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This section covers Exceptions.
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+ An exception is an event the disrupts the normal flow of the execution of 
your code. 

The CPU the exception routine is a special piece of code that tries to 
figure out what is wrong by check its status, see if it can be corrected and 
then continue along executing the normal code like nothing happened. 

Here are some of the most common causes of an exception:

+ An interrupt is caused by a device that is external to the CPU. For 
example a clock interrupt or a packet of information coming in from the 
network. It’s like a delivery man ringing your doorbell with a package for 
you. You’ll go to the door sign for the package maybe open it. Eventually 
you’ll get back to doing what ever it was before the doorbell rang.

+ Another common cause is a TLB miss and the exception needs to 
update the TLB with the proper translation.

+ A  floating point exception which happens when the CPU doesn’t know 
how to execute the instruction it has been given.
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+ Program or hardware detected errors most of the time these are 
problems with the execution of an instruction. For example these 
exceptions happen when a user mode process tries to execute an 
instruction that only can be executed in kernel mode. Sometimes a 
programming error can cause a code area to be over written with data so 
the instructions in that area are now garbage so when the CPU tries to 
execute this code it will generate this exception.

+ If your cache is designed for it the cache can generate a exception when 
the CPU access a cashed instruction or data and the parity isn’t correct.

+ A system call is a way for a user mode program to transfer control to a 
OS running in kernel mode usually to request a OS service for example 
writing data to a disk drive.

+ There are more exceptions consult the Software User’s manual for the 
core you are using for the full list.
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Determining where the exception happened can be an issue. You may 
need to know what instruction caused the exception to be able to fix it and 
you also need to know where to restart normal execution. 

It’s the difference between falling asleep while reading a book, when you 
wakeup you usually know what happen, you fell asleep, and you can figure 
out where you left off in your book. Now say you were reading and you get 
knocked out when you come to you can’t figure out what happened 
because you don’t know what hit you and you may not even remember 
what you were doing.

+Luckily most of the time the CPU can tell you precisely the instruction you 
were executing so you can determine what happened and where to restart 
normal execution. These are called Precise exceptions.

+ When a precise exception happens you can be sure that all instructions 
in the execution stream before the exception is reported have been 
executed.

+ On return from execution handler the CPU will start execution with the 
instruction that was set to execute at the time the exception happened. 



+ To not cause any ambiguous execution, instructions in branch or jump delay 
slots are paired with the branch or jump. The return from exception execution will 
always execute the branch or jump even if the exception happened due to the 
instruction in the delay slot.
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There are times the CPU cannot precisely determine what instruction 
caused the exception or where to restart execution. 

+ It can only tell you what instruction was executing when the exception 
was detected An exception is imprecise when EPC/ErrorEPC/DEPC does 
not point to the instruction that caused the exception.

For example, if a load instruction misses in all of the caches for the 
requested data, and the cache hierarchy is non-blocking, execution may 
proceed pass the load. An interrupt may be recognized and accepted on 
an instruction subsequent to the load. While the interrupt handler is being 
executed, the response of the load returns and the response signals a Bus 
Error. In that case, a nested exception would occur, but the EPC for the 
bus error would not hold the address of the faulting load instruction. If the 
EXL bit is set at the time the Bus Error exception is recognized, the EPC 
would not be updated: for this case, the EPC would point to an instruction 
within the interrupt handler. A similar case can occur for late-arriving 
Floating-Point exceptions.

+ A bus, Cache and L2 Cache errors can be one of these exceptions 
because a load is non blocking and allows other instructions to execute 
until a instruction tries to execute that is dependent on the data being 
loaded. So the bus error for the load can occur on another instruction. A 



fetch can cause a bus error but since most cores fetch ahead of execution the 
bus error may also happen while executing another instruction. 

