
1

This section will cover the core initialization process.

2

There are three steps to initializing a system, CPU, Boot device and OS
initialization

+ CPU initialization initializes the CPU to a known state. That is what
we are going to cover in this section of the course.

+ Next you would normally go on to initialize devices need to bring in the
operating system.

+then you would start the OS and the OS would then initialize itself.

These last two step will not be covered here. You should consult your
OS manual for more information.

3

The first thing I recommend doing is to initialize the general purpose
registers. This is not strictly necessary the CPU will function fine without
it but it is a good software practice to do it.

+ to initialize the registers the code will move a zero using the ever
constant zero register into the remaining registers. It does this by using
the “OR” instruction. You can also write this code using the “move”
instruction because the move instruction is really an alias for the or
instruction.

4

The Co processor zero status register controls the operating modes
of the processor. The status register plays an important part in
the initialization process so I will go into it in detail here

+ Bits 28 through 31 are the Coprocessor Usable bits. These bits
control access to co processors zero through 3. Bit 28 controls
access to coprocessor 0 when the cpu is in user mode. Bit 29
controls coprocessor 1 which is usually the floating point
processor, bit 30 is reserved for the implementers that want to
add their own special processor. You want to disable all these
bits during the boot process and have the OS enable them if it
will be using them.

+ The Reduce Power bit number 27 can be used to send a signal to
an external clock that tells it that it can slow down to reduce
power. This is usually used in conjunction with the wait
instruction when the CPU is in a idle state. On boot the CPU
should be at full power so this bit should be cleared.

+ The Floating Point Bit controls the number of FPU registers that are
available it is used for compatibility with a MIPS one ISA. When
this bit is cleared the CPU Floating point unit is in compatibility
mode. It should be cleared and later controlled as the OS sees
fit.

*+ The reverse Endian bit number 25 reverses the endianness of
instructions fetched when set. This should be cleared and left

up to the OS to switch. As a side note there is no know OS that sets this bit.

+ The MX bit number 24 enables DSP instructions. This should be cleared
and left to the OS to set if required.

+ The Boot Exception Vector bit 22 controls which set of exception vectors
are used. Vectors were covered in the exception section of this course
so I won’t go over them here. This should be cleared so that the use
normal exception vectors will be used.

+ the TLB Shutdown bit is set by the processor when it detects an attempt
to create a duplicate TLB entry It will also generate a machine check
exception. The exception routine should correct the condition and can
clear the bit. This bit should be cleared to initialized it.

+ The Soft reset bit number 20 would indicate a soft reset condition.
However in our cores it is hardwired to 0 because soft reset is not
supported.

+ the NMI bit number 19 is a read only bit that is set when the CPU get a
non maskable interrupt

+ The Core extend enable bit number 17 enables the use for the core
extend instructions

*+ Bits eight through fifteen are the interrupt mask bits. View the exception
section of the course for more information. For now these should be
set to mask all interrupts and left to the OS to clear as device drivers
are initialized.

+ The Kernel User Supervisor bits three and four should be cleared which
puts the CPU into kernel mode

+ The error exception mode “ERL” bit two is set by the CPU at power up,
NMI or Cache exception. It should be Cleared

+ The Regular Exception mode “EXL” bit 1 should be set to keep us in
Kernel mode.

+ and last the Interrupt enable bit, bit zero should be cleared to disable
interrupts and left to the OS to set when it has initialized its drivers and
is ready to accept interrupts.

4

5

To set the status register as just described load the immediate value of
FF 02 into a general purpose register and use the move to coprocessor
zero instruction to move the registers value to the status register.

6

The boot code needs to disable and clear watch point exceptions. There
are four pairs of watch point registers.

+ The watch Lo registers are Co processor zero register eighteen select
zero through three. Writing a zero to the four Watch Lo registers will
disable all watch points.

+ The watch Hi registers are Co processor zero register nineteen select
zero through three. Writing a seven to the four watch Hi registers will
clear all watch conditions.

7

The Cause Register describes the cause of the most recent exception,
enables vectored interrupts and enables the count register.

+ The boot code should clear the Cause register so there will not be
spurious interrupts when interrupts are enabled.

8

The configuration register controls among other things the Cacheability
of KSEG 0.

+ Setting bits zero and one set KSEG 0 to cacheable write back write
allocate mode.

9

The Compare register acts in conjunction with the Count register to
implement a timer and timer interrupt function.

The timer interrupt is an output of the core. The Compare register
maintains a stable value and does not change on its

own. The count and compare registers need to be initialized so the OS
may later use them for timer interrupts.

+ Clear the count register by setting the counter to 0.

+ Setting the Compare register to the highest number possible will give
us time to do the remaining steps in initializing the CPU. It also clears
the timer interrupt which in this case is redundant because all interrupts
have been cleared and disabled when we cleared the status and cause
registers.

10

Now we are at the set to initialize the caches and the TLB.

Until they are initialized:

+ You can only use uncached and unmapped memory regions like
Kseg1. Remember the boot vector is in KSEG1.

+ The initialization of Caches and the TLB is covered in the Cache and
TLB sections of this course.

11

Just like the general purpose register set we also want to initialize the
shadow register sets to zero if we have them.

+ First the code will read the Shadow register set control register.

+ Then it will extract the Highest Shadow Set number which is the
number of shadow register sets. These are bits twenty six through
twenty nine so the extract instruction will start extracting from register
eleven at bit twenty six and go for four bits and place the value in the
low order bits of register twelve.

12

Now the code sets up a loop.

+ First check to see if there are any shadow register sets to clear.

+ If there are, use the number in register twelve to set the shadow set
we will be clearing. The code does this by using register twelve which
holds the number of the highest shadow register set yet to be cleared,
and inserting them into bits six through nine, the previous shadow
register set field, of the Shadow register set control register that was
read into register 12 in a previous step.

Then the move to coprocessor zero instruction moves the value in
register eleven into the actual Shadow Register Set Control register.

13

Setting the “previous shadow register set” causes all writes using the
“write previous general purpose register” to be written to that shadow
set. The code zeros out each register in the set in turn.

+ after that the code branches to the beginning of the loop and
decrements the “highest register set counter” held in register twelve .

14

The code has done all initializations for the CPU and is ready to execute
the next boot step.

+ The code loads the starting address of the next part of the code into
the Error Program Counter. Note the address in the example is in the
KSEG 0 memory section so it is Cachable and once jumped to the code
will be running out of cache. The actual address will be determined by
your code but it should still be in the KSEG 0 memory region.

+ the code executes a ehb instruction to clear any hazard barrier

+ and then the return from exception instruction to exit exception mode
and jump to the address held in the error program counter.

