Single-step one source line.

Remote Debugging Without a Networked

On the P−4000i

PMON> set hostport tty1 Setup communications parameters
PMON> set dlproto EtxAck (only needed once)
PMON> set dlecho off
PMON> load Wait for download

On the host

% edown -d /dev/ttyx ex1ram.lsi Download FastFor mat file
% gdb-sde ex1ram Star t gdb debugger.
(gdb) target dbgmon /dev/ttyx Aw ait response from P−4000i
Remote MIPS DBGMON debugging using /dev/ttyx

Now continue as for the networ ked board.

PMON Machine-level Debugging

Instead of remote debugging you can if you need, or prefer, use the machine-level debugging
facilities of PMON described in this manual. SDE−MIPS’s binar y to ASCII conversion program
(convert) will optionally include the program’s symbol table in the downloadable file, so that
symbolic addresses can be used however it is loaded.

PMON Manual 8. Using PMON with SDE−MIPS 74

9. AlgPOST - selftest code in boot PROMs

9.1. About this Chapter

This document tells you about the AlgPOST program. Major sections are:

• §9.2 (Introduction and Over view) : everyone should read this to get a grip on what AlgPOST
is and how to understand it.

• §9 (About AlgPOST) : relatively short, so read this if anything is confusing you.

• §9.6 (AlgPOST diagnostics) : reference guide to error codes and messages. Look here
when something goes wrong.

9.2. AlgPOST introduction and over view

AlgPOST is a program which runs when a board is first powered on or reset; it runs some hard-
ware tests before handing over control to a higher-level program - in this case, to PMON.

AlgPOST is designed to make progress, and to get some infor mation through to you, in the face
of serious hardware problems. There is no direct user interface to control the test sequencing;
instead this is done by shar ing PMON’s environment var iables, stored in non-volatile memory.
AlgPOST behaviour is tailored by a set of var iables; if a problem is detected with the environ-
ment store itself, it defaults to running comprehensive (but slow) tests, and being rather verbose
about them.

AlgPOST communicates to you through the ‘‘diagnostic display’’. In most Algorithmics boards
this is a 4-character alphanumer ic display, but in other applications it may be a single-character
‘‘hex’’ display or even a single LED, passing messages using a sequential morse-like code. If
the board has a serial port which can be used as a console, you can ask AlgPOST to send
longer and more easily comprehended messages to a dumb terminal.

You will need this manual in several circumstances:

• Troubleshooting : where AlgPOST has behaved unexpectedly; instead of the familiar quiet
progress towards bootstrapping, you have a diagnostic indication of some kind.

You will probably do all or some of the following:

• look up the error code which you see on the diagnostic display: these are listed in §9.6.5.

• select a higher ‘‘log level’’ and then reset the board to re-run the tests, to get more infor-
mation. You will need a dumb RS232 terminal (or any kind of terminal emulator running
on a PC) attached to the main console port. To set the log level you’ll need to know
about environment var iables and how to change them (see the ‘‘set’’ command on page
61 of this manual).

Once the higher log level is selected the tests should send diagnostic messages to your
ter minal. These messages are listed in §9.6.6.

• Investigation : where AlgPOST runs normally, but something else appears to be going wrong.
In this case you will want to increase the test level (see §9.5) to get some additional useful
infor mation and then force AlgPOST to run all of its tests (see §9.5).

• Configur ing AlgPOST for your system : AlgPOST is user-configurable: infor mation in §9.5.
You have some control over:

• what is tested: you can suppress tests which will interfere with your other hardware.

• how thoroughly tests are carried out: trade off your patience against your confidence
level.

PMON Manual 9.2. AlgPOST introduction and overview 75

• how progress, status infor mation and diagnostic messages are communicated. AlgPOST
always uses the diagnostic display if one is fitted, but you can control how much comes
out of which RS232 port(s).

• Building PROM applications for a board : §9.7 tells programmers how to co-operate with
AlgPOST so that your PROM code can benefit from the standard power-on tests. PMON is
built like this.

9.3. The test sequence

The strategy used is to start with minimal assumptions about the board which allow it to run
some code. The test software then climbs a ‘‘ladder’’ of functionality, avoiding stepping on any
rungs which have not been seen to be sound.

The test code is pessimistic about the status of the hardware it uses, trying to ensure that tests
cannot be hung-up by malfunctioning devices. For example, ser ial por t routines do not wait for-
ev er for characters to be transmitted.

Where subsystems are confined to a single chip the test software will usually assume that they
are either faulty or fully functional, with no further attempt made to narrow down the failure.

In many cases subsystems much larger than a single chip operate in such a way that it is
impossible (or not cost-effective within a reasonable time budget) to attribute blame for a fault
below the subsystem level.

What faults will AlgPOST miss?

Diagnostic software authors need humility, because diagnostics often fail when they are needed:

• the hardware is too broken to run the diagnostic software (at this stage, of course, you at
least know the board is faulty).

• the fault is intermittent in nature; AlgPOST makes ver y fe w attempts to repeat tests.

• the fault is in some sense pattern-dependent. AlgPOST tr ies to var y data and address pat-
ter ns, but thoroughness takes too long.

Then there are the tests AlgPOST does not even attempt.

What AlgPOST does not test

There are several reasons for leaving tests out of a simple power-on suite:

• it is pointless to test subsystems whose failure would prevent AlgPOST from starting up or
repor ting anything. The CPU, PROM, diagnostic display and IO bus subsystems must wor k
before AlgPOST can get anywhere.

• some tests would require an exter nal test harness: eg ethernet connector, expansion bus
connector.

• some tests risk interference with the customer’s other equipment: eg exter nal ether net test,
use of serial ports.

