
Copyright © 2014 Imagination Technologies Limited	 1.0

Codescape Debugger is Imagination’s bespoke debug environment for heterogeneous
SoC development. It has recently undergone a major overhaul to include many new
features for native debugging of MIPS targets and other IP from Imagination. From
Codescape Debugger you can simultaneously debug MIPS CPU cores, as well as Ensigma
communications RPU cores in a single environment, with more heterogeneous processing
features coming soon.

Codescape Debugger 8

Features
Simultaneous multiple debug adapter
connections to multi-SoC, multi-core,
multi-VPE with multi-OS task support

OS-aware debug support for Linux®,
ThreadX®, Nucleus™, Free RTOS and
MEOS™

Ultra-fast debugging performance
using intelligent, low latency probes
(<1 sec step with multiple connections,
VPEs, TCs and threads. >1 MByte/sec
binary load)

Configurable debug regions

Python scripting support

Run external tools such as make and
user scripts at a key press

Ensigma RPU support – fully-featured
MCP core debugging

Rogue Shader debug

Benefits
Powerful and cost-effective system for
all members of SoC and application
development teams

Single IDE for the entire development
cycle

Mature solutions that minimize risk and
reduce time to market

Proven technology used by major SoC
manufacturers

Lifetime product support

Applications
IP evaluation

SoC design

SoC bring-up

Driver development

Application development

Code optimization

Host environments Debug environments

The Codescape Development System
Codescape Debugger forms the hub of a system that facilitates all stages of development
alongside a low-level command-line console, built-in scripting, intelligent debug probes,
emulators and simulators. For pre-hardware application development, Codescape
Debugger works with the MIPS Instruction Accurate Simulator (IASim) and QEMU
emulator. For silicon bring-up, application development, and testing on real hardware,
Codescape Debugger can connect to Imagination’s range of debug probes supporting
JTAG, cJTAG and EJTAG-equipped targets. Host connection via USB or Ethernet enables
remote debugging across networks.

Codescape
Debugger High-level

Debug Engine

Low-level
Debug

User Scripts
and Tools Probe

Local
Simulators

Remote
Simulators

To
ol

ch
ai

n

Codescape
Console

Emulators
or FPGA

Tr
an

sp
or

t L
ay

er Ethernet
or USB

Codescape Development System

Probe

Target
Board

What you can debug…

Codescape Debugger has been designed from the ground up to
have multiple connections to multiple, heterogeneous, multi-core

SoCs with hardware threads, virtual processors (VPEs), hardware
thread contexts (TCs), and multiple software threads.

In Codescape Debugger’s intuitive flexible, real estate conscious GUI, regions can be docked, floated or tabbed.

The Codescape Debugger User Interface
Codescape Debugger is driven from its own powerful GUI,
running natively on 32-bit and 64-bit Windows, Linux and Mac
OS hosts. For fast, efficient debugging, it provides a host of
useful debug views and features such as editable memory, drag
and drop between views and real-time OS-aware debugging.

For more advanced product development, Codescape Debugger
has many state-of-the-art features such as built-in graphical
scripting, a fully-annotated memory mapped peripheral inspector,
real-time event tracing and support for multi-SoC, multi-core,
multi-VPE and multi-OS task development and debugging.

TCs

Cores

Simultaneously connect to a variety
of multi-VPE and multi-core real
and simulated targets debugging
multiple OSs.

Use advanced in-built graphical
scripting for data visualisation. This
example shows event profiling on
an Ensigma RPU.

View task swaps between threads
with native RTOS aware debugging.

Linux application
threads

VPEs

DA
connections

Linux debug stub
connection

Linux application

Software
threads

Linux Application Debug

Linux applications can be debugged via gdbserver running on
Linux on the target. Connecting to gdbserver over a specified
port, Codescape Debugger displays gdbserver as a target, and
when debugging Linux user code with multiple threads, each
pthread can be debugged just like a core.

