
 Public Imagination Technologies

3D Navigation Rendering Techniques 1 Revision PowerVR SDK REL_17.1@4658063a

3D Navigation Rendering Techniques

Whitepaper

Copyright © Imagination Technologies Limited. All Rights Reserved.

This publication contains proprietary information which is subject to change without notice and is
supplied 'as is' without warranty of any kind. Imagination Technologies and the Imagination

Technologies logo are trademarks or registered trademarks of Imagination Technologies Limited. All
other logos, products, trademarks and registered trademarks are the property of their respective

owners.

Filename : 3D Navigation Rendering Techniques.Whitepaper

Version : PowerVR SDK REL_17.1@4658063a External Issue

Issue Date : 07 Apr 2017

Author : Imagination Technologies Limited

Imagination Technologies Public

Revision PowerVR SDK REL_17.1@4658063a 2 Whitepaper

Contents

1. Introduction ... 3

1.1. Point-of-View Types ... 3
1.2. Sample Data ... 3

2. Data Organisation ... 4

2.1. Data Conversion ... 4
2.2. Spatial Index ... 4
2.3. Occlusion Culling .. 6

3. Rendering Techniques ... 9

3.1. Skybox .. 9
3.2. Shadows ... 9
3.3. Batching .. 11

4. References ... 12

5. Contact Details .. 13

List of Figures
Figure 1. City tiles intersecting the view frustum... 5

Figure 2. Working set and per-object culling ... 6

Figure 3. View of the Chicago city model as rendered from the demo application................................. 6

Figure 4. Combine wireframe and shaded views of the geometry.. 7

Figure 5. Visibility set determined by camera position .. 8

Figure 6. Visibility set and per-object frustum culling .. 8

Figure 7. Comparison of a scene with a black background (left) and a skybox (right) 9

Figure 8. Comparison of a scene without shadows (left) and with shadows (right).............................. 10

Figure 9. Visualization of the extruded shadow volumes .. 10

Figure 10. Hierarchical overview of vertex (VBO) and index (IBO) buffer objects for a city block 11

 Public Imagination Technologies

3D Navigation Rendering Techniques 3 Revision PowerVR SDK REL_17.1@4658063a

1. Introduction
Visualization of large datasets is a complicated and demanding task. Efficient techniques have to be
employed in order to achieve interactive frame rates when rendering huge datasets. The first
document on this topic (please see the “PowerVR™ Navigation Rendering Techniques” document)
deals with the aspects of 2D and 2.5D map rendering.
This document introduces techniques related to the visualization of 3D datasets. It provides additional
information on the topics of optimization, extending those found in the “PowerVR 3D Application
Development Recommendations” document.

1.1. Point-of-View Types

There are several high-level approaches to rendering a navigation system. They mainly differ in the
point of view and the amount of detail being rendered. From a different perspective this means they
differ in the minimum hardware specs they require from the targeted device to be able to run at an
appealing frame rate. The following gives an overview of the most common types:

 2D top-down: the standard bird’s-eye perspective found in a lot of navigation devices. It features
a very limited field of view, concentrating on basic features like streets, signs and landmarks and
can be rendered using an orthographic projection scheme. The terrain and all the landmarks are
specified in a single plane.

 2.5D: this perspective shares the same set of features with the plain 2D one, but the camera is
slightly tilted to offer a wider field of view. Due to the viewing angle and the perspective projection,
artefacts like line-aliasing have to be considered. Furthermore, it is desirable to add 3D models of
important buildings to provide reference points for the user.
As with the previous view all the landmarks are specified in a single plane.

 3D: this view is similar to the 2.5D view, but now all coordinates have an additional z-coordinate
which makes it possible to illustrate additional landscape features like elevation. In addition to the
3D coordinates, the map data can be augmented by enhanced features like 3D models of the
actual city buildings.

This document covers the last entry in the list, on how to efficiently render 3D city models.

1.2. Sample Data

The sample data used throughout the 3D navigation demo has been kindly provided by NAVTEQ.

In particular, sample data from NAVTEQ Enhanced 3D City Models for Chicago, provided in the
Collada™ interchange format, was used and transformed into Imagination Technology’s binary POD
format, which in turn was used for the 3D navigation demo. The city models are split into tiles of
approximately 400m by 400m side length, where each tile is stored as a separate POD file. Each tile
contains textured buildings, roads and bridges, which resemble the original city.

The following sections describe the optimization techniques used for the demo and the sample data.
Implementations of the algorithms and techniques can be found in the PowerVR SDK and an
explanation of the various navigation data tools used to convert the sample data can be found in the
“Navigational Data Tools Reference Guide”.

