GIO BUS
SPECIFICATION

version 1.1 (draft)
TApril 1992

Q. Silicon Graphics
Q6

' Computer Systems

Copyright January 1992 Silicon Graphics, Inc.
All Rights Reserved

This document contains proprietary and confidential information of Silicon Graphics, Inc.,

and is protected by Federal copyright law.

The contents of this document may not be copied nor duplicated in any form, in whole or in part,
without the express written consent of Silicon Graphics, Inc.

U.S. Government Limited Rights

Use, duplication, or disclosure of the technical data contained in this document
is subject to restrictions as set forth by the Government in subdivision (b)(2)

of the Rightsin Technical Data and Computer Software clause at 52.227-7013.

Contractor/manufacturer is Silicon Graphics, Inc., 2011 North Shoreline Road,
Mountain View, CA 94039-7311.

Table of Contents

Chapter One: Overview

00 R o o [0 Tox 1o o PP SP TP PPPPPPPPPRPRIN 1-1
1.2 Conventions Used in this Document: Signal NamESccuuiiiiiiiiiiieiiiiee e 1-1

Chapter Two: GIO32 Specification

2% T [1 1o o 0T 1 o R 2-1
2.2 Conventions Used iN thiS CRAPLE ... e e e 2-1
2.3 GIO32 Transfer Size and Pre€mpPtionooiiiiiiiiiiii e e e e e e e e e e s e aeaee e 2-2
2.4 GlOB2 BUS SINAIS ...ttt ettt e e e ettt e e e e sttt e e e e e a b bt e e e e e b bt e e e e anba e e e e e e nbr e e e e e annnes 2-2
2.5 GIOB2 BUS TIANSTEIS. ..ceiiiiii ittt ettt et e e e e e e e e e s ab b bbbt et e e e e e e e e e s sannnnnbeenees 2-3
2.5.1 GIO32 Wt TraNSACHONS.c.uvviieeiitiieie e e itteee e s sttt e e e s sttt e e e s st be e e e s sbbe e e e e s snbeeeeesasbeeeaessnbbeeeaeans 2-5

A I €110 K 72 = 1T To I I = 1 1S7= Tox 1o o 2-7

2.6 GIO32 BUS AIDILFALION ...coeiieiiiite ettt ettt et e e e e e e e e e e aab b bbbt e e e e e e e e e e e e e nnanbenneees 2-8
2.6.1 Arbitration HanASNaKE.coiuiiiiiiiiiie et e e s sbreee e 2-9
2.6.2 GlO32 BUS PrEEIMPLIONeeiiiiitiiiee ittt ettt ettt e ettt e e e s sttt e e e s bt e e e e e s snbbeeeaeaa 2-9

2.7 GIOB2 BUS TIME-0ULS ..uutiieiiiiiieeeiitiieeeesstteeeessssteeeeesstteeeeessstaeeeaeaastseeeesstsaseeesastaeeeessnssseeeessssseeeessnns 2-11
2.8 Issues for SIave-0nly GIO32 DEVICES.......ccccuiiiiiiiiiiieeeteeee e e s s s se it eeeeaaee e s s e ssssssbaaaereeaaaaaessesnnnnnes 2-11
S I (01 (T € (0] o] £ OO PP P PP PPPPPPPPPPRP 2-12
2.10 1dentifying GIO DEVICES......coii ittt ettt et e e e e e e e e bbbttt et e e e e e e e e e s nnsbbaeaeeeeaaaaeeseaaannnes 2-12
2.10.0.1 Product Identification WOccooiuiiiiiiiiiiiee i 2-12

P2 O 0 2 = o T U Tt 1 2 o o = S PSP 2-13

2.11 GIO32 OPLiON SIOt ISSUEBSuueiieiiiiiiieesiiiiee e e ittt e e s sttt e e e s ette e e e s sntbaeaeesasbbeeeessasbaeeaesstbeeeeesasseeneessnes 2-13
2.11.1 AdAreSS RANQGES.......ccccciieiieeiieie e e e e e et ec e e e e e e e s e e s s e e e et aaaeeesasasntestaeaeeeeaaeeeesanannneneeees 2-13
2.11.2 Configuration REQGISTEIS.coiuiiiii ittt e sbb e e e nanneeeas 2-13
2.11.3 Special Registers within the Device Address Range ...t 2-14
2.11.4 Device Interface and ConfigUration.............cecvereeeiiiiiiiiiiiiiie e e e e e e 2-14
2.12 INDIGO-SPECIfiC INFOIMALION. ..ottt st e e eeeeeeaes 2-15
2.12.1 INdigo GIO32 BUS ATDITEIceiiiiiieiii ittt e e e e e e e e e e e 2-15

22 720 [To [T o TN \YL 1= ' Lo T VAR 11211V PSSR 2-16
2.13 GIO32 Option Card REQUIFEMENTScoiuuiiiieiiiiiiee ettt e et e e e e bt e e e s sbre e e e e aaebeeeeeeaae 2-16
2.13.1 MeCh@niCal DELAIISuueeieieiiiiae ettt e e e e e et e e e e e e e e e e e e e annaeeee e 2-16
2.13.2 GIO32 EIECtrCal DEIAIIScouveeiee ittt e e s e e 2-17
N € @ 1 770 (o |l T T PR 2-18

Table of Contents 6 May 1992

NS CONFIDENTIAL s

Chapter Three: GlIO32-bis Specification

0 A [011 £ To (0T 1T o I O O PSP P P U PR PTPRP PPN 3-1
3.2 Pin for Differentiating GIO32 from GIO32-DiSuuviiiiiiiiii e 3-1
3.3 GlO32-DiS BUS TIANSTEISeeeeeiiiiiaeeiie ittt et e e e e e e s s e bttt e e e e e e e e e e s e e ennbbbbeeeeaaaaaaeeas 3-1
3.3.1 GlO32-DIS BUS WIILES ...ttt ettt ettt 3-1
3.3.2 GIO32-bDiS BUS REAUS......cceiiiiiiitiitieiit e e e e e e s ettt e e e e e e e e s s s st eereeaeeeesssnnssntanneeeeeaaeeeeseannns 3-3
3.3.3 GlO32-DiS PrE@MPLIONcci ittt ettt e e e e ettt e e e e e e e e e e e e nbnb b b beeeeaaaaaeeaaanns 3-4

Chapter Four: GIO64 Specification

g R o o To 18 ox 1T o PP RTT PP 4-1
4.2 Conventions Used in thisS Chapterooiiiiiiiiiiieec e e e e e e e e e s e e aee e 4-1
4.2.1 BYLE AGArESSING ..eieiiiiiiiee ittt ettt ettt e e e st e b e e e b e e e e e e aeee 4-1
4.2.2 Waveform CONVENTIONSuiiiiiiiiieie ettt e et e e s bt e e e e st e e e e aib e e e e e e annreeeeeaneee 4-3

4.3 GIOBA BUS SIQNAIS ...oeeeeeeiei ittt e e e e e e e e e s e s s e e e e e e e e e e s e s sananbeaaeeereaaeeese e e nnnnranreees 4-3
4.3.1 Non-pipelined BUS SIGNAISccciiiiiiiiiiiiie e e 4-3
4.3.2 Pipelined GIOB4 BUS SIGNAIScccuiiiiiiiiieiieaee ettt et e e et e e e e e e e e e e e s ansbbeseeeeaaaaeas 4-4

4.4 GlOBA BUS TFANSTEIS . ..eeiiiiiieiitee ettt e e s et e s as e e e s nn e e e snre e e nneeesnnn e e e nnneena 4-6
4.4.1 Nonpipelined GIOB64 BUS TraNSTEIS.oiuiiiiiiiiiiee e 4-9
4.4.1.1 Non-pipelined GIOB4 BUS WILESccoiiiiiiiiiiiee ittt e e e e e e e 4-9

4.4.1.2 Non-pipelined GIO64 BUS REAAS...........cccuviiiiiiiiiie e e e e e e e e e e e e e e e 4-11

4.4.1.3 Non-pipelined GIOB64 PreempPtiOncoiiiiiiieiiiiiiee i 4-12

4.4.2 Pipelined GIOBA TranSTOIScooi ittt e e e e e e e e e reeeeeaaaee s 4-13
4.4.2.1 Pipelined GIOBA WIS,uuuiiiiiiiiiee e e et i s ieiiieeee e et e e e e e et s s st e e et e e e e s e s s e s ansrareeaeeaaaeeeaeas 4-14

4.4.2.2 Pipelined GIOB4 REAMUSoiuuiiiieiiiiiiee ittt e e saaaee e 4-15

4.4.2.3 Pipelined GIOB4 Pre@mMpPLiONuii oottt e e et eeeaaaa e e 4-17

4.4.3 GlOBA TraNSTEI SIZE......eei ittt et s e s e e srre e nnne e 4-20
4.4.4 GIOBA BUS TIME-0OULS....eiiiieeeeesiieiiiitiiieieeaeeeeessssaneeteeaeeaeaeaeeessaaanstesaeeeeaaaaaesessaansnsssseneenaeeees 4-20
4.4.5 GIO64 Bus Tristate TUINOVET CYCIES......coooii ittt 4-20
4.4.6 GlO64 Bus Request ANd Pre@mpPtioN........coooi it e ee e e e e e e 4-21

I €1 @ 17 B U LS Y 1 1 1 - Vo) o PSP 4-22
4.5.1 Three Kinds Of BUS REOUESESuuuiiiiiiiiiieaii ittt e e e e e e e s s be e e e eeaaaa e s 4-22
4.5.2 Arbitration HaNASNAKEcooiiiiii e 4-22
e B 1 (@ oV e =TT 40T (o] PSP PPUURURPPPPPRP 4-22
4.6 GIO COmMPALiDIlity ISSUBSeeeieieiiieiiee ettt et e e e e e e e e e s nb e b b e e e e et aaaaeeesaaannnrnbaeneeeas 4-23
o A 1 o T3 (1 T SRS 4-23
4.8 GIOBA INTEITUPDES ..eeeeieeeeeeiie ettt e e et ettt e e e e e e e e e e et e e e e e e e e e s e b e e e et e e e e e e e s e e annrnrnnnneees 4-23
4.9 Pipelined GIOB4 SIOt PINOULcceiiiiiaiiiiiiit ittt et e e e e e e e e s e e et e e e e e e e e s aaannbebaeeeeeas 4-23
4.10 GIO64 Timing: Nonpipelined and Pipelined.............cooiiiiiiiiiiiiiiicc e 4-24
4.11 Pipelined GIOB64 MECNANICAIS.ccciiiiiiieiiiie ettt 4-28
4.12 Device Identification, Serial Number and ROM REQISIEISccooiiiiiiiiiiiiiiiiiiiiieee e 4-28
4.13 Miscellaneous TimIiNG DIAQIAMScccoiiiiiiiiiiiiie e e e e e s e s e e e e e e e e e s e s s aereeaaeeeessssnnnnrnranneeees 4-28

6 May 1992 Table of Contents

List of Figures

Figure 2-1 Traditional SGI: big endian byte numbering / little endian bit numberingcc........ 2-1
Figure 2-2 Little endian byte numbering / little endian bit numbering ..., 2-2
Figure 2-3 A Read Cycle: Slave's Placement of Data on Bus for Data Aligned in

Slave Memory differently than in Master MEmMOIY.ccccccoiiiiiiiiiiiiiiieeee s 2-5
Figure 2-4 Back-to-Back SIMple GIO32 WIESuuiiiiiiiiieaiie ittt e e e e 2-6
Figure 2-5 GIO32 Write, SIaVe STAlISeeeiiiiiiieeiiei e e e e e 2-6
Figure 2-6 GIO32 Write, MASLEr STAIISeeiiiiiieiiiii e a e e e 2-6
Figure 2-7 SIMPIE GIO32 REAAS ...ttt ettt e e e e e e e e e e s e e bt bbb e e eeaeaaaeaeas 2-7
Figure 2-8 GIO32 Read, SIave DEIAYcooiiiiiiiiiiiiie et 2-7
Figure 2-9 GIO32 Read, MASLEr DEIAYcoeiiiiaiiiiiiiiee et a e e 2-8
Figure 2-10 Preempted GIO32 Write, Slave Stall ... 2-10
Figure 2-11 Preempted GIO32 Write, Master Stall ... 2-10
Figure 2-12 Preempted GIO32 Read, Slave Stall ... 2-11
Figure 2-13 Preempted GIO32 Read, Master Stall ... 2-11
Figure 2-14 Product Identification WOrd ...t 2-13
Figure 2-15 Slot Configuration Register FOrMALeuiiiiiiiiiiiiie e 2-14
Figure 2-16 Option SIOLS fOr INAIGO. ...t e e e e e e e e e 2-16
Figure 3-1 Back-to-Back Simple GIO32-DiS WILEScuiiiiiiiiiiiiiiiieieeiee et 3-2
Figure 3-2 GIlO32-bis Write, SIave Stall ... 3-2
Figure 3-3 GlO32-bis Write, Master SallScoooiiiiiiiiiiei e 3-3
Figure 3-4 Simple GIO32-DIS REAMAueiiiiiiiiieaee e e e e e e e e 3-3
Figure 3-5 GlO32-bis Read, SIaVe DEIAYccoiiiiiiiiiiiee et 3-4
Figure 3-6 GlO32-bis Read, MaSter DEIAYccooiiiiiiiiiiieiii ettt e e 3-4
Figure 3-7 Preempted GIO32-bis Write, Slave Stall ... 3-4
Figure 3-8 Preempted GIO32-bis Write, Master Stall ... 3-5
Figure 3-9 Preempted GIO32-bis Reads, Slave Stall ... 3-5
Figure 3-10 Preempted GIO32-bis Reads, Mater Stalloooiiiiiiiiii e 3-5
Figure 4-1 Byte Order for Big and Little Endian Transfers ... 4-10
Figure 4-2 Back-to-Back SIMple GIOBA WIESeeiiiiiiiiiiiiiiitie et e e 4-10
Figure 4-3 GIOB4 Write, SIaVe STAlleeeiiiiieieee e 4-10
Figure 4-4 GIOB4 Write, MASLEr STAIISeeiiiiiieiiiiee e a e 4-11
Figure 4-5 SIMPIE GIOBA REAMeeieieiiiiiiee ettt e et e e st r e e e s eeeee s e 4-11
Figure 4-6 GlOB64 Read, SIave DEIAYcooiiiiiiiiiiiiie et 4-12
Figure 4-7 GlO64 Read, MASLEr DEIAYcooiiiiiiiiiiiee et 4-12
Figure 4-8 Preempted GIO64 Write, Slave Stall ... 4-12
Figure 4-9 Preempted GIO64 Write, Master Stall ... 4-13
Figure 4-10 Preempted GIO64 Reads, Slave Stall ... 4-13
Figure 4-11 Preempted GIO64 Reads, Mater Stall ... 4-13
Figure 4-12 Pipelined GIO64 Writes, MemMOry MASEEIccooiiiiiiiiiiiiiiiaeee e 4-14
Figure 4-13 Pipelined G1064 Writes, Pipelined Device MaSterccccccoiiiiiiiiiiiiiiiiieee e 4-15
Figure 4-14 Pipelined GIO64 Reads, MemOry MASEEIccooiiiiiiiiiiiiieiaeee e 4-16
Figure 4-15 Pipelined GIO64 Reads, MemOry MASEEIccooiiiiiiiiiiiiieiaeee e 4-16

List of Figures 6 May 1992 iii

NS CONFIDENTIAL s

Figure 4-16
Figure 4-17
Figure 4-18
Figure 4-19
Figure 4-20
Figure 4-21
Figure 4-22
Figure 4-23
Figure 4-24
Figure 4-25
Figure 4-26
Figure 4-27
Figure 4-28
Figure 4-29
Figure 4-30

Pipelined G10O64 Reads, Pipelined Device MaStercocuiiiieiiiiiieeiieieieeee e 4-17
Preempted, Pipelined GIO64 Write, Memory Mastercccuveeiiiiiieaniniiiiiiiiieeeeeenn 4-18
Preempted, Pipelined GIO64 Read, Memory Mastercccuuveieiieiiaaiiniiiiiiiiieeeeeenn 4-18
Preempted, Pipelined GIO64 Read, Memory Mastercccuuveieiieiiaaiiniiiiiiiiieeeeeenn 4-19
Preempted G1O64 Write, Pipelined Device MaSterccccuviiiiiiiiieeiieiiiiiieeeeeene 4-19
Preempted GlO64 Read, Pipelined Device MaSsterccccuvviiiiiiiiieiiieiiiiieeee e 4-20
Preempted GIOB64 32-Dit WITEooiiiiiiiiiieie e 4-21
Preempted GIO64 32-bit REAMUcooiiiiiiiiiieee s 4-21
GIlOB4 CIOCK DISIIHDULION. ...eiiiiiiiiiiee ittt e s e 4-25
Two Writes, a single Read, followed by a Write for Pipelined GIO64c..cu... 4-29
GRXDLY Asserted During a long Write to a Pipelined GIO64 Deviceccccuvuueeee. 4-30
Single Write to a Pipelined GlO64 Device and GRXDLYcccciiiiiiiiiieeeieeiiiiiie 4-31
A Pipelined GIO64 Write and MEMDLYuoiiiiiiiiiiiiiiieee e 4-32
Read from a Pipelined GIO64 Device and MEMDLYccccuviiiiiiiiiiiiniiiieeeeeeeee 4-33
Read from a Pipelined GIO64 Device and GRXDLYcccccuiiiiiiiiiiieeiiiiieeeeeeeee 4-34

6 May 1992

List of Figures

1.1 Introduction

Chapter 1

GIO Bus Overview

The GIO Busisafamily of synchronous, multiplexed address-data busses for connecting high-speed devicesto main
memory and CPU for entry-level SGI systems. The GIO Bus has three varieties: GI032, GI032-bis, and GIO64. Each
variety is described in a separate chapter: GIO32 isin Chapter 2, GIO32-bisisin Chapter 3, and GIO64 isin Chapter 4.

