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INTRODUCTION TO THE R8000 MICROPROCESSOR CHIP SET

The MIPS R8000 Microprocessor Chip Set from MIPS Technologies implements a
superscalar architecture, providing low-end vector supercomputer performance at a
fraction of the cost. The 64 bit architecture of the MIPS R8000 Microprocessor Chip Set is
implemented using separate integer and floating point devices. The impressive floating
point performance of the R8000 Microprocessor Chip Set makes it ideal for applications
such as engineering workstations, scientific computing, 3-D graphics workstations, and
multi-user systems. The high throughput is achieved through complete separation of the
integer and floating point functions, the use of wide, dedicated data paths, and large on-
and off- chip caches.

The R8000 Microprocessor Chip Set implements the MIPS IV instruction set. MIPSIV is a
superset of the MIPS HI instruction set and is backward compatible. Implementing a 3.3
volt technology with a target frequency of 75 MHz, the R8000 Microprocessor Chip Set
delivers peak performance of 300 MIPS and 300 MFLOPS. The R8000 CPU contains 2.6
million transistors. The R8010 Floating Point Unit contains 830 thousand transistors.
Each device is housed in a 591 pin PGA package and is fabricated using the Toshiba
VHMOSIII 0.7-micron silicon technology. Two Tag RAM’s and 4 MBytes of Static RAM
comprise the second level streaming cache.
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1.1 R8000 MICROPROCESSOR CHIP SET FEATURES

0 Advanced Superscalar Architecture
- Supports Four Instructions per Cycle
- Two Load/Store Instructions per Cycle
- Two Integer and Two Floating Point Execute Instructions per Cycle

o High Performance Design
- 75 MHz Clock Rate
- 3.3 Volt Technology
- Separate Integer and Floating Point Chips
- 300 Double Precision MFLOPS Peak
- On-Chip Floating Point Instruction Queue
- Separate 64 bit Load and Store Data Busses
- Implements MIPS IV Instruction Set

High Integration Chip-Set
- R8000 CPU Contains:
- 16 KByte Dual Ported Data Cache
- 16 KByte Single Ported Instruction Cache
- 384 Entry Dual Ported Translation Lookaside Buffer
- 1K Entry Branch Prediction Cache
- Second Level Cache Support

©

o

Optimized for Floating Point Performance
- Separate-Chip Floating Point Unit
- Two Floating point Execution Units

- Two Floating Point Arithmetic and Two Floating Point Memory Operations per
Clock

- Large Load/Store Data Queues

o Second Level Cache Support
- Two 4-Way Set Associative Tag RAM Chips
- Supports 4 MBytes of Second Level Cache
- Delivers Two 64-bit Operands to the Floating Point Unit Every Clock.
- Each Tag RAM has a Dedicated Bus Interface to the R8000 CPU.

o Compatible with Industry Standards
- ANSI/IEEE Standard 754-1985 for Binary Floating Point Arithmetic
- MIPS III Instruction Set Compatible
- Conforms to MESI Cache Consistency Protocol
- IEEE Standard 1149.1/D6 Boundary Scan Architecture
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1.2 ARCHITECTURAL INNOVATIONS

The design of the R8000 Microprocessor Chip Set incorporates many architectural
innovations which enhance performance. Many of these innovations are unique in the
industry. Each of the items listed below is explained further in the following sections.

1) A five-stage pipeline which swaps the execution and address generation stages.

2) Super-scalar dispatch unit which allows execution of 4 instructions per clock and is
NOT boundary dependent.

3) Large Set associative TLB.

4) Data Cache invalidation down to the word (32 bit) level.

5) Split Level Cache resulting in the separation of Integer and Floating Point Data.

6) Address Bellow Register which resolves bank conflicts and helps maintain a uniform
flow of even and odd references to the interleaved streaming cache.

7) Very fast 4 cycle integer multiply mechanism.

8) Use of instruction and data queues to streamline the movement of instructions
between the Integer and Floating Point Units.

9) Prefetch instruction allows for the early fetching of data which can be placed as close
as possible to the processor until it is required.

10) Addition of conditional move instructions helps avoid unnecessary branches.

1.2.1 Five Stage Pipeline

The R8000 Microprocessor contains a five stage pipeline which differs from the typical
five stage RISC pipeline in that the execution stage and the address stage have been
switched. The typical RISC pipeline contains the five stages configured in the following
sequence: (F) Fetch, (D) Decode, (E) Execute, (A) Address cache, (W) Write result to
register.

In this typical pipeline configuration, any instruction which follows a load and is
dependent on the load incurs a cycle delay in execution. This delay can impact
performance in a superscalar implementation because when it occurs the compiler must
locate four instructions to put in the delay slot in order to maintain full utilization of the
instruction bandwidth.

The R8000 Microprocessor Chip Set incorporates the following pipeline sequence:

(F) - Fetch and partial decode of the instruction. Branch prediction.

(D) - Decode instruction, read register file, perform scoreboarding and dependency
checks.

(A) - Generate the required address

(E) - ALU execution, Data Cache access, TLB lookup, exception detection.

(W) - Write the result to the register file.
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In the FDAEW pipeline the delay slot is placed before the load instruction and allows the
processor to dispatch multiple instructions immediately following the load, including
- the instruction usually scheduled in the load delay slot.

Branch resolution occurs one cycle later, thereby increasing the branch penalty by one
cycle. To overcome this problem the R8000 Microprocessor actually predicts the branch
in the Fetch stage. Branch and delay instructions are fetched in F-stage and if the predict
bit is on the program counter is modified and on the next clock the instruction cache
starts fetching from the new target address.

Refer to Figure 1-1. Quad 1 is fetched (PC= x) and then enters D-stage in (PC = x+1). At
the same time quad 2 is fetched which contains a branch and corresponding delay. Since
the predict bit in the branch cache is on, the new branch target address ‘t’ is loaded into
the program counter. Quad 3 is fetched with the new target address. In the next clock
(PC = t+1) the branch and delay in quad 2 enter the A-stage. In t+2 Quad 2 enters the E-
stage. It is here that the instruction is executed and a determination is made as to
whether the branch prediction was correct. The first instruction from the target address,
Quad 3, is now in A-stage, one stage behind the branch and delay instructions. Once the
branch has been executed and the target address is determined, the value is then
compared with the target for the instruction in A-stage. If where the instruction wanted
to branch is the same as where the pipeline had branched to 3 cycles earlier (E-stage and
A-stage target compare is valid), then the pipeline continues without interruption. A
branch mis-prediction causes a three cycle delay as the instructions in stages D, A, and E
must be flushed.

Figure 1-1 below shows the pipeline flow of the R8000 Microprocessor. A Quad is
defined as four 32 bit instructions. PC = program counter.
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new target address compared)
PC=t
QUAD 4
Fetched F-STAGE D-STAGE
PC = t+1

Figure 1-1 Integer Pipeline

As shown in Figure 1-1, on a branch mis-prediction, the execution of each branch
instruction and the corresponding change of control flow takes 3 clocks.

1.2.2 Superscalar Dispatch Unit

The R8000 Microprocessor can dispatch four instructions each cycle regardless of how
many instructions were issued in the previous cycle. There are no boundary alignment
restrictions. Instructions are fetched and placed in a six-quad deep instruction queue

which acts as temporary storage for instructions waiting to be executed. When

instructions are fetched from the I-cache they undergo predecoding before being placed
in the queue. The purpose of predecoding is to reduce instruction processing time in the
decode stage of the pipeline. Eighteen additional characterization bits are added to each
original 32 bit instruction. Addition of the predecode bits expands each instruction to 50

bits, hence the width of the instruction queue is 200 bits. These bits are used for two

cycles, after which for integer operations they are no longer needed. Instructions which
reach the floating point queue are 37 bits wide as five bits of the original 18 additional

bits are used by the R8010 FPU. Predecoding accomplishes three things:
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1) Consistent alignment of the 5-bit destination field.
2) Instruction Category encoding.
3) Addition of timing critical bits.

A crossbar mechanism determines which of the four instructions to send depending on
the resources available from cycle to cycle. This process is called Resource Modeling. The
idea behind resource modeling is that instructions are not dispatched until there is
sufficient resources available for them to complete. The crossbar monitors the status of
each execution unit as well as determines interdependencies between any of the four
instructions in the dispatch unit at any given line.

Figure 1-2 shows a diagram comprised of four cycles and the flow of instructions
through the supersclar dispatch mechanism.
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Figure 1-2 R8000 Instruction Dispatch Mechanism

The shaded areas in Figure 1-2 indicate those instructions which were dispatched. In the
first clock instructions A, B, C, and D are presented to the dispatch logic. In the above
example only instructions A and B are dispatched and sent to the execution stage of the
pipeline. Instructions C and D remain. Instructions E and F are then read from the first
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stage of the queue and passed through the multiplexor logic and placed in the dispatch
unit in the next clock. Instructions G and H remain in the first stage of the queue. The
dispatch unit is again loaded with four instructions (E, F, C, D).

In the second dispatch in Figure 1-2 instructions E, C, and D are dispatched to the
execution stage but instruction F remains. The execution of C and D allows instructions
G and H to pass through to the dispatch unit. The first stage of the queue is now empty
and new information can be clocked into it. Instruction I is also read from the second
stage of the queue and placed in the dispatch unit. The dispatch unit now contains the
four instructions I, EG,H.

The third cycle dispatches instructions F and G. I and H remain.The execution of F and G
allows instruction J and K from the second stage of the queue to be moved to the
dispatch unit. The instruction queue is then clocked, causing the four instructions in
each stage to shift one stage down the queue as shown. The first stage of the queue now
contains only instruction L because instructions I, ] and K have already been shifted out.

The first stage of the queue must be completely empty before any other instructions can
be shifted into it. All stages of the queue are clocked simultaneously. Should a situation
arise where the queue is full, meaning that all stages contain one or more instructions, a
stall is issued and the instruction cache will cease fetching instructions until the stall
condition is removed.

1.2.3 Large Set Associative TLB

The Translation Lookaside Buffer (TLB) is dual ported and is physically split into two
halves. Each half contains 128 entries and is 3-way set associative, yielding a total of 384
entries each. One half contains the virtual tags (VTAGS), the other the actual physical
address (PA) corresponding to each virtual tag.

TLB, Data Cache, and Data Cache Tag RAM lookups are performed in the execution
stage (E-stage) of the pipeline. The VTAG portion of the TLB is used to determine
whether a certain range of addresses resides in the PA portion. If it is determined that the
translation for the virtual address resides in the TLB, the contents of the PA portion is
compared to that in the Data cache tag RAM, resulting in either a hit or a miss to the
Data cache. Either a TLB or a Data cache miss initiates an external memory cycle.

Figure 1-3 shows a block diagram of the TLB.
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Figure 1-3 Translation Lookaside Buffer

Table 1-1 shows the page sizes supported and the corresponding virtual address bits
used to index the TLB.

Page Size Vlrtua;;:xsddress
4K VA<18:12>
8K VA<19:13>
16K VA<20:14>
64K VA<22:16>
IM VA<26:20>
4M VA<28:22>
16M VA<30:24>

Table 1-1 TLB Page Sizes

The number of entries in the TLB is large enough to minimize the miss rate but at the
same time is not so large as to create speed problems.
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1.2.4 Data Cache Invalidation

Data cache invalidation in the R8000 CPU is performed by accessing the Data Cache
Valid RAM which is 4 bits wide and contains 1024 entries. Each entry represents a 32 bit
value, hence there are two valid bits per 64 bit doubleword. Each index to the valid RAM
corresponds to the status of two 64 bit Data cache doublewords. There are two reasons
for a separate valid RAM with individual invalidation bits down to the word level.

The first reason is to alleviate invalidating entire lines of the cache when floating point
data is found. Sometimes integer and floating point data reside in the same data cache
(D-cache) line. Floating point loads and stores interface directly to the streaming cache
and do not usually affect the contents of the R8000 data cache. However, the data cache
of the R8000 must be kept coherent with the streaming cache. Therefore, if a FP store is
done to a given location in the streaming cache which also resides in the D-cache, the D-
cache entry must be invalidated. By having individual valid bits for each 32 bit word in
the data cache, the mixing of floating point and integer data in a given D-cache line is
better accommodated. This way if an integer load is done to that same location a D-cache
miss occurs, forcing the R8000 to fetch the data from the streaming cache.

The second reason for having a separate valid RAM is to be able to easily invalidate the
data for integer stores which miss in the D-cache. In the R8000 data is stored to the D-
cache in the same cycle that the TLB and D-cache hit/miss status is determined. This is
done so that the store data does not have to wait for the result of the lookup before it is
written to the D-cache. If the TLB detects a store hit the cycle is already completed as the
data has already been written. If a store miss occurs the data is invalidated in the
following cycle by turning off the valid bit for that D-cache entry.

Allowing invalidation down to the word level also helps to reduce ‘false sharing’, which
occurs when data is unintentionally forced to bounce back and forth between caches.

1.2.5 Split Level Cache

The caching scheme of the R8000 microprocessor consists of a 16 KByte integer only first
level data cache housed on the R8000, and a 4 MByte second level streaming cache. The 4
MByte streaming cache acts as the second level cache for the R8000 and the first level
cache for the R8010 FPU. Since integer data is stored on-chip in the R8000 access
latencies are very short. Due to the large data sets that are normally required for floating
point operations, the R8010 FPU interfaces only to the streaming cache. Separation of
integer and floating point data helps to alleviate ‘thrashing’, which can occur when large
vectors are moved in and out of the smaller on-chip data cache. For example, if large
floating point vectors were handled in the data cache, all of the contents of the data cache
would need to be moved out to make room for the vector, the vector then moved in and
executed, then moved out, and the integer data moved back in. Also since the data cache
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is normally not big enough to hold an entire floating point vector, a portion of the vector
would be moved in and executed, then another, then another. Each of these results in a
cache miss.

In addition, the R8000 microprocessor allows either two loads or one load and one store
in the same cycle. If a load follows a store, the store can write to the same address as the
load is reading from. Bypass circuitry exists inside the R8000 which allows the store and
the load to occur simultaneously. This is helpful when the compiler cannot differentiate
between whether the store address for pointer A and the load address for pointer B are
the same. This is why the store is done before the load. When the address is the same a
clock is saved because the store to the cache does not have to complete before the load
can be executed.

1.2.6 Address Bellow Register

The R8000 Microprocessor contains two Tag RAM’s which support the two way
interleaved streaming cache and can perform two Tag RAM accesses per cycle. One bank
contains even addresses and the other odd. In order to facilitate two accesses per cycle
one address must be even and the other odd. However, the compiler cannot always
guarantee that one access will be even and the other odd and a situation can arise where
there are either two odd or two even accesses in the same clock. When this occurs only
one of the two accesses can execute as they are both to the same bank. Multiple mis-
alignments by the compiler can degrade system performance. The address bellow
register assures uniform distribution of even and odd references. Hardware manages
and resolves the alignment problems.

Figure 1-4 shows how the address bellow resolves bank conflicts when both accesses
alternate between odd and even. Each access has been numbered for clarity. Note that
either of the even or odd accesses could be delayed. Those accesses shown in figure 1-4
as delayed are arbitrary. The numerical values have been added for clarity to show the
movement through the bellow register.

TFP User’s Manual 1-11




3[ 3
Even/Odd 0’0
access mix B3 |4 o304

s ey 2 < 2K oK K JoK > <

Accesses executed El E2 o! E3|02 E4|03 o?
E! 2|0l |E3|o?| [E4|03
El E2|0!| |E3|0?
El E2|o!
El

Figure 1-4 Effect of address bellow on bank conflicts

Figure 1-4 shows four separate accesses in an alternating even/odd sequence. Because
only one of the two even accesses can be dispatched to the Tag RAM at a time, the second
access is delayed in the bellow register, hence a single access is performed in the first
clock of the sequence. Since accesses to the Tag RAM'’s are single cycle, the EZ2 access
previously delayed in the bellow register is released on the next clock along with one of
the odd accesses. The bank conflict has been resolved in that both an even and an odd
access are now allowed to occur simultaneously, even though they were not dispatched
at the same time by the compiler.

In the next clock O? is released from the bellow and dispatched along with E2 while E* is
held in the bellow. Again two Tag RAM accesses are allowed to execute. In the next clock
E4 is released from the bellow along with O while access O* is held in the bellow. On the
final clock of the sequence access O is released from the bellow. Since there are no
subsequent accesses shown, the last clock in the sequence is also a single access.

In Figure 1-4 the first and last accesses in the sequence shown are single accesses.
However, the effect of the bellow register is such that all of the cycles in between allow
for two Tag RAM accesses at the same time. Note that the compiler plays a major role in
the efficient scheduling of accesses. Poor scheduling techniques by the compiler can
effectively cut the cache access bandwidth in half and effectively render the streaming
cache as one-way interleaved.
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1.2.7 Integer Multiply

The integer multiply function is performed in the R8000 CPU and is several times faster
than most other implementations currently on the market. Only four clocks are required
for a 32 bit multiply and six clocks for a 64 bit multiply. Integer multiplies are frequently
used in array index calculations. The superscalar nature of the R8000 microprocessor
allows the computing portion of the operation to execute in less time. Addressing time is
also reduced by lowering the integer multiply time.

1.2.8 Floating Point Multiply-Add

The addition of the four floating point multiply-add /subtract instructions allows two
floating point computations to be performed with one instruction. The four instructions
are multiply-add, multiply-subtract, negative multiply-add, and negative multiply-
subtract.

The product of two operands is either added to or subtracted from a third operand to
produce one result. The intermediate result is calculated to infinite precision and is not
rounded prior to the addition. The result is then added to or subtracted from the
contents of a floating point register specified in the instruction. The result is then
rounded according to the rounding mode specified by the instruction. The final result is
then placed in another floating point register whose location is also defined in the
instruction.

1.2.9 Floating Point Queues

The Floating Point Queue mechanism consists of a floating point instruction queue and a
load data queue which together allow the R8000 to run ahead of the R8010 FPU. Because
FP operations are decoupled from the R8000, long FP operations can be executed in
parallel with other integer operations. The R8000 is not held up, allowing vector start-up
time to be reduced. For example, in transitioning from one loop to another, while the
R8010 FPU is completing the first loop, the R8000 can begin processing the overhead
code and get started on the second loop, even though the R8010 FPU is not yet finished
with the first loop.

When instructions are fetched from the instruction cache of the R8000 CPU, predecoding
is performed to determine the nature of the instruction and where it is to be executed.
Floating point instructions are placed in the FP queue and an access to the streaming
cache is initiated to retrieve the corresponding FP vector. The FP queue is located in the
R8000. Once the data is available it is placed in the load data queue. The R8000 then
releases the instructions from the FP queue and sends them to the R8010 FPU where they
can begin execution.
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- 1.2.10 Prefetch Support

The R8000 Microprocessor supports a prefetch instruction which allows the compiler to
issue instructions early so the corresponding data can be fetched and placed as close as
possible to the CPU. For example, if data for a given operation resides in main memory,
the prefetch instruction can be used to retrieve the data before it is required by the CPU.
Once the CPU requests the data, the main memory access time has already elapsed and
the data resides close to the CPU in a cache or data buffer where it can be accessed by the
CPU quickly.

Normally the prefetch instruction is used in loops and in most cases the prefetched data
will be used by the CPU. The prefetch instruction is most helpful in large multi-
processor systems where a cache miss can take many cycles.

1.2.11 Conditional Moves

The R8000 Microprocessor has defined a set of four conditional move operators which
allow IF statements to be represented without branches. The bodies of the THEN and
ELSE statements are computed unconditionally and their results placed in temporary
registers. Conditional move operators then transfer the temporary results to a
permanent register file. Both legs of the IF statement are computed and one of them
discarded.

Conditional moves must be able to test both integer and floating point conditions in
order to support the full range of IF statements. Integer tests are done by comparing a
general register against a zero value. This is similar to the way integer branches are
performed.

Floating point tests are done by examining the floating point condition code. This is
similar to the way Coprocessor 1 branches are handled. The conditional move operators
in the R8000 microprocessor support both integer and floating point data for the THEN
and ELSE clauses, hence there are four conditional move operators.

Since floating point conditional moves test the floating point condition code, multiple
condition codes have been added to give the compiler some flexibility in scheduling the
comparison and the conditional moves. The R8000 microprocessor contains eight
condition code bits.

1.3 ARCHITECTURAL OVERVIEW

This section discusses briefly the architecture of each component in the R8000
microprocessor chip set. Each of the components, the R8000 CPU, R8010 FPU, Tag
RAM’s, and Streaming Cache Data RAM’s have dedicated chapters which cover the
respective components in more detail. Refer to the table of contents for more information
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on a specific component. There are 7 basic parts to the system.

1) R8000 Microprocessor

2) R8010 Floating Point Unit

3) Tag RAM (even addresses)

4) Tag RAM (odd addresses)

5) Streaming Cache SRAM (Even data)
6) Streaming Cache SRAM (Odd data)
7) Cache Controller

Both the R8000 CPU and R8010 FPU have multiple execution units, allowing execution
of 4 instructions per clock; two load/store instructions and two register to register or
floating point execute instructions. Separate integer and floating point units maximize
floating point throughput and allow for simultaneous execution of integer and floating
point instructions. The R8010 FPU contains two pipelines, each of which can perform a
double precision multiply-add every cycle. Two identical tag RAM’s store address
information for the even and odd data banks of the interleaved streaming cache. The
R8000 CPU and R8010 FPU interface only to the streaming cache. Updates to the tag
RAM'’s as well as all transactions requiring interface to main system memory are
handled by the cache controller. Separate load and store data busses on the R8010 FPU
eliminate bus turnaround time and allow both loads and stores to second level cache to
execute simultaneously. Multiple tag RAM's provide an interleaved caching scheme,
allowing access times to the cache to be hidden and providing two 64 bit operands to the
R8010 FPU every clock. A separate dirty bit RAM within each Tag RAM allows for
updating of the dirty bit status for one cycle at the same time as a Tag RAM access for
another cycle. Figure 1-5 shows a block diagram of the R8000 microprocessor chip set.
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1.3.1 R8000 Microprocessor.

. The R8000 Microprocessor is a 591 pin device which handles all integer operations and is
the main computing component of the system. The high pin count is a result of the
numerous dedicated busses provided by the R8000. This dedicated bussing scheme
helps to take full advantage of the multiple execution units within the R8000, allowing
each unit to run independently of the other, alleviating not only the need for
multiplexing data and address, but also allowing loads and stores to the streaming cache
to occur simultaneously.

The R8000 contains four caches and has dedicated interfaces to all components in the
system. The R8000 performs address generation and provides address information for
interfacing to the streaming cache via separate and dedicated address busses for the
even and odd banks. Instruction and data interface to the R8010 Floating Point Unit is
via a dedicated 80 bit TBus, and addresses to the Tag RAM'’s are provided via separate
and dedicated tag, index, and sector busses for both the even and odd tag RAM’s.

The R8000 contains two arithmetic logic units (ALU) as well as two address generation
units, yielding a maximum of 4 instructions per cycle. The on-chip 16 KByte Data cache
is dual ported and contains separate address and 64 bit data busses for each port. This
allows multiple accesses to the cache to occur simultaneously. The 16 KByte instruction
cache is 128 bits wide and single ported. Both caches are virtually indexed. The
instruction cache is virtually tagged, alleviating the need for address translation on I-
cache accesses. The data cache is physically tagged to maintain coherency with second
level cache. Each 32 byte line in the I-cache contains a specific address space identifier
(ASID). This value is assigned by the operating system and is process specific. There are
at least two specific ASID values per process, one for the instruction cache, one for the
TLB. The ASID helps to differentiate between multiple processes within the same cache
and helps to reduce I-cache flushing by allowing the operating system to invalidate only
those lines whose process is no longer valid. The operating system can also flush the I-
cache when all 256 ASID values have been used.

In addition to the data and instruction caches, the R8000 also contains Branch and
Translation Lookaside Buffer (TLB) caches. The Branch cache is accessed along with the
instruction cache and is used to predict and modify the program counter on branch or
jump instructions. The Branch Cache is a 15 bit field concatenated to each aligned 128 bit
quadword of the I-cache. The Branch Cache implements a simple branch prediction
mechanism which branches depending on the state of the predict bit associated with
each Branch Cache entry.

The TLB cache is used to convert virtual addresses to physical addresses. A single TLB
services both the data and instruction caches. The instruction cache only requires
address translation on a miss. Similar to the instruction cache, each entry of the TLB also
contains an ASID. However, this value is different from that contained in the I-cache.
Having separate ASID values for each cache allows separate flushing of the Instruction
and TLB caches. Below is a list of features of the four caches.
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- Instruction cache;

- 16 KBytes

- Virtually indexed

- Virtually tagged

- Direct mapped, no hashing

- Single ported, 128 bit path

- Fetches 4 instructions (128 bits) per cycle
-32 Byte line size

- No parity

- 11 cycle miss penalty to streaming cache
- No coherency maintained with streaming cache
- Alignment on 128-bit boundaries

- Separate ASID values for I-cache tags

- Data Cache;

- 16 KBytes

- Virtually indexed

- Physically tagged

- Direct mapped, no hashing

- Dual ported, 64 bit data paths

- Two loads or one load and one store per cycle
- 32 Byte line size

- No parity

- 8 cycle miss penalty to streaming cache

- Coherency maintained with the streaming cache
- Write through with allocate protocol

- Separate ASID for D-cache tags

- Branch Cache;

- 1K Entries, one entry per 4 instr.

- Virtually indexed in parallel with Instruction cache
- Direct mapped, no hashing

- 3 cycle miss penalty

- TLB Cache;

- Dual ported, 2 translations/clock

- 3-way set associative,

- 384 entries total (128 X 3 way)

- Implements random replacement algorithm

- Supports 4K,8K,16K,64K,1M,4M,16M page sizes

- Maps one virtual to one physical page

- Indexed by low-order 7 bits of virtual address

- Index is hashed by Exclusive-OR of low order 7 bits of TLB cache ASID.
- Software Refilled
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Figure 1-6 shows a block diagram of the R8000 Microprocessor.
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Figure'1-6 R8000 Microprocessor Block Diagram
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1.3.2 R8010 Floating Point Unit

The R8010 Floating Point Unit (FPU) is a 591 pin device which performs all floating point
functions for the R8000 Microprocessor Chip Set. The R8010 FPU has two execution
units, allowing two arithmetic and two Floating Point memory operations to be executed
every clock. The Floating Point Register File contains 8 read ports and 4 write ports.
Large load and store data queues, each 32 entries deep, allow for a pipelined interface
between the R8000 CPU and the R8010 FPU, streamlining the flow of data and
minimizing wait time. With a target frequency of 75 MHz, the R8010 FPU offers a peak
performance of 300 MFLOPS.

The R8010 FPU has no on-chip cache and uses the streaming cache, which is the second
level cache of the R8000, as its memory. Dedicated load and store data busses to both the
even and odd banks of streaming cache allow either a read or write operation to each
bank to be performed every clock. An 80 bit TBus interface forms the control bus for the
R8010 FPU and allows the R8010 FPU to interface to both the R8000 CPU and the Cache
Controller (CC). Normally the R8010 FPU is controlled by the R8000. Dispatching of
instructions, floating point loads and stores to the streaming cache, integer stores to the
streaming cache, etc. are all under control of the R8000 CPU. Cycles which miss in the
streaming cache and require interface to the main memory are handled by the Cache
Controller. For these cycles the R8010 FPU is used only to transfer data from the load
data bus to the store data bus.

Floating point instructions are received from the R8000 microprocessor through the
TBus. The instructions are executed and the result written back to the FP register file.
Floating Point data is retrieved from the streaming cache on the load data pins and then
placed in the Load Data Queue. For store operations data from the result is placed in the
store data queue. As soon as the corresponding address information from the Tag RAM
is made available, the data is written out to the streaming cache. In addition to floating
point operations, the R8010 FPU is also used during integer stores to the streaming
cache, handled by the R8000, as well as stores to main memory, handled by the CC.

A set of fused multiply-add instructions have been added, taking advantage of the fact
that the majority of floating point computations use the chained multiply-add paradigm.
The operator for the multiply-add instructions is not defined by the IEEE and does not
perform intermediate rounding. Eliminating the intermediate rounding step allows for a
lower inherent latency and has higher precision and higher performance than an
operator which performs intermediate rounding.

Figure 1-7 shows a block diagram of the R8010 FPU.
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Figure 1-7 R8010 Floating Point Unit Block Diagram
1.3.3 Tag RAM

Two identical tag RAM’s are required in the R8000 Microprocessor Chip Set in order to
support the interleaved architecture of the second level streaming cache. Both RAM’s
contain the same information. One is used for the even bank, the other for the odd bank.
The two banks are differentiated by the state of address bit A3. If this bit is low the access
is to the even bank. A3 high enables the odd bank.

Both Tag RAM'’s are always written simultaneously and contain the exact same address,
state, and virtual synonym information. The dirty bit information can be different
between the even and odd bank devices. If either the even or odd double-words of a
cache line are dirty the CC will write back the entire line. The Tag RAM is 4-way set
associative. Each indexed entry of the Tag RAM contains 128 bits divided as four 32 bit
values. Each 32 bit value contains a 20 bit tag address, a four bit virtual synonym field,
and 8 state bits which define the coherency attributes. Either the tag address or the state
and virtual synonym information can be written at any given time. A single 20 bit
external tag bus handles the flow of both through the device. In addition the tag bus is
bi-directional and used for both reading and writing of the device. The Cache controller

TFP User’s Manual 1-21



is responsible for both reading and writing the Tag RAM and must control whether the
address or state information is allowed to be written.

A separate 16 bit dirty bit RAM is the only portion of the Tag RAM where the
information is different between the two Tag RAM’s. Figure 1-8 shows a block diagram
of the tag RAM.
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. 1.3.4 Streaming Cache Data RAM's

The streaming cache data RAM’s have separate load and store data busses. Although
only one cycle can be performed by the data RAM's at a time, both read and write data
can be on their respective busses at the same time. Having separate busses eliminates
any bus turnaround time, which occurs on back to back read followed by write cycles,
and allows read and write data to be pipelined to the RAM, effectively allowing the
RAM to perform a read or write operation every clock.

The total memory size is split between the even and odd banks. Each bank contains 2
MBytes and has a dedicated Tag RAM, allowing accesses to the banks to operate
simultaneously and independently of one another. The RAM is buffered by input and
output data registers. If the RAM is performing a read and write data appears on the
input bus, the data is placed in the register. Self-timed write logic allows the RAM to
write the data as soon it finishes the previous read cycle. Figure 1-9 shows a block
diagram of a streaming cache data RAM.
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Figure 1-9 Streaming Cache Data RAM Block Diagram

1.3.5 Streaming Cache Memory Architecture

The cache memory system architecture consists of sets, lines, and sectors. In order to
help the reader understand the cache memory architecture, the following example
discusses a 4 MByte SIM module implementation in a 4-way set associative
configuration with 128 bytes per sector and four sectors per line.

There are nine devices per SIM module, 8 data RAM’s and 1 parity RAM, which yield 1
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MByte. A minimum of two SIM modules per bank are required to interface to each of the
64 bit external busses of the R8000 Microprocessor. Connection to the mother board is via
two parallel 75 pin SIP connectors. The modules are soldered directly to the board.

The 4-way set associative cache has 4 sets. Each set consists of 2048 lines. Each line
consists of four sectors. Each sector contains sixteen 64-bit words divided as 8 words per
bank. Figure 1-10 shows a block diagram of how the cache memory is organized.
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Figure 1-10 Streaming Cache Memory Architecture
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REGISTERS

The R8000 Microprocessor Chip Set provides four sets of architecturally visible registers:

1) Thirty-two general purpose registers (GPR) located on the R8000, thirty-one of which
are usable. Register (r0) always contains a value of zero. Each register is 64 bits wide.
These registers are numbered r31..r0 and are used for virtual address generation as well
as general movement and temporary storage of load and store data throughout the
device.

2) Thirty-two Floating-Point Registers (FPR) located on the R8010 FPU. Each register is
64 bits wide.These registers are numbered £31..f0 and are used for general movement
and temporary storage of load and store data throughout the device.

3) Thirty-two system control registers located on the R8000. Each register is 64 bits wide.
These registers are accessible through the double Move To-From Coprocessor-0 instruc-
tions such as DMTCO and DMFCO. The 32 bit versions of these instructions, MTCO and
MFCO, are not defined. The R8000 system control registers are defined as Coprocessor-0
(Cop0) registers.

4) Two floating point control registers located on the R8000 CPU. Each register is 32 bits
wide. Although the architecture provides for thrity-two control registers, only two, regis-
ters 31 and 0 are visible. These registers are accessible through the Move To-From Copro-
cessor-0 instructions such as MTCO and MFCO. The 64 bit versions of these instructions,
DMTCO and DMFCO, are not defined. The R8010 FPU system control registers are
defined as Coprocessor-1 (Cop1) registers.
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Table 2-1 below shows a listing of Coprocessor-0 and Coprocessor-1 registers.

Cop# | Reg# | Mnemonic | Description
0 0 TLBSet Select set in set-associative TLB
0 1 ———— Register not used
0 2 EntryLo | Low half of TLB entry
0 3 e Register not used
0 4 UBase Pointer to User PTE table
0 5 ShiftAmt | Shift amount to align Virtual page number
0 6 TrapBase | Base address of trap vectors
0 7 BadPAddr | Bad Physical Address
0 8 VAddr Virtual Address Register
0 9 Counts Cycle and operation counters
0 10 EntryHi | High half of TLB entry
0 11 ————— Register not used
0 12 SR Status Register
0 13 Cause Reason for last exception
0 14 EPC Exception Program Counter
0 15 PRId Processor Revision Identifier
0 16 Config Configuration register
0 17 ——— Register not used
0 18 Work0 Uninterpreted temporary register
0 19 Work1 Uninterpreted temporary register
0 20 PBase Pointer to Kernel Private PTE table
0 21 GBase Pointer to Kermnel Global PTE table
0 22-23 — Register not used
0 24 Wired Indicies of wired entries in the TLB
0 25-27 — Reserved for additional Wired registers
0 28 DCache | Data Cache control register
0 29 ICache Instruction Cache control register
0 30-31 ————— Register not used
1 0 FConfig | Floating-point Configuration register
1 1-30 ——— Register not used
1 31 FSR Floating-point Status Register

Table 2-1 Control Registers
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21 COPROCESSOR 0 REGISTER SET

This section lists the 32 system control registers referred to as Coprocessor 0. The regis-
ters are listed in numerical order with their corresponding register number in parenthe-
ses. The following registers are reserved by MIPS technologies and should not be used:
r1, r3, r11,r17, r22, 123, 125, 126, 127, r30, and r31. These registers do not appear in the fol-
lowing section.

2.1.1 TLBSet (r0)

Set address
6362 210
P ] SET
T 61 2
! Last TLBP

P if set, the last TLBP operation was unsuccessful.
SET specifies the set select address within a TLB entry.

The TLBSet Register is a read-write register used to index a TLB entry’s set
and to provide access status as the result of a TLBP operation.

The SET field is used to select a TLB entry’s set for a TLBW or a TLBR
instruction. When a TLB Refill (User, Kernel Private, and Kernel Global)
exception occurs, TLBSet is loaded with a random set to be replaced. When
a TLB Invalid or TLB Modified exception occurs, TLBSet is loaded with the
set which contains the virtual tag match. This value may be overwritten
under program control to write to a specific set number.

The TLBSet register also contains status regarding the TLB Probe (TLBP)
instruction execution. The P bit is set if the last TLBP instruction did not
find a TLB entry which matched VADDR and the ASID value in the
EntryHi register. If the last TLBP was successful, P=0 and SET holds the set
number which matched. The format of the SET field is shown below.

00 Set 0
01 Set 1
10 Set 2

11 Reserved

The TLBSet register is undefined on reset.
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2.1.2 EntryLo (r2)

zero read

63 40 39

valid

dirty
coherence

Physical Frame Number —3

3l l

1211 9876 0

PFN

C

DiV! Zz

28

7

Z are fields that may be written with anything but always read as

PFN Physical Frame Number

C specifies the page cache coherence algorithm

D if set, page is dirty and writable
V if set, entry is valid

The EntryLo register is a read-write register used to access the lower half of
the TLB. EntryLo contains the Physical Page Number (PFN) and its
associated Cache Algorithm (C), Write Permission (D), and Valid (V) state

bits.

The C field encoding is as follows:

C Field

Cycle Type

000

Processor—o__;dered Uncachable

001

Reserved

010

Sequential-ordered Uncachable

011

Cachable Non-Coherent

100

Cachable Coherent Exclusive

101

Cachable Coherent Exclusive on Write

110

Reserved

111

Reserved (Cachable Write-through)

Table 2-2 Cache Coherency Field Encoding

The EntryLo register is undefined on reset.
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2.1.3 UBase (r4)

63 0
' PTEBase I
64

PTEBase Base address of Page Table Entries

The UBase register is a read-write register which holds the base address of
the PTE table for the associated User region. The UBase, PBase, and GBase
registers have identical formats.

The UBase register is undefined on reset.
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2.1.4 ShiftAmt (r5)

Shift Amount

63 54 l 0
0 SA
59 5

The ShiftAmt register is a read-only register that assists software in
aligning pointers into page tables. In the User Region, right-shifting the VA
register by the amount in the SA field correctly aligns the Virtual Page
Number (VPN) field based on page size for the most recently failed
translation.
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2.1.5 TrapBase (r6)

63 6159 58 49 47 1211 0
R| C 0 Base 0
2 3 1" 36 12

Base Base address of trap vectors
R Region bits of trap vectors
C Cache algorithm bits of trap vectors

The TrapBase is a read-write register which contains the base address of all
exception vectors except Reset, Soft Reset, and NMI. When an exception
occurs, the 12-bit exception vector offset is concatenated with the 36-bit
Base and the R and C bits to form the new program counter.

This register is undefined on reset.
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2.1.6 BadPAddr (17)

63 6059 40 39 0

Syn 0 PAddr

BadPaddr Bad Physical Address
Syn Bits [15:12] of the virtual address

The BadPAddr register is a read-only register that contains the physical
address which caused the virtual coherence error (floating) exception.
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2.1.7 VAddr (8)

63 0
‘ VAddr I
64

VAddr Virtual Address

The VAddr register is a read-write register that holds a 64-bit virtual
address. VAddr is loaded both under software and hardware control.
VAddr is loaded by hardware with the virtual address which causes a TLB
fault, TLB Refill, TLB Invalid, TLB Modified, or Address Error Exception.
VAddr is also writable by software, and is used to address the Cop0
instructions TLBW, TLBR, TLBP, DCTR, DCTW.

For TLB faults resulting from trying to fetch instructions for an instruction
cache miss, VAddr is loaded with the virtual address of the begining of the
instruction cache block, not with the address of the instruction which
caused the instruction cache miss.
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2.1.8 Counts (19)

32 31

Cycles

32

Cycles  Count the number of processor clock cycles

32

The Counts register is a read-write register consisting of a 32-bit counter.
The Cycles counter is incremented once per clock cycle. IP1 is wired to bit

[31] of the Counts Register.

The Counts register is undefined on reset.
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2.1.9 EntryHi (r10)

63 61 48 47 19 18 12 11 430
R z VPN z ASID z
2 14 29 7 8 4
P Two-bit Region (00 = user, 01 =KV0, 11 =KV1).
z Fields that may be written with anything but always read as 0.
VPN Virtual Page Number field.

ASID Address Space Identifier.

The EntryHi register is a read-write register used to access the upper half of
the TLB. In addition, EntryHi contains the Address Space Identifier (ASID)
used to match the virtual address with a TLB entry when virtual addresses
are presented for translation.

When a TLB-related exception occurs, EntryHi is loaded with the Virtual
Page Number (VPN) and the Region (R) of the virtual address that failed
translation. The VPN field contains bits [47:19] of the faulting virtual
address. It is not right justified according to page size. VPN[23:19] is
conditionally set to zero by hardware on a per-bit basis based on page size.
The ASID field already contains the Address Space Identifier for the virtual
address which caused the exception, and so is not loaded when a exception
occurs.

The VPN field does not contain bits [18:12] of the virtual address, for these
are not stored in the TLB.

The EntryHi register is undefined on reset.
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2.1.10 Status (r12)

63 41 39 3635 32 30 28 26 24 18 8 65432%0

0 o KPS | UPS | 0 cuoﬁlg 0 M o%‘ﬂlﬁ o X
23 4 4 2 2 6 1 2

IE is the Interrupt Enable (0 = disabled, 1 = enabled).

EXL is the Execution Level (0 = normal, 1 = exception).

KU is the Execution Mode (0 = kernel, 1 = user).

UX If set enables MIPS-III opcodes in user mode.

XX If set enables SGI-extended opcodes in user mode.

M Interrupt Mask (0 = disabled, 1 = enabled).

RE Reverse endian in user mode.

FR enables additional floating-point registers

(0 = 16 registers, 1 = 32 registers).
cu controls the usability of coprocessors zero and one

(0 = unusable, 1 = usable). Coprocessor zero is always usuable
when in kernel mode, regardless of the setting of the CUj bit.
UPS User Page Size.

KPS Kernel Page Size.
DM Floating-point precise exception Mode.
0is Reserved for future use: 0 on read, must be 0 on write.

The SR register is a read-write register that contains the kernel/user mode,
interrupt enable, and various other information.

Interrupts are enabled when IE=1 and EXL=0.

The base execution mode is set by the kernel/user bit (KU). The actual
execution mode is modified by the execution level (EXL). The processor is
in user mode when KU=1 and EXL=0, otherwise it is in kernel mode.

The user instruction-set architecture is specified by the UX and XX field.
Clearing XX inhibits SGI-extension opcodes. Clearing UX inhibits MIPS-IIT
opcodes. All opcodes are permanently available in kernel mode.

The interrupt mask field (IM) is a 11-bit field that controls the enabling of
the 11 maskable interrupt conditions. A maskable interrupt is taken if
interrupts are enabled, and the corresponding bits are set in both the
interrupt mask field of the SR and the interrupt pending field of the Cause
register. Note that there are unmaskable interrupts as defined in the Cause
Register.

The endian of the processor in kernel mode is set by BE bit in the Config
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register. The Reverse Endian (RE) bit in the SR is used to modify the endian
of the processor in user mode.

The FR bit enables additional registers in the floating-point coprocessor.

The Coprocessor Usuable (CU) field is a 2-bit field that controls whether
coprocessor instructions will cause an exception. Regardless of the setting
of the CU field, coprocessor zero is always usable when in kernel mode.
The User Page Size (UPS) field specifies the page size of the User Virtual
(UV) region of the address space. The Kernel Page Size (KPS) field specifies
the page size of the Kernel Virtual (KV0 and KV1) regions of the address
space. The encodings are as follows.

Page Size Encoding
4K 0000
8K 0001
16K 0010
64K 0011
M 0100
iM 0101
16M 0110
reserved all others combinations

Table 2-3 UPS/KPS Field Encoding

The DM bit controls whether the floating-point unit is in performance or
precise exception mode. DM=0 is performance mode, DM=1 is precise
exception mode.

The Status register is initialized during reset.
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2.1.11 Cause (r13)

6362

29 27 25 23 1918 7 8 32 0
F

CINIgV
0 EhIAE?T 0 P ExcCode| 0

34 5 1 5 3

BD Last exception was taken while executing in a branch delay slot
(0 normal,1 delay slot).
CE Coprocessor unit number is referenced when a
Coprocessor Unusable exception is taken.
NMI Non-maskable interrupt has occured. -
BE Bus Error pending
VCI Coprocessor virtual coherence interrupt or TLBX pending.
FPI Floating point exception has occurred.
P Interrupt pending.
ExcCode Exception Code field (described below).

The Cause register is a read-write register that describes the nature of the
last exception. A 5-bit exception code indicates the cause of the exception
and the remaining fields contain detailed information relevant to the
handling of certain types of exceptions.

The Interrupt Pending (IP) field indicates which maskable external,
internal, coprocessor, and software interrupts are pending. These
interrupts are maskable by the IM field in the Status reg.

IP,.1 are software interrupts, and may be written into to set or reset
software interrupts.

IP,_7 are external interrupts which are set and cleared by transactions
through the T-bus. Software cannot set or clear these bits.

IPg is the even bank G-cache parity error flag. This bit is set by hardware
when a parity error is detected in the even bank and must be cleared by
software.

IPg is the odd bank G-cache parity error flag. This bit is set by hardware
when a parity error is detected in the odd bank and must be cleared by
software.

IP4 is the cycle counter overflow flag. This flag is wired to the most
significant bit of the Cycle counter.
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The FPI is the floating-point exception flag. This flag is the logical and of the
Enable and Flag fields of the FSR in the floating-point unit.

The VCI flag indicates a coprocessor virtual-coherence interrupt.
Coprocessor loads and stores cause imprecise virtual-coherence exceptions
which are reported as interrupts by setting this flag. The VCI flag is cleared
by software.

The BE flag indicates a Bus Error is pending from the system interface. This
flag is set or reset by transactions through the TBus. Software cannot set or
clear this bit.

The NMI flag indicates a non-maskable interrupt. The NMI interrupt is not
enabled or disabled by the EXL or IE fields of the Status Register. The NMI
flag is set by transactions through the TBus. Software setting of this bit
does not cause an interrupt.

The Cause register is undefined on reset.

Table 2-4 shows a listing of the exception code fields

Number | Mnemonic Description
0 Int Interrupt
1 Mod TLB Modification exception
2 TLBL TLB exception (Load or instruction fetch)
3 TLBS TLB exception (Store)
4 AdEL Address Error exception (Load or instruction fetch)
5 AdES Address Error exception (Store)
67 | - Not used
8 Sys Syscall exception
9 Bp Breakpoint exception
10 RI Reserved Instruction exception
11 CpU Coprocessor Unusable exception
12 Ov Arithmetic Overflow exception
13 Tr Trap exception (i.e. the instruction “trap”)
14-31 | - Not used

Table 2-4 Exception Codes
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2.1.12 Exception Program Counter (r14)

EPC

EPC Exception Program Counter

The EPC is a read-write register which contains the address at which
instruction processing may resume after servicing an exception. For
synchronous exceptions, the EPC register contains either the virtual
address of the instruction which was the direct dause of the exception, or
when that instruction is in a branch delay slot, the EPC contains the virtual
address of the immediately preceeding branch or jump instruction and the
Branch Delay (BD) bit in the Cause register is set.

For asynchronous exceptions the EPC points to where execution should
resume.

The EPC register is undefined on reset.
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2.1.13 Process Revision Identifier (r15)

63 16 156 87 0

0 mplementationy  Revision

48 8 8

The PRId register is a read-only register containing the Process Revision
Identifier for the R8000 Microprocessor.
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2.1.14 Config (r16)

3% 31 16 14121198 6 3 0
0 S::_,f,] 0 Bl o [1c|ociyll o
29 16 3 3 3 2

DB Data cache block size = 208+ bytes (o) [1]

1B Instruction cache block size = 28+ bytes (ro) [1]

DC Data cache size = 20¢+12 bgtes (ro) [2]

IC Instruction cache size = 2+11 bytes (ro) [3]

BE Big endian memory (rw) [1]

PM Parity mode: 0 = even parity, 1 = odd parity (rw) [0]

ICE Inhibit Count during Exception (rw) [1]

SMM Sequential Memory Model (rw) [1]

The Config register is a read-write register that specifies the various
configuration options. Power-up values are shown in brackets [ ].

The instruction and data cache parameters are fixed by hardware and are
displayed in the IC, IB, DC, and DB fields.

The endian of the memory system is set by the BE field.

The Parity Mode (PM) bit specifies the mode of the parity error detection
and generation. Even parity (PM=0) means all zeros including the parity bit
is good parity; odd parity (PM=1) means all zeros including the parity bit is
bad parity. Parity errors are reported via interrupt IPs. Whether or not the
error causes an exception is controlled by the interrupt masking
mechanism of the Status Register.

The ICE flag disables the Count register when the processor is executing in
exception level.

The SMM selects between the Sequential Memory Model and a Coprocessor
Ordered Stores Model. Setting SMM causes integer and floating-point loads
and stores to execute in order. Clearing SMM causes the processor to
execute in “Coprocessor Order”.

The configuration register is initialized during reset.
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2.1.15 WorkO (r18), Work1 (r19)

The Worko and Work1 registers are read-write registers for software use. The
hardware does not interpret the contents of these registers.

Both registers are undefined on reset.
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2.1.16 PBase (r20)

63

0

PTEBase I

64

PTEBase Base address of Page Table Entries

The PBase register is a read-write register which holds the base address of
the PTE table for the associated Kernel Private region. The UBase, PBase,
and GBase registers have identical formats.

The PBase register is undefined on reset.
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2.1.17 GBase (r21)

63 0
l PTEBase I
64

PTEBase Base address of Page Table Entries

The GBase register is a read-write register which holds the base address of
the PTE table for the associated Kernel Global region. The UBase, PBase,
and GBase registers have identical formats.

The UBase register is undefined on reset.
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2.1.18 Wired (r24)

63 32_ 3130 24 23 22 16 15 14 8 76 0

v3| Index3 |v2| Index2 |v1] iIndex1 |vO Index0

32 7 7 7 7

Index  The seven bit TLB entry to be ‘wired’
\4 Valid Bit set if corresponding Index is valid

The Wired register is a read-write register used to control the TLB
replacement algorithm. Up to four entries may be wired down under
program control. The four entries must be in different congruence classes.

The TLB is three-way set associative. Only set 0 may be ‘wired’. When a
TLB Refill exception occurs, the congruence class of the missing virtual
address is compared to each of the four indices in the wired register. If a
match is found for a valid entry in the wired register, a random value in the
range 0..2 is loaded into the TLBSet register. If a valid match is not found, a
random value in the range 1..2 is loaded into the TLBSet register.

The Wired register is undefined on reset.
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2.1.19 DCache (r28)

63 28 25 39 1211 0

H o | v 0 TAG E 0
4 4 15 28 11
H Interrogate Cache operation resulted in a hit
TAG Physical tag field
\' Valid bits, one per 32-bit word
E set if cache line is exclusively owned

The Data Cache register is a read-write register used to read and write the
data cache tag in conjuction with the DCTR and DCTW instructions.

The DCache register is undefined on reset.
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2.1.20 ICache (r29)

63 48 47 40 39 0

0 ASID 0

16 8 40

IASID Instruction cache Address Space Identifier

The Instruction Cache register is a read-write register used to store the
Instruction Address Space Identifier.

The ICache register is undefined on reset.
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2.2 COPROCESSOR 1 REGISTER SET

The CoProcessor 1 register and dedicated floating point registers located on the R8010
FPU. Although 32 register locations have been allocated for floating point operations,
currently only two registers, fO and {31, are used. Registers f1..£30 are reserved.

2.2.1 FConfig (0)

31 16 15 87 0

0 Implementation Revision

16 8 8

The FConfig register is a 32 bit read-only register accessible by instructions
running in kernel or user mode.The Implementation field is an 8-bit number
that defines this particular implementation of the floating-point
coprocessor. The Revision field is an 8-bit number that defines this particular
revision of this implementation of the floating-point coprocessor.
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2.2.2 Floating Point Status (£31)

3 24 22 181716 12 11 76 21 0
FCC g § 0 E| Cause Enables Flags RM
7 7 5 5 5 2

31 23 16 2111 716 2

7{6|5j4|312(1] |0 VIZ[OfUl|V|Z[OjUl1|V|Z]O|U]I

FCC Floating-point Condition Code

FS Flush denormalized results to zero
RM Rounding Mode

\ Invalid operation

z Division by zero

| Inexact exception

o Overflow exception

U Underflow exception

E Emulation exception

The Floating Point Status Register (FSR) register contains status and control
information and is accessible by instructions running in either kernel or
user mode. The FSR controls the arithmetic rounding mode and the
enabling of user-mode traps, as well as indicating when exceptions have
occurred.

A read and subsequent use of the FSR causes all previous instructions that
have not been completed in the floating-point coprocessor’s pipeline to be
completed. Refer to chapter 5, section 5.3.2 for more information on
synchronizing the floating-point coprocessor.

The contents of the FSR are unpredictable and undefined after a processor
reset or a power-up event. Software should initialize this register.

The bit descriptions are as follows:
The RM field controls the rounding mode of all floating-point operations.

The Flags bits are cumulative and indicate that an exception was raised on
some operation since the time which they were explicitly reset. Flag bits are
set to 1 if an IEEE 754 exception is raised, and unchanged otherwise. The
flag bits are never cleared as a side effect of floating-point operations, but
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may be set or cleared by writing a new value into the status register using a
“move to coprocessor control” instruction.

The Cause bits specify the exceptions raised by the last floating-point
operation and cause an interrupt if the corresponding Enable bit is set. The
Cause bits are written by each floating-point operation in performance mode
only. Load, store, and move operations do not change the state of the Cause
bits. The Cause bits are set to 0 or 1 to indicate the occurrence or non-
occurrence of an IEEE 754 exception. Setting a Cause bit via a “move to
coprocessor control” instruction causes an interrupt if the corresponding
Enable bit is set, and always sets the corresponding flag bit. The precision of
the interrupt is the same as that of a floating-point operation exception.

Unimplemented floating-point coprocessor opcodes cause a reserved
instruction exception in the R8000 Microprocessor. All other FPU
exceptions are reported via IPyo in the Cause register.

The Enable bits control whether a floating-point exception should cause an
interrupt. The precision of the interrupt is dependent on which mode the
floating-point unit is running in.

Setting the FS bit to 0 in precise exception mode causes operations
involving denormalized numbers to be handled by the kernel. Setting the
FS bit to 1 in precise exception mode causes denormalized operands and
results that would be denormalized to be flushed to zero instead of causing
an unimplemented operation exception. The state of the FS bit in
performance mode is irrelevant. The machine acts as if the bit is set to 1.

The FCC bits are the floating-point condition codes. FCC[0] is the same as
the “¢” bit in the MIPS-TI architecture. FCC[1]..FCC[7] are new condition
code bits. Any one of bits FCC[0]..FCC[7] can be written by the “floating-
point compare” instruction.

The E bit of the FSR indicates unimplemented operand exceptions. Like the
Flag bits, the E bit is cumulative and indicates that an exception was raised
on some operation since the time it was explicitly reset.

TEP User’s Manual , 2-27



2-28

TFP User's Manual



MIPS IV INSTRUCTION SET SUMMARY

The R8000 Microprocessor Chip Set runs the MIPS IV instruction set, which is a superset
of the MIPS III instruction set and backward compatible. The additions of these new
instructions enables the MIPS architecture to compete in the high-end numeric
processing market which has traditionally been dominated by vector architectures.

