
VINO Design Specification 099-8937-001 August 16, 1993

VINO Design Specification 099-8937-001

Linda Bender
Chris Kogelnik
Mark Troeller

Digital Sight and Sound

Version 2.0

Table of Contents October 25, 1993 i

 Table of Contents

1.0 Introduction..1
1.1 General Overview ..1

1.2 Features ..1
1.2.1 Block Diagram...2

2.0 System Bus Interface ...3
2.1 Address Map ..3

2.2 Programmed I/O ..5

2.3 DMA ..5
2.3.1 DMA Operation...5
2.3.2 DMA Register Summary...10

2.4 Arbiter ..11

2.5 Interrupt Handling..11

2.6 Reset...12

2.7 I2C Bus...12
2.7.1 I2C Basic Protocol ...12
2.7.2 I2C Implementation ...13

3.0 Video Inputs ...13
3.1 YUV Bus..13

3.2 SGI Digital Video Bus ...13
3.2.1 Data Format ...14
3.2.2 Control Codes Embedded in Data Format...14
3.2.4 SGI Digital Video Timing Information ...15
3.2.3 Error Protection Bits..15

4.0 Video Processing..16
4.1 Data Formats..16

4.2 Filtering/Decimation..16

4.3 Dithering ..17

4.4 Clipping ...18

4.5 Color Space Conversion ..18

4.6 Synchronization Control ..19

4.7 Frame/Field Rate Control ..19

4.8 Alpha Value..19

5.0 Software Issues ..20
5.1 Data Formats..20

5.2 Graphics Synchronization..20

5.3 Frame Assembly ..20

6.0 Register Descriptions...20

7.0 Signal Descriptions and Pinout..25
7.1 Pin Assignments ..27

7.2 Test Modes ...29

8.0 Packaging...29

Table of Contents October 25, 1993 ii

9.0 DC Characteristics ...31

10.0 AC Characteristics ...31
10.1 I/O Timing Table..31

10.2 PLL Characteristics..32

11.0 Fault Coverage...33

12.0 Timing..33

13.0 Indy Related Issues ..40
13.1 Application Block Diagram...40

13.2 Video Input Notes ..40

14.0 Bugs ...41

List of Tables August 18, 1993 iii

List of Tables

TABLE 1. Register Address Map..4
TABLE 2. Digital Video Control Byte Format ...14
TABLE 3. Hamming Code Words for Error Protection Scheme to work15
TABLE 4. ID and Revision Register ...20
TABLE 5. Control Register ...21
TABLE 6. Interrupt and Status Register..22
TABLE 7. Alpha Register ...22
TABLE 8. Clipping Start Register...22
TABLE 9. Clipping End Register..22
TABLE 10. Frame Rate Register...22
TABLE 11. Field Counter Register ...23
TABLE 12. ChX Line Size Register ...23
TABLE 13. ChX Line Count Register ..23
TABLE 14. ChX Page Index Register...23
TABLE 15. ChX Pointer to Next Four Descriptors Register ..23
TABLE 16. ChX Pointer to Start of Descriptor Table Register23
TABLE 17. ChX DescriptorX Data Register ..24
TABLE 18. ChX Fifo Threshold Compare Value Register ...24
TABLE 19. ChX Fifo GIO Pointer Register ...24
TABLE 20. ChX Fifo Video Pointer Register...24
TABLE 21. I2C Control and Status Register...24
TABLE 22. I2C Data Register ...25
TABLE 23. Pin Description ..26
TABLE 24. 208 PQFP Pin Assignments...27
TABLE 25. Test Mode Pin Functions ...29
TABLE 26. DC Characteristics (Tj =-20 to 75o C) ...31
TABLE 27. AC Characteristics ...31
TABLE 28. DMSD Selection of Composite and S-Video Analog Inputs.....................41

List of Figures August 18, 1993 iv

List of Figures

FIGURE 1. Descriptor Cache Management..7
FIGURE 2. Page_index Roll Over Flow Diagram ...7
FIGURE 3. Invalidate Descriptors Flow Diagram..8
FIGURE 4. Line_count Flow Diagram ...8
FIGURE 5. DMA Control Flow Diagram...9
FIGURE 6. SGI Digital Video Interface Transmitted Clock Waveform.......................15
FIGURE 7. Logical pin diagram of VINO..25
FIGURE 8. 208 Plastic Quad Flat Pack Package Dimensions......................................30
FIGURE 9. VINO PLL Network ..33
FIGURE 10. MC read from VINO register...34
FIGURE 11. Write MC to Vino ..35
FIGURE 12. VINO Descriptor Fetch..36
FIGURE 13. VINO fifo empty..37
FIGURE 14. DMA with Page Index Roll ...38
FIGURE 15. DMA with End of Field Interrupt ..39
FIGURE 16. VINO System Application Block Diagram ...40

August 18, 1993 1

Revision History

8.12.93 Added Logical Pin Diagram of Vino, Added SGI Digital Port Description, Enhanced Interrupt
description, YUV Data Format corrected, Data Formats extended to 64 bit word, added CSC accuracy,
added Page Index behavior.

7.16.93 Added DC and AC Timing, Package Drawing Fig, INDY System Application Fig, PLL Description.
and Video Input Notes Section

7.15.93 Added Pin List, Signal Description, Test Pin Mode Table, Updated Frame Rate Control

1.0 Introduction

The purpose of this chip is to provide an inexpensive video input into the system enabling various applica-
tions such as video conferencing, video capture and TV in a window. It is a video input only device accept-
ing NTSC, PAL, and SGI’s D1 formats and has some video processing functions. On the system side the
chip interfaces to the GIO64 bus, moving data directly to system memory, rather than a graphics back end.
The video stream is now a general system resource manipulatable and redirectable by software for various
applications.

1.1 General Overview

The chip is partitioned into a few subsections, which are the system interface, video processing, Philips 7191
and I2C interface and the D1 interface. The chip receives a digital video stream from the Philips video chip
set, which does the analog to digital conversion and standard decoding, or the D1 interface. The video data is
then processed and DMA’d into main system memory. System software is then responsible for moving the
image from memory to the display. This architecture has two major benefits: it is not constrained to a spe-
cific graphics back-end, making it portable to other systems and the video stream is a general system
resource leveraging main memory for storage rather than an additional frame buffer.

The chip has two independent DMA channels. Each channel has a number of configurable options: video
image clipping, decimation with filtering for a number of sizes, YUV to RGB color space conversion, dith-
ering and frame rate control. Each of these options is independently selectable, controlled by bits in the reg-
ister file.

On the system side, the interface is to the GIO64 bus. Non-pipelined DMA and doubleword Programmed IO
are supported. The register file is accessible to the GIO interface, which controls the functionality. System
software maintains a descriptor table per channel in main memory describing the video buffer space. Each
channel maintains its DMA pointers by traversing its descriptor table. The hardware is able to interlace
fields or pack fields into main memory.

1.2 Features

• Selectable full size video input from NTSC, PAL, or SGI’s D1

• Two independent DMA channels

• GIO64 bus master

• DMA striding to allow a frame to be assembled in system memory

• Horizontal and vertical decimation with filtering of sizes 1/2, 1/3 and1/4. “Field to Frame” for 1/2

• General purpose clipping

August 18, 1993 2

• YUV to RGB color space conversion

• 24-bit to 8-bit RGB dithering

• Frame/field rate control

• 4:2:2 YUV, 32-bit RGBA, 8-bit RGB and 8-bit Monochrome pixels to memory

• I2C interface

1.2.1 Block Diagram

Clipping

Decimation/
Filtering

Color Space
Conversion

Dithering

Philips
Interface D1 Interface

Fifo

Register
File

System
Interface

I2C

Interface

Channel A
Channel B

VINO

GIO64 Bus

I2C Bus

Philips Chip D1 Bus

August 18, 1993 3

2.0 System Bus Interface

VINO is a 64 bit real-time device that supports the non-pipelined GIO64 bus protocol. It is a bus slave for all
programmed I/O transfers and a bus master for all DMA transfers. VINO can not be preempted from the
GIO64 bus when it is bus master.

In Indy, VINO interfaces to the GIO64 bus using the EISA_Req_n, EISA_Gnt_n and EISA_AS_n signals.
The EISA_Req_n is the highest priority request of the GIO64 devices. Real-time devices are serviced in the
order given below:

1) EISA (video on Indy)
2) HPC3
3) Refresh (maximum time on bus is 800ns)
4) GIO64 Expansion Slot 0 (if configured as real time, maximum time on bus is

5us).
5) GIO64 Expansion Slot 1 (if configured as real time, maximum time on bus is

5us).

VINO requests the GIO64 bus whenever an internal fifo needs to be serviced or descriptors need to be
fetched. VINO stays on the GIO64 bus until both fifos have been drained and descriptors have been fetched.
VINO does not have a hardware timer to limit the amount of time it is on the GIO64 bus or the frequency of
requests.

