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1. Introduction to the R4x00

The MIPS R4x00 is a family of processors which has spanned perfor mance levels from about 30-100

times the ‘‘SpecMar k’’ unit of a DEC VAX 11/780 minicomputer.

This manual is about those CPUs which retain all or the great majority of the system interface defined for

the R4000 components introduced in 1991; they are called R4400PC, R4600 (from IDT, Toshiba and

NKK) and Vr4200 (from NEC). Although it doesn’t have much discussion of the ‘‘backdoor’’ secondar y

cache interface fitted to the high-end members of the family (R4400SC, R4400MC) the system interface is

rather similar and much of this material applies to them too.

1995 will see the launch of a couple of R4x00 derivatives with modified or 32-bit buses. This document

does not describe these, though you may find it a helpful insight into the strange wor ld of MIPS.

Since the interface spans such a large perfor mance range, it at times puts throughput before simplicity.

An R4x00 processor unit contains:

• CPU core : roughly equivalent to any 32-bit MIPS processor plus floating point accelerator. How ever,

the R4x00 can manipulate 64-bit integer data and 64-bit virtual addresses. The hardware interface

uses a 64-bit wide data path and its operation is unaffected by whether the programmer/compiler uses

the 64-bit extensions to the instruction set.

The CPU pipeline progresses at twice the input clock frequency. This means that a processor using a

‘‘50MHz’’ input clock can run instructions at a peak rate of 100M instructions/second.

R4x00 family members differ in pipeline organisation; the R4400 has an 8-stage pipeline, while the

R4600/R4200 are 5-stage. At the same clock rate, the shorter pipeline perfor ms better ; the longer

pipeline can improve perfor mance only where it makes higher clock rates possible.

Different suppliers use inconsistent clock-rate suffixes on their parts. Some parts (eg IDT’s R4600)

are always descr ibed by the pipeline clock rate; but R4400 parts were traditionally described by their

input clock rate - don’t be deceived, they’re not running at half the speed.

• On-chip instruction and data caches : 8-16Kbytes each, depending on CPU type. The data cache is a

wr ite-back cache; unlike the MIPS R3000, store operations are not immediately forwarded to memory,

but the data is held in the cache until the cache storage is either needed for some other data, or is

explicitly flushed.

• Bus interface : a synchronous, address-data multiplexed, 64-bit wide highway connects the R4x00 to

the rest of the system. The bus interface clock frequency may be different from (typically lower than)

the input clock frequency; it is obtained by dividing the internal double-speed pipeline clock by 2, 3, 4

or even bigger multiples1.

It is this interface which is described in this document.

High-end R4x00 processors (R4400SC, R4400MC) are designed to wor k with an exter nal secondar y
cache; they contain secondary cache control circuits and an interface allowing the secondary cache to be

built up using standard fast SRAM components. This document does not describe these processors. In

par ticular, this document omits all of the facilities provided by the R4400MC to implement a shared
memor y multiprocessor system with coherent caches.

However, the bus interface signalling mechanisms are the same across the family; so this document may

provide a useful introduction to the R4400MC designer.

1 This feature, now familiar in every PC, was first featured on the R4000.
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1.1. Naming Conventions

• Signals : the names of signals are written in SMALL ITALICS. Buses are referred to with a numer ic

range; so if there is a bus SysAD(0:63) that implies the existence of the 64 signals SysAD0 through

SysAD63; but we will usually leave off the numbers when referr ing to the whole bus and call it SysAD.

Signals which are active low have names which end with a ‘‘*’’ (aster isk).

There is a signal index so you can see which is referred to where.

• Conventional terms : where a word or phrase appears in italic you may well find it in the Glossary.

Using the R4x00 1.1. Naming Conventions 7



2. R4x00 System Goals

The small-package R4x00 CPUs are intended for ‘‘small’’ single-processor systems where the secondary

cache and the big package required to support it are not cost effective. With onchip floating point and

considerable processor power, it was conceived largely for desktop wor kstations and small Unix servers;

but most design-ins (to the suppliers’ evident suprise) have been into high-end embedded applications

from high-speed networ king, through raster image processors, to arcade games.

We expect most R4x00 systems to contain the same basic CPU and memory units, as shown in Figure

2.1:

CPU

private

memory

IO bus

interface

IO bus

expansion

bus

interface

dumb

devices

controllers

with on-chip

DMA

Figure 2.1 Components of an R4x00 system

Notes on Figure 2.1

• Processor/pr ivate memory interface : to extract the best perfor mance from the R4x00 it must have a

low-latency, high-bandwidth connection to a large memory. The relatively small on-chip caches and

the ver y high perfor mance while running cached means that cache misses occur with about the same

frequency as the memory references of an uncached CISC processor of 10 years ago; older readers

will remember the importance of minimising ‘‘wait states’’ on these CPUs.

Even in the better R4x00 systems the processor will spend more than half its time waiting for memory

transfers.

• Processor/IO system interface : IO system transfer rates are far lower and are usually limited by the IO

device or controller. The major concern will be to convert the R4x00 bus into something more readily

attached to standard peripheral controllers, which is why the example diagram includes an ‘‘IO bus’’.
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• IO/pr ivate memory interface : local controllers with DMA capability or controllers attached to an

expansion bus interface may be given access to the private memory array. Different ways in which this

can be done are discussed in §8 below.

The need to take the interface up to ver y high throughput levels led the R4x00’s designers to the

following:

• High and configurable interface clock rate : ambitious designs can configure a high clock rate for

maximum throughput; more economical or conservative systems can configure it lower to simplify

interface design.

• Str ictly synchronous design : every CPU output should be sampled and every CPU input produced by

an edge-triggered registered device using a clock der ived from the CPU interface clock outputs TClock
and/or RClock.

The timing parameters were intended to support direct connection of the R4x00 bus interface into a

suitable ASIC; interfaces using specially-designed chip sets should offer the best perfor mance. But

although several chip sets were designed and in some cases offered for the fabulous disappearing

‘‘Windows/NT’’ mar ket, none has yet established a significant following for embedded applications.

Perhaps this will change in 1995.

However, the timing parameters also make it possible to feed CPU outputs into discrete staging

registers or (for control signals) a high-speed registered programmable logic device (PLD) A range of

larger programmable devices are now capable of operating at typical R4x00 interface rates, and allow

very efficient control interfaces to be built.

• Register-to-register design : to allow the highest possible clock rate CPU inputs are taken directly into

on-chip sampling registers, and CPU outputs are resynchronised at the chip border. This allows

(near ly) all CPU inputs to require the same, low, setup and hold times; and all outputs to share the

same (minimal) clock-to-valid time.

The problem is that these internal register delays cause a delay before a CPU output can reflect a

change of state caused by an input event. The input must be sampled on one clock, internally

processed and any consequential change issued on another clock edge; so at least two clock per iods

will separate the input from the output change.

• Sophisticated, low-skew clocking : clock-buffer ing and chip input/output delays can easily accumulate

to steal setup and hold time from a high-frequency synchronous interface. The R4x00 uses phase-

locking techniques to generate the bus interface clocks, allowing the user to compensate for buffer

delays. This is described in detail in §4.

• Fire-and-forget approach : whenever possible the default behaviour of the R4x00 is to make outputs

valid for a single clock cycle, and to assume that the exter nal logic will sample those outputs on the

rising edge at the end of that cycle. Exter nal logic which can’t keep up (the usual case) must explicitly

throttle the processor; see §5.4.

• Burst reads and writes : once the CPU is running, the majority of bus traffic consists of cache refills or

wr ite-backs. Cache transfers take place as bursts; one address is provided for a whole cache line of

data. Burst transfers can occur as fast as one 64-bit datum per bus clock per iod.

Other attributes of the bus interface are a consequence of the complex requirements of the R4400MC

par t; we’ll explain those as we come to them.

The net result is an interface which looks intimidating, but is relatively easy to design with once you get

used to it.
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3. Signal Summar y

This section lists off the signals used in the R4x00 interface and discusses their character istics. Critical or

difficult signals are highlighted.

Address/Data transfer signals

SysAD(63:0),SysADC(7:0): (tr istate) multiplexed address (36 bits) and data (64 bits), plus check bits.

Check bits (not used during address phases) can use either per-byte ev en par ity or an error-
correcting code (ECC) encoding.

SysCmd(8:0),SysCmdP: (tr istate) encodes the bus transaction type (see Table A.1 below). SysCmdP is an

ev en par ity check bit.

Note that SysAD and SysCmd are the only CPU outputs which are tri-stated when the CPU releases

the bus.

ValidIn*: (input to CPU) interface logic is presenting a bus operation on SysCmd and SysAD.

ValidOut*: (from CPU) the CPU is presenting a bus operation on SysCmd and SysAD.

ExtRqst*: (input to CPU) active to request the processor to tristate the bus (see §9).

Release*: (from CPU) pulsed by the processor when it is tristating the bus for any reason. This happens

dur ing any read cycle (in anticipation of someone else supplying the data), but also in response to a

tr istate request communicated with ExtRqst*.

Because you should never allow SysAD and SysCmd to remain undriven, it is your duty as interface

designer to ensure that whenever the CPU asserts Release*, your logic takes over and drives the

bus to a proper logic level.

RdRdy*: (input to CPU) when inactive, the processor will stretch any read-address command until RdRdy*
becomes active again (war ning - pipelined)

WrRdy*: (input to CPU) when inactive, the processor will stretch the address part of any write command

until WrRdy* becomes active again (war ning - pipelined)

Interrupts

Int(5:0)*: (input to CPU) any active lev el which is not masked causes the CPU to take the interrupt trap as

soon as execution of the current instruction is complete. Software can obtain the state of these

inputs through the cause register trap/error bits.

Interr upt enabling is really a software issue in the RISC R4x00; but a summary here will help

readers understand the interrupt options. There are:

• a global interrupt enable bit which is reset automatically on entry to the trap handler, protecting

software against premature nested traps; and

• a set of six mask bits (in the system status register) corresponding to each interrupt input.

System software manipulates the mask bit to produce the desired interrupt prior itisation and nesting

behaviour.

Note that these hardware pins correspond to the bits called ‘‘IP7’’ through to ‘‘IP2’’ in the

cause/status register; the lowest two bits provided by the cause/status register are for software use

only.
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NMI*: (input to CPU) a falling edge causes a non-maskable interrupt. Since this is not masked by another

exception, this can overwr ite some registers which save exception state, so software can’t

guarantee to recover. Think of it as a soft-ish reset.

The NMI software trap is at the reset entry point.

JTAG (diagnostic boundary scan) interface

JTDI, JTDO, JTMS, JTCK: Before you get too excited; the more recent R4600/Vr4200 devices do not

implement JTAG boundar y scan.

The JTAG interface is to a standard defined by the IEEE, and is intended to support automated

testing of assembled boards. In essence, it is a ser ial bus allowing you to put the chip into a mode

whereby its inputs can be sampled and read out serially; and a set of values for all output pins fed in

ser ially and then driven out. It permits the integrity of solder joints to the component (shorts and

opens) to be investigated by an ATE machine without needing to understand the detailed operation

of the part.

To discover how to use it you need to read [R4000 Processor Interface], and also consult the IEEE

JTAG specification.

Bus interface clocks

TClock(1:0): (from CPU) use these to source the clock for your registers which drive CPU inputs.

RClock(1:0): (from CPU) optional bus interface clocks one quarter-cycle advanced relative to TClock, can

be used to give more hold time for CPU outputs (at the cost of reduced setup time). Probably not

useful above 50MHz, since the setup time vanishes before your eyes.

Note that you don’t usually drive the bus clocks TClock and RClock directly from the CPU. In most

systems the load which they drive is high and they must be buffered; where we need to show this

we’ll call them BTClock and BRClock. Having brought that to your attention, we’ll be sloppy. In this

manual we will use the names TClock and RClock to mean the clock you use in your system, whether

buffered or not.

SyncOut,SyncIn: buffer SyncOut just like you mean to buffer RClock and TClock, load the output in a way

similar to TClock and RClock, and feed the result back to SyncIn.

This will miraculously produce TClock and RClock signals with the closest possible relationship to

CPU outputs and the CPU input sampling point.

Master clock and output drive speed control

MasterClock: (input to CPU) from oscillator (CMOS levels required, so use an FCT buffer).

MasterOut: (from CPU) produced soon after reset (actually, it is guaranteed stable only some time after

the assertion of VCCOk. You should use MasterOut to define the inactivation of the reset signals.

IOOut,IOIn: used for an ingenious self-adaptive signal drive system, introduced with the R4000 but

dropped from some later parts. The idea was to connect IOOut (from CPU) to IOIn (into CPU) via a

track of length 50% longer than the longest track among the bus signals SysAD, etc, and at the half-

way point put a capacitor load equal to the nominal worst-case load of those bus signals.

The CPU will use this to tune its output drive to meet the required clock to output valid time at IOIn.
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Reset and Initialisation signals (§10)

ColdReset*: (input to CPU) the basic reset-everything signal. Following power-up, it must be properly

asser ted before VCCOk is allowed to reach a logic 1 or chaos will ensue.

Once you have been through the VCCOk sequence you can remove ColdReset*. The CPU requires

at least 100ms between VCCOk asser tion and ColdReset* deasser tion, ev en though the configuration

data stream will take much less time to run. The trailing edge of ColdReset* must be synchronised

with MasterClock or MasterOut (which is allegedly near enough to identical). If you choose MasterOut,
don’t forget that it won’t run until quite late in the reset sequence, so you have to use logic which

asser ts ColdReset* asynchronously and de-asserts it synchronously.

The bus interface clocks are undefined until ColdReset* is deasserted.

