
1

This is the cache section of the MIPS software training course



2

In this Cache section I will cover 

+ The Dimensions of the cache and what make up the size of the 
cache

+ how things are looked up in the cache

+ what types of cache policy you can set

+ What non-blocking loads are

+ The initialization of the cache

+ cache management such as cache flushing

+ what virtual aliasing is and how to avoid it

+ what the prefetch instruction does

+ cache exceptions



3

In this Cache section I will cover 

+ The Dimensions of the cache and what make up the size of the 
cache

+ how things are looked up in the cache

+ what types of cache policy you can set

+ What non-blocking loads are

+ The initialization of the cache



4

+ MIPS Cores have separate Instruction and data caches so that an 
instruction can be read and a load

or store done simultaneously.

+ Except for the 4KE all caches are four way Set associative. For the 
4KE there is a choice from a direct mapped cache to a four way set 
associative cache. More ways of associating cache line with in  a page 
to physical memory usually means less cache threshing.

+ Cache line size is fixed at 16 bytes for the 4KE and 32 bytes for the 
rest of the cores.

+ Lines per way will determine the cache size. These are a power of 2 
starting from 64 up to 512. 

+ This corresponds to a cache size of eight to 64K.

+ Sets per way is a super set of a line where a cache line is the actual 
data and the whole set includes the cache tag and status bits.

+ The size of the cache is equal to the number of way times the line 



size times the number of lines per way.

All cache choices regarding cache size and number of ways are options 
configured when the chip is built and are not changeable at run time.

4



5

This example will give you background information on how the cache 
works. It will show how data is retrieved from the cache. The example 
assumes a 4K page size and a cache with 4 ways for a total cache 
size of 16K.

Each virtual program address can be broken down into three parts

+ The virtual page number, the index into the cache array and the byte 
index into the cache line.

Caches are virtually indexed and physically tagged to allow them to be 
accessed in the same cycle as the address is translation. 

+ This means that while the MMU is using the virtual page number to 
get the physical page number

+ The cache controller is using the index part to locate where in each 
way of the cache line might be stored.  

+ So once the translation is made the controller can then compare 



translated physical page address to the physical tags in each way to see if 
there is a match. 

+ If there is a match we have a cache hit and the fetch, store or load is 
completed. 

+ If not it’s a miss and the processor will call on the bus interface unit to get 
the cache line from memory.

5



6

I am going to go into the Cache Policy 

For regions mapped by the TLB (KUSEG KSEG/2/3) the CCA is 
determined by the TLB entry for the page that contains the memory 
access. This is set up by the C field in the Entry Lo registers when the 
TLB entry is written for each page. The CPU uses these bits to figure 
out what to do. The page can be marked un-cacheable which would 
cause the CPU to go directly to memory for the load or store or 
Instruction Fetch. If the page is cacheable these bits will set the cache 
policy which I will cover next.  I am not going to go into TLB entries 
because they are covered in the TLB section of this course. 

For KSEG0 the CCA is determine by the K0 field in the Config register.



7

Another cache police you can set is called write back. For a write back 
cache 

+ On a store 

+ The cache is Searched to see if the target address is cache resident. 

+ If it is resident, the cache contents are updated, 

+ If the cache lookup misses the cache line is Read from memory

+ then the new data being stored is merged into the line and store into 
the cache 

Important points here are:

Cache lines are always filed from memory on a cache miss

Main memory is never updated on a store 

If there are no way entries free when a new line needs to be put into 
the cache, a line needs to be evicted from the cache to make room for 
the new line. The  line to be evicted is selected on a Least Recently 
Used basis. If the evicted line is dirty, meaning it contains data not in 
memory, then the line is written back to memory.



8

In most cases the data caches are non-blocking allowing for the 
instruction stream to continue executing until a instruction that is 
dependent on the  missed data is executed. Then the processor will stall 
until that data word is loaded from memory.

+ The 4KE core is an exception to this. The data cache on the 4KE will 
block until the data word is loaded from memory. It will not continue to 
execute non data dependent instructions.