• some tests take too long to carry out.

In some cases, AlgPOST is configurable so that users can make their own trade-offs, or can
increase the level of testing when a problem is suspected: see §9.5 below.

PMON Manual 9.3. The test sequence 76

Using hardware testability features

The P−4000i, like most Algorithmics products, has some simple functions intended to assist
diagnostic software:

• The control/status register allows certain subsystems to be independently reset under CPU
control. Initial tests are carried out with unneeded subsystems held in reset.

• The memory system is parity protected.

• The onboard bus master devices have the ability to perfor m ‘‘loopback’’ tests allowing their
bus interfaces to be checked.

9.4. How AlgPOST communicates with you

Test results appear on a number of different channels:

Diagnostic Display

The P−4000i is fitted with a software-controlled LED display that can show four alphanumer ic
characters. AlgPOST uses this display to show progress and to note problems.

The display is blanked from reset, and unblanked ver y ear ly in the bootstrap sequence. A com-
pletely blank display probably denotes a ver y dead system (though, of course, it could be the
display that has failed).

Dur ing nor mal running, when all tests are passing, the display will will intermittently flash the
abbreviated name of the test which is currently running (listed in Table 9.5), in lower-case. If the
display shows one of the test names in UPPER-CASE, then at least that one test has detected a
problem.

The alphanumer ic display can show up to four characters at a time. When a message com-
pr ises several par ts, each part is shown for 500ms with a 100ms gap separating the compo-
nents. At the end of a message there is a 250ms blank period.

This is much easier to see than it sounds!

The console or consoles

The P−4000i supports 2 RS232 ports. These are both accessible via PC-style 9-pin D connec-
tors on the board.

AlgPOST can print messages to a dumb terminal or equivalent (‘‘console’’) attached to either or
both ports. The port(s) used for the messages and AlgPOST’s verbosity are configurable
through environment var iables.

The ‘‘standard’’ way to set up a board (where you have a ser ial por t where messages will cause
no serious harm) is to set the log level to send errors only (this is log level 3), and to only one
por t.

Simple flow control is provided while messages are printed. If a Control-S (XOFF) is typed to
any active console all output is suspended until any other character is typed.

Environment variable

After the tests have finished, the first error message will be found in itfailure.

PMON Manual 9.4. How AlgPOST communicates with you 77

Test equipment triggers

In certain fatal error conditions, where the problems are so acute that it is likely that infor mation
will not reach the diagnostic display, the software first perfor ms a set of writes to ROM locations
whose addresses encode the infor mation that will be displayed on the display. This can be
traced by test equipment in laborator y conditions; see §9.6.3 for details.

Repor ting strategy

As each stage of a test is started, the diagnostic display will be blanked for a brief period.

Several things will happen when an error is detected:

• A message describing the error may appear on each active console. Error messages and a
possible explanation for their causes are given in §9.6.6.

• A mnemonic for the test which found a problem appears on the diagnostic display in upper-
case. The test mnemonics are listed in Table 9.5.

• For the first error to occur, the error message is kept in the itfailure environment var iable
(see §9.5.)

• The diagnostic display continues to show the test name that failed to indicate that an error
has occurred. It will stay that way until the end of the tests, when control is transferred to
PMON.

9.5. Controlling tests - environment variables used by AlgPOST

The environment var iables used by the test code are summarised in Table 9.1.

Variable Default Value Description
itconsole a Deter mines which console(s) are active

itloglevel 6 How verbose are console messages? Higher = more
output.

itpkg 6 PROM package to execute when tests complete

itquick Run minimal tests only if set

itquiet Suppress all but most desperate error messages if set

ittstlevel 5 Which tests should be skipped? Higher = more thor-
ough.

itfailure - Test failure message

Table 9.1: Boot test environment var iables

• itconsole − a str ing representing the serial channels that will be used for console IO.
Each character of the string will enable a group of consoles. The characters ’0’, and ’1’
enable serial channels 0 and 1 respectively. The character ’a’ enables all available consoles.

• itfailure − a brief description of the first error to be detected. Where all tests passed,
this var iable will not be defined.

• itloglevel − a number between 0 and 7 selecting the level of messages printed. With
loglevel n, only messages with prior ity-number n or less are shown; so the higher the num-
ber, the more output will result. Each message is printed preceded by a tag identifying the
message level.

PMON Manual 9.5. Controlling tests - environment var iables used by AlgPOST 78

Level Prior ity Tag Descr iption
0 EMERG Emergency system is unusable
1 ALERT Aler t nothing else expected to wor k
2 CRIT Cr itical ser ious error
3 ERR Error some other error
4 WARNING Warning war ning conditions
5 NOTICE Notice normal but unusual condition
6 INFO Info infor mational
7 DEBUG Debug debug-level messages

Table 9.2: itloglevel settings

• itpkg − A value between 0 and 7 that picks the PROM package to be executed after test
completion. Normally ‘‘6’’, used for the main PMON monitor.

• itquick − Overr ides ittstlevel variable; when set, the system behaves as if the test
level was 1 and perfor ms minimal tests.

• itquiet − Overr ides the itloglevel variable; when set, the system behaves as if the log
level was 1 and tells you only of ‘‘Emergency’’ and ‘‘Aler t’’ messages.

• ittstlevel − A value between 0 and 7 selecting the level of tests to be executed. The
higher the value, the more will be tested (and the longer it will take). Note that the exter nal
ser ial por t loopback test run at level 7 requires a special loopback plug to be fitted.