VCCOk: (input to CPU) a (properly timed) low-to-high transition on VCCOk dur ing a per iod when

ColdReset* is asserted causes many R4x00 CPUs to configure themselves by fetching data using

ModeClock and ModeIn.

This must be done following power-up (allow at least 100ms of good power before VCCOk is

asser ted). You must ensure that ColdReset* is asserted with or before VCCOk. With power already

on reconfiguration will occur correctly provided that VCCOk is deasserted for a minimum of 64

MasterClock cycles.

ModeIn, ModeClock: is a rather heavyweight power-up configuration system inherited from the original

R4000, and retained by all devices except for the Vr4200. ModeIn (input to CPU) carries the

configuration data bitstream, advanced by falling edges of ModeClock (from the CPU). I meant

‘‘advanced’’; you must ensure that the first bit in the data stream is presented on ModeIn at the point

at which VCCOk is asserted.

ModeClock will be high from power-on or cold reset, making its first high-to-low transition only after

VCCOk has been asserted.

ModeClock is quite slow (one every 256 MasterClock cycles). Where you have it, ModeClock seems to

be the best way to time some of the later stages of the reset sequence.

Reset*: (input to CPU) used to reset the execution unit and reboot the software. Reset* must be held

asser ted until the bus interface clocks are properly established, so from powerup must be held

throughout the period when VCCOk and ColdReset* are being cycled. A minimum of 64 cycles of

MasterClock are required for everything to stabilise; then Reset* should be removed synchronously

with MasterClock to let the CPU start execution.

Reset* must be deasserted synchronously with reference to a rising edge of MasterOut; it is not clear

whether its state ver y ear ly in the reset sequence matters, but to be safe make sure that it is

asser ted asynchronously and kept asserted throughout the cold-reset sequence.

Miscellaneous

Gr pStall*, Gr pRun*: appear in early documentation, but are un-defined in later revisions. Connect them to

nothing.

Fault*: (tr istate) asser ted when CPU is in check mode and the pin state doesn’t match. Doesn’t wor k on

ear ly R4000 processor revisions nor on later R4600 and Vr4200 types. Only important for dual

redundant processor systems, and their problems are beyond the scope of this application note.

VccP, VssP: separate power and ground to feed the phase-locked loop circuitry, which is ver y sensitive to

noise. Should be fed with a specially decoupled supply, carefully tracked; see §11.3.
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4. Clocking and signal timing

This section describes the mechanisms which make it possible to run the interface at ver y high clock

rates. This reduces to the provision of clocks to the interface logic which ver y accurately track the bus

interface signals. The clock wir ing is shown in Figure 4.1:

MasterClock

(50Mhz)

PipelineClock
(100Mhz)

TClock

RClock

SyncOut

SyncInR4000PC

matched

buffer

(all 50, 33 or 25 Mhz)

TTL/CMOS

oscillator

match for

tracking

and load

BTClock

BRClock

Figure 4.1 Clock wir ing cookbook

Note the following:

• the CPU is fed by MasterClock; when anyone refers to a ‘‘50Mhz’’ R4x00 they mean the maximum

usable MasterClock frequency. The numbers on Figure 4.1" are examples, of course.

Like most complex CMOS devices, the R4x00 appreciates a clock input with a good logic 1 high level.

We recommend that you buffer the clock through a high-speed CMOS (‘‘FCT’’ or similar) gate.

• MasterClock is doubled by a phase locked loop to produce the main internal pipeline clock, called

PClock in MIPS documentation. In fact there are faster clocks inside the R4x00, but you don’t need to

know about them.

• the pipeline clock is divided by 2, 3, 4 or whatever to define the bus interface clocks. The divisor is

selected during the reset-time configuration process, of which more later (§10.1).

• most of your bus interface logic will run from TClock; RClock is locked to the same frequency but leads

by a quar ter of a period, for reasons explained below. A good deal of the processor, interface and

memor y system will end up running synchronously to TClock, so even though the CPU drives two

copies you will probably have to buffer it and generate multiple outputs. You should try your best to

make sure that all your output clocks are similarly tracked and loaded.

Inside the chip the bus interface runs from an invisible internal clock called SClock; the phase-lock

mechanisms allow you to ensure that your buffered TClock is tightly aligned to the internal transition

points.

• SyncOut is provided so that the CPU can compensate for the delays in your buffer ing scheme. You

should buffer SyncOut exactly as you propose to buffer TClock, load the buffered signal with tracking

and capacitance as far as possible identical to your buffered TClock, and then feed the result back in to

SyncIn. The CPU will adjust the phase of TClock, RClock and SyncOut together until SyncIn is placed as

close as possible to its internal interface clock (which is used as the reference point for setup and hold

times). At this point your output clocks should be tightly aligned too.
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4.1. Internal clock handling

It’s time for a stroll around the R4x00 clocking mechanisms, and an introduction to the different clocks and

what they should be used for. We just fudged the basic question of why there are so many clocks. First

of all, what are all the clocks for?

• MasterClock deter mines the frequency of the system. But because the bus interface clocks are defined

by a programmable divisor, and that divisor is configured at some point during the reset sequence, the

reset sequencing must be done with reference to MasterClock (or possibly with MasterOut, which is an

in-phase copy of it).

• SyncOut, SyncIn are just there to be looped back to allow you to compensate for any buffer ing needed

in the real bus interface clocks.

• TClock is the main bus interface clock. All CPU output timings and input setup and hold requirements

are referred to TClock.

• RClock runs 25% of the clock per iod ahead of TClock and can be used where exter nal logic clocked

with TClock would have hold time problems with fast-changing CPU outputs. This is especially likely to

be a problem when capturing write data, and when interfacing any CPU output to an ASIC.

Consider the picture Figure 4.2.

CPUInput
from TClock

CPUOutput

RClock/BRClock

TClock/BTClock

MasterClock

Hold problematic

Setup OK

CPU sampling windowHold OK

Setup tight

Hold problematic

Setup OK

Figure 4.2 Timing relationships between clocks, inputs and outputs

The picture is based on 67Mhz CPU timings with the bus running at a 1:2 divider (bus clocks 67Mhz).

The principle difficulty with the R4x00’s str ict register-to-register logic, for both input and output signals, is

that of ensuring hold time with respect to TClock. The hold time problems on sampling CPU outputs can

be sidestepped by using RClock, but this can cause further problems, which are discussed below.

4.2. Clock synchronisation targets

The R4x00 interface depends crucially on the success of the phase-locked loops in aligning output signal

changes and input signal sampling points onto the buffered TClock signal.

If you look at the R4x00 specifications you will find the signal timings related to an internal clock called

SClock. This doesn’t exist as an interface signal, but the phase-lock arrangements mean that it is

guaranteed to track SyncIn with a maximum skew specified by the ‘‘clock jitter’’ parameter (typically 0.5ns).

The clock jitter degrades the tracking (with reference to SyncIn) of both SClock and the output clock TClock
separately, so the effect of an 0.5ns maximum jitter is to worsen setup and hold requirements referenced
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to the system-wide TClock by the combined effect, or 1ns.

By the way, don’t be tempted to actually use SyncIn as the incarnation of the invisible SClock; it turns out

that with some CPUs SyncIn may be 180° out of phase with TClock.

4.3. R4x00 input setup and hold requirements

You have to ensure that inputs to the R4x00 are stable throughout the sampling window; this window is

defined by both the setup and hold parameters quoted in the data sheet (3 and 2 respectively at 50Mhz),

but degraded by the skew between TClock and the internal, invisible SClock which determines the

sampling time.

• Setup time : it is immediately apparent from Figure 4.2 that getting a signal valid in time for the start of

the window is a simple matter of ensuring that the clock-to-output perfor mance of the device

generating the signal is fast enough for the chosen interface clock rate. This is not a problem; you can

use 15ns devices even at 50Mhz.

• Hold time : ensur ing that the signal remains valid to the end of the window is significantly more difficult.

The clock skew generated by the R4x00 PLLs and your clock buffer ing and distribution system

increase the required hold time to typically 3-5ns. Fast discrete registered devices don’t usually

guarantee any clock-to-output minimum, and if they do it will be less than this.

So let us concentrate on the hold time problem. Possible approaches are:

• Leave signal valid for (at least) an extra clock : much the best trick when it is possible. Try to ensure

that input changes are not triggered by the same edge on which the CPU samples them. This means

that any transition has to occur at some TClock rising edge where the CPU does not look at the value

of this signal.

• Use a delayed clock : clock your register with a delayed der ivative of TClock; some modern

programmable devices have selectable clock delays, or you can put the clock through an additional

high-speed buffer. This will wor k well, but can create a ‘‘chain’’ of hold-time problems back into your

control logic.

• Include another gate after the clocked element : if you drive an input with a high-speed register

followed by an additional high-speed gate, it is still relatively easy to meet the setup requirements; and

the additional delay makes the hold time safe. If used for wide paths it will add to the component

count, of course.

4.4. Sampling R4x00 output signals

As shown in Figure 4.2, setup time to TClock is usually adequate. But take care; the output timings

depend on the output buffer di/dt control mechanism, whose parameters are set up at reset-time

initialisation.

The mechanism affects all CPU outputs except the clocks. The outputs are driven with only the current

which is necessary to meet specified timing parameters, allowing systems with lightly-loaded buses

and/or carefully timed interface circuitry to reduce peak power surges, electr ical noise and ground

bounce. Three drive speeds are supported; they produce nominal output clock-to-output maxima of about

50%, 75% or 100% of a MasterClock per iod. See §10.1 for how to select different speeds.

Hold time is a different story, and the guaranteed period for which the outputs remain stable after the

clock edge (some say 2ns, some zero, for 50Mhz parts with the fastest drive-time configuration) is

insufficient to cover clock skew plus the hold requirements of most receiving devices. There are a number

of tricks which can be used:

• Slow the outputs : at minimum output drive speed the hold time may become wor kable. But the

venerable MIPS specification [R4000 Processor Interface] did not define minimum clock to output
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timings, and the semiconductor vendors have not improved the situation.

• Registered PLDs : will usually sample the data OK. In this type of device the clock is hard-wired to the

inter nal registers, but input signals are taken through the programmable logic array before being

presented at the register data input. The data is therefore always more delayed than the clock, which

makes PLDs resilient to marginal hold time problems; the hold time is usually specified as 0, but it is

safe to assume that they can cope with signals which change even a little before the clock (a little is

perhaps 10% of their nominal setup time).

So a registered PLD clocked from one of your TClock signals will sample outputs cleanly. Ideally you

will select a PLD which is no faster than is necessary to cope with worst-case setup times.

• Using RClock to sample data: this will wor k up to 50MHz (though the setup time is pretty low). The

problem is that the resulting outputs will themselves change too early to be fed into subsequent logic

stages running from TClock, so the problem tends to chain through your system.

This solution is usually applicable to CPU write data. The best discrete solution seems to be to use a

fast register with a clock enable. Clocked from RClock, the data hold time is OK; and the clock enable

signal can come from the TClock universe. Now using the clock enable you can (if required) stretch the

data over more than one clock.

• Add a gate upstream of the register : can be done, subject to expense. Not a good solution for data

(who wants 64 extra buffers?).

• Persuade the CPU to keep signals valid for more than one clock : this is particular ly applicable to

addresses, which can be held using cycle flow control (see §5.4); and particular ly inapplicable to write

data, which is only defined at one clock edge2.

See the recipes in §8 for examples of practical solutions.

2 You may notice that the R4600 CPU, when configured to drive write data ‘‘slowly’’,
holds the data through the idle (‘‘x’’) bus cycles. But the last word of a data burst is still
not extended.
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5. About the bus

Since the R4x00 interface is synchronous, the bus protocols can be built on the assumption that anything

presented with proper timing will be received correctly by the ‘‘other end’’. MIPS use the phrase exter nal
agent to describe the other end; we will be more infor mal and just call it ‘‘your interface logic’’, or

something of the kind.

The R4x00 bus interface signals are driven either by the CPU (CPU as master) or by your logic (CPU as

slave). Your logic cannot drive the bus until the R4x00 says so.

When the CPU has something to say on the bus, it is accompanied by the assertion of ValidOut*. When

your interface logic has something to give back to the R4x00, it must assert ValidIn*.

Bus operation consists of:

• Requests : which consist of a single value asserted by either party for at least one clock per iod. MIPS

documentation calls this a response if it is data being returned to the processor after a read request.

This distinction seems unhelpful and we won’t follow it.

• Messages : which consist of a sequence of requests issued by one party. For example, a CPU write

consists of a write-address request followed by one or more write-data requests. Within messages the

requests can be nose-to-tail, but there may also be gaps. There are some published rules about the

size of the gaps but they are complex and you should probably not count on them.

The R4x00 accepts any valid message from your logic at whatever speed you can throw it3. Your logic

most probably can’t, and a mechanism exists to stop the processor from overr unning; see §5.4.

• Tr ansactions : which actually do something. A CPU write transaction is represented by one message

on the bus, but a CPU read involves two; the read-address request from the CPU, and the message

which returns the data.

In principle, the bus protocols allow reads to be split transactions; that is, lots of writes and strange

cache-coherency operations may be inter leaved between the read request and the data which is

retur ned. But this can’t happen on an R4x00.

There is no general idea of a handshake; handshake protocols take up bus time and the R4x00 interface

is conceived to minimise bus occupancy.

5.1. Transaction types used for the R4x00

The bus system is ver y general, and in the R4400MC (multiprocessor) is used to communicate all sorts of

complicated and exciting messages about cache coherency. But the R4x00 is much simpler:

• as master, the R4x00 drives read requests (a single cycle presenting a command and an address) and

wr ite requests, which are multi-cycle operations with an address followed by one or more cycles of

data.

