Codescape Debugger 8

Codescape Debugger is Imagination’s bespoke debug environment for heterogeneous
SoC development. It has recently undergone a major overhaul to include many new
features for native debugging of MIPS targets and other IP from Imagination. From
Codescape Debugger you can simultaneously debug MIPS CPU cores, as well as Ensigma
communications RPU cores in a single environment, with more heterogeneous processing
features coming soon.

Host environments Debug environments

timax) MEOS inux

KAV by Imagination &

o X g

My : ”
- B

Windows Mac INUCLEUS|

>

L

@
[LARAO)

The Codescape Development System

Codescape Debugger forms the hub of a system that facilitates all stages of development
alongside a low-level command-line console, built-in scripting, intelligent debug probes,
emulators and simulators. For pre-hardware application development, Codescape
Debugger works with the MIPS Instruction Accurate Simulator (IASim) and QEMU
emulator. For silicon bring-up, application development, and testing on real hardware,
Codescape Debugger can connect to Imagination’s range of debug probes supporting
JTAG, cJTAG and EJTAG-equipped targets. Host connection via USB or Ethernet enables
remote debugging across networks.

Remote
Simulators

Codescape |
Debugger ngh-leve.l
e Debug Engine

Toolchain

Ethernet
or USB

Probe

Codescape
SysProbe SP55

Transport Layer

Low-level
Debug

>

Codescape
Console

User Scripts
and Tools

Target Emulators
Local Board or FPGA
Simulators

Copyright © 2014 Imagination Technologies Limited

Imagination

Features

Simultaneous multiple debug adapter
connections to multi-SoC, multi-core,
multi-VPE with multi-OS task support

OS-aware debug support for Linux®,
ThreadX®, Nucleus™, Free RTOS and
MEOS™

Ultra-fast debugging performance
using intelligent, low latency probes
(<1 sec step with multiple connections,
VPEs, TCs and threads. >1 MByte/sec
binary load)

Configurable debug regions
Python scripting support

Run external tools such as make and
user scripts at a key press

Ensigma RPU support — fully-featured
MCP core debugging

Rogue Shader debug

Benefits

Powerful and cost-effective system for
all members of SoC and application
development teams

Single IDE for the entire development
cycle

Mature solutions that minimize risk and
reduce time to market

Proven technology used by major SoC
manufacturers

Lifetime product support

Applications

IP evaluation

SoC design

SoC bring-up

Driver development
Application development

Code optimization

1.0

The Codescape Debugger User Interface

Codescape Debugger is driven from its own powerful GUI, For more advanced product development, Codescape Debugger
running natively on 32-bit and 64-bit Windows, Linux and Mac has many state-of-the-art features such as built-in graphical

OS hosts. For fast, efficient debugging, it provides a host of scripting, a fully-annotated memory mapped peripheral inspector,
useful debug views and features such as editable memory, drag real-time event tracing and support for multi-SoC, multi-core,
and drop between views and real-time OS-aware debugging. multi-VPE and multi-OS task development and debugging.

Simultaneously connect to a variety Use advanced in-built graphical View task swaps between threads
of multi-VPE and multi-core real scripting for data visualisation. This with native RTOS aware debugging.
and simulated targets debugging example shows event profiling on
multiple OSs. an Ensigma RPU.