Only reads from the bus can cause bus error exceptions. With that in mind you 
might think that a store could not cause a bus error because it is after all a write 
to memory.  However stores to cached memory can indirectly cause bus errors. 
When data is being written to the data cache and there is a cache miss for the 
cache line that contains the data the cache controller will request a read of the 
entire cache line from memory. It will then merge the word being stored. This 
read from memory can be the source of a bus error.

Most of the time this is where things go terribly wrong. Recovery from these 
errors can be tricky. First you would need to correct the error or try the bus 
operation again. Unless you have designed your code to check point itself as it 
goes so you can determine a good restart point it will be hard to do anything but 
restart the entire process. Most of the time this to will fail in the same place and 
you will be left with trying to report the problem to the user.
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There is a special error condition for Reset, NMI and Cache errors called 
Error Level. You can tell if the CPU is in this state by checking the ERL bit 
in the status register.

+ The ERL bit is bit two of the Status register.

+ When this bit is set the CPU is in Kernel Mode and all interrupts have 
been disabled.
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+ the reset and NMI exception vector is usually BF C0 00 00 hex 

+ The cache error exception vector is different depending on the Boot 
Exception Vector bit in the status register. If Boot Exception Vector bit is 
set, as it is at boot time, then the cache error vector is BF C0 03 00. If it is 
not set then the vector is A0 00 01 00. The idea here is you may take a 
cache exception when you are booting from rom or flash but once you 
have initialized your system you can clear the BEV bit and cache 
exceptions will go to what can be faster memory. The A0 00 01 00 vector 
is still of course in a uncached region of memory, kseg1.

The ERET instruction will use the return address held in ErrorEPC instead 
of EPC
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On power up, Reset or NMI the processors come up in exception mode 
and fetch the first instruction at the Boot Exception Vector. The address for 
the boot exception vector is determined by a configuration option when the 
core is built and usually falls in the range of a boot flash. There is a bit in 
the status register called BEV (boot exception Vector) it is set by a power 
on, reset or NMI. Part of the boot process is to relocate the exception 
vectors so they will be placed in RAM for faster processing. Once the 
vectors are placed in RAM the boot code can set the Exception Base 
Register to the relocated address. The code then clears the BEV bit in the 
Status Register so that the processor will use the address in the Exception 
Base Register from that point on.

The EBase register also contains a read-only CPU number value that may 
be used by software to distinguish different processors in a multi-
processor system.

+ Bit thirty and 31 one are hardwired to force all vectors into the cacheable 
Kseg0 address space with the exception of a cache error exception which 
will be forced into the un-cached Kseg1 address space.

+ Bits 12– 29 work in conjunction with bits thirty one  and thirty to specify 
the base address of the exception vectors.



Bits eleven and ten are reserved bits and must be written as zeros. They will 
always return zeros when read.

+ Bits zero through nine are usually set when the processor is implemented with 
a unique value to distinguish one processor from another. Your code can use this 
to determine which processor it is dealing with.

Bits zero through eleven do not figure into the exception base address.
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+ Exception Level bit in the Status Register is set by the processor when 
any exception other than Reset, NMI or Cache Error exception are taken.

+ The EXL bit set means the CPU is in a normal exception mode set to 
process an exception that can be returned from using the Exception 
Program Counter register or EPC for short. In this mode the Exception 
Program Counter contains the Program Counter that the CPU was 
processing when the exception happened. Also there is a bit call the 
Branch Delay bit located in the cause register that will be set if the CPU 
was executing the instruction in a branch or jump delay slot. The exception 
code should used this bit to determine what instruction might have caused 
the exception. If the Branch Delay bit is set either the instruction at 
Exception Program Counter or the instruction in the Branch delay slot 
could have caused the exception.

+ All interrupt exceptions both software and hardware will be disabled by 
the CPU before execution of the exception routine. Exception other than 
interrupts can still occur.

Note: The Exception PC, Cause register’s Branch Delay bit  and Shadow 
Register set register’s  Control bit will not be updated if another exception 
is taken.



Let take a moment to review what I have talked about so far by using is a table of the exception 
vectors.