• with the R4x00 as slave , your logic drives read data (single cycle or cache-line-sized bursts) back to

the R4x00 in response to a read request.

• the only operation which might require an exter nal access to a CPU internal register is to manipulate

interr upt bits, and this won’t be necessary with the small package var iants.

• R4x00 reads should not be split - once the CPU has issued a read request the next thing it sees must

be the response data.

3 Secondar y cache versions may not be able to accept cache refill data at the
maximum rate, but that’s another story
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5.2. Signals used

Signals involved in bus transactions include:

• SysAD and its check bits SysADC provide a 64-bit path to carry data and addresses. The 36-bit

addresses use only SysAD(35:0). You can safely ignore parity or ECC bits while SysAD is carrying

addresses.

• the 10-bit SysCmd bus encodes the command. Nothing like all 1024 values are used; there are only

about 30 valid codes for the R4x00. Most of you will ignore SysCmdP; the CPU does when it is

receiving.

• ValidOut* is asserted by the CPU as master when it is driving something on the bus; your logic should

asser t ValidIn* when you are driving something on the bus.

In the simplest case bus operations are presented for one clock per iod, and the other party is then

assumed to have collected them. This would make exter nal logic impossibly difficult, so there are

mechanisms which can ‘‘throttle’’ the CPU to slow down the rate at which it presents addresses and data;

see §5.4 below. For the present, though, lets pretend everyone goes fast enough and has enough

buffer ing capability.

Figure 5.1 shows what happens on the bus for a write cycle followed by a read. Much better pictures and

fuller explanations are to be found in §6 and §7:

ValidIn*

Release*

ValidOut*

RdRespReadWDataWriteSysCmd

DataRdAddDataWrAddSysAD

TClock

Figure 5.1 Write and read cycle (full speed)

5.3. Command encoding

The command bus SysCmd tells the system what to do. The bus is bit-coded, but multiple different

meanings are overloaded onto bit-sets depending on context. Appendix A gives a comprehensive list of

all values used by the R4x00. The bit-orientated description here is therefore broken down into:

• read or write requests for non-burst access, presented when the appropriate byte address is on SysAD.

• cache refill and write-back requests (ie burst reads or burst writes), presented when the appropriate

byte (but always 8-byte aligned) address is on SysAD.

• data codes, presented when SysAD is carrying data to and from the processor.

• the null request code, which should be fed to the CPU to end a period where someone else has been

using the bus (see §9).
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General principles

• SysCmd8 is set 1 when SysAD is carrying data, and 0 when it is carrying addresses.

• dur ing address-type requests SysCmd(7:5) encode a request type - the only ones of interest on the

R4x00 are read, write and null.

Non-burst read and write requests

8 7  5 4 3 2 0

0 000=read, 010=write 11 width

Table 5.1: SysCmd Codes for uncached read/write requests

The width code determines how many bytes are being transferred across the bus. Note that although

regular MIPS instructions can produce only 1-byte, 2-byte, 4-byte and 8-byte transfers (in all cases

aligned on a corresponding memory address boundary) special instructions (‘‘load/store left’’ and

‘‘load/store right’’) are available which can transfer a group of bytes of length 3, 5, 6 or 7 provided that the

group either starts or finishes on a 4-byte or 8-byte boundary as applicable: see Table 5.2.

In all cases SysAD holds the byte address of the lowest-addressed byte being transferred.

Where n bytes are transferred, the width is the binary code for (n-1); so code ‘‘000’’ means a 1-byte

transfer, ‘‘111’’ an 8-byte transfer, and so on. Table 5.2 lays out the result; note the way in which the byte

lane used depends on the processors ‘‘endian-ness’’ option.

Cache burst read and write requests

8 7  5 4 3 2 1 0

000=read 00 = 2×64-bit data

010=wr ite 01 = 4×64-bit data
0 10 ×

Table 5.3: SysCmd Codes for cached read/write requests

Bit 2 encodes infor mation which could be meaningful only for a multiprocessor application.

The burst length corresponds to the cache line size, but it is encoded here because I-cache and D-cache

line sizes can be configured differently. In many cases your interface logic will know already what burst

size is to be used, so you won’t need to decode the field. Note that the cache line sizes are documented

as multiples of a 32−bit word: of course only 2 64−bit data are required to refill a 4×32−bit cache line.

For a processor with a secondary cache the ‘‘burst length’’ field could also be ‘‘10’’ for 8 data cycles, or

‘‘11’’ for 16 cycles.

Data codes

8 7  6 5 4 3 2 0

0=last 0=read 0=good 1=no par ity check

1=more coming 1=wr ite 1=error (resvd on write)
1 0 ×

Table 5.4: SysCmd Codes for data

• Last/more coming : the more coming bit is required on each datum of a burst except for the last one.

The CPU’s response to a ‘‘last’’ data item sent too early is undefined, so don’t feel tempted to try it. A

burst read request must elicit the number of data items which the CPU asked for.
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width Address SysAD byte lanes used (little-endian)
(code) mod 8 0-7 8-15 16-23 24-31 32-39 40-47 48-55 56-63

0 •
1 •
2 •
3 •
4 •
5 •
6 •
7 •

1 (000)

0 • •
2 • •
4 • •
6 • •

2 (001)

0 • • •
1 • • •
4 • • •
5 • • •

3 (010)

0 • • • •
4 • • • •

4 (011)

0 • • • • •
3 • • • • •

5 (100)

0 • • • • • •
2 • • • • • •

6 (101)

0 • • • • • • •
1 • • • • • • •

7 (110)

8 (111) 0 • • • • • • • •

56-63 48-55 40-47 32-39 24-31 16-23 8-15 0-7
SysAD byte lanes used (big-endian)

Table 5.2: Par tial word transfer encodings

You may feel that the burst size is being simultaneously signalled in several different ways. You’re

quite right, but you have to live with it.

• Read/Wr ite : zero if this datum is in response to a read request; one if this datum is following a write

request.

• good/error : if data is returned with the error bit set, the CPU will take a bus error trap.

• no parity check : set this bit to tell the CPU not to check par ity on SysAD, SysADC for this data. You can

of course do this all the time and save yourself a set of parity generators, but in doing so you will make

any memor y errors (perhaps in your prototypes) hard to diagnose.

Null code to return the system interface to the CPU

There is only actually one value:

Using the R4x00 5.3. Command encoding 20



8 7  5 4 3 2 0

0 011=null 00 ×

Table 5.5: SysCmd null code to release system interface

5.4. Request flow control

If your interface is in danger of being overr un by R4x00 addresses or data, you need this part of the

system. At the time the R4x00 utters a request on its bus it looks at the signals WrRdy* (sampled when

the message is a write) or RdRdy* (used for all other messages). If the appropriate ‘‘..Rdy’’ isn’t ready, the

CPU will stall the interface driving ValidOut* and the appropriate command and address bits. When your

interface has collected the address (and, on a write, is ready to accept the data) you may asser t WrRdy*
and/or RdRdy* and the CPU will carry on.

The above sounds straightforward, but there is one small catch. As discussed earlier, R4x00 inputs are

all registered at the chip interface and all outputs are fed directly from an output register. This means that

the CPU takes one clock to sample WrRdy* or RdRdy* active, and one more clock to change the bus

outputs in response. Figure 5.2 shows what we mean:

RdRdy*

WrRdy*

ValidIn*

Release*

ValidOut*

RdRespReadWDataWriteSysCmd

DataRdAddDataWrAddSysAD

TClock

RdRdy response time

WrRdy response time

Figure 5.2 Bus request flow control timing

Notes on Figure 5.2

Figure 5.2 shows the use of the signals RdRdy* and WrRdy* for flow control. Note that the signals are left

inactive by default, because the CPU samples them before you notice a sample has begun. So the

signals are left in the deasserted state and asserted only when the CPU drives a request on the bus and

the interface logic decides that it can accept the address.

The response of the CPU to RdRdy* or WrRdy* is relatively slow, because of the input and output register

stages. On the diagram you can see that the immediate assertion of WrRdy* in response to ValidOut* still

results in the write address phase lasting for four clock per iods instead of one.
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Note also that once WrRdy* is asserted no further control can be exercised over the rate at which data is

transmitted by the CPU (though the repetition rate for cache writebacks can be reduced, see the next

section §5.5).

Take note that the CPU may produce a read request in the clock immediately after the last data cycle of a

wr ite. There is a guaranteed gap for write→wr ite repetition, which is essential to support designs

asser ting WrRdy* dur ing one cycle in order to prevent a subsequent write from issuing. The rule is that

there must be at least four clock per iods between the issue cycle of one write and a valid address for the

next write.

Flow control strategies

There is an optimistic and a pessimistic way of employing flow control; which you adopt will depend upon

how much buffer ing you can provide for CPU addresses and write data.

• Optimistic : if you have enough buffer ing you can leave RdRdy*, WrRdy* (or both) asserted most of the

time, de-asser ting them only when your memory or I/O interface buffers get clogged up so that there is

no longer storage for the addresses and/or data.

This may improve read latency, but unless you have a pretty slick local memory system you will find

that RdRdy* is not on the critical path.

Keeping WrRdy* asser ted will speed up the flow of writes across the R4x00 interface. This is a

par ticularly good thing for multiprocessing applications, where there is much more activity on the CPU

interface.

• Pessimistic : leave RdRdy*, WrRdy* (or both) deasserted. When you see a processor request and

address your interface can prepare for it, and only when it can guarantee to be ready need it assert

the signals.

This seems much less efficient, but actually may cost ver y little. Read latency is probably determined

by the overall address→data latency of your memory system. Deasserting RdRdy* does not prevent

the CPU from transmitting the address - the assertion of RdRdy* and the release of the bus by the

CPU will still occur before the data could have been returned.

Dur ing wr ites, the CPU interface is much more efficiently used if WrRdy* is kept asserted, but writes

have to go somewhere. Again, the system perfor mance may be little changed if the write address is

kept on the system bus rather than in some downstream register in the memory system.

Unless you have a data-path chip designed for R4x00 applications you will probably not have the data

storage to run with WrRdy* asser ted.

The decision to make, then is:

1) Write timing will depend on how you capture cache write-back data. If, as is likely, write-back without

flow control would require extra buffer ing components it is probably not wor th it.

Moreover, writes only impact CPU perfor mance when they delay a following read. It is therefore not

useful to buffer a write, and clear SysAD, if the write remains active in the memory system and will

block a cache refill anyway.

We think most designs might as well run with WrRdy* nor mally deasser ted.

2) Read timing depends on your read latency targets. If you can return local memory data in five clocks

or less, then keeping RdRdy* asser ted will save clocks, at the cost of being careful to ensure that you

can capture the fast-moving addresses. If your memory latency (to the point where you need to drive

first data) is 6 clocks or more you will gain nothing from your effor ts.

We think that most R4x00 applications will be simplified by slowing all writes. The majority should

probably slow all reads, too, but the brave may, if the memory system is improbably slick, gain a few
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percent perfor mance by explor ing the alternative.

5.5. Data rate flow control

Data supplied back to the R4x00 CPU during burst read cycles (cache refills) may be presented with

whatever timing you like4. On any cycle for which ValidIn* is asserted and accompanied by a valid read

data response code on SysCmd the CPU will sample data.

On writes, the CPU throws data at you with a pre-arranged timing sequence. You have some control over

this sequence by a boot-time configuration var iable; in particular you can cause it to transmit its words at

regular intervals between 1 and 4 clock per iods. You are likely to have two problems:

• Uncer tain first-data timing : the first word of data may be presented in the clock cycle directly after the

address (the case shown in the timing diagrams) but there may be a gap between the two - we’ve

obser ved as many as 5 idle cycles.

The specification does not say what will happen; you just have to monitor ValidOut*.

Data which directly follows the address doesn’t allow anything for the startup latency of your memory

system; delayed data has the problem that in edge-triggered memories such as DRAMs (where it is

the activating edge of the column address strobe which determines the data sampling point) the

control strobe has to be generated from the CPU’s data timing.

All this might be easier if you can afford a FIFO store which will store the entire write cycle (address

and data), but system perfor mance is unlikely to be enhanced and may suffer from increased

contention between the CPU’s last write and next read.

• Repetition : it is possible to build a bank-interleaved DRAM array which can accept a burst of data at

the system clock rate, but at high system clock rates it can get ver y wide. It may be wor th presenting

one word every two or three cycles in order to use a ‘‘narrower’’ DRAM system. Because all latencies

on the bus go in cycle multiples, this is the better than slowing data bursts by configur ing a slower

interface clock; the slower clock will affect many other latencies.

5.6. Data protection: Parity, ECC or none

The R4x00 always generates parity or ECC bits with commands, addresses and data. It can check

par ity/ECC on incoming data.

This provides a check on the integrity of the bus interface and other data connections. In small systems it

is unlikely to be sensible to implement either scheme just to check out the data path (since the amount of

logic being checked may be small compared to the amount of logic added to check it). However, if your

DRAM array will be parity checked it makes sense to extend that parity protection ‘‘end to end’’ to and

from the CPU. It may also make your memory system design easier, because the DRAM system won’t

have to generate and check par ity ‘‘in real time’’ dur ing CPU burst transfers.

4 On a R4400SC or R4400MC system, with a secondary cache, the data response
timing must not be too fast or the secondary cache interface may be overr un. Since the
secondar y cache timing is configurable to meet the requirements of your particular static
RAMs the relationship is complex. You’ll have to read [R4000 Processor Interface] for
this one.
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6. Read cycle

It is a pity that the major flaw in the regularity and simplicity of the R4x00 interface is that reads, the basic

cycle you would like to know about first, are the place where most of the exceptions to the standard bus

protocols are seen.