Semihosting

The MIPS Toolkit and Codescape Debugger provide support
for semihosting functions from a target via a built-in API in the
toolkit. The debugger allows you to set a root directory for semi-
hosting operations so that programs running on a target can use
relative address pathing for file operations. No additional libraries
or function calls are required. Semihosting operations supported
include file operations such as fopen, fwrite, fread and fclose and
outputs such as stdout, stderr and printf.

Make Manager

Make Manager provides a quick and simple way to call ‘make’
and see your build log without exiting the debugger. Multiple
configurations for ‘make’ can be specified with individually-
specified parameters for each configuration.

Scripting and Customization
Imagination supplies an advanced, Python-based, scripting
interface and command-line console, Codescape Console, that
enables direct access to Imagination’s debug probes from your
host PC without using the Codescape Debugger user interface.
This provides an ultra-low-level, non-intrusive, scripting layer that
is ideal for target bring-up and allows you to perform such tasks
as read/write memory and registers, or manually control JTAG
signals, with very predictable impact on the target.

In addition to these external scripting environments, Codescape
Debugger has its own internal, fully-configurable, script region
that supports standard wxPython to enable advanced graphical
scripting for data visualisation, input/output device emulation, and
the creation of bespoke debug regions.

Debug Regions

Codescape Debugger provides a host of useful debugging
regions to display data, and using the extensive scripting support
you can create bespoke regions and plug-ins to display your data
in unique ways. Regions can be tied to specific threads, or the
current thread, and can be docked, floating or stacked in tabbed
groups. Data can be dragged between regions and targets using
intelligent, contextual drag-and-drop.

| Source	 Fully featured syntax highlighted editor.

| Hex Editor	 Edit and display binaries in many formats.

| Disassembly	 Can show interleaved source and disassembly.

| Register	 Layout is user definable and can display in different
radices/formats.

| Callstack	 Can unwind through interrupt handlers. Uses code
reading and debug info.

| Memory	 Shows all types of memory (RAM, DSP, CORE etc) in
many different formats.

| Breakpoint	 Shows breakpoint state for all, current, or specific
threads.

| Watch	 Watch and edit values of variables or complex
expressions.

| Local Watch	 Automatically populated with variables in the current
scope.

| Peripheral Watch	 Populated with the peripheral registers. Bit fields
shown/edited as mnemonics.

| RTOS Watch	 Automatically populated with RTOS data e.g.
threads, mutexes, block pools etc.

| RTOS Trace	 Graphically displays the Task execution captured by
the RTOS.

| TLB	 Displays all TLB in Raw or Decoded format.

| ICache	 Displays the ICache in a human readable format.

| DCache	 Displays the DCache in a human readable format.

| Script	 Create your own region using wxWidgets & Python.

| Terminal	 VT100 emulator. Stream output to file.

| Profiler	 Low impact PC capture. Data shown next to code.

| Realtime Trace	 Graphical representation of Real Time Trace data.

| Trace Results	 Setup and display data from the MIPS PDTrace
system.

| Overlay	 Shows the current status of Overlays.

Profiling and Tracing
Statistical profiling data, with variable sample rate, can be
displayed alongside the standard Source and Disassembly
regions.

Trace Results Region

The Trace Results Region reads trace data saved by MIPS’

PDTrace on-chip tracing hardware. The data captured is
configurable and includes processor-specific information captured
from each pipeline and from non-processor-specific blocks such
as the Coherence Manager block in a Coherent Multi-Processor
system.

RTOS Trace Region

Codescape Debugger supports debug and trace of several
common realtime operating systems, including ThreadX,
FreeRTOS and MEOS. The RTOS Watch region reads, formats,

and displays system variables in use by real-time operating
systems, and the RTOS Trace region reads, processes, and
displays thread execution order and duration.

Codescape Console
As part of the debug tools suite, Imagination supplies a stand-alone, command-line,
interface called Codescape Console that enables direct access to Imagination’s debug
probes from your host PC without using the Codescape Debugger user interface. It is
supplied with comprehensive command reference documentation and examples to enable
development of functionally-complex scripts for non-intrusive low-level debug and testing.