In a lightly loaded system, a descriptor fetch cycle (total time vino grant is low) was measured as 780 ns. A
DMA cycle with the fifo threshold set to half-way (64 double-words) was measured as 3 us. The DMA cycle
consisted of 17 cycles of overhead and 83 cycles of double-word transfers. Based on these measured values,
VINO could theoretically be on the bus for 10.27 us (10.27 us is the time to drain both fifos and perform two
descriptor fetch cycles). Considering bus usage, will VINO ever need to drain both fifos and perform two
descriptor fetch cycles? A simulation model of the fifos in Indy was developed to answer this question. The
model made the following assumptions:

GIO bus clock rate 33 MHz
Video Fifo1 Fill Rate 60.00 MBytes/sec
Video Fifo2 Fill Rate 30.00 MBytes/sec
HPC Ethernet Fill Rate 1.25 MBytes/sec
HPC SCSI Fill Rate 20.00 MBytes/sec
HPC PBUS Fill Rate 6.00 MBytes/sec
Video Fifo1 Setpoint 512 Bytes
Video Fifo2 Setpoint 512 Bytes
MC Buffer Content 3488 Bytes

This represents full motion RGBA PAL television (15MHz peak pixel rates) coming into Video Fifo1 and
YUV full motion PAL television coming into Video Fifo2. These two streams are then sent across the GIO
bus into system DRAM. The MC Buffer Content is the water mark of the RGBA PAL television buffer that
is being sent to Graphics for display of TV in a window. After 1 million cycles of the GIO bus approxi-
mately 0.03 seconds of time has elapsed during which 1.8 million bytes were transferred from VINO Chan-
nel 1 video into system DRAM and 1.8 million -3488 of those bytes have reached the display window in the
graphics subsystem.

The longest time that VINO was on the bus was 6.24 usec.

2.1 Address Map

The address space starts at 0x00080000. The following figure shows the accessible registers in the address
space. All accesses are on a double-word (64 bit) boundary regardless of the actual data size of the register.

August 18, 1993 4

For 32 bit access use 4/8 ending address for 0/8 addresses respectively.

TABLE 1. Register Address Map

GIO Addr Function Read/Write

0008 0130 Channel B FIFO Write Pointer (video) Read

0008 0128 ChB FIFO Read Pointer (GIO) Read

0008 0120 ChB FIFO Threshold Read/Write

0008 0118 ChB Descriptor 3 Data Read/Write

0008 0110 ChB Descriptor 2 Data Read/Write

0008 0108 ChB Descriptor 1 Data Read/Write

0008 0100 ChB Descriptor 0 Data Read/Write

0008 00F8 ChB Pointer to Start of Descriptor Table Read/Write

0008 00F0 ChB Pointer to Next Four Descriptors Read/Write

0008 00E8 ChB Page Index Read/Write

0008 00E0 ChB Line Count Read/Write

0008 00D8 ChB Line Size Read/Write

0008 00D0 ChB Field Counter Read

0008 00C8 ChB Frame Rate Read/Write

0008 00C0 ChB Clipping End Read/Write

0008 00B8 ChB Clipping Start Read/Write

0008 00B0 ChB Alpha Read/Write

0008 00A8 Channel A FIFO Write Pointer (video) Read

0008 00A0 ChA FIFO Read Pointer (GIO) Read

0008 0098 ChA FIFO Threshold Read/Write

0008 0090 ChA Descriptor 3 Data Read/Write

0008 0088 ChA Descriptor 2 Data Read/Write

0008 0080 ChA Descriptor 1 Data Read/Write

0008 0078 ChA Descriptor 0 Data Read/Write

0008 0070 ChA Pointer to Start of Descriptor Table Read/Write

0008 0068 ChA Pointer to Next Four Descriptors Read/Write

0008 0060 ChA Page Index Read/Write

0008 0058 ChA Line Count Read/Write

0008 0050 ChA Line Size Read/Write

0008 0048 ChA Field Counter Read

0008 0040 ChA Frame Rate Read/Write

0008 0038 ChA Clipping End Read/Write

0008 0030 ChA Clipping Start Read/Write

0008 0028 ChA Alpha Read/Write

0008 0020 I2C Data Read/Write

0008 0018 I2C Control Read/Write

August 18, 1993 5

2.2 Programmed I/O

A PI/O operation is a single 64-bit doubleword register access; block transfers are not supported. PI/O oper-
ations are always doubleword aligned. All unused bits in a register are read as zero. The GIO64 byte_count
field is ignored during a PI/O operation, so eight bytes are always transferred.

2.3 DMA

VINO is bus master during DMA operations. The DMA logic supports two modes:

1) field capture
2) frame assembly in memory (interleaving)

During field capture, VINO packs the first, then second field and so on into the buffer space described by the
descriptor table. A field always starts on a 4K-byte address, so more than likely there will be gaps of mem-
ory between consecutive fields.

During frame assembly, frames are assembled into the buffer space described by the descriptor table. The
first line of the first field is placed in memory, a line of memory is skipped, and then the second line is placed
in memory. This process of placing a line and skipping a line continues until the entire first field is in mem-
ory. The same process is used for the second field, starting at the top of the buffer and filling in the lines of
memory skipped during the first field. The procedure is repeated for the next frame, starting at the address
described by the next quad descriptor group (explained in detail in the next section).

2.3.1 DMA Operation

This section describes the DMA operation in greater detail. A detailed description of a field capture opera-
tion is presented first, followed by a description of frame assembly which builds upon the field capture oper-
ation. Flow diagrams of the DMA operation are presented at the end of the description.

In order to keep DMA running, a continuous supply of descriptors must be available. A descriptor contains
the physical address of a 4K-byte memory region or the physical address of the next descriptor. DMA logic
transfers data to the memory region addressed by a descriptor. In addition to the physical address, a descrip-
tor contains a valid, jump and stop bit. A supply of descriptors is maintained using a cache of four descrip-
tors. Descriptor zero is the active descriptor and is used as the upper bits of the DMA address. Page_index
forms the lower bits of the DMA address. Page_index is incremented by 8 bytes after each doubleword
transfer, maintaining a doubleword index into the current 4K-byte memory region. When 4K-bytes of data
has been transferred, page_index rolls over, causing each descriptor in the cache to shift up one location, and
the bottom entry to be invalidated. When an invalid descriptor is shifted into location zero, a new set of
descriptors is fetched from the address in next_descriptor. If a valid descriptor with the jump bit set is shifted
into descriptor location zero, a new set of descriptors is fetched from the address in the jump descriptor.
Next_descriptor is incremented by 16 bytes after every descriptor fetch operation. If a valid descriptor with
the stop bit set is shifted into descriptor location zero, DMA operation is stopped immediately and an inter-
rupt is generated. The DMA initialization routine must be run (set page_index to zero, write next_descriptor
etc.), and this bit must be cleared before DMA can continue.

0008 0010 Interrupt Status Read/Write

0008 0008 Control Read/Write

0008 0000 Rev/ID Read

TABLE 1. Register Address Map

GIO Addr Function Read/Write

August 18, 1993 6

To begin a field capture operation, page_index must be set to zero. The address of the start of the descriptor
table must then be written into next_descriptor. As soon as next_descriptor is written, the descriptor cache is
invalidated causing a descriptor fetch to occur. It is important that page_index precede next_descriptor. As
stated in the previous paragraph, descriptors shift when page_index rolls over, defined as page_index going
from a non-zero value to zero. Depending on initial conditions, setting page_index to zero can cause a
page_index roll over and hence a shift in descriptors. If next_descriptor is written first, descriptors are
fetched, and a subsequent write to page_index might cause the descriptors to shift. After these registers have
been initialized, DMA can be enabled.

Data is not written to the FIFO until DMA is enabled. When data reaches the threshold level in the FIFO
(this can only occur if DMA is enabled), the DMA logic makes a request to the internal arbiter for the
GIO64 bus (arbitration is explained in Section 2.4 on page 11). A grant from the arbiter begins the actual
data transfer. The address for the DMA transfer is generated using bits 11:3 of the page_index register, bits
29:12 of the active descriptor, and with bits 2:0 and 31:30 set to 0. The GIO byte_count field is set to the
maximum value. The data transfer continues until the FIFO is empty or page_index rolls over. If page_index
rolls over, the data stream is terminated, but the GIO64 bus is not released. The page_index roll over causes
the descriptors to shift in the descriptor cache, and the address from the new active descriptor is used to gen-
erate a new address/byte count data stream. A FIFO empty condition completely terminates the DMA oper-
ation. The DMA logic de-asserts it request line, and the internal arbiter responds by de-asserting the device’s
grant line and the GIO64 request line, releasing the GIO64 bus. The process is started over when data once
again reaches the threshold level in the FIFO.

In order to ensure that the last part of a field is not sitting in the FIFO during vertical retrace, a DMA opera-
tion is initiated as soon as an end-of-field condition occurs. An end-of-field condition indicates that the last
pixel in a field has been placed in the FIFO. The DMA operation proceeds as described above until the FIFO
is empty. A FIFO empty condition in conjunction with an end-of-field signal indicates that the last pixel of
the field has been transferred. After the last pixel of a field is transferred, an end-of-field interrupt is gener-
ated, and the descriptors are shifted up one location so that the next field starts on a 4K-byte address.

 Frame assembly is more complicated than field capture, but descriptor cache maintenance as well as the
basic DMA operation is the same. To begin a frame assembly operation, page_index and line_count must be
set to zero, line_size must be set with the appropriate value (discussed in Section 2.3.2 on page 10), and
start_descriptor and then next_descriptor must be set to the starting address of the descriptor table. Writing
to next_descriptor causes a descriptor fetch to occur. After these registers have been initialized, DMA can be
enabled.

