64-bit ELF Object
File Specification

Version 2.4

Section 1

Jim Dehnert

MIPS Technologies /
Silicon Graphics Computer Systems

Caveat: This document representsrivin progress. It is incompletnd |
subject to change. In particuléists of constants, sections, and atités

are may be incomplete or inaccurate in detail. Reference to the header
fileself.n andsys/elf.h is recommended before reliance on the informa-
tion herein.

| ntroduction

This document specifies the format of MIPS object files for 64-bit code.
We assume as a basis the documents [ABI32], [ABI32M], and [ABI64].
In addition, Silicon Graphics uses th®VBRF delugging information
format as specified in lWNARF]. Information in those documents should
be consideredalid unless contradicted here.

11/3/98

%% SiliconGraphics

Computer Systems

Page 2

11

12

The remainder of this section summarizes our obestiapproach, and
open issues. Section 2 corresponds to ABI Section 4, describing ELF-64
object files, and Section 3 corresponds to ABI Section 5, describing pro-
gram loading and dynamic linking. Section 4 describes the 64-bivarchi
file format (from MIPS ABI Section 7), though it is not technically part

of ELF.

Objectives

The objectres of this format definitiorafl in two categories. The first is
simply to extend the base 32-bit ELF format, by increasing field sizes
where appropriate, so that there will be no problems dealing efith v
large 64-bit programs. The second is xtead the kinds of information
included in the object file tatilitate nev features.

1. Remwe 32-bit constraints on object file sizes.

2. Support checking and potential eension of subprogram call in-
terfaces.

3. Support dicient and reliable application of performance monitor-
ing tools like pixie and object code optimization toolsli&ord.

4. Support dicient and reliable delgging fcilities.

Approach

We start from the basis of the System V ABI and the MIPS symbol table
format, extending them in the ofious ways to supportery lage objects.

We will then add additional information (generallywngections) to sup-
port the etended objecties described ale. We generally recognize

three leels of support:

1. Some information is required for all ABI-compliant object files.

2. Some information is optionalubits absence will pxent use of
system functionalitye.g. cache optimization reordering, etc.

3. Some information is entirely optional; its absence interferes only
with functionality unrelated to program construction, e.gudeb
ging, performance measurement, etc.

To clarify the distinction between thesgdés, we hae defined a e
section header flagHF_MIPS_NOSTRIP, which is applied to sections in
the first two levels. The intent is thatsarip(1) tool or its equialent
should neer remae these sections by @eflt, and should arn the user
if their remal is eplicitly requested.

SiliconGraphics
Computer Systems

11/3/98

Introduction Page 3

13

We have followed a number of principles and assumptions in this specifi-
cation:

1. Sections rpected to be used by runtineeifiities, e.g. stack trace-
back, hae thesHF_ALLOC attribute. Such sections alsoveasym-
bols automatically generated by the Bnkvhich may be used to
reference them in code (see Section 3.1.2). Thiwaltmple vir-
tual addressing in the process address spaceyoegnired ac-
cess.

2. Sections are NDgiven thesHF_WRITE attribute simply because
rld may need to relocate their content® #¢sume that rld can re-
guest write access and change it back if necessadyprefer this
approach for a more rabt runtime emronment.

3. We require that thexecutable code for a singlgezutable or DSO
will never be lager than 256MB, and that it will mer be loaded
across a 256MB boundariyhis requirement alles various benefi-
cial assumptions abouéhd addressing code within arezut-
able/DSO, and also alies the use of single-avd addresses (to be
interpreted relatie to the containing 4GB address range) for code
in an object file.

Finally, this is intended to be a permissspecification. Usage of the fea-
tures described should generally bemgd as permitted in grcombina-

tion with a reasonably unambiguous interpretation unless it is forbidden.
It is likely, of course, that meusage will unceer (and break) implicit as-
sumptions in tools from time to time, and adding further restrictions may
be the most appropriate solutiont the bias should bewards fixing the
tools to allev reasonable practices.

Conventions

In all of the tables in this document, unshaded information is thatderi
directly from eternal documents (i.e. the generic ABI and tWgARF
specification), lightly shaded information is dexd directly from 32-bit
MIPS specifications (ELFeader files), and haly shaded information
is nav or substantially changed from thes#s@ng formats.

We use the usualarding to describe requirements, distinguishing be-
tweenmust (mandatory)should (recommended), anday (allowed).

11/3/98

ﬁ% SiliconGraphics

Computer Systems

Page 4

1.4 Open Issues

Unresohed issues and missing information are redri this document
by the symbol at the left. The most significant ones at this time are:

1.

2.

Should there be a distinct EK_PBEGIXeat in case a program
unit does not kgn with an entrypoint (Section 2.10)?

Should memorywents be sgregated to a distinctvents section so
that tools which use the defit events and those which use the
memory @ents arert’impacted by the other data (Section 2.10)?

1.5 Changesfrom Version 2.0
The following hare been changed fronession 2.0 of this specification:

1.
2.

3.

10.

11.

12.
13.
14.
15.

Added a description of LEB128/ULEB128 formats.

AddedEF_MIPS_OPTIONS_FIRST andEF_MIPS_ARCH_ASE ELF
flags.

Added Tble 15 describing special resetwalues of thest_shndx
field.

. Added definitions 0bHW_R8KPFETCH andOHW_R5KEOP masks

in the Hardvare Ritch Option DescriptoAdded nev Hardware
AND/OR Patch Option Descriptors.

. Added nev ODK_GP_GROUP andODK_IDENT option descriptors.

Note thatR_MIPS_PJUMP requires thaid check that the symbol is
not preemptible before performing the relocation.

. Added definitions ofwent kindsek_LTR_FCALL and

EK_PCREL_GOTO. Fixed alues of kind€K_MEM_*,
Fixed definition of content kindk_GP_GROUP.

. Added section on Shared Object Dependencies describiagldef

search paths for DSOs and’/eanment \ariables to verride them.

Added sections defining th@sym and.conflict sections for the
quickstart discusion (Section 3.8).

AddedDT_MIPS_INTERFACE_SIZE and
DT_MIPS_RLD_TEXT_RESOLVE_ADDR descriptions.

Added missindT_MIPS_FLAGS flags.

Added documentation of thiblist section (Section 3.8.2).
Added documentation of theliPS.symlib section (Section 3.8.4).
Corrected defult library search paths in Section 3.4.

SiliconGraphics
Computer Systems

11/3/98

Introduction Page 5

16. AddedsSHN_MIPS_LCOMMON (thread-local common) and
SHN_MIPS_LCOMMON (thread-local undefined) symbol documen-
tation in Section 2.5.

17. AddedsTo_OPTIONAL symbol documentation in Section 2.5.

18. Added split common symbol documentation in Section 2.5 (and
Section 2.5.1).

19. FixedEK_PCREL_GOTO definition in Section 2.10.
20. ClarifiedCK_GP_GROUP description in Section 2.12.

21. Add comment ta@dDK_PAD option descriptqrallowing implemen-
tations to require thad do all padding rather than keag some to
rid (Section 2.8).

22. AddedODK_PAGESIZE proposal (Section 2.8.10).

11/3/98 ﬁ% SiliconGraphics

Computer Systems

Page 6

Section 2 ELF-64 Object File Format

The ELF-64 object file format is based on the document [ABI64]. The
relevant declarations are contained in the headefufiténclude/elf.h.
(Note thatusr/include/sys/elf.h is logically part ofusr/include/elf.n, and

is the actual location of most of these declarations.)

We call attention to the [ABI32] requirement that all data structures be
naturally aligned in the file (see p. 4-3). This implies that all headers, sec-
tions, and other major components must be 8-byte aligned, with padding
if necessary to accomplish this. Although 4-byte alignment is probably
adequate currently for ELF-32, 8-byte alignment should also be used
there to &oid future &tension problems. (Note, wever, that the
DWARF specification fundamentally assumes a byte-stream format.
Therefore, the data structures contained in SOMWARF sections will

violate the alignment requiremeim.addition, the .MIPSwents and .MI-
PS.content sectionsvy@pacled byte-stream contents for compactness.

When defining structure fields which are smaller than sesoant stor-
age unit (e.g. single-bit flags), wevieaused & bitfield notation (e.g.
Elf64_Word:1). The intent is to specify layout egalent to big-endian
bitfields, lut the actual structure declarations in header files should use
masks and shifts to access them. Th@ds problems with byte sap-

ping between big- and little-endian hosts.

2.1 Infrastructure

ELF-64 is defined in terms of the types &ble 1:

Table 1 ELF-64 Data Types
Name Size | Alignment | Purpose
Elf64_Addr 8 8 Unsigned program address
Elf64_Half 2 2 Unsigned small integer
Elf64_Off 8 8 Unsigned file offset
Elf64_Sword 4 4 Signed medium integer
Elf64_Sxword 8 8 Signed large integer

%% SiliconGraphics 11/3/98

Computer Systems

ELF-64 Object File Format

Page 7

Table 1 ELF-64 Data Types
Name Size | Alignment | Purpose
Elf64_Word 4 4 Unsigned medium integer
Elf64_Xword 8 8 Unsigned large integer
Elf64_Byte 1 1 Unsigned tiny integer
Elf64_Section 2 2 Section index (unsigned)
There are places in ELF-64 files where fundamental data types must be
encoded, for instance in subprogram irdeef descriptors. ¥/generally
use the constants irable 2 to identify them, based oMBRF version 1
(but not identical).
Table 2 Fundamental Data Types
Name(s) Value | Comments
FT_unkno wn 0x0001 | unknawn type
FT_signed_c har 0x0001 | 8-bit signed character
FT_unsigned_c har 0x0002 | 8-bit unsigned character
FT_signed_shor t 0x0003 | 16-bit signed short intger
FT_unsigned_shor t 0x0004 | 16-bit unsigned short inger
FT_signed_int32 0x0005 | 32-bit signed intger
FT_unsigned_int32 0x0006 | 32-bit unsigned intger
FT_signed_int64 0x0007 | 64-bit signed intger
FT_unsigned_int64 0x0008 | 64-bit unsigned intger
FT_pointer32 0x0009 | 32-bit pointer
FT_pointer64 0x000a | 64-bit pointer
FT_float32 0x000b | 32-bit floating point (IEEE)
FT_float64 0x000c | 64-bit floating point (IEEE)
FT_float128 0x000d | 128-bit floating point
FT_comple x64 0x000e | 64-bit comple floating point
FT_comple x128 0x000f | 128-hit comple floating point
11/3/98

SiliconGraphics
Computer Systems

Page 8

Table 2 Fundamental Data Types
Name(s) Value | Comments
FT_complex256 0x0010 | 256-bit compla floating point
FT_void 0x0011 | void
FT _bool32 0x0012 | 32-bit Boolean (TRE or FALSE)
FT_bool64 0x0013 | 64-bit Boolean (TRE or FALSE)
FT label32 0x0014 | 32-bit label (address)
FT label64 0x0015 | 64-bit label (address)
FT_struct 0x0020 | structure (record)
FT union 0x0021 | union (\ariant)
FT_enum 0x0022 | enumerated type
FT typedef 0x0023 | typedef
FT set 0x0024 | Pascal: set
FT _range 0x0025 | Pascal: subrange of irger
FT_member_ptr 0x0026 | C++: member pointer
FT virtual_ptr 0x0027 | C++:; virtual pointer
FT class 0x0028 | C++: class

The fundamental types irable 2 may be modified by the qualifiers in
Table 3 belw, also based on [WARF-1]:

Table 3 Type Qualifiers
Name Value | Comments
MOD_pointer_to 0x01 pointer to base type
MOD_reference_to 0x02 C++: reference to base type
MOD_const 0x03 const
MOD_volatile 0x04 volatile
MOD_lo_user 0x80 first MIPS-specific modifier
MOD_function 0x80 function returning base type
MOD_array_of 0x81 array of base type

%% SiliconGraphics 11/3/98

Computer Systems

ELF-64 Object File Format Page 9

Table 3

2.2

Type Qualifiers

Name Value | Comments

MOD_hi_user Oxf f last MIPS-specific modifier

The data structures in thelPS.events and.MIPS.content sections use
compressed types from the\WARF] specification, named LEB128 and
ULEB128, for(Unsigned) Little-Endian Base 128 numbers. These are
“little endian” only in the sense that yhavoid using space to represent
the "big" end of an ingeer when the big end is all zeroes (unsigned) or
sign etension bits (signed).

ULEB128 numbers are encoded as folo start at the l@-order end of
an unsigned ingeer and chop it into 7-bit chunks. Place each chunk int
the lav-order 7 bits of a byte. ypically, several of the high-order bytes

will be zero (unsigned) or copies of the sign bit (signed) — discard thefn.

Emit the remaining bytes in a stream, starting with thedader byte; set
the high order bit on each bytecept the last emitted byte. The high bit

of zero on the last byte indicates to the decoder that it has encounterdd

D

the last byte.

ELF-64 Header

The header format is as defined in [ABI64]; it is reproduced here for ref-

erence purposes.

Table 4

ELF-64 Header Structure

Field Name Type Comments

e_ident[El_NIDENT] unsigned char | See &Bble 5

e_type Elf64_Half See [ABI32]

e_machine ElIf64 Half Machine EM_MIPS = 8)

e_version EIf64_Word File format \ersion

e_entry Elf64_Addr | Process entry address

e_phoff Elf64_Off Program header table filefedt

e_shoff Elf64_Off Section header table filefeét

11/3/98

ﬁ% SiliconGraphics

Computer Systems

Page 10

Table 4 ELF-64 Header Structure
Field Name Type Comments
e flags Elfé4_Word | Flags — seedble 6
e_ehsize Elf64_Half ELF header size (bytes)
e_phentsize Elf64_Half Program header entry size
e_phnum Elf64_Half Number of program headers
e_shentsize Elf64_Half Section header entry size
e_shnum Elf64_Half Number of section headers
e_shstrndx Elf64_Half Section name string table seq-

tion header inde

The structure of the _ident field is gven by BRble 5.

Table 5 ELF-64 Header: e_ident[] Contents
Offset Name Index | Value or Interpretation
El_MAGO0-3 0-3 Magic string: 0x7f, 'E’, 'L, 'F’
EI_CLASS 4 Class of format: ELFCLASS64 = 2
EI_DATA 5 Endianness: ELFRTAMSB = 2
EI_VERSION 6 Version of format: EV_CURRENT =1
El_PAD 7-15 Resered, must be zero

Flags currently defined for theflags field are gven by .

Table 6 ELF-64 Header: Processor-Specific Flags in e_flags
Flag Name Value Comments
EF_MIPS_NOREORDER 0x00000001 | At least one .noreorder assembly dineztap-
peared in a source contuiing to the object
EF_MIPS_PIC 0x00000002 | This file contains position-independent code

% SiliconGraphics

Computer Systems

11/3/98

ELF-64 Object File Format

Page 11

Table 6 ELF-64 Header: Processor-Specific Flags in e_flags

Flag Name Value Comments

EF_MIPS_CPIC 0x00000004 | This file's code follavs standard camentions for
calling position-independent code

EF_MIPS _UCODE 0x00000010 | This file contains UCODE (obsolete)

EF_MIPS_ABI2 0x00000020 | This file follows the MIPS Il 32-bit ABI. (Its
El_CLASS will be ELFCLASS32.)

EF_MIPS_OPTIONS_FIRST 0x00000080 | This.MIPS.options section in thidile contains
one or more descriptors, currently types
ODK_GP_GROUP and/orODK_IDENT,
which should be processed firstlioy

EF_MIPS ARCH_ASE 0x0f 000000 | Application-specific architecturak&nsions
used by this object file:

EF_MIPS_ARCH_ASE_MDMX 0x08000000 | Uses MDMX multimedia etensions

EF_MIPS_ARCH_ASE_M16 0x04000000 | Uses MIPS-16 ISAxensions

EF_MIPS_ARCH 0xf 0000000 | Architecture assumed by code in this file/egi
by the \alue of the 4-hit field selected by the
mask: MIPS | (0), MIPS 11 (1), MIPS 11 (2),
MIPS IV (3)

NOTE: PIC code is inherently CPIC, and may or may not set
EF_MIPS_CPIC.
11/3/98

ﬁ% SiliconGraphics

Computer Systems

Page 12

2.3 ELF-64 Section Header

The section header format is as defined in [ABI64]; it is reproduced here
for reference purposes.

Table 7 Section Header Structure (EIf64_Shdr)
Name Type Description
sh_name Elf64_Word | Section name (index into section
header string table section)
sh_type Elf64_Word | Section type: see Table 8
sh_flags Elf64_Xword | Section flags: see Table 9
sh_addr EIf64_Addr | Address of first byte, or zero
sh_offset Elf64_Off File offset of section
sh_size Elfé4_Xword | Section’s size in bytes
sh_link Elf64_Word | Table index link: section-specific
sh_info Elf6é4_Word | Extra information: section-specific
sh_addralign Elf64_Xword | Address alignment constraint
sh_entsize ElIf64_Xword | Size of fixed-size entries in sectiorn
or zero
The \alid section types for section header figldtype are gven in Table
7 belaw. Shaded types are MIPS-specific;\nlgashaded types are we
in this specification.
Table 8 Section Types

Name Value Description

SHT _NULL 0 Inactive section.

SHT_PROGBITS 1 Information defined by the program
SHT_SYMTAB 2 Symbol table (one per object file)
SHT_STRTAB 3 String table (multiple sections OK)
SHT_RELA 4 Relocation with explicit addends

SiliconGraphics
Computer Systems

11/3/98

ELF-64 Object File Format

Page 13

D

Table 8 Section Types
Name Value Description
SHT HASH 5 Symbol hash table (one per object)
SHT _DYNAMIC 6 Dynamic linking information
SHT _NOTE 7 Vendor-specific file information
SHT_NOBITS 8 Section contains no bits in object fi
SHT REL 9 Relocation without explicit addendd
SHT _SHLIB 10 Reserved — non-conforming
SHT _DYNSYM 11 Dynamic linking symbol table (one)
SHT _LOPROC 0x70000000 | First processor-specific type
SHT_HIPROC ox7fffffff | Last processor-specific type
SHT LOUSER 0x80000000 | First application-specific type
SHT _HIUSER ox8f ffffff | Lastapplication-specific type
SHT _MIPS LIBLIST 0x70000000 | DSO library information used in linK
SHT MIPS MSYM 0x70000001 | MIPS symbol table extension
SHT_MIPS_CONFLICT 0x70000002 fslg’g;b:)';] ‘E)Oorl‘;"aing iy DE0-ete-
SHT _MIPS GPTAB 0x70000003 | Global pointer table
SHT_MIPS_UCODE 0x70000004 | Reserved
SHT_MIPS_DEBUG 0x70000005 Ez:r:]s)erved (obsolete debug informa
SHT _MIPS REGINFO 0x70000006 | Register usage information
SHT_MIPS PACKAGE 0x70000007 | OSF reserved
SHT_MIPS PACKSYM 0x70000008 | OSF reserved
SHT MIPS RELD 0x70000009 | Dynamic relocation?
unused 0x7000000a
SHT MIPS IFACE 0x7000000b | Subprogram interface information
SHT _MIPS CONTENT 0x7000000c | Section content classification
SHT _MIPS OPTIONS 0x7000000d | General options
SHT_MIPS DELTASYM 0x7000001b | Delta C++: symbol table
SHT MIPS DELTAINST 0x7000001c | Delta C++: instance table
SHT_MIPS DELTACLASS 0x7000001d | Delta C++: class table
SHT MIPS DWARF 0x7000001e | DWARF debug information
11/3/98

ﬁ% SiliconGraphics

Computer Systems

Section Types

Name Value Description

SHT _MIPS DELTADECL 0x7000001f | Delta C++: declarations

SHT MIPS SYMBOL LIB 0x70000020 | Symbol-to-library mapping.

SHT_MIPS EVENTS 0x70000021 | Event locations

SHT_MIPS TRANSLATE 0x70000022 | ???

SHT _MIPS PIXIE 0x70000023 | Special pixie sections

SHT MIPS XLATE 0x70000024 | Address translation tatile

SHT_MIPS XLATE_DEBUG | 0x70000025 | SGI internal address translation tébje

SHT MIPS WHIRL 0x70000026 | Intermediate code

SHT MIPS EH_REGION 0x70000027 | C++ exception handling region info]

SHT_MIPS XLATE_OLD 0x70000028 | Obsolete

SHT MIPS PDR_EXCEPTION | 0x70000029 | Runtime procedure descriptor table

- - - exception information (ucode)

a8 SHT_MIPS_XLATE contains translation data table as created by the xlate library
from within cord/pixie, for use by debgers and other tools which need towrmw
to map addresses in the binamytt® addresses in the debinformation. See the sys-
tem header fildusr/lib/include/Xlate.h. SHT_MIPS_XLATE_DEBUG has the
same data format &HT_MIPS_XLATE.

The section attrilite flags defined for section header fi#diags are
given in the table bela Again, light shading indicates MIPS-specific
flags, and heaer shading n& flags.