A set of compound multiply-add instructions has been added, taking advantage of the
fact that the majority of floating point computations use the chained multiply-add
paradigm. The operator for the multiply-add instructions is not defined by the IEEE and
does not perform intermediate rounding. Eliminating the intermediate rounding step
allows for a lower inherent latency and has higher precision and higher performance
than an operator which performs intermediate rounding.

A register + register addressing mode for floating point loads and stores has been added
which eliminates the extra integer add required in many array accesses. Register +
register addressing for integer memory operations is not supported.

A set of four conditional move operators allows floating point arithmetic ‘IF’ statements
to be represented without branches. “THEN’ and ‘ELSE’ clauses are computed
unconditionally and the results placed in a temporary register. Conditional move
operators then transfer the temporary results to their true register. Table 3-1 lists in
alphabetical order the new instructions which comprise the MIPS IV instruction set.
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Instruction Definition
BCI1F Branch on FP Condition Code False
BC1T Branch on FP Condition Code True
BC1FL Branch on FP Condition Code False Likely
BCITL Branch on FP Condition Code True Likely
C.cond.fmt (cc) Floating Point Compare
LDXC1 Load Double Word indexed to COP1
LWXC1 Load Word indexed to COP1
MADD.sd Floating PointMultiply-Add
MOVEF Move conditional on FP Condition Code False
MOVN Move on Register Not Equal to Zero
MOVT Move conditional on FP Condition Code True
MOVZ Move on Register Equal to Zero
MOVE.fmt FP Move conditional on Condition Code False
MOVN.fmt FP Move on Register Not Equal to Zero
MOVT.fmt FP Move conditional on Condition Code True
MOVZ.fmt FP Move conditional on Register Equal to Zero
MSUB.sd Floating Point Multiply-Subtract
NMADD.sd Floating Point Negative Multipy-Add
NMSUB.sd Floating Point Negative Multiply-Subtract
PFETCH Prefetch Indexed --- Register + Register
PREF Prefetch --- Register + Offset
RECIP.fmt Reciprocal Approximation
RSQRT.fmt Reciprocal Square Root Approximation
SDXC1 Store Double Word indexed to COP1
SWXC1 Store Word indexed to COP1

Table 3-1 MIPS IV Instruction Set Additions and Extensions
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Table 3-2 lists the COPO instructions for the R8000 microprocessor. COPO0 instructions are
those which are not architecturally visible and are used by the kernel.

COPO Instruction Definition
ERET Return from Exception
TLBP Probe for TLB Entry
TLBR Read TLB Entry
TLBW Write TLB Entry
DCTR Data Cache Tag Read
DCTW Data Cache Tag Write

Table 3-2 R8000 COPO Instructions

3.1 INSTRUCTION FORMATS

Each CPU instruction consists of a single 32-bit word, aligned on a word boundary.
There are three instruction formats—immediate (I-type), jump (J-type), and register (R-
type)—as shown in Figure 3-1. The use of a small number of instruction formats
simplifies instruction decoding, allowing the compiler to synthesize more complicated
(and less frequently used) operations and addressing modes from these three formats as
needed.
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I-type (Immediate)

31 26 25 2120 16 15 0
. op rs / sub rt/ft/br offset
6 5 5 16
Cl-type (Floating-point condition-code I-type)
31 26 25 2120 1817 16 15 11
COP1 BC cc (nd|tf offset
6 5 3 16
R-type (Register)_
31 26 25 2120 16 15 11 10 65 0
op  |rs/fufmysub| r/ft rd /fs sa/fd | function |
6 5 5 5 5 6 i
RC-type (Register to floating-point condition code)
31 26 25 2120 16 15 1110 87 65 0
op fmt ft fs cc (o] function I
6 5 5 5 3 2 6 i
CR-type (Floating-point condition-code R-type)
31 26 25 2120 1817 16 15 1110 65 0
SPECIAL s cc o[t rd 0 function j
6 5 3 5 5 6
J-type (Jump)
31 26 25 0
op target
6 26
Figure 3-1 Instruction Formats
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3.2 LOAD AND STORE INSTRUCTIONS

Load and store are immediate (I-type) instructions that move data between memory and
the general registers. The only addressing mode that load and store instructions directly
support is base register plus 16-bit signed immediate offset.

3.2.1 Scheduling a Load Delay Slot

A load instruction that does not allow its result to be used by the instruction
immediately following is called a delayed load instruction. The instruction slot
immediately following this delayed load instruction is referred to as the load delay slot.
In the R8000 Microprocessor the instruction immediately following a load instruction
can use the contents of the loaded register, however in such cases hardware interlocks
insert additional real cycles. Consequently, scheduling load delay slots can be desirable,
both for performance and maintaining R4x00-Series microprocessor compatibility.
However, the scheduling of load delay slots is not absolutely required.

The data from a load instruction is available for use by an instruction issued in the cycle
after the load instruction. Because the R8000 is a super-scalar microprocessor instruction
scheduling to improve performance may cause instructions to be inserted between the
load and the use.

3.2.2 Defining Access Types

Access type indicates the size of a R8000 Microprocessor data item to be loaded or stored,
set by the load or store instruction opcode. Regardless of access type or byte ordering
(endianness), the address given specifies the low-order byte in the addressed field. For a
big-endian configuration, the low-order byte is the most-significant byte; for a little-
endian configuration, the low-order byte is the least-significant byte.

The access type, together with the three low-order bits of the address, define the bytes
accessed within the addressed doubleword. Only the combinations shown in Figure 3-2
are permissible; other combinations cause address error exceptions.
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Low Order Bytes Accessed
Access Type Address
Mnemaonic Bits Big endian Little endian
(Value) (63 31 0) | (63 31 0)
211/(0 Byte Byte
Doubleword (7) [ 0 |0 | 0 |O[1]2)|3(4|5|6|7|7|6|5]|4]|3[2]|1]0
; = 010]10]0]1]2]|3|4]|5 6(5|4|3|2]|1|0
Septibyte (6)
g|10]1 112|345 7|17|6|5(4|3|2]1
O|0|0]0]1]2|3|4]|5 1 2|1
Sextibyte (5) 2 ¢ 9
: o|1]0 2|13|4|5|6|7|7|6|5/4]3]|2
o o|jo|0j0Of1]|2]|3|4 413|2]|1|0
Quintibyte (4)
1 5 O | 314|15|6|7|7|6]5|4]3
o|jo0o|0]0|1]|2]|3 jj2|1]0
Word (3)
11010 415|6|7|7|6|5|4
0j0|OfOf1]2 1|0
Tiilsbte (2 0]0]1 112]3 31211
riplebyte (2
e Tilole 4[5]6 6]5|4
110 5|6|717|6]|5
ofofofo]1 1{0
: [} 0 213 3|2
Halfword (1)
10| 0 4|5 54
il e 9 2 6|7|7]6
o|o|0]|0 0
oj0]1 1 1
01110 2 2
01111 3 3
Byte (0)
1100 4 4
1101 5 5
11110 b 6
2. & vl s

Figure 3-2 Byte Access within a DoubleWord
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3.3 COMPUTATIONAL INSTRUCTIONS

. Computational instructions can be either in register (R-type) format, in which both
operands are registers, or in immediate (I-type) format, in which one operand is a 16-bit
immediate.

Computational instructions perform the following operations on register values:

. arithmetic

logical

shift

multiply

divide

These operations fit in the following four categories of computational instructions:
ALU Immediate instructions

three-Operand Register-Type instructions

shift instructions

multiply and divide instructions

For word-oriented ALU operations all operands must be 32-bit sign extended. The result
of operations that use incorrect sign-extended-bit values is unpredictable.

34 JUMP AND BRANCH INSTRUCTIONS

Jump and branch instructions change the control flow of a program. All jump and branch
instructions occur with a delay of one instruction: that is, the instruction immediately
following the jump or branch (this is known as the instruction in the delay slot) always
executes while the target instruction is being fetched from storage. Branches are predicted
when the instruction quad is fetched and have no penalty. A branch mis-prediction incurs
a 3 cycle penalty.

3.4.1 Overview of Jump Instructions

Subroutine calls in high-level languages are usually implemented with Jump or Jump and
Link instructions, both of which are J-type instructions. InJ-type format, the 26-bit target
address shifts left 2 bits and combines with the high-order 4 bits of the current program
counter to form an absolute address.

Returns, dispatches, and large cross-page jumps are usually implemented with the Jump
Register or Jump and Link Register instructions. Both are R-type instructions that take
the 32-bit or 64-bit bit address contained in one of the general purpose registers.
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3.4.2 Overview of Branch Instructions

All branch instruction target addresses are computed by adding the address of the
instruction in the delay slot to the 16-bit offset (shifts left 2 bits and is sign-extended to 32
bits). All branches occur with a delay of one instruction. If a conditional “branch likely”
is not taken, the instruction in the delay slot is nullified.

3.5 COPROCESSOR INSTRUCTIONS

Coprocessor instructions perform operations in their respective coprocessors.
Coprocessor loads and stores are I-type, and coprocessor computational instructions
have coprocessor-dependent formats. CP0 instructions perform operations specifically
on the System Control Coprocessor registers to manipulate the memory management and
exception handling facilities of the processor.

3.6 SUMMARY OF INSTRUCTION SET ADDITIONS

The following is a brief description of the additions to the MIPS III instruction set. These
additions comprise the MIPS IV instruction set.

3.6.1 Indexed Floating Point Load

LWXC1 - Load word indexed to Coprocessor 1.
LDXC1 - Load doubleword indexed to Coprocessor 1.

The two Index Floating Point Load instructions are exclusive to the MIPS IV instruction
set and transfer floating-point data types from memory to the floating point registers
using register + addressing mode. There are no indexed loads to general registers. The
contents of the general register specified by the base is added to the contents of the
general register specified by the index to form a virtual address. The contents of the
word or doubleword specified by the effective address are loaded into the floating point
register specified in the instruction.

The region bits (63:62) of the effective address must be supplied by the base. If the
addition alters these bits an address exception occurs. Also, if the address is not aligned,
an address exception occurs.
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3.6.2 Indexed Floating Point Store

SWXC1 - Store word indexed to Coprocessor 1.
SDXC1 - Store doubleword indexed to Coprocessor 1.

The two Index Floating Point Store instructions are exclusive to the MIPS IV instruction
set and transfer floating-point data types from the floating point registers to memory
using register + addressing mode. There are no indexed loads to general registers. The
contents of the general register specified by the base is added to the contents of the
general register specified by the index to form a virtual address. The contents of the
floating point register specified in the instruction is stored to the memory location
specified by the effective address.

The region bits (63:62) of the effective address must be supplied by the base. If the
addition alters these bits an address exception occurs. Also, if the address is not aligned,
an address exception occurs.

3.6.3 Prefetch

PREF - Register + offset format
PFETCH Indexed - Register + register format

The two prefetch instructions are exclusive to the MIPS IV instruction set and allow the
compiler to issue instructions early so the corresponding data can be fetched and placed
as close as possible to the CPU. Each instruction contains a 5-bit ‘hint’ field which gives
the coherency status of the line being prefetched. The line can be either shared, exclusive
clean, or exclusive dirty. The contents of the general register specified by the base is
added either to the 16 bit sign-extended offset or to the contents of the general register
specified by the index to form a virtual address. This address together with the ‘hint’
field is sent to the cache controller and a memory access is initiated.

The region bits (63:62) of the effective address must be supplied by the base. If the
addition alters these bits an address exception occurs. The prefetch instruction never
generates TLB-related exceptions. The PREF instruction is considered a standard
processor instruction while the PFETCH instruction is considered a standard
Coprocessor 1 instruction. Refer to section 1.2.10 for more information on the prefetch
instruction. ‘
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3.6.4 Branch on Floating Point Coprocessor

BC1T - Branch on FP condition True
BC1F - Branch on FP condition False
BC1TL - Branch on FP condition True Likely
BC1FL - Branch on FP condition False Likely

The four branch instructions are upward compatible extensions of the Branch on
Floating point Coprocessor instructions of the MIPS instruction set. The BC1T and BC1F
instructions are extensions of MIPS I. BC1TL and BC1FL are extensions of MIPS III.
These instructions test the floating point condition codes. If no condition code is
specified then condition code bit zero is selected. This encoding is downward compatible
with previous MIPS architectures.

The branch target address is computed from the sum of the address of the instruction in
the delay slot and the 16-bit offset, shifted left two bits and sign-extended to 64 bits. If the
contents of the floating point condition code specified in the instruction are equal to the
test value, the target address is branched to with a delay of one instruction. If the
conditional branch is not taken and the nullify delay bit in the instruction is set, the
instruction in the branch delay slot is nullified.

3.6.5 Integer Conditional Moves

MOVT - Move conditional on condition code true
MOVF - Move conditional on condition code false
MOVN - Move conditional on register not equal to zero
MOVZ - Move conditional on register equal to zero

The four integer move instructions are exclusive to the MIPS IV instruction set and are
used to test a condition code or a general register and then conditionally perform an
integer move. The three bit floating point condition code specified in the instruction, or
the 5 bit general register specifier, is compared to zero. If the result indicates that the
move should be performed, the contents of the specified source register is copied into the
specified destination register.

3.6.6 Floating Point Multiply-Add

MADD - Floating Point Multiply-Add

MSUB- Floating Point Multiply-Subtract

NMADD - Floating Point Negative Multiply-Add
NMSUB - Floating Point Negative Multiply-Subtract
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These four instructions are exclusive to the MIPS IV instruction set and accomplish two
floating point operations with one instruction. Refer to section 1.2.8 for more
information.

3.6.7 Floating Point Compare

C.cond - Compare
C.cond - Implies cc=0

The two compare instructions are upward compatible extensions of the floating point
compare instructions of the MIPS I instruction set and produce a boolean result which is
stored in one of the condition codes.

The contents of the two FP source registers specified in the instruction are interpreted
and arithmetically compared. A result is determined based on the comparison and the
conditions specified in the instruction. If one of the values is not a number and the high
order bit of the condition field is set, an invalid operations trap occurs. Comparisons are
exact and neither overflow or underflow.

Timing restrictions exist for these instructions. The contents of the destinations condition
code specified in the instruction is immediately available only within the R8010 FPU. A
one-instruction delay is provided to propogate the condition code to the R8000
Microprocessor. The value of the condition code is undefined during this one instruction
and no hardware interlock detection mechanism is provided.

The implications for compiler code scheduling is that a compare instruction may be
immediately followed by a dependent floating point conditional move instruction, but
may not be immediately followed by a dependent branch on floating point coprocessor
condition instruction or a dependent integer conditional move instruction. Note that this
restriction applies only to the condition code specified in the 3-bit condition code
specifier of the instruction. All other condition codes are unaffected

3.6.8 Floating Point Conditional Moves

MOVT.fmt - Floating Point Conditional Move on condition code true
MOVEF.fmt - Floating Point Conditional Move on condition code false
MOVN.fmt - Floating Point Conditional Move on register not equal to zero
MOVZ.fmt - Floating Point Conditional Move on register equal to zero

The four floating point conditional move instructions are exclusive to the MIPS IV
instruction set and are used to test a condition code or a general register and then
conditionally perform a floating point move. The three bit floating point condition code
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specified in the instruction, or the 5 bit general register specifier, is compared to zero. If
the result indicates that the move should be performed, the contents of the specified

- source register is copied into the specified destination register. All of these conditional
floating point move operations are non-arithmetic. Consequently, no IEEE 754
exceptions occur as a result of these instructions.

3.6.9 Reciprocal’s

RECIP.fmt - Reciprocal Approximation
RSQRT.fmt - Reciprocal Square Root Approximation

The reciprocal instruction performs a reciprocal approximation on a floating point value.
The reciprocal of the value in the floating point source register is approximated and
placed in a destination register. The numerical accuracy of this operation is
implementation dependent based on the rounding mode used.

The reciprocal square root instruction performs a reciprocal square root approximation
on a floating point value. The reciprocal of the positive square root of a value in the
floating point source register is approximated and placed in a destination register. The
numerical accuracy of this operation is implementation dependent based on the
rounding mode used.

The approximation is due to the fact that neither of these instruction meets IEEE
accuracy requirements. In both cases a small amount of precision has been sacrificed,
thereby significantly reducing execution time. For example, in the case of a RECIP
instruction, X/Y is computed by taking the reciprocal of Y and multiplying that result by
X. The reduced execution time of the reciprocal operation allows a RECIP followed by a
MUL (multiply) instruction to be executed faster than a single DIV (divide) instruction.
The performance difference between a RSQRT instruction and a SQRT followed by a DIV
instruction is implementation dependent.

Refer to appendix A for more information on the RECIP and RSQRT instructions.
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Table 3-3 shows the integer instruction latencies in the R8000 Microprocessor.

Table 3-4 shows the floating point instruction latencies of the R8000 CPU.

Instruction Group Latency Dispatch

Arithmetic and 1 2/cycle
Logical

Shift 1 1/cycle
Load 1 2/cycle
Store N/A 1/cycle
Multiply (32-bit) 4 1/cycle
Multiply (64-bit) 6 l/cycle

Table 3-3 R8000 Integer Instruction Latencies

Instruction Group Latency Dispatch
Load 0 2/cycle
Store N/A 2/cycle
Compare 1 2/cycle
Absolute 1 2/cycle
Negative 1 2/cycle
Move 1 2/cycle
Conditional Moves 1 2/cycle
Add 4 2/cycle
Subtract 4 2/cycle
MADD 4 2/cycle
DIV.s 14 1*
DIV.d 20 1*
SQRT:.s 14 1*
SQRT.d 23 1*

Table 3-4 R8000 Floating Point Instruction Latencies
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Instruction Group Latency Dispatch
RECIP:s 8 1*
RECIPd 14 1*
RSQRT.s 8 1*
RSQRT.d 17 1*

mtcl, dmtcl honk 1/cycle
mfcl, dmfcl N/A 2%

delay

* Functional unit is busy for Latency-3 cycles.
** Holds up FP Dispatch unit for the next 3 cycles.
*** May incur a floating point resynchronization

Table 3-4 R8000 Floating Point Instruction Latencies
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MEMORY MANAGEMENT

The R8000 Microprocessor provides a full-featured memory management unit (MMU)
which uses an on-chip translation lookaside buffer (TLB) to translate virtual addresses to
physical addresses. This chapter describes the processor virtual and physical address
spaces, virtual to physical address translation, operation of the TLB, and system control
registers which provide the software interface to the TLB.

The R8000 Microprocesor supports a 48 bit paged virtual address space. The physical
address is 40 bits. The R8000 Microprocessor Chip Set implements the 64 bit MIPS IV
instruction set which supports 32-bit user-mode applications as a proper subset. The
R8000 Microprocessor does not support 32-bit kernels.

Both forward-mapped and reverse-mapped virtual memory management schemes are
supported. Multiple page sizes are supported on a per process basis.
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4.1 ADDRESS SPACE

The R8000 Microprocessor prowdes a 48 bit v1rtua1 address and a 40 bit phys1cal address.
The maximum user process size is 128 terabytes (2 ). The virtual address is encoded
into 64 bits as shown in Table 4-1.

63 62|61 48 | 47 0

Virtual Page Number (VPN) and Offset
Table 4-1 Virtual Address

Filler

Region

The virtual address shown in Table 4-1 consists of a 2 bit region field, a 14 bit filler, and a
48 bit virtual page number concatenated with a page offset. The virtual address space is
divided into four regions as defined by the region bits VA[63:62]. Table 4-8 shows how
the virtual address space is divided.

Virtual Address Region | Beginning Address Ending Address

Space [63:62]

Kernel Virtual (KV1) 11 Ox_ffff_0000_0000_0000 | Ox_ffff_ffff ffff ffff
KV1 synonyms 11 0x_c000_0000_0000_0000 | Ox_cO00_ffff_ffff ffff
Kernel Physical (KP) 10 0x_8000_0000_0000_0000 | Ox_b0O0O_ffff_ ffff ffff
Kernel Virtual (KV0) 01 0x_4000_0000_0000_0000 | 0x_4000_ffff_ ffff ffff
User Virtual (UV) 00 0x_0000_0000_0000_0000 | 0x_0000_ffff_ffff ffff

Table 4-2 Virtual Address Divisions

The R8000 Microprocessor supports only kernel and user mode address spaces. No
supervisor modes exists. The KV1, KV0, and KP address spaces shown in Table 4-8 are
accessible only in kernel mode. User space is defined with the region bits = 00 as shown.

The address map is defined such that, with the exception of the KV1 and KP address
spaces, all of the 14 filler bits (VA[61:48]) must be zero. KP is the only address space

where the filler bits can be a combination of ones and zeros. Non-zero filler bits in either

the UV or KV0 address spaces shown in Table 4-2 constitutes an illegal access and
generates an address error exception. Figure 4-1 shows where the illegal access areas
reside in the address map.

4-2
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Figure 4-1 Virtual Address Map
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4.1.1 User Virtual (UV) Space -

The region bits VA[63:62] determine which of the four regions of virtual address space is

being accessed. The User Virtual space is accessed when both regions bits are zero. When
the operating system starts a user process in UV space the process can only generate

addresses where the region bits are both zero. Any other combination of region bits

causes an address exception error indicating that the program is attempting to access

memory outside the designated range. In this way the region bits act as a protection

scheme. User Virtual addresses are extended with an 8-bit Address Space Identifier

(ASID) and are mapped by the TLB. Refer to section 4.2 for more information on the

ASID.

4.1.2 Kernel Virtual 0 (KV0) Space

The KVO0 space is defined as ‘kernel private’ virtual address space. Virtual addresses in

KVO0 space are extended by the 8-bit ASID value contained in the EntryHi register. KVO ~
space is used by the kernel for accesing virtual address space on behalf of a specific

process. Both the TLB and the eight bit ASID are used in KVO space.

4.1.3 Kernel Virtual 1 (KV1) Space

The KV1 space is defined as ‘kernel global’ virtual address space. In contrast to KV0
space, virtual addresses in KV1 space are not extended with an 8-bit ASID. In KV1 space
the kernel can access global virtual address space independent of any specific process.
KV1 space is accessible with the filler bits set to all zero’s (see section 4.1.4 below) or all
ones to facilitate the use of negative-offset addressing from register r0. Both forms of the
address are treated as the same virtual address. The region bits, the virtual page number
(VPN), and the offset are exactly the same.

4.1.4 Kernel Virtual 1 (KV1) Synonyms
As stated in section 4.1.3, KV1 and KV1 synonyms are treated as the same virtual

address. KV1 synonyms are provided to allow negative addressing using register r0. In
KV1 space the TLB is used but not the ASID.

4.1.5 Kernel Physical Space

In the kernel physical (KP) address space the virtual and physical addresses are
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considered the same. No address translation is performed in KP space. The processor
simply takes the lower 40 bits of virtual address and places them on physical address
bits 39:0. The physical address comes directly from the virtual address generation units
in the R8000 Microprocessor. KP space allows physical addresses to be generated
without TLB intervention.

Note in Figure 4-1 that KP is the only space where the filler bits may be a combination of
ones and zeros. The uppermost three filler bits (VA[61:59]) are used to divide the KP
address space into subspaces, each having a different cachability attribute. Attempting to
access memory with virtual address outside of these sub-ranges results in an address
error exception . Table 4-3 shows how the KP address space is divided.

Coherence Filler Beginning Address Ending Address
[61:59]

Cachable Coherent 101 0x_a800_0000_0000_0000 | Ox_a800_00ff_ffff_ ffff
Exclusive on Write

Cachable Coherent 100 0x_a000_0000_0000_0000 | Ox_a000_00ff_ffff ffff
Exclusive :

Cachable Non- 011 0x_9800_0000_0000_0000 | 0x_9800_00ff_ffff ffff
Coherent

Uncached 010 0x_9000_0000_0000_0000 | 0x_9000_00ff_ffff_ ffff
Sequential Ordered

Uncached Co- 000 0x_8000_0000_0000_0000 | 0x_8000_00ff_ffff_ ffff
Processor Ordered

Table 4-3 Division of the KP address space

The fields in Table 4-3 define the coherency attributes and are necessary because in KP
space no address translation is performed. In each of the other three address spaces
(KV1, KV0, and UV) the coherency field is stored in the TLB. Since address translation is
not performed when generating KP addresses, virtual address bits 61:59 are used for this
purpose. This is why KP address space is the only portion of the address map in which
the filler bits (61:59) can be a combination of ones and zeros. Table 4-4 gives a summary
of the various address spaces.
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Virtual Address | Region | Uses TLB | Uses ASID
Space [63:62]

Kernel Virtual 11 Yes No
(KV1)

Kernel Physical 10 No No
(KP)

Kernel Virtual 01 Yes Yes
(KV0)

User Virtual (UV) 00 Yes Yes

Table 4-4 Address Spaces and TLB Usage

4.2 ADDRESS SPACE IDENTIFIERS

Kernel Private (KV0) and User Virtual (UV) virtual address spaces are extended with an
8-bit ASID value to reduce the frequency of TLB and instruction cache flushing on a
context switch. The existence of the ASID allows multiple processes to exist
simultaneously in both the TLB and the instruction caches. There are actually two
distinct ASID values for a given process. The instruction cache ASID (IASID) is stored in
the ICache register and is compared to the ASID value in the instruction cache tag
during an instruction cache access. The TLB ASID (TASID) is stored in the EntryHi
register and is compared to the ASID value in the Virtual tag (VTAG) portion of the TLB
on a TLB access. The IASID and TASID values are independent of one another. Having
different ASID values for a given process allows the kernel to independently flush and
control the instruction and TLB caches. '

4.3 REGISTER ADDRESSING MODES

The R8000 Microprocessor provides two addressing modes: Register + Register and
Register + Immediate. Addresses are derived by adding an offset to a base register. The
offset value can either come from a register or the immediate field of the instruction. This
section discusses how these modes are used and how the actual address is generated.
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4.3.1 Register + Register Addressing

When register + register addressing mode is used both portions of the address come
from the General Purpose Register (GPR). The values are read from the two registers in
the D-stage of the pipeline and are added together in A-stage to form a 64 bit virtual
address. Since the R8000 Microprocessor can perform two address generations per cycle,
a total of four registers are read from the GPR at the same time and used to construct the
two 64-bit virtual addresses.

4.3.2 Register + Immediate Addressing

In register + immediate mode a portion of the address comes from the GPR with the
remaining portion coming from the immediate field of the instruction. The base register
is read in the D-stage of the pipeline and is added to the immediate value in the A-stage
to form a 64 bit virtual address. The values are not concatenated. Since the R8000
Microprocessor can perform two address generations per cycle, two registers are read
from the GPR at the same time. Each register value is added to the corresponding
immediate field from the instruction to construct the two 64-bit virtual addresses.

4.3.3 Region Bits, the Base Register, and Legal Addresses

There is one restriction on the generation of legal virtual addresses. For both register +
register and register + immediate addressing, it is required that the region of the
generated virtual address be the same as the region of the base register. The base region
cannot change as a result of the addition of the offset. If the region of the generated
virtual address does not equal the region of the base address, an address error exception
occurs. However, there is one exception to this rule. If the processor is operating in
kernel mode it is legal to use a negative offset with register r0 as the base register to
generate an address into KV1 space. If register r0 is the base portion of the address and
the offset is negative then the region bits are both forced to ones which places the
machine in KV1 space. If for some reason a user process (UV space) tries to generate an
address using this technique, the region bits will mis-compare and an address exception
error will occur. This address generation technique is used by the kernel to allow address
generation without having to use any of the registers allocated to that process.
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Figure 4-2 Address Generation Block Diagram

44 DATA FORMATS

The R8000 microprocessor supports four data formats: a 64-bit doubleword, a 32-bit
word, a 16-bit half-word, and an 8-bit byte. Byte ordering within the larger data formats
-- half-word, word, and doubleword-- can be configured in either big endian or little
endian format.

The default mode of operation for the R8000 microprocessor is big endian. All code
accesses are done in big endian and multi-byte data values are stored in memory in big
endian format. In big endian format byte 0 is the most-significant byte and byte 7 is the
least-significant byte. When operating in kernel mode the endian of the processor is set
by the BE bit in the Config register. The Reverse Endian (RE) bit in the Status register can
be used to dynamically switch the endian in user mode. Figure 4-3 and Figure 4-4 show
little endian and big endian byte ordering within a 64-bit doubleword.
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Figure 4-3 Little Endian Byte Ordering

Bit #
Byte #

Least-Significant Byte Most-Significant Byte

Figure 4-4 Big Endian Byte Ordering

Data alignment requirements are as follows. Any violation results in an address error
exception.

* 64 bit values are aligned on 8-byte boundaries when referenced in
memory. The three least significant address bits must be zero.

* 32 bit values are aligned on 4-byte boundaries when referenced in
memory. The two least significant address bits must be zero.

* 16 bit values are aligned on 2-byte boundaries when referenced in
memory. The least significant address bit must be zero.

The following eight special instructions can be used to load and store words or
doublewords that are not aligned on 4- or 8-byte boundaries. The instructions are used in
four pairs as shown to provide addressing of misaligned words. Addressing misaligned
data incurs one additional instruction cycle over that required for addressing aligned
data due to the required execution of two instructions.

LWL - Load Word Left SWL - Store Word Left
LWR - Load Word R.ight SWR - Store Word Right

LDL - Load Doubleword Left SDL - Store Doubleword Left
LDR - Load Doubleword Right SDR - Store Doubleword Right

The Load Word Left (LWL) Instruction is used in combination with the LWR instruction
to load the lower 32 bits of a register with four consecutive bytes from memory when the
bytes cross a word boundary. The LWL instruction loads the left portion of the register
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with the appropriate part of the high-order word. The LWR instruction loads the right
portion of the register with the appropriate part of the low-order word. Similarly, the
Load Doubleword Left (LDL) and Load Doubleword Right (LDR) instructions are used
to load mis-aligned double-words.

The Store Word Left (SWL) instruction is used in combination with the SWR instruction
to store the lower 32 bits of a register to memory when the bytes cross a word boundary.
The SWL instruction stores the left portion of the register with the appropriate part of the
high-order word. The SWR instruction stores the right portion to the register to the
appropriate part of the low-order word. The same rules apply for the Store Doubleword
Left (SDL) and Store Doubleword Right (SDR) instructions.

4.5 ADDRESS TRANSLATION

The R8000 Microprocessor uses a Translation Lookaside Buffer (TLB) to perform virtual
to physical address translation. The TLB is internal to the R8000 CPU and is used to
determine if a given address exists in the physically indexed data cache. Since the
instruction cache is virtually indexed address translation is necessary only on a miss.
Hence the R8000 Microprocessor has a single TLB to service both the instruction and
data caches.

The TLB is dual-ported and can perform two virtual address to physical address
translations per cycle. The TLB is 128 entries deep and 3-way set associative for a total of
384 entries. The large number of entries helps to minimize the TLB miss rate but still
maintain a single cycle access rate. The TLB supports multiple page sizes on a per
process basis. The TLB may contain multiple page sizes at any given time, but each process,
defined by a specific ASID value, can have only one page size associated with it.

TLB, Data Cache, and Data Cache Tag RAM lookups are performed in the execution
stage (E-stage) of the pipeline. The VTAG portion of the TLB is used to determine
whether a certain range of addresses resides in the physical address (PA) portion. If it is
determined that the translation for the virtual address resides in the TLB, the contents of
the PA portion is compared to that in the Data cache tag RAM, resulting in either a hit or
a miss to the Data cache. Either a TLB or a Data cache miss initiates an external memory
cycle. Figure 4-5 shows the organization of the Translation Lookaside Buffer.
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Figure 4-5 TLB Organization

The physical address portion of Figure 4-5 is comprised of 28 bits. The organization of
the physical address portion of the TLB is identical to that of the EntryLo register. The
EntryLo register serves as the data register for the physical addres portion of the TLB
RAM.

4.5.1 Indexing the TLB

The TLB is indexed by the lower seven bits of the virtual page number. Which of the
seven bits are used varies depending on the page size. The index is hashed by logically
XOR'ing the lower 7-bits of the virtual page number with the lower 7-bits of the TLB
ASID.

Figure 4-6 shows how the TLB is indexed. The region bits control a multiplexor which
passes either the 4-bit Kernel Page Size (KPS) field or the 4-bit User Page Size (UPS) field
to select the seven virtual address bits which form the index to the TLB. If the region
bits are zeros, the UPS field is passed through the multiplexor. A non-zero value causes
the KPS field to be passed. However, there is one exception to this rule. When base
register r0 is used with a negative offset to generate an address, the Kernel Page Size
(KPS) field is selected. The KPS field is defined by bits 39:36 of the Status register. Bits
35:32 define the UPS field.
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Figure 4-6 Indexing the TLB

As shown in Figure 4-6, the TLB supports seven different page sizes. The 128 entries of
the TLB mean that seven virtual address bits are necessary to index the TLB. Which
virtual address bits are used depends on the page size. Figure 4-7 through Figure 4-13
show the organization of the virtual address and which bits are used to index the TLB
for the various page sizes.
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64 bit virtual address

71 64 636261 4847 1918 1211 0
ASID R Filler Virtual Page Number (VPN) [ Index Offset
Figure 4-7 4 KByte Page Size
64 bit virtual address
[ ]
71 64 636261 48 47 2019 1312
ASID R Filler  [Virtual Page Number (VPN) Index Offset
Figure 4-8 8 KByte Page Size
64 bit virtual address
l
71 63 6261 4847 2120 1413 0
ASID R Filler irtual Page Number (VPN){ Index Offset
Figure 4-9 16 KByte Page Size
64 bit virtual address
| . |
71 63 6261 4847 2322 16 15
ASID R Filler VPN Index Offset
Figure 4-10 64 KByte Page Size
64 bit virtual address
I I
71 63 6261 48 47 27 26 2019 0
ASID R Filler VPN Index Offset
Figure 4-11 1 MByte Page Size
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64 bit virtual address

71 64 636261 48 47 29 28 2221 0
ASID R Filler VPN Index Offset

Figure 4-12 4 MByte Page Size

64 bit virtual address
[ !
71 64 636261 4847 3130 24 23 0]
ASID R Filler VPN Index Offset

Figure 4-13 16 MByte Page Size

4.,5.2 TLB Writes

The TLB Read and TLB Write operations make use of several COPO registers: EntryHi,
EntryLo, VAddr, TLBSet. EntryHi and EntryLo serve as the data registers for the TLB.
Information to be written to the VTAG portion of the TLB is placed in the EntryHi
register. Information to be written to the PA portion of the TLB is placed in the EntryLo
register. The VAddr register serves as the address register for the TLB providing a 64-bit
virtual address. The TLBSet register selects which of the 3 sets is to be written or read.

The TLB implements a random replacement algorithm, hence under most cases the 2 bit
value in the TLBSet register has been randomly generated. However, this value can be
overwritten under program control in order to write a specific number. The contents of
both the EntryHi and the TLBSet registers are undefined at reset. The format of the set
bits of the TLBSet register is shown in Table 4-5.

TLBSET [1:0] Set
00 Set 0
01 Set 1
10 Set 2
11 Reserved

Table 4-5 TLB Set Replacement Field
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4.5.2.1 Wiring Down TLB Entries

The Wired register is provided to assist the operating system in preventing certain TLB
entries from being replaced during a TLB refill exception. Such entries are said to be
“wired down”. The operating system (OS) has the ability to “wire” certain TLB locations.
Normally TLB locations are wired down either to enhance performance or maintain
correctness. To enhance performance the OS can “wire down” pages containing
frequently accessed data structures. To maintain correctness the OS can wire down pages
on which it cannot take a TLB refill exception.

When a TLB refill exception is detected, the TLBSet register is loaded with a random
number which indicates the set to replace. The random number chosen is normally a
value between 0 and 2. However, if the index of the congruence class for a given TLB
exception is marked as “wired” in the Wired register, then a random value of 1 or 2 is
loaded into the TLBSet register, indicating that set 0 is not available. The Wired register
can hold four TLB indeces. Only set 0 of each index can be wired.

Each index in the Wired register has a valid bit associated with it. The valid bit must be
set in order for the TLB location to be wired by the OS. If a TLB miss occurrs and the
location is wired, but the valid bit in the register is not set, that location is overwritten.
The valid bit provides a mechanism to determine whether the contents of the Wired
register mave meaning. Figure 4-14 shows an example of the Wired register containing
entries for indexed locations 1, 2, 3, and 127.

WIRED Register

30 242322 161514 876 0 setD setl set2
index index index index

it Y oooootr M 0000010 0000001

TLB

o XmgzZz—

i

Note: Register bits 63:32 not shown

Figure 4-14 Wired TLB Locations
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4.6 FORWARD AND REVERSE MAPPING

The R8000 Microprocessor provides support for both forward and reverse mapped
memory management schemes. A forward mapping table contains the virtual-to-
physical address translation for a given virtual address. Figure 4-15 shows a forward-
mapped table entry which is identical to the format of the EntryLo register. The address
contains the Physical Frame Number (PFN) and the associated Cache algorithm (C), the
write permission (D), and the Valid state bits (V).

63 40 39 1211 9 8 7 6 0
Software Bits Physical Frame Number C | D | V |Software Bits

24 28 3 !

Figure 4-15 Forward Mapped Page Table Entry

For each virtual page in a forward mapped scheme there is an entry in the page table.
The more virtual pages the larger the page table. In a reverse mapped memory there is
an entry in the page table for each physical page. Multiple virtual pages are aliased to the
same entry. The entry contains a virtual tag which is read and compared to the virtual
page being accessed. A valid compare indicates that the entry contains the translation for
the given virtual page. The aliased locations form a linked list which contain pointers to
one another. Hence if the virtual tag mis-compared with the virtual page, the entry
would contain a pointer to the next entry in the linked list. The new entry is then
accessed and again compared. This process is continued until the correct page table
entry is located. A reverse mapped memory scheme can be useful when the page table
size is a concern. Since physical address space is much smaller than virtual address
space, a reverse-mapping scheme can provide for a much smaller page table.

A reverse mapped entry contains three doublewords. Doubleword 0 is the same format
as the forward mapped address shown in Figure 4-15. Doubleword 1 contains the Virtual
Page Number (VPN) and ASID of the entry. Doubleword 1 is identical in format to the
EntryHi register. Doubleword 2 contains a virtual pointer to the next entry in the linked
list. Figure 4-16 shows a page table entry for a reverse-mapped memory scheme.
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DOUBLEWORD 2

Link Pointer
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Figure 4-16 Reverse Mapped Page Table Entry

4.7 TLB EXCEPTIONS

The following section discusses the various types of TLB exceptions. Specific exception
vectors are provided for each of the four main virtual address spaces. The TLB specific

exceptions and their corresponding vector locations are listed inTable 4-6.
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Name Vector Cause | Description
Code
TLB Refill, TrapBase + 0x_000 | TLBL | The referenced address was to the
User, (EXL=0) TLBS | User Region (UV) and did not
match any TLB entry.
TLB Refill, TrapBase + 0x_400 | TLBL | The referenced address was to the
Kernel Private TLBS | Kernel Private Region (KV1) and
(EXL=0) did not match any TLB entry.
TLB Refill, TrapBase + 0x_800 | TLBL | The referenced address was to the
Kernel Global TLBS | Kernel Global Region (KV0) and
(EXL=0) did not match any TLB entry.
TLB Refill TrapBase + 0x_c00 | TLBL | The referenced address (to any
(EXL=1) TLBS | Region) did not match any TLB
entry.
TLB Invalid TrapBase + Ox_c00 | TLBL | Virtual-address that matches an
TLBS | invalid TLB entry.
TLB Modified | TrapBase + 0x_c00 | Mod | An attempt to write to a virtual
address that did not have D bit in
the corresponding TLB entry set.

Table 4-6 TLB Exception Vectors

Each of the vectors shown in figure 4-6 can occur on either a load or a store with the
exception of the TLB Modified exception, which occurs only on a store. The TLBL and
TLBS exception codes, indicated by bits [7:3] of the Cause register, indicate whether the
instruction, defined by the contents of the Exception Program Counter (EPC) register,
and the BD bit [63] of the Cause register, was a load or a store. Table 4-7 shows the cause
register codes for TLB specific exceptions. A complete list of exception cause codes can
be found in chapter 5, table 5-2.
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ExcCode Mnemonic | Description

Number

1 Mod TLB Exception Modification

2 TLBL TLB Exception (Load or Instruction Fetch)

3 TLBS TLB Exception (Store)

30 TLBX %’LB Exception (Multiple Hits due to a Duplicate
ntry

Table 4-7 TLB Exception Codes

4.7.1 TLB Refill

A TLB Refill exception occurs when no TLB entry matches a reference to a mapped
address space. TLB refill exceptions are precise and are not maskable. Four exception vector
locations are provided for TLB refill exceptions. Which vector is used depends on the
state of the region bits (VA[63:62]) of the faulting address and the execution level (EXL)
of the faulting process, indicated by bit [1] in the Cause register. A complete list of
exception vectors can be found in chapter 5, table 5-1.

When a TLB refill exception occurs, the VAddr and EntryHi registers contain the virtual
address that failed address translation. The EntryHi register also contains the Address
Space Identifier (ASID) from which the translation failed. A random set number is
generated and then qualified by the contents of the Wired register to assure that the set
chosen does not correspond to any of those in the Wired register. The random value is
then placed in the TLBSet register. The contents of EntryLo is undefined.

The 64-bit Exception Program Counter (EPC) register points at the instruction which
caused the exception, unless the instruction is in a branch delay slot. If the instruction
resides in a branch delay slot, the EPC register points at the branch instruction which
preceedes it, and the BD bit of the Cause register is set.

Three Base registers are provided by hardware, one per mapped region: UBase, PBase,
and GBase.

The UBase register specifies the base address of the page table for a per-process user
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virtual address space miss. The User space (UV) is defined by the region bits VA[63:62]
of the virtual address (R = 00) .

The PBase register specifies the table address for a per-process kernel private address
space miss. Kernel Private space (KV0) is defined by the region bits VA[63:62] of the
virtual address (R = 01).

The GBase register specifies the table address for a per-process kernel global address
space miss. Kernel global space (KV1) is defined by the Region bits VA[63:62] of the
virtual address (R = 11). No register is defined for the Kernel Physical address space as
address translation is not performed when operating in this space.

In a forward mapping scheme, multiple Base registers allows different regions to have
different page sizes. In a reverse mapping scheme, multiple base registers allow different
regions to have different page and reverse table sizes or share tables with a common
page size. Base addresses are specified by software.

On a TLB-miss, hardware loads the VAddr register with the virtual address of the
missing reference. The actions taken by hardware during a TLB-miss is mapping scheme
independent. The ShiftAmt register is loaded with a shift amount based on page size. For
instance, a 4k-byte page size has a shift-amount of 12, a 16k-byte page size a shift-
amount of 14, etc. Hardware provides a unique exception entry point for User space
(UV), Kernel Private space (KV0) and Kernel Global space (KV1) TLB Refill exceptions.
TLB Refill exception action depends on the Memory Management Unit (MMU) scheme.
Which scheme is chosen is under software control and is transparent to hardware.

4.7.1.1 TLB Refill: Forward Mapping Table

The forward mapping table TLB-miss handler is required to justify VAddr register
relative to page and page table entry size, reload the EntryLo register and load a new
TLB entry via the TLBW instruction . Miss handler code is independent of page size.

Example code for a forward-mapped translation tables is discussed below. The example
assumes that the highest page of virtual memory, which is reachable by a negative offset
from register r0, is wired down and some small number of words are available to the
handlers for holding various constants.

Multiple page sizes are supported by shifting the VAddr register to the right. Since
software knows the page sizes of each region, each PTEBase can be pre-shifted to the left
by the appropriate number of bits to compensate. It is most convenient to always set the
high-order bit of PTEBase and use an arithmetic right shift to add a series of logical
one’s. The unwanted values can be logically AND’ed away.

4-20 TFP User’s Manual



The following code contains explicit NOP’s to show where interlocks would occur.

#

# Fetch VAddr and adjust according to page size and PTE entry size.
#

dmfc0 k1, VAddr# get VA

dmfc0 kO, ShiftAmt# get page size shift amount value

srav k1, k1, kO# page size adjustment

nop

sll k1, k1, $entrysize# PTE entry size adjustment

#
# Fetch appropriate PTEBase for address space where fault occurred
# This can issue with sll above.

#ifdef UTLB_user

dmfc0 kO, UBase# region 00 handler
#else ifdef UTLB_kernal_private
dmfc0 kO, PBase# region 01 handler
#else ifdef UTLB_kernel_global
dmfc0 kO, GBase# region 11 handler

#endif

or k1,k1, kO# combine PTEBase with vpn offset
nop

#

# Finish refilling the TLB

#

1d kO, O(k1)# fetch translation
nop

dmtc0 kO, EntryLo

tlbw# write new entry in random set
eret

A cycle could be saved in the handler by keeping the contents of the ShiftAmt register as
a constant in the wired-down page of virtual memory. In this way, ShiftAmt would be
obtained with a 1d instead of a dmfc0, and the 1d is capable of issuing with the dmfc0
VAddr.
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4.7.1.2 TLB Refill: Reverse Mapping Table

The reverse mapping table TLB-miss handler is responsible for generating the reverse
table hash index and traversing the list of entries per table index in search of a
translation. Once a translation is found, the EntryLo register is loaded and the TLB
refilled via the TLBW instruction. Miss handler code is independent of page size and reverse-
mapping page table size.

The idea behind a fast reverse-mapped TLB Refill handler is that the hash table should
typically have very few “collisions”. Therefore it is possible to search the first few nodes
quickly using unrolled and hand-optimized code, reverting to a more general handler
for the uncommon case (or if no translation is found).

Four constants are required in the following example code. The constant HASHVAL
typically contains some function of the current ASID to “randomize” probes into the
hash table. Only bits [47:12] should be non-zero. The constant TBLMASK is used to
define the hash table size. Distinct TBLMASK’s are needed to support differing User and
Kernel page sizes.

A temporary variable, LINKPTR, located in the same “negatively-addressed” area is
used to save away a node pointer. This optimization is optional and it is possible to
retrace the linked list from the VAddr register.

Another detail is that the virtual address field in the page table entry must be identical to
the format of the EntryHi register including the zero fields.

Example code for a reverse-mapped translation table is discussed below. The example
assumes that the highest page of virtual memory, which is reachable by a negative offset
from register 10, is wired down and some small number of words are available to the
handlers for holding various constants.

Multiple page sizes are supported by shifting the VAddr register to the right. Since
software knows the page sizes of each region, each PTEBase can be pre-shifted to the left
by the appropriate number of bits to compensate. It is most convenient to always set the
high-order bit of PTEBase and use an arithmetic right shift to add a series of logical
one’s. The unwanted values can be logically AND’ed away.

The following code contains explicit NOP’s to show where interlocks would occur. The
code should run very close to one instruction per cycle. The following code does not
check for end-of-list. There is an implicit assumption that lists are terminated into a
“terminal” node which does not ever match and whose link points to itself.
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Look_in_first_node:

. dmfcOk1, VAddr# fetch vpn

1dk0, HASHVAL(r0) # fetch hash value;

# 1d can issue with previous dmfc0.

xork1, k1, kO# hash VPN[47:12]

#

# Adjust vpn relative to page size and PTE entry size

dmfc0k0, ShiftAmt# fetch page size shift amount value;
# dmfcO can issue with xor.

sravkl, k1, kO# page size adjustment

nop ,

sllk1, k1, $entrysize# PTE entry size adjustmen

# Fetch appropriate PTEBase for address space where fault occurred.
# This can issue with sll above.

#ifdef UTLB_user

dmfc0 k0, UBase# region 00 handler

#else ifdef UTLB_kernal_private

dmfc0 kO, PBase# region 01 handler

#else ifdef UTLB_kernel_global

dmfc0 k0, GBase# region 11 handler

#endif

ork1, k1, kO# combine PTEBase with vpn offset

#

# Mask according to table size (and to zero high-order bits).
#

1dk0, TBLMASK(r0)# fetch reverse table size mask

# can issue with previous OR..

andko, k1, kO# table size hash index

# adjustment

nop

sdk0, LINKPTR(r0)# save away entry index

nop

#

# Compare EntryHi against virtual address in table entry
#

1dk0, 8(k0)# fetch entry containing VPN /ASID

dmfc0 k1, EntryHi# if no match look at next

# node can issue with

# previous Id.

#

#ifdef UTLB_kernel_global
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srik1, 12# global reference must clear out
nop

sllk1, 12# ASID field in EntryHi

nop

#endif

bneqgk0, k1, Look_In_Second_Node

1d kO, LINKPTR(r0)

#

# Translation found. Write new TLB entry.

#

1dk1, O(k0)# fetch translation; we won’t fault
nop

dmtcOk1, EntryLo

tlbw# tlb allocation

eret

Look_In_Second_Node:

1dk0,16(k0)# fetch next node pointer

nop

sdkO, LINKPTR(r0)# save away entry index

#

# Compare EntryHi against virtual address in table entry
#

1dk0, 8(k0)# fetch entry containing VPN /ASID
# k1 still has EntryHi

bneqk0, k1, Look_In_Third_Node

1d kO, LINKPTR(x0)

# Translation found. Write new TLB entry.

#

1dk1, 0(kO)# fetch translation; we won:t fault
dmtcOk1, EntryLo

nop

tlbw# tlb allocation

eret
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4,7.2 TLB Invalid

The TLB Invalid entry in Table 4-6 occurs when a virtual address reference matches a
TLB entry marked invalid. This exception is precise and not maskable.

The TLB Invalid exception uses the common exception vector located at offset 0x_c00 in
Table 4-6. The TLBL and TLBS exception codes, indicated by bits [7:3] of the Cause
register, indicate whether the instruction, defined by the contents of the EPC register,
and the BD bit [63] of the Cause register, was a load or a store.

When a TLB Invalid exception occurs, the VAddr and EntryHi registers contain the
virtual address that failed address translation. The EntryHi register also contains the
Address Space Identifier (ASID) from which the translation failed. The set which
matches the virtual address reference is placed in the TLBSet register.

The 64-bit EPC register points at the instruction which caused the exception, unless the
instruction is in a branch delay slot. If the instruction resides in a branch delay slot, the
EPC register points at the branch instruction which preceedes it, and the BD bit of the
Cause register is set.

The valid bit of a TLB entry is typically cleared when a virtual address does not exist,
when it exists but is not in memory (a page fault), or when a trap is desired on any
reference to the page (for example, to maintain a reference bit). After servicing the
particular cause of this exception, the TLB entry can, if appropriate (i.e. no subsequent
exception was possible), be validated by reading the invalid TLB entry into the EntryLo
register with a TLBR operation, moving EntryLo to a general register, setting the V bit,
moving it back to EntryLo, and doing a TLBW operation.

4.7.3 TLB Modified

A TLB Modified exception occurs when the virtual address of a store instruction matches
a TLB entry marked valid but not dirty /writable. The TLB Modified exception is precise and
not maskable.

The TLB Modified exception uses the common exception vector located at offset 0x_c00
in Table 4-6. The Mod exception code, indicated by bits [7:3] of the Cause register, is set.

When a TLB Modified exception occors, the VAddr and EntryHi registers contain the
virtual address that failed address translation. The EntryHi register also contains the
Address Space Identifier (ASID) from which the translation failed. The set which
matches the virtual address reference is placed in the TLBSet register.
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The 64-bit EPC register points at the instruction which caused the exception, unless the
instruction is in a branch delay slot. If the instruction resides in a branch delay slot, the
EPC register points at the branch instruction which preceedes it, and the BD bit [63] of

the Cause register is set.

The kernel uses the failing virtual address to identify the corresponding access control
information. The page identified may or may not permit write accesses, and if not
permitted, a “Write Protection Violation” occurs. Otherwise, if write accesses are
permitted, the page frame is marked dirty /writable by the kernel in its own data
structures and the TLB entry is updated

4.8 DATA AND CONTROL REGISTERS

The R8000 microprocessor supports two groups of registers defined as CoProcessor 0
(COPO) and CoProcessor 1 (COP1). CoProcessor 0 contains control, status, data, and
configuration registers for the Integer Unit. CoProcessor 1 contains status and
congifuration registers for the R8010 floating point unit.

There are thirty-two 64 bit system control registers which are accessible via the double
Move To/From CoProcessor 0 instructions (DMTC0, DMFCO). Thirty-two bit versions of
these instructions are not supported.

There are two 32 bit floating point control registers which are accessible via the double
Move To/From CoProcessor 1 instructions (DMTC1, DMFC1). Thirty-two bit versions of

these instructions are not supported.
This section focuses on those registers used to support and manage TLB functions. Not

all of the 32 system control registers are defined here. Refer to the Registers chapter for a
complete listing of all registers. '

The following pages list the TLB specific registers and their functions.
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4.8.1 TLBSet

COPO Register —
Register #| Mnemonic Description
0 TLBSet Select TLB set

P if set, the last TLBP operation was unsuccessful.
SET specifies the set select address within a TLB entry.
W Fields that may be written with anything but are
always read as 0
Description

The TLBSet Register is a read-write register used to index a
TLB entry’s set and to provide access status as the result of a
TLBP operation.

The SET field is used to select a TLB entry’s set fora TLBW or a
TLBR instruction. When a TLB Refill (User, Kernel Private, and
Kernel Global) exception occurs, TLBSet is loaded with a
random set to be replaced. When a TLB Invalid or TLB
Modified exception occurs, TLBSet is loaded with the set
which contains the virtual tag match. The Set field may be
overwritten under program control to write to a specific set
number.

The TLBSet register also contains status regarding the TLB
Probe (TLBP) instruction execution. The P bit is set if the last
TLBP instruction did not find a TLB entry which matched
EntryHi. If the last TLBP was successful, P=0 and SET holds
the set number which matched.

Format for SET field:

00 Set 0

01 Set1

10 Set 2

11 Reserved

The TLBSet register is undefined on reset.
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4.8.2 EntryLo

COPO Register I
Register #| Mnemonic Description
2 EntryLo Physical Address portion of TLB entry
63 4039 1211 9876 0
w Physical Frame Number (PFN) Cc [pv w
- 28 3 7
PFN Physical Frame Number
C Specifies the page cache coherence algorithm
D When set the page is dirty and writable
A% When set the entry is valid
\ Fields that may be written with anything but are

always read as 0
Description:

The EntryLo register is a read-write register used to access the
physical portion of the TLB. EntryLo contains the Physical
Page Number (PFN) and its associated Cache Algorithm (C),
Write Permission (D), and Valid (V) state bits.

