MIIFPS

MIPS Software Training

Exceptions

WWW.mips.com

This section covers Exceptions.

Exceptions

= Exceptions are anything that disrupts the normal flow of execution here are
the most common exceptions:

= Interrupts are exceptions caused by external events

= Memory translation exceptions are caused by a lack of a proper translation for a memory
address or the process does not have the proper permission to access the data.

= Floating-point exceptions are situations where the hardware needs software support to
complete the instruction.

MIFPPS

+ An exception is an event the disrupts the normal flow of the execution of
your code.

The CPU the exception routine is a special piece of code that tries to
figure out what is wrong by check its status, see if it can be corrected and
then continue along executing the normal code like nothing happened.

Here are some of the most common causes of an exception:

+ An interrupt is caused by a device that is external to the CPU. For
example a clock interrupt or a packet of information coming in from the
network. It’s like a delivery man ringing your doorbell with a package for
you. You'll go to the door sign for the package maybe open it. Eventually
you’ll get back to doing what ever it was before the doorbell rang.

+ Another common cause is a TLB miss and the exception needs to
update the TLB with the proper translation.

+ A floating point exception which happens when the CPU doesn’t know
how to execute the instruction it has been given.

Exceptions

= Exceptions continued:

= Program or hardware-detected errors: Such as nonexistent instructions, instructions that
are illegal at user privilege level, coprocessor instructions executed with the appropriate
SR flag disabled, integer overflow, address alignment errors, and accesses outside kuseg
in user-mode.

= Cache parity errors
= System Calls

= Full table can be found in the Software Users Manual of the core you are using. See
“Cause Register ExcCode Field” Table

MIFPPS

+ Program or hardware detected errors most of the time these are
problems with the execution of an instruction. For example these
exceptions happen when a user mode process tries to execute an
instruction that only can be executed in kernel mode. Sometimes a
programming error can cause a code area to be over written with data so
the instructions in that area are now garbage so when the CPU tries to
execute this code it will generate this exception.

+ If your cache is designed for it the cache can generate a exception when
the CPU access a cashed instruction or data and the parity isn’t correct.

+ A system call is a way for a user mode program to transfer control to a
OS running in kernel mode usually to request a OS service for example
writing data to a disk drive.

+ There are more exceptions consult the Software User’s manual for the
core you are using for the full list.

Exceptions

* Precise Exceptions
= Most exceptions are precise in that the instruction that caused the exception can be
determined or there is a correct place to restart after the exception is handled.
= All instructions in the pipeline before the exception will be completed.

= All other instructions in the pipeline including the offending instruction will be restarted when the
processor returns from exception processing.

= Exceptions in a Branch or Jump Delay slot will be restarted at the branch.

MIFPPS

Determining where the exception happened can be an issue. You may
need to know what instruction caused the exception to be able to fix it and
you also need to know where to restart normal execution.

It's the difference between falling asleep while reading a book, when you
wakeup you usually know what happen, you fell asleep, and you can figure
out where you left off in your book. Now say you were reading and you get
knocked out when you come to you can’t figure out what happened
because you don’t know what hit you and you may not even remember
what you were doing.

+Luckily most of the time the CPU can tell you precisely the instruction you
were executing so you can determine what happened and where to restart
normal execution. These are called Precise exceptions.

+ When a precise exception happens you can be sure that all instructions
in the execution stream before the exception is reported have been
executed.

+ On return from execution handler the CPU will start execution with the
instruction that was set to execute at the time the exception happened.

+ To not cause any ambiguous execution, instructions in branch or jump delay
slots are paired with the branch or jump. The return from exception execution will
always execute the branch or jump even if the exception happened due to the
instruction in the delay slot.

Exceptions

* Non-precise Exceptions
= |nstruction that caused the exception cannot be determined automatically by the CPU.
= Bus (EC and OCP) Error. (Except for M5100 Cores)
= Cache Errors
= L2 Cache Error

MIFPPS

There are times the CPU cannot precisely determine what instruction
caused the exception or where to restart execution.