T Codescape Debugper [E=E =R S
Ble Edit View Dfbug Region Tooks Help
CEEE 4P A00 BB BXEREFEDE |l 1| =3 wHHl QL -F- R PH«PIAEToNIciBegWn DODCEME +-+ +|X
Targes | = x| [main -MTPT0) c0.5) b queue send.c) Toctoriae 320 MIPS)”pifread testc - 325: MPS 2upe dtc. - T0 | No Source | - x| g Rr0s Wateh - x
</ Simltor UfCPSmannon Configh © " mipssz_mc_sevccrestarc(dised); // vpel/tes ‘EC' ces =
4 MTP-205-3 - Di\examples\0203 UCCPSHANsim_Configd\meta_logging._example] Name Address State Priority. RunChunt Stackst]
18 e Tt 0o Rur o regren i - maslogging.com) ectoatatus (aipss2_me_gettcstarus() | JFSTATUSA): // A=i. Sytem Timer.. GAOILCTIE TX SUSPEND... O 3 [
e Intialse-completed hard-reset] thread 0 8010cdcc TX_SLEEP. 1 597 8011,
i o s et / 1t tel. thread1 DBU0GTe TKREADY 16 80574 natd
. - et bard sl — mips32_me_sevtenale(o): // 110w vpei/ver o execute) . nend2 oo ToREADY 16 0552 ooy
Yo it esdcbe . tned3 oSO TCSMAPH.. 8 0 veotte
T B THleadX Tas 1 Sstem Timer Thread 77 Turn off the vpe configuration flag and enabld (other) vpe. threadd DAU0T8c TXSLEP 8 284 oaottef
B THead Task 2 thresd0 y treads OSUOGE TXEVENTF.. 4 s [
B THlenst Tk st << cument 2> ripssz_setmvpcontrol ((mips32_gecmvpcontrol () & ~YVECONTROL_VEC) | MVECONTROL_EVE): // VEC=0 EVE<L. teads 0SNG TXMUTECS.. § 8 oo
B8 TrfeadX Tesk : thread 2 ol disp0(); // Send this tc (vpe0/tc0) into an infirfite loop showing 1Ts activity,]l thread? a0 T ° o b
E&E TresdX Task 5 thread 3 PO = vPE0/teo) into an insipre X e AEs eeniviy. ledthread D@l0cadc TXSLEEP 8 & e
B TrleadX Task6: thread 4 7 Muteces
o W o
BB N T st ——— Mame A Owws | Owertiume | Omnefpc.
PR Thresd Task:thread 6 T4t G EsigmasDrlog - M2 10 v x
T et oot X[m0 evlocesm omOSI a7 2
G ThreadX Task 10:cd thread Events Byte Pools k
< X scrpt boot Talnucpy T - Neme Addes: Bpehvale.. Nmberoff. Poollf Serchf
o I MBSk op compiet [opped)-vmllws: IEN bytepocld DBNOChb 2476 5 ceogee 082
‘ 8‘ /- F3 x Block Pools
= Q Address. Blocks Availa... TotalBlocks AvailafleList Start Ad
= L’ A]‘]\ A T 8010cbed 12] 08013164 80120
o et 259 P3O A, 1 S Y it _sai
. N LUV \I\T’\x‘lxih R il
ol ;W [Y5 X1 %1 N | e e - ferer s oonckitt Goenene
. XX X A/ Ak Y VR |
e s rogre: [ruing.] - DA erample Linaemt actoris test be)| | * y V1 X | |[Be RiOS oce | peiphe | - x
A3 32a: MIPS Run-interrupted [breakpoint] x X
B 32b: MIPS Stop-completed [stopped] Startticks 1201
8% 326 MPS Stop-complete stopped] * Endics 1201
- X X
(A CallSick | Regie)] X 2 read 1 (885 tcks, 51.05%)
ue_send(struct TX_QUEVE_STRUCT + queue_per = 0wsioeate, void| | % X

u&_send (struct TH_QUEDE_STRCT * queus_por = 0xeoioeafe, vol
unsigned long chread inpur = Oxi) + 0x30 20 4802%)
encey() + 0x78 % o =0 oo = o0 o o oo

[— — 0| K] - XT— -] 0 Interrupt (1 icks, 0.05%) 1

1| System Timer Threaa (3 ks, 0.15%)

s sitc

[Babotc reag 3 (s tcss,021%) [

TBlcaches

icsche opss reads (Stcxs,026%) -
read s @tcss,0.10%) 'l

threaa7 (3tcks, 0.15%)

EE Zoomou |

In Codescape Debugger’s intuitive flexible, real estate conscious GUI, regions can be docked, floated or tabbed.