It is an extension of the cross-platform Python interpreter in which extensive task-specific
tab completion and command history has been added. Commands are automatically
available in the global namespace and are optimised to be easy to type. No knowledge of
Python is required, but familiarity will help you to become more productive and maximise
the potential of Codescape Console. Customers familiar with MIPS System Navigator
Console (NavCon) will find that Codescape Console is very similar with equivalent
commands.

Low-level Debug

Codescape Console is especially useful for target bring-up and low-level debug because
only commands that are submitted by the user are performed. This allows you to execute
such tasks as read/write memory and registers, or manually controlling IR and DR JTAG
lines with very predictable impact on the target where using Codescape Debugger would
result in a more intrusive target interaction. To support low-level bring-up, Imagination
supplies comprehensive documentation and example scripts for validation of EJTAG
implementation, target detect, and low-level troubleshooting.

Debugging Extensions

Codescape Console provides high levels of logging for contents of registers, memory,
disassembly and caches/TLB. For example, registers are displayed with field information,
memory read results are displayed with address and ascii representation, and where no
better display is available integer expressions are displayed in hexadecimal.

The asm assembler supplied with the Codescape MIPS toolchain can be invoked from
Codescape Console and assembled instruction sequences displayed in the console.
ELF program files with symbols can be loaded onto your target directly from Codescape
Console. Target definition commands enable target configuration and TAP layout to
be supplied to the debug probe to allow for a minimally-intrusive connection and to
accommodate non-standard targets.

Features

Python-based command line
console

Use stand-alone or in conjunction
with Codescape Debugger

High levels of logging

In-line assembler

Elf load with symbols

Tab complete plus history and
command/parameter help

Full command reference
documentation with examples

Benefits

Non-intrusive debug

Predictable impact on target

Cross-platform

Customizable and extensible

Applications

Silicon bring-up

Debugging and working around
core and cache bugs

TAP configuration and validation

Test automation

Debugging unstable or non-
standard targets

TM/® Denotes a trademark or registered trademark of Imagination Technologies Limited
and/or its affiliated group companies in the United Kingdom and/or other countries. All other
logos, products, trademarks and registered trademarks are the property of their respective
manufacturers. Copyright © 2014 Imagination Technologies Limited, an Imagination
Technologies Group plc company. November 2014.

enquiries@imgtec.com
www.imgtec.com

UK	 t: +44 1923 260511
USA	 t: +1 408 530 5000

Where to buy
Information and download details
for the Codescape MIPS SDK,
debug probes, customer support
and user forums can be found
at community.imgtec.com/
developers/mips

Codescape Debugger can run
natively on all variants of Microsoft
Windows from XP onwards,
Linux 2.6 kernels and Mac OS
X. Floating licenses for multiple
users or single-user node-locked
licenses are available.

A range of approved development
boards and vendor details is
available at store.imgtec.com/
product-category/mips

Writing Your Own Commands

Because Codescape Console is written in Python, new commands can be easily
written to automate common tasks. Assistance for writing and documenting extension
commands is provided in the Codescape Console documentation.

Integrating with Codescape Debugger

Just as with any other high-level debugger, Codescape Debugger makes many
demands on a connected target and problems can be encountered such as lock-up
on illegal memory accesses or sensitivity to memory accesses performed shortly after
reset. By using Codescape Console to initialise parts of the system you can enable
Codescape Debugger to work more reliably with sensitive targets.

Connect scripts can be invoked from Codescape Debugger so a console script
runs to perform connection tasks before Codescape Debugger connects to the
target. Examples are provided for common tasks such as enabling the JTAG port on
connection, initialising SPRAM, or dynamically selecting a hardware support package.

Once connection has been established, scripts that run with an active connection to
Codescape Debugger can be invoked to run on various events such as target reset
or breakpoints. Scripts can also be run from Codescape Debugger’s Run Script pane
following user input or from the Script Region where graphical scripts can receive
target events.