+ It can only tell you what instruction was executing when the exception
was detected An exception is imprecise when EPC/ErrorEPC/DEPC does
not point to the instruction that caused the exception.

For example, if a load instruction misses in all of the caches for the
requested data, and the cache hierarchy is non-blocking, execution may
proceed pass the load. An interrupt may be recognized and accepted on
an instruction subsequent to the load. While the interrupt handler is being
executed, the response of the load returns and the response signals a Bus
Error. In that case, a nested exception would occur, but the EPC for the
bus error would not hold the address of the faulting load instruction. If the
EXL bit is set at the time the Bus Error exception is recognized, the EPC
would not be updated: for this case, the EPC would point to an instruction
within the interrupt handler. A similar case can occur for late-arriving
Floating-Point exceptions.

+ A bus, Cache and L2 Cache errors can be one of these exceptions
because a load is non blocking and allows other instructions to execute
until a instruction tries to execute that is dependent on the data being

loaded. So the bus error for the load can OCcur on another instruction. A

fetch can cause a bus error but since most cores fetch ahead of execution the
bus error may also happen while executing another instruction.

Only reads from the bus can cause bus error exceptions. With that in mind you
might think that a store could not cause a bus error because it is after all a write
to memory. However stores to cached memory can indirectly cause bus errors.
When data is being written to the data cache and there is a cache miss for the
cache line that contains the data the cache controller will request a read of the
entire cache line from memory. It will then merge the word being stored. This
read from memory can be the source of a bus error.

Most of the time this is where things go terribly wrong. Recovery from these
errors can be tricky. First you would need to correct the error or try the bus
operation again. Unless you have designed your code to check point itself as it
goes so you can determine a good restart point it will be hard to do anything but
restart the entire process. Most of the time this to will fail in the same place and
you will be left with trying to report the problem to the user.

Exception Status ERL

ERL — Error Level or error exception mode

= Set when an error happens as opposed to an interrupt pin exception
Reset, NMI, Cache Error

ERL Bit

Status Register (CPO register 12)

CuU RP FR RE MX R BEV T8 SR NMI 0 CEE R IM(7:0) 0 KSU ERL EXL IE

* When set CPU is forced into Kernel mode and
= all interrupts (exceptions) are disabled

MIFPPS

There is a special error condition for Reset, NMI and Cache errors called
Error Level. You can tell if the CPU is in this state by checking the ERL bit
in the status register.

+ The ERL bit is bit two of the Status register.

+ When this bit is set the CPU is in Kernel Mode and all interrupts have
been disabled.

Exception Status ERL

= Code Vectors for ERL exceptions
= \When ERL exceptions occur the CPU will start fetching instructions from the following
locations:
= Reset and NMI 0xBFCO 0000 (boot exception vector)
= Cache error 0xBFCO 0300 or 0xA000 0100 if BEV is cleared.

= The return address from these errors is stored in the ErrorEPC register. The ERET instruction will
use the return address held in ErrorEPC instead of EPC

MIFPPS

+ the reset and NMI exception vector is usually BF CO 00 00 hex

+ The cache error exception vector is different depending on the Boot
Exception Vector bit in the status register. If Boot Exception Vector bit is
set, as it is at boot time, then the cache error vector is BF C0O 03 00. If it is
not set then the vector is AO 00 01 00. The idea here is you may take a
cache exception when you are booting from rom or flash but once you
have initialized your system you can clear the BEV bit and cache
exceptions will go to what can be faster memory. The A0 00 01 00 vector
is still of course in a uncached region of memory, kseg1.

The ERET instruction will use the return address held in ErrorEPC instead
of EPC

Exception EBase Register (BEV = 0)

= When Boot Exception Vector bit (BEV) in the status register is clear, the
exception base changes to the setting in the EBase register.

EIEI___I

Exception Base CPU #

= Bit 30 and 31 are always set forcing vectors to a KSEGO address except for
cache error which is forced to a KSEG1 address (non cached).