Table 9 Section Attribute Flags
Name Value Description
SHF_WRITE 0x1 Section writable during execution
SHF_ALLOC 0x2 Section occupies memory
SHF_EXECINSTR ox4 Section contains executable instrug-

tions

SHF_MASKPROC Oxf 0000000 | Reserved for processor-specific flagjs

Section must be part of global data pr-

SHF_MIPS_GPREL s
ea

0x10000000

SiliconGraphics 11/3/98

Computer Systems

ELF-64 Object File Format

Page 15

Table 9

Section Attribute Flags

Name

Value

Description

SHF_MIPS_MERGE 2

0x20000000

Section data should be merged to
eliminate duplication

SHF_MIPS_ADDR

0x40000000

Section data is addresses by defay
(see Section 2.12). Address size tope
inferred from section entry size.

—

SHF_MIPS_STRING

0x80000000

—

Section data is string data by defay
(see Section 2.12).

SHF_MIPS_NOSTRIP

0x08000000

Section data may not be stripped

SHF_MIPS_LOCAL

0x04000000

Section data local tprocesé”C

SHF_MIPS_ NAMES

0x02000000

Linker must generate implicit hiddef
weak names — see Section 3.1.2

SHF_MIPS_NODUPE

0x01000000

Section contains text/data which mgy
be replicated in other sections. Linkgr
must retain only one copy.

8 For a meged section, th&H_INFO value is the size (in bytes) of the objects to
be meged. Such sections should not be writable.

b Local (SHF_MIPS _LOCAL) sectionsare for multi-process programs sharing
an address space. Hhmust be copied for eagitocess Wwich attempts to write
to them.This copying does not occur until after the second process vgremh so
that the initial process can perform dynamic initialization common to all pro-
cesses’ copies of the sectiomiF attritute ieplace the predefined COHEldta

and.lbss sections

¢ SHF_MIPS_LOCAL andSHF_MIPS_GPREL are mutually kclusie, i.e. a
local data section may not be placed in the short gpweldéita area.

A number of special sections are predefined, with standard names and at-

tributes. Note, heever, that an ELF producer may create arbitrary sec-
tions with arbitrary names and atutes, and may generate the
predefined sections with additional attriés. or example, &ecutable

code may be generated in multiple sections with arbitrary names, not just

in .text.

Table 10

Special Sections

Name

Type

Default Attributes

.bss

SHT_NOBI TS

SHF_ALLOC + SHF_WRITE

11/3/98

ﬁ% SiliconGraphics

Computer Systems

Page 16

Table 10 Special Sections
Name Type Default Attributes
.comment SHT PROGBI TS none (by default)
data SHT_PROGBI TS SHF_ALLOC + SHF_WRITE
datal SHT_PROGBI TS (gABI, not used by MIPS)
.debug SHT_PROGBI TS (gABI, not used by MIPS)
.dynamic SHT_DYNAM C SHF_ALLOC?2
dynstr SHT_STRTAB SHF_ALLOC
.dynsym SHT_DYNSYM SHF_ALLOC
fini SHT_PROGBI TS SHFE_ALLOC + SHF_EXECINSTR
.got SHT_PROGBI TS SHF_ALLOC + SHF_WRITE +
SHF_MIPS_GPREL
.hash SHT_HASH SHF_ALLOC
Janit SHT_PROGBI TS SHFE_ALLOC + SHF_EXECINSTR
interp SHT_PROGBI TS SHF_ALLOC
Jine SHT_PROGBI TS SHF_ALLOC
.note SHT_NOTE none (by default)
plt SHT_PROGBI TS (gABI, not used by MIPS)
.relname SHT _REL none (by default), see [ABI32]
.relaname SHT _RELA none (by default), see [ABI32]
.rodata SHT_PROGBI TS SHF_ALLOC
.rodatal SHT PROGBI TS (gABI, not used by MIPS)
shstrtab SHT_STRTAB (gABI, not used by MIPS)
Strtab SHT _STRTAB none
.Ssymtab SHT _SYMTAB none
text SHT_PROGBI TS SHFE_ALLOC + SHF_EXECINSTR
.MIPS.Addrs SHT M PS PI XI E none
.MIPS.Binmap SHT_M PS_PI XI E none
.MIPS.compact_rel SHT M PS_COVPACT none
.conflict © SHT_M PS_CONFLI CT | SHF_ALLOC
.MIPS.contentname SHT_M PS_CONTENT | SHF_ALLOC+ SHF_MIPS NOSTRIP
.debug_abbrev SHT M PS_DWARF none (generic DWARF section)

SiliconGraphics 11/3/98

%‘ﬁ Computer Systems

ELF-64 Object File Format

Page 17

Table 10 Special Sections
Name Type Default Attributes
.debug_aranges SHT M PS_DWARF none (generic DWARF section)
.debug_frame SHT_M PS_DWARF SHF_MIPS_NOSTRIP
(generic DWARF section)
.debug_funcnames SHT M PS_DWARF none (generic DWARF section)
.debug_info SHT M PS_DWARF none (generic DWARF section)
.debug_line SHT M PS_DWARF none (generic DWARF section)
.debug_loc SHT M PS_DWARF none (generic DWARF section)
.debug_pubnames SHT M PS_DWARF none (generic DWARF section)
.debug_str SHT M PS_DWARF none (generic DWARF section)
.debug_typenames SHT M PS_DWARF none (MIPS DWARF section)
.debug_varnames SHT M PS_DWARF none (MIPS DWARF section)
.debug_weaknames SHT M PS_DWARF none (MIPS DWARF section)
.dynamic SHT_DYNAM C SHF_ALLOC
.MIPS.eventsname SHT_M PS_EVENTS SHF_ALLOC+SHF_MIPS_NOSTRIP
.gptabname® SHT_M PS_GPTAB none
.MIPS.Graph SHT_M PS_PI XI E none
MIPS.interfaces SHT_M PS_| FACE SHF_ALLOC+SHF_MIPS_NOSTRIP
MIPSIbss SHT_NOBI TS SHF_ALLOC + SHF_WRITE +
MIPSdata SHT_PROGBITS | SHF_MIPS LOCAL ¢
dib obsol ete
Jliblist © SHT_M PS_LI BLI ST SHF_ALLOC
lita P SHT_PROGBI TS SHF_ALLOC + SHF_MIPS_MERGE
+ SHF_MIPS_GPREL 2
litgP SHT_PROGBI TS SHF_ALLOC + SHF_MIPS_MERGE
+ SHF_MIPS_GPREL 2
MIPSit16 P SHT_PROGBI TS SHF_ALLOC + SHF_MIPS_MERGE
+ SHF_MIPS_GPREL 2
.MIPS.Log SHT_M PS_PI XI E none
MIPSMap SHT_M PS_PI Xl E none
.mdebug obsol et e to be replaced by DWARF sections
.MIPS.options SHT_M PS_OPTIONS | SHF_ALLOC+SHF_MIPS NOSTRIP
11/3/98

% SiliconGraphics

Computer Systems

Page 18

Table 10

Special Sections
Name Type Default Attributes
.msym SHT_M PS_MSYM SHF_ALLOC |
.MIPS.Graph SHT _M PS_PI XI E none
.MIPS.Perf_argtrace SHT _M PS_PI XI E none |
.MIPS.Perf bb_offsets SHT M PS PI XI E none |
.MIPS.Perf _call _graph SHT M PS PI XI E none |
.MIPS.Perf_function SHT M PS PI XI E none |
.MIPS.Perf_table SHT M PS PI XI E none |
.MIPS.Perf weak names SHT M PS PI XI E none |
.rel.dyn SHT_REL SHF_ALLOC
.reldname SHT_RELA SHF_ALLOC
shssP SHT_NOBI TS SHF_ALLOC + SHF_MIPS_GPREL A
SHF_WRITE
sdata P SHT_PROGBI TS SHF_ALLOC + SHF_MIPS_GPREL A
SHF_WRITE
srdata® SHT_PROGBI TS SHF_ALLOC + SHF_MIPS_GPRE |
.MIPS.symlib SHT M PS_SYMBCL_LI B | SHF_ALLOC |
.MIPS.randate SHT_PROGBI TS SHF_MIPS_NOSTRIP
+ SHF_ALLOC (non-shared only)
.ucode SHT M PS_UCCDE none (obsolete)
a [ABI32M] specifies these sections with SHF_WRITE as welly®h
b A MIPS ABI-64 compiliant system must support these sections.
¢ A MIPS ABI-64 compliant system must recognize, but may choose to ignore, these sections. Howev-
er, if either is supported, both must be.
4 The.lbss andlcldata sections can be replaced with arbitrary sections having the
SHF_MIPS_LOCAL attribute; they will no longer be recognized by the system strictly basedjon
name.

Linker
Processing

We expect more use of non-predefined sections in the future tovachie
greater controlwer process memory allocation. The knks expected to
combine sections with matching name and attab, then groupings
with matching attribtes, and finally groupings with consistent atités
(e.g. allsHT_MIPS_GPREL sections, or all read-only sections). The pre-
cise rules will be defined in Section 3.

SiliconGraphics
Computer Systems

11/3/98

ELF-64 Object File Format Page 19

2.4 String Table

This section type is unchanged from [ABI32]. A Striraple section has
the following attritutes:

name .strtab
sh_type SHT_STRTAB
sh_link SHN_UNDEF
sh_info 0

sh_flags SHF_ALLOC
requirements | see.symtab

2.5 Symbol Table

A symbol table section is unchanged from [ABI3%¢ept for the types
of some of its fields.

A symbol table section and its associated string table section must be
present for anpexecutable file with DSO dependencies, or foy BX$0.

It is permissible to reme from it symbols resobd within itself if the

are not preemptible (protected) and not visible outside this object. (All
defined symbols in arxecutable file are protectedjttsymbols must

have been eplicitly declared protected in a DSO, and hidden in either a
DSO or an eecutable. See the discussion associated \aitieT14 for
definitions of these terms.)

A Symbol Table section has the folling attritutes:

name .symtab

sh_type SHT_SYMTAB

sh_link Section header indeof the associated string table
sh_info 0

sh_flags SHF_ALLOC

requirements | see discussion abe

The structure of a symbol table item isen by Rble 11 belw.

11/3/98 ﬁ% SiliconGraphics

Computer Systems

Page 20

Table 11 ELF-64 Symbol Table Structure
Name Type Comments
st_name Elf64_Word | Name’s index into string tablg
st_info Elf64_Byte | Symbol type and binding: seq

Table 12 and Table 13

st_other Elf64_Byte | Other info: see Table 14
st_shndx Elf64_Section | Index of section where defined
st_value ElIf64_Addr Symbol value
st_size Elf64_Xword | Symbol size

The high-order nibble of the st_info field specifies the symlmiiding
(see Bble 12), and the vo-order nibble specifies its type (sesble 13).

Table 12 Symbol Binding (ELF32_ST_BIND)
Constant Name Value | Comments
STB_LOCAL 0 Not visible outside object file where defingd
STB_GLOBAL 1 Visible to all object files. Multiple defini-

tions cause errorsokce etraction of defin-
ing object from archvie file.

STB_WEAK 2 Visible to all object files. Ignored if
STB_GLOBAL with same name found. Dd
not force atraction of defining object from|
archie file. \alue is 0 if undefined.

STB_LOPROC 13 First processespecific binding
STB_SPLIT_COMMON 13 Split common symbol. See Section 2.5.1.
STB_HIPROC 15 Last processespecific binding

11/3/98

% SiliconGraphics

Computer Systems

ELF-64 Object File Format Page 21

Table 13 Symbol Type (ELF32_ST_TYPE)

Constant Name| Value | Comments

STT_NOTYPE 0 Not specified

STT_OBJECT 1 Data object: ariable, arrayetc.

STT_FUNC 2 Function or otherxecutable code

STT_SECTION 3 Section. Exist primarily for relocation |

STT_FILE 4 Name (pathname?) of the source file associajed
with object. Binding is STT_LOCAL, section
index is SHN_ABS, and it precedes other
STB_LOCAL symbols if present

STT_LOPROC 13 First processespecific type

STT_HIPROC 15 Last processespecific type

The binding type of a symbol is used to control its visihibiy well as
resolution in the case of multiple definitions, between the relocatable @b-
jects comprising a program. This semanticxismded to intedces be-
tween an gecutable and/or DSOs unchanged — it is simply interpreteq
by the dynamic lin&r instead of the static liek In order to allav inde-
pendent control of inteates betweernxecutable and DSOs without af-
fecting the binding type semantics within themomnfiation in the

st_other field, as gven in Table 14 belw, is used to specify visibility and
accessibility of symbols outside the containirgaitable/DSQwhich

we term the symbaixport class.

i By default, global, weak, or common symbols preemptible, i.e.
they may be preempted by definitions of the same name/ledse.

1 Symbols defined in the current componareprotected if they are
visible outside bt not preemptiblemeaning that anreference to
such a symbol from within the definingezutable or DSO must
resole to the local definitionven if there are definitions in other
executables or DSOs whichowld normally preempt it.

i Symbols defined in the current componarghidden if their
names are not visible outside — such symbols are necessarily pro-
tected, and this attrilbe may be used to control thaernal inter-
face of a DSO, Ut such objects may still be referenced from
outside if an address is passedsa@ig as a pointer |

11/3/98 ﬁ% SiliconGraphics

Computer Systems

Page 22

Linker
Processing

1 Symbolsareinternal if their addresses are not passed outside, e.
static C functions whose address igaerdalen

The visibility semantics of these attniles also all various optimiza-
tions. Whereas care must bed¢ako maintain position-independence and
proper GA usage for references to and definitions of symbols which

might be preempted by or referenced from other DSOs, these restrictipns

all allow references from the sameeeutable/DSO to makstricter as-
sumptions about the definitions. References to protected symbols (an
hence to hidden or internal symbols) may be optimized by using absol
addresses inxecutables or by assuming addresses to bevediatiear-

by. Internal functions do not normally requige establishment code be-
cause the will always be entered from the sameeutable/DSO with

the correcyp already set up

None of these attrilies affects resolution of symbols within arezut-
able or DSO during static linking — such resolution is controlled by th
binding type. (Hwvever, if the static linler references symbol definitions
in other DSOs during link time, it is constrained by thgpaat classes.)
Once the static linkr has chosen its resolution, these aiteb impose
two requirements, both based on taetfthat @arious references in the
code being linkd may hee been optimized to takadwantage of the at-
tributes. First, dlof these atibutes imply that a symbohust be dfined

in the current DSO#ecutablelf a ymbolwith one of these attriltes
has no definition within thexecutable/DSO being lid, then it must be
resohed to allocated space if common, resdlto zero if weak, or an er-
ror reported otherwise. Second, ifyareference to, or definition of, a
name is a symbol with one of these atités, the attribte must be prop-

j

ite

\1%4

agated to the resolving symbol in the letkobject.

Table 14

st_other Field Masks

Constant Name Value | Comments
STO_EXPORT 3 DSO eport class — one of:
STO_DEFAULT 0 Default: STB_GLOBAL or

STB_WEAK are preemptible,
STB_LOCAL are hidden.

% SiliconGraphics

Computer Systems

STO_INTERNAL 1 Not referenced outsidexecutable/DSO
STO_HIDDEN 2 Not visible outside xecutable/DSO
STO_PROTECTED 3 Not preemptible

11/3/98

ELF-64 Object File Format Page 23

Table 14 st_other Field Masks
Constant Name Value | Comments
STO_OPTIONAL 4 Symbol is optional. If no definition is

available at runtime, it is resadd to the
symbol_RLD_MISSING.

Normally in relocatable files, a symi®mhNalue refers to its ¢get within

the section specified by tke shndx field. Its \alue will therefore be ad-
justed as the section m&s during relocation. Certain special section in-
dex values imply other semanticas described inable 15:

Resolution rules for optional symbolsTO_OPTIONAL) are as follavs.
L The static linler (d) should cowert a reference to an optional definition
inker . . :

(i.e. in another DSO) to an optional reference. Thegmef an optional
and a non-optional reference becomes optional. The optional type is ig-
nored forsSHN_COMMON andSHN_ACOMMON symbols, and does not af-
fect stub generation and resolution. In the runtimeelirtkd), unresoled
optional symbols are silently resely to the reseed symbol
_RLD_MISSING, defined inibc.so.1. Optional references do not trigger
the loading of delay-loaded libraries. Therefore, optional references may
go unresoled until some othewnent triggers the loading of the de-
lay-loaded libraryand one may not check theadability of an optional
feature found in a delay-loaded library until some otkenthas forced
the library to be loaded.

Table 15 st_shndx Field Special Values

Name Value Semantics

The symbol is undefined. Itale will be determined by its appearante
as a defined symbol in another object file.

Section indices betweeSHN_LORESERVE and
SHN_LORESERVE Oxff00 | SHN_HIRESERVE are resered for special alues — thg do not re-
fer to the section header table.

Section indices betweeSHN_LOPROC andSHN_HIPROC are re-

SHN_UNDEF 0

SHN_LOPROC 0xf f 00 o

- sened for processespecific \alues.
SHN_MIPS_ACOMMON Oxff00 | Allocated common symbols in a D&®
SHN_MIPS_TEXT Oxff01l | Resered (obsolete).

11/3/98 ﬁ% SiliconGraphics

Computer Systems

Page 24

Table 15 st_shndx Field Special Values
Name Value Semantics
SHN_MIPS_DATA Oxff02 | Resered (obsolete).
SHN_MIPS_SCOMMON Oxff 03 | gp-addressable common syme(eeIocatabIe objects only).

SHN_MIPS_SUNDEFINED | 0xff04 | gp-addressable undefined symi5qilocatable objects only).

Local common, equalent toSHN_COMMON, except that the com-
mon block will be allocated in a local section, i.e. one replicated fg
each process in a multi-process program sharing memory (see
SHF_MIPS_LOCAL in Section 2.3§€

-

SHN_MIPS_LCOMMON Oxf f 05

Localundefined symbokquialent toSHN_UNDEFINED, except
that the symbol must res@\o a local section, i.e. one replicated fo
each process in a multi-process program sharing memory (see
SHF_MIPS_LOCAL in Section 2.3§.

SHN_MIPS_LUNDEFINED | Oxff 06

Section indices betweeSHN_LOPROC andSHN_HIPROC are re-

SHN_HIPROC Oxf f 1f -
- sened for processespecific \alues.

SHN_ABS Oxfffl | The symbob value is absolute and does not change due to relocatlon.

The symbol labels a common block which has not yet been allcafed
SHN_COMMON Oxfff2 | Itsst value specifies alignment, similar to a section header’
sh_addralign field. Its size is the number of bytes required.

Section indices betweeSHN_LORESERVE and
SHN_HIRESERVE oxffff | SHN_HIRESERVE are resered for special alues — thg do not re-
fer to the section header table.

& NormalSHN_COMMON symbols are not allocated in DSOs, which means thatyifs¢renot allocated else-
where (in the mainx@cutable or another DSQ)d must allocate them at runtimn®HN_MIPS_ACOMMON
symbols are used in DSOs to mark common that has been allocatednoattvaoid runtime allocation, lt still
have common semantics, i.e. are not initialized and may be preempted by non-common definitiong B&@.an
Thest_value of such a symbol is its virtual address. It may be relocatedhé alignment of its address must be
presered up to modulo 65,536.

b SHN_MIPS_SCOMMON symbols are common symbols which must be allocated within 32,768 byfes of

¢ SHN_MIPS_SUNDEFINED symbols are undefined symbols which must be reddly addresses within 32,768

bytes ofgp.

d SHN_MIPS_LCOMMON andSHN_MIPS_LUNDEFINED symbols must be consistently defined in a progran,
i.e. every appearance of the symbol must be either an undeSidbld MIPS_LCOMMON reference, a
SHN_MIPS_LUNDEFINED reference, or a definition ingHF_MIPS_LOCAL section. These symbols may
not be gp-relatie.

€ SHN_MIPS_ACOMMON symbols with alues (virtual addresses)®HF_MIPS_LOCAL sections are eoua-
lent toSHN_MIPS_LCOMMON symbols, gcept that thg are pre-allocated by the static laxk

In executable and shared obiject files, the synsbalfue is a virtual ad-
dress (if defined), and the section headeninsi@relevant. If the section

%% SiliconGraphics 11/3/98

Computer Systems

ELF-64 Object File Format Page 25

ELF-32

251

header inde of a function symbol iSHN_UNDEF and thest_value is
non-zero, it is the virtual address of a stub for laajuation of a symbol
defined in one of the associated DSOs.

ELF-32: The extension of usingt_other for specifying DSO-related

scope attribtes is used in ELF-32 gmning with the IRIX 5.1 release

for linker-generated symbols which must be protected. As this field is
currently unused, there should be no compatibility issues unless there are
tools which attempt to enforce non-useolB which ignore this field will

be unable to cope with the implied symbol resolution.

Split Common Symbols

It is sometimes desirable for the compiler to splibetian COMMON
block into multiple pieces for separate allocation (e.g. to controlvelati
position in the processor cache). The MIPSpro compilers do so underjap-
propriate options, and represent the resulting decomposition as descriped
below. The static linkr (Id) then determines whether the decomposition
Is safe, and reassembles the COMMON if not.

