
1.0 Introduction

This document describes the "High performance Peripheral Controller", HPC3.
This is the third generation of HPC chip. The first generation is used in
Magnum and Hollywood big endian machines. The second generation is a little
and big endian version of HPC1. The third generation has support for
different peripherals, connects to the GIO64 bus, and does not support the
DSP chip which was used with HPC1. This chip interfaces the standard
peripherals to the GIO64 bus. The GIO64 bus connects the CPU and memory
system to the I/O devices in the machine. HPC3 consists of a full 64 bit
GIO64 interface, a few dedicated ports for specific higher−speed
peripherals, and support of an external bus for generic lower−speed
peripherals.

1.1 HPC3 Features

HPC3 supports a large number of different peripherals. There are six major
functional blocks in the design: a 64 bit GIO64 interface, an ethernet port,
two SCSI ports, the serial EEPROM interface, and the PBUS controller. The
dedicated ports support the following devices:

Ethernet, Seeq 8003 and 8020 chip set
SCSI, Western Digital WD33C92A ’93A ’93B 95
SCSI, Fujitsu 86603
Serial EEPROM, National NMC93CS56

The PBUS is a general purpose I/O bus that has been designed to support a
variety of common 8 or 16 bit devices. The PBUS controller includes support
for the Boot PROM, battery−backed SRAM, 10 general purpose chip selects for
programmed I/O, and 8 general purpose DMA channels. The access parameters
for PIO and DMA are set with configuration registers in HPC3 to make it easy
to add new devices to the PBUS. Typical PBUS devices include:

Audio, HAL2
Parallel Port
Real Time Clock, Dallas DS1286
Real Time Clock with NVRAM, Dallas DS1386, DS1397
Boot PROM, 16 bits wide, up to two 2 Mbyte PROMs (4M)
Interrupt Controller, INT2
Floppy Disk Controller, National PC8477
SCSI, Western Digital WD33C92A ’93A ’93B
UARTS
Keyboard/Mouse

HPC3 has a full 64 bit GIO64 bus interface in order to reduce the amount of
time needed to provide DMA service to all of the attached peripheral
devices.

1.2 HPC3 Peripheral Bandwidth

The amount of GIO64 bus bandwidth that HPC3 uses depends a lot on the
devices that are connected to it and how many of those devices are active.
To calculate the size of the fifos for the various DMA channels it is
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necessary to know the maximum bandwidth of each device and how often HPC3
gets serviced on the GIO64 bus. Since it is a real time device, HPC3 can
get the GIO64 bus every 30 microseconds. Therefore, it can get serviced
33,333 times a second. The maximum bandwidth and the minimum fifo size (in
bytes) for each device is listed below:

Device Mbytes/Second Fifo Required Fifo on Part
Ethernet In 1.25 38 16
Ethernet Out 1.25 38 16
SCSI 20 600 12
Parallel 1 30 0
Floppy 0.125 4 16
Audio In 0.192 6 4
Audio Out 0.192 6 4
PBUS Maximum 8 240 −

The audio rates above represent a 32 bit sample (16 bit stereo) at 48 KHz.
Refer to the HAL2 specification for actual audio bandwidths. The maximum
total I/O bandwidth of HPC3 is 30.5 Mbytes/second which occurs when the
following devices are connected:

2 Channels Fast SCSI 20
Ethernet 2.5
PBUS 8

The total amount of fifo ram (in bytes) in HPC3 is:

2 SCSI Channels 2 @ 384
Ethernet transmitter 1 @ 160
Ethernet receiver 1 @ 128
PBUS 1 @ 384

The Ethernet transmitter and receiver fifo rams are split into two ping pong
buffers. So, the effective size is 80 and 64 bytes respectively.

When HPC3 gets the GIO64 bus it services ethernet first, then the PBUS DMA
channels, and finally the two SCSI ports. This order is used so that the
ethernet and audio bus request to service times will be reduced. When a
fifo is to be serviced from the GIO64 bus, any device that is using the fifo
may continue to do so because the internal rams which are used to implement
the fifos are multi−ported.

1.3 HPC3 Chip Technology

HPC3 is packaged in a 299 pin Ceramic Pin Grid Array, with provisions that
the same die can be packaged in a 304 pin Metal Quad Flat Pack when that
package is qualified. The random logic gate count is approximately 58,000
gates. Because of the large amount of on−chip memory (>1600 bytes, there
are 3 rams in addition to the fifo rams) the chip is designed using LSI
Logic’s 1 micron embedded array technology. It uses the largest die at 15
mm square. Phase−Locked Loop and LSI’s Clock Compiler are used to minimize
system and on−chip clock skew respectively. ATPG and a modified boundary
scan approach are used to facilitate manufacturing test.
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1.4 Bit and Byte Numbering Conventions

This chip operates in both big and little endian modes. Which mode it
operates in depends upon the operation being performed. For DMA, the endian
mode is determined by a DMA channel configuration register. The endian mode
of a DMA operation affects the GIO64 DMA data transfer and the packing or
unpacking of data between the device and the fifo in HPC3. Different DMA
channels can function using different endian modes. For example, one SCSI
channel can be running in little endian mode, while the other is in big
endian mode. DMA operations are descriptor based, and therefore HPC3 needs
to know how to read the DMA descriptors from main memory. The endian mode
used for all DMA descriptor fetches will be set by a global configuration
register in HPC3. The endian mode of CPU reads and writes is determined by
the GIO64 endian mode bit that is sent during the GIO64 byte count cycle, so
processor loads and stores can be of either endian.

It is important to know the difference between big and little endian mode.
Big endian means that byte 0 is bits (63:56), byte 1 is bits (55:48), byte 2
is bits (47:40), byte 3 is bits (39:32), byte 4 is bits (31:24), byte 5 is
bits (23:16), byte 6 is bits (15:8), and byte 7 is bits (7:0). Little
endian is just the opposite, so for a 64 bit little endian transfer, byte 0
is bits (7:0), byte 1 is bits (15:8), byte 2 is bits (23:16), byte 3 is bits
(31:24), byte 4 is bits (39:32), byte 5 is bits (47:40), byte 6 is
bits(55:48), and byte 7 is bits (63:56).

The bit numbering scheme is always little endian, so that bit 0 is always
the least significant bit and bit 63 is always the most significant bit.
Bit fields within a register should never be ordered based on endian mode.

1.5 Signal Naming Conventions

Signal names that end with a trailing underscore n, "_n", denote signals
that are active low. All other signals are active high.

1.6 Definitions

DMA Read, Receive a DMA transfer from device to main memory.

DMA Write, Transmit a DMA transfer from main memory to device.

Page the smaller of the physical page size and the DRAM page size. The page
size is either 4k or 8k bytes.
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2.0 HPC3 Functional Description

There are six major blocks in the HPC3 design: the GIO64 bus interface, two
SCSI ports, an ethernet port, the PBUS controller, and the serial EEPROM
interface. The GIO64 bus interface connects the HPC3 chip to the CPU and
main memory. The two SCSI ports can be connected to either a WD33C93
controller (8 bit interface) or to a Fujitsu 86603 controller (8/16 bit
interface). The ethernet port supports the Seeq 8003 controller chip. The
PBUS is designed to support a large number of different devices. The serial
EEPROM is a ROM that contains the boot monitor environment information and
chassis serial number. A block diagram of the HPC3 with some attached
peripherals is shown below. HPC3 receives one single clock input. The
gio_clk goes through a PLL to minimize system clock skew.

HPC3 Block Diagram
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2.1 HPC3 Programmed I/O

The HPC3 is a GIO64 bus slave during programmed I/O operations. There are
basically three types of PIO operations − register access, dma fifo ram
access, and PROM access. The HPC3 address map is shown in section 3. An
HPC3 register is simply any addressable word in HPC3 address space, except
those in the Boot PROM address space or fifo rams. This includes all
internal HPC3 registers, and all external peripheral registers addressable
through the HPC3. The external devices are really 8 or 16 bits wide. In
this case, the actual data transfer applies to bits (7:0) or (15:0) of the
word register. Byte/halfword oriented code will be endian−sensitive! Word
oriented code will not be endian−sensitive! The on−chip rams used to
implement the dma fifos are in the HPC3 address space as indicated in
section 3. They are accessed as doublewords (this is a testability
feature). The PROM consists of addressable halfwords, words and doublewords
in the Boot PROM address space.

All registers (internal and external) are 32 bit words with word aligned
addresses from the GIO64 bus perspective. The two least significant
register address bits are ignored. For all register PIO, a single 32 bit
word will be transferred. All unused bits in a register will read back as
0, except for PBUS external registers. PBUS external registers are
replicated to fill the word, e.g., for 8 bit devices the word returned will
be four copies of the same 8 bits. GIO64 block transfers are not supported
for HPC3 PIO. If the GIO64 byte count is less than 4, the transfer will
still be 4 bytes. If the byte count is greater than 4, HPC3 will transfer
one word, drive gio_slvdly active, and then tristate gio_slvdly. In this
case, after the first word is transferred, the GIO64 bus will be waiting for
gio_slvdly to be deasserted, and eventually it will time out.

Access of peripheral registers, or the PROM, requires that the HPC3 perform
programmed I/O externally with the addressed device. The diagram below
shows the general nature of this device PIO. The states indicated (P1 to
P4) correspond to certain device specific timing parameters, and sometimes
the number of gio_clk cycles for a state can be controlled using an internal
configuration register. Note that the SCSI and Ethernet PIO waveforms
deviate slightly from the specific timing parameters shown here. Please
refer to the SCSI and Ethernet sections for more details.

Device PIO Waveforms
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2.2 HPC3 Direct Memory Access

The DMA model described in this section applies generally to all HPC3 DMA
channels. Any variations are pointed out in the sections which follow.
Like the earlier generations of HPC, HPC3 DMA operations are descriptor
based. A DMA descriptor is a linked list structure in main memory that
describes a DMA operation. Before the DMA operation begins, all necessary
external device registers and internal DMA channel registers (including a
pointer to the first descriptor in a chain) are configured. Then the start
DMA bit for the DMA channel is set. At this point, the DMA channel is said
to be active. HPC3 will fetch the first descriptor and start the DMA
operation. Each descriptor consists of 3 consecutive 32 bit words. All
descriptors must be quadrupleword aligned in main memory, and must not cross
a page boundary. The figure below shows the fields of a descriptor and the
organization of a descriptor in main memory. The buffer pointer (BP) word
is always at the least significant word address, followed by the byte count
(BC), and then the descriptor pointer (DP) at the most significant word
address.
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EOX BC(31) indicates that this is the last descriptor in the chain. After
completely processing this descriptor, the DMA channel becomes inactive.
The DP field is not used for this descriptor.

EOXP BC(30) tells the ethernet controller that this descriptor represents
the end of a packet. This only applies to ethernet transfers. EOXP should
always be set for ethernet receiver descriptors (there is exactly one DMA
descriptor per ethernet receive packet).

XIE BC(29) tells the HPC3 to generate an interrupt after processing this
descriptor. For the ethernet controller, XIE is ignored if EOXP is not set.

RES BC(28:24,14) bits are reserved and are not used.

IPG BC(23:16) is a byte used only for the Ethernet transmitter. This byte
is written to SEEQ 8003 extended register x02 after either HPC3 has moved
the first 80 bytes of a packet (one fifo buffer size) to the SEEQ 8003 or
HPC3 has moved one complete packet (shorter than 80 bytes). This feature is
enabled by a bit in the Ethernet DMA configuration register.

TXD BC(15) is a bit used only for the Ethernet transmitter. This bit is
written to a ’1’ in the 1st descriptor for a packet after the packet has
been completely transmitted (through the SEEQ 8003 controller). In all
other cases, this bit should be a zero.

Byte Count BC(13:0) indicates the number of bytes to be transferred. This
is the size (in bytes) of the main memory data buffer. In the case of an
Ethernet receive DMA, this field is written back after this descriptor has

DMA Descriptor Format

Memory Buffer PHYSICAL Address(31:0)

Next Descriptor PHYSICAL Address(31:0)

Byte Count(13:0)EOXPEOX RES(28:24) BC0x4

0x8

BP

DP

0x0

XIE TXDIPG(23:16) RES(14)
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been completely processed with a value which reflects the actual number of
bytes received (see Ethernet section for more details).

Memory Buffer PHYSICAL Address points to the buffer in main memory to
transfer DMA data to or from. This buffer has a maximum size of one page,
and cannot cross a page boundary. Ethernet receive buffers must always
start on a doubleword boundary. This must be a physical address!

Next Descriptor PHYSICAL Address points to the next DMA descriptor in main
memory if the EOX flag is not set. This is the link to the next descriptor
to process. This must be a physical address!

For PIO, HPC3 is the GIO64 bus slave. For DMA, HPC3 will become the GIO64
bus master for two distinct operations − DMA descriptor fetch and DMA data
transfer.

After the HPC3 fetches and interprets the DMA descriptor, the DMA transfer
begins. The transfer between device and memory is done in two steps, with
an intermediate stop in HPC3 along the way. During a DMA read operation,
HPC3 reads data from the device and stores it in an internal fifo. It then
initiates a GIO64 cycle which writes the data from the fifo to the main
memory buffer. During a DMA write operation, HPC3 initiates a GIO64 cycle
which reads data from main memory and stores it in an internal fifo. It
then writes the data from the fifo to the device. HPC3 never does a DMA
transfer with the DMA Count Direction Down bit asserted (see GIO64 bus
specification for more details).

The diagram below shows the DMA descriptor and main memory buffer structure.
For DMA write buffers, there are no alignment constraints. HPC3 will pack
together bytes from one buffer to the next in a seamless fashion while
storing them in the fifo. For DMA read buffers however, the starting byte
address of one buffer must be aligned with the byte after the end of the
previous buffer. The buffers do not have to be contiguous, but they must be
aligned with respect to one another − hence they appear contiguous. This is
required because HPC3 reads data from the device and packs it into the fifo
without knowing where the seams are from one buffer to the next, or even the
main memory buffer start address from the next descriptor.