= Bits 12 - 29 are program settable which allows you to differ the vectors in a
multi processor system. This defaults to 0. (0x8000 0000)

= Bits 0 — 9 are hardwired by static input pins that can represent unique values for
CPUs in a multi processor system. This can be used to identify a processor in a
multiprocessor system.

MIFPPS

On power up, Reset or NMI the processors come up in exception mode
and fetch the first instruction at the Boot Exception Vector. The address for
the boot exception vector is determined by a configuration option when the
core is built and usually falls in the range of a boot flash. There is a bit in
the status register called BEV (boot exception Vector) it is set by a power
on, reset or NMI. Part of the boot process is to relocate the exception
vectors so they will be placed in RAM for faster processing. Once the
vectors are placed in RAM the boot code can set the Exception Base
Register to the relocated address. The code then clears the BEV bit in the
Status Register so that the processor will use the address in the Exception
Base Register from that point on.

The EBase register also contains a read-only CPU number value that may
be used by software to distinguish different processors in a multi-
processor system.

+ Bit thirty and 31 one are hardwired to force all vectors into the cacheable
Kseg0 address space with the exception of a cache error exception which
will be forced into the un-cached Kseg1 address space.

+ Bits 12— 29 work in conjunction with bits thirty one and thirty to specify
the base address of the exception vectors.

Bits eleven and ten are reserved bits and must be written as zeros. They will
always return zeros when read.

+ Bits zero through nine are usually set when the processor is implemented with
a unique value to distinguish one processor from another. Your code can use this
to determine which processor it is dealing with.

Bits zero through eleven do not figure into the exception base address.

Exception Status EXL

EXL — Exception Level (or regular exception mode)
= Set by the processor when any exception other than Reset, NMI or Cache Error,
the most common being an interrupt

EXL Bit

Status Register

cu RP FR RE MX R BEV TS SR NMI 0 CEE R IM(7:0) 0 Ksu ERL EXL IE

= When set, CPU is in kernel mode and all Hardware and Software
interrupts are disabled.

MIFPPS

+ Exception Level bit in the Status Register is set by the processor when
any exception other than Reset, NMI or Cache Error exception are taken.

+ The EXL bit set means the CPU is in a normal exception mode set to
process an exception that can be returned from using the Exception
Program Counter register or EPC for short. In this mode the Exception
Program Counter contains the Program Counter that the CPU was
processing when the exception happened. Also there is a bit call the
Branch Delay bit located in the cause register that will be set if the CPU
was executing the instruction in a branch or jump delay slot. The exception
code should used this bit to determine what instruction might have caused
the exception. If the Branch Delay bit is set either the instruction at
Exception Program Counter or the instruction in the Branch delay slot
could have caused the exception.

+ All interrupt exceptions both software and hardware will be disabled by
the CPU before execution of the exception routine. Exception other than
interrupts can still occur.

Note: The Exception PC, Cause register’s Branch Delay bit and Shadow
Register set register’s Control bit will not be updated if another exception
is taken.

Exception Vectors 32 bit mode

Exception BEV = 1 (Bootstrap) BEV = 0 (Normal mode)
Address Address

Boot Exception, Reset, NMI 0xBFCO0_0000

TLB Miss (EXL = 0) 0xBFC0_0200 0x8000_0000
Interrupt (Cause(IV) = 1 0xBFC0_0400 0x8000_0200
Cache Error 0xBFC0_0300 0xA000_0100
General Exception 0xBFCO0_0380 0x8000_0180
Debug (ECR[ProbTrap] = 0) 0xBFC0_0480

Debug (ECR[ProbTrap] = 1) 0xFF20_0200

BEV - Boot Exception Vector
ECR - EJTAG Control Register

MIFPS o

Let take a moment to review what | have talked about so far by using is a table of the exception
vectors.