A split common symbol is represented in a relocatable object by a normal
symbol for the original COMMON block, plus a split common symbol
for each element of the decomposition. The split common symbol inhgr-
its alignment, binding type xport class, and section indéeld informa-
tion from the parent common, alng its symbol table entry to be

redefined as gen by the modifiedersion of Bble 11 in &ble 16 belw:

—

Table 16 ELF-64 Split Common Component Symbol Table Element
Name Type Comments
st_name Elf64_Word | Component n@e’s index into string tablg
st_info Elf64_Byte | STB_SPLIT_COMMON
st_other Elf64_Byte STO_SC_ALIGN_UNUSED
st_shndx | EIf64_Section | Symbol irdex ofparent common symbol
st_value Elf64_Addr | Offset of component from base of parer
common symbol
st_size Elf64_Xword | Componentige
11/3/98

ﬁ% SiliconGraphics

Computer Systems

Page 26

Compiler Compiler Requirements:
Processing i The component symbols produced by the compiler must be a pdrti-

Linker Linker Requirements:
i The linker must produce a final partition which is consistent with

A split common symbol is identified by tls&B_SPLIT_COMMON value
of thest_info field, requiring the alternate interpretation of its other field:s
given abee.

tion of the parent COMMON. That is, the first should startfat of
set zero, the second ats#t size(first), etc., and length(parent) =
offset(last)+size(last) = sum(sizes).

I Subject to the ab@ requirement, the compiler is alled to split
common blocks arbitrarijyand the linkr is responsible for identi-
fying problems and reassembling the original common block.

each of the indidual objects' partitions in the sense that each
component from an input relocatable objedisfentirely within
one of the output components.

i If the linker partitions the common, it must replace the componet
symbols by normal (e.g. common, bss, or data) symbols, produg
ing an object which contains no split common component symbdls
(and therefore looks l&kan ABI-compliant object). It may do so
either by producing a distinctgelar symbol for each component,
or by replacing the component symbols by appropridseisf
from a single symbol for the common. Similailyit reassembles
the common, it must rerme the component symbols.

i If the linker partitions the common, the resulting symbols must ng
be ported, to goid inadertent incorrect references if one of the
referenced DSOs is replaced later witheasion which references
the name.

1 The following situations require that the liakreassemble the
original common:

a. There is anxplicit linker request toxg@ort the common block
symbol (implying that some DSO may contain a reference tp
it with unknavn assumptions).

b. The linker finds a relocation agnst the common block sym-
bol (implying code generated to reference the original com-
mon block with unknan assumptions).

~—+

%% SiliconGraphics 11/3/98

Computer Systems

ELF-64 Object File Format Page 27

c. The linker finds a reference to the common block symbol
from ary DSO (implying that the DSO contains a reference t(
it with unknavn assumptions).

d. The common block symbol is initialized with a single
BLOCK DATA (i.e. it is defined at a specific location in a datg
section).

e. The linker finds a PU or object file in which the common hag
not been split (aariant of (a) and (c)).

A linker implementation may choose to reassemble split commagn
blocks in other circumstances.

2.6 Hash Table
A hash table section is unchanged from [ABI32]. It has theviulig at-
tributes:
name .hash
sh_type SHT_HASH
sh_link Section header indeof the associated symbol table
sh_info 0
sh_flags SHF_ALLOC
requirements | may not be stripped

See [ABI32] for a description of the hash table structure and hash func-
tion, which are unchanged.

2.7 Register Information Section

This section is strictly a 32-bit ABI section, which specifies thester
usage of the code in an object file. In 64-bit Fiks section is obsolete,
and is superceded by the Options Section described in Section 28 belo
Its section attribtes are:

name .reginfo

sh_type SHT_MIPS_REGINFO
sh_link SHN_UNDEF

sh_info 0

sh_flags none

11/3/98 ﬁ% SiliconGraphics

Computer Systems

Page 28

requirements | obsolete — not strippable if present in ELF-32 file

The structure of a Rygster Information descriptor is\gin byTable 19n |
Section 2.8 belw.

ELE-32 ELF-32: MIPS tools will ignore this section in 32-bit ELF ifMiPS.op-
tions section is present.

2.8 Options Section

This section specifies miscellaneous options to be applied to an object
file. An options section is required, and must contain at least an
ODK_REGINFO descriptor (belw). In a sharedxecutable or DSO, the
options section should immediately folldhe program header table for
best startup performance, and iiymamic section must contain a
DT_MIPS_OPTIONS tag pointing to it. In a non-shared program (which is
not ABI-conformant), the options section must immediately ¥olloe
program header table.

Its section attribtes are:

name .MIPS.options

sh_type SHT_MIPS_OPTIONS

sh_link SHN_UNDEF

sh_info 0

sh_flags SHF_ALLOC + SHF_MIPS_NOSTRIP
requirements | mandatorymay not be stripped

An options record consists of a sequenceaoible length (andariable
format) descriptors, which may apply either to the entire object file or to
a specific section. Each such descriptaitewith the folleving header:

Table 17 Options Descriptor Header (EIf_Options)
Field Name Type Comments
kind Elf64_Byte Determines interpretation ofviable part of
descriptor — se&able 18belon |

%% SiliconGraphics 11/3/98

Computer Systems

ELF-64 Object File Format Page 29

Table 17 Options Descriptor Header (EIf_Options)
Field Name Type Comments
size Elf64_Byte Byte size of descriptpincluding this headét
section Elf64_Section | Section header indeof section dected, or 0
for global options
info Elf64_Word Kind-specific information
@ Descriptors may he arbitrary size (up to 255 bytes). wiver, they must be
8-byte aligned, and must be null padded if thegisize is not 0 mod 8.
The Options Descriptor kinds arevgn inTable 18belon. The \arious |
descriptors associated with them falld-or each descriptor kind, the as-
sociated table ges the alue of thesize field, the usage of thefo field,
and ay additional fields required.
Table 18 Options Descriptor Kinds
Constant Name Value | Comments
ODK_NULL 0 Undefined
ODK_REGINFO 1 Ragister usage information
ODK_EXCEPTIONS 2 Exception processing options
ODK_PAD 3 Section padding options
ODK_HWPATCH 4 Hardware patches applied
ODK_FILL 5 Linker fill value
ODK_TAGS 6 Space fotool identification |
ODK_HWAND 7 Hardware AND patches applied |
ODK_HWOR 8 Hardware OR patches applied |
ODK_GP_GROUP 9 GP group to use forx&data sections |
ODK_IDENT 10 ID information |
ODK_PAGESIZE 11 Page size information |
The .MIPS.options sectionreplacel .reginfo in ELF-32 with theMIPSpro
6.0 compilersalthough it remains in use in the 5.x (ucode) compilers.
11/3/98

ﬁ% SiliconGraphics

Computer Systems

Page 30

281

Register Information Option Descriptor

The ODK_REGINFO descriptor supercedes what used to be in the special
.reginfo section. The structure of adrgter Information descriptor is\gi
en byTable 19below. I

Table 19

ELF-32

282

Register Information Structure

Field Name Type Comments

kind ElIf64_Byte value iISODK_REGINFO

size Elf64_Byte value is 40

section ElIfé4_Section | O

info Elf64_ Word unused

ri_gprmask Elf64_Word | Mask of general registers used

ri_pad Elf64_Word | Unused pddingfield (for align-
mentof following fields)

ri_cprmask[4] Elf64_Word[4] | Mask of coprocessor registers uded

ri_gp_value EIf64_Addr Initial value ofgp @

a |f there is no rgister information descriptpthe initial \alue ofgp is assumed to
be 0. The significance of thislue is that, for anSHT _MIPS_GPREL sec-
tion, if its start address (asvgh by the sectios’sh_addr) is specified as
(which will usually be zero), then gp is assumed to be initialized to its relocaged
start address plusi (gp_value-x). The initial addends of gn
R_MIPS_GPREL-relocated alues will be correct €dets if the section is not

moved relatve togp.

EL F-32: We will use this section instead.edginfo baginning with IRIX
6.0, since we require the additional descriptors described.bidtmvev-

er, .reginfo may still be generated for the benefit of foreign (and bagk-re
tools.

Exception I nformation Option Descriptor

The ODK_EXCEPTIONS descriptor contains information only in tine
field of the basic options descriptor headergven by the masks iha-
ble 20belaw. Itssize is 8 bytes.

SiliconGraphics
Computer Systems

11/3/98

ELF-64 Object File Format Page 31

Table 20

Linker
Processing

Exception Information info Field Masks

Mask Name Value Comments

OEX_FPU_MIN 0x0000001f | Min FPU eception enablé

OEX_FPU_MAX 0x00001f 00 | Max FPU e&ception enablé

OEX_PAGEO 0x00010000 | Page zero of the virtual address spacg
must be mappe'?i

OEX_SMM 0x00020000 | Run in sequential memory motle

OEX_PRECISEFP 0x00040000 | Run in precise FPxeeption modé

OEX_DISMISS 0x00080000 | Dismiss ivalid address trags

= These masks bound the setting of the FRE&ption enable masks at runtime.
The runtime mask may enable only bits in the maximum mask, and must engble
bits in the minimum mask. See discussion Wwelo

b |f set, loads from page zero of the virtual address space must not caliske in
addressdults. Havever, page zero may be write-protectedad zero" here
implies the minimum, gen byELF_MIPS_MINPGSZ in elf.h.

€ If set, and the process is running on an R8000 or other processor with a sequen-
tial memory mode,»ecute in that mode.]

d If set, and the process is running on an R8000 or other processor with a dis
mode for precise floating poinkeeptions, gecute in that mode.

€ If set, ary invalid address traps encountered should be dismissed without abprt-
ing or otherwise notifying the running process.

inct

Linkage and Execution: The static linkr (d) must combine the
descriptors from all object files lieki as follevs. TheOEX_FPU_MIN

fields are OR’ed togetheso that ay exception enable required byyaof

the objects will be set for the process. Similaitig OEX_FPU_MAX

fields are AND’ed togetheso that ay exception required to be
suppressed by grof the objects will be suppressed for the process. The
OEX_PAGEO, OEX_SMM, OEX_PRECISEFP, andOEX_DISMISS flags are
OR’ed togetherThe linker should alrays produce aODK_EXCEPTIONS
descriptor gen if none of the linkd objects contained one, so that simple
tools can be used to manipulate these options. In such a case,ftbkl
should contain thealueOEX_FPU_MAX, i.e. aly FP ceptions allwved,
and no other options set.

At execution time, the dynamic lik (1d) must perform a similar task to
combine the descriptors from the makeeutable and 3nDSOs, and it
must perform the appropriate actions to aohigne implied state

11/3/98

ﬁ% SiliconGraphics

Computer Systems

Page 32

(typically making calls to thedenel). In addition, it must retain the
implied state for reference — in theeat that allopen call is made to
open a n& DSO, its state must be checkfor compatibility with the
current state, and that state adjusted as required. The runtieredimiot
required to back out the requirements of a DSO which is subsequently
removed from the process image vi@lose.

For a non-shared program, therkel or the runtime system (e.g. crt0)
must perform the same task, setting the implied initial state in the running
process.

Both the static and dynamic lieks should report incompatible
requirements of their components, i.e. &aoeption enable bit which is

set in the minimum mask and unset in the maximum mask, as errors. The
runtime system is not required to enforce retention of the specified modes
in the face of aplicit attempts to set them by the running processitb

may do so.

ELF-32: MIPS generates and uses this descriptgmmeng with IRIX
ELF-32) .
6.0. It may be necessary to suppress it for pure-ABI objects.
2.8.3 Section Padding Option Descriptor

The ODK_RAD descriptor specifies padding required for the referenced
data section. The lidt must proide for at least the indicated number of
bytes preceding or foeing the data section to balid parts of the

virtual address space, guaranteed not to cauakdraddressdults. This
facility is intended to all the code generator to produce memory
references which may beymnd the referenced data object (e.g. for
software pipelining), with the assurance thatthsgll not cause memory
faults at runtime.

If the writable flags are not set, the letknay proide padding simply by
arranging for other data sections to be contiguous to the section specified,
those other data sections need not be writable. If the writable flags are
set, writable empty space must bevided. If padding must be applied to

a symbol (e.g. because it is undefined or COMMON, and its ultimate sec-
tion is unknavn), the 16-bikection is a symbol table section, and the
pad_symindex field specifies a 32-bit symbol inddn this case, since the
symbol may be allocated by another object file in the midst ofarlar
section, the writable flags may not be set.

The format of this descriptor isvgin inTable 21below: |

%% SiliconGraphics 11/3/98

Computer Systems

ELF-64 Object File Format Page 33

Table 21

ELF-32
Linker
Processing

284

Section Padding Descriptor

Field Name Type Comments

kind Elf64_Byte | value ISODK_PAD

size Elf64_Byte | value is 16

section EIf64_Section | Section to be paddéd

info & 0x0001 mask Prefix writable QPAD_PREFIX)

info & 0x0002 mask Postfix writable QPAD_POSTFIX)

info & 0x0004 mask Pad symboP (OPAD_SYMBOL)
pad_prefix_size Elf64_HaIf Size (bytes) of prefix required
pad_postfix_size Elf64_ Half Size (bytes) of postfix required
pad_symindex Elf64_Word Symbol inde if OPAD_SYMBOL is set

@ The section field normally references a data section to be padded or
OPAD_SYMBOL is set, a symbol table section in which to find a symbol to e
padded. If it is zero, the descriptor applies to all data sections, and the writable
flags may not be set in this case.

b If this flag is set, the section field is a symbol table section, and the
pad_symindex field specifies a 32-bit symbol indastead of a section for
padding (generally undefined or COMMON). The writable flags may not be et
in this case.

ELF-32: We generate and use this descriptaiteing with IRIX 6.0. It
may be necessary to suppress it for pure-ABI objects.

Linkage: It is technically possible for the static Igrk(d) to postpone
processing of padding information (e.g. for symbols and/or sections
allocated at the lggnning or end of a ggnent, or for unallocated
COMMON symbols), leang the dynamic lin&r (1d) to process residual
padding descriptors. kiaver, the MIPSpro static lirde currently
processes padding completatgaling with unallocated COMMON
symbols by turning them into@OMMON symbols with proper
padding, and the MIPSpro dynamic lerkdoes not deal with padding.

Har dwar e Patch Option Descriptor

The ODK_HWPATCH descriptor contains flags indicating whetharous
patches required for specific hamhe platforms hae been applied to the
executable or DSO. It contains information only in ifie field of the ba-

11/3/98

ﬁ% SiliconGraphics

Computer Systems

Page 34

sic options descriptor heages gven by the masks ifable 22below. Its
size IS 8 bytesThis descriptor is required in all object files, toal&im-
ple post-generation patching.

Table 22

Linker
Processing

Hardware Patch Options Descriptor

Mask Name Value Comments

OHW_R4KEOP 0x00000001 | Patch for R4000 branch at end-of-pageyb

OHW_R8KPFETCH | 0x00000002 | Object contains prefetch instructions whigh
may cause R8000 prefetchdoto occur

OHW_R5KEOP 0x00000004 | Patch for R000 branch at end-of-pagedp

OHW_R5KCVTL 0x00000008 | R5000 cvt.[ds].l bg: clean=1

OHW_R10KLDL 0x00000010 | Requires pth for RLOOD0 misaligned load

285

The static linker must mege (inclusve OR) theOHW_R8KPFETCH flags
from each of the objects it linksheoHW_R4KEOPR5000 cvt.[ds].] bg.
clean=1 anedbHW_R5KEOP flags are added by tools after linking.

Hardware AND/OR Patch Option Descriptors

The ODK_HWAND / ODK_HWOR descriptors, lik ODK_HWPATCH, con-
tain flags indicating whetheavious patches required for specific hard-
ware platforms hae been applied to the object file. Vientain
information in thenfo field of the basic options descriptor heagéus

the followving 8 bytes. Theisize is 16 bytes. These descriptors are re-
quired in all object files, to aNo simple post-generation patching. The
descriptor layout is gen in Table 23 belw.

Table 23

Hardware AND/OR Patch Option Descriptor Structure

Field Name Type Comments

kind Elf64 Byte | valueODK_HWAND or ODK_HWOR
size ElIf64 Byte value is16

section Elf64_Section | O

info Elfé4_Word | 32 flags: see Table 24

SiliconGraphics
Computer Systems

11/3/98

ELF-64 Object File Format

Page 35

Table 23 Hardware AND/OR Patch Option Descriptor Structure
Field Name Type Comments
hwp_flags1 Elf64_Word | 32 flags: see Table 24
hwp_flags2 Elf64_Word | 32 flags: see Table 24
Table 24 Hardware Patch AND/OR Options Descriptor Flags
Mask Name Value Comments
ODK_HWAND info masks:
OHWAO_R4KEOP_CHECKED 0x00000001 Object checkd for R4K end-of-pageug.
OHWAO_R4KEOP_CLEAN 0x00000002 Object \erified clean of R4K end-of-pageidp.
ODK_HWAND hwp_flags1l masks:
OHWAL ... (0 ararardrardrars None yet defined.
ODK_HWAND hwp_flags2 masks:
OHWA?2_... 0x?2?2?2?2?2?2?27? None yet defined.
ODK_HWOR info masks:
OHWOO_FIXADE 0x00000001 Object requires call to fixade
ODK_HWOR hwp_flagsl masks:
OHWO1 ... 0x?2?2?2?2?27?27?27 None yet defined.
ODK_HWAND hwp_flags2 masks:
OHWO2_... 0x?2?2?2?2?27?27?27 None yet defined.
The static Iinle_r rr_lus'_[mege theODK_HWAND (bitwise AND) z_ind N
Processine ODK_HWOR (bitwise inclusve OR) flags from each of the objects it links.

Generating tools should initialize the flags to zero for fieldg doenot

understand, and the liskshould assume that missing descriptors conta

Zeroes.

2.8.6 Fill Value Option Descriptor

TheODK_FILL descriptor contains information only in tine field of the

basic options descriptor headspecifically the alue used by the lirgt
to fill uninitialized space. Itsize is 8 bytes.

11/3/98

ﬁ% SiliconGraphics

Computer Systems

[

Page 36

2.8.7 Tags Option Descriptor

The ODK_TAGS descriptor initially contains only zero-filled space (40
bytes). It is reserd for tools to identify processing that has occurred. Its
size IS 48 bytes.

Table 25

Tags Option Descriptor

Field Name Type Comments

kind ElIf64_Byte value ISODK_TAGS

size ElIf64_Byte value is 48

section ElIf64_Section | O (unused)

info mask 0 (unused)

tags Elf64_Byte[40] | initially 0. Bytes currently reseed:
0..4 (Desktop)
32..39 (other @ndors)

The purpose of this descriptor is to alltools to mark the objectXe-
cutable or DSO) without substantiallygting the file, as wuld be re-
quired to add a medescriptor or section. Space in this descriptor should
be allocated ery carefully preferably a byte at a time. Thete section

IS more appropriate if more space is required. The intent is that this allo-
cation last essentially forer. Although expansion is theoretically possi-
ble, doing so wuld eliminate its benefit for files created before the
expansion.

The last 8 bytes of thegs field are resemd for vendorspecific use by
non-MIPS/SGI endors. Note, hoever, that such usage may conflict

with other \endors’ usage, and should therefore be limited to files which
is not pected to be handled by othendors’ softvare.

% SiliconGraphics

Computer Systems

11/3/98

ELF-64 Object File Format Page 37

2.8.8 GP Group Option Descriptor
The ODK_GP_GROUP descriptor is used to specify to which GP group
text and data sections are to be assigned, when this is determined prig
linking (e.g. by interprocedural analysis). Its format is:
Table 26 GP Group Option Descriptor
Field Name Type Comments
kind ElIf64_Byte value iISODK_GP_GROUP
size ElIf64_Byte value istotal size (8 + 2*section count)
section ElIf64_Section | O (unused)
info & Ox0000ffff mask OGP_GROUP: GP group number
info & 0x00010000 mask OGP_SELF: GP group is self-containeq
section_ids EIf64_Section | Section IDs for those sections with the
[size/2-4] given GP group number

Linker
Processing

The number of sections allocated by a single such descriptor is limited|oy

the descriptor size limit of 255 bytes to 123. Multiple descriptors may |
used if more sections need to be included. In such a casEGrheELF
flag must match for all occurrences of the same group number

If this descriptor is present, it must be preceded bymaa IDENT de-
scriptor (belwv) unless all the GP groups are self-contained, and the
EF_MIPS_OPTIONS_FIRST flag must be set in the ELF header

Each section identified by ID in tlection_ids list must be allocated by
the linker to the same GP group as all other sections with the same G
group number (ot the linker may mege multiple groups if thefit). A
section without such an entry may be allocated arbitrafitiie

OGP_SELF flag is set for the group, this requirement is restricted to seq
tions in the file containing thisSDK_GP_GROUP descriptor Otherwise,
this requirement applies to sections with th&_GROUP number in all
files containingdDK_IDENT descriptors with the sanuntifier field val-
ue. (See the description of thek_IDENT descriptor belw for further

e

U

information.)