Level Test Description
0 minimal tests only (low memor y, cache and NVRAM)
1 all tests, as quickly as possible
3 extended memory tests; stop test on first error
4 extended memory tests; continue on error
6 as 4, and include internal loopback test on serial channels
7 as 4, and include exter nal loopback test on serial channels

Forcing AlgPOST to execute all of the tests

You can force AlgPOST to execute all of its configured tests by holding the reset/debug button in
its debug position, as soon as AlgPOST has started. This procedure is useful if the environment
variables have been set to skip most of the tests but the board is behaving in an erratic way.

When test execution is forced in this way, the test level is set to 7 and the log level is set to 6.
See §9.5 for the effect of these levels.

9.6. AlgPOST diagnostics in detail

9.6.1. Test Sequence

The test sequence is summarised in Table 9.3:

Notes on the test sequence

• From Reset : The CPU starts execution at the ROM reset vector 0xbfc00000. The reset
code inspects some data structures in the PROM which define a number of PROM packages
(independently built programs sharing the ROM space). It should then start the boot-test
code, which will be marked as PROM package 7. See §9.7.1 for a description of the PROM
str ucture and packaging convention. The boot-test code will completely reinitialise the

PMON Manual 9.6. AlgPOST diagnostics in detail 79

Mnemonic Test summary
led display "*U*U" then "U*U*" on diagnostic display
endian check consistency of ROM and board endianness, halt on error

can access byte var iables now...
mem-conf size memor y and check memor y configuration
mem-min uncached write/read address test on PROM data area

in C from here on...
prom checksum PROM packages
nvram check batter y, checksum environment region, set defaults if wrong

can use environment var iables from here on; the remaining tests can
be skipped by setting the test level to 0...
cache sizing and operation
nvram-r tc check clock for reasonable value
mem-best fast address-based confidence check
mem-soak sequence of ‘‘thorough’’ memor y tests
mpsc-reg register write/read tests on MPSC
mpsc-loop inter nal and exter nal loopback
mpsc-int check connection of interrupt line
eth-reg register access tests on SONIC
eth-read get SONIC to read memory and check
eth-write get SONIC to write memory and check
eth-int check connection of interrupt line

Table 9.3: Test Sequence in brief

board; all devices will be held in reset.

It is usually possible to restart the system by a programmed jump to 0xbfc00000.

The boot-test code does initialisation of the board for its own purposes. You should not
expect it to leave any par t of your initialisation unchanged; but neither should you rely upon
AlgPOST to perfor m initialisation for you. It will reset devices on the board and reprogram
the interrupt switches. On completion it will attempt to clear all the memory it can find to
ensure that it contains good parity.

• led : enable alphanumer ic display and flash it from ‘‘*U*U’’ to ‘‘U*U*’’. If the display shows
something else then there may be a problem with the board’s IO bus and the remainder of
the tests will probably fail.

• endian : check PROM endianness makes sense (up to this point the code is ‘‘bisexual’’,
achieved by avoiding all partial-word loads and stores.) If the configuration link and PROM
are mismatched, flash/print an error message and halt.

• mem-conf : size memor y and save the value for later.

• mem-min : perfor m minimal memory test. In the event of any problems, repor t and carry on
(no good can be accomplished by stopping.)

This test only covers uncached accesses to memory made while running uncached from
PROM. It is restricted to that portion of the memory used by the PROM software.

Up to this point all the code has run using registers only. The code will now attempt to run
compiled test code using memory.

• prom : compute and compare a simple 32-bit add/carry checksum on the PROM packages,
intended to detect PROM corruption and misprogramming. A calculated checksum of

PMON Manual 9.6. AlgPOST diagnostics in detail 80

0xffffffff is converted to 0x00000000. If the stored package checksum is
0xffffffff (ie it is uninitialised) the correct checksum to use can be printed so that the
checksum can be installed in the PROM.

The PROM checksum routine is largely useless (far more data is read in running the routine
than in for mulating the checksum). If it does go wrong, it is more likely an incorrectly pro-
grammed ROM than a hardware error.

• nvram : the NVRAM (non-volatile store) has a battery check feature which is checked dur ing
the first NVRAM write. The NVRAM environment area is checked. If it is wrong the environ-
ment is reinitialised and default values for environment strings are set. The default settings
will cause tests to be more verbose and more thorough.

Up to this point, the test and log levels have been implicitly set to their maximum values so
that any error messages are sent to all of the serial devices. Nor mally no output will have
been generated because all of the tests will have passed. Now the real values for these var i-
ables are extracted from the itloglevel, itquiet, itquick and ittstlevel environ-
ment var iables.

• cache : find the cache sizes.

If the caches appear reliable then the remaining tests will use the caches where necessary.
In particular they will be used when initialising memory and when running memory tests,
because it is impracticable to perfor m these functions in a reasonable amount of time without
running cached.

• nvram-r tc : check that the clock is running and start it if necessar y. Check for a plausible
value in the real time clock registers, resetting the time if necessary.

• mem-best : a ‘‘best-effor ts’’ test; is necessarily relative to the amount of time considered rea-
sonable for testing. On the P−4000i a one pass address-in-address test, running cached,
takes about 0.75s/Mbyte of memory.

• mem-soak : optionally (dependent on the ittstlevel variable) run several more thorough
memor y tests. Byte-address-in-address, shor t-address-in-address and random-data-in-
address tests are perfor med. These tests take some time.

• mpsc-reg : check out 72001 UART write/read register access.

• mpsc-loop : perfor m an internal and exter nal loop back test on both channels. The internal
loopback test has the unfor tunate side effect of outputting data on the transmit lines. The
exter nal loopback relies on a loopback connector being installed. You have to set
ittstlevel to a high value to get these tests run.

• mpsc-int : check that the interrupt line is connected through to the processor.

• eth-reg : write/read test on SONIC registers.