Some cores can have more than one miss outstanding at a time. The 
24K 34K and 1004K can be configured at chip build time for four or eight 
outstanding data cache miss. The 74K is not configurable and has four.



9



10



11



12

The code will use configuration register one to compute the total number 
of sets in the cache to loop through and initialize each sets cache tags.



13

The code uses the move from coprocessor 0 instruction to get the value 
of the config1 register into the  general purpose Ten

+ the extract instruction is used to extract the Instruction cache line size. 
It uses the config one register value that was saved in general purpose 
register ten starting at bit ninteen and extracts 3 bits to the least 
significant bits of register eleven.

+ it is then tested to see if it is 0 and if it is it means there is no 
Instruction cache so it will branch ahead and not initialize it. 



14

Now the code decodes the line size to get the actual number of bytes in 
a line.

It does this by shifting 2 to the left by the encoded line size value.



15

Now the code extracts the number of sets per way from the value read 
from the config one register that was stored in general purpose register 
ten it does this by using the extract instruction. 

+ The extracted value is converted to the actual number of set per way 
by shifting sixty four left by the extracted value.



16

The number of ways is extracted  from the value config one register 
value using the extract instruction. 

+ The code then adds one to the value to get the actual number of 
ways.

+ Now the sets per way are multiplied by the number of ways to get the 
total number of sets in the cache which will become the number of loops 
to be preformed to initialize the cache.



17

The general purpose register fourteen will be used as the index into the 
cache. 

+ The trick is this needs to be a virtual address. 

+ The virtual address that is the index into set 0 of the cache is eight 
million hex. This works out because this virtual address is in KSEG zero. 
If you recall kseg0 is in the virtual range of eight million  hex up to A 
million hex minus one which directly maps to physical address zero 
through two million hex minus one. So the cpu translates the virtual 
address eight million hex to physical address zero. 

+ Physical address zero will always index to set zero of the cache.

+ The code loads register fourteen by using the load upper immediate 
instruction will eight thousand hex. This instruction sets the upper bits to 
eight thousand hex and clears the lower 16 bits.



18

Clearing the tag registers does two important things it sets the Physical 
Tag address called PTagLo to 0 this insures the upper physical address 
bits are zeroed out. It also clears the valid bit for the set which insures 
that the set is free and may be filled as needed.

+ the code uses the Move to Co processor zero instruction to move the 
general purpose register zero, which always contains a zero, to the tag 
registers. You need to consult your programmers manual for the core 
you are using to see if the TagHi register also needs to be cleared.

+ the code is almost ready to start the loop through the cache. This 
move instruction puts 

+ the total number of set that the code computed 

+ into register 15 which will be decremented each time through the loop.



19

Here is the format for the cache instruction.

+ The op field is 5 bits it contains cache type and the cache the 
operation will be performed.

+  Bits 0 and 1 encode the cache type: 00 for the Level one instruction 
cache, 01 the level one  data cache, 10 the level 3 cache and 11 for the 
level 2 cache. Our MIPS core do not support the level 3 cache and the 
level 1 and 2 caches are optional. 

+ Bits two, three and four encode the cache operation. 

+ For the upcoming example I will be using the Index Store tag 
operation on the Level 1 instruction cache  so the op field is coded with 
a eight. The first two bits are 00 for the level one instruction cache and 
the operation code for Index Store tag is encoded as 010 in bits two, 
three and four.



20

Here is the actual cache instruction code. To review 

+ the cache instruction takes two arguments

+ the base address which we set initially to 8 million hex to address set 
zero of the cache.

+ and the operation code which in this case is index store tag to the 
Instruction cache. This will move the tag data at is in CP0 TagLo and 
TagHi registers into the cache line that’s index by the instruction.

+ the assemble line is tagged with a one in column zero to give the code 
a place to branch back to and start the loop again.