The actual DMA transfer is not started until data in the FIFO reaches the threshold level. The address and
byte count are generated in the same manner described above. Data transfer continues until the FIFO is
empty, page_index rolls over, or line_count equals line_size (a line of data has been transferred). FIFO
empty and page_index conditions are explained above. After a line of data has been transferred, the current
address, byte count, data stream is terminated, the GIO64 bus mastership is retained, and page_index is
incremented by line_size + 1. A new address (produced from the incremented page_index), byte count, data
stream is generated. If incrementing page_index causes a page_index roll over, descriptors are shifted up one
location, and the lower bits of the new address come from the incremented page_index while the upper
address bits come from the new active descriptor. This procedure causes a line of memory to be skipped
between every line in the first field.

Just like the field capture operation, a DMA operation is initiated as soon as an end-of-field condition occurs.
After the last pixel of the first field is transferred across the bus, start_descriptor is loaded into next_descrip-
tor, causing a descriptor fetch and resetting DMA to the top of the frame. Page_index is set to line_size + 1,
so that the first line of the second field is placed in the line of memory skipped during the first field. Using
the lines from the second field, DMA continues to fill in the lines of memory previously skipped. This con-
tinues until the next end-of-field condition. After the last pixel in the second field has been transferred across
the bus, next_descriptor is loaded into start_descriptor, the current descriptors are invalidated (skipping any

August 18, 1993 7

unused descriptors), and a new set of descriptors are fetched. The next frame starts on the 4K-byte address
described by the new active descriptor. More than likely, there will be gaps of memory between consecutive
frames. Start_descriptor is loaded with next_descriptor to ensure that the first descriptor in a frame is
located at a quad-word address. Next_descriptor and start_descriptor must always be quad-word aligned,
because the descriptor logic can only fetch from a quad-word address.

FIGURE 1. Descriptor Cache Management

FIGURE 2. Page_index Roll Over Flow Diagram

Is descriptor 0
invalid?

No

Fetch descriptor from
next_descriptor address

Yes

Is the jump bit and

descriptor 0 set?

Fetch descriptor from
jump address

Yes

not the stop bit of

No

Page_index No
roll over?

Shift descriptors

Yes

August 18, 1993 8

FIGURE 3. Invalidate Descriptors Flow Diagram

FIGURE 4. Line_count Flow Diagram

Next_descriptor
written or internally

Invalidate descriptors

Yes

start_descriptor
internally loaded?

loaded or
No

Line_count = line_size

Page_index =

Yes

No

page_index + line_size + 1

Page_index roll over

Yes

Shift descriptors

No

August 18, 1993 9

FIGURE 5. DMA Control Flow Diagram

Set page_index, line_count
line_size, start_descriptor
and then next_descriptor

DMA enabled

FIFO threshold or
end-of-field?

No

Yes

Request GIO bus

GIO bus grant?

Start address / byte count
data sequence

FIFO empty?

and stop interrupt
clear?

No

End of field?
No

line_count = line_size

Yes

No

No

Yes

End GIO sequence

End GIO sequence

page_index roll over?

No

Interleaving?
No

Page_index = 0

End odd?

End even?

Yes

Next_descriptor =
start_descriptor

Yes

Page_index = 0

next_descriptor

Yes

No

Yes

Yes

Yes

page_index =
line_size + 1

start_descriptor =

or

August 18, 1993 10

2.3.2 DMA Register Summary

Only the register bits pertinent to the DMA description are discussed. A detailed description of the registers
can be found in Section 6.0 on page 20. Enabled bits are set to ‘1’ and disabled bits to ‘0’.

Control Register - Each channel has the following control enable bits. The bits in this register are set and
cleared by software.

Endianess - This bit is common to both channels (1 - little, 0 - big).

Channel enable - Setting this bit enables the DMA channel. This bit must be dis-
abled when setting up related DMA registers. When this bit is disabled, the FIFO
pointers are held in reset (0).

Interleave - When enabled, fields are assembled into frames in system memory.

Interrupt Register - The bits in this register are set (1) by hardware and cleared (0) by software.

End-of-field - Set after the last byte of a field has been transferred across the bus.

FIFO overflow - Set when the FIFO has overflowed. DMA operation is stopped
immediately. The DMA bit must be disabled, resetting the FIFO pointers, the
DMA initialization routine must be run (set page_index to zero, write next_de-
scriptor etc.), and this bit must be cleared before DMA can continue.

End of descriptor table - Set when the stop bit of the active descriptor is set.
DMA is stopped immediately. The DMA initialization routine must be run (set
page_index to zero, write next_descriptor etc.), and this bit must be cleared
before DMA can continue.

Line_Size Register - Lines must be a multiple of 8 bytes. This requirement makes all DMA transfers double-
word aligned and eliminates the need for alignment hardware in the FIFO. The appropriate value for line_-
size is calculated by taking the total number of bytes in a line, and then subtracting 8 bytes. As an example,
line_size is 20 hex for a 40 byte line.

Line_count Register - Contains current byte in line count. After every transfer this register is incremented by
8 bytes. When line_count = line_size, line_count is reset to zero.

Page_index Register - The nine bits in this register index into a doubleword in the current page buffer, and
form bits 11:3 of a DMA address with the active descriptor providing the high bits. Bits 2:0 of the DMA
address are always zero, since transfers are always doubleword aligned.

Next_Descriptor Register - Contains the physical quadword address of the next four descriptors. This regis-
ter is incremented by sixteen after each descriptor fetch.

Start_Descriptor Register - Contains the physical quadword address of the first descriptor in a frame. It
should be initialized to the same address as next_descriptor.

Descriptor Cache - The cache has four 33-bit registers containing the current four descriptors. All locations
in the descriptor cache can be read or written. The valid bit can only be read. Writing to a cache location pro-
duces a valid descriptor. Descriptor zero is the active descriptor. When page_index rolls over, all descriptors
are shifted up one location, and the bottom descriptor is invalidated. A new set of descriptors are fetched
from the address in next_descriptor when an invalid descriptor is shifted into location zero. If a valid
descriptor with the jump bit set is shifted into location zero, a new set of descriptors are fetched using the
address from the jump descriptor. If a valid descriptor with the stop bit set is shifted into descriptor location
zero, DMA operation is stopped immediately and an interrupt is generated. The DMA initialization routine
must be run (set page_index to zero, write next_descriptor etc.), and this bit must be cleared before DMA

August 18, 1993 11

can continue. All descriptors are invalidated when next_descriptor is written, causing a new set of descrip-
tors to be fetched.

Each descriptor contains a physical address of the start of a 4K-byte page of system memory or the address
of the next descriptor. Descriptors are packed into a descriptor table located in memory, and the start of the
table must be quad word aligned. The last descriptor in a table must have the stop bit or jump bit set to pre-
vent runaway DMA’s. The jump bit and stop bit are “OR’d” with the physical address to produce a descrip-
tor. These bits, 31 and 30, are driven low during the GIO64 address cycle to produce the correct physical
address. The figure below shows the descriptor format:

Stop - When a stop bit is detected, DMA operation is stopped immediately, and an interrupt is generated.
The DMA initialization routine must be run (set page_index to zero, write next_descriptor etc.), and this bit
must be cleared before DMA can continue.

Jump - When this bit is set, the pointer field contains the quad word address of the next descriptor. Jumps can
only be to quad word address. Restricting descriptors to quad word addresses avoids complicated alignment
logic in the descriptor fetch circuitry.

Pointer to a Page Buffer - If neither stop nor jump is set, then the pointer field is the address of a 4K-byte
page of buffer space.

DMA FIFO - Each channel FIFO is 1Kbytes configured as 128 x 64 bits. The read pointer (GIO) and write
pointer (video) are read only. The pointers are held in reset (zero) when DMA is disabled. The threshold
value is programmable.

2.4 Arbiter

There are four devices on VINO that require the use of the GIO64 bus: two DMA channels and two descrip-
tor fetch units. The arbiter receives requests from the devices, and provides grants based on the fixed priority
shown below. Upon receiving a request, the arbiter requests the GIO64 bus. When the arbiter receives the
GIO64 bus grant, it provides a grant to the device with the highest priority. When the highest priority device
is done with the bus, it de-asserts its request. The arbiter responds by de-asserting the device’s grant, and
provides a grant to the next highest requesting device. This process continues until all requesting devices
have used the bus. The arbiter then releases the GIO64 bus by de-asserting the GIO64 bus request.

1) channel A descriptor fetch
2) channel A DMA
3) channel B descriptor fetch
4) channel B DMA

2.5 Interrupt Handling

The following interrupts cause the GIO_INT_N signal to become active:

1. DMA channel A end of descriptor table
2. DMA channel A FIFO overflow
3. DMA channel A end-of-field
4. DMA channel B end of descriptor table
5. DMA channel B FIFO overflow
6. DMA channel B end-of-field

stop pointer

31 30 0

jump

2932

valid

August 18, 1993 12

All interrupts are level sensitive. This means that the condition that caused the interrupt must be cleared
before the interrupt can be cleared. The GIO_INT_N signal is active as long as there are active interrupts.

If an end of descriptor table interrupt occurs, DMA operation stops immediately. The DMA initialization
routine must be run (set page_index to zero, write next_descriptor etc.), and this bit must be cleared before
DMA can continue.

If a FIFO overflow interrupt occurs, DMA operation is stopped immediately. The DMA bit must be dis-
abled, resetting the FIFO pointers, the DMA initialization routine must be run (set page_index to zero, write
next_descriptor etc.), and this bit must be cleared before DMA can continue.

If an end-of-field interrupt occurs, DMA continues. This interrupt does not have a condition to clear, so once
received, this interrupt can be cleared immediately.