• eth-read : make the SONIC perfor m master read cycles by issuing a ‘‘load CAM’’ command.

• eth-wr ite : check that the SONIC can perfor m master write cycles by putting the SONIC into
inter nal loopback mode and making it transmit and receive two packets of data. This test
does not rely on the presence of a transceiver or networ k connection.

• eth-int : check that the interrupt line is connected through to the processor.

PMON Manual 9.6. AlgPOST diagnostics in detail 81

9.6.2. What happens when ever ything works

While the tests are running, the diagnostic display will display the mnemonic code for the cur-
rently running test (from Table 9.5) in lower-case. It will flash with a soothingly irregular rhythm.
When the tests finish, AlgPOST will blank the display before invoking the customer’s selected
ROM package.

9.6.3. Catastrophic errors and unexpected exceptions

If something is really wrong with the board, the CPU will usually get some kind of exception (ille-
gal instruction, illegal or unmapped address). These conditions are regarded as fatal. They are
usually a sign of something ver y ser iously wrong, so great care is taken to ensure that some-
thing will get reported.

It is not usually possible to pinpoint the precise cause of an unexpected exception. The repor ts
are designed to collect together infor mation which will be useful to a support engineer, and
reflect the contents of those CPU control and status registers whose value is relevant to each
par ticular type of exception. Users who aspire to this level of understanding should refer to
[Architecture]. Table 9.4 shows the exception codes and registers displayed.

Exception Type Message Error Code Registers Displayed
TlbMiss bevt 38 epc,cr,sr,vaddr,ra
XTlbMiss bevx 39 epc,cr,sr,vaddr,ra
Cache bevc 3a errpc,cr,sr,cach
General bevg 3b epc,cr,sr,vaddr,ra
Reser ved bevb 3c epc,cr,sr,ra

Table 9.4: Catastrophic exception codes

Great pains are taken to ensure that some indication of the error is made available to the user.
Because an exception can occur at any time the code takes the following ver y conser vative
approach to these errors:

• The error code and the register contents are dumped in a way that will allow a logic analyser
connected to the system to interpret the values. This is a failsafe mechanism in case none
of the following higher level approaches wor k.

The infor mation is made available to the analyser by perfor ming wr ites to specific locations in
ROM space (in normal operation no writes are made to the PROM area). Only the address
wr itten to carries any infor mation (data lines are harder to see on a logic analyser). In order
to display a 32 bit value WWXXYYZZ, four writes to the following locations will be produced:

0x1fc0WW00

0x1fc0XX00

0x1fc0YY00

0x1fc0ZZ00

• The error message and register contents are sent to the diagnostic display. Before starting
each message, the display is blanked for 250ms. When displaying register contents, the
high 4 bytes of the register are shown for 500ms then the display is blanked for 100ms and
then the low 4 bytes of the register is displayed. When a message is completed there is a
fur ther pause of 250ms.

First the 4 character exception type is displayed. Then the register names and contents are
displayed in order.

• All serial channels are initialised. A shor t message and the contents of the registers are dis-
played on each console. Care is taken that the code should not hang at this point due to a

PMON Manual 9.6. AlgPOST diagnostics in detail 82

faulty console device.

• The error code and register contents are repeatedly shown on the diagnostic display in the
manner described above .

9.6.4. Interpreting AlgPOST outputs

The first sign of trouble from AlgPOST is likely to be codes flashed on the diagnostic display dis-
play, followed by a steady message.

As described in §9.4, diagnostic display characters are usually separated by a shor t blanking
per iod, with a longer blanking period used to group sequences of characters into ‘‘words’’ of 2 or
8 digits. You should be able to comfor tably write the codes down as they are output.

Most errors are reported by a group reported just once; if you miss it you should reset the board
again. But note the following special cases:

• Display flashes FORC : You have forced AlgPOST to execute all of the tests regardless of
the current environment var iable settings (see §9.5). If you haven’t touched the debug but-
ton then there may be a problem in the board’s interr upt circuits or on its IO bus.

• Display shows constant message : an error was detected. Attach a terminal and try again, to
read any diagnostic messages produced by AlgPOST. You may want to use the monitor to
select a higher log level.

• Display repeatedly cycles through a complex patter n : this is probably a report of an unex-
pected exception, as described in §9.6.3. The report consists of an exception type message
followed by register names and their contents.

Such errors are usually catastrophic, so don’t expect anything else to wor k. However, more
infor mation is probably being shown via any of the serial ports. Call an exper t.

• Inter preting console messages : Console messages are listed below in §9.6.6, but at best
are reasonably self-explanator y. Once again, really peculiar messages (full of strange
acronyms) may result from unexpected errors. These are best told to your support engineer.

9.6.5. Status messages on the display

The following abbreviated messages, in the for m of mnemonics of 4 or less characters, are dis-
played on the alphanumer ic diagnostic display. When tests are running normally, the lower-case
messages will be displayed, to allow you to monitor progress. If a test fails, then an UPPER-
case error error mnemonic will be displayed and retained until the tetst complete

Depending on the setting of itloglevel the longer message may also be displayed on the
console, and in the case of errors, the message will also stored in the itfailure variable in
NVRAM for later examination. At a log level of 3 or above , the messages become more ver-
bose.

If the log level is at least 1, the message itself will be output to any enabled console.