* TheGIO32isa32-hit, synchronous, multiplexed address-data bus that runs at speeds from 25 to 33 MHz.

* The GIO32-hisis a32-hit version of the non-pipelined GIO64 bus.

* The GIO64 busis a 64-hit, synchronous, multiplexed address-data bus that can run at speeds up to 40 MHz. It
supports both 32- and 64-bit GIO64 devices. GI064 has two slightly different varieties: non-pipelined for
internal system memory and GIO32-bis slot devices, and pipelined for graphics and pipelined GIO64 slot

devices.

The members of the GIO Bus Family are all very similar, however the GIO32 and GIO64 are not compatible. A GIO32
device does not work in a GIO64 dlot. However, a GIO32-bis device can function in either a GIO32 or GIO64 option slot,
as long as the appropriate connector/socket is available.

GlO32 Slot

GlO64 Slot

32-pin connector

32-pin connector

64-pin connector

Bus Protocol
supported:

Gl032
GI032-bis

GlO64
Gl032-bis

GlO64

1.2 Conventions Used in this Document: Signal Names

Signal namesthat are overscored (EXAMPLE) denote signals that are active low signals. All other signals are active high.

Signals that are one-per-device are denoted by the letter ‘n’ in parentheses, following the signal name: SIGNAL(n).

GIO Bus Overview

6 May 1992

1-1

Conventions Used in this Document: Signal Names

s SGI CONFIDENTIAL

This page has been left blank intentionally.

1-2 6 May 1992

GIO Bus Overview

Chapter 2
GIO32 Specification

2.1 Introduction

The GIO32 bus is a 32-hit, synchronous, multiplexed address-data bus that runs at speeds from 25 to 33 MHz. The bus
connects high speed devices to memory and to the CPU.

The GIO32 bus supports two types of devices: 1.the CPU and other long-burst devices that do long-burst transfers
between themselves and system memory, and 2. real-time 1/0O devices that require guaranteed maximum bus latency.

A bus arbiter, implemented by the Processor Interface Controller (PIC) in the Indigo system, arbitrates between
competing bus masters in the system. The PIC also acts as master in transactions between the Indigo CPU and other
GlO32 devices.

Maximum performance of the 33 MHz GIO32 busis asfollows:

long-burst read/write 132 MBytes/second
back-to-back 32-bit word writes 44 MBytes/second
back-to-back 32-bit word reads from memory 16 MBytes/second
back-to-back 32-bit word reads (theoretical) 26 MBytes/second!

2.2 Conventions Used in this Chapter

The GIO32 bus uses a 32-bit byte address. The byte numbering scheme is big endian; the bit numbering scheme islittle
endian. (See Figure 2-1.) Thus, byte 0 is bits <31:24>, byte 1 is bits <23:16>, byte 2 is bits <15:8>, and byte 3 is bits
<7:0>.

The following figure shows the byte and bit numbering schemes.

31 24 23 16 15 87 0

Figure 2-1. Traditional SGI: big endian byte numbering / little endian bit numbering

[Dueto the Indigo’s ability to run either as atraditionally big-endian system or as alittle-endian system, the GIO32 bus
supports both little- and big-endian byte numbering schemes. The endian selection is made at power-up time based on the
endianness of the software found on the hard disk. GIO32 option cards need to be capable of running in big- and little-
endian mode. How they detect the endianness of the system at power-up timeis TBD.]

1. Due to the specific implementation on the Indigo, back-to-back 32-bit word reads from the Indigo CPU are about 8.8 M Bytes/second.

GIO32 Specification 6 May 1992

2-1

GIlO32 Transfer Size and Preemption I SGI CONFIDENTIAL - s

31 24 23 16 15 87 0

Figure 2-2. Little endian byte numbering / little endian bit numbering

2.3 GIO32 Transfer Size and Preemption

GI032 bus transfers can be one byte to 4K byteslong. A byte count field specifies the length of atransaction. The transfer
cannot cross a4K processor virtual page boundary; i.e., the data must originate from or be destined for a single page of
main memory. A bus request by areal-time I/O device preempts an ongoing long-burst transaction. The interrupted
transaction can be resumed as a new transaction when the busis free.

2.4 GIO32 Bus Signals

The GIO32 bus has 32 address/data signals; control lines that include address strobe, read/write select, master delay, and
dave delay; arbitration signals that include bus request, bus grant, and bus preempt; and CPU interrupt and reset signals.
Thetable below lists the GIO32 signals.

TABLE 1 GIO Bus Signals.
SIGNAL Description
AD<31:0> 32 address/data signals
AS address strobe
READ read/write select
MASDLY master delay
SLVDLY slave delay
BREQ(n) bus request, 1 per master
BGNT(n) bus grant, 1 per master
BPRE bus preempt
INT<2:0> interrupts
CLK clock
RESET reset

AD<31:0>: The address/data signals are the multiplexed address and data lines. During aslave address cycle, they contain
the slave address for the bus transaction. The next cycle in atransaction, the byte count cycle, uses AD<12:0> to indicate
the number of bytesto transfer and AD<31:30> to indicate the master starting byte address. The master starting byte
address defines the byte where the data starts (byte O, 1, 2, or 3) when placed on or taken off the bus. Master devices use
this field to define the bus alignment that slave devices must follow (i.e., obey). There is one major exception: option slot
devices exchanging data with CPU or memory. Master option slot devices cannot use the master starting byte field to
modify the alignment of data on the buswhen interacting with CPU or memory, because CPU and memory require al bus

2-2 6 May 1992 GlO32 Specification

N SGI CONFIDENTIAL - s GIO32 Bus Transfers

data to be aligned to the workstation’s main memory. Below is a summary for option slot device usage of the master
starting byte address:

» asdave, the master’s starting byte address (AD<31:30>) must be obeyed since all data must be aligned with
main memory or CPU, and

e asmaster, anything can be written to AD<31:30>, however it will not be interpreted by the CPU or memory. All
data on the bus will be and must be aligned to main memory or CPU.

AS: Address strobe signals the start of a new bus transaction. The device that is currently the bus master asserts address
strobe and places a slave address on the bus. All other devices on the bus should latch the address to determine if they are
the device being addressed. Address strobe is only asserted for one cycle. The byte count cycle follows the address cycle.

READ: The READ signal servestwo purposes. During the slave address cycle the master asserts READ for aread (master
receives data) or deasserts READ for awrite (master supplies data) transaction. After the slave address cycle, the bus
master drives READ low to indicate that a bus transaction is taking place. The master holds READ low until the bus
transaction ends naturally or through preemption.

MASDLY: The master asserts the master delay signal to throttle the data transfer rate. The signal has different meanings
for read and write transactions. For aread transaction, the master asserts MASDLY when it is not ready to receive datain
the current bus cycle. For awrite, MASDLY indicates that the data currently on the busisinvalid. MASDLY isignored
during address and byte count cycles.

SLVDLY: The slave device asserts SLVDLY to throttle the data transfer rate. Like MASDLY, this signal has different
meanings for read and write transactions. When the slave asserts SLVDLY during a bus read, the data on the busis
invalid. During abuswrite, SLVDLY indicates that the slave cannot accept datain the current bus cycle. SLVDLY is
pulled high on the CPU board so that it is asserted during the byte count cycle. The slave must drive SLVDLY high at the
end of abus transaction before tristating it because the pullup on the CPU board is not strong enough to pull SLVDLY
high in one cycle.

BREQ(n): Every bus master in the system hasits own bus request signal. To request the bus, a device assertsits bus
request signal. The device must hold its BREQ(n) signal asserted until the bus arbiter grants it the bus, even if the device
decides it does not need the bus. The bus master holds BREQ(n) asserted until the end of the bus transaction. When the
bus arbiter preempts the bus, the master device must deassert its bus request signal to indicate that it is off the bus. A
preempted device cannot reassert its bus request signal until the bus arbiter deasserts the preemption signal. In order to
avoid bus time-outs, a bus master must still accept requests from other bus masters even if it is requesting the bus.

BGNT(n): Every bus master in the system hasits own bus grant signal, which indicates to a master devicethat it ownsthe
bus. The bus arbiter asserts a device's matching bus grant signal for aslong as the bus master assertsits bus request signal .
When the bus arbiter preempts a master device, the arbiter does not deassert the bus grant signal until the bus master
deasserts its BREQ(n) signal.

BPRE: The GIO arbiter asserts the bus preempt signal to preempt the current bus transaction. The bus master must
respond to BPRE within { missing information: number of clock cyclesis somewhere between four and nine} GIO32
clock cycles by deasserting its BREQ(n) signal and asserting READ. Real-time devices are not preemptable and can
ignore BPRE.

INT<2:0>: The GIO32 bus has three interrupt/status signals, INT<2:0>, which are shared by all devices: the two GIO32
bus option slots and the graphics board(s). INT<0> and INT<1> are low priority interrupts. INT<2> is a high priority
interrupt. These signals can generate CPU interrupts and be read by the CPU.

CLK: The GIO32 clock runs at 25, 30, or 33 MHz. Dataisvalid at the rising edge of CLK.
RESET: An asynchronous signal for resetting/restarting all devices on the bus.

2.5 GIO32 Bus Transfers

The GIO32 bus supports three kinds of cycles during a bus transaction. Thefirst cycle of every transaction isaslave
address cycle. The second cycleisthe byte count cycle. Subsegquent cycles are one or more data cycles. After the final data
cycle of atransaction, AD<31:0>, READ, AS, MASDLY, and SLVDLY must be tristated.

GIO32 Specification 6 May 1992 2-3

GIO32 Bus Transfers s SGI CONFIDENTIAL s

In the slave address cycle, the bus master sends the slave address out on AD<31:0> and asserts AS. For aread transaction,
the master asserts READ; for awrite the master deasserts READ.

In the byte count cycle that follows, the master sends the transfer byte count on AD<12:0>. In this second cycle, the
meaning of the READ signal changes to mean that a bus transaction is taking place on the bus. To this end, the master
deasserts READ and holds it deasserted until the end of the bus transaction. The address strobe signal is not active in this
cycle. The master also writes the address (offset) for the master starting address onto AD<31:30> during this cycle. All
dave devices must obey these bits to place data onto or take data off of the bus so that the data on the busis always
aligned for the master device. Devicestaking to the CPU or memory (regardless of whether they are slave or master)
must always use the alignment described in Figure 2-1 or Figure 2-2 of this specification so that the datais properly
aligned for main memory. Note that option slot master devices cannot use the “master starting byte address’ feature with
CPU and memory since the CPU and memory only support their own alignment.

IMPLEMENTATION RESTRICTION:

Due to implementation details of the bus arbiter, the
maximum byte count for a master is 1023 for any single
transaction.

The byte count and 32-hit slave address determine alignment (in slave memory) of the slave start and end addresses. The
master starting byte and the byte count determine the alignment in master memory. The master starting byte field consists
of the two least significant bits of the master’s byte address. For transfers where the slave and master addresses are
aligned, the least significant bits (AD<31:30>) match on the first and second cycle: the slave address sent in thefirst cycle
of the transaction and the master starting byte of the second. If the transfer is unaligned, the bits do not match. A dave
GIO device must deal with the data (either place data on the bus during aread or rearrange data taken from the bus on a
write) in the master’s alignment (according to these bits). Note that CPU and memory, as slave devices, do not support this
feature; they do not rearrange data. CPU and memory always place data on the bus asiit is aligned in memory and they
assume that data taken from the bus is already aligned to main memory.

CAUTION:

Master option slot devices must not expect CPU or memory
to obey the settings of AD<31:30> during the byte count
cycle (i.e., the master starting byte address). CPU and
memory only deal with data that is aligned to main memory.

For example, for aread, if the slave addressis 0x2, the byte count is0x2, and
the master starting byte addressis 0x1, the slave would read its own memory
from byte addresses 0x2-0x3 and drive that data on the bus with the byte
from dlave address 0x2 placed at address 0x1 (i.e., onto AD<23:16>), pack-
ing the other byte in the same word. Figure 2-3 illustrates this case.

2-4 6 May 1992 GlO32 Specification

N SGI CONFIDENTIAL - s GIO32 Bus Transfers

31 24 23 16 15 87 0
Data in Slave Memory 0 1 2 3
/ve device rearranges
data so bus alignment
matches master’s
invalid valid data invalid
Data Aligned for Transfer 0 1 2 3
on the GIO32 Bus

Figure 2-3. A Read Cycle: Slave’'s Placement of Data on Bus
for Data Aligned in Slave Memory differently
than in Master Memory.

Following the slave address and byte count cycles are a variable number of data cycles. The number depends on the byte
count, bus preemption, and the flow control signals MASDLY and SLVDLY. The master drives MASDLY and the dave
drives SLVDLY. These signals throttle the data transfer rate.

2.5.1 GIO32 Write Transactions

GIl032 bus write transactions take a minimum of three bus clock cycles. The transaction begins with the slave address and
byte count cycles. In the slave address cycle, the master does the following:

+ assertsAS
» drivesa32-hit dave address on AD<31:0>
e deasserts READ to indicate that thisis awrite cycle.

In the byte count cycle, the master does the following:

* deasserts READ and holdsit low until the end of the transaction
e drivesabyte count on AD<12:0>
e drivesthe master starting byte address on AD<31:30>.

After the byte count cycle, the master can begin data transfer. During awrite, the bus master drives data out onto the AD
signals and deasserts MASDLY to indicate that valid datais on the bus. The master looks at SLVDLY at the end of the
clock cycle to determine whether the slave is ready to accept the data. If the slave deasserts SLVDLY by the end of the
cycle, the master knows that the slave will pick up the data at the rising clock edge, and that the master can put a new data
word on the busin the next cycle. Otherwise, if the slave does not deassert SLVDLY by the end of the cycle, the master
must continue to drive the current word of data for additional bus clock cycles until it sees SLVDLY go low. The bus
master can transfer aword of new data during every bus cycle that the slave is deasserting SLVDLY. The master can
throttle the transfer rate by asserting MASDLY during a cycle when it is not ready to send a new word of data on the bus.

The bus master continues to transfer data until the byte count is satisfied or until the bus arbiter asserts the BPRE signal.
The bus slave also keeps track of the number of bytes that have been transferred so that it can handle the last data word
correctly if it isapartial word transfer.

At the end of the transaction, the master asserts MASDLY. The slave asserts SLVDLY within one cycle after the last data
word and then tristates the signal. The bus master, if it does not wish to start another transaction, asserts READ, then
tristates AS, AD<31:0>, READ, and MASDLY. If the master has another transaction to do, it immediately begins the
transaction by executing a slave address cycle.

If the bus arbiter preempts a bus transaction, the byte count will not be zero when the bus master asserts READ in
response to the preemption. The slave needs to monitor READ so that it can detect a preemption and assert SLVDLY
within one cycle. The bus master must keep all of the information -- remaining byte count and updated slave address --
necessary to restart the transaction where it was interrupted.

