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This section describes the Boot-MIPS code and walks you through the 
booting of a coherent processing system.
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The Boot-MIPS code was designed to boot any MIPS Core. It is arranged 
so that you can compile the code to only use the subset that is needed for 
a particular core.  We are going to look at the code needed for a Coherent 
Processing System or CPS.  It is intended to aid you in becoming familiar with 
the initialization of a MIPS Coherent Processing System.

Some of this code should look familiar it is similar to code shown in the 
Programming a MIPS core class, so some of the steps I will go through 
quickly. 

Here is a diagram of a Coherent processing core that the Boot-MIPS code 
will initialize.  

+ A coherent processing core is made up of 1 to 4 single cores with an L2 
cache, Debug control block and optional Inter Thread Communications 
unit.

+ A Coherency Manager or a CM is the Cache coherence domain control logic

+ A Global Interrupt Controller or  GIC is the System interrupt control logic

+ The Cluster Power Controller or CPC is the Power domain control logic. 



+ The Memory mapped configuration registers configure and control the Global 
Interrupt Controller, Coherency Manager and Cluster Power Controller.

+ And the I/O Coherency Unit or IOCU controls data coherency between external 
devices and the L1 and L2 caches through the coherency manager.

+ This class section will step you through the Boot-MIPS example code. 
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In the code some of the General Purpose Resisters are assigned specific values. These registers have been 
assigned to a alias using #define so the code will be more readable. Note this does not follow the ABI while the 
boot code is executing which should be fine since we don’t call C functions until the very end of the code. 

+ We don’t expect this boot code to cause any exceptions, but just in case, the exception vectors are 
programmed to cause a debug exception using the sdbbp instruction. 

The target resident debug exception handler will update the display with the value in CP0 DEPC register to aid 
in the debug of unexpected exceptions.

If you have an EJTAG probe attached, control will be given to the probe, which will then be in control of the 
CPU that took the exception.

I will use the following terminology throughout this course:

A VPE stands for virtual processing element. This is used in reference to a Core that implements the Multi-threaded ASE. 
Each VPE contains the functionality necessary to support threads executing privileged code such as boot code, exception 
handlers, interrupts, and execution of an OS. In the context of this course a VPE is synonymous with a processor unless 
otherwise called out.

The term CORE refers to each core in the CPS a core can be made up of 1 or more VPEs in a Multi threaded system.

A TC stands for thread context. This is used in reference to a Core that implements the Multi-threaded ASE  Each TC has 
the  functionality necessary to support a thread of execution.
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All of the processors will execute the boot code in the start.S assemble file. The file is divided into 
sections. The execution of each section will depend on which processor is executing the code. Here 
is a flow chart of the boot code.

The init_common_resources section is executed by all processors in the system. This code 
initializes resources that are specific to each processor. These resources include the GPRs, 
processor specific CP0 registers like the Status, Count, watch and cause, the TLB, and the GIC.

+ The init_core_resources section is executed only once for each Core in the CPS. On a MT system 
this means that only VPE 0 of each Core will execute this code. It disables the L2  caches at this 
point. once the L1 instruction cache has been initialized the code can be run out of cache which will 
make the execution much faster. This section then initializes the L1 caches and the Inter-thread 
communications unit. 

+ The init_sys_resources section is executed only by core 0. This section initializes the coherent 
processing elements such as the Cluster Power Controller, Coherency Manager, Memory Controller and 
L2  caches. It  also copies the “C” code to ram and clears the bss section. Once this section has been 
completed, all processors in the system are released from reset and can begin their boot process by using this 
same code.

+Each Core then joins the coherent domain and for MT cores sets up the second VPE so that VPE 
can also execute this boot code.

The init_done section is executed by all VPEs. It sets the exception return address register to the 
address of the main “C” function and then calls the eret instruction which ends the boot process and 
will start executing the main function.
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This slide and the ones that follow will go through the code execution in the 
start.S file. The call from the start.S file will be shown and then I’ll walk you 
through the function that is called.  To start you see the 
init_common_resources label and the first call to the init_gpr function. The 
init_gpr function is in the common/init_gpr.S file. To resolve the address of 
the function the code loads the address of the init_gpr label into a register 
and then uses the Jump and link register instruction to jump to the address 
and place the address of the instruction following the nop into the return 
address register, register 31.  
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The init_gpr assembler function does as its name suggests and initializes 
the General Purpose Register sets. It first sets all registers in each register 
set to the hex value of deadbeef. This can be helpful when debugging the 
boot code, because if you are reading a register that has the unlikely value 
of deadbeef, you know you haven’t set that register in your code and 
probably should not be reading it. The code also loops through all shadow 
register sets, if any, and initializes them.  Shadow register set will only 
exist for non multi threaded processors. Multi threaded processors such as 
the 34K, 1004K and interAptiv do not have shadow registers instead they 
can designate the register set of a TC to be used as a shadow set. Each 
TC will go through this code and initialize it’s own registers.
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Next in start.S is the call to set_gpr_boot_values. The code is located in 
set_gpr_boot_values.S. The code in the file varies from core to core so it is 
not part of the common code.
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The code sets up some of the aliased registers. These registers are defined with #define 
statements in common/boot.h. The first part of each aliased name is the actual register number, so 
when your debugging this code it should be easy to follow which actual registers are set.

+ The first is r1_all_ones. This sets GPR 1 to all ones. It will be used many times in the code in 
conjunction with the insert instruction. It simplifies the code because we can us it over and over 
again without having to set up a register with one each time we use the insert instruction.

+ next the code reads the Ebase register CP0 register 15 select 1.

+ The Ebase value is used to set the CPU number in GPR 23. The CPU Number is stored in bits 0 
through 9 in the Ebase register. In the case of MIPS cores we only need the first 4 bits to determine 
the CPU number since that covers the maximum number of CPUs in our multi core designs. The 
code uses the extract instruction to extract 4 bits stating at bit 0. Note: The CPU number being 
extracted is set using the hardware interface SI_CPUNum pins. For an MT core, there is a different 
CPU number for each VPE.

+ To get some feed back during the boot process it is helpful to have some kind of visual display. 
On our Malta evaluation board there is a alphanumeric display and the code sets GPR 24 to the 
address of that display. Characters written to this address will be seen on the display. Of course 
you will need to change this for your system.