Imagination Technologies Public

Revision PowerVR SDK REL_17.1@4658063a 4 Whitepaper

2. Data Organisation
Rendering the 3D models out-of-the-box as they are delivered is not possible. The models themselves
are stored in the Collada interchange format, which is primarily used as a standardized storage format
for data exchange between authoring software packages.

The format itself is a human-readable XML format which is not meant for deployment. It includes
metadata which is not required for the rendering process and the file size itself is a multiple of
comparable binary deployment formats.

As the models have to be deployed to mobile platforms, the data set has to be reduced to the bare
minimum. Deployment size matters due to limited storage and slower transmission speeds so the
data is better in an efficient binary format which is fast to load. The PowerVR SDK provides a set of
tools that accomplish these tasks.

The next section will introduce a few of these tools and how they can be used to compile and
generate the required deployment content. The later sections deal with the process of generating
spatial index data to accelerate the rendering process.

2.1. Data Conversion

As already mentioned in Section 1, the Collada file format is not suitable for rendering the data out-of-
the-box. The data has to be converted into the PowerVR POD file format for deployment. The
PowerVR SDK includes a set of tools to accomplish this task:

 PVRGeoPOD: a plug-in for Autodesk 3DS Max 6, 7, 8 & 9 and Autodesk Maya 7 & 8. It exports
model data into the optimized PowerVR POD file format. It also supports special features, such as
tangent space generation and bone batching. This tool can be used if you have to modify models
in a 3D authoring package instead of directly using the source data.

 PVRGeoPOD Standalone: a standalone tool that converts Khronos COLLADA Digital Asset
geometry and animations into the optimized PowerVR POD file format. This tool comes in two
flavours, a GUI version and a command line version, which can be easily integrated into content
pipelines.

In the 3D navigation demo the data has been converted

1
, using the vertex, normal and texture

coordinate information stored within the Collada file, almost halving the file size in most cases. The
transformation process is depicted in Figure 1. Once the data has been transformed into the POD file
format, the PowerVR SDK can be used to read and process those POD files. For more information,
see the PowerVR SDK documentation.

2.2. Spatial Index

After converting the data into the PowerVR POD deployment format, it can be easily loaded and
rendered in any 3D application. Unfortunately, the city model data set itself proves to be very complex
and rich in detail so that further steps have to be taken in order to reduce the amount of rendered
geometry.

Although the PowerVR Tile Based Deferred Rendering (TBDR) architecture applies various
techniques to optimize rendering, such as reducing the amount of overdraw per pixel to a bare
minimum, geometry bandwidth will be the limiting factor as all of the geometry has to be sent to the
graphics core. It is, therefore, crucial to only actually submit geometry which is visible from the
camera’s point-of-view.

The easiest optimization is to generate an additional set of data that logically augments the 3D model
set. For every city model tile the 2D bounding box coordinates are calculated and stored in a separate
file, the spatial index, which then can be used to efficiently cull the tile’s bounding box against the
camera view frustum (see Figure 1, where the light blue lines represent the tiles’ bounding boxes).

1
 Using Collada2Pod with the following options:

-Indexed=1 -Interleaved=1 -ExportGeometry=1 -ExportMaterials=1 -ExportNormals=1 -PrimitiveType=TriList -PosType=float
-NorType=float -UVW0Type=float

 Public Imagination Technologies

3D Navigation Rendering Techniques 5 Revision PowerVR SDK REL_17.1@4658063a

Figure 1. City tiles intersecting the view frustum

As can be seen in the example scene in Figure 1, the amount of geometry that has to be rendered
seems to be manageable due to the view frustum culling (the view frustum is depicted with light and
dark green lines in the figure), but still almost contains 500 000 vertices which would have to be sent
each and every frame to the graphics core.

Another optimization is to extend the culling from a tile basis to a per-object basis. Instead of
rendering each building within each intersected tile, test each building against the view frustum. The
spatial index is, therefore, augmented with each object’s bounding box which can be used for the
enhanced detailed view frustum culling.

The whole rendering procedure then can be rephrased to: if a tile is intersecting the view frustum, test
each object within that tile against the view frustum and only render an object if it is itself intersecting
the view frustum.

As Figure 2 illustrates, the amount of geometry that has to be rendered has been vastly reduced. Now
only objects actually lying within the view frustum have to be rendered. The amount of vertices in this
example has been reduced to approximately 250 000 vertices from 500 000 vertices without any
visual difference.