The end-of-field interrupt will only occur on a DMA channel that has been activated by setting the chA/B
DMA enable bit in the Control Register. The end-of-field interrupt will not occur on fields that have been
turned off in the Frame Rate Register.

To ensure proper operation for two-channel DMA interrupt handling it is recommended that when servicing
interrupts for a given channel, the other channel’s interrupt be disabled (using the control register bit) when
resetting the interrupt for the channel that has interrupted. This will ensure that the edge sensitive IOC chip
in the INDY system will see the single physical interrupt line from VINO de-assert when an interrupt condi-
tion is cleared in VINO. There is a pathological condition that could exist which would have the second
DMA channel produce and end-of-field interrupt just after the VINO chip has interrupted for the first DMA
channel and the software has already polled the VINO to find which channel is interrupting and is about to
reset that first DMA channel’s interrupt. If the second channel interrupts at this instance, then the physical
interrupt attached to the IOC chip will never de-assert and so the second interrupt will be ignored as will all
subsequent interrupts which could cause the interrupt handler to never be invoked again and cause unknown
system behavior.

2.6 Reset

VINO reset comes from the Philips 7197 clock generation chip. The output reset signal from the clock chip
is held low for 200 ms (determined by a capacitor) after the input reset is de-asserted. During this extended
reset period, the video clock from the Philips 7197 is running. A valid video clock during reset is needed to
reset the VINO video subsection. The Philips 7197 input reset is controlled by a register bit in the IOC chip
(refer to the IOC specification for a complete description). This bit is set low to reset VINO, and high for
normal operation. This bit is cleared on reset.

2.7 I2C Bus

VINO provides an interface between the GIO64 bus and the I2C bus used by the Philips chip set. The I2C
bus is a very slow serial bidirectional bus (64KHz for VINO). Data must be converted back and forth
between serial and parallel data formats depending on the data direction. VINO is always a master on the
I2C bus. The Philips 1992 Desktop Video Data Handbook provides detailed timing diagrams and informa-
tion on the I2C bus.

2.7.1 I2C Basic Protocol

The bus consists of two wires: serial clock (SCL) and serial data (SDA). Both wires are open-collector with
a resistive pull-up creating a wired-AND bus. Both lines float high when the bus is idle. For data transfer,
SDA is stable when SCL is high and SDA transits when SCL is low. The sequence is started and stopped
when these constraints are not met. A start signal is generated by pulling SDA low while SCL is high, and a

August 18, 1993 13

stop signal is generated by floating SDA high while SCL is high. All data is transferred as 8-bit bytes with
the MSB first. Each byte has to be followed by an active low acknowledge sent by the receiver. The number
of bytes that can be transmitted per transfer (between start and stop conditions) is unrestricted. A receiver
can hold SCL low to force the transmitter into a wait state. Data transfer continues when the receiver
releases SCL.

2.7.2 I2C Implementation

The I2C circuitry contains a I2C Control register and a I2C Data register. Reading/Writing from/to the I2C
Data register initiates a read/write cycle. The I2C Control register provides software with a means of con-
trolling the I2C bus, and I2C status information. Detailed register information is provided in Section 6.0 on
page 20.

There is no buffering of data between the GIO64 bus and the I2C bus, so only single byte transfers are sup-
ported. Software must poll the I2C Control register to see if a transfer has been completed before proceeding
to the next transfer.

3.0 Video Inputs

The VINO ASIC has two video input ports. One port accepts a 16 bit YUV bus and timing information that
connects without glue logic directly to a Philips 7191A/B DMSD (Digital Multistandard Decoder). The sec-
ond input is compatible with the SGI Digital Video Interface and is an 8wire Data 1 wire Clock Interface that
is compatible with Indy Cam as well as the Galileo product for the Indigo2 and the Indy Video product for
Indy as a means of passing digital video into the VINO chip and onto the GIO bus.

3.1 YUV Bus

The timing and sequence information for this bus is best described in the Philips “Desktop Video Data
Handbook 1993”. It can also be found quite nicely documented in the Kaleidoscope engineering documenta-
tion. It should be noted that the information to detect field 1 vs. field 2 in this interface is accomplished by
the level of the HREF pin on the 7191 at the de-assertion of VS. For field 1 HREF is a logical 1 for field 2
HREF is a logical 0. This has the added complication of confusing the line count circuit inside of VINO that
is used in conjunction with the ClipY registers. The line counter is unable to set the clip start at exactly the
first visible line that the DMSD sends as the counter is not incremented until the next HREF edge.

It is also interesting to note that the 1993 Philips book shows the relationship of the actual transmitted Com-
posite video line numbering with the VS and HREF synchronization signals that are provided to VINO by
the 7191.

For 625 50 Hz video (PAL)VS de-asserts at line 7 of the Composite Signal. VINO will not be at line 1 until
the Composite Signal hits line 8. For field2 line 320 becomes line 1 of vino’s field 2 counter.

For 525 60 Hz video (NTSC) VINO calls line 1 line 8 of the Composite Signal in field 1 and line 270
becomes VINO line 1 of field 2. This information is useful when calculating Y clip start and Y clip end of a
visible NTSC or PAL signal for capture.

3.2 SGI Digital Video Bus

A high speed port that can run up to 30 MHz is provided on the VINO chip as a means of bringing in Digital
Data that has the logical format of D1 video. This is a single ended TTL connection that is used by Indy Cam
to bring in 4:2:2 digital video and synchronization information. It can also be used as a means of bringing
Digital Video data in from the Indy Video add-in board for use on the GIO64 bus. Additionally external

August 18, 1993 14

products can be designed to digitize video and deliver it to this interface for VINO to place on the GIO 64
bus.

3.2.1 Data Format

The data on this bus complies with the logical format of the SMPTE Recommended Practice 125-1984 and
is as follows:

U0 Y0 V0 Y1 U2 Y2 V2 Y3 U4 Y4 V4 Y5 UN YN VN YN+1

It is anticipated that all data sets on this input will be divisible by 4 for the total count of a line of video in
order to preserve the Color and Luminance relationship of 4:2:2. The VINO chip expects this to be so.

3.2.2 Control Codes Embedded in Data Format

Horizontal, Vertical and Field identifiers are embedded in the data stream as follows:

UxYxVxYx+1 FF 00 00 SS 80 10 ... blanking ... 80 10 FF 00 00 SS V0 Y1 U2 Y2 V2 Y3

The SS byte of the string above can represent either and EAV (end of active video) or SAV (start of active
video) on a given horizontal line. The SS byte is always preceded by the FF 00 00 sequence and the FF and
00 values are not allowed as valid levels in the active video stream. During blanking the U and V compo-
nents are clamped to 128 (80H) while the Y component is clamped to 16 (10H). The SS byte contains Ham-
ming code to correct any single bit error that may occur during transmission. The error correction applies
only to the SS byte and not the video bytes or the preamble sequence leading up to the SS byte.

The Data Format of the SS bit is as follows:

TABLE 2. Digital Video Control Byte Format

Bit
Position Bit ID Function

D7 1 Always set to 1

D6 F Field Type, 0=Odd 1=Even

D5 V Vertical Blanking 1=Blanking, 0=Active

Can only change when H=1 (EAV)

D4 H Horizontal Blanking 1=Start Blanking, 0=Start
Active Video

D3 P3 Hamming Code error protection

D2 P2 Hamming Code error protection

D1 P1 Hamming Code error protection

D0 P0 Hamming Code error protection

August 18, 1993 15

3.2.4 SGI Digital Video Timing Information

The typical clock frequency for the SGI Indy Cam is 24.5454 MHz. The VINO interface has been simulated
to work up to 30 MHz. It is expected that the Clock to Data relationship for the Digital Video Input Port have
the following characteristics for the 24.5454 typical case. The intent is to place the rising edge of the clock
as near as possible to the time the data is stable.

FIGURE 6. SGI Digital Video Interface Transmitted Clock Waveform

3.2.3 Error Protection Bits

The following code is used to correct single bit errors that may occur in the transmission of the Timing Con-
trol words on the SGI Digital Video Interface.

TABLE 3. Hamming Code Words for Error Protection Scheme to work

F V H P3 P2 P1 P0

0 0 0 0 0 0 0

0 0 1 1 1 0 1

0 1 0 1 0 1 1

0 1 1 0 1 1 0

1 0 0 0 1 1 1

1 0 1 1 0 1 0

1 1 0 1 1 0 0

1 1 1 0 0 0 1

Clk

Data

Tw

Tc
Td

Tw = 20 +/- 3 nsec

Tc = 24.5454 Mhz, 40 nsec nominal

Td = 20 +/- 3 nsec

August 18, 1993 16

4.0 Video Processing

Each of the processing blocks described below are independently selectable in the two channels.

4.1 Data Formats

The data received from the Philips and D1 interface is in 4:2:2 YUV form, with 8-bits per component. This
can be changed into 24-bit RGB. The 24 bits can also be reduced to 8-bit RGB. The 24-bit RGB is presented
to the system as 32-bit RGBA by appending the value in the Alpha Register. These pixels are then packed
into 64 bit words as shown in the diagram below.

For YUV data, the U and V components are shared for the two Y samples. In order too reduce the hardware
complexity, only a doubleword number of pixels are DMA’d per line. If the little endian bit is set the RGBA
format above will swap the positions of the upper and lower 32 bit words but preserve the byte ordering
within a 32 bit word. All other formats swap bytes in the normal big-endian to little-endian convention
across a 64 bit word. Note that this feature while present in the hardware is an untested function in the -001
silicon.