Mnemonic Message
BEEB Wrong endianess configured
DCCH Dcache non functional
FPA FPA test failed
ICCH Icache non functional
MEMC Memor y configuration failed
MEMF Minimal memory test failed
MEMQ Quick memor y test failed

PMON Manual 9.6. AlgPOST diagnostics in detail 83

Mnemonic Message
MEMX Extended memory test failed
MFIL Dcache refill from memory failed
MPSC MPSC failure
NONV NVRAM failure
PFIL Dcache refill from PROM failed
PRTY Memor y par ity circuit failure
PSUM PROM checksum incorrect
RTC Real time clock failure
SONI SONIC failure
bevb Reser ved boot exception
bevc Cache error boot exception
bevg General boot exception
bevt TLBmiss boot exception
bevx XTLBmiss boot exception
cach Cache tests in progress
dcac Dcache address test in progress
dref Dcache refill test in progress
forc Full test sequence forced by debug button
icac Icache address test in progress
memb Memor y byte address test in progress
memh Memor y halfword address test in progress
memp Memor y par ity operation test in progress
memq Quick memor y address test in progress
memr Memor y word random test in progress
mpsc MPSC test in progress
net SONIC test in progress
novr NVRAM test in progress
npkg Package unavailable
psum PROM checksum in progress
rtc Real-time clock test in progress
???? Unknown error code

Table 9.5: Mnemonic Displays and Associated Messages

9.6.6. Error messages from the console

This section lists all the messages may be printed by the boot-test code during execution. Note:

• to pause and read a message when there is too much output, press Control−S (restarts on
any other character).

• which messages are output depends on the value of the log level environment var iable
(itloglevel descr ibed in §9.5). The higher the log level, the more messages get printed.

The messages are grouped under the following headings:

• Aler t messages : these have something so urgent to conve y that they are printed even at log
level 1. They usually signify a failure which is likely to disrupt the execution of the power-on
tests themselves. When you see one of these you may get fuller infor mation by setting the
log level to 3 or higher.

All alert messages correspond to error codes/mnemonics and are listed in Table 9.5 above .

PMON Manual 9.6. AlgPOST diagnostics in detail 84

• Activity messages : these infor m of the start of each test, and are printed only at log level 6
(‘‘INFO’’) and above . This will normally only be selected if there is a problem - tests which
pass are usually silent.

• General messages : a job lot of detailed errors and war nings, together with interesting infor-
mation about the system.

Activity messages

The following messages are output at log level 6 (infor mation) to describe the tests about to be
perfor med. As each message is output the LED is toggled to give a visual indication of
progress.

cache tests
Deter mine instr uction and data cache sizes. For CPU’s where all cache in on-chip, this probably
doesn’t really try to test the cache.

real time clock operation
Checking that the real time clock is running and has a reasonable date.

quick memor y address test
About to start quick address-in-address test on the main block of memor y. Takes approximately
12s for 16Mbytes of memory.

memor y byte address test
Star ting a thorough byte oriented memory test. This test is only run at higher test levels.

memor y halfword address test
Star ting a thorough halfword oriented memory test. This test is only run at higher test levels.

memor y word random test
Star ting a thorough random memory address test storing random data in random locations.
This test is only run at higher test levels. These extended memory tests may take sev eral min-
utes to run on 16Mbytes of memory, dur ing which time there will be no apparent activity.

MPSC operation
Check operation of the NEC serial chip. This includes checks on the device, its ability to gener-
ate interrupts and internal/exter nal loopback tests at higher test levels.

SONIC operation
Check operation of the SONIC ethernet chip. This includes checks on the device, its ability to
generate interrupts and internal loopback tests checking master read/write memory cycles.

General messages

The following messages (dependent on the log level selected) may be printed on the console.
These messages describe board status and errors.

Message formats

Variable parts of the message are described here with a sort of ‘‘pr intf’’ for mat which will be
familiar to software engineers. The for mat types used here are:

%s Some string (the context will give you a clue)
%x Number in hexadecimal for mat
%02x,%08x Hex number of fixed length (2 or 8 digits)

PMON Manual 9.6. AlgPOST diagnostics in detail 85

%c single character
%d Decimal number
[x] character ‘‘x’’ is optional

Message LogLevel

[*]Add=0x%x Wnt=0x%x Got=0x%x Xor=0x%x [*]Rrd=0x%x [*]Urd=0x%x ERR
Error message from a memory test. If the message is preceded by an aster isk then a cache
par ity error has occurred. Add is the address being tested. Wnt gives the data expected at the
address. Got gives the actual data read from the location. Xor is the binary xor of the expected
and got data; this value is useful for recognising systematic errors. After the error is detected
the location under test is read again, Rrd gives the subsequent value read; if this field is pre-
ceded by an aster isk then the Rrd value is different from Got indicating a memory read (as
opposed to write) problem. The Urd field gives the value obtained by reading the uncached
location. Again this will be preceded by an aster isk if it is different from the original value
obtained indicating a possible cache problem.

[*]Add=0x%x Wnt=0x%x Got=0x%x Xor=0x%x [*]Rrd=0x%x ERR
See the description of the previous message. This message is used when an error has been
detected in an uncached memory location.

Activity: %s INFO
A message indicating the type of test about to be perfor med. See §9.6.6 for messages in this
categor y.

Ancient real time clock value ERR
The boot-tests know the Unix time at which they were built. If the real time clock is running but
contains an earlier value than this, the clock will be reset. This situation may be caused by a
faulty clock chip or rogue software reprogramming the clock.

Data cache line size %d INFO
Infor mational message giving the data cache line size. The line size is set by the AlgPOST
star tup code.

Data cache size %d bytes INFO
Infor mational message indicating the size of the data cache.

Date: %s %d/%d/%d %02d:%02d:%02d INFO
Infor mational message showing the current time and date stored in the real time clock.

Executing PROM package %d NOTICE
Pr inted immediately before transferr ing control from the test code to a PROM package.

Failed to start real time clock oscillator ERR
An attempt to start the real time clock oscillator has failed. This is probably caused by a faulty
or wor n out NVRAM chip.