The C field encoding is as follows:

000 uncacheable processor-ordered

001 reserved

010 uncacheable sequential-ordered

011 cacheable non-coherent

100 cacheable coherent, exclusive

101 cacheable coherent, exclusive on write
110 reserved

111 reserved (cacheable, write-through)

The EntryLo register is undefined on reset.
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4.8.3 EntryHi

"COP0 Register Descripti
Register #| Mnemonic escription
10 EntryHi Virtual Tag portion of TLB entry
63 61 48 47 19 18 121 43 0
R w Vitrtual Page Number (VPN) w ASID | W
2 14 29 7 8 4
R Two bit Region field (00=user, 01 =KV0, 1=KV1)
VPN Virtual Page Number field
ASID Address Space Identifier.
w Fields that may be written with anything but
always read as 0
Description:

The EntryHi register is a read-write register used to access the
virtual tag portion of the TLB. In addition, EntryHi contains
the Address Space Identifier (ASID) used to match the virtual
address with a TLB entry when virtual addresses are presented
for translation.

When a TLB-related exception occurs, EntryHi is loaded with
the Virtual Page Number (VPN) and the Region (R) of the
virtual address that failed translation. The VPN field contains
bits [47:19] of the faulting virtual address. It is not right
justified according to page size. VPN[23:19] is conditionally set
to zero by hardware on a per-bit basis based on page size.

The ASID field already contains the Address Space Identifier
for the virtual address which caused the exception, and so is
not loaded when an exception occurs.

The VPN field does not contain bits [18:12] of the virtual
address. These are not stored in the TLB.

The EntryHi register is undefined on reset.
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4.8.4 UBase

[COPO Register .
Register #| Mnemonic Description
4 UBase User Page Table Entry Base Address
& 0
l PTEBase I

64

PTEBase Base address of Page Table Entries

Description

The UBase register is a read-write register which holds the base
address of the PTE table for the associated User region. The
UBase, PBase, and GBase registers have identical formats.

The UBase register is undefined on reset.
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4.8.5 PBase

COPO Register .
Register #| Mnemonic Description
20 PBase KVO0 space Page Table Entry Base Address
® 0

PTEBase I

PTEBase Base address of Page Table Entries

Description

The PBase register is a read-write register which holds the base
address of the PTE table for the associated Kernel Virtual 0
region, also referred to as Kernel Private. The UBase, PBase,
and GBase registers have identical formats.

The PBase register is undefined on reset.
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4.8.6 GBase

63

COPO Register .
Register #| Mnemonic Description
21 GBase KV1 space Page Table Entry Base Address

0

‘ PTEBase I

64

PTEBase Base address of Page Table Entries

Description

The GBase register is a read-write register which holds the base
address of the PTE table for the associated Kernel Virtual 1
region, also referred to as Kernel Global. The UBase, PBase,
and GBase registers have identical formats.

The GBase register is undefined on reset.
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4.8.7 ShiftAmt

COPO Register .
Register # | Mnemonic Description
5 ShiftAmt | Shift amount to align virtual page number

59

SA Shift Amount

Description:

The ShiftAmt register is a read-only register that assists
software in aligning pointers into page tables. In the User
Region, right-shifting the VA register by the amount in the SA
field correctly aligns the Virtual Page Number (VPN) field
based on page size for the most recently failed translation. The
SA value for each page size is as follows:

Page Size Sh\jlztlﬁ:n
4K 01100
8K 01101
16K 01110
64K 10000
IM 10100
4M 10110
16M 11000

Table 4-8 Page Size ShiftAmt Values
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4.8.8 Wired

COPO Register -

Register #| Mnemonic Description
24 Wired Indices of wired locations in the TLB

63 32 3130 2423 22 161514 8 76 0
v3| Index3 jv2| Index2 (vi| Indext |vO| Index0
7 7 7 7
Index, TLB entry to be ‘wired’ down
Vy Valid Bit set if corresponding Index is valid
w Fields that may be written with anything but
always read as 0
Description:

The Wired register is a read-write register used to control TLB

replacement algorithm. Up to four entries may be wired down
under program control. The four entries must be in different
congruence classes.

The TLB is three-way set associative. Only set 0 may be ‘wired’.
When a TLB Refill exception occurs, the congruence class of
the missing virtual address is compared to each of the four
indices in the Wired register. If a match is found for a valid
entry in the Wired register, a random value in the range 1..2 is
loaded into the TLBSet register. If a valid match is not found, a
random value in the range 0..2 is loaded into the TLBSet
register.

The Wired register is undefined on reset.
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4.8.9 VAddr

COPO Register L
Register # | Mnemonic Description
8 VAddr Virtual Address Register
63 0
I VAddr I
64
VAddr Virtual Address
Description:

The VAddr register is a read-write register that holds a 64-bit
virtual address. VAddr is loaded both under software and
hardware control.

VAddr is loaded by hardware with the virtual address which
causes a TLB Refill, TLB Invalid, TLB Modified, or Address
Error Exception. VAddr is also writable by software, and is
used to address the TLB for TLBW, TLBR, TLBP, DCTR and
DCTW Cop0 instructions.
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4.8.10 BadPAddr

COP0 Register —
Register #] Mnemonic Description
7 BadPAddr Bad Physical Address
636059 40 39 o
Syn 0 PAddr
4 20 40

BadPaddr Bad Physical Address
Syn Bits [15:12] of the virtual address

Description:

The BadPAddr register is a read-only register that contains the
physical address which caused the virtual coherence error
(floating) exception. ’
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INTERRUPTS AND EXCEPTIONS

The exception processing system of the R8000 Microprocessor is responsible for
efficiently handling relatively infrequent events such as address translation misses,
arithmetic overflows, I/O interrupts, and system calls. These events cause the
interruption of normal flow of control. Dedicated locations contain vectors which service
the various exceptions. Once the exception has been serviced the program contents,
which were saved in temporary strorage prior to servicing of the exception, are re-
loaded and normal execution resumes.

The R8000 Microprocessor treats all events which interrupt the normal flow of execution
as exceptions. Interrupts are a type of exception, and exceptions can be both precise and
imprecise.
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51 EXCEPTIONS

. When an exception is taken and the contents of the Exception Program Counter (EPC)
register contains the exact address of the instruction which caused the exception, the
exception is precise. When the Exception Program Counter register contains a value
which is near the offending address but not exact, the exception is imprecise. External
interrupts, which have no relationship to any instructions, are also classified as imprecise
exceptions. The type of exception taken indicates whether it is precise or imprecise.

The R8000 Microprocessor can generate interrupts internally as well as accept interrupts
from external sources. There are no dedicated interrupt pins on the R8000
Microprocessor. External interrupts are handled by the Cache Controller and the status
of the Cache Controller’s interrupt register is transferred to the R8000 via the TBus. The
register contents are decoded within the R8000 and the appropriate service routine is
executed. Figure 5-1 shows the different types of exceptions.

EXCEPTIONS

Precise

TLB Refill, (UV), (KV0), (KV1),
TLB Invalid, TLB Modified,
Integer Overﬂow, Trap, System Call,
Breakpoint, Coprocessor Unusable,
Reserved, Address Error

Imprecise

N

Virtual Coherence Interrupt
Bus Error
Floating Point Interrupt
{ Interrupts |

NMI and all General

Interru ts defined

}éy field of the
ause re

gister.

Figure 5-1 Exception Types
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To handle an exception, the processor vectors to a fixed address in kernel mode with
interrupts disabled. Once the exception has been serviced, the program counter,
operating mode, and interrupt enable must be restored. Hence it is these values which
must be saved when an exception occurs.

When an exception occurs, the Exception Program Counter (EPC) register is loaded with
the appropriate restart location at which execution may resume after servicing the
exception. The counter can also be thought of as containing the address of the instruction
that caused the exception. If the instruction was executing in a delay slot the counter
contains the address of the previous instruction and the DB bit is set.

The base operating mode is defined by the KU (Kernel/User) and the IE (Interrupt
Enable) bits of the Status register. The execution level is set by the EXL bit, also from the
Status register. Interrupts are enabled when IE=1 and EXL=0. The operating mode is
specified by the base mode when the execution level is normal, and is in kernel mode
when the execution level is exception. Returning from an exception consists of resetting
the execution level (bit [1] of the Status register) to normal. From a register standpoint
there are three basic types of exceptions;

1) Hard reset

2) Non-Maskable Interrupt (NMI)
3) All others.

5.1.1 Hard Reset

When returning from hard reset exception the state of the Config (configuration) and
Status registers are as shown in Figure 5-2.

Config Register

63 3534333231 161514 1211 98 6543 0
AR iC DC | IB|DB]

‘ 0 “iio 0 Il‘OOOIOlliOlOlll 0

Status Register
5 0282624 9 18 876 54 o
| [ofOF o | & oo il

Figure 5-2 Register Contents Following a Hard Reset
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The program counter is loaded with the following 64-bit hexidecimal value.

0x_9000_0000_1£c0_0000

5.1.2 Non-Maskable Interrupt

When a non-maskable interrupt exception is taken the contents of the main program

counter are loaded into the Exception Program Counter (EPC) register and indicate the

address at which the exception occurred. Note that the existing EPC counter value is lost

when the EPC is loaded. The main program counter can then be loaded with the vector

address so that servicing can begin. The main program counter is loaded with the -
following 64-bit hexidecimal address.

0x_9000_0000_1£c0_0000

The contents of the Config register does not change. Bit [1] of the Status Register is set to
a high value (1), indicating that the execution level is for an exception. In addition, Cause
register bit [27] is also set to a high value, indicating that the exception was a NML The
hardware modification to the Status register is shown in Figure 5-3.

Status Register
543 21 0

Execution Level
bit setto 1 _

Figure 5-3 Status Register Contents Following an MNI

5.1.3 General Exceptions

Hard Reset and NMI exceptions each vector to a fixed entry point as discussed in
sections 5.1.1 and 5.1.2. All other exceptions vector to an offset relative to the contents of
the TrapBase register . When a general exception is taken the Status register is read and
the main program counter (PC) is loaded with the contents of the TrapBase register.
Loading of the main program counter occurs regardless of the exception level. Note that
the current value is lost when the PC is loaded.

The EXL bit [1] of the Status register determines the execution level. If EXL=0 when the
status register is read, the contents of the PC are transferred to the exception program
counter (EPC) so that the address which caused the exception can be saved.
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If EXL=1 when the status register is read, indicating that another exception is currently
begin serviced, the EPC already contains the address of the exception currently being
serviced. The contents of the PC are not transferred to the EPC so as not to overwrite the
current EPC value. Figure 5-4 shows how general exceptions are handled.

Status Register

62524 201918 876 543 21 0

/ \
TrapBase Register I TrapVector | EXL

3 61 59 58 48 47 12 11
R| C 0 Trap Vector Base Address | Vector Offset

Any Exception causes

Main PC to be loaded

Main Program Counter
64

PC Transferred to EXL=0"
! EPCifEXL=0 —

Exception Program Counter register

* If EXL=1, contents of the main PC are not transferred to EPC.

Figure 5-4 Handling a General Exception

The Config register contents do not change when a general exception is taken. The
Cause register is modified depending on which general exception was taken. For
example, a Coprocessor Unusable exception sets the CE bit, a Virtual Coherence
exception sets the VCI bit, a floating point exception sets the FPI bit, etc. Figure 5-5
shows the Cause register.
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63 62

29

25

23 19 18 87 32 0

- N
ZZ P

C
E

v|F
B
ef$|1F| O Ip

ExcCode 0

Figure 5-5 Cause Register

Multiple trap vector entry points are provided by hardware based on the exception
taken. Table 5-1 below lists the various types of exception vectors and their Trap Vector

offsets.
Name Vector Cause Description
Code

Hard Reset ResetVector -— Resets everything.

0x_9000_0000_1£c0_0000
NMI NMIVector e Requested by external logic

0x_9000_0000_1£c0_0000

TLB Refill, TrapBase + 0x_000 | TLBL | The referenced address was to the

User, (EXL=0) TLBS User Region (UV) and did not
match any TLB entry.

TLB Refill, TrapBase + 0x_400 | TLBL | The referenced address was to the

Kernel Private TLBS | Kernel Private Region (KV1) and

(EXL=0) did not match any TLB entry.
TLB Refill, TrapBase + 0x_800 | TLBL | The referenced address was to the
Kernel Global TLBS | Kernel Global Region (KV0) and
(EXL=0) did not match any TLB entry.
TLB Refill TrapBase + 0x_c00 | TLBL | The referenced address (to any
(EXL=1) TLBS | Region) did not match any TLB
entry.
TLB Invalid TrapBase + Ox_c00 | TLBL | Virtual-address that matches an
TLBS invalid TLB entry.

TLB Modified | TrapBase + Ox_c00 | Mod | An attempt to write to a virtual
address that did not have D bit in
the corresponding TLB entry set.

Common TrapBase + 0x_c00 | See General exception vector for all
Exceptions Cause other exceptions.

Table 5-1 Exception Vectors
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Exceptions are always generated by a particular instruction, and are reported precisely
with respect to that instruction. All other events are termed interrupts. This section lists
_ the types of General exceptions and how they are handled and serviced. These
exceptions are indicated by loading a specific value into the ‘Exception Code’ field of the
Cause register, located at bits [7:3]. Below is a listing of each general exception and the
corresponding 5 bit hexidecimal value. Those Exception codes specific to the TLB are
discussed in chapter 4, sections 4.7.1 through 4.7.3.

I;:\?lfriggre Mnemonic Description

0 Int Interrupt
1 Mod TLB Exception Modification
2 TLBL TLB Exception (Load or Instruction Fetch)
3 TLBS TLB Exception (Store)
4 AdEL Address Error Exception (Load or Instruction Fetch)
5 AdES Address Error Exception (Store)

67 | - Reserved by MIPS Technologies
8 Sys SysCall Exception
9 Bp Breakpoint Exception
10 RI Reserved Instruction Exception
11 CpU Coprocessor Unusable Exception
12 Ov Arithmetic Overflow Exception
13 Tr Trap Exception

14-31 | - Reserved by MIPS Technologies

Table 5-2 Exception Codes
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5.1.3.1 Address Error Exception

An address error exception occurs when an attempt is made to load, fetch, or store a
quantity which is not properly aligned, to reference kernel address space from user
mode, or when the region bits of the effective address do not match the region bits in the
base register. The address error exception is precise and not maskable.

The AdEL and AdES exception codes are defined by ExcCodes 4 and 5 in Table 5-2 and
indicate whether the instruction, defined by the contents of the EPC register, and the BD
bit [63] of the Cause register, was a load or a store.

5.1.3.2 System Call Exception

The System Call exception occurs when an attempt is made to execute the corresponding
instruction. The SysCall exception is precise and is not maskable. The common exception
vector in Table 5-1 is used for this exception. The SysCall exception is defined by
ExcCode 8 in Table 5-2. The Sys code in the Cause register is set.

The EPC points at the instruction which caused the exception, unless the instruction is in
a branch delay slot. If the instruction is in a branch delay slot, the EPC points at the
branch instruction which preceedes it, and the BD bit of the Cause register is set.

Control is transfered to the applicable system routine. To resume execution, the EPC
must be altered so that the offending instruction is not re-executed.

5.1.3.3 Breakpoint Exception

The Breakpoint exception occurs when an attempt is made to execute the corresponding
instruction. The Breakpoint exception is precise and is not maskable. The common
exception vector in Table 5-1 is used for this exception. The Breakpoint exception is
defined by ExcCode 9 in Table 5-2. The Bp code in the Cause register is set.

The EPC points at the instruction which caused the exception, unless the instruction is in
a branch delay slot. If the instruction is in a branch delay slot, the EPC points at the
branch instruction which preceedes it, and the BD bit of the Cause register is set.

Control is transfered to the applicable system routine. To resume execution, the EPC
must be altered so that the offending instruction is not re-executed.
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5.1.3.4 Reserved Instruction Exception

The Reserved Instruction exception occurs when an attempt is made to execute the
corresponding instruction. The Reserved Instruction exception is precise and is not
maskable. The common exception vector in Table 5-1 is used for this exception. The
reserved Instruction exception is defined by ExcCode 10 in Table 5-2. The RI code in the
Cause register is set.

The EPC points at the instruction which caused the exception, unless the instruction is in
a branch delay slot. If the instruction is in a branch delay slot, the EPC points at the
branch instruction which preceedes it, and the BD bit of the Cause register is set.

Control is transfered to the applicable system routine. To resume execution, the EPC
must be altered so that the offending instruction is not re-executed.

5.1.3.5 Coprocessor Unusable Exception

The Coprocessor Unusable exception occurs when an attempt is made to execute the
corresponding instruction. The Coprocessor Unusable exception is precise and is not
maskable. The common exception vector in Table 5-1 is used for this exception. The
CoProcessor Unusable exception is defined by ExcCode 11 in Table 5-2. The CpU code in
the Cause register is set.

The EPC points at the instruction which caused the exception, unless the instruction is in
a branch delay slot. If the instruction is in a branch delay slot, the EPC points at the
branch instruction which preceedes it, and the BD bit of the Cause register is set.

Control is transfered to the applicable system routine. To resume execution, the EPC
must be altered so that the offending instruction is not re-executed

5.1.3.6 Integer Overflow Exception

An Integer Overflow exception occurs when an ADD, ADDI, SUB, DADD, DADD], or
DSUB instruction results in a two’s complement overflow. This exception is precise and
not maskable. The common exception vector in Table 5-1 is used for the Integer
Overflow exception. The Integer Overflow exception is defined by ExcCode 12 in Table
5-2. The Ov code in the Cause register is set.

The EPC points at the instruction which caused the exception, unless the instruction is in
a branch delay slot. If the instruction is in a branch delay slot, the EPC points at the
branch instruction which precedes it, and the BD bit of the Cause register is set. The
process executing at the time is handed a UNIX SIGFPE/FPE_INTOVF_TRAP signal.
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5.1.3.7 Trap Exception

A Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TGEI, TGEUI, TLTI,
TLTUI, TLEQ], or TNEI instruction results in a true condition. The trap exception is
precise and not maskable. The common exception vector in Table 5-1 is used for this
exception. The Trap exception is defined by ExcCode 13 in Table 5-2. The Tr code in the
Cause register is set. The EPC points at the instruction which caused the exception,
unless the instruction is in a branch delay slot. If the instruction is in a branch delay slot,
the EPC points at the branch instruction which preceedes it, and the BD bit of the Cause
register is set. The process executing at the time is handed a UNIX SIGFPE/
FPE_INTOVEF_TRAP signal.

5.1.3.8 Reserved Instruction Exception

There are two classes of reserved instruction exceptions relating to opcodes and values.
An illegal coprocessor-1 opcode is reported via this exception. Value related exceptions
cause a floating-point interrupt which is explained in section 5.3. The reserved
instruction exception is precise and is not maskable.

The common exception vector is used for this exception. The FPE code in the Cause
register is set. The EPC points at the instruction which caused the exception, unless it is
in a branch delay slot. If the instruction is in a branch delay slot, the EPC points at the
branch instruction which preceedes it, and the BD bit of the Cause register is set.

Control is transfered to the applicable system routine. To resume execution, the EPC
must be altered so that the offending instruction is not re-executed. ‘

5.2 INTERRUPTS

The Interrupt exception occurs when one of the interrupt conditions are asserted.
Interrupts are a type of exception and are imprecise and maskable. The general exception
vector is used for servicing Interrupt exceptions. The Int code in the Cause register is set.

The Cause register in Figure 5-5 contains an 11 bit Interrupt Pending (IP) field which
indicates the current interrupt requests. It is possible that more than one of the bits will
be set at once, or even that no bits are set (if an interrupt is asserted and then deasserted
before the Cause register is read). If the interrupt is caused by software, the condition is
cleared by setting the corresponding Cause register bit to zero. Table 5-3 describes the IP
field.
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Cause

IP# | Register In,tlf’ rrupt Description
Bits ype
0..1 8.9 Software | Used to set or clear software interrupts

2.7 10..15 External | Set and cleared through the TBus. External
interrupts cannot be cleared by software

8 16 Parity Streaming cache even bank parity flag
9 17 Parity Streaming cache odd bank parity flag
10 18 Overflow | Cycle counter overflow flag. Wired to the

most significant bit of the cycle counter
Table 5-3 Interrupt Pending Fields

5.3 INTERRUPT TYPES

The R8000 Microprocessor supports 11 asynchronous interrupts. Two are managed by
software, three are generated internally by hardware, and six are generated externally
via the Tbus. Interrupts are posted in the IP field of the Cause register.

5.3.1 Virtual Coherence (Coprocessor) Interrupt

A Virtual Coherence (Coprocessor) interrupt (VCI) occurs when each of the following
three conditions are true.

1) A coprocessor load or store hits in the streaming cache.

2) Virtual address bits [15:12] of the reference are different than the Virtual synonym (VS)
bits stored in the streaming cache.

3) The SMM bit of the Status register is reset.

The VS bits in the streaming cache are set to bits [15:12] of the virtual address when a
reference causes a streaming cache miss. The Virtual coherence interrupt is not maskable.
When a VCI interrupt occurs the VCI bit in the Cause register is set, and the BadPAddr
register contains the offending physical address along with bits [15:12] of the virtual
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address. The offending instruction as well as an unbounded number of subsequent. =
instructions will have already completed by the time the interrupt is posted. If additional ™
- virtual coherence (coprocessor) violations occur before the interrupt is serviced, no
additional addresses are captured into BadPAddr.

Coprocessor memory references directly address the physically-addressed streaming
cache and are not susceptible to virtual coherence violations. Therefore, there is no harm
in allowing coprocessor memory references to complete even when they cause virtual
coherence exceptions. However, these coprocessor memory references may fail to
invalidate the on-chip integer data cache and thus not maintain coherency between the
caches. If the processor is operating in Sequential Memory Model mode, the hardware
interlocks subsequent integer memory references to avoid the possibility of reading stale
data, at the expense of some performance loss. The virtual coherence interrupt is non-
recoverable.

5.3.2 Floating Point Interrupt

The R8000 Microprocessor implements imprecise IEEE-compliant floating-point
exceptions which are reported via the Floating-Point Interrupt.

In performance mode a floating-point operation that raises an exception will write the
appropriate substitution value (e.g. NaN) into the register file, regardless of whether the
exception is enabled or not, and continue execution. If the exception is enabled, bit IP10
in the Cause register is set and an imprecise floating-point interrupt occurs some time
later.

In precise exception mode a floating-point operation that raises an enabled exception
does not write the result into the register file, and bit IP10 in the Cause register is set to
cause a precise floating-point interrupt with the EPC register pointing to the offending
instruction. A disabled exception will write the appropriate substitution value (e.g.
NaN) into the register file and continue execution.

Imprecise floating-point exceptions in normal mode can only be observed after the fact.
Therefore trap handlers that count exceptions or abort the process are possible, but trap
handlers that alter the result value based on an exception are not possible. Software
should service this interrupt by clearing bit IP,( in the Cause register. Precise exception
mode is specified by setting the DM bit in the Status Register. After a mode change an
implementation-dependent number of instructions may not be floating-point
instructions. Note that the Cause field in the R8010 Floating Point Status (FSR) register
cannot be used to determine the cause of the interrupt in normal mode, and the Flags
field must be used instead. However, the Cause field can be used in any mode to
determine the status of the last floating-point operation.
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5.3.3 Counter Overflow Interrupt

The Count register increments once per clock cycle. A counter-overflow interrupt is
posted when the high-order bit becomes set. Bit IP10 in the Cause register is set and an
imprecise counter-overflow interrupt occurs some time later.

Software must reset the Count register and clear bit IP10 in the Cause register.

5.3.4 Parity Error Interrupt

The R8000 Microprocessor has a very large off-chip streaming cache which is protected
by parity bits. Parity errors are imprecise and nonrecoverable. Separate parity flags exist
for both the even and odd banks of the streaming cache. Cause register bit IP8 pertains to
the even bank of streaming cache. Cause register bit IP9 pertains to the odd bank of
streaming cache.

If a parity error is detected on a floating-point load operation or an instruction or data
cache refill, bit IP8 or IP9 in the Cause register is set and an imprecise parity-error
interrupt occurs some time later. Parity errors should be logged and the process aborted.
Software should clear bits IP8 and IP9 in the Cause register.

5.3.5 Bus Error Interrupt

A Bus Error interrupt exception is generated by board-level circuitry and indicates
events such as bus time-out, backplane bus parity error, and invalid physical memory
addresses or access types. The Bus Error interrupt is imprecise and not maskable.

The common exception vector is used for this interrupt and the process executing at the
time is handed a UNIX SIGBUS signal. Since the TFP Microprocessor implementation of
this exception is imprecise, the kernel should “clean up” any outstanding references (e.g.
writes buffered in the I/0O systems) by reading from uncacheable device registers to
avoid accidentally killing the wrong process.
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INITIALIZATION INTERFACE

This chapter describes the initialization and testing requirements for the R8000
Microprocessor Chip Set. The initialization sequence is discussed and code examples are
provided for both the R8000 microprocessor and the Tag RAM. General testing
requirements are also discussed including some specific testing characteristics which
must be addressed. ,
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In general the _oot-up procedure consists of four steps:

1) Invalidate Instruction and Data Caches.

2) Flush Store Address Queue.

3) Set all Tag RAM states to invalid and assure that each of the four sets of any given Tag
RAM index have different tags.

4) Initialize the TLB.

6.1 Instruction and Data Cache Invalidation

Invalidation of the instruction cache is accomplished by the invalidation of each entry in
the cache. Uncached instructions are fetched from memory and placed in the cache and
the entry is marked as invalid. Each entry in the instruction cache contains four 32-bit
instructions (quadword). An instruction cache line (32 bytes) contains two quadwords.
There is one valid bit per instruction cache line.

When the first entry is accessed with the “Jump Immediate” instruction cache hardware
control logic marks the line as invalid due to the fact that the instructions were fetched
from the following accress range;

9000_0004_1FCx_xxxx

The 9h value on the upper address bits indicates that the access is non-cachable and
umapped in the TLB. The “Jump Immediate “ instruction with the correct offset is used
to step through the cache and invalidate the entries.

The Data Cache is invalidated using the DCTW instruction. The 4-bit valid field in the
DCACHE register must be loaded with all zero’s. The contents of the DCACHE register
are undefined on reset.

Unlike the instruction cache, where the valid bit is included as part of the entry, the data
cache has a separate valid bit RAM. One valid bit exists per word (32-bits) and there are
4 bits per valid RAM entry. Hence two writes to the valid RAM are necessary to
invalidate one line (32 bytes) of the data cache.

Successive invalidations of the data cache valid RAM are accomplished by incrementing
the VADDR register by 16 each time.

Note that any data loads, including non-cachable loads from a ROM device, are not
guaranteed to work correctly until this step is completed due to the fact that the R8000
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cached data as opposed to taking a data cache miss. Refer to section 6.5 for more
information.

6.2 Flushing the Store Address Queue

The Store Address Queues are flushed using 32 writes to an even location (Address<3>
clear) and 32 writes to an odd location (Address<3> set). The addresses used are two
unused local address space registers and the writes are non-cacheable. The data is not
important.

6.3 Tag RAM State Invalidation

In order to avoid memory reads going onto the backplane, the data RAM tests are divided
into two groups. Each group does the same test but skips the part of Set 3 which the test
itself is read through so that no cacheable reads or writes go to the area which has been
invalidated by instruction reads and cause a read on the backplane.

During this step no single non-cacheable read should be done from any address except
the ROM space which will read through the area of RAM which is being skipped (eg. the
code itself).

Before any of the Tag RAMs are written, two non-cacheable reads from the ROM space at
the current PC must be done to initialize the Annex pipe so that it doesn't corrupt the
values after they are written.

The value of the tag RAM address used for set three is chosen so that any instruction
fetches which occur during this step will put exactly the same value into the the location.
The state, virtual synonym, and dirty bits should also be set so that the instructions will
load the identical value.

The tag RAM addresses should be as follows:

Set Tag
0 - 0x041CC
1 0x041DC
2 0x041EC
3 0x041FC

Address<21:20> will be written from the address used to access the tags and need not be
varied explicitly for caches larger than 4MB.
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The dirty bits do not matter; the state bits should all be exclusive; and the virtual
synonym bits should be set to address<15:12> (part of the index) so that no virtual
synonym misses can occur when used with virtual equals physical mapping.

For all processors except the master the procedure for the first two initializations of the
streaming cache should be repeated except that the states should all be written to invalid
instead of exclusive. These processors will not run C code and will not need a stack.

The master processor should be initialized in the same way as the slaves except that a
stack region should be created at whatever index and address tag is convenient and of
whatever size (up to the size of one set) may be convenient. The stack should be created
now because we do not want to write the streaming cache tags again later.

The stack provision is made by picking a section of Set 1 (it must not be set 0 or 3). The
Tag Address and state writes may be done after the complete slave style initialization has
been accomplished. The state should be exclusive and the dirty bits do not matter. Again
the virtual synonym bits must be set to Address<15:12> to avoid reads on the backplane.
The Set Allow register must be set not to allow access to Set 1. (Note that Force Set Three
is still on until the next step.) Before running User Mode, Set Allow should be set back to
allow all sets in replacement.

The stack made in this way will work whether there is memory board in the system or
not. The states are already exclusive and do not have to be filled from memory and the
set allow does not include Set 1 so that the stack cannot be kicked out. Set 0 will be
kicked out by non-cacheable accesses which miss in the cache, so it is not used; Set 3 will
be kicked out in Force Set Three Mode, so it is not used.

All the cache lines in the system are now in legal states; Some of them are exclusive in the
master processor and invalid elsewhere while the rest are invalid everywhere. In
addition, at every index in every cache, the address tags in the four sets are all different.

6.4 Initializing the TLB
Initialization of the TLB consists of the following two steps;

1) Mark all entries invalid in the physical address (PTAG) portion of the TLB.
2) Assure that each set of each index in the virtual tags (VTAG) portion of the TLB
contains different tag information.

The entries of the PTAG are invalidated by executing the TLBW instruction for each
entry. The EntryLo register must be set to all zero’s as its contents are written to the
PTAG. Writing all zero’s to the register assures that the valid bit for the entry will not be
set when the TLB entry is written.
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The EntryHi register is used to write the VTAG portion of the TLB. The initialization of
the VTAG must assure that none of the three sets of a given entry contains the same tag
information. The following sequence shows an example of how this can be
accomplished.

1) Load EntryHi with all zero’s.

2) Write EntryHi to set 0 of a given index.

3) Increment the Virtual Page Number (VPN) field of EntryHi by 1.

4) Write EntryHi to set 1 of the same index.

5) Again increment the Virtual Page Number (VPN) field of EntryHi by 1.
6) Write EntryHi to set 2 of the same index.

This sequence will assure that an interrupt does not occur when accessing the TLB for
the first time due to multiple sets having the same value.

6.5 R8000 Microprocessor Functional Characteristics

The following list of characteristics must be understood when attempting to perform a
boot-up procedure on the R8000 Microprocesor. Each characteristic is explained and a
solution is offered.

- Non-Cachable instruction fetches change the state of the instruction cache.
When loading instructions from unmapped address space virtual address bits 61:59 are
encoded to contain the coherence protocol. For uncached instructions the value of virtual

address bits 63:59 can be one of two values:

63 62 61 60 59

1 0 0 0 0 WriteGatherer for Graphics
10010 NormalMode-Uncached Sequential

As shown above, 10010 forces the uppermost hex value of the address to 9h, while 10000
forces the value to 8h. If the uppermost value is 8h, the instruction cache is checked and
if the value is there an instruction cache hit occurs. A miss causes the instruction cache
hardware control logic to force the state of bit 60 to a logical one, causing the access to
become uncachable sequential. Once the instruction is fetched and brought into the
instruction cache the entry is executed again. Executing each instruction twice eliminates
the state change from occurring. An access to 8000_xxxx_0xx_xxxx causes the access to
be non-cachable. The first execution causes an instruction cache miss but the instruction
is held in the cache. The second execution of the instruction results in a hit and does not
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corrupt the state of the streaming cache.

- Non-Cachable data fetches change the state of the data cache.

Uncached data references use the data cache as a buffer. Uncached data is placed in the
cache and marked invalid. Uncached data references can happen anytime and do not
have any relationship to when the data cache is invalidated.

The data cache must be invalidated each time a page is converted from cachable to non-
cachable. Data loads from the ROM must not be performed until after the data cache has
been invalidated. If during power-up the data cache happens to contain the address
which is being accessed the invalid data associated with that data cache location will be
read as opposed to the location in the ROM.

- Non-cachable data loads which check the tag address or tag state information corrupt
the streaming cache location to which the data was mapped. This location may or may
not be the same as the location which the tag controls.

The data and corresponding set address must be written into each of the tags and
corresponding state in both tag RAM’s and then read back to assure each is functioning
correctly. As with the non-cachable fetch routine explained above, the entire test should
be run twice and the results ignored on the first pass. This also assures that the code will
fit into the 16 KByte direct mapped instruction cache.

The instruction reads will modify the values placed in set 3 in some of the tags. To avoid
these modifications the entire test should be run on sets 0, 1, and 2 by writing to all
locations in these sets and then reading all locations back. The test of set 3 can then be
run by writing to each location in set 3 and then immediately reading it back before the
location can be potentially modified by another read.

The other solution for avoiding these modifications is to write the values to all four sets
and then read them back in a particular order which begins with the location in set 3
which reads through itself and the other 63 locations which read through the same line
and expand from there. These locations are different between the tag RAM’s.
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- Dirty Bit Testing

While writes to the Tag RAM addresses are straight forward, writes to the Tag RAM
states are more complex. The method for writing the dirty bits to non-identical values
requires two writes; One for all of the sectors with the dirty bit clear, and another for the
remaining sectors with their dirty bits set. The write enable bits within the data are used
to accomplish this.

- Non-cachable Accesses put Data into the Streaming Cache
Between the time when a hard reset is performed until the intitalization procedure is
complete all data or instruction should be placed only in set 3 of the streaming cache. At

the conclusion of the boot procedure the condition should be removed so that all four
sets of the cache can be used.

6.6 Initialization Code Examples

The following routines contain examples for initializing the data and instruction caches,
tag RAM’s, streaming cache, and registers.
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/

****************************************************************\

* This file contains the initialization and startup code for *

* the R8000 Microprocessor.*
\***************************************************************/

*

#include "ml.h"

#include <asm.h>

#include <sys/regdef.h>

#include <sys/sbd.h>

#include <sys/cpu.h>

#include <sys/fpu.h>

#include <sys/loaddrs.h>

#include <sys/EVEREST/gda.h>

#include <sys/EVEREST/everror.h>

#include <sys/EVEREST/evconfig.h>

#include "ip2lprom.h"

#include "prom_leds.h"

#include "prom_config.h"

#include "pod.h"

#include "pod_failure.h"

#include "prom_intr.h"

#define CAUSE_NMI 0x08000000 /* Non-maskable interrupt
#define PROM_SR SR_CU1 |SR_FR|SR_PAGESIZE

#define SR_CUl 0x20000000 /* coprocessor 1 usable */
#define SR_FR 0x04000000 /* enable additional fp regs */
#define CO_TLBSET $0 /* Select set in set-associative tlb */
#define CO_TLBLO $2 /* Low half of tlb entry */

#define CO_UBASE $4 /* Base of user page tables */
#define CO_TRAPBASE $6 /* Base addr of exc. vectors */
#define CO_BADVADDR $8 /* Virtual address register */
#define CO_COUNT $9 /* Free-running counter */

#define CO_TLBHI $10 /* High half of tlb entry */

#define CO_SR $12 /* Status register */

#define CO_CAUSE $13 /* Cause register */

#define CO_EPC $14 /* Exception program counter */
#define CO_WORKO $18 /* Uninterpreted temp. register */
#define CO_WORK1 $19 /* Uninterpreted temp. register */
#define CO_PBASE $20 /* Base of kernel private page tables*/
#define CO_GBASE $21 /* Base of kernel global page tables */
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#define
#define
#define

#define

/* Four
#define

CO_WIRED $24
CO_DCACHE $28
$29

CO_ICACHE

ICACHE_LINE_CODE

/* Indices of tlb wired entries */
/* Dcache control register */
/* Icache control register */

addu zZero, zero, 2zero;
addu Zero, zero, Zzero;
addu Zero, zero, zero;
addu Zero, zero, ZzZero;
addu Zero, Zero, zero;
addu zZero, zZero, ZzZero;
addu Zero, zero, Zero;
addu Zero, zero, zero

icache lines per streaming cache line

FOUR_LINES_CODE
ICACHE_LINE_CODE;
ICACHE_LINE_CODE;
ICACHE_LINE_CODE;
ICACHE_LINE_CODE

\

~ s

/* 32 icache lines per 1k */
#define THIRTYTWO_LINES_CODE

#define
#define

#define
#define
#define

#define
#define

#define

#define

FOUR_LINES_CODE;
FOUR_LINES_CODE;
FOUR_LINES_CODE;
FOUR_LINES_CODE;

POD_STACKADDR
SAQ_INIT_ADDRESS

SAQ_DEPTH

BB_BUSTAG_ADDR

BB_PTAG_E_ADDR

FOUR_LINES_CODE

FOUR_LINES_CODE;
FOUR_LINES_CODE;

FOUR_LINES_CODE

0xa8000000000£c000
0x9000000018000380

32

/*
/*
/*
/*
/*
/*
/*
/*

.
I
I

I

0 */
4 */
8 */

12
16
20
24
28

*/
*/
*/
*/
*/

(128 bytes)

P g A

*/

P

/* 2 unused local
#CC register address */

SBUS_TO_KVU(0x18080000) /* bus tag

SBUS_TO_KVU (0x18100000)

BB_BUSTAG_ST SBUS_TO_KVU(0x180¢c0000)
BB_PTAG_E_ST SBUS_TO_KVU(0x18140000) /*

BTAG_ST_INIT

PTAG_ST_INIT

#
/%

0x000000000001£000

#

0x0000007c00000000

# address */
/* proc tag
even address */
bus tag state */
proc tag even

# state */
/* bus tag state
init value */
/* proc tag state

# init wvalue */
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.text
.set noreorder
.set at

#define GOTO_CHANDRA_MODE\

La k0, 8f; \
LI kl, Ox8fffffffffffffff; \
and k0, ki1; \
jr k0; \
nop; \
/*
* entry -- When the CPU begins executing it jumps
* through the power-on vector to this point.
* This routine initializes the processor and starts
* basic system configuration.
*/
LEAF (entry)
/*
* Check to see if we got an NMI. If so, jump to the NMI
* handler code.
*/
DMFCO (k0, CO_CAUSE) # Load the Cause register
and k0, CAUSE_NMI # Check for an NMI
bnez k0, bev_nmi # IF NMI, jump to NMI
# handler
nop
initialize:
dla k0, trap_table

DMTCO (k0,CO_TRAPBASE) /* init TrapBase register */

dli v0, PROM_SR
DMTCO (v0, CO_SR) # Put SR into known state
jal pon_invalidate_IDcaches#Invalidate I&D caches
nop
jal init_cpu # Set up the main processor
nop # (BD)
/*
* Clear the cache tags
*/
jal pon_invalidate_dcache# Invalidate dcache tags
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nop
Routine init_cpu
Set up the R8000's basic control registers and TLB.

For R8000, may need to add code for initializing Icache,
Dcache, COPO registers, SAQs, and Gcache.

LR R I

/

LEAF (init_cpu)
move s6, ra # Save return
# address

/* Initialize COP0O register. CO_TRAPBASE assumed setup
* before calling this rountine. */

dli v0, PROM_SR

DMTCO (v0, CO_SR) # Put SR into known state

DMTCO (zero, CO_TLBSET)# Clear TLBset

DMTCO (zero, CO_TLBLO)# Clear EntryLo

DMTCO (zero, CO_UBASE)

DMTCO (zero, CO_BADVADDR)# Clear VAddr

DMTCO (zero, CO_COUNT)# Clear Counts

DMTCO (zero, CO_TLBHI)# Clear EntryHi

DMTCO (zero, CO_CAUSE)# Clear interrupts

DMTCO (zero, CO_EPC) # Clear Exception Program Counter

/* No need to init Config reg. It is initialized by hardware at
reset. */

DMTCO (zero, CO_WORKO)
DMTCO (zero, CO_WORK1)
DMTCO (zero, CO_PBASE)
DMTCO (zero, CO_GBASE)
DMTCO (zero, CO_WIRED)
DMTCO (zero, CO_DCACHE)
DMTCO (zero, CO_ICACHE)

ctecl zero, fpc_csr # clear fp csrx

jal flush_tlb # Clear out the TLB
nop

jal flush_SAQueue # Initialize/flush SAQs
nop
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jal pon_initialize_scache# Initialize G-cache
nop

j s6 # Return to caller
nop
END(init_cpu)

LEAF (pon_invalidate_IDcaches) -
.set noreorder
.align 5 # first invalidate the

icache

THIRTYTWO_LINES_CODE; THIRTYTWO_LINES_CODE/* 2k */
THIRTYTWO_LINES_CODE; THIRTYTWO_LINES_CODE/* 4k */
THIRTYTWO_LINES_CODE; THIRTYTWO_LINES_CODE/* 6k */
THIRTYTWO_LINES_CODE; THIRTYTWO_LINES_CODE/* 8k */
THIRTYTWO_LINES_CODE; THIRTYTWO_LINES_CODE/* 10k */ -
THIRTYTWO_LINES_CODE; THIRTYTWO_LINES_CODE/* 12k */
THIRTYTWO_LINES_CODE; THIRTYTWO_LINES_CODE/* 14k */
THIRTYTWO_LINES_CODE; THIRTYTWO_LINES_CODE/* 16k */

3 pon_invalidate_dcache# now go do the dcache
nop
END (pon_invalidate_IDcaches)

/* Initialize DCache by invalidating it. DCache is 16KB, with

* 32Byte line, 28 bits Tag + 1 bit Exclusive + 8 bits Valid + 32
* Bytes Data. Need two consecutive writes to half-line boundaries
* to clear Valid bits for each line.

*/

LEAF (pon_invalidate_dcache)

.set noreorder

move t3, ra

1i vl, 16 # size of the half of Dcache line
jal get_dcachesize

nop

# vl: half line size, v0: cache size to be initialized
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dli t1l, POD_STACKADDR#
#
daddu t2, tl, vO #
#

Starting address for Dcache

initialization.

t2: loop terminator for each
cache line: mark it invalid

DMTCO (t1, CO_BADVADDR)
DMTCO (zero, CO_DCACHE) # clear all (4) Valid bits

dctw # write to the Dcache Tag
ssnop; ssnop; ssnop # pipeline hazard prevention
.set reorder
daddu tli, vl # increment to next half-line
bltu tl, t2, 1b# t2 is termination count
3 t3

END (pon_invalidate_dcache)

/* Initialize Store Address Queue by issuing (SAQ_DEPTH) Even and
* (SAQ_DEPTH) 0dd uncached-writes to two even and odd aligned
* local registers - 2 unused local CC register addresses used

*/

LEAF (flush_SAQueue)

.set noreorder
dli t0, SAQ_INIT ADDRESS # address to start (writing) at
1i tl, SAQ DEPTH # number of entries in the queue

1:

sd zero, 0(tO0) # write (even) 8 bytes

sd zero, 8(t0) # write (odd) 8 bytes

addi tl, -1

bnez tl, 1b

nop

3 ra

nop

.set reorder

END (flush_SAQueue)

LEAF (pon_initialize_scache)
.set noreorder
move s4, ra
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/* Write into 4 sets of the index, starting from set 0 */

2:

dli
14
14

dli
dli
dli
dli
1i

dli
1li

1i

sll
or

1i

or
or
or
1i

sd

sd

sd

sd
addu
daddu
daddu
daddu

daddu

addi

to,
tl,
tl,

v0,
vl,
t8,
t9,
al,
az,
a3,

s3,

t2,
t3,
tal,

tal,
taz,
ta3,
al,

tao,
ta0,
al,
a2,
taol,
t3,
tal,
taz2,

ta3,

a0,

0x900000001£c0£000
0(t0)
0(t0)

BB_BUSTAG_ADDR# bus tag address base
BB_PTAG_E_ADDR# proc tag address base
BB_BUSTAG_ST# bus tag state base

BB_PTAG_E_ST# proc tag state base

BTAG_ST_INIT# bus tag state init. value
PTAG_ST_INIT# proc tag state init wvalue -
0x01000000 # increment value for next set

# tag address.

0x010000 # increment value for address of

tl,

v0,

# tag address - next set

3 # shift index count into appropriate
# position

t2#

address of bus tag addr.

0x01cc00000# data to be written into set -

vl,
t8,
to,

4

#

# 0 of bus & proc
tag addr. (i.e. start from set 0)

t2# address of proc tag addr.
t2# address of bus tag state
t2# address of proc tag state

# set loop count

0(t3)# write into bus tag addr. -
O(tal)# write into proc tag addr.

0O(ta2)# write into bus tag state

O(ta3)# write into proc tag state

a3

s3

s3

s3

s3

-1

FH H I I H Ik

increment tag value to be written
to next set

incr. addr. of bus tag addr. to
next set

incr. addr. of proc tag addr. to
next set

incr. addr. of bus tag state to
next set

incr. addr. of proc tag state to
next set
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bgt a0, zero, 2b# are we done with all 4 sets?

nop
addiu tl, 1
ble ti, t0, 1b
nop
# done with no error
move v0, zero # zero retn -> no error
3 sd
nop
.set reorder
99:
#report error
.set noreorder
J s4
nop
.set reoxrder

END(pon_initialize_scache)
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CLOCK INTERFACES

The R8000 Microprocessor Chip Set contains dedicated clock interfaces for each
component in the system. The clock interface for the integer and floating point units are
identical. The clock interfaces for the integer, floating point, tag RAM, and streaming
cache SRAM modules are covered in the following sections.

The clock interface signals for the R8000 Microprocessor and R8010 Floating Point Unit
are connected as shown in Figure 7-1.
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7.1 R8000/R8010 CLOCK INTERFACE

Vee (3.3V)
10 OHM
VYCC_PLL -
LPF_OUT
680 K OHM
.~ .015vF .1 uF 6.8 uF
(Low inductance) . GND_PLL
75 MHz clock
EXT_CLK driver output CLK
10 OHM
330 OHM — SYNC_IN
SYNC_OUT ;

GND GND -

Figure 7-1 R8000/R8010 Clock Interface Connection Diagram -

CLK (Reference Clock) Active High Input

Master input clock to the Phase Lock Loop (PLL) circuitry of the R8000. The output of the
PLL is then used as the master clock for the chip. CLK is normally connected directly to
the ouput of the external clock driver. In most cases it is desirable to use the PLL
circuitry, but for those applications which to not wish to use the PLL, the clock drivers
should be connected to EXT_CLK.

EXT_CLK (External Clock) Active High Input
The EXT_CLK input allows the system designer to bypass the internal PLL of the R8000

and drive the chip directly from the system clock. When not in use this pin should be
tied to ground through a 330 ohm resistor.
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GND_PLL (Ground Phase Lock Loop)

Ground source for the phase lock loop circuitry. GND_PLL can be connected to
VCC_PLL through .1 microfarad and .015 microfarad capacitors in parallel. See figure
7.1.

LPF_OUT (Low Pass Filter Output) Active High Output

LFP_OUT is a special pin used to test the PLL circuitry during component test for
monitoring the status of the low-pass filter. LPF_OUT must be connected to VCC_PLL
through a 680K ohm resistor.

SYNC_IN (Synchronized PLL input) Active High Input

SYNC_IN is part of the PLL feedback path and must be connected to SYNC_OUT in
order for the PLL circuitry to work correctly. The pins are made avaliable externally to
allow the user to manually alter the phase of the PLL by lengthening the connection
between SYNC_IN and SYNC_OUT.

SYNC_OUT (Synchronized PLL input) Active High Output

SYNC_OUT is part of the PLL feedback path and must be connected to SYNC_IN in
order for the PLL circuitry to work correctly. The pins are made avaliable externally to

allow the user to manually alter the phase of the PLL by lengthening the connection
between SYNC_IN and SYNC_OUT.

VCC_PLL (Voltage Phase Lock Loop)

Voltage source for the phase lock loop circuitry. Connected to a regulated 3.3 volt source.
VCC_PLL can be connected to GND_PLL through .1 and .015 microfarad capacitors in
parallel.
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7.2 TAG RAM CLOCK INTERFACE

The clock interface for the even and odd bank Tag RAM's in the R8000 Microprocessor
Chip Set is identical. The following diagram shows how the vaious clock interface pins
are connected together.

PLLSEL
Vce PLLEN ———
330 OHM SELECTS CMOS PLL
QOJUMPERC)

PLLIN1 V V'V OTMPERO

' 330 OHM DISABLES PLL
PLLIN2 / ‘ 7

75 MHz clock GND
driver output CLK

330 OHM

GND

Figure 7-2 Tag RAM Clock Interface Connection Diagram

CLK (Clock Input) Active high Input

Clock input for the Tag RAM. The input frequency is 75 MHz. The clock can drive the
device directly, or function as an input to a phase lock loop based on the state of the
input pin PLLEN. See figure 7-2.

PLLEN (Phase Lock Loop Enable) Active High Input
Enable pin for the bi-polar phase lock loop. Assertion of PLLEN enables the phase lock

loop. Deassertion of this pin disables the phase lock loop and allows the input clock to
drive the device directly. See figure 7-2.
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PLLIN1 (Phase Lock Loop 1) Active High Input

There are two phase lock loop circuits on-chip. PLLIN1 is the 75 MHz clock input for the
CMOS phase lock loop. This pin should be tied to ground for normal PLL operation. See
figure 7-2.

PLLIN2 (Phase Lock Loop 1) Active High Input

PLLIN2 is the 75 MHz clock input for the Bi-Polar phase lock loop.This pin should be
tied high for normal PLL operation. See figure 7-2.

PLLSEL (Phase Lock Loop Select) Active High Input

There are two types of phase lock loop circuits inside the Tag RAM, one of which is used
for testing purposes. PLLSEL must be tied high for proper operation of the device. See
figure 7-2.

7.3 STREAMING CACHE CLOCK INTERFACE

The clock interface to the streaming cache Data RAM’s consists of twelve separate clocks
per data bank, 24 clocks in all. Six clocks are used for the upper 32-bit module and six
clocks for the lower 32-bit module for the even data bank. Six clocks are used for the
upper 32-bit module and six clocks for the lower 32-bit module for the odd data bank.
Each module contains 12 devices; eight 256K X 4 Data RAM’s, one 256K X 4 Parity RAM,
and three address buffers. Each clock drives two devices.

EU_CLKA (Even Upper Clock A) Active High Input
EU_CLKB (Even Upper Clock B) Active High Input
EU_CLKC (Even Upper Clock C) Active High Input
EU_CLKD (Even Upper Clock D) Active High Input
EU_CLKE (Even Upper Clock E) Active High Input
EU_CLKF (Even Upper Clock F) Active High Input

EL_CLKA (Even Lower Clock A) Active High Input
EL_CLKB (Even Lower Clock B) Active High Input
EL_CLKC (Even Lower Clock C) Active High Input
EL_CLKD (Even Lower Clock D) Active High Input
EL_CLKE (Even Lower Clock E) Active High Input
EL_CLKF (Even Lower Clock F) Active High Input
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Figure 7-3 below shows the clock connections to the upper and lower halves of the even
bank. Twelve other separate clocks interface to the odd bank in the exact same manner as

shown in figure 7-3.

EVEN BANK --- Upper 32 Bits*

o o o
o b TR

RI{IR[|R|IR|[R|IR][R}|R}|R
AlA|JA[IA|[[A||A]]|A||A] |A -
M| M| IM|[IM]| M| M} M|[IM| (M

20 e o

EU_CLKA

EU_CLKB

EU_CLKC

EU_CLKD

EU_CLKF
EU_CLKE

EVEN BANK --- Lower 32 Bits*

* Actual clock connections may be different than shown. The clock connections -
here are shown only as an example.

R|[R] [R][R] [R][R] [R][R] [R 23| [aB
Allal|allal|allal|allal |a DE 2P =
M| M| M| M| M| [M] M]||M]| M RE| [RE

Rl | R

o o] R

EL_CLKA

EL_CLKB

EL_CLKC

EL_CLKD

EL_CLKF
EL_CLKE

Figure 7-3 Streaming Cache SRAM Clock Connection Diagram
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ELECTRICAL SPECIFICATIONS AND MECHANICAL DATA

The following chapter contains electrical specifications and packaging information for
the R8000 Microprocessor, R8010 FPU, Tag RAM, and Streaming Cache Data RAM’s.

TFP User’s Manual 8-1



8.1 ELECTRICAL SPECIFICATIONS

The following sections lists the electrical specifications for each of the components in the
R8000 Microprocessor Chip Set. The electrical specifications for the R8000

Microprocessor and R8010 Floating Point Unit are exactly the same.

8.1.1 R8000 Microprocessor/R8010 FPU

SYMBOL PARAMETER RATING UNIT
Vce Supply Voltage -0.5t0+7.0 A"
VIN Input Voltage -0.5 to VCC+0.5 v
Vo Output Voltage -0.5 to VCC+0.5 v
Pp Allowable Power Dissipation | TBD W
Topr Operating Temperature 0to +70 °C
Tgtg | Storage Temperature -55 to +150 °C

Table 8-1 R8000/R8010 Absolute Maximum Ratings

SYMBOL | PARAMETER MIN | MAX | UNIT
Cin Input Capacitance -- 5 pF
Cck Clock Input Capacitance - 8 pF

Cour | Output Capacitance - - 8 pF
Vee Supply Voltage 3.135 | 3.465 v
Icc Supply Current! - 4.3 A
Vi Input High Signal Voltage 2.2 -- \"
\%18 Input Low Signal Voltage -- 0.8 A"
Vou Output High Signal Voltage 24 -- V@4ma
VoL Output Low Signal Voltage -- 04 V@8ma

Table 8-2 R8000/R8010 DC Electrical Characteristics

1. 15W @ 75 MHz, Vc=Max, all outputs switching
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SYMBOL | PARAMETER' MIN | MAX | UNIT
lep Clock Period 13.3 inf nsS
| Clock Pulse High 4 9 nS
oL Clock Pulse Low ! 9 nS

ts Setup Time? 2 - nS
by Hold Time | - nS
lcQ Clock to 0utput3 2 7 nS
luz Clock Output to High Impedance 2 7 nS
7 Clock to Output Low Impedance 2 7-- nS

Table 8-3 R8000/R8010 AC Timing Characteristics

1. All parameters are specified over the range 0-70 °C.

2. Setup and hold times assume a 3 nS rise and fall time between Vy and Vi and with
input pulse levels of 0 to 3.0V. Clock rise time is 1 nS between V| and Vy and with
pulse level of 0 to 3.0V. Input timing measuremtnt reference level is 1.5V.