4.2 Filtering/Decimation

Decimation reduces the video window from full size to 1/2, 1/3, 1/4, 1/5, 1/6, 1/7 or 1/8 in both horizontal
and vertical directions on a field basis; independent x or y decimation is not supported. Pixels are averaged
horizontally, stored and then averaged vertically. If the decimation size does not evenly divide the window

RGBA R0G0B0A0

63 56 55 48 47 40 32

YUV V0 Y1U0 Y0

Big Endian Arrangement in GIO64 Wordformat

R1G1B1A1

31 24 23 16 15 8 7 039

V2 Y3U2 Y2

8-bit Mono or RGB P2 P3P0 P1 P6 P7P4 P5

8-bit MONO
7 0

8-bit RGB RGB
7 6 5 3 2 0

Y

RGBA R1G1B1A1

63 56 55 48 47 40 32

YUV Y2 U2Y3 V2

Little Endian Arrangement in GIO64 Wordformat

R0G0B0A0

31 24 23 16 15 8 7 039

Y0 U0Y1 V0

8-bit Mono or RGB P5 P4P7 P6 P1 P0P3 P2

8-bit MONO
7 0

8-bit RGB RGB
7 6 5 3 2 0

Y

August 18, 1993 17

size, missing pixels will be treated as black. This artifact will only occur on the right- and bottom-most
edges of an image. Bits X of register X control the decimation factor. The table below shows the weights
applied both horizontally to average pixels and vertically to average lines

It is recommended that only the 1/2, 1/3 and 1/4 settings be used as the algorithm implemented in Vino -001
version simply divides each source pixel by the total decimation factor and does not preserve any fractional
information from that operation. For example in the 1/4 setting each pixel in the 4 by 4 block of source pix-
els that will become a single decimated pixel is divided by 16 and then added together. This means each
pixel loses 1/2 of its color precision. It is possible that this will be fixed in a future version of the chip.

4.3 Dithering

In order to reduce the video bandwidth for some applications where image quality is not paramount, but full
size is still important, a dithering with a matrix which minimizes introduced texture and beating, is per-
formed on a field basis. Each 24-bit RGB pixel is reduced to an 8-bit (BBGGGRRR) pixel. Note, for dither-
ing to work properly, YUV to RGB conversion should be enabled. Initially the intensity level of the pixel is
scaled to evenly repartition existing values into the fewer number of bits. These bits are then modulated
according to a comparison of the remainder of the scaling and the value returned by indexing into the dither
matrix by the pixel position. This method has the nice feature that overflow will never occur on the resultant
pixel value. The pseudo-code below describes the operation. The initial 8-bit color component is ‘I’, the
scaled component is ‘S’ and the result is ‘R’.“>>” is the logical shift operator. Note, using a Bayer matrix
results in beating between fields as the values are not evenly divided incrementally between the two fields.
The matrix below

Dithering eight bits to three for the red and green components:
S[6:0] = I[7:1] - (I[7:4] >> 3) >> 1
if (S[3:0] > M[y mod 4][x mod 4]) then R = S[6:4] + 1;
else R = S[6:4];

Dithering eight bits to two for the blue component:
S[5:0] = I[7:2] - (I[7:4] >> 2) >> 1
if (S[3:0] > M[y mod 4][x mod 4]) then R = S[5:4] + 1;
else R = S[5:4];

Dithering is turned on or off through the status register.

Pixel/Line 0 1 2 3 4 5 6 7

Weight 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
Decimation 1/2 N0 N1 N2 N3

Weight 1/4 1/2 1/4 1/4 1/2 1/4 1/4 1/2
Decimation 1/3 N0 N1

Weight 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4
Decimation 1/4 N0 N1

TABLE: Decimation Weights

1

2

3 4

5

6

7

8

9

10

1112

13

14

15

0

Dither Matrix

August 18, 1993 18

4.4 Clipping

The incoming video stream contains a different number of pixels per line and lines per field depending on
the standard selected. Not all of the data contains live video, for example during the vertical blanking period.
In order to remove this data from the video stream, a general mechanism is provided which can also be used
to clip the active video image. For horizontal clipping, registers specify the starting and ending pixel posi-
tion on a line. Registers specify the starting and ending line numbers for vertical clipping. There are two sets
of registers. One is intended for even fields and another for odd fields, but no restrictions are made to their
application. The line count begins on the falling vertical retrace of even fields.

There is an important relationship is setting the clip register starting Y value of the two fields. First field1 is
always one line lower in clipping than the equivalent setting for field 2 because of the way the falling edge of
vertical retrace and HREF behave in the two different fields (see YUV Bus description for details). Second is
that since the two fields may be re-interleaved by software at some future point, the spacial relationship must
be preserved or the image will be distorted. So if both fields are set to clip at the same number then when
they are re-interlaced field 2 should have its first line placed above field 1 in order to maintain the correct
physical relationship of the fields within a frame. If field 2 is set to n+1 the Y start clip of field 1 then field 1
should have the first line placed above the first line of field 2. Experimentation is greatly encouraged here to
verify these rules.

It should also be noted that the clipping regions for Y start and Y end will vary between various consumer
and professional analog Composite and Y/C sources since there is room for interpretation in the Specifica-
tions for the exact number of blank lines before start of active video in vertical. This will also be different for
our INDY CAM which is encoded onto the SGI Digital Interface input to VINO.

Clipping Rule. The Line Size for clipping must be set so that the total number of pixels clipped AND the
downstream filter decimation (1/2, 1/3, 1/4) produce enough pixels to fill an integer number of 8 byte GIO
64 words. This problem is further complicated when combined with the color space mode possibilities that
allow from 8 to 2 pixels packed into an 8 byte GIO word.

An example of an legal clip setting would be 600 pixels in the line with 1/2 decimation and RGB-8. To ver-
ify that this is legal take 600 apply the 1/2 decimation factor which produces 300 pixels. Divide 300 pixels
by 8 and see if an integer number of GIO words is produced. Since this yields 37.5 GIO words this is not a
legal CLIP/DECIMATE/COLORSPACE combination. However if the color space is 24 RGBA (2 pixels per
GIO64 Word, then 300/2 is 150 GIO words and that would be a legal clip/decimate/colorspace combo.

4.5 Color Space Conversion

Graphics pixels are RGB, while video pixel are YUV based, requiring conversion to allow the system to
manipulate and display the video stream. Channel A is set by bit11 and channel B by bit23 in the Control
Register. For conversion to 8-bit RGB the pixels are first converted from YUV to 24 bit RGB pixels and then
dithered down to 8 bit pixels. This mode is invoked by setting the Control Register bit 18 for Channel A and
bit 30 for Channel B. One final mode of color (or lack there-of) is supported which is a Monochrome only
mode. In this mode the U and V components are simply discarded and only the Y component which repre-
sents a gray-scale value is preserved. This mode is extremely efficient in that it can pack a full intensity
shaded image into the least amount of Bus Bandwidth and destination memory size.

The required conversion equations for 4:2:2 YUV to 24 bit RGB are shown below. The hardware does not
interpolate from 4:2:2 to 4:4:4 before performing color space conversion. The UV value for a given Y value
is simply repeated for the next Y value which does not have its own UV value.

R = 1.596027 x (V’- 128) + 1.164384 x (Y’ - 16)

B = 2.017232 x (U’- 128) + 1.164384 x (Y’ - 16)

August 18, 1993 19

G = 1.164384 x (Y’- 16) - 0.8129676 x (V’ - 128) - 0.3917623 x (U’ -128)

The color space conversion is performed by shifts and adds which introduces an error of less that +/-0.6 for
the value range of 0 to 255 for a precision of 99.5%. The color space conversion is clamped to 0 and 255 to
ensure illegal color values are not computed. The vhdl model of the Color Space computational hardware
was verified against a C program using floating point arithmetic and the above equations to verify the accu-
racy of the function.

4.6 Synchronization Control

The video stream from Vino is raw: no control or tag information is included. This requires each field to be
properly placed in memory or the display and interleaving of the fields will be incorrect. When DMA is
enabled, the video stream will start on the next available field. Setting the synchronization bit in the Control
Register will ensure the first field captured for every frame is the odd field. The second field can be either
odd or even. Multiple odd or even fields in a row can be caused by some VCR’s in pause mode. Note that no
fields will be captured if synchronization is enabled and only even fields are produced. All fields will be cap-
tured if synchronization is disabled.

4.7 Frame/Field Rate Control

In order to reduce the number of fields a channel produces, a coarse limiting mechanism is provided. The
Frame Rate Control Register is a twelve field (six frame) mask with a mode bit. Each mask bit has an associ-
ated field and when the bit is set the field is captured, otherwise it is dropped. The mode bit controls the num-
ber of mask bits used. When the mode bit is 0 (NTSC) all 12 mask bits are used, when it is 1 (PAL mode)
only the first 10 mask bits are used. The mask is loaded into a shift register with the low-order bit indicating
the capture status of the next field. The shift register is clocked after a valid field completes. Once the all the
bits are used, the shift register is reloaded with the mask. The register has the following format:

When interleaving is enabled, the mask must be enabled on a frame, not field, basis (both fields in the frame
should have the same mask), or the DMA mechanism will not function properly. The six frame stencil
applies in the NTSC mode. The five frame stencil is used in PAL mode to more easily mesh with the 50Hz
frequency producing rates of 5, 10, 15, 20 and 25 frames per second. NTSC input can make use of both
NTSC mode, producing 5, 10, 15, 20, 25 and 30 frames per second, or PAL mode, producing 6, 12, 18, 24
and 30 frames per second. Neither mode is constrained to a particular standard. Software can additionally
extract frames from this subset to produce a rate not provided.