DMA Descriptor and Main Memory Buffer Structure

BP

DP ����
����

���
���

�������
�������BC

BC

BP

DP



SGI Confidential, Do Not Copy HPC3 Chip Specification

8

There are several configuration bits common to all DMA channels. The start
DMA bit mentioned above is actually an indication that the channel is
active. Clearing this bit will cause the channel to become inactive,
effectively aborting the current operation. When a DMA operation completes
normally, HPC3 will clear this bit so that the channel becomes inactive.

Each channel has a configuration bit which indicates the endianess of the
current transfer, big or little. This bit can be changed between DMA
operations, but should not be changed while the channel is active. There is
one global configuration bit which establishes the endianess of all DMA
descriptors.

Most channels have a configuration bit which indicates the direction of the
current transfer, receive or transmit. Again, this bit should not be
changed while the channel is active. The two Ethernet channels do not
contain direction bits as the direction is implicit.

Each channel also has a flush bit which will stop receive DMA between HPC3
and the external device. Any remaining bytes in the fifo will be flushed to
main memory and then the DMA channel will deactivate itself. All remaining
data in the fifo will be flushed unless the end of the descriptor chain is
reached first. If there is more data in the fifo than the current main
memory buffer will hold, and the EOX bit is not set, the HPC3 will continue
to process the linked list of descriptors. The flush will continue until
either the descriptor chain or the data in the fifo is exhausted. Any
interrupts called for by the descriptors will still be generated.

When one of the DMA channels in HPC3 finishes processing a descriptor with
the XIE bit set, an interrupt will be generated. All DMA channels, except
for ethernet share one interrupt pin on HPC3. Some channels will not need
to generate this interrupt, since the controller they are connected to can
generate its own interrupts. The Western Digital SCSI chip, for example,
will generate interrupts on its own behalf, so the XIE interrupt feature may
not be needed. The interrupt status of each DMA channel can be read from
two registers in HPC3.

The exact time at which the interrupt is generated depends on whether the
operation is a read or a write, and whether the EOX bit is set. For DMA
read operations with XIE set, the interrupt will be generated when the last
byte of the main memory buffer has been written. For DMA write operations
with XIE and EOX both set, the interrupt will be generated when the last
byte is transferred to the device. For write operations with XIE set, but
EOX not set, the interrupt will be generated when the last byte of the main
memory buffer has been read and put into the HPC3 fifo. The interrupt is
generated at this time because the fifos are maintained in a seamless
fashion; consequently, the correspondence of fifo_byte−to−main_memory_buffer
is not known.



SGI Confidential, Do Not Copy HPC3 Chip Specification

9

As already indicated, the DMA data transfer takes place in two steps − GIO64
DMA transfers and external device DMA transfers. For information on the
GIO64 data transfers see section 2.3 GIO64 Bus Interface, and the GIO64 Bus
Specification. The diagram below shows the general nature of the external
device DMA. The states indicated (D1 to D5) correspond to certain device
specific timing parameters, and sometimes the number of gio_clk cycles for a
state can be controlled using an internal configuration register. Note that
the SCSI and Ethernet DMA waveforms deviate slightly from the timing
parameters shown here. Please refer to the SCSI and Ethernet sections for
more details.
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2.3 GIO64 Bus Interface

HPC3 is a 64 bit device and will be able to run the GIO64 bus at 33 MHz. It
will support the nonpipelined GIO64 bus protocol with parity checking (bus
destination), parity generation (bus source), big/little endian addressing,
and block transfers (DMA accesses only). HPC3 is a bus slave for all
programmed I/O transfers and a bus master for all DMA transfers.

Although HPC3 does not support bus preemption, HPC3 can be kicked off of the
GIO64 bus through use of the gio_timeout_n pin.

2.3.1 Programmed I/O

HPC3 is a GIO64 bus slave during programmed I/O cycles. There are basically
three types of PIO operations − word register access, dma fifo ram access,
and PROM access. These three types of PIO were described in section 2.1.

All register accesses are word accesses. All dma fifo ram accesses are
doubleword accesses. PROM accesses are halfword, word, or doubleword
accesses. In all of these cases, there is exactly one data transfer. After
this single data transfer the HPC3 will assume the access is complete and
get off the bus. If the GIO64 bus master is not done with the transfer
because it used a bad byte count, the GIO64 bus will timeout. Byte and
halfword oriented code will be endian sensitive! Word oriented code will
not be endian sensitive! This is because each register access will be
implemented as a word access regardless of the byte count.

*** BUG ***
There is a problem with the PIO read back of all DMA descriptors. Before
reading any of the DMA descriptor ports, software has to flush the single
stage PIO write buffer in HPC3. This can be done by doing a PIO read from
any register immediately before the DMA descriptor read. Note that software
must guarantee that these PIO reads will occur back to back. Failure to do
so will result in the wrong data being returned during the PIO read.

2.3.1.1 Single Stage Write Queue

There is a one stage write queue to allow release of the GIO64 bus
immediately. During reads, HPC3 must stall the GIO64 bus until the proper
register can be accessed from the device. If it is a HPC3 on chip port, the
stall should be minimal.

PIO writes to external device registers may take very long. HPC3 does not
wait until these writes are complete before responding to a PIO read/write
for an on−chip port. HPC3 will stall until the write is complete before
responding to a PIO read for a external register from the same device (only
from the SAME device). For any one device, all PIO writes and PIO reads
will occur in the order in which HPC3 received the requests. For all
on−chip ports, all PIO writes and PIO reads will occur in the order in which
HPC3 received the requests. However, the order of requests may not be
maintained between external devices and on−chip ports.

2.3.2 DMA

HPC3 is a GIO64 bus master during DMA cycles. When transferring data from
memory to a device, consecutive blocks of data are "packed" together into
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the device fifo (on the HPC3). This allows for a seamless transfer of data
from the device fifo (on the HPC3) to the device itself.

There is a single common GIO64 interface for all of the HPC3 devices. One
arbiter constantly polls all of HPC3’s DMA channels to see if any need
service. Upon detecting that a device needs the bus, gio_breq_n is asserted
on the GIO64 bus. When the bus request is granted (gio_bgnt_n is returned),
the cycle is given to the device with the highest priority needing service.
Priority is fixed. When this device is finished, control is passed on to
the device with the next highest priority. This repeats until each HPC3 DMA
channel is serviced or HPC3 has exceeded the maximum time it can hold the
bus (see section below). HPC3 then cedes control of the GIO64 bus.

Writing a programmed I/O register, which affects the DMA channel, while the
channel is active is not recommended. Software should wait until the
channel is inactive (ch_active is inactive) before programming any of these
registers. If one of these registers is written while the DMA channel is
active, there are no guarantees for the actions of the HPC3.

HPC3 will not use the DMA Count Direction Down or the CPU Subblock Ordering
features of the GIO64 bus transfer protocol. These signals will always be
inactive during the byte count cycle (see GIO64 bus spec. for more detail).

2.3.3 Timer on GIO64 bus hold

HPC3 is a real time device in the system. HPC3 will never be preempted off
the GIO64 bus through GIO64 protocol (gio_preempt_n). However, there is a
way to boot HPC3 off of the bus. The input gio_timeout_n (being asserted, =
0) will cause HPC3 to release the bus after it is finished with the current
DMA transfer unless a real time device request is pending. If a real time
device request is pending, and the real_time bit (gio_misc register) is
enabled (=1), HPC3 will continue to process the real time DMA transfers.
After HPC3 is finished with all real time channel requests, it will
relinquish the bus. If the real_time bit is not enabled, HPC3 will
relinquish the bus after the current DMA transfer

2.3.4 Device Identification

When HPC3 is the GIO64 bus master, it puts a device identification out on
the GIO64 bus during the byte count cycle. The device identification
corresponds to which DMA channel "owns" the current GIO64 cycle. See GIO64
specification for more details.

Device ID DMA Channel
0x0f PBUS Channel 0
0x0e PBUS channel 1
0x0d PBUS channel 2
0x0c PBUS channel 3
0x0b PBUS channel 4
0x0a PBUS channel 5
0x09 PBUS channel 6
0x08 PBUS channel 7
0x07 SCSI channel 0
0x06 SCSI channel 1
0x05 Ethernet Receiver
0x04 Ethernet Transmitter.
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Note that when there are 2 HPC3s in the system, it may not be possible to
determine which HPC3 cau

2.3.5 Parity

HPC3 generates and checks odd parity on the GIO64 bus. If HPC3 detects a
parity error, it latches certain information and will interrupt the host
(through the bus_error_intr pin). The parity error status information can
be read from gio.bus_error. See the GIO64 specification for more details.
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2.4 Ethernet

HPC3 will support the SEEQ 8003 ethernet controller. There are two DMA
channels, one transmit and one receive, and one programmed I/O channel. The
interface to the GIO64 bus is 64 bits; the interface to the SEEQ 8003
controller is 8 bits.

2.4.1 Transfer Rates

The maximum rate for the SEEQ 8003 ethernet controller is 3.3 Mbytes/s
(although the practical maximum rate for ethernet is 2.5 Mbytes/s, 1.25
Mbytes/s per channel). HPC3 tries to achieve this transfer rate by having both
programmed I/O and DMA transfers take 11 clock cycles with a gio_clk of 33 MHz
(3 Mbytes/s), or 8 clock cycles with a gio_Clk of 25 Mhx (3.1 Mbytes/s).

2.4.2 Memory structure and DMA transfers

DMA descriptors are used to control main memory transfers. There are seperate
DMA descriptor linked lists for the transmit and receive channels. There is no
limit on the number of descriptors to be used. Ethernet transfers data in
packets. A packet may range in size from 64 bytes to 1518 bytes. When
transmitting data, more than one packet may be contained within a descriptor
chain and more than one descriptor buffer may make up a packet. When receiving
data, more than one packet may be contained within a descriptor chain, but
there can be only one descriptor buffer for each packet.

The processor starts the DMA operation by writing the ch_active bit for the
appropriate channel. Upon detecting the ch_active bit is active, two things
happen:

* fifo pointers are reset
* GIO64 bus request for 1st DMA descriptor

2.4.2.1 Transmit Channel

After fetching the 1st descriptor, HPC3 will fetch bytes from the 1st main
memory buffer. The number of bytes in each gio64 bus transfer is either 80
bytes (size of fifo buffer) or the current byte count (starts out equal to the
byte count in the DMA descriptor, and is updated at the end of each gio64 bus
transfer), whichever is less. When the current byte count is zero, HPC3 will
fetch the next DMA descriptor unless the EOX bit is set.

The EOX=1 flag notifies the HPC3 that this is the last descriptor to process.
As soon as the HPC3 has processed this descriptor, it stops reading from main
memory. When the HPC3 receives acknowledgement for all the packets it has
tranmitted to the SEEQ 8003 chip, it clears the tx_ch_active bit. The
acknowledgement comes as an interrupt from SEEQ.

During one DMA operation, many packets may be transmitted. The eoxp=1 flag in
the DMA descriptor tells the HPC3 that this buffer is the end of a packet.
When transferring the last byte of this buffer, HPC3 asserts enet_d(8) which
tells the SEEQ chip that this is the end of a packet. When HPC3 receives
acknowledgement for this packet from the SEEQ 8003 (the interrupt again), HPC3
sets the TXD bit in the first DMA descriptor for this packet. Note that bits
14:0 in the byte count field will be cleared when the TXD bit is written, and
that this is a gio64 bus operation.



Additionally, because there are other devices contending for the network and
it is not possible to determine in advance if there may be a contention
problem (collision), it sometimes is necessary to stop the current
transmission and restart it. HPC3 seperates collisions into two categories,
early and late. An early collision is one where enet_txret is asserted
before HPC3 has transferred the first 80 bytes of a packet to SEEQ.
Everything else is considered a late collision.

For early collisions, HPC3 still has all of the packet data on chip (fifo
buffer was sized at 80 bytes for this purpose). Upon receiving an active
enet_txret, HPC3 resets the device fifo pointer to the beginning of the fifo
buffer. Note that although the collisions are flagged by the SEEQ
interrupt going active, it is assumed that enet_txret will go active with
every collision also. HPC3 then continues with the DMA transfer.

As soon as HPC3 has finished with a fifo buffer, the data held in the fifo
is discarded. As a late collision is defined as receiving enet_txret after
the first 80 bytes (size of fifo buffer) has been transferred to the SEEQ
controller, when a late collision occurs, HPC3 does not have the start of
the packet on chip. Upon registering a late collision, HPC3 resets the
channel, and interrupts the host. The transmitter status register will have
the late collision status bit set. One possible race condition occurs if
another interrrupt occurs before the transmitter status is read.

A feature which was added to HPC3 is the ability to write the interpacket
gap value (time SEEQ waits between packets) on a per packet basis. The
value written is stored in the DMA descriptor (byte count field, bits
23:16). When HPC3 has moved either 80 bytes (past the late collision
marker) or an entire packet, HPC3 will write the interpacket gap register.
This enables us to tailor the time between packets to the packet length (or
maybe other attributes of the packet). This feature is enabled by a bit in
the DMA configuration register (wr_ctrl).

Whenever ECHRST is programmed active, the ch_active is reset..

2.4.2.2 Receive Channel

After fetching the 1st descriptor, HPC3 will start taking bytes from the
SEEQ controller. The main memory buffer must always start on a doubleword
boundary. HPC3 puts the 1st byte in the packet at location x02 in the fifo
buffer. This aligns the data portion of the packet on a doubleword boundary
(in a packet, the 1st 14 bytes are preamble, information like the source,
destination, etc). When one fifo buffer is completely full or if the end of
packet bit (eop) is encountered, HPC3 will request the gio64 bus.

The EOX=1 flag should never be encountered. The receive channel DMA
descriptors form a ring buffer and the channel will always be "ready" to
receive data. As it is impossible to know in advance the number of bytes to
transfer, each descriptor’s byte count field is programmed to a value which
is larger than the maximum ethernet packet size. HPC3 continues to fill
it’s fifos with data from the SEEQ controller until it detects that
enet_d(8) is active. enet_d(8) signifies the end of a packet. When HPC3
has transferred this last byte to main memory, it will write the (RBC −
(number of bytes in the packet + 3)) into the first word of the DMA
descriptor. The device driver can then poll this field in the descriptor to
see whether it has been processed.
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If HPC3 comes to a descriptor with the EOX=1 flag (the end of the linked
list), HPC3 will clear the rx_ch_active bit in the ethernet control register
upon completion of the transfer associated with that descriptor. This case
should really never happen as the DMA descriptor chain should be arranged as
a ring buffer.

