
1

This section covers the control registers of the Coherency Manager

The Global Configuration Registers referred to as GCR, are the system
programmers interface to the Coherency manager. The location of these
register in the memory map is determined at core build time.

+ The GCRs are used to set the addresses for the Global Interrupt
Controller and Cluster power controller.

+ They can configure the non coherent areas of memory to either real
memory or I/O devices.

+ Control the coherency of the default shared memory region.

+ Controls the handling and reporting of coherency manager errors.

+ and any other options of the Coherency manager

2

The Global Control Registers are memory mapped registers located in the system’s
address space. The GCR space contains control and status registers for the entire
Coherent Processing System cluster and for the individual CPUs in the cluster.

+ All registers in the Global Control Block are 32 bits wide and should only be accessed
using 32-bit uncached loads and stores. Reads from unpopulated registers in the GCR
address space return 0x0, and writes to those locations are silently dropped without
generating any exceptions.

+ The GCR address space has a total size of 32 Kbytes, which is divided into 8 Kbyte
blocks

+ The first block is a global control block. This is a system wide block that cover all the
global aspects of the Coherent Processing System.

Some configuration values are on a per core basis so each core has a set of registers that
pertain to these local configuration items. This set of registers is called the Core-Local
control block. The address range for this block is the same for all cores relative to the local
core performing the ld or store to a register in this block.

A core can access another core’s local registers by using the Core-Other Control Block.
That way one core can read the status or change the configuration of another core. The
address range for this block is also the same for all cores relative to the local core
performing the ld or store to a register in this block. The selection of which cores registers
will be accessed in this block will be covered later.

The Global Debug Block is system wide block. It used for debugging purposes and
Performance information. The Debug Block is covered in upcoming sections.

3

The memory mapped address for the base of the Global Configuration
Registers can be found by reading CP0 register 15 select 3.

+ Here are the macros that will allow you to access the register from a c
program.

+ Here is an example of calling the macro from C

4

The first register in the Global block section is the global configuration
register. This register is a read-only register the gives you information on
the configuration of the Coherency Manager in your system.

NUM_ADDR_REGIONS is the number of Address Regions. This tells you
how many regions you can configure to support different coherency
policies. You would use regions, for example, to configure an area of
memory to be used for memory mapped I/O or to change the coherency of
the region between the l2 cache controller and real memory. I’ll talk more
about regions later in this section.

NUMIOCU Total number of I/O Control Units in the system. Our cores
support either none or up to 2 at this time.

PCORES tells you the number of cores in the Coherent Processing
System.

5

The GCR Base register lets you configure the GCR base address and
Coherency attributes under certain conditions. In most cases this value is
read only value having been configured as a IP option when the core was
built.

6

Default Address Region. For the default Address Region there is one configuration
register that determines if the Cache coherency attribute default override is enable, the
CCA if the override is enabled and the memory port that is associated with the default
region.

CCA_Override_Value and CCA_Override_enable are used in conjunction with
CM_DEFAULT_TARGET memory region shown in the next slide. As you will understand
when I explain CM regions, you can configure each with a starting address and size. The
CM_DEFAULT_TARGET region covers any memory not already covered by a
configurable CM region. If you don’t have any configurable regions then this default region
will cover all of memory. The CM_DEFAULT_TARGET can be set to 2 different types of
addresses, addresses that go to memory and addresses that go to the I/O Coherency Unit
for memory mapped I/O. Of course if you don’t have any other regions in your system this
default region should be set to Memory. In a typical system you would use the other
regions to map to the IOCU type for memory mapped I/O and this default region to map to
a memory type.

The CCA_DEFAULT_OVERRIDE_VALUE controls the cache coherency algorithm
between the L2 cache and memory. So If this is set to Write through any writes to the L2
cache will also be written to memory. If set to uncached writes will not be stored in the L2
and go directly to memory. If set to write back all writes will be stored in the cache and
only be written to memory if evicted or flushed, Last if set to uncached accelerated writes
will not be stored in the L2 but will be gathered in a cache line size buffer before being
written to memory.