Instr uction cache size %d bytes INFO
Infor mational message indicating the size of the instruction cache.

Integrated Tests NOTICE
Infor mational message printed immediately after the basic tests have been perfor med and
before the mainline tests are started.

PMON Manual 9.6. AlgPOST diagnostics in detail 86

Integrated Tests Completed NOTICE
Infor mational message printed immediately after the tests have been completed. The next step
is to enter the monitor or execute a PROM package.

MPSC: chan%d %s Wnt=0x%02x(%c) Got=0x%02x(%c) ERR
Ser ial channel internal/exter nal loopback failure. An inter nal loopback error indicates a problem
with the serial chip. An exter nal loopback error may be caused by a faulty cable.

MPSC: chan%d %s receiver busy before loop ERR

MPSC: chan%d %s receiver busy in loop ERR
The serial chip has returned an unexpected status. This is probably due to a faulty chip or prob-
lems with the associated data bus.

MPSC: chan%d %s transmitted %d but received %d ERR
The internal or exter nal loopback test has received an unexpected number of characters.
Receiving 0 characters on an exter nal loopback test means that the a loopback connector is not
installed. Other errors indicate problems with the serial chip.

MPSC: chan%d %s transmitter busy after loop ERR

MPSC: chan%d %s transmitter busy in loop ERR

MPSC: chan%d %s: transmitter busy before loop ERR
The serial chip has returned an unexpected status. This is probably due to a faulty chip or prob-
lems with the associated data bus.

MPSC: chan%d %sback test skipped NOTICE
A loopback test has been skipped because the serial channel is currently configured as a con-
sole.

MPSC: chan%d register read/write failure Wnt=0x55 Got=0x%02x ERR
A register access test on the serial channel has failed. This may be a problem with the chip or a
problem with the associated data bus.

MPSC: failed to generate TxEmpty interrupt ERR

MPSC: failed to generate interrupt ERR
The serial device has been programmed to generate an interrupt but did not do so. Probably
something wrong with the serial device.

NVRAM battery failure detected ERR
The NVRAM has failed its battery check test. Replace the NVRAM.

NVRAM contents are corrupted ERR
The NVRAM environment is corrupted. Either the NVRAM is failing or rogue software has modi-
fied the NVRAM environment area.

PROM package %d has checksum 0x%08x expected checksum 0x%08x ERR
A PROM package has an incorrect checksum. This package will not be executed if selected.
This may indicate a problem with the PROM or simply a package installation error.

PROM package %d not installed WARNING
The itpkg environment var iable specifies a package that is not installed; it should be reset.

PMON Manual 9.6. AlgPOST diagnostics in detail 87

PROM package %d requires checksum of 0x%08x WARNING
The package does not have a checksum installed. This is not an error. The checksum indicated
should be installed in the package to prevent this message appearing in future.

Real time clock contains invalid infor mation ERR
One of the real time clock locations in the NVRAM contains invalid infor mation. This may be a
problem with the NVRAM or the associated data bus.

Real time clock may have lost battery backup WARNING
A war ning pr inted if the NVRAM battery ok test failed because the real time clock is probably
incorrect.

Reinitialising NVRAM environment NOTICE
Message printed immediately before reinitialising the NVRAM environment.

SONIC: CAM enable pointer Wnt=0x%x Got=0x%x ERR

SONIC: CAM entry %d address port %d Wnt=0x%04x Got=0x%04x ERR
The SONIC has misread data from memory into its CAM. This may be caused by a problem in
the bus arbitration circuits.

SONIC: command register when in reset Wnt=0x%x Got=0x%x ERR
When the SONIC is in software reset the command register contains an unexpected value,
probably due to a problem with the chip.

SONIC: failed to generate receive interr upt ERR

SONIC: failed to generate transmit interrupt ERR
The SONIC has not generated an expected interrupt. This is probably a problem with the
SONIC chip.

SONIC: failed to load CAM ERR
The SONIC has not completed a ‘‘load CAM’’ command. This may indicate problems with
SONIC bus master operations or with the chip itself.

SONIC: failed to read receiver resource area ERR

SONIC: has bad receive buffer sequence number %d expect %d ERR

SONIC: has bad receive data Wnt=0x%02x Got=0x%02x ERR

SONIC: has bad receive packet length 0x%04x ERR

SONIC: has bad receive packet sequence number %d expect %d ERR

SONIC: has bad receive packet status 0x%04x ERR

SONIC: has bad transmit packet status 0x%04x ERR
An error has been detected on the SONIC internal loopback test. This may be due to a faulty
device or a problem in the bus arbitration circuits.

SONIC: loaded CAM but failed to interrupt ERR
The command executed by the SONIC has apparently completed but it has failed to generate an
interr upt in the chip.

SONIC: silicon revision %d NOTICE
SONIC revision number displayed for infor mation.

PMON Manual 9.6. AlgPOST diagnostics in detail 88

SONIC: watchdog timer 0 register failure Wnt=0x5555 Got=0x%x ERR

SONIC: watchdog timer 0 register failure Wnt=0xaaaa Got=0x%x ERR
A register access test on the SONIC has failed. This may be a problem with the chip or a prob-
lem with the associated data bus.

Setting real time clock to %s(%d) %d/%d/%d %02d:%02d:%02d NOTICE
The clock has been reset; either the date was unacceptable or the clock has been restarted.

Star ting real time clock oscillator NOTICE
The real time clock oscillator has been stopped (to conserve the battery.) This message should
only appear once. If this message is always displayed there may be a problem with the NVRAM
or some other software may be stopping the clock.

System halting NOTICE
The tests have completed and no valid PROM package is selected. The system will enter a halt
state from which only an exception will exit.