The number of bytes allocated in each receive buffer should be a multiple
of eight and should be able to accumulate a full Ethernet packet and three
extra bytes. The first sixteen bytes of the receive buffer consist of two
don’t care bytes, destination address (6 bytes), source address (6 bytes),
and byte count (2 bytes). The don’t care bytes are used to pad the
informative data to be on a doubleword boundary. The last byte in the
receive buffer (the byte after the receive packet) is used to store the
status of the received packet.

Receive discards have been seperated into two categories. An early rxdc
happens before the 1st 64 bytes (based on the fifo buffer size). Everything
else is considered a late rxdc. Upon receiving an early rxdc, HPC3 resets
the device fifo pointer. If fix_rxdc is enabled, the eop status bits
(eop_in_chip and rcv_eop_intr) are cleared. HPC3 then continues to receive
bytes. If a late rxdc comes in, HPC3 may have already transferred bytes to
main memory. In this case, HPC3 sets both eop status bits (eop_in_chip and
rcv_eop_intr), which will mimic an end of packet. Late rxdc is flagged in
the status byte (appended to the end of the aborted packet). The packet is
written out to main memory. HPC3 then continues on.

Whenever ECHRST is programmed active, the receive channel is reset.

2.4.3 Urgency of requests

Ethernet is a real time device; software controls the transmit channel, but
the receive channel is a slave to other ethernet stations. Therefore, the
HPC3 must be ready to service the SEEQ 8003 upon demand. The Ethernet DMA
channels will be given the highest priority, followed by the audio channels,
in vying for the GIO64 bus. Also, if gio_timeout_n is asserted, but there
is an Ethernet request pending and real_time = 1, HPC3 will ignore
gio_timeout_n until the Ethernet channel has been serviced. If real_time =
0, then HPC3 will relinquish the GIO64 bus after the current transfer.

2.4.4 Interrupts

2.4.4.1 SEEQ 8003 register contents

The SEEQ transmit command register bits 3 down to 0 should be programmed
with a ’1’. The receive command register bits 5 down to 1 should be
programmed with a ’1’. This enables SEEQ interrupts for all frames and
error conditions. HPC3 screens interrupts received from the SEEQ 8003 for
the host. Upon receiving an interrupt (enet_int_in = 1) from the SEEQ 8003,
HPC3 will poll the SEEQ to find the condition which triggered the interrupt.
Depending upon what the conditions are, HPC3 may decide to interrupt the
host. The interrupt status bits from the SEEQ (transmit status register and
receive status register) are copied into two HPC3 ports (Ethernet
transmitter status register and Ethernet receiver status register) which the
host can access.

1 5
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2.4.4.2 Transmitter interrupts

There is an XIE bit in the DMA descriptor to tell the HPC3 whether to
interrupt the CPU after the current tranfer is done. XIE is valid only for
the last descriptor of the transmitted packet. Upon seeing this flag set,
HPC3 will wait until the packet is transmitted without collisions through
the SEEQ chip and then interrupt the CPU.

The only other transmit conditions which can cause an interrupt are:

* 16 failed transmission attempts (collision detected)
* Transmit underflow (should never happen)
* Late Collisions

In all cases, the tx_ch_active bit in the control register will be cleared
and transmission will be stopped. HPC3 continues to process the interrupts
from the SEEQ chip although the tx_ch_active bit is a ’0’. Note that the
status for the condition which caused the original interrupt may be
overwritten by subsequent interrupt conditions.

2.4.4.3 Receiver interrupts

The CPU will be interrupted after every active enet_d(8) (end of packet)
received from the SEEQ chip (the XIE bit should be set in each DMA
descriptor). HPC3 waits until the packet is sent to main memory before
generating an interrupt. Hpc3 used to have a timer which would delay the
interrupt. The timer was eliminated because of gate count constraints. The
interrupt now occurs as soon as the last piece of data in the packet is
written to main memory.

There are 3 other conditions for the receiver to interrupt the CPU. They
are:

* There is a receive fifo overflow in the SEEQ 8003 chip.
* HPC3 has reached the end of the linked list of descriptors (the EOX
flag is set) and has flushed the particular packet to main memory.

* HPC3 receives a packet whose number of bytes is more than the
RBC. This type of error condition is flagged by the "RBO"
(receive byte overflow) bit in the control register. This bit
can be cleared by writing a ’1’ to it.

In all three cases, HPC3 clears the rx_ch_active bit. HPC3 continues to
process the interrupts from the SEEQ chip although the RSTRTDMA bit is a
’0’. Again, note that the status for the condition which caused the
original interrupt may be overwritten by subsequent interrupt conditions.

2.4.5 Implementation

Each channel, transmit and receive, has two buffers called ibuf0 and ibuf1.
The ethernet main memory state machine handshakes with the GIO64 bus state
machine to transfer data between the ethernet fifos and main memory. The
ethernet main memory state machine controls transfers from main memory to
the transmit ibuf0 and ibuf1 fifos, and transfers to main memory from the
receive ibuf0 and ibuf1 fifos. The ethernet channel state machine controls
the transfers between the SEEQ 8003 and the HPC3 ethernet fifos. Tranfers
from the 8003 to the receive ibuf0 and ibuf1 fifos, and transfers to the
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8003 from the transmit ibuf0 and ibuf1 fifos are handled by the channel
state machine. The channel state machine also handshakes with the GIO64 bus
to do programmed I/O with the SEEQ 8003 control registers.

2.4.5.1 Fifo Buffers

The Ethernet fifo buffers have one dedicated read and one dedicated write
port. For the receiver, the channel state machine will always have control
of the write port and the main memory state machine will always have control
of the read port. For the transmitter, the channel state machine will
always have control of the read port and the main memory state machine will
always have control of the write port. It is possible to have the main
memory state machine and the channel state machine both accessing data at
the same time. As there are two ping−pong buffers for each channel, the
main memory state machine could be working on ibuf0 and the channel state
machine could be working on ibuf 1.

The high water mark (time to request GIO64 bus) is when one ping−pong buffer
is completely filled (receiver) or completely empty (transmitter). The
bandwidth needed for Ethernet is based on the size of one ping pong buffer.
In the case of the transmitter, if we request the GIO64 bus when one buffer
is empty, we need to service that buffer (fill it up) before the other
ping−pong buffer is emptied. During transmission, the one byte is drained
every 800 ns. HPC3 needs to be serviced every 64 us (800 ns * 80 bytes) to
satisfy the transmitter channel. The ping−pong buffer for the receiver
channel is slightly smaller, 64 bytes. HPC3 needs to be serviced every 51.2
us to satisfy the receiver channel.
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2.5 SCSI Interface 

HPC3 will have two identical but independent ports which will support the
Western Digital WD33C93, WC33C95 and the Fujitsu 86603 SCSI controllers.
Each port will have one DMA channel and one programmed I/O channel. The
interface to the SCSI device can be either 8 or 16 bits. The programmed I/O
interface is expected to be 8 bits. The DMA interface may be 8 or 16 bits.

2.5.1 SCSI Transfer Rates

The maximum rate of the WD33C93B SCSI controller is 10 Mbytes/s (8 bits).
The maximum rate of the WD33C95 and Fujitsu 86603 controllers is 20 Mbytes/s
(16 bits). HPC3 may not always achieve these maximum transfer rates. HPC3
is designed to be synchronous to the gio_clk. The minimum number of clock
cycles for each DMA transfer is 2.5. With a gio_clk at 25 MHz, this is a
maximum transfer rate of 10 Mbytes/s (20 Mbytes/s with 16 bits). If gio_clk
is 33 MHz, the number of clock cycles each DMA transfer is likely to be 3.5,
which is a transfer rate of 9.52 Mbytes/s (19 Mbytes/s with 16 bits).

2.5.2 Memory structure and DMA transfers

DMA descriptors are used to control main memory transfers. Both
transmission and reception may have more than one DMA descriptor. SCSI
blocks generally range from 512 bytes to 64k bytes.

The processor starts the DMA operation by writing the ch_active bit in the
HD control register. Upon detecting that ch_active is active, HPC3 will
request a GIO64 cycle to read the first DMA descriptor from main memory and
reset the fifo pointers for this channel. The dir bit in the HD control
register tells the HPC3 the direction of transfer (dir=1 is transmit, dir=0
is receive). After getting the first DMA descriptor, HPC3 will proceed with
the transfer.

If the SCSI channel is receiving data (dir=0), the 3 low bits of the fifo
pointers are loaded with the 3 low bits from the 1st cbp (current buffer
pointer) fetched. This means that the channel will not accept any data
until the 1st DMA descriptor is fetched (HPC3 needs to where to start
putting data into its fifo buffer). This is to allow any alignment for the
data buffer in main memory. However, each subsequent descriptor must be
aligned to its predecessor.

The DMA operation is halted by writing the ch_reset bit in the HD control
register. When ch_reset becomes active, all data in the fifo is invalidated
and all transfer activity stopped. HPC3 asserts hd_reset_n to reset the
SCSI controller and the ch_active bit is cleared. The DMA operation can
also be stopped by clearing the ch_active bit.

**** BUG ****
Currently, HPC3 has a problem with the end of a descriptor chain. When
receiving bytes from the SCSI controller, HPC3 will refuse to take the last
byte (or bytes if in 16 bit mode). There is a way to make HPC3 behave
correctly. When receiving, always tack on an extra DMA descriptor to the
end of the chain. If the bytecount in the extra DMA descriptor is zero,
there are no extra bytes transferred, and HPC3 will merrily transfer all
bytes.

1 9
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2.5.2.1 Transmit Operation

HPc3 will request the gio64 bus for data transfers whenever the three high
order bits of the fifo byte count (the number of bytes the fifo has room
for) is greater than or equal to the high water mark (3 bit value in the DMA
configuration register). HPC3 also requests the GIO64 bus whenever the
current byte count (number of bytes left to transfer in the main memory
buffer) is less than the fifo byte count.

When the current byte count is zero, HPC3 will fetch the next DMA descriptor
unless the eox flag is set. The eox flag notifies HPC3 that this is the
last descriptor to process. As soon as HPC3 has processed this descriptor,
it stops reading from main memory. When the transfer to the SCSI device is
complete, HPC3 clears the ch_active bit.

2.5.2.2 Receive Operation

HPC3 will request the GIO64 bus for a data transfer whenever the 3 high
order bits of the fifo byte count (number of bytes in the fifo) is greater
than or equal to the high water mark. HPC3 will also request the gio64 bus
when the current byte count (space left in the main memory buffer) is less
than the fifo byte count.

When the current byte count is zero, HPC3 will fetch the next DMA descriptor
unless the eox flag is set. The eox flag notifies HPC3 that this is the
last descriptor to process.

When receiving data, descriptors are processed until either the eox=1 flag
is encountered or the flush bit (HD control register) is enabled. After the
device transfers all its data to the HPC3, it interrupts the host, and the
host will program the flush bit. When this bit is programmed, HPC3 will
transfer all the data in its buffer regardless of the state of its high
water mark. HPC3 then clears the ch_active bit, and HPC3 will wait for the
next ch_active active. Alternatively, when HPC3 sees the eox=1 flag, it
goes through the same process as if the flush bit were programmed.

2.5.3 Interrupts

There are two sources of interrupts for the HD DMA channel. One is a PIO
parity error (checking enabled by pio_parity_en in the PIO configuration
register) and the other is processing a DMA descriptor whose XIE flag has
been set.

The PIO parity interrupt is generated as soon as the bad parity is detected
on the SCSI interface (HPC3 checks for odd parity). There is a parity_error
status bit in the control register which can be read. This status bit is
cleared whenever the control register is read. This status bit is shared by
the PIO and DMA parity functions (parity_error can be set through a DMA or a
PIO parity error). The DMA parity error does not trigger an interrupt.

The xie interrupt activated by the DMA descriptor xie=1 flag. This results
in an interrupt generated when HPC3 is finished processing the DMA
descriptor. The interrupt is always generated as soon as HPC3 is finished
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with the main memory buffer which the descriptor described. When
transmitting, this means that the bytes being transferred may still be in
HPC3’s fifo buffer, waiting to be sent to the SCSI controller. The
interrupt is cleared when the control register is read.

2.5.4 16 bit operations

HPC3 supports a 16 bit interface to the Fujitsu 86603 controller. Both 16
bit DMA and 16 bit PIO operations are possible. There are seperate controls
(enables) for DMA and PIO.

2.5.4.1 DMA

dma_16 (lives in the dma configuration register) enables 16 bit DMA
operations. When doing 16 bit DMA transfers, the total number of bytes
transferred must be an even number. If receiving (device to main memory)
data, there is a further restriction put on the DMA descriptors. The first
DMA descriptor in a chain must be on a half word boundary (start on an even
address). Note that this implies that the last byte in a transfer will
occupy an odd address (total number of bytes transferred must be even).

If we really want to transfer an odd number of bytes to the controller, each
case (transmit and receive) must be looked at seperately. When
transmitting, the number of bytes described by the descriptor chain is one
more than the actual number to transmit (an even number). HPC3 will
transfer all of its bytes to the Fujitsu controller. The Fujitsu
controller has been programmed with the correct number of bytes and will
toss the extra byte received from HPC3. When receiving, the number of bytes
described by the descriptor chain is one less than the actual number to
receive (again, an even number). HPC3 will transfer all of its bytes to
main memory. The last byte must be fetched from the Fujitsu controler
through programmed I/O (PIO).

The 16 bit interface between HPC3 and the Fujitsu controller is a little
endian bus. This should be transparent to software. However, if there is a
need, there exists a way to swap the bytes within the half word. dma_swap
(lives in the dma configuration register) is the enable for this feature and
affects both incoming (receive) and outgoing (tranmit) data.