The CCA_DEFAULT_OVERIDE_ENABLE bit controls the enabling of the default
CCA_DEFAULT_OVERRIDE_VALUE if the bit is set the region will use the
CCA_DEFAULT_OVERRIDE_VALUE. If it is zero the it will use the same CCA as the L1
cache.

7

More on the GCR Base register:

The CM_DEFAULT_TAGET controls if the region is used for memory or
memory mapped IO.

8

On bring up your system CPU 0 can control access to the GCR registers
by other CPUs through the use of this field. Each bit represents a
processor or VPE in an MT system. Setting the corresponding bit to 1
enables writes to the GCR from that processor. Bits 0 – 3 correspond to
Cores 0 – 1. Bits 4 and 5 correspond to IOCU 0 and 1.

9

The GCR Revision Register is useful when reporting issues to MIPS
Technologies.

10

The Coherency Manager can detect ,

+ An Invalid request to the GCR, The Global Interrupt Controller or
Memory Management I/O controller. These invalid requests are usually
caused by trying to access these controllers through something other than
uncached accesses.

+ It can also detect an invalid intervention request due to inconsistent L1
cache states caused by improper coherence domain switch or inconsistent
Cache Attributes between 2 CPUs for the same cache line.

+ The GIC has several registers

+++ that are use to communicate error conditions which I will cover in
detail in upcoming slides.

+ All errors can be configured to cause an interrupt using the CM error
mask register.

11

There are 8 types of errors;

+ Types 1 and 2 are Global Control register write or read errors that are caused
by trying to access the GCR or GIC register space in some way other than with
an uncached address with a CCA of 2 causing a read of more than one word.

+ Types 3 and 4 are Coherent write or read errors that are caused by trying to
access the GCR, GIC or MMIO with a coherent memory address (address with a
CCA of 4 or 5).

+ Types 5 and 6 Memory mapped I/O read or write are caused by an I/O device
trying to write to Memory Mapped I/O space. This could happen if an IO device is
accessing itself or another IO device, by using the Coherency Manager.

+ types 17 and 18 are intervention read or write errors that can happen if the SW
didn't follow the proper procedure for going into or out of the coherence domain.
For example, if the Data Cache was not flushed when going from non-coherent to
coherent, then it's possible for different cores to have incompatible states for the
same line. Also, the cores could have different mappings for the same line, and
this could lead to an error if one core mapped the line as coherent and the other
mapped it as non-coherent.

+ types 24 – 26 are L2 cache errors. To accommodate L2 cache sizes greater
than 1MB, when the index field is too small in the CP0 CacheErr register to hold all
index tags, the information is captured in the CM2 Error GCRs. The previous CP0
CacheErr functionality is preserved for L2 cache sizes of 1MB and less.

12

Each bit in the GCR Global CM Mask Register enables an interrupt for the
corresponding interrupt type. The default interrupt mask is set to interrupt
on write requests and intervention errors.

The interrupt asserts the SI_CM_Err signal. It is recommended that this
signal be connected to SI_Cmint 0 of the GIC. The GIC section of this
course will go into how the GIC is setup to do that.

If the bit is 0 the error will signal a Bus Error exception for a data access.
The next slide tells you how to break it down to the exact eror.

BTW there is a typo in the default value. It sets bit 19 but there is no error
type 19!

13

For either a Bus error exception or an interrupt the Global CM Error Cause
Register will give you more information on the error. This register must be
cleared after the exception or interrupt is handled.

One of the 8 error types given in a previous slide will be set in the cm error
type field.

The cm error info gives you information on the error formatted based on
the error type. The tables in the next slides will show you how to map the
errors.

14

There are 2 formats for the CM Error Info.

Here is the format for CM Error Types 1-6.

+Here is the meaning of the OCP MCmd:

15

Here are the cm error info values for error types 16 through 31.

+Here is the encoding for the Coherent state errors

+ and here is the encoding for the intervention response errors

16

Here are the encodings for the L2 error information.

17

Here are the codes for the actions that caused the L2 error.

18

The Global CM error address register contains the address which caused
the error. It should be cleared after the exception or interrupt is handled.