6.1. How it works

Figure 6.1 shows a read cycle slowed down by the use of RdRdy*. This is not the simplest case, but most

implementations will use it:

RdRdy*

ValidIn*

Release*

ValidOut*

RdRespReadSysCmd

DataRdAddSysAD

TClock

CPU response to RdRdy*

Memory response time

Figure 6.1 Structure of a read cycle

Notes on Figure 6.1

The sequence of events is as follows:

• CPU request : recognised by asser tion of ValidOut*; at the next clock edge SysAD and SysCmd can be

sampled to discover that the CPU wants to perfor m a read.

• Address acknowledged : the interface logic acknowledges the request by asser ting RdRdy*. Because

of the way the CPU samples and pipelines its inputs and outputs, the CPU’s deasser tion of ValidOut*
will not occur until three clocks after RdRdy* is asserted (shown on Figure 6.1 as ‘‘CPU response to

RdRdy*’’). This means that the address is valid for four clock per iods, so need not have hold time

problems sampling it.

In principle it is only necessary to drive RdRdy* for one clock. In practice, once the CPU has seen it

the CPU regards the signal as ‘‘don’t care’’ until two cycles before the next possible read address

phase; so your logic can leave RdRdy* asser ted for at least one extra clock time and avoid a potential

hold time problem.

• Bus release : the CPU now finishes the read request and will voluntar ily float SysAD and SysCmd. It

indicates this by a one-clock pulse on Release*. R4x00 CPU’s without the secondary cache (which

only do simple read requests without split transactions) normally assert Release* in the read ‘‘issue
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cycle’’; that is, the last cycle in which the CPU presents a read request code and asserts ValidOut*. But

the CPU specification does not guarantee this timing, so you should be prepared for it to assert

Release* (and tri-state the buses) some time later.

It is bad practice to permit the SysAD and SysCmd buses to float to an invalid level. After one clock bus

exchange time you are supposed to drive them with some stable data, though its value does not

matter. You will be able to get away with a couple of clock cycles of float if you have nothing except

CMOS logic on the bus.

• Data response : your logic sets up the data and response code and pulses ValidIn* (here just for one

clock because it was a read of a single word or partial word). The response code defines the data as

‘‘last data of response’’, but don’t rely on this; a CPU expecting a burst response must be given the

appropr iate number of responses.

• Float the buses : you must float the buses reasonably soon, as the CPU will drive them again after

only one clock of exchange time.

Figure 6.2 shows a burst read used to refill an ‘‘8-word’’ cache line (other burst sizes are possible, see

§5.3 for how to choose burst size); MIPS ‘‘words’’ are 32-bit items so an 8-word line takes four 64-bit data

responses to refill:

RdRdy*

ValidIn*

Release*

ValidOut*

lastdatadatadataReadSysCmd

D2D3D0D1RdAdd (...08 hex)SysAD

TClock

CPU response to RdRdy*

Memory response time

Figure 6.2 Burst read for cache refill

Notes on Figure 6.2

• CPU release of bus : the CPU specifications are vague about exactly when Release* is asserted,

mar king the point at which the buses SysAD and SysCmd are tri-stated. It is certainly possible (and

may be usual) for Release* to be asserted during the read request issue cycle (the last cycle for which

ValidOut* is asserted); but no guarantee is offered and Release* may be delayed by sev eral clocks.

• Burst data rate : you may retur n data for a cache refill at whatever rate you like; the CPU will sample

data only when ValidIn* is valid at the rising edge of the clock.
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• Response code : you must provide the correct response code or the CPU will get confused; however, it

will not respond correctly to any response code other than the appropriate data type.

• Data order : the R4x00 does not refill its cache from the lowest addresses up. A cache refill will be

signalled with the (8-byte boundary) address of the double-word containing the location at which it

missed. The order ing scheme is called ‘‘sub-block order ing’’ and changes according to where you

star t.

Sub-Block ordering of read data

Sub-block order ing is peculiar. It achieves three goals which may be impor tant:

• The CPU issues a word address and receives the addressed word first, followed by the rest of the

enclosing cache line. This is useful to CPUs which can restart as soon as the datum that they cache-

missed on is available. The R4600 does this.

• Unlike the more obvious strategy of returning data sequentially to the end of the cache line, and then

‘‘wrapping round’’, sub-block order ing does not require the memory to know the length of the cache

line. This motivates the use of sub-block on the i486 and derivative CPUs, where the bus protocol

gives a last-data indication to memory.

The R4x00 requires the memory system to know the length of a cache line (it can do this by decoding

the read request), but by then sub-block order ing was emerging as a likely standard.

• When you start at the lowest word of the cache line, it reduces to sequential order.

A sub-block is an aligned sequence of 2, 4, 8 (and other powers of 2) words, smaller than a cache-line. In

sub-block order ing the words are fetched so as to ‘‘fill’’ successively larger sub-blocks until we have the

whole cache line. Once the first sub-block is filled each sub-block is tackled in the same order as the first

one was.

Figure 6.3 shows how it wor ks for a 4-word line.

0 1 2 3

first

second

third

fourth

Figure 6.3 Principles of sub-block order ing

Since, where the starting address is the first word of the block, the order is just sequential, the R4x00 can

request a sequential transfer just by ensur ing that the address is that of the first word in the cache line.

This is always true for cache line writebacks.

One irritating feature of sub-block order ing is that because the order changes according to the initial

address, the memory system has to be able to sequence through different addresses too; this

discourages the use of sequential-access parts such as nibble-mode DRAMs.

Table 6.1 shows what the addresses look like:
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Star ting doubleword fetch order, doubleword addresses within line
address within line 8-word line 4-word line

0 1 2 3 4 0 1

1 1 0 3 2 1 0

2 2 3 0 1  -

3 3 2 1 0  -

Table 6.1: Sub-block order ing of data

6.2. Reducing read latency

Running a large program the R4x00 (1992 version with dual 8Kbyte caches) will suffer a cache miss rate

of the order of 2-3%, which will turn into about 50% of real time spent waiting for a cache refill. Later

processors sometimes have bigger or cleverer caches; but then they also run at higher clock rates. If you

can complete a cache refill 10% more quickly this will turn into about 5% of extra system perfor mance -

not to be sneezed at.

Although more complex designs often increase bandwidth, the lowest latency usually goes with a fair ly

simple design - so a ver y ingenious R4x00 design is likely to be a mistake.

Notes on Figure 6.4

Just to set you thinking, Figure 6.4 is a timing diagram for a single-bank DRAM system for a 50Mhz bus

clock, using 60ns DRAMs, and just about as fast as it can be.

• Flow control : RdRdy* is inactive by default and activated in response to ValidOut*; ev en for this fast a

memor y system, this doesn’t slow the read down at all.

• DRAM multiplexed address : driven by registers whose input is SysAD and clocked with RClock; here

used not only to maintain hold time but to gain a few nanoseconds.

• DRAM RAS : Ras* is clocked from TClock to provide minimal address setup time on the DRAMs. Also

means that the DRAM multiplexed address change (triggered from RClock) is just late enough to

guarantee the 10ns hold time.

Note that Ras* may be too early to decode the address and ascertain that this cycle is really going to

pr ivate memory. No matter ; you can let a Ras* star t for any cycle but don’t issue a Cas* if it turns out

that no access to private memory is required.

• DRAM CAS : clocked from TClock. If only the RAS access time was a bit better you might use RClock
to scrape the data back a clock ear lier; this can be an exercise for the reader who can find a faster

DRAM specification.

• DRAM data : will now be valid as defined by the CAS access time of 20ns. Var ious options exist for

how to clock it, but this paper design uses the rising edge of Cas* itself (delayed through a buffer or

gate) to define the sampling point of a register driving SysAD.

Eight clocks to return the last 64-bit chunk of a 4-word (2×64-bit) cache line is a good target for a simple

tightly-coupled memory system. In pr inciple a similar but bank-interleaved memor y system could save

two clocks, providing the data from the two banks in consecutive bus cycles. Over to you....

6.3. Error reporting

Tw o different kinds of errors can be triggered during a read cycle:

• Read bus error : signalled by the ‘‘bad data’’ bit in the SysCmd encoding for the data response. This

causes the processor to take a read bus error exception. This is the best way to tell the processor

when you know something is wrong; bus timeout or downstream parity check fails.
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Figure 6.4 Low-latency DRAM read - critical signals

• Bad parity on supplied data : caused by the processor discovering bad parity on incoming data, for

which the SysCmd response code did not disable parity checking. In this case the processor will take a

cache parity error trap. Depending on your CPU type this may happen on the fetch which triggered

the miss, or it may happen only when you reference the particular word which had a parity error.

If (as is economical) you elect to take memor y par ity right through to the R4x00, don’t forget to war n

your software engineer.

Beware: although these errors can only occur on a hardware read cycle, the R4x00’s cache policy means

that a store instruction may stall while the hardware gets the line in you want to write. Programmers need

to be aware, then, that data bus errors and cache parity errors can occur on a store.
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7. Write cycle

Wr ite cycles are simple, but fast. The R4x00 likes to throw data out and assume someone else has

caught it. However, the R4x00 does cache write back only after it has perfor med a read refill (old cache

line data is moved into a temporar y buffer while the read takes place), so cache write backs don’t stall the

processor. Slow writes matter only because they are likely to hold up the processor’s next read,

worsening average read latency. So:

• memor y wr ite perfor mance is not nearly so critical as read; and

• the significant element of write perfor mance is latency, measured as time to complete the write and

free-up the memory system.

7.1. How it works

Figure 7.1 shows a 2-cycle (4-word) cache write burst, with WrRdy* used in the ‘‘pessimistic’’ manner (see

§5.4 above):

WrRdy*

ValidOut*

WLastWDataBlock WriteSysCmd

D1D0WrAddSysAD

TClock

Your choice
(0 to 3)

Mysterious (could be 0)

WrRdy* response delay

Figure 7.1 Structure of a write cycle

Notes on Figure 6.4

• Request and address : will be held on the bus, since WrRdy* is initially inactive. Once WrRdy* is

activated, there is still a two-clock delay before the CPU notices and proceeds with the cycle.

• Request to first data : although most MIPS diagrams show write data appearing in the clock

immediately following the request issue cycle, the manual is actually careful not to promise it. Ear ly

R4x00 parts exhibited a 2-cycle gap for cache writebacks (bursts), and no gap for single- or partial-

word writes. We recommend that your logic be able to deal with anything from no gap to a 6-cycle

gap.

In any case, data is made valid for only one clock, marked by ValidOut*. Because this is only one clock

you have to wrestle with hold time problems.

• Data rate : you can select the write data rate using the reset-time configuration mechanism. This

allows you to configure the gap between the two cycles of a pair (and for longer bursts configure the

gap between pairs). The rate can be selected between one per clock and one per four clocks.

The documentation implies that the data rate configuration has no effect on the request→data delay.

‘‘No guaranteed effect’’ might be nearer the mark.
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• Wr ite to write timing : Figure 7.1 shows that the signal WrRdy* is a don’t care to the CPU from the point

where it gets sampled active (allowing the write to issue) through to two cycles before the last data.

From that point on, though, it must be in the correct state because its value can be sampled there and

lead the CPU to decide whether or not to issue a subsequent write.

But a non-burst write can take only two cycles (address issue and one data), and it is only possible to

set WrRdy* back to inactive once you’ve seen the issue. This means that any subsequent write

star ting in the next or next-but-one clock after the data cycle would respond to the left-over WrRdy*
value and overr un. To save the write flow control strategy, the rule is that no write can start in the two

clocks following an uncached write.

Note that the R4600 CPU (one of whose design goals was to increase the uncached write transfer

rate) can be setup into a mode (‘‘pipelined writes’’) where this rule doesn’t apply. In this mode R4600

is not 100% compatible with the normal R4000 system interface, and the board designer must always

be willing to accept two single write cycles whenever WrRdy* is active.

7.2. Implementation strategies

The main difficulties are:

• the uncertainty of the data timing during block writes;

• planning for partial-word writes.

Data timing

You cannot predict the timing of R4x00 data until the first valid data code is seen; after that the timing of

fur ther data will be rigidly set to whatever transmit data pattern has been selected at reset time.

Partial word writes

Memor y systems using some kind of error-correcting code have to implement a partial-word write as a

read-modify-wr ite cycle. Systems using per-byte parity (or without any protection scheme) can just

update the selected bytes; though this may not be as convenient as it looks since it is awkward to arrange

high density DRAM stores in 9-bit units.

The R4x00 gives you little help with either approach.

7.3. Write errors

There are likely to be a number of reasons why an R4x00 write cannot be successfully carried out. Since

there is no response on the bus, the only way to signal them will be as an interrupt. Apart from a write to

non-existent memory, conditions to look out for include:

• Wr ite too wide : too many bits being written at once to a memory space which is narrower (most I/O

subsystems will be 32-bit or less);

• Wr iteback to inappropr iate space : attempt to perfor m a burst cycle to a memory space which cannot

suppor t it;

• Wr ite par ity error : it is possible for the CPU itself to generate bad parity, if it writes back a cache line

which itself contains an error. It should flag the bad parity with the ‘‘error’’ bit in the data identifier

dr iven on SysCmd.

If you are using ‘‘end-to-end’’ par ity into the memory system you can just store the data into memory,

which will produce an error if and when the data is re-used.