+ The first vector is commonly called the boot exception vector because the CPU at power up will 
always start fetching it’s first instruction at this vector. This vector is also used for Reset, Soft-reset 
and Non-maskable interrupts. All of these will cause the system to reboot. As a reminder the vector 
BF C0 00 00 hex is in the non-cacheable Kseg1 address space which is directly mapped to 
physical address 1f C0 00 00 hex.

The next two sections of the table depend on the boot exception vector bit in the status register. 

+ The boot exception vector bit is set on a cold boot.  

+ Usually your system will have a boot rom or flash rams that occupies some amount of memory 
that is located at the boot exception vector physical address of 1F C0 00 00, remember that’s virtual 
address BF C0 00 00. The range of this rom or flesh will run at least through the address of the 
exception vectors shown here and the area need for the boot code.  The boot code starts at the 
boot exception vector and initializes the cache and the tlb and sets up exception routines in the 
cacheable Kseg0 address space. There will be more on Boot code in the Boot section of this 
course.

+ Once the boot code has done enough to be able to use Kseg0 the boot exception vector  bit is 
cleared

+ aside from  cache exceptions any exceptions that come after this will go to their cacheable 
address in Kseg0. The cache vector changes but remains in the uncached Kseg1 address space.
+ last, are the special vectors for use when the CPU is implemented with a EJTAG tap controller.
The address segments in red can be altered by the use of the Exception Base register, Ebase. 
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I will cover interrupt exceptions in detail right after I talk briefly about 
General exceptions that use the general exception vector.

General exceptions are any exceptions that are not external interrupts, 
TLB refills, cache, NMI or resets. All general exceptions go to the general 
exception vector. 

To determine which general exception has happened the code must 
examine the Exception Code field of the coprocessor zero Cause register. 
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Lets talk about some of the more common general exceptions 

+ A machine check exception happens when duplicate entries have been 
written to TLB. If this occurs the exception routine needs to read all the 
TLB entries and over write or invalidate the duplicate entries.

+ A Watch Exception happens due to an instruction or data access that 
matches the address specified in the watch registers. Watch exceptions 
are not taken if the CPU is already in exception mode instead, these watch 
events are remembered, and result in a Deferred Watch exception, which 
taken as soon as the CPU leaves exception mode. 

+ A Address error exception is taken when a load or store tries to access 
data that is not aligned to the data type of the instruction. For example the 
destination address of a Store Half Word instruction must be aligned to a 
halfword boundary. An instruction fetch from a non thirty two bit aligned 
address for normal instructions or a sixteen bit address for MIPS16 
instructions will cause this exception.  This can happen if the EPC or 
EEPC register were overwritten with an unaligned address. Any reference 
to kernel address space while the CPU is in user mode will also cause this 
exception.



+ Bus error is generated by an external device when there is a problem in 
completing a memory request.

+ A system call instruction is coded into you programs by the compiler when your 
program references a function the needs an OS service. For more information on 
the system call instruction refer to the MIPS Instruction set section of this course.
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+ A reserve instruction exception will happen if there is an instruction that 
the CPU cannot execute. This can be by design, in the case of Floating 
point instruction that are intended to be handled by software or it can be 
due to a corrupted code section.

+ Co processor Unusable exception happens when the CPU tries to 
execute a coprocessor instruction for a coprocessor that is not enabled or 
when it’s in user mode and tries to execute a CoProcessor zero 
instruction.

+ Core Extent Unusable exception happens when the Core Extend Enable 
bit is not set. Core extend instructions are user definable instruction that 
are incorporated  into the CPU design the Core Extend Enable bit offers 
programmatic  control over the  use of these instructions. For example in a 
virtual processor core such as the 34K these instruction can be limited to 
one of the thread processing units so other units would cause this 
exception if the tried to execute a core extend instruction.

+ Floating Point exceptions are any exception raised by the floating point 
unit. You will need to examine the status of the floating point unit to 
determine the cause.