2.5.4.2 PIO

16 bit PIO transfers are enabled by the pio_16 (lives in the pio
configuration register). As all HPC3 PIO registers are considered word
quantities, regardless if we are in big or little endian mode, bits 15:0 are
sent directly to the Fujitsu controller. However, when pio_swap (lives in
the pio configuration register) is enabled, bits 15:8 and 7:0 are swapped
for both incoming (read) and outgoing (write) data.

It is expected that all PIO operations will be 8 bits.

2.5.5 Implementation

There SCSI main memory state machine handshakes with the GIO64 bus state
machine to transfer data between the SCSI fifo buffer and main memory. The
SCSI channel state machine controls the transfers between the SCSI device
and the SCSI fifo buffer. The channel state machine also handshakes with
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the GIO64 bus state machine to do programmed I/O with the SCSI device control
registers.

2.5.5.1 Fifo Buffer

The SCSI fifo buffer has 4 ports, 2 read ports and 2 write ports. The gio side
has 1 read and 1 write port. The device side has 1 read and 1 write port.
During a DMA write operation, the main memory state machine (on the gio side)
will be using it’s write port and the channel state machine (on the device
side) will be using it’s read port. During a DMA read operation, the channel
state machine will be using it’s write port and the main memory state machine
will be using it’s read port. Although each port is independent, during a DMA
operation HPC3 should never be accessing the same location in the fifo from
both sides simultaneously. During a DMA operation, the fifos should never be
accessed through programmed I/O.

The channel state machine must not overflow/underflow the fifo buffer. It is
impossible for the main memory state machine to overflow/underflow the fifo
buffer.
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2.6 PBUS Controller

The PBUS is a general purpose I/O peripheral bus, designed to support
several attached low bandwidth devices. There is special support for the
Boot PROM address space and a 64K segment of battery backed ram. There is
general support for 10 programmed I/O channels and 8 DMA channels. The PBUS
controller is designed to support a maximum aggregate DMA bandwidth of 8
Mbytes/second. There is a 16 bit data bus, and each PIO and DMA channel can
be configured to service either an 8 or 16 bit device. For 8 bit devices,
the position on the bus (high or low) is also configured − so that loading
can be reduced. For 16 bit devices, the position on the bus (high or low)
of the even address bytes is configured − this will allow support for a byte
swap if needed. Eight bit transfers with 16 bit devices are not supported.
There is a 20 bit address bus. All address bits are used when addressing
the PROM. The 16 least significant address bits are used when addressing
the battery backed ram. For the general purpose PIO channels, an 8 bit
address is used. This address is copied onto address bits (15:8) and (7:0)
to reduce loading. There is an active low read strobe and an active low
write strobe used for both PIO and DMA operations. There is also a general
purpose registered output signal which can be used as a status indication or
a hardware reset.

To support multiple PIO and DMA channels, a simple arbitration scheme is
used. DMA channels can be configured as real_time or general. General DMA
channels will typically support long burst DMA devices which will transfer
several bytes, but are able to tolerate long latencies from request to
service. General DMA channels are also able to tolerate preemption of a DMA
burst by the HPC3. Real_time DMA channels will typically support devices
which transfer a smaller number of bytes, but can not tolerate long
latencies. Real_time DMA channels are not preemptable by HPC3 unless the
HPC3 runs out of data in the case of transmit, or fills its fifo in the case
of receive. PIO and DMA will alternately win the bus when both require
service. This will prevent many consecutive PIO writes from hoarding the
bus and blocking service to real_time DMA channels. It is also required to
prevent real_time DMA from hoarding the bus and causing the GIO BUS to
timeout while waiting for PIO. General DMA channels can be preempted at any
time in the middle of a burst by any PIO or real_time DMA channel. There is
also a configurable burst_count for general DMA channels. After performing
burst_count consecutive transfers, a general DMA channel can be preempted by
another general DMA channel. In the event of a tie between one or more DMA
channels, the least significant channel wins, e.g., ch_1 and ch_5, ch_1 gets
the PBUS.

The PBUS has been designed in such a way that it should be easy to connect
devices which only require PIO, or devices whose DMA interface matches the
Intel 8237 DMA controller interface.

2.6.1 PBUS Programmed I/O

The PBUS controller supports the general PIO model described in section 2.1.
Each channel has a set of configuration registers which specify the timing
characteristics of the attached device. There are two dedicated Boot PROM
chip selects that each decode a 2 Mbyte address space. There is one
dedicated battery backed ram chip select which decodes a 64 Kword segment.
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The 10 general purpose chip selects each decode 256 word segments. Recall
that the devices are actually 8 or 16 bits wide, but each device register is
mapped into a word address in the system. The Boot PROM has a special
organization which will be described below.

2.6.2 PBUS Direct Memory Access

The PBUS controller supports the general DMA model described in section 2.2.
Each channel has a set of configuration registers which specify the timing
characteristics of the attached device. There is an active low DMA
request/acknowledge pair for each of the 8 DMA channels. There is one
active high terminal count signal for all PBUS DMA channels. The TC output
signal will be asserted in state D4 of the device DMA cycle for the last
transfer of an operation, i.e., EOX set and byte_count satisfied. If the TC
signal is required at the end of a DMA read operation, there is a constraint
on the size of the last main memory buffer in the descriptor chain. The
last buffer in main memory must be larger than the HPC3 fifo for the given
DMA channel. If the TC signal is required at the end of a DMA write
operation, then the last main memory buffer in the descriptor chain must
have at least one byte.

For all PBUS DMA channels, there is one 384 byte ram. It is organized as a
48 word by 64 bit, byte writtable memory. It is 64 bits wide so that GIO64
transfers can proceed without stalls. Each channel will use a section of
the ram as its fifo. The sections can be of different sizes so that the
fifo size can be matched to the bandwidth of the attached device − fifos
must be some multiple of 8 bytes long and are doubleword aligned. Each
channel will have some registers to maintain its fifo. The fifo_beg is the
doubleword address of the beginning of the ram section for a given channel.
The fifo_end is the doubleword address of the end of the block. These are 6
bit values ranging from 0 to 47. The device side and GIO64 side each
interface to the fifo, and need to know the address of the next byte to be
read or written. These byte addresses are the gio_ptr and gen_ptr
respectively. They are 10 bit values where the nine least significant bits
range from 0 to 383, and the most significant bits toggle when the pointer
wraps around from the end of the fifo to the beginning. Each channel also
needs a high_water mark. This indicates when GIO64 service should be
requested. For DMA reads, when there are high_water bytes used in the fifo,
the channel will request service. For DMA writes, when there are high_water
bytes unused in the fifo, the channel will request service.

If for some reason there is the possibility of there being extra bytes in
the HPC3 fifo after the completion of a DMA read operation, the software can
detect this and recover the data. The gio_ptr and gen_ptr can be read from
the HPC3 and compared. If they are not equal, the fifo has stray bytes.
Since the PBUS ram is in the PIO address space, the ram can be read using
PIO to recover the data.

2.6.3 PBUS Devices

It is important to note that except for the Boot PROM and battery backed
ram, the PBUS controller does not know which devices are connected. Some of
the devices that may be connected are: Boot PROM, audio part, interrupt
controller, real time clock, floppy disk controller, parallel port, and
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serial port. The following sections give some information on these devices.

2.6.3.1 Boot PROM

There is special support for two 16 bit PROMs. Each PROM can be up to 2
Mbytes. For PROM PIO, block transfers (including CPU Subblock Ordering) are
not supported. The PROM can be accessed for reads of byte, halfword, word,
and doubleword data sizes. Each system access, therefore, may require
multiple device accesses to construct the necessary data to be transferred.
Byte reads are actually no different from halfword reads. The HPC3
determines how much PROM data to read based on the three least significant
bits of the GIO bus Byte Count. If these three bits are 1 or 2, then a
halfword is read. If these three bits are 3 or 4, then a word is read. If
these three bits are 5, 6, 7 or 0, then a doubleword is read. The PROM is
organized in words. Even PROM addresses access bits (31:16) of a word, and
odd PROM addresses access bits (15:0) of a word. This will allow a piece of
code that is in the PROM to be executed by a big or little endian process
since bits, not bytes, are read from the same location for a big or little
endian process. HPC3 can be configured to perform writes to the PROM in
order to provide support for future use of a FLASH PROM.

2.6.3.2 Audio

HPC3 will interface to the HAL2 chip for audio DMA. Audio DMA is expected
to use 4 real_time DMA channels. This might be extended to six in systems
where the DMA channels are available. More details about this interface
will be provided.

2.6.3.3 Interrupt Controller, INT2

The INT2 interrupt controller will be used to collect all of the interrupts
in the machine. INT2 then sends six interrupt bits to MC which issues a
write to the R4000 to cause an interrupt. The EISA interrupts will be
collected in an EISA chip and then sent to INT2. INT2 will use one of the
PBUS chip selects.

2.6.3.4 Real Time Clock

At least two different real time clock chips can be used. The first is a
Dallas DS1286. The second part is a Dallas DS1386 which is the same part
except that it can have up to 32 Kbytes of battery backed ram in it. There
is a special chip select for the part with 32 Kbytes of battery backed ram.
When the special chip select is used all 16 bits of the PBUS address bus
will be valid.

2.6.4 PBUS Bandwidth

  The following is a discussion of PBUS bandwidth.  The main purpose
of the PBUS is to provide DMA support for the HAL2 chip of the A2 audio
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system.  The audio DMA requires timely service in the sense that the
audio fifos in HAL2 can Overflow/Underflow if the PBUS does not provide
adequate service.  This is by definition a failure.  Two questions are
addressed here.  Do we guarantee audio performance?  How much bandwidth
is left over for other PBUS devices?

HPC3 registers: (see HPC3 Chip Specification for details)
−−−−−−−−−−−−−−−

pbus.cfgdma(i) should be set to 0x08248844 for
the audio DMA channels.  This will set the timing
correctly for HAL2 and configure the channels as
real_time on the PBUS.

The en_real_time bit in the gio.misc register
should be set if the machine uses the gio_timeout_n
feature.

The real_time bits of the pbus.ctrl(i) registers
for the audio DMA channels should be set if the
machine uses the gio_timeout_n feature.

Audio sample period and sample sizes:
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The audio transfer rate is 48 KHz, so the sample period
is 20 us.

Currently audio uses four DMA channels −− PBUS(0:3).
The sample sizes of the four channels are
{64 128 128 192} bits, or {8 16 16 24} bytes.

HAL2 is a 16 bit PBUS device, so the number of transfers
per sample is {4 8 8 12}.

The burst DMA timing for HAL2 is 4 cycles per transfer,
plus 3 cycles per burst of PBUS overhead.  This gives
a transfer time per sample of {19 35 35 51} cycles.

For 25 MHz GIO these transfer times are
{0.76 1.4 1.4 2.04} us.

HPC3 fifo sizes and highwater marks:
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Each of the four audio fifos should be sized to hold exactly
four samples.  The highwater mark should be set to two samples.
fifo sizes: {4  8  8 12} doublewords (rows of the PBUS fifo)
highwater:  {8 16 16 24} halfwords (highwater expressed in 

halfwords)

The parallel port fifo should be sized to about 32 bytes (4 
rows)

with the highwater mark about half way (8 halfwords).
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Audio buffers in main memory:
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Audio buffers in main memory always have an integral number
of samples.  They are also hundreds of samples long.

PBUS PIO overhead and the PBUS arbiter:
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

We need to ensure that PIO operations get serviced within
a reasonable amount of time.  Therefore, PIO must be allowed
to get on the PBUS while DMA requests are active.  However,
PIO can not be given absolute priority, or it would be possible
to never get a DMA cycle.  The PBUS arbiter has a very simple
alternating scheme to ensure that both PIO and DMA get on the
PBUS.  The absolute worst case (though it may be unrealistic)
is that there is always a PIO write pending.  Therefore, each
DMA would be preceded by a PIO.  Because of this, PIO transfer
times must be kept under control.  Currently the maximum time
allowed for PIO is 480 ns.  This corresponds to 16 cycles at
33.3 MHz or 12 cycles at 25 MHz.  Devices which are too slow
should not be used; or at least they change this analysis.

The worst case PBUS behavior looks like:
PIO DMA PIO DMA PIO DMA PIO DMA PIO DMA PIO DMA ...

HPC3 on the GIO64 Bus:
−−−−−−−−−−−−−−−−−−−−−−

ASSUME 10 us from request to grant!!!

HPC3 uses 2 cycles to initiate each gio transaction
once it owns the bus.

Reads from memory have 6 (maybe more?) stalls from
BYTECOUNT to first DATA.

DMA Descriptor Fetches take 12 cycles
(2 + ADDRESS + BYTECOUNT + 6 + DATA + DATA) = 12
DMA Descriptors are quadrupleword aligned.

DMA Reads have 11 cycles of OVERHEAD
(2 + ADDRESS + BYTECOUNT + 6 + 1) = 11
The extra cycle assumes that the first piece of data is in the
second "half" of a quadrupleword, so there is one more stall to
get to the next quadrupleword.

        Time for enet rcve dma write (write to memory is probably faster):
                enet rcve fifo has 16 doublewords, 8 of which can be written
                to memory in one gio burst
                (11 + 8) = 19

        Time for enet xmit dma read:
                enet xmit fifo has 20 doublewords, 10 of which can be filled
                from memory in one gio burst
                (11 + 10) = 21
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PI1 DMA timing:
−−−−−−−−−−−−−−−

PBUS overhead of 3 cycles/burst.  Transfer time of 7 
cycles/xfer.

Assume PI1 DMA is preempted.  Therefore, 10 cycles/byte for 
parallel

port DMA (worst case).  For 25 MHz GIO this is 0.4 us.

************************************
* Is audio performance guaranteed? *
************************************

The following statement has been blessed by the OS people ...
... i.e., Wiltse

PROM and BBRAM PIO shall not happen when the system 
is

using audio in any real mode.  Therefore, PROM and 
BBRAM

PIO do not influence the PBUS bandwidth analysis.