It has to be noted though that these optimizations are not completely free, as we have to calculate on
the CPU whether a bounding box intersects the view frustum or not. It is advised that a hierarchical
data structure shall be used for the bounding boxes (see the section about quad-trees in the first
navigation whitepaper) to gain a more efficient culling performance.

Imagination Technologies Public

Revision PowerVR SDK REL_17.1@4658063a 6 Whitepaper

Figure 2. Working set and per-object culling

2.3. Occlusion Culling

Applying simple optimization techniques vastly reduced the amount of geometry that has to be
processed by the graphics core, as can be seen in Figure 1 and Figure 2. Nonetheless, having a
closer look at a screenshot from the 3D Navigation demo (see Figure 3) and comparing it against a
screenshot from a bird’s eye view (see Figure 2) it can be noticed that some of the geometry is not
visible from the camera’s point of view.

Figure 3. View of the Chicago city model as rendered from the demo application

Some of the buildings are occluded by buildings near to the camera. Having a closer look at a
wireframe rendering of the same viewpoint reveals that a lot of geometry has been submitted to the
graphics core that does not actually contribute to the final image.

Figure 4 illustrates the geometry which has been sent to the graphics core as red overlaid lines over
the actual image. As can be seen on the upper image this amounts to a huge amount of redundant

 Public Imagination Technologies

3D Navigation Rendering Techniques 7 Revision PowerVR SDK REL_17.1@4658063a

geometry, whereas applying an occlusion culling technique reduces the amount of geometry even
more.

Figure 4. Combine wireframe and shaded views of the geometry

Occlusion culling is a very popular technique to speed up the rendering of large scenes that have a
high depth complexity. The particular technique employed in the 3D Navigation demo is generally
known as Portal Visibility Sets (PVS), in which the scene is divided into regions that contain an index
list of visible objects from that particular region. At runtime this index is then sampled and each visible
object successively rendered.

As the bird’s eye view in Figure 5 illustrates the amount of geometry has been dramatically reduced:
the number of triangles in this particular viewing position went from approximately 90 000 to 16 000.
Note that as the index list contains all viewing directions from a particular point of view, objects behind
the camera are included in the rendering process.

Imagination Technologies Public

Revision PowerVR SDK REL_17.1@4658063a 8 Whitepaper

Figure 5. Visibility set determined by camera position

To further optimize the rendering procedure, view frustum culling can be employed on a per object
basis which almost halves the amount of geometry in the particular example (see Figure 6). After
determining the set of visible objects from the index, which includes all objects from an omni-
directional point of view, each object’s bounding box is tested against the camera view frustum and
only rendered if it falls within or intersects the frustum.

Figure 6. Visibility set and per-object frustum culling

 Public Imagination Technologies

3D Navigation Rendering Techniques 9 Revision PowerVR SDK REL_17.1@4658063a

3. Rendering Techniques
The previous section dealt with preliminary steps on how to reduce the actual data that needs to be
sent to the graphics core for efficient rendering. This section is about techniques on how to add visual
fidelity and further improve performance from a technical point of view.

3.1. Skybox

A very simple technique to add a lot of realism to outdoor scenes is to include a skybox in the
rendering process. The Skybox2 demo and the code in the 3D Navigation demo in the PowerVR SDK
demonstrate on how use the PowerVR tools to implement a simple but convincing skybox.

As Figure 7 illustrates, the skybox changes the whole mood of the resulting image. Skyboxes can be
changed depending on the time of day, the weather, the geographic location of the user and many
more conditions by simply exchanging the skybox texture.

Figure 7. Comparison of a scene with a black background (left) and a skybox (right)

From a performance point of view, due to the Tile Based Deferred Rendering architecture in PowerVR
graphics cores and the implicit hidden surface removal, no special measures have to be taken in the
rendering process to efficiently render the skybox.

3.2. Shadows

One of the most important visual cues for the human perception system is shadows. Without shadows
virtual objects are difficult to locate in a three dimensional space and seem to hover. It is even more
difficult to establish spatial relationships between objects. As Figure 8 illustrates the addition of
shadows add a lot of depth to the final image.

The particular shadow technique employed in the 3D Navigation demo is known as “stencil shadow
volumes”. A reference implementation can be found in the PowerVR SDK training course called
ShadowVolume as well as in the 3D Navigation demo.