11/3/98

ﬁ% SiliconGraphics

Computer Systems

Page 38

2.8.9 Ident Option Descriptor

The ODK_IDENT descriptor is used to prole identification information
in support of cross-file features. Its format is:

Table 27 Ident Option Descriptor
Field Name Type Comments
kind Elf64 Byte | value ISODK_IDENT
size ElIf64 Byte value is16
section ElIf64_Section | 0 (unused)
info & Ox0000ffff mask OGP_GROUP: default GP group number
info & 0x00010000 mask OGP_SELF: default GP group self-containgd
identifier EIf64 XWord | Timestamp or similar identifier

If this descriptor is present, tilss MIPS_OPTIONS_FIRST flag must be
set in the ELF header

The 0GP_GROUP field provides a GP group number for all sections
which do not appear in aDK_GP_GROUP descriptor TheOGP_SELF
flag applies to that group, as described withdb&_GP_GROUP de-
scriptor abwe.

All object files using GP groups @DK_IDENT or ODK_GP_GROUP de-
scriptors with thedGP_SELF flag not set must lva the same non-zero
identifier field value. Ary object file which specifies GP groups for some
of its sections using th@bK_GP_GROUP descriptor (abee) must con-
tain one of these descriptors (precedingdh&_GP_GROUP descriptor)
unless its GP groups are all self-contained (i.ee ltlaeirOGP_SELF

flags set, and need not be combined with identically number GP grougs
in another object).

Li A typical scenario wuld hare IPA specify the same non-zeitentifier

inker . o

field for each of the files it processes togethad and -r command set
theOGP_SELF flag after \erifying that all thedentifiers match and com-
bining the \arious contrilations to the same GP group. Another scenari@
would involve the compiler itself deciding to assign multiple GP groupsg
to an object, in which case itowld setoGP_SELF and optionally assign
a non-zeradentifier. It is a link-time error to encounter multiple object
files with ODK_GP_GROUP descriptors, and ddrentidentifier fields with
OGP_SELF not set in theiODK_IDENT descriptors.

%% SiliconGraphics 11/3/98

Computer Systems

ELF-64 Object File Format Page 39

2.8.10 Page Size Option Descriptor

The ODK_PAGESIZE descriptor is used to specify page sizes to be used n
running a programirhisis currently an unimplemented proposal. Its for-

mat is:
Table 28 Page Size Option Descriptor

Field Name Type Comments

kind ElIf64_Byte value ISODK_PAGESIZE

size ElIf64 Byte value 5 8

section ElIf64_Section | 0 (unused)

info & 0x000000ff mask OPS_DATA: data page size to use
info & 0x0000ff0O0 mask OPS_STACK: stack page size to use
info & 0x00ff0O000 mask OPS_TEXT: text page size to use

This descriptor specifies system page sizes to be used in running the fon-
taining object as part of a process. Each of the three onedlyts\vs in-
terpreted as a peer-of-two exponent gving the desired page size, with
the \alue zero meaning that the detft is to be used, and thalue one
meaning that the runtimedronment \ariableSPAGESIZE_DATA,
PAGESIZE_STACK, PAGESIZE_TEXT, Or PAGESIZE_ALL are to be queried.
The data page size applies to both static dagmeets and the heap.

This descriptor is optional, and may be ignored by a system which dogs
not support peprocess ariable page sizes. A system may or may not
recognize it in relocatable object files. The rules for combining conflict}
ing values in relocatable object files (if recognized), or in multiple DSOs
comprising a program, are implementation defined.

2.9 Relocation

Any section may hae an associatesHT_REL and/orSHT_RELA section,
containing relocation operations for objects in the section. Its section at-
tributes are:

name .relname or .relaname (wherename is the relocated section)
sh_type SHT_REL or SHT_RELA

sh_link Section header indef the associated symbol table

sh_info Section header indef the section to be relocated

11/3/98 ﬁ% SiliconGraphics

Computer Systems

Page 40

sh_flags

None by dedult

requirements

object file relocation sections which are processeld meed not

be transferred toxecutable/DSO, or may be strippable if placed

there.

The content of each section is an array of relocation records, as described
by Table 29below:

Table 29 Relocation Operation (EIf64_Rel, EIf64_Rela)
Field Name Type Comments
r_offset EIf64_Ad dr Where to apply relocation:

relocatable: byte €det in section
executable: virtual address

r_sym Elf64_Word Symbol inde

r_ssym Elf64 Byte Special symbol — seEable 30
r_type3 Elf64 Byte Relocation type — seBable 32
r_type2 Elf64 Byte Relocation type — seBable 32
r_type EIf64_Byte Relocation type — seBable 32
r_addend EIf64_Sxw ord Explicit addend for relocation operd

tion (EIf64_Rela only)

2.9.1 Rulesfor Interpreting Relocation Records

The relocation operation consists of applying the operation(s) implied by
the type subfield(s) to operands which may include the addredsetr of

of the storage unit being relocatedoffset), the current content of the
storage unit being relocated, thedwe of the symbol inded by
r_symndx, a special symbolalue ¢_ssym) and/or the addend &ddend).
If the symbol ind® is STN_UNDEF (0), it is treated as kiang value 0.

A number of relocation operations may be applied to a single address. If
they are consecute in the relocation section, thare interpreted accord-
ing to the follaving rules:

al. The first operation tas its addend from either the r_addend field
of the relocation operation record (if it is of typies4_Rela), or

% SiliconGraphics

Computer Systems

11/3/98

ELF-64 Object File Format Page 41

ELF-32

from the location to be relocated, as implied by the operation (if
the relocation record is of ty[E64_Rel).

a2. Each subsequent operationdalas its addend the result of the pre-
vious operation. All such intermediate results, and all relocation
arithmetic, are in the natural pointer length of the object, i.e. 64
bits for ELF-64, and 32 bits for ELF-32.

a3. Only the final operation actually modifies the location relocated.

ol. Up to three operations may be specified per record, by the fields
r_type, r_type2, andr_type3. They are applied in that ordesind a
zero field implies no further operatiofiem this record. (The fol-
lowing record may continue the sequence if it references the same
offset.)

sl. The first operation in a record which references a symbol uses the
symbol implied by_sym. |

s2. The net operation in a record which references a symbol uses the
special symbol alue gven by the_ssym field, as described ifa-
ble 30

s3. A third operation in a record which references a symbol will as-
sume a NULL symbol, i.e.alue zero. This is useful for operations
which do nothing bt insert the relocatedalue into the proper in-
struction field.

The implication of the rules (al)-(a3) is that a relocation type consists of
two components. The first component is the operation to be performed,
which is alvays rel@ant (although manof the relocation types will va

no efect gven a NULL symbol). The second component is a specifica-
tion of the field to be relocated, which is ket only for the first opera-
tion in the sequence (where it may specify the addend feiféan Rel
relocation) and for the last operation in a sequence (where it specifies the
field rewritten by the relocation). This is compatible with old-style MIPS
relocations if one assumes thae¢gy relocation sequence hasetly one
element (which as probably true xeept perhaps in cases where the ne
definition won't affect the result).

The purpose of this more compldefinition is to allav us to specify

more complg relocations by composing simple relocations instead of re-
quiring that we atays define additional relocation types. This will gen-
eralize our relocation capabilities significantly without snaav

operations. The mecomposition rules are obsex/for 32-bit object files

11/3/98

ﬁ% SiliconGraphics

Computer Systems

Page 42

as well in the IRIX 6.0 linkr and bgond (except for those related towa
ing multiple relocation types in a record).

Table 30 Special Relocation Symbols
Name Value | Description
RSS UNDEF 0 None — alue is zero.
RSS_GP 1 Value ofgp
RSS_GPO 2 Value ofgp used to create object being relocajed
RSS LOC 3 Address of location being relocated

2.9.2 Semanticsof the Relocation Types

Relocation may be applied to the falimg fields of an instruction or data
word. Note that rgardless of the position of a relocated field within an
instruction, the déet/address specifiediroffset is that of the full in-
struction, not of the field. Also note that the instruction or datum being
relocated need not be aligned.

11/3/98

% SiliconGraphics

Computer Systems

ELF-64 Object File Format

Page 43

Figure 1 Relocatable Fields
15 hwie 0
31 15 hile 0
31 15 1016 0
31 15 rell6 0
31 15 it16 0
31 15 Pclé 0
31 15 halfl6 0
31 25 targ26 0
31 word32 a
63 word64 0
31 10 Sh5¢ a (bits 10..6)
31 108h64 |2 o (bits 2,10..6)

In the lists of relocation operations, the operation is described using oper-
ands fromTable 31below.

Table 31 Relocation Operands
Operand | Description
A Represents an addend obtained as ahgevof the field being relocaj

ed prior to relocation.i(el), from a.rela addend field, or as the pre
ceding result for a composed relocation (either).

11/3/98

ﬁ% SiliconGraphics

l
Computer Systems

Page 44

Table 31

Relocation Operands

Operand | Description

AHL An addressddend formeds follavs. In.rela sections, it is identica
to an A addend. In ael section, a pair of adjacent relocations, ong a
hil6 and the other 16, each pruide a 16-bit partial addend. Th¢
hil6 halfwordis shifted left 16 bitshelo16 halfwordis sign &-

tended, and the twresulting alues are added. (Thedwelocations
need not actually be adjacent irrel section -- a singlhi1l6 addend
may be used with multipl®16 addends -- it processing this com/
bination requiresdllable heuristics, so these relocations should rfot
be used inrel sections.)

P The place (section fsfet or address) of the storage unit being relofat-
ed (computed using offset).

S The \alue of the symbol whose inkleesides in the relocation entry
unless the symbol is STB_LOCAL of type STT_SECTION, in whch
case S represents the fishl addr minus the originash_addr.

G The ofset into the global déet table at which the address of the rdlo-
cation entry symbol, adjusted by the addend, resides dué@uy€
tion.

GP The final gp alue to be used for the relocatabbeautable, or DSO
being produced.

GPO The gp alue used to create the relocatable objectTabke 19 |

EA The efective address of the symbol prior to relocation.

L The mapping table ffet of a meged section, e.g. .lit4. Prior to rel@-

cation, the addend field (in the instruction) contains tsgbinto the
objects global data area. During relocation, the sections argetie
removing duplicate entries, and a mapping table is constructed t

1~

map the original d$ets to the ne offsets.

The actual relocation operations supported are describea relable
32. The name andalue columns are the relocation type, which is one 4!
ther_type* fields. The field column specifies théeated field of the stor-

age unit being relocated (only for the last operation in a composed reloca-
tion sequence). The "T_" prefix indicates thatess high-order bits are

to be truncated; the "V_" prefix indicates that thkie is \erified to fit in

the field, with an error generated if it does not. The symbol column spec-
ifies the kind of symbol to which the description applies.

Any of the relocation types may appear in eitheHa REL or a
SHT_RELA relocation section xeept that relocation typesvolving

SiliconGraphics
Computer Systems

11/3/98

ELF-64 Object File Format Page 45

AHL operands are forbidden in a 64-BHT_REL section and

discouraged in a 32-bfHT_REL section. In the latter case, yhe/ILL

NOT BE SUPPORED unless the ordering constraints imposed by table
footnote (b) are obseed. Also note that some relocations (e.qg.
R_MIPS_HIGHER, R_MIPS_HIGHEST) will normally be impossible to
specify in aSHT_REL section unless the required addend is small. An
SHT_RELA section must also be used for such relocations if the required
addend could become toodearfor its field in amd -r partial link, even if

the \alue is small as generated by the original object file producer

Several of the original MIPS relocation types may be used only for the
operation implied, and not for the field specified, in a multi-operation
sequence as described @boThe name fields for those types are shaded,
and some are gen alternate names in the table beto emphasize the
alternate interpretation.

Table 32 Relocation Types
Name Val- | Field Symbol Calculation
ue

R_MIPS_NONE 0 none n/a none
R_MIPS_16 1 V-half16 | ary S + sign_gtend(A)
R_MIPS_32
R_MIPS_ADD 2 T-word32 | ary S+A
R_MIPS_REL32
R_MIPS_REL 3 T-word32 | ary S+A-EA

local @ (((A << 2)| (P&0OxfO000000))
R_MIPS_26 4 | T-tamgy26 +S)>>2

external® (sign_etend(A<<2) +S)>>2

R_MIPS_HI16" €

5 | T-hilte |ary %high (AHL + S)d

R_MIPS_LO16” ¢

6 T-lo16 ary AHL + S

R MIPS GPREL16 ., Verel16 external sign_etend(A) + S - GP

- - -re
R_MIPS_GPREL local sign_etend(A) + S + GPO - GP
R_MIPS_LITERAL 8 | V-it16 | local sign_extend(A) + L

11/3/98

ﬁ% SiliconGraphics

Computer Systems

Page 46

Table 32

Relocation Types

Name Va- | Field Symbol Calculation
ue

e external G
RMIPS.COT o vaeto TR
R_MIPS PC16 10 | V-pcl6 external sign_extend(A) + S- P
iim:ggzgﬁtb%? - 11| Vrell6 | extema | G
R_MIPS _GPREL32 12 | T-word32 | local A+S+GP0O-GP
R_MIPS_SHIFT5 16 | V-sh5 any S
R_MIPS SHIFT6 17 | V-sh6 any S
R _MIPS 649 18 | T-word64 | any S+A
R_MIPS GOT_DISP 19 | V-rdl6 | any G
R_MIPS GOT_PAGE 20 | V-rddl6 | any £
R_MIPS_GOT_OFST 21 | V-rdl6 | any r
R_MIPS_GOT_HI16 22 | T-hi16 any %high(G)¢
R_MIPS GOT_LO16 23 | T-lo16 any G
R_MIPS_SUB 24 | T-word64 | any S-A
R _MIPS INSERT_A 25 | T-word32 | any Insert addend as instruction im-
R_MIPS INSERT B 26 | T-word32 | any L“af%f]‘f?'y prior to aadressed lo-
R _MIPS DELETE 27 | T-word32 | any Remove the addressed 32-bit ob-

ject (normally an instruction). !
R_MIPS_HIGHER 28 | T-hi16 any %higher(A+S)K
R_MIPS_HIGHEST 29 | T-hi16 any %highest(A+S)'
R_MIPS CALL_HI16™ 30 | T-hi16 | any %high(G)?
R _MIPS CALL_LO16™ 31 | T-lol6 any G
R_MIPS_SCN_DISP 32 | T-word32 | any N S+A-scn_addr
(Section displacement)

R_MIPS _REL16 33 | V-hwl6 | any S+A

ﬁ% SiliconGraphics

Computer Systems

11/3/98

ELF-64 Object File Format Page 47

Table 32 Relocation Types

Name Val- | Field Symbol Calculation
ue

R_MIPS ADD_IMMEDIATE 34 | V-half16 | ary °S + sign_gtend(A)
R_MIPS_PJUMP 35 | T-word32| ary Deprecated (protected jump)
R_MIPS_REGOT 36 | T-word32 | ary 9S+ A - EA
R_MIPS JALR 37 | T-word32 | ary PProtected jump ca@rsion
Notes:

a A local symbol is one with bindin§TB_LOCAL and typeSTT_SECTION. Otherwise, a symbol ixternal.

b An R_MIPS_HI16 must be follved immediately by aR_MIPS_LO16 relocation record in 8HT_REL sec-
tion. The contents of the twfields to be relocated are combined to form a full 32-bit addend AHL. An
R_MIPS_L0O16 entry which does not immediately fakca R_MIPS_HI16 is combined with the most recent
one encountered, i.e. multigke MIPS_LO16 entries may be associated with a sirfgléMIPS_HI16. Use of
these relocation types inSHT_REL section is discouraged and may be forbiddewadidahis complication.

¢ The special symbol name _gp_disped for relocating the calculation of gp on entry to a DSO in 32-bitifiles
not supportedn ELF-64 or in the ng 32-bit ABI. Instead, these relocations should be composed with
R_MIPS_GPREL applied to anxplicit symbol for the entry point of the subprogram. See Xaenples belw.

4 The %high(x) function is (x - (short)x) >> 16.

€ The first instance of dBR_MIPS_GOT* or anR_MIPS_CALL* relocation causes the liekto lild a global of-
set table if it has not already done so.

f An R_MIPS_GOT16 for a local symbol must be folled immediately by aR_MIPS_LO16. Their combined
AHL addend is used with the symbadallue to calculate a relocated address. AT@@try is constructed for the
high-order 16 bits (using arxisting one if possible), and its Gffset becomes thealue of the
R_MIPS_GOT16 relocation operatoiThe lav-order 16 bits of the address becomes Hieevof the
R_MIPS_LO16 relocation operator

9 These operators relocate a 64-bit dowlolel; all others relocate a 32-bibvd.

For these relocations, Id generatgsge pointer in the G, i.e. an address within 32KB of (S+A). Thare

placed at small ¢dets fromgp (i.e. within 32KB).R_MIPS_GOT_PAGE produces the GDoffset of the page

~ pointer andR_MIPS_GOT_OFST produces the &et of (S+A) from the page pointer

I References to that location elgeere are unchanged (i.e. yiveference the meinstruction) for the A form, or
refer to the meed instruction for the B form. Relocations which fellan insertion relocation in the same record
or in consecutie records with a zerofskt, reference the inserted instruction. Relocation records whictvfollo
with the same non-zerofeét refer to the original operation at that address. This requires careful ordering or
dummy interening relocations if multiple relocations including insertions are to be applied to the first locatid
a section.

I References to the deleted addressidisee are unchanged (i.e. yieecome references to the foling object,
which moves to the deleted address).

K The %higher(x) function is [(((long long) x + 0x80008000LL) >> 32) &ffiNf See the firstxample in the nd
section for the rationale for this definition and the %highest definition.

' The %highest(x) function is [(((long long) x + 0x800080008000LL) >> 48) &Dkf

11/3/98 ﬁ% SiliconGraphics

Computer Systems

Page 48

Table 32 Relocation Types
Name Val- | Field Symbol Calculation
ue

R_MIPS_ADD_IMMEDIATE was used in Delta C++ to add a constant to a Delta symboADBr instruction.
It is obsolete —R_MIPS_16 should be used instead.

An R_MIPS_JALR relocation is intended for optimization of jumps to protected symbols, i.e. symbols which
may not be preempted. The@wd to be relocated is a jump (typically/LR) to the indicated symbolf it is not a
preemptible symbalandthereforedefined in the currentxecutable/DSQthe relocation is a request to the kmk
to corvert it to adirect branch (typically alAL in the main &ecutable, or a BEZAL in DSOs 1 the taget symbol
is close enoug). The inker must check that the symbol is not preemptible before performing the relocation, Iy
no action is required for correctnesghis is strictly an optimization hint.

9 An R_MIPS_RELGOT relocation is the same as RnMIPS_REL relocation, bt relocates an entry in a GO
section and must be used for multigot T33and only there).

M The diference between tie_MIPS_CALL* operators and the correspondiRgMIPS_GOT* operators is that
the former allov initial resolution by rld to a lazyvaluation stub, whereas the latter must be resbto the ulti-
mate address at initialization.

An R_MIPS_SCN_DISP relocation is intended for address reset records in antlEwcation section (see Sec-
tion 2.10). Prior to relocation in the liak the lav-order 31 bits contains anfeét from the bginning of the sec-
tion referenced by the Ewnt Location sectiog’sh_link field. As the referenced sections and their associated
Event Location sections are concatenated, thdsetsfmust be updated to be refatio the meged section start
address. Thus, "scn_addr" in thgeession is the starting address of the section where the symbol is defined

ELF-32

An ABI-compliant object file must obsexthe ordering constraints from

the footnotes t@able 32in SHT_REL sections. Except as noted there, |
there are no constraints on the order of relocation operations in a section;
uSingSHT_RELA sections eliminates/en those constraints. ever,
producers should note that maintaining virtual address order (i.e. of the
data objects to be relocated) will generally result in the best performance.

The nev R_MIPS_SHIFTn operators are intended to support generation of
shift instructions for thexgraction of bitfields in C++ when the location
of the bitfield in the object is unknm at compile time and determined
only when an &ernal class definition is lirgdd in.

As currently defined, we implicitly assume that all TGéntries con-
structed in a 64-bit ELF object file are 64-bits, since weigeono relo-
cation types to produce 32-bit G@ntries. It may pnee desirable to
provide both capabilities to allosmaller GA's for programs residing
entirely in the lav 2GB of memory

ELF-32: [To be supplied]

SiliconGraphics
Computer Systems

11/3/98

ELF-64 Object File Format Page 49

293

Examples

Following are a number ofxamples of relocation situations, with the re-
locations required in the 32-bit and 64-bit implementations.