User request to enter monitor NOTICE
The debug button was held down and the monitor will be entered. If this happens when the
debug button was not held down, then there is a problem with the debug button connections.

Version: %s INFO
Identifies the boot-test release.

9.6.7. Asking AlgPOST for more detail

Increase the log-level. This means getting to the monitor prompt and setting the itloglevel

variable to a higher level:

PMON> set itloglevel 3

1 will report ser ious problems only; 3 will report on all test failures, with reasons; 6 will tell you
about every test as it starts. See the description of the environment var iables in §9.5 for more
details.

9.7. Programming AlgPOST

9.7.1. PROM packages

The PROM consists of some startup code and a set of packages (self-contained portions of
code). Each package consists of a package record stored in a fixed area of the PROM and a
region of code located somewhere else in the PROM.

All unused package records and other unused PROM locations will be initialised to contain
words of 0xffffffff. Due to the nature of PROM devices, these locations can be repro-
grammed allowing new packages to be incorporated into an existing PROM. Areas of the
PROM available for use by new packages can be determined by examining existing package
records.

A small “package loader” is incorporated into the startup code. The loader checksums the
selected package and will start execution of the package if it is satisfied with the infor mation.
The package loader may be called by jumping to the fixed location 0xbfc70000 with the CPU
a0 register containing the package number to be executed. By default, after reset, the PROM
will attempt to execute package 7 (the tests). The default package may be changed by repro-
gramming the PROM; however it is the responsibility of the initial package to do some basic
board initialisation.

PMON Manual 9.7. Programming AlgPOST 89

Having completed the tests, the next package to be executed is selected by the itpkg environ-
ment var iable, which defaults to 6.

Each package record consists of 32 bytes (8 words). The code fragment in Table 9.6 shows the
format of a package record.

package_record:

.word magic # indicating package format

.word pkg_first # address of first location used by package

.word pkg_last # address of last location used by package

.word pkg_csum # add-with-carry sum of *pkg_first..*pkg_last

.word pkg_entry # package entry point

.word reserve1 # reserved

.word reserve2 # reserved

.word reserve3 # reserved

Table 9.6: For mat of package record

9.7.2. PROM layout

The first 0x400 bytes of the PROM are commonly used for jump table entry points.

The R3000/R4000 boot exception vectors are reserved for AlgPOST. Packages can define
other entry points as required.

Table 9.7 shows the layout of the first section of the PROM consisting of the jump table, package
records and package loader.

PMON Manual 9.7. Programming AlgPOST 90

j boot_pkg # 0xbfc00000

li a0,7 # loads default package in branch delay slot

... # available jump table entries

j it_bevutlb # bfc00100

nop

... # available jump table entries

j it_bevgen # bfc00180

nop

... # available jump table entries

j it_bevtlb # bfc00200 (reserved for R4000)

nop

... # available jump table entries

j it_bevxtlb # bfc00280 (reserved for R4000)

nop

... # available jump table entries

j it_bevcache # bfc00300 (reserved for R4000)

nop

... # available jump table entries

j it_bevgen # bfc00380 (reserved for R4000)

nop

... # available jump table entries

package_records: # bfc00400

... # package information records

boot_pkg:

...

/*

* decide which bit of code to execute

* based on package records and a0

*/

...

la v0,package_pointer

lw v0,16(v0)

j v0

Table 9.7: PROM structure

9.7.3. The NVRAM environment

The NVRAM consists of 2040 bytes of memory. The NVRAM is used for the non-volatile envi-
ronment, controlling the boot tests and providing other board related infor mation.

9.7.4. NVRAM structure

The first 64 locations of the environment area are special in that they are not checksummed.
This allows low-level code that does not have the ability or time to recalculate the checksum to
store values in the NVRAM. The remainder of the NVRAM (1076 bytes) is used to hold the
environment strings. The environment consists of a set of strings preceded by their length.

Table 9.8 shows the detailed layout of the NVRAM environment area.

PMON Manual 9.7. Programming AlgPOST 91

.half magic

.half sum # checksum of environment area

.half envsize # total size of environment

.byte tst # NVRAM test byte

... # other unchecksummed locations

/* environment starts at offset 64 */

.byte 25 # length of env string

.ascii "ethaddr=00:40:bc:00:01:00"

.byte 8

.ascii "itquiet="

.byte 12

.ascii "itloglevel=5"

...

Table 9.8: NVRAM environment structure

9.7.5. Exception vectors and re-vectoring from AlgPOST

AlgPOST only uses the ‘‘bootstrap exception vectors’’. This means that exceptions are vectored
via a PROM location. In the MIPS architecture a CPU status register bit can be changed to
cause exceptions to be vectored through low memor y - as a real operating system will do.

AlgPOST provides a mechanism which permits other knowledgable PROM code to grab excep-
tions where appropriate - this mechanism is sometimes used internally by AlgPOST tests which
expect to cause an exception. If the CPU k0 register is non zero when AlgPOST catches an
exception, then execution will be re-directed to the address in k0. No state is changed, so the
code at the k0 location can be just like any other MIPS exception handler. Before transferr ing
control the k0 register is cleared, so a double exception will be treated as ‘‘unexpected.’’

PMON Manual 9.7. Programming AlgPOST 92

10. Glossary

72001: NEC serial port controller (used on many Algor ithmics boards for peculiar historical rea-
sons), sometimes also called ‘‘MPSC’’ for ‘‘multi-protocol serial controller’’.

Big-Endian: see ‘‘Endianness’’

Bisexual: used to describe a binary program which can run in either big-endian or little-endian
mode.