+ The integer overflow instruction happens on selected instructions when the 
result over flows the size of an integer.
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+ The trap instruction is raised when a trap instruction results in a true 
condition. The MIPS instruction set section has more information on the 
trap instructions.

+ TLB Modified instruction is caused by a TBL valid entry that is 
referenced with its dirty bit cleared. The TLB and the use of this bit is 
discussed in the TLB section of this class.

+ In the case of a TLB refill if EXL is set it means that the CPU was 
already in the process of processing another exception. The TLB Refill 
vector is normally 0x8000 0000. this commonly happens while already 
processing a TLB exception. For example when a page table is needed 
who's address is not already translated by an entry in the TLB.

+ A breakpoint exception is caused by the execution of a Break instruction. 
The MIPS instruction set section has more information on the break 
instructions.

+ For addition exception condition s consult the Software Users Manual of 
your Core.
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I’ll now go into detail on Interrupts. 

+ Interrupt Exceptions are generated by external events. 

+ There are three ways the CPU can handle these events. 

+ First all interrupts can use the general exception vector. In this case the 
exception routine would check the exception code in the cause register 
and see that it was an interrupt exception. Then the code that would check 
the status of each device to see which one cause the interrupt.  This is 
commonly called interrupt compatibility  mode because it is the only way 
interrupts could be handled on very early MIPS processors and is still 
available  so code written for them will still work on more current 
processors.

+ The second way the CPU could handle interrupts is the use of interrupt 
vectors The CPU has 6 external pins that can be wired to devices so they 
can signal  the CPU when there is an interrupt. Each pins is associated 
with a program vector. When the CPU detects which pin is causing the 
interrupt it starts execution at the vector that pin is associated with.  
Sometimes there are more interrupt sources than 6 so some devices may 



be wire to the same pin and when an interrupt comes in the code needs to query 
the devices it knows are connected to the same pin. The highest pin number is 
given the highest priority.

+ And Third is the external interrupt controller mode or EIC for short. An external 
interrupt controller can supply the CPU with a value from 0 to 63. Zero  indicates 
there are no interrupts pending and  1 to 63 to indicate the vector of the interrupt 
to service so in this mode there can be 63 different interrupt vectors.
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Interrupts that use the general interrupt vector are pretty easy and 
handled like any other exceptions. Using the one general interrupt vector 
for interrupts is not used much because it offers the  poorest performance 
in interrupt handling. It is really only there for compatibility with older 
code. I don’t advise its use for new projects.

+ I’ll now go into how vector interrupt mode is used. 

+ To enable vectored interrupt mode the boot code needs to set the 
Interrupt Vector bit 23 in the cause register.

+ While we are here I would like to point out the Interrupt priority bits. 
These bits will give you status on what interrupts are active. You can 
check these bits at any time for pending interrupts although you don’t 
need to do so for normal operation.

The interrupt pending bits are made up of 6 hardware pins and 2 virtual 
software pins.  The software interrupts are tied to virtual interrupt pins 0 
and 1 and can be made the lowest priority interrupts. The idea behind 
them is you can use these software interrupts to complete interrupt 



processing that doesn’t need to be done at a higher priority level. You can be 
processing a interrupt say a level 5. Your code takes care of all the critical things 
but has some additional clean up to do that doesn’t need level 5 priority. You can 
raise a software interrupt that will trigger a software interrupt after all pending 
and enabled hardware interrupts have completed. You can do this by setting the 
virtual software pins, bits 8 or 9 in the cause register.
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+ You can use the Interrupt mask bits in the status register to control which 
individual interrupt pins will be enabled by the processor. When a interrupt 
pin is raised by an external device it will cause the cpu to start the interrupt 
routine only if the corresponding bit in the Interrupt mask field is set.
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The interrupt vectors start at address BF C0 04 00 during the boot process 
when the Boot Exception Vector bit  is set and 80 00 02 00 during normal 
operation when the Boot Exception Vector bit  is cleared. In both cases 
this address is after any other exception vectors.