+ The Global pointer is common to all processing elements. Its address is defined in the linker file 
and set by the linker.  This address will be use to reference shared global variables. The MIPS API 
designates that GPR 28 be used to hold the global pointer address so the code sets it here.

+ Part of each processing elements context is its own stack. The stack is used to hold local 
variables while executing a function. It also holds other context such as GPR values that are saved 
to the stack when a function is called and then restored when returning from a function call. In this 
case a constant call STACK_BASE_ADDR has been set by the programmer to a point in memory 
designated for use for the processor stacks. The MIPS API designates that GPR 29 be used to hold 
the stack pointer. The code first writes the STACK_BASE_ADDR to GPR 29 then manipulates it 
using the CPU number so each processing element will have its own stack.
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The Boot-MIPS code can be used for either a Multi-processor system 
made up of Multi-threaded Cores or only single threaded cores. An MT 
core has the MT bit set in the Config 3 register. But you can’t just read the 
Config 3 register and see if the MT bit is set because on non-MT 
processors there will be no Config 3 register and the operation of trying to 
read the Config 3 register will have undetermined results, in other words 
nothing good will happen. 

+ To read Config 3 properly the code needs to first read the Config 1 
register and check to make sure the M bit is set. The M bit  in the Config1 
register indicates whether or not there is a Config2 register. The M bit is bit 
31 in the Config1 register. If this register is treated as a signed integer, this 
bit would be the signed bit and if the bit is set the register value would 
appear as a negative number or a number less than 0. The simplest way 
to test the bit is to see if the register value is greater than 0, using the 
branch greater than zero instruction. 

+ The code then looks at the Config2 register and its M bit in the same 
manner.   

+ The code reads the config3 register, isolates the MT bit, bit 2 tests it and 
branches to the no mt ase function if it is not set.
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If the code has determined that it is executing on an MT processor it will 
set GPR 10 to a one. It will use this register in cases where it needs to do 
special configuration for MT.

The rest of the code will save MT-specific data in specific registers.

+  It will read the CP0 TCBind register and save the number of the VPE 
context it is executing in right now into GPR 9. It will save the TC it is 
executing into GPR 18.

+ next it will read the CP0 MVPConf0 and set GPR 21 to the number of TC 
within the Core and set GPR 20 to the number of VPE contexts in the 
Core. Then the code will branch to check if this is a coherent processing 
system.

In previous code there was a check to see if the core was a MT core it 
jumps to no_mt_ase if it is not. Since it is expecting to be executing on a 
MT core it will exist to the debugger here.
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Now the code needs to determine if it is running on a Multi-Core system. 

+ It does this by reading the CP0 Processor ID register into GPR 25.

+ The code extracts the Core ID and Implementation bits 

+ Then compares them with the values for the specific core it was 
compiled for. In this case it was compiled for a interAptiv core. If the test 
passes it branches to setting up the Coherency manager registers.

If it doesn’t pass it exits to the debugger.
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If the code determined that it is executing on a Coherent Processor then it sets GPR 11 to 1 to 
indicate we have a Coherent Processor. r11_is_cps will be used in several places in the code to 
branch to the appropriate execution path. The Coherent processing system contains a structure that 
determines the configuration of the system. This structure is called the Global Control Block. This 
structure contains registers that can be read to determine the configuration of elements within the 
CPS. These registers are called the Global Control Registers or GCRs. Many of the registers can 
also be written changing the CPS configuration.  

+ To verify that we have a correct Global Control Block Address the code will compare the given 
address of the control block with one that is stored within the block itself located in the GCR Base 
register. The given address is set by a #define. Consult your SOC designer to determine the value 
of this define.  If the given address is not the same as the address in the GCR Base register 
something is wrong and this system should not be treated as a Coherent system. 

+ The value in the GCR Base register is a physical address so before the code compares the given 
value, it needs to convert it to a physical address. That’s done by simply clearing the top 3 bits using 
the insert instruction and GPR 0. This line of code takes the first 3 bits of GPR 0, which is always 0, and 
inserts them starting at bit 29 into GPR register a1. 

+ Then it loads the GCR Base register that is located at byte offset 8 into a0. 

+ The starting address of the GCRs is located in the memory map on a 32K Byte boundary so the lower 15 
bits of it address will always be 0. The GCR Base register uses these lower bits to store additional 
information.  Therefore to get the correct physical address the code needs to clear these bits that are now 
stored in GPR a0. 

+ The code checks to make sure the 2 gprs are equal and branches to the gcr_found function if they are or 
issues a debug break instruction to stop execution.
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Now that the code has determined it has valid GCRs it will save the 
address in GPR 22.

+ The code stores the GCR_CL_ID in GPR 8. The GCR_CL_ID is the 
number of the core that is executing this code within the Coherent 
Processing system. The GCR_CL_ID is located within Core-Local Control 
Block. The Core-Local Control Block is at offset 2000 hex from the GCR 
Base address and the GCR_CL_ID is located at offset 28 hex within the 
Block. Putting those together you get 2028 hex offset from the GCR Bass 
address.

+ The code now will save the total number of 1004K Cores in the system. This 
information is stored in the GCR_CONFIG register located at offset 0 from the 
GCR Base. Bits 0 through 7 contain the value so these bits are extracted from the 
register value and stored in GPR 19.

+ We are now done with the init_gpr function and the code returns
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The code calls the init_cp0 function.

The init_cp0 function is much the same as it is for a single core. So I won’t 
cover it in detail.

The first thing it does is set the status register to a known value for this 
board. 
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Next the code checks for watch registers. If the WR bit, bit 3 in the CP0
Config1 register, is set to 1, then the core has at least 1 watch register.

Set GCR v1 to the initialization value for the watch registers. This will clear 
all watch conditions.

+ Use GCR v1 to clear all watch conditions.

+ read the watch hi register and check to see if the M bit, bit 31 is set 
indicating there is at least another watch register and branch to done wr if 
not set. 

+ In the branch delay slot clear the watch lo register

+ Continue until there are no more watch registers
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Clearing the CP0 Cause register to avoid spurious interrupts once 
interrupts are enabled.

+ Clear the CP0 Compare register to clear timer interrupts.