Imagination Technologies Public

Revision PowerVR SDK REL_17.1@4658063a 10 Whitepaper

Figure 8. Comparison of a scene without shadows (left) and with shadows (right)

The abstract concept behind the stencil shadow volume algorithm is to determine shadowed and lit
surfaces by counting the number of volumes (see Figure 9) that are visible between the camera’s
point of view and the geometric surfaces that are visible. The volumes are generated by extruding
geometry along the light direction. For a more in-depth description of the stencil shadow volume
algorithm and recommended reading see Section 4 of this document.

Figure 9. Visualization of the extruded shadow volumes

After determining the shadowed areas in image space they are multiplied by a scalar in the [0-1]
range, effectively darkening them. This is not an accurate physical representation of real light
interaction but provides a quite convincing effect with very good performance.

The shadow volume performance is highly dependent on the geometric detail of the shadow casting
model, but another optimization which can be found in the 3D Navigation demo is to simply take a low
polygonal representation of the shadow casting object. In case of the demo it is just the bounding box
of each individual object, which can cause artefacts concerning the shape of the shadow, but which
are barely visible during runtime. The shadow volume extrusion itself is then handled by an easy to
use set of tools provided by the PowerVR SDK.

 Public Imagination Technologies

3D Navigation Rendering Techniques 11 Revision PowerVR SDK REL_17.1@4658063a

3.3. Batching

Another very important technical aspect besides the geometric management of the scene is the
internal representation for rendering. For example it is recommended to draw as many primitives as
possible with as few API calls as necessary. For a comprehensive list and explanation of
recommendations please see the development recommendations whitepapers in the PowerVR SDK.

In order to achieve good runtime performance it is recommended to make use of vertex (VBO) and
index (IBO) buffer objects. In the demo, during the initialization phase, every model in a city block is
merged into a single index and vertex buffer object, which in turn only needs to be bound once frame.

The individual indices are offset to match the new vertex positions in the unified vertex buffer.

Each individual object can then be rendered by simply using the bound vertex and index buffer
objects and specifying an offset into the index buffer (see Figure 10) when drawing with

glDrawElements. This minimizes the amount of necessary API calls for binding vertex and index

buffer objects but still keeps the flexibility of dynamically loading and unloading city blocks during
runtime.

Figure 10. Hierarchical overview of vertex (VBO) and index (IBO) buffer objects for a city block

Imagination Technologies Public

Revision PowerVR SDK REL_17.1@4658063a 12 Whitepaper

4. References
Overview about spatial partitioning schemes on Wikipedia:

http://en.wikipedia.org/wiki/Space_partitioning

Navigation data kindly provided by NAVTEQ:

http://www.navteq.com/

Stencil Shadow Volumes (Wikipedia):

http://en.wikipedia.org/wiki/Shadow_volume

Further Performance Recommendations can be found in the Khronos Developer University Library:

http://www.khronos.org/devu/library/

Developer Community Forums are available at:

http://www.khronos.org/message_boards/

http://en.wikipedia.org/wiki/Space_partitioning
http://www.navteq.com/
http://en.wikipedia.org/wiki/Shadow_volume
http://www.khronos.org/devu/library/
http://www.khronos.org/message_boards/

 Public Imagination Technologies

3D Navigation Rendering Techniques 13 Revision PowerVR SDK REL_17.1@4658063a

5. Contact Details
For further support, visit our forum:

http://forum.imgtec.com

Or file a ticket in our support system:

https://pvrsupport.imgtec.com

To learn more about our PowerVR Graphics SDK and Insider programme, please visit:

http://www.powervrinsider.com

For general enquiries, please visit our website:

http://imgtec.com/corporate/contactus.asp

http://forum.imgtec.com/
https://pvrsupport.imgtec.com/
http://www.powervrinsider.com/
http://imgtec.com/corporate/contactus.asp

Imagination Technologies Public

Revision PowerVR SDK REL_17.1@4658063a 14 Whitepaper

Imagination Technologies, the Imagination Technologies logo, AMA, Codescape, Ensigma, IMGworks, I2P,
PowerVR, PURE, PURE Digital, MeOS, Meta, MBX, MTX, PDP, SGX, UCC, USSE, VXD and VXE are

trademarks or registered trademarks of Imagination Technologies Limited. All other logos, products,
trademarks and registered trademarks are the property of their respective owners.

	1. Introduction
	1.1. Point-of-View Types
	1.2. Sample Data

	2. Data Organisation
	2.1. Data Conversion
	2.2. Spatial Index
	2.3. Occlusion Culling

	3. Rendering Techniques
	3.1. Skybox
	3.2. Shadows
	3.3. Batching

	4. References
	5. Contact Details