Note that these are conditions which will never happen in a system where the hardware and software are

working correctly. There is usually a limited cost and space budget for diagnostic features, and it may be

better spent somewhere else. It may not really matter if you just quietly ignore illegal writes.
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8. Three R4x00 system recipes

Ever y designer starting to get to grips with the R4x00 faces some common problems, but one major and

universal one is the width of the data and address paths and the consequent large pin and component

count. As Figure 8.1 shows, just wiring up the data and address paths for a 2-way bank-inter leaved gets

close to 500 pins, without counting internal connections in the module which implements the address and

IO bus connections:

R4000PC
Address/IO

PathsSysAD, SysCmd

Address

Control

90

7272

72 72

1210

80

DRAM

IO bus

Figure 8.1 Where the pins go on a R4x00 system

Other problems include:

• Tight clocking requirements : output signals are not valid for ver y long, and inputs must be tightly

controlled to meet setup and hold times. It is difficult to prevent the R4x00 interface from becoming a

logic block in its own right, which it shouldn’t be.

• Hold time : a problem on both inputs and outputs.

• Local memory system : it is hard to imagine any application of the R4x00 processor which does not

involve sev eral megabytes of memory. Perfor mance is so influenced by read latency that some part of

this memory must be tightly coupled to the processor.

We think that the large majority of R4x00 implementations will involve the provision of some quantity of

high-speed DRAM store. The CPU/memory combination is critical to keeping perfor mance high and

complexity low. So all the recipes here will describe different ways of interfacing the R4x00 to a DRAM

array.

8.1. Tightly coupled single-bank memory system

Figure 8.2 is close to the minimal number of gates which can be used to wire an R4x00 to anything.

Notes on Figure 8.2

• CPU and memory control : are tightly integrated, and the memory is controlled by synchronous state

machines running off TClock.
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Figure 8.2 System with tightly coupled single bank memory

• Memor y parameters : this is a 72-bit memory - more or less minimal; while it is obviously possible to

wire a R4x00 up to a narrower memor y it seems unlikely to be a common option.

• Data path : you have to have a register between the R4x00 and the DRAM data pins, because there is

no way to ensure enough write data hold time from the CPU to permit DRAMs to sample the data

directly.

We recommend a register with clock enable, so at least a single datum can be captured and held.

The register should be triggered from the RClock rising edge, but the clock enable pin can be safely

generated by your fast control logic running from TClock.

Since a register will also be required for IO system data transfers it is likely to make sense to take all

data through the DRAM data bus; that’s what is shown in this picture.

The IO side will now have to be connected through buffers which convert between a 32-bit data bus

and the 64-bit plus parity DRAM data bus.

• Address path : there are several different strategies for address management, but the one shown here

is one of the simplest.

Neither IO addresses nor data have to travel along SysAD at any time, so there is no need to use the

‘‘exter nal request’’ protocol to float the R4x00 off its local buses (see 9).
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• Perfor mance targets : the single-bank memory can achieve a burst rate of something around 22Mhz

using commodity DRAMs, and the total memory latency need not be too far away from the access

time of the DRAM chips themselves.

Problems and suggestions

• Hold time on CPU outputs : address and data registers sampling CPU outputs can be run from RClock;
other CPU outputs can be sampled with PLDs or with registers fronted up by other logic elements.

• Hold time on read data : data being passed back from memory or I/O will be valid for longer than one

per iod of the bus clock.

Advantages and disadvantages

This is a relatively economical solution both in space and buffer ing, and in numbers of DRAM components

employed.

The 72-bit DRAM bank leads to a lower burst bandwidth than is achievable with a bank-interleaved

system. However, the R4x00 can only support cache lines of 8 32-bit words; so the longest burst read

consists of only 4 64-bit data. The penalty of a memory system capable of transferr ing data on every

other bus clock per iod is between 1 and 3 bus clocks (according to the cache line length).
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8.2. A simple (bank-interleaved) discrete solution

If you want better memory (and hence system) perfor mance you will need to bank interleave the memory.

While some small improvement in burst rate is achievable by putting two ranks of DRAMs onto a common

data bus, a large improvement follows from building a discrete registering mux/demux stage (usually with

two sets of bidirectional registers with SysAD connections commoned).

Following the easiest path leads to the system shown in Figure 8.3.
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Figure 8.3 Bank interleaving

Notes on Figure 8.3

• Memor y parameters : a 2-way inter leaved memor y (like this one) using 60-80ns DRAM components

will run up to about 45Mhz. The benefits of higher degrees of interleave are doubtful, since the

additional complexity and loading of SysAD may prevent you from taking advantage of the potentially

higher burst transfer speed.

• Data path : now that the memory data bus is 128-bits plus parity, it is no longer sensible to attach the

32-bit IO bus to it; too many components will be required. It is simpler to plumb the IO bus via SysAD,
ev en though it means using the exter nal request protocol to get the R4x00 to tri-state SysAD while the

I/O system uses it.
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• Address path : the minimal solution is to wire the addresses via SysAD (since we have to tri-state it for

the data) and have one set of multiplexers to generate DRAM addresses.

Problems and suggestions

• Buffer explosion : the 128-bit (plus parity) data path inside the DRAM array leads to a large component

count, and needs lots of data buffers/registers. It needs lots of DRAMs too, and it may be a mistake to

use bank interleaving except where the system memory requirement is large enough to need two

banks of components.

There is little to be done about this except to keep the data path simple and use the densest

components you can get.

8.3. ASIC-based solution

You don’t necessarily have to design your own ASIC; since (as we have argued here) most R4x00

CPU/memor y cores share common features, there is a market for a generic memory/IO controller chip or

chip set. Several chip sets have been announced; few taken through to production. Most of those were

targetted for the Windows/NT wor kstation mar ket, which has not materialised - and often are so dedicated

to the Microsoft-defined architecture as to be unsuitable for use elsewhere. But ask round the R4x00

semiconductor vendors, and see what they can tell you about.

For high- and moderate-volume applications it may be wor th building your own ASIC, though support of

such high clock speeds will require a technology with good I/O buffers. The total pin count of any useful

system which handles the data and address paths will be big; the solution is going to be a set of high pin-

count devices, cer tainly not a single part.

The logical use of an ASIC is to act as a tri-por t connection between CPU, local memory and the I/O bus

which represents the rest of the wor ld, as shown in Figure 8.4.

ASICR4000PC SysAD

DRAM

IO bus

Figure 8.4 Use of an ASIC in the data path

Since this application note was first written PCI has emerged from nowhere to become the inevitable first

candidate I/O bus for any system of this class. PCI’s 32-bit width and 33MHz burst cycle gives it a

maximum bandwidth of 120Mbyte/s; only video applications are likely to need more.

Ideally, your ASIC kit should come with a cookbook (making this application note largely superfluous.)

But the critical design aims are the same. And you may find that the application note stimulates the

thinking you will need to review a prospective ASIC for usefulness.
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Advantages and disadvantages

The ASIC should reduce space requirements, pow er consumption and bring the ability to operate at

higher system clock rates. It brings the possibility of adding a little storage, par ticularly for write bursts

and IO/memory transfers, which can be of significant advantage in the system. However, unless specified

carefully it can result in worse latency (and hence lower perfor mance) than a careful, simple, discrete

design.
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9. External Requests

To pass infor mation into the R4x00 (and with some systems, to use the local memory), someone else has

to drive the bus. As we have already seen this opportunity is magically available on a read cycle, but

there are other times when a command or data has to come from outside. This is controlled by the

Exter nal Request protocol.

The CPU tri-states SysAD and SysCmd dur ing a read cycle to allow the data response code and data to be

passed back. The CPU will usually drive these buses at all other times, even though the value to which it

dr ives them is undefined.

However, the CPU has a mechanism by which it can be requested to give up the bus to allow something

else to happen. This can be done for two reasons:

• Send a request to the CPU : in the R4400MC (multiprocessor support) var iant, it is frequently

necessar y for the shared bus interface to query or update the state of the CPU caches. These are all

implemented as exter nal requests.

It is also possible for the CPU to make some of its internal state visible as registers which can be read

or written by exter nal requests. In practice this has been whittled down until only some interrupt bits

can be so accessed; so that an exter nal wr ite into the CPU can be used to alter the interrupt state.

The R4400MC and R4400SC var iants have only a single dedicated interrupt pin, so this mechanism is

required for efficient sophisticated interrupt signalling; the small-package var iants have a pin for each

interr upt, and there is no reason to do such a complicated thing.

• Use the bus for something else : it may be convenient, in your system, to use SysAD as a data highway

dur ing transfers between local memory and some DMA device or alternate processor. This is done in

the bank-interleaved system recipe above (§8.2).

Once the CPU has agreed to relinquish its bus, so long as ValidIn* remains de-asserted the CPU will

ignore the state of the SysAD and SysCmd buses.

Once the DMA operation is completed the CPU must be re-started. Since the CPU’s view is that the

only reason to start this procedure is so you can issue an ‘‘exter nal request’’, you should issue the

‘‘null request’’ code (which does nothing else to the CPU).

Despite the intricacy, all you are achieving is to reproduce the ‘‘hold/hold-acknowledge’’ mechanism of

an 80x86 family CPU.

Notes on Figure 9.1

Figure 9.1 shows how this can be done.

• Latency : the response of the CPU to ExtRqst* is unpredictable and complex, and is discussed below.

• You must not change your mind : having once asserted ExtRqst* you must keep it asserted until you

see a Release* from the CPU.

• Bus handover : the CPU pulses Release* for one clock per iod; as Release* is de-asserted it tri-states

SysAD and SysCmd. You should wait one clock (to prevent contention) and then drive both buses.

Even if you don’t need to use SysCmd at this stage it must not be allowed to float or the CPU may be

unhappy.

• De-asser ting ExtRqst* : you must do this whenever you see Release* and it may have been a response

to your ExtRqst*. You have two clocks to de-assert it in; the CPU ignores ExtRqst* in the cycle following

Release*.

• DMA or whatever : you can now use SysAD and SysCmd for your own purposes (taking care that they

are not allowed to float to invalid signal levels).
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Figure 9.1 Using ExtRqst* to tristate the bus

• Null request : this SysCmd code is used (together with ValidIn*) to tell the CPU that it can have its buses

back. Your drivers should tri-state SysAD and SysCmd as soon as the CPU has had a chance to

sample the null request.

9.1. CPU response to external request

In general you should just wait for a Release*; (it is analogous to those CPUs where a ‘‘hold’’ request will,

after a while and at the CPU’s discretion, produce a ‘‘hold acknowledge’’. However, there are a few

guarantees and one horrible ambiguity. Guarantees first:

• Waiting for RdRdy* or WrRdy* : if the CPU is driving a read or write request, but is waiting for the

asser tion of RdRdy* or WrRdy*, then the CPU will give up the bus before the read or write cycle is

issued. To prevent confusion you should not assert either RdRdy* or WrRdy* at all, until the exter nal

request sequence finishes.

After a short while the CPU will release the bus. When the bus is passed back to the CPU the

interr upted read or write request will appear again.

• Wr ite in progress : if the CPU is in the middle of a write then it will finish that cycle but will not start

another. Once the cycle is complete Release* will be asserted after a few clocks (the precise number

is unpredictable).

• Bus idle : even when the bus is idle up to the time you assert ExtRqst* and for a couple of clocks

afterwards, it is still possible that the CPU may be inter nally committed to a read or write. If so

ev erything occurs as if the cycle had already started; otherwise you will see Release* without any

fur ther CPU activity.

• Read in progress : if a read cycle has progressed to the point where the CPU has released the bus,

the documentation claims that you may either proceed with the read cycle (giving the CPU a read

response), or proceed with an ‘‘exter nal request’’ to the CPU.

Note that since, while waiting for a read response, the CPU is not driving SysAD or SysCmd, you can

always use these buses anyway.
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• Danger point - distinguishing reads and exter nal requests : if you issue ExtRqst* sometime just before

when the CPU reaches the issue cycle for a read request, the CPU will pulse Release*. But how can

you tell whether this is because the CPU has responded to ExtRqst* or is just waiting for read data?

The official specification implies that you cannot find out. However, at least for the limited range of bus

protocols supported by the R4x00, you may treat the release in the same way. You will have to

obser ve the following rules:

a) you must de-asser t ExtRqst* whenever Release* is seen at a time when the CPU could have seen

the exter nal request; because of the input registers, this means ‘‘when ExtRqst* has been active

for at least two clocks’’.

b) if you choose to go ahead with an exter nal request (null or otherwise) to the CPU before you

provide the read data, the protocol obliges the CPU to re-establish bus ownership. In order to be

able to accept a read response, the CPU will then pulse Release* again after the exter nal request

is processed. This always means that the CPU is tri-stating its buses again, so it is ready for the

read response.

Some infor mation implies that the CPU will let you either give it the data and the null command in

either order. But you’ll always have to wait for the second Release* pulse.

However, the documentation is sufficiently unclear that it may be more prudent to de-assert RdRdy*
and WrRdy* in anticipation of needing an exter nal request. Two clocks later you can assert ExtRqst*,
confident that you know what will happen.

• Danger point - bug affecting cache refill/writeback pairs : in ear ly R4x00 versions an exter nal request

would cause problems if it slipped in between a cache-refill read and an associated cache writeback.

9.2. Tri-stating the bus without affecting the CPU

In some applications it is convenient to use the SysAD (and/or SysCmd) signals as a common highway for

transfers controlled by logic other than the CPU. This can be done either by causing the processor to tri-

state the buses using ExtRqst* or by taking advantage of the bus release inherent in the read cycle. Once

the processor signals that it has relinquished the buses by asser ting Release* you can do anything you like

with the buses, provided that:

• you must dr ive all the bits of SysAD and SysCmd to some valid logic level (ev en though you may not be

using SysCmd for any pur pose); the CPU may not operate correctly if these signals float to near the

logic transition level.

• dur ing your use of the buses you must keep ValidIn* deasser ted - which is enough to prevent the CPU

‘‘seeing’’ any activity on its buses.