3. Standard output loading of 50 pF with all outputs switching simultaneously. Output

timing measurement reference levels are 0.8V and 2.0V.

CLOCK __/x/“

tg |ty

/_\——

tc

OUTPUT

ax)

tcQ(min)

-

Figure 8-1 R8000/R8010 Setup, Hold, and Clock-to-Out Timing Parameters
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!
i

tcL

n..I_-

Figure 8-2 RB000/R8010 Clock and Tristate Timing Parameters

8.1.2 TAG RAM

SYMBOL PARAMETER RATING UNIT
Ve Supply Voltage -0.5 10 +7.0 A%
VN [nput Voltage -0.5 to VCC+0.5 ¥
Vo Output Voltage -0.5 to VCC+).5 Vv
Pp Allowable Power Dissipation 2 W
Topr Operating Temperature 0to +70 °C
Tstg | Storage Temperature -55 to +150 °C
Table 8-4 Tag RAM Absolute Maximum Ratings
SYMBOL | PARAMETER MIN | MAX | UNIT
Cin Input Capacitance - 5 pF
Cek Clock Input Capacitance - 8 pF
Cour | Output Capacitance - 8 pF

Table 8-5 Tag RAM DC Electrical Characteristics
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SYMBOL | PARAMETER MIN | MAX | UNIT
Ve Supply Voltage 475 | 5.25 v
Iec Supply Current! -- 570 mA
Viu Input High Signal Voltage 2.2 - A%
\%9 Input Low Signal Voltage -- 0.8 \%
Vou Output High Signal Voltage (except 2.4 - V@4ma

DATSA)
VoL Output Low Signal Voltage (DATSA) -~ 04 V@8ma
Vom | Output High Signal Voltage (DATSA)? 2.4 —- | V@15ma
VoL Output Low Signal Voltage (DATSA) -- 04 V@48ma

Table 8-5 Tag RAM DC Electrical Characteristics

1. 3W @80 MHz, Vc=Max, all outputs switching
2. These signals drive heavy capacitive loads. All are complementary outputs.

SYMBOL | PARAMETER! MIN | MAX | UNIT
tcp Clock Period 13.3 inf nS
tcy Clock Pulse High 4 - nS
tcL Clock Pulse Low 4 -- nS

tg Setup Time?2 (except ESA) 2 - nS
tg Setup Time2 (ESA) 3 -- nS
ty Hold Time 1 -- nS
tcQ Clock to Output3 2 7 nS
thz Clock Output to High Impedance 2 10 nS

tLZ Clock Output to Low Impedance 1 10 nS
Table 8-6 Tag RAM AC Timing Characteristics

1. All parameters are specified over the range 0-70 °C.

2. Setup and hold times assume a 3 nS rise and fall time between Vy and Vi and with
input pulse levels of 0 to 3.0V. Clock rise time is 1 nS between Vy; and Vg and with
pulse level of 0 to 3.0V. Input timing measuremint reference level is 1.5V.

3. Standard output loading of 50 pF with all outputs switching simultaneously. Output
timing measurement reference levels are 0.8V and 2.0V.
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OUTPUT

Figure 8-3 Tag RAM Setup, Hold, and Clock-to-Out Timing Parameters

tcp tcH | tcL
CLOCK _//—\_/

N
N an WW

tHz tLz

" .
-

ourrur D _

Figure 8-4 Tag RAM Clock and Tristate Timing Parameters

8.1.3 SYNCHRONOUS SRAM MODULE
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SYMBOL PARAMETER RATING UNIT
Vee Supply Voltage -0.5t0 +7.0 v
VIN Input Voltage -0.5to VCC+0.5 \Y
Vo Output Voltage -0.5to VCC+0.5 \Y%

Pp Allowable Power Dissipation | 10 A
Topr | Operating Temperature 0to +70 °C
Tstg | Storage Temperature -55 to +150 °C

Table 8-7 Cache RAM Absolute Maximum Ratings

SYMBOL | PARAMETER MIN | MAX | UNIT
Vee Supply Voltage 4.75 5.25 A"/
Vi Input High Voltage 2.20 5.25 \Y
\%9 Input Low Voltage -0.5! +.80 \%

Iy Inpue Leakage Current -- -- uA
Iio Output Leakage Current - -- uA
Icc Average Operating Current -- -- mA
Isp Standby Current - -- mA
Vou Output High Signal Voltage2 24 -- V@4ma
VoL | Output Low Signal Voltage> - 04 | V@8ma

Table 8-8 Cache RAM DC Electrical Characteristics

1. VIL = -1V Minimum for 3 nS per cycle
2.10H = -4.0 mA
3.I0L=8.0mA
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SYMBOL PARAMETER MIN MAX | UNIT
tCHCH | Clock Cycle Time 12.5 - nS
tCH Clock high Pulse Width 4.0 -- nS
tCL Clock Low Pulse Width 4.0 -- nS
tCHQV | Clock High to Data Valid 2.0 7.0 nS
tAVCH1 | Address Setup to Clock High 2.0 - nS
(AD15:ADO0)
tCHAX1 | Address Hold From Clock High 1.0 -- nS
(AD15:ADO0)
tAVCH2 | Address Setup to Clock High (DATSAXO, 2.0 -- nS
DATSAX1, DATSAY0, DATSAY1)
tAVCH2 | Address Hold from Clock High (DAT- 1.0 -- nS
SAX0, DATSAX1, DATSAYO, DAT-
SAY1)
tECHV | Module enable setup to clock high 20 - nS
tCHEX | Module enable hold from clock high 1.0 -- nS
tWVCH | Write enable setup to clock high 2.0 - nS
tCHWX | Write enable hold from clock high 1.0 -- nS
tGVCH | Output enable setup to clock high 2.0 -- nS
tCHGX | Output enable hold from clock high 1.0 -- nS
tDVCH | Input data setup to clock high 2.0 -- nS
tCHDX | Input data hold from clock high 1.0 - nS
tCHQLZ | Clock high to output low-Z 20 -- nS
tCHQHZ | Clock high to output high-Z 2.0 - nS

Table 8-9 Cache RAM AC Timing Characteristics
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CLOCK —f/_\_//ﬁ—l-\_//_\_
toveH | teHDX
DATA
tCHQY tcHQHZ
ﬂ HQLz
OUTPUT
DATA
tcHAx
tAVCH1
ADD
ABREES A
tAVCH2le—ste—» teHAX2
ATSAX [1:
. RSSEERE: RN R
tECHV tCHEX
twvcH » tCHWX
WRIT
c . AR A
tcvcH # tcHGx
UT
ONEHE ____

Figure 8-5 Cache RAM Setup, Hold, and Clock-to-Out Timing Parameters

8.2 MECHANICAL DATA

The following section contains the package pinout and device measurements for the

R8000 Microprocessor, R8010 FPU, Tag RAM, and synchronous cache SRAM.
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Location .. .Signal | Location .. .Signal | Location .. .Signal | Location...Signal | Location ...Signal | Location ...Signal
PV F—— Vee | B26..... TBUS<46> 3 02 S— Vss
A0S.......... TBUS<0> | B2S....TBUS<S0> H30.....ccnnvinnn Vss
AO07.......... TBUS<6> B30........ TBUS<54> H32....ovveeiine Vss
A09........ TBUS<12> B32....... TBUS<58> H34......vcvven Vss
All....... TBUS<16> B34...... TBUS<62> H36.......conee. NC
Al3... . TBUS<20> B36........ TBUS<66> H38.....ovmreens Vss
AlS........ TBUS<24> B38........ TBUS<T2> H40.................... Vee
Al7.. ... TBUS<28> B40........ TBUS<78> H42............. JTAG_R
D20........ TBUS<33> E43......SYNC_OUT | G2l.....cccecvvrveunen Vee | H44............ JEAG_O
D22 TBUS<37> | E4S.......nnnnd CLK | G23....oveviinns Vee | Tl LDE<S>
D24........ TBUS<43> | F2......... LDE34> | G25 WVee | I3 LDE<36>
D26.....TBUS<47> | F4....... LDO<34> | G27...vviniins Vee | IS LDO<S>
D28...... TBUS<51> F6............. LDO<33> | G29......ccovninnnen Vee | JTunnndd LDO<4>
D30........ TBUS<S5> 3 T, Vss (€] I Vee § J39..... VCC_PLL
All..... TBUS<56> [ 0. X TBUS<10> D32..... TBUS<59> | Fl0.....cvvernnennn Vee | G33.iinnnnens Vee | J4l......... JTAG_S
A3l TBUS<60> Cll........ TBUS<17> D34..... TBUS<65> ) 3 b S Vss G35.iiiies Vee | J43...e. FCCR
A3S........ TBUS<64> Cl13....... TBUS<19> D36........ TBUS<69> | Fl4.......ennns Vee | G37........ FVALID# | J45....ADDRE<17>
A37...... TBUS<68> Cl15........ TBUS<23> D38........ TBUS<73> | 3 1 S Vss 6. 2AU— Vee | K2 LDE<37>
Al9..... TBUS<74> Ci7........ TBUS<27> D40........ TBUS<T?> | Fl8....ccuiviennns Vee | G4l......... SYNC_IN | K4....... LDO<38>
Adl......... TBOE# | C19........ TBUS<31> D42 RESET# | F20. Vss G43.....ccvene JTAG_I | K6............ LDO<6>
Ad3...ne Vee | C2l..... TBUS<35> D44.............. X _SDO | F2.....ieeuinnes Vee | G4S........... JTAG_C | K8..cocormriinnns Vss
A4S Vss | C23 TBUS<39> Eliriiininns Vss F24 Vss H2 LDE<4> | K38...... GND_PLL
B2 s Vss | C25....... TBUS<45> | S TR IDE<2> | F26...nenn. Vee | H4o.......... LDO<36> | K40.......ccveen. Vss
B4.......... LDO<32> C27......TBUS<49> | ES............... LDO<1> | F28.....oeiennes Vss | H6............ LDO<35> | K42.......... FCCL
B6............ TBUS<2> C29........ TBUS<S53> SO TBUS<1> | F30...iiinrennee A/ I ; - Vee | K44....ADDRE<16>
BS........... TBUS<8> C3l........ TBUS<ST> | S TBUS<S> | F32....ee Vss H10........... LDE<32> | Ll........ LDE<38>
B10........ TBUS<14> C33........TBUS<61> Ell........ TBUS<9> | F34........ceeeeeee Vee | HI2u.iininnnns Vss | L3 LDE<6>
BI12....... TBUS<18> C35........ TBUS<63> Ell........ TBUS<13> | F36.....ccuvivuunecs Vss Hil4. Vss | LS LDO<8>
Bi4...... TBUS<22> C37........ TBUS<70> | ElS.....ieennns Vss | F38.ncnn Vee | HI6...oviennns Vss | Oy S LDO37>
B16........ TBUS<26> C39........ TBUS<76> | 55 U Vss | F40.......cniennd Vss 2§ 8- RO— Vss L39..irininenns Vee
B18........ TBUS<30> C4l........... FPINTR# E19....ccvriinns Vee | F42....... EXT_CLK | H20..............e Vss LA1...ADDRO<17>.
B20........ TBUS<34> Cd3...rrenrcern Vss | E2l..iinnnns Vss | FMd....... LPF_OUT | H22................ Vss L43....ADDRO<16>
B2.... TBUS<38> C45 Vee | E23 TBUS<41> | Gl............ LDE<35> | H2A.................. Vss LAS5....ADDRE<15>
B24....... TBUS<42> D2.......... LDE<33> | E2S....civeninenn Vss G3..ovviriaee LDE<3> | H26.................. Vss M2............. LDE<7>
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Location .. .Signal | Location ...Signal | Location...Signal | Location .. .Signal | Location ...Signal | Location ...Signal

M4........ 1DO<41> Y44......ADDRE<6> AP2.......... LDE<55>
M6........... LDO<39> | T40........cconnees Vec | AAl... LDE<14> | AET....ccvinnns Vss | AJ43.....ESAO<O> | AP4.... LDO<23>
MS8...oiins Vee T42...ADDRO<10> | AA3..... LDE<45> APS.......... LDO<S55>
M3B....inen Vss | T44...ADDRE<10> | AAS...... LDO<14> APS......oreenn. Vss
M40........coonne Vee | Ul...... LDE<11> | AAT....enn Vss AP38.....eann Vss
M42...ADDRO<15> | Us......... LDE<42> | AA39.......cs Vee AP40........conene Vss
M44.. . ADDRE<14> US..ooonrnan LDO<43> P V. T ) PUR— Vss AP42.......... DEQSE#
Nl LDE<8> | Ul.covrnrnvirrnnens Vss | AA43..ADDRO<S> AP4M.......... ENQLE#
| K S LDE<39> | U39.....ccovmuiunnnes Vee | AA45..ADDRE<S> | AF6................. Vee | AK4D............... Vss | ARl.... LDE<24>
N5 LDO<9>

N LDO<7>

N39...oiiians Vee

N41...ADDRO<14>

N43.... ADDRO<13>

N45...ADDRE<13>

Pl LDE<40> | /- SO RN Vss AB42...ADDRO<4> | AG3....... LDE<S0> | AL39................ Vee AR4S......... ENQLP#
P4......... LDO<II> | V38...inne Vss | AB44...ADDRE<4> | AGS......... LDO<18> | ALAdl......eene. Vss | AT2...... LDE<25>

P42...ADDRO<12> | Wi...... LDE<I2> | AC39........c.c. Vee | AG4S........ WEE<I> | AMG......... LDO<22> | AT4............... Vee
P44...ADDRE<IZ> | Ws..... 1LDO<44> | AC41...ADDRO<3> | AH2......... LDE<19> | AMS.................. Vee | AT42....MCHSAO1
Rl LDE<41> | Wl Vss | AC43..ADDRO<> | AHA...... IDO<49> | AM38............. Vss | AT44.......... DEQSO#
)1 T LDE<9> | W39.....erennn Vee | ACA4S...ADDRE<3> | AH6......... LDO<S1> | AM40................. Vee | AUlL..... LDE<57>
R3ciiinnn LDO<42> AU3....... LDE<26>
| Vss AUS......... LDO<58>
R39......orcrrines Vee AUT....... LDO<59>
Rél.iiriiinns Vss | Y. LDE<13> | ADS................. Vee | AH42......ESASELO | AN3.... LDE<23> | AU39.....MCHVSO
R43...ADDRO<11> | Y4........ LDO<45> | AD38............... Vss | AH4M4......... WEE<0> | ANS........ LDO<53> | AU4l...MATCHO#
R45.....ADDRE<11> | Y6....cuernnns Vee | ADMO................. Vee | All...... LDE<S1> | ANT...... LDO<24> | AU43...MCHSAEO
AJ3......... LDE<20> | AN.......ccnneee Vee | AU4S....INTMODE

ANA4lL........ ENQLO# | AV2..... LDE<58>

AN43........ DEBUGH | AV4..... LDO<27>

& T Vee | Y42...ADDRO<6> | AE3..... LDE<17> | AJ39.......n. Vee | AN4S.......... UPDO# | AV6........ LDO<28>
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Location .. .Signal | Location .. .Signal | Location .. .Signal | Location...Signal | Location ...Signal | Location .. .Signal

AVS.....ieenns Vss | AW33................ Vee | BAI3...TAGE<17> | BB38..INDEXE<4> | BDI18....TAGO<9>
AV10........ LDE<31> | AW3S............. Vee | BAlS........... Vss | BB40.INDEXE<2> BD20.....TAGO<7> | BEA4S.......... Vis
AVI2..ns .Vss | AW37.INDEXE<O> | BAl7.......... Vee | BB42..MCHVSE3 BD22......TAGO<S5>
AVH4.....a. Vss | AW39........... Vee | BAD9........... Vss | BB44..MCHVSE2 BD24...... TAGO<3>
P\’ [ R—— Vss | AW41..MCHVSO1 BA2L..ccinad Vss | BCl....ueene. Vee | BD26......TAGO<1>
AV18 AW43...MCHSTE0 | BA23....TAGE<3> | BCi............ Vss BD28INDEXO<16>
AV20......cmnenn Vss | AW4S......MATCH# BA2S.....voiiin Vss | BCS...... LDO<31> | BD30INDEXO<14>
AV22..iins Vss | AY2.... LDE<28> { BA27........... Vee | BCT.......... PMODE | BD32INDEXO<12>
AV24.....is Vss 1 AY4....LDE<29> | BA29........... Vss | BC9.....TAGO<19> | BD34INDEXO<10>
AV26........c..e... VS8 | AYG.........LDO<61> | BA3Il............ Vss | BCI1....TAGE<15> | BD36..INDEXO<8>
AV28.....oirenns Vss | AYS..ivivnene, Vee | BA33.INDEXE<7> BC13....TAGE<14> | BD38.INDEXO<S5>
AV30......corerernes Vss | AY10....comennen Vss | BA3S5.INDEXE<S> BC15.....TAGE<12> | BD40..INDEXO<2>
F.\ 4 b R—— Vee | BA37.INDEXE<3> BC17.....TAGE<10> | BD42.....DBSETO#
AV34.......inn Vss | AYi4............... Vss BA39..INDEXE<1> BC19........ TAGE<8> | BDM................ Vss
AV36......BDSETE# AY16........ruene. Vee | BA41...MCHVSO3 | BC21
AV38....inns Vss | AYI8.......... Vss BA43...MCHVSEl | BC23..... TAGE<4> | BE3........... Vee
AV4Q..........onnn. Vss | AY20........ Vee | BA4S....MCHVSEO | BC2S..... TAGE<1> | BES..... LDO<63>
AV42...MCHSTOO0 | AY22......... Vss | BB2.... LDE<30> | BC27.INDEXE<16> | BE7.....TAGO<21>
AV44... MCHSAE1 | AY24..........Vcc | BB4...... LDE<62> | BC29.INDEXE<14> | BE9.....TAGO<18>
BC31.INDEXE<12> | BE1l...TAGO<16>
BC33.INDEXE<10> | BE13...TAGO<14>

BC35..INDEXE<9> | BE1S5...TAGO<12>

AWT......... LDO<29> | AY32............ Vee | BBI12...TAGE<16> | BC37..INDEXO<6> | BE17...TAGO<10>
AWY......... LDE<63> | AY34........... Vss | BB14....TAGE<13> | BC39..INDEXO<3> | BEI}S9.....TAGO<8>
BB16.....TAGE<11> | BC41..INDEXO<0> | BE2I.....TAGO<6>

AW13. .. Vee | AY38.....oveene Vss | BBIS.....TAGE<9> | BC43................ Vss | BE23.....TAGO<4>

AW1S......ne Vee | AY40............ Vee | BB20......TAGE<7> | BC4S............ Vee | BE2S.....TAGO<2>
AW Vee | AY42...MCHVSO2 | BB22.....TAGE<5> | BD2............ Vss | BE27......TAGO<0>
AWI9................ Vss AY44.... MCHSTE!] BB24......TAGE<2> | BD4......... LDO<62> | BE29.INDEXO<15>
BAl.......... LDE<60> | BB26.......TAGE<O> | BD6............. PERRO | BE31.INDEXO<I13>
AW23.....nnes Vee | BA3..... LDE<61> | BB28.INDEXE<15> | BDS....TAGO<20> BE33.INDEXO<11>
AW2S....ocinnne Vee | BAS.... LDO<30> | BB30.INDEXE<13> | BD10...TAGO<17> BE35..INDEXO<9>
AW2T...omeirennns Vee | BAT.enas {NC | BB32.INDEXE<1i> | BDI12..TAGO<15> BE37..INDEXO<7>
AW29......oceene Vce | BA9....TAGE<21> | BB34..INDEXE<8> | BD14...TAGO<13> | BE39..INDEXO<4>
AW3l..............Vec | BA1l...TAGE<19> | BB36..INDEXE<6> | BDI6....TAGO<11> | BEA4L...INDEXO<1>
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Location .. .Signal | Location ...Signal | Location .. .Signal | Location .. .Signal | Location...Signal | Location .. Signal
A03 Vee { B26 TBUS<46> D4........... LDE<i> | E27..vvvervnnneee Vss [€ 1 TSR LDO<3> H28......ccovrereen Vss
AOS.......... TBUS<0> B28........ TBUS<50> Dé............ TBUS<3> E29.....ccovciiriiienen Vce GT.overeree LDO<2> H30.....ccocecrrenee Vss
A07.......... TBUS<6> B30.......TBUS<54> Ds........... TBUS<?> E3leinnin, Vss GY..oovvnnrnnee LDE<O> | H32...ccoovvvcnan Vss
A9........ TBUS<12> B32........ TBUS<58> D10.......TBUS<11> E33........ TBUS<67> | Gll......cvevnnnnes Vee H34......cccovveenneee Vss
All........ TBUS<16> B34........ TBUS<62> DI12....... TBUS<15> E35......... TBUS<71> | Gl3....covvvccene Vee | H36........coce. NC
Al3d..... TBUS<20> B36........ TBUS<66> Di14........ TBUS<21> E37........ TBUS<75> | GIS.cvrine Vee | H38..oeevees Vss
AlS........ TBUS<24> B38........ TBUS<T> Dis........ TBUS<25> E39......... TBUS<79> | Gl7...cvvvncennns Vee | H40.........ceonees Vee
Al........ TBUS<28> B40........ TBUS<78> Di1s........ TBUS<29> EAl............... X_SDI Gl19...oeerrrernnne Vee | H42............. JTAG_R
Al9........ TBUS<32> B42.....eennd NC D20........ TBUS<33> E43....... SYNC_OUT | G2l.....c.occvvcernes Vec | H4............. JTAG_ O
A2l........ TBUS<36> B44 Vss D22 TBUS<37> EA4S...ovveerenenns CLK G23...ooeicrnenne Vee | Mo LDE<5>
A23...... TBUS<40> Cluiceereennns Vee D24....... TBUS<43> F....coeeuen LDE<34> G25..ooeeirreene Vee | BB LDE<36>
A25........ TBUS<44> C3 Vss D26...... TBUS< 47> F4....... LDOB4> | G27..vreennens Vee | I5unnnnd LDO<5>
A27....... TBUS<48> CS.neeeereeen LDO<0> D28...... TBUS<S1> F6............. LDO<33> | G29...oovcinnes Vee | I LDO<4>
A29....... TBUS<52> Clveeen TBUS<4> D30........ TBUS<55> F8.oviernrnnrenins Vss | G3loeiniicnnnee Vee | 139..... VCC_PLL

All...... TBUS<56> Q... TBUS<10> D32..... TBUS<59> Fl10....cconvirainnns Vee G333 Vee | J4l......... JTAG_S
A3l TBUS<60> Cll........ TBUS<17> D34....... TBUS<65> Fl2.iiiiciienes Vss | G35 Vee | J43 .DEBUG_
AlS........ TBUS<64> C13........ TBUS<19> D36........ TBUS<69> Fl4....ernn Vee G37...ccven. FVALID# J4S....onereen SDO<0>
AdT....... TBUS<68> Cl1s........ TBUS<23> D38....... TBUS<73> | 33 1SR Vss | G39..cooovnecvivennne Vee | K2............. LDE37>
Al39........ TBUS<74> Cl17........ TBUS<27> D4O........ TBUS<77> Fl8...oovivivenines Vee G41.......... SYNC_IN K4............ LDO<38>
Adl............. TBOE# | C19....... TBUS<31> D42 RESET# | F20. Vss | G43.............. JTAG_I K6.............. LDO<6>
Add.inen Vee | C2l........ TBUS<35> D4.......... X_SDO F22.cvoinininne Vee

A4S Vss C23 TBUS<39> El.verrrcrirenneees Vss F24 Vss

B2 Vss C25. TBUS<45> B3 LDE<2> F26...iiicennne Vee

B4...... LDO<32> c21....... TBUS<49> | 2\ S LDO<I> | F28.....cconvvnns Vss

B6............ TBUS<> C2........ TBUS<S3> El.... TBUS<1I> | F30.....covmnveneen Vee | H8..ooooccviinnns Vee | K#.......... SDO3>
BS............ TBUS<8> C3l....... TBUS<57> B9............. TBUS<S> | F32...vvnn Vss H10........... LDE<32> | Ll............ LDE<38>
B1O........ TBUS<14> ... TBUS<61> Ell..ou) TBUS<9> | F34....cciierin Yee Hi2 Vss | L3 LDE<6>
Bl2........ TBUS<18> C35........ TBUS<63> El3...... TBUS<13> | F36....cccvevvrennn Vss Hl4.....coiivceenee Vss LS. LDO<8>
Bl4...... TBUS<22> C37........ TBUS<70> S 5 TR Vss F38...covvecrecninne Vce H16....cocoorrricvranne Vss LT LDO<37>
B16........ TBUS<26> C39........ TBUS<76> ElT. i Vss F40......cccorveruruens Vss H18...oovevcenirann Vss L39....circreriiaran Vee
B1S........ TBUS<30> [ 075 DOURuR—— NC | E19.....eunenes Vee F42.......... EXT_CLK | H20......uns Vss LAl............ SDE<(>
B20........ TBUS<34> C43 Vss E21 Vss F44........... LPF_ OUT | H22...ccoovevvneneas Vss L43.......... SDE<32>
B22........ TBUS<38> C45 Vee | E23 TBUS<41> | Gl............. LDE<35> | H2M........ccocccunnint Vss LA4S....oenn. SDO<1>
BA4....... TBUS<42> D2......ce.e.e LDE33> | E25...ccoeivnccnnas Vss G3 LDE<3> | H26 Vss M2............. LDE<7>
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Location .. .Signal | Location .. .Signal | Location...Signal | Location .. .Signal | Location...Signal | Location ...Signal
AP2....... LDE<55>

AP4......... LDO<23>

AP6.......... LDO<55>

APS.......oicnns Vss

AP38........uee. Vss

AP4Q............ Vss

AP42........ SDE<43>

AP44.......SDO<4>

ARl........ LDE<24>

AR3........ LDE<56>

ARS......... LDO<56>

ART.......... LDO<57>

AR9....erenn Vee

AR4L........ SDE<44>

ARA43.......SDE<i>

AR4S.......SDO<11>

AT2........... LDE<25>

AT4......... LDO<25>

ATG.......... 1L.DO<26>

ATS.....cereraes Vee

AT38......BYPASS#

P42........ SDE<34> | Wi3...... LDE<12Z> | ACH].................. Vee | AG4S......... SPO<2> | AMS......... LDO<22> | AT40................... Vee
AMS.................. Vee | AT42...... SDE<13>
AM3S.........ces Vss | AT44........ SDO<43>
AM40................. Vee | AUlL..... LDE<57>
AMA42.....SDE<10> | AU3...... LDE<26>
AM44......SDO<41> | AUS......... LDO<58>
AN1..... LDE<54> | AUT....... LDO<59>
AN3.......... LDE<23> | AU%9......... LPO<3>
ANS......... LDO<53> | AU4L......... PMODE
ANT......... LDO<24> | AU43......SDO<44>
AN39....onn Vee | AU4S.......SDO<12>
AN41......SDE<11> | AV2.... LDE<58>
AN43......SDE<42> { AV4...... LDO<27>
AN4S.......SDO<10> | AV6.......... 1DO<28>
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Location .. .Signal | Location ...Signal | Location ...Signal | Location ...Signal | Location...Signal | Location ...Signal
AVE....rininns Vss | AW33.....oienns Vee | BA13.....SDE<62> | BB3S..... SDE<47> | BDIS......SDO<26> BEA43.........ceet Vee
BB40........ SDE<46> BD20......SDO<25> BEAS.....cvvivinen Vss
BD22......SDO<24>
BD24......SDO<23>
BD26......SDO<22>
BD28......SDO<21>
BD30........ SDO<20>
BD32........ SDO<19>
BD3........ SDO<18>
AY6.......... LDO<61> | BA3l............... Vss BCl1........ SDE<61> BD36........ SDO<17>
J\'jp’ . S— Vss | AYS....ivinine Vee | BA33... SDE<17> | BC13...... SDE<29> BD38........ SDO<47>
AV30.....eins Vss | AY1O0..........e. Vss BA3S........ SDE<16> | BCIS........ SDE<28> BD40........ SDO<14>
AV Vss | AY12...vnnieen Vee | BA3T... SDE<15> BC17........ SDE<27> BD42............. FCCL
AV34......iiinns Vss | AYM........nd Vss BA39........ SDE<14> BC19........ SDE<26> BD4M................ Vss
AV36.............. FCCR AY16.................. Vee | BA4dlL...... LPO<0> BC21........ SDE<25> BEl.....ne Vss
AV3S...iiens Vss | AY18.....cnes Vss BA43.........LPE<2> | BC23........ SDE<24> BE3.....coooienin Vee
AL | H—— Vss | AY20.......ccoennne Vec | BA4S........ LPE<3> | BC2S...... SDE<54> BES.......... LDO<63>
AV4L......... DEQSE# | AY22......coeeeeee Vss BB2.......... LDE<30> | BC27....... SDE<53> | BET7........ PERRE
AVA4....... SDO<13> | AY24.......covunee Vee | BB4....... LDE<62> | BC29........ SDE<52> BE9.......... SDO<62>
AWL..... LDE<27> | AY26......cccoonnne Vss BB6........... ENQLE# | BC3l..... SDE<51> | BEll...... SDO<61>
AW3......... LDE<59> AY28.....iirinns Vee | BBS......... PERRO | BC33....... SDE<50> BE13........ SDO<60>
AWS....o. LDO<60> | AY30......c.eens Vss BB10........ SDE<31> | BC3S... SDE<18> | BEIS......SDO<5%>
AWT......... LDO<29> | AY32.....ene Vec | BBIl2..... SDE<30> BC37........ SDO<16> | BE17......SDO<58>
AWO......... LDE<63> P\ ¢ T— Vss BBIM........ SDE<60> BC39........ SDO<46> | BE19........ SDO<57>
AWl Vee P\ & T— Vee | BBI6....... SDE<59> BCA4l........ FPINTR# BE21........ SDO<56>
AW13.......nne Vee | AY38....ieiennd Vss BB1S........ SDE<58> BC43.........cccoennns Vss | BE23....... SDO<S5>
AWI1S....ivnes Vee F.\ € RO— Vec | BB20........ SDE<S7> BC4S........nuune Vee | BE2S.... SDO<54>
AWLT....vvrinnneen Vee AY42.......... LPO<I> BB22........ SDE<56> BD2.....cccocnininnn Vss BE27........ SDO<53>
P\' 1 T Vee | AY4M............. FOE# | BB24........ SDE<23> BDM4.......... LDO<62> | BE29........ SDO<52>
AW2l......coiins Vee | BAl..... LDE<60> | BB26........ SDE<22 | BDe........... ENQLO# | BE3l...... SDO<S1>
AW23....oiinnns Vee | BA3.... 1L.DE<61> | BB28.....SDE<21> | BDS...... SDO<63> | BE33......SDO<50>
AW2S.....ocrennnen Vee BAS......... LDO<30> | BBY........ SDE<20> BDI10........ SDO<30> | BE3S........ SDO<49>
AW ..o Vee | BAT...nenee NC | BB32..... SDE<19> | BDI2....... SDO<29> | BE37..... SDO<48>
AW29.....oovviinn Vee BA9......iirn NC | BBM........ SDE<49> BDI14....... SDO<28> | BE39........ SDO<15>
AW3l..vrieenes Vee | BAll.... SDE<63> BB36........ SDE<48> BD16........ SDO<27> | BEA4l...... SDO<45>

Table 8-11 R8010 Floating Point Unit Pinout
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Figure 8-8 Tag RAM Package
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Location .. .Signal | Location ...Signal | Location ...Signal | Location...Signal | Location ...Signal | Location ...Signal
. VR Vss B12....DATSAY<1> D16 Vee | 12 OE# | Ni4....... PLLIN2 | R8....iiisd TDI
Ao Vee | Bl3d.......MATCH# El Vec | 13
Ad...iia Vss { Bl4....MCHSA<1> E2...cinsd TAG<6> | Jld.....civrveninnn NC | Nl6....oorrrcirens Vee | R0 TRST
AS.iiiiiein Vee
. (S Vee
AT Vss
A8t Vss
A9. Vee | C3 .. TAG<12> | Fl..ererannnns Vee K3...... RWSA<O> | PS...... INDEX<3> | Rl1S........... PLLIN1
A0 Vee | Ch............ TAG<14> | R.......... TAG<4> | Kl4.......cnueeee. NC P6........... INDEX<1> | Ri6................. Vss
All Vee | CS TAG<16> | F3......... TAG<S> | KIS..onviinnnad NC | P1..... SECTOR<I> | Tl Vee
Al2. Vee | C6 ..TAG<18> | Fl4.......cuuu. NC | Kl6..ivirineiinnnn Vss | PRl TCK | T2 Vss
Al3... [ o R ..Vss | F1§ NC | L1 Vss | PO TDO | T3uvssisinonses Vee
Al4 Vss | C8 ESA<0> | F16. Vss | L2 STRD# | PlO.......cueuned CE# | T4...crvvirvinnns Vss
PN B FR—— Vee | ©9..DATSAW#<0> TS...
PN [ F— Vss C10.. DATSAW#<1> [ € 7 AU, TAG<2>> | L4 NC | P12 NC Té. Vee
Bl Vee C11.. DATSAZ#<0> (€ RO TAG<3> | LlS.icnnnnend NC | P13........ VSUB | TT.ciinirns Vss
B2...eee TAG<11> | Cl2..DATSAZ#<1> [€) T e NC L16...ccvirenninnen Vss P14 NC | T8 Vee
B3...e TAG<13> | Cl3....MCHSA<O> G1S NC M1 Vss 14 s . NC | Tt Vss
B4....... TAG<15> | Cl4....MCHVS<I> 22 1 S Vss | T10.caensd Vss
BS...oooniins TAG<17> | C15....MCHVS<2> Rl Vss | Tliennee Vee
B6............. TAG<19> | Cl6 Vee R2........ INDEX<7> Ti2..... RGOENZ
R3.......... INDEX<6> T3 Vee
MIl6.......ocvumine. Vss | R4....... INDEX<4> | Tl4......venne Vss
). . Vss | Rs...... INDEX<2> | TI1S.iorceinnnns Vee
N2....... INDEX<11> | R6....... INDEX<0> | Tl16..cimirvriunnnas Vee
N3........ INDEX<10> | R7.....SECTOR<0>
Table 8-12 Tag RAM Unit Pinout
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GND
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DATSAX<0>
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Figure 8-9 Streaming Cache SIM Module
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* All measurements in millimeters.
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Figure 8-10 R8000/R8010 Package Dimensions -- Top View
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HARDWARE INTERFACE

Chapter 9 defines the hardware interface for the R8000 Microprocessor, R8010 Floating
Point Unit, Tag RAM, and streaming cache data RAM’s. A (_) at the end of a signal name
denotes that the signal is active low. In this chapter the terms “Streaming Cache RAM”,
“Data RAM’s”, and “Second Level Cache SRAM” all have the same meaning. Figure 9-1
shows how the different components of the R8000 Microprocessor Chip Set connect
together.
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Data
Buffers

Tag RAM Control

R8000 Microprocessor
Chip Set

Cache
Controller ASIC

CACHE
CONTROLLER

Data Path Control

To
Data
Buffers

A

TBus

' Tag Tag '
Index, Index,
TAG Sector, Sector, TAG
RAM Control Control RAM
(even) . By R8000 CPU (Odd)
Status Status
|
Data Address Address Data
Set Set
Address Address
Load gl g Load
STREAMING Data € % Data STREAMING
CACHE 8 & CACHE
SRAM (even) SRAM (odd)
-
R8010 FPU -
Store Data Store Data

|

Figure 9-1 R8000 Microprocessor Component Connection Diagram
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9.1 R8000 MICROPROCESSOR SIGNAL DESCRIPTIONS

The R8000 Microprocessor is a 591 pin device and interfaces to all other components in
the chip set. The following sections define the external pinout of the R8000
Microprocessor and are divided into specific component interfaces. Figure 9-2 shows the
functional pin groupings of the R8000.
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FCCL ——
FCCR ——
FPINTR. ——»»

R8000 Microprocessor

R8010 FPU

PERRO ——————p»

PERRE INTERFACE
TBUS[71:0] <:>
MATCHE_ — |

e —
M 0] ————————
EVEN TAG RAM
]| =i~
MCHSTE [1:0] NTEREACE
TAGE [21:0]
MATCHO_ — g
MCHSAO [1:0] ——
MCHVSO [3:0] ————— ODD TAG RAM
MCHSTO [1:0] —————|  INTERFACE
TAGO [21:0] <:>
LDE[63:0] # EVEN BANK DATA
LDO[63:0] s> ODD BANK DATA
CCREQ ———p»] CACHE
. CONTROLLER
roma | CQVIRQLLEE
CLK ——
EXT CLK ————
GND_PLL —————
VCC PLL ————— CLOCK
SYNCIN —— INTERFACE
JTAG_.TDI ———————
JTAG.TMS ———
JTAG.TCK ————— > JTAG
JTAG_.TRST —— =  INTERFACE
SDI —————— ]
INTLMODE ——— INITIALIZATION
RESET ————®  INTERFACE

DEBUG._
DEQSE_
DEQSO_
ENQLE_
ENQLO_
ENQLP_
FVALID_
PMODE
TBUS[79:72]
TBUSOE_

DBSETE_
ESAE [1:0]
ESASELE

INDEXE [16:0]

DBSETO_
ESAO [1:0]
ESASELO

INDEXO [16:0]
WEE_ [1:0]
ADDRE [17:0]

WEO_[1:0]
ADDRO [17:0]

IUREL_
SAQE_
SAQO_
VALIDOUT_

LPF_OUT
SYNC_OUT

JTAG_TDO

SDO

Figure 9-2 R8000 Microprocessor Signal Groupings

Table 9-1 shows a pin summary of the R8000 Microprocessor in alphabetical order.
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Pin ID Pin Name Active Level Connects To
Output Pins
ADDRE[17:0] Address Even High Even Bank Data
ADDRO[17:0] Address Odd High Odd Bank Data
DBSETE_ Dirty Bit Set Even Low Even Tag RAM
DBSETO_ Dirty Bit Set Odd Low Odd Tag RAM
DEBUG_ Debug Low R8010 FPU
DEQSE_ Dequeue Store Even Low R8010 FPU
DEQSO_ Dequeue Store Odd Low R8010 FPU
ENQLE_ Enqueue Load Even Low R8010 FPU
ENQLO_ Enqueue Load Odd Low R8010 FPU
ENQLP_ Enqueue Load Priority Low R8010 FPU
ESAE[1:0] External Set Address Even High Even Tag RAM
ESAOQO[1:0] External Set Address Odd High Odd Tag RAM
ESASELE Ext. Set Addr. Select Even High Even Tag RAM
ESASELO Ext. Set Addr. Select Odd High Odd Tag RAM
FVALID_ R8010 FPU Valid Low R8010 FPU
INDEXE[16:0] Index Even High Even Tag RAM
INDEXO[16:0] Index Odd High Odd Tag RAM
TUREL _ Integer Unit Release Low Cache Controller
JTAG_TDO Jtag Test Data Output High External Source
LPF_OUT PLL Low Pass Filter Test High External Source
PMODE Parity Mode High R8010 FPU
SAQE_ Store Adress Queue Even Low Cache Controller
SAQO_ Store Address Queue Odd Low Cache Controller
SDO Serial Data Out High External Source
SYNC_OUT PLL Feedback Loop High Sync_In pin of R8000
TBUS[79:72] TBus High R8010 FPU
TBUSOE_ TBus Output Enable Low R8010 FPU
VALIDOUT_ Valid Out Low Cache Controller
WEE[1:0]_ Write Enable Even Low Even BankData
WEO[1:0]_ Write Enable Odd Low Odd Bank Data
Input Pins
CCREQ_ Cache Controller Request Low Cache Controller
CLK Reference Clock (Uses PLL) High External Source
EXT_CLK Ext. Clock (Bypasses PLL) High External Source
FCCL FPU Condition Code Left High R8010 FPU

Table 9-1 R8000 Microprocessor Pin Summary

TFP User’s Manual




Pin ID Pin Name Active Level Connects To
FCCR FPU Condition Code Right High R8010 FPU
FPINTR_ R8010 FPU Interrupt Low R8010 FPU
GND_PLL Ground Source for PLL Low External Source
INTLMODE Internal Mode High External Source
JTAG_TCK JTAG Clock High External Source
JTAG_TDI JTAG Test Data In High External Source
JTAG_TRST JTAG Test Reset High External Source
JTAG_TMS JTAG Test Mode Select High External Source
LDE[63:0] Load Data Even High Even Bank Load Data
LDO[63:0] Load Data Odd High Odd Bank Load Data
MATCHE_ Match Even Low Even Tag RAM
MATCHO_ Match Odd Low Odd Tag RAM
MCHSAE[1:0] Match Set Address Even High Even Tag RAM
MCHSAOI[1:0] Match Set Address Odd High Odd Tag RAM
MCHSTE[1:0] Match State Even High Even Tag RAM
MCHSTO[1:0] Match State Odd High Odd Tag RAM
MCHVSE[3:0] | Match Virtual Synonym Even High Even Tag RAM
MCHVSO[3:0] | Match Virtual Synonym Odd High Odd Tag RAM
PERRE Parity Error Even High R8010 FPU
PERRO Parity Error Odd High R8010 FPU
RESET_ R8000 Reset Pin Low External Source
SDI Serial Data In High External Source
SYNC_IN PLL Feedback Loop High Sync_Out pin of R8000
VCC_PLL Voltage Source for PLL High External Source
Input/Output Pins
TAGE[21:0] Tag Address Even High Even Tag RAM
TAGO[21:0] Tag Address Odd High 0Odd Tag RAM
TBUS[71:0] TBus Interface High R8010 FPU/CC

Table 9-1 R8000 Microprocessor Pin Summary

9.1.1 R8000 Microprocessor to R8010 FPU Interface

This section defines the pins between the R8000 and the R8010 Floating Point Unit. The
pins are listed in alphabetical order.
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. DEBUG_ (Debug) Active Low Output

This signal indicates whether the results of a FP operation are written into the Floating
Point Register File when an exception occurrs. When DEBUG is active (0), a floating
point operation that raises the enabled exception does not write its result to the FPR. For
a disabled exception the FPR is updated with the appropriate substitution value.When
DEBUG is inactive (1), a floating point operation that raises an exception writes its
appropriate substitution value to the FPR regardless of whether the exception is enabled
or disabled. DEBUG_ is connected directly to the DEBUG_ pin of the R8010 FPU.

DEQSE_ (Dequeue Store Even) Active Low Ohtput

This signal indicates when an even 64 bit doubleword of data should be read from the
store data queue and the Dequeue Even Pointer updated. DEQSE_ is connected directly
to the DEQSE_ pin of the R8010 FPU.

DEQSO_ (Dequeue Store Odd) Active Low Output

This signal indicates when an odd 64 bit doubleword of data should be read from the
store data queue and the Dequeue Even Pointer updated. DEQSO_ is connected directly
to the DEQSO_ pin of the R8010 FPU.

ENQLE_ (Enqueue Load Even) Active Low Output

This signal indicates when an even 64 bit doubleword of data from the streaming cache
should be written into the load data queue and the enqueue load pointer incremented.
ENQLE_ is connected directly.to the ENQLE_ pin of the R8010 FPU.

ENQLO_ (Enqueue Load Odd) Active Low Output

This signal indicates when an odd 64 bit doubleword of data from the streaming cache
should be written into the load data queue and the enqueue load pointer incremented.
ENQLO_ is connected directly to the ENQLO_ pin of the R8010 FPU.

ENQLP_ (Enqueue Load Priority) Active Low Output

This signal indicates the order of execution between two loads to be enqueued. ENQLP

asserted indicates that the odd 64 bit doubleword should be enqueued before the even 64
bit doubleword. ENQLP_ is connected directly to the ENQLP_ pin of the R8010 FPU.
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FCCL (Floating Point Condition Code Left) Active High Input

This signal is the condition code generated by the left R8010 FPU execution unit. The
R8000 keeps track of the floating point operation, the CC destination, and the pipeline
stage. FCCL is connected directly to the FCCL pin of the R8010 FPU.

FCCR (Floating Point Condition Code Right) Active High Input

This signal is the condition code generated by the right R8010 FPU execution unit. The
R8000 keeps track of the floating point operation, the CC destination, and the pipeline
stage. FCCR is connected directly to the FCCR pin of the R8010 FPU.

FPINTR_ (Floating Point Interrupt) Active Low Input

This signal indicates that a floating point exception has occurred on either execution unit
and the enable bit of the FSR for that type of exception was active. FPINTR_ is connected
directly to the FPINTR_ pin of the R8010 FPU.

FVALID_ (FPU Valid) Active Low Output

This signal active indicates that the TBus has a valid FPU operation during the current
cycle. FVALID is connected directly to the FVALID pin of the R8010 FPU.

PERRE (Parity Error Even) Active High Input

This signal is generated by the R8010 FPU and is asserted when a parity error is detected
on the load data and load parity busses of the even bank. PERRE is connected directly to
the PERRE pin of the R8010 FPU.

PERRO (Parity Error Odd) Active High Input

This signal is generated by the R8010 FPU and is asserted when a parity error is detected
on the load data and load parity busses of the odd bank. PERRO is connected directly to
the PERRO pin of the R8010 FPU.

PMODE (Parity Mode) Active High Output

The PMODE pin determines whether odd or even parity checking and generation is to
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be performed by the R8010 FPU and is connected directly to the PMODE pin of the
R8010 FPU. When enabled, even parity is checked on the even and odd load data busses
of the R8010 FPU and is generated for the even and odd store data busses of the R8010
FPU for data going to the streaming cache.

TBUS [79:72] Active High Output

Part of the 80 bit TBus. These bits are output only and connect directly to the TBUS
[79:72] pins of the R8010 FPU and are used for transferreing data and operations to the
R8010 FPU. When TBUS [79:78] equals ‘10", the TBus is able to transfer two memory
specifiers and two floating point operations to the R8010 FPU. When TBUS [79:78] does
not equal “10’, the TBus is used for special operations such as integer stores and moves to
and from the R8010 FPU. TBUS [79:72] is valid whenever the FVALID_ signal is active.

TBUS [71:0] Active High Bi-Directional

This bi-directional bus connects between the CC, the R8000, and the R8010 FPU. The
function of each bit changes depending on which device is driving. Normally the CC
drives the TBus when reading or writing the tag RAM's or reading the Data RAM’s and
for general communication with the R8000. The R8010 FPU uses the TBus to transfer
Move data from the floating point register file (FPR) to the Integer Register File of the
R8000 as requested by the R8000. The R8000 uses the TBus for integer stores to the data
RAM’s, general communication with the CC and the R8010 FPU, and R8010 FPU to
R8000 move instructions. TBUS [71:0] connects directly to TBUS [71:0] of the FPU as well
as TBUS [71:0] of the Cache Controller. TBus connection between the CC and the R8010
FPU is by virtue of the fact the the R8000 communicates with both. There is no TBus
communication protocol between the R8010 FPU and the CC.

TBUSOE_ (Tbus Output Enable) Active Low Output
This signal is used as a tri-state enable for the TBus [71:0] pin connections to the R8010

FPU. TBUSOE_ is connected directly to the TBUSOE_ pin of the R8010 FPU. Two cycles
after TBUSOE_ is asserted the R8000 receives valid input data on the TBus.

9.1.2 R8000 Microprocessor to Even Tag RAM

This section defines the pins between the R8000 Microprocessor and the even tag RAM.
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The signals are listed in alphabetical order.

" DBSETE_ (Dirty Bit Set Even) Active Low Output

This pin is the dirty bit RAM write enable and is connected to the DBSETE_ pin of the
even tag RAM. The tag RAM contains a separate on-chip 16-bit wide dirty bit RAM
which contains the status of each of the sectors for each of the 4 ways of the tag RAM.
The dirty bit RAM is accessed on lookup cycles regardless of the state of the line. If the
access is a hit and DBSETE_ is active, the dirty bit is written one clock after the lookup is
done.

ESAE [1:0] (External Set Address Even) Active High Output

When a tag RAM lookup is performed, logic inside the tag RAM determines which of

the four ways compared correctly with the tag address on the bus and encodes this

information as a two bit value called the ‘match set address’. Oftentimes the R8000 will

perform the tag lookup many cycles before the corresponding write to the data RAM’s is -
done. When this occurrs there must be a mechanism to store the 2 bit set address value

for use during the actual write. The lookup is performed ahead of time and the result is

stored to the R8000 via the match set address (MCHSA) pins of the tag RAM. When the -
write is done this information is driven back through the tag RAM via the ESAE pins

and becomes the upper two bits of the even data RAM address of the second level cache.

ESAE [1:0] is connected directly to the ESAE [1:0] pins of the even tag RAM.

ESASELE (External Set Address Select Even) Active High Output -

This pin controls a multiplexor inside the tag RAM which allows the data set address for
the data RAM’s to be driven either directly from the tag RAM compare result logic or
from the ESAE pins. If ESASELE is asserted the ESAE [1:0] values are driven out to the
data RAM'’s. This pin is normally only asserted on write cycles when the tag RAM
lookup is performed before the corresponding write. ESASELE is connected directly to
the ESASELE pin of the even tag RAM.

INDEXE [16:0] (Index Even) Active High Output

These bits form the index to the even tag RAM. This bus is output only. In a four
Megabyte cache implementation the connections to the Tag RAM are as follows:

INDEXE [1:0] Not Used. To be left unconnected.

INDEXE [3:2] connect to SECTOR [1:0] pins of the even Tag RAM.

INDEXE [13:4] connect to INDEX [9:0] of the even Tag RAM.

INDEXE [16:14] connect to INDEX [12:10] of the even Tag RAM through hardware
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jumpers.

MATCHE_ (Match Even) Active Low Input

This signal is an output of the even Tag RAM. When the R8000 Microprocessor performs
a lookup cycle to the tag RAM a portion of the physical address is used as an index
which selects one of 2048 Tag RAM entries. Each entry contains all four sets of the four
way set associative even tag RAM. Assertion of the MATCHE_ signal by the tag RAM
indicates that the address on the bus compared to one of the four sets. MCHSAE [1:0]
below encodes which of the four sets compared. MATCHE_ is connected directly to the
MATCHE_ pin of the even tag RAM.

MCHSAE [1:0] (Match Set Address Even) Active High Input

These two bits are used on R8000 lookup cycles to the Tag RAM and encode which of the
four ways in the 4-way set associative Tag RAM the compare occurred. Oftentimes the
lookup for a store, which determines whether or not the requested address is in the
cache, is performed many cycles before the corresponding store data becomes avaliable.
MCHSAE [1:0] allows the R8000 to store the result of the compare until the store data is
available. The information is used by the R8000 Microprocessor to construct the upper
two bits of the Data RAM cache address. MCHSAE [1:0] connect directly to the
MCHSAE [1:0] pins of the even tag RAM.

MCHSTE [1:0] (Match State Even) Active High Input

This two bit value is driven by the even Tag RAM on lookup cycles and indicates the
state information for one of four 128 byte sectors in the streaming cache corresponding to
the address which compared. This two bit value encodes which state a given line in the
streaming cache is in; Shared, Invalid, or Exclusive. MCHSTE [1:0] connect directly to
the MCHSTE [1:0] pins of the even tag RAM.

MCHVSE [3:0] (Match Virtual Synonym Even) Active High Input

These signals represent virtual address bits [15:12]. This four bit virtual synonym value
is stored in the even Tag RAM along with each 20 bit tag address. Because the data cache
is virtually indexed and is larger than some of the programmable page sizes, multiple
virtually indexed locations in the Data cache can have the same physical address. To
insure that not more than one physical location is active at a time, a check of virtual
address bits [15:12] is done at the same time as the address compare to assure that the
same virtual address is being accessed. These four virtual synonym bits tell of the last
location in the Data cache to be used. MCHVSE [3:0] connect directly to the MCHVSE
[3:0] pins of the even tag RAM.
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TAGE [21:0] (Tag Address Even) Active High I/O

The Tag RAM address bus is bi-directional. The address is driven by the R8000 on
lookup cycles, and driven by the CC on writes through the TBus. On read cycles the tag
RAM drives the address information to the CC through the TBus as requested. In a 4
Megabyte cache implementation connections to the Tag RAM are as follows:

TAGE [0] Not Used. To be left unconnected.

TAGE [1] connects to TAG [17] of the even Tag RAM through a hardware jumper.
TAGE [3:2] connect to TAG [19:18] pins of the even Tag RAM.

TAGE [20:4] connect to TAG [16:0] of the even Tag RAM.

TAGE [21] connects to TAG [17] of the even Tag RAM through a hardware jumper.

9.1.3 R8000 Microprocessor to Odd Tag RAM

This section defines the pins between the R8000 Microprocessor and the odd tag RAM.
The signals are listed in alphabetical order.

DBSETO_ (Dirty Bit Set Odd) Active Low Output

This pin is the dirty bit RAM write enable and is connected to the DBSETO_ pin of the
odd tag RAM. The tag RAM chip contains a separate 16-bit wide dirty bit RAM which
contains the status of each of the sectors for each of the 4 ways of the tag RAM. The dirty
bit RAM is accessed on lookup cycles regardless of the state of the line. If the access is a
hit and DBSETO_is active, the dirty bit is written one clock after the lookup is done.
DBSETO_ is connected directly to the DBSETO_ pin of the odd tag RAM.

ESAO [1:0] (External Set Address Odd) Active High Output

When a tag RAM lookup is performed, logic inside the tag RAM determines which of
the four ways compared correctly with the tag address on the bus and encodes this
information as a two bit value called the “match set address’. Oftentimes the R8000 will
perform the tag lookup many cycles before the corresponding write to the data RAM’s is
done. When this occurrs there must be a mechanism to store the 2 bit set address value
for use during the actual write. The lookup is performed ahead of time and the result is
stored to the R8000 CPU via the match set address (MCHSA) pins of the tag RAM. When
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the write is done this information is driven back through the tag RAM via the ESAO pins
and becomes the upper two bits of the odd bank streaming cache RAM address. ESAO
[1:0] are connected directly to the ESA [1:0] pins of the odd tag RAM.