GIO32 Specification 6 May 1992

2-5

GlO32 Bus Transfers I SGI CONFIDENTIAL

Figure 2-4, Figure 2-5, and Figure 2-6 illustrate sample GIO32 write transactions:

ad—(ADRXBcXDoXADRXBcXDoXDlXD2>—
=\ /- \—/ L
ed N\ [

masdly

slvdly f

AN NN
Slave Byte Data

Address Count Transfer
Cycle Cycle

w
Transfer 1 Transfer 2

Figure 2-4. Back-to-Back Simple GIO32 Writes

masdly ! ¢ f N\ ¢ f ¢ i ¢ [
slvdly & 1 N/ N [/

Slave Byte Data Transfer
Address Count
Cycle Cycle

Figure 2-5. GIO32 Write, Slave Stalls

e N N

Slave Byte Data Transfer
Address Count

Cycle Cycle

Figure 2-6. GIO32 Write, Master Stalls

2-6 6 May 1992 GlO32 Specification

N SGI CONFIDENTIAL - s GIO32 Bus Transfers

2.5.2 GIlO32 Read Transactions

GI 032 bus read transactions are very similar to write transactions except that the bus slave, not the bus master, drivesthe
data on the bus.

The GIO32 bus requires one dead cycle on the bus when the device driving the bus changes. Thus aread transaction has a
dead cycle between the master driving the byte count cycle and the dlave driving the first data cycle, as well as between
the final data cycle of atransaction and a subsequent address strobe that starts a new transaction. This requirement makes
the minimum length of back-to-back read transactions four bus cycles.

The READ signal, asserted by the bus master during the slave address cycle to indicate a read transaction, is held
deasserted from the byte count cycle onward to indicate that a bus transaction istaking place. During data cycles, the dave
deasserts SLVDLY wheniit isdriving valid dataon the AD signals. The master deasserts MASDLY during cycleswhenis
ready to take data off the bus.

Examples of GIO32 bus read transactions are shown in Figure 2-7, Figure 2-8, and Figure 2-9.

masdly \

Slvdly;
Slave Byte Data Transfer
Address Count
Cycle Cycle

Figure 2-7. Simple GIO32 Reads

Figure 2-8. GIO32 Read, Slave Delay

GIO32 Specification 6 May 1992 2-7

GIO32 Bus Arbitration s SGI CONFIDENTIAL s

slvaly -+ N\ i [

Figure 2-9. GIO32 Read, Master Delay

2.6 GIO32 Bus Arbitration

The GIO32 bus arbitration scheme supports three requirements:

* The CPU must run at aminimum, guaranteed rate in the most highly loaded system to alow for acceptable
interrupt response times.

» Long-burst DMAsfor devices such as the graphics subsystem must be allowed to use the bus for long stretches
of time to move large amounts of data.

» Real-timel/O devices such as network connections (e.g., Ethernet, FDDI) and audio must be guaranteed access
to the bus within a predefined maximum delay.

These three requirements -- to support the CPU, long burst, and real-time 1/O devices -- result in the following rules of bus
behavior.

» Long-burst devices have low priority aswell aslimits on the time they can be master of the bus. A long-burst
device can perform multiple transactions once it becomes bus master. The bus arbiter preempts along-burst
device master to service areal-time I/O device or because the long-burst device has used up its time slot on the
bus.

» The CPU isalong-burst device, but differsin two ways from all other long-burst devices. First, the bus arbiter
will only preempt CPU bus mastership between bus transactions. Second, the CPU becomes bus master after
every grant to some other long-burst bus master.

* Real-time1/O devices have high priority. They can use the bus for no more than afixed unit of time -- 5
microseconds -- per acquisition and can only request the bus at a predefined frequency.

The GIO32 bus arbiter hastwo time dot registers--DELAY and BURST--that limit the time a bus master can hold the bus.
The DELAY register limits the CPU’s time on the bus. The BURST register limits the time on the bus for all other long-
burst devices. The operating system chooses the time values to load into these registers when a device becomes bus
master. For example, the CPU time limit might be set to 2 microseconds, while the time limit for all other long-burst
devices might be 38 microseconds. If abus master is still asserting its BREQ(n) signal when itstime limit expires, the bus
arbiter preempts the bus. If the CPU receives and services an interrupt during a bus transaction, the CPU resets the time
valueinthe BURST register to zero and the DELAY register to its maximum value so that the CPU can immediately
become bus master.

Real-time /O devices preempt long-burst devicesimmediately. The Indigo Peripheral Controller chip (HPC), which
manages Ethernet and SCSI access, isthe highest priority real-time1/0O devicein the system, followed by option slot 0 and
then option slot 1. A preempted long-burst device regains the GIO Bus after the preempting transaction completes. When
no other device requests the bus, the CPU becomes bus master.

2-8 6 May 1992 GlO32 Specification

N SGI CONFIDENTIAL - s GIO32 Bus Arbitration

IMPLEMENTATION RESTRICTION:

Due to implementation details of the bus arbiter, non-CPU, long
burst masters must not simply drive BREQ(n) inactive when they
wish to relinquish the bus. They must wait for BPRE to be asserted
and then deassert BREQ(n).

2.6.1 Arbitration Handshake

Connecting:

Each bus master on the G032 bus connects to the bus arbiter with a pair of BREQ(n) and BGNT(n) signals. A device
requests the bus by asserting its BREQ(n) signal. The arbiter grants the bus to the requesting device by asserting the
matching BGNT(n) signal. Once a device asserts its BREQ(n) signal, it must hold the signal asserted until the arbiter has
granted the bus.

IMPLEMENTATION RESTRICTION:

Due to implementation details of the bus arbiter, it is possible that
the arbiter may assert BGNT (n) for one cycle and then deassert it,
without actually granting the bus. Therefore, bus masters must not
conclude that they have been granted the bus until BGNT(n) has
been asserted for two consecutive cycles. Once asserted, BREQ(n)
must not be deasserted until the bus has been granted.

Doing the transaction:
A bus master must keep its BREQ(n) signal asserted until the bus transaction is compl ete.

Terminating:
When the bus transaction is compl ete, the bus master deasserts its BREQ(n) signal and the arbiter then deasserts the
BGNT(n).2

2.6.2 GIO32 Bus Preemption

The GIO32 bus arbiter preempts a long-burst bus master when areal-time I/O device needs the bus or when the bus
master uses up itstime slot on the bus. The arbiter asserts BPRE. In response, the current bus master asserts READ within
{missing information: four to nine} bus cyclesto indicate end of transaction. If awrite transaction was underway, the
master stops driving AD and MASDLY in the same cycle as the deassertion of READ. In the case of a preempted read
transaction, the slave may continue driving data as the master is deasserting READ; however, the data driven will not be
accepted by the bus master. The bus master must keep track of the slave address and remaining byte count in order to
resume the transfer later.

A bus master can preempt its own bus transaction before the byte count has been satisfied and never resume the
transaction. Thistype of preemption is useful for devices that may not know the byte count at the start of the transaction.
The master can drive amaximum byte count during the byte count cycle and then preempt the transaction by asserting the

2. Note the implementation restriction (on page 2-9) associated with deasserting BREQ(n).

GIO32 Specification 6 May 1992 2-9

GIO32 Bus Arbitration s SGI CONFIDENTIAL s

READ signal when it has received the desired bytes. Note that this technique requires the last transfer to be aligned to the
bus because the byte count cannot indicate how many bytes to transfer on the last cycle.

IMPLEMENTATION RESTRICTION:

Due to implementation details of the bus arbiter, the self-
preemption with unfinished transaction feature will not work and
must not be used. Bus masters must provide an accurate and exact
byte count.

Preemption examples are presented in Figure 2-10 to Figure 2-13.

D1 is transferred. D3 is transferred, D4 is not transferred.

Figure 2-10. Preempted GIO32 Write, Slave Stall

D1 is transferred.

Figure 2-11. Preempted GIO32 Write, Master Stall

2-10 6 May 1992 GlO32 Specification

N SGI CONFIDENTIAL - s GIO32 Bus Time-outs

G,

NN
oA D S T Y 2

D2 is not transferred. D3 is not transferred.

Figure 2-12. Preempted GIO32 Read, Slave Stall

D2 is not transferred.

Figure 2-13. Preempted GIO32 Read, Master Stall

2.7 GIO32 Bus Time-outs

A GIO32 bus transaction times out if a slave does not deassert SLVDLY in reply to an address strobe within 25
microseconds after the byte count cycle. Thistime-out prevents accesses to non-existent locations on the GIO32 bus from
hanging the bus. When a time-out occurs, the bus arbiter deasserts SLVDLY until the transaction completes. Then the
arbiter generates a bus error interrupt to the CPU. The device that was transferring data does not know that a time-out
occurred. Software can use this time-out mechanism to determine whether adevice existsin a GIO32 slot. The guaranteed
bus acquisition time of five microseconds for real time devices may be violated when the GIO32 bus times out.

2.8 Issues for Slave-only GIO32 Devices

GI 032 devices that will not perform as master devices, can simplify their design in the following manner:

e preemption will never occur and so is not an issue,

» dl transferswill include only one data cycle,

AD<12:0> (the byte count) in the byte count cycle can be ignored, and
» threesignals are not used: BREQ, BGNT, and BPRE.

GIO32 Specification 6 May 1992 2-11

Interrupts s SGI CONFIDENTIAL s

2.9 Interrupts

Each interrupt from a GIO device will cause every device driver associated with the interrupt line to be called. For
example, if two device drivers are associated with INTO, whenever an interrupt occurs on thisline each driver is called in
turn, thus giving each the opportunity to process any interrupt generated by it's device (at that level). Sinceinterrupt levels
may be shared, each device (or the protocol between the device and the host) must provide a reliable mechanism for
allowing adevice driver to determine whether agiven interrupt call was caused by the associated device or not. All device
drivers must, at al times, be able to gracefully handle spurious interrupts.3

CAUTION:

GIO Interrupts 2 and 0 (INT2 and INTO) are reserved for use by graphics
boards only. Option slot devices must use INT1.

Note: Each device must provide aregister

2.10 Identifying GIO Devices

2.10.1 Product ldentification Word

During the configuration procedure, the CPU does a slave (host) word read of the Product |dentification Word associated
with each potential GIO device. The read must be done as aword read. (This ensures endian independence.) These reads
establish the presence and identity of all the GIO devices that are present. (GIO devices do not use the “ address probe”
scheme used in VME-based devices.) For slot devices, the Product I dentification Word is read by accessing thefirst (base)
address within the slot’s address range. During the slave cycle following any read of the slot’s base address, the Product

| dentification Word information is driven onto AD<31:0>.

The Product | dentification Word contains five pieces of information as listed below and illustrated in Figure 2-14.

- Bits<7:0>: Product ID Code unique | D assigned by SGI (see section “Product ID Code” for
more detail)

- Bits<15:8>: Product Revision product revision value assigned by the manufacturer

- Bit<l16>: GIO Interface size 0=32bits, 1=64bits
For GIO32 and GI0O32-bis, must be zero. For GIO64, may be 0
or 1.

- Bit<17>: ROM Present 0=no ROM, 1=ROM present

When set to one, indicates that the next three words of the
device's address space are dedicated to specia registers, as
explained in the section “ Special Registers”.

When set to zero, the device's address space contains no
reserved areas except the base address.

Bits<31:18>: Manufacturer’'s Code value and purpose assigned by the manufacturer.

3. How to handle the linking of a device driver into one or more interrupt chainsis TBD. One technique is atable of routine addresses with an entry per
slot per level. All entrieswould be initialized to a stub routine address before calling the boot-time autoconfig which would overwrite any used
entry with the actual driver entry point(s). In this way, the interrupt dispatch code would not need any conditional tests.

2-12 6 May 1992 GlO32 Specification

I SGI CONFIDENTIAL s GlO32 Option Slot Issues

31 18 17 16 15 8 7 0
Manufacturer’s Code:14 ROM:1 | GIOSz:1 Rev:8 ProdIDCode:8

!

1=all bits of Word are valid
O=only bits <7:0> are valid

Figure 2-14. Product |dentification Word

2.10.2 Product ID Code

The lowest byte of the Product Identification Word contains a unique, 8-bit Product ID Code that is hardwired into each
Gl O device. During the dlave cycle following any read of the slot’s base address, this 8-bit Product ID Codeisdriven onto
the lower bits (bits 7:0) of AD (at the sametime as all the other Product | dentification Word).

Product ID Codes are unique across al GIO devices and must be registered with Silicon Graphics.*

When the assighed Product ID Code has bit 7 equal to zero, the device does not provide meaningful (neither correct nor
repeatable) data on AD<31:8> during the slave cycle following aread of aslot’s base address. Such boards must be
recognized based on AD<7:0> and the other fields must be treated by software as if they contained the following values:

- Bits<7:0>: Product ID Code unique ID assigned by SGI where bit 7=0
- Bits<15:8>: Product Revision 0

- Bit<16>: GIOInterfacesize 0 (i.e., =32hits)

- Bit<17>: ROM present 0 (i.e., =no ROM)

- Bits<31:18>: Board Manufacturer not defined (i.e., manufacturer must be deduced from Product/
Board Identification code).

2.11 GIO32 Option Slot Issues

2.11.1 Address Ranges

Each option slot has a 2 MByte address range:

+ dlot 0 = 0x1f400000 to Ox1f5fffff,
+ slot 1 = 0x1f600000 to Ox1f 7fffff.

Note: addresses 0x1f800000 to Ox1fofffff are reserved for future definition by Silicon Graphics.

2.11.2 Configuration Registers

GI 032 option cards configure themsel ves by writing into their Configuration Register. Each dot hasits own register in the
format shown in Figure 2-15. Slot O'sis located at Ox1FA20000. Slot 1'sis at 0x1FA20004.

4. The procedure and contact point for doing this are TBD. The numbers will be recorded in an appropriate header file in the kernel source tree.

GIO32 Specification 6 May 1992 2-13

GI032 Option Slot Issues s SGI CONFIDENTIAL s

The setting of bit 1 communicates the device type:1 indicates real -time 1/O and O indicates long-burst. Bits <31:2> and bit
0 are not used.

31 2 1 0

30 unused bits DevType| unused

L 0=long-burst

1=real time

Figure 2-15. Slot Configuration Register Format

2.11.3 Special Registers within the Device Address Range

When an option slot device has ROM, it indicates the ROM’s presence to the CPU by setting to one the ROM Present bit
in the Product Identification Word. Whenever this bit is set, the three words following the base address of the device
address range are reserved as three specia 32-bit registers, as explained below.

1. Theword at base address + 0x4 is the optional Board Serial Number register. This serial number is assigned by
the manufacturer.

2. Theword at base address + 0x8 isthe ROM Index register. Thisregister is written to zero by the CPU to initiate
reading of the ROM. Subsequent reads of the ROM Read register cause this register to automatically increment
by 4, indicating the currently available word in the ROM Read register.

3. Theword at base address + Oxc isthe ROM Read register. This register contains the contents of one word from
the ROM. It aways contains the word from the address indicated in the ROM Index register.

2.11.4 Device Interface and Configuration

GIO32 option slot device drivers configure themselves by calling setgiovector, setgioconfig, and the apporpriate
splgio#t. These calls and their parameters are listed below:

* setgiovector (INT LEVEL, GIO SLOT, GIO FUNC, GIO ARG);

° setgioconfig (GIO_ SLOT, GIO_ARB) ;

e splgio0 () ;

. splgiol () ;

. splgio2();

setgiovector (INT_LEVEL, GIO_SLOT, GIO_FUNC, GIO_ARG)

A device driver registersits interrupt service function with the kernel’s interrupt dispatcher by calling
setgiovecotor. The call requires four parameters explained below.

1. Thelevel parameter is an integer specifying which one of the three possible GIO bus interruptsis
used by the device. This parameter must be one of the following:
- 0=GIO_INTERRUPT 0,
- 1=GIO_INTERRUPT_1, or
- 2=GIO_INTERRUPT 2.

CAUTION:

Dueto limitations in the graphics subsystem, GIO Interrupts 2 and 0 (INT2
and TNTO) are reserved for use by graphics boards only. Option slot devices
must use INT1.

2-14 6 May 1992 GlO32 Specification

N SGI CONFIDENTIAL - s INDIGO-specific Information

2. Thedot parameter is an integer and specifies the physical slot occupied by the GIO bus board.
This parameter must be one of the following:
- 0=GIO_SLOT 0,
- 1=GIO_SLOT_1,0r
- 2=GIO_SLOT_GFX.

3. Thefunction parameter is a pointer to the interrupt service routine that will be called when the
associated interrupt occurs.