+ Then the code returns to start.S
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Back in start.S

This code Reads the config register and checks the TBL-MMU field by 
extracting it to v1then sees if it is set to 1. If it’s not the core doesn’t have a 
TLB so the code will go to the end of the function.

+ Next the code checks the VPE number that is executing the code and if 
it is VPE 0 it branched to do_tlb because if there is a TLB VPE 0 will 
always have a TLB to initialize.
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Read the Config 1 register that contains the TLB information 

+ Extract the MMU size field which gives us the highest number TLB entry 
into v1. This will be used as the first index into the TLB.

+ Then to clear all entry registers so we will initialize their TLB entire fields 
to 0

To do this we use the same move to Coprocessor zero instruction using 
the general purpose register 0 which always contains a 0 value and move 
to the corresponding Coprocessor 0 register

+ Load a0 with the address to be placed in the entry. Note it will be invalid 
but will insure that the TLB does not have duplicate entries.
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We will now use a loop to initialize each TLB entry.

+ The next_tlb_entry_pair: label  in the left column is the label of the start of the loop and the point we will loop 
back to.

+ Remember we stored the highest numbered TLB entry to v1. We will use it here to decrement through the 
TLB entries from the highest to the lowest and use it to program the TLB entry index.

The code uses the move to Coprocessor 0 instruction to copy the contents of v1 to Co Processor 0 register 
which is the index register. The index is the TLB entry to be written.

+ The ehb instruction is used to make sure all the writes  to coprocessor 0 have been completed before writing 
the TLB entry. 

+ Now the TLB Write Index Instruction is used to write the TLB entry

+ the address written to the TLB entry is advanced so each will be different.

+ Next is the branch instruction. Here the code compares the TLB index value that is in v1 with 0  and if they 
are not equal the code branches back to next_tlb_entry_pair

+ The last instruction is in the branch delay slot and will always be executed  It use the add instruction to 
increment the index value in v1 by a -1

+ Once the loop is complete, the code returns to start.S.
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This section describes the Boot-MIPS code and walks you through the 
booting of a coherent processing system.



The init_gic code pokes around getting information and setting bits in the Global Interrupt 
Controller or GIC for short. 

The GIC address space is accessed with uncached load and store commands. For each load or 
store command the hardware supplies the physical address along with the processor Number of the 
requester. The processor number is used as an index to reference the appropriate subset of the 
instantiated control registers. By using the provessor Number information, the hardware writes or 
reads the correct subset of the control registers pertaining to the “local” CPU core. Software does 
not need to explicitly calculate the register index for the “local” CPU core; it is done entirely by 
hardware.

The GIC is divided into sections:

The first section starts at the Base address of the GIC. This shared section is where the external 
interrupt sources are registered, masked, and assigned to a particular processing element and 
interrupt pin. This section is used by all processing elements. 

Next is the local section which starts at the Base address plus 8 thousand hex. This is the section in 
which interrupts local to a VPE are registered, masked, and assigned to a particular interrupt pin.

The “local” CPU can access the registers of another CPU core by using the Core-Other address 
spaces. Software must write the VPE-Other Addressing Register before accessing these address 
spaces. The value of this register is used by hardware to index the appropriate subset of the control 
registers for the other core.

An additional section called the User-Mode Visible section is used to give quick user-mode read 
access to specific GIC registers. The use of this section is meant to avoid the overhead of system 
calls to read GIC resources, such as counter registers.
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Back in start.S the code calls init_gic. 

+ Then in the init_gic function the code checks to see if it needs to initialize 
the global interrupt controller. It checks GPR 11 and if it is not set then this 
is not a Coherent Processing system so the code will skip the GIC 
initialization.
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To check to be sure there is a GIC the code reads the Global Control 
Blocks GIC Status register 

+ extracts the GIC_EX bit and then tests to see if it is set. If it is not set 
there is no GIC so the code will skip the GIC initialization.

+ There are 2 parts of the GIC that need to be initialized, a Shared Part 
that needs only to be initialized by CPU 0 and a local part the needs to be 
initialized by each processor. This code will do the shared part only if this is 
CPU 0 so it checks GPR 23 the CPU number and will skip the shared 
section if it is not 0.
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The code loads the address of the GIC Base Address Register into a1. 

As you can see from the table the address is on a 128K boundary so the 
lower 7 bits will always be 0. This leaves space for additional information in 
the register. The GIC_EN field controls the enabling of the GIC.

+ Code loads a0 with the address of GIC: Note this is a Physical address ored with 
1 to enable the GIC. 

+ Next stores the value to the GCR_GIC_BASE register.
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The code will use the GIC Configuration Register to confirm how many 
external interrupt sources we have. To do that the code will read the 
register and isolate the Numinterrupts field, bits 16 through 23. Interrupt 
sources are configured in the core in groups of 8. This field tells you how 
many groups of 8 minus 1  the core has.

+ To do this the code loads the define GIC_BASE_ADDR  which is the 
starting address of the Shared section of the GIC into a1.

+ The Shared Configuration register shown above is located at offset 0. 
The code loads its value into a0.

+ Then the code extracts the number of interrupt groups.

+ The code loads the expected value into a3. So it is expecting 40 interrupt 
sources 4 + 1 times 8.

+ If the code doesn’t get what it expects it executes a debug breakpoint to 
stop at a point where you can use the debug probe to see what’s going on.
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There is a convention in MIPS Linux to use the last 16 interrupt sources for 
inter processor interrupts. In the system we are configuring those are 
interrupts 24 through 39. The system could contain up to 8 processors.

To disable interrupts the code will use the Global interrupt Reset Mask 
Registers. Each interrupt source has a corresponding bit in a Reset Mask 
Register. Setting a bit to one resets and disables the interrupt in the GIC. 
The GIC can control up to 256 interrupt sources. Since all registers in the 
GIC are 32 bits wide to have enough bits to cover all 256 sources we will 
need 8  Reset Mask Registers. The first register will control interrupts 0 
through 31 the second set will control 32 through 63 and so on.  The 
system in our example has external interrupts connected to interrupt pins 
24 through 39. These interrupt sources will use the first 2 Global interrupt 
Reset Mask Registers. 

The code that follows configures the interrupts one section at a time. First 
it will configure interrupts 24 through 31 and then 32 through 39.