4.8 Alpha Value

The Alpha Register contains a double-buffered byte value which is included in the pixel stream in RGBA
mode. The buffer is loaded with the Alpha Register at the end of every field. This allows alpha values to be
smoothly changed on field boundaries.

Frame

Field 9 8 7 6 5 4 3 2 1 0

012345

1011

12 11 10 9 8 7 6 5 4 3 2 1 0Bit

mode

August 18, 1993 20

5.0 Software Issues

5.1 Data Formats

Unfortunately pixel data formats, as with so many other supposed standards, vary among machines. YUV
data is now a coherent collection of bytes, making it incompatible with Starter Video. The 8-bit RGB format
produced by dithering is incompatible with Indigo, due to Indigo’s RRRBBGGG format. Applications shar-
ing video data across platforms will need to either shift bits or use a non-standard color map. VINO’s 8-bit
data is compatible with Rex3.

5.2 Graphics Synchronization

The video stream must be synchronized to the graphics display using the graphics vertical retrace interrupt
to prevent image tearing. This implies the DMA moving the image from memory to the frame buffer must
wait for the vertical retrace interrupt before beginning the DMA. The DMA to Rex3 need not be performed
only during vertical retrace, just started then. Care must be taken to ensure the DMA will remain ahead of
the scan. This method eliminates the need for double buffering. The vertical interrupt from VC2 can be
adjusted for system and software induced latency.

5.3 Frame Assembly

Frame assembly can be achieved a number of ways varying in bandwidth and quality. No frame assembly is
done on the chip, as there is no field or line store. The video image is de-interlaced and synchronized by
moving it to main memory. Once a field is in memory, it can be presented to the frame buffer with black
inserted in between the field lines, resulting in a crisp, half-brightness picture with no artifacts. A more ideal
method is to create a frame from every field by line replication. This results in a full intensity picture with
some aliasing due to the replication, which is outweighed by intensity gain. The bandwidth from memory to
the frame buffer is doubled, making this solution attractive to only certain users. A reduced bandwidth
method, which has inter-field motion artifacts but is a full brightness image, is to DMA each new field, leav-
ing the older alternate field in the frame buffer, displaying the two most recent fields simultaneously. If a
field or frame is dropped, this method results in an unacceptable non-coherent mixture of fields. A third
reduced bandwidth method is to drop a field and create a frame with the remaining field. The motion may be
jerky between frames, but there will be no inter-field artifacts visible on screen. The user should be allowed
make a selection among these or other display methods as preferences are subjective.

6.0 Register Descriptions

In the following 64-bit register descriptions, all bits not explicitly defined are read as 0

The Control register is read/write. The bits in the Control register are set and cleared by software. The
enable bits are active high. The register is cleared on reset.

TABLE 4. ID and Revision Register

Bits Function Reset Value

7:4 VINO ID value B

3:0 VINO revision number 0000

August 18, 1993 21

TABLE 5. Control Register

Bits Function

30 chB dither

1 - enabled 24-bit to 8-bit, 0 - disabled

29 chB decimation horizontal only enable

26-28 chB decimation scale factor

25 chB decimation enable

24 chB luma only enable

23 chB color space conversion

1 - RGB, 0 - YUV

22 chB selection

1 - D1 interface, 0 - Philips chip

21 chB sync enable

20 chB enable interleave

19 chB DMA enable

18 chA dither

1 - enabled 24-bit to 8-bit, 0 - disabled

17 chA decimation horizontal only enable

14 -16 chA decimation scale factor

13 chA decimation enable

12 chA luma only enable

11 chA color space conversion

1 - RGB, 0 - YUV

10 chA selection

1 - D1 interface, 0 - Philips chip

9 chA sync enable

8 chA enable interleave

7 chA DMA enable

6 chB enable end of descriptor table interrupt

5 chB enable fifo overflow interrupt

4 chB enable field transferred interrupt

3 chA enable end of descriptor table interrupt

2 chA enable fifo overflow interrupt

1 chA enable field transferred interrupt

0 endianess of GIO interface

1 - little endian, 0 - big endian

August 18, 1993 22

The Interrupt register is read/write. All bits are active high. The bits are set by hardware and cleared by soft-
ware (write 0 to clear). The register is cleared on reset. Writing a one to any of the bits has no effect on the
value of the bit.

.

.

.

TABLE 6. Interrupt and Status Register

Bits Function

5 chB end of descriptor table interrupt

4 chB fifo overflow interrupt

3 chB end of field transferred interrupt

2 chA end of descriptor table interrupt

1 chA fifo overflow interrupt

0 chA end of field transferred interrupt

TABLE 7. Alpha Register

Bits Function Read/ Write Reset Value

7:0 Alpha value R/W not reset

TABLE 8. Clipping Start Register

Bits Function Read/ Write Reset Value

27:19 Y Even start R/W not reset

18:10 Y odd start R/W not reset

9:0 X start R/W not reset

TABLE 9. Clipping End Register

Bits Function Read/ Write Reset Value

27:19 Y Even end R/W not reset

18:10 Y odd end R/W not reset

9:0 X end R/W not reset

TABLE 10. Frame Rate Register

Bits Function Read/ Write Reset Value

12:1 frame rate mask value R/W not reset

0 mode

0 - NTSC, 1 - PAL

R/W not reset

August 18, 1993 23

Enabling DMA will reset the Field Counter Register.

To begin a field capture operation, page_index must be set to zero. The address of the start of the descriptor
table must then be written into next_descriptor. As soon as next_descriptor is written, the descriptor cache is
invalidated causing a descriptor fetch to occur. It is important that page_index precede next_descriptor. As
stated in the previous paragraph, descriptors shift when page_index rolls over, defined as page_index going
from a non-zero value to zero. Depending on initial conditions, setting page_index to zero can cause a
page_index roll over and hence a shift in descriptors. If next_descriptor is written first, descriptors are
fetched, and a subsequent write to page_index might cause the descriptors to shift. After these registers have
been initialized, DMA can be enabled.

TABLE 11. Field Counter Register

Bits Function Read/ Write Reset Value

15:0 field count value (incrementing counter) R 0x00

TABLE 12. ChX Line Size Register

Bits Function Read/ Write Reset Value

11:3 line size in bytes/ 8
lines must always be a multiple of 8 bytes

Read/Write 0x00

TABLE 13. ChX Line Count Register

Bits Function Read/ Write Reset Value

11:3 incrementing counter - maintains current byte in
line count

Read/Write 0x00

TABLE 14. ChX Page Index Register

Bits Function Read/ Write Reset Value

11:3 Index to doubleword in the current page

(bits 11:3 of DMA address)

Read/Write 0x00

TABLE 15. ChX Pointer to Next Four Descriptors Register

Bits Function Read/ Write Reset Value

31:4 pointer to next four descriptors

(quad word address)

Read/Write 0x0000

TABLE 16. ChX Pointer to Start of Descriptor Table Register

Bits Function Read/ Write Reset Value

31:4 pointer to start of descriptor table
(quad word address)

Read/Write 0x0000

August 18, 1993 24

TABLE 17. ChX DescriptorX Data Register

Bits Function Read/ Write Reset Value

32 valid bit Read 1

31:0 descriptor data Read/Write 0x0000

TABLE 18. ChX Fifo Threshold Compare Value Register

Bits Function Read/ Write Reset Value

9:3 fifo threshold compare value Read/Write 0x00

TABLE 19. ChX Fifo GIO Pointer Register

Bits Function Read/ Write Reset Value

9:3 fifo GIO pointer Read 0x00

TABLE 20. ChX Fifo Video Pointer Register

Bits Function Read/ Write Reset Value

9:3 fifo video pointer Read 0x00

TABLE 21. I2C Control and Status Register

Bit Function Read/ Write Reset Value

7 bus error status
1 - bus error
0 - no bus error

Read 0

5 acknowledge status
1 - acknowledge not received
0 - acknowledge received

Read 0

4 transfer status
1 - transfer busy
0 - transfer done

Read 0

2 last byte control
1 - more bytes hold onto bus
0 - last byte release bus

Read/Write 0

1 bus direction control
1 - read data
0 - write data

Read/Write 0

0 force idle state control
1 - write - no effect
0 - write - force idle state

1 - read - not idle

0 - read - idle

Read/Write 0

August 18, 1993 25

7.0 Signal Descriptions and Pinout

The Logical Pin diagram below shows the Pins on VINO arranged by functional grouping. The following
table covers detailed characteristics of each VINO pin (Drive Strength, direction and description) while the
final table in this section provides the detailed pin number assignments for the 208 PQFP package that is
home to the VINO silicon sliver.