• to return the buses to the CPU you must drive SysCmd with the special ‘‘null but return bus’’ code

defined in §5.3, accompanied this time by ValidIn*.

Note that however you accomplish DMA access to memory on an R4x00 system, you need to manage

cache coherency in software. See Appendix C (‘‘Software cache management with DMA’’) on page 52 for

details.

9.3. Access to the interrupt register

The only thing you can do to the CPU by taking over the bus is to manipulate the interrupt bits in the CPU

status register. This allows you to simulate the assertion/de-asser tion of the interrupt lines Int(5:1)*, which

are not accessible on the R4400SC and R4400MC packages.

We’d suggest that you should not to use this facility on the R4x00 unless compatibility with an R4400SC is

impor tant; the pins are available and are much simpler.
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If you have to do it, here is how. You must perfor m a 64-bit write request. Most of the address is

irrelevant, but SysAD(6:4) must all be zero. The data bits the CPU is sensitive to at this location are shown

in Table 9.1:

63 23 22 21 20 19 18 17 16 15 7 6 5 4 3 2 1 0

wr ite enables set/reset bits

equivalent Int* equivalent Int*

5 4 3 2 1 0  5 4 3 2 1 0
NMI NMI

ignored ignored

Table 9.1: Data encodings for write to interrupt location

Notes on Table 9.1

• Wr ite enables : sev en bit positions, with bit 22 being for the non-maskable interrupt and bits 21−16 for

the six regular interrupts. Note that these affect cause/status register bits called ‘‘IP7’’ through ‘‘IP2’’,

but that these are equivalent to the R4x00 pins called Int(5:2)*.

Wr iting a 1 to any bit allows this command to set or reset the corresponding status register bit. A 0

here means that the corresponding interrupt bit will remain unchanged.

• Set/reset bits : in the same order as the write enable bits. Where any write enable bit is set the

corresponding set/reset bit determines whether the status register interrupt bit is made active (1) or

cleared (0).

It is quite possible to use both the direct and exter nal request interrupt mechanisms; the CPU ‘‘ORs’’ the

two sources together to compute the cause register bits.
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10. Starting up the R4x00

Some R4x00 var iants require significant amounts of configuration infor mation to be loaded before they

can reasonably be expected to run any instr uctions, and this is done at reset time as a 1-bit serial data

stream advanced by a CPU-supplied clock.

The R4x00 makes much use of internal phase lock techniques to generate high-speed clocks and

interface clocks with precisely controlled phase relationships. While it is getting these going it requires a

well-controlled sequence of reset signals, with a number of relatively long waits. It also follows earlier

MIPS practice in refusing to guarantee the state of output clocks from power-on, until the reset signals are

established in their active state.

10.1. Configuration Options

CPU configuration options are encoded into a bit stream delivered to the ModeIn pin during the reset

sequence. Bit 0 is presented before the assertion of VCCOk, and the next bit should be presented on

each rising edge of the ModeClock output. The sequence is defined as up to 256 bits long, though we

think no CPU has yet shown any interest in bits after number 64. After 256 bits ModeIn is ignored forever

(at least until it is again reset).

Table 10.1 shows how options for the R4400 are encoded5. Bit 0 comes first. In multi-bit codes the value

is an unsigned integer made up by taking the bitfield and regarding the lowest-numbered bit as the least

significant.

Bit Meaningful MIPS
Nos. Values Mnemonic

What it does

0 1 BlkOrder Cache refill order sub-block (sequential not

available for small-package var iants).

1 0/1 EIBParMode 1 = per-byte parity, 0 = ECC check

2 0/1 EndBlt 0 = little-endian, 1 = big-endian

3 1 DShMdDis disable ‘‘dir ty shared mode’’ - would be relevant

only to a cache coherent multiprocessor

4 1 NoSCMode 1 = no 2ndar y cache present

5-6 0 SysPor t 64-bit interface

7 0 SC64BitMd 128-bit secondary cache width

8 0 ElSpltMd 0 = unified secondary cache

9-10 1 SCBlkSz secondar y cache line size (1 = 8 words)

11-14 0−8 XMitDatPat System data write rate (see Table 10.2 below)

15-17 0−2 SysCkRatio Pipeline clock/bus clock divisor.

0 = 1:2, 1 = 1:3, 2 = 1:4

18 0 reser ved, must be zero

19 0/1 TimIntDis Deter mines role of Int5* and availability of

interr upt from internal timer.

0 = inter nal timer interrupt enabled, pin is a no-

connect

1 = no inter nal timer interrupts, interr upt through

pin.

20 1 PotUpdDis Disable ‘‘potential updates’’ (cache-coherent

multiprocessor option)

5 Options for other parts are defined in Appendix B (‘‘Alter native configuration stream
data sets’’) on page 51 below.
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Bit Meaningful MIPS
Nos. Values Mnemonic

What it does

21-24 0 TwrSup

25-26 0 Twr2dly

27-28 0 Twr1dly

29 0 Twrrck

30-32 0 Tdis

33-36 0 Tr d2cyc

37-40 0 Tr d1cyc

Secondar y cache timing parameters

41-45 0 reser ved, must be zero

46 0/1 Pkg179 1 = 179-pin PGA package

0 = 447-pin package for secondary cache

47-49 0 Reser ved Unused power-down feature (how much to slow

the pipeline clock in pow er-down mode).

50-52 0-4 Dr v0_50 etc Speed target for output signal clock→valid time:

001 = output delay 0.5 × MasterClock cycle

010 = output delay 0.75 × MasterClock cycle

100 = output delay 1 × MasterClock cycle

53-56 0−15 InitP initial buffer current (pullup), 0 for biggest

current. Set 15 when di/dt mechanism in use.

57-60 0−15 InitN initial buffer current (pulldown), 15 for biggest

current. Set 0 when di/dt mechanism is in use.

61 0/1 EnblDPLLR 1 = sample IOut/IIn delay feedback dur ing reset,

then freeze

62 0/1 EnblDPLL 1 = use IOut/IIn feedback at all times

63 0 DsblPLL enable clock-synchronising PLLs (you’d only turn

them off for test)

64 0/1 SRTristate 1 = float outputs during Reset*

(all outputs are always floated during

ColdReset*)

65-255 0 Reser ved

Table 10.1: Configuration data stream encoding for R4400

Notes on Table 10.1

• No choice : in many cases there is only one legitimate value for the option in an R4x00, and in other

cases the value is irrelevant. In both cases the table shows no choice of value, and you can just stuff

in the value suggested.

• Inter nal timer : if the internal timer is enabled it will interrupt on cause register bit ‘‘IP7’’, which is the

same bit as is affected by Int5*. This is likely to make Int5* useless for any other purpose.

• XMitDatPat : the transmit data rate can be slowed down, with idle cycles interleaved between the

words of a burst. Table 10.2 shows the encoding used; each pattern is represented by a str ing of ‘‘D’’s

and ‘‘×’’ s. Each ‘‘D’’ represents a clock cycle with data and ValidOut* asser ted; each ‘‘×’’ represents an

idle cycle with ValidOut* de-asser ted. The options available are shown in Table 10.2. We cannot give

you guidance on the timing of the first word of data; we think that early processors do deliver the first

word later if a slower data pattern is selected, but the documentation does not guarantee this.
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Config Write data Patter n

Code 2-cycle burst 4-cycle burst

0 DD DDDD

1 DD DD×DD

2 DD DD××DD

3 D×D D×D×D×D

4 DD DD×××DD

5 DD DD××××DD

6 D××D D××D××D××D

7 DD DD××××××DD

8 D×××D D×××D×××D×××D

9−15 undefined

Table 10.2: System data write pattern encodings

• Dr v0_50 etc : used to tune the perfor mance of CPU outputs. Can be set fast (Dr v0_50) to optimise

setup time to the next clock; can be set slow (Dr v1_00) to save pow er, to reduce noise and to increase

hold time.

Output time tuning uses the dummy track and loading between IOOut and IOIn.

• InitP, InitN : tune output speed (by adjusting the pull-up and pull-down current) when the IOOut, IOIn
feedback mechanism is not operating, as always happens early in the power-up sequence and may

happen if you configure the processor to turn it off. You’re probably better off setting both to about

three-quar ters of maximum; you may like to tune it once your design is stabilised.

10.2. Choosing configuration options

10.2.1. Parity vs ECC protection

Codes to check on data integrity have two pur poses:

a) keep a system running correctly in the face of a ver y small random incidence of errors. This is the

motivation for the use of error-correcting codes in large memory systems. A par ity check per mits the

system to keep running only if combined with some kind of higher level recovery.

b) diagnose data path errors as such, before they lead to widespread and confusing consequences.

The kind of errors likely to occur on a data path in a tested system, outside of a ver y large memory array,

are either inherently fatal (eg connectivity failure) or multi-bit in nature (eg noise of var ious kinds). In

either case ECC cannot reliably recover and either scheme will quickly diagnose the error.

We do not, therefore, recommend anyone to use the more complex ECC scheme in an R4x00 for better

protection of the data path.

However, a useful way to employ the R4x00’s data checking is to use it end-to-end to and from the local

memor y array. In this context ECC protection may perfor m slightly better; the down side is the complexity

of generation and checking for any non-CPU data path, and the inability to perfor m par tial-word update to

an ECC-protected memory.

We think that discrete data path implementations should use parity and not be ashamed of it. ECC might

be a useful addition to an ASIC datapath chip set, so long as support for IO system transfers is

comprehensive.
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10.2.2. Endian-ness

The R4x00 can operate in big-endian mode (where its use of memory is like a Motorola 680x0 processor)

or little-endian mode (where it behaves like an Intel 80x86 or DEC VAX processor).

The names originally referred to a character istic of CPUs visible to software: how a byte-addressable

machine supports numer ic data types bigger than a byte. Big-endian machines use the lowest byte

address to store the most-significant bits of the number ; little-endian machines use the lowest byte

address to store the least-signficant bits of the number. The difference is a significant cause of

incompatibilities between CPUs, impacting the portability of software even though it is written in high level

languages.

The reason this becomes a hardware issue is that the internal registers of the R4x00 CPU store 32-bit or

64-bit numer ic data, and during word or double-word loads the register bits are ‘‘hard-wired’’ to the

corresponding SysAD pins. Dur ing such word transfers the CPU implicitly assigns byte addresses to each

8-bit section of the multi-byte data, and hence implicitly assigns byte addresses within the 64-bit unit to

8-bit sections of SysAD.

When configured as little-endian bits and bytes are related like this:

byte address (mod 8) 0 1  2 3 4 5 6 7
SysAD bits 0-7 8-15 16-23 24-31 32-39 40-47 48-55 56-63

And when configured as big-endian:

byte address (mod 8) 0 1 2 3 4 5 6 7
SysAD bits 56-63 48-55 40-47 32-39 24-31 16-23 8-15 0-7

10.2.3. Bus clock rate

A pretty major design decision is to choose the bus clock rate. The CPU runs instructions at twice the

MasterClock frequency, but the bus clocks TClock, RClock operate at some divisor of the internal clock.

They therefore run at either the same frequency as MasterClock, at two-thirds or at half the frequency.

The most important parameter to optimise is the cache refill latency, or to be more exact the time (in

MasterClock cycles) which elapses between a read request appearing on the bus and the return to the

CPU of the last datum in the block. The clock time choice depends on three principle factors:

• your private memory system will be locked to this clock speed, so the clock should be (as far as

possible) tuned so that your memory components are wor king near their highest speed with memory

signals which are some multiple of a bus clock per iod long;

• too fast a clock and the interface logic gets hard to build and expensive;

• there are fixed overheads in cycles which always use up a number of bus clocks, so if the clock is too

slow time gets wasted.

In the end you need to choose the basic clocking rate of your memory system, and then fix the ratio

between that and the bus clock. The memor y timing is so critical that it may well happen that system

perfor mance will be enhanced by running the processor at a MasterClock frequency which matches the

memor y well, even though this is slower than the CPU could run.

For example, suppose your system has a single 72-bit bank of DRAMS with a page-mode CAS cycle time

minimum of 40ns. This means that, after allowing for logic skews, the bank cannot quite manage a

25Mhz burst rate; 24Mhz is achievable.

With a 50Mhz bus clock the DRAM will have to be cycled at 1/3 the bus speed, or 16.67Mhz.
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A good target for startup time (up to the first data) is 6 clocks at 50Mhz. Three more words of data will

then follow at 3 clock inter vals, giving a 15-clock (300ns) latency to end of read.

If you ran the CPU at 48Mhz instead, the DRAM could burst at 24Mhz. Read latency is reduced to 12

clocks (250ns). The 16% reduction in read latency will give you around an 8% perfor mance boost, more

than compensating for the 4% lost from the clock rate reduction. And the system will run a fraction cooler.

10.2.4. Transmit data rate

Dur ing CPU block writes (cache write-back) there is no way to interact with the CPU to control the rate at

which it supplies data. But you can configure var ious repetition rates with a view to fitting in with the

requirements of your memory or buffer ing system; this is likely to be particular ly relevant to a tightly

coupled local memory which does not have a whole-block FIFO for data.

Tw o kinds of data pattern are supported:

• Fixed separation between data cycles : consecutive (0 separation) or separated by 1, 2 or 3 bus clock

per iods. Will be appropriate to non-interleaved memor ies.

• Dr iven in pairs : this makes sense only when using an 8×32-bit word cache line size, of course

(otherwise there are only two data cycles).

In this case you can generate pairs of data with a separation of 0 to 3 cycles, with the pairs separated

by a longer period of up to 6 cycles. If your memory is bank-inter leaved this allows you to run the

cycles to different banks close together (saving bus time) while providing programmable recovery time

for the individual banks.