What you can debug...

Codescape Debugger has been designed from the ground up to SoCs with hardware threads, virtual processors (VPEs), hardware
have multiple connections to multiple, heterogeneous, multi-core thread contexts (TCs), and multiple software threads.

Targets | - X
S s/ Simulator UCCPShannon_Config3

! 7 G MTP-2133- D:\examples\0203 uccprNﬂmmmmg_mmp.:
DA #5 MTP-213-3-Threadd DSP Run-in progress [running...] - meta_logging_exam |
X #F MTP-213-3-Threadl DSP Initialise-completed [hard-reset]
connections 44} MCP330-0 Initalise-compl a[haru.rgsmg {
#5% MCP330-1 Initial pleted [hard-reset] | Cores
I—_9“ DA-net 00528 - D:\examples\thread:x_with_trace\mips\gnu\demo'\demo_threadx_be_ I
=--#5E MIPS:i pti p- pleted [stopped] €€ m T
¥ ThreadX Task 1: System Timer Tk gy an CtrieF9
FR ThreadX Task 2: thread 0 Execution 3
FRE ThreadX Task 3: thread1 << curr Restant Ctel+ShifteR
Software B4 Thread Task d: thread 2 Reset Target »
th rea d s 7 EXE ThreadX Task 5: thread 3 Disable Core
K& ThreadX Task 6: thread 4 Load Via Script.. Crl+ ShiftsV.
K8 ThreadX Task 7: thread 5 Load Program Fille. CtrleShift-C
K% ThreadX Task 8: thread 6 Unload Program File Info Curl+AR+U
E%F ThreadX Task9: thread 7 Clear the Load Script Ctri=AltsT
E¥%¥ ThreadX Task 10: lcd thread Target Debug Options...

() wan/ Simulator [Asim-74K_74Kc-BE - D:\exampli Diagnostics...
i MIPS:T4Kc Stop-completed [stopped] Start Linux Debug

5--ai/ DA-net 00009 - Di\examplesimips_examph Add Target.. e 4t
VPEs D #i MIPS:34Kc-VPED Stop-completed [sto Remove Target
i TC0 << current > T e I

£ 1
Show All C
I D MIPS34KC-VPEL Stop-completed [sta TCs

#% TCL << current & Periodic Uodates >
i #k TC3 Colour Scheme. 5
Linux debug stub 3 x v esntoet 256

connection _9_ @34 gdbserver Run-in progress [running...] - Di\examples\Linus\mt\factorial_test_be\ : ; :
B% 32: MIPS Run-interrupted (breakpoint] Linux application

& 32b: MIPS Stop-completed [stopped] threads
B 32¢: MIPS Stop-completed [stopped]

Linux application = :

Debug Regions

Codescape Debugger provides a host of useful debugging
regions to display data, and using the extensive scripting support
you can create bespoke regions and plug-ins to display your data
in unique ways. Regions can be tied to specific threads, or the
current thread, and can be docked, floating or stacked in tabbed
groups. Data can be dragged between regions and targets using
intelligent, contextual drag-and-drop.

| Source Fully featured syntax highlighted editor.

| Hex Editor Edit and display binaries in many formats.

| Disassembly Can show interleaved source and disassembly.

| Register Layout is user definable and can display in different
radices/formats.

| Callstack Can unwind through interrupt handlers. Uses code
reading and debug info.

| Memory Shows all types of memory (RAM, DSP, CORE etc) in
many different formats.

| Breakpoint Shows breakpoint state for all, current, or specific
threads.

| Watch Watch and edit values of variables or complex
expressions.

| Local Watch Automatically populated with variables in the current

scope.

| Peripheral Watch Populated with the peripheral registers. Bit fields

shown/edited as mnemonics.

| RTOS Watch Automatically populated with RTOS data e.g.
threads, mutexes, block pools etc.

| RTOS Trace Graphically displays the Task execution captured by
the RTOS.

| TLB Displays all TLB in Raw or Decoded format.

| ICache Displays the ICache in a human readable format.

| DCache Displays the DCache in a human readable format.

| Script Create your own region using wxWidgets & Python.

| Terminal VT100 emulator. Stream output to file.

| Profiler Low impact PC capture. Data shown next to code.

| Realtime Trace Graphical representation of Real Time Trace data.