+ Where the code for the next vector starts is programmable. You can 
select how much room there is between vectors. Usually there is just 
enough room for you to setup the interrupt stack, save registers as needed 
and call a C function to do the rest of the interrupt processing but you can 
have up to 512 bytes for code in between vectors.  Note there is only one 
setting that applies to all interrupt vectors.

+ The setting of the vector spacing is done by using the Vector Spacing 
bits in the CP zero Interrupt control register. The boot code should set up 
this spacing before interrupts are enabled. You will see an example of this 
later in this section.
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If you have viewed the MIPS instruction section of this course you know 
there are two instructions that make interrupt control easier. I think it’s a 
good idea to go over them here again.

+ First is the Disable interrupt instruction. This instruction helps by 
atomically saving the current value of the Status register to a general 
purpose register and clearing the Interrupt Enable bit in the CP0 Status 
register.

+ The Enable Interrupt instruction atomically saves the value of the status 
register to a general purpose register and sets the interrupt enable bit in 
the status register. 

+ Note you might not always what to use the Enable interrupt instruction 
particularly if you are nesting interrupts. You might just what to restore the 
Status register with the value it had when it entered your interrupt function, 
so the Interrupt Enable bit in the status register will remain as it was and 
the CPU will continue with processing any lower priority interrupt function 
that may have interrupted.
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The boot code and interrupt handling code will need to enable interrupts. 

+ To do so the code needs to make sure the following bits are set 
correctly:

+ Error Level bit is cleared

+ Exception Level Bit is cleared

+ Interrupt Enable bit is set

+ and the DebugMode bit is cleared in the CP zero Debug Register
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Next the code must enable individual interrupt vectors by setting the 
corresponding bit in the interrupt mask field of the CP zero status register.
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Before I go into a specific code example I want to give you an overview to 
make it clear about what happens through the interrupt process.

+ first I’ll start with what the CPU does.

+ Once an interrupt pin is raised and the pin is not masked off in the status 
register, the CPU sets the exception program counter to the restart 
address where normal processing should restart.

+ It sets the EXL bit in the Status Register. This has the effect of switching 
the processor to Kernel Mode and disabling all interrupts.
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+ The Co Processor Zero Cause Register is set to indicate the interrupt 
state. For example, the Interrupt Pending bit in the Cause register is set for 
this interrupt source and the exception code is set to indicate the cause of 
the exception.

If this were an exception you would have to consult the Exception Code 
field in the Cause Register to determine what exception happened. 

If this were a vectored interrupt you would already know the cause was an 
interrupt so you won’t have to check the exception code. 

Also if the cpu is not using vectored interrupts the vector interrupt bit in the 
Cause Register is cleared there is no enforcement of interrupt priority.  
Your code can dictate which interrupt can be serviced first by check the 
Interrupt Priority field of the Cause register and selecting a pin to service. It 
would be best to stick to the priority scheme of the highest pin being the 
highest priority but you don’t have to in this mode. 

+ The CPU then fetches the first instruction at the associated interrupt 



vector. 
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Before I go into the actual code example I’ll give you an overview of what 
your exception code should do

+ When exceptions are disabled you can use the General purpose 
registers K0 and K1 without saving them.

+ Save the mask bits in the Status register, The easiest way would be to 
save the whole status register.

+ Change the mask bits to mask out any interrupts of the same or lower 
priority then the one being serviced.



25

+ If the rest of your interrupt routine is in C you must first make room on 
the stack save all of the general purpose registers and then save them. If 
you are using a shadow register set for this vector you won’t have to save 
the General purpose registers but you will need to copy the stack pointer 
and global pointer to the shadow set.

+ If you are going to allow for nested interrupts you need to change the 
CPU State:

+ Enable interrupts by setting the Interrupt enable bit in the Status 
Register

+ Set the kernel mode by clearing the User Mode and Supervisor mod bits 
in the Status Register that way when you leave exception level you will still 
be in Kernel mode to process the rest of your interrupt routine.