Loading a 64-bit address: We have a symbol &lue (i.e. an address)
which we wish to load into agester without going to memaryhere are
at least tw possible sequences which may be desirable:

A: lui rx,%highest(sym) # load highest "halfword"
daddiu rx,rx,%higher(sym) # merge next "halfword"
dsll rx,rx,16 # shift by one halfword
daddiu rx,rx,%hi(sym) # merge next "halfword"
dsll rx,rx,16 # shift into final position
daddiu rx,rx,%lo(sym) # merge lowest "halfword"

B: lui rx,%highest(sym) # load highest "halfword"
daddiu rx,rx,%higher(sym) # merge next "halfword"
dsll rx,rx,32 # shift into high word
lui ry,%hi(sym) # load high "halfword"
daddiu ry,ry,%lo(sym) # merge low "halfword"
dadd rx,rxry # merge high + low words

These tw sequences are eyaient. The first uses only onegreter but

is completely sequential (§gces minimum). The second uses a second
register but allows for a parallel schedule with a icte critical path on a
superscalar processor

Note that the somréhat odd definition of the %hi, %highend %highest
relocation operations is necessary to entilese sequence®k, gven
that immediate add operationsvals use signxended immediates and
that the lui operation sigmn«tends its result.

got_disp: We have a symbol (i.e. an address) which Id is to insert (as a
pointer datum) into the GD We want to use the &fet of that pointer
from gp, e.g. as thefskt (normally 16-bit) in a load instruction:

A: Id rx, %got_disp(sym) (gp) # load address of sym
B: Id ry, O(rx) # load object at sym

The relocation used in the 32-bit ABRId only for external symbols, is:

ext sym: A: R_MIPS_GOT16(sym)

11/3/98

% SiliconGraphics

Computer Systems

Page 50

We support n@ relocations in either 32-bit or 64-bit objects for arbitrary
symbols:

ary sym: A: R_MIPS_GOT_DISP(sym)

The 32-bit ABI preides no vay of doing this for a localym. See
got_page andgot_ofst belav. Obsere that althougiR_MIPS_GOT_DISP
normally produces aalidated 16-bit field, composing it with other oper-
ators allevs its use to produce an arbitrarily sizedTGddsplacement.

got_hi (got_lo): As forgot_disp, we want to reference the GQlisplace-
ment of a symbol address placed in thelG® Id. Havever, the dis-
placement may be Iger than 16 bits, and this operator references the
high-order (lov-order) 16 bits:

A: lui rx, %got_hi(sym) # load high part of disp
B: dadd rx, rx, gp # add gp
C.Id rx, %got_lo(sym), rx # load GOT entry

The relocations used in either 32-bit or 64-bit objects are:

ary sym: A: R_MIPS_GOT_HI16(sym)
C: R_MIPS_GOT_LO16(sym)

Obsere that this relocation is not defined in the 32-bit ABI, which in
general does not cope with G®lager than 64KB.

If the symbol iwvolved is a subprogram name being used in a call, which
may therefore be res@d by Id for lazy ealuation, then the plain HI/LO
relocations should be composed wWattMIPS_CALL, i.e.:

any sym: A: R_MIPS_CALL(sym)
R_MIPS_HI16(null)

C: R_MIPS_CALL(sym)
R_MIPS_LO16(null)

got_page (got_ofst): In some cases, we use the TGéntry (i.e. the sym-

bol address) in a contewhere a 16-bit displacement can be added at the
time of use, e.g. data loads. In such casedgiver GOT entries may be
required if we store one address per 64KB page instead of one per ad-
dress referenced, and use afsetffrom the page pointer in the final ref-
erence. W assume that the page entries caaygd be referenced within

a 16-bit ofset fromgp, yielding sequences such as:

%% SiliconGraphics 11/3/98

Computer Systems

ELF-64 Object File Format Page 51

A: lui rx, %got_page(sym), gp# load page pointer
B: Id rx, %got_ofst(sym), rx # load datum

The 32-bit ABI supports such sequences only for local symbols, using
the following relocations:

localsym: A: R_MIPS _GOT16(sym-+addend)
B: R_MIPS_LO16(sym+addend)

We support n@ relocations in either 32-bit or 64-bit objects for arbitrary
symbols:

ary sym: A: R_MIPS GOT_PAGE(sym+addend)
B: R_MIPS _GOT_OFST(sym+addend)

Using nev relocation types alles use for gternal symbols, potentially
expanding the GO size saings. If the referencedkeernal turns out to be
preemptible, Id should res@\ts page pointer (i.e. the G@ntry) to its
actual address and itdsét to zero, ééctively treating it like a normal
GOT entry for an rternal symbol.

Obsenre thatR_MIPS_GOT_DISP, R_MIPS_GOT_PAGE, and
R_MIPS_GOT_OFST between them a@r the local andxernal symbol
cases handled in the 32-bit ABI RyMIPS_GOT16. Separating them al-
lows extension of each case to arbitrary symbols, without attempting to
redefineR_MIPS_GOT16. The latter shouldl into disuse xcept where it

is required for 32-bit ABI conformance.

gp_rel: In some contds, we need the (runtime) fiifence between a
symbol address and the. The first is PIC branch tables, which are
stored as the desired branclgraddresses mings — by addingyp at
runtime, we ®goid having rid relocate the addresses. Thus, weeha
A: %gp_rel(labell)
%gp_rel(label2)

The relocation used for this purpose in the 32-bit ABI is:

localsym: A: R_MIPS_GPREL32(sym)

11/3/98 ﬁ% SiliconGraphics

Computer Systems

Page 52

We also us&_MIPS_GPREL32 in 64-bit objects. It will still yield a 32-bit
displacement fromp by itself. Either it oR_MIPS_GPREL Yyields a
64-bit offset when composed with MIPS_64:
any sym: A: R_MIPS_GPREL(sym)
A: R_MIPS_64(null)

The second common caseadtves loading the diérence between the en-
try address of a subprogranand the runtimgp for establishingp:

A: lui rx, %hi(%neg(%gp_rel(s)))# load high part of diff

B: daddiu rx, rx, %lo(%neg(%gp_rel(s)))# add low part

C. dadd gp, t9, rx # add to entry address

The 32-bit ABI handles this with a special case based on a edsgym-
bol __gp_disp, and requires that A and B be adjacent instructions:

__gp_disp: A: R_MIPS_HI16(__gp_disp, addend)
B: R_MIPS LO16(__gp_disp, addend)

In 64-bit objects, we prefer composition:

ary s: A: R_MIPS_GPREL(s)
A: R_MIPS_SUB(null)
A: R_MIPS_HI16(null)
B: R_MIPS_GPREL(s)
B: R_MIPS_SUB(null)
B: R_MIPS_LO16(null)

2.9.4 Discarded Relocations

The initialelf.h file defined seeral relocations for dealing with G®
larger than 64KB which we do not includeyéring other approaches as
described abee:

R_MIPS_REL64

This can be produced by composmgviPS_REL with
R_MIPS_64.

R_MIPS_LIT_HI16, R_MIPS_LIT_LO16

These can be produced by composingiiPS_LITERAL
with R_MIPS_HI16 or R_MIPS_LO16.

R_MIPS_GPOFF_HI16, R_MIPS_GPOFF_LO16

%% SiliconGraphics 11/3/98

Computer Systems

ELF-64 Object File Format Page 53

As described ab@, these can be produced by composing
R_MIPS_GPREL with R_MIPS_HI16 or R_MIPS_LO16.

2.10 Event Location Section

Stack traceback, as well asrious transformations of object files, includ-
ing PIC transformations, performance monitoring (pixie), processpr b
workarounds (r4kpp), etc., require kmledge of where specific transi-
tions occur in the programxe This section is intended to be a compact
summary of this information (in conjunction with th&®\BRF frame in-
formation sectiondebug_frame , which encodes the transitions of the
stack pointerframe pointerand other rgisters). There will normally be
one @ent location section perxesection. Its entries must be in increas-
ing address order

Its section attribtes are:

name .MIPS.events name

sh_type SHT_MIPS_EVENTS

sh_link Section header indef the (text) section described.
sh_info Section header indeof associated inteate section.
sh_flags SHF_ALLOC + SHF_MIPS_NOSTRIP
requirements | must not be stripped

The structure of arvent location section is a sequencearfable-length
records, each consisting of a kind byte fetbol by zero or more oper-

ands. The section alignment is 1 byte, and its size is the size of the actual
data. The possiblevent kinds, along with their operands, areegi by

Table 33belov; the meanings are discussed in more detaivbdie ta- |
ble. The column ging operand types lists them in order of appearance
when there is more than one operand for a particular kind. Note that the
event kinds may notwerlap with the content kinds\gin in Section 2.12
below, except forEK_NULL .

Table 33 Event Kind Constants
Event Kind Name Value | Operand ype | Comments
EK_NULL - Gl one :(f)”\I/:rlld information — may be used §s

11/3/98 ﬁ% SiliconGraphics

Computer Systems

Page 54

Table 33 Event Kind Constants
Event Kind Name Value | Operand Type | Comments
N Elfé4_Word | Reset current location to the given off-
EK_ADDR_RESET 0x01 Elf64_Half set from the section (segment) start
EK_INCR_LOC_EXT * 0x02 ULEB128 I_ncrement SUlfEn: [Bes le oy Grefane
times 4.
EK_ENTRY * 0x03 none Subprogram entrypoint
EK_IF_ENTRY *0x04 | EIf64_Word _Subprogram AL el g
interface descriptor offset.
EK_EXIT * 0x05 none Subprogram exit
EK_PEND * 0x06 none Subprogram end (last instruction)
EK_SWITCH_32 * 0x07 Elf64_Byte | Switchjr with 32-/ 64-bit table entries.
R ElIf64_Word | Operandsindicate whether GP-relative,
SR SR D ULEB128 | table start address, and table size.
EK_DUMMY * 0x09 none unused
EK_BB_START * Ox0a none Start of basic block
EK_INCR_LOC_UNALIGNED * 0x0b ULEB128 Incremen_t s location by eperand
(not multiplied by four)
EK_GP_PROLOG_HI * 0x0c Elf64_Half | Establish high/low 16 bits of GP; opnd
EK_GP_PROLOG_LO *0x0d | Elfé4 Half | is%lo(_gp_disp) / %hi(_gp_disp)
EK_GOT_PAGE * 0x0e EIf64 Half Reference GOT page/ offset; opnd is
EK_GOT_OFST * OXOf EIf64_Half corresponding offset / page.
EK_HI *0x10 Elf64_Half Reference high/low 16 bits of 32-bit
. absol ute address; opnd iscorresponding
EK_LO OxI1 | Elfed_Hall | o4l o(address) / 9hi (address)
EK_64_HIGHEST *0x12 | EIf64_Xword
EK_64_HIGHER *0x13 | Elf64_xword | REference 16 bit pieces of 64-bit
absolute address. Theoperandisthefull
EK_64_HIGH *0x14 | EIf64_Xword | acc
EK_64_LOW *0x15 | EIf64_Xword
EK_GPREL * 0x16 none GP-relative reference
EK_DEF * 0x17 below Defineanew event kind operand profile

SiliconGraphics
Computer Systems

11/3/98

ELF-64 Object File Format Page 55

Table 33 Event Kind Constants
Event Kind Name Value | Operand ype | Comments
2 EeAlL LOGAL col® | ENEA e Call to local routine with given offset in
- - - current section
EK_FCALL_EXTERN * 0x19 ElIf64_Half Call external routine at given GP indgx
SiC Sea L SOTERN BIE * Oxla Elf64_Half C_aII externall routine gt given GP indek,
- - - Elf64_Half given by %hi/%Ilo pair
EK_FCALL_MULT & Gl VLRSS Call to any of several routines, none pr
all known
EK_FCALL_MULT_PARTIAL * Ox1c ULEB128 el ey €F SevErel MminEs,; S3nme
- - - known
EK_LTR_FCALL i Eif64_Word Instructlon. is call tdazy_text_resolve,
argument is .dynsym index of callee
Instruction is loading high half of
EK_PCREL_GOTO Oxle Elf64_Half FAte dlspla(‘:e.ment £y e |
entry 0; argument is instruction count fo
instruction providing low half
EK_MEM_COPY_LOAD Ox4f none Load for purposes of copying data
EK_MEM_COPY_STORE 0x20 LEB128 Slioe 107 [P G O EREying el —
- - - operand is distance to paired load
EK_MEM_PARTIAL_LOAD 0x21 Elf64_Byte Reference 1 S“bs‘?t o [Byies Gl gy
8 bits of operand give bytes used
EK_MEM_EAGER_LOAD 0x22 none Load is speculative
EK_MEM_VALID LOAD 0x23 none Load of data known to be valid
EK_CK_UNUSED_NONE_0 * 0x50 none Reserved for future use
EK_CK_UNUSED_NONE_1 * 0x51 none Reserved for future use
EK_CK_UNUSED_NONE_2 * 0x52 none Reserved for future use
EK_CK_UNUSED_NONE_3 * 0x53 none Reserved for future use
EK_CK_UNUSED_NONE_4 * 0x54 none Reserved for future use
EK_CK_UNUSED _16BIT_0 * 0x55 Elf64_Half Reserved for future use
EK_CK_UNUSED_16BIT_1 * 0x56 Elf64_Half Reserved for future use
EK_CK_UNUSED_16BIT 2 * 0X57 ElIf64_Half Reserved for future use
11/3/98

Computer Systems

% SiliconGraphics

Page 56

Table 33 Event Kind Constants
Event Kind Name Value | Operand ype | Comments
EK_CK_UNUSED_16BIT_3 * 0x58 Elf64_Half Reserved for future use
EK_CK_UNUSED_16BIT_4 * 0x59 Elf64_Half Reserved for future use
EK_CK_UNUSED 32BIT 0 * Ox5a Elf64_Word Reserved for future use
EK_CK_UNUSED 32BIT_1 * 0x5b Elf6é4_Word | Reserved for future use
EK_CK_UNUSED_32BIT_2 * OX5C Elf64_Word | Reserved for future use
EK_CK_UNUSED 64BIT_0 *0xod | EIf64_Xword | Reserved for future use
EK_CK_UNUSED 64BIT_1 *0x5e | EIf64_Xword | Reserved for future use
EK_CK_UNUSED_64BIT_2 *0x5f | EIf64_Xword | Reserved for future use
EK_CK_UNUSED 64BIT_3 *0x60 | EIf64_Xword | Reserved for future use
EK_CK_UNUSED _64BIT_4 *0x61 | EIf64_Xword | Reserved for future use
EK_CK_UNUSED_ULEB128 0 | *0x62 ULEB128 Reserved for future use
EK_CK_UNUSED ULEB128 1 | *0x63 ULEB128 Reserved for future use
EK_CK_UNUSED ULEB128 2 | *0x64 ULEB128 Reserved for future use
EK_CK_UNUSED_ULEB128 3 | *0x65 ULEB128 Reserved for future use
EK_CK_UNUSED ULEB128 4 | * 0x66 ULEB128 Reserved for future use
EK_CK_UNUSED ULEB128 5 | *0x67 ULEB128 Reserved for future use
EK_CK_UNUSED_ULEB128 6 | *0x68 ULEB128 Reserved for future use
EK_CK_UNUSED ULEB128 7 | *0x69 ULEB128 Reserved for future use
EK_CK_UNUSED ULEB128 8 | *0x6a ULEB128 Reserved for future use
EK_CK_UNUSED_ULEB128 9 | *0x6b ULEB128 Reserved for future use
EK_VENDOR_LOW 0x70 RPN Kinds in this_rgnge are reserved for
EK_VENDOR_HIGH Ox7f vendor-specific use
EK_INCR_LOC B T Increment current location by low 7 bijs

of kind value times 4.

Events generally describe the beioa of instructions at aurrent loca-
tion. The current location is modified by one of fouemt kinds. An
EK_ADDR_RESET event specifies a full address relatito the bginning

ﬁ% SiliconGraphics

Computer Systems

11/3/98

ELF-64 Object File Format Page 57

of the section (ggment), and must be the firstemt (which allevs the
linker to alvays append a mesection without insertions). The second
operand of aEK_ADDR_RESET event is the distance in bytes until the
next EK_ADDR_RESET event (or the remaining size of the section for the
last one), allwving faster scanning of mged &ents sections. An
EK_INCR_LOC event increments the current location, with the increment
embedded in thevent kind fieldEK_INCR_LOC_EXT does the same with
an plicit operand — each multiplies its operand by fam
EK_INCR_LOC_UNALIGNED event is like anEK_INCR_LOC_EXT, except
that the operand is not multiplied by fpso it can be used for non-full-
word-aligned increments.

A program unit normally contains one or more entrypointsgrgby
EK_ENTRY Or EK_IF_ENTRY events, andxts (i.e. returns) gien by
EK_EXIT events pointing to their return branch instructions. Its last
instruction is markd by areK_PEND event.lssue: should there be an
EK_PBEGIN event kind to mark the first instruction of a program unit in
the case that it is not also an entrypoint?

Switch statements are noted#® SWITCH_32 OrEK_SWITCH_64 events
pointing to the associated jr instruction. The operands indicate (in order)
whether the table contents are GP-re&a(single-byte Boolean), the ta-

ble address (a fullord, relatve to thestart addressf the section contain-

ing the jr instructiol and the number of entries in the tallegB128).

New basic blocks are noted BX_BB_START events. These should only
be present for cases that tool®liixie cannot identify reliably

GP establishment in the prolog is indicated byskeGP_PROLOG_HI
andEK_GP_PROLOG_LO events, pointing to the instructions which actu-
ally reference those pieces of the. Ginilarly, all of the @ent kinds
through EK_GPREL reflect relocations in the original relocatable object
which might need to be redone for code transformatioescal these
collectively relocation events. Note that most of them come in hi/lo pairs;
the operands in these casesvfte the parts of the tget address which
cannot be obtained from theent instruction.

Calls are labelled by geralcall event kinds: A call to the current section

is marled by areK_FCALL_LOCAL event. An eternal call is maré&d by
anEK_FCALL_EXTERN event (16-bit GO displacement) or an
EK_FCALL_EXTERN_BIG event. Thesewents encode the GO

addressing of the callee in their operands; note that the instructions which
load the addresses normally also require relocatients. If the callee is

11/3/98

ﬁ% SiliconGraphics

Computer Systems

Page 58

not knawn, there are three possibilities<_FCALL_MULT followed by

two or more of the specifivents abwe indicates that the callee is one of
the gven possibilitieSEK_FCALL_MULT_PARTIAL followed by zero or
more of the specificvents abwe indicates that the callee is either one of
the gven possibilities or some other unkwrofunction. In both cases, the
operand is the number of specific caimts follaving.

Severalmemory gentsmark special cases of memory reference
instructions for the use of memory dgjging tools lilke Purify Copies
are indicated by aBK_MEM_COPY_LOAD at the load instruction and an
EK_MEM_COPY_STORE at the store instruction, with the lattevhng an
operand giing the ofset (dvided by four) for the associated lo&@here
may be multiple stores generated for one loduiks @llovs the tool to
copy the \alid bits rather than checking the load fatidity.

Bitfield use(either eplicitly using C bitfields, or implicitly with &riants

of var&mask) leads to loads which do not reallyatve use of all of the
bytes loadedEk_MEM_PARTIAL_LOAD marks such a load with a mask of
the bytes actually required to balid. For loads intended only to allo
insertion of a bitfield to be stored, the mask will be zeoo.|éads
intended for bitfield ¥traction, the mask should indicate which bytes are
occupied by the bitfield to bexteacted

When the compiler generates eager loads which are not actually useq
all paths, the should be magd byEK_MEM_EAGER_LOAD events.

When the compiler generates loads which arevknio be of alid data
(because it is knin to have been stored earljer it is knavn to be
initialized global data, e.g. the GQ) they may be mar&d by
EK_MEM_VALID_LOAD to sare checkingNone of these memoryents

are predefined, so thenust be preceded IBK_DEF events (see bela).

Issue: Should the memorywents be sgregated to a distinctvents
section so that tools which use theadgf e/ents and those which use the
memory @ents arert’ impacted by the other data?

Event section processors (consuming tools) must be able to parse the
events sectionwen in the presence ofwevent kinds added in the future
(ignoring the ne events). Therefore, before usingyaavents besides
those with alues markd by '*' in the table abee (thepredefinedkinds),

the nev event kind(s) must be defined by BK_DEF event. Its operands
are, in orderthe nev event kind \alue, the number of operands it
requires, and the type of each operand, each represented by a single
unsigned byte (as\gn byTable 34belov). The kinds named |

SiliconGraphics
Computer Systems

11/3/98

on

ELF-64 Object File Format Page 59

EK_CK_UNUSED _... are considered predefined kinds for this purpose, so
thateEK_DEF events will not be required to use them in the futureyThe
may ultimately be used as eitheeat or content kinds.

In order to lkeep consumer semantics simple, all definitions ofaa ne
event kind must ha consistent profiles, and if it is not the predefined
profile of anEK_CK_UNUSED _... event, the releantEK_DEF event must
precede it in each object file where it is used. Thisvallold consumers
to simply use the most recent encountered definition, amd¢oesumers
with an understanding of the@ent kind to ignore theK_DEF events for
it. It requires prospecté producers to coordinate theimnevent kind
proposals with the MIPS compiler group.

The \alid operand type specifiers for ak_DEF event are gien byTable

34 below.
Table 34 Event Operand Type Specifiers in EK_DEF Events

Operand Type Value Comments

EK_DEF_UCHAR 1 Unsigned character (byte)

EK_DEF_USHORT 2 Unsigned short (2 bytes)

EK_DEF_UINT 3 Unsigned int (4 bytes)

EK_DEF_ULONG 4 Unsigned long (8 bytes)

EK_DEF_ULEB128 5 Unsigned LEB128 (variable byte
length)

EK_DEF_CHAR 6 Signed character (byte)

EK_DEF_SHORT 7 Signed short (2 bytes)

EK_DEF_INT 8 Signed int (4 bytes)

EK_DEF_LONG 9 Signed long (8 bytes)

EK_DEF_LEB128 10 | Signed LEB128 (variable byte lengtl)

EK_DEF_STRING 11 Null-terminated character string

EK_DEF_VAR 12 | Variable -length operand, consisting pf
a two-byte length including the length,
followed by the remaining bytes.