The analysis is an attempt to make the least significant audio
channel {PBUS(3)} fail.  If someone can find a condition worse
than this one they shall receive a great reward ($0.25/gio_clk).

To simplify the description xmit DMA will be used as the 
example.

Rcve DMA has the same characteristics.  HAL2 has a one sample
buffer on the host side (PBUS side).  At time T=0us HAL2 

transfers
the sample from the host side to the device side and issues a
request for PBUS DMA service.  This will repeat periodically
at the sample rate.  Notice that we have approximately one 

sample
period to respond to this request since the HAL2 has the sample
for this period already transferred to the device side.

To get the worst case we need to get the GIO bus involved.  The
highwater mark is reached with this sample, and by the time we
get the GIO bus there is lots of work to do.

At T=0us we have just less than three samples in the PBUS fifo 
(2+).

We have one sample on the device side of HAL2 and 2+ samples in 
the

HPC3.  At T=40us data which (as of T=0us) is not yet in the PBUS
fifo will be requested by HAL2.  This sample must be delivered
before T=60us.

The following numbers all assume 25 MHz GIO clock.  The times 
are

expressed in micro seconds.
 0.4 − about ten clocks of HAL2 request delay
 0.4 − preempt parallel port DMA
 0.48 − PIO
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 0.76 − DMA on PBUS(0)
 0.48 − PIO
 1.4 − DMA on PBUS(1)
 0.48 − PIO
 1.4 − DMA on PBUS(2)
 0.48 − PIO
 2.04 − DMA on PBUS(3)
 0.4 − PBUS(3) has reached the highwater mark

  about ten clocks of HPC3 request delay
10.0 − HPC3 request to grant on GIO64 bus
−−−−−−−−−
18.72 − HPC3 now on GIO64 bus
 2.88 − descriptor fetches on PBUS(4:7) and SCSI(0:1)

  6 * 12
 3.72 − data transfer on ENET(rcve:xmit) and PBUS(0:2)

  19 + 21 + (3 * 11) + 4 + 8 + 8
 2.4 − descriptor fetches on ENET(rcve:xmit) and 

PBUS(0:2)
  5 * 12

 3.24 − data transfer on ENET(rcve:xmit) and PBUS(0:2)
  19 + 21 + (3 * 11) + 2 + 3 + 3

 0.92 − data transfer on PBUS(3)
  11 + 12

 0.24 − about six clocks for data to be ready
−−−−−−−−−
32.12 − PBUS(3) ready to DMA to HAL2 now

The new sample will be requested at about T=40us.

From this analysis two other observations can be made:
− Partial sample DMA between HPC3 and HAL2 will not occur.
− When HAL2 issues the DMA request, the PBUS fifo is ready
  for service −− the priority of the PBUS channel determines
  the latency, which we have already seen is less than 10 us.

This has been a very conservative analysis.  By being more
aggressive it can be shown that audio performance is guaranteed
even when the highwater marks are set to full.  In this case
we save the second set of GIO transmit DMAs for PBUS(0:2) −− 

this
is 41 cycles or 1.64 us.  In addition, PBUS(0:2) either request
the GIO bus on their own behalf sooner than PBUS(3), or they do 

not
interfere with PBUS(3) on the PBUS just prior to T=40us.  The 

DMA
for PBUS(3) would complete before T=40us.

At 33.3 MHz these numbers get a lot better!

***********************************************************
* How much bandwidth is left over for other PBUS devices? *
***********************************************************

With the GIO64 bus running at 25 MHz, the audio interface on the
PBUS uses about 5.6 us every 20 us on average.  This leaves 

about
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14 us for the parallel port.  This is more than enough for 1 
MB/sec

bandwidth.  If we consider the worst case when there is an 
infinite

supply of PIO then the audio DMA needs {5.6 + (4 * 0.48)} us.  
This

leaves 12.48 us out of 20 us for other devices.  If the PIO 
continues

then parallel port DMA would be one byte at a time with a byte 
time

of (0.48 + 0.4) us.  This affords a transfer rate of 14 Bytes/20 
us,

or 700 KB/sec bandwidth.  One great thing about PI1 is that it 
allows

for smooth performance degradation when the PBUS does not 
provide

adequate service.  This is because PI1 was implemented to 
prevent

fifo overflow/underflow.  It simply stalls the parallel port.
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2.7 Serial EEPROM Interface

The EEPROM module is a very simple interface to a National, 93CS56 serial
EEPROM. The interface in HPC3 is a 5 bit register. It is up to software to
read and write this register to generate the correct waveforms to the
EEPROM. There is a serial input from the eeprom (si, read only), a serial
output to the eeprom (so), an active high chip select (cs), the protect
register enable (pre), and the serial eeprom clock (sck). See the HPC1
specification for a description of how to program the EEPROM by writing and
reading this control register.



3.0 HPC3 Address Map

There is space in the system memory map for two HPC3 chips. It is doubtful
that a machine would ever be built with two HPC3 chips, but if one wanted to
build a machine with lots of I/O devices, (2 ethernet controllers, multiple
high speed SCSI channels, FDDI, ISDN, etc.) it would be possible. The
address map for the two chips is as follows:

0x1fb00000 0x1fb7ffff Second HPC3 chip, I/O space
0x1fb80000 0x1fbfffff First HPC3 chip, I/O space
0x1fc00000 0x1fdfffff First HPC3 chip, PROM 0 space
0x1fe00000 0x1fffffff First HPC3 chip, PROM 1 space

There is no PROM space on the second HPC3 chip. The 4 Mbytes of PROM space
is evenly split between the two PBUS PROM chip selects.

The 512 Kbytes of I/O space for each HPC3 is divided into nine sections.
For the first chip, they are as follows:

0x1fb80000 0x1fb8ffff PBUS DMA channel registers
0x1fb90000 0x1fb9ffff HD0, HD1, ENET DMA channel registers
0x1fba0000 0x1fbaffff Fifo access ports
0x1fbb0000 0x1fbbffff General registers
0x1fbc0000 0x1fbc7fff HD0 device registers
0x1fbc8000 0x1fbcffff HD1 device registers
0x1fbd0000 0x1fbd7fff ENET device registers
0x1fbd8000 0x1fbdffff PBUS device registers
0x1fbe0000 0x1fbfffff Battery backed sram address space

The address space for the first HPC3 chip is as follows:

Register Name Address Read/Write Description

pbus.bp(0) 0x1fb80000  R pbus dma channel 0, buffer pointer
pbus.dp(0) 0x1fb80004 R/W pbus dma channel 0, descriptor 

pointer
pbus.ctrl(0) 0x1fb81000− R/W pbus dma channel 0, control register

0x1fb81fff
pbus.dmareg(1) 0x1fb82000− R/W pbus dma channel 1, dma registers

0x1fb83fff same structure as above
bp, dp, and ctrl

pbus.dmareg(2) 0x1fb84000− R/W pbus dma channel 2, dma registers
0x1fb85fff bp. dp, and ctrl

pbus.dmareg(3) 0x1fb86000− R/W pbus dma channel 3, dma registers
0x1fb87fff bp, dp, and ctrl

pbus.dmareg(4) 0x1fb88000− R/W pbus dma channel 4, dma registers
0x1fb89fff bp, dp, and ctrl

pbus.dmareg(5) 0x1fb8a000− R/W pbus dma channel 5, dma registers
0x1fb8bfff bp, dp, and ctrl

pbus.dmareg(6) 0x1fb8c000− R/W pbus dma channel 6, dma registers
0x1fb8dfff bp, dp, and ctrl

pbus.dmareg(7) 0x1fb8e000− R/W pbus dma channel 7, dma registers
0x1fb8ffff bp, dp, and ctrl

hd0.cbp 0x1fb90000  R SCSI channel 0, cbp
hd0.nbdp 0x1fb90004 R/W SCSI channel 0, nbdp
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hd0.bc 0x1fb91000  R SCSI channel 0, bc
hd0.cntl 0x1fb91004 R/W SCSI channel 0, control
hd0.gio 0x1fb91008  R SCSI channel 0, gio fifo ptr
hd0.dev 0x1fb9100c  R SCSI channel 0, device fifo ptr
hd0.dmacfg 0x1fb91010 R/W SCSI channel 0, DMA configuration
hd0.piocfg 0x1fb91014 R/W SCSI channel 0, PIO configuration

hd1.cbp 0x1fb92000  R SCSI channel 1, cbp
hd1.nbdp 0x1fb92004 R/W SCSI channel 1, nbdp
hd1.bc 0x1fb93000  R SCSI channel 1, bc
hd1.cntl 0x1fb93004 R/W SCSI channel 1, control
hd1.gio 0x1fb93008  R SCSI channel 1, gio fifo ptr
hd1.dev 0x1fb9300c  R SCSI channel 1, device fifo ptr
hd1.dmacfg 0x1fb93010 R/W SCSI channel 1, DMA configuration
hd1.piocfg 0x1fb93dd014R/W SCSI channel 1, PIO configuration

enetr.cbp 0x1fb94000  R ethernet receiver, cbp
enetr.nbdp 0x1fb94004 R/W ethernet receiver, nbdp
enetr.bc 0x1fb95000  R ethernet receiver, bc
enetr.cntl 0x1fb95004 R/W ethernet receiver, control
enetr.gio 0x1fb95008  R ethernet receiver, gio fifo ptr
enetr.dev 0x1fb9500c  R ethernet receiver, device fifo ptr
enet.reset 0x1fb95014 R/W ethernet, reset
enet.dmacfg 0x1fb95018 R/W ethernet, DMA configuration
enet.piocfg 0x1fb9501c R/W ethernet, PIO configuration

enetx.cbp 0x1fb96000  R ethernet transmitter, cbp
enetx.nbdp 0x1fb96004 R/W ethernet transmitter, nbdp
enetx.bc 0x1fb97000  R ethernet transmitter, bc
enetx.cntl 0x1fb97004 R/W ethernet transmitter, control
enetx.gio 0x1fb97008  R ethernet transmitter, gio fifo ptr
enetx.dev 0x1fb9700c  R ethernet transmitter, device fifo 

ptr

pbus.fifo 0x1fba0000− R/W pbus fifo address range
0x1fba7fff

hd0.fifo 0x1fba8000− R/W hd0 fifo address range
0x1fba9fff

hd1.fifo 0x1fbaa000− R/W hd1 fifo address range
0x1fbabfff

enet.rfifo 0x1fbac000− R ethernet, receiver fifo address
0x1fbadfff range

enet.xfifo 0x1fbae000− W ethernet, transmitter fifo address 
0x1fbaffff range

gen.intstat 0x1fbb0000 R interrupt status, bits 4:0
gen.intstat.bug 0x1fbb000c R interrupt status, bits 9:5

gio.misc 0x1fbb0004 R/W gio64 bus, misc

eeprom.data 0x1fbb0008 R/W serial eeprom data register

gio.bus_error 0x1fbb0010 R/W gio64 bus error interrupt status

hd0.cs 0x1fbc4000− R/W SCSI channel 0, external registers
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0x1fbc43ff

hd1.cs 0x1fbcc000− R/W SCSI channel 1, external registers
0x1fbcc3ff

enet.cs 0x1fbd4000− R/W ethernet, external registers
0x1fbd44ff

pbus.pio(0) 0x1fbd8000− R/W pbus pio channel 0, external
0x1fbd83ff registers

pbus.pio(1) 0x1fbd8400− R/W pbus pio channel 1, external
0x1fbd87ff registers

pbus.pio(2) 0x1fbd8800− R/W pbus pio channel 2, external
0x1fbd8bff registers

pbus.pio(3) 0x1fbd8c00− R/W pbus pio channel 3, external
0x1fbd8fff registers

pbus.pio(4) 0x1fbd9000− R/W pbus pio channel 4, external
0x1fbd93ff registers

pbus.pio(5) 0x1fbd9400− R/W pbus pio channel 5, external
0x1fbd97ff registers

pbus.pio(6) 0x1fbd9800− R/W pbus pio channel 6, external
0x1fbd9bff registers

pbus.pio(7) 0x1fbd9c00− R/W pbus pio channel 7, external
0x1fbd9fff registers

pbus.pio(8) 0x1fbda000− R/W pbus pio channel 8, external
0x1fbda3ff registers

pbus.pio(9) 0x1fbda400− R/W pbus pio channel 9, external
0x1fbda7ff registers

pbus.pio(8) 0x1fbda800− R/W pbus pio channel 8, external
0x1fbdabff registers

pbus.pio(9) 0x1fbdac00− R/W pbus pio channel 9, external
0x1fbdafff registers

pbus.pio(8) 0x1fbdb000− R/W pbus pio channel 8, external
0x1fbdb3ff registers

pbus.pio(9) 0x1fbdb400− R/W pbus pio channel 9, external
0x1fbdb7ff registers

pbus.pio(8) 0x1fbdb800− R/W pbus pio channel 8, external
0x1fbdbbff registers

pbus.pio(9) 0x1fbdbc00− R/W pbus pio channel 9, external
0x1fbdbfff registers

pbus.cfgdma(0) 0x1fbdc000− R/W pbus dma channel 0, configuration
0x1fbdc1ff register

pbus.cfgdma(1) 0x1fbdc200− R/W pbus dma channel 1, configuration
0x1fbdc3ff register

pbus.cfgdma(2) 0x1fbdc400− R/W pbus dma channel 2, configuration
0x1fbdc5ff register

pbus.cfgdma(3) 0x1fbdc600− R/W pbus dma channel 3, configuration
0x1fbdc7ff register

pbus.cfgdma(4) 0x1fbdc800− R/W pbus dma channel 4, configuration
0x1fbdc9ff register

pbus.cfgdma(5) 0x1fbdca00− R/W pbus dma channel 5, configuration
0x1fbdcbff register

pbus.cfgdma(6) 0x1fbdcc00− R/W pbus dma channel 6, configuration
0x1fbdcdff register

pbus.cfgdma(7) 0x1fbdce00− R/W pbus dma channel 7, configuration
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0x1fbdcfff register