+ The first vector is commonly called the boot exception vector because the CPU at power up will
aIwaNs start fetching it’s first instruction at this vector. This vector is also used for Reset, Soft-reset
and Non-maskable interrupts. All of these will cause the system to reboot. As a reminder the vector
BF CO0 00 00 hex is in the non-cacheable Kseg1 address Space which is directly mapped to
physical address 1f CO 00 00 hex.

The next two sections of the table depend on the boot exception vector bit in the status register.
+ The boot exception vector bit is set on a cold boot.

+ Usually your system will have a boot rom or flash rams that occupies some amount of memory
that is located af the boot exception vector physical address of 1F CO 00 00, remember that’s virtual
address BF CO 00 00. The range of this rom or flesh will run at least through the address of the
exception vectors shown here and the area need for the boot code. The boot code starts at the
boot exception vector and initializes the cache and the tlb and sets up exception routines in the
cacheable Kseg0 address space. There will be more on Boot code in the Boot section of this
course.

+|Oncg the boot code has done enough to be able to use Kseg0 the boot exception vector bit is
cleare

+ aside from cache exceptions any exceptions that come after this will go to their cacheable
address in Kseg0. The cache vector changes but remains in the uncached Kseg1 address space.

+ last, are the special vectors for use when the CPU is implemented with a EJTAG tap controller.
The address segments in red can be altered by the use of the Exception Base register, Ebase.

General Exception Vector

= 0x0180 General exception vector
= For general exceptions the CPU begins fetching instructions from the same location
= The Cause Register is used to determine which exceptions to service

Cause

31 30 29 28 27 26 23 22 15 10 9 8 7 6 2 10

BD Tl CE DC PCI 0 v WP 0 IP[7:2] IP1..IPO 0 Exc Code 0

MIFPPS

| will cover interrupt exceptions in detail right after | talk briefly about
General exceptions that use the general exception vector.

General exceptions are any exceptions that are not external interrupts,
TLB refills, cache, NMI or resets. All general exceptions go to the general
exception vector.

To determine which general exception has happened the code must

examine the Exception Code field of the coprocessor zero Cause register.

1"

General Exception Vector

* Machine Check = Address Error Exception

= The detection of multiple - i
matching entries in the TLB. .Una“gn.ed logd, istors or
instruction fetch

= Watch Exception

= |nstruction or data reference
matches the address

= Reference to the kernel address
space from user mode

information programmed into = Bus Error
(stored) in the WatchHi and))
WatchLo registers = An instruction or data access

makes a bus request (due to a
cache miss or an uncacheable
reference) and that request
terminates in an error

= System Call

= SYSCALL instruction is executed

MIFPPS

12

Lets talk about some of the more common general exceptions

+ A machine check exception happens when duplicate entries have been
written to TLB. If this occurs the exception routine needs to read all the
TLB entries and over write or invalidate the duplicate entries.

+ A Watch Exception happens due to an instruction or data access that
matches the address specified in the watch registers. Watch exceptions
are not taken if the CPU is already in exception mode instead, these watch
events are remembered, and result in a Deferred Watch exception, which
taken as soon as the CPU leaves exception mode.

+ A Address error exception is taken when a load or store tries to access
data that is not aligned to the data type of the instruction. For example the
destination address of a Store Half Word instruction must be aligned to a
halfword boundary. An instruction fetch from a non thirty two bit aligned
address for normal instructions or a sixteen bit address for MIPS16
instructions will cause this exception. This can happen if the EPC or
EEPC register were overwritten with an unaligned address. Any reference
to kernel address space while the CPU is in user mode will also cause this
exception.

12

+ Bus error is generated by an external device when there is a problem in
completing a memory request.

+ A system call instruction is coded into you programs by the compiler when your
program references a function the needs an OS service. For more information on
the system call instruction refer to the MIPS Instruction set section of this course.

12

General Exception Vector

= Reserved Instruction

= A reserved instruction exception occurs when a reserved or undefined major opcode or
function field is executed

= Coprocessor unusable

= Coprocessor unit that has not been marked usable or trying to use a CPO instruction when
not in kernel mode.