Note that because interrupts are shared among devices, func [i.e., void (*func) (int) ;] may be
called when there is no pending interrupt from the particular slot specified, in which case func
should simply return. Theinterrupt handler therefore needsto be able to determine when its device
isactualy interrupting, and when it is not, in a non-destructive manner.

4. Theargument paramenter isan integer that is passed to the interrupt service routine whenever the
interrupt routine is called; arg may contain any value. The interrupt service routine will be called
with the processor interrupt mask set to disable further interrupts from the device.

setgioconfig (GIO_SLOT, GIO_ARB)

Devicedriverscall setgioconfig to set up the GIO bus arbitration mode for the GIO slot specified by
the slot parameter. The call requires two parameters explained bel ow.

1. Thesdlot parameter is an integer and specifies the physical slot occupied by the GIO bus board.
This parameter must be one of the following:
- 0=GIO_SLOT_O0,
- 1=GIO_SLOT_1,0r
- 2=CGIO_SLOT_GFX.
2. Thearbitration mode is specified as a bit-wise OR of the following two flags:
- GIO_CONFIG_LONG
where O=real-time device and 1=long-burst device,

- GIO_CONFIG_SLAVE
where O=device is both master and slave, and 1=device is Slave only.

splgio0 (), splgiol (), OF splgio2 ()

Thespigioo (), splgiol (), and splgio2 () functions set the processor interrupt mask to block GIO bus
interrupts. splgioo setsthe mask for INTO, sp1gio1 setsthe mask for INTL, etc..

2.12 INDIGO-specific Information

2.12.1Indigo GIO32 Bus Arbiter

The Processor Interface Controller chip (PIC) isthe GIO32 arbiter in the Indigo system. The PIC acts as master device for
transactions between the CPU and GIO32 devices. These transactions are one to four bytesin length. PIC timing and
synchronization with the CPU, which runs at adifferent speed than the GIO32 bus, requires about fifteen bus clock cycles
to complete a single-word GIO32 bus read transaction.

GIO32 Specification 6 May 1992 2-15

GlO32 Option Card Requirements I SGI CONFIDENTIAL - s

2.12.2Indigo Memory Timing

When a GIO32 bus device initiates along-burst read transfer from main memory, the Indigo memory subsystem requires
seven cyclesfor RAS and CAS before it drives thefirst dataword on the GIO32 bus. Subsequent data words are driven at
the full bus speed of one 32-bit word per bus cycle unless throttled by the bus master device or by the memory controller.

2.13 GIO32 Option Card Requirements

2.13.1 Mechanical Details

The Indigo CPU board has two 96-pin, high density, GIO32 bus connectors on itstop side. The connector is a Fujitsu 230-
series straight header with post. An option card plugs into a GIO32 bus connector, pops onto stabilizing card standoffs on
the CPU board, and presentsits /O connections (if any) out an 1/O panel on the back of the Indigo system box. Each
option card hasits own /O connector area, which is 2.84 inches long and 0.80 inches wide.

Option cards are 6.44 inches long by 3.375 inches wide. Components may be placed on both sides of the card, with atop
side component height limit of 0.65 inches and a bottom side limit of 0.10 inches.

Figure 2-16 shows two option cards mounted on the Indigo CPU board:

Slot 1
Option Card

Slot 0
Option Card

~—— GIO32 Bus Connectors

/ (located between Option Slot
Card and CPU Board)

1/0 Panel

Back of

Main Unit Front of

Main Unit

Backplane Connector

Indigo CPU Board

Figure 2-16. Option Slots for Indigo.

2-16 6 May 1992 GlO32 Specification

I SGI CONFIDENTIAL s

GlO32 Option Card Requirements

2.13.2 GIO32 Electrical Details

A GIO32 option card must meet the following electrical specifications:

13.6 watts maximum power consumption

+5 volts @ 2 amps

+12 volts @ 0.15 amps

-12 volts @ 0.15 amps

TTL-compatible signals with CMOS compatible input currents
50 pF AC loading for clock and reset signals

15 pF AC loading for all other bus signals

74FCT6E52AT or similar bus transceivers for AD<31:0>

FCC Class B with 6 dB margin

GIO32 Specification 6 May 1992

2-17

GlO32 Slot Pinout

s SGI CONFIDENTIAL s

2.14 GIO32 Slot Pinout

TABLE 2 GIO32 Pinout.

SIGNAL PIN# SLAVE MASTER
RESERVED N/C 01 - -
RESERVED N/C 02 - -
RESERVED N/C 03 - -
RESERVED N/C 04 - -

GND 05 - -
RESERVED N/C 06 - -
RESERVED N/C 07 - -
RESERVED N/C 08 - -
RESERVED N/C 09 - -

GND 10 . .
RESERVED N/C 1 - -

GIO.RESET 12 I I

+12V 13 . .

GIO.INTO 14 o) o)

GIO.BREQ(n) 15 - o

GND 16 . .

GIO.READ 17 I o)

GIO.AS 18 I o)
vce 19 . .
GIO.MASDLY 20 I o)

GND 21 - -

GIO.ADOO 22 110 110

GIO.ADO2 23 110 110

GND 24 - -

GIO.ADO4 25 110 110

GIO.ADO6 26 110 110

GND 27 - -

GIO.ADO8 28 110 110

GIO.AD10 29 110 110

GND 30 - -

GIO.AD12 31 110 110

2-18 6 May 1992 GlO32 Specification

I SGI CONFIDENTIAL s

GIO32 Slot Pinout

SIGNAL PIN# SLAVE MASTER
GIO.AD14 32 110 110
SLOTID 33 - -
GND 34 . .
GIO.AD16 35 110 110
vCce 36 - -
GIO.AD18 37 110 110
GND 38 - -
GIO.AD20 39 110 110
GIO.AD22 40 110 110
GND 41 - -
GIO.AD24 42 110 110
GND 43 . .
GIO.AD26 44 110 110
GND 45 - -
GIO.AD28 46 110 110
GIO.AD30 47 110 110
-12v 48 - -
RESERVED N/C 49 - -
GND 50 - -
RESERVED N/C 51 - -
RESERVED N/C 52 - -
RESERVED N/C 53 - -
GND 54 - -
RESERVED N/C 55 - -
RESERVED N/C 56 - -
RESERVED N/C 57 - -
RESERVED N/C 58 - -
GND? 59 - -
GIO.BGNT(n) 60 - I
GIO.BPRE 61 - I
GND 62 - -
GIO.INTO1 63 o) o)
GIO.INTO2 64 o) o)
GND 65 - -
GIO.SLVDLY 66 o) I
GND 67 - -
GIO32 Specification 6 May 1992 2-19

GlO32 Slot Pinout

s SGI CONFIDENTIAL s

SIGNAL PIN# SLAVE MASTER
GIO.CLK 68 | |
GND 69 - -
GIO.ADO1 70 le} le}
vCC 71 - -
GIO.ADO3 72 lfe} le}
GND 73 - -
GIO.ADO5 74 lfe} lfe}
GIO.ADO7 75 lfe} lfe}
GND 76 - -
GIO.ADO9 77 lfe} lfe}
GND 78 - -
GIO.AD11 79 lfe} lfe}
vCC 80 - -
GIO.AD13 81 lfe} lfe}
GND 82 - -
GIO.AD15 83 lfe} lfe}
GND 84 - -
GIO.AD17 85 lfe} lfe}
GIO.AD19 86 lfe} lfe}
GND 87 - -
GIO.AD21 88 lfe} lfe}
GND 89 - -
GIO.AD23 90 lfe} lfe}
GIO.AD25 91 lfe} lfe}
vCC 92 - -
GIO.AD27 93 lfe} lfe}
GND 94 - -
GIO.AD29 95 lfe} lfe}
GIO.AD31 96 lfe} lfe}

a Thispinisused for differentiating btween GIO32 and Gl O32-bis boards.

2-20

6 May 1992

GlO32 Specification

I SGI CONFIDENTIAL s Introduction

Chapter 3
GIO32-bis Specification

3.1 Introduction

The GIO32-bis bus is a 32-hit version of the GIO64 Bus. It obeys the timing specifications of the GI064 with the GIO32
pinout. In general, GIO32-bisis correctly described by Chapter 2 except for those items specified below. Two items
differentiate GIO32 from GIO32-his:

» oneof the GIO32 pinsis redefined for differentiating GIO32 and GIO32-bis devices, and
e thetiming protocols for master and slave delay signals.

3.2 Pin for Differentiating GIO32 from GIO32-bis

The grounded pin labeled GND #59 in the GIO32 Specification, istied high on GIO32-bis slots. Thismakesit possible for
GIO devicesto tell whether they are plugged into a GIO32 or a GIO32-bis slot.

3.3 GIO32-bis Bus Transfers

Thistiming described in this section isidentical to that in the GIO64 section “Nonpipelined GIO64 Bus Transfers.” The
use of MASDLY and SLVDLY isdlightly different from (and incompatible with) the section “GIO32 Bus Transfers” in
the GIO32 Specification. The device driving data onto the bus asserts its delay signal (MASDLY for memory writes or
SLVDLY for memory reads) synchronously with the data, asin GIO32. However, in GIO32-his, the device receiving data
from the bus must assert its delay line (MASDLY for memory reads, SLVDLY for memory writes) one clock earlier than
in GIO32.

3.3.1 GIO32-bis Bus Writes

GI032-bis bus writes start with a slave address and byte count cycle. The READ signal will be deasserted in the slave
address cycleto indicate that thisis awrite cycle. After the slave address cycle, the READ signal isused to indicate that a
bus cycleisin progress and will remain low for the rest of the transfer.

After the third cycle, data can be transferred. During awrite, the bus master will drive data out onto the bus and drive
MASDLY low to indicate that valid data is on the bus. The master looks at the SLVDLY signal that was sent the cycle
before to determine if the slave can accept the data. If the SLVDLY signal was not low in the previous cycle, the master
must continue driving the current datauntil SLVDLY islow in the previous cycle. Thisis achange from the GIO32 busin
that the SLVDLY signal is flopped and used in the next cyclesinstead of being used in the cycleit is on the bus. This
changeis necessary so that the SLVDLY signal can be directly registered before any gating takes place. This provides one
whole cycle for the signal propagation between chips and one whole cycle for on-chip gating. The GIO32 bus scheme

Gl0O32-bis Specification 6 May 1992 3-1

GlO32-bis Bus Transfers I SGI CONFIDENTIAL - s

works at 33 MHz, but at higher speeds it becomes very difficult to get the timing to work. The bus master can continue to
transfer new data every cyclethat SLVDLY from the previous cycleislow. If SLVDLY was not low then the current data
must be driven until SLVDLY is deasserted in the previous cycle. The master can throttle the transfer by driving
MASDLY high during a cycle that it does not have new data to transfer. Note that this remains the same as GIO32 and is
not sent one cycle early like SLVDLY.

Since SLVDLY isbeing sent for the next cycle, it will take an extra cycle for all complete transfers, (not one cycle per
word). A one word write will take at least four cycles. Thisis one more cycle then it took with the GIO32 bus.

The bus master continues to transfer data until the byte count is satisfied. The bus slave also keeps track of the number of
bytes that have been transferred so that the last write will be handled correctly if it isapartial word transfer. At the end of
the transfer the master drives READ high. Two cycles after the slave receives the last piece of datait drives SLVDLY high
and in the following cycle tristates the SLVDLY signal. The bus master will tristate the AD, READ, AS, and MASDLY
signalstwo cycles after the last piece of datais transferred if it does not have another transfer to execute. The master does
not haveto drivethe MASDLY and READ signals high before tristating them. If it does have another transfer it can drive
the address in the cycle immediately following the last piece of data.

If atransfer is preempted, the byte count will not be zero when the READ signal is driven high by the bus master. The
dave needs to monitor the READ signal and not just the remaining byte count, so that it can tell if atransfer has been
preempted. The bus master must keep all of the information that is necessary to restart the transfer where it left off. This
includes the slave data address. Below are some examples of GIO32-bis writes.

ad ------- <ADRX BC X DO XADRX BC X DO X D1 >— ------- -------
gt 10 S A WV s T

read :

masdly :

slvdly :

as n:

read :

masdly :

slvdly :

Figure 3-2. GIO32-bis Write, Slave Stall

3-2

6 May 1992 Gl0O32-bis Specification

I SGI CONFIDENTIAL s GIlO32-bis Bus Transfers

ad;- ------- (ADRXBCXXXXXDOXDIXXXD2XD3>— ------- e
sni N/ bbb
i 10 S N N N S N U s g
masdly: o f TN ¢/ N\ [i
slvaly{ PN P b bbb

Figure 3-3. GIO32-bis Write, Master Stalls

3.3.2 GIlO32-bis Bus Reads

Gl0O32-bisbusreads are alot like GIO32-bis bus writes except that the slave is sending the data over the businstead of the
master. Notice that the READ signal is used to indicate that a bus cycleisin progress after the slave address cycle, by
being deasserted for the rest of the transfer. Since the slave is sending the data, the SLVDLY signal is used to indicate that
thereisvalid data on the bus and the MASDLY signal is used to indicate to the slave that the master can accept datain the
next cycle. Notethat thisis different from the GIO32 businthat MASDLY issent one cycle earlier. The slave must tristate
the AD bus signalsin the cycle after the last piece of dataistransferred. The slave must drive the SLVDLY signal highin
the cycle after the last piece of dataistransferred and then tristateit in the following cycle. The master will tristatethe AS,
READ, and MASDLY signals three cycles after the last piece of data has been transferred if it does not have another
transfer to execute. If it does have another transfer to do it can drive the address two cycles after the last piece of data has
been transferred. Some examples of G064 reads are shown below.

It isimportant that the slave does not wait for MASDLY to be deasserted before it drives the read data and deasserts
SLVDLY, or that once the slave has deasserted SLVDLY and driven the read data, that it does not stop driving it, even if it
asserted SLVDLY until the cycle after the master deasserts MASDLY. Figure 3-6 shows this condition.

Figure 3-4. Simple GIO32-bis Read

Gl0O32-bis Specification 6 May 1992

3-3

GlO32-bis Bus Transfers I SGI CONFIDENTIAL - s

Figure 3-5. GlO32-bis Read, Slave Delay

DEO XD1>

read \

masdly :

Slley _\

Figure 3-6. GI0O32-bis Read, Master Delay

3.3.3 GIO32-bis Preemption

When a GIO32-bis device gets preempted, the master drives the READ signal high to indicate an end of the transfer. For
Gl O32-bis writes, the bus master aso stops driving dataand MASDLY in the same cycle asit stops driving READ.

Gl 0O32-bisreads are preempted in basically the same way, except that the slave may continue driving datain the cycle that
the master drives the READ and MASDLY signals high. The data that the dave sendsin the cycle that READ is driven
high is not accepted. The bus master must tristate all of the signalsit isdriving in the cycle after READ isdriven high. The
slave must drive SLVDLY high in the cycle after READ isdriven high and tristate it in the following cycle. Different
preemption cases are shown below.

N N
readg """ \ : : : /—\ : : : : e

e IR SN o U U RN o
g O Dy G W

D1 is transferred. D3 is transferred, D4 is not transferred.

Figure 3-7. Preempted GlIO32-bis Write, Slave Stall

3-4 6 May 1992 Gl0O32-bis Specification

I SGI CONFIDENTIAL s

GIlO32-bis Bus Transfers

cena \/_

masdly :

slvdly:

D1 is transferred.

Figure 3-8. Preempted GIO32-bis Write, Master Stall

D2 1is not transferred.

read :
masdly :

slvdly :

Figure 3-9. Preempted GIO32-his Reads, Slave Stall

D2 is not transferred.

Figure 3-10. Preempted GlIO32-bis Reads, Mater Stall

D3 1is not transferred.

Gl0O32-bis Specification

6 May 1992

3-5

GlO32-bis Bus Transfers

s SGI CONFIDENTIAL s

This page has been left blank intentionally.

6 May 1992

Gl0O32-bis Specification

Chapter 4
GIO Bus 64

4.1 Introduction

The GIO64 bus is a 64-hit, synchronous, multiplexed address-data bus that can run at speeds up to 40 MHz. The bus
supports both 32- and 64-bit GIO64 devices. This busis used to connect high speed devices to main memory. It is also
possible for the CPU to issue reads and writes to G064 devices.

The maximum bandwidth of this busis 320 MBytes/second for burst transfers running at 40 MHz.