ESASELO (External Set Address Select Odd) Active High Output

This pin controls a multiplexor inside the tag RAM which allows the data set address for
the data RAM'’s to be driven either directly from the tag RAM compare result logic or
from the ESAO pins. If ESASELO is asserted the ESAO values are driven out to the data
RAM'’s. This pin is normally only asserted on write cycles when the tag RAM lookup is
performed before the corresponding write. ESASELO is connected directly to the
ESASELO pin of the odd tag RAM.

INDEXO [16:0] (Index Odd) Active High Output

These bits form the index to the odd tag RAM. This bus is output only. In a 4 Megabytre
implementation connections to the Tag RAM are as follows:

INDEXE [1:0] Not Used. To be left unconnected.

INDEXE [3:2] connect to SECTOR [1:0] pins of the odd Tag RAM.

INDEXE [13:4] connect to INDEX [9:0] of the odd Tag RAM.

INDEXE [16:14] connect to INDEX [12:10] of the odd Tag RAM through hardware
jumpers.

MATCHO_ (Match Odd) Active Low Input

This signal is an output of the odd Tag RAM. When the R8000 performs a lookup cycle to
the tag RAM a portion of the physical address is used as an index which selects one of
2048 Tag RAM entries. Each entry contains all four sets of the four way set associative
odd tag RAM. Assertion of the MATCHO_ signal by the tag RAM indicates that the
address on the bus compared to one of the four sets. MCHSAO [1:0] below encodes
which of the four sets compared. MATCHO_ is connected directly to the MATCHO_ pin
of the odd tag RAM.

MCHSAO [1:0] (Tag RAM Match Set Address Odd) Active High Input

These two bits are used on R8000 lookup cycles to the Tag RAM and encode which of the
four ways in the 4-way set associative Tag RAM the compare occurred. Oftentimes the
lookup for a store, which determines whether or not the requested address is in the
cache, is performed many cycles before the corresponding store data becomes avaliable.
MCHSAO [1:0] allows the R8000 to store the result of the compare until the store data is
available. The information is used by the R8000 to construct the upper two bits of the
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Data RAM cache address. MCHSAO [1:0] connect directly to the MCHSAO [1:0] pins of
the odd tag RAM.

MCHSTO [1:0] (Tag RAM Match State Odd) Active High Input

This two bit value is driven by the odd Tag RAM on lookup cycles and indicates the state
information for one of four 128 byte sectors in the streaming cache corresponding to the
address which compared. This two bit value encodes which state a given line in the
streaming cache is in; Shared, Invalid, or Exclusive. MCHSTO [1:0] are connected
directly to the MCHSTO [1:0] pins of the odd tag RAM.

MCHVSO [3:0] (Match Virtual Synonym Odd) Active High Input

These signals represent virtual address bits [15:12]. This four bit virtual synonym value
is stored in the odd Tag RAM along with each 20 bit tag address. Because the data cache
is virtually indexed and is larger than some of the progaammable page sizes, multiple
virtually indexed locations in the Data cache can have the same physical address. To
insure that not more than one physical location is active at a time, a check of virtual
address bits [15:12] is done at the same time as the address compare to assure that the
same vitrual address is being accessed. These four virtual synonym bits tell of the last
location in the Data cache to be used. MCHVSO [3:0] are connected directly to the
MCHVSO [3:0] pins of the odd tag RAM.

TAGO [21:0] (Tag Address Odd) Active High I/O

The Tag RAM address bus is bidirectional. The address is driven by the R8000 on lookup
cycles, and driven by the CC on writes through the TBus. On read cycles the tag RAM
drives the address information through the TBus to the CC as requested. In a 4 Megabyte
cache implementation connections to the Tag RAM are as follows:

TAGE [0] Not Used. To be left unconnected.

TAGE [1] connects to TAG [17] of the even Tag RAM through a hardware jumper.
TAGE [3:2] connect to TAG [19:18] pins of the even Tag RAM.

TAGE [20:4] connect to TAG [16:0] of the even Tag RAM.

TAGE [21] connects to TAG [17] of the even Tag RAM through a hardware jumper.
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9.1.4 R8000 Microprocessor to Even Bank Streaming Cache

This section defines the pins between the R8000 CPU and the even bank of streaming
cache data RAM’s. The signals are listed in alphabetical order.

ADDRE [17:0] (Address Even) Active High Output

These pins supply the address to the second level cache. ADDRE [17:0] of the R8000
connect directly to ADDRE [17:0] of both SIM modules of the even data bank .

LDE [63:0] (Load Data Even) Active High Input

Load data bus between the R8000 CPU and the even bank of the streaming cache. This
bus is unidirectional and accepts load input data only. Store data is transferred through
the FPU via the TBus. Data transfers between the streaming cache and the R8000 are
synchronous and conform to a 5 cycle pipeline. When a streaming cache load is initiated
by the R8000, data is returned in 5 clocks. Streaming cache misses take approximately 50
clocks. There are two 32 bit wide SIM modules on the even data bank. LDE [63:32] are
connected directly to the LD [32:0] pins of the upper 32 bit even data RAM module. LDE
[31:0] are connected directly to the LD [32:0] pins of the lower 32 bit even data RAM
module.

WEE_[1:0] (Write Enable Even) Active Low Output

The streaming cache data RAM's can be written either by the R8000 or by the CC. Writes
by the CC are handled through the FPU via the TBus. WEE_ [1] is connnected to the WE_
pin of the RAM'’s containing the upper 32 bits of data for the even bank. WEE_ [0] is
connnected to the WE_ pin of the RAM'’s containing the lower 32 bits of data for the even
bank. Normally the R8000 CPU drives these pins during write hits to the streaming
cache. But the CC can also write the streaming cache. This is normally done on streaming
cache misses where the requested data has to be fetched from main memory. In this case
the CC is responsible for fetching the data from main memory and writing the data to
the streaming cache through the TBus. Bit 63 of the TBus is passed through the R8000
CPU onto WEE_ [1] to write the upper 32 bits of the even bank. Bit 62 of the TBus is
passed through the R8000 CPU onto WEE_ [0] to write the lower 32 bits of the even bank.

9.1.5 R8000 Microprocessor to Odd Bank Streaming Cache

This section defines the pins between the R8000 Microprocessor and the odd bank of
streaming cache data RAM's. The signals are listed in alphabetical order.
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ADDRO [17:0] (Address Odd) Active High Output

These pins supply the address to the second level cache. ADDRO [17:0] of the R8000
CPU connect directly to ADDRO [17:0] of both SIM modules of the odd data bank .

LDO [63:0] (Load Data Odd) Active High Input

Load data bus between the R8000 and the odd bank of cache SRAM. This bus is
unidirectional and accepts load input data only. Store data is transferred through the
FPU via the TBus. Data transfers between the streaming cache and the R8000 are
synchronous and conform to a 5 cycle pipeline. When a streaming cache load is initiated
by the R8000 CPU, data is returned in 5 clocks. Streaming cache misses take
approximately 50 clocks. There are two 32 bit wide SIM modules on the odd bank. LDO
[63:32] are connected directly to the LD [32:0] pins of the upper 32 bit odd data RAM
module. LSO [31:0] are connected directly to the LD [32:0] pins of the lower 32 bit odd
data RAM module.

WEO_[1:0] (Write Enable Odd) Active Low Output

The streaming cache data RAM’s can be written either by the R8000 or by the CC. Writes
by the CC are handled through the TBus. WEO_ [1] is connnected to the WE_ pin of the
SIMM containing the upper 32 bits of data for the odd bank. WEO_ [0] is connnected to
the WE_ pin of the SIMM containing the lower 32 bits of data for the odd bank.
Normally the R8000 drives these pins during write hits to the streaming cache. But the
CC also can write the streaming cache. This is normally done on streaming cache misses
where the requested data has to be fetchéd from main memory. In this case the CC is
responsible for fetching the data from main memory and writing it to the streaming
cache through the TBus. Bit [61] of the TBus is passed through the R8000 onto WEO_ [1]
to write the upper 32 bits of the odd bank. Bit [60] of the TBus is passed through the
R8000 onto WEQ_ [0] to write the lower 32 bits of the odd bank.

9.1.6 R8000 Microprocessor to Cache Controller

This section defines the pins between the R8000 Microprocessor and the cache controller.
The signals are listed in alphabetical order.

CCREQ_ (Cache Controller Request) Active Low Input

CCREQ_ is driven by the CC and when asserted indicates that the CC is either
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requesting control or does not wish to give up control of the TBus. CCREQ _ is connected
directly to the CCREQ _ pin of the Cache Controller.

IUREL_ (Integer Unit Release) Active Low Output

IUREL_ is driven by the R8000 and when asserted indicates that the R8000 CPU is giving
control of the TBus to the Cache Controller. IUREL_ is connected directly to the IUREL _
pin of the Cache Controller. The R8000 can release control of the TBus in response to the
assertion of CCREQ_ by the cache controller, or it can release the bus immediately after
incurring a data cache instruction cache, or TLB miss.

NXTDATE_ (Store Address Queue Even) Active Low Output

This signal is driven by the R8000 CPU and indicates that store data associated with a
non-cacheable write will be on the even store data bus on the next clock. When the CC is
in control of the TBus, the R8000 asserts SAQE_ if the even store address queue contains
an address for which bits [17:7] match the Tag RAM index bits [17:7] which were on the
TBus four cycles earlier. The signal remains deasserted if no such match is detected.
SAQE_ should always be considered together with SAQQO_. If either is asserted, a
compare hit has occurred. Address comparisons are done on a 128 byte minimum
quantity and take one cycle. Address range comparisons larger than 128 bytes require
multiple cycles. SAQE_ is connected directly to the SAQE_ pin of the Cache Controller.

NXTDATO_ (Store Address Queue Odd) Active Low Output

This signal is driven by the R8000 CPU and indicates that store data associated with a
non-cacheable write will be on the odd store data bus on the next clock. When the CC is
in control of the TBus, the R8000 assertes SAQO_ if the odd store address queue contains
an address for which bits [17:7] match the Tag RAM index bits [17:7] which were on the
TBus four cycles earlier. The signal remains deasserted if no such match is detected.
SAQO_ should always be considered together with SAQE_. If either is asserted, a
compare hit occurred. Address comparisons are done on a 128 byte minimum quantity
and take one cycle. Address range comparisons larger than 128 bytes require multiple
cycles. SAQO_ is connected directly to the SAQO_ pin of the Cache Controller.

TBUS [71:0] Active High I/O

These pins form the general communication interface between the R8000 CPU and the
CC and connect directly to TBUS [71:0] pins of both the Cache Controller and the R8010
FPU. The function of each bit changes depending on which device is driving. Normally
the CC drives the TBus when reading or writing the tag RAM’s or reading the Data
RAM'’s and for general communication with the R8000. The R8010 FPU uses the TBus to
transfer Move data from the floating point register file (FPR) to the Integer Register File
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of the R8000 as requested by the R8000. The R8000 CPU uses the TBus for integer stores
to the data RAM’s, general communication with the CC and the R8010 FPU, and R8010
FPU to R8000 CPU move instructions. TBUS [71:0] connects directly to TBUS [71:0] of the
R8010 FPU as well as TBUS [71:0] of the Cache Controller. TBus connection between the
CC and the R8010 FPU is by virtue of the fact the the R8000 CPU communicates with
both. There is no TBus communication protocol between the R8010 FPU and the CC.

TBus [67:64] forms the Function field when the CC is in control. The function field is the
only field of the TBus by which the CC changes the internal state of the R8000 chip itself
rather than just the tag RAM’s or the Data RAM's. The 4 bit field translates to 16 possible
functions that the CC can perform on the R8000 Microprocessor. TBUS [71:0] connects
directly to the TBUS [71:0] pins of the Cache Controller.

VALIDOUT_ (Active Low Output)
VALIDOUT_ is driven by the R8000 to indicate that the information on the TBus is valid

for the Cache Controller to receive. VALIDOUT_ is connected directly to the
VALIDOUT_ pin of the Cache Controller.

9.1.7 Clock Interface Signals

CLK (Reference Clock) Active High Input

Master input clock to the Phase Lock Loop (PLL) circuitry of the R8000 Microprocessor.
The output of the PLL is then used as the master clock for the chip. CLK is normally
connected directly to the ouput of the external clock driver. In most cases it is desirable
to use the PLL circuitry, but for those applications which to not wish to use the PLL, the
clock drivers should be connected to EXT_CLK.

EXT_CLK (External Clock) Active High Input
The EXT_CLK input allows the system designer to bypass the internal PLL of the R8000

CPU and drive the chip directly from the system clock. When not in use this pin should
be tied to ground through a 330 ohm resistor. Refer to figure 7-1.

GND_PLL (Ground Phase Lock Loop)
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Ground source for the phase lock loop circuitry. GND_PLL can be connected to
VCC_PLL through .1 microfarad and .015 microfarad capacitors in parallel. Refer to
figure 7-1.

LPF_OUT (Low Pass Filter Output) Active High Output

LFP_OUT is a special pin used to test the PLL circuitry during component test for
monitoring the status of the low-pass filter. LPF_OUT must be connected to VCC_PLL
through a 680K ohm resistor. '

SYNC_IN (Synchronized PLL input) Active High Input

Sync_in is part of the PLL feedback path and must be connected to Sync_Out in order for
the PLL circuitry to work correctly. The pins are made avaliable externally to allow the
user to manually alter the phase of the PLL.

SYNC_OUT (Synchronized PLL input) Active High Output

Sync_Out is part of the PLL feedback path and must be connected to Sync_In in order for
the PLL circuitry to work correctly. The pins are made avaliable externally to allow the
user to manually alter the phase of the PLL.

VCC_PLL (Voltage Phase Lock Loop)

Voltage source for the phase lock loop circuitry. Connected to a regulated 3.3 volt source.
VCC_PLL can be connected to GND_PLL through .1 and .015 microfarad capacitors in
parallel.

9.1.8 JTAG Interface Signals

The following signals comprise the Test Access Port (TAP) of the FPU. The TAP provides
access to many test support functions built into the chip. The TAP consists of three
required synchronous inputs, one required synchronous output, and an optional input
for asynchronous initialization of the TAP. When the TAP controller is not reset at
power-up as a result of features built into the test logic, the asynchronous TRST_ input
must be provided to reset the TAP.
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In addition to the JTAG compliant logic, the R8000 Microprocessor also contains a
seperate scan chain which connects every flip-flop in the random logic control blocks.

. This scan chain is non-IEEE compliant and is used during component verification testing
to test the random logic. These two pins, SDI and SDO, are NOT part of the JTAG
circuitry and should not be used.

JTAG_TCK (JTAG Test Clock) Active High Input

The dedicated test clock input is used to provide system-clock independent testing of the
serial data paths between components. The dedicated clock input allows for the shifting
of test data through the device concurrently with normal operation of the component. In
addition, the independent test clock allows test data to be transferred on- and off- chip
without changing the state of the on-chip system logic. TCK is a required signal for proper
boundary scan operation.

JTAG_TMS (JTAG Test Mode Select) Active High Input

The voltage level at the Test Mode Select input is decoded by the TAP controller and
used to control on-chip test operations. TMS is sampled on the rising edge of TCK and a
change in state to the TMS input should occur on the falling edge of TCK. A pull-up
resistor should be used so that an un-driven TMS input appears as high to the internal
logic. TMS is a required signal for proper boundary scan operation.

JTAG_TDI (JTAG Test Data Input) Active High Input

Serial test instructions and data are transferred to the test logic by the TDI input. The TDI
and TDO pins provide for serial movement of test data through the circuit. Information
on the TDI input is sampled on the rising edge of TCK and a change in state to the TDI
input should occur on the falling edge of TCK. A pull-up resistor should be used so that
an un-driven TDI input appears as high to the internal logic. TDI is a required signal for
proper boundary scan operation.

JTAG_TDO (JTAG Test Data Output) Active High Output

The Test Data Output (TDO) pin is used to transfer test instructions and data from the
internal test logic. To avoid race conditions, the TDI and TMS inputs are sampled on the
rising edge of TCK, while changes to the TDO output occur on the falling edge. Using
opposite edges of the clock allows output data from one device to propogate to another
device and be sampled on the following rising edge. TDO is a required signal for proper
boundary scan operation.
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JTAG_TRST_ (JTAG Test Reset) Active High Input

The optional TRST_ input provides for asynchronous initialization of the TAP controller.
The TAP controller is asynchronously reset whenever TRST_ is asserted with a low
voltage level. A pull-up resistor should be used so that an un-driven TRST_ input
appears as high to the internal logic. Use of TRST_ is NOT required for proper boundary scan
operation. In addition, the TRST_ input must not be used to initialize any system logic
within the component. To ensure proper operation of the test logic, the TMS input
should be held at a high voltage level while the TRST_ input changes state from a logic
zero to a logic one. If rising edges occur simultaneously at the TRST_ and TCK inputs
when a logic zero is applied to TMS, a race condition can occur and the operation of the
TAP controller is unpredictable. The controller may either remain in the reset state or
change to the run state.

SDI (Serial Data In) Active High Input

Non-IEEE compliant scan chain input which allows for testing of the random control
logic blocks within the R8000 CPU during component test and verification. SDI should
be tied to ground through a 330 ohm resistor.

SDO (Serial Data Out) Active High Output

Non-IEEE compliant scan chain output which allows for testing of the random control
logic blocks within the R8000 CPU during component test and verification. SD should be
left unconnected during normal operation.

9.1.9 Initialization Interface

INTLMODE (Internal Mode) Active High Input

Internal address register for interfacing to the second level streaming cache. Currently
external address registers are used to buffer the address due to the large number of
RAM’s required to facilitate a 4 MegaByte implementation. However, in the future it is
conceivable that fewer RAM’s will be needed to suffice the same memory requirements.
The R8000 Microprocessor provides an on-chip address register for this purpose.
Currently this register is not used because it is unable to drive all of the devices required
for the cache. The external register can hopefully be eliminated as RAM sizes increase.
The INTLMODE pin should be tied to ground through a 330 ohm resistor.
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RESET_ (Processor Reset) Active Low Input

Reset pin of the R8000. Reset should be held low for 4096 clocks before being released. A
12-bit counter can be used to accomplish this. Fifteen clocks after the rising edge of
RESET is sampled the R8000 asserts VALIDOUT_ for one clock. Two clocks after the
rising edge of VALIDOUT _ the Cache Controller MUST assert the signal CCREQ _ to
allow the CC to begin fetching from the boot PROM. CCREQ_ should remain asserted
until the R8000 issues IUREL_, indicating that the control of the TBus has been
relinquished. Refer to the initialization interface in chapter 6 for more information on
RESET.

9.2 R8010 FPU SIGNAL DESCRIPTIONS

The R8010 Floating Point Unit (FPU) is a 591 pin device and has dedicated interfaces to
all other components in the system with the exception of the Tag RAM’s. There are no
signals which go between the FPU and the Tag RAM's. The following sections define the
external pinout of the FPU and are divided into specific component interfaces. Figure 9-3
shows the functional pin groupings of the R8010 FPU.
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Figure 9-3 R8010 FPU Signal Groupings

Table 9-2 shows a pin summary of the R8010 FPU in alphabetical order.
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Pin ID Pin Name Active Level Connects To
Output Pins
FCCL FPU Condition Code Left High R8000 CPU
FCCR FPU Condition Code Right High R8000 CPU
FPINTR_ FPU Interrupt Low R8000 CPU
JTAG_TDO JTAG Test Data Output High External Source
LPF_OUT PLL Low Pass Filter Test High External Source
PERRE Parity Error Even High R8000 CPU
PERRO Parity Error Odd High R8000 CPU
SDE [63:0] Store Data Even High Even Bank Store Data
SDO Serial Data Out High External Source
SDO [63:0] Store Data Odd High 0Odd Bank Store Data
SPE [3:0] Store Parity Even High Even Bank Store Parity
SPO [3:0] Store Parity Odd High Odd Bank Store Parity
SYNC_OUT PLL Feedback Loop High Sync_In pin of FPU
Input Pins
BYPASS_ Floating Point Bypass Low Cache Controller
CLK Reference Clock (Uses PLL) High External Source
DEBUG_ Debug Low R8000 CPU
DEQSE_ Dequeue Store Even Low R8000 CPU
DEQSO_ Dequeue Store Odd Low R8000 CPU
ENQLE_ Enqueue Load Even Low R8000 CPU
ENQLO_ Enqueue Load Odd Low R8000 CPU
ENQLP_ Enqueue Load Priority Low R8000 CPU
EXT_CLK External Clock High External Source
FOE_ Floating Point Output Enable Low Cache Controller
FVALID_ FPU Valid Low R8000 CPU
GND_PLL Ground Source for PLL Low External Source
JTAG_TCK JTAG Test Clock High External Source
JTAG_TDI JTAG Test Data In High External Source
JTAG_TMS JTAG Test Mode Select High External Source
JTAG_TRST JTAG Test Reset High External Source
LDE [63:0] Load Data Even High Even Bank Load Data
LDO [63:0] Load Data Odd High 0Odd Bank Load Data
LPE [3:0] Load Parity Even High Even Bank Load Parity
LPO [3:0] Load Parity Odd High Odd Bank Load Parity
PMODE Parity Mode High R8000 CPU
RESET_ FPU Reset Pin Low External Source

Table 9-2 R8010 FPU Pin Summary
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Pin ID Pin Name Active Level Connects To
SDI Serial Data In High External Source
SYNC_IN PLL Feedback Loop High Sync_In pin of FPU
TBUS [79:72] TBus High R8000 CPU
TBUSOE_ TBus Output Enable Low R8000 CPU
VCC_PLL Voltage Source for PLL High External Source
Input/Output Pins
TBUS [71:0] [ TBus Interface | High [ R8000/CC

Table 9-2 R8010 FPU Pin Summary

9.2.1 R8010 FPU to R8000 Microprocessor

The signals in this section comprise the interface between the R8000 Microprocessor and
the R8010 FPU. These signals are described further in section 9.1.

DEBUG_ (Debug Mode) Active Low Input

This signal indicates whether the results are written into the Floating Point Register File
when an exception occurrs. When DEBUG is active (0), a floating point operation that
raises the enabled exception does not write its result to the FPR. For a disabled exception
the FPR is updated with the appropriate substitution value. When DEBUG is inactive (1),
a floating point operation that raises an exception writes its appropriate substitution
value to the FPR regardless of whether the exception is enabled or disabled. DEBUG_ is
connected directly to the DEBUG_ pin of the R8000. Refer to section 9.1.1 for more
information on DEBUG_.

DEQSE_ (Dequeue Store Even) Active Low Input
This signal indicates when an even 64 bit doubleword of data should be read from the

store data queue and the Dequeue Even Pointer updated. DEQSE_ is connected directly
to the DEQSE._ pin of the R8000. Refer to section 9.1.1 for more information on DEQSE_.

DEQSO_ (Dequeue Store Odd) Active Low Input

This signal indicates when an odd 64 bit doubleword of data should be read from the
store data queue and the Dequeue Even Pointer updated. DEQSO_ is connected directly
to the DEQSO_ pin of the R8000.
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ENQLE_ (Enqueue Load Even) Active Low Input

This signal indicates when an even 64 bit doubleword of data from the streaming cache
should be written into the load data queue and the enqueue load pointer incremented.
ENQLE_ is connected directly to the ENQLE_ pin of the R8000 CPU.

ENQLO_ (Enqueue Load Odd) Active Low Input

This signal indicates when an odd 64 bit doubleword of data from the streaming cache
should be written into the load data queue and the enqueue load pointer incremented.
ENQLO_ is connected directly to the ENQLO_ pin of the R8000. Refer to section 9.1.1 for
more information on ENQLO_.

ENQLP_ (Enqueue Load Priority) Active Low Input

This signal indicates the order of execution between two loads to be enqueued. ENQLP_
asserted indicates that the odd 64 bit doubleword should be enqueued before the even 64
bit doubleword. ENQLP_ is connected directly to the ENQLP_ pin of the R8000. Refer to
section 9.1.1 for more information on ENQLP_.

FCCL (Floating Point Condition Code Left) Active High Input

This signal is the condition code generated by the left R8010 FPU execution unit. The
R8000 keeps track of the floating point operation, the CC destination, and the pipeline
stage. FCCL is connected directly to the FCCL pin of the R8000 CPU. Refer to section
9.1.1 for more information on FCCL.

FCCR (Floating Point Condition Code Right) Active High Input

This signal is the condition code generated by the right R8010 FPU execution unit. The
R8000 keeps track of the floating point operation, the CC destination, and the pipeline
stage. FCCR is connected directly to the FCCR pin of the R8000 CPU. Refer to section

9.1.1 for more information on FCCR.

FPINTR_ (Floating Point Interrupt) Active Low Output

This signal is driven by the R8010 FPU and indicates that a floating point exception has
occurred on either execution unit and that the enable bit of the FSR for that type of
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occurred on either execution unit and that the enable bit of the FSR for that type of
exception was active. FPINTR_ is connected directly to the FPINTR _ pin of the R8010
. FPU. Refer to section 9.1.1 for more information on FPINTR .

FVALID_ (FPU Valid) Active Low Input

This signal active indicates that the TBus has a valid R8010 FPU operation during the
current cycle. FVALID_ is connected directly to the FVALID_ pin of the R8000 CPU.
Refer to section 9.1.1 for more information on FVALID_.

PERRE (Parity Error Even) Active High Output

The PERRE signal is generated by the R8010 FPU when PMODE is active and is asserted
when a parity error is detected on the load data and load parity busses of the even bank.
PERRE is connected directly to the PERRE pin of the R8000 CPU. Refer to section 9.1.1
for more information on PERRE.

PERRO (Parity Error Odd) Active High Output

The PERRO signal is generated by the R8010 FPU and is asserted when a parity error is
detected on the load data and load parity busses of the odd bank. PERRO is connected
directly to the PERRO pin of the R8000 CPU. Refer to section 9.1.1 for more information
on PERRO.

PMODE (Parity Mode) Active High Input

The PMODE pin determines whether even or odd parity checking and generation is to
be performed by the R8010 FPU. PMODE is connected directly to the PMODE pin of the
R8000. Refer to section 9.1.1 for more information on PMODE.

TBUS [79:72] (Tbus) Active High Input

Part of the 80 bit TBus. These bits are input only and connect directly to the TBUS [79:72]
pins of the R8000 Microprocessor and are used for transferring data and operations to
the R8010 FPU. TBUS [79:72] is valid whenever the FVALID_ signal is active. Refer to
section 9.1.1 for more information on TBUS [79:72].

TBUSOE_ (Tbus Output Enable) Active Low Input

This signal is used as a tri-state enable for the TBus [71:0] pin connections to the R8010
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FPU. TBUSOE._ is connected directly to the TBUSOE_ pin of the R8000 CPU. Refer to
section 9.1.1 for more information on TBUSOE_.

9.2.2 R8010 FPU to Even Bank Streaming Cache

LDE [63:0] (Load Data Even) Active High Input

Load data bus between the R8010 FPU and the even bank of the streaming cache. This
bus is unidirectional and accepts load input data only. Even bank store data is
transferred via the dedicated SDE bus. In a 4 Megabyte implementation there are two 32
bit wide SIM modules on the even bank. LDE [63:32] are connected directly to the LD
[32:0] pins of the upper 32 bit even data RAM module. LDE [31:0] are connected directly
to the LD [32:0] pins of the lower 32 bit even data RAM module.

LPE [3:0] (Load Parity Even) Active High Input

Load parity bus between the R8010 FPU and the even bank of the streaming cache. This
bus is unidirectional and accepts load parity data only. Even bank store data is
transferred via the dedicated store parity bus. In a 4 Megabyte implementation there are
two 32 bit wide SIM modules on the even bank. LPE [3:2] are connected directly to the
LP [1:0] pins of the upper 32 bit even data RAM module. LPE [1:0] are connected directly
to the LP [1:0] pins of the lower 32 bit even data RAM module. Parity is checked and
generated in 16-bit quantities. Hence only the lower two parity bits (LP [1:0]) are
currently used. On both modules LP [3:2] of the SIM module connector are not used and
should be left unconnected. '

SDE [63:0] (Store Data Even) Active High I/O

Store data bus between the R8010 FPU, the even bank of the streaming cache, and the
external data buffers. The bus itself is bidirectional, although it is unidirectional from the
R8010 FPU'’s point of view. When the R8010 FPU is in control the bus becomes
unidirectional and drives store output data only. Even bank load data is transferred via
the dedicated LDE bus. There are three basic uses of the store data bus; Floating Point
stores, Integer stores, and streaming cache data transfers to/from main memory. On
Floating Point stores the R8000 instructs the R8010 FPU to drive data from a register file
out onto the store data bus. Address information for the store is provided by the R8000
via a dedicated address bus between the R8000 CPU and the even bank of the streaming
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cache. Integer Store data and alignment information is transferred via the TBus to the
R8010 FPU. Control signals from the R8000 allow the R8010 FPU to pass the data from
the TBus to the SDE pins. When data from the streaming cache is to be transferred to
main memory, the Cache Controller initiates a streaming cache load. The load data is
retrieved from the cache using the LDE pins and transferred to the R8010 FPU. The CC
controls the flow of data through the R8010 FPU asserting the FOE_ and BYPASS_
signals to the R8010 FPU, allowing data to pass internally from the LDE pins to the SDE
pins and out to the main memory data buffers. When the CC is in control of the bus
during a cache line fill, the SDE [63:0] bus is driven by the external data buffers. Since
data from main memory is written to the streaming cache using the SDE pins, the SDE
pins on the R8010 FPU side are tri-stated and the data is witten to the streaming cache. In
a 4 Megabyte implementation there are two 32 bit wide SIM modules on the even bank.
SDE [63:32] are connected directly to the SD [32:0] pins of the upper 32 bit even data
RAM module. SDE [31:0] are connected directly to the SD [32:0] pins of the lower 32 bit
even data RAM module.

SPE [3:0] (Store Parity Even) Active High Input

Store parity bus between the R8010 FPU and the even bank of the streaming cache. This
bus is unidirectional and transfers store parity data only. Even bank load data is
transferred via the dedicated load parity bus. There are two 32 bit wide SIM modules on
the even bank. SPE [3:2] are connected directly to the SP [1:0] pins of the upper 32 bit
even data RAM module. SPE [1:0] are connected directly to the SP [1:0] pins of the lower
32 bit even data RAM module. Parity is checked and generated in 16-bit quantities.
Hence only the lower two parity bits (SP [1:0]) of each module are currently used. On
both modules SP [3:2] should be left unconnected.

9.2.3 R8010 FPU to Odd Bank Streaming Cache

LDO [63:0] (Load Data Odd) Active High Input

Load data bus between the R8010 FPU and the odd bank of the streaming cache. This
bus is unidirectional and accepts load input data only. Odd bank store data is transferred
via the dedicated SDO bus. In a 4 Megabyte implementation there are two 32 bit wide
SIM modules on the even bank. LDO [63:32] are connected directly to the LD [32:0] pins
of the upper 32 bit odd data RAM module. LDO [31:0] are connected directly to the LD
[32:0] pins of the lower 32 bit odd data RAM module.

LPO [3:0] (Load Parity Odd) Active High Input
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Load parity bus between the R8010 FPU and the odd bank of the streaming cache. This
bus is unidirectional and accepts load parity data only. Odd bank store data is

_ transferred via the dedicated store parity bus. In a 4 Megabyte implementation there are
two 32 bit wide SIM modules on the odd bank. LPO [3:2] are connected directly to the LP
[1:0] pins of the upper 32 bit odd data RAM module. LPO [1:0] are connected directly to
the LP [1:0] pins of the lower 32 bit odd data RAM module. Parity is checked and
generated in 16-bit quantities. Hence only the lower two parity bits (LP [1:0]) are
currently used. On both modules LP [3:2] should be left unconnected.

SDO [63:0] (Store Data Odd) Active High I/O

Store data bus between the R8010 FPU, the odd bank of the streaming cache, and the
external data buffers. The bus itself is bidirectional, although it is unidirectional from the
R8010 FPU'’s point of view. When the R8010 FPU is in control the bus becomes
unidirectional and drives store output data only. Odd bank load data is transferred via
the dedicated LDO bus. There are three basic uses of the store data bus; Floating Point
stores, Integer stores, and streaming cache data transfers to/from main memory. On
Floating Point stores the R8000 Microprocessor instructs the R8010 FPU to drive data
from a register file out onto the store data bus. Address information for the store is
provided by the R8000 via a dedicated address bus between the R8000 Microprocessor
and the odd bank of the streaming cache. Integer Store data and alignment information
is transferred via the TBus to the R8010 FPU. Control signals from the R8000 CPU allow
the R8010 FPU to pass the data from the TBus to the SDO pins. When data from the
streaming cache is to be transferred to main memory, the Cache Controller initiates a
streaming cache load. The load data is retrieved from the cache using the LDO pins and
transferred to the R8010 FPU. The CC controls the flow of data through the R8010 FPU
asserting the FOE_ and BYPASS_ signals to the R8010 FPU, allowing data to pass
internally from the LDO pins to the SDO pins and out to the main memory data buffers.
When the CC is in control of the bus during a cache line fill, the SDO [63:0] bus is driven
by the external data buffers. Since data from main memory is written to the streaming
cache using the SDO pins, the SDO pins on the R8010 FPU side are tri-stated and the
data is witten to the streaming cache. In a 4 Megabyte implementation there are two 32
bit wide SIM modules on the odd bank. SDO [63:32] are connected directly to the SD
[32:0] pins of the upper 32 bit odd data RAM module. SDO [31:0] are connected directly
to the SD [32:0] pins of the lower 32 bit odd data RAM module.

SPO [3:0] (Store Parity Odd) Active High Input

Store parity bus between the R8010 FPU and the odd bank of the streaming cache. This
bus is unidirectional and transfers store parity data only. Odd bank load data is
transferred via the dedicated load parity bus. There are two 32 bit wide SIM modules on
the odd bank. SPO [3:2] are connected directly to the SP [1:0] pins of the upper 32 bit odd
data RAM module. SPO [1:0] are connected directly to the SP [1:0] pins of the lower 32
bit odd data RAM module. Parity is checked and generated in 16-bit quantities. Hence
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only the lower two parity bits (SP [1:0]) of each module are currently used. On both
modules SP [3:2] should be left unconnected.

9.2.4 R8010 FPU to Cache Controller

BYPASS (Floating Point Bypass) Active Low Input

Assertion of BYPASS_ allows data from the load data pins to bypass the internal circuits
of the R8010 FPU and be transferred directly to the store data output buffers. The
assertion of FOE_ enables the buffers and allows the streaming cache load data to be
driven out onto the store data pins. Bypass deasserted allows data from within the
registers of the R8010 FPU to be driven out onto the SDE or SDO pins (assuming FOE_ is
active).

FOE_ (Floating Point Output Enable) Active Low Input

Assertion of FOE_ and FBYPASS_ on streaming cache transfers to main memory enables
the output drivers of the R8010 FPU which allow data to be driven directly from the LDE
[63:0] /LDO [63:0] pins to the SDE [63:0]/SDO [63:0] pins of the R8010 FPU respectively.
When data from the streaming cache is to be transferred to main memory, the Cache
Controller initiates a streaming cache load. The load data is then transferred on the LDE
or LDO pins to the R8010 FPU. The CC controls the flow of data through the R8010 FPU
by asserting the FOE_ and BYPASS_ signals to the R8010 FPU, allowing data to be driven
onto the SDE or SDO busses. When data is to be transferred from main memory to the
streaming cache, the CC deasserts FOE_, tri-stating the store data busses (SDE/SDO) of
the R8010 FPU.

TBUS [71:0] (TBus interface) Active High I/O
TBus [71:0] are connected between the CC, R8000, and R8010 FPU. There is no
communication protocol between the R8010 FPU and the CC. The TBus of the R8010 FPU

and the CC are connected only because the R8000 must communicate with both. Refer to
section 9.1.1 for more information on the TBus.

9.2.5 R8010 FPU Clock Interface
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CLK (Reference Clock) Active High Input

Master input clock to the Phase Lock Loop (PLL) circuitry of the R8010 FPU. The output
of the PLL is then used as the master clock for the chip. CLK is normally connected
directly to the ouput of the clock driver. In most cases it is desirable to use the PLL
circuitry, but for those applications which to not wish to use the PLL, the clock drivers
should be connected to EXT_CLK.

EXT_CLK (External Clock) Active High Input

The EXT_CLK input allows the system designer to bypass the internal PLL of the R8010
FPU and drive the chip directly from the system clock. EXT_CLK should be tied to
ground through a 330 ohm resistor.

GND_PLL (Ground Phase Lock Loop)

Ground source for the phase lock loop circuitry. GND_PLL can be ¢connected to
VCC_PLL through .1 microfarad and .015 microfarad capacitors in paraliel.

LPF_OUT (Low Pass Filter Output) Active High Output

LFP_OUT is a special pin used to test the PLL circuitry during component test for
monitoring the status of the low-pass filter. LPF_OUT must be connected to VCC_PLL
through a 680K ohm resistor.

SYNC_IN (Synchronized PLL input) Active High Input

SYNC_IN is part of the PLL feedback path and must be connected to SYNC_OUT in
order for the PLL circuitry to work correctly. The pins are made available externally to
allow the user to manually alter the phase of the PLL.

SYNC_OUT (Synchronized PLL input) Active High Output

SYNC_OUT is part of the PLL feedback path and must be connected to SYNC_IN in

order for the PLL circuitry to work correctly. The pins are made available externally to
allow the user to manually alter the phase of the PLL.

~ VCC_PLL (Voltage Phase Lock Loop)
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Voltage source for the phase lock loop circuitry. Connected to a regulated 3.3 volt source.
VCC_PLL can be connected to GND_PLL through .1 and .015 microfarad capacitors in
parallel.

9.2.6 JTAG Interface

The JTAG interface of the R8010 FPU is identical to that of the R8000 Microprocessor. All
of the pins have the same function and characteristics. Below is a listing of the JTAG pins
which interface to the R8010 FPU. For a description of these pins, refer to the JTAG pin
description in section 9.1.8.

JTAG_TCK (JTAG Test Clock) Active High Input
JTAG_TMS (JTAG Test Mode Select) Active High Input
JTAG_TDI (JTAG Test Data Input) Active High Input
JTAG_TDO (JTAG Test Data Output) Active High Output
JTAG_TRST_ (JTAG Test Reset) Active High Input

SDI (Serial Data In) Active High Input

SDO (Serial Data Out) Active High Output

9.2.7 Initialization Interface Signals

RESET

Reset Pin of the R8010 FPU. The signal should be asserted for 4096 clocks. This count is
easily accomplished with a 12-bit counter. Refer to the reset description of the R8000
CPU in section 9.1.9.

9.3 EVEN TAG RAM UNIT SIGNAL DESCRIPTIONS

Two identical Tag RAM's are required in the R8000 Microprocessor environment for
support of the 2-way interleaved second level streaming cache. The even Tag RAM
maintains address, state and virtual synonym information for the even bank of
streaming cache data and the odd Tag RAM maintains address, state, and virtual
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synonym information for the odd bank of streaming cache data.

The Even Tag RAM Unit is a 155 pin device which interfaces to the R8000
Microprocessor, the Cache Controller, and the even bank of streaming cache. The
following sections define the external pinout of the Tag RAM and are divided into
specific component interfaces. Figure 9.4 shows the functional pin groupings of the Even
Tag RAM.

EVEN TAG RAM

DBSETE. ——————P»

ESAE [10)] =i

ESASELE ————————p» R8000
INDEXE [12:0] se—(- INTERFACE
SECTORE [1:.0] =——e——{li>-

TAGE [19:0] <:>

MATCHE_
MCHSAE [1:0]

MCHSTE [1:0]
MCHVSE [3:0]

DATSAXE [1:0]
DATSAYE [1:0]
DATSAWE_ [1:0]
DATSAZE_ [1:0]

EVEN BANK DATA
INTERFACE

OE_ —m
RWSALLO] = CACHE
STWE_ ———————p] CONTROLLER

TWE — | INTERFACE

CLK —————p
PLLIN1 ———————p» CLOCK
Pilsse —_____»>1  INTERFACE
PLLEN ———p

JTAG_TDI ————————P»
JTAG.TMS —— p» ITAG
r’&?ﬁ‘% —— ™ INTERFACE
VSUB — ]
VSUBCELL ——mM8Mm8
RGI%SCI)\ISI ——————p COMPONENT TEST

CE ———®| INTERFACE
SSBEN_. —— p»
Figure 9-4 Even Tag RAM Signal Groupings

JTAG_TDO
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Table 9-3 shows a pin summary of the even Tag RAM in alphabetical order.

Pin ID Pin Name Active Level Connects To
Output Pins
DATSAWE_ [1:0] Data Set Address Even Low Even Bank Address
DATSAXE [1:0] Data Set Address Even High Even Bank Address
DATSAYE [1:0] Data Set Address Even High Even Bank Address
DATSAZ_ [1:0] Data Set Address Even Low Even Bank Address
JTAG_TDO JTAG Test Data Out High External Source
MATCHE_ Address Match Low R8000 CPU
MCHSAE [1:0] Match Set Address High R8000 CPU
MCHSTE [1:0] Match State High R8000 CPU
MCHVSE [3:0] Match Virtual Synonym High R8000 CPU
RGOSO Ring Oscillator Output High External Source
Input Pins
CE_ Chip Enable Low External source
CLK Reference Clock High External Source
DBSETE_ Even Dirty Bit Set Low R8000 CPU
ESAE [1:0] Even External Set Address High R8000 CPU
ESASELE External Set Address Select High R3000 CPU
INDEXE [12:0] Even Tag RAM Index High R8000 CPU
JTAG_TCK JTAG Clock High External Source
JTAG_TDI JTAG Test Data In High External Source
JTAG_TMS JTAG Test Mode Select High External Source
JTAG_TRST JTAG Test Reset Low External Source
OE_ Output Enable Low Cache Controller
PLLEN Phase Lock Loop Enable High External Source
PLLIN1 Phase Lock Loop Input High External Source
PLLIN2 Phase Lock Loop Input High External Source
PLLSEL Phase Lock Loop Select High External Source
RGOEN_ Ring Oscillator Enable Low External Source
RGOSI Ring Oscliiator Input High External Source
RWSA [1:0] Read Write Set Address High Cache Controller
SECTORE [1:0] Even Sector Address High R8000 CPU
SSBEN_ Self Sub-Bias Enable Low External Source
Table 9-3 Even Tag RAM Pin Summary
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Pin ID Pin Name Active Level Connects To
STRD_ State Read Low Cache Controller
STWE_ State Write Enable Low Cache Controller
TWE_ Tag Write Enable Low Cache Controller
VSUB Self Sub-Bias Voltage Input High External Source
VSUBCELL Self Sub-Bias Voltage Input High External Source
Input/Output Pins
TAGE [19:0] Even Tag Address High R8000 CPU

Table 9-3 Even Tag RAM Pin Summary

9.3.1 Even Tag RAM to R8000 Microprocessor

The following signals connect to the R8000 and are explained further in section 9.1.2.
DBSETE_ (Even Dirty Bit Set) Active Low Input

The dirty bit RAM is conditionally written based on the state of DBSETE_. Refer to the
DBSETE_ pin description in section 9.1.2 for more information.

ESAE [1:0] (External Set Address Even) Active High Input

These pins are connected directly to the ESAE [1:0] pins of the R8000 CPU. Refer to the
ESAE pin description in section 9.1.2 for more information.

ESASELE (External Set Address Select Even) Active High Input

The ESASEL pin acts as a mux select to drive the ESA [1:0] bits through to the DATSA
[1:0] bits. Refer to the ESASELE pin description in section 9.1.2 for more information.
INDEXE [16:0] (Tag RAM Index Even) Active High Input

These pins form the index into the Tag RAM and are connected to the INDEXE pins of
the R8000 Microprocessor. Refer to the INDEXE pin descriptions in section 9.1.2 for
connectivity information.

MATCHE_ Active Low Output

This signal is an output of the even Tag RAM. Assertion of this signal by the tag RAM
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indicates that the address on the bus compared to one of the four sets. MATCH_ is
connected directly to the MATCHE_ pin of the R8000 CPU. Refer to the MATCHE_ pin
. description in section 9.1.2 for more information. MCHSAE [1:0] (Match Set Address
Even) Active High Output

On a lookup cycle, these 2 bits are used form an encoded value of which of the four ways
in the Tag RAM was a hit. Refer to the MCHSAE pin descriptions in section 9.1.2 for
more information.

MCHSTE [1:0] (Match State Even) Active High Output

These 2 bits encode the state information of a given 128 byte sector in the data RAM’s.
The state can be shared, exclusive, or invalid. Refer to the MCHSTE [1:0] pin
descriptions in section 9.1.2 for more information.

MCHVSE [3:0] (Match Virtual Synonym Even) Active High Output

The bits correspond to virtual address bits 15:12 and form the virtual synonym entry in
the Tag RAM. Refer to the MCHVSE [3:0] pin descriptions in section 9.1.2 for more
information.

SECTOR [1:0] (Tag RAM Sector Address) Active High Input

These two pins act as a 4:1 mux selector inside the Tag RAM. Each line of the Data RAM
contains 4 sectors, with each sector containing sixteen 64 bit words, 8 in the odd bank
and 8 in the even bank. The SECTOR [1:0] pins are used to select the correct state
information for the sector to be accessed. Refer to the INDEXE pin descriptions in section
9.1.2 for more infomation.

TAGE [19:0] (Tag RAM Tag Address Even) Active High I/O
These pins form the tag address of the tag RAM. The TAG pins are written and read by
the CC. The R8000 CPU uses TAG [19:0] for lookup cycles. Reads and writes from the CC

are passed onto the TAG pins through the TBus. Refer to the TAGE pin descriptions in
section 9.1.2 for connectivity information.

9.3.2 Even Tag RAM to Even Bank Streaming Cache
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DATSAXE [1:0] (Data Set Address X Even) Active High Output
DATSAYE [1:0] (Data Set Address Y Even) Active High Output
DATSAWE_ [1:0] (Data Set Address W Even) Active Low OQutput
DATSAZE_[1:0] (Data Set Address Z Even) Active Low Output

These two bits form the upper two address bits for the even bank of the streaming cache.
Each of the four sets of DATSA pins contains the exact same information and are
buffered versions of one another. Two sets are inverted.

9.3.3 Tag RAM to Cache Controller

The Cache Controller does not distinguish between even and odd Tag RAM’s. Each
interface pin of the CC goes to both the even and odd Tag RAM's.

TOE_ (Tag Output Enable) Active Low Input

The TOE_ pin is driven by the CC when the CC is reading the Tag RAM. Assertion of
TOE_ allows the information currently on the 20 bit Tag Address bus to be driven back to
the R8000 Microprocessor where it is returned to the CC via the TBus. Either tag address
or state and virtual synonym information is driven out onto the tag bus based on the
state of STRD_ (see below).

RWSA [1:0] (Read Write Set Address) Active High Input

This two bit field is driven by the CC when the Cache Controller is reading or writing to
the Tag RAM and indicates which ways of the four-way set associative Tag RAM is to be
read or written. Normally the CC modifies the Tag RAM based on the result of a
previous R8000 lookup cycle. The result of which of the four ways compared during the
lookup is driven onto the MCHSA [1:0] pins of the tag RAM and returned to the R8000.
The R8000 CPU in turn passes this encoded information to the CC via a field of the TBus.
When the CC actually modifies the Tag RAM, the way to be modified is selected using
the RWSA [1:0] pins. The Dirty Bit RAM also uses these pins to update the correct dirty
bit entry.

STRD_ (State Read) Active Low Input

STRD_ is a control pin used in the Cache Controller read logic block inside the Tag RAM
and is used to drive either State and V.S. information, or tag address information onto
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the bi-directional tag pins. At the same time the TOE_ pin must be asserted to enable this
information onto the Tag address bus. Which information is driven out onto the tag pins
is determined by STRD_. The information on the tag bus enters the R8000 and is
returned to the CC via a field of the TBus.

STWE_ (State Write Enable) Active Low Input

STWE_ is asserted whenever the CC is writing state and Virtual Synonym information to
the Tag RAM. Both the 20 bit tag address and the corresponding 12 bits of state and V.S.
information are carried to the Tag RAM via the tag address bus. The CC tracks the
information on the pins and assertes STWE_ if state and V.S. information is to be written.
TWE_ is asserted if tag address information is to be written.

TWE_ (Tag Write Enable) Active Low Input

TWE_ is driven by the CC whenever tag address information is to be written to the Tag
RAM. Refer to STWE_ above.

9.3.4 Tag RAM Clock Interface

The following signals comprise the clock interface for the even Tag RAM.

CLK (Clock Input) Active high Input

Clock input for the Tag RAM. The input frequency is 75 MHz. The clock can drive the
device directly, or function as an input to a phase lock loop based on the state of the
input pin PLLEN.

PLLEN (Phase Lock Loop Enable) Active High Input

Enable pin for the bi-polar phase lock loop. Assertion of PLLEN enables the phase lock
loop. Deassertion of this pin disables the phase lock loop and allows the input clock to
drive the device directly.

PLLIN1 (Phase Lock Loop 1) Active High Input

There are two phase lock loop circuits on-chip. PLLIN1 is the 75 MHz clock input for the
CMOS phase lock loop. This pin should be tied to ground for normal PLL operation.
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PLLIN2 (Phase Lock Loop 1) Active High Input

PLLIN2 is the 75 MHZz clock input for the Bi-Polar phase lock loop.This pin should be
tied high for normal PLL operation.

PLLSEL (Phase Lock Loop Select) Active High Input

there are two types of phase lock loop circuits inside the Tag RAM, one of which is used
for testing purposes. PLLSEL must be tied high for proper operation of the device.

9.3.5 JTAG Interface

The JTAG interface of the Tag RAM is identical to that of the R8000 and R8010 FPU. All
of the pins have the same function and characteristics. Below is a listing of the JTAG pins
which interface to the Even Tag RAM. For a description of these pins, refer to the JTAG
pin description in section 9.1.8.

JTAG_TCK (JTAG Test Clock) Active High Input
JTAG_TMS (JTAG Test Mode Select) Active High Input
JTAG_TDI (JTAG Test Data Input) Active High Input
JTAG_TDO (JTAG Test Data Output) Active High Output
JTAG_TRST_ (JTAG Test Reset) Active High Input

9.3.6 Component Test Interface

The following signals comprise the component test interface to the Tag RAM. These
signals are listed only for completeness and have no functional purpose other than form
device testing. It is important that the user connect these pins in the manner specified in
the pin descriptions below.

CE_ (Chip Enable) Active Low Input
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Chip Enable for the test logic. This pin is NOT a master chip enable for the device. It
simply enables certain testing functions which are performed during component
verification and testing. CE_ must be tied to ground through a 330 ohm resistor.

RGOEN_ (Ring Oscillator Enable) Active Low Input

The ring oscillator is part of the clock circuitry of the Tag RAM. RGOENL_is used to
observe the behavior during certain stages of the oscillator during the component test
and verification porocess. For normal operation RGOEN_ must be tied to ground
through a 330 ohm resistor.

RGOSI (Ring Oscillator Input) Active High Input
RGOSO (Ring Oscillator Output) Active High Output

These pins are used in conjunction with RGOEN_ during the component test and
verification process. For normal operation RGOSI must be tied to ground through a 330
ohm resistor. RGOSO must be left unconnected.

SSBEN_ (Self-Sub-Bias Enable) Active Low Output

Enables the bias voltage inputs which are used during the component test and
verification process to monitor current flow through the device. SSBEN_ must be tied to
ground through a 330 ohm resistor.

VSUB (Bias Voltage Input) Active High Input
VSUBCELL (Bias Voltage Input) Active High Input

These two pins work in conjunction with SSBEN_ to monitor current flow through the
device during the component test and verification process. Both of these pins must be
left unconnected for normal operation.

94 ODD TAG RAM UNIT SIGNAL DESCRIPTIONS

Two identical Tag RAM’s are required in the R8000 Microprocessor environment for
support of the 2-way interleaved second level streaming cache. The odd Tag RAM
maintains address, state and virtual synonym information for the odd bank of streaming
cache data and the even Tag RAM maintains address, state, and virtual synonym
information for the even bank of streaming cache data.
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The Odd Tag RAM Unit is a 155 pin device which interfaces to the R8000, the Cache
Controller, and the odd bank of streaming cache. The following sections define the

external pinout of the Tag RAM and are divided into specific component interfaces.
Figure 9-5 shows the functional pin groupings of the odd Tag RAM.

ODD TAG RAM
DBSETO_. ——————— |
ESAO [1.0] =P MATCHO
ESASELO ————— R8000 MCHSAO [1:0]
INDEXO [12:0] sme—(g- INTERFACE MCHSTO [1:0]
SECTORO [1:0] =i~ MCHVSO [3:0]
TAGO [19:0] <l't(>
DATSAXO [1:0}
EVEN BANK DATA DATSAYO [1:0]
INTERFACE DATSAWO__ [1:0]
DATSAZO_ [1:0]
RWSA [ciEoT S
: CACHE
Stwe- —_ 3 CONTROLLER
TWE: > INTERFACE
CLK ——————p»
gl&ﬁl\l\é —_— CLOCK
—_—
PLISEL — |  INTERFACE
PLLEN ——— ]
JTAG_TDI ————— >
e Tk o JIAG O
JTAG.TRST —— |  INTERFACE JIAG-
VSUBCELE, —— o
RGOEN. —— | COMPONENT TEST RGOSO
RGOS] —————
CE. INTERFACE
SSBEN. —————»

Figure 9-5 Odd Tag RAM Unit Signal Groupings

Table 9-4 shows a pin sumrhary of the odd Tag RAM Unit in alphabetical order.
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Pin ID Pin Name Active Level Connects To
Output Pins
DATSAWO_ [1:0] Data Set Address Odd Low Odd Bank Address
DATSAXO [1:0] Data Set Address Odd High Odd Bank Address
DATSAYO [1:0] Data Set Address Odd High Odd Bank Address
DATSAZO_[1:0] Data Set Address Odd Low Odd Bank Address
JTAG_TDO JTAG Test Data Out High External Source
MATCHO_ Address Match Low R8000 CPU
MCHSAO [1:0] Match Set Address High R8000 CPU
MCHSTO [1:0] Match State High R8000 CPU
MCHVSO [3:0] Match Virtual Synonym High R8000 CPU
RGOSO Ring Oscillator Output High External Source
Input Pins
CE_ Chip Enable Low External source
CLK Reference Clock (Uses PLL) High External Source
DBSETO_ 0dd Dirty Bit Set Low R8000 CPU
ESAOQO [1:0] Odd External Set Address High R8000 CPU
ESASELO External Set Address Select High R8000 CPU
INDEXO [12:0] Odd Tag RAM Index High R8000 CPU
JTAG_TCK JTAG Clock High External Source
JTAG_TDI JTAG Test Data In High External Source
JTAG_TMS JTAG Test Mode Select High External Source
JTAG_TRST JTAG Test Reset Low External Source
OE_ Output Enable Low Cache Controller
PLLEN Phase Lock Loop Enable High External Source
PLLIN1 Phase Lock Loop Input High External Source
PLLIN2 Phase Lock Loop Input High External Source
PLLSEL Phase Lock Loop Select High External Source
RGOEN_ Ring Oscillator Enable Low External Source
RGOSO Ring Oscillator Output High External Source
RWSA [1:0] Read Write Set Address High Cache Controller
SECTORO [1:0] Odd Sector Address High R8000 CPU
SSBEN_ Self Sub Bias Voltage Enable Low External Source
STRD_ State Read Low Cache Controller
STWE_ State Write Enable Low Cache Controller
TWE_ Tag Write Enable Low Cache Controller
VSUB Bias Voltage Input High External Source

Table 9-4 Odd Tag RAM Pin Summary
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Pin ID Pin Name Active Level Connects To
VSUBCELL Bias Voltage Input High External Source
Input/Output Pins
TAGO [19:0] | Odd Tag Address | High | R8000 CPU

Table 9-4 Odd Tag RAM Pin Summary

9.4.1 Odd Tag RAM to R8000 Microprocessor

The following signals connect to the R8000 and are explained further in section 9.1.3.