= CorExtend block Unusable

= Attempt was made to execute a CorExtend instruction when the CEE bit in the Status
register is not set.

» Floating Point Exception
= Exception is initiated by the floating point coprocessor
= Integer Overflow
= Selected integer instructions result in a 2's complement overflow

MIFPPS

+ A reserve instruction exception will happen if there is an instruction that
the CPU cannot execute. This can be by design, in the case of Floating
point instruction that are intended to be handled by software or it can be
due to a corrupted code section.

+ Co processor Unusable exception happens when the CPU tries to
execute a coprocessor instruction for a coprocessor that is not enabled or
when it's in user mode and tries to execute a CoProcessor zero
instruction.

+ Core Extent Unusable exception happens when the Core Extend Enable
bit is not set. Core extend instructions are user definable instruction that
are incorporated into the CPU design the Core Extend Enable bit offers
programmatic control over the use of these instructions. For example in a
virtual processor core such as the 34K these instruction can be limited to
one of the thread processing units so other units would cause this
exception if the tried to execute a core extend instruction.

+ Floating Point exceptions are any exception raised by the floating point
unit. You will need to examine the status of the floating point unit to
determine the cause.

13

+ The integer overflow instruction happens on selected instructions when the
result over flows the size of an integer.

13

General Exception Vector
* Trap

= A trap instruction resulted in a TRUE value
* TLB Modified Exception on Data Access

= The dirty bit was zero in the TLB entry mapping the address referenced by a store
instruction

= TLB refill

= |n the case of TLB refill EXL being set means that the CPU was already in the process of
processing another exception (most likely a second TLB exception)

* Breakpoint
= BREAK instruction is executed
= Miscellaneous

= There are additional exceptions related to debug that are not covered here. Consult the
Core specific Software Users Manual for more information

MIFPPS

+ The trap instruction is raised when a trap instruction results in a true
condition. The MIPS instruction set section has more information on the
trap instructions.

+ TLB Modified instruction is caused by a TBL valid entry that is
referenced with its dirty bit cleared. The TLB and the use of this bit is
discussed in the TLB section of this class.

+ In the case of a TLB refill if EXL is set it means that the CPU was
already in the process of processing another exception. The TLB Réfill
vector is normally 0x8000 0000. this commonly happens while already
processing a TLB exception. For example when a page table is needed
who's address is not already translated by an entry in the TLB.

+ A breakpoint exception is caused by the execution of a Break instruction.
The MIPS instruction set section has more information on the break
instructions.

+ For addition exception condition s consult the Software Users Manual of
your Core.

14

Interrupt Exceptions

» [nterrupts — external events that cause exceptions
* Three modes the CPU can use to handle interrupts:
= General exception vector
= Vectored interrupts
= External interrupt controller

MIFPPS

I'll now go into detail on Interrupts.

+ Interrupt Exceptions are generated by external events.

+ There are three ways the CPU can handle these events.

+ First all interrupts can use the general exception vector. In this case the
exception routine would check the exception code in the cause register
and see that it was an interrupt exception. Then the code that would check
the status of each device to see which one cause the interrupt. This is
commonly called interrupt compatibility mode because it is the only way
interrupts could be handled on very early MIPS processors and is still
available so code written for them will still work on more current
processors.

+ The second way the CPU could handle interrupts is the use of interrupt
vectors The CPU has 6 external pins that can be wired to devices so they
can signal the CPU when there is an interrupt. Each pins is associated
with a program vector. When the CPU detects which pin is causing the
interrupt it starts execution at the vector that pin is associated with.
Sometimes there are more interrupt sources than 6 so some devices may

15

be wire to the same pin and when an interrupt comes in the code needs to query
the devices it knows are connected to the same pin. The highest pin number is
given the highest priority.