FIGURE 7. Logical pin diagram of VINO

TABLE 22. I2C Data Register

Bits Function Read/ Write Reset Value

7:0 bus data
write to this address initiates a write cycle
if bit 1 of the I2C Control register is 1, a read of this
address initiates a new read cycle

Read/Write 0x00

VINO

LLC

CREF

HREF

VS

YUV[15:0]

D_DATA[7:0]

D_CLK

SDC,SCL

AS_N

READ

MASDLY

SLVDLY

BREQ_N

VID_INT_N

BGNT_N

AD[31:0]

AD[63:32]

CLK

RESET_N

32

32

16

2

8

29

VDD

VSS

36

PLL_ANALOG
4

Scan_atpg_out

Scan_data_out

PllOut

Scan_data_in

Scan_clk

PllEn
Tristate_en
Scan_en

TEST PINS

August 18, 1993 26

TABLE 23. Pin Description

Pin Name Type Description
Output
 Drive

GIO_AS_n I/O I- Slave - GIO64 Address Strobe Valid

O - Master - GIO64 Address Strobe Valid

8 mA

GIO_Read I/O I - Slave - GIO64 Read/Burst In Progress

O - Master - GIO64 Read/Burst In Progress

8 mA

GIO_MasDly I/O I - Slave - GIO64 Read - Data Valid, Write - Accept Data

O- Master- GIO64 Read - Data Valid, Write - Accept Data

8 mA

GIO_SlvDly I/O O - Slave - GIO64 Read - Data Valid Write - Accept Data

I - Master - GIO64 Read - Data Valid Write - Accept Data

8 mA

GIO_AD(63:0) I/O 64 Bit Bi-Directional Multiplexed Address/Data GIO64 Bus 8 mA

GIO_Clk I Input Clock 33MHz. VINO has PLL to bring clock inside
VINO to any flip flop to within 3 nsec of this clock rising edge

GIO_BReq_n O GIO Bus Request 4 mA

GIO_BGnt_n I GIO Bus Grant

GIO_Int_n O Interrupt to IOC Chip 4 mA

Reset_n I Reset Signal from Phillips 7197 Chip synchronous to P_llc
clock. GIO Section of VINO re-clocks this with GIO_CLK
before using as a reset for GIO_CLK flops

SCL I/O I2C Clock Bi-Directional - Vino Drives Low Only - Open
Drain emulation

4 mA

SDA I/O I2C Data Bi-Directional - Vino Drives Low Only - Open
Drain emulation

4 mA

P_Y(7:0) I 8 bit Luma Samples from Analog Decoder

P_UV(7:0) I 8 bit Chroma Samples from Analog Decoder

P_href I 1 - Horizonatal Line Active Pixel 0 - Horizontal Blanking

P_vs I 1 - Vertical Sync Active 0 - Vertical Active Pixel

P_cref I 1 - P_llc / 2 Indicates Valid Pixel Sample 0 - Invalid Pixel

P_llc I 2x Video Pixel clock

D_data(7:0) I SGI D1 Video Input Bus Expects 4:2:2 YUV

D_clk I SGI D1 Video Pixel Clock ~ 24.5454 MHz

Scan_clk I Input for ATPG Scan. Selected per Matrix in the Clock Selec-
tion Section.

Scan_data_in I Data Input Pin for ATPG Scan Test.

Scan_data_out O I/O Boundary Scan Chain Data Output (Board Test Data Out) 4 mA

Scan_atpg_out O Entire Scan Chain Data Output (Chip Test Data Out) 4 mA

Scan_en I Mode Pin to Put Chip in Various Clock/Test Modes

TristateEn I 1 - Ouputs Active, PLL Enabled and Powered On

0 - Outputs 3-State, PLL Disabled and Powered Off

PllEn I Mode Pin to Put Chip in Various Clock/Test Modes

August 18, 1993 27

7.1 Pin Assignments

The following table provides the physical pin to signal name assignment for the 208 PQFP VINO compo-
nent.

.

PllOut O Internal PLL 33 Mhz divided by 16 for test 4 mA

Pll_RC1 Anal Analog Phase Lock Loop Filter Pin 1.

Pll_RC2 Anal Analog Phase Lock Loop Filter Pin 2.

Pll_VDD Anal Analog Power for internal PLL

Pll_AGND Anal Analog Ground for internal PLL

Pll_VSS Anal Pll VSS Gnd tied to Board Digital Ground Outside Chip

VDD PWR 29 Pins Total Digital +5V Power

VSS GND 36 Pins Total Digital Ground

TABLE 24. 208 PQFP Pin Assignments

Pin # Signal Pin # Signal Pin # Signal

1 VSS 2-23 No Connect 24 VSS

25 Scan_en 26 Scan_data_in 27 Scan_atpg_out

28 Scan_data_out 29 TristateEn 30 No Connect

31 Reset_n 32 VDD 33 VSS

34 GIO_MasDly 35 VDD 36 VSS

37 VSS 38 GIO_BReq_n 39 GIO_Int_n

40 GIO_SlvDly 41 GIO_AS_n 42 GIO_BGnt_n

43 VDD 44 VSS 45 VSS

46 GIO_Read 47 VSS 48 GIO_AD0

49 VDD 50 GIO_AD1 51 VSS

52 VDD 53 GIO_AD2 54 GIO_AD3

55 GIO_AD4 56 GIO_AD5 57 VSS

58 GIO_AD6 59 GIO_AD7 60 GIO_AD8

61 GIO_AD9 62 VDD 63 VSS

64 GIO_AD10 65 GIO_AD11 66 GIO_AD12

67 GIO_AD13 68 VDD 69 GIO_AD14

70 GIO_AD15 71 GIO_AD16 72 GIO_AD17

73 VDD 74 VDD 75 VSS

76 GIO_AD18 77 GIO_AD19 78 GIO_AD20

79 GIO_AD21 80 VSS 81 GIO_AD22

82 GIO_AD23 83 VSS 84 GIO_AD24

85 GIO_AD25 86 VDD 87 GIO_AD26

TABLE 23. Pin Description

Pin Name Type Description
Output
 Drive

August 18, 1993 28

88 GIO_AD27 89 GIO_AD28 90 GIO_AD29

91 GIO_AD30 92 VSS 93 VDD

94 GIO_AD31 95 GIO_AD32 96 GIO_AD33

97 GIO_AD34 98 VSS 99 VDD

100 GIO_AD35 101 GIO_AD36 102 VDD

103 VDD 104 VSS 105 GIO_AD37

106 GIO_AD38 107 VSS 108 GIO_AD39

109 GIO_AD40 110 GIO_AD41 111 VDD

112 GIO_AD42 113 GIO_AD43 114 GIO_AD44

115 VSS 116 VDD 117 GIO_AD45

118 GIO_AD46 119 GIO_AD47 120 VDD

121 GIO_AD48 122 GIO_AD49 123 VSS

124 GIO_AD50 125 GIO_AD51 126 GIO_AD52

127 GIO_AD53 128 GIO_AD54 129 VSS

130 VDD 131 GIO_AD55 132 GIO_AD56

133 GIO_AD57 134 VSS 135 GIO_AD58

136 GIO_AD59 137 GIO_AD60 138 GIO_AD61

139 VDD 140 VSS 141 VSS

142 GIO_AD62 143 GIO_AD63 144 VDD

145 VSS 146 PLLEn 147 Scan_clk

148 VSS 149 VDD 150 VSS

151 Pll_AGND 152 Pll_RC1 153 Pll_VSS

154 PLL_RC2 155 Pll_VDD 156 GIO_Clk

157 VSS 158 VDD 159 SDA

160 SCL 161 VSS 162 VDD

163 D_data0 164 D_data1 165 D_data2

166 VSS 167 VDD 168 D_data3

169 D_data4 170 D_data5 171 D_data6

172 D_data7 173 VDD 174 VSS

175 D_clk 176 VDD 177 VSS

178 P_Y0 179 P_Y1 180 P_Y2

181 P_Y3 182 P_Y4 183 P_Y5

184 P_Y6 185 P_Y7 186 No Connect

187 No Connect 188 VDD 189 VSS

190 VSS 191 P_UV0 192 P_UV1

193 P_UV2 194 P_UV3 195 P_UV4

196 P_UV5 197 P_UV6 198 P_UV7

199 P_href 200 P_vs 201 VSS

202 P_cref 203 VDD 204 P_llc

TABLE 24. 208 PQFP Pin Assignments

Pin # Signal Pin # Signal Pin # Signal

August 18, 1993 29

7.2 Test Modes

The input pins SCAN_EN, PLL_EN and TRISTATE_EN control various test and functional modes of the
VINO chip per the table below. Note that in the course of implementing the control that the pin labeled
PLL_EN influences which clock the GIO Flops are connected to but that TRI_EN actually disables the
Phase Lock Loop.

8.0 Packaging

VINO is packaged in a 208 PQFP Heat Spreader Package to accommodate up to 2 Watts of Power Dissipa-
tion.