There are two different forms of the GIO64 bus. The first form is the busthat islocal to system memory. This form will
just be referred to as the GI064 bus or the nonpipelined GI064 bus. The second form of the busis a pipelined version of
the GIO64 bus. Thisform of the busis used by devices that plug into GIO64 dlots, like graphics. Thereis abidirectional
pipeline register between the GIO64 bus that connects to main memory and the devicesin the GIO64 slots. This second
form of GIO64 will always be referred to as pipelined Gl 064 bus. The two forms of the bus are basically the same except
that the handshaking signals are different on the two different forms of the bus.

4.2 Conventions Used in this Chapter

4.2.1 Byte Addressing

The GIO64 bus uses a 32 bit byte address. This can be abig or little endian address. One of the control bitsindicates the
endianess of the bus. The busitself does not do anything different for big or little endian transfers, but the devices that are
on the bus need to know if the datais big or little endian data so that they can interpret the address and byte count
correctly.

For devicesthat cannot switch between big and little endian mode the software will be responsible for fixing the data if it
is necessary. Transfers that are not word aligned between 32 bit devices will not work if the two devices are running in a
different endian modes. The same istrue for 64 bit devicesthat are transferring data that is not double word aligned. In
both cases the wrong data is written since the address of the bytes are different.

For abig endian 32 bit transfer, byte 0 is bits (31:24), byte 1 is bits (23:16), byte 2 is bits (15:8), and byte 3 is bits (7:0).
For a big endian 64 bit transfer, byte 0 is bits (63:56), byte 1 is bits (55:48), byte 2 is bits (47:40), byte 3 is bits (39:32),
byte 4 is bits (31:24), byte 5 is bits (23:16), byte 6 is bits (15:8), and byte 7 is bits (7:0). Little-endian is just the opposite
so for a32 bit transfer, byte 0 isbits (7:0), byte 1 isbits (15:8), byte 2 is bits (23:16), and byte 3 isbits (31:24). For a 64 bit
little endian transfer, byte 0 is bits (7:0), byte 1 is bits (15:8), byte 2 is bits (23:16), byte 3 is bits (31:24), byte 4 is bits
(39:32), byte 5is bits (47:40), byte 6 is bits(55:48), and byte 7 is bits (63:56).

The bit numbering scheme is always little-endian, so that bit zero is aways the least significant bit and bit 63 is the most
significant bit.

The following tables show byte addressing for the big and little endian modes.

GIO Bus 64 6 May 1992

4-1

Conventions Used in this Chapter I SGI CONFIDENTIAL - s
TABLE 3 Big Endian Words: addresses of bytes.
BITS 3l 24 23 16 15.......... 8 T, 0
Word Address
8 8 9 10 1
4 4 5 6 7
0 0 1 2 3
TABLE 4 Big Endian Double Words: addresses of bytes.
BITS 63...56 | 55...48 | 47...40 | 39...32 | 31...24 | 23...16 | 15...8 | 7...0
Word Address
16 16 17 18 19 20 21 22 23
8 8 9 10 1 12 13 14 15
0 0 1 2 3 4 5 6 7
TABLE 5 Little Endian Words: addresses of bytes.
BITS 3l 24 23 16 15.......... 8 T 0
Word Address
8 1 10 9 8
4 7 6 5 4
0 3 2 1 0
TABLE 6 Little Endian Double Words: addresses of bytes.
BITS 63...56 | 55...48 | 47...40 | 39...32 | 31...24 | 23...16 | 15...8 | 7...0
Word Address
18 23 22 21 20 19 18 17 16
8 15 14 13 12 1 10 9 8
0 7 6 5 4 3 2 1 0
4-2 6 May 1992 GIO Bus 64

N SGI CONFIDENTIAL - s GlO64 Bus Signals

4.2.2 Waveform Conventions

There are many waveform diagrams in this document so it is important to interpret them correctly. The dotted lines
represent asignal that has been tristated. A box with “ADR” in it isan address, “BC” isbyte count, “D0”, “D1" ..., isa
data element, and “ X" represents invalid data, but not tristate.

4.3 GIlO64 Bus Signals

4.3.1 Non-pipelined Bus Signals

The GIO64 bus has 64 address/data signals AD<63:0>, 8 byte parity signals ADP<7:0>, avalid parity signa
VLD_PARITY, and four basic control lines. These control linesinclude address strobe AS, read READ, master delay
MASDLY, and slave delay SLVDLY. In addition to the above, there are bus request BREQ(n) and bus grant BGNT(n)
signals for each bus master. For long burst devicesthereis a preempt signal called BPRE. Sixty-four bit bus slaves also
need to get asignal called GSIZE64, which indicates the size of the current bus master.

AD<63:0>: These signals are the multiplexed slave address and data lines. During slave address cycles AD(31:0) will
contain the slave address for the bus transaction. The next cycle in a transaction, the byte count cycle, uses AD(31:0) to
indicate the number of bytes to transfer, the endian mode of the transfer, the device id of the device being accessed, DMA
count direction (for decrementing DMA), subblock ordering (CPU cache misses), and the starting byte address. During
dave address and byte count cycles parity should be checked across AD(31:0) if VLD_PARITY isasserted. The top 32
bits of the address/data bus are never used during slave address and byte count cycles so parity should not be checked
across these bitseven if VLD_PARITY isasserted. During data cycles parity should be checked across AD(31:0) for 32
bit transfers and AD(63:0) for 64 bit transfersif VLD_PARITY is asserted. For a 32 bit device all 4 bytes of the bus
should be driven with correct parity if VLD _PARITY is asserted even for single byte transfers. Likewise, for 64 bit
transfers, al 8 bytes should be driven with correct parity if VLD_PARITY is asserted.

ADP(7:0): Even byte parity is used across the address/data bus. Parity should be checked if VLD_PARITY is asserted
with the data on the bus. ADP(0) is the parity bit for AD(7:0), ADP(1) covers AD(15:8), etc. These signals can be driven
by the bus master during slave address, byte count, and write data cycles. They can be driven by the addressed bus slave
during read cycles. During slave address cycles, byte count cycles and 32 bit transfers, ADP(7:4) are unused. If
VLD_PARITY isnot asserted then ADP(7:0) are undefined.

VLD_PARITY: Thissigna indicates that valid parity is being driven on the bus. This signal will be asserted in the same
cycle asthereis data on the bus. Devices that are receiving addresses or data should check parity if VLD_PARITY is
asserted. Thissignal is pulled up on the board so if a device does not generate parity it does not have to drive the
VLD_PARITY signal. Thissignal isdriven by the bus master during slave address, byte count, and write datacycles. Itis
driven by the addressed bus slave during read cycles. It is strongly encouraged that all GIO64 devices should generate and
check parity. Parity should not be checked on data from bus cycles where no data was transferred, as determined by the
state of MASDLY or SLVDLY. The dlave or master that isdriving thissignal must driveit high beforethey tristateit in the
cycle after they are finished driving the AD signals.

AS: The address strobe is asserted whenever there is a slave address cycle on the bus. All devices on the bus should flop
the address that is being driven on the busto determine if they are the device that is being addressed. The byte count cycle
is aways the next cycle after the dave address cycle. The address strobe is only asserted during the slave address cycle.
This signal should only be driven by a bus master that owns the GI0O64 bus.

READ: The READ signal serves two purposes. During the slave address cycle the READ signal is used asits name
impliesto indicate that thisis aread transaction, (the bus master will be receiving data). After the slave address cycle, the
READ signal isdriven low to indicate that a active bus cycle istaking place. When atransaction is preempted the READ
signal isdriven high to indicate to the dave that the transaction has been preempted. This signal should only be driven by
abus master that owns the GIO64 bus.

MASDLY: The master delay signal, MASDLY, isused by the bus master to throttle the data transfer rate. The state of the
MASDLY signal does not affect the slave address or byte count cycles. This signal has two different meanings for read
and write transactions. For aread transaction, when MASDLY is asserted it indicates that the bus master cannot receive

GIO Bus 64 6 May 1992 4-3

GIO64 Bus Signals s SGI CONFIDENTIAL s

datain the next cycle. During write transactions, when the MASDLY signal is asserted it indicates that the data currently
on the busisinvalid. Only a bus master that owns the G064 bus should drive the MASDLY signal.

SLVDLY: The dlave delay signal, SLVDLY, isused by the addressed bus slave to throttle the data transfer rate. This signal
has no effect on the address or byte count cycles. Like MASDLY, thissignal has different meanings for reads and writes.
When SLVDLY is asserted during a bus reads, it indicates that the data on the busisinvalid. For bus writes, thissignal is
asserted when the slave cannot accept datain the next cycle. Thissignal is pulled high on the board so that during the byte
count cycleit will be asserted, but it must be driven high by the slave when a transfer is finished, before the slave can
tristates this signal. Only the addressed slave device should drive this signal.

BREQ(n): There is aunique bus request for every bus master in the system. To request the bus the bus master asserts its
bus request signal. The bus master must keeps its bus request signal asserted until it is finished using the bus. Once a bus
master has asserted its bus request signal it is not allowed to take it away until it has been granted the bus, even it the
device decides it does not need the bus. When a devices that owns the bus has been preempted, it must deassert its bus
request signal to indicate that it is off the bus. A preempted device cannot assert its bus request signal until the preemption
signal has been deasserted. A bus master must still accept requests from other bus masters even if it is requesting the bus.
If it does not do this, transfers to the device that is requesting the bus will time-out and will not be completed.

BGNT(n): Thereis aunique bus grant signal for each bus master on the GIO64 bus. The bus grant signal is used to
indicate to a G1O64 master that it owns the bus. The grant signal will be asserted aslong as the device asserts its bus
request signal, BREQ(n), indicating that it owns the GIO64 bus. When a device is preempted the bus grant signal will not
be deasserted until the device deassertsits bus request signal. Thissignal is driven by the GIO64 arbiter.

BPRE: The bus preempt signal is asserted by the GIO64 arbiter to preempt the current bus transaction. Once the preempt
signal is asserted, a device must get off the buswithin 4 GIO64 clock cycles, and deassert its BREQ(n) signal. Thissignal
isdriven by the GIO64 arbiter.

GSIZE64: The GSIZE64 signal is driven by the GIO64 arbiter to indicate to 64 bit GIO64 slaves the size of the bus
master. A 64 bit G10O64 slave must be able to accept transactions from 32 or 64 bit bus masters. It is the responsibility of
64 bit G1064 bus masters to know if the slave they are addressing isa 32 or 64 bit slave. If it isa 32 bit slave then
obviously a 32 hit transfer will take place. This should not be a problem since most bus masters will only have to know if
the memory interface is 32 or 64 bits.

4.3.2 Pipelined GIO64 Bus Signals

Pipelined GIO64 devices, like graphics devices, have the same basic signal s as the nonpipelined GIO64 bus, but are
advanced or delayed by one cycle. Thereis a 64 bit address/data bus P_AD(63:0), 8 byte parity signalsP_ADP(7:0), a
valid parity signal P_VLD_PARITY, and 4 basic control signals: address strobe P_AS, READ or write P_ READ, aslot
specific G1064 slot device to memory/CPU handshake signal GRXDLY (n), and a memory/CPU to G064 slot handshake
signal MEMDLY, which isflopped MASDLY, although the meaning of the signal is different. Unlike the nonpipelined
G064 busthe MEMDLY signal is always used by the CPU or memory to throttle data to and from the pipelined GIO64
device. The GRXDLY (n) signal is aways used by the pipelined GIO64 device to throttle transferswhen it is a bus master
or bus slave. In addition to the above basic control signals there are bus request BREQ(n) and bus grant BGNT (n) signals
for each GIO64 dlot. For long burst devicesthereisapreempt signal called P_BPRE. Sixty-four bit bus slaves also need to
get asignal called P_GSIZE64, which indicates the size of the master.

P_AD(63:0): These signals are the multiplexed address and data lines. Their function is the same as AD(63:0) signals.
Theonly difference between AD(63:0) and P_AD(63:0) isthat thereisabidirectional registered transceiver between these
signals. When a pipelined GIO64 deviceis driving the bus the AD(63:0) signals will be delayed by one clock from the
P_AD(63:0). When a nonpipelined GIO64 device is driving the bus, P_AD(63:0) will be delayed by one clock cycle.

P_ADP(7:0): Even byte parity isused for the P_AD(63:0) signas. TheP_VLD_PARITY signd indicatesif valid parity is
being driven. These signal function just like P_ADP(7:0) on the nonpipelined form of the bus.

P_VLD_PARITY: Thissignal indicatesthat valid parity is being driven on the bus. It has the same function as the
VLD_PARITY signal on the nonpipelined GIO64 bus.

P_AS: The pipelined GI064 address strobe is asserted whenever there is an slave address cycle on the bus. All deviceson
the bus should flop the address that is being driven on the bus to determine if they are the device that is being addressed.
The byte count cycle is aways the next cycle after the slave address cycle. The address strobe is only asserted during the
dave address cycle. Thissignal should only be driven by a bus master that owns the GIO64 bus.

4-4 6 May 1992 GIO Bus 64

N SGI CONFIDENTIAL - s GlO64 Bus Signals

P_READ: The P_READ signal serves the same function as the READ signal on the nonpipelined G064 bus.

GRXDLY (n): The graphics delay signal isaunique signal for each G064 slot that is used by pipelined GIO64 devicesto
throttle the data transfer. Unlike the nonpipelined G1O64 bus, the GRXDLY (n) is always driven by the pipelined GIO64
device for reads and writes, and when the device is the bus master or slave. Since thisis a dot specific pin the device can
always drive it. To make transfers faster to a G10O64 device the device can deassert GRXDLY (n) all of the time except
when it is not capable of accepting another transfer. This makes it possible for the memory or the CPU to issue the
following sequence of GIO64 bus cycles: slave address, byte count, data, slave address, byte count, data, etc. If the
GRXDLY (n) signal is only deasserted after a device has decoded the address then the bus sequence would be: slave
address, byte count, stall, stall, data, dave address, byte count, stall, stall, data, etc. There is some very important
differences between the meaning of nonpipelined GIO64 flow control signals (MASDLY and SLVDLY) and their
pipelined GIO64 counterparts. When a pipelined GIO64 deviceis driving the bus, the GRXDLY (n) signal is used to
indicate that valid datais on the bus. When a nonpipelined device issues aread to a pipelined GIO64 device, thereis one
dead cycle after the byte count, on the pipelined side, when data will not be returned and GRXDLY (n) will not be
asserted. After that, either GRXDLY (n) will be asserted or valid data will be driven on the bus. For writesto a pipelined
Gl 064 device, the GRXDLY (n) signal will be asserted when the device cannot accept data in two clocks. Therefore the
device must accept the data that is on the busin the current cycle and in the next cycle.

MEMDLY: Thisisaflopped version of the MASDLY signal except that its meaning is different when atransaction with a
pipelined GIO64 deviceistaking place. Thissignal isused by the CPU or memory to throttle a pipelined G1O64 device, in
master or slave mode. When data is being sent to a pipelined GIO64 device this signal is deasserted in the same cycle as
the data to indicate that the current datais valid. When data is being sent by the pipelined GIO64 device this signal
indicates that data cannot be accepted in the next cycle.

BREQ(n): Thereis unique a bus request for every bus master in the system. The bus requests function the same on the
nonpipelined or pipelined side of the GIO64 bus.

BGNT(n): There isunique abus grant signal for each bus master on the GI0O64 bus. These function the same on the
pipelined or nonpipelined side of the GIO64 bus.

P_BPRE: The P_BPRE signal isathe BPRE signal flopped once.
P_GSIZE64: The P_GSIZE64 signal is aflopped version of GSIZE64 signal.
RESET: Thisisasynchronous RESET signal for GIO64 devices.

DMASYNC(n): Thissignal is used by the DMA master to synchronize a DMA transfer to adevice. Thisisuseful for
graphics devices where aDMA may have to be synchronized with vertical retrace.

Gl064_CLK(n): The positive G064 bus clock. All bus signals are clocked on the rising edge of this clock signal. Thisis
an ECL signal.

GI064_CLK(n): The negative GI0O64 bus clock. All bus signals are clocked on the falling edge of this clock signal. This
isan ECL signal.

Gl064_CLK?2(n): The positive, ECL, double frequency GIO64 bus clock.
GIO64_CLK?2(n): The positive, ECL, double frequency GIO64 bus clock.

INTERRUPT(n)(2:0): There arethreeinterrupt lines per slot that can be used to interrupt the CPU or the CPU can read the
status of these lines.

STATUS(n): Thereis one status line per slot that the CPU can read.