+ And Third is the external interrupt controller mode or EIC for short. An external
interrupt controller can supply the CPU with a value from 0 to 63. Zero indicates
there are no interrupts pending and 1 to 63 to indicate the vector of the interrupt
to service so in this mode there can be 63 different interrupt vectors.

15

Enabling Interrupts

= Using Vectored interrupts
* Vectored interrupts are enabled by setting the IV bit in the CPO Cause register
* There are 6 hardware interrupt pins and 2 internal software interrupt sources.

Cause

31 30 29 28 27 26 23 22 15 10 9 8 7 6 2 10

BD Tl CE DC PCI 0 v WP 0 IP[7:2] IP1..IPQ 0 Exc Code 0

IPL

MIFPPS

Interrupts that use the general interrupt vector are pretty easy and
handled like any other exceptions. Using the one general interrupt vector
for interrupts is not used much because it offers the poorest performance
in interrupt handling. It is really only there for compatibility with older
code. | don'’t advise its use for new projects.

+ I'll now go into how vector interrupt mode is used.

+ To enable vectored interrupt mode the boot code needs to set the
Interrupt Vector bit 23 in the cause register.

+ While we are here | would like to point out the Interrupt priority bits.
These bits will give you status on what interrupts are active. You can

check these bits at any time for pending interrupts although you don’t
need to do so for normal operation.

The interrupt pending bits are made up of 6 hardware pins and 2 virtual
software pins. The software interrupts are tied to virtual interrupt pins O
and 1 and can be made the lowest priority interrupts. The idea behind
them is you can use these software interrupts to complete interrupt

16

processing that doesn’t need to be done at a higher priority level. You can be
processing a interrupt say a level 5. Your code takes care of all the critical things
but has some additional clean up to do that doesn’t need level 5 priority. You can
raise a software interrupt that will trigger a software interrupt after all pending
and enabled hardware interrupts have completed. You can do this by setting the
virtual software pins, bits 8 or 9 in the cause register.

16

Enabling Individual Interrupts

= Each interrupt vector is enabled by setting its bit in the Interrupt Mask field,
IM of the CPO Status register.

Status Register

31 27 26 25 24 22 21 20 19 18 17 15 8 75 4 3 2 1 0
29

cu RW FR RE MX R BEV TS SR NMI 0 CEE R IM(7:0) 0 KsU ERL EXL IE

1-3

Interrupt Enables

MIFPPS

+ You can use the Interrupt mask bits in the status register to control which
individual interrupt pins will be enabled by the processor. When a interrupt
pin is raised by an external device it will cause the cpu to start the interrupt
routine only if the corresponding bit in the Interrupt mask field is set.

17

Interrupt Vector Addresses

= Using Vectored interrupts (continued)
= Vectors start at address BEV + 0x400 / EBase + 0x200

= Spacing between vectors is set in the CPO Interrupt Control Register using the VS bits
(example later in these slides)

Interrupt Control Register

31 29 28 26 9 5

IPTI IPPCI 0 VS 0
—
|__Encoding | Spacing between vectors___|
00 000 0
01 020 a2
02 040 64
04 080 128
08 100 256
10 200 512
M I p S 18

The interrupt vectors start at address BF CO 04 00 during the boot process
when the Boot Exception Vector bit is set and 80 00 02 00 during normal
operation when the Boot Exception Vector bit is cleared. In both cases
this address is after any other exception vectors.

+ Where the code for the next vector starts is programmable. You can
select how much room there is between vectors. Usually there is just
enough room for you to setup the interrupt stack, save registers as needed
and call a C function to do the rest of the interrupt processing but you can
have up to 512 bytes for code in between vectors. Note there is only one
setting that applies to all interrupt vectors.

+ The setting of the vector spacing is done by using the Vector Spacing
bits in the CP zero Interrupt control register. The boot code should set up
this spacing before interrupts are enabled. You will see an example of this
later in this section.