+ Leave exception mode by clearing the Exception Level bit , EXL in the 
Status register.

+ you can now jump to you c function and process 
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+ On return you’ll need to disable interrupts again so you can restore the 
pre-interrupt values of registers and resume execution of the interrupted 
task. You can do this by restores the Status Register with the copy that 
you saved off in the beginning of the interrupt routine.

+ Make sure that the interrupt has been acknowledge and clear on the 
device that caused the interrupt. 

+ Restore CPU state so the interrupted code can continue unchanged. 

+ Restore the General Purpose registers. On a side note since you saved 
all the General Purpose registers this step will restore the stack pointer 
and Global pointers of the interrupted code so you shouldn’t use stack and 
global variables that are deference using these registers after this step in 
your interrupt code.

+ Now you are ready to return from the interrupt exception 

+ The code needs to jump to the address in the Exception Program 
counter and enable exceptions.



+ You should use the ERET instruction to do this because, it will atomically clear 
the EXL bit in the Status register and Jump the address stored in the Exception 
Program Counter.
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Link.ld Uses the 

+ .section directives in the isr.s source file to 

+ Link the code for each interrupt routines 

+ To their vector address.
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I will now cover the start.s file that initializes the interrupts in detail. 

One of the first things you will see in the start.s file is dot set no reorder. 
This is done because I want to control what goes into the branch delay 
slots of the Assemble code.
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The next piece of code will enable vector interrupt mode. 

If vectored interrupt mode is not enabled all interrupts will go to the 
general interrupt vector.

+ To enable vectored interrupt mode I need to set bit 23 of the cause 
register.

+ First I read the cause register into the t0 register using the move from 
Coprocessor zero instruction

+ then the next 2 instructions will set bit 23 in the t0 register by first 
moving a 1 to the t1 register and then using the insert instruction, 
inserting the first bit of register t1  into bit 23 of the t0 register

+ Now that the bit is set I will writ the value back to the cause register 
using the move to coprocessor zero instruction

+ I’ll use the ehb instruction to clear any hazard barrier that could exist 



with the write to the cause register. 
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You can set the spacing between the interrupt vectors to suit your needs. 
From no space which is usually not desirable because all you could do is 
fall into the next vector to 512 bytes where you might place a complete 
interrupt routine. 

I am going to set it for the max of 512 bytes.

+ First I read the interrupt control register into the t0 register using the 
move from Coprocessor zero instruction

+ load the value to be inserted

+ Notice how the register is laid out so you can set the lower bits to the 
actual spacing you want so all I have to do is insert  the spacing value into 
the t0 register.

+ then I just move the to register back to the interrupt control register using 
the move to coprocessor zero instruction.
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Now for the interrupt functions themselves. I am going to show you an 
interrupt function that will call a C function to do most of the work. In this 
example there is not much to do so the C function is very small but is will 
serve as an example for how you would go about calling a c function from 
a interrupt routine.

+ The first one I will go through is the non shadow set version.

+ as already covered in the assemble section of this training course, 
registers K0 and K1 are always free for an interrupt routine to use as long 
as interrupts are disabled. I will use them in this interrupt routine to adjust 
the stack pointer. This function will continue to use the current stack to 
store registers and call a C function. To do this I need to allocate room on 
the stack for the registers I want to save. 

+ I use the stack pointer stored in the general purpose register sp and 
since stacks grow downward I will subtract the amount of stack space I 
need from the sp register.

+ I also need to make sure the pointer is aligned to a word boundary.
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Now that the stack is setup I can start saving context.

+ One note there are 16 bytes that need to be available for C argument 
storage by C functions so I will leave the first 16 bytes of the stack free so 
the base register offset value for saving values to the stack will start at 20.

+ will use the store word instruction using the K1 register that has the 
adjusted stack pointer as a base register and increment a offset value as I 
save the registers.
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I want to show you what you need to do to nest interrupts to do this there 
are some coprocessor 0 register that need to be saved.