21

I want to explain one slightly tricky thing that will be happening in the 
code. The index type of operation can be used to address a byte in the 
cache in a specific way of the cache. This is done by breaking down the 
virtual address argument stored in the bass register of the cache 
instruction into several fields. The size of the index field will vary 
according to the size of a cache way. The larger the way the larger the 
index needs to be. In this example the combined byte and page index is 
12 bits because each way of the cache is four K. The way number is 
always the next two bits following the index.

+ in this example the code does not explicitly set the way bits. Instead it 
just increments the virtual address by the cache lines size so the next 
time through the loop the cache instruction will initialize the next set in 
the cache.

+ Eventually this increment has the effect of setting the cache to index 0 
of the next way in the cache because it over flows into the way bits.



22

Now all the code needs to do is loop maintenance.

+ first decrement the loop counter 

+ then test it to see if its gotten to  zero and if it has not branch back to 
label one

+ the branch delay slot which always gets executed is used to increment 
the virtual address to the next set in the cache.



23

Now lets talk about cache maintenance.

When working with cached data buffers where DMA is involved there 
are some necessary steps your code needs to take to insure data 
integrity.

+ If you are starting a DMA operation to DMA data out of memory 

+ and the data is stored in cached write back pages some of the data 
may not be coherent with main memory.

+ So before the DMA starts the data must be forced back to main 
memory using a cache instruction to flush it from the cache to main 
memory. 

+ If you are starting a DMA operation to DMA into a cached area of main 
memory

+ You will need to invalidate those addresses in the cache. If you don’t 
and the cache could hold valid data for the buffer range. The upshot 
would be that the new data  that the DMA operation brought into main 



memory will not be brought into the cache.

23



24

Another cases you need to worry about cache coherency is

+ when you write instructions usually done by a loader program or an 
OS, when you insert a break point usually done by a monitor program 
controlled by a debugger or when you code is self modifying which is 
done by many of the Java accelerators. In these cases the code written 
to the cache using store instructions will write to the data cache but the 
not the instruction cache. The instruction cache may already contain 
valid instructions for the memory you modified so it would not fetch new 
instructions. First the data cache and the main memory must be made 
coherent and then the area in the instruction cache that contains old 
instruction must be marked invalid.

+ There is one instruction that handles this for you called the SyncI 
instruction. This instruction takes the address of the instruction that you 
are changing and flushes the data in the cache line that contains the 
instruction out to main memory and checks to see that that same line in 
the instruction cache has been invalidated so the next time the 
instruction is fetched it will miss in the instruction cache and the cache 
line will be brought in from main memory.

+ There is also a macro provided with most tool chains call 
mips_sync_icache that can be used from C code.



24



25

Virtual Aliasing – happens when the number of sets in a way of the 
cache is larger than the number of sets needed for a size of a memory 
page. 

For example Lets assume a thirty two K cache, with four ways and a 
thirty two byte line size. That would mean each way was eight K of the 
cache.

+ To index an eight K  way it takes two hundred fifty six indexes given 
the thirty two byte line size.

That’s eighty one thousand ninety two divided by thirty two bytes per 
line which equals two hundred and fifty six or eight bits, bits five 
through twelve for the cache line index.

*+ To index a four K page it takes one hundred and twenty eight cache 
lines

That’s four thousand ninety six divided by thirty two bytes per line 
which equals one hundred and twenty eight cache lines or seven bits, 
bits five through eleven for the index into the page. 

+ Leaving bits twelve through thirty-one  for the physical tag



This causes the tag and the index to overlap at bit twelve.

25



26

This overlap can mean that two different virtual addresses, mapped to 
the same physical location in memory can have two different entries into 
the cache. So the cache can end up with two different data values for 
the same physical memory.

+ Using the same cache dimensions I just showed you, one cache way 
would look like this. Each way could fit two four K pages.

For this example the first virtual address is address 0 and it translates to 
physical address 0. 

+ It will look like this. As you can see the virtual address is made up of 
twelve bits to index into the page and 20 bits of virtual address to be 
translated by the TLB to a physical address. In this case page translated 
to is physical address 0.