+ The code disables interrupt sources 24 – 31 by writing a 1 to bits 24 – 31 
in the first Global interrupt Reset Mask Register. 
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There is a set of registers that configures the Trigger type of the interrupt. Setting 
the corresponding bit causes the interrupt to be treated as Edge signaling. If the bit 
is cleared the  interrupt is level signaling. The offset of the Global Interrupt 
Trigger Type Registers in the GIC Section is hex 180.

+  The code uses a0 to write 1’s to bits 24 through 31 of the first interrupt 
Trigger Register. This configures interrupt sources 24 through 31 to be 
edge sensitive which is needed to support inter-processor interrupts.
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Similar to the Reset Mask Registers there is a set of registers that configures the 
polarity of the interrupt. The polarity determines how the interrupt is signaled to 
the core. Interrupts can be level or edge sensitive . If level sensitive setting the 
interrupts corresponding bit to 1 will configure it active high and setting it to 0 
will configure it active low. If the interrupt is edge sensitive setting the 
corresponding bit to 1 will configure it to interrupt on the rising edge and setting 
it to 0 will configure it to interrupt on the falling edge. The offset of the Global 
interrupt Polarity Registers in the GIC Section is hex 100.

+  The code uses a0 to write 1’s to bits 24 through 31 of the first interrupt 
Polarity Register. This configures interrupt sources 24 through 31 to be 
rising edge sensitive to support inter-processor interrupts.
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There is a set of registers that correspond to the Global Interrupt Reset 
Mask registers, these are the Global Interrupt Set Mask Registers. Where 
the Reset Mask registers disable interrupts the Set Mask Registers enable 
interrupts.

+ The code sets the same bits still in a0 as it did for the Polarity registers 
to set the enable bits for interrupts 24 through 31.
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This next section of code configures interrupts 32 through 39 the same 
way it configured interrupts 24 through 31. The configuration registers that 
control this range of interrupts is in the second register of each set so you 
can see the code is offsetting each register by an additional 4 bytes.

Interrupts 32 through 39 are located in the lower 8 bits of the registers so 
the code sets a0 to hex ff and will use this register to set interrupt 32 
through 39 bits.

+ Then the code disables the interrupts,

Sets the Polarity Registers 

Sets the Trigger Register

And last enables the interrupts
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Next the code will configure which Processor a particular interrupt will be 
assigned to. To do this the GIC has registers for each interrupt source. 
Each bit in those registers corresponds to a processor in the multi core 
system. 

For example for interrupt source 1, bit 0 would assign the interrupt to 
processor 0. The current schema supports up to 64 different processors so 
there are 2, 32 bit registers for each interrupt. To allow for future expansion 
the registers are spaced 32 bytes apart.

Lets look at the table. The Interrupt Map to VPE Registers are in the GIC 
shared section and start at offset 2000 hex. The first interrupt has its 
registers at 2000 and 2004 hex thus giving it a 64 bit map area. The next 
interrupt starts at the start of the section plus 32 bytes or 20 hex so its 
registers are at 2020 and 2024 hex and so on. 
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+ This code assigns 2 interrupt sources to each processor in the system.  

+ The corresponding bit number for  a processor is stored in a0. a0 is primed with a 1 for 
the first processor, processor 0. 

+ Then the code stores the value in a0 to the appropriate MAP registers. The interrupts 
sources are divided into 2 groups, one group from 24 to 31 and the other from 32 through 
39. The code will take one interrupt source from each group and program it to a 
processor. 

+ Lets go over how the address for the GIC_MAP_TO_VPE register is calculated. 

+ Previously the GIC BASE ADDR was stored into a1 remember this is a #define in 
boot.h.

+ The code also uses #defines which come from cps/cps.h

+ The GIC_SH_MAP0_VPE31_0 is the base offset of the GIC_MAP_TO_VPE registers

+ The GIC_SH_MAP_SPACER  is the size or space between each interrupts 
GIC_MAP_TO_VPE registers.

+ The calculation is the base address of the GIC registers offset by the base offset of the 
GIC_MAP_TO_VPE  registers plus the space between the interrupt registers times the 
interrupt number. 
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The code continues to program each processing unit in turn. 

+ To increment the processor number stored in a0 to the correct bit position it will shift a0 
to the left one bit.

+ and program the appropriate map registers for the next interrupt pair
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This next section of the code will initialize the per-processor elements of 
the GIC. 

+ The section of registers being initialize is called VPE-Local and is located 
at GIC offset 8000 hex. 

+ The code reads the Local Interrupt Control Register into a3. The code will be 
using some of the values from this register.
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The code checks to see if the timer interrupt is routable. It does this by 
extracting the Timer routable bit from the Control Register value it had 
previously read into a3.

+ Then it checks to see if it’s set. If it is not set the timer interrupt is not routable 
and the code will branch around routing it.
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The code sets up a0 with the en-coding that  is used to route the local CPU timer 
interrupt to the desired processor pin. a0 is written with bit 31 set and a 5 in the 
Map field. This will map the local Core’s timer interrupt to the current  
Processor’s units interrupt pin 5.

+ This value is stored to the GIC Local CPU Timer Map-to-Pin Register.
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As it did with the Timer interrupt, the code checks to see if the 
Performance Counter interrupt is routable. It does this by extracting the 
Perfcount Routable bit from the Control Register. Then it checks to see if it’s 
set. If it is not set the performance counter interrupt is not routable and the code 
will branch around routing it.
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The code sets up a0 with the in-coding that will map the performance counter 
interrupt.  a0 is written with bit 31 set and a 4 in the Map field. This will map the 
local Core’s Performance Counter interrupt to the current Processor’s interrupt pin 
4.

+ This value is stored to the GIC Local CPU Performance counter Map-to-Pin 
Register.

+ This ends the GIC configuration.
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Back in start.S code is done initializing each Processer. It continues 
checking to see if it is VPE 0 or processor 0. If it is not then it is done with 
the initialization and will branch to init done.

+ The code is about to initialize the icache and then enable caching. It 
initializes the Dcache and the L2/3 caches after enabling the caches 
because the code will run faster for those functions once the Icache is 
enabled. For all this to work correctly the L2/3 caches must be disabled 
until they are initialized so at this point the disable_L23 function is called to 
do that.
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To disable the L2 cache the CCA Override Enable bit will be set. This bit is 
bit 4 of the GCR Base Register

+ The code checks to see if it is executing on a coherent processing 
system and if it isn’t it will branch around the next piece of code and 
assume there is no L2 cache. 