GI1064_SPEED(1:0): The speed of the GIO64_CLK(n) isindicated/determined by these bits. These are bidirectional
signalsthat are driven by each G064 device. The signals are pulled high with aresister on the system board. Each GIO64
device should pull the lines to indicate the fastest speed the card can run. The GIO64 devices should not pull the lines
high. The GIO64 devices can use these signals as inputs to determine at what speed the busis running. These bits are
encoded as follows:

00 25 MHz GIO64 CLK, 50 MHz GIO64_CLK2
01 33MHz GIO64 CLK, 66 MHz GIO64 _CLK2
10 Reserved

GIO Bus 64 6 May 1992 4-5

GIO64 Bus Transfers s SGI CONFIDENTIAL s

11 40 MHz GIO64_CLK, 80 MHz GI0O64_CLK2

SLOT_NUMBER(3:0): The slot number isused by a Gl064 board to determineits board address. A Gl 064 board address
is constructed as follows:

board_address(31:26) = “000111"
board_address(25:22) = SLOT_NUMBER
board address(21:0) = offset from base address

Each slot is four megabytes and a GIO64 card can occupy more than one slot if the slots it uses are not used on that
machine. A machine does not have to implement all 16 slots and may scatter the slots out in the address space so that each
physical slot can use more than four Mbytes of address space.

Gl 064 cards that do not use the slot number to determine the base address of the card must beinstalled in the same slot as
its base address(25:22). For example if a card’s address space is 0x1f000000 to Ox1f 7ffffff this card must be plugged into
dlot Oxc and also uses the address space of slot 0xd. Nonpipelined GIO64 device may a so use some of the slots.

4.4 GlO64 Bus Transfers

There are three different kinds of cycles on the GIO64 bus. Thefirst cycle of every transaction is a slave address cycle.
The second cycleis the byte count cycle. The byte count is followed by one or more data cycles.

In the slave address cycle, the bus master sends the slave address out on AD(31:0) or P_AD(31:0), and the address strobe
ASor P_ASisasserted. If thisis aread operation then the READ or P_READ signal is asserted and, for awriteit is
deasserted. If the bus master is driving parity it is sent on ADP(3:0) or P_ADP(3:0) and VLD_PARITY or
P_VLD_PARITY is asserted.

In the following cycle, the byte count, the DMA direction, (up or down), device identification, subblock ordering, endian
mode, and the starting byte address are sent over AD(31:0). The format for this second cycleis asfollows:

TABLE 7 Format for AD Signal during Second Cycle
Bit Field

15:0 Byte Count

19:15 Reserved

25:20 Device Ildentification
26 DMA Count Direction Down
27 CPU Subblock Ordering
28 Little Endian Transfer
29 Starting Byte(2)

31:30 Starting Byte(1:0)

63:32 Unused

The byte count is the number of bytesto transfer. The byte count and slave address determine alignment of the beginning
and end of the transfer. This allows any byte alignment for the beginning and end of the transfer. A transaction must not
cross a processor virtual page boundary or aDRAM page boundary. A pageis 4K bytes for the R3000 and 4K bytesto

4-6 6 May 1992 GIO Bus 64

N SGI CONFIDENTIAL - s Gl0O64 Bus Transfers

16M bytes for the R4000. The size of aDRAM page depends on the memory system of the machine and the smallest size
DRAMsthat it supports.

The DMA count direction down bit is asserted if the DMA slave should use decrementing addresses. This means the
address that was sent to the slave during the slave address cycle should be decremented instead of incremented at the end
of each data cycle. The direction bit is also used to determine which bytes get read or written in an unaligned transfer. If
the DMA direction is down then bytes less than and equal to the slave address are being transferred, otherwise bytes
greater than and equal to the slave address are being transferred.

The starting byte address is the three least significant bits of the master byte address. This addressisin the same endian
mode as the slave address, which isindicated by the endian bit in the byte count cycle. For transfers that are aligned
starting byte address bits match the dlave address bits (2:0). If the transfer is unaligned then it is up to the device
transferring data to or from memory to align the data correctly using these bits. Thirty-two bit devices only use starting
byte bits zero and one. The starting byte address bits only have to be driven by the main memory system DMA master, but
they must be received by all DMA slavesthat support unaligned transfers. All DMA masters, except for the main memory
DMA master, do not have to drive the starting byte address since the data on the bus must be aligned to main memory.

For example, an unaligned little endian DMA read from a 32 bit devices to main memory, when the slave address is 0x2,
the byte count is 0x3, the DMA direction is up, and the main memory address, master address, is 0x1 so the starting byte
bits are 0x1, then the slave would have to read from byte addresses 0x2-0x4 and drive that data on the bus with the byte
from slave address 0x2 on AD(15:8) or P_AD(15:8) and the rest of the bytes are packed in the same word. This example
is shown below:

Not all devices have to support unaligned transfers. There is a software restriction on devices that do not support
unaligned transfers however since datathat isto be read from memory or written into memory must be aligned to memory
on the G064 bus.

Thelittle endian bit in the byte count is used to indicate if the slave address and starting byte address should be interpreted
asabig or little endian address. Thissignal is asserted, high, for alittle endian transfer.

The subblock ordering bit will be set if the transfer is for servicing a CPU cache miss. If a device does not support this
mode then data from that device cannot be directly cached. Thisisreally for caching the boot ROM. The address that is
sent for a subblock order request will be the address of the first piece of datathat isto be returned not the starting address
of the block of data. The byte count will indicate the size of the block of data. The address sequence can be generated by
XORing a count of the bytes transferred with the starting slave address. For example aread from a 32 bit device with the
dave address 0x14 and a byte count of 64, the data that would be transferred is as follows:

Cycle Start Address | Count Address of
Word Trans-
ferred

1 0x14 0x0 0x14
2 0x14 0x4 0x10
3 0x14 0x8 Oxlc
4 0x14 Oxc 0x18
5 0x14 0x10 0x04
6 0x14 0x14 0x00
7 0x14 0x18 0x0c
8 0x14 Oxlc 0x08
9 0x14 0x20 0x34
10 0x14 0x24 0x30
1 0x14 0x28 0x3c

GIO Bus 64 6 May 1992 4-7

GlO64 Bus Transfers

s SGI CONFIDENTIAL

Cycle Start Address | Count Address of
Word Trans-
ferred

12 0x14 0x2c 0x38
13 0x14 0x30 0x24
14 0x14 0x34 0x20
15 0x14 0x38 0x2c
16 0x14 0x3c 0x28

For aread from a 64 bit device with the dlave address of 0x14 and a byte count of 64, the data that would be transferred is

as follows:

Cycle StartAddress | Count Address of

Double Word
Transferred

1 0x14 0x0 0x10

2 0x14 0x8 0x18

3 0x14 0x10 0x0

4 0x14 0x18 0x8

5 0x14 0x20 0x30

6 0x14 0x28 0x38

7 0x14 0x30 0x20

8 0x14 0x38 0x28

Thelast field in the byte count cycleis the device identification field. This can be used by multiprocessor systemsto
maintain cache coherency. Each device on the bus will have a unique device identification so the cache coherency
hardware will know the destination or source of the data on the GI0O64 bus. Each new G064 device will need a new
deviceid. The current list of deviceidentifiersis asfollows:

ID Device
0 CPU R/W
15-1 I/O Devices (HPC)
16 Graphics Head 0
17 Graphics Head 1
18 Token Ring Card
19 FDDI Card
20 Professional Audio
31-21 Reserved
47-32 EISA Bus 0

6 May 1992

GIO Bus 64

N SGI CONFIDENTIAL - s Gl0O64 Bus Transfers

ID Device

63-48 EISABus 1

Even though the GIO64 busis a 64 hit bus, the slave address and byte count cycles will always take two cycles instead of
one 64 bit cycle. This part of the transfer is the same for 32 and 64 bit devices. The address strobe signal is not activein
the byte count cycle. The meaning of the READ and P_READ changes to indicate an active bus cycle after the dlave
address cycle. During the slave address cycle the READ or P_READ signal indicates the direction of the data transfer. At
all other times when the READ and P_READ signals are deasserted, low, they indicate that the busis busy. Thissignal is
used to indicate a bus preemption or end of the data transfer when it is driven high.

During the slave address and byte count cycles and 32 bit data transfer cycles, the high bits of the address/data bus,
AD(63:32) and P_AD(63:32) are undefined, and so parity should not be checked on these hits. Parity on AD(31:0) and
P_AD(31:0) should be generated and checked during the slave address and byte count cycles. The parity for AD(7:0) is
ADP(0), AD(15:8) is ADP(1) etc., likewise for the pipelined address/data bus and parity bits.

The dlave address and byte count cycles are followed by some number of data cycles. The number of data cycles depends
on the byte count, size of the transfer (32 or 64 bits), preemption, and flow control signals. The slave address and byte
count cycles are the same for the nonpipelined and pipelined GIO64 bus. Data cycles are different for the nonpipelined
and pipelined G064 bus. To avoid confusion the following sections will describe transfers between devices on the
nonpipelined GIO64 bus, and then transfers between the CPU or main memory and a pipelined GIO64 device. Note that
the only transfers that are supported for pipelined GIO64 devices is between the device and main memory or the CPU.
Pipelined GI0O64 devices cannot communicate via the GIO64 bus due to the nature of the pipelined GIO64 flow control
signals.

4.4.1 Nonpipelined GIO64 Bus Transfers

There aretwo signals, MASDLY and SLVDLY that are used to throttle the data transfer rate on the nonpipelined GI064
bus. The bus master drivesMASDLY and the slave drives SLVDLY. These signals are used to indicate that valid datais on
the bus by the device that is driving data. These signals are also used to throttle the data by the receiving device. Pipelined
Gl 064 devices, like graphics, use adifferent set of lines called GRXDLY (n) and MEMDLY.

4.4.1.1 Non-pipelined GIO64 Bus Writes

GI064 bus writes start with aslave address and byte count cycle. The READ signal will be deasserted in the slave address
cycle to indicate that thisisawrite cycle. After the slave address cycle, the READ signal is used to indicate that a bus
cycleisin progress and will remain low for the rest of the transfer.

After the third cycle, data can be transferred. During awrite, the bus master will drive data out onto the bus and drive
MASDLY low to indicate that valid data is on the bus. The master looks at the SLVDLY signal that was sent the cycle
before to determine if the slave can accept the data. If the SLVDLY signal was not low in the previous cycle, the master
must redrive the current datauntil SLVDLY islow in the previous cycle. Thisis achange from the GIO32 busin that the
SLVDLY signal isflopped and used in the next cyclesinstead of being used in the cycleit is on the bus. This changeis
necessary so that the SLVDLY signal can be directly registered before any gating takes place. This provides one whole
cycle for the signal propagation between chips and one whole cycle for on-chip gating. The GIO32 bus scheme works at
33 MHz, but at higher speeds it becomes very difficult to get the timing to work. The bus master can continue to transfer
new data every cyclethat SLVDLY from the previous cycleislow. If SLVDLY was not low then the current data must be
driven until SLVDLY is deasserted in the previous cycle. The master can throttle the transfer by driving MASDLY high
during a cycle that it does not have new data to transfer. Note that this remains the same as GIO32 and is not sent one
cycle early like SLVDLY.

Since SLVDLY isbeing sent for the next cycle, it will take an extra cycle for all complete transfers, (not one cycle per
word). A oneword write will take at least four cycles. Thisis one more cycle then it took with the GIO32 bus.

The position of bytes on the bus varies with the size of the transfer and if the machineisrunning in big or little endian
mode. Figure 4-1 shows the position of bytes for different size transfers (32 or 64 bits wide) and for big and little endian
mode transfers.

GIO Bus 64 6 May 1992 4-9

GIO64 Bus Transfers s SGI CONFIDENTIAL s

32-bit Transfers 64-bit Transfers
63 31 0 63 0
Llttle Endian undefined 3 2 1 0 7 6 5 4 3 2 1 0
63 31 0 63 0
Big Endian undefined 0o 1 2 3 0 1 2 3 4 5 6 7

Figure 4-1. Byte Order for Big and Little Endian Transfers

The bus master continues to transfer data until the byte count is satisfied. The bus slave also keeps track of the number of
bytes that have been transferred so that the last write will be handled correctly if it isapartial word or partial double word
transfer. At the end of the transfer the master drives READ high. Two cycles after the slave receives the last piece of data
it drives SLVDLY high and in the following cycle tristates the SLVDLY signal. The bus master will tristate the AD,
READ, AS, and MASDLY signalstwo cycles after the last piece of datais transferred if it does not have another transfer
to execute. The master does not have to drive the MASDLY and READ signals high before tristating them. If it does have
another transfer it can drive the address in the cycle immediately following the last piece of data.

If atransfer is preempted, the byte count will not be zero when the READ signal is driven high by the bus master. The
slave needs to monitor the READ signal and not just the remaining byte count, so that it can tell if atransfer has been
preempted. The bus master must keep all of the information that is necessary to restart the transfer where it left off. This
includes the slave data address. Below are some examples of nonpipelined GIO64 writes.

ad ------- ;(ADR);(BC X DEO XADRX BC X DEO X D1 >— ------- -------
gt 100 o A D = A I I O

read :

masdly :

slvdly :

as n:

read :

masdly :

slvdly :

Figure 4-3. GIO64 Write, Slave Stall

4-10 6 May 1992 GIO Bus 64

N SGI CONFIDENTIAL - s Gl0O64 Bus Transfers

TIE) € B9 €5 €3 G5 G €2 ©2 e s
sni N/ bbb
peed N 0 2

oy T\
SRZIDE RN S S S A S N A N S

Figure 4-4. GIO64 Write, Master Stalls

4.41.2 Non-pipelined GIO64 Bus Reads

GI064 busreads are alot like GI0O64 bus writes except that the slave is sending the data over the bus instead of the
master. Notice that the READ signal is used to indicate that a bus cycleisin progress after the slave address cycle, by
being deasserted for the rest of the transfer. Since the slave is sending the data, the SLVDLY signal is used to indicate that
thereisvalid data on the bus and the MASDLY signal is used to indicate to the slave that the master can accept datain the
next cycle. Notethat thisis different from the GIO32 busin that MASDLY issent one cycle earlier. The Slave must tristate
the AD bus signalsin the cycle after the |ast piece of datais transferred. The slave must drive the SLVDLY signal highin
the cycle after the last piece of datais transferred and then tristate in the following cycle. The master will tristate the AS,
READ, and MASDLY signalsthree cycles after the last piece of data has been transferred if it does not have another
transfer to execute. If it does have another transfer to do it can drive the address two cycles after the last piece of data has
been transferred. Some examples of G064 reads are shown below.

It isimportant that the slave does not wait for MASDLY to be deasserted before it drives the read data and deasserts
SLVDLY, or that once the slave has deasserted SLVDLY and driven the read data, that it does not stop driving it, even if it
asserted SLVDLY until the cycle after the master deasserts MASDLY. Figure 4-7 shows this condition.

Figure 4-5. Simple GIO64 Read

GIO Bus 64 6 May 1992 4-11

GIO64 Bus Transfers s SGI CONFIDENTIAL s

readg ?___& E E E E E 2———ﬁ

iy N
slvaly: i N/ N/ < i

Figure 4-6. GlO64 Read, Slave Delay

ENEE S

readé é $

masdly : : : : :
slvdly : C C T\

Figure 4-7. GlO64 Read, Master Delay

4.4.1.3 Non-pipelined GIO64 Preemption

When a GI064 device gets preempted, the master drives the READ signal high to indicate an end of the transfer. For

Gl 064 writes, the bus master also stops driving dataand MASDLY in the same cycle asit stops driving READ. GIO64
reads are preempted in basically the same way, except that the slave may continue driving datain the cycle that the master
drivesthe READ and MASDLY signals high. The data that the slave sendsin the cycle that READ isdriven high is not
accepted. The bus master must tristate all of the signalsitisdriving in the cycle after READ isdriven high. The slave must
drive SLVDLY highin the cycle after READ isdriven high and tristate it in the following cycle. Different preemption
cases are shown below.

SEEE) € GIE T C s S () €5 SIS € ED s
sen: N J 7 0 N T
readi NP f ¢ N ¢ ¢ ¢ [
mesdly: o\ - /N 2 - [
T e T e

D1 is transferred. D3 is transferred, D4 is not transferred.

Figure 4-8. Preempted GIO64 Write, Slave Stall

4-12 6 May 1992 GIO Bus 64

N SGI CONFIDENTIAL - s Gl0O64 Bus Transfers

D1 is transferred.

Figure 4-9. Preempted GIO64 Write, Master Stall

D2 1is not transferred. D3 1is not transferred.