11/3/98 ﬁ% SiliconGraphics

Computer Systems

Page 60

. Every efort is made to minimize the space used by tlenesection, in-
Linker : .) .
cluding the use of LEB128 encoding where possiblevéder, an impor-
tant constraint is that the liskmust be able to construct the combined
event section by simply relocating and concatenating thgidhdil
events sections from the component objects, without changing their sizes
(and therefore without needing to parse them). This leads to the use of
fixed-size operands ins&al cont&ts where smaller operandswud
usually be adequate in relocatable object files.

ISSUE 1 Issue: 16 event kindsEK_VENDOR_... have been reseed for use by indi-
i vidual vendors. Havever, their use wuld male the resulting objects un-
usable by another vendor which used the same kindsoid it be better

to assume that such usageuld use a distinct section, and define a
mechanism for associating this section with a speaincior?

2.11 Interface Section

Anticipated checking for correctness by the &irk(d/rid), as well as ob-
ject file transformations, require information about subprogram aaterf
es, especially parameter profiles. This section is intendedvimerihis
information. There should be one such section per object file (including
executables and DSOs).

These descriptors shall be used to describe both actual subprograms and
the parameter profiles of calls. In the latter caggpus information will

be missing, and once the call srivied to match the profile of a callee,
references to its descriptor (e.g. from therds section) may usually be
corverted to references to the calkedescriptor and the call descriptor

may be remeed.

The information to be praded has ariable length. Thus, the sectisn’
contents are ganized as a sequence afiable-length descriptors, each
with a fixed-length header possibly foled by \ariable-length data. The
descriptors must be sorted by the symbol tablexindéeld symbol. Each
descriptor must be a multiple of 8 bytes in size, with null padding be-
tween descriptors as required.

The Interfice Sectiors attritutes are:

name .MIPS.interfaces
sh_type SHT_MIPS_IFACE
sh_link The section header inklef the associated symbol table

%% SiliconGraphics 11/3/98

Computer Systems

ELF-64 Object File Format

Page 61

sh_info

0

sh_flags

SHF_ALLOC + SHF_MIPS_NOSTRIP

requirements

may not be stripped — may be required for future iaterfcheck-
ing and transformation.

The structure of an intexte descriptor fed-length header is\gn by

Table 35below.
Table 35 Interface Descriptor Header
Field name Type Comments
symbol Elf64_Word Symbol table index of subprogram]
name, or O for an indirect call
attrs Elf64_Half Attributes: sed able 36
pent Elfé4_Byte | Parameter courit?
fpmask Elf64_Byte Mask of FP parameter registérs
Notes:

8 The parameter count and parameter profilevbelescribe the parameter profile
as transformed (not as declared). yhelude implicit parameters inserted by
the compilerincluding function results cerrted to implicit result pointers

passed as parameters.

The parameter count includes the result if$%e FUNCTION attribute is set,
and the first descriptor is for the result. If the parameter count is 255, then the
parameter list is preceded by aotlwyte parameter count. See Figure 2

This mask indicates which of the eight FP parametgsters are used to pass
parameters instead of the correspondinggmteisters. The function result is
not considered iIBA_FUNCTION is set. The lwvest-order bits of the mask rep-
resent the first parameters, i.e. 0x01 is parameter #1 in $f12, 0x02 parametd
in $f13, etc.

The attrilutes of asubprogram are encoded in tues field as the follav-
ing bits.

11/3/98

ﬁ% SiliconGraphics

Computer Systems

Page 62

Table 36

Subprogram Attributes

Attribute mask Value Comments
SA_PROTOTYPED 0x8000 Does def or ref have prototype?
SA_VARARGS 0x4000 Is this a varargs subprogram?
SA_PIC 0x2000 Are memory references PIC?
SA_DSO_ENTRY 0x1000 Is subprogram valid DSO entry?
SA_ ADDRESSED 0x0800 Is subprogram address taken?
SA_FUNCTION 0x0400 Does subprogram return a resiit?
SA_NESTED 0x0200 Is subprogram nested?
SA _IGNORE_ERROR 0x0100 Don't enforce consistendy.
SA_DEFINITION 0x0080 Is this a definition (not just call)?
SA_ AT _FREE 0x0040 Registerat is free at all branchék.
SA_FREE_REGS 0x0020 Free register mask follows.
SA_PARAMETERS 0x0010 Parameter profile follows.
SA_ALTINTERFACE 0x0008 Next descriptor is an alternate inter
face for this subprografh.

Notes:

a This is specified as transformed by the compilet necessarily as declared, e.g
a subprogram treating a structure result by placing it inffaibaddressed as an
implicit first parameter wuld not be encoded as a function.

parameters, if a definition has this atiitb all calls should too,ub the opposite
condition is not necessary

Some subprograms may be limoto be called inconsistentlyhis attritute indi-

cates that antools checking for inconsistencies should not reject the objects d

to inconstencies for this subprogram.

fore be used by transformation programe lgixie if required to transform the
branch or the shadooperation. The flag must be reset by such a tadlig
used.

Because nested subprograms require a static link in addition to the usual dec

Registerat is never live at a branch instruction in this subprogram. It may therd

ared

SiliconGraphics
Computer Systems

11/3/98

ELF-64 Object File Format Page 63

Table 36

Subprogram Attributes

Attribute mask Value Comments

€ A 32-bit free rgister mask precedes the parameter profile, specifyinggintey-
isters which are ner used in this routine. A program transformation tod lik
pixie may use thesegisters, subject to the ABI assumptions about cabezd
registers. The mask must be updated by such a todjifftess are used. See Fig-
ure 2)
Minimal checking may be achied by including only the fed-length part of the
interface descriptorand omitting the detailed parameter profile. Doing so
changes the meaning of thent field in the fixed-length headeBee the descrip-
tion of required linkr checking belw.
9 In some cases the compiler (or another tool) may choose to create an alterngte
interface to a subprogram with féifent attrilutes. This flag indicates that the
next descriptor is for such an alternate inded (not yet used).

The \ariable-length part of an intexde descriptor consists of a list of pa-
rameter descriptors follang the fiyed-length headepossibly preceded

by a free rgister mask. It contains one descriptor for each parameter
(formal for declarations, actual for calls), plus a leading descriptor for the
result of functions. Ellipsis parameters are not presengai@igs subpro-
grams; thesSA_VARARGS attribute indicates this case. After resolving a
reference in a call, the compiler or latkshould replace the callgractu-

al interface reference by a reference to the calémmal interéce if

they match. (Obserthat a mrags call will never match unless naavi-

able parameters are passed. Therefore, the call descriptor should not be
removed unless the callee is defined and non-preemptible, though it may
be meged with others that ke the same profile.)

The structure of theariable-length part of an intexde descriptor has the
form given in Figure 2 bele.

11/3/98

ﬁ% SiliconGraphics

Computer Systems

Page 64

Figure 2 Subprogram Parameter Profile

Size in bytes of profile if any other fields are present (2 bytes)

Parameter count if pcnt == 255, else 0 (2 bytes)

Free register mask if SA_FREE_REGS is set (4 bytes)

Result type descriptor if SA_FUNCTION is set (2+ bytes)

Parameter #1 type descriptor (2+ bytes)

Parameter #2 type descriptor (2+ bytes)

Parameter #pcnt type descriptor (2+ bytes)

Each type descriptor has the follog form:

qual.

count
0 3|4 7(8 15|16 23

flags fundamental type | first qualifier

Various parts of the parameter profile, as well as the whole profile, ard
optional. The follaving rules should clarify which parts may be omitted:

i The entire profile is omitted §A_PARAMETERS and
SA_FREE_REGS arenot setandpcnt is not 255. See the liek pro-
cessing description of minimal checking bvelr the treatment in
this case.

i If any profile component is present, the size field must be preser

1 If pent is 255, the parameter count field must be present, equal t
the number of parameters, including the result for functions. (Noje
that this is the number of parameteagister equralents if
SA_PARAMETERS is not set -- see the liekprocessing description
of minimal checking belw.) If pent is smalley but
SA_FREE_REGS is set, the parameter count field is present (con-
taining zero) for alignment.

-

%% SiliconGraphics 11/3/98

Computer Systems

ELF-64 Object File Format Page 65

I If SA_FREE_REGS is set, the free gester mask must be present (as
well as the parameter count field).

1 If SA_PARAMETERS is set, the number of parameter type descrip
tors implied bypent or the parameter count field is present. The
first one is the function result typeSA_FUNCTION is set. These
descriptors are described in more detail Wwelo

1 Finally, if the full profile is not a multiple of eight bytes long, it is
padded to a multiple of eight bytes with zeros (which are not in-
cluded in the size).

Each parameter type descriptoghes with a halfward, the contents of
which are gren byTable 37below. It contains one of the fundamental |
types from able 2 abwe in the lav-order byte plus seral flags and a
gualifier count in the high-order byte as describethinle 37 If the |
qualifier count is non-zero, it will be folied by that number of sin-
gle-byte type qualifiers fromable 3 abwee. Those types with indetermi-
nate length (e.g=T_struct , FT_union) are alvays folloved by the actual
length (in bytes) preceding the qualifier listPtiM_SIZE is not set, the
length is an unsigned byte, where the maximaimes (255) implies at
least that length; IPDM_SIZE is set it is a 32-bit unsignedownd (not nec-
essarily aligned), where the maximualwe (Oxfffffff) implies at least
that length.

Table 37

Linker
Processing

2111

Parameter Descriptor Masks

Mask Name Value Comments

PDM_TYPE 0xO0Off Fundamental type of parameter
PDM_REFERENCE 0x4000 | Reference parameter?

PDM_SIZE 0x2000 | Type folloved by eplicit 32-bit byte size?
PDM_Qualifier s 0x0f00 Count of type qualifiers <<8

Linker Processing

The interce descriptor section requires significant processing by the
linker — its purpose is to pvale link-time checking. This processing in-
volves checking and compression. Thasility has been designed to be
used either for minimal checking with minimal space requirements, or
for full checking.

11/3/98

ﬁ% SiliconGraphics

Computer Systems

Page 66

Full checking: The compiler may generate a descriptor farg subpro-
gram definition and potentially fowery call. (Only one descriptor is re-
quired for multiple calls to the same subprogram, and if the callee is in
the same compilation, the compiler can check parameters and omit the
call descriptors entirelyWhen the linkr resoles a call to the calle’
definition, it should check the call descriptoaamgt the definition de-
scriptor The rules for compatibility are as fos:

1. Ifthis is not a arags routine (NOSA_VARARGS), then the number
of parameters should matctorFeach parameter the sizes should
match, and whether it is irger or floating point should match.

2. For a 32-bit (old ABI) arags routine $A_VARARGS), the fixed
parameters should matchxéept perhaps for the last one, which
may be aarargs.h va_alist dummy parameter).

3. For a 64-bit arags routine $A_VARARGS), the fixed parameters
should match ¢ecept perhaps for the last one, which may be a
varargs.h va_alist dummy parameter), and there must be no float-
ing point parameters in thewable part unless the call site had a
prototype visible $A_PROTOTYPED).

Compatibility failures should result inavnings rather than hard errors.

Once checking has been done, thedmkay (and should) discard most
of the descriptors. In general, call descriptors should be discarded if a
definition descriptor is\ailable. If there is no definitionvailable, then
the linker may ‘erify that the calls are consistent and discardulbine.

Minimal checking: At a minimum, checking should identify cases
where floating point parametersv/kebeen passed to thariable part of a
varags routines parameter list; this will notevk unless a prototype for
the callee \as ailable at the call site. This minimum check requires
only the fixed-length part of the descriptors. It requires that the compiler
emit descriptors for anvarags routine definitions, and that it emit de-
scriptors for an calls to \arags routines or to routines without proto-
types, where floating point actual parameters are passegisters.

These descriptors will not i@ thesA_PARAMETERS flag set, and their
pent field should reflect the number ofjister equialents (i.e. 64-bit
pieces for agggate parameters) used to pass parameters rather than the
number of source-lel parameters (plus 1$A_FUNCTION is set).

The linker then checks for floating point parameters passed tathe v
able part of aarags parameter list using th@nask information in the
fixed-length header and thent field. The first (high-ordecnt bits of

11/3/98

% SiliconGraphics

Computer Systems

ELF-64 Object File Format Page 67

thefpmask field must match. The remaining bits of the cadlgshask

field must be cleaiThis check is limited to the parameters which may be
passed in gisters, since those passed in memory do not preasay
matching problems.

Note that, if the calles’descriptor has th& PARAMETERS flag set bt

a minimal test is being done, the actual parameter descriptors must be e
amined to determine the actual number of paramejestees, rather than

the source-leel parameter count whiglent will give.

2.12 Section Content Classification

Various tools need to identify the location of code, addresses, and other
data in a program for transformation purposes. This section kimatipso
such information about the contents of sections.

The Content Sectios attrihutes are:

name .MIPS.content name

sh_type SHT_MIPS_CONTENT

sh_link The section header indef the section classified

sh_info 0

sh_flags SHF_MIPS_NOSTRIP

requirements | may not be strippeég- doing so veuld render some functionality
unusable, such as pixie and cordX

A content section is required for each sectiornvegieto programecu-
tion which contains data of other than itsaiéf class, as determined by
the sectiors attribute flags:

SHF_EXECINSTR executable code

SHF_MIPS_ADDR address data of size implied by section ele-
ment size

other non-address data

Note thataddress data refers to storage initialized to relocatable address-
es, not to user pointer data which is uninitialized or initializexiuta. .

11/3/98

ﬁ% SiliconGraphics

Computer Systems

Page 68

A content section is ganized lile the gents section described in Section
2.10, as a sequence @iable-length records, each consisting of a sin-
gle-byte content kind follwed by zero or more bytes of operamdues.

Each record applies to a current location, where the current location is
controlled by gent kinds as described in Section 2.M®st content

records refer to a range starting at the current location, with the lengthj of
the range (in bytes) gen by aJLEB128 operand.

The content kind is one of the choices froable 38 They are described
further belov the table. Content kindalues may not conflict withvent

kinds described in Section 2.1&cept forck_NULL. Note, hevever, that

the event kinds for setting the current location and for definirvg kiads

are also used in a content section for the same purposes. In addition, the
resered predefined kindsk_CK_UNUSED_... listed inTable 33may ul- |
timately be used as eitheremt or content kinds.

Table 38 Content Kind Constants
Content Kind Name | Value | Operand ype | Comments
CK_NULL * 0x00 none No valid information — may be used as a filler
CK_DEFAULT * 0x30 Elf64_Byte Operand is default data type for section.
091 | gicaByte | required aignment (exponent 0.63 o1 2)
CK_INSTR * 0x32 ULEB128 Range contains instructions
CK_DATA * 0x33 ULEB128 Range contains non-address data
CK_SADDR_32 * 0x34 ULEB128 Range contains simple 32-bit addresses
CK_GADDR_32 * 0x35 ULEB128 Range contains GP-relative 32-bit addressgs
CK_CADDR_32 * 0x36 ULEB128 Range contains complex 32-bit addresses
CK_SADDR_64 * 0x37 ULEB128 Range contains simple 64-bit addresses
CK_GADDR_64 * 0x38 ULEB128 Range contains GP-relative 64-bit addressgs
CK_CADDR_64 * 0x39 ULEB128 Range contains complex 64-bit addresses
CK_NO_XFORM * 0x3a ULEB128 No transformation allowed in range
CK_NO_REORDER * 0x3b ULEB128 No reordering allowed in range
ccor crow | oge | sz unr | [0 e W el gvenoynst |-

% SiliconGraphics

Computer Systems

11/3/98

ELF-64 Object File Format Page 69

Table 38

Content Kind Constants

Content Kind Name

Value | Operand ype | Comments

CK_STUBS

0x3d ULEB128 Text in range is delayed resolution stub co1ie

If the normal dedult kind for a section is not appropriate or optimal, a
different defult may be specified byGX_DEFAULT record. Its operand
is the dedult kind to be used, which is one of the content kieddes
from the table.

Most of the content kind descriptors describe the content of a range offlo-
cations. In all such cases, yrapply to a range starting at the current lo-
cation and including the rangevgn by auLEB128 operand which

specifies the length of the range in bytes.

If a range of data has specific alignment requirements which must be
presered by transforming tools lé&kpixie, this can be specified by a
CK_ALIGN record, which praides the length of the facted range and
the required alignment. This is intended for casesdibedding
double-precision floating point data ixteections, where alignment
must be preseed &en if a transformer adds an odd number of
instructions.

Data content type ddrent than the datilt for the section can be speci-
fied by records of typeK_INSTR .. CK_CADDR_64. For each, the single
operand is the leng{lm bytes) & the range containing the specified kind|
of data. The distinction between simple, GP-reégtand complead-

dress data concernswdixups may be performed if the addressed virtual
memory is mged. Once all relocation has been done, simple address
data should contain virtual addresses; if the content of the memory ad-
dressed is mad elsavhere in the virtual address space, the virtual ad-
dresses may simply be changed to reflect that shift. GPveetatdress
data should contain virtual addresses nedtid the global pointeCom-
plex address data is a function of addresses (e.g. fleeatite between
two addresses). Modifying compladdress data if the address space is
rearranged will require rgaluating its relocationxg@ression, and there-
fore requires that the ref@nt relocation information be retained and con-
sulted.

Some code is sensiél to precise ordering (e.g. code which does LL/SC
sequences for synchronization), and tolerates little or no transformation.

11/3/98

ﬁ% SiliconGraphics

Computer Systems

Page 70

2.13

TheCK_NO_XFORM record indicates a range which may not be trans-
formed except to modify branch tgets and other addresses — instruc-
tion sequences andgisters may not be changed. ¢ NO_REORDER
record indicates a range where reordering of instructions is natealjo
but register remapping is aleed and instructions may be insertBath
kinds hae an operand specifying the length of tHe@g&d range in
bytes.

TheCK_GP_GROUP recordis used in object files with multiple G® to
indicate which parts of the object are associated with which. G® a
text section (i.e. whesh_link points to a tet section), itindicates a range
of text addresses within which references to the global poictrrefer
to a particulaGpP group. The first operand iSUaEB128 length of the
range(in bytes) and the second &32-bit unsignedhidex of theGp
group to which it refergor a data section (i.e. when link points to a
data section li&.rodata), it indicates the range of dataveoed by the in-
dicatedGpP. For a GO section (i.e. whesh_link points to agot section),
the range length indicates the length of therGeelf.

Content section processors (consuming tools) must be able to parse t

ifcontent sectionven in the presence ofweontent kinds added in the
future (ignoring the n& content specifiers). Therefore, before using an
content kinds besides those witiwes mar&d by '*' in the table abee
(thepredefinedinds), the ne& content kind(s) must be defined by an
EK_DEF entry See Section 2.10 for a description of thverg kind.

Comment Section

The comment section is resedv/for revision control information (see
[ABI32]). Its attributes are:

name .comment
sh_type SHT_PROGBITS
sh_link SHN_UNDEF
sh_info 0

sh_flags none
requirements | may be stripped

The contents of @omment section will be a sequence of NULL-termi-
nated strings with the format of each string being:

toolname:vendor:revision:object

SiliconGraphics
Computer Systems

11/3/98

ELF-64 Object File Format Page 71

where:

toolname

vendor

revision

object

is the name of a tool whichas used during contruction of
this object file. If it is emptythen the r@ision refers to the
object name (normally a source file).

is the \endor of the tool (or object) identified. SGI/MIPS
will normally leave this field empty for components of the
compiler toolset, e.g. the compiless, Id, pixie, etc., or

will use MIPS otherwise.

is a revision number for the tool (or object) identified. Its
format is unspecified,ub for SGI/MIPS tools it will nor-
mally have the forrmnn.mmm. In some cases, a timestamp
might be appropriate.

is a source file or object file name identifying the object to
which the tool vas applied. If emptythe containing object
is implied.

If toolname, endor and reision are all emptythe last triple with a
non-empty reision are implied for the gen object. Obseevthat the for-
mat of these strings implies thadiname, vendor, andrevision may not
contain colons.

ISSUE | Issue: The rules for linkr treatment of the comment section must be de-
i fined. Some compression isdil to be desirable.

2.14 Note Section

The note section is pvaed for use by tools which need to mark an ob-
ject file with information not forseen by this specification (see [ABI32]).
Its attributes are:

name .note

sh_type SHT_NOTE

sh_link SHN_UNDEF

sh_info 0

sh_flags none (by dedult)

requirements | may normally be strippedbut doing so may render functionality
unusable — producers may SHT MIPS NOSTRIP attribute

11/3/98

ﬁ% SiliconGraphics

Computer Systems

Page 72

The note section consists of a sequence of name/descriptor paas; of v
able length, with the format described in [ABI32], modified for 8-byte
alignment, as described Trable 39belon. Whereas [ABI32] requires |
that thedesc field be 4-byte aligned and padded to a multiple of 4 bytes,
ELF-64 requires that it be 8-byte aligned and padded.