Bitorder, Byteorder: when a little-endian CPU is connected to the big-endian VMEbus, complete
compatibility of data representation is impossible. These describe two options: ‘‘Bitorder’’
is the result of preserving 32-bit words between the big- and little-endian wor lds, so that
aligned 32-bit integers are compatible but strings are disordered (‘‘UNIX’’ on one side
becomes ‘‘XINU’’ on the other). ‘‘Byteorder’’ descr ibes the result of achieving compatibility
in string order and byte addressing, but causes the representation of integers to be differ-
ent.

Cache: a fast memory used to keep recently-referenced data in the hope that it will be used
again soon. Any MIPS CPU has onchip data and instruction caches for high perfor mance.

Checksum: a consistency check on a piece of memory, usually obtained by summing all the
memor y contents as if it was an array of integers and then storing the result at the end of
the memory block. Used to ensure the validity of the non-volatile memory contents.

Console: a ser ial por t used for communication with AlgPOST. Any or all of the P−4000i’s ser ial
por ts can be assigned as consoles, see §9.4.

CR register: the MIPS CPU ‘‘Cause’’ register ; see [Architecture].

DMA: used here to mean any memor y transfer which is not perfor med by the CPU.

Endian, Endianness: refers to how a CPU stores data items bigger than a byte in a byte-
addressible memory. Big-Endian CPUs store the most significant bits of integers in the
lowest memory locations; little-endian CPUs store the least significant bits of integers in
the lowest memory locations. The name comes from ‘‘Gulliver’s Travels’’. [Algorithmics]
contains a section describing the awful consequences of that boards’ willingness to be
configured in either way.

Environment var iable: a piece of data stored under a mnemonic name in the non-volatile mem-
or y, see §9.5.

envname, envval: respectively the name and stored value of an environment var iable.

EPC register: the MIPS CPU ‘‘exception PC’’ register ; see [Architecture].

Exception: a MIPS word (see [Architecture]), meaning all interrupts and traps.

FPA: floating-point accelerator - hardware to carry out floating point arithmetic.

Halfword: a 2-byte quantity.

I-cache: instr uction cache, see ‘‘cache’’.

IO bus: the P−4000i is internally organised with a local bus which connects the CPU and
onboard memory, which is in turn connected to an IO bus which connects all other con-
trollers and memories. Since the PROM is on the IO bus, the IO bus control circuits must
be functioning for AlgPOST to do anything useful.

Little-endian: see ‘‘endianness’’

Loglevel, log level: refers infor mally to the environment var iable itloglevel is crucial to determin-
ing how verbose are the reports from AlgPOST. itloglevel is described in §9.5.

PMON Manual 10. Glossar y 93

Loopback: some controller ICs can be put into a mode where output from the interface can be
inter nally wired straight back into the input. This allows the controller IC and its support
logic to be checked regardless of what the interface is connected to.

MIPS: from MIPS Computer Systems Inc, often used as a description of their particular RISC
architecture.

MPSC: multi-protocol serial interface controller: an acronym sometimes used for the NEC
72001 serial port controller used on the Algorithmics.

NVRAM: non-volatile RAM. The Algorithmics is equipped with a module which contains a low-
power static RAM, battery and real-time clock in one unit. AlgPOST just requires a RAM
store whose values persist when power is removed.

PROM, ROM: the Algorithmics read-only memory - the board has two 32-pin DIL sockets for
JEDEC-standard uV-erasable PROMs. By association, used to describe any program
which is designed to run from a read-only memory.

RA register: the MIPS CPU ‘‘retur n address’’ register $31; see [Architecture].

RS232: the CCITT interface standard for serial I/O, often used to describe the four serial ports
of the Algorithmics.

SR register: the MIPS CPU ‘‘status’’ register ; see [Architecture].

Timeout: the expir y of a maximum time permitted for something to happen, which ought to have
happened. There is a hardware timeout provided for onboard accesses to IO devices
(implemented by the VIC068).

UART: ‘‘universal asynchronous receiver/transmitter’’: a name for a serial port controller, appli-
cable to the one inside the VAC068.

tlbmiss: a par ticular sor t of exception in the MIPS architecture, caused by a reference to a vir-
tual address for which no memory-mapping infor mation is available. It is a ver y common
unexpected exception in a malfunctioning board.

VADDR register: the MIPS CPU ‘‘Bad Virtual Address’’ register ; see [Architecture].

Variable: usually means an environment var iable (see above).

XOFF: literally, another name for the ASCII character produced by Control-S. Used to refer to a
flow control convention on serial ports: a person or computer being swamped with too
much output can send an XOFF to ask the sender to pause. Used by AlgPOST.

PMON Manual 10. Glossar y 94

11. References

Architecture: Gerry Kane, MIPS R3000 RISC ARCHITECTURE, Prentice Hall, 1987.

Architecture: Gerry Kane, MIPS R4000 Microprocessor User’s Manual, MIPS Computer Sys-
tems, Inc, 1991

Architecture: MIPS Computer Systems Inc, MIPS R-Series Architecture.

P4000i: Algorithmics Ltd, P−4000i User’s Manual (descr ibes the P−4000i hardware) Algorith-
mics Ltd, 1994.

LSI-PMON: LSI Logic Inc, MIPS PROM Monitor and C function Run Time Librar y User’s Guide
Release 4.0 (descr ibes LSI’s full PMON package, which includes more than just a PROM
monitor). Published by LSI Logic, 1993.

MIPS prog: Erin Farquhar and Philip Bunce, The MIPS Programmer’s Handbook (a useful back-
grounder particular ly for programmers new to the MIPS architecture). Published Morgan
Kaufmann, ISBN 1-55860-297-6.

PMON Manual 11. References 95