Figure 4-10. Preempted GlO64 Reads, Slave Stall

D2 is not transferred.

Figure 4-11. Preempted GIO64 Reads, Mater Stall

4.4.2 Pipelined GIO64 Transfers

Pipelined transfers are structured just like the nonpipelined transfersin that there is 3 different kinds of cycles: slave
address, byte count, and data. The slave address and byte count cycles are identical to the nonpipelined slave address and
byte count cycles. The data cycles use different flow control signals, but otherwise are the same as the nonpipelined data
cycles. There are two flow control signals on the pipelined bus, MEMDLY and aslot specific GRXDLY (n) signal. Unlike
the nonpipelined bus, GRXDLY (n) is always driven by the pipelined GIO64 device and MEMDLY is aways driven by
the memory system or the CPU.

The flow control signalswill change meaning for reads and writes depending on whether memory or the pipelined GIO64
deviceisthe bus master. It may appear that there are 4 different combinations and 4 meanings to the control signals, but

GIO Bus 64 6 May 1992 4-13

GIO64 Bus Transfers s SGI CONFIDENTIAL s

really there are only 2 different meanings to the control signals depending on what device is driving data, the memory or
pipelined GIO64 device.

The MASDLY signa gets flopped and becomes MEMDLY on the pipelined side of the bus. The memory master aways
uses MASDLY asits flow control signal even when it isaslave to apipelined device.

4421 Pipelined GIO64 Writes

Pipelined GIO64 writes begin just like the nonpipelined G10O64 writes with a slave address cycle and a byte count cycle.
The P_READ signal is deasserted during the slave address cycle to indicate awrite and then remains deasserted for the
remainder of the transfer to indicate a bus transfer isin progress.

When the CPU or memory is the bus master, the MEMDLY signal isused to indicate that there is valid data on the bus. It
will be deasserted in the same cycle that the datais valid. The GRXDLY (n) signal is used to indicate that the GIO64
device cannot accept data two cycles from now. The GRXDLY (n) signals becomes F_GRXDLY (n) on the nonpipelined
side of the G064 bus. On the nonpipelined side of the GIO64 bus, the F_GRXDLY (n) signal indicates that the data
currently on the bus cannot be accepted in this cycle and should be redriven in the next cycle.

When the pipelined GIO64 device is the bus master, the GRXDLY (n) signal is deasserted in cycles that the device puts
valid data on the bus. The MEMDLY signal is used to indicate that the memory system cannot accept data in the next
cycle. The memory system must accept data for three cycles from the time it asserts MASDLY. The memory system may
deassert MEMDLY when a pipelined GIO64 device has the bus so that the pipelined device does not have to wait for the
memory system to decode the address before deasserting MEMDLY.

Unlike the nonpipelined side of the G064 bus the pipelined GIO64 device always drives the GRXDLY (n) signal and
never tristatesit. The master will tristate AS or P_AS, READ or P_READ, and AD or P_AD signalsin the cycle after the
last piece of datais transferred.

Some examples of pipelined GIO64 writes are show below.

THER O € C €9 €3 €3 €5 G T S Ries s
sni N/
N
masdly: N\ ¢ ¢ /N ¢ ¢ v ¢ b
TS S SN S SN SN S Wty [VO SN SN y—"
p_ad;- ------- ------- <ADRXBCXDOXD1XXXD2XD3X D4 an)— -------
p_as_n;' """" """ _/ s

memaly N\ /N 0 [
VRS0 T T T T e U N R O

Figure 4-12. Pipelined GIO64 Writes, Memory Master

4-14 6 May 1992 GIO Bus 64

N SGI CONFIDENTIAL - s Gl0O64 Bus Transfers

SEEE A)) 6D &3 &3 €D GEND €7 €3 ©) s
s e e = N L O
il N W N HE
masdly: i ¢ ¢ v N v i i E

fgrxdly: i i
p_ad% ------- E(ADR)E(BC)E(X)E(X)E(X)E(DO)E(Dgl ; ; ; s : :
pasniN_ /¢ T ¢ 1 T T
pred N
RS I T T T e W S R T O
grxdly: i i i b i bbb

Figure 4-13. Pipelined GIO64 Writes, Pipelined Device Master

4.4.2.2 Pipelined GIO64 Reads

Pipelined G064 reads are alot like the nonpipelined GI 064 reads, as they both start with a slave address cycle followed
by a byte count cycle and then anumber of data cycles. There are two cases of reads that need to be examined. Thefirst is
when the CPU or memory isthe bus master. The GRXDLY (n) signal is used to indicate that thereis valid data on the bus.
Thereisone dead cycle after the byte count on the pipelined side of the bus, (three dead cycles on the nonpipelined side of
the bus), when datawill not be transferred. The state of GRXDLY (n) during these cycles does not matter. Therefore, if the
pipelined device can return datain the fourth cycle after the byte count GRXDLY (n) does not have to be asserted before
the dataisreturned. Thisis an artifact of pipelined GIO64 write, since the pipelined Gl 064 device can hold GRXDLY (n)
low when thereis not atransfer in progress. Thisis necessary to support three cycles word/double word writesto a
pipelined GI 064 device from the CPU or memory. The MEMDLY signal is used to indicate that the master cannot accept
data from the G064 pipelined device in the next cycle. The GRXDLY (n) and MEMDLY signals function the same,
except for the single dead cycle after the byte count, in this case asin awrite when a G10O64 devices is the bus master.

When a pipelined G064 device is the bus master, the GRXDLY (n) signal indicates that the device cannot accept datain
two cycles. The MEMDLY signal is used to indicate that the data on the busisinvalid during this cycle. There are three
dead cycles, on the pipelined side of the bus, after the byte count cycle when no datawill be transferred even though
MEMDLY may be deasserted during that time. The GRXDLY (n) and MEMDLY signals function the same, except for the
three dead cycles after the byte count, in this case asin awrite when the CPU or memory is the bus master. The master
must tristate the AD or P_AD signals after the byte count cycle. The slave must tristate the AD or P_AD signalsin the
cycle after the last piece of data has been transferred. Some examples of pipelined GIO64 reads are show below.

GIO Bus 64 6 May 1992 4-15

GIO64 Bus Transfers s SGI CONFIDENTIAL s

as n:

read

masdly

f grxdly

Figure 4-14. Pipelined GIO64 Reads, Memory Master

ssnc N/ 0 r
read | TN L i onnn o n s e
N N
f grxdly: : : : : : : : : : : : : : : :
p ad (ADRX BC) (Do);(Dl);(DZ X D3);(m) JU :
pasn: : __/ ¢ T T
=

grxdlyé

Figure 4-15. Pipelined GIO64 Reads, Memory Master

4-16 6 May 1992 GIO Bus 64

N SGI CONFIDENTIAL - s Gl0O64 Bus Transfers

vead! TN
masdlyé : : : : : : Z———&

SN S Wy () N EEN U S
<DOXD1XXXD2X D3 XD4> """"

f grxdly

p_as_n ------ _/ : : : : : : : : :
pread: TN i i ioioi i i
memaly: i i i i i b N i E b
grxdly i i i bbb N

Figure 4-16. Pipelined G1O64 Reads, Pipelined Device Master

4.42.3 Pipelined GIO64 Preemption

Pipelined GI1O64 devices can be preempted just like nonpipelined G064 devices. The preemption isindicated in the same
way by the bus master asserting the READ or P_READ signal. The MEMDLY and GRXDLY (n) signals may or may not
be asserted during a preemption. The major difference between pipelined and nonpipelined preemption isthe bus cyclein
which transfers complete and which cycles have to be retransferred when the device gets the bus again.

There are four different preemption cases that must be handled: reads to memory from a G064 pipelined device, writesto
memory from a GlO64 pipelined device, reads to a pipelined device from memory or the CPU, and writes to a pipelined
device from memory or the CPU.

When awrite from memory to a pipelined device is preempted, the P_READ and MEMDLY signals will be asserted in
the same cycle and no new datais sent to the pipelined devicein that cycle. An example of a preempted pipelined G1O64
write, with memory as the bus master is shown below.

GIO Bus 64 6 May 1992 4-17

GlO64 Bus Transfers I SGI CONFIDENTIAL

I D € O C) = oy € €23 ©3 €0 =
as_ng ------ ? % : : : D \ / : : : : : :

p_ad;- ------- ------- (ADR)(BC)(DO)(M)— ------- (ADRXBCXD2XD3XD4)—
pasn: o N/ ¢ o N\ 1
I T VN B S 2 W SN e
memaly 1 N\ . N b
grxaly | L Lo~

D1 is transferred. D4 is not transferred.

Figure 4-17. Preempted, Pipelined GIO64 Write, Memory Master

When aread from a pipelined Gl 064 device to memory or CPU is preempted the P READ and MEMDLY signals are
asserted in the same cycle, and datais transferred in that cycle. An exampleis shown below.

read :

masdly :

f grxdly :

p_ad:

p_as n:
p_read:

grxdlyé

D3 1is transferred, D4 is not.

Figure 4-18. Preempted, Pipelined GIO64 Read, Memory Master

4-18 6 May 1992 GIO Bus 64

N SGI CONFIDENTIAL - s Gl0O64 Bus Transfers

D2 is transferred, D3 is not.

Figure 4-19. Preempted, Pipelined G1064 Read, Memory Master

When a pipelined device is the bus master and awrite to memory gets preempted P_READ will be asserted and no new
datawill be transferred. An example of a preempted write is shown below.

ad? ;(ADR);(Bc);(Do);(m);_; ;(ADRXBCXDZXD3>;< DE4)
s N N
it A S NS S S A VN S B D
masdly : : : : : : : : Y : : :
p_ad;. ;(ADR);(BC XDO);(Dl >_ ;(ADR);(BC XDz XD3 X DE4)
peen N N
pread: N\ . - - /N o - [
memdly : : : : : : : : : Y : :

grxdlyé

D1 is transferred. D4 is not transferred.

Figure 4-20. Preempted GIO64 Write, Pipelined Device Master

The last preemption case is when a pipelined GIO64 device is the bus master doing a read from memory and gets
preempted. The three cycles after the P_READ signal is deasserted will not be preempted, after the third cycle data will
not be transferred. An exampleis given below.

GIO Bus 64 6 May 1992 4-19

GIO64 Bus Transfers s SGI CONFIDENTIAL s

masdlyé

f_grxdlyé

pasni N/ ... i
p_read, ,_‘ ,_. , ,

memdlyé

grxdlyé

D2 is transferred, D3 is not.
Figure 4-21. Preempted GIO64 Read, Pipelined Device Master

4.4.3 GlO64 Transfer Size

It is the responsibility of GIO64 bus masters to determine if the slave they are communicating with is a 32 bit or 64 bit
device. Thisinformation is not provided on the bus. Thirty-two bit daves require that the master transfer datain 32 bit
mode. Sixty-four bit slaves should transfer 64 bits of datawith 64 bit masters and 32 bits of data with 32 bit masters. The
GI064 arbiter drivesthe signals GSIZE64 and P_GSIZE64 that indicates the data width of the current bus master. Sixty-
four bit bus masters and slaves must receive this signal to determine the width of the data being transferred.

Thirty-two bit bus masters and slaves do not need to receive the GSIZE64 or P_GSIZE64 signal since they can only send
or receive 32 bits of data. Sixty-four bit bus masters do not need the GSIZE64 or P_GSIZE64 signal when they are the bus
master, but these devices are also bus slaves when the CPU reads or writes to them so they need this signal if they need to
work with different size memory/CPU masters. The 32 bit slaves can only receive 32 bit data so this signal does not
provide any information for them either. It isthe responsibility of the 64 bit master to know the size of slavesit is
communicating with.

444 GlO64 Bus Time-outs

GI064 bus cycles will time-out if SLVDLY, MEMDLY, or GRXDLY (n) are not asserted in reply to an address strobe
within 25 microseconds after the byte count cycle. Thistime-out will prevent accesses to non-existent locations on the
GI064 bus from hanging the bus. When a time-out occurs, the GIO64 arbiter will respond with SLVDLY, MEMDLY, or
GRXDLY (n) until the transfer is complete and generate a bus error interrupt to the CPU. The device that was transferring
datawill not be notified that atime-out has occurred. The only time software should use this time-out mechanism isto
check to seeif adevice existsin one of the GIO64 dots. The guaranteed bus acquisition time for real time devices may be
violated when the GI 064 bus times out.

4.4.5 GIO64 Bus Tristate Turnover Cycles

There needs to be one dead cycle on the bus when the device driving the AD and P_AD bus signalsis changed. Therefore
during aread cycle there needs to be a dead cycle between the byte count cycle and thefirst data cycle. Thisis necessary
to prevent tristate overlap of the two bus drivers.

When atransfer to a nonpipelined bus slave is complete or preempted the bus slave must drive SLVDLY high before
tristating SLVDLY. Devicesthat drive valid parity must drive VLD_PARITY or P_VLD_PARITY high the cycle after the
transfer is complete or preempted before tristating this signal .

4-20 6 May 1992 GIO Bus 64

N SGI CONFIDENTIAL - s Gl0O64 Bus Transfers

4.4.6 GIlO64 Bus Request And Preemption

An example of anonpipelined GIO64 long burst device requesting the bus and then getting preempted is shown below.
The dashed line represents a tristated signal.

breqnm) I N i i i i b
bgnt n(m) | © N i i i i b
ppren: 1 © 10N /0
gsizess i 1 N__. i i i b b

vld parity n: L N\ : : A D

Figure 4-22. Preempted GIO64 32-bit Write

bregn(m) I N i i i i i
bgnt_n (n) —\ /—
ppre ni 101 b N ¢ f /0
gsizess i 1 N\ i i i b b

Figure 4-23. Preempted GI0O64 32-bit Read

GIO Bus 64 6 May 1992 4-21

GIO64 Bus Arbitration s SGI CONFIDENTIAL s

45 GlO64 Bus Arbitration

The G064 bus arbitration scheme has a number of requirements to meet. The requirements are:

» The CPU must run at a minimum guaranteed rate in the most highly loaded system to allow for an acceptable
interrupt response time.

* Burst DMAs such as graphics DMA must be allowed to use the bus for long stretches of time for better bus
utilization.

» Real-time devices such as audio must be guaranteed access to the bus within a predefined maximum delay.
» TheEISA bus needs frequent access to memory, every 4 microseconds.

45.1 Three Kinds of Bus Requests

With the above requirement in mind there are three basic types of devices: real-time devices, short burst devices, and long
burst devices. Audio isagood example of areal-time device. The EISA busisashort burst device. The graphics systemis
along burst devices. Long burst devices are preemptable whereas the real-time and short burst devices are not. Real-time
devices, however, must not use the bus for more then 5 microseconds per acquisition and not regquest the bus more often
then every 20 microseconds. A short burst device has the highest priority, but can only keep the bus for 1 microsecond and
will only get the bus every 4 microsecondsiif other devices want the bus. If areal-time device reguests the buswheniit is
being used by along burst device, the long burst device will be preempted immediately. The buswill be given back to the
long burst device that was preempted once the real-time device is finished. A long burst device can also be preempted by
ashort burst deviceif it has been 4 microseconds since the last time the short burst device had the bus. If no other devices
want the bus when a short burst device requests the bus then it will be given the busimmediately. A long burst device will
keep the bus until it is finished with itstransfer or itstime period is up and gets preempted. If along burst device gets
preempted then the time period counter will stop counting whilethereal time device ownsthe bus and will restart once the
long burst device has been given back the bus. When no other devices want the bus, control of the busis given to the CPU.
The exact implementation of the arbiter depends on the machine and the number of real time and long burst device that are
being supported.

45.2 Arbitration Handshake

Each bus master on the G064 bus has bus request, BREQ(n), and bus grant, BGNT(n), signals that go to the GIO64
arbiter. When a GI0O64 device wants to request the bus, it assertsits bus request line. When the arbiter grantsthe busto the
requester, it asserts the bus grant signal to that device. Once the transfer is complete the bus master deasserts the bus
request and the arbiter will deassert the bus grant. It isimportant that the bus master does not deassert the bus request
before the transfer is complete since the arbiter does not monitor any of the bus control signals except the bus requests and
grants. If the transfer is not complete and a bus master deasserts BREQ(n), a bus collision could occur. Once adevice has
requested the bus it must hold its request signal active until it has been granted the bus even if the device no longer needs
the bus after it has requested it.