The Global CM Error Multiple Register gives the type of error if a second
error is detected before the first one is handled. It must be cleared after the
exception or interrupt has been handled.

19

The CM2 provides the capability of including custom (user-defined) GCRs.
GGU_EX indicates if the customer GCR registers exist or not.

The GCR_CUSTOM_BASE register sets the physical address of the base address
of a 64KByte slice of memory space, where requests are directed to the Custom
GCRs.

GGU_EN enables the redirection of the memory request to the custom CGR
memory registers instead of memory.

20

The CM2 provides the capability of including custom (user-defined) GCRs.
GGU_EX indicates if the customer GCR registers exist or not.

The GCR_CUSTOM_BASE register sets the physical address of the base address
of a 64KByte slice of memory space, where requests are directed to the Custom
GCRs.

GGU_EN enables the redirection of the memory request to the custom CGR
memory registers instead of memory.

21

The GIC is configured into the system at IP build time. The chip designer
can decide to include a GIC or not. GIC was configured into the system if
the GIC_EX bit is set.

22

The CM2 adds the ability to issue a barrier-sync to the L2 without executing a
SYNC instruction, thus reducing the latency incurred for the sync. The L2-only
sync provides a mechanism to guarantee that an uncached request does not pass
previous cached requests in the L2 pipeline. For example, the L2-only SYNC can
be used between a L2 HitWB cacheop and a subsequent uncached write, to ensure
that the uncached write does not pass the writeback from the L2.

CM_L2_ONLY_SYNC_EN (bit 0) of the register must be set to a 1 for this
feature to be enabled. The address match is performed on a 4KB boundary. An
uncached write request address [31:12] that matches the address [31:12] in the
GCR_L2_ONLY_SYNC_BASE will cause the CM2 to treat the uncached write
request as an L2-only SYNC.

23

The Global Interrupt Controller Base Address Register is dependent on the
GIC_EX bit being set in the Global Interrupt Controller Status Register.
Only if it is set is the Global Interrupt Controller Base Address Register
valid. This register does 2 things, it is used to set the address of the GIC
and to enable the GIC. The address is system dependent. You should
consult your system specification or system designer to determine what
address in your memory map the GIC is located at. That address must be
on a 128k byte boundary. In other words the lower 17 bit of the address
must be zeros. This register should be written at system initialization time
with the value of that address.

In addition the GIC_EN bit controls the enabling of the GIC. Once the GIC
has been programmed this bit needs to be set to begin receiving
interrupts.

24

The cache revision register tells you the Major and Minor revision of the L2
cache.

25

The Cluster power controller is configured into the system at IP build time.
This register tells you if a CPC was configured into the system. NOTE: the
CPC is always part of the core so this will be set to 1.

26

The I/O Coherency Unit is configured into the system at IP build time. This
register tells you if a IOCU was configured into the system. If the Major
Revision field is 0 then there is no IOCU.

27

There are up to 5 programmable Address Regions that can be
programmed to support memory mapped I/O or memory storage regions.
The default region that covers any main memory not covered by another
region.

+ A region that is mapped to memory storage can be configured to have a
different CCA for the L2 to OCP interface than the L1 to L2 interface.

+ Reads and write requests to a region that has been mapped to the IOCU
go directly to the IOCU as non-coherent and uncached transactions.

+ Each region is defined by a pair of GCR registers a Base Address
Register and an Address Mask Register that determines its size.

The next slides will cover the configuration of these regions using these
registers.

28

This table shows you the offsets into the GCR where the “region registers”
are.

29

You program the regions physical address by writing to the regions CM
Base Address Register. Since CM Address Regions must start on 64K byte
boundaries only addresses with the lower 16 bits set to 0 are valid. The
lower 16 bits will always read back as zeros.

NOTE: CM2 has only 4 regions so address registers for the other regions
have been dropped.

30

CM_Region_Address_Mask determines the size of the region. This field is
used along with its equivalent CM Region Base Address Register.

The request physical address is logically ANDed with the value of this
register and ANDed with the value of the region’s Base Address Register
to see if the requested address is in range of this region. If it is the request
it is routed to this CM region.