+ The code reads the GCR Base register.

+ The next 3 lines of code are used to enable CCA Override and set the L2 
cache CCA to non cached.. 
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Next The init_icache function is called. I’m not going to go over the I cache 
initialization code in this class because it is already covered in the basic 
software training class.

Now that the Icache has been initialized we can take advantage of it and 
change the CCA of KSEG0 to be cached. One important thing to note is 
the changing of the CCA of KSEG0 must be done from KSEG1 which is a 
never cache segment. 

+ The code loads the address of the change_k0_cca function 

+ and then changes it to a address in the KSEG1 segment by inserting a 1 
to bit 29. 

+ When the jalr is executes it will jump to this uncached segment change 
the CCA of KSEG0 then jump back to this code an start executing from the 
Icache.

41



The change K0 CCA function is a function common to all MIPS cores so 
there is a little run time decision to be made to set the correct CCA.  The 
code uses a cache writeback CCA of 3 for non coherent cores and a 
cached coherent writeback CCA of 5 for coherent cores. 

+ To do this is simply checks to see if the r11_is_cps register is not set. 

+ If it is not set it stores the non coherent CCA to v1 in the branch delay 
slot and branches to the setting of the config register code. 

+ If it is set the code falls through the branch and stores the CCA value for 
coherent cores to v1 and continues to the setting of the config register.

+ The value of v1 is inserted into bits 0 through 3 of the stored value of the 
config register and then written to the the register. 

+ The code uses a jr.hb instruction the will clear the hazard barrier to make 
sure the config registers write has completed and then jump back to the 
calling function. 
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Next in statrt.S is a call to initialize the Dcache that is also covered in the 
programming a MIPS Core Software course and I’m not going to cover it 
here. 

+ The init_itc is a place holder for you to put any code you need to it 
initialize the ITC for your system.

+ At this point the code will continue initializing system wide shared 
resources. Since this only needs to be done by only one processor the 
code tests to see if it is executing on core 0 if it is not it will jump to done. If 
it is it will continue the boot and initialize system resources.
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Back in start.S,  in the init_sys_resources section, the init_cpc is called to 
initialize the cluster power controller. 

+ In the init cpc function the code first checks to see if this is a coherent 
processing system by checking r11 is cps. If it’s not set then it will not have 
a CPC so it will skip to the end and return.

If this is a CPS then the code checks for a Cluster Power Controller.  It 
does this by checking the Cluster Power Controller Status Register. This 
register is located within the Global Configuration Registers at offset f0 hex. 

+ The code uses the previously stored address of the GCR base and the define 
GCR CPC STSTUS as an offset to read the Cluster Power Controller Status 
Register into a0. There is only one field in the Cluster Power Controller Status 
Register called CPC EX and if that bit is set then the CPC is connected into the 
CPS. 

+ The code singles out bit 0 of the GCR_CPC_STATUS value

+ If it’s 0 then there is no CPC and it branches around this code and returns to the 
initialization function. 

+ In the branch delay slot we insure GPR 30 is clear to indicate we don’t have a 
CPC.
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If there is a CPC, the code will set the address of the CPC in the Cluster 
Power Controller Base Address Register. The address of the Cluster Power 
Controller Base Address Register is at offset 88 hex of the Global Configurations 
Registers.

+ The code uses the known value of where the CPC is within the system 
and writes that to the Cluster Power Controller Base Address Register.  Note: 
This is a physical address.

+ Then the code stores this address for later use in GPR 30 using the KSEG1 
equivalent address and it is done setting up the CPC.
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The code now calls init cm to initialize the coherency manager

+ first the code checks to see if it is booting a coherent processing system 
and if not will branch to the end of this function.
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The lower 8 bits of the Global CSR Access Privilege Register controls the write 
access to the GCR registers by a processor.  If a bit is set then the processor unit 
can change the GCR.

The code here is rather clever

+ first it loads a 2 into a0

+ then the code shifts the 2 to the left by the number of processors minus one. For 
example is there were 4 processor system then GCR 19 would contain a 3. 2 
shifted left by 4 is 16 or 10 hex.

+ now the code subtracts 1 so again assuming 4 processors 16 – 1 is 15 or F hex 
so now we have all four lower bits set

+ The value is written to the  Global CSR Access Privilege Register which will 
now allow all 4 processor units to change the GCR
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This code checks to see if there is an IOCU.

+ It does this by loading the GCR configuration register into a0

+ extracting the NUMIOCU field as shown in the table above

+ and then jumps around the next section of code to the end of the init_cm 
function if there are no IOCUs in the system.
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If there is an IOCU then the code will disable the IOCU regions.

+ The code loads an upper immediate value into a0 this value sets bits 16 
through 31 and clears bits 0 through 15. As you can see from the table the 
lowest bit, bit 0 set to 0 will disable the CM region.

+ The code uses a0 to store the value to all CM regions and thus disables 
them.
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This completes the CM initialization and the code returns to 
init_sys_resources

+ In start.S a call is made to initialize the memory controller. You would 
need to place your own code in the init_mc function to initialize the specific 
controller for your system.
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The code now calls the copy C to ram function. This will copy the C code part of the 
application and zero out the uninitialized global variable section, bss.

+ The copy C 2 ram function starts by putting the first address of the “C” code’s text 
section into a1_temp_addr. _zap1 is created in the Linker script malta_Ram.ld. This 
address is the start of the “C” code in flash that will be copied to RAM.

+ The _zap1 address is a cached address in the KSEG0 region. We want to make sure 
the code gets copied to main memory. What this code does is to convert the KSEG0 
address into a KSEG1 uncached address by inserting a 1 into bit 29. This turns the top 
byte from an 8 to an A.

+ Next the code stores the _ftest_ram value into a2_temp_addr. _ftest_ram is also 
created in the linker file. It is the start of where the “C” code section will be copied to in 
main memory. It is also converted to a KSGE1 address by inserting a 1 into bit 29.

+ The _edata_ram  is stored into a3_temp_addr. _edata_ram is created in the linker file 
and is the address in main memory where the initialized data section ends. The code will 
use this address to end the copy of the code and initialized data sections.