+ the cache index, which I explained previously is eight bits, bits five 
through twelve, which for this address indexes to index zero of the 
cache. 

+ Now lets look at a second virtual address. The 20 bits of virtual 
address to translate by the TLB also is translated to physical address 
zero.



+ the cache index of eight bits, bits five through twelve, which for this address 
will index to one hundred eight

+ both indexes end up with the same physical tag

26



27

The easiest way to avoid Aliasing is to create your core using the 
optional Hardware Anti aliasing option. There may be a small difference 
in the clock rate you are able to achieve using this option . To see if your 
core was built with this option you can check bit sixteen of the CP zero 
Config7 register.

+ If you don’t have that hardware option the next easiest thing would be 
to make sure your page size is at least as large as the cache’s way size.

+ another way is always map the overlapping bit straight through. In the 
example we just went through you would avoid creating the VA_2 
address.

+ In most cases aliasing happens when you are sharing data between 
processes so another way to avoid them is to align shared data buffers 
virtual address on a way boundary. For example if your way size was 
eight K then align your buffers on a 8K boundary.

+ You can also Flush and invalidate sharable buffers at a contest switch. 

By the way you should not have to worry about the instruction cache 
since it is read only. Also Versions of Linux from version 2.6.18 and 
upward have been designed to avoid data cache aliasing.



28

Now lets discuss Perfetching, Data Prefetching is like what some fast 
food restaurants do. They cook food ahead of time anticipating the 
demand so they can shorten the customer wait time.  Of course the 
amount of food the can cook ahead will depend on grill capacity and 
other needs for the grill. Such is the same for your data needs. You can 
use the prefetch instruction or the macro function provided in cpu.h, to 
get data into the cache ahead of time, anticipating  the code’s need for 
the data. For example when you are doing a memory copy from one 
buffer to another. The prefetch instruction tells the cpu to get the data 
into the cache if it does not interfere with other data bus operations.

+ Prefetching can be tricky because while you may think it should 
increase performance it might not. It will depend on your cache resource 
needs.  

+ For example some times you can have a lot of frequently used data 
and if your code does a lot of prefetching it can force this data out of the 
cache. So you may increase the performance of a memory copy but 
decrease the performance of something else. The frequently used date 
could also force your pre-fetched data out of the cache before you 
actually use it. As a side note, this could be a good sign you need a 
larger cache.



29

Here’s a few simple rules to follow:

+ prefetching to be effective needs to be done far enough ahead of time 
so that the data is in the cache when need.

+ For example in a copy loop you may need to be prefetching data 
several loop integrations before it’s needed.

+ one caution be careful when you are using data the is being put into 
memory by a DMA device. In your effort to prefetch data enough ahead 
of its use the code could get ahead of the DMA operation and the data 
pre-fetched would not be fetching the new data.



30

I going to show you an example of prefetching in a memory copy to give 
you an idea of what you may need to do.

+ the code is simplified to highlight the prefetching being done. 

+ If this were a actual memory copy the code would need to have some 
logic to align the copy on a cache line boundary.

+  also, it would decide what the minimum number of bytes would be to 
make the prefetching useful.

+ here are the arguments used in the example.



31

I have also include, how to use a performance counter register to 
measure how many cycles the copy takes so you can see how well the 
code is functioning. 

+ For your system you will need to experiment to see what gives you the 
best results.

+ There are just too many variables to be able to calculate how pre-
fetching is going to effect the code. 



32

Here is  an example of pre-fetching. 

First I going to use an internal counter register to determine how long 
the copy took so I can judge the performance of the pre-fetching. 

Each of our cores contains at least two performance counters. 

+ The performance counters are located at co processor 0 register 25. 

+ Each counter is broken down into two CP0 registers, the even select 
register is the control register and the odd select register is the actual 
count register. For example lets say the core we are using has two 
performance counters Co processor 0 register 25 select 0 is the control 
register for counter 0 and select 1 is the counter for counter 0. the 
second counter’s control register would be co processor register 25 
select 2 and its counter would be select 3.