Setup and display data from the MIPS PDTrace
system.

| Trace Results

| Overlay Shows the current status of Overlays.

Linux Application Debug

Linux applications can be debugged via gdbserver running on
Linux on the target. Connecting to gdbserver over a specified
port, Codescape Debugger displays gdbserver as a target, and
when debugging Linux user code with multiple threads, each
pthread can be debugged just like a core.

Semihosting

The MIPS Toolkit and Codescape Debugger provide support

for semihosting functions from a target via a built-in APl in the
toolkit. The debugger allows you to set a root directory for semi-
hosting operations so that programs running on a target can use
relative address pathing for file operations. No additional libraries
or function calls are required. Semihosting operations supported
include file operations such as fopen, fwrite, fread and fclose and
outputs such as stdout, stderr and printf.

Make Manager

Make Manager provides a quick and simple way to call ‘make’
and see your build log without exiting the debugger. Multiple
configurations for ‘make’ can be specified with individually-
specified parameters for each configuration.

Scripting and Customization

Imagination supplies an advanced, Python-based, scripting
interface and command-line console, Codescape Console, that
enables direct access to Imagination’s debug probes from your
host PC without using the Codescape Debugger user interface.
This provides an ultra-low-level, non-intrusive, scripting layer that
is ideal for target bring-up and allows you to perform such tasks
as read/write memory and registers, or manually control JTAG
signals, with very predictable impact on the target.

In addition to these external scripting environments, Codescape
Debugger has its own internal, fully-configurable, script region
that supports standard wxPython to enable advanced graphical
scripting for data visualisation, input/output device emulation, and
the creation of bespoke debug regions.

|2 %2 € Ensigmasokiog - MTP TO

Config3 Threadd DSP @
o =

(i Statlogging

® Oveton, Duta logged: 1720 byes

Base Timestamp: 2402815

B e

import Stringll

Tt array
impart codescape

qIRE

import mach

import os

import e
import sqiied

FEE T

import aya

import traceback

import wx

T 2T

T i wom

L] L]
411230 405898.0

26487

Graph Legend
X 0Baseband T 8
X 1 Searchcacels

e
from imgtec.codescape.da_types impol

from imgrec. Lib.ws_extensions impor|
R !

X 30LE
dbFilename = None sgeseT

Table

class
aga

dar

Dovatven| P S
DVB-T2 Summary (v|
2804542
L1 Signalling
Graph Controls @ || |[E w28 peT SIS0 T2wrin 119
Fite.) [SetRange... J{[oty rate 872 loag (42 Bocks) L1 post constellaton BPSK
L1 past knig 350
L1 post scramting .
] L1 pra dcesde amors 0
@1 L1 pest dwcode wrors O
e rate updates 42
OFDM BICM
Saabe OFDM_STATE_DATA_DEUOD Daria Pip.
Frame symaols (41349) Decoded fames 17328
Ingut power -14.94 8 LEPE chack cound fad 205214
Channel #s3muate power 2503 0B BCH uncorrectasie CW 109
Pezias power 27.98 88 T Jefo04 margn 83.00%
Mean CSI 6.09 @8 Tigak parod 61298 uy
Infal Coarss Fracional CFO unable to evaluste Hum taded margn 0
TP

Profiling and Tracing

Statistical profiling data, with variable sample rate, can be PDTrace on-chip tracing hardware. The data captured is
displayed alongside the standard Source and Disassembly configurable and includes processor-specific information captured
regions. from each pipeline and from non-processor-specific blocks such

as the Coherence Manager block in a Coherent Multi-Processor
Trace Results Region system.