See Table 10.2 for how to select different patterns. It may well be beneficial to configure your system with

a faster system clock rate and with data throttled.

10.2.5. Output buffer timing control

The CPU drives about 85 signals in parallel when putting requests on the bus. Each of these has to be

made valid with good setup time to the next bus clock rising edge. In order to guarantee these timings in

systems with worst-case bus loading, the output drivers have to be pow erful; but in more lightly loaded

systems or those not running the bus at the maximum possible data rate the output drive will be

unnecessar ily large and lead to unnecessary noise and radiation problems.

The ‘‘big’’ (R4000 and R4400) versions of the R4x006 are equipped with circuitry which adapts the output

dr ive, setting it at a level high enough to meet the timing specification but no higher.

This is done by providing the CPU with a ‘‘sample’’ output line IOOut which you should track and load in a

similar way to the real bus outputs, but connect back to the CPU’s IOIn input. You are recommended to

make its track 50% longer than the worst-case bus signal, and to load it with a capacitor value equal to

the nominal worst-case capacitative load. Figure 10.1 shows the recommended layout, where L is the

longest path from any other R4x00 output to a receiving device. The layout combines the maximum

propagation time with a worst-case ‘‘reflected wave’’ trace (the one which goes nowhere) and maximum

capacitative load. The CPU can then be configured to monitor the IOOut to IOIn transition and flight time,

and to adjust its output drive to keep it within specification.

In most systems this monitoring and adjustment should be continuous (to allow the device to adapt to

changing temperature) but if this causes problems the adjustment can be made only at reset time.

The drive targets are set as a nominal clock-to-valid maximum on bus signals of 50%, 75% or 100% of a

MasterClock per iod. These are likely to be chosen as partners for the corresponding bus clock divisor

settings.

6 This facility is provided on all var iants of the R4000 and R4400, but not provided on
the Vr4200 or R4600.
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R4000PC

IOOut

IOin

L/2

L/2

capacitor value:

approx worst case

output load

Figure 10.1 Wiring IOOut to IIn

You can turn off this whole mechanism (all Dr v configuration bits 0), but you probably shouldn’t except for

testing. Even with the drive timing mechanism off you can still tune the output buffer dr ive (dr ive to logic 0

and logic 1 separately) to a range of levels using the InitP, InitN configurations.

10.3. Reset/configuration stream timing

The basic reset sequence is shown in Figure 10.2.

Reset*

ModeClock

M65M64M3M2M1M0ModeIn

VCCOk

ColdReset*

MasterClock

Reset state

at least 100ms

at least 64
MasterClock periods

at least 100ms
of good power

Figure 10.2 Reset timing of critical signals

Notes on Figure 10.2

• MasterClock must be provided from power-up.

• the full reset/reconfiguration sequence starts whenever VCCOk is low. Following power-up it must

remain a good stable low for a continuous period of 100ms after VCC and all power supplies reach a

proper level. For successful reconfiguration after power is applied, VCCOk must remain low for at least

64 MasterClock cycles.
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• ensure that ColdReset* is low at the point when VCCOk goes high.

• the CPU samples the first configuration bit (bit 0) around the rising edge of VCCOk. You should

advance the configuration bitstream to the CPU on every rising edge of ModeClock (which runs at

1/256th of the MasterClock rate). Note that there is a 65th configuration bit.

The configuration bitstream takes about 350µs to read, but ColdReset* must be left low for much longer

than that.

• not less than 100ms after the assertion of VCCOk, ColdReset* can be made inactive. At this point the

inter nal PLLs have settled. You must ensure that Reset* is low before ColdReset* is de-asserted; the

transition of ColdReset* must meet setup and hold conditions against MasterOut, and it is this transition

which will determine the phases of the bus clocks relative to MasterOut.

Since MasterOut may not be running early in the power-up sequence, the logic that asser ts ColdReset*
had better do so asynchronously.

• Reset* should be kept active for at least 64 MasterClock cycles to ensure that all the internal pipeline

state is properly reset. Its de-assertion must meet setup and hold conditions to MasterOut. As for

ColdReset*, it would be safer to assert it asynchronously early in the sequence.

It may be possible to perfor m a cold reset without reconfiguration by activating ColdReset* while

maintaining VCCOk high, but we wouldn’t recommend it.

It is possible to cause a ‘‘war m reset’’ by using just the Reset* input. The difference between a cold and

warm reset is that the latter retains a good deal of internal CPU state. A more subtle distinction still exists

between a war m reset and a non-maskable interrupt (NMI). Refer to [R4000 User’s manual] for details.

10.4. Implementation strategies

The reset timing requirement is difficult because it has two long (100ms nominal) and two long-ish (64

MasterClock cycles) timing requirements. The 100ms delay between assertion of VCCOk and deassertion

of ColdReset* is particular ly problematic. But at least you have ben war ned.

The configuration bitstream will end up being stored in some sort of PROM. This is fine but you may want

to be able to provide some kind of user control over some of the configuration bits; how is this to be done?

We’ve used two different approaches:

• There are relatively few ‘‘1’’ bits in a typical modebit stream; so we’ve encoded quite a few options in a

‘‘PAL’ ’ type device with static configuration input signals.

• In an earlier scheme we kept modebit infor mation in a corner of the system boot PROM, with

hardware to read and serialise the data at reset-time. Different options were selected by fixing the

base address of the 32-byte section of boot PROM. This meant there was no limit on what bit-

patter ns we could generate.

We quite liked this solution. The boot PROM is typically big enough that a little space won’t be

missed, and it is nice not to add another type of programmable part to your inventor y. But it takes

care; most of your board logic is likely to depend on the CPU bus clocks, and those clocks cannot be

relied on until the CPU has configured itself.
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11. A 3.3V CPU in a 5V system

Only the most power-sensitive of you will be contemplating a pure 3.3V design in the next couple of years.

But you may well want to use a 3.3V CPU, because the CPU type you like best is not available in 5V, or

because a 5V CPU will get too hot.

The good news is that 3.3V CMOS logic levels are compatible (for the great majority of signals) with 5V

‘‘TTL-level’’ logic. But the bad news is that input signal voltages which go too far above the 3.3V level are

liable to cause the CPU to ‘‘latch-up’’ - a breakdown of a normally insulating part of the internal silicon,

which will certainly stop the system wor king and may cause permanent damage to the CPU.

11.1. Ground rules

• Set your power supply high : ‘‘3.3V’’ par ts are specified with an eye on batter y-powered systems, which

exhibit poor voltage regulation. They are therefore able to operate correctly on a fair ly wide range of

voltages, usually quoted as 3V to 3.6V.

All the input signal problems are related to the amount by which the input signal level exceeds the

chip’s pow er supply. So if you set your low-voltage supply near to 3.6V, your design will be more

robust.

• Attend to special cases : on most CPU types the input clock MasterClock has special requirements -

and in this case the same signal levels are not acceptable for 5V and 3.3V parts. The 5V CPU

requires a rail-to-rail clock.

You should also be careful about the clock synchronisation feedback signal SyncIn.

We’d recommend you use a nice, crude, potentiometer networ k to cut these signals down to a 3.3V

swing when required.

• Remember power-up : a transient voltage difference during powerup (caused by a 3.3V supply which

lags the 5V supply, for example) can be big enough to cause the CPU to latch up - and the condition is

stable. Unless the supplies come up together, you’re going to need to arrange that input signals are

not driven until power is stable through the system.

11.2. Limiting input signal transitions

There are a number of ways you can do this:

• Specialist converting buffer components : you can obtain a number of different buffer types (particular ly

variants of the ’245 bidirectional bus driver) fitted with dual power inputs and designed to connect 3.3V

and 5V signal sets.

However, as discussed right at the start of this document (in §2. (‘‘R4x00 System Goals’’) on page 8),

the ideal component to attach to R4x00 is a bidirectional edge-triggered register with clock enable

inputs. Once you start putting all these requirements together with voltage translation, there are no

par ts which qualify. Maybe one has appeared since we wrote this7.

• Use QuickSwitch parts as voltage limiters : a more subtle var iant of the scheme uses QuickSwitch8

(‘‘QS’’) components. These devices are CMOS switches which make a bidirectional connection

between two signals with an effective resistance of the order of 5Ω. They don’t amplify the signal, and

they exhibit a delay so close to zero that you can’t measure it. But in this context they have another

vital character istic, which is that they cease to conduct when the input gets with about 0.8-1V of their

power supply, effectively clamping the signal as it passes through.

7 If it has, it will probably be in the IDT FCT logic catalogue.
8 ‘‘QuickSwitch’’ is a trademar k of Quality Semiconductor, who deserve a cheer for

inventing it.
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A QS par t fed with about 3.9V as its power supply will clean up your 5V signals and make them usable

by the 3.3V CPU. It will wor k on bidirectional signals (because the clamped high outputs are still well

within spec as a TTL compatible logic high). Since they don’t have any drive , the QS parts use ver y

little power so can be supplied from 5V through a series resistor (we’ve used 39Ω to feed 11 QS’ in

parallel) regulated by a zener diode to ground, and appropriately decoupled.

Not all signals should be so abused; in particular, think about some other way of handling clock inputs

to the CPU. But this gets our star recommendation.

• Use bipolar-level TTL inputs : with the CPU supply tweaked to near 3.6V, inputs from old-fashioned

‘‘74F’’ TTL parts are ver y unlikely to overshoot to such an extent as to cause trouble. The same is true

of BiCMOS and low-swing CMOS parts (such as IDT’s FCT-T series, or Texas BCT).

Nonetheless, such inputs will regularly dwell at levels 0.5V or more above the CPU’s pow er rail - and

overshoots could exceed device limits. We’d recommend that you use this approach only when you

need to retrofit 3.3V ability to an existing design - and then be ashamed, or careful, or both.

11.3. Generating 3.3V power from the 5V rail

3.3V R4x00 components do not use huge amounts of 3.3V power - probably 1.5A or less for the

R4600/Vr4200 generation of parts. A simple linear regulator circuit can readily supply enough power

without getting too hot. It has big advantages; it will bring up the 3.3V power almost simultaneously with

the 5V supply (avoiding transient power-up overvoltages), and won’t cause noise problems.

We strongly recommend that you use a regulator off the 5V supply on most of your mixed-voltage

designs. Of course, if you need to run for as long as possible off batteries you’ll need something more

efficient.
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Appendix A: SysCmd codes used by the R4x00

This is a complete list of command codes which may be uttered by the R4x00. You may find this an
easier reference than the bit-based decoding described in §5.3. (‘‘Command encoding’’) on page 18.

SysCmd(8:0)
hex bin

Operation

Cached reads

00 0 000 00 000 read, 4-word cache line refill

01 0 000 00 001 read, 8-word cache line refill

Normal uncached reads

18 0 000 11 000 read, 1-byte

19 0 000 11 001 read, 2-byte (short)

1B 0 000 11 011 read, 4-byte (word)

1F 0 000 11 111 read, 8-byte (double-word)

Peculiar uncached reads (only from load-left, load-right)

1A 0 000 11 010 read, 3-byte

1C 0 000 11 100 read, 5-byte

1D 0 000 11 101 read, 6-byte

1E 0 000 11 110 read, 7-byte

Cached data writes

50 0 010 10 000 wr ite, 4-word cache line writeback

51 0 010 10 001 wr ite, 8-word cache line writeback

Uncached writes

58 0 010 11 000 wr ite, 1-byte

59 0 010 11 001 wr ite, 2-byte

5B 0 010 11 011 wr ite, 4-byte

5F 0 010 11 111 wr ite, 8-byte

Peculiar uncached writes (only from store left, store right)

5A 0 010 11 010 wr ite, 3-byte

5C 0 010 11 100 wr ite, 5-byte

5D 0 010 11 101 wr ite, 6-byte

5E 0 010 11 110 wr ite, 7-byte

Null operation

60 0 011 00 000 null operation, bus back to CPU

Bitfields in data types

× 1 LRE C0 000 data, where:

L - 0 mar ks last or only data cycle

R - 0 for read data, 1 for write

E - 1 for data is bad

C - (only into CPU) 1 to suppress SysAD, SysADC

checking

Ever yday data codes

100 1 000 00 000 nonburst or last-in-burst read data

180 1 100 00 000 burst read data, not last

110 1 000 10 000 nonburst data without parity, don’t check it

120 1 001 00 000 nonburst bad data (use to cause a bus error)

140 1 010 00 000 nonburst or last-in-block write data

1C0 1 110 00 000 burst write data, not last

Table A.1: SysCmd encodings
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Appendix B: Alternative configuration stream data sets

In this table bit 0 comes first in time. In multi-bit codes the value is an unsigned integer made up by taking

the bitfield and regarding the lowest-numbered bit as the least significant.

Bit Meaningful MIPS
Nos. Values Mnemonic

What it does

0 0  Reser ved

1-4 0-8 XmitDatPat system data write rate (see Table 10.2)

5-7 0-6 SysCkRatio Pipeline clock/bus clock divisor.

0 = 1:2 up to 6 = 1:8 - n means divide by (n+2).

8 0/1 EndBlt 0 = little-endian, 1 = big-endian

9-10 0-3 Non-block write Single write protocol options (for all writes

except cache writeback):

0 = R4000 compatible

1 = reser ved, don’t use it

2 = pipelined writes, as descr ibed in §7.1. (‘‘How

it wor ks’’) on page 29.

3 = write re-issue (not described here, see

R4600/Or ion documentation)

11 0/1 TmrIntEn Deter mines role of Int5* and availability of

interr upt from internal timer.

0 = inter nal timer interrupt enabled, pin is a no-

connect

1 = no inter nal timer interrupts, interr upt through

pin.