+ The code checks to make sure we have anything to copy by comparing the start of the 
code and data address with the end address. If there is nothing to copy the code will skip 
around the copy and proceed to the clearing the uninitialized variable section. 
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The label next_ram_word will be used as a loop back point for the copy loop that 
follows.

+ The copy is simply reading from the location where the “C” code and data is 
stored in flash 

+ and writing it to it’s destination address in RAM. 

+ The source and destination addresses are incremented by 4, the number of 
bytes in a word

+ and the code checks to see if it still has more to copy by using a3 which is the 
end address and the current destination address.

+  Now the code turns its attention to the uninitialized variable section also known 
as the bss section. It is mandated by the C specification that the bss section be 
initialized to 0 before a program starts. This clearing of the bss section usually is 
done by the program loader. It is the responsibility of the boot loader to clear the 
first bss section before calling the main “C”  function.

+ This code is similar to the code we just went through for the copy. It uses two 
values created in the linker script.  _fbss is the first address of the bss section and 
_end is the end address of the bss section.  It converts both those addresses to 
uncashed KSGE1 addresses.

+ then checks to see if there is anything to clear by seeing if they are equal.
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The label next_bss_word will be used as a loop point.

+the code stores a zero using the zero register to the destination address 
in main memory.

+ it then adds 4 bytes to the destination address 

+ checks to see if it is at the end of the clear by comparing it to the end 
address stored in a1 and loops back if it is not.

+ the code is done with the copy and returns.
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This section describes the Boot-MIPS code and walks you through the 
booting of a coherent processing system.



The code is almost done with the system initialization. The last thing it 
needs to do is to release any other cores in the system from reset. Once 
they are released they will all start executing this boot code. The code calls 
release_mp.

+ The code checks to see if there are more cores in the system and if not it 
will branch to the end of this section and return.

+ the code uses a3 as a counter to decide if it has released all the 
remaining cores

+ The code checks for a cluster power controller by seeing if the address 
was set for the CPC register block. If this value is 0 there is no CPC and 
the code will skip ahead and just release the next core so it can begin 
execution.
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Remember this code is only executed by core 0. The code will send the 
power up signal to each other core in the system.

The code will use the Cluster Power controller to do this. The code needs to 
place the number of what ever other core it wants to power up in Core-Other 
Addressing Register.

+ To do this the code moves the number of the core it wants to power up into a0.  

+ next the code shifts that value to the left into the range of the Core Number field 
of the  Core-Other Addressing Register.

+ then that value is stored to the Core-Other Addressing Register by computing 
the offset into the CPC registers and using r30 that contains the Base address of 
the CPC registers. 
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The first register in Local Control Block is the CPC Local Command Register. 
This register is used to power up or down the core. It has a command field called 
CMD which is the first 4 bits of the register.

+ Right now we are interested in powering the core up. The Code loads the 
command into a0 and stores that register to command register of the CPC. This 
will power on the core which will begin executing this boot code from the 
beginning. 

+ Next the code checks to see if there are any other cores in the system by 
comparing the current core number with the highest core number. If there are 
other cores, the code loops back to power up the next core. The core number is 
incremented for the next iteration of the loop in the branch delay slot.

+ when the code has looped through all remaining cores it returns.
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Next the code calls the init function that joins this core to the Coherent 
Domain.

+ the code first checks to see if this is a Coherent Processing System. If it 
not then it will branch to the end of this function and return.
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The Core Local Coherence Control Register controls the entry and exit of a core  
into the coherent Domain. Bits 0 through 7 represent a coherent requestor within 
the system.

+ The code sets to 1 the first 4 bits of a0. Then it stores it to the Core Local 
Coherence Control Register. This enables the four cores possible in this system to 
communicate via interventions to this core. 

+ Notice the EHB instruction. This is needed to clear an instruction hazard barrier 
and make sure the Core Local Coherence Control Registers write has taken effect 
before the code continues.
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+ The code initializes a3 which it will use as a loop counter to 0. 

+ “next coherent core” is the label which the code will loop back to and join 
the next core domain.

+ The code sets up the Core-Other Addressing Register, with the core 
number it wants to join with. It first stores the value of the core into a0 
shifts it into the upper 16 bits and stores it to the Core-Other Addressing 
Register.

The code now reads the Core Local Coherence Control Register of the other 
core. Remember how the code set this cores Core Local Coherence Control 
Register to enable interventions from other cores thus entering the domain. The 
code now needs to wait for the other core to do the same.

+ Once the other core has joined, the code checks to see if there are more cores to 
wait for and if there is it branches back to the next coherent core label. It also 
increments the other core count.

+ when all the cores have been waited for the code returns to start.S.
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The init_vpe1 is called if the core is a MT core. This code initializes the 
second VPE of an MT system. 

+ It first checks to see if there is an additional TC to bind to a second VPE 

+ and then if there is a second VPE.  If neither is true, no action is required so the 
code will jump to the done point.
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The setup for the second VPE will require access to some registers that are 
usually non-writable. To write to these registers, the code needs to enable Virtual 
Processor Configuration. To do this the code reads the MVPControl Register.

+ Then it sets the VPC bit, writes it back to CP0, and executes an ehb to ensure 
the write has been completed before it continues.
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The setup for the second VPE will require access to some registers that are 
usually non-writable. To write to these registers, the code needs to enable Virtual 
Processor Configuration. To do this the code reads the MVPControl Register.

+ Then it sets the VPC bit to enable Virtual Processor Configuration, writes it 
back to CP0, and executes an ehb to ensure the write has been completed before it 
continues.

+ Defines are created to make it easier to follow the code. NTCS is a register that 
will hold the number of TCs in the system, NVPES will hold the number of VPEs 
in the system, and TC will hold the current number of the TC being initialized.

+ The code reads the MVPConf0 register.

+ Then it extracts the highest TC number and the highest VPE number into the 
registers noted above. Next it initializes the TC count to 0.
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This loop will initialize the remaining TCs in the system. 

+ The code sets up the target TC field in the VPEControl register by reading the register, 
inserting the TC number into the TargTC field and writing it back to the VPE Control 
register. It executes an ehb to ensure the write took effect before it continues. Doing this 
controls which TC the mftc0 and mttc0 instructions write to. This is how the CP0 registers 
of a TC other than the one executing the code are written to.