NOTE: CM2 has only 4 regions so mask registers for the other regions
have been dropped.

31

Continuing with the Address Mask Register:

CCA_Override_Value and CCA_Override_Enable are used in conjunction
with CM_REGION_TARGET memory region. If the
CCA_OVERRIDE_ENABLE is not set then the CCA for the L2 to memory
is the same as the CCA form the L1 caches to the L2. If the
CCA_OVERRIDE_EENABLE bit is set then the CCA value in the
CCA_OVERRIDE_VALUE field will be used for the CCA from L2 to
Memory.

32

More on the Address Mask Register:

The CM_REGION_TARGET directs the region to Memory or the I/O
Coherency Unit.

NOTE: A second IOCU has been added with CM2.

33

The next 2 blocks in the Control Address space are the Core-Local and
Core-Other Blocks. These blocks are local to a specific CPU.

The Core-Local block can be accessed at offset hex 2000 from the GCR
Base Address. Using this address all CPUs will see their own register set
due to the magic of hardware. The hardware knows what CPU the address
is being requested from and it directs the request to the correct Core-local
block.

The Core-Other block can be accessed at offset hex 4000 from the GCR
Base Address This block gives any CPU a way of accessing another
CPU’s CM local registers. To do this the CPU writes to its own Core Other
Address register. I’ll cover this in a bit.

I will cover each register in-turn in slides that follow.

34

The Core Local Coherence Control Register sets up the Coherent domain
for the CPU using the Coherency Domain Enable field. This field consists
of 8 bits with each bit corresponding to a Core in the system. Setting a bit
enables interventions from the corresponding Core. The bit that
corresponds to the local CPU enables coherence mode for the local CPU.

This register is used by the local CPU to enter the Coherence Domain and
to exit the Coherence Domain.

The CPU needs to follow the entering the domain sequence of initializing
the Caches, Enabling the interventions from other cores and enabling
coherence mode for itself at reset and power up of the CPU.

Before a power down of the CPU, the CPU needs to follow the exiting the
domain sequence of disabling interventions , flushing its data cache,
invalidating the its caches and disabling coherence mode.

35

The CM Core Config register is a read-only register that gives you
information about the CPU.

The first field IOCU_TYPE will be set to 0 because a CPU is not an IOCU.

The second field PVPE will give the number of Virtual Processing elements
for an MT system. If this is a single Processor system this field will be set
to 0. If this is a Multi-Threaded system the number of VPES in the Core will
the number in this field plus 1.

36

The Core Number field of the “Core other addressing register” needs to be
written with the number of the other core who’s local registers you wish to
access. Once this is written you can access that CPU’s CM Local registers
through the Core-Other register block.

37

The BEVEXCBase field in the Core Local Reset Exception Base Register
controls where the CPU will fetch the first instruction when it is powered up
and reset. If you wanted to have CPUs that used different boot code you
could access this register through the core-other group from another CPU
and set the boot address for this CPU. There will be more on this register
the EVA section of this course.

38

The Core Local Identification Register is a read only register that tells the
CPU which CPU it is. The code will use this number to setup things like
enabling coherency in the Core Local Coherence Control Register.

39

This register is an extension to the Core-Local Reset Exception Base Register.
The value is used for placing the exception vectors within the virtual address map
during core boot-up time. This will be covered in more detail in the segmentation
and EVA section.

40

There are nine thread context ID registers one for each possible thread. the 2 bits
of Priority value is passed through with memory transactions to the OCP bus. This
enables the system to identify the TC that is associated with the bus transaction.

Additional NOTE:

A new set of GCR registers,
GCR_CL_TCID_n_PRIORITY/GCR_CO_TCID_n_PRIORITY have been added
to

the Core Local/Core Other Block Register Map at offset 0x0040 to 0x0080. The
IOCU_TYPE (bit 11:10) in the

GCR_CL_CONFIG/GCR_CO_CONFIG has to be set value of 0,to enable this
feature.

The GCR_CL_TCID_n_PRIORITY/GCR_CO_TCID_n_PRIORITY register is
accessed based on the TCID n,

and the 2 bits of Priority value is passed through the MConnID.

41