pbus.cfgpio(0) 0x1fbdd000− R/W pbus pio channel 0, configuration
0x1fbdd0ff register

pbus.cfgpio(1) 0x1fbdd100− R/W pbus pio channel 1, configuration
0x1fbdd1ff register

pbus.cfgpio(2) 0x1fbdd200− R/W pbus pio channel 2, configuration
0x1fbdd2ff register

pbus.cfgpio(3) 0x1fbdd300− R/W pbus pio channel 3, configuration
0x1fbdd3ff register

pbus.cfgpio(4) 0x1fbdd400− R/W pbus pio channel 4, configuration
0x1fbdd4ff register

pbus.cfgpio(5) 0x1fbdd500− R/W pbus pio channel 5, configuration
0x1fbdd5ff register

pbus.cfgpio(6) 0x1fbdd600− R/W pbus pio channel 6, configuration
0x1fbdd6ff register

pbus.cfgpio(7) 0x1fbdd700− R/W pbus pio channel 7, configuration
0x1fbdd7ff register

pbus.cfgpio(8) 0x1fbdd800− R/W pbus pio channel 8, configuration
0x1fbdd8ff register

pbus.cfgpio(9) 0x1fbdd900− R/W pbus pio channel 9, configuration
0x1fbdd9ff register

pbus.cfgpio(8) 0x1fbdda00− R/W pbus pio channel 8, configuration
0x1fbddaff register

pbus.cfgpio(9) 0x1fbddb00− R/W pbus pio channel 9, configuration
0x1fbddbff register

pbus.cfgpio(8) 0x1fbddc00− R/W pbus pio channel 8, configuration
0x1fbddcff register

pbus.cfgpio(9) 0x1fbddd00− R/W pbus pio channel 9, configuration
0x1fbdddff register

pbus.cfgpio(8) 0x1fbdde00− R/W pbus pio channel 8, configuration
0x1fbddeff register

pbus.cfgpio(9) 0x1fbddf00− R/W pbus pio channel 9, configuration
0x1fbddfff register

pbus.prom_we 0x1fbde000− W pbus boot prom write enable
0x1fbde7ff register

pbus.prom_swap 0x1fbde800− W pbus boot prom chip select swap
0x1fbdefff register

pbus.gen_out 0x1fbdf000− W pbus general purpose output
0x1fbdffff register

pbus.bbram 0x1fbe0000− R/W pbus battery backed ram external
0x1fbfffff registers
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3.1 GIO64 Bus Interface Control Registers

intstat This is the DMA interrupt status register for all DMA
channels except for Ethernet. This is a read only
register. Reading this register has no effect on the
status bits. The status bits can also be read in
their local control/status registers.

(7:0) PBUS interrupt status
(8) SCSI channel 0 interrupt status
(9) SCSI channel 1 interrupt status

*** BUG ***
There is a problem with the read back of this
register. Instead of being in one piece, it is
broken and can only be read in two pieces. Bits 4:0
can be read from 0x1fbb0000. Bits 9:5 can be read
from 0x1fbb000c. All other bits in both registers
should be ignored as they are indeterminate.

misc Miscellaneous collection of bits.

(0) en_real_time Enable for the real time feature
with the external timer. en_real_time
allows the real time devices to stay
on the bus as long as they need
service.

(1) des_endian DMA descriptor endian orientation.
des_endian=1 is little endian.

bus_error This is the bus error interrupt status register.
This only kind of bus error HPC3 checks for is
parity. If a parity (HPC3 checks for even parity on
the gio64 bus) error occurs, information about what
caused the error can be read here. The bus error
interrupt is reset upon a read of this register.

*** BUG ***
Ideally, there should be another status bit in this
register to indicate whether a parity error actually
occurred. If the bus_error_intr pin is logically
ored with another interrupt pin on the board, there
is no way to determine from HPC3 if it was the cause
of the interrupt. To get around this, software
should service HPC3 last. If no other device caused
the interrupt, then HPC3 must be the culprit. This
will work as long as the other devices which share
the interrupt behave properly (are able to indicate
whether they caused the interrupt).

(7:0) byte_lane_err Holds the byte lane status. A ’0’
indicates good parity.
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(8) PIO/DMA PIO/DMA indicates the type of cycle
during which the parity error occured.
A ’0’ means the parity error happened
during a PIO cycle.

(18:9) parity_id For a DMA parity error, parity_id is
the DMA channel identifier. Bits 18:9
represent channels 11:0 respectively.
Only one bit should be enabled (=’1’)
as a bit is enabled when the DMA
parity error occured during the
channel’s DMA cycle. During a PIO
parity error, parity_id is the PIO
process identifier. Bits 18:9 are
bits 22:11 of the PIO address.



SGI Confidential, Do Not Copy HPC3 Chip Specification

3 9

3.2 Ethernet Registers

3.2.1 gio_clk registers

rx_cbp This is the current buffer pointer for the receiver
channel and is part of the DMA descriptor. rx_cbp
points to the main memory buffer for the current DMA
transfer. rx_cbp should only be updated through DMA
descriptor fetches (and not through PIO).

rx_nbdp This is the next buffer descriptor pointer for the
receiver channel and is part of the DMA descriptor.
rx_nbdp points to the next DMA descriptor in the
chain. When starting a DMA operation, rx_nbdp should
be programmed to point to the first descriptor in the
chain.

rx_bc This is the byte count information for the receiver
channel which is part of the DMA decriptor.

(13:0) des_bc Amount of bytes to tranfer to the main
memory buffer. This field is updated
during a descriptor fetch and during a
data transfer. This field is a read
only field for PIO accesses.

(29) xie Flag to tell HPC3 to interrupt the
host after HPC3 is done transferring
data to the current main memory
buffer. This bit should always be set
(=1 is interrupt). This bit is a
read/write bit for PIO accesses.

(31) eox Flag to tell HPC3 that the current
descriptor is the end of the
descriptor chain (=1 is end of chain).
This bit is a read/write bit for PIO
accesses.

rx_control This is the control register which directs the
actions of this DMA channel.

(5:0) status_5_0 Read only interrupt status. This is a
copy of the Receive Status Register in
the Seeq 8003 controller.

(6) status_6 Read only interrupt status. If this
bit is a ’1’ and the other status bits
are ’0’, then a late_rxdc condition
occurred (rxdc arrived after 64 bytes
were received by HPC3). If this bit
is a ’1’ and status_5_0 bit 4 is a ’1’
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then a timeout condition occured.
Either HPC3 received an eop without
the corresponding interrupt or HPC3
received the eop interrupt without an
eop.

(7) status_7 Read only old/new status. This is a
copy of the bit in the receive status
register in the SEEQ 8003 controller.

(8) endian Endian mode for this DMA channel.
Little endian when endian = ’1’ and
bit endian when endian = ’0’. This
bit is a read/write bit for PIO
accesses.

(9) ch_active Indicates a DMA transfer in progress.
When ch_active = ’1’, this DMA channel
is active, when ch_active = ’0’, this
DMA channel is inactive. To start a
DMA transfer, all other parameters
should be programmed before writing
ch_active to a ’1’. HPC3 will reest
ch_active to ’0’ when the transfer is
complete. This bit is a read/write
bit for PIO accesses. This bit can
only be written when ch_active_mask is
a ’0’. This bit is reset (= ’0’) upon
power−on reset.

(10) ch_active_mask When writing to the control port and
ch_active_mask = ’1’, writes are
inhibited to ch_active, and ch_active
will retain it’s current value; when
ch_active_mask = ’0’, writes are
enabled to ch_active, and ch_active
will be updated. This bit is a write
only bit for PIO accesses.

(11) rbo rbo = 1 (receiver buffer overflow)
indicates that the incoming packet was
larger than the main memory buffer
allocated for it. This is a read only
bit.

rx_gio This is the gio fifo pointer (the fifo pointer which
is used when putting bytes in the main memory
buffer). The gio fifo pointer is the fifo tail.
This port is a read/write port for PIO accesses. In
normal operation of this chip, this port should never
be written..

rx_dev This is the device fifo pointer (the fifo pointer
which is used when collecting bytes from the SEEQ)
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The device fifo pointer is the fifo head. This port
is a read/write port for PIO accesses. In normal
operation of this chip, this port should never be
written.

misc This collects miscellaneous bits together which don’t
quite fit in any other place.

(0) ch_reset Channel reset. Resets both external
controller and this DMA channel. This
bit is active (=1, channel is reset)
upon power−on reset. This must be
programmed to a 0 before the ch_active
bit becomes active. This bit is a
read/write bit for PIO accesses.

(1) clrint Clear channel interrupt. Writing a
"1" to this bit will clear all
ethernet interrupts except for rbo
(rbo is cleared by a read from the
control register where it lives).
Reading this bit gives the current
status of the ethernet interrupt.

(2) loopback Enables loopback mode for the Seeq
8003. This bit goes straight out to
the SEEQ. This is a diagnostic
feature.

pio_cfg This is the PIO configuration register.

(3:0) pio_p1 Number of gio_clk cycles to spend in
state P1 for external PIO accesses.
The number of clocks is from 1 to 16.
This value is set to "1111" (16) upon
power−on reset. Refer to the Ethernet
timing diagram for PIO accesses.

(7:4) pio_p2 Number of gio_clk cycles to spend in
state P2 for external PIO accesses.
The number of clocks is from 1 to 16.
This value is set to "1111" (16) upon
power−on reset. Refer to the Ethernet
timing diagram for PIO accesses.

(11:8) pio_p3 Number of gio_clk cycles to spend in
state P3 for external PIO accesses.
The number of clocks is from 1 to 16.
This value is set to "1111" (16) upon
power−on reset. Refer to the Ethernet
timing diagram for PIO accesses.

(12) test_ram Enables a special test mode for the
transmitter fifo ram. The eop byte in
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the ram can be written by programmed
I/O. The ram should be written in two
steps. The eop byte is first written,
always at xxx. Then the ram is
written. This is for testing only,
and should always be inactive during
normal operation of this chip.

dma_cfg This is the DMA configuration register.

(3:0) dma_d1 Number of gio_clk cycles to spend in
state D1 for DMA accesses to/from the
device. The number of clocks is from
1 to 16. This value is set to "1111"
(16) upon power−on reset. This is
currently not implemented, and the
value is always 1. Refer to the
Ethernet timing diagram for DMA
accesses.

(7:4) dma_d2 Number of gio_clk cycles to spend in
state D2 for DMA accesses to/from the
device. The number of clocks is from
1 to 16. This value is set to "1111"
(16) upon power−on reset. Refer to
the Ethernet timing diagram for DMA
accesses.

(11:8) dma_d3 Number of gio_clk cycles to spend in
state D3 for DMA accesses to/from the
device. The number of clocks is from
1 to 16. This value is set to "1111"
(16) upon power−on reset. Refer to
the Ethernet timing diagram for DMA
accesses.

(12) wr_ctrl Enables writing a byte from the DMA
descriptor into the extended control
port (interpacket gap timing) of the
SEEQ 8003.

(13) fix_rxdc Enables clearing eop status bits
(eop_in_chip and rcv_eop_intr) upon
rxdc. This is to fix a bug in the
SEEQ chip)

(14) fix_eop Enables a timeout counter to start
counting whenever eop_in_chip is set
(HPC3 has received the eop bit from
SEEQ). If HPC3 has not received the
corresponding interrupt (which sets
rcv_eop_intr) before the counter
expires, HPC3 marks this packet bad,
and sends it to main memory tagged as
such.
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(15) fix_intr Enables a timeout counter to start
counting whenever rcv_eop_intr is set
(HPC3 has received the end of packet
interupt from SEEQ). If HPC3 has not
received the corresponding eop (which
sets eop_in_chip) before the counter
expires, HPC3 marks this packet bad,
and sends it to main memory tagged as
such.

(17:16) pgm_timeout This is to allow some flexibility in
the timeout counter mentioned above.
Both features use the same counter.

tx_cbp This is the current buffer pointer for the
transmitter channel and is part of the DMA
descriptor. tx_cbp points to the main memory buffer
for the current DMA transfer. tx_cbp should only be
updated through DMA descriptor fetches (and not
through PIO). This is a read/write port.

tx_nbdp This is the next buffer descriptor pointer for the
transmitter channel and is part of the DMA
descriptor. tx_nbdp points to the next DMA
descriptor in the chain. When starting a DMA
operation, tx_nbdp should be programmed to point to
the first descriptor in the chain. This is a
read/write port.

tx_bc This is the byte count information for the
transmitter channel and is part of the DMA decriptor.

(13:0) des_bc Amount of bytes to tranfer from main
memory buffer. This field is updated
during a descriptor fetch and during a
data transfer. This field is a read
only field for PIO accesses.

(28) eox_sampled Indicates whether it is too late to
add a descriptor to the end of the
chain. HPC3 samples eox when eop is
written into the transmitter fifo.
eox_sampled becomes active when eox is
’1’ when eop is written into the fifo.
eox_sampled is cleared when ch_active
is ’0’. This is a readback bit only.

(29) xie Flag to tell HPC3 to interrupt the
host after HPC3 is done transferring
data to the current descriptor buffer.
HPC3 will interrupt the host after the
timeout counter has expired. This bit
is a read/write bit for PIO accesses.
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(30) eop Flag to tell HPC3 that the last byte in
this buffer is end of the current packet.

(31) eox Flag to tell HPC3 that the current
descriptor is the end of the descriptor
chain. This bit is a read/write bit for
PIO accesses.

tx_control This is the control register which directs the actions
of this DMA channel.

(3:0) status_3_0 Read only interrupt status. This is a
copy of the Transmit Status Register in
the Seeq 8003 controller.

(4) status_4 Read only interrupt status. If this bit
is a ’1’, a late collision has occured
(HPC3 receives the late collision
interrupt after 80 bytes has been
transferred to the SEEQ controller).

(7:5) status_7_5 Read only interrupt status. This is a
copy of bit 7 of the Transmit Status
Register in the Seeq 8003 controller.

(8) endian Endian mode for this DMA channel. Little
endian when endian = ’1’ and bit endian
when endian = ’0’. This bit is a
read/write bit for PIO accesses.