Table 39 Note Descriptor Format
Field Type Comments
namesz ElIf64_Word Size in bytes ohame field
descsz ElIf64_Word Size in bytes oflesc field
type ElIf64_Word Producerspecific type indicator
name char(] Produceidefined null-terminated string
desc Elf64_Xword[] | Producerdefined descriptor

Producers and consumers of .note section information shoelddad to
avoid conflicts as follars:

i The name field contents should be chosen to minimize thle lik
hood of conflict with other users. SGI/MIPS producers will use
names of the form "MIPS:producer".

i Producers must presereisting descriptors from other (un-
known) producers in the note section, in the order foundy The
may place theirwn descriptors whewver the wish in the output
sequence, hever. Therefore, descriptor contents must be de-
signed to be independent of their position in the section.

1 Consumers must be prepared to ignore descriptors from wnkno
producers.

2.15 Compact Relocation Section

This section, generated automatically by thedimifd) in the ucode sys-
tem, contains arious relocation information required by tool=lixie
for program transformation, in a compact form. Prior to Shedythis
information was lept in thecomment section (in 32-bit programs). It is
obsoleted in ELF-64 by thevents and.debug_frame sections.

%% SiliconGraphics 11/3/98

Computer Systems

ELF-64 Object File Format

Page 73

The Compact Relocation Sectierdttritutes are:

name .MIPS.compact_rel
sh_type SHT_MIPS_COMPACT
sh_link SHN_UNDEF

sh_info 0

sh_flags none

requirements | obsolete

11/3/98

SiliconGraphics
Computer Systems

Page 74

Section 3 Program Linking and Loading

31

311

312

This section deals with aspects of the object file format specifietue
able and DSO files (which we refer to colleety asprogram files), and
with the processing required by the static éinld(1) and the dynamic
linker rld(1).

Linker (Id) Requirements

This section is olmously not an ghaustve list; it is intended to collect
miscellaneous requirements which are not traditional and nadusdy
implied by the format description.

The intent of some of these requirements, along with the specification of
most of the sections described eb@s haing theSHF_ALLOC attribute

by dehult, is to allev a program (or another process monitoring it at runt-
ime, like a debigger) to access the information in its program file by sim-
ple references to its address space, rather than requiring tkaltditky

read the program file.

Headers

The ELF headeprogram header table, and section header table will be
allocated, i.e. thewill be treated lile sections with theHF_ALLOC flag

set. Although thg are considered optional by [ABI32], section headers
will be present in a MIPS ABI-compliant program file and may not be
stripped.

Automatically Generated Names
For each section with theHF_MIPS_NAMES attribute set, the lingr will
automatically generate hidden weadteznal symbols:

__elf_vaddr_name equal to the virtual address of the section
__elf_size_name equal to the size (in bytes) of the section

where 'hame" is the section name. If the section is not allocatable
(SHF_ALLOC), their \alues will be zero. If one of these symbols is
referenced, then the liek will set the corresponding sectisn’
SHF_MIPS_NOSTRIP flag.

The linker will also generate protectexrternal symbols for the ELF
header (with name elf_header) and the program header table
(__program_header_table). These symbols may be referenced for an
executable or DSO which is part of a process by usiggn (3X).

SiliconGraphics
Computer Systems

11/3/98

Program Linking and Loading

Page 75

3.2

Program Header

The program header of arezutable/DSO file consists of an array of de-
scriptors, one per loadablegseent plus a f& extras. The structure (from
[ABI64]) is as follawvs:

Table 40 Elf64_Phdr Structure
Field Name Type Description
_type ElIf64_Word Segyment descriptor type — sé@able 41 |
p_flags ElIf64_Word Flags for sgment — sef@able 42 |
p_offset ElIf6e4_Off File offset of sgment
p_vaddr ElIf64_Addr Virtual start address
p_paddr EIf64_Addr Physical start address
p_filesz ElIf64 Xword | Byte size in file (may be zero)
p_memsz ElIf64 Xword | Byte size in memory (may be zero)
p_align Elf64 Xword | Required alignment — see [ABI32]
The sgment types in thg _type field are gien by the follaving table:
Table 41 Elf64_Phdr Segment Types (p_type)
Name Value Description
PT_NULL 0 Null descriptor — ignore
PT_LOAD 1 Loadable sgment
PT_DYNAMIC 2 Dynamic sgment — sedable 44 |
PT_INTERP 3 Interpreter pathname
PT_NOTE 4 Auxiliary information sgment
PT_SHLIB 5 Resered
PT_PHDR 6 Program header gment
PT_LOPROC 0x70000000 | First processespecific type
PT_HIPROC ox7fffffff | Last Processespecific type
PT_MIPS REGINFO | 0x70000000 | Register information sgment
PT_MIPS OPTIONS | 0x70000001 | Options sgment
11/3/98

ﬁ% SiliconGraphics

Computer Systems

Page 76

The sgment flag bits in the_flags field are gien by the follaving table:

Table 42 Elf64_Phdr Segment Flags (p_flags)
Name Value Description
PF X Ox1 Executable
PF W 0x2 Writable
PF R 0x4 Readable
PF_MASKPROC 0xf 0000000 | Processospecific flags
PF_MIPS LOCAL 0x10000000 | Thread-local data — sé@ble 9 |

3.2.1 Segment Contents

A MIPS executable or DSO typically kra a sgment layout similar to the
following, although this specification should not be construed to require a

particular layout:

Headers: ELF header
Program header
Section headers

Text: .reginfo
.dynamic
Jiblist
rel.dyn
.conflict
.dynstr
.dynsym
.hash
<dehug information sections>
.rodata
text

%% SiliconGraphics 11/3/98

Computer Systems

Program Linking and Loading Page 77

Data: .Sdata
JitX
.got
.data
.bss

The follonving are constraints on the memory layout of a MIR& at-
able or DSO file or memory image.

1. Thegp value must be within 2GB of grexecutable code (manda-
tory). This guarantees that te may be established using a 32-bit
offset from the entry point of grfunction in reister t9.

2. Any sections with theHF_MIPS_GPREL flag must be allocated
entirely within 32KB of theyp value (mandatory). This will nor-
mally include ag .sdata or .litX sections, and possibly .got sec-
tions.

3. The «ecutable code for a singlgexutable or DSO may wer be
larger than 256MB, and it may ver be loaded across a 256MB
boundary

The linker (d) should normally group sections intayseents according
to the folloving rules:

1. Sections with the same name and aitels should be grouped to-
gether
2. Groups from (1) with the same attiiles should then be grouped.

3. Groups from (2) may then be grouped if their atti#s are consis-
tent with inclusion in a common@aent. The rules for such
grouping may be system-specific, and must balance the benefits of
precise sgment attrilntes aginst improed performance from
limiting the number of ggments to be loaded at runtime.

3.3 Dynamic Linking

This section discusses the data structures and issuemntdle dynamic
linking.

3.3.1 Dynamic Section

The Dynamic Sectiog’attritutes are:

name .dynamic

11/3/98 ﬁ% SiliconGraphics

Computer Systems

Page 78

sh_type SHT_DYNAMIC

sh_link The section header indef the associated string table
sh_info 0

attributes SHT_ALLOC + SHT_MIPS_NOSTRIP
requirements | may not be stripped

The.dynamic section, which must be identified bya DYNAMIC s&y-

ment descriptor for 3nexecutable or DSO with DSO dependencies, con-
sists of a table of pairs with the folong structure:

Table 43 Dynamic Structure (EIf64_Dyn)
Field Name Field Type | Description
d_tag Elf64_Xword | Kind — see
d_un union of:
d_val Elf64_Xword | Kind-dependentalue
d_ptr Elf64_Addr | Kind-dependent address
The possible tagalues, which union element theequire, and whether
they are present inxecutables and/or DSOs, argan by the follaving
table:
Table 44 Dynamic Array Tags (d_tag)
Tag Name Value d_un Executable Shared Object
DT_NULL 0 i gnor ed mandatory mandatory
DT_NEEDED 1 d_val optional optional
DT_PLTRELSZ 2 d_val optional optional
DT_PLTGOT 3 d ptr mandaton? mandaton?
DT_HASH 4 d ptr mandatory mandatory
DT_STRTAB 5 d ptr mandatory mandatory
DT_SYMTAB 6 d ptr mandatory mandatory
DT_RELA 7 d ptr mandatory optional
11/3/98

% SiliconGraphics

Computer Systems

Program Linking and Loading Page 79
Table 44 Dynamic Array Tags (d_tag)

Tag Name Value d un Executable Shared Object
DT_RELASZ 8 d_val mandatory optional
DT_RELAENT 9 d_val mandatory optional
DT_STRSZ 10 d_val mandatory mandatory
DT_SYMENT 11 d_val mandatory mandatory
DT_INIT 12 d ptr optional optional
DT_FINI 13 d ptr optional optional
DT_SONAME 14 d_val ignored optional
DT_RPATH 15 d_val optional optional &
DT_SYMBOLIC 16 i gnor ed mandatory i gnor ed
DT_REL 17 d ptr mandatory optional
DT_RELSzZ 18 d_val mandatory optional
DT_RELENT 19 d_val mandatory optional

DT _PLTREL 20 d_val optional optional
DT_DEBUG 21 d ptr optional ignored
DT_TEXTREL 22 i gnor ed optional optional
DT_JMPREL 23 d ptr optional optional
DT_LOPROC 0x70000000 | unspecified | unspecified unspecified
DT_HIPROC Ox7fffffff | unspecified | unspecified unspecified
DT_MIPS_RLD_VERSION 0x70000001 d_val mandatory mandatory
DT_MIPS_TIME_STAMP 0x70000002 d_val optional optional
DT_MIPS_ICHECKSUM 0x70000003 d_val optional optional
DT_MIPS_IVERSION 0x70000004 d_val optional optional
DT_MIPS_FLAGS 0x70000005 d_val mandatory mandatory
DT_MIPS_BASE_ADDRESS 0x70000006 d_ptr mandatory mandatory
DT_MIPS_MSYM 0x70000007 d ptr optional optional
DT_MIPS_CONFLICT 0x70000008 d ptr optional optional
DT_MIPS_LIBLIST 0x70000009 d ptr optional optional
DT_MIPS_LOCAL_GOTNO 0x7000000a d_val mandatory mandatory
DT_MIPS_CONFLICTNO 0x7000000b d_val optional optional
DT_MIPS_LIBLISTNO 0x70000010 d_val optional optional

11/3/98

SiliconGraphics
Computer Systems

Page 80

Table 44 Dynamic Array Tags (d_tag)
Tag Name Value d un Executable Shared Object
DT_MIPS_SYMTABNO 0x70000011 d_val mandatory mandatory
DT_MIPS_UNREFEXTNO 0x70000012 d_val optional optional
DT_MIPS_GOTSYM 0x70000013 d_val mandatory mandatory
DT_MIPS_HIPAGENO 0x70000014 d_val optional optional
DT_MIPS _RLD_MAP 0x70000016 d_val optional optional
DT_MIPS_DELTA_CLASS 0x70000017 d_val optional optional
DT_MIPS _DELTA_CLASS NO 0x70000018 d_val optional optional
DT_MIPS_DELTA_INSTANCE 0x70000019 d val optional optional
DT_MIPS_DELTA_INSTANCE_NO 0x7000001a d_val optional optional
DT_MIPS _DELTA_RELOC 0x7000001b d_val optional optional
DT_MIPS_DELTA_RELOC_NO 0x7000001c d_val optional optional
DT_MIPS_DELTA_SYM 0x7000001d d_val optional optiona
DT_MIPS _DELTA_SYM_NO 0x7000001e d_val optional optional
DT_MIPS_DELTA_CLASSSYM 0x70000020 d val optional optional
DT_MIPS_DELTA_CLASSSYM_NO | 0x70000021 d_val optional optional
DT_MIPS_CXX_FLAGS 0x70000022 d_val optional optional
DT_MIPS_PIXIE_INIT 0x70000023 d_val optional optional
DT_MIPS_SYMBOL_LIB 0x70000024 d_val optional optional
DT_MIPS_LOCALPAGE_GOTIDX | 0x70000025 d_val optional optional
DT_MIPS_LOCAL_GOTIDX 0x70000026 d_val optional optional
DT_MIPS_HIDDEN_GOTIDX 0x70000027 d_val optional optional
DT_MIPS_PROTECTED_GOTIDX | 0x70000028 d val optional optional
DT_MIPS_OPTIONS 0x70000029 d ptr mandatory mandatory
DT_MIPS_INTERFACE 0x7000002a d ptr optional optional
DT_MIPS_DYNSTR_ALIGN 0x7000002b d val optional optional
DT_MIPS_INTERFACE_SIZE 0x7000002c d val optional optional
DT_MIPS_RLD_TEXT_RESOLVE_ADDR | 0x7000002d d ptr optional optiona
DT_MIPS_PERF_SUFFIX 0x7000002e d_val optional optiona
DT_MIPS_COMPACT_SIZE 0x7000002f d val optional optional
DT_MIPS_GP_VALUE 0x70000030 d ptr optional optional
11/3/98

% SiliconGraphics

Computer Systems

Program Linking and Loading Page 81

Table 44 Dynamic Array Tags (d_tag)
Tag Name Value d_un Executable Shared Object
DT_MIPS_AUX_DYNAMIC 0x70000031 d ptr optional optional |

@ These requirements arefdifent in [ABI32M] than in [ABI32].

Some of the specific requirements for these tags include:

DT_NULL

DT_NEEDED

DT_PLTGOT

DT_HASH

DT_STRTAB

DT_STRSZ

DT_SYMTAB

DT_SYMENT

This tag must terminate the list of dynamic section.tags

This is a string table tfet of a required librarg’name.
There must be such an entry for each required DSO. See
[ABI32].

This member has the address of .t section. It is man-
datory for MIPS gecutables and DSOs. (A completely
non-shared»ecutable with no DSO dependencies might
have no G, but ABI compliance requires use of the libc
DSO.)

This member gies the symbol hash table address.

This member gies the string table address (ttnnstr
section). The string table contains symbol names, library
names, and other strings required in tkecatable/DSO.

This member gies the byte size of timEr_STRTAB table.

This member gies the symbol table address (fiasym
section). All entries in a 64-bit file aE¥64_Sym type
(see Bble 11)

This member gies the byte size ofr_SYMTAB entry

DT_MIPS_SYMTABNO

DT_RELA

This member contains the number of entries in the
.dynsym section.

This member gies the address of a relocation table with
entry typeElfe4_Rela (seeTable 29. Elf-64 executables |
will normally use this type of relocation because it is

11/3/98

ﬁ% SiliconGraphics

Computer Systems

Page 82

required for some of the relocation types (e.g.
R_MIPS_HI16), but an ABI-compliant system must cope
with EIf64_Rel tables as well.

DT_RELASzZ This member gies the byte size of thmer_RELA table.
DT_RELAENT This member gies the byte size ofar_RELA entry

DT_SONAME This member gies the string table fsiet of the containing
DSO’s name.

DT_RPATH This member gies the string table fset of a shared li-
brary search path. If it is present in a referenced DSO at
static link time, it isncluded in he final &ecutables |
DT_RPATH.

DT_SYMBOLIC This memberif present, causes references within the
containing DSO to be resdd locally if possible (i.e. it
males them all non-preemptible).

DT_TEXTREL This memberif absent, implies that runtime relocations
will not change a non-writable gment.
DT_MIPS_RLD_VERSION
This member gies a ersion ID for theRuntime Linker
Interface.

DT_MIPS_TIME_STAMP This member gies a timestamp.

DT_MIPS_ICHECKSUM
This member gies a checksum of alk&ernal strings
(names?) and common sizes.

DT_MIPS_IVERSION
This member gies the string table ingdeof a compatible
version string.

DT_MIPS_FLAGS
This member contains MIPS-specific flags (seevielo

DT_MIPS_BASE_ADDRESS

This member contains the base address assumed for the
executable/DSO at static link time. It is used to adjust ad-

%% SiliconGraphics 11/3/98

Computer Systems

Program Linking and Loading Page 83

dresses (e.g. in the GPwhen a DSO is relocated at run

time. It is the preferred address for quickstart purposes.
DT_MIPS_CONFLICT

This member contains the address of.theflict section.

It is mandatory if there is .aonflict section.
DT_MIPS_CONFLICTNO

This member contains the number of entries in the
.conflict section. It is mandatory IT_MIPS_CONFLICT is
present.

DT_MIPS_LIBLIST

This member contains the address of.iihést section.

DT_MIPS_LIBLISTNO

This member contains the number of entries inlithat
section. It is required HT_MIPS_LIBLIST is present.

DT_MIPS_LOCAL_GOTNO
This member contains the number of localTGéhtries.

DT_MIPS_LOCALPAGE_GOTIDX

This member contains the inda the GO of the first
page table entry for agment. There will be one pergse
ment,in the same order as thegegents in the ggment ta-
ble. They are nandatory if there are page table entries fo
arny segment and the glue for a sgment without an

page table entries must be zero.

DT_MIPS_LOCAL_GOTIDX

This member contains the indm the GO of the first en-
try for a local symbol. It is mandatory if there are local
symbol entries.

DT_MIPS_HIDDEN_GOTIDX

This member contains the indm the GO of the first en-
try for a hidden symbol. It is mandatory if there are hidden
symbol entries.

11/3/98 ﬁ% SiliconGraphics

Computer Systems

Page 84

DT_MIPS_INTERFACE_SIZE

DT_MIPS_RLD_TEXT_RESOLVE_ADDR

DT_MIPS_PROTECTED_GOTIDX

This member contains the indm the GO of the first en-
try for a protected symbol. It is mandatory if there are pro-
tected symbol entries.

DT_MIPS_UNREFEXTNO

This member contains the indmto the dynamic symbol
table of the firstx@ernal symbol that is not referenced in
the same object.

DT_MIPS_GOTSYM

This member contains the indmto the dynamic symbol
table of the first entry that correspondsitoeternal sym-
bol withan entry in the GD See Section 3.5.

DT_MIPS_HIPAGENO

This member contains the number of page table entries in
the GQ. It is used by profiling tools and is optional.

DT_MIPS_OPTIONS

This member contains the address of the Options section,
containing arious @ecution options. It is mandatory

DT_MIPS_INTERFACE

This member contains the address of.thesS.interface
section, describing subprogram intés. It is mandatory
if there issucha section in the recutable/DSO.

This member contains the size in bytes of.khes.inter-
face section. It is mandatory if there is such a section in
the executable/DSO.

If present, this member contains the link-time address of
_rld_text_resolve to place in GQ entry 0. If absent (or if
present and thealue is not the same as the addresglin
of the_rld_text_resolve function), thenld places the true
address ofrid_text_resolve into GOT entry O at run-time.

SiliconGraphics
Computer Systems

11/3/98

Program Linking and Loading Page 85

DT_MIPS_SYMBOL_LIB

This optional member contains the address of the
MIPS.symlib section, describing a mapping from the
.dynsym symbols to the DSOs where yhare defined.

The follonving tags are not normally present in a MIPS object file:

DT_JMPREL This member gies the address of relocation entries asso-
ciated solely with the procedure linkage table. If present,
DT_PLTREL andDT_PLTRELSZ are also required.

DT_PLTRELSZ This member gies the total byte size of the relocation en-
tries associated with the PLMandatory ifDT_JMPREL is
present.

DT_REL This member gies the address of a relocation table with
entry typeeifé4_Rel (seeTable 29 andDT_RELA abae). |

DT_RELSZ This member gies the byte size of thmer_RELA table.
DT_RELENT This member gies the byte size ofar_RELA entry

DT_PLTREL This member gies the kind of relocatiomd{_RELA or
DT_REL) in the procedure linkage table.

DT_MIPS_PERF_SUFFIX This member contains an ind® the string ta-
ble.RId appends the specified string to the shared object
name specified in gdlopen calls. (Br example, pixie
creates binaries and shared objects witfixsupixie”.
Although it changes the shared objects in the liblist of an
object to include the correct $ixf it cannot change the
pathnames passed by the programidpen.)

DT_MIPS_PIXIE_INIT This member contains the address of an initializa
tion routine created byixie. (DT_INIT cannot be used for
this purpose is becaupgiie depends on a specific order
for its initialization routines, which is dérent from the
ABI-specifiedDT_INIT order

DT_MIPS_COMPACT _SIZE This member contains the size of a ucode
compact relocation header record, and is not present in
-n32 or-64 ELF files..

Issue: The abwe list of dynamic tag descriptions is not yet complete.