DBSETO_ (Odd Dirty Bit Set) Active Low Input

The dirty bit RAM is written conditionally based on the state of DBSETO_. Refer to the
DBSETO_ pin description in section 9.1.3 for more information.

ESAO [1:0] (External Set Address Odd) Active High Input

These pins are connected directly to the ESAO [1:0] pins of the R8000. Refer to the ESAO
pin description in section 9.1.3 for more information.

ESASELO (External Set Address Select Odd) Active High Input

The ESASEL pin acts as a mux select to drive the ESA [1:0] bits through to the DATSA
[1:0] bits. Refer to the ESASELE pin description in section 9.1.3 for more information.
INDEXO [12:0] (Tag RAM Index Odd) Active High Input

These pins form the index into the Tag RAM and are connected to the INDEXO pins of
the R8000. Refer to the INDEXO pin descriptions in section 9.1.3 for connectivity
information.

MATCHO_ Active Low Output

This signal is an output from the odd Tag RAM. When the R8000 performs a lookup
cycle to the tag RAM an index is supplied which corresponds to all four sets of the four

way set associative odd tag RAM. Assertion of this signal by the tag RAM indicates that
the address on the bus compared to one of the four sets. MATCHO_ is connected directly
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to the MATCHO_ pin of the R8000 CPU.

MCHSAO [1:0] (Match Set Address Odd) Active High Output

On a lookup cycle, these 2 bits are used to form an encoded value indicating which of the
four ways in the Tag RAM was a hit. Refer to the MCHSAE pin descriptions in section
9.1.3 for more information.

MCHSTO [1:0] (Match State Odd) Active High Output

These 2 bits encode the state information of a given 128 byte sector in the data RAM's.
The state can be shared, exclusive, or invalid. Refer to the MCHSTE [1:0] pin
descriptions in section 9.1.3 for more information.

MCHVSO [3:0] (Match Virtual Synonym Odd) Active High Output

The bits correspond to virtual address bits [15:12] and form the virtual synonym entry in
the Tag RAM. Refer to the MCHVSE [3:0] pin descriptions in section 9.1.3 for more
information.

SECTORO [1:0] (Tag RAM Sector Address Odd) Active High Input

These two pins act as a 4:1 mux selector inside the Tag RAM. Each line of the Data RAM
contains 4 sectors, with each sector containing sixteen 64 bit words, 8 in the odd bank
and 8 in the even bank. The SECTORO [1:0] pins are used to select the correct state
information for the sector to be accessed. Refer to the INDEXO pin descriptions in
section 9.1.3 for more infomation.

TAGO [19:0] (Tag RAM Tag Address Odd) Active High I/O
These pins form the tag address of the tag RAM. The TAGO pins are written and read by
the CC. The R8000 uses TAGO [19:0] for lookup cycles. Reads and writes from the CC are

passed onto the TAGO pins through the TBus. Refer to the TAGO pin descriptions in
section 9.1.3 for connectivity information.

9.4.2 Odd Tag RAM to Odd Bank Streaming Cache

DATSAXO [1:0] (Data Set Address X Odd) Active High Output
DATSAYO [1:0] (Data Set Address Y Odd) Active High Output
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DATSAWO_ [1:0] (Data Set Address W Odd) Active Low Output
DATSAZO_[1:0] (Data Set Address Z Odd) Active Low Output

These two bits form the upper two address bits for the odd bank of the streaming cache.
Each of the four sets of DATSA pins contains the exact same information and are
buffered versions of one another. Two sets are inverted.

9.4.3 Odd Tag RAM to Cache Controller

The Cache Controller does not distinguish between even and odd Tag RAM’s. Each
interface pin of the CC goes to both the even and odd Tag RAM’s. Below is a list of
signals which constitute the Tag RAM to Cache Controller interface. Refer to section
9.3.3, Tag RAM to Cache Controller, for pin defintions of the cache controller interface.

TOE_ (Tag Output Enable) Active Low Input

RWSA [1:0] (Read Write Set Address) Active High Input
STRD_ (State Read) Active Low Input

STWE_ (State Write Enable) Active Low Input .
TWE_ (Tag Write Enable) Active Low Input

9.44 Tag RAM Clock Interface

The following signals comprise the clock interface for the odd Tag RAM. These signals
are identical in functionality and characteristics to those of the even Tag RAM. Refer to
clock interface in section 9.3.4 for the definitions of these pins.

CLK (Clock Input) Active high Input

PLLEN (Phase Lock Loop Enable) Active High Input
PLLIN1 (Phase Lock Loop 1) Active High Input
PLLIN2 (Phase Lock Loop 1) Active High Input
PLLSEL (Phase Lock Loop Select) Active High Input

9.4.5 JTAG Interface
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The JTAG interface of the Tag RAM is identical to that of the R8010 FPU and R8000 CPU.
All of the pins have the same function and characteristics. Below is a listing of the JTAG
. pins which interface to the tag RAM’s.

JTAG_TCK (JTAG Test Clock) Active High Input
JTAG_TMS (JTAG Test Mode Select) Active High Input
JTAG_TDI (JTAG Test Data Input) Active High Input
JTAG_TDO (JTAG Test Data Output) Active High Output
JTAG_TRST_ (JTAG Test Reset) Active High Input

9.4.6 Component Test Interface

The following signals comprise the initialization interface to the odd Tag RAM. The
functionality of these pins is identical to the even Tag RAM. Refer to section 9.3.6 for a
description of these pins.

CE_ (Test Logic Chip Enable) Active Low Input

RGOEN_ (Ring Oscillator Enable) Active High Input
RGOSI (Ring Oscillator Input) Active High Input

RGOSO (Ring Oscillator Output) Active High Output
SSBEN_ (Self Sub-Bias Voltage Enable) Active High Output
VSUB (Sub-Bias Voltage Input) Active High Output
VSUBCELL (Sub-Bias Voltage Input) Active High Output

9.5 EVEN BANK STREAMING CACHE PIN DESCRIPTIONS

The even bank of Data RAM’s interfaces to the even Tag RAM. The odd bank of Data
RAM’s interfaces to the odd Tag RAM. Both banks interface to the R8000 CPU and the
R8010 FPU. The following sections define the external pinout of the even and odd data
RAM’s and are divided into specific component interfaces. Note that the even bank
contains twelve clock inputs. Each line is an individual output of the clock driver
circuitry. The even bank contains 24 devices between the two modules, hence no clock
line is required to drive more than two devices. Figure 9-6 shows the functional pin
groupings of the Even Data RAM bank.
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ADDRE [17:0] =—-
WEE [1:0] =

DATSAXE [1:0] =i

DATSAYE [1:0] —————»

DATSAWE_ [1:0] =i
DATSAZE_ [1:0] =

EVEN TAG RAM
INTERFACE

SDE [63:0] sms—-
SPE [3:0] s>

R8010 FPU
INTERFACE

EU_CLKA-EU_CLKF —S<—p»

EL_CLKA-EL_CLKF —S8< ]

Upper 32 bit SIMM (Even)

CLOCK
INTERFACE

Lower 32 bit SIMM (Even)

CS. ————»
CE. —

CONTROL
INTERFACE

EVEN BANK DATA RAM’s

LDE [63:0]

LDE [63:0]
LPE [3:0]

Figure 9-6 Even Bank Data RAM Signal Groupings

Table 9-5 shows a pin summary of the even data RAM bank in alphabetical order.

Pin ID Pin Name Active Level Connects To
Output Pins
LDE [63:0] Load Data Even High R8000/R8010
LPE [3:0] Load Parity Even High R8000 CPU
Input Pins
ADDRE [17:0] Even Bank Address High R8000 CPU
CE_ Chip Enable Low External source
CS_ Chip Select Low External Source
DATSAWE_ [1:0] [ Data Set Address Odd Low Even Tag RAM

Table 9-5 Even Bank Data RAM Pin Summary
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Pin ID Pin Name Active Level Connects To
DATSAXE [1:0] | Data Set Address Odd High Even Tag RAM
DATSAYE [1:0] Data Set Address Odd High Even Tag RAM

DATSAZE_ [1:0] | Data Set Address Odd Low Even Tag RAM
EU_CLKA Even Upper Clock A High External Source
EU_CLKB Even Upper Clock B High External Source
EU_CLKC Even Upper Clock C High External Source
EU_CLKD Even Upper Clock D High External Source
EU_CLKE Even Upper Clock E High External Source
EU_CLKF Even Upper Clock F High External Source
EL_CLKA Even Lower Clock A High External Source
EL_CLKB Even Lower Clock B High External Source
EL_CLKC Even Lower Clock C High External Source
EL_CLKD Even Lower Clock D High External Source
EL_CLKE Even Lower Clock E High External Source
EL_CLKF Even Lower Clock F High External Source
SDE [63:0] Store Data Even High R8010 FPU

SPE [3:0] Store Parity Even High R8010 FPU
WEE_ [1:0] Even Bank Write Enables Low R8000 CPU

Table 9-5 Even Bank Data RAM Pin Summary

9.5.1 Even Bank Streaming Cache to R8000 Microprocessor

ADDRE [17:0] (Address Even) Active High Input

These pins form the address to the even bank of the streaming cache. Bits 17:0 of the
R8000 connect directly to address pins 17:0 of both SIM modules of the even bank . Refer
to section 9.1.4 for more information on ADDRE [17:0].

LDE [63:0] (Load Data Even) Active High Output

Load data bus between the R8000 and the even bank of the streaming cache. This bus is
unidirectional and drives only load input data to the R8000. Refer to section 9.1.4 for
more information on LDE [63:0].

WEE_ [1:0] (Even Bank Write Enable) Active Low Input

The data RAM'’s can be written either by the R8000 or by the CC. The CC writes to the
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data RAM'’s through the TBus. The R8000 Microprocessor provides a total of four write
enables, two for the odd bank and two for the even bank. Streaming cache designs must

. allow for 32 bit writeability. WEE_ [1] is connnected to the WE_ pin of the upper 32 bits
of data for the even bank. WEE_ [0] is connnected to the WE_ pin of the lower 32 bits of
data for the even bank. Refer to section 9.1.4 for more information on WEE_ [1:0].

9.5.2 Even Bank Streaming Cache to Even Tag RAM

DATSAXE [1:0] (Data Set Address X Even) Active High Input
DATSAYE [1:0] (Data Set Address Y Even) Active High Input
DATSAWE_ [1:0] (Data Set Address W Even) Active Low Input
DATSAZE_ [1:0] (Data Set Address Z Even) Active Low Input

These two bits form the upper two address bits for the Even bank of Data RAM’s. Each
of the four sets of DATSA pins contains the exact same information and are buffered
versions of one another. Two of the sets are inverted.

9.5.3 Even Bank Streaming Cache to R8010 FPU
LDE [63:0] (Even Bank Load Data) Active High Output

The LD [63:0] pins of the even bank of the streaming cache connect directly to the LDE -
[63:0] busses of both the R8000 CPU and the R8010 FPU. Refer to section 9.1.4 for more
information on LDE [63:0].

LPE [3:0] (Even Bank Load Paﬁty) Active High Input

Load parity bus between the R8010 FPU and the even bank of the streaming cache. This
bus is unidirectional and drives load parity data only. Refer to section 9.2.2 for more
information on LPE [3:0].

SDE [63:0] (Store Data) Active High Output

The SD [63:0] pins of the even bank of the streaming cache connect directly to the SDE
[63:0] pins of the R8010 FPU. There is no direct store data interface between the R8000
CPU and the streaming cache data RAM's. Integer stores are handled through the R8010
FPU via the TBus. Refer to section 9.2.2 for more information on SDE [63:0].
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SPE [3:0] (Store Parity Even) Active High Input

Store parity bus between the R8010 FPU and the even bank of the streaming cache. This
bus is unidirectional and accepts store parity data only. Even bank load data is

transferred via the dedicated load parity bus. Refer to section 9.2.2 for more information
on SPE [3:0].

9.5.4 Even Bank Clock Interface

The clock interface to the even bank of Data RAM’s consists of twelve separate clocks.
Six clocks are used for the upper 32-bit module and six clocks for the lower 32-bit
module. Each module contains 12 devices; eight 256K X 4 Data RAM’s, one 256K X 4
Parity RAM, and three address buffers. Each clock drives two devices.

EU_CLKA (Even Upper Clock A) Active High Input
EU_CLKB (Even Upper Clock B) Active High Input
EU_CLKC (Even Upper Clock C) Active High Input
EU_CLKD (Even Upper Clock D) Active High Input
EU_CLKE (Even Upper Clock E) Active High Input
EU_CLKF (Even Upper Clock F) Active High Input

EL_CLKA (Even Lower Clock A) Active High Input
EL_CLKB (Even Lower Clock B) Active High Input
EL_CLKC (Even Lower Clock C) Active High Input
EL_CLKD (Even Lower Clock D) Active High Input
EL_CLKE (Even Lower Clock E) Active High Input
EL_CLKF (Even Lower Clock F) Active High Input

9.5.5 Even Bank Control Interface

The control interface for the even bank of streaming cache Data RAM’s consists of a chip
select and an output enable. Because the R8000 CPU and R8010 FPU provide dedicated
load and store data busses for both the even and odd banks, no multiplexing of data is
necessary. In addition, these busses interface only to certain devices within the system.
This allows the OE_ pin to be permenantly asserted by tying it to ground. In addition,
the CS_ pin can also remain permenantly asserted by tying it to ground.
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CS_ (Chip Select) Active Low Input

Chip Select for the module. The individual chip selects for each RAM are tied together
and routed to the module connector. CS_ should be tied to ground through a 330 ohm
resistor.

OE_ (Output Enable) Active Low Input

Output enable for the module. Assertion of CE_ allows the RAM to drive data onto the
load data bus. The individual output enables for each RAM are tied together and routed
to the module connector. OE_ should be tied to ground through a 330 ohm resistor.

9.6 ODD BANK STREAMING CACHE PIN DESCRIPTIONS

The following sections define the external pinout of the odd bank of streaming cache
data RAM’s and are divided into specific component interfaces. The following sections
define the external pinout of the even and odd data RAM’s and are divided into specific
component interfaces. Note that the even bank contains twelve clock inputs. Each line is
an induvidual output of the clock driver circuitry. The even bank contains 24 devices
between the two modules, hence no clock line is required to drive more than two devices
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Figure 9-7 Odd Bank Data RAM Signal Groupings

Table 9-6 shows a pin summary of the odd data RAM bank in alphabetical order.

Pin ID Pin Name Active Level Connects To
Output Pins
LDO [63:0] Odd Bank Load Data High R8000/R8010 FPU
LPO [3:0] Odd Bank Load Parity High R8000 CPU
Input Pins
ADDRO [17:0] Odd Bank Address High R8000 CPU
CE_ Chip Enable Low External source
CS_ Chip Select Low External Source
DATSAWO_ {1:0] Data Set Address Odd Low Odd Tag RAM
DATSAXO [1:0] Data Set Address Odd High Odd Tag RAM
DATSAYO [1:0] Data Set Address Odd High Odd Tag RAM

Table 9-6 Odd Bank Data RAM Pin Summary
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Pin ID Pin Name Active Level Connects To
DATSAZO_[1:0] Data Set Address Odd Low Odd Tag RAM
OU_CLKA Odd Upper Clock A High External Source
OU_CLKB Odd Upper Clock B High External Source
OU_CLKC 0Odd Upper Clock C High External Source
OU_CLKD 0Odd Upper Clock D High External Source
OU_CLKE 0Odd Upper Clock E High External Source
OU_CLKF 0Odd Upper Clock F High External Source
OL_CLKA Odd Lower Clock A High External Source
OL_CLKB Odd Lower Clock B High External Source
OL_CLKC Odd Lower Clock C High External Source
OL_CLKD 0Odd Lower Clock D High External Source
OL_CLKE 0Odd Lower Clock E High External Source
OL_CLKF 0Odd Lower Clock F High External Source

SDO [63:0] Store Data Odd High R8010 FPU

SPO [3:0] Store Parity Odd High R8010 FPU

WEO_[1:0] 0Odd Bank Write Enable Low R8000 CPU h

Table 9-6 Odd Bank Data RAM Pin Summary

9.6.1 Odd Bank Streaming Cache to R8000 Microprocessor

ADDRO [17:0] (Address Odd) Active High Input
These pins form the address to the odd bank of the streaming cache. Bits 17:0 of the -

R8000 Microprocessor connect directly to address pins 17:0 of both SIM modules of the
odd bank . Refer to section 9.1.5 for more information on ADDRO [17:0].

LDO [63:0] (Load Data Odd) Active High Output

Load data bus between the R8000 CPU and the odd bank of the streaming cache. This
bus is unidirectional and drives only load input data to the R8000. Refer to section 9.1.5
for more information on LDO [63:0].

WEOQO_[1:0] (Odd Bank Write Enable) Active Low Input

The data RAM's can be written either by the R8000 CPU or by the CC. The CC writes to
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the data RAM's through the TBus. The R8000 Microprocessor provides a total of four
write enables, two for the odd bank and two for the even bank. Streaming cache designs
must allow for 32 bit writeability. WEO_ [1] is connnected to the WEO_ pin of the upper
32 bits of data for the odd bank. WEO_ [0] is connnected to the WEQO_ pin of the lower
32 bits of data for the odd bank.

9.6.2 Odd Bank Streaming Cache to Odd Tag RAM

DATSAXO [1:0] (Data Set Address X Odd) Active High Input
DATSAYO [1:0] (Data Set Address Y Odd) Active High Input
DATSAWO_ [1:0] (Data Set Address W Odd) Active Low Input
DATSAZO_[1:0] (Data Set Address Z Odd) Active Low Input

These two bits form the upper two address bits for the odd bank of Data RAM’s. Each of
the four sets of DATSA pins contains the exact same information and are buffered
versions of one another. Two of the sets are inverted.

9.6.3 Odd Bank Streaming Cache to R8010 FPU
LDO [63:0] (Odd Bank Load Data) Active High Output

The LDO [63:0] pins of the odd bank of the streaming cache connect directly to the LDO
[63:0] busses of both the R8000 CPU and the R8010 FPU. Refer to section 9.2.3 for more
information on LDO [63:0].

LPO [3:0] (Odd Bank Load Parity) Active High Input

Load parity bus between the R8010 FPU and the odd bank of the streaming cache. This
bus is unidirectional and drives load parity data only. Odd bank store parity data is
transferred via the dedicated store parity bus. Refer to section 9.2.3 for more information
on LPO [3:0].

SDO [63:0] (Store Data Odd) Active High Qutput
The SDO [63:0] pins of the odd bank of the streaming cache connect directly to the SDO

[63:0] pins of the R8010 FPU. There is no direct store data interface between the R8000
CPU and the streaming cache data RAM’s. Integer stores are handled through the R8010
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FPU via the TBus. Refer to section 9.2.3 for more information on SDO [63:0].

SPO [3:0] (Store Parity Odd) Active High Input

Store parity bus between the R8010 FPU and the odd bank of the streaming cache. This
bus is unidirectional and accepts store parity data only. Odd bank load parity data is
transferred via the dedicated load parity bus. Refer to section 9.2.3 for more information
on SPO [3:0].

9.6.4 Odd Bank Streaming Cache Clock Interface

The clock interface to the odd bank of Data RAM’s consists of twelve separate clocks. Six
clocks are used for the upper 32-bit module and six clocks for the lower 32-bit module.
Each module contains 12 devices; eight 256K X 4 Data RAM'’s, one 256K X 4 Parity RAM,
and three address buffers. Each clock drives two devices.

OU_CLKA (Even Upper Clock A) Active High Input
OU_CLKB (Even Upper Clock B) Active High Input
OU_CLKC (Even Upper Clock C) Active High Input
OU_CLKD (Even Upper Clock D) Active High Input
OU_CLKE (Even Upper Clock E) Active High Input
OU_CLKF (Even Upper Clock F) Active High Input

OL_CLKA (Even Lower Clock A) Active High Input
OL_CLKB (Even Lower Clock B) Active High Input
OL_CLKC (Even Lower Clock C) Active High Input
OL_CLKD (Even Lower Clock D) Active High Input
OL_CLKE (Even Lower Clock E) Active High Input
OL_CLKF (Even Lower Clock F) Active High Input

9.6.5 Odd Bank Streaming Cache Control Interface

The control interface for the odd bank of streaming cache Data RAM's consists of a chip
select and an output enable. Because the R8000 CPU and R8010 FPU provide dedicated
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load and store data busses for both the even and odd banks, no multiplexing of data is
necessary. In addition, these busses interface only to certain devices within the system.
. This allows the OE_ pin to be permenantly asserted by tying it to ground. In addition,
the CS_ pin can also remain permenantly asserted by tying it to ground.

CS_ (Chip Select) Active Low Input

Chip Select for the module. The individual chip selects for each RAM are tied together
and routed to the module connector. CS_ should be tied to ground through a 330 ohm
resistor.

OE_ (Output Enable) Active Low Input
Output enable for the module. Assertion of CE_ allows the RAM to drive data onto the

load data bus. The individual output enables for each RAM are tied together and routed
to the module connector. OE_ should be tied to ground through a 330 ohm resistor.
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TBUS INTERFACE

10

The TBus is an 80 bit high speed 75 MHz bus which connects between the R8000
Microprocessor, the R8010 Floating Point Unit (FPU), and the Cache Controller (CC). The
TBus is used for general communication between the devices. Ownership of the TBus
changes depending on the operation to be performed. The format of the TBus also
changes depending on which device is driving the bus.

Under normal operating conditions the R8000 CPU drives the TBus. The R8000 CPU
performs operations and transfers the result or status of the operations across the TBus
to the CC. However, there is frequent exchange of TBus ownership between the R8000
CPU and the CC. When conditions occur which warrant CC interaction to the system,
such as a streaming cache miss, TBus ownership is transferred to the CC and the
necessary operation completed. The TBus is the Cache Controller’s main interface to the
rest of the system. Among other things, the CC uses the TBus to transfer tag RAM
address, state, and virtual synonym information, Data RAM address and write enable
information, and interrupt status to the R8000 CPU. Because the CC does not have
dedicated bus interfaces to the tag RAM’s or the Streaming Cache, it is the responsibility
of the R8000 CPU to take the information on the TBus and route it to the proper address
or control busses in the system. Refer to figure 1-1 in chapter 1 for a block diagram of the
R8000 Microprocessor Chip Set.

There are four types of transfers which can occur between the R8000 CPU and the R8010
FPU. However, during only one of these transfers, moving data from a floating point
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register to a general purpose register inside the R8000 CPU, does the R8010 FPU actually
drive the TBus. Under all other conditions the TBus pins of the R8010 FPU are in input
.mode.

Although there are physical pin connections between the CC and the R8010 FPU, they
exist only because the R8000 CPU must communicate with both devices. There is no
protocol or information exchange of any kind between the CC and the R8010 FPU.

The lower 72 bits of the TBus (TB71:0) connect between the three devices. The uppermost
8 bits (TB<79:72>) connect only between the R8000 CPU and the R8010 FPU.

Figure 10-1 shows the TBus connections between the three devices.

R8000 CPU

8
1 é PN
| TB<79:72> 72 CACHE
R8010 FPU TB<71:0> CONTROLLER -

Figure 10-1 TBus Connections

10.1 PROCESSOR CONTROLLED TBUS FIELDS

The fields comprising the TBus include all of the basic information available for a given
R8000 CPU access. If the R8000 CPU requires CC intervention to complete a cycle, this
information is dispatched across the TBus and control of the bus transferred to the CC.
The CC then uses the TBus information to take the appropriate action.

The Command and Coherence fields indicate what type of operation the R8000 CPU was
trying to do. The Match, Set Address, State, and Virtual Synonym fields encode the
information received during the Tag RAM lookup. The Size field indicates the size of
non-cachable information and is only valid when non-cachable operations are being
performed.

The format of the TBus changes depending which device is driving. When the R8000
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CPU is in control of the TBus, the format of TB<71:0> is as shown in Table 10-1.

R8000 CPU Controlled Tbus Fields | Width Tbus Bits
Reserved 12 71:60
Command 4 59:56
Size 3 55:53
Coherence Protocol 3 52:50
No Match 2 49:48
Set Address 2 47:46
State Information 2 45:44
Virtual Synonym 4 43:40
Physical Address 40 39:0

Table 10-1 R8000 CPU Controlled TBus Fields

Table 10-1 shows the bit orientations of the TBus under R8000 CPU control. Not all of the
fields are used for each type of cycle. There are four divisions of the TBus and which
portions are driven or tri-stated depends on the operation being executed.

1) Bits 79:72 connect between the R8000 CPU and the R8010 FPU and are always driven
regardless of the operation.

2) Bits 71:64 are driven only by the R8000 CPU or the CC. Which device is driving
depends on the state of the TBus state machine.

3) Bits 63:40 can be driven by the R8000 CPU, CC, or R8010 FPU. The CC drives the pins
as dictated by the TBus state machine. The R8010 FPU drives the pins as commanded by
the R8000 CPU, such as when the R8010 FPU is commanded to move data from a R8010
FPU register and place it in an R8000 CPU register. In all other situations the pins are
driven by the R8000 CPU.

4) Bits 39:0 are also driven by the R8000 CPU, CC, and R8010 FPU. The same rules apply
as those for bits 63:40. In addition, during the CC state (CC is in control of the TBus),
seven cycles after one of the tag RAM read functions is driven, bits 39:0 of the TBus are
tri-stated by the CC to allow the R8000 CPU to return data. Refer to section 11.2.2 for
more information on the tag read function.

The following sections explain the functions in table 10-1 in more detail.
10.1.1 Reserved Field

The reserved field comprises bits 71:60. These bits are reserved by MIPS Technologies
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Incorporated.
10.1.2 Command Field

The Command field is a four bit field which encodes the type of memory access the
R8000 CPU was doing which caused the transfer. The Command field is always valid
whenever VALIDOUT_ is asserted. Also included in the command field are the Cachable
and Non-cachable coherence attributes of each access type.

Command Bneoded | Cachable | 0%

Read 0 yes yes
Instruction Fetch 1 yes yes
Write 2 yes no
Write 3 yes no
Reserved 4-5 --- -
Non-Cachable Write 6 no yes
Sequential Non-Cachable 7 no yes
Write

Prefetch 8 yes no
Reserved 9-15 - -

Table 10-2 Command Field Encoding

The command field allows the R8000 CPU to inform the CC what type of cycle was being
performed which caused the R8000 CPU to request action. The CC can then decode the
four bit field and initiate the appropriate cycle. The command field is sampled by the CC
during the clock when VALIDOUT_ is asserted by the R8000 CPU. Normally after
VALIDOUT_ is asserted by the R8000 CPU the TBus state machine will transition from
the RUN state to the CC state to allow the CC control of the TBus.

The read entry of the command field indicates any type of read cycle, such as the PROM,
the Non-volatile RAM, registers in the CC chip, registers in the system address chips,
main memory, I/O busses, etc.

Even though a read and an instruction fetch are both read cycles, having a separate
instruction fetch entry in the command field allows the system designer to differentiate
between the fetching of instructions and the fetching of data. Different coherence
protocols can then be assigned to each. For example, if it is determined during a data
fetch that no other processor in the system has that data the data can be marked as
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fetch that no other processor in the system has that data the data can be marked as
‘Exclusive’ and written immediately without requiring further state modification
transactions. This boosts system performance as data can be written and used
immediately as it becomes available.

For instructions there is normally no necessity for writing, hence the instructions can be
fetched and marked as ‘Shared’. Therefore, if another processor requests the same
instruction there is no need to do an ‘Intervention’ cycle (see section 11.4.9 for a
definition of intervention). The other processor can simply fetch the instruction without
requiring additional overhead.

The write entry of the command field comprises encoded values 2 and 3. These cycles
are identical. Duplicate writes appear simply for the convenience of the gating
arrangements inside the R8000 CPU. The CC must react to either of these bits active
when VALIDOUT._ is asserted.

The reserved entries of the command field pertain to encoded entries 4, 5, and 9-15 and
are reserved by MIPS Technologies.

The R8000 CPU non-cachable write entry of the command field is a partial write,
meaning that less than 128 bytes can be written. During this cycle the R8000 CPU does
not give up the TBus. In non-cachable write cycles there is no place to put the data and
have it transferred at a later time with a write-back cycle. Non-cachable data is
transferred to the Data cache but is marked as invalid. The R8000 CPU can use the data
only once. If the R8000 CPU tries to read the non-cachable data a second time it will
incur a miss because the line is marked as invalid. The R8000 CPU non cachable write
cycle writes the data without concern for the sequential order of instructions.

In a Sequential non-cachable write the processor writes out the data and then halts
execution and will not restart until commanded to do so. This assures that nothing
happens out of order.

The Prefetch entry allows the CC to fetch data which may be required by the R8000
CPU. The prefetch is non-binding in the sense that there is no penalty involved and no
requirement that the data be used by the R8000 CPU after being fetched. The prefetch is
a special instruction which creates an address and fetches the corresponding data or
instructions. Normal instructions cause movement of data between registers or devices.
The prefetch does not demand any such action but rather generates an address which
causes the CC to fetch data or instructions which may or may not be used. The
advantage of prefetching is that at the time the prefetch is initiated the data is not needed
by the R8000 CPU. However, if the prefetched data or instructions are used later on they
are available immediately, the access time for the data having already been completed.
Prefetched instructions or data are fetched by the CC and moved into the Data Cache
and marked as invalid in the Data Cache Valid RAM. Note that prefetch instructions are
inserted into the instruction stream by the compiler. There is no system requirement that
they be supported.
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10.1.3 Size Field

The Size field is an encoded three bit value which indicates the size of the operation, one
through eight bytes, for non-cachable operations. The size field is used only on non-
cachable operations and is valid for any command indicating a partial read. Cachable
operations always fetch 128 bytes. The page table entries in memory determine whether
a given location is cachable or non-cachable. The size field relates to the coherence
protocol field described in section 11.1.4 below. The coherence field encodes the type of
non-cachable operation and the size field indicates the corresponding amount of data to
be transferred.

There is one exception to the size field. Non-cachable instruction fetches always fetch 32
bytes. During this type of non-cachable cycle the CC does not decode the size field
because the fetch size has been pre-determined by the instruction itself. Non-cachable
instruction fetches exist in order to facilitate the boot-up procedure. There are no non-
cachable instructions fetches after completion of the boot-up procedure. Although 32
bytes is the specified minimum, more bytes can be fetched is desired. The amount
fetched is system dependent. The encoded values of the size field are shown in Table 10-
3.

Encoded Size
Value
0 1 byte
1 2 bytes
2 3 bytes
3 4 bytes
4 5 bytes
5 6 bytes
6 7 bytes
7 8 bytes

Table 10-3 Size Field Encoding
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10.1.4 Coherence Protocol Field

The Coherence Protocol field is a three bit field used to indicate the coherence attributes
in the page table entry for the access and is always valid whenever VALIDOUT._ is
asserted. It is used to determine whether the access is cachable, and what type of
protocol to follow in filling the streaming cache. The Coherence field allows data to
maintain coherent in a multi-processor environment.

Non-cachable cycles transfer data from an external non-cachable source into the data
cache of the R8000 CPU. When the R8000 CPU requests non-cached data the CC retrieves
the data and places it in the Data Cache of the R8000 CPU and marks the status of the
entry as invalid. The R8000 CPU has internal tracking mechanisms which allow the
location to be read as soon as data becomes available without taking a miss due to the
invalid status of the entry. However, the R8000 CPU can read the location only once. Any
subsequent reads to that location result in a Data Cache miss. Table 10-4 shows the
different cycles supported by the coherence field.

Encoded

Value Coherence Attribute

0 Processor Ordered Uncachable

Reserved

1

2 Uncachable Sequential
3 Cachable Non-Coherent
4

5

Cachable Coherent Exclusive

Cachable Coherent Exclusive on Write

6-7 Reserved
Table 10-4 Coherence Field

The Processor Ordered Uncachable entry is used for writing hardware registers in the
CC which support the write-gatherer operation. The purpose of a write-gatherer is to
gather 32 bit write operations from another source (such as a graphics engine) into a 128
byte block before sending them across the bus. Otherwise each single 32 bit write would
have to be sent across the bus which would decrease system data bandwidth and
degrade overall system performance.

The Reserved entry is reserved by MIPS Technologies and should not be used.

The Uncachable Sequential entry is the standard non-cachable protocol which can be
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used by internal CC registers, I/O registers, memory, etc. Only those exact bytes
specified are actually written or read. There is no minimum block size requirement.

The Cachable Non-Coherent allows data to be cached which is not coherent between
processors. This function is supported for those systems which do not require that data
coherency between processors be maintained.

The Cachable Coherent Exclusive entry allows data to be read from another device and
marked as exclusive. It is the responsibility of the CC to retrieve the data from another
processor and assure that the entry in the other processor is marked as invalid.

The Cachable Coherent Exclusive on Write entry is the standard protocol that all
cachable cycles should follow. Data can be shared between processors and read access
allowed to each at the same time. Any processor which desires to write the data must
assure that all of the other processors mark their entries as invalid. Any other processor
which then desired the newly written data must perform an intervention cycle in order
to retrieve the data.

10.1.5 Match Field

The Match field in table 10-1 is a two bit field which reflects the status of the MATCH pin
which was returned to the R8000 CPU by the Tag RAM. The R8000 CPU samples the
various control signals from the Tag RAM and encodes the status of the Tag RAM lookup
in the Match field of the TBus. The Match field also contains the status of whether the
virtual synonym returned from the Tag RAM matched the virtual address bits from the
original address. The number of virtual synonym bits actually checked depends on the
size of the Data Cache. The result of the Tag RAM lookup is sent across the TBus to the
CC and the appropriate action is taken by the CC.

The MATCH field is valid whenever VALIDOUT_ is asserted and is driven by the R8000
CPU whenever the R8000 CPU is doing a write cycle and the line is marked either shared
or invalid. If the line is marked shared it must be upgraded. If the line is marked invalid
the data must be retrieved. The state status is determined by the CC from the state field
explained in section 10.1.7.

If the R8000 CPU is performing either a read or a write cycle and the line is marked
exclusive no CC action is required. Also, if the R8000 CPU is performing a read cycle and
the line is marked shared no CC action is required.

Separate Match and State fields are required due to the sectored nature of the streaming
cache. There are four sectors per streaming cache line but only one address per line. Each
of the four sectors of the line must be looked at individually to ascertain the status of
each. It is possible to have an address match but no sector match (all sectors are in the
State field are marked invalid). This is important to determine because if the address
matches, the data must be placed at that address even though all of the corresponding
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sectors may be invalid. If this were seen simply as a miss the CC would pick a random
set to put the data in. You could then end up with multiple sets in the cache containing
. the same address. Table 10-5 lists the different codes of the Match field and their
descriptions

Encoded

Value Coherence Attribute

0 Tag Match and Virtual Synonym Match (Cachable)

1 Tag Match and Virtual Synonym Miss-Match OR
Tag Match and Non-Cachable Operation

2 Reserved
3 No Tag Match
Table 10-5 Match Field Encoding

If the Match field indicates both a Tag address match and a virtual synonym match
(encoded value 0), the CC simply fetches and adds a sector to the existing line in both the
Data cache and the Streaming cache.

If the field indicates a Tag address match and a virtual synonym miss-match (encoded
value 1), the CC removes the entire line, invalidates the corresponding entry in the Data
Cache, fetches the needed sector and places it in the streaming cache (in the same set).

If there is no Tag address match (encoded value 3), indicating a miss, the CC removes the
entire line at a set which the CC chooses, invalidates the Data Cache entry for that line,
fetches the needed sector and places it in the streaming cache at that set.

10.1.6 Set Address Field

The Set Address field in table 10-1 is a two bit field which reflects the status of the Tag
RAM lookup and distinguishes which of the four sets in the Tag RAM the address
compared. The Set Address field is valid whenever there is an address match as
determined by the Match field. When a lookup cycle is performed on the 4-way set
associative Tag RAM, and there is an address match, the Tag RAM encodes onto the
MCHSA<1:0> pins which of the four sets of a given Tag RAM entry actually compared.
This information is then routed by the R8000 CPU from its MCHSA inputs onto the Set
Address field of the TBus (bits 47:46). Table 10-6 shows the encoding of the set address
field.
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Er{;:;)lizd Set Address Match
0 Set 0 Match
1 Set 1 Match
2 Set 2 Match
3 Set 3 Match

Table 10-6 Set Address Field

10.1.7 State Field

The two bit State field indicates the coherency status for the given access. The state field

is always driven whenever VALIDOUT_ is asserted. Every entry in the Tag RAM has

address, state, and virtual synonym information associated with it. If there is a match to

one of the 4 sets, the set address information is returned by the Tag RAM on the

MCHSA<1:0> pins. The corresponding state information is returned by the Tag RAM on
the MCHST<1:0> (Match State) pins. This information is then routed by the R8000 CPU
from its MCHST inputs onto the State field of the TBus (bits 45:44).The state field is used

to determine the reason for the miss.

Table 10-7 below lists the different codes of the State field and their descriptions.

E‘{f:lgzd Definition
0 Invalid
1 Shared State
2 Exclusive State
3 Reserved

Tabie 10-7 State Field Encoding
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10.1.8 Virtual Synonym Field

The four bit Virtual Synonym field contains virtual address bits 15:12 for the access
which caused the operation. Every entry in the Tag RAM has address, state, and virtual
synonym information associated with it. If there is a match to one of the 4 sets, the set
address and state information are returned by the Tag RAM on the MCHSA and MCHST
pins respectively. The corresponding virtual synonym information is returned by the Tag
RAM on its MCHVS <3:0> (Match Virtual Synonym) pins. This information is then
routed by the R8000 CPU from its MCHVS inputs onto the Virtual Synonym field of the
TBus (bits 43:40). The virtual synonym field is required so that the Data Cache inside the
R8000 CPU can be correctly invalidated.

The data cache is virtually indexed and physically tagged. The data cache is also larger
than the minimum page size configuration of 4 KBytes. Consequently there could be
multiple places in the data cache which a given doubleword could reside. The virtual
synonym (V.S.) is used to assure that a given doubleword of data cannot reside in
multiple places in the data cache.

If the correct 4 KByte page is chosen, indicated by a data cache tag match, the cache is
accessed and the cycle completes. If the data cache tag misses the R8000 CPU initiates a
streaming cache cycle to determine whether the data is then in the second level cache.
The virtual synonym bits are stored in the Tag RAM and indicate that, if the data is in the
data cache, there is the only location which it can reside, otherwise the V.S. bits would
not match and a miss would occur. The R8000 CPU compares the V.S. bits of the address
with the value returned from the Tag RAM lookup. Because there is only one V.S. in the
data cache at any given time the only way to change from 4K Byte page to another is to
have a data cache miss. On a data cache miss the R8000 CPU checks in the tag ram to see
which virtual synonym is allowed for the corresponding cycle. If the V.S. in the data
cache is the current one then the data has to be in the data cache. If there is a V.S. mis-
match the data could be somewhere else in the data cache so action must be taken. In this
case the whole 512 bytes is transferred to main memory and the 512 bytes in the data
cache is then invalidated. The V.S. in the streaming cache is then changed and execution
resumes. No action between the streaming cache and main memory is required.

10.1.9 Physical Address Field

The 40 bit Physical Address is the result of the TLB lookup corresponding to the access
which caused the operation. Since there is no address bus interface between the R8000
CPU and the CC, the address information is transferred on TBus bits 39:0.
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10.2 CC CONTROLLED TBUS FIELDS

The following section discusses the protocol involved when the cache controller is in
control of the TBus. The CC can either arbitrate for control of the TBus, or it can be
granted immediate control by the R8000 CPU. The CC is responsible for monitoring the
activity on the system bus which is used by other processors in the system to
communicate with each other. If another processor in the system requires access to local
streaming cache memory, the CC will arbitrate for control of the streaming cache in order
to service the incoming request.

A miss to the streaming cache causes the R8000 CPU to bypass arbitration and grant the
bus to the CC immediately. The CC then fetches the data being requested from main
memory, places it in the streaming cache, and releases control of the bus back to the
R8000 CPU. Transition of the TBus state machine to ‘CC’ state allows the CC control of
the TBus. Refer to section 10.3 for more information on the TBus state machine.

Table 10-8 shows the TBus protocol when the CC is in control.

CC Controlled Tbus Fields Width Tbus Bits
Reserved 4 71:68
Function 4 67:64
Streaming Cache Write Enables 4 63:60
External Set Address 2 59:58
Streaming Cache Address<21:4> 18 57:40
Tag RAM Address<39:5> 35 39:5
Reserved 1 4
Virtual Synonym 4 3:0

Table 10-8 CC Controlled TBus Fields

10.2.1 Reserved

TBus bits <71:68> and bit 4 are reserved by MIPS Technologies Incorporated and should
not be used.

10-12 TFP User’s Manual



10.2.2 Function Field

The Function Field is a four bit field and is the only field by which the CC changes the
internal state of the RB000 CPU instead of just the Tag RAM’s or the streaming cache
RAM'’s. The function field is valid on every clock which the TBus state machine is in the
CC state. There are a number of different operations which can be performed based on
the state of the function field. The function field controls such operations as invalidation
of the first level Data Cache, instructing the R8000 CPU to empty the floating point store
address and store data queues by briefly returning the TBus to the R8000 CPU for this
operation, interrupt status, and signal generation for reading the Tag RAM.

The function field is represented by TBus bits 67:64. The 4 bit value is encoded as
follows.

Encoded

Value Description

0 No R8000 CPU operation

1 Reserved*

Interrupt

Empty Queue

Reserved*
Read of Even Tag RAM
Read of Odd Tag RAM
Combined Read of both Tag RAM’s
8-9 Reserved*
10 Invalidate Data Cache Line (32 bytes)
11-15 | Reserved*
Table 10-9 Function Field Encoding

Nl ]lWIN

* Encoded values reserved by MIPS Technologies Incorporated.

Below is an explanation of each of the various Function fields.

10.2.2.1 No R8000 CPU Operation

No R8000 CPU Operation is provided so that the CC is not forced to do any of the other
operations and is analogous to the VALIDOUT_ signal. When the R8000 CPU is in
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control of the TBus the information on the TBus is valid only when VALIDOUT_ is
active. However, when the CC is in control the TBus is valid every cycle. But the CC does
not always drive valid information every cycle. The No R8000 CPU Operation
mechanism is used to indicate to the rest of the system that, although the TBus is being
driven during a given cycle, it contains no valid information.

10.2.2.2 Interrupt

The Interrupt function changes the internal state of the R8000 CPU by setting the
interrupt pending bit. The R8000 CPU then reads some memory mapped registers inside
the CC to find out more information about the interrupt so that the proper interrupt
service routine can be executed. The R8000 CPU is responsible for clearing the interrupt
bit once servicing has been completed. Refer to section 10.4.13 for more information.

10.2.2.3 Empty Queue

The Empty Queue function is initiated when the CC finds an address match in the Store
Address Queue (SAQ). There are two reasons why the CC does a SAQ compare,
Intervention and write back or line replacement from the streaming cache to main
memory. The address match is detected by the CC while the TBus state machine is in the
‘CC’ state. A valid SAQ compare causes the Cache Controller to transition from CC state
to EQ state. Control of the TBus is returned to the R8000 CPU allowing the instructions
corresponding to the addresses in the SAQ to be executed. After the queue is emptied
the TBus is returned to the CC. Refer to section 10.3 for more information in the CC state
machine. Refer to the Store Address Queue Compare cycle in section 10.4 for more
information.

10.2.2.4 Tag Read Even/Odd
The Tag Read Even and Tag Read Odd functions affect the tri-state enables of the R8000

CPU on TBus bits <39:0>, which represent the Tag address and virtual synonym fields,
as well as the Tag address field of the Tag RAM connections. Refer to Figure 10-2 below:

CC
ITBus
Even Odd
Tag Tag RAM Address R8000 CPU Tag RAM Address Tag
RAM [ > - ™ RAM

Figure 10-2 Interface Busses of the Tag RAM Read Function
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Whether the even or odd tag RAM is read depends on the state of address bit A3. If this
bit is deasserted (0), the even tag RAM is read. Assertion of A3 (1) causes the odd tag
RAM to be read. The Tag RAM even/odd read operation does not change the internal
state of the R8000 CPU but rather it controls a multiplexor inside the R8000 CPU to
assure that the correct Tag RAM information is transferred across the TBus.

Once the tag read function is placed on the TBus, the different busses in the above
diagram tri-state and drive at various times to complete the operation. The table below
shows a behavior of the various busses during a Tag RAM read. Refer to the Tag RAM
read cycle and associated timing diagram in section 10.4 for more information.

Cycle 1 2 3 4 5 6 7 8 9 10

TagRAM | CPU | CPU |CPU | Z | TAG Z | CPU|CPU|{CPU | CPU
Address

TBus CC|cCc|ccyecc|ycc|cc| z |cru| z CcC
Table 10-10 Bus Behavior During a Tag RAM Read

In Table 10-10 above the CC has encoded the function field of the TBus to indicate a Tag
RAM read and placed the request on the TBus pins <67:64> in Clock 0 (not shown). For
the first three clocks (1-3) after the tag read request is placed on the bus by the CC the
R8000 CPU continues to drive the tag RAM address pins (refer to Figure 10-2 above).
During this time the CC is driving the TBus.

In clock 4 the R8000 CPU stops driving the tag address bus and tri-states. The CC also
asserts the signal OE_ to the Tag RAM in clock 4. Assertion of OE_ allows the
information on the 20 bit Tag RAM tag address bus to be driven by the Tag RAM back to
the R8000 CPU in clock 5. In clock 6 the Tag RAM releases control of the tag address bus
back to the R8000 CPU and the R8000 CPU begins driving again in clock 7.

At this point the Tag RAM has been accessed and the appropriate information driven
back to the R8000 CPU by the Tag RAM. The information must now be transmitted by
the R8000 CPU across the Tbus and back to the CC. There is a three clock delay internal
to the R8000 CPU between when the information is driven by the Tag RAM in clock 5
and when it is driven by the R80N0 CPU onto the TBus in clock 8.

When the Tag Read function appears on the Tbus (clock 0 in table 10-10, not shown) the
CC will continue to drive the Tbus for 6 clocks (clocks 1-6 in Table 10-10). In clock 7 the
CC releases control of the TBus, allowing the Tag address information to be driven by the
R8000 CPU in clock 8. In clock 9 the R8000 CPU tri-states the TBus and relinquishes
control back to the CC in clock 10, thereby completing the cycle.
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10.2.2.5 Tag RAM Combined

The Tag Read Combined function allows the CC to read the state and dirty bit
information from each Tag RAM at the same time. The even and odd dirty bits must then
be logically OR’ed together external to the R8000 CPU. Because both the even and odd
Tag RAM’s are controlled by the same write enable from the CC, they will always have
the same address, state, and virtual synonym information. However, each Tag RAM has
a separate Dirty Bit Set (DBSET) write enable pin. The Tag Read combined function is
used by the CC to determine if any of the sectors in a given line of the cache has entered
the dirty exclusive state. When both RAM’s are read at the same time, the state and
virtual synonym information from the Odd tag RAM is returned by default. Only the
dirty bit information from the even Tag RAM is returned. Refer to the Tag Read
combined timing diagram and accompanying table in section 10.1.3 for more
information.

10.2.2.6 Invalidate Data Cache

The Invalidate Data Cache function causes 32 bytes of the Data Cache to be invalidated
at the address specified by the Virtual Synonym and Tag RAM address fields of the Tbus.
When the Invalidate Data Cache function is initiated by the CC, bits <11:5> of the Tag
RAM address field (TBus bits 11:5) are concatenated with the four bit virtual synonym
field (TBus bits 3:0) to form an index to the Data Cache Valid RAM. The remaining TBus
Tag address bits (TBus bit 39:12) are compared to the physical tag to determine whether
the addresses to be invalidated resides in the Data Cache. When a data cache invalidate
is initiated, the CC does not know whether the data is in the data cache. If the tag
matches, the eight valid bits representing the 32 byte line are cleared. Refer to Chapter 1
for more information on the Data Cache Valid RAM architecture. Figure 10-3 how the
TBus is used during a Data Cache invalidation cycle.
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CC
TBus TBus TBus
<39:16> <3:0> <15:5>
Index
Cache |
Compare Tag RAM ;
Address ;
. <39:12> | |
* * <39:12>
R8000 CPU S :
Data Cache
Hit/Miss?

Figure 10-3 TBus format During a Data Cache Invalidation Cycle

10.2.3 Streaming Cache Write Enables Field

The four bit Streaming Cache Write Enables field is represented by TBus bits 63:60 and is
used when writing data to the streaming cache. The smallest writable quantity
supported by the streaming cache is 32 bits. The 4 MByte streaming cache consists of
four SIM modules, each 1 MByte in size and organized as 256K X 36 bits. During
streaming cache write cycles initiated by the CC the Cache Controller places the write
enable information onto the TBus. The R8000 CPU then routes TBus bits 63:60 onto the
correct write enable pins which connect between the R8000 CPU and the Streaming
Cache. The Streaming Cache Write Enable field can contain valid cycle information and
be driven at the same time as the Tag RAM address and other fields which do not pertain
to a streaming cache cycle. This allows information for multiple cycles to be on the TBus
at the same time. Figure 10-4 shows how the write enable field of the TBus corresponds
to the Streaming Cache.
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63:60
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WE_|ag—(TBus Bit 62) (TBus bit 60) WE._

Figure 10-4 Streaming Cache Write Enables

10.2.4 External Set Address Field

The External Set Address field forms the two uppermost bits of address for the
streaming cache and is used to differentiate in which of the four sets of the streaming
cache the data resides. Both the Tag RAM and the streaming cache are 4-way set
associative. When the Tag RAM is accessed all four ways in the entry are compared to
the address on the bus. If there is a Tag Match the Tag RAM must then encode which of
the 4 ways actually compared. The Tag RAM uses the MCHSA<1:0> pins to encode this
information. The information is sent back to the R8000 CPU and stored. When it comes
time to use this information the R8000 CPU places the 2 bit value onto the External Set
Address (ESA<1:0>) pins. The External Set Address field can contain valid cycle
information and be driven at the same time as the Tag RAM address and other fields
which do not pertain to a streaming cache cycle. This allows information for multiple
cycles to be on the TBus at the same time. Figure 10-5 shows how the CC uses the R8000
CPU and the TBus to address the streaming cache.
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Streaming Cache Streaming Cache
s WEE_<1:0> WEO_<1:0> >

Figure 10-5 CC Addressing of the Streaming Cache

Sixteen bits of address and two bits of Data Set Address (DATSA) are used to address the
streaming cache. On a read cycle the DATSA bits are derived from an R8000 CPU lookup
of the Tag RAM. The correct set which matched is encoded by the Tag RAM and passed
onto the DATSA outputs. This is denoted by “Tag RAM Internal Compare” in figure 10-
5. On a write cycle the lookup is still performed, but often times the lookup is performed
many cycles before the write data actually becomes available. The result of the lookup is
passed to the CC and stored. When the data becomes available the CC transfers the
corresponding set information it originally received from the R8000 CPU on TBus bits
<59:58>. The two bit value passes through the R8000 CPU onto the ESA<1:0> outputs,
through the multiplexor logic in the Tag RAM, and finally out onto the DATSA<1:0>
output pins of the Tag RAM to the streaming cache. The R8000 CPU can supply up to 18
bits of address for use with 16 MBit DRAM’s. Currently only 16 of the 18 address bits are
used.
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10.2.5 Streaming Cache Address Field

The Streaming Cache Address field is transmitted at the same time as the Write Enable
and External Set Address fields. These fields combined together provide the necessary
information to perform a Streaming Cache cycle. The field is 18 bits in size and is
transferred on TBus bits <57:40>. The Streaming Cache Address field can contain valid
cycle information and be driven at the same time as the Tag RAM address and other
fields which do not pertain to a streaming cache cycle. This allows information for
multiple cycles to be on the TBus at the same time.

10.2.6 Tag RAM Address Field

The Tag RAM Address is used to write and read the Tag Address of the Tag RAM, check
the Store Address Queue, and invalidate the first level data cache of the R8000 CPU. The
tag address of the Tag RAM is 20 bits wide. Since tag address, state, and virtual synonym
information are all transferred to and from the Tag RAM using the same 20 bit tag bus,
either tag information of state and virtual synonym information can be written at any
given time.

When the tag address is read, the index must be placed on bits <21:5>. The result is
returned by the Tag RAM to the R8000 CPU, and in turn from the R8000 CPU to the CC
on TBus bits <39:0>. Although all 40 bits are driven, only those bits corresponding to the
actual tag will be valid. The remaining bits are undefined. When the Store Address
Queue is checked, Tag RAM address bits <19:7> are used for comparison.

10.2.7 Virtual Synonym Field

The virtual synonym field is used to assure that the correct location is invalidated during
a data cache invalidation cycle. The index to the Data Cache Tag RAM inside the R8000
CPU is formed by TBus bits <15:5>. The four bit virtual synonym field (TBus <3:0>), is
concatenated with tag address bits (TBus 39:16) to form data cache address. The address
is used for the data cache tag comparison to determine whether the location to be
invalidated resides on the data cache.