+ in the code you need to tell the CPU what you want to count. I want to 
count cycles. Writing a 2 to the performance counter zero’s control 
register programs it to count cycles. I do this by loading a 2 into register 
t1 and the using the move to co processor zero instruction move it to co 



processor 0 register 25 select 0.

+ I use the EHB instruction to insure the register is written before I go on 

+ Then I clear the count in the performance counter by move register 0 to co 
processor 0 register 25 select 1.

32



33

For this code I decided to try prefetching  five hundred and twelve bytes 
ahead and see what numbers I get. 

+ I have paired the input and out put prefetches. 

The input prefetch will prefetch a cache line into memory. The output 
prefetch will prepare the cache for writing an entire line, without the 
overhead involved in filling the line from memory.

+ I am going to continue with prefetch instruction until I have given 
enough to fetch five hundred and twelve bytes.

+ at the point I will be looping back to, I will prefetch the next lines to 
always keep ahead five hundred and twelve bytes.

----------------------------------------------------------------

Info only:

# pref 0,  = load

# pref 30, = prepare for store



34

I have a second branch point I will branch back to when I have 
prefetched to the end of the buffer.

+ Next I will load a whole cache line from the input buffer

+ and then increment the base address by a line size.



35

Now store a cache lines worth of data to the destination address

+ increment the next address to fetch ahead



36

+ The code checks to see if we have prefetched the entire buffer yet and 
if we have not branch back to the prefetch branch point.

+ In the Branch delay slot, that will always get executed no matter if the 
branch is taken or not, the code increments the output buffer pointer by 
a cache line size.

+ The code will reach this point once it has fetched all it can but it still 
needs to copy the last final five hundred and twelve bytes. It checks to 
see if there is more to copy and will branch back to the non fetch point if 
there is.

+ when the copy is done the code reads the performance counter to get 
the number of cycles it took to do the copy and puts it into the return 
register. Then returns to the calling function.

You can experiment with the code by changing the number of prefetches 
done ahead to see what gives you the best numbers on your system. 



37

Lets talk about cache exceptions. The cache can generate exceptions. 
Cache exceptions will depend on your hardware. If your  cache is 
designed to report errors, it can do so by causing a cache exception. 
Cache error detection is implementation dependent.

+ If your cache has parity detection, it will generate a cache exception 
when it gets a parity error. In general a parity error in the cache is fairly 
serious. One problem is the exception is imprecise, which means it may 
be difficult to determine which instruction the data belongs to or in the 
case of the instruction cache which instruction coming up has a 
problem. 

+ If your cache has error correcting hardware the hardware will correct 
the first error without generating an exception. It will generate an 
exception if there uncorrectable errors.



38

A cache exception always vectors to a non cached virtual address in 
KSGE1.

+ on boot this address in BF C0 03 00 hex.

+ Once the boot code finishes initialization, it should set the boot 
exception bit that which changes the cache exception vector to A0 00 01 
00 hex.

+ There is a separate status  register for cache errors called the Cache 
Error register. This is Co processor register zero register 27.



39

This chart breaks down the cache error register. One thing to keep in 
mind is that this is somewhat implementation dependent. The 
implementer of your chip will make the decision to include cache error 
logic or not. That person will also determine which  parts of the cache 
error register to support.



40

This is another coprocessor zero register, number 26 the Error control 
register that plays the part in controlling the cache parity and of telling 
you if the Core detected another cache error while the exception code 
was in the process of handling a cache error.

+ Your code can use the PE bit to determine if the core supports cache 
parity. If the code writes a one to the PE bit and reads a 0 it means that 
there is no parity support in the cache. This bit is set to zero when the 
core boots. Once the cache has been initialized the code should write a 
one to this bit to enable cache parity

+ The FE bit is set to indicate the first instance of a cache exception.

+ and the SE bit is set when the core detects a second error before the 
first error has been handled.

There are other control bits in this register that can be used for cache 
testing. Check the Software Users manual for more information.