18

Interrupt Instructions

= DI atomically clears the Status Register Interrupt Enable bit, returning the
old value of Status Register in a general purpose register

» El atomically sets the Status Register Interrupt Enable bit, returning the old
value of Status Register Interrupt Enable in a general purpose register.
= Note of caution: It is better to restore the old value of Status Register Interrupt Enable

returned by di, so your “disable interrupts” code will not malfunction if you accidentally
invoke it when interrupts were already disabled.

MIFPPS

If you have viewed the MIPS instruction section of this course you know
there are two instructions that make interrupt control easier. | think it's a
good idea to go over them here again.

+ First is the Disable interrupt instruction. This instruction helps by
atomically saving the current value of the Status register to a general
purpose register and clearing the Interrupt Enable bit in the CPO Status
register.

+ The Enable Interrupt instruction atomically saves the value of the status
register to a general purpose register and sets the interrupt enable bit in
the status register.

+ Note you might not always what to use the Enable interrupt instruction
particularly if you are nesting interrupts. You might just what to restore the
Status register with the value it had when it entered your interrupt function,
so the Interrupt Enable bit in the status register will remain as it was and
the CPU will continue with processing any lower priority interrupt function
that may have interrupted.

19

Enabling All Interrupts

31 27 26 25 24 22 21 20 19 18 17 15 8 75 4 3 2 1 0

Ccu RP FR RE MX R BEV T8 SR NMI 0 CEE R IM(7:0) 0 KsSU ERL EXL IE

= Interrupts are enabled only when:

= Error Level bit is cleared,
Status[ERL] == 0,

= Exception Level cleared,

Status[EXL] == 0,
= Interrupt Enable bit set,
Status[IE] == 1,
= Debug Mode bit is cleared,
Debug[DM] == 0.
MIFPPS =

The boot code and interrupt handling code will need to enable interrupts.

+ To do so the code needs to make sure the following bits are set
correctly:

+ Error Level bit is cleared

+ Exception Level Bit is cleared

+ Interrupt Enable bit is set

+ and the DebugMode bit is cleared in the CP zero Debug Register

20

Enabling Individual Interrupts

Status Register

31 27 26 25 24 22 21 20 19 18 17 15 8 75 4 3 2 1

cu RP FR RE MX R BEV TS SR NMI 0 CEE R IM(7:0) 0 KsU ERL EXL

= An Interrupt is enabled when
all Interrupts are enabled and
the Interrupt Mask,
Status[IM7-2] bit associ
with the interrupt’s pin is set

0

IE

MIFPPS

21

Next the code must enable individual interrupt vectors by setting the
corresponding bit in the interrupt mask field of the CP zero status register.

21

CPU Interrupt Preparation

= Automatic steps the CPU takes when it gets an interrupt exception
= The restart address is placed in the EPC register to the point to restart execution after the
interrupt is processed

= EXL is set in the Status Register and the CPU enters Kernel mode and disables all
interrupts

Status Register

cu RP FR RE MX R BEV TS SR NMI 0 CEE R IM(7:0) 0 KSU ERL EXL IE

MIFPPS

22

Before | go into a specific code example | want to give you an overview to
make it clear about what happens through the interrupt process.

+ first I'll start with what the CPU does.

+ Once an interrupt pin is raised and the pin is not masked off in the status
register, the CPU sets the exception program counter to the restart
address where normal processing should restart.

+ It sets the EXL bit in the Status Register. This has the effect of switching
the processor to Kernel Mode and disabling all interrupts.

22

CPU Interrupt Preparation

BD Tl CE DC PCI 0 v WP 0 IP[7:2] IP1..IPO Exc Code

= Cause Register is updated to give information about pending interrupt
interrupts and exception code

* The first instruction is fetched from exception vector location

MIFPPS

23

+ The Co Processor Zero Cause Register is set to indicate the interrupt
state. For example, the Interrupt Pending bit in the Cause register is set for
this interrupt source and the exception code is set to indicate the cause of
the exception.

If this were an exception you would have to consult the Exception Code
field in the Cause Register to determine what exception happened.