10.3 TBUS STATE MACHINE

The TBus state machine is used for arbitration of the TBus between the R8000 CPU and
the CC. It is important to note that the state diagram in Figure 10-6 below shows only a
functional representation of how the external signal pins function during TBus
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arbitration. It is not an actual representation of the TBus state machine. In actuality there
are two TBus state machines, one each inside the R8000 CPU and the CC, which are
designed to work together in a synchronous pipelined environment. Although each is
similar to the machine below, the two machines differ in both the number of states and
the signals generated. The intent of the diagram below is to provide the reader with a
functional overview of how TBus arbitration is performed and to show how the signal
pins act during TBus arbitration and ownership transfer.

In Figure 10-6 a bar (xxxx)over the signal name indicates the signal is deasserted. An
underscore (_ ) indicates the signal is active low.
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TBUS STATE MACHINE

TOREL_ { CC REQUEST
CCREQ = ON
THLS = RBOOO CPLI

CCREQ_ & TUREL_ RUN e i

R8000 CPU CONTROL
TBUS = RB000 CPU

IUREL_

CC
CC CONTROL

R8000 CFUREL= ON
TBUS = CC

e EQ EQR
EMPTY QUEUE  |-CCREQ &TUREL | eMPTY QUEUE REQ TOREL._
TBUS = R8O00 CPU )

TBUS = R8000 CPU
CCREQ = ON

10.3.1 RUN State

Figure 10-6 TBus State Machine

The RUN state is the normal state of operation when the R8000 CPU is in control of the
TBus. There are two conditions under which the machine will transition from the RUN
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state. Assertion of CCREQ_ by the Cache Controller (CC) causes the machine to
transition to the REQ state. The R8000 CPU can also give up the TBus without it being
requested by the CC. On a streaming cache miss, for example, the R8000 CPU will assert
IUREL._ and give up the TBus immediately. The CC then fetches the requested data from
main memory.

10.3.2 REQ State

The REQ state is entered when the CC asserts CCREQ_ to inform the R8000 CPU that the
TBus is being requested. While in the REQ state the CC is guaranteed to have to wait no
longer than 1500 clocks before being granted the bus. Until IUREL_ is asserted by the
R8000 CPU the machine remains in the REQ state. Assertion of IUREL_ causes the
machine to transition from REQ state to BC state.

When BC state is entered the TBus buffers on the R8000 CPU are in the output mode and
the buffers on the CC are in the input mode. The BC state is one clock in duration and
allows each device to switch from input to output mode, or vise-versa. On the following
clock the machine transitions to CC state.

10.3.3 CC State

Transition to the CC state indicates that the CC is now in control of the TBus. From the
CC state the machine can either transition to BE state or to RST state. Deassertion of
CCREQ_ by the CC causes the transition to BE state. This transition occurs when the CC
wishes to give control of the TBus back to the R8000 CPU temporarily in order to allow
the R8000 CPU to empty the store address queue (i.e. execute all remaining instructions).
For example, when the CC wishes to write back a line from the streaming cache to main
memory, it first checks the store address queue (SAQ) to determine whether the address
corresponding to the line to be written out is in the SAQ. Checking the queue assures
that the most current data is written out. Refer to figure 10-16 for more information on
the SAQ compare operation.

10.3.4 FFEQ Signal Generation

If there is no valid address compare, the line is written out. However, if the address
compare is valid, the CC must allow the R8000 CPU to write out the data which
corresponds to the address in the queue. Assertion of the ‘ffeq’ signal allows the machine
to transition from CC state to BE state. The ‘ffeq’ signal causing the transition is
generated by the state machine and is the decoded equivalent of the function field,
represented by bits 67:64 of the TBus. If the bit orientation on these pins is 0111,
indicating that the CC wishes the queue to be emptied, the ‘ffeq’ signal is generated and
the machine transitions to BE state. The BE state allows one clock for bus turn-around.
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10.3.5 EQ State

The machine transitions to EQ state on the next clock, IUREL_ and CCREQ_ are
deasserted and TBus control is returned to the R8000 CPU. Once the SAQ is emptied the
R8000 CPU reasserts TUREL_ and the machine transitions to the EE state to allow for bus
turn-around and then back to CC state.

10.3.6 EQR State

There are some circumstances under which the CC cannot wait for the SAQ empty
operation to be completed. When this occurs the CC asserts CCREQ _ and the machine
transitions to EQR state. After the current operation is completed the R8000 CPU asserts
IUREL._ and the machine transitions through EE state and back to CC state. Transition
from EQR to EE state means that the SAQ may or may not be empty.

When the CC is finished completing the necessary operations, the machine transitions
from CC state to RST state. This transition is caused by deassertion of the ‘ffeq’ signal,
which is in turn caused by the function field changing orientation to reflect something
other than empty queue status. "

Any information which remains in the SAQ at the time the state machine was instructed

to transition remains there and is executed as soon as the R8000 CPU resumes control of
the TBus.

104 CYCLE TYPES

The CC is required to read and write the Tag RAM’s and Streaming Cache, perform Data
Cache invalidate cycles, and transmit interrupt status among other things. Because the
CC does not have any dedicated busses between itself and other devices in the system,
all communication with these other devices takes place via the TBus. This section
discusses the timing issues involved with transmitting cycle information across the
TBus.

10.4.1 Tag Address Write

The CC is responsible for management of the Tag RAM. This includes writing to the Tag
RAM whenever its contents require modification, and reading the Tag RAM to
determine the state of a given entry.
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A tag address write requires a 20 bit tag address, an 11 bit index, and a 2 bit sector field.
Both Tag RAM's are written at the same time? Refer to Figure 10-7 below. TBus <39:5>
are placed on the bus in clock 1. Two clocks are required for the information to propagate
through the R8000 CPU and out onto the Tag RAM tag and index pins. The two bit set
address field, RWSA<1:0> (Read Write Set Address), is hard-wired from the CC to each
Tag RAM. Hence in order to assure that all of the signals arrive to the Tag RAM at the
same time, the RSWA field is issued two clocks later in clock 3. Also in clock 3 the signal
TWE_ (Tag Write Enable) is asserted by the CC. This signal is also hard-wired to the Tag
RAM'’s. The signal STWE_ (State Write Enable) must be deasserted in clock 3 to assure
that the Tag RAM writes tag address information and not state or virtual synonym
information.

TAG ADDRESS WRITE (Even and Odd)

1 2 3
TBus <39:5 I

rswa<to- T |

T

Figure 10-7 : Tag Address Write (Even and Odd)

Table 10-11 below shows how TBus<39:20> connect to the R8000 CPU, and how the
R8000 CPU tag pins connects to the Tag RAM tag pins. The pin connections are the same
for both the even and odd Tag RAM's.

<21:2> <19:0>
TBus<39> Tag 21> Tag<17>
TBus<38> Tag <20> Tag<16>
TBus<37> Tag <19> Tag<15>

Table 10-11 Tag RAM Tag Pin Connection Chart
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TR | Tngnis | Tgnis
<21:2> <19:0>
TBus<36> Tag <18> Tag<14>
TBus<35> Tag <17> Tag<13>
TBus<34> Tag <16> Tag<12>
TBus<33> Tag <15> Tag<11>
TBus<32> Tag <14> Tag<10>
TBus<31> Tag <13> Tag<9>
TBus<30> Tag <12> Tag<8>
TBus<29> Tag <11> Tag<7>
TBus<28> Tag <10> Tag<6>
TBus<27> Tag <9> Tag<5>
TBus<26> Tag <8> Tag<4>
TBus<25> Tag <7> Tag<3>
TBus<24> Tag <6> Tag<2>
TBus<23> Tag <5> Tag<1>
TBus<22> Tag <4> Tag<0>
TBus<21> Tag <3> Tag<19>
TBus<20> Tag <2> Tag<18>

Table 10-11 Tag RAM Tag Pin Connection Chart

Table 10-12 below shows how TBus<19:5> connect to the R8000 CPU, and how the R8000
CPU index pins connects to the Tag RAM index and sector pins. The pin connections are
the same for both the even and odd Tag RAM'’s.

. R8000 CPU Tag RAM
TB;‘;,?‘“ Index Bits | Index Bits
<1Z/> <14:2> <10:0>
TBus<19> | Index <14> | Index <10>

Table 10-12 Tag RAM Index and Sector Pin Connection Chart
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TBusBits | il bite | Index Bt
<14:2> <10:0>
TBus<18> Index <13> Index <9>
TBus<17> Index <12> Index <8>
TBus<16> Index <11> Index <7>
TBus<15> Index <10> Index <6>
TBus<14> Index <9> Index <5>
TBus<13> Index <8> Index <4>
TBus<12> Index <7> Index <3>
TBus<11> Index <6> Index <2>
TBus<10> Index <5> Index <1>
TBus<9> Index <4> Index <0>
TBus<®> Index <3> Sector <1>
TBus<7> Index <2> Sector <0>

Table 10-12 Tag RAM Index and Sector Pin Connection Chart

10.4.2 Tag Address Read of Even Tag RAM

A Tag Address Read is performed whenever the CC wants to know the status of a given
entry. An encoded value of 5h in the function field informs the R8000 CPU that the cycle
in progress is an Even Tag RAM read and indicates to the R8000 CPU such parameters as
when to expect the data back from the Tag RAM, when to place it on the TBus, and what
TBus bits to place the data on. It is not necessary that the R8000 CPU knows whether the
cycle is a tag address read or a state and virtual synonym read. This decision is made by
the CC. Hard-wired signals between the CC and the Tag RAM assure that the
appropriate information is routed to the outputs of the Tag RAM.

TFP User’s Manual 10-27



TAG ADDRESS READ OF EVEN TAG RAM

1 2 3

. i 1
/_\__/ /_\_/I ‘ ‘ ‘
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CLOCK : ; , . ; :
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. : N !
'
| } N 1
: R o :
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i N V N
v
\ | N
' ] N
B i N

TBus 19:5
(Tag Address) -

TBus 67:64
(Function)

RSWA<1:0> Il ||

STRD_

OE_ : |
TGRS 5 1528000 dpu >——< R8000 CFU
X%%ﬁkéshg CC : >— CPU <cc
* TR = Tag RAM R8000 CPU returns even Tag

address to the CC
Figure 10-8 Tag Address Read of Even Tag RAM

The index information is placed on the TBus by the CC in clock 1. Also in clock 1 the
function field is encoded and placed on the TBus. As with the Tag RAM address write
cycle above, the RSWA<1:0> field is driven by the CC two clocks later in clock 3 to allow
the R8000 CPU adequate time to route the index information to the Tag RAM. The
STRD_ (State Read) signal must be deasserted in clock 3. Deassertion of STRD__ allows
the Tag RAM to fetch tag address information as opposed to state and virtual synonym
information.

The Tag RAM requires 1 clock after the RWSA field becomes valid to access the
requested information. The Tag address bus is bidirectional. The signal OE_ is asserted
by the CC in clock 4 which routes the read information out onto the tag address bus.

One clock after OE_ is asserted, in clock 5, the Tag RAM drives the requested
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information onto the tag address bus and back to the R8000 CPU. From the CC's point of
view, the passage of information from the Tag RAM back to the R8000 CPU is
transparent to the operation and hence is shown only for clarity. The R8000 CPU then
requires clocks 6 and 7 for propagation time and in clock 8 the requested information is
driven by the R8000 CPU onto the TBus and back to the CC.

Although the TBus state machine is in the CC state and the CC is driving the TBus, the
R8000 CPU must drive the requested information back to the CC. Hence the CC must
give up the bus for one clock to allow the transfer to take place. In clocks 1-6 the CC is
driving the TBus. In clock 7 the CC deasserts CCREQ_, causing the state machine to
transition to state RST and the TBus to tri-state. In clock 8 the machine transitions from
state RST to state RUN and control of the TBus is granted to the R8000 CPU. The R8000
CPU then drives the TBus during clock 8. In clock 9 the R8000 CPU asserts IUREL_ and
the machine transition to state BC, where the TBus is again tri-stated. The machine then
transitions from state BC to state CC where the CC again takes control of the TBus.

10.4.3 Tag Address Read of Odd Tag RAM

A Tag Address Read is performed whenever the CC wants to know the status of a given
entry. An encoded value of 6h in the function field informs the R8000 CPU that the cycle
in progress is an Odd Tag RAM read and indicates to the R8000 CPU such parameters as
when to expect the data back from the Tag RAM, when to place it on the TBus, and what
TBus bits to place the data on. It is not necessary that the R8000 CPU knows whether the
cycle is a tag address read or a state and virtual synonym read. This decision is made by
the CC. Hard-wired signals between the CC and the Tag RAM assure that the
appropriate information is routed to the outputs of the Tag RAM.
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TAG ADDRESS READ OF ODD TAG RAM

| 2 3 4
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* TR = Tag RAM R8000 CPU returns odd Tag
address to the CC

Figure 10-9 Tag Address Read of Odd Tag RAM

The index information is placed on the TBus by the CC in clock 1. Also in clock 1 the
function field is encoded and placed on the TBus. As with the Tag RAM address write
cycle above, the RSWA<1:0> field is driven by the CC two clocks later in clock 3 to allow
the R8000 CPU adequate time to route the index information to the Tag RAM. The
STRD_ (State Read) signal must be deasserted in clock 3. Deassertion of STRD_ allows
the Tag RAM to fetch tag address information as opposed to state and virtual synonym
information.

The Tag RAM requires 1 clock after RSWA becomes valid to access the requested
information. The Tag address bus is bidirectional. The signal OE_ is asserted by the CC
in clock 4 which routes the read information out onto the tag address bus.

One clock after OE_ is asserted, in clock 5, the Tag RAM drives the requested
information onto the tag address bus and back to the RB000 CPU. From the CC’s point of
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view, the passage of information from the Tag RAM back to the R8000 CPU is
transparent to the operation and hence is shown only for clarity. The R8000 CPU then
requires clocks 6 and 7 for propagation time and in clock 8 the requested information is
driven by the R8000 CPU onto the TBus and back to the CC.

Although the TBus state machine is in the CC state and the CC is driving the TBus, the
R8000 CPU must drive the requested information back to the CC. Hence the CC must
give up the bus for one clock to allow the transfer to take place. In clocks 1-6 the CC is
driving the TBus. In clock 7 the CC deasserts CCREQ _, causing the state machine to
transition to state RST and the TBus to tri-state. In clock 8 the machine transitions from
state RST to state RUN and control of the TBus is granted to the R8000 CPU. The R8000
CPU then drives the TBus during clock 8. In clock 9 the R8000 CPU asserts [UREL_ and
the machine transition to state BC, where the TBus is again tri-stated. The machine then
transitions from state BC to state CC where the CC again takes control of the TBus.

10.4.4 Back to Back Tag Address Read

Due to the pipelined nature of the TBus, the CC can generate a new operation every
clock. Figure 10-10 shows a timing diagram of a back to back tag address read operation.
In clock 1 the index and function fields are transmitted across the TBus. In clock 2
information for the second operation (cycle B) is dispatched. Also during clock 2 the
information for cycle A has begun propagating through the R8000 CPU. In clock 4 the
Tag RAM drives cycle A tag information back to the R8000 CPU. At the same time the
index information for cycle B is being used to access the next Tag RAM location, and in
clock 5 this information is driven out.

In clock 7 the tag information for cycle A has propagated through the R8000 CPU and is
placed on the TBus and returned to the CC. Also in clock 7 cycle B is in the last stage of
propagation through the R8000 CPU, and in clock 9 the information is driven onto the
TBus. Figure 10-10 shows a timing diagram of a back to back tag address read.

TEP User’'s Manual 10-31



TBus 67:64
(Function)

RSWA<1:0>

STRD_

OE_

TAG BITS
TO CPU

TAG RAM |
ADDRESS ac |
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Figure 10-10 Back to Back Tag Address Read

10.4.5 Tag RAM State and Virtual Synonym Write

The 20 bit tag address bus of the Tag RAM is used for reading and writing of both the tag
address and state and virtual synonym information. When a cycle is initiated by the CC
the Tag RAM does not know whether tag or state information is on the bus. The CC
controls which is written by asserting either TWE_ (Tag Write Enable) or STWE_ (State
Write Enable). TBus timing is the same as for a tag address write. However, the format of
the TBus changes. Note that TWE_ must be deasserted in clock 3 to assure that state
information is written.

Figure 10-11 shows a timing diagram of a state write, which shows TBus bits 39:5 being
driven by the CC.
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Figure 10-11 Tag RAM State and Virtual Synonym Write

Bit Description Thus bits

Write Data for Dirty Bit 39
Enable Virtual Synonym Write 38
Enable Sector 0 State and Dirty Bit Write 37
Enable Sector 1 State and Dirty Bit Write 36
Enable Sector 2 State and Dirty Bit Write 35
Enable Sector 3 State and Dirty Bit Write 34
Virtual Synonym 33:30
Sector 0 State Information 29:28 Odd
Sector | State Information 27:26 Odd
Sector 2 State Information 25:24 Odd
Sector 3 State Information 23:22 Odd
Unused 21:20
Tag RAM Index 19:9

Table 10-13 Tag RAM State and V.S. Write TBus Bit Definitions

Table 10-13 shows the orientation of TBus <39:5> during a state and V.S. write, The
enable bits for each sector and dirty bit of each set allows for modification of data for any
or all sets of a given tag RAM entry.
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10.4.6 Even Tag RAM State and Virtual Synonym Read

When a state and virtual synonym read cycle is initiated by the CC, an index is sent
across the TBus which selects one line of the Tag RAM. Note that the Tag RAM is 4-way
set associative, hence each line contains four different sets of data. State information for
all four sectors of a given set are read out, as well as the four bit virtual synonym value
for that set. Each set contains 32 bits of information Which of the four sets is read is
determined by the value of RWSA<1:0>. Figure 10-12 below shows a diagram of how set
0 is organized. The remaining three sets are organized in the exact same manner.

SET O
Virtual . Sector( | Sectorl |Sector2 | Sector3
Tag é(c)l)dress Synonym | State |State |State |State
(4) (2) () (2) (2)

Figure 10-12 Tag RAM Set Organization

The format of the function field of the TBus is the same as for an even tag address read.
The type of read cycle (tag address or state) is not differentiated in the TBus transfer. The
CC controls this using hard-wired control pins. Figure 10-12 shows a timing diagram for
the even Tag RAM state and V.S. read. Note that the corresponding data is returned in
clock 9. For clocks 1-9 the TBus state machine must remain in the CC state. No pipelined
cycles which may cause the TBus state machine to transition from the CC are allowed in
clocks 2-9. The TBus “Don’t Care” portion in clocks 2-9 must be CC cycles.

Also note that TBus <19:5> is driven for two consecutive clocks. The Dirty Bit RAM
inside the Tag RAM is physically separate from the actual Tag RAM portion of the device
and a there is a register between the two devices. Hence it takes one clock longer for an
access to the Dirty Bit RAM to occur. For cycles where the reading of the Dirty Bit RAM
is required, the TBus information must be driven for two clocks. If the dirty bit RAM
information is not required it is only necessary to drive the TBus for one clock. Clock 1 in
the diagram can be eliminated.
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STATE AND V.S. READ OF EVEN TAG RAM
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** See table 10-14

Figure 10-13 Even Tag RAM State and Virtual Synonym Read

The RWSA<1:0> field is driven by the CC two clocks later in clock 4 to allow the R8000
CPU adequate time to route the index information to the Tag RAM. STRD_ (State Read)
is also asserted in clock 3 to enable the read information out onto the Tag RAM’s internal
tag bus.

The encoded value in the function field indicates to the R8000 CPU the type of cycle
being performed and indicates the appropriate action to be taken. In clock 5, three clocks
after receiving the function field, the RB000 CPU tri-states the tag address bus. Also in
clock 5 the CC asserts OE_ which drives the requested information onto the tag pins. The
OE_ signal is pipelined and is driven one clock before the information is actually driven
out by the Tag RAM. Even though the OE_ pin is deasserted in clock 6 it is effectively
still active in clock 6 as the Tag RAM is driving information to the R8000 CPU.

In clock 6 the Tag RAM drives the requested information back to the R8000 CPU. This
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operation is transparent to the cycle and is shown only for clarity of flow through the

devices. In clock 7 the Tag RAM tag bus is tri-stated and is controlled by the R8000 CPU
in clock 8.

By the end of clock 8 the state information has propagated through the R8000 CPU and is
returned to the CC in clock 9. In clock 10 the R8000 CPU relinquishes control of the TBus
back to the CC. The behavior of the state machine during a state read is the same as

during a tag address read. Refer to section11.4.2 for an explanation of state machine
behavior.

When the Tag RAM is accessed 20 bits are returned to the R8000 CPU. When the R8000
CPU returns the information to the CC all 40 bits are driven. Table 10-14 below shows the
bit orientation of the TBus during a state read. The orientation is the same for both even
and odd state read cycles.

Although single reads of either the even or odd tag RAM'’s are provided, these functions
are normally used only for diagnostic purposes. Under normal conditions a Combined
read of both Tag RAM’s is the most desirable so that comparison of the state and dirty bit
information from both devices can be done inside the R8000 CPU.

Bit Description Tbus Bits

Undefined 39:38
Tag RAM Sector 0 Dirty Bit 37
Tag RAM Sector O Dirty Bit 36
Tag RAM Sector O Dirty Bit 35
Tag RAM Sector 0 Dirty Bit 34
Virtual Synonym Data 33:30
Sector 0 State Information 29:28
Sector 1 State Information 27:26
Sector 2 State Information 25:24
Sector 3 State Information 23:22
Unused 21:20
Undefined 19:5

Table 10-14 Tag RAM State and V.S. Read TBus Bit Definitions
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10.4.7 Odd Tag RAM State and Virtual Synonym Read

The timing for an odd Tag RAM state read is the same as for the even Tag RAM state
read explained in section 10.4.6 above. The only difference is the bit orientation of the
function field, which is encoded to indicate a read of the Tag RAM.

Refer to Figure 10-14 below. The RWSA<1:0> field is driven by the CC two clocks later in
clock 3 to allow the R8000 CPU ad equate time to route the index information to the Tag
RAM. STRD_ (State Read) is also asserted in clock 3 to enable the read information out
onto the Tag RAM’s internal tag bus.

The encoded value in the function field indicates to the R8000 CPU the type of cycle
being performed and indicates the appropriate action to be taken. In clock 5, three clocks
after receiving the function field, the R8000 CPU tri-states the tag address bus. Also in
clock 5 the CC asserts OE_ which drives the requested information onto the tag pins. The
OE_ signal is pipelined and is driven one clock before the information is actually driven
out by the Tag RAM. Even though the OE_ pin is deasserted in clock 6 it is effectively
still active in clock 6 as the Tag RAM is driving information to the R8000 CPU.

In clock 6 the Tag RAM drives the requested information back to the R8000 CPU. This
operation is transparent to the cycle and is shown only for clarity of flow through the
devices. In clock 7 the Tag RAM tag bus is tri-stated and is controlled by the R8000 CPU
in clock 8.

By the end of clock 8 the state information has propagated through the R8000 CPU and is
returned to the CC in clock 9. In clock 10 the R8000 CPU relinquishes control of the TBus
back to the CC. The behavior of the state machine during a state read is the same as
during a tag address read. Refer to section 11.4.2 for an explanation of state machine
behavior.

When the Tag RAM is accessed 20 bits are returned to the R8000 CPU. When the R8000
CPU returns the information to the CC all 40 bits are driven. Table 10-15 below shows the
bit orientation of the TBus during a state read. The orientation is the same for both even
and odd state read cycles.

Although single reads of either the even or odd tag RAM are provided, these functions
are normally used only for diagnostic purposes. Under normal conditions a Combined
read of both Tag RAM’s is the most desirable so that comparison of the state and dirty bit
information from both devices can be done inside the R8000 CPU.

Refer to Table 10-14 above shows the bit orientation of the TBus during an odd Tag RAM
state read. The orientation is the same for both even and odd state read cycles.
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Figure 10-14 Odd Tag RAM State and Virtual Synonym Read

10.4.8 Combined Tag RAM State and Virtual Synonym Read

The combined operation is provided so that the dirty bit information from both the even
and odd Tag RAM'’s can be read in the same cycle.

For a combined read cycle the TBus <19:5> index must be driven by the CC for two
consecutive clocks, shown as clocks 1 and 2 in Figure 10-15 below. The extra clock is
required because inside the Tag RAM, the dirty bit RAM is physically separate from the
address and state RAM and there is a register in the path which separates the two
RAM's.
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The function field is encoded to indicate to the R8000 CPU a combined read function.
The state of the function field informs the R8000 CPU where to place the information on
the TBus. When the Tag RAM's are accessed, the information from the 20 bit tag bus is
placed onto TBus <37:18>.

Figure 10-15 below shows a timing diagram for a combined state read.

CLOCK

TBus <19:5> I
(Tag Index)

| TBus <67:64
{Function) :

RSWA<1:0>

STRD

OE_

TAGBUS | : m ,
CONTROL - i RS[I:?J CPU ~( TR* ) —~__R8000 CP?U

'Ii'q, RAM résurns i
information;to R8000 CIPU
TAG RAM : i | . i
STATE AND : : dc
VS.DATA '. -

R8000 CPU returns State and
* TR = Tag RAM V.S. info to the CC**

** See table 10-15
Figure 10-15 Combined Tag RAM State and Virtual Synonym Read

The sequence of signal generation and the returning of data back to the CC is the same as
for the even and odd state read cycles in sections 10.4.6 and 10.4.7. When data is returned
to the CC all 40 bits of the physical address field (TBus <39:0>) are driven by the R8000

CPU. State and virtual synonym information are read from the odd Tag RAM by default.

Table 10-15 below shows the bit orientation of TBus<39:0>.
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Bit Description Tbus bits

Undefined 39:38
Odd Tag RAM Sector 0 Dirty Bit 37
Odd Tag RAM Sector 1 Dirty Bit 36
Odd Tag RAM Sector 2 Dirty Bit 35
Odd Tag RAM Sector 3 Dirty Bit 34
Virtual Synonym Data 33:30 Odd
Sector O State Information 29:28 Odd
Sector 1 State Information 27:26 Odd
Sector 2 State Information 25:24 Odd
Sector 3 State Information 23:22 Odd
Even Tag RAM Sector 0 Dirty Bit 21
Even Tag RAM Sector 1 Dirty Bit 20
Even Tag RAM Sector 2 Dirty Bit 19
Even Tag RAM Sector 3 Dirty Bit 18
Undefined 17:0

Table 10-15 Combined Tag RAM State and V.S. Read TBus Bits

10.4.9 Store Address Queue Compare

The purpose of a store address queue compare operation is to determine whether the
address placed on the bus by the CC compares to any of those which are in the Store
Address Queue (SAQ). The SAQ is located in the R8000 CPU and contains addresses
which have already been verified in the Tag RAM and are known to be in the Streaming
Cache. Most of the time these addresses are in the queue because the data corresponding
to them has not yet become available.

The SAQ stores the entire streaming cache address including the set information, which
it uses to write the streaming cache. For coherence reasons the contents of the SAQ are
considered to be in the streaming cache. Therefore, whenever there is a CC initiated read
of the streaming cache, the SAQ must also be checked. There are two reasons why the
CC reads the streaming cache.
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1) Intervention
2) Write back or line replacement from the streaming cache to main memory.

Intervention occurs when another processor wants data in the streaming cache which is
exclusive. The line may either be clean or dirty. If the line is clean the CC will allow the
external agent to retrieve the data from the streaming cache. If the line is dirty the CC
must place the correct data in the cache before allowing the external agent to perform the
read.

When a write-back cycle from the streaming cache to main memory is to be performed, a
SAQ operation is performed by the CC first to assure that the address corresponding to
the requested data is not in the queue. This way the CC assures that the most up to date
information is written out to main memory.

If the SAQ check is valid the CC causes the TBus state machine will transition from CC
state to EQ state based on the state of the function field of the TBus. The transition allows
control of the streaming cache to be given back to the R8000 CPU so that the queue may
be emptied. Transition to the empty queue (EQ) state does not mean that the queue is
flushed, but rather that all of the cycles in the queue are allowed to finish. Once the
queue is emptied control of the bus is given back to the CC and the write-back to main
memory can be completed.

In the SAQ operation the CC places address bits [17:7] onto the TBus Tag RAM address
field. This value is then compared with bits [17:7] of each entry in the SAQ. Bits [6:0] are
not checked due to the 128 byte sector size of the streaming cache. Four clocks are
required to check both the right and left SAQ’s to determine whether there is a valid
compare. The result of the compare is returned to the CC using the SAQE_ and SAQO_
pins. These pins are hard-wired between the CC and the R8000 CPU, hence there is no
information which need be returned by the R8000 CPU through the TBus. If the
requested address compares to any one of the values in either SAQ the CC cannot
perform a streaming cache cycle because the address corresponding to the data for that
location is in the SAQ and has not yet been written out. So the CC must wait.

During a SAQ compare operation a condition can occur in which the address thought
there was a valid compare but there really was not. This condition is called a ‘false
positive’. The R8000 Microprocessor Chip Set defines a sector as 128 bytes. If the address
compare is for a given 32 byte value, and a store did not exist in this 32 bytes, but one of
the other 96 bytes out of the 128 bytes does contain a store, a false positive occurs even
though the store does not exist in the given 32 byte value being compared When a false
positive does occur the SAQ must be emptied.

If either SAQE_ or SAQO_is returned active the CC releases CCREQ_ and places the
Empty Queue operation on the function pins of the TBus. This activity causes the TBus
state machine to transition from CC state to EQ state, granting control of the bus back to
the R8000 CPU. The CC then waits for the queue to empty, at which time the R8000 CPU
asserts the signal IUREL _. Assertion of this signal causes the state machine to transition
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back to the CC state and the CC resumes execution of the cycle.

Figure 10-16 below shows a block diagram of the Store Address Queue operation.

SAQE_ - C C - SAQO_
TBus
<17:7>
Even SAQ Odd SAQ

v$vvvl+ {lvvyvv

Comparator Comparator

R8000 CPU ]

Figure 10-16 Store Address Queue Compare Operation

From the time the address information is placed on the TBus by the CC, four clocks are
required to perform the SAQ compare operation. The results of the compare are returned
to the CC by SAQE_ and SAQO_. Figure 10-17 below shows a timing diagram of the
SAQ compare operation. For clarity the signals SAQE_ and SAQO_ are both shown as
active in clock 5 of the diagram. In actuality the signals act independently of one another
and can be in either the asserted or deasserted state. In addition, due to the pipelined
nature of the R8000 Microprocessor, a different SAQ operation could be performed in
each clock of the timing diagram below. Therefore, the signals SAQE_ and SAQO_ can
be active in clocks 1-4 as well as clocks 6-7 returning the status of SAQ compare
operations pertaining to other cycles. .
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STORE ADDRESS QUEUE COMPARE CYCLE

4 3 6 7

I 2 3

CLOCK /_\ /_\ r/_\ 7/ \
TBus <17:7> . | .
SAQE_ \—/

SAQO_

Figure 10-17 Store Address Queue Compare

10.4.10 Data Cache Invalidate

Data Cache invalidate operations are performed by the R8000 CPU as instructed by the
CC and are done for the same reasons as the SAQ operation explained in section 11.4.9,
intervention and write back or line replacement. The invalidate operation is
unidirectional in that no information is returned by the R8000 CPU. The CC passes the
necessary information required to perform the invalidation across the TBus. No
handshake mechanism exists to inform the CC that the operation was performed.

Each invalidate cycle performed by the CC invalidates 32 bytes, or one line, of the Data
cache. This equates to 16 bytes from the left port and 16 bytes from the right port of the
dual-ported data cache. Because the data cache Valid RAM contains a valid bit for every
32 bits of data, and there are 4 valid bits per Data cache Valid RAM entry. Thirty two
bytes corresponds to 2 entries of the Data cache Valid RAM. Refer to chapter 1 for more
information on Data Cache Valid RAM organization.

Figure 10-18 below shows a timing diagram for data cache invalidation.
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DATA CACHE INVALIDATION CYCLE
1 2 3 4 5 6 7 8 9 10

CLOCK /_L/_\J—\J_\_/

TBus 39:0

TBus 67:64
(Function)

Figure 10-18 Data Cache Invalidation

The CC drives TBus <39:0> during a Data Cache Invalidate operation. These bits
encompass the Tag RAM address field (TBus <39:5>) and the virtual synonym field
(TBus <3:0>). Bit 4 is unused in the operation. Figure 10-19 below shows the bit
orientation of the TBus during a data cache invalidation.

39 16 15 12 11 5 4 3 0
Virtual Not Physical
Physical Address <39:16> | Address | Address <11:5> | {jgoq [ Address
<15:12> <15:12>

Figure 10-19 TBus Bit Orientation during a Data Cache Invalidation

10.4.11 Streaming Cache Data Write

The CC performs a streaming cache write in situations where it is necessary to transfer
data from the system bus data buffers to the streaming cache. This normally occurs
whenever the R8000 CPU incurs a miss to the streaming cache. The R8000 CPU transfers
ownership of the TBus to the CC which allows the CC to retrieve the desired locations

from main memory.

In order to write the streaming cache the CC must supply all of the necessary signals.
Address, External Set Address and write enable information are all sent across the TBus
simultaneously. In addition the CC must tri-state the store data bus buffers of the R8010
FPU to allow the data buffers to drive data onto the store data bus. This is accomplished
by deassertion of the FOE_ pin, which is a hard-wired signal between the CC and the
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R8010 FPU. Normally the signal FOE_ is asserted, allowing the R8010 FPU control of the
store data bus. Refer to figure 10-22 for more information on how FOE_ is used. Figure
10-20 below shows a block diagram of the data bus interfaces in the R8000

Microprocesor.

System System
ata ata
Buffers RSOOO CPU Buffers
(Even bank) (Odd bank)
A Even Qdd A

Streami Load Load Streami
eaming Data Data aming
>y Cach Cach e —
(Even bank) i ¢ (©dd bank)
Even Store Data Odd Store Data
R8010 FPU
From CC FOE_ -

Figure 10-20 Data Bus Organization

Once ownership of the store data bus is granted to the system data buffers, 16 bytes can
be written on each cycle and a write enable exists for every 4 bytes. Figure 10-21 shows a
timing diagram of a Streaming Cache Data Write
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Figure 10-21 Streaming Cache Data Write

Address, ESA, and write enable information are sent across the TBus in clock 1.

Note that there is a two clock delay (internal to the R8010 FPU) between the time when
FOE._ is deasserted by the CC and when the R8010 FPU actually tri-states the store data
bus. In cycles 1 and 3 the TBus is shaded and labeled ‘CC’, indicating that these cycles
must be CC cycles.

The actual data is driven by the data buffers in clock 5. FOE_ is also asserted in clock 5.
The two clock delay allows the R8010 FPU to again begin driving the store data bus in
clock 7.

10.4.12 Streaming Cache Data Read

Streaming cache data reads by the CC occur when another processor wishes to obtain
data in the streaming cache. Note in figure 10-20 that there is no dedicated read data bus
between the data buffers and the streaming cache. Instead, a streaming cache data read
cycle requires that data pass from the load data bus of the streaming cache to the R8010
FPU. The CC asserts the signal BYPASS_ to allow this load data to be routed from the
load data bus of the R8010 FPU onto the store data bus of the R8010 FPU. This operation
occurs internal to the R8010 FPU and requires two clocks. The FOE_ and BYPASS_
mechanism is shown in Figure 10-22.
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Even

&

Figure 10-22 Functions of the BYPASS_ and FOE_ pins

Figure 10-23 shows a timing diagram of a streaming cache data read. Cycles 1-4 must be
CC cycles. Sixteen bytes may be read on each cycle. All write enable pins must be
deasserted at this time.
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Figure 10-23 Streaming Cache Data Read

10.4.13 Interrupt Status

The CC can pass interrupt status information to the R8000 CPU during any cycle in
which the TBus state machine is in the CC state (CC is in control of the TBus). The
interrupt status cycle is necessary because the R8000 CPU does not have any dedicated
interrupt pins. Interrupts generated in the system are sent to the interrupt status
registers in the CC. Whenever the register is updated, the CC encodes the function field
indicating to the R8000 CPU that the interrupt register has been updated. Hence the
TBus actually functions as the interrupt pin mechanism of the R8000 CPU. The R8000
CPU then accesses the interrupt registers inside the CC to determine which interrupt
was set and vectors to the appropriate interrupt service routine,

Interrupt status is transferred across TBus bits <39:29> whenever the function field
indicates the interrupt function. Table 10-16 shows the TBus bit orientation during
interrupt status transfer.

NMI Bus Error : : Bus Error
[P Enable Enable Enable IP Field NMI Field Field
TB<39> TB<38> TB<37> TB<36:31> TB<30> TB<29>

Table 10-16 TBus Interrupt Status Transfer
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10.5 R8010 FPU TBUS PROTOCOL

Refer to figure 10-1. Note that TBus bits TB<79:72> connect only between the R8000 CPU
and the R8010 FPU. No CC connection to these bits exists. The following section requires
no intervention by the CC and is explained only for clarity. The R8010 FPU TBus protocol
is specific between the R8000 CPU and the R8010 FPU. The protocol is system
independent and has no parameters which can be modified in any way.

Instructions are dispatched by the R8000 CPU to the R8010 FPU through the TBus. There
are four basic types is transmissions which are differentiated by encoding the uppermost
two bits of the TBus (TB<79:78>). Table 10-17 shows the TBus format for the four types of
transmissions. Each of these is explained in more detail below.

TBus Bits [7978 77 76 75 74 73 65 64 63 56 55 28 27 0

Normal 10 |Vma Vmb |Vfa |Vfb (MemSpecA (MemSpecB |FpOP-A |FpOP-B

MoveFrom (01 |Vmf |Vmb (Vfa |Vfb | MfSpec [MemSpecB |[FpOP-A |FpOP-B

IntStore 00} 1 |-~- [~ [~ | IStSpec

MoveTo 11 b |- [~ [-- | MtSpec |- Data
Table 10-17 R8010 FPU TBus Protocol

Data

Legend:

FpOP-A = Floating Point Operand A

FpOP-B = Floating Point Operand B

MemSpec-A = Memory Specifier A

MemSpec-B = Memory Specifier B

MfSpec = MoveFrom Specifier

IStSpec = Integer Store Specifier

MtSpec = MoveTo Specifier

Vma = Memory Specifier A (bits 73:65) Valid
Vmb = Memory Specifier B (bits 64:56) Valid

Vfa = Floating Point Operation A (bits 55:28) Valid
Vfb = Floating Point Operation B (bits 27:0) Valid
Vmf = MoveFrom Specifier Valid
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10.5.1 Normal Transfer -~

A normal dispatch contains two FP arithmetic operations, each 28 bits wide, and two FP
memory operations, each 9 bits wide. There are roughly 30 FP arithmetic operations
which can be dispatched by the R8000 CPU. The 28 bit TBus format for arithmetic
operations is different for each operation. For FP memory operations, the 9 bit value
contains Floating Point Register destination as well as data alignment information. Each
of the four potential instructions contains a valid bit associated with it, denoted by bits
<77:74> in the table. Setting this bit indicates to the R8010 FPU that a given instruction is
valid and should be executed.

10.5.2 MoveFrom Transfer

MoveFrom is similar in format to Normal mode except that the FP memory operation
normally on TBus bits 73:64 is substituted with a move specifier. This operation moves
data from a FP register to a general purpose register (GPR) in the R8000 CPU and is the
only time which the R8010 FPU drives the TBus. Bit 77 indicates whether the MoveFrom
specifier is valid.

10.5.3 IntStore Transfer

IntStore - The IntStore operation supports integer stores to the streaming cache. As
shown in figure 1-1 of chapter 1, there is no direct path for integer stores from the R8000
CPU to the streaming cache. Instead they are transmitted across the TBus and out onto
the store data pins of the R8010 FPU. In IntStore mode the TBus contains the 64 bit
integer data along with some store alignment information.

10.5.4 MoveTo Transfer

The MoveTo operation moves data from a General Purpose Register (GPR) in the R8000
CPU to a Floating Point Register. The MoveTo format is similar to the IntStore format
except that instead of store alignment information, TBus bits [73:65] contain the FPR
destination. The 64 data is transmitted on TBus pins [63:0].
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RESPONSIBILITIES OF THE CACHE CONTROLLER

11

The R8000 Microprocessor Chip Set has large first and second level caches which
minimize the need for interfacing to external main memory. Main memory is typically
slow and when accessed frequently can degrade the overall performance of the
processor. To maximize performance, the Integer Unit interfaces only to separate 16
KByte on-chip instruction and data caches and the 4 MByte streaming cache. The
Floating Point Unit interfaces only to streaming cache. Neither device initiates cycles or
interfaces directly to the main memory. However, there are times when interfacing to the
external main memory is necessary.

The Cache Controller is a stand-alone device which manages the interface between the
R8000 Microprocessor Chip Set, main memory, and the system back-plane. The cache
controller was not included as part of the R8000 Microprocessor Chip Set in order to
allow the designer maximum flexibility in memory and overall system design.

Although some hardwired pins must be provided by the Cache Controller (CC), the
majority of communication between the R8000 CPU and the CC is done via the 72 bit
TBus. The TBus protocol is complex and changes depending on whether the R8000 CPU
or the Cache Controller is driving. Refer to chapter 10 for more information on TBus
protocol.

Cache Controller designs will differ greatly from system to system. This chapter offers
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some examples of how a cache controller might handle some commonly used bus
transfers.

In general the Cache Controller is required to manage:

1) The fetching of data from main memory after a streaming cache miss or as instructed
by the Integer Unit.

2) The write-back of dirty data from the streaming cache to main memory.

3) Modification of the streaming cache Tag RAM tag address, state, and virtual synonym
information.

4) Invalidation of the first level data cache (inside the R8000 CPU) when the streaming
cache is modified in order to assure coherency between caches.

5) All coherence issues between the various streaming caches in a multiprocessor
system.

6) The filtering of coherence activity such that the processor is protected from
unnecessary interruptions.

7) Checking of the Store Address Queue (inside the R8000 CPU) to assure that the most
up to date data is transferred.

8) On board local registers for interrupt prioritizing and management.

The system bus interface contains data and address buffer devices as well as a third Tag
RAM responsible for bus snooping to maintain coherency between processors. Although
use of a third Tag RAM is not required it is highly recommended in order to allow the
two Tag RAM’s which support the streaming cache to maintain a single cycle access rate.
Forcing either of these two Tag RAM’s to support the streaming cache as well as bus
snooping and back-plane monitoring could severely hamper overall system -
performance. Control of these devices must be provided by the CC. In addition the CC

interfaces to all system I/O devices. If a boot PROM is used in the system the CC is

responsible for moving PROM data into the data cache to facilitate the boot-up ~
procedure.

11.1 STREAMING CACHE DATA MANAGEMENT OVERVIEW

On R8000 CPU misses to the streaming cache the R8000 CPU informs the CC that the =
requested data was not available. Control of the bus is then transferred to the CC. Since
neither the R8000 CPU or the R8010 FPU communicate directly with external main mem-
ory, it is the responsibility of the CC to fetch the requested data from main memory and
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place it in the streaming cache. Once the cycle is completed the CC relinquishes control
of the bus back to the R8000 CPU. The R8000 CPU then fetches the requested data from
the streaming cache and execution resumes.

In addition to streaming cache misses, the CC is responsible for monitoring the cache
coherency attributes of each line in the cache. This is done via the 16 bit Dirty Bit RAM
portion of the Tag RAM as well as the Tag RAM itself. If the state of the line in the cache
changes, the state information in the Tag RAM must also be updated to reflect the
change. If the state of the line remains the same and only the modified status changes,
only the dirty bit is accessed. State information remains the same. Changing the state
information is the responsibility of the CC. Updating of the dirty bit RAM is done by the
R8000.

Since the first level cache is write-through, all writes by the R8000 to the first level Data
cache are also written out to the streaming cache. If a write is executed to a line which
has already been modified, the CC forces the R8000 to halt the cycle, whereby the CC
takes control of the TBus. The modified data is then written out to main memory and
control of the TBus returned to the R8000.

11.2 TAG RAM MANAGEMENT OVERVIEW

The Cache Controller is responsible for monitoring and updating of the Tag RAM. The
R8000 performs only Look-up cycles to the Tag RAM. Lookups are done when the R8000
CPU wishes to read or write the streaming cache and desires to know state, virtual syn-
onym, or set information corresponding to that line. With the exception of the dirty bits
the R8000 CPU cannot update the contents of the tag RAM. Tag RAM management is the
responsibility of the CC.

The CC can write either Tag information, or state and virtual synonym information to
the Tag RAM in a given cycle. The Tag address is multiplexed with either tag or state and
virtual synonym information. When the tag address is updated, the 20 bit tag bus con-
tains all address bits. When the state and virtual synonym information is updated, the
tag bus conforms to a specific bit orientation. The bit orientation changes for state and
virtual synonym read cycles. Whenever there is a streaming cache miss, or when a line of
the streaming cache is to be written out to main memory, the Tag RAM information must
be updated to reflect this change. The CC must supply all necessary control signals to the
Tag RAM.

Figure 11-1 and Table 11-1 below show the TBus state machine and the encoding of the
function field respectively. Both of these diagrams should be used for reference as they
are referred to frequently throughout the remainder of this chapter in the explanation of
each timing diagram.
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TBUS STATE MACHINE
REQ CCREQ_&TOREL_ RUN SN & =
TOREL_ CC REQUEST REOOO CPU CONTROL
CCREQ = ON TBUS = RB000 CPU
TBUS = RBOOO CPLS
CC
CC CONTROL
RB000 CPUREL= ON
TOREL_ & CCREQ
EQ EQR
EMPTY QUEUE | CCREQ &TUREL, | eMPTY QUEUE REQ TOREL_
TBUS = RBOOG CPL TBUS = R8O CPU
) CCREQ = ON
Figure 11-1 TBus State Machine
114 TFP User's Manual




Er{?;g:d Description

0 No R8000 operation

1 Reserved*

2 Interrupt

3 Empty Queue

4 Reserved*

5 Read of Even Tag RAM

6 Read of Odd Tag RAM

7 Combined Read of both Tag RAM's
8-9 Reserved*

10 Invalidate Data Cache Line (32 bytes)
11-15 [ Reserved*

Table 11-1 TBus Function Field Encoding

11.3 SYSTEM BUS OPERATIONS

This section outlines three common operations which can be initiated by a system bus.

1) Inbound Invalidate
2) Shared Intervention
3) Exclusive Intervention

11.3.1 Inbound Invalidate

An inbound invalidate is required when another processor in a system wants an exclu-
sive copy of some data in the cache. The CC is informed by the other processor of its
desire to obtain an exclusive copy of the data. The cache controller then requests the
TBus and waits to receive it. Once the TBus is granted the following operations must be

performed by the CC.
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1) The state of the addressed sector in the streaming cache must be set to invalid by

performing a Tag RAM state write. -
2) One sector of the Data Cache must be invalidated by performing a data cache

invalidate cycle.

If multiple operations are required the CC is not required to relinquish control of the
TBus back to the R8000 Microprocessor.

Figure 11-2 shows a timing example of an invalidate. The CC asserts CCREQ _ to begin
bus arbitration. The first break line shown in Figure 11-2 indicates that, once CCREQ_ is
asserted, as many as 1024 clocks can elapse before the R8000 CPU gives up the bus. The
R8000 CPU relinquishes control of the TBus by asserting [UREL_.

The tag RAM state write is performed in the first CC state. The new state information is
placed on TRA[39:5]. This new sector information is for the tag RAM and does not affect
the R8000 CPU, hence the function field in the first CC state is Oh, indicating no R8000
CPU operation. STWE_ is asserted by the CC two clocks later when the state change to
the tag RAM is actually made. The two clock delay is the time required for the informa-
tion to propagate through the R8000 CPU. The set address information on RWSA[1:0] is
also active at this time and is required in order for the tag RAM to determine which of
the four sets to update.

In the next 4 CC states the function field changes to Ah (1010b), indicating a data cache
invalidation cycle. At the same time the addresses to be invalidated (Adr0-Adr3) are
placed on the TRA bus. Each address corresponds to 32 bytes of data. Since invalidation
is by sector and a sector is 128 bytes, four addresses must be output by the CC.

The write data bus is not used during an inbound invalidate. Transitions labeled ~
“processor” indicate that the data bus belongs to the R8000 CPU but that the data is not

relevant to the invalidate cycle. The ‘x’ indicates that the data bus does not belong to the
R8000 CPU. -
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11.3.2 Shared Intervention

A shared intervention occurs when the local processor has an exclusive copy of some
data and another processor wants to read it. Once the data is read the status of the line
must be changed to shared as the data now exists in more than one location. The CC is
informed by the other processor of its desire to obtain a copy of the exclusive data. The
CC requests the TBus and once it is granted the following operations must be performed.
The sequence of these operations and the duty each one performs constitutes a shared
intervention cycle. The cycles below should be pipelined together to maximize system
performance. For example, all of these cycles can be performed while the streaming
cache is being accessed by the CC.

1) One sector of data must be read from the streaming cache by performing a streaming
cache read cycle.

2) The store address queue must be checked to determine whether the requested address
resides in the queue by performing a store address queue compare. The operation com-
pare address bits <17:7> on the bus with each entry in the even and odd store address
queues. If any of the compares are valid ownership of the TBus must be given back to the
R8000 CPU temporarily to allow the cycle to complete.

3) The dirty bit for the requested sector must be checked by performing a combined Tag
RAM read. This operation allows the dirty bits from both Tag RAM’s to be returned to
the CC in the same cycle. A compare is then performed internal to the CC to determine if
any of the sectors for the requested line is dirty.

4) The state of the streaming cache line must be set to shared by performing a tag RAM
state write.

5) The data cache must be invalidated to remove a possible exclusive tag. This is accom-
plished by performing a data cache invalidate cycle.

If the dirty bit was found to be clear, or the line is in a state other than exclusive, then the
data read may be ignored. The streaming cache must be set to the shared state if the state
was clean exclusive and unchanged otherwise.

If the requested address matches one of those in the Store Address Queue, the data read
should be ignored and the streaming cache state should remain unchanged. The CC
must then return ownership of the TBus to the R8000 CPU so that the store address
queue may be emptied. These two cases cannot both happen as the dirty bit must be set
in order for the corresponding address to get into the SAQ.

Figure 11-3 shows a timing example of a shared intervention. The CC requests and is
eventually granted the TBus when the R8000 CPU asserts IUREL_. In the first “CC” state
the address for the read is generated on TRA[39:5]. The data is available 7 clocks later as
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shown on the write data bus. Each of the 8 addresses transferred on the TRA bus equates
to 128 bits of data, hence an intervention cycle transfers 16 bytes of data.

During the ‘CC’ states in Figure 11-3 the function field indicates the operation currently
being performed. First the data in the data cache must be invalidated. The first address
to be invalidated is referred to as A0 on the DRA[21:4]. In the second ‘CC’ state the inval-
idation occurs as shown by the value 1010 (“a’ hex) in the function field. The definitions
of the function field can be found in Table 11-1. In the third and fourth ‘CC’ states
addresses A2 and A3 are transferred and a combined read of the tag RAM's is per-
formed. The result of the combined read is pipelined and the result will not be available
for a few clocks.

In the fifth, sixth, and seventh ‘CC’ states the remaining three addresses to be invali-
dated; A4, A5, and A6, are transferred. In these three clocks the function field is 1010,
indicating an invalidation cycle. In the eighth ‘CC’ state address data RAM address A7 is
transferred. Also in this clock the new state information, indicated on the TRA bus as
‘nSt’, is written. Note that this value is supplied before the old state information, indi-
cated by ‘oSt’ on the TRA bus. The old state information was read from the Tag RAM in
CC clock 6 by the assertion of STRD_ and placed on the tag bus one clock later with the
assertion of TOE_. Remember that the tag bus connects between the tag RAM and the
R8000 CPU. The information must then propagate through the R8000 CPU and out onto
the TBus. Even though the new state appears on the TBus before the old state, the new
state information does not actually arrive at the Tag RAM until the old state is read out,
thereby not allowing one to over write the other. The new state is written when STWE_ is
asserted.

It is important to note in all of these timing diagrams that the signal activity shown on
the TBus is when the information actually appears on the TBus, not necessarily when
this information arrives at its final destination (Cache RAM, Tag RAM, etc.). This is why
in Figure 11-3 that the new state information can be sent across the TBus three clocks
ahead of the old information being sent and still not actually overwrite the old state.

During the time when the new state information is being transferred across the TBus the
function field is 0000, indicating no operation to the R8000 CPU. This is because tag
RAM updates are handled by the CC. Asserting 0000 onto the function field tells the
R8000 CPU to ignore the information on the TBus.

In the next clock function 0011 is placed on the function field, indicating a store address
queue hit. However, the R8000 CPU will only respond to this function if it occurs on the
last ‘CC’ state, after which the bus transitions to the BE state. Refer to Figure 11-1 for a
flow chart of the TBus state machine.

However, note that function 0011 does not occur on the last CC state. This indicates to
the R8000 CPU that a SAQ hit did not occur and to ignore the function. Figure 12-4
shows an intervention with a SAQ hit.
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Note in chapter 1, figure 1-5 that the external data buffers interface only to the store data
bus of the R8000 microprocessor chip set. When a read is to be performed the informa-
tion must be read from the streaming cache by the CC and placed on the load data bus.
The data is then sent to the R8010 FPU and routed internally onto the store data bus
where it is sent back to the data buffers. Hence both loads and stores to main memory
use the store data bus. In the second ‘CC’ state BYPASS_ is asserted which causes the
R8010 FPU to route the incoming load data onto the store bus.

The seven clock delay between when the first streaming cache address appears on the
TBus and when the corresponding data appears on the store data bus is derived as
follows;

a) Two cycles for the address on the TBus to propagate through the R8000 CPU onto the
streaming cache address bus.

b) One cycle to pass through an address fan-out register in order to drive all of the
necessary RAM’s.

¢) One cycle to address the RAM.

d) One cycle to retrieve the data.

e) Two cycles to pass the data through the R8000 CPU.
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TFP User’s Manual 11-11



11.3.3 Shared Intervention with Store Address Queue Match

The shared intervention with SAQ match operation is identical to the shared interven-
tion operation discussed in section 11.3.2 except that the empty queue function (0011 on
the function field of the TBus) occurs on the last ‘CC’ state, causing the TBus state
machine to perform the empty queue operation.