+ The code checks to see if the current TC in the loop is TC 0. If it is, it branches forward 
to the next section to initialize the next VPE since it doesn’t want to re-initialize itself.

+ The TC should be halted before the code starts changing its configuration. To do that, a 
1 is placed in v0 and then moved to the C0_TC Halt register. The code executes an ehb to 
ensure the move has taken effect.

+ The code tests to see if this TC is the first TC to be bound to a VPE. If not, it branches 
to the binding code. This is done because this example sets up only one TC to be 
executable on each VPE.  If there are more TCs than VPEs, the branch will be taken and 
the TC will be bound to the last VPE in the system.

+ The branch delay slot is used to save the number of VPEs in a2_NVPES.
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Next set this TC to be the only TC runnable on the VPE. For current cores, this 
effectively sets TC 1 to run exclusively on VPE 1.  To do this, the XTC field  in 
the VPEConf0 register is set to the TC number. The code reads the VPEConf0 
register, inserts the TC number into the XTC field, and writes the register back.

+ Now set v1 to the current TC so the TC will be bound to its corresponding VPE. 
This overwrites the value set in the branch delay slot on the last slide.

The code will now bind the TC to the VPE. It does this by reading the TCBind 
register, inserting the VPE number into the CurVPE Field, and writing it back.

NOTES:

If the TC number was equal to or greater than NVPES, then v1 = NVPES, and the 
TC will be bound to the last VPE in the system.

If the TC Number was less than NVPES, then v1 = TC, and the TC will be bound 
to the corresponding VPE.
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Next the code sets this TC to prevent it from taking interrupts and clears all other 
status and control bits in the TCStatus register. It does this by setting the interrupt 
exempt bit,  IXMT up v0 and then it move it to the TCStatus register (CP0 
register 2 select 1).

+ The code then initializes the TC’s GPR registers using the same method used in 
init_gpr.S.
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The code checks to see if there any more VPEs to initialize. 

It does this by checking to see if the number of VPEs left is less than the number 
of TCs. If it is, all the VPEs have already been initialized, so the code branches 
forward to donevpe where it will check to see if there are any more TCs to 
initialize.
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The code will now initialize the second VPE. In fact, on current cores there are at 
most 2 VPEs, so this code will be executed only if this core has a second VPE.

First the code makes sure multi-threading is disabled. It needs to do this because 
only one TC should be executing this code at a time. It does this by clearing the 
TE bit (15) in the VPEControl register (CP0 register 1 select 1). The code reads 
the register, inserts a 0 into to the bit, and writes the register back.

+ The code checks to see if this is TC 0. If it is, it branches around the 
initialization to the end of the function, because this has already been done for TC 
0. 
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The code needs to make sure that no TC is running on the VPE it is initializing. 

+ It does this by reading the CP0 VPEConf0 of the VPE it is initializing and 
inserting a 0 into the Virtual Processor Activated or VPA Field. 

+ It also needs to ensure that it is the Master Virtual Processor by setting the MVP 
bit. This enables the writing of registers associated with the VPE. 

+ Then the code writes it back to the VPEConf0 register of the VPE.
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The code copies the Status register of the running TC to the Status register of the 
TC being initialized.

+ Initialize the Error PC to a dummy value.

+ Clear the Cause register.

+ Copy the Config register of the running TC to the Config register of the TC 
being initialized.

+ The code initializes gpr 23 of VPE1 with the core number it is on. It does this 
by reading the EBASE register and extracting the Cpu_num field. Then it copies 
the CPUNum to the TC’s GPR 23. 
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The code programs the TC’s reset vector so that when it is set to run, it will start 
executing the boot code. It loads the address of the reset_vector from the label created in 
the linker file. It sets bit 29 to convert the address to a KSEG0 address so it will execute 
from a cacheable address. Then it writes this value to the TC’s TCRestart register (CP0 2 
select 3). 

The first thread for this VPE is ready to run, so the code sets it to start running . However, 
it will not run until all TCs have been initialized and the code exits VPE config mode and 
enables virtual processing, which is does at the end of this function.

+ The code reads the TCStatus register and enables the TC for handling interrupts by 
clearing the IXMT bit (10). This doesn’t really enable interrupts; it just makes it possible 
for this TC to access them.

+ It also activates the TC by setting the A bit (13). Then it writes the value to the TC’s 
TCStatus register.

+ Now the code un-halts the TC by clearing the H field in its TCHalt register. (No other 
bit needs to be set, so it just clears the whole register.)

The code then sets the Virtual Processor Activated (VPA) bit  in the VPEConf0 register to 
activate the VPE and allow the TC it has just initialized to start running. It does this by 
reading the initialized VPE’s VPEConf0 register and setting the VPA bit, then writing it 
back.
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Next the code will check to see if there are any more TCs in the system to 
initialize.

It adds 1 to the current TC being initialized, and then tests to see if it is still within 
the limits of the number of TCs that are in the system. If it is, it branches back to 
the top of the loop.
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This is the path the code falls through when there are no VPEs or TCs  left to 
initialize. Next The code needs to “Enable Virtual Processing” and take the 
processor out of “Virtual Processor Configuration” mode. 

+ The code will read the MVPCtl register (CP0 register 0 select 1), 

+ set the EVP bit (1), 

+ and clear the VPC bit.

+ And write it back to the MVPCtl register 
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Now for some clean-up of the code to remove the “//defines” it created in the 
beginning of this file.

This function is done and returns to start.S.
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The assemble part of the initialization is complete. The code is now ready 
to call the main function.

+ the code sets the return address to return to the all_done label. This is 
done in case the main function returns. Normally the main function never 
returns. It usually starts up the OS and the OS handles everything from 
there on including halting the system. Just in case something goes wrong 
we don’t want just any random code to execute. The all done function is 
just a simple loop that will cause the processor to spin forever. 

+ Next the address of main is loaded into a1 and then the value of a1 is 
moved to the CP0 Error exception PC. This is the return from exception 
address. To explain what is happening, when a MIPS core boots it is in 
exception mode so all of the code that has executed so far is part of the 
boot exception processing. At the end of this boot exception processing 
the code will use the error return instruction to change mode to normal 
processing and start executing instructions at the address stored in the 
Error exception PC.
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The variable num_cores is a global variable used in the C code. This is an 
example on how you would initialize a global variable in assemble to be 
used later in C. 