4.5.3 GIO64 Preemption

A long burst GIO64 device can be preempted by the BPRE or P_BPRE signals from the GI 064 arbiter. The bus master
must terminate the transfer within 4 clocks of when the preempt signal is asserted. The bus master is responsible for
keeping track of the address and remaining byte count so that the transfer can be resumed later. Thisincludes the slave
address.

A bus master is allowed to preempt atransfer before the byte count has been satisfied and never restart the transfer. Thisis
useful for devices that may not know the byte count when they start the transfer. The bus master can drive a maximum
byte count during the byte count cycle and then preempt the transfer when they have transferred as much as the bus master
wantsto aslong asit isless than or equal to the byte count. Note that this requires the last transfer to be aligned to the bus
since the byte count cannot indicate how many bytes to transfer on the last cycle.

4-22 6 May 1992 GIO Bus 64

I SGI CONFIDENTIAL s GIO Compatibility Issues

4.6 GIO Compatibility Issues

The goal of the GIO64 busisto be as close to the original GIO bus compatible as possible, but still alow for a higher
bandwidth busin the future. The one change that was made that is not GIO compatible isthe MASDLY and SLVDLY
signals for nonpipelined transfers are different. The device that is receiving data indicates that it can receive datain the
next cycle with its flow control signal instead of indicating that it can receive datain the current cycle, as described in the
section detailing nonpipelined transfers.

Parity has been added to the bus, but it has been added in such away that devices that do not generate or check parity will
still work, as parity does not necessarily have to be generated.

4.7 Clocking

The busis designed to run anywhere from 25 to 40 MHz and all GIO64 devices should be capabl e of running at any speed
between 25 and 40 MHz. There are two clocks provided to each GIO64 device, one clock is the bus clock which will run
at 25 to 40 MHz. The second clock will be twice the frequency of the bus clock. Both of these clocks are differential ECL
signals.

The worst case clock skew from any flop on the GIO64 but to any other flop on the GIO64 busis 3.3ns.

4.8 GIO64 Interrupts

There are three interrupt/status lines, INTERRUPT (n)(2:0), for each GIO64 slot. These signals can generate CPU
interrupts or their state can be read by the CPU. Thereis also one status signal, STATUS(n). The CPU can read the state of
the STATUS signal, but it cannot generate an interrupt.

4.9 Pipelined GlO64 Slot Pinout

Thefollowing list of signals are available to a pipelined G1O64 device. All devices on the bus must be CMOS, athough
TTL thresholds are used. The buswill not support bipolar input buffer loading. The exact pinout of the connector and type
of connector has not been determined at this time. The power limits and voltages also have not been determined.

TABLE 8 GlO64 Signals.

Signal Device Direction Pin Number

P_AD(63:0) ilo

P_ADP(7:0) ilo

P_VLD_PARITY ilo

P_AS ilo

P_READ ilo

GRXDLY(n) o

MEMDLY i

GIO Bus 64 6 May 1992 4-23

GlO64 Timing: Nonpipelined and Pipelined

s SGI CONFIDENTIAL s

Signal

Device

Direction

Pin Number

BREQ(n)

BGNT(n)

P_BPRE(n)

INTERRUPT(2:0)

STATUS(n)

GlO64_CLK

GIO64_CLK

GI064_CLK2

GIO64_CLK2

P_GSIZE64

DMASYNC(n)

gio64_40mhz

RESET

GI064_SPEED(1:0)

ilo

4.10 GIO64 Timing: Nonpipelined and Pipelined

In calculating the worst case path on the GIO64 bus, there is a basic assumption that the clock is distributed in such away
that the clock arrives at every G064 device flip-flop at the same point in time. Therefore, the clock to agate array that is
connected to the G10O64 bus will get an early clock as seen at the gate array pin compared to a discrete flip-flop on the
GIO64 bus. Sinceit isnot possible to get the clock to every flip-flop on the GIO64 bus at the exact same timethereisa

clock skew budget of 3.3 nanoseconds to get the clock distributed to every device on the GIO64 bus.

There arefour basic parts to the G1064 cycle timing: clock to output time of the output flip-flop, the bus wire delay, setup
time to the input flip-flops, and the clock skew. There are aso some hold time requirements.

The 3.3 nanoseconds of clock skew can be divided into three components: clock driver skew, net length skew, and clock
distribution skew on the GI0O64 device. The GIO64 device could be agate array or aboard. The clock distribution scheme

is asfollows:

4-24

6 May 1992

GIO Bus 64

N SGI CONFIDENTIAL - s GlO64 Timing: Nonpipelined and Pipelined

33 MHz CPU Board
e
—P 0O
33 MHz GIO Slot O
D Q Gate Array
—P O or
33 MHz GIO Slot 1) .
Discrete Logic
D Q
—P> o
66 MHz GIO Slot O
—D o
—HP> o
66 MHz GIO Slot 1
132-160 MHz HD 0
N } e -
4I Connectors MC10H641

MC10E151 1 to 9 Fanout
ECL to TTL

Figure 4-24. Gl0O64 Clock Distribution.

All of the clock divider flops, MC10E151, are in the same package so that the output to output skew will be minimized.
Since the temperature, voltage and process of that part isthe same, the worst case maximum clock to output time, 800 ps,
minus the best case minimum clock to output time, 450 ps, can be derated. To be conservative, thiswill be derated to a
300 ps output to output skew. The outputs of the MC10E151 then go to aclock fanout buffer, MC10H641. Thisisan ECL
to TTL, 1 to 9 output fanout buffer. The output to output skew is 500 ps for the same package and 1 nsfor different
packages. This configuration should minimize clock skew associated with the clock drivers.

The next contributor to clock skew isthe net delays. All net lengths will be matched to within 1 inch on each board so that
the worst case difference between clocks due to different length etch will be 0.4 ns, (0.2 ns/inch). This includes matching
the delay for the clock to adiscrete part to the delay of the clock fanout treein agate array by changing the net length from
the clock buffer to the different parts. Another factor isimpedance mismatches between boards, through connectors, and

different loading of the net, due to adifferent number of MC10H641 parts. For these differences, 0.6 nswill be alotted. In
order to make this work the clock at the GIO64 connector will be early by some amount. The exact amount has not been

determined, but it will be on the order of 8.0 ns.

Thelast contributor to skew isfrom the device that is being clocked. There is adelay from when the clock changes at the
pin of agate array to when it changes at the flip-flop inside the gate array. There are two numbersto examine: thefirst is
the delay from the pin to the flip-flops. This can be very large and therefore the skew over process, temperature, and
voltage can bevery large. The second number that isimportant is the skew from any flip-flop to any flip-flop in an array. It
may require a PLL on the gate array to reduce the skew caused by these factors. The total skew budget for agate array is
1.0 ns. It isimportant to realize that the delay can be more than 1.0 ns, but it is the skew which isimportant. The delay is
compensated by different length etch to each of the chips that have a different clock fanout delay.

Thetotal skew budget for the CPU board to a GIO64 deviceis:

10E151 Clock Divider Flip-Flop 0.3ns
Different Length Etch 0.4ns
Different Impedance of Nets 0.6ns
MC10H641 Fanout Buffer 10ns
Gate Array Fanout Skew 10ns
Total: 3.3ns

GIO Bus 64 6 May 1992 4-25

GlO64 Timing: Nonpipelined and Pipelined I SGI CONFIDENTIAL - s

The resultant skew from different parts on the CPU board is somewhat less. Since none of the clocks are double
frequency, the skew associated with the 10E151 can be eliminated. Also the skew between 10H641 is just the output to
output skew for outputsin the same part instead of different parts so thisisonly 0.5 ns. Therest of the skew factors are the
same. On the CPU board the GIO64 clock skew is:

Different Length Etch 0.4ns
Different Impedance of Nets 0.6 ns
MC10H641 Fanout Buffer 0.5ns
Gate Array Fanout Skew 10ns
Total: 25ns

Another factor in determining the longest GIO64 path is the worst case setup time for a device, which will be to a gate
array. Keep in mind the clock edge is defined to take place at al of the flip-flops on the GI0O64 bus at the exact sametime
so the delays associated with getting a clock from the gate array pin to the flop are not incorporated in the setup time
calculation. The setup timeto a FCT part, 74FCT652A, is 2.0 ns. These parts are used to implement the bidirectional
registered transceiver between the nonpipelined and pipelined GIO64 bus. The worst case setup time for agate array, LS|
LCA100K can be calculated as follows:

TTL threshold input buffer, TLCHT 1.66 ns
Mux to hold the data, MUX21L 1.04ns
Setup to scan flop, FD1S 1.88 ns
Total: 4.58 ns

These numbers are for amoderate load to account for net delays. To allow some extramargin the worst case setup time for
any GI064 input should be 5.0 nsor less.

The next factor in calculating the longest GIO64 path is the clock to output path. Since the delay for the gate array output
buffers are given for different loading conditions, the output buffer delay will be incorporated by the net delay value. The
worst case clock to output delay of aLSI LCA100K flip-flop, FD1S, is 3.0 ns with a moderate load to take care of net
delays. The delay of a2:1 mux will also be included for boundary scan. The delay of aMUX21L is 1.0 ns. Since agate
array driving the buswill be slower than discrete parts because the gate array haslimited drive, this case will be examined.
Twelve mA output buffers with slew rate control will be used for the GIO64 gate array outputs. The bus loading on the
nonpipelined side of the GI064 bus should be less than 130 pF. The worst case delay for driving 130 pFis12.3 ns. The
worst case bus loading is calculated as follows:

MC chip, 304 MQUAD 7.0 pF
MUX chip, 208 pgfp 7.0 pF
HPC3, 304 MQUAD 7.0 pF
Pipelined GIO64 Transceivers, 2 sets 24.0 pF
EISA chips, 4 chips, 208 pqfp 28.0 pF
Wire, 4 pF/inch, 12 inches 48.0 pF
Total: 121.0 pF
On the pipelined side of the bus the load should be about the same:
Pipelined GIO64 Transceivers, 1 set 12.0 pF
GI1064 Slot Connectors, 2 at 8 pF 16.0 pF

4-26 6 May 1992 GIO Bus 64

N SGI CONFIDENTIAL - s GlO64 Timing: Nonpipelined and Pipelined

Wire, 4 pF/inch, 18 inches 72.0 pF
Gate array load/dlot, 2 slots 30.0 pF
Total: 130.0 pF
Adding up the total bus delay:
Flop clock to output and mux 4.0ns
Output buffer, including wire 12.3ns
Setup time 50ns
Clock skew 3.3ns
Total: 24.6 ns

Thisleaves 0.4 ns of margin when the busisrunning at 40 MHz. It may be possible to build a system with reduced |oading
that would be able to run at 40 MHz, although it will be hard. To achieve the numbers given above requires attention to the
placement of the flopsin gate arraysto achieve 5 ns of setup and 14.3 ns clock to output delay. It is also very important to
be careful with the length of the bus and the number of loads on the bus. On the pipelined side of the bus, it isimportant to
be careful with the stub length of the GIO64 signals. Also the capacitive loading needs to be less than 23 pF per slot
counting the connector.

The hold time requirements can be calculated by adding the hold time of the device with the worst case hold time, which
will be adiscrete part. The hold time for a 74FCT652A is 1.5 ns. Thistime needs to be added to the clock skew of 3.3 ns
to get the bus hold time requirement which is 4.8 ns. The minimum clock to output time for adiscrete part is 2.0 nsand for
agatearray is 1.5 ns. Since it will be very hard to achieve the 3.3 ns of hold time required from the capacitive loading of
the bus the clock to the discrete flops can be made 0.5 ns early to trade off setup time for hold time. The setup timeto the
discreteflop isonly 2.0 nsso adding 0.5 nsto it is still much better then the gate array setup time of 5.0 ns. The minimum
clock to output time from the real GIO64 clock will be 1.5 nsfor both the flop and the gate array. The maximum hold time
fromthereal GIO64 clock is 1.0 nsfor the discrete part and most likely negative for the gate array. Therefore the bus hold
time for the pipelined side of the busiis:

Clock Skew 3.3ns
Worst Case Hold Time 1.0ns
Minimum Clock to Output Delay -15ns
Total Bus Hold Time 2.8ns

The bus hold time on the nonpipelined side of the busisless since the clock skew isonly 2.5 ns.

Clock Skew 25ns
Worst Case Hold Time 10ns
Minimum Clock to Output Delay -1.5ns
Total Nonpipelined Hold Time 2.0ns

The capacitive loading and etch delays will prevent the bus from changing within this 2.5 ns window.

Timing Work TBD:

e (gio64 dlot stub lengths on signals

* bustermination

e connectors

» gpiceresults of fully loaded system to check signals and hold time

GIO Bus 64 6 May 1992 4-27

Pipelined GIO64 Mechanicals I SGI CONFIDENTIAL - s

4.11 Pipelined GIO64 Mechanicals

The GI0O64 slot connector and card mechanical are TBD.

4.12 Device Identification, Serial Number and ROM Registers

Every GlO64 device should have a set of special registersthat can be used by the software to identify the devices that are
installed. If a device has ROM, then it should, in addition, have a set of ROM registers that allow the software to easily
read the ROM. These special registers should be located at the beginning of the devices address space. The base address
of adeviceisdetermined by the GIO64 SLOT_NUMBER signals.

These registers need to be accessed in a special way since reading them isthe only way to determine information about the
size of adevice (32 or 64 hits). The first requirement is that 64-bit devices must always return this register read data on
AD(31:0). These special registers are aligned on double word addresses and the device must also respond to either of the
two word addresses with the same register data. This allows the CPU to run in big or little endian mode and easily
interpret the data the device returns.

There are four specia registers:

1. Thefirst isthe Product Identification Word register. This register islocated at the base address and the base
address + 0x4. A read from either the base address or the base address + 0x4 should return the value of this
register on AD(31:0). A unique, 8-bit Product ID Code is contained in the lower byte of the Product
| dentification Word. Refer to Chapter 2 for complete details about this Product |dentification Word.

Note: The ROM Present bit of this register must be a1 if the option card has ROM
that can be read with the ROM Index/ROM Read registers (described be-
low).

2. The second special register, the Board Serial Number, islocated at the base address + 0x8 and the base address +
Oxc. Thisregister contains a 32-bit board serial number. This register is optional.

3. Thethird register isthe 32-bit ROM Index register located at the base address + 0x10 and the base address +
0x14. This register is present when the ROM Present bit in the Product | dentification Word register is set to one.
The CPU writes O to this register to initiate reading the ROM. Each subsequent read of the ROM Read register
causes this Index to increment by 4.

4. Thefourth register isthe 32-bit ROM Read register located at the base address + 0x18 and the base address +
Ox1c. Thisregister is present when the ROM Present bit in the Product Identification Word register is set to one.
Thisregister always contains the contents of the ROM word identified by the address in the ROM Index register.
Each read of this register causes the ROM Index to increment by 4 and a new word to be retrieved from ROM.

4.13 Miscellaneous Timing Diagrams

The following pages illustrate the GIO64 timing protocol for avariety of situations.

4-28 6 May 1992 GIO Bus 64

Miscellaneous Timing Diagrams

#9019 pauledid Joj 81l e Ag pamo| (o) ‘Peay 8(buis e 'SalLIM OM] “Gg-v 21nbi

SHPOTD W-0

SI00TH N-0

SI00TD W-0

SHPOTD N-Q

4-29

6 May 1992

GIO Bus 64

Miscellaneous Timing Diagrams

801/8@ #9019 paulpdid e 01811 Buo|e Bulng peLessY AT1aXdD

GIO Bus 64

6 May 1992

4-30

Miscellaneous Timing Diagrams

ATAXYD pue 821A8d #9019 pauledid e 0181 3 |BuIS

*,2-¥ 8Inbi4

4-31

6 May 1992

GIO Bus 64

Miscellaneous Timing Diagrams

ATANIIN puUe 3LM #9019 paulpdid vV '82-v @inbid

P ATpxab

GIO Bus 64

6 May 1992

4-32

Timing Diagrams

ellaneous

ATAQNTIN pue 8d1A8d #9019 paulpdid e Woiy pesy “6z-v 8inbig

i G

N RN

4-33

GIO Bus 64

Timing Diagrams

ellaneous

ATAXHD pue a01/8d 19019 paulpdid e Wolj peay "0s-¥ ainbid4

I e

///////////// W\S@Emg

GIO Bus 64

4-34

Miscellaneous Timing Diagrams

This page has been |eft blank intentionally.

GIO Bus 64 6 May 1992 4-35

Miscellaneous Timing Diagrams I SGI CONFIDENTIAL - s

4-36 6 May 1992 GIO Bus 64