205 VSS 206 No Connect 207 PllOut

208 VDD

TABLE 25. Test Mode Pin Functions

VINO Function
TRI_
EN

SCAN_
EN

PLL_E
N

GIO Flop
Clock

Video Flop
Clock

Normal Operation w/ PLL
and during RESET

H L H GIO_CLK-PLL Video Clks

Normal Operation No PLL

Functional Vectors

H L L GIO_CLK-PAD Video Clks

Scan Flops Use D Input H H L Scan_Clk Scan_Clk

Scan Flops Use SI Input H H H Scan_Clk Scan_Clk

PC, VCO, RAM Disabled

Functional Vectors Paramet-
ric Test

L L L GIO_CLK-PAD Video Clks

PC, VCO, RAM Disabled

Scan Flops Use D Input

L H L Scan_Clk Scan_Clk

PC, VCO, RAM Disabled

Don’t Use PLL Clock is Z
and drives Clock Mux down

GIO Clock Tree

L L H Undefined Video Clks

PC, VCO, RAM Disabled

Scan Flops Use SI Input

L H H Scan_Clk Scan_Clk

TABLE 24. 208 PQFP Pin Assignments

Pin # Signal Pin # Signal Pin # Signal

August 18, 1993 30

l

FIGURE 8. 208 Plastic Quad Flat Pack Package Dimensions

30.6 +/- 0.3

28.0 +/- 0.15

1 52

53

104

105156

157

208

All Units in mm

29.6 +/-0.2

0.18 + 0.1 -0.05
1.25
Typ

0.35

3.5

+/- 0.15

MAX

0.5 +/- 0.1

28.0 +
/- 0.15

30.6 +
/- 0.3

0.5 +/- 0.2

August 18, 1993 31

9.0 DC Characteristics

10.0 AC Characteristics

10.1 I/O Timing Table

TABLE 26. DC Characteristics (Tj =-20 to 75o C)

Parameter Description Conditions Min Max Units

VIL Low Input Voltage VDD = 4.75V 0 0.8 V

VIH High Input Voltage VDD = 5.25V 2.2 5.25 V

VOL Low Output Voltage VDD = 5V

IO = 0 mA

---- 0.05 V

VOH High Output Voltage VDD = 5V

IO = 0 mA

4.95 ---- V

IIH, IIL Input Leakage Current VI = VDD, VSS -1 +1 uA

IOZH, IOZL Output Leakage Current VO = VDD, VSS -1 +1 uA

COUT Output Pin Capacitance

1 - 8 mA

f = 1 MHz

VDD = 0V

---- 15 pF

COUT Output Pin Capacitance

16 mA

f = 1 MHz

VDD = 0V

---- 20 pF

Power Power Dissipation VDD = 5V 1.48 W

TABLE 27. AC Characteristics

Description Min Max Units

GIO_AS_n setup to GIO_Clk rising 7.55 ---- ns

GIO_AS_n hold from GIO_Clk rising 1.59 ---- ns

GIO_AS_n delay from GIO_Clk rising ---- 12.01 ns

GIO_Read setup to GIO_Clk rising 4.13 ---- ns

GIO_Read hold from GIO_Clk rising 0.93 ---- ns

GIO_Read delay from GIO_Clk rising ---- 12.01 ns

GIO_MasDly setup to GIO_Clk rising 4.58 ---- ns

GIO_MasDly hold from GIO_Clk rising 0.96 ---- ns

GIO_MasDly delay from GIO_Clk rising ---- 12.01 ns

GIO_SlvDly setup to GIO_Clk rising 3.5 ---- ns

GIO_SlvDly hold from GIO_Clk rising 0.3 ---- ns

GIO_SlvDly delay from GIO_Clk rising ---- 11.75 ns

GIO_AD(63:0) setup to GIO_Clk rising 6.58 ---- ns

GIO_AD(63:0) hold from GIO_Clk rising 2.98 ---- ns

GIO_AD(63:0) delay from GIO_Clk rising ---- 13.36 ns

GIO_BReq_n delay from GIO_Clk rising ---- 10.29 ns

GIO_BGnt_n setup to GIO_Clk rising 4.16 ---- ns

August 18, 1993 32

10.2 PLL Characteristics

VINO contains an analog Phase Lock Loop. This section utilizes the GIO_Clk input as its reference and is
designed to put the clock edge at all the GIO_Clk flip flops inside of VINO within 3 nsec of the clock pro-
vided to VINO at the GIO_Clk pin. This PLL is characterized to run at the nominal 33 MHz GIO bus speed
and has not been characterized at 25 MHz or frequencies higher than 33 MHz.

It is necessary to connect a resistor capacitor network to VINO on the PLL RC1 and RC2 pins as per the fig-
ure below.

GIO_BGnt_n hold from GIO_Clk rising 0.96 ---- ns

GIO_Int_n delay from GIO_Clk rising ---- 9.51 ns

Reset_n Low Pulse Width 10.0 ---- us

SDA refer to Philips I2C Specification ---- ---- ----

SCL refer to Philips I2C Specification ---- ---- ----

Scan_data_in NA NA

Scan_data_out delay from Scan_Clk rising ---- 11.95 ns

Scan_atpg_out NA NA

Scan_en setup to Scan_Clk rising ---- 29.27 ns

Scan_en hold from Scan_Clk rising 7.85 ---- ns

PllEn setup to Scan_Clk rising ---- 15.68 ns

PllEn hold from Scan_Clk rising 9.95 ---- ns

PllOut delay from GIO_Clk rising ---- 14.93 ns

D_data setup to D_Clk 3.0 ---- ns

D_data hold to D_Clk 2.0 ---- ns

P_href, P_vs, P_cref setup to P_llc 3.0 ---- ns

P_href, P_vs, P_cref hold to P_llc 2.0 ---- ns

P_Y, P_UV setup to P_llc 3.0 ---- ns

P_Y, P_UV hold to P_llc 2.0 ---- ns

TABLE 27. AC Characteristics

Description Min Max Units

August 18, 1993 33

FIGURE 9. VINO PLL Network

11.0 Fault Coverage

Running the 1.5 Million vectors generated by the Sunrise ATPG tool results in a 92.12% fault coverage.
Since this number was lower than desired, a limited number of functional vectors were fault graded to obtain
an overall fault coverage of 92.79%.

12.0 Timing

Pll_RC1

Pll_RC1

100 Ohm

30K Ohm

0.047 uF

August 18, 1993 34

FIGURE 10. MC read from VINO register

Insert from Post Script File 099-8937-001.ps.01 to be printed out separately.

August 18, 1993 35

FIGURE 11. Write MC to Vino

Insert from Post Script File 099-8937-001.ps.02 to be printed out separately.

August 18, 1993 36

FIGURE 12. VINO Descriptor Fetch

Insert from Post Script File 099-8937-001.ps.03 to be printed out separately.

August 18, 1993 37

FIGURE 13. VINO fifo empty

Insert from Post Script File 099-8937-001.ps.04 to be printed out separately.

August 18, 1993 38

FIGURE 14. DMA with Page Index Roll

Insert from Post Script File 099-8937-001.ps.05 to be printed out separately.

August 18, 1993 39

FIGURE 15. DMA with End of Field Interrupt

Insert from Post Script File 099-8937-001.ps.06 to be printed out separately.

August 18, 1993 40

13.0 Indy Related Issues

13.1 Application Block Diagram

VINO as implemented in the INDY product CPU Mother Board is shown below.

FIGURE 16. VINO System Application Block Diagram

13.2 Video Input Notes

VINO can support any combination of two video inputs simultaneously with the exception of the two analog
inputs. Since the 7191 DMSD can only process the Composite OR the S-Video input at any given time, only
one is available to the VINO input at any given time. Any single Video input is allowed to drive both Chan-
nels (both video processing and GIO DMA) of VINO at once.

VINO

G
IO

64
 B

U
S

7191

A/D

8708

8709

A/D

DMSD

COMP

7197

CLK

26 MHZ

OSC

LLC

CREF

HREF

VS

YUV[15:0]

Y

C

D_DATA[7:0]

D_CLK

I2C BUS

Digital
Port
Input
Conn.

PWR

AS_N

READ

MASDLY

SLVDLY

BREQ_N

VID_INT_N

BGNT_N

AD[31:0]

AD[63:32]

CLK

RESET_N

RESET_N

S-VID

August 18, 1993 41

The Selection of the two analog inputs is accomplished by writing to a control register in the 7191 DMSD
chip specifically to bits GPSW1 and GPSW2. The INDY implementation of these bits produces the follow-
ing table.

It is possible to determine if an analog video source is present by polling the HPLL bit inside the 7191
DMSD part. If the PLL is locked then a device is “broadcasting” video into the selected analog port. This is
useful for diagnostics to query if an analog device is present and active prior to asking VINO to perform
DMA from that source.

14.0 Bugs

1) Jump Descriptor:
A jump descriptor does not update next_descriptor. Subsequently, when the four descriptors fetched because
of the jump are exhausted, the descriptor fetch logic uses the stale (incorrect) address in next_descriptor to
fetch new descriptors.

The work around is to make the 4th descriptor in each set of four (4) descriptors a jump descriptor. This will
ensure that next_descriptor will never be used to fetch descriptors except for the very first fetch.

2) End-of-field
The DMA state machine does not properly handle an end-of-field condition when the FIFO is empty. If an
x_clip_end value is less than the active area of the horizontal line of the source video, the video clip sub-
system places the last pixel of a field in the FIFO and waits for the true end of line (as opposed to the clipped
end of line) before setting end-of-field. In some cases, the last pixel of a field is transferred across the bus
(emptying the FIFO) before the end-of-field signal is received by the DMA state machine.

The work around is to set x_clip_end to the end of the active area of the horizontal line of the source video.
x_clip_start works and both endpoints of y_clip work.

3) Filtering sizes 1/4, 1/5,..., 1/8
Loss of precision in accumulation in these sizes causes image quality to degrade to an unacceptable level
(banding and color shift to green). This can be fixed by averaging horizontally first and then averaging verti-
cally. Until this is fixed, these sizes should not be used. 1/4 size should be generated by filtering down from
a 1/2 sized image in software.

TABLE 28. DMSD Selection of Composite and S-Video Analog Inputs

Analog Input Selected GPSW2 GPSW1

Composite L L

S Video H L

Not Used L H

Not Used H H