(9) ch_active Indicates a DMA transfer in progress.
When ch_active = ’1’, this DMA channel is
active, when ch_active = ’0’, this DMA
channel is inactive. To start a DMA
transfer, all other parameters should be
programmed before writing ch_active to a
’1’. HPC3 will turn Ch_active to a ’0’
when the transfer is complete. This bit
is a read/write bit for PIO accesses.
This bit can only be written when
ch_active_mask is a ’0’. This bit is
reset (= ’0’) upon power−on reset.

(10) ch_active_mask When writing to the control port and
ch_active_mask = ’1’, writes are
inhibited to ch_active, and ch_active
will retain it’s current value; when
ch_active_mask = ’0’, writes are enabled
to ch_active, and ch_active will be
updated. This bit is a write only bit
for PIO accesses.

tx_gio This is the gio fifo pointer (the fifo pointer which is
used when fetching bytes from the main memory buffer).
The gio fifo pointer is the fifo head. This port is a
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read/write port for PIO accesses. In normal operation
of this chip, this port should never be written..

tx_dev This is the device fifo pointer (the fifo pointer which
is used when sending bytes to the SEEQ chip). The gen
fifo pointer is the fifo tail. This port is a
read/write port for PIO accesses. In normal operation
of this chip, this port should never be written.
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3.3 SCSI Registers

3.3.1 gio_clk registers

cbp This is the current buffer pointer and is part of the
DMA descriptor. cbp points to the main memory buffer
for the current DMA transfer. cbp should only be
updated through DMA descriptor fetches during normal
operation of this chip. This is a read/write port
for PIO accesses.

nbdp This is the next buffer descriptor pointer and is
part of the DMA descriptor. nbdp points to the next
DMA descriptor in the chain. When starting a DMA
operation, nbdp should be programmed to point to the
first descriptor in the chain. When trying to add on
to the descriptor chain while HPC3 is working on the
last descriptor, nbdp should be updated before
updating the eox bit. This is a read/write port for
PIO accesses.

bc This is the byte count information and is part of the
DMA decriptor.

(13:0) des_bc Amount of bytes to tranfer to/from
main memory buffer. This field is
updated during a descriptor fetch and
during a data transfer. This field is
a read only field for PIO accesses.

(29) xie Flag to tell HPC3 to interrupt the
host after HPC3 is done transferring
data to the current descriptor buffer.
HPC3 will interrupt the host after the
last byte has been transferred to/from
main memory. This bit is a read/write
bit for PIO accesses.

(31) eox Flag to tell HPC3 that the current
descriptor is the end of the
descriptor chain. This bit is a
read/write bit for PIO accesses.

control This is the control register which directs the
actions of this DMA channel.

(0) interrupt Read only interrupt status bit
(interrupt cleared on read of this
port). This status bit can also be
read back from the general interrupt
port, which has no effect on the
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interrupt. This bit is set when a dma
interrupt occurs or when a parity
error is detected on the SCSI
interface.

(1) endian Endian mode for this DMA channel.
Little endian when endian = ’1’ and
bit endian when endian = ’0’. This
bit is a read/write bit for PIO
accesses.

(2) dir Direction of transfer for this DMA
channel. From main memory to device
when dir = ’1’ and from device to main
memory when dir = ’0’. This bit is a
read/write bit for PIO accesses.

(3) flush Tells HPC3 to "flush" contents of it’s
fifos to main memory. This should
only be programmed when channel is
programmed to receive (dir = ’0’).
Note that an interrupt does not occur
automatically when the flush is
complete. It depends on whether the
XIE bit is set for the last descriptor
it was working on. This bit is a
read/write bit for PIO accesses.

(4) ch_active Indicates a DMA transfer in progress.
When ch_active = ’1’, this DMA channel
is active, when ch_active = ’0’, this
DMA channel is inactive. To start a
DMA transfer, all other parameters
should be programmed before writing
ch_active to a ’1’. HPC3 will turn
ch_active to a ’0’ when the transfer
is complete. This bit is a read/write
bit for PIO accesses. This bit can
only be written when ch_active_mask is
a ’0’. This bit is reset (= ’0’) upon
power−on reset.

(5) ch_active_mask When writing to the control port and
ch_active_mask = ’1’, writes are
inhibited to ch_active, and ch_active
will retain it’s current value; when
ch_active_mask = ’0’, writes are
enabled to ch_active, and ch_active
will be updated. This bit is a write
only bit for PIO accesses.

(6) ch_reset Channel reset. Resets both external
controller and this DMA channel. This
bit is active (=1, channel is reset)
upon power−on reset. This must be
programmed to a 0 before the ch_active
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bit becomes active. This bit is a
read/write bit for PIO accesses.

(7) parity_error Indicates parity error detected on
interface to SCSI controller. This
flag is cleared upon a read of this
port. This can be a DMA parity error
(if dma_parity_en = ’1’) or a PIO
parity error (if pio_parity_en = ’1’).
A pio parity error (on the SCSI
interface) will generate an interrupt.
dma_parity_en and pio_parity_en are in
the dma_cfg and pio_cfg registers
respectively.

gio This is the gio fifo pointer (the fifo pointer which
is used when transferring data to/from the main
memory buffer). When the channel is a receiver (dir
= ’0’), the gio fifo pointer is the fifo tail. When
the channel is a transmitter (dir = ’1’), the gio
fifo pointer is the fifo head. This port is a
read/write port for PIO accesses. In normal
operation of this chip, this port should never be
written..

dev This is the device fifo pointer (the fifo pointer
which is used when transferring data to/from the scsi
controller). When the channel is a receiver (dir =
’0’), the gen fifo pointer is the fifo head. When
the channel is a transmitter (dir = ’1’), the gen
fifo pointer is the fifo tail. This port is a
read/write port for PIO accesses. In normal
operation of this chip, this port should never be
written.

pio_cfg This is the device configuration register for pio
accesses.

(1:0) pio_p3 Number of gio_clk cycles to spend in
state P3 for external PIO accesses.
The number of clocks is from 1 to 4.
This value is set to "00" (1) upon
power−on reset. Refer to the SCSI
timing diagrams for PIO acceses.

(4:2) pio_p2_wr Number of gio_clk cycles to spend in
state P2 for external PIO write
accesses. The number of clocks is
from 1 to 8. This value is set to
"000" (1) upon power−on reset. Refer
to the SCSI timing diagrams for PIO
accesses.
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(8:5) pio_p2_rd Number of gio_clk cycles to spend in
state P2 for external PIO write
accesses. The number of clocks is
from 1 to 16. This value is set to
"0000" (1) upon power−on reset. Refer
to the SCSI timing diagrams for PIO
accesses.

(11:9) pio_p1 Number of gio_clk cycles to spend in
state P1 for external PIO accesses.
The number of clocks is from 1 to 8.
This value is set to "000" (1) upon
power−on reset. Refer to the SCSI
timing diagrams for PIO accesses.

(12) pio_16 This enables 16 bit pio accesses to
the SCSI controller. 16 bit accesses
are enables when pio_16 = ’1’.

(13) pio_swap Enables byte swap during PIO accesses.
Outgoing PIO data is swapped as well
as incoming PIO data. The data will
be swapped if pio_swap=1. This bit is
reset upon power−on reset.

(14) pio_parity_en Enables parity checking for pio data
transfers between HPC3 and the SCSI
controller. A pio parity error will
generate an interrupt (on the dma_intr
pin) and set a status bit in the
control port (parity_error). HPC3
checks for and generates odd parity.
(HPC3 always generates parity).

(15) fuji_mode Enables a faster switch from dma to
pio cycles on the SCSI interface.

dma_cfg This is the device configuration register for dma
accesses.

(0) half_clock Puts DMA state machine into half clock
mode.

(2:1) dma_d1 Number of gio_clk cycles to spend in
state D1 for DMA accesses to/from the
device. The number of clocks is from
1 to 8. This value is set to "000"
(1) upon power−on reset. This is
currently not implemented, and the
value is always 1. Refer to the SCSI
timing diagram for DMA accesses.

(5:3) dma_d2 Number of gio_clk cycles to spend in
state D2 for DMA accesses to/from the
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device. The number of clocks is from 1
to 8. This value is set to "000" (1)
upon power−on reset. Refer to the SCSI
timing diagram for DMA accesses.

(8:6) dma_d3 Number of gio_clk cycles to spend in
state D3 for DMA accesses to/from the
device. The number of clocks is from 1
to 8. This value is set to "000" (1)
upon power−on reset. Refer to the SCSI
timing diagram for DMA accesses.

(11:9) hwm This is the high water mark, which
control when this DMA channel will
request the GIO64 bus. First, HPC3
calculates the number of bytes to
transfer (based on the current fifo
pointers, the direction of transfer, and
the current descriptor byte count), the
three high order bits of this number is
then compared to these three bits. If
the hwm is less than or equal to the
number of bytes to transfer, then this
DMA channel will request the gio64 bus.
Note that the hwm should never be set to
"111" as this is a value larger than the
fifo size. This value is set to "100"
upon power−on reset.

(12) dma_16 When dma_16 = ’1’, 16 bit dma transfers
are done. When dma_16 = ’0’, 8 bit dma
transfers are done.

(13) dma_swap When dma_swap = ’1’, a byte swap is
performed on the half word dma data.
This bit is valid only when dma_16 = ’1’.

(14) dma_parity_en Enables parity checking for dma data
transfers. A parity error on a DMA
transfer does not generate an interrupt.
There is a status bit (parity_error) in
the control port which indicates whether
a parity error (dma or pio) occurred.
HPC3 checks for and generates odd parity.
(HPC3 always generates parity).

(15) dreq_pol Polarity control for output hd_dreq_n.
If dreq_pol = ’0’, hd_dreq_n is active
low, if dreq_pol = ’1’ then hd_dreq_n is
active high.

(17:16) dreq_early Selects between four versions of
hd_dreq_n. "00" and "01" selects
synchronized versions of hd_dreq_n. "00"
selects falling rising edge sync flops,
"01" selects rising falling edge sync
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flops. "10" selects hd_dreq_n flopped
once. "11" selects unflopped hd_dreq_n.
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3.4 PBUS Registers

All PBUS registers are described below. Recall that all registers are
addressed as 32 bit words regardless of their actual size. Bit fields are
indicated numerically and symbolically wherever applicable.

pbus.pio(i) and pbus.bbram are external registers, and each word address
within their address ranges accesses a unique external register.
pbus.cfgdma(i), pbus.cfgpio(i), pbus.prom_we, pbus.prom_swap, pbus.gen_out,
and the pbus.dmareg(i) registers are all internal registers of the HPC3
chip. Although Section 3.0 indicates a range of addresses for each of these
registers, each is just one single register. For example, any word address
in the range for pbus.cfgdma(0) will access the same register.

pbus.pio(i) address space for the ten external PBUS PIO channels.
Each PIO channel decodes 256 word registers. Note
that PIO channels 2 through 7 are repeated in the
address map (Section 3.0). This avoids having any
’holes’ in the address space.

pbus.bbram battery backed ram address space. The battery backed
ram PIO channel decodes 32K words of external static
ram. The actual ram will likely be 8 bits wide.

pbus.cfgdma(i) configuration registers for the eight PBUS DMA
channels. For D4 and D5 cycle counts, 0 means
2**4=16 cycles. 32 bits are kept internally.

0 rd_d3 number of gio_clk cycles to spend in
DMA state D3 for DMA read operations.
Two(0) or three(1) cycles.

(4:1) rd_d4 number of gio_clk cycles to spend in
DMA state D4 for DMA read operations.

(8:5) rd_d5 number of gio_clk cycles to spend in
DMA state D5 for DMA read operations.

9 wr_d3 number of gio_clk cycles to spend in
DMA state D3 for DMA write operations.
Two(0) or three(1) cycles.

(13:10) wr_d4 number of gio_clk cycles to spend in
DMA state D4 for DMA write operations.

(17:14) wr_d5 number of gio_clk cycles to spend in
DMA state D5 for DMA write operations.

18 ds_16 data size 16. Active high indicates a
16 bit device.

19 even_high active high indicates for a 16 bit
device that the even address bytes are
on the high portion of the PBUS data
bus (15:8). For an 8 bit device,
active high indicates that the device
is connected to PBUS data bits (15:8).

20 unused not used.
21 real_time active high indicates a real_time DMA

device.
(26:22) burst_count 5 bit burst_count for general DMA

device.
27 drq_live use the live (unsynchronized)
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pbus_dreq_n(i) input for the trailing
edge to indicate DMA preemption by the
device. For most devices this is
possible, but if the device does not
have a clean drq signal, then it must
be synchronized − even for the
trailing edge.

pbus.bp(i) buffer pointers for the eight PBUS DMA channels.

pbus.dp(i) descriptor pointers for the eight PBUS DMA channels.

pbus.ctrl(i) control registers for the eight PBUS DMA channels.
These registers have completely different meaning for
read compared with write.

pbus.ctrl(i) write
1 little little endian DMA transfer.
2 receive type of DMA is receive.
3 flush enable flush for receive DMA.
4 ch_act channel active bit (start DMA).
5 ch_act_ld load enable for ch_act. If ch_act_ld

is a 1 ch_act will be written.
Otherwise, ch_act will not be written.
This allows the flush bit to be
written without affecting the ch_act
bit.

6 real_time enable real time GIO bus service.
This affects HPC3 behavior on the GIO
bus. See section 2.3.3 for details.

(15:8) highwater trigger level for GIO bus service.
This value is expressed in bytes / 2,
or, equivalently, in halfwords. A
highwater mark of 22 bytes would be
indicated by a value of 11 in this bit
field.

(21:16) fifo_beg offset of first row in PBUS fifo ram
for the channel i fifo (0 to 47).

(29:24) fifo_end offset of last row in PBUS fifo ram
for the channel i fifo (0 to 47).

pbus.ctrl(i) read
0 interrupt interrupt signal (cleared after read).
1 ch_act channel active bit.

pbus.cfgpio(i) configuration registers for the ten PBUS PIO
channels. Note that the configuration registers for
channels 8 and 9 are repeated in the address map
(Section 3.0). This avoids having any ’holes’ in the
address space. For P3 and P4 cycle counts, 0 means
2**4=16 cycles. 32 bits are kept internally.