12 0 Reser ved

13-14 0-3 Dr v_Out Output driver slew rate control.

2 = fastest

3 = faster

0 = slower

1 = slowest

15-255 0 Reser ved

Figure B.1 Configuration data stream encoding for the R4600
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Appendix C: Software cache management with DMA

The ingenious design of the large-package R4x00 exploits the tag store of the exter nal secondar y cache

as a ‘‘duplicate tag store’’ for the primar y cache, allowing cache coherency operations to be carried out in

parallel with processor execution from the primar y cache.

But this means that a R4x00 processor, without the secondary cache, is not capable of implementing the

cache coherency operations. This implies that system software must manage the R4x00 caches to

ensure that the CPU does not read data from the cache which has been updated in memory by some

other memory master.

Because the R4x00 data cache is a writeback type, care has to be taken with both DMA reads and writes:

• DMA from memory to per ipheral : it is essential that the contents of memory are correctly updated

before a DMA operation starts. This means that any data cache contents holding lines in the DMA

buffer area must be flushed back to memor y before the DMA operation is commenced. The R4x00PC

has special coprocessor instructions to flush lines from the cache.

• DMA from peripheral to memory : before the operation starts, you should ensure that all data cache

lines referr ing to the memory are flushed (otherwise the processor might trigger back a writeback of a

line in the middle of a DMA read of the same data, which would create chaos).

Either before or after the DMA operation, but before the CPU attempts to reference any of the data

which has been copied into memory, you must invalidate any cache lines referr ing to the buffer to

ensure that programs do not read ‘‘stale’’ data.
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Appendix D: Glossary

ASIC: ‘‘Application-specific integrated circuit’’ - a chip custom made for a specific application.

bus, bus interface: when used unqualified in this document, a short way of descr ibing the data transfer

interface of the R4x00, which consists of the SysAD, SysCmd and associated control signals.

Coherent cache: in a multiprocessor system, coherent caches used by CPUs sharing main memory

maintain the fiction that the CPUs are reading and writing main memory directly (so that a change

made by one CPU is immediately visible to all others, and all CPUs have the same ‘‘coherent’’ view

of shared memory). Ingenious mechanisms have been developed which achieve this while

maintaining most of the efficiency and reduced memory traffic which the caches were put in to

obtain.

error-correcting code (ECC): a kind of checksum with the character istic that certain classes of error (for a

memor y system ECC like the R4x00s this means any single-bit error) produces a code from which

the correct data can be re-computed.

ev en par ity: when we say that SysAD(7:0) is checked by SysADC0 using even par ity, we mean that the total

number of one bits in SysAD(7:0) together with SysADC0 should be even. The bus is checked by

computing an exclusive-OR of all 9 bits (the result should be zero); the check bit is calculated as an

exclusive-OR of the 8 data bits.

exter nal agent: MIPS-speak for the logic at the other end of SysAD and SysCmd. We try not to use MIPS-

speak too much, since the style of the MIPS documentation appears to be a problem for many

readers.

issue cycle: The issue cycle of a request on the R4x00 bus is the last bus clock cycle for which the

request code is driven on SysCmd and ValidOut* is asserted. If you leave the flow-control signals

WrRdy* and RdRdy* asser ted, then the issue cycle is the one and only clock cycle for which the

request is driven.

Ever ything which happens on the bus after the R4x00 puts out a request will be related to the issue

cycle timing.

Like the happiest day of your life, the issue cycle is difficult to recognise without the benefit of

hindsight. This makes the concept less useful than it might otherwise be!

output buffer di/dt control mechanism: also referred to as ‘‘output drive tuning’’, ‘‘output speed tuning’’.

The mechanism by which the R4x00 adjusts the current limit of its output drivers until their transition

timing, as represented by the dummy loopback load from IOOut to IOIn, safely meets its configured

target speed. This is referred to several times but the best description is in §10.2.5.

phase locked loop: (PLL) a circuit (usually analogue in nature) which regenerates a clock from any

regular ly changing input, such that the recovered clock’s frequency and phase bear some

predefined relationship to the input transitions. This is most commonly met with in data recovery

circuits (disc and communication interfaces, for example) where the objective is to produce a

beautiful clock from ugly inputs (by averaging out the ugliness over time).

In the R4x00, the PLLs serve two different functions:

• speed changing: used to phase-lock clocks running at multiple or sub-multiple frequencies;

• delay compensation: used to adjust the CPU’s output clocks so that, after the user’s buffer ing

and tracking, the user’s clocks are precisely aligned with the CPU’s inter nal phases.

Pipeline: for a CPU, the pipeline is a technique for speeding instruction execution. Instructions are

fetched and decoded much more rapidly than they can be executed (in the R4x00 one instruction is

fetched on each internal clock, double the input clock rate). Each instr uction is then passed through

a set of phases (one per clock); the different bits and pieces making up the CPU have to be carefully
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designed to prevent an instruction using something that an earlier instruction hasn’t actually done

yet.

programmable logic device (PLD): PALs and the larger devices usually called FPGAs. High speed is

essential. Some FPGAs have input register stages which are extremely fast, so may suffer from

hold time problems in an R4x00 application.

read requests: MIPS-speak for the read command on SysCmd with the address of the location on SysAD.

response: MIPS-speak for a set of data returned to the CPU on a read on SysAD together with a suitable

type code on SysCmd.

sampling window: the period of time during which a signal must be in a valid state in order to guarantee

that it is correctly sampled. For a signal sampled by an edge-tr iggered register, the window extends

from the earliest clock time less the setup time, to the latest clock time plus the hold time.

secondar y cache: caches can be cascaded, with a small fast cache close to the CPU refilled from a

larger, slower cache (the secondary cache) refilled from large, slower-still main memory. The R4x00

family is conceived as using a dedicated off-chip secondary cache to backup the on-chip caches

(which with 1992 technology are not nearly big enough). The hundreds of extra pins needed to wire

up the secondary cache are omitted on the R4x00 version.

shared memory multiprocessor: a multiple-processor machine whose CPUs all share the same memory

space and where the memory is a reliable vehicle for inter-CPU communication. The reliable

shared memory is usually a fiction carefully maintained by coherent caches.

split transactions: a bus transaction (which is usually a read) where the bus is acquired once to broadcast

the address, then potentially used for other purposes before being re-acquired to return the data.

Where a bus is much faster than attached memory and is intensively used by multiple masters, split

transaction protocols considerably improve total bus throughput.

wr ite request: MIPS-speak for the message which concatenates write data phase(s) onto the write

command and address.
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Appendix E: Analogue design considerations

R4x00 designs will be fast and wide. The CPU technology (and the only sensible choice for the data and

address paths) is high-speed TTL-compatible CMOS - high perfor mance but tricky stuff to use.

A folklore has grown up about how to use this stuff successfully. Different problems are summarised

below. Note however that where this comes up and bites you it will often be because two of the problems

have joined forces by chance.

High speed CMOS design: edge rates, ground bounce

High speed TTL-compatible CMOS logic parts have very high drive, ver y high output slew rates, and ver y

high input impedance. Some of the problems associated with their use have been widely discussed -

ground bounce is a good example. But other effects can be at least equally bad and wor thy of

consideration. You should beware:

• Fast edges : FCT and similar parts have sub-ns rail-to-rail voltage slews; the octal parts most often

used in bus applications are specified to drive up to 48mA and don’t slow down much when loaded.

Most signals will be predominantly loaded by other CMOS parts, so the load will be almost pure

capacitance.

The fast edges lead to substantial undershoot. The undershoot will be to some extent damped by

FCT-type inputs (which have high speed clamp diodes) but more complex CMOS parts don’t

necessar ily respond fast enough.

This problem is eased by the increasing availability of parts whose nominal logic 1 output level is

around 3.5V rather than 5V: suitable parts are ‘‘FCT-T’’, or the BiCMOS ‘‘ABT’’ logic family. A ser ies

damping resistor (typically 22-47Ω) situated close to the driver reduces the instantaneous current flow

and is usually helpful. You can now buy components with integrated resistors, which saves space.

• Instability and oscillation : the combination of high drive and low input impedance means that high

speed CMOS logic shows much greater power gain than bipolar TTL. It requires ver y little

output→input coupling to promote instability; in particular an input floating around the logic transition

level, and which directly controls an output may well oscillate with enough force to disrupt the

operation of connected components9.

High-dr ive ‘‘transparent’’ par ts should not be enabled until the inputs are at a good level.

• Ground bounce : a component driving several outputs may have so low a source impedance that the

impedance of the ground trace to the chip, and the ground connections from the component leg to the

die, are a significant proportion of the whole loop. Where several outputs make a high to low

transition, the die ground voltage will ‘‘bounce’’ up relative to system ground.

Once the bounce exceeds the normal noise thresholds strange things start happening. For example

other output signals, nominally at logic ‘‘0’’, will be dragged up with the die ground and may be seen to

pulse high.

Ground bounce is at its worst with packages where the connection from ground pin to die is longest;

traditional corner-ground through-hole DIL packages are particular ly bad. You get much less trouble

on SMT components; but on your SMT board the pad cannot be attached directly to the PCB ground

plane, so the problem may merely shift from being a component problem to a board problem.

Newer pin-outs usually incorporate extra ground pins to solve this problem; the 16-bit wide packaging

format pioneered by Texas Instruments as ‘‘WideBus’’ is a good example. And your series resistor

helps again by reducing the output current.

9 Do not make the mistake of thinking that high-resistance pull-up resistors on tristate
lines will get round this problem. Such arrangements still leave the input close to the
transition level for many ns as the resistor pulls up a signal disabled from a logic low.
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Reflections and other long-track effects

Tr ansitions propagate along copper PCB tracks at a rate of about 15cm/ns. Every component connection

is an impedance discontinuity, and CMOS components’ high DC impedance absorbs ver y little of the

transition energy, so at these discontinuities some of the ‘‘wave’’ is reflected back. The result is a period

of noise which is usually reckoned to die down in approximately twice the time required to traverse the

longest path out from the driver.

Some books and articles will talk of transmission lines and incident waves, and use models assuming a

single driver, a track of known and constant impedance, and a calculated-impedance termination networ k

to show how to suppress the noise. You should read these books if you must, for example, ship a fast

clock 45cm across a board or backplane; but for TTL-compatible logic with multiple loads you should

leave your calculator gathering dust at the back of the desk.

However, the following helps:

• Keep tracks short : par ticularly on signals whose edges are used (clocks, strobes etc). Take care if

your CAE system can’t tell you how long traces are. Do remember, though, that it is maximum length

from driver which counts, not total length; these can be ver y different for a signal tracked as a ‘‘tree’’.

What length is safe? 15cm is no problem and you’ll usually get away with 20cm.

Where manufacturer’s design books start telling you that tracks must be less than 10cm, worr y. Such

limits are not, in practice, achievable; and so should usually be interpreted as meaning that the author

doesn’t know how to make the system wor k, and is just making sure that s/he can’t be blamed!

• Watch out for high capacitative loads : on DC considerations alone a 48mA CMOS driver can easily

dr ive sev eral thousand CMOS inputs. Be sensible; 10 loads is already a lot. But if you break this rule

the ground bounce will probably find you first.

• Ser ies resistors (again) : ser ies resistors usually wor k quite well with long-track effects too. Note,

however, that a calculation from transmission line theory will ususally suggest that the best damping is

obtained with a resistor in the range 68-100Ω; but this is usually excessive and slows the edges too

much.

It is probably true that resistors put in by engineers who intend to tackle signal reflections turn out to

useful because of the other benefits of series resistors mentioned above . This of course lends

spur ious empir ical backing to the idea that transmission-line theory is a generally useful tool.

Po wer supply noise and special decoupling

R4x00 systems will be built on boards using ground planes with adequate HF and LF decouplers.

However, the R4x00 uses separate pins to get power for the analogue phase-locked loop circuits, and the

supply to these pins is extremely sensitive to small amounts of HF noise. The MIPS recommendation is:

• VCC and ground : the PLL supply pins VccP and VssP should be connected to the corresponding

board power supplies with appropriate impedance. Ear ly-life suggestions are for 5Ω resistors, with

separate decouplers close to the PLL supply pins; an inductor such as a wire link with a ferr ite bead

slipped around it would be good.

• Extravagant decoupling : three decouplers allow better coverage of the frequency range. For a spread

use a 10µF tantalum, a 100nF multilayer HF ceramic, and a 1nF low-inductance ceramic. And keep

them close to the pins, and use nice fat tracks.

That way you’ll never know whether it mattered.
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Appendix F: Thermal considerations

R4x00 parts get hot; R4400 components at high speeds may dissipate more than 7W. To operate in free

air at room temperature you will need a black alloy heat sink bigger than the chip (if anyone shows you an

R4400 system without a heat sink on the CPU you can be sure that it doesn’t wor k and has probably

never been switched on!).

The later, ‘‘embedded’’, var iants run much cooler, par ticularly at 3.3V. 1994/95 3.3V Vr4200 (and possibly

R4600) parts may reach the point where convection cooling can be made to wor k with appropriate

product packaging.

The gold square central section of the PGA or MQFP package is thermally bonded to the die and is well

placed to make a good connection to your heat sink10.

To be able to run over a nor mal commercial range some kind of induced airflow is essential. Once you

have an airflow established a more modest heat sink will do.

One ready-made solution is the combined fan/heatsink modules fitted to every Pentium or fast-i486 PC.

They’re available for both 12V and 5V supply, but 12V is cheaper and easier to get. Highly recommended

for small-volume and infor mal applications.

You may be able to get clip-on combined heat-sink and electromagnetic shield components.

10 Beware the small capacitor components on top of early chips; they are precision
PLL capacitors and if you short them out you short VccP to VssP.
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