+ First the address of the global variable num_cores ins loaded into a1 and 
converted to a uncached address. 

+ a0 is set to the number of cores in the system by adding 1 to the highest 
core number that was stored in r19.

+ a0 is then stored to the address of num_cores. 

The code places the arguments to main in 4 argument registers. The use 
of these registers to pass arguments follow the “C” ABI calling convention. 
The arguments are the CPU number, the core number, the VPE number if 
this is an MT core and the total number of VPEs .

+ Eret is called this will clear exception mode and start the execution of the 
main function.
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The code in the main function gives you an example of how to synchronize 
all CPUs in the CPS before continuing execution of test code or starting 
the OS.

+ Main starts out by declaring some local variables it will be using.

+ Next the code reads the value of the CP0 Count register. The inline 
assemble code moves the count register value into the local variable temp. 
Then the code writes that value into the boot_count array element for this 
particular core. The boot_count array is a global variable array with will 
collect the number of cycles the boot process took for each CPU. This is 
just an example of recording statistics from each CPU. The boot_count is 
not used further in this example.
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Each Core will report how many Virtual processors are available on the 
core. The OS could use this to set itself up for each Core.
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The code uses CPU 0 do the synchronizing of the rest of the CPUs.

+ the code waits for each core to report the number of VPEs on a core. If a 
core is a single core processor then it will report a 1 so no distinction will 
be made between a single core or an MT system with only 1 VPE. The 
code tallies the number of VPEs each core reports which it will use a little 
later in this loop.
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The code uses CPU 0 do the synchronizing of the rest of the CPUs.

+ The next loop will use the num_cpus variable to wait in turn for each 
CPU to report it is ready. The MIPS Malta evaluation board has a small 
display and the code uses it here to report which core it is Waiting for. The 
code writes a “W” to the display element that corresponds to the Core 
being Waited for. 

+ When a core reports it is ready it will call the wait instruction which will 
stop the core until the core receives an interrupt. It is CPU 0s job to send 
the interrupt to wakeup the other cores so they can continue processing. It 
does this by using inter-processor interrupts that were set up in the boot 
cps code. The code first changes the segment display by writing an “I” to 
the corresponding element for the core it is going to interrupt. Then it calls 
the set_ipi function to send the interrupt. I’ll talk about the set_ipi function 
in the next slide. Once CPU 0 finishes this loop it can continue and 
execute test code and/or the OS.
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The set_ipi function will send an interrupt through the Global Interrupt 
Controller to a specific CPU number provided by cpu_num. The boot MIPS 
code sets up the GIC to wire each interrupt to a specific CPU.

Recall that interrupts 32 through 39 correspond to CPU or VPEs 0 through 
8 so CPU 0 uses interrupt 32 CPU 1 interrupt 33 and so on.

+ The #define GIC_SH_WEDGE sets up a pointer to the GIC Global 
Interrupt Write Edge Register. It does so by combining the address of the 
GIC register control block, which in this case is at hex bb dc 00 00 with the 
offset of the Global Interrupt Write Edge Register of hex 280.

The value written to the Global Interrupt Write Edge Register has 2 parts. 
Bit 31 is set to indicate that the code is sending the interrupt signal. Bits 0 
through 30 determine which interrupt the signal will be sent to. 

+ The code calculates the proper interrupt by using the #define FIRST IPI 
as a base interrupt number and adding the cpu number. 

Once this value is written the corresponding CPU will receive an interrupt 
which will wake it up to continue executing code where it left off.
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All processors  other than processors will Stop and wait for processor 0 to synchronize 
them. First the code makes sure the interrupt source bit corresponding to its VPE number 
is cleared by writing to the GIC_SH_WEDGE register. Notice that bit 31 is not set, so this 
clears any interrupt that might be pending. Then it enables interrupts.

+ Next each VPE will write an “r” to the segment display to indicate it is ready.  

+ Then it will write to the global array to indicate to VPE 0 that it is ready. 

+ Next interrupts are disabled for the VPE. This avoids any race condition between the 
testing of the start_test array and the wait instruction.

+ The code will loop, testing its element of the start_test array and calling wait to wait for 
an interrupt (sent by CPU0). 

+ When any interrupt is signaled the processor will wake up and enable interrupts so that 
its interrupt service routine can run and process the interrupt. The interrupt routine will set 
the start_test element for this CPU. 

+ By the time the reaches this point, the interrupt routine will have run. The code will 
disable interrupts before it returns to the top of the loop. The top of the loop is where the 
start_test array is checked and just as before, interrupts need to be disabled to avoid a race 
condition. The start_ array needs to be checked because any interrupt could have 
terminated the wait instruction.
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This is the interrupt routine that will receive the Interprocessor interrupts. Remember a interrupt is 
sent by processor 0 through the use of the set_ipi code as shown in a previous slide. The 
interrupt code shown here is in start.S. It is loaded at 0xBFC0 0380 which is the general 
exception vector. Since the only interrupt generated by this code is an Interprocessor 
interrupt the code proceeds to clear the interrupt in the Write Edge register.

+ The code loads the address of the write edge register into K0.

+ then reads the CP0 EBASE register and extracts the CPU number

+ Again Recall that interrupts 32 through 39 correspond to processors 0 through 8 so the 
code uses 32 or Hex 20 as a base number for the interrupt and adds it to the CPU number 
to get the correct IPI number for this processor.

+ next the code writes the interrupt number to the Write Edge register to clear the interrupt.

Now that the interrupt is cleared the code will set this processors element in the start_test array. 

+ The code does this by loading the address of the start_test array into K0.

+ Then the code again reads the CP0 Ebase register, extracts the CPU number multiplies it by 4 
because the array is an array of integers (which are 4 bytes each).

+ next the code adds this index to the starting address of the start_test array to get the address of 
the array element specific to this processor.

+ The code then sets K1 to 1 and stores it to the array element.

When the code returns from the interrupt each VPE will return from the wait instruction and look 
at its element of the Start_test array to see if it should continue.
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At this point the boot of the CPUs are done. You can add your code here to 
run a test or call the OS boot up.
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