If this were a vectored interrupt you would already know the cause was an
interrupt so you won’t have to check the exception code.

Also if the cpu is not using vectored interrupts the vector interrupt bit in the
Cause Register is cleared there is no enforcement of interrupt priority.
Your code can dictate which interrupt can be serviced first by check the
Interrupt Priority field of the Cause register and selecting a pin to service. It
would be best to stick to the priority scheme of the highest pin being the
highest priority but you don’t have to in this mode.

+ The CPU then fetches the first instruction at the associated interrupt

23

vector.

23

Interrupt Routine

* GPRs KO0 and K1 registers are free to use without saving
= Save the old interrupt mask bits in the Status Register to the stack

= Change the mask bits to ensure that the current interrupt and all interrupts
your software regards as being of equal or lesser priority are inhibited

MIFPPS

24

Before | go into the actual code example I'll give you an overview of what
your exception code should do

+ When exceptions are disabled you can use the General purpose
registers KO and K1 without saving them.

+ Save the mask bits in the Status register, The easiest way would be to
save the whole status register.

+ Change the mask bits to mask out any interrupts of the same or lower
priority then the one being serviced.

24

Interrupt Routine continued

= Save the state for calling a C function.

= Change the CPU state to that appropriate for nested interrupts and
exceptions.

= Set the Global Interrupt Enable bit in the status register to allow higher priority interrupts
to be processed.

= Change the CPU privilege level field to keep the CPU in kernel mode as you clear
exception level,

= Clear SR(EXL) itself to leave exception mode and expose the changes made in the status
register.

= Call your interrupt routine.

MIFPPS

25

+ If the rest of your interrupt routine is in C you must first make room on
the stack save all of the general purpose registers and then save them. If
you are using a shadow register set for this vector you won'’t have to save
the General purpose registers but you will need to copy the stack pointer
and global pointer to the shadow set.

+ If you are going to allow for nested interrupts you need to change the
CPU State:

+ Enable interrupts by setting the Interrupt enable bit in the Status
Register

+ Set the kernel mode by clearing the User Mode and Supervisor mod bits
in the Status Register that way when you leave exception level you will still
be in Kernel mode to process the rest of your interrupt routine.

+ Leave exception mode by clearing the Exception Level bit , EXL in the
Status register.

+ you can now jump to you c function and process

25

Interrupt Routine

= On return Disable interrupts

= Clear interrupt source

= Restore state and prepare to return
= restore GPRs

= Return from exception

= Jump to EPC and then change back from Kernel privilege level (if necessary) must be
done atomically.

= The instruction eret, (exception return) does this for you. It clears the SR(EXL) bit and
jumps to the address stored in EPC

MIFPPS

26

+ On return you’ll need to disable interrupts again so you can restore the
pre-interrupt values of registers and resume execution of the interrupted
task. You can do this by restores the Status Register with the copy that
you saved off in the beginning of the interrupt routine.

+ Make sure that the interrupt has been acknowledge and clear on the
device that caused the interrupt.

+ Restore CPU state so the interrupted code can continue unchanged.

+ Restore the General Purpose registers. On a side note since you saved
all the General Purpose registers this step will restore the stack pointer
and Global pointers of the interrupted code so you shouldn’t use stack and
global variables that are deference using these registers after this step in
your interrupt code.

+ Now you are ready to return from the interrupt exception

+ The code needs to jump to the address in the Exception Program
counter and enable exceptions.

+ You should use the ERET instruction to do this because, it will atomically clear
the EXL bit in the Status register and Jump the address stored in the Exception
Program Counter.

26

Placing interrupt code at vector address

= Linker script

= section directives for each vector are used by the linker file to place the section in the
correct memory location.

interrupt sourceﬁ’e: inker Script file:

<Section .vector0,=ax” .vector00x30000200:
.globl _SW_Vector0

{
.ent _SW Vector0 i .@m:‘,
_SW_Vector0: }
[* address 0x80000200 */
.eret

.end SW Vector