The Trace Results Region reads trace data saved by MIPS’

[a% i v " MIPS Trace Results - T0 | - x
Frame | TC | Data | Disassembly | =
1g.38 1] idle cycles 2 |
18.39 o pe 0x805415a8 = 22, 48(s=p)
18.39 a st32 Ox80511f18 Ox00143638
19.30 aQ pCc 0x805415ac W =1, 44(=p)
19.30 o at32 O0x80511f14 0Ox001435d4
20.26 1] Sync: pc=0x805415b0 mode kernel (exl=0 erl=0), isa=MIFS532, asid=0Ox
20.26 [+] FCR =13 0x805415k0 jal smp_setup_processor_id
21.18 Q PC OX805415k4 aw 20, 40(=p)
21.18 o at32 O0x80511£10 0x0000002e
26.24 (1] idle eycles 45
26.25 a FCR IM =1=3 Ox280541530 ixr ra
26.36 Q Sync: pc=0x80541594 mode kernel (exl=0 erl=0), isa=MIPS32, asid=0x
26.36 (4] IM pc 0x80541594 nep
27.30 a idle cycles 1
28.22] <1 0x805415b8 di
29.14] pc 0x805415bc ehb
29.56 1] idle cycles 32
29.57 o Sync: pe=0x805415c0 mode kernel (exl=0 erl=0), ia3a=MIP3532, asid=0x
29.57 a IM j=1=3 Ox2805415c0 1i i, 1
30.50 o M pc 0x805415c4 lui w0, 0x8052
31.44 1] idle cycles 3
31.45 [+] =13 0x805415ce move al, zero
31.56] j=1=3 0x805415cc 1i al, 1
32.10] FCR pc 0x805415d0 jal set_bicROx801255%8
3z.21 [1] pe 0x805415d4 ab wl, -31164(v0)
3z2.21 a LSM st8 Ox80518644 O0x01
34.41 Q idle cycles 33
34.42 (4] IM h=1=3 0x801255£8 srl vl, a0, OxS
34.53 a Sync: pc=0x801255fc mode kernel (exl=0 erl=0), isa=MIPS32, asid=0x
34.53 Q IM PC Ox801255fc andi al, al, Oxff
37.14 o idle cycles 36
37.18 1] Sync: pe=0x80125600 mode kernel (exl=0 erl=0), isa=MIPS32, asid=0x
37.15 a IM pe Ox80125600 beqgz al, elear_bit@0x80125638
38.06 a IM =1=3 Ox80125604 511 vli, w1, 0Ox2
38.59 0 idle cycles S
38.60 2] j=1=3 OxS80125608 lui w0, 0x8052
35.14 [s] PCc Ox8012560c addiu w0, w0, -30748
39.25 Q PC Ox80125610 addu w0, w0, wl i
20 _2& n e Nwsn12s814 14 w11
< " v

RTOS Trace Region

Codescape Debugger supports debug and trace of several and displays system variables in use by real-time operating
common realtime operating systems, including ThreadX, systems, and the RTOS Trace region reads, processes, and
FreeRTOS and MEOS. The RTOS Watch region reads, formats, displays thread execution order and duration.

Iwm RTOS Trace | v X

Start ticks |;|

Endticks 490

Init (36 ticks, 7.38%)
thread 0 (2 ticks, 0.41%) I
thread 5 (2 ticks, 0.41%) |
thread 3 (3 ticks, 0.61%) I
thread 4 (2 ticks, 0.41%) I
thread 6 (4 ticks, 0.82%) I
thread 7 (2 ticks, 0.41%) I

Icd thread (2 ticks, 0.41%) |

thread 1 (227 ticks, 46.52%) -

thread 2 (208 ticks, 42.62%) 104 tick

Use left mouse double clickto zoom in at that peint. CTRL + dbl click to zoom out.
Drag the graph with the mouse to scroll or use the scroll buttons [<<][<] [=][==].