+ Here I will read the values of the status register and the  Error Program 
Counter. 

+ And save them to the stack.

Before allowing nested interrupts reset the interrupt source so this interrupt 
won’t be raised again when interrupts are enabled
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To enable interrupts I must clear the exl bit of the status register. Register 
t1 holds the value of the status register so I don’t need to get it again and 
since I have already saved the value to the stack I can make changes to 
the t1 register. I use the insert instruction to insert a 0 into bit 1 of the 
register which is the EXL bit and the move it back to the status register.

+ one thing to note you should also change the interrupt mask to mask out 
interrupts of equal to and less than the priority level you are servicing.   
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Last, I copy the stack pointer I have been using that is in the K1 register to 
the sp register and put an argument into the first argument register.  The 
argument will be used in the C function to increment a counter in the 
global array.
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After the code returns from the called C function I need to restore the state 
of the processor so it can continue processing what ever it was doing 
before being interrupted.

+ I copy the stack pointer to K1 and use K1 as a base register to load 
values from the stack.

+ I’ll restore the status register, Note this also has the effect of disabling 
interrupts since EXL should be set when this value was saved. Interrupts 
need to be disabled while we restore the rest of the registers.

+ I’ll restore the Error PC which has the address where processing will 
continue after the error return
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Next restore all the GPR registers
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And last use the error return instruction to atomically clear the EXL bit in 
the status register and returning execution to the point before the interrupt.
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This core can have additional General purpose register set that can be 
used by interrupts instead of using the normal register set, GPR set 0The 
next slide will show how a register set is assigned to a particular interrupt 
vector.
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Shadow register set are configured into the core at core build time. These 
do take up more space in the core so they do add to the cost of the Chip.
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Each interrupt vector can be assigned a specific register set. The default 
is the normal register set, GPR set 0. 

In the next examples or a interrupt routine,  I will be using a shadow 
register set so I need to configure which register set will be used by that 
interrupt vector. I want hardware interrupt 1 to use shadow register set 1. 
Hardware interrupt 1 goes to interrupt vector 3 since the first two interrupt 
vectors, zero and one are for software interrupts.

Each field in the Shadow register set map register is 4 bits, Each contains 
the number of the register set to use with a zero indicating the general 
propose register set and a one through fifteen indicating a shadow 
register set. Note most Cores only allow 4 shadow register set so some 
of the values will be illegal. You can check how many shadow register 
sets a core has by reading the HSS field in the Shadow Register Set 
Control register.

In this example only one vector will be using a shadow register set so I 
can just write the number of the shadow set to the correct field and set 
the rest to zero.

+ I do this by setting bit 12 of register t1 which effectively writes a 1 to 



SSV3 so vector 3 will use shadow register set 1 and the rest will use the general 
purpose registers.

+ Then I move this value to the Shadow Register Set Map register using the 
Move to Coprocessor zero instruction 
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Now I’ll go through the code for hardware vector one. Hardware vector 1 is 
set up with a shadow register set.

Using the shadow register set is less overhead and makes it quicker to 
start servicing the interrupt device due to the fact that you don’t need to 
save all the general purpose registers.

I’ll go through quick the steps involved because they are much the same 
as I have shown you for hardware vector zero just a few less.

+ first you need to create a stack frame to save some of the registers and 
argument area before calling a C function 
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You need to save the status and error Program counter to the stack the 
same as before but you don’t need to save any other registers.
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Next you need to reset the interrupt 
source so interrupt will not 
be raised again once 
interrupts are enabled

+ then you are ready to enable interrupts. Here I show the masking of the 
interrupt vector of the interrupt we are servicing

+ once that is done you can jump to the C function that will handle the rest 
of the interrupt processing
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After the interrupt device has bee serviced 

+restore the Error Program Counter and Status register 

+ reset the stack pointer and return from the interrupt.
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+Vector spacing works the same as in vectored interrupt mode

+ and the interrupt routines and calling of C functions work the same
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This section covers Exceptions.