0 rd_p2 number of gio_clk cycles to spend in
PIO state P2 for PIO read operations.
One(1) or two(0) cycles.

(4:1) rd_p3 number of gio_clk cycles to spend in
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PIO state P3 for PIO read operations.
(8:5) rd_p4 number of gio_clk cycles to spend in

PIO state P4 for PIO read operations.
9 wr_p2 number of gio_clk cycles to spend in

PIO state P2 for PIO write operations.
One(1) or two(0) cycles.

(13:10) wr_p3 number of gio_clk cycles to spend in
PIO state P3 for PIO write operations.

(17:14) wr_p4 number of gio_clk cycles to spend in
PIO state P4 for PIO write operations.

18 ds_16 data size 16. Active high indicates a
16 bit device.

19 even_high active high indicates for a 16 bit
device that the even address bytes are
on the high portion of the PBUS data
bus (15:8). For an 8 bit device,
active high indicates that the device
is connected to PBUS data bits (15:8).

pbus.prom_we write enable for the boot PROM (write only).

0 prom_we write enable for the boot PROM.
Active high, enables writes to both
prom0 and prom1. prom_we resets to 0
so that writes are disabled.

pbus.prom_swap swap prom0 and prom1 address spaces (write only).

0 prom_swap active high inverts gio64 address bit
21 which selects between prom0 and
prom1. Effectively, the address
spaces are swapped. During reset
pbus_dma_tc is an input pin. The
value input on this pin is flopped
into prom_swap during reset. Under
normal conditions, pbus_dma_tc should
be pulled low on the board.

pbus.gen_out general purpose output bit (write only).

0 gen_out single general purpose output bit.
Used for status indication or hardware
reset of attached devices. Resets to
0.
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3.5 Serial EEPROM Registers

eeprom.data five bit Serial EEPROM data register.

0 pre eeprom protect register enable
1 cs eeprom chip select
2 clk eeprom clock
3 dato serial data output
4 dati serial data input (read only)



4.0 HPC3 Pins

There are 25x signal pins on the HPC3 array. This includes 4 pins for test,
and 4 pins for JTAG. The 304 MQUAD, metal quad flatpack, will be the
package used for this part.

4.1 GIO64 Bus Interface Pins

gio_ad(63:0) i/o GIO64 multiplexed address and data 
bus.

gio_adp(7:0) i/o Even parity over the gio_ad(63:0) 
bus.  Gio_adp(0) covers gio_ad(7:0).

gio_vld_parity_n i/o The GIO64 bus parity signals, 
gio_adp, are valid.

gio_as_n i/o GIO64 bus, address strobe.
gio_read i/o GIO64 bus read/write control, and 

bus−valid signal.
gio_masdly i/o GIO64 bus master delay signal.
gio_slvdly i/o GIO64 bus slave delay signal.
gio_breq_n out GIO64 bus request to the GIO64 bus 

arbiter.
gio_bgnt_n in GIO64 bus grant from the GIO64 bus 

arbiter.
gio_timeout_n in GIO64 bus timeout

4.2 Ethernet Pins

enet_d(8:0) i/o Data bus to/from Seeq ethernet 
controller.

enet_addr(2:0) out Ethernet controller address.
enet_rd_n out Read strobe (active low).
enet_wr_n out Write strobe (active low).
enet_reset_n out Active low reset signal.
enet_txwr_n out Write strobe for transmit data to 

controller.
enet_rxrd_n out Read strobe for receive data from 

controller.
enet_loopback out Put manchester ENDEC in loopback 

mode.
enet_txrdy in Controller is ready for more 

transmit data.
enet_rxrdy in Controller has receive data ready. 
enet_rxdc in Discard last received data.
enet_txret in Retransmit last transmitted data.
enet_intr_in in Interrupt request from controller.
enet_intr_out out Interrupt request to interrupt 

controller (int).

4.3 SCSI/IDE Pins

There are two SCSI/IDE ports on the HPC3 chip. Either port maybe configured
to run as a SCSI port or an IDE port. They also can both be configured to
be IDE or SCSI. Both ports are identical, except for the signal names and
the addresses of the HPC3 registers associated with each port. The pins for
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port 0 are listed first with a description followed by the list of pins for
port 1. The signal description for port 1 signals is the same as port 0.

hd0_d(15:0) i/o Data bus to/from IDE interface or 
SCSI controller.

hd0_dp(1:0) i/o Parity on the 16 data bits.  dp(0) 
covers d(7:0).

hd0_addr(4:0) out Address bits to the controller.
hd0_rd_n out Read strobe (active low).
hd0_wr_n out Write strobe (active low).
hd0_cs_n out Active low chip select for PIO 

controller registers.
hd0_reset out Active high reset signal to the 

controller and scsi bus.
hd0_dreq_n in DMA request (programmable polarity).
hd0_dack_n out DMA acknowledge (active low).

hd1_d(15:0) i/o Same as above.
hd1_dp(1:0) i/o
hd1_addr(4:0) out
hd1_rd_n out
hd1_wr_n out
hd1_cs_n out
hd1_reset out
hd1_dreq_n in
hd1_dack_n out

4.4 PBUS Pins

pbus_data(15:0) i/o Data bus to/from local peripherals.
pbus_addr(19:0) out Address bus for PBUS peripherals.  

For PROM PIO all 20 bits are used.  
For Battery−backed sram PIO bits 
(15:0) are used.  For general 
purpose PIO bits (15:8) and (7:0) 
are identical copies of the eight 
bit external address.

pbus_rd_n out Read strobe (active low).
pbus_wr_n out Write strobe (active low).
pbus_prom1_cs_n out Active low chip select for system 

prom 1.
pbus_prom0_cs_n out Active low chip select for system 

prom 0.
pbus_bbram_cs_n out Active low chip select for 

Battery−backed sram.
pbus_cs_n(9:0) out Active low general purpose chip 

selects.
pbus_dreq_n(7:0) in Active low general purpose dma 

requests.
pbus_dack_n(7:0) out Active low general purpose dma 

acknowledges.
pbus_dma_tc out DMA terminal count to tell DMA 

slaves that the dma transfer is 
complete.  Active high.

pbus_gen_out(0) out General purpose registered output.  
Can be used for hardware reset, or 
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status indication.

4.5 Serial EEPROM Pins

eeprom_dati in Serial data from eeprom.  This is 
simply an input port from the 
eeprom’s data output pin.

eeprom_dato out Serial data/control to eeprom.  This 
is a registered output port to the 
eeprom’s serial data input pin.

eeprom_clk out Clock for serial eeprom.  This is a 
registered output port to the 
eeprom’s clock pin. 

eeprom_cs out Active high chip select.  This is a 
registered output port to the 
eeprom’s chip select pin.

eeprom_pre out Protect register enable.  This is a 
registered output port to the 
eeprom’s pre pin.

 

4.6 Misc Pins

gio_clk in GIO64 bus clock.  can vary from 
25−33mhz to meet current GIO64 
specs.

reset_n in Active low reset signal.  
jtdi in Boundary scan serial data input.
jtdo out Boundary scan serial data output.
jtms in Boundary scan mode select.
jtck in Boundary scan clock.
entei
tp0
tp1
pll_vdd
pll_vss
pll_agnd
pll_lp1
pll_lp2
pll_reset_n

hpc1 in Configure chips address space as HPC 
1.

dma_complete_int out DMA complete interrupt.
bus_error_int out Bus error interrupt.
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5.0 Misfeatures!

5.1  SCSI DMA device transfer

Problem with transferring last byte when receiving data from SCSI 
controller.  Workaround is to allocate extra DMA descriptor with a bytecount 
of zero.

5.2  General Interrupt Register

The interrupt status cannot be read back from one location.  Bits 5:0 can be 
read back at 0x1fb80000, bits 9:6 can be read back at 0x1fb80000.

5.3  PIO reads from DMA descriptor ram

Whenever reading the cbp (current buffer pointer) or nbdp (next buffer 
descriptor pointer) for any DMA channel, there can be no pending PIO writes.  
To make sure of this fact, read from any HPC3 register (an on−chip port will 
be faster) right before reading from the DMA descriptor ram.  Please make 
sure that no interrupt service routine  comes between the two reads!

5.4  Bus error interrupt

There is no read back indicator for the bus error interrupt HPC3 generates.  
Various status bits are provided, but no bit to say whether HPC3 caused the 
interrupt.

5.5  PBUS fifo ram pio write address

The PBUS fifo ram pio write address is misaligned.  The read address comes 
from gio_ad(8:3) while the write address comes from gio_ad(9:4).

5.6  PROM chip select

The PROM chip selects can toggle near the end of a read.  This happens no 
sooner than two cycles after pbus_rd_n goes inactive.  The chip select for 
the selected PROM may go inactive, and the chpi select for the other PROM 
would go active.  This should not be a problem.  Be sure to use both chip 
select and read strobe when connecting the PROM.  Do not simply ground the 
output enable (use read strobe) while connecting only the chip select −− use 
both!
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6.0  IO Timing

=================================================
= ALL TIMING RELATIVE TO HPC3 GIO_CLK INPUT PIN =
=================================================

These numbers are WCCOM 100 Degrees C.
For BCCOM divide by 4.4.

PBUS_RD_N
PBUS_WR_N

B8 driver
clock skew 1ns, clock−to−q 4ns
B8 intrinsic 2.2ns
B8 slope 0.072(ns/pf)
DELAY = [7.2 + (0.072)(Load_pf)] ns

PBUS_ADDR
PBUS_GEN_OUT

BT8RP driver
clock skew 1ns, clock−to−q 4ns
BT8RP intrinsic 3.3ns
BT8RP slope 0.089(ns/pf)
DELAY = [8.3 + (0.089)(Load_pf)] ns

PBUS_DATA
BD8TRPU driver
clock skew 1ns, clock−to−q 4ns
BD8TRPU intrinsic 3.3ns
BD8TRPU slope 0.089(ns/pf)
DELAY = [8.3 + (0.089)(Load_pf)] ns

PBUS_PROM_CS_N
PBUS_BBRAM_CS_N
PBUS_CS_N
PBUS_DACK_N

BT4RP driver
clock skew 1ns, clock−to−q 4ns
BT4RP intrinsic 3.3ns
BT4RP slope 0.147(ns/pf)
DELAY = [8.3 + (0.147)(Load_pf)] ns

PBUS_DMA_TC
BD8TRP driver
clock skew 1ns, clock−to−q 4ns
BD8TRP intrinsic 3.3ns
BD8TRP slope 0.089(ns/pf)
DELAY = [8.3 + (0.089)(Load_pf)] ns

PBUS_DATA
~5ns buffer
~3ns flop setup
~1ns clock skew
~9ns setup time
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PBUS_DREQ_N
~6ns buffer
~20ns logic
~1ns clock skew
~27ns setup time

GIO_AD
GIO_ADP
GIO_VLD_PARITY_N
GIO_AS_N
GIO_READ
GIO_MASDLY
GIO_SLVDLY

BD8TRPU driver
clock skew 1ns, clock−to−q 4ns
BD8TRPU intrinsic 3.3ns
BD8TRPU slope 0.089(ns/pf)
DELAY = [8.3 + (0.089)(Load_pf)] ns

~2ns buffer
~2ns flop setup
~1ns clock skew
~5ns setup time
~1ns hold time

GIO_BREQ_N
ENET_RD_N
ENET_WR_N
ENET_TXWR_N
ENET_RXRD_N
HD0_RD_N
HD0_WR_N
HD1_RD_N
HD1_WR_N
        BT4 driver

clock skew 1ns, clock−to−q 4ns
BT4 intrinsic 3.17ns
BT4 slope 0.116(ns/pf)
DELAY = [8.17 + (0.116)(Load_pf)] ns

~2ns buffer
~2ns flop setup
~1ns clock skew
~5ns setup time
~1ns hold time

HD0_DACK_N
HD0_CS_N
HD0_RESET
HD0_ADDR
EEPROM_DATO
EEPROM_CLK
EEPROM_CS
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EEPROM_PRE
ENET_LOOPBACK
ENET_ADDR
HD1_DACK_N
HD1_CS_N
HD1_RESET
HD1_ADDR
BUS_ERROR_INT
DMA_INTR
ENET_INTR_OUT
ENET_RESET_N

BT4RP driver
clock skew 1ns, clock−to−q 4ns
BT4RP intrinsic 3.3ns
BT4RP slope 0.147(ns/pf)
DELAY = [8.3 + (0.147)(Load_pf)] ns

~2ns buffer
~2ns flop setup
~1ns clock skew
~5ns setup time
~1ns hold time

ENET_DATA
BD4TRPU driver
clock skew 1ns, clock_to_q 4ns
BD4TRPU intrinsic 3.3ns
BT4RPU slope 0.147(ns/pf)
DELAY = [8.3 + (0.147)(Load_pf)] ns

~2ns buffer
~2ns flop setup
~1ns clock skew
~5ns setup time
~1ns hold time

HD0_DATA
HD0_DP
HD1_DATA
HD1_DP

BD4TRPU driver
clock skew 1ns, clock_to_q 4ns
BD4TRPU intrinsic 3.3ns
BT4RPU slope 0.147(ns/pf)
DELAY = [8.3 + (0.147)(Load_pf)] ns

~2ns buffer
~2ns flop setup
~1ns clock skew
~7ns logic in clock path (goes into latch)
~−2ns setup time
~+6ns hold time

EEPROM_DATI
ENET_INTR_IN
ENET_RXDC
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ENET_RXRDY
ENET_TXRDY
ENET_TXRET
GIO_TIMEOUT_N
GIO_BGNT_N
RESET_N

~2ns buffer
~2ns flop setup
~1ns clock skew
~5ns setup time
~1ns hold time

HD0_DREQ_N
HD1_DREQ_N

~2ns buffer
~10ns logic in data path
~2ns flop setup
~1ns clock skew
~15ns setup time
~+1ns hold time
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