11/3/98

ﬁ% SiliconGraphics

Computer Systems

Page 86

The MIPS-specific flags @en byDT_MIPS_FLAGS are gven by the fol-

lowing table:
Table 45 DT_MIPS_FLAGS Masks
Name Value Description
RHF_NONE 0x00000000 | None
RHF_QUICKSTART 0x00000001 | Use runtime loading shortcuts if possiféee Section|
3.8)
RHF_NOTPOT 0x00000002 | Hash size not a peer of two
RHF_NO_LIBRARY_REPLACEMENT | 0x00000004 | IgnoreLD_LIBRARY_PATH
RHF_NO_MOVE 0x00000008 | DSO addresses may not be relocated thy
RHF_SGI_ONLY 0x00000010 | Contains SGI-specific features
RHF_GUARANTEE_INIT 0x00000020 | Guarantee thatnit will finish executing before an
non-init code in the DSO is called
RHF_DELTA_C_PLUS_PLUS 0x00000040 | ContainsDelta C++ code
RHF_GUARANTEE_START_INIT 0x00000080 | Guarantee thatnit will begin executing before an
non-init code in the DSO is called
RHF_PIXIE 0x00000100 | Generated bpixie
RHF_DEFAULT_DELAY_LOAD 0x00000200 | Delay-load DSO by deflt
RHF_REQUICKSTART 0x00000400 | Objectmay be requickstarted
RHF_REQUICKSTARTED 0x00000800 | Object has been requickstarted
RHF_CORD 0x00001000 | Generated bgord
RHF_NO_UNRES_UNDEF 0x00002000 | Object contains no unresedundef symbols
RHF_RLD_ORDER_SAFE 0x00004000 | Symbol table is in a safe order

34

Issue: IsRHF_NOTPOT obsolete?

Shared Object Dependencies

The System V ABI [ABI32] defines the delult library search path to be
lusr/lib. The MIPS old 32-bit ABI [ABI32M], defines the deiflt library
search path to besr/lib:/lib:/lib/cmplrs/cc:/usr/lib/cmplrs/cc:/opt/lib. The
runtime loaderr(d) overrides this defult with the alue of the ewiron-
ment \ariableLD_LIBRARY_PATH if set.

SiliconGraphics
Computer Systems

11/3/98

Program Linking and Loading Page 87

35

This 64-bit ABI defines the daidlt library search path to be
lusr/lib64:/lib64:/opt/lib64. It is overridden by the emronment \ariable
LD_LIBRARY64_PATH if set, or if not byLD_LIBRARY_PATH if set.

This nev 32-bit ABI defines the datilt library search path to be
lusr/lib32:/lib32:/opt/lib32. It is overridden by the emronment \ariable
LD_LIBRARYN32_PATH if set, or if not byLD_LIBRARY_PATH if set.

The Global Offset Table

The oganization of the GD generally follavs that of [ABI32M]. It is
essentially a table of addresses, 64 bits eaehsMhmarize it here pri-
marily for completeness.

The GO itself is located by thBT_PLTGOT dynamic tag. It is logically
two tables. The first (witbT_MIPS_LOCAL_GOTNO entries) consists of
local GOT addresses, i.e. non-preemptilpeofected) addresses defined
within the executable/DSO. Theare initialized to their quickstaraiues,
and must be relocated if and only if the DSO is loaded atexetit ad-
dress than thatgen by itsDT_MIPS_BASE_ADDRESS dynamic tag.

The second part of the GUs theglobal GOT addresses, i.e. those which
are undefined or preemptible. Each entry in this part has an associated
symbol entry in thedynsym section. Those symbols start at the symbol
table inde given by thedbT_MIPS_GOTSYM dynamic tag, and are in the
same order as the global G@ntries. If a symbol is defined in the DSO
(but preemptible), the GDentry will normally be initialized to a quick-
start \alue. See Figures 5-9 and 5-10 of [ABI32M] for details of the treat-
ment.

Sections ino files containing addresses destined for thd @st hae
the SHF_MIPS_GPREL attribute, and will normally hae the
SHF_MIPS_MERGE attribute (indicating that duplicates are to be
removed). Code references to the G .o files may need to cope with
offsets fromgp greater than 16 bits much more often than in 32-bit
programs (because the G@ntries are twice the size). ABI-compliant
objects should use 32-bitfeéts if it is possible that tigevill be linked
into programs with lage GO's.

Obserne that it is acceptable to allocate nonIcdata agp-relatve ad-
dresses, although the current 32-bit system does not do so. Such data
(e.g. thesdata, .sbss, and.litx sections) should be allocated first in the

11/3/98

ﬁ% SiliconGraphics

Computer Systems

Page 88

3.6

global data area, since its reason for being allocated here is normally to
achieve short-ofset addressing.

Symbol Resolution

STB_LOCAL symbols are alays resoled within the gecutable/DSO
where thg appear by the static liek This is also the case with
STB_GLOBAL or STB_WEAK symbols with gport classSTO_INTERNAL,
STO_HIDDEN, or STO_PROTECTED. (See Section 2.5 for identification of
these classes.) Other global or weak symbolsgeher, arepreemptible,

i.e. they may be resokd to a definition in a dérent object file
(executable/DSO) by the dynamic liekk The rules for doing so are as
follows:

1. Create a search order of theeeutable and DSOs which neakp
the running process. Theexutable is first. Né& come the DSOs
which it references, gén by theDT_NEEDED tags in order of
appearance. (If there ispa_LIBLIST tag, the list in thdiblist
section is used instead — it should therefore be consistent with the
DT_NEEDED order) Then thedT_NEEDED tags of these DSOs are
searched, and so on recuedy breadth-first until no ne DSOs
are identified.

2. Undefined non-COMMON symbol references are resbhby the
first object file on the list which pvales a strong symbol defini-
tion, if ary, or if not by the first object file which praes a weak
symbol definition.

3. Undefined COMMON symbol references are resdliay the first
object file on the list which defines the symbol (i.evmtes initial
values), if ag (again gving priority to strong definitions), or if not
by the first object file where it appears.

3.7 Relocation

As required in [ABI32M], there will typically bexactly one relocation
section, named .rel.dyn, which will normally contain only
R_MIPS_REL32 relocations. Haever, we do not require this, and the
dynamic linker must deal with gnrelocation sections gen byDT_REL
or DT_RELA tags, and with anlegal relocation types.

Unlike the current MIPS systems, the G@ other sgments containing
relocatable &lues should not be made writable (unless page sharing with
writable data requires it) — if there i9Da_TEXTREL tag, the dynamic

linker must be prepared to relocate objects in read-only pages. Also, the

SiliconGraphics
Computer Systems

11/3/98

Program Linking and Loading Page 89

3.8

381

system must prade the process with a pate coy of ary pages which
are relocated dynamically

Quickstart and Process I nitiation Optimizations |

We use the same quick start-up mechanisms as [ABI32M]. The definition
of the.liblist and.conflict sections is unchanged from the 32-lgitsion
except that theconflict section contains 64-bit addresses (type

Elf64_Ad dr).

We impose the same ordering constraints as [ABI32M] as conditions for
using Quickstart functionality:

i The GO-mapped portion of thelynsym section must be ordered
by increasing &lues in thet_value field. This requires that theot
section hge the same ordesince it must correspond to the
.dynsym section.

1 The.rel.dyn section must hee all local entries first, follwed by
the ternal entries. \thin each of these subsections, the entries
must be ordered by increasing symbol kde

MIPS Symbol Table Extension Section

A MIPS symbol tablexension section is unchanged from [ABI32M].
Its purpose is toafcilitate relocation which must occur in spite of quick-
start. It has the follwing attritutes:

name .msym
sh_type SHT_MIPS_MSYM

sh_link Section header inaef .dynsym , or O (see note belg
sh_info Section header indef .rel.dyn, or O (see note belg
sh_flags SHF_ALLOC

requirements | Must be present for quickstart

This section is an array affé4_msym elements, each corresponding to
an entry in thedynsym section. If it is present, the symbols in the
.dynsym section must be ordered with afternal symbols first, follwed
by all local symbols. Additionallyall symbols of the same name must
have contiguousdynsym entries. If this section does noti#, there are
no ordering constraints on thlwnsym section (unless
RHF_RLD_ORDER_SAFE is set inDT_MIPS_FLAGS, which implies that

all UNDEF global entries will precede all non-UNDEF entries). The

11/3/98

ﬁ% SiliconGraphics

Computer Systems

Page 90

layout ofElf64_msym elements, shan in Table 46 belw, is defined in
header filgusr/include/msym.h.

Note: SGI implementations today are inconsistent about whaptiten
thesh_link andsh_info fields.RId does not depend on them, and tools
should \alidate the indicated sections by section type before doing so.
Future implementations should fill these fields as specified.

Table 46 Symbol Table Extension Structure (EIf64_msym)
Field name Type Comments
ms_hash_value Elf64 Word Precomputed hash value
ms_info Elf6é4_Word | Additional information:
ms_info >> 8 First relocation section entry
for the symbol.
ms_info & oxff Flags (see Table 47)
Thems_hash_value member contains the static link time precomputed
hash walue for the symbol, without the final step of reduction modulo th
hash table size. If this sectiamg§ym) is present, the hash table size mus
be a pwver of two, and the hash table indef a symbol is computed by
simply AND’ing ms_hash_value with the hash table size minus 1.
Thems_info member contains wvsub-members. The high-order 24 bits
are the inde of the firstrel.dyn entry for this symbol. The Ve-order byte
contains the flags imable 47below.
Table 47 ELF64_msym Flag Masks

Mask Name Value Comments

MS_ALIAS 0x01 Symbol is an alias

The MS_ALIAS flag means that yanelocations to the symbol inside this
object must be resadd as if it were an undefined symbalf beferences
outside this object may reselvo this symbol.

SiliconGraphics
Computer Systems

11/3/98

Program Linking and Loading Page 91

382

Shared Object List Section

A liblist section is unchanged from [ABI32M]. Its purpose isaailitate
preemption of symbols in quickstarted programs, which requires chec
ing that the DSOersion loaded is the same one used to quickstart. It i
an array of structures praling identification information for the DSOs
on which a quickstarted object depends.

The.liblist section has the folang attrikutes:

name Jiblist

sh_type SHT_MIPS_LIBLIST

sh_link Section header indeof .dynstr

sh_info number of entries

sh_flags SHF_ALLOC

requirements | Must be present for quickstart if conflictest

Each of theliblist entries has the structurevgn by hble 48 belw.

Table 48

Shared Object Information Structure (EIf64_lib)

Field name Type Comments

|_name Elf64_Word | Shared object nameiynstr index)

|_time_stamp Elf64_Word | Timestamp

|_checksum Elf6é4_Word | Sum of all externally visible sym-
bols’ string names and common siges

|_version Elf64_Word | Interface version.dynstr index)

|_flags Elf64_Word | Flags (see Table 47)

Thel_name field specifies the name of a shared objectdlisevis a string
table ind&. The name may be a trailing component of a pathname sp¢g
fied in theDT_RPATH dynamic tag or theD_LIBRAR Y*_PATH erviron-
ment\ariable, or it may be a name containing '/’ characters interpreted
relative to !, or it may be a full pathname.

Thel_time_stamp field is a 32-bit timestamp, which may be combined
with thel_checksum value and thé version string to form a unique id for
this shared object.

Ci-

11/3/98

ﬁ% SiliconGraphics

Computer Systems

Page 92

Thel_version field specifies the inteate \ersion, as a string in théynstr

section. The ersion is a single string containing no colons (:). It is com
pared aginst a colon separated string efsions pointed to by a dynam-
ic section entry of the shared object. Shared objects with matching nar

are considered incompatible if the interé \ersion strings are deemed
incompatible. An inde value of zero means n@ssion string is speci-

fied.

Thel_flags field contains a set of 1-bit flags, defined abl€ 49 bela.

Table 49 Library List Flags, |_flags

Name

Value

Description

LL_NONE

0x00000000

None

LL_EXACT_MATCH

0x00000001

At runtime use a unique 1D com-
posed of_time_stamp, |_checksum,
and|_version fields to demand that
the run-time dynamic shared library
match gactly the shared library use
at static link time. Set by tHd op-
tion -exact_version, or turned dfby
theld option-ignore_version.

=

LL_IGNORE_INT_VER

0x00000002

At runtime, ignore ayversion in-
compatibilities between the dynamif
shared library and the library used ft
static link time.

LL_REQUIRE_MINOR

0x00000004

The entry must match both major agd
minor revision numbers. Ignored for
DSOs not margdRHF_SGI_ONLY.
Turned on by théd option
-require_minor.

LL_EXPORTS

0x00000008

Whenever the containing DSO ixe
posed to the static ligk, this DSO is
too, as though it wereplicitly listed
on the linker command line.

LL_DELAY_LOAD

0x00000010

The named DSO is not loaded unti
some function in it is called via lazy
function resolution, at which tintéd
does arsgidladd() of the DSO, and
after which lazy function resolution

proceeds as usual for functions in the

DSO. Turned on by thé&d options
-default_delay load or
-delay_load.

% SiliconGraphics

Computer Systems

11/3/98

Nes

Program Linking and Loading Page 93

Table 49

3.8.3

Library List Flags, |_flags

Name Value Description

LL_DELTA 0x00000020 | Delta C++ library

At most one ofL_EXACT_MATCH, LL_IGNORE_INT_VER, Or
LL_REQUIRE_MINOR may be set for gnparticular.liblist entry The re-
sult of combining them is undefined.

Conflict Section
A .conflict section is unchanged from [ABI32M]. Its purpose isaailf-

tate preemption of symbols in quickstarted programs. It is an array of

dexes into thedynsym section. Each identifies a symbol with atitds

that conflict with a shared object on which it depends, either in type o

size, such that this definition will preempt the shared olsjeetfinition.
The dependent shared object is identified at static link time.

The .conflict section has the folaing attritutes:

name .conflict

sh_type SHT_MIPS_CONFLICT

sh_link Section header indeof .dynsym , or O (see note belg

sh_info 0

sh_flags SHF_ALLOC

requirements | Must be present for quickstart if conflictest

Note: SGI implementations today are inconsistent about whaptiten
thesh_link andsh_inf o fields.RId does not depend on them, and tools

should \alidate the indicated sections by section type before doing so.

Future implementations should fill these fields as specified.

Each element of a .conflict section isg#a4_conflict struct as gien by
Table 50 belw.

Table 50

Conflict Structure (EIf64_conflict)

Field name Type Comments

c_index Elf64_Addr .dynsym index of conflicting symbo

11/3/98

ﬁ% SiliconGraphics

Computer Systems

In-

Page 94

3.8.4 Symbol Library Section
The .MIPS.symlib section is used to impve rld lookup performance. It is
logically an etension of the x@ernal symbol.@ynsym) array
and is an array in parallel to thlgnsym array If this section eists for a
DSO or eecutable it has one entry for each symbol. It is not required yn-
less there are delay-loaded DSOs in a program.

The.MIPS.symlib section has the folwing attrikutes:

name .MIPS.symlib

sh_type SHT_MIPS_SYMBOL_LIB
sh_link Section header indeof .dynstr
sh_info Section header indeof .lib list
sh_flags SHF_ALLOC

requirements | Optional

Each entry in this section is an unsigned xi¢o the liblist section,

identifying which DSO satisfiesxeernal references to the corresponding
.dynsym symbol. If the entry is zero, there is no information. Otherwise
the entry minus one is thiblist index of a DSO satisfying the reference.

If the .liblist section contains no more than 254 entries, then each
MIPS.symlib entry is a single 8 bit unsignedlue. If the theliblist

section contains more than 254 entries, then @@eB.symlib entry is a
16 bit unsigned alue. (At present, ndiblist section with more than 64K
entries is evisaged. If required, a decision willlleto be made to either
use 32-bit entries or some more spadeiefnit encoding.)

%% SiliconGraphics 11/3/98

Computer Systems

Archive File Format Page 95

Section 4

Archive File Format |

41

The archve file (i.e.ar(4) format) may be used to collect arbitrary files;
we are concerned here with the specific case where those files are ELF
object files. This format is based on the System V ABI [ABI32]; in par-
ticular, the magic string and member header format are unchanged.

Unlike the COFF archie format, we do not generate an avehhash ta-
ble, since the IRIX 6.0 linkr (d) does not use it.

The linker (d) will work more eficiently when component object files

(not their file headers) are 8-byte aligned. Generating tools (especially
the compilers) are encouraged to arrange this by padding them, i.e. by in-
creasing the length of the component files to a multiple of 8 bytes.

Basic File For mat

An object file archie consists of the folleing sequence of components.
In general, each must start on a 2-byte boundey is padded with a
newline if necessary to makit even length. Itar_size in its headerhow-
ever, does not include the padding byte.

1 The archve magic stringARMAG ("!<arch>\n"),SARMAG (8)
bytes long.

The remaining components are all preceded with a member header as
specified by [ELF32].

i An optional archre symbol table. This table is discussed further
below.

i An optional archie string table. Such a component hasame
="/[" in its headerblank padded. The string table consists of a se-
guence of null-terminated names.

1 Some number of "normal" member files. Haename field of such
a component contains its filename, slash-terminated and
blank-padded, if it fits. Otherwise it contains a slash o by
the decimal representation of the nasrfée ofset in the arclve
string table.

11/3/98

ﬁ% SiliconGraphics

Computer Systems

Page 96

4.2 Archive Symbol Table Components

We define belw two symbol table component formats. These are the cur-
rent 32-bit ABI format and an analogous 64-bit form for 64-bit ELF ob-
ject files.

1 32-bit generic ABI symbol table (see [ABI32]).

Such a component has name="/" in its headeri.e. a null file
name, blank padded. This symbol table consists of:

m The number of symbols defined (a 32-bit count).

m A sequence of 32-bit file fsiets, one for each symbol, relati
to the bginning of the archie file.

m A sequence of null-terminated symbol names, one for each
symbol.

The sequences of filefeéts and symbol names must correspond
1-1, and thg must occur in the same order as their containing files
in the archie, i.e. the file déets must be in non-decreasing order
There may be multiple definitions of a single name (frorfiedht
archved object files).

This particular component must be 4-byte aligned, and hence must
precede all normal files if present. It must be a multiple of 4 bytes
in size; it should be null-padded if necessandar_size in its

header should include the padding. (The alignment and padding re-
quirement is a modification to the [ABI32] format.)

1 64-bit generic ABI style symbol table.

Such a component has name="/SYMG64/" in its headerlank
padded. This name startsdila null name (slashubthen contains
a string in the usual padding characters to identify the format.

This symbol table consists of:
m The number of symbols defined (a 64-bit count).

m A sequence of 64-bit file fsfets, one for each symbol, relati
to the bginning of the archve file.

m A sequence of null-terminated symbol names, one for each
symbol.

The sequences of filefeéts and symbol names must correspond
1-1, and thg must occur in the same order as their containing files
in the archie, i.e. the file déets must be in non-decreasing order
There may be multiple definitions of a single name.

This form of the symbol table is only used for avelsi of 64-bit
ELF object files; in such cases it replaces the generic ELF form.

%% SiliconGraphics 11/3/98

Computer Systems

Archive File Format Page 97

This particular component must be 8-byte aligned, and hence must
precede all normal files if present. It must be a multiple of 8 bytes
in size; it should be null-padded if necessandar_size in its

header should include the padding. (The alignment and padding re-
quirement is a modification to the [ABI32] format.)

4.3 Archive Hash Table Components

4.4 Discussion
We hare made one significanktension to the [ABI32] definition:

i In order to deal with arche files potentially lager than 4GB in
size, we hee added a 64-bit analogue of the 32-bit symbol table
component, @ended in the obous way, i.e. by changing the sym-
bol count and file déets to 64-bit &lues. It is distinguished from
the 32-bit form only by a special string in padding area of its
ar_name field. We intend to support this option only for ancs of
64-bit ELF object files.

Initially, at least, MIPS tools will support the 32-bit forms of the symbol
and hash tables for areks consisting solely of 32-bit ELF object files,
and the 64-bit forms for arcres consisting solely of 64-bit ELF object
files. Hovever, it may prave desirable to use the 32-bit fornvee for
64-bit object files because thare much more compact than the 64-bit
forms, and the 64-bit file tdfets will be required onlyery rarely There-
fore, tools which must deal with either formayamay should woid de-
pending on this restriction if possible.

11/3/98 ﬁ% SiliconGraphics

Computer Systems

Page 98

%% SiliconGraphics 11/3/98

Computer Systems

Archive File Format Page 99

[ABI32]

[ABI32M]

[ABI64]

[ASmPG]

[DWARF-1]

[DWARF]

[11isCG]

[Symbols]

Bibliography
AT&T, SYSTEM V APPLICATION BINARY INTERFACE, 1990,

Unix Press (Prentice-Hall).

AT&T, SYSTEM V APPLICATION BINARY INTERFACE MIPS Pro-
cessor Supplement991, Unix Press (Prentice-Hall).

SPARC International, SYSTEM V APPLICATION BINARY INTER-
FACE Generic 64-Bit ExtensiondMarch7, 1992, Delta Document 1.20
(Draft).

MIPS Computer Systems, Inc., Assembly Language Programmer’
Guide May 1989 (Order Number 3201DOC).

Unix International, Programming Languages SIG, DWARF Debugging
Information Format, Version 1.

Unix International, Programming Languages SIG, DWARF Debugging
Information Format, Version 2, Revision 2.0.0 (July 27, 1993).

Silicon Graphics Computer Systems, Inc., IRIS-4D Series Compiler
Guide February 1992 (Order Number 007-0905-030).

http://sahara.mti/SGIABI/Symbols.html

11/3/98

ﬁ% SiliconGraphics

Computer Systems