Figure 11-4 shows a timing example of a shared intervention with a SAQ match. A store
address queue check is performed and the result appears on NXTDATE_, indicating that
the even SAQ got a compare hit. Either NXTDATE_ or NXTDATO_ or both can be
asserted in a given clock. The assertion of NXTDATE_ causes the CC to de-assert
CCREQ_ which in turn causes the TBus state machine to transition from CC to BE and
then to EQ state where control of the TBus is returned to the R8000 CPU and the empty
queue operation begins. The break at the end of Figure 11-4 indicates that an undeter-
mined number of cycles can elapse during the EQ operation depending on the types of
instructions in the queue to be executed. Note that the data on the store data bus is
aborted once the SAQ hit occurs.

Once the EQ operation is completed in Figure 11-5 control of the TBus is returned to the
CC and the shared intervention operation is restarted. The operation shown in Figure 11-
5 is now exactly the same as that shown in Figure 11-3. Refer to the shared intervention
discussion in section 11.3.2.
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11.3.4 Exclusive Intervention

An exclusive intervention is similar to a shared intervention except that the other proces-
sor has requested an exclusive copy of the data as opposed to simply reading the data.-
Once the data is read by the other processor the CC must mark the line as invalid. The
CC is informed by the other processor of its desire to obtain an exclusive copy of the
data. The CC then requests the TBus and once it is granted the following operations
must be performed. The sequence of these operations and the duty each one performs
constitutes an exclusive intervention cycle.

1) One sector of data must be read from the data cache by performing a streaming cache
data read.

2) The store address queue must be checked to determine whether the requested address
resides in the queue. The operation compare address bits <17:7> on the bus with each
entry in the even and odd store address queues. If any of the compares are valid owner-
ship of the TBus must be given back to the R8000 CPU temporarily to allow the cycle to
complete.

3) The dirty bit for the requested sector must be checked by performing a combined Tag
RAM read. This operation allows the dirty bits from both Tag RAM’s to be returned to
the CC in the same cycle. A compare is then performed internal to the CC to determine if
any of the sectors for the requested line is dirty.

4) The state of the streaming cache line must be set to invalid by performing a tag RAM
state write.

5) The data cache must be invalidated to remove a possible exclusive tag. This is accom-
plished by performing a data cache invalidate cycle.

If the dirty bit was found to be clear, or the line is in a state other than exclusive, then the
data read may be ignored. The streaming cache must be set to the invalid state if the state
was clean exclusive and unchanged otherwise.

If the requested address matches one of those in the Store Address Queue, the data read
should be ignored and the streaming cache state should remain unchanged. The Cc must
then return ownership of the TBus to the R8000 CPU so that the store address queue may
be emptied. These two cases cannot both happen as the dirty bit must be set in order for
the corresponding address to get into the SAQ.

The diagram for an exclusive intervention is identical to the shared intervention in Fig-

ure 11-3. The only exception is that in a shared intervention the new state information in

‘nSt’ causes the line to be changed to the shared state. In an exclusive intervention cycle
the ‘nSt’ causes the line to be changed to the invalid state, thereby allowing the request-
ing agent to obtain the data exclusively.
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The exclusive intervention with store address queue match is identical to the shared
intervention with store address queue match in Figure 11-4 and Figure 11-5. The only
exception is that in a shared intervention with SAQ hit the new state information in ‘nSt’
causes the line to be changed to the shared state. In an exclusive intervention with SAQ
hit the ‘nSt’ causes the line to be changed to the invalid state, thereby allowing the
requesting agent to obtain the data exclusively.

114 PROCESSOR INITIATED OPERATIONS

Under certain conditions the R8000 CPU can initiate operations requiring interface to the
CC via the TBus. The processor asserts VALIDOUT_ and waits for servicing by the CC.
Multiple cycles can occur back to back, hence there is no maximum limit of cycles placed
on the CC by the R8000 CPU. The following are some conditions under which the R8000
CPU asserts VALIDOUT_ and IUREL _ simultaneously.

1) A write back cycle needs to be executed.
2) The result of a Tag RAM lookup is a virtual synonym mis-match or no address match.
3) The store address queue is empty.

Under conditions where the R8000 CPU has requested data from memory there is
latency involved in the access. During this time the R8000 CPU does not need to relin-
quish control of the bus immediately. As long as the SAQ is not empty the R8000 CPU
can continue execution. VALIDOUT_ is asserted by the R8000 CPU and the requested
information is passed to the CC. IUREL_ is asserted by the R8000 CPU when:

1) There are no more addresses on the SAQ and the processor is now idle.
2) The CC requests the TBus. The R8000 CPU then asserts [IUREL_ as soon as the current
TBus transfer(s) are completed.

Table 11-2 shows a listing of cycles which the R8000 CPU may need to perform. In the
State column, “ALL” refers to all combinations of the No Match and State fields of the
TBus. No Match means that the MATCH_ pin was not asserted when the Tag RAM was
accessed for the corresponding cycle. MATCH_ asserted indicates the line was in either
the Invalid, Shared, or Exclusive state. The cycles in the “Operation Required” column
are discussed in the following sections.

TFP User’s Manual 11-17



Command C:rtgiirge State Operation Required
Read/Instruction Fetch | Non-Cachable All Non-Cachable Read
Read/Instruction Fetch | Cachable No-Match | Miss and Replace
Read/Instruction Fetch | Cachable Invalid Simple Miss
Write Cachable No-Match | Miss and Replace
Write Cachable Invalid Simple Miss
Write Invalidate Shared Upgrade
Write Non-Cachable All Non-Cachable Write
Write Non-Cachable All Sequential Non-Cach-

able Write

Table 11-2 Processor Initiated TBus Operations

From Table 11-2 above, the following operations can be required of the R8000 CPU:

1) Miss and Replace

2) Simple Miss

3) Upgrade

4) Non-Cachable Read

5) Non-Cachable Write

6) Sequential Non-Cachable Write

11.4.1 Miss and Replace

Miss and Replace means that a sector was required for which there was not already a
place in the streaming cache. Hence one of the four lines at the required cache index
must be replaced. When the R8000 CPU requests this operation, [UREL_ is asserted by
the R8000 CPU, causing the TBus state machine to transition from RUN state to CC state,
thereby transferring ownership of the TBus to the CC. Once the CC is granted owner-
ship, the following operations are required to perform a streaming cache miss and
replace. The sections referred to in each step show the corresponding timing diagrams.

1) One line in the cache index must be chosen for replacement. Which set of the cache is
chosen for replacement depends on the state of the Match Field. If the Match field indi-

cates an either an address match and virtual synonym match, or an address match and a
virtual synonym mis-match, the line is chosen based on the state of the Set Address field.
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If the Match field indicates no address match the set is normally chosen using the ran-
dom replacement algorithm. However, there are two exceptions where the set is not cho-
sen randomly:

1a) A cachable read /I-fetch (second entry in Table 11-2) which has no address match. The
corresponding Miss and Replace operation chooses a set based on the state of the set
address field.

1b) A cachable write (fourth entry in Table 11-2) which has no address match. The corre-
sponding Miss and Replace operation chooses a set based on the state of the set address
field.

In the above two cases the intent of the Miss and Replace operation is to obtain a new
virtual synonym and a perform a data cache invalidate.

2) The Store Address Queue (SAQ) must be checked for conflict with any of the four sec-
tors of that line by performing a SAQ compare operation. The operation compares
address bits <17:7> on the bus with bits <17:7> for each entry in the even and odd store
address queues. If any of the compares are valid ownership of the TBus must be given
back to the R8000 CPU temporarily to allow the cycle to complete.

3) The upper physical address bits must be retrieved from the Tag RAM for use in writ-
ing back the dirty sectors and in invalidating the data cache. This can be accomplished
by performing a Tag RAM address read.

4) The dirty bits must be checked for each of the sectors of that line. In addition, the vir-
tual synonym bits for the line which is to be replaced must be retrieved from the Tag
RAM. Both operations are accomplished by performing a Tag Read Combined opera-
tion.This operation allows the dirty bits from both Tag RAM’s to be returned to the CC in
the same cycle. A compare is then performed internal to the CC to determine if any of
the sectors for the requested line is dirty. The state read operation allows the CC to read
the state and virtual synonym information for a given entry in the cache.

5) If it is determined in step 3 that any of the sectors is dirty, the dirty data from the
replaced line must be read from the streaming cache by performing a streaming cache
read.

6) The data cache must be invalidated to remove the potential copy of any of the four
sectors of the replaced line. This is accomplished by performing a data cache invalidate
cycle. The number of Data Cache invalidates which must be executed depends on the
system parameters. For example, data cache invalidates can invalidate 32 bytes. If the
streaming cache line size is 512 bytes then 16 back to back data cache invalidates must be
executed in order to invalidate the entire line.

7) A new sector of data must be read from the system bus and placed in one sector of the
chosen line by performing a streaming cache write cycle.The criteria for determining
which set should be replaced is explained in step 1.
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8) The tag address of the new data must be placed in the Tag RAM.

9) The state of the streaming cache must be set either to Shared or Exclusive, whichever
state is appropriate, for the new sector, and to Invalid for the other three sectors of the

line. The dirty bit must be cleared for all four sectors of that line. This is accomplished by
performing a Tag RAM state write.

If the SAQ compare needs to be emptied control of the TBus is returned to the R8000
CPU and the queue allowed to empty. The entire process is then repeated from the
beginning. The states and dirty bits control which sectors are written back to the system.
If the states are not exclusive and the dirty bits are clear for blocks which have not been
read in parallel with checking the states and dirty bits, then those sectors do not need to
be read.

There are several minor variations for the reading of the new sector from the system. The
type of bus transaction used and the state to which the streaming cache sector is set
when another cache makes the shared response is shown in Table 11-3.

Cause of Miss Coherence Bus Transaction | Not Shared Shared
Protocol -
Any Non-Coherent Non-Coherent | Exclusive Exclusive
Any Exclusive Exclusive Read | Exclusive | ------
Load Shared Read Exclusive Shared
I-Fetch Shared Read Shared Shared
Store Shared Exclusive Read | Exclusive | -------

Table 11-3 Bus Transactions and their Resulting States

While waiting for the new data to be retrieved, those cycles not required for these opera-

tions to complete may be transferred to the floating point and store machines by request-

ing that the queue be emptied and then requesting the TBus in anticipation of the earliest -~
time data might return. The following timing diagrams show some examples of how

various miss and replace cycles could be performed.

Figure 11-6 shows a line replacement with address miss. The line replacement operation

replaces data for 32 consecutive addresses. With 16 bytes of data corresponding to each

address, a total of 512 Bytes of data are moved. The set chosen for the transfer is arbi- -
trary. The first four valid addresses on TRA[39:5] are for store address queue checking

and reading out the state information from the tag RAM. These operations correspond to

functions 0110 and 0111 of the function field. =
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After the tag RAM information is read out the data cache is invalidated as shown by
Inv0-Inv3 on the TRA pins. The actual invalidation addresses continue up to Inv15. As
with previous timing diagrams, the empty queue function 0111 on the TBus does not
occur on the last ‘CC’ state and hence is ignored by the R8000 CPU.

The addresses and corresponding write-back data complete about half way through Fig-
ure 11-7. The new address and data then appear on A0-A7 of the DRA field and R0-R7 of
the store data bus. The new tag address information appears on the TRA field followed
by the state field. TWE_ is asserted two clocks after the tag address appears on the TBus,
again to allow for propagation time through the R8000 CPU, and the tag address infor-
mation is written. In the next clock STWE_ is asserted to allow the state information to be
written. Which of the four sets is to be written is determined by the information on the
RWSA[1:0] pins when TWE_ and STWE_ are asserted. The set information shown valid
for two clocks during the read in Figure 11-6 is the same set used to write the new infor-
mation in Figure 11-7. This assures that the same set is read and written.
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11.4.2 Simple Miss

The simple miss is much more straight forward that the Miss and Replace operation
because the sector to be filled is currently invalid and there is no data to write back. Con-
trary to the Miss and Replace operation, in the Simple Miss operation the R8000 CPU
does not assert IUREL _ at the same time as VALIDOUT_, hence control of the TBus is not
passed immediately to the CC. The following operations are required in order to com-
plete the Simple Miss operation.

1) A new sector of data must be read from the system and placed in one sector of the cho-
sen line at a set determined by the value on the set address field. This is accomplished by
performing a streaming cache write.

2) The state of the streaming cache must be set to shared or exclusive, as appropriate, and
the dirty bit cleared for the new sector.This is accomplished by performing a Tag RAM
state write.

These two operations are accomplished in the same manner as the corresponding opera-
tions for the Miss and Replace except that the streaming cache is only modified for one of
the sectors.

Figure 11-10 and Figure 11-11 shows a timing diargam of a simple miss.
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11.4.3 Upgrade

An upgrade occurs when the R8000 CPU wants to write a line which is shared. The sec-
tor is in the shared state but must be changed to the exclusive state so that it can be writ-
ten. For the upgrade operation the R8000 CPU does not assert IUREL_ in the same clock
as VALIDOUT_ and control of the TBus is not passed immediately to the CC. If the
upgrade fails, meaning that another processor has already performed the upgrade, noth-
ing is done and control is requested and then returned to the R8000 CPU for a retry. If the
upgrade succeeds the state of the sector in the streaming cache is updated from shared to
exclusive state and the dirty bit is cleared. Control of the TBus must be passed to the CC
so that a Tag RAM state write can be executed and the status of the line changed and the
corresponding dirty bit cleared. The dirty bit is then set by the R8000 CPU when the
write occurs. Refer to section 11.4.5 for more information on how to execute a Tag RAM
state write.

The upgrade timing diagram is quite simple since the intention of the cycle is only to
change the state of the Tag RAM. Once the TBus state machine is in the “CC’ state the
cache controller places the new tag RAM state information on the TRA bus. The informa-
tion propagates through the R8000 CPU and two clocks later STWE_ is asserted and the
write is performed. At the same time as STWE_ is asserted, RWSAJ1:0] is valid which
indicates to the tag RAM which set is to be written.

Figure 11-12 shows a timing diagram of a line upgrade.
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11.4.4 Non-Cachable Read

A non-cachable read occurs when any read is executed from a non-cachable protocol
page. Unlike a cachable read a non-cachable read can occur only with a line replacement.
The steps are as follows:

1) One line in the cache index must be chosen for replacement. Which set of the cache is
chosen for replacement depends on the state of the Match Field. If the Match field indi-

cates an either an address match and virtual synonym match, or an address match and a
virtual synonym mis-match, the line is chosen based on the state of the Set Address field.

If the Match field indicates no address match the set is normally chosen using the ran-
dom replacement algorithm. However, there are two exceptions where the set is not cho-
sen randomly:

1a) A cachable read/I-fetch which has no address match. The corresponding Miss and
Replace operation chooses a set based on the state of the set address field.

1b) A cachable write which has no address match. The corresponding Miss and Replace
operation chooses a set based on the state of the set address field. ’

In the above two cases the intent of the Miss and Replace operatiori is to obtain a new
virtual synonym and a perform a data cache invalidate.

2) The Store Address Queue (SAQ) must be checked for conflict with any of the four sec-
tors of that line by performing a SAQ compare operation. The operation compares
address bits <17:7> on the bus with bits <17:7> for each entry in the even and odd store
address queues. If any of the compares are valid ownership of the TBus must be given
back to the R8000 CPU temporarily to allow the cycle to complete.

3) The upper physical address bits must be retrieved from the Tag RAM for use in writ-
ing back the dirty sectors and in invalidating the data cache. This can be accomplished
by performing a Tag RAM address read.

4) The dirty bits must be checked for each of the sectors of that line. In addition, the vir-
tual synonym bits for the line which is to be replaced must be retrieved from the Tag
RAM. Both operations are accomplished by performing a Tag Read Combined opera-
tion.This operation allows the dirty bits from both Tag RAM'’s to be returned to the CC in
the same cycle. A compare is then performed internal to the CC to determine if any of
the sectors for the requested line is dirty. The state read operation allows the CC to read
the state and virtual synonym information for a given entry in the cache.

5) If it is determined in step 3 that any of the sectors is dirty, the dirty data from the
replaced line must be read from the streaming cache by performing a streaming cache
read.
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6) The data cache must be invalidated to remove the potential copy of any of the four
sectors of the replaced line. This is accomplished by performing a data cache invalidate
cycle. The number of Data Cache invalidates which must be executed depends on the
system parameters. For example, data cache invalidates can invalidate 32 bytes. If the
streaming cache line size is 512 bytes then 16 back to back data cache invalidates must be
executed in order to invalidate the entire line.

7) For a data non-cachable read the entire 128 byte sector is fetched. Instruction fetch
non-cachable reads fetch only from the on-board PROM or from main memory. In this
case 32 bytes are read at a time. A new sector of data must be read from the system bus
and placed in one sector of the chosen line by performing a streaming cache write cycle.
The criteria for determining which set should be replaced is explained in step 1.

8) The tag address of the new data must be placed in the Tag RAM.

9) The state of the streaming cache must be set either to Invalid. This is accomplished by
performing a Tag RAM state write.

The non-cachable read cycle is almost identical to the read with line replacement cycle
shown in Figure 11-6 and Figure 11-7. The differences are as follows:

1) When VALIDOUT._ is asserted in for the line replacement in Figure 11-6 the three bit
coherence protocol field is a 5 (101), indicating a cachable coherent exclusive on write. In
Figure 11-13 the protocol is a 2 (010), indicating an uncachable sequential operation.

2) In the next to last ‘CC’ cycle in Figure 11-7 the state information remains the same. In
the next to last ‘CC’ cycle in Figure 11-14 the state is changed to invalid.

TFP User’s Manual 11-33



Clock Y

IUREL_ | ]

CCReq_ |

ValidOut_ |

TBUS StMach. |AU

TBIU Command

TBIU Size

TBIU Coherence

TBIU Match

TBIU Set

TBIU State

TBIU V.S.

TBIU PAddr

TBCC Function

TBCC WE_[3:0] { 1111

TBCC DRA[21:4] | {0 a1 Xaz}aa ) aa s s a7 (e J a0 sl fardaraecd
1

TBCC TRA[39:5] | {_kYaardaaripadpard L Taghtat

-
-
-
-
-
-
c
-
c
-
-
-
-
-
-
2
2
-
L~

21
&
B

fecy(co)cofecK ol eeloace) eck(coXoc) eoea)odcs

ainialn

-

/4
(1]
~

NN

-]

LIL

][]
i

{_odoo Jo11go11f{ 0400 1 1h10

&l

b

FOE

Bypass_

Store Data

TWE

STWE

l
l
|
l
|
STRD_ | /
|
I
I
|

TOE

RWSA[1:0]
NXTDATE_
NXTDATO_

Figure 11-13 Non-Cachable Read

11-34 TFP User’s Manual



Clock

IUREL_
CCReq_
ValidOut_
TBUS St.Mach.

-
-
2
<
2
-
-
-
-
-
-
2
<
C
2
=
-
=
2
>

TBIU Command
TBIU Size

|

l

|

|

|

|

|
TBIU Coherence I
TBIU Match |
TBIU Set |
TBIU State i
TBIU V.S. }
TBIU PAddr I
TBCC Function |
|

|

|

|

|

|

|

l

|

|

|

|

AT AT AT A Ay oy
[
C
iZI

0009

TBCC WE_[3:0]
TBCC DRA[21:4]

1111 0000

= 75 00 1 0 O e e 7

= 5 02 G 5 5 () 0 5. 0 B G

|>
i

X
2
2

TBCC TRA[39:5]
FOE_

Bypass_

|E
.

el e

Store Data

TWE_
STWE_
STRD_
TOE

2]
]
B]
[]
L&)
&)
&)
&
s
H

RWSA[1:0]
NXTDATE_
NXTDATO_ I

Figure 11-14 Non-Cachable Read --- con’t

TEP User’s Manual 11-35



11.4.5 Processor Ordered Non-Cachable Write

A non-cachable write occurs when the Sequential Mode bit in the R8000 CPU is clear and
any write is done to a non-cachable protocol page. For a non-cachable write operation
the R8000 CPU does not assert [IUREL_ in the same clock as VALIDOUT_ and control of
the TBus is not passed to the CC. A non-cachable write must wait for the corresponding
data to show in the correct update data queue. The two data are then sent together to the
system or to the addressed local register. The Processor Ordered Non Cachable function
is used for writing hardware registers in the CC which support the write-gatherer opera-
tion. The purpose of a write-gatherer is to gather 32 bit write operations from another
source (such as a graphics engine) into a 128 byte block before sending them across the
bus. Otherwise each single 32 bit write would have to be sent across the bus which
would decrease system data bandwidth and degrade overall system performance.

The processor ordered non-cachable write timing diagram in Figure 11-15 never leaves
the RUN state. The NXTDATE_ and NXTDATO_ pins perform different functions
depending on whether the R8000 CPU of the CC is in control of the TBus. When the
R8000 CPU is in control of the TBus each is driven by the R8000 CPU and indicates that
store data associated with a non-cachable write will be on the even store data bus on the
next clock. When the CC is in control of the TBus, the R8000 CPU asserts NXTDATE_ or
NXTDATO_ if either store address queue contains an address for which bits [17:7]
match the Tag RAM index bits [17:7] which were on the TBus four cycles earlier. The sig-
nals remain de-asserted if no such match is detected.

In Figure 11-15 when NXTDATE_ is asserted data on the even store data bus becomes
valid one clock later. The even data is always in order with the even addresses and the
odd data is always in order with the odd addresses. However, the even and odd refer-
ences are not always in order relative to each other.
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11.4.6 Sequential Non-Cachable Write

For a sequential non-cachable write operation the R8000 CPU does not assert [UREL_ in
the same clock as VALIDOUT_ and control of the TBus is not immediately passed to the
CC. Figure 11-16 shows a timing example of a sequential ordered non-cachable write.

The only real difference between the sequential and processor-ordered non-cachable
writes is that in a sequential non-cachable write the R8000 CPU asserts [UREL_ which
allows the it to determine when the actual non-cachable write has been completed. At
the end of the cycle CCREQ_ is asserted by the CC indicating that the cycle has com-
pleted.
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11.4.7 Interrupt

NMI Bus Error . . Bus Error
IP Enable Enable Enable IP Field NMI Field Field
TB<39> TB<38> TB<37> TB<36:31> TB<30> TB<29>

Table 11-4 TBus Interrupt Status Transfer

At the same time the information is placed on the TBus, the CC de-asserts the signal
CCREQ_ to indicate that the cycle is over. Control is then returned to the R8000 CPU.
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1.5 HARDWIRED CONTROL FUNCT IONS

Although the majority of communication between the CC and the R8000 Microprocessor
Chip Set is done via the TBus, there are some hardwired control functions which the CC
must support. The CC interfaces to the R8000 CPU, the R8010 FPU, and the Tag RAM’s.
The following table lists the hardwired control signals between the CC and each of these
devices.

Signal Type Interface Definition
VALIDOUT_ I R8000 CPU | Bus information valid
IUREL _ I R8000 CPU | R8000 CPU releases control of TBus
NXTDATE_ I R8000 CPU | Even store address queue compare valid
NXTDATO_ I R8000 CPU | Odd store address queue compare valid
CCREQ_ O | R8000 CPU | Cache Controller TBus request
FOE_ 0 R8010FPU | Floating point output enable
BYPASS_ O R8010 FPU | Floating point data bypass control
RWSA<I:.0> 0 TAG RAM | Read write set address
TWE_ 0] TAG RAM | Tag address write enable
STWE_ 6] TAG RAM | State and virtual synonym write enable
STRD_ O TAGRAM | Read state information control
TOE_ 0] TAG RAM | Output read information onto tag pins
TBus<72:0> I/O | R8000 CPU/ | Bus communication
R8010 FPU

Table 11-5 Cache Controller Hardwired Control Signals

11.5.1 Integer Unit Interface

VALIDOUT_ is driven by the R8000 CPU to indicate that the information on the TBus is
valid for the Cache Controller to receive. The CC must monitor the state of VALIDOUT_
and be prepared to latch all 72 bits of the TBus whenever it is asserted.

IUREL_ is driven by the R8000 CPU and indicates to the CC that the R8000 CPU has
relinquished control of the TBus. Assertion of IUREL_ causes transition of the TBus state
machine to the ‘CC’ state. [IUREL _ remains active as long as the R8000 CPU does not
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have control of the bus. IUREL _ is de-asserted whenever the TBus state machine is in the
“RUN’ state.

NXTDATE_ is driven by the R8000 CPU and indicates the result of the even store
address queue compare. When the CC is in control of the TBus, the R8000 CPU asserts
this signal low if the even store address queue contains an address for which bits <17:7>
match the Tag RAM index bits <17:7> which were on the TBus four cycles earlier. The
signal remains de-asserted if no such match is detected. NXTDATE_ should always be
considered together with NXTDATO_. If either is asserted, a compare hit has occurred.
Address comparisons are done on a 128 byte minimum quantity and take one cycle.
Address range comparisons larger than 128 bytes require multiple cycles. NXTDATE_ is
connected directly to the NXTDATE_ pin of the Cache Controller.

NXTDATO._ is driven by the R8000 CPU and indicates the result of the odd store
address queue compare. When the CC is in control of the TBus, the R8000 CPU asserts
this signal low if the odd store address queue contains an address for which bits <17:7>
match the Tag RAM index bits <17:7> which were on the TBus four cycles earlier. The
signal remains de-asserted if no such match is detected. NXTDATO_ should always be
considered together with UPDE_. If either is asserted, a compare hit occurred. Address
comparisons are done on a 128 byte minimum quantity and take one cycle. Address
range comparisons larger than 128 bytes require multiple cycles. NXTDATO_ is con-
nected directly to the NXTDATO_ pin of the Cache Controller.

CCREQ_ is driven by the CC and indicates to the R8000 CPU that the CC either has
requested control of the TBus or does not wish to give up control of the TBus. Assertion
of CCREQ _ causes the TBus state machine to transition to the ‘REQ’ state. A maximum
of 1500 clocks can elapse between the time CCREQ _ is asserted and TUREL _ is finally
asserted and control of the TBus granted.

11.5.2 Floating Point Unit Interface

FOE_ is driven by the CC and allows the R8010 FPU to drive data onto the store data
bus. De-assertion of FOE_ tri-states the store data pins. FOE_ works in conjunction with
the BYPASS_ on streaming cache transfers to main memory and allows data to be driven
directly from the load data pins (LDE<63:0> and LDO<63:0>) to the store data pins
(SDE<63:0> and SDO<63:0>) of the R8010 FPU respectively. When data from the stream-
ing cache is to be transferred to main memory, the Cache Controller initiates a streaming
cache load. The load data is then transferred on the LDE or LDO pins to the R8010 FPU.
The CC controls the flow of data through the R8010 FPU by asserting the FOE_ and
BYPASS_ signals to the R8010 FPU, allowing data to be driven onto the SDE or SDO bus-
ses. Refer to figure 10-22 for a graphical representation of how these pins manage the
flow of data through the R8010 FPU.
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BYPASS_ (Floating Point Bypass) Active Low Input

data to be driven out onto the store data pins. BYPASS_ de-asserted allows data from
within the registers of the R8010 FPU to be driven out onto the SDE or SDO pins (assum-
ing FOE_ is active). Refer to figure 11-22 for a graphical representation of how these pins
manage the flow of data through the R8010 FPU.

11.5.3 Tag RAM Interface

The Cache Controller does not distinguish between even and odd Tag RAM'’s. Therefore
each interface pin described below connects to both the even and odd Tag RAM's.

The two bit RWSA<1:0> field is driven by the CC when the Cache Controller is reading
or writing to the Tag RAM. RWSA<1:0> are used to choose between one of the 4 sets of
the 4-way set associative tag RAM. The Dirty Bit RAM also uses these pins to update the

TOE_is driven by the CC when the CC is reading the Tag RAM. Assertion of OE_ allows
the information in the Tag RAM to be driven out onto the external 20 bit Tag Address bus
and back to the R8000 CPU where it is returned to the CC via the TBus.

STWE_ is asserted whenever the CC is writing state and virtual synonym information to
the Tag RAM. Both the tag address and the state and V.S. information are carried to the
Tag RAM via a single 20 bit tag address bus. The CC tracks the information on the pins
and asserts STWE_ if state and V.S. information is to be written. TWE_ is asserted if tag
address information is to be written. TWE_and STWE_ must never be asserted at the

TWE_ is driven by the CC whenever tag address information is to be written to the Tag
RAM. Refer to STWE_ above.
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11.5.4 TBus Interface

This 72 bit bidirectional bus goes between the CC, the R8000 CPU, and the R8010 FPU.
The function of each bit changes depending on which device is driving. Normally the
CC drives the TBus when reading or writing the tag RAM'’s or reading the Data RAM'’s
and for general communication with the R8000 CPU. The R8010 FPU uses the TBus to
transfer Move data from the floating point register file (FPR) to the Integer Register File
of the R8000 CPU as requested by the R8000 CPU. The R8000 CPU uses the TBus for
integer stores to the data RAM’s, general communication with the CC and the R8010
FPU, and R8010 FPU to R8000 CPU move instructions. TBUS<63:0> connects directly to
TBUS<63:0> of the R8010 FPU as well as TBUS<63:0> of the Cache Controller.TBus
connection between the CC and the R8010 FPU is by virtue of the fact the R8000 CPU
communicates with both. There is no TBus communication protocol between the R8010
FPU and the CC. Chapter 10 discusses the TBus interface in detail.

11.5.5 Data Bus Interface

There is no direct data bus interface between the CC and any other device in the system.
However, the CC is responsible for the flow of data between the store data busses of the
even and odd banks of the streaming cache, and the even and odd data buffers
respectively. The data buffers separate the R8000 Microprocessor from the main memory
back-plane bus. SDE[63:0] and SDO[63:] comprise the even and odd store data busses
respectively.
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SYSTEM CONTROL COPROCESSOR -
INSTRUCTION SET DETAILS

This appendix provides a detailed description of the operation of the System Control
Coprocessor (Coprocessor 0) instructions implemented by the R8000 Microprocessor.
The instructions are listed in alphabetical order.

Exceptions that may occur due to the execution of each instruction are listed after the
description of each instruction. Descriptions of the immediate cause and manner of
handling exceptions are omitted from the instruction descriptions in this appendix.

Tables at the end of this appendix list the bit encoding for the constant fields of each
instruction, and the bit encoding for each individual instruction is included with that
instruction.

A.1 System Control Coprocessor Instructions

The MIPS architecture provides a uniform abstraction for a few coprocessor units,
alternate execution units with register files separate from the R8000 CPU. The System
Control function of MIPS processors is implemented using this mechanism as
coprocessor 0. The System Control Coprocessor manipulates the processor control,
memory management, and exception handling facilities of the processor. Though many
processors have similar system control facilities, the System Control Coprocessor
instructions are R8000 CPU-specific.
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CPO0 - Instruction Set Details

A.2 Instruction Formats

Every R8000 CPU instruction consists of a single word (32 bits) aligned on a word
boundary. The instructions to transfer data between general registers and coprocessor
registers have one format, common to most coprocessors. Coprocessor computational
instructions have coprocessor-dependent formats. The CP0 instructions have the major
opcode of COPO, and specify further operations with subfields

Computation (Coprocessor)
31 2625 2120 65 0
op rs 0 funct

Register move (Coprocessor)

31 2625 2120 16 15 1110 0
op rs rt rd 0
op 6-bit operation code (COPO for all these instructions)
s 5-bit specifier: select move to/from or operation
instruction
ot 5-bit R8000 CPU source/destination general register
specifier
5-bit Coprocessor source/destination general register
rd .
specifier

Table A-1 CPO Instruction Formats

A-2 TEP User’s Manual



CPO - Instruction Set Details

A.3 Instruction Notation Conventions

In this appendix, all variable subfields in an instruction format (such as rs, rt, immediate,
etc.) are shown in lowercase names.

The bit encoding for the opcode constants accompanies each instruction and is also
summarized in figures located at the end of this Appendix. Fields which are not shown
as opcode constants, but are shown to contain zero are reserved fields and must be coded
as zeros for correct operation.

In the instruction descriptions that follow, the Operation section describes the operation
performed by each instruction using a high-level language notation.

The registers in Coprocessor 0 are referred to by name in the high-level language.
Special symbols and functions used in the notation are described in the table below.
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CPO - Instruction Set Details

Symbol Meaning
«— Assignment.
1 Bit string concatenation.
Xy Replmﬁonofbitvahexirnoay-bitstrhg.Note:xisalwaysasingle-bitvahe.
Xy..z Selection of bits y through z of bit string x. Little-endian bit notation is always
used. If yis less than z, this expression is an empty (zero length) bit string.
+ - » 2’s complement or floating-point arithmetic: addition, subtraction, multiplication
div 2's complement integer division.
mod 2’s complement modulo.
/ Floating-point division.
< 2's complement less than comparison.
nor Bit-wise logical NOR.
xor Bit-wise logical XOR.
and Bit-wise logical AND,
or Bit-wise logical OR.
GPR[x General-Register x. The content of GPR[0] is always zero.
CPR{z,x Coprocessor unit z, general register x.
REGISTEREg p| The value of the field “FIELD” in the specified register or structure. This is
similar to the bit selection notation, but uses a field name.
LLbit Bit of state to specify synchronization instructions. Set
by LL, cleared by ERET and Invalidate and read by SC.
TLB(index, set The TLB cache entry selected by a specified index and set value,
Index, sel | o has e HI, LO, VPN (in Hi) and ASID (in HI).

DCache_Tag_Ram[VAddr]

The Data Cache Tag Ram entry indexed by the
address in the VAddr register.

TLBIndex(VAddr, KPS, UPS) The TLB cache index for the address in the VAddr register given

the current processor operating mode and the current page sizes*

Table A-2 CPO Instruction Operation Notations

TFP User’s Manual




CPO0 - Instruction Set Details

DCTR Data Cache Tag Read DCTR
31 26 25 21 20 65 0
COPO COM 0 DCTR
010000 | 11000 0 0000 0000000000 001001
6 .5 15 6
Format: TFP specific
DCTR
Description:

The VAddr register specifies an entry in the Data Cache Tag Ram. DCTR reads the tag from the
specified Data Cache Tag entry and writes it to the DCache register.

Operation:

DCache « DCache_Tag_Ram[VAddr]

Exceptions:

Coprocessor unusable exception
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CPO - Instruction Set Details

DCTW Data Cache Tag Write DCTW

31 26 25 21 20 65 Y
COPO COM 0 DCTW
010000 | 11000 00000 0000000000 001010
6 5 15 6
Format: TFP specific
DCTW
Description:

The VAddr register specifies an entry in the Data Cache Tag Ram. DCTR reads the tag from the
DCache register and writes it into the specified Data Cache Tag entry.

Operation:

DCache_Tag_Ram[VAddr] « DCache

Exceptions:

Coprocessor unusable exception
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CPQ - Instruction Set Details

Doubl dM F
DM FCO Syst:lr‘n g;v:trrol C%’perocr:gg‘sor DM FCO

31 26 25 21 20 16 15 1110 0
COPO DMF 1 rd 0
010000 | 00001 00000000000
6 5 5 5 1
Format: TFP specific
DMFCO rt, rd
Description:

The contents of the system control coprocessor (CP0) general register r¢ are loaded into R8000 CPU
general register rd. This instruction is used by software to read from the system control registers.

Operation:

GPR[rd] « CPRI[O,rt]

Exceptions:

Coprocessor unusable exception
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CPO - Instruction Set Details

Doubl dM T
DMTCO Systemlcgm?c';l Co%‘:'gc:ssor D MTCO

31 26 25 21 20 16 15 1110 0
COPO DMT rt rd 0
010000 00101 00000000000
6 5 5 5 11
Format: TFP specific
DMTCO rt, rd
Description:

The contents of R8000 CPU general register rt are loaded into system control coprocessor (CP0)
general register rd. This instruction is used by software to write to the system control registers.

Because the state of the virtual address translation system may be altered by this instruction, the
operation of load and store instructions and TLB operations within an implementation-dependent
window, prior to and after this instruction, are undefined.

Operation:

CPR[0,rd] « GPRrt]

Exceptions:

Coprocessor unusable exception

A-8
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CPO - Instruction Set Details

ERET Exception Return ER ET

31 26 25 21 20 65
COPO Col 0 ERET
010000 10000 0000000000000 O00O 011000
6 5 15 6
Format: TFP specific
ERET
Description:

ERET is the instruction for returning from an interrupt, exception, or error trap. Unlike a branch
or jump instruction, ERET does not execute the next instruction. ERET must not itself be placed in
a branch delay slot.

An ERET executed between a LL and SC causes the SC to fail.

Operation:
PC « EPC
SR1 «0
LLbit < 0

Exceptions:

Coprocessor unusable exception
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CPO0 - Instruction Set Details

SSNOP

Superscalar Inhibit NOP | SSNOP

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 0 0 1 SLL
000000 00000 00000 | 00000 00001 000000
6 5 5 5 5 6
Format: TFP Specific
SSNOP
Description:

This is a No-OPeration instruction that alters the superscalar instruction dispatch behavior of the
program order can be dispatched until after
ispatched in the same cycle as instructions

TFP processor. No instruction that follows a SSNOP in
the SSNOP has been dispatched. The SSNOP can be d

that precede it.

For example, consider the sequence:
dmtcO r4,VAddr
ssnop
ssnop
ssnop
tibw

The DMTCO that writes the VAddr register and the first SSNOP can issue in the same cycle, say T,
but the second SSNOP can’t issue because of the first SSNOP. The second SSNOP will issue in cycle

T+1 by itself. The third SSNOP will issue in cycle T+2. Finally

instructions) can issue in cycle T+3.

the TLBP (and following

This is not a coprocessor 0 instruction. It is documented with the TEP CP0Q instructions because it

is TFP-specific and the primary use is to serialize code se

functions.

The instruction is the encoding of “SLL $0,$0,” but the mnemonic is recognized by the TFP
assembler and the instruction is recognized as the special superscalar inhibit operation by the
processor and is not treated as a shift.

Operation:

Exceptions:

None

quences that perform system control

A-10
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CPO - Instruction Set Details

TLBP Probe TLBForMatchingEntry TLBP

31 26 25 21 20 65 0
COPO COM 0 TLBP
010000 | 11000 00000 0000000000 001000
6 5 15 6
Format: TFP specific
TLBP
Description:

The TLB cache is probed for a translation that matches the address in the VAddr register and the
ASID in the EntryHi register. The TLB cache index is determined from the value in the VAddr

The result of the probe is recorded in the TLBSet register. If there is a match, then the P bit is cleared
to zero, and the set number is recorded in the SET field. If there is no match, then the P bit is set to
one and the SET field is undefined.

Operation:

index « TLBIndex(VAddr, KPS, UPS)
TLBSetP « 1
* this is an associative match in actual hardware */
foriin 0..2
match « (VAddrREGION = TLB[index, ilgegioN)
and (VAddrVPN = TLB[index, ilypn)
and (EntrHlAsm = TLBJindex, ilASlD)
if match = true then
TLBSetP « 0
TLBSetggT « matching set number
endif
endfor

Exceptions:
Coprocessor unusable exception
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CPO - Instruction Set Details

TLBR

Read Indexed TLB Entry

TLBR

31

26 25 21 20

65 Y

COPO
010000

COM
11000

0

00000 0000000000 000001

TLBR

6

5

15

Format:

6

TLBR

Description:

The TLB entry is specified b
specified TLB entry is move

y the VAddr register and the TLBSe.
d to the EntryHi and EntryLo regist

TFP specific

t register. The contents of the

This operation is undefined for an incorrectly specified SET address.

Operation:

index « TLBIndex(VAddr, KPS, UPS)
set « TLBSet,uo

EntryHi « TLB[index, set]y;
EntryLo « TLB[index, set] o

Exceptions:

Coprocessor unusable exception

A-12
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CPO - Instruction Set Details

TLBW

Write Indexed TLB Entry

TLBW

31 26 25 21 20 65 Y
COPO COM 0 TLBW
010000 | 11000 0 00000000000000 000010
6 5 15 6
Format: TFP specific
TLBW
Description:

The TLB entry is specified by the VAddr register and the TLBSet register. The contents of the
EntryHi and EntryLo registers is moved into the specified TLB entry.

These operations are undefined for an incorrectly specified SET address.

Operation:

index « TLBIndex(VAddr, KPS, UPS)

set « TLBSet, o

TLB[index, set]y; « EntryHi
TLB[index, set] , « EntryHi

Exceptions:

Coprocessor unusable exception
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CPO - Instruction Set Details

TFP Coprocessor 0 - Opcode Bit Encoding

All TFP System Control Coprocessor instructions have major opcode COPQ. The encoding of the
COPO major opcode is shown here with all other major opcodes omitted.

bits  [28..26 Major Opcode

]
(31..29 0 1 2 3 4 5 6 7
]

2

bits [23..21 COPO rs

]
[25.24 0 1 2 3 4 5 6 7
g) ¥ DMF |* * * DMT [* *
1 * * * * * * * *
2 COI
3 COM
bits [2..0] COPO function when rs equals COI
(5.3] 0 1 2 3 4 5 6 7
0 * * * * * * * *
1 * * * * * * * »*
2 * * » * * * * *
3 ERET * * * %* * * *
4 * * * * * * * *
5 * * * *» %» * * *»
6 % * *» * * * * *
7 * *» * * * * * *
bits [2.0] COPO function when rs equals COM
[5.3] O 1 2 3 4 5 6 7
0 * TLBR [TLBW [* * * * *
1 TLBP |DCTR |DCTW|* * * * *
2 * * * * * * * *
3 * * * * * * * *
4 * * * * * * * *
5 * * * * * * * *
6 * * * * %* * * *
7 * * * * * * * *
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HAZARDS AND INTERLOCKS

The R8000 Microprocessor contains certain restrictions which must be adhered to in
order to attain maximum instruction execution performance. Certain combinations of
instructions are not permitted and the results of executing these illegal combinations can
be unpredictable. Most hazards result from instructions modifying and reading a state in
different pipeline stages. Such hazards are defined between pairs of instructions, not on
a single instruction in isolation. These constraints are discussed throughout this
appendix. Refer to chapter 6, section 6.5 for information regarding hazards during the
boot-up procedure.
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B.1 The MiscBus

The MiscBus is a 64-bit utility bus internal to the R8000 CPU and is used for transferring
data in situations where dedicated buses are not available. Instructions which use the
MiscBus include JAL, MFC0, MTCO. It is important to note that the MiscBus is a single
resource and is not controlled by score-boarding. Certain restrictions apply when using
the MiscBus.

- Only one MFCO instruction at a time can occur in the E-stage of the pipeline.
- Only one MTCO instruction at a time can occur in the W-stage of the pipeline.
- Only one JAL instruction at a time can occur in the E-stage of the pipeline.

The MoveFrom and MoveTo Coprocessor 0 instructions both use the MiscBus to transfer
data between the general purpose register (GPR) and the coprocessor 0 registers.
However, these instructions use the MiscBus in different cycles of the pipeline. MFCQ
uses the MiscBus in the E-stage, while MTCO uses the MiscBus jn the W-stage. The
following restriction applies.

A MFC0 instruction must not occur in the cycle following a MTCO instruction. Hence a
MFCO instruction in the E-stage of the pipeline cannot be followed by a MTCO
instruction in W-stage.

A JAL uses the MiscBus to pass the program counter value from the instruction unit to
the execution unit and stores the result into register r31 of the GPR. JAL uses the MiscBus
in the E-stage, as does the MFC0 instruction. Therefore, a hazard exists if JAL and MFC0
attempt to execute in the same cycle. The following restriction applies.

The JAL and MFCO0 instruction must not occur at the same time in the E-stage of the
pipeline.

In addition, the MTCO instruction uses the MiscBus in the W-stage of the pipeline. Due to
the interdependency of these instructions, a hazard occurs if a MTCO instruction in the
W-stage is followed by a JAL instruction in E-stage, since the JAL is actually issued
before the MTCO instruction. The following restriction applies.

A JAL instruction must not occur in the cycle following a MTCO.
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B.2 The Address Generation Pipeline

The R8000 CPU has two address generation pipelines that are used for all loads and
stores. Instructions flow down the pipeline through stages A-E-W. Coprocessor 0
memory (CopOmem) instructions are those Coprocessor 0 instructions that use the
memory pipeline, as opposed to using the integer pipeline.

However, Coprocessor 0 memory instructions do not flow through the pipeline in the
same manner as other loads and stores. Coprocessor 0 memory instructions use the
address pipeline two cycles later than a normal load /store memory operation. Hence, if
a memory operation follows a Coprocessor 0 memory operation by two cycles in the
pipeline, the normal memory operation (loads/stores) is aborted in it's E-stage, the
pipeline is flushed, and the memory operation is restarted.

B.3 Coprocessor 0 Register Latencies

This section lists each of the Coprocessor 0 registers and the latencies incurred when
executing certain instructions. '

B.3.1 Virtual Address (VAddr) Register

The VAddr register is used in addressing Coprocessor 0 memory instructions. When a
Coprocessor 0 memory instruction is in the E-stage, the VAddr is forced back into the
memory pipeline in the D-stage. When executing a MTCO instruction using the VAddr
register and expecting the new value of VAddr to index either the TLB of the Data Cache,
the MTCO instruction has a latency of 2. The 2-cycle latency is shown below.

Cycle

ssnop instruction issued in cycle 0

1 | MTCO VAddr instruction issued in cycle 1

1 | ssnop also issued in cycle 1

2 | ssnop issued in cycle 2

3 | TLBRissued in cycle 3 two cycles after MTCO

B.3.2 Status Register

The KPS /UPS fields of the Status Register may affect addressing of the TLB for the
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TLBR, TLBW, TLBP Coprocessor instructions. If the region of the address in the VAddr
register points to kernel physical (KP) space, the Status Register page size fields have no
effect on the indexing of the TLB. The Status register has no effect on the DCTR and
DCTW Coprocessor instructions.

If the region of the address in VAddr register points to a virtual address space (as
opposed to kernel physical space), then the KPS/UPS field is used to choose the lower 7-
bits of the virtual page. The MTCO Status Register has a latency of 1 to the TLBR, TLBW,
and TLBP Coprocessor instructions. The one cycle latency is shown below.,

Cycle

0 | ssnop instruction issued in cycle 0

1 | MTCO Status Register (SR) instruction issued in cycle 1
1 | ssnop also issued in cycle 1

2_| TLBRissued in cycle 2 one cycle after MTCO

B.3.3 TLBSet Register

The TLBSet register is used to determine the status of the TLB write-enables when the
TLBW instruction is in the W-stage. The MTCO TLBSet operation has a latency of 1 to a

0 | ssnop instruction issued in cycle 0

1 | MTCO TLBSet instruction issued in cycle 1

1 | ssnop also issued in cycle 1

2 | TLBW issued in cycle 2 one cycle after MTCO

The zero cycle latency of a TLBR operation is shown below.
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Cycle
0 | ssnop instruction issued in cycle 0
0 | MTCO TLBSet instruction also issued in cycle 0

0 | TLBR instruction also issued in cycle 0

B.3.4 EntryHi Register

The EntryHi register serves as a data register for the TLBW instruction to write the TLB.
TLBW picks up the data from EntryHi when the TLBR instruction is in the H-stage. A
MTCO instruction writes to EntryHi at the end of the W-stage. Since the TLBW picks up
the value from EntryHi so late in the pipeline, the MTCO is 0 latency with respect to the
TLBW.

The MTCO-EntryHi operation can come down the pipeline in the same cycle with the
TLBW, and the TLBW will get the new data. EntryHi also may affect the index into the
TLB for TLBR, TLBW, and TLBP operations. If the address in the VAddr register points to
Kernel Global (KV1) space, then the 8-bit ASID field in EntryHi does not affect the
indexing. Otherwise, the ASID is XOR'd with the least significant 7-bits of the virtual
page number to form an index into the TLB. For this reason the MTCO operation must
occur one cycle before the TLBW, TLBR, or TLBP operations in the pipeline. The MTCO
has a latency of one cycle with respect to these instructions. The TLBR operation is
shown below.

Cycle

0 | ssnop instruction issued in cycle 0

1 | MTCO EntryHi operation issued in cycle 1
1 | ssnop also issued in cycle 1
2

TLBR issued in cycle 2 one cycle after MTCO

The TLBR operation loads the EntryHi and EntryLo registers late in the pipeline. TLBR
has a latency of 3 to a MFCO operation. The MFCO-EntryHi/EntryLo must come 3 cycles
after the TLBR operation. The three cycle latency is shown below. The following
sequence places new data in EntryHi/EntryLo from a TLBR.
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There is no score-boardin
TLBR and MTCO-Entry
example, if a MTCO-
TLBR, the result of

Cycle

WINIm|lO|lo

TLBR instruction issued in cycle 0
ssnop also issued in cycle 0

ssnop issued in cycle 1

ssnop issued in cycle 2

MFCO-EntryHi issued in cycle 3 three cycles after TLBR

the MTCO will be

EntryHi or MTCO-EntryLo operation occurs

following restrictions apply.

- A DCTR operation in H-sta

operation in W-stage.

- A TLBR operation in H-sta

EntryLo operation in W-stage.

- A TLBP operation in H-sta

operation in W-stage.

B.4 VAddr Multiplexing

The execution of a MTC0-VAddr o
instruction in E-stage require a mu
Coprocessor 0 memory executes

for this resource occurs. Hence the following restriction applies.

- A MCTO0-VAddr operation must not occur in the ¢
memory instruction.

g between two writes to the same register, such as between
Hi operations, both of which target the EntryHi register. For

in the next cycle after a

put into EntryHi or EntryLo respectively. The
ge cannot occur at the same time as a MTCO0-DCACHE
ge cannot occur at the same time as a MTCO-EntryHi/

ge cannot occur at the same time as a MTCO-TLBSet

peration in W-stage and any Coprocessor 0 memory
ltiplexor in the pipeline which is a single resource. If a
in the cycle after a MTCO0-VAddr operation, a collision

ycle following a Coprocessor 0
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B.5 Integer Store Cancellation

In order to alleviate a potential timing problem that can occur when cancelling integer
stores a mechanism exists in the R8000 CPU which recirculates the store address back
through the address pipeline to invalidate the store data in the data cache while the
pipeline is being flushed. This mechanism requires the use of the same multiplexor
mentioned in the previous example and if used can collide with a MTC0-VAddr
executing in the same cycle (W-stage). To avoid this problem, the following restriction
applies.

- Do not schedule Integer stores in the same cycle with a MTCO0-VAddr.

B.6 Instruction Latency and Control Registers

This section describes the latency of instructions which affect address translation.

B.6.1 TLBW Instruction

The TLBW instruction uses the memory pipeline in a different fashion than loads and
stores. While these standard memory operations access the TLB in the E-stage, the TLBW
instruction does not access the TLB until two cycles later in the H-stage. At the end of the
H-stage, the TLB is written with a new value which can be used for translation. Hence a
memory operation can occur 3 cycles behind a TLBW instruction and receive the new
translation. The actual latency of a TLBW instruction is 3 cycles.

It is possible for the effective latency of the TLBW instruction can be 0 at the end of an
exception handler. For example, if the TLBW is at the end of an exception handler,
indicating a Return From Exception (ERET) is coming, the ERET causes a pipeline flush
and creates a bubble in the pipeline of 3 cycles.

If a TLBW is placed at the end of a fast TLB exception handler in order to place a
translation into the TLB, and an ERET is then executed which causes the code to return
to the instruction that caused the TLB miss, no ssnop operations are needed to retrieve
the required 3 cycles following the TLBW and before the use of the translation.

B.6.2 MTCO0-Status Register (UPS/KPS Fields)

The MTCO0-SR operation has a latency of 3. Three cycles after a MTCO-SR, new values in
the KPS and UPS fields will affect address translation. MTCO takes effect at the end of the
W-stage. The page size is used in A-stage to set-up TLB controls.
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B.6.3 MTCO-EntryHi (ASID)

The MTCO-EntryHi operation has a Latency of 3. Three cycles after a MTCO-EntryHi
operation, the new value in the ASID field affects the hashing into the TLB. MTCO takes

effect at end of the W-stage. The ASID size is used in A-stage to hash TLB-index into the
pre-decoder.

B.7 Use of the SSNOP Instruction

In addition to the standard NOP instruction, the MIPS IV instruction set includes a
super-scalar no-op instruction (SSNOP). Insertion of a SSNOP instruction breaks
superscalar dispatch in the TFP microprocessor and assures that no instruction that
follows the SSNOP in the assembly language is dispatched in the same cycle as the
SSNOP. The SSNOP instruction is provided to help the software developer adhere to
certain restrictions inherent to the MIPS architecture, namely to keep certain instruction
pairs separated by one or more cycles.

Table B-1 shows the insertion of SSNOP instructions as a way of separating certain
instructions. However, in some cases single cycle integer operations can be substituted.
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Number of

Instruction Followed By SSNOP’s Comments
dmfc0 dmfc0 1 Move From any COPO register
dmfcO dmtcO 1 Move To/From any COPO register
dmfc0 jal 1 Move From any COPO register
dmfc0 jalr 1 Move From any COPO register
dmtcO dmfc0 2 Move To/From any COPO register
dmtcO dmtcO 1 Move To any COPO register
dmtcO jal 2 Move to any COPO register
dmtcO jalr 2 Move To any COPO register
dmtcQ (Vaddr) any TLB op 2 Move to Vaddr Register Only
dmtco (Status) any TLB op 2 Move to Status Register Only
dmtcO (TLBSet) any TLB op 2 Move to TLBSet Register Only
dmtcO (EntryHi) any TLB op 2 Move to EntryHi Register Only
dmtcO (EntryLo) any TLB op 2 Move to EntryLo Register Only
dmtcQ (Status) any Integer 4 When accessing SR to enable/disable
operation interrupts.
dmtc(Q (Status) any FP 4 Four cycles before new interrupt
operation mask takes effect.
any TLB op any Memory op 3 Any TLB operation followed by any
Memory operation.
tibp dmfc0 (TLBSet) 4 Move From TLBSet register only
tibr dmfcO (EntryHi) 4 Move From EntryHi register only
tlbr dmfc0Q (EntryLo) 4 Move From EntryLo register only
dctr dmfcO0 (DCACHE) 3 Move From DCACHE register only
jal dmfcO 1 Move From any COPO Register
jal dmtcO 1 Move From any COPO Register
jalr dmfc0 1 Move From any COP0 Register
jalr dmtc0 1 Move To any COPQ Register

Table B-1: SSNOP Requirements
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