Codescape Console

As part of the debug tools suite, Imagination supplies a stand-alone, command-line,
interface called Codescape Console that enables direct access to Imagination’s debug
probes from your host PC without using the Codescape Debugger user interface. It is
supplied with comprehensive command reference documentation and examples to enable
development of functionally-complex scripts for non-intrusive low-level debug and testing.

It is an extension of the cross-platform Python interpreter in which extensive task-specific
tab completion and command history has been added. Commands are automatically
available in the global namespace and are optimised to be easy to type. No knowledge of
Python is required, but familiarity will help you to become more productive and maximise
the potential of Codescape Console. Customers familiar with MIPS System Navigator
Console (NavCon) will find that Codescape Console is very similar with equivalent
commands.

Low-level Debug

Codescape Console is especially useful for target bring-up and low-level debug because
only commands that are submitted by the user are performed. This allows you to execute
such tasks as read/write memory and registers, or manually controlling IR and DR JTAG
lines with very predictable impact on the target where using Codescape Debugger would
result in a more intrusive target interaction. To support low-level bring-up, Imagination
supplies comprehensive documentation and example scripts for validation of EJTAG
implementation, target detect, and low-level troubleshooting.

Debugging Extensions

Codescape Console provides high levels of logging for contents of registers, memory,
disassembly and caches/TLB. For example, registers are displayed with field information,
memory read results are displayed with address and ascii representation, and where no
better display is available integer expressions are displayed in hexadecimal.

The asm assembler supplied with the Codescape MIPS toolchain can be invoked from
Codescape Console and assembled instruction sequences displayed in the console.
ELF program files with symbols can be loaded onto your target directly from Codescape
Console. Target definition commands enable target configuration and TAP layout to

be supplied to the debug probe to allow for a minimally-intrusive connection and to
accommodate non-standard targets.

Features

Python-based command line
console

Use stand-alone or in conjunction
with Codescape Debugger

High levels of logging
In-line assembler
Elf load with symbols

Tab complete plus history and
command/parameter help

Full command reference
documentation with examples

Benefits

Non-intrusive debug
Predictable impact on target
Cross-platform
Customizable and extensible

Applications

Silicon bring-up

Debugging and working around
core and cache bugs

TAP configuration and validation
Test automation

Debugging unstable or non-
standard targets

—cs53_region_start_ram

000 To2 =

reset_malta_ram, _ftext)

Writing Your Own Commands

Because Codescape Console is written in Python, new commands can be easily
written to automate common tasks. Assistance for writing and documenting extension
commands is provided in the Codescape Console documentation.

Integrating with Codescape Debugger

Just as with any other high-level debugger, Codescape Debugger makes many
demands on a connected target and problems can be encountered such as lock-up
on illegal memory accesses or sensitivity to memory accesses performed shortly after
reset. By using Codescape Console to initialise parts of the system you can enable
Codescape Debugger to work more reliably with sensitive targets.

Connect scripts can be invoked from Codescape Debugger so a console script

runs to perform connection tasks before Codescape Debugger connects to the
target. Examples are provided for common tasks such as enabling the JTAG port on
connection, initialising SPRAM, or dynamically selecting a hardware support package.

Once connection has been established, scripts that run with an active connection to
Codescape Debugger can be invoked to run on various events such as target reset
or breakpoints. Scripts can also be run from Codescape Debugger’s Run Script pane
following user input or from the Script Region where graphical scripts can receive
target events.

UK 1 +44 1923 260511 enquiries@imgtec.com
USA t +1408 5305000 www.imgtec.com

TM/® Denotes a trademark or registered trademark of Imagination Technologies Limited
and/or its affiliated group companies in the United Kingdom and/or other countries. All other
logos, products, trademarks and registered trademarks are the property of their respective
manufacturers. Copyright © 2014 Imagination Technologies Limited, an Imagination
Technologies Group plc company. November 2014.

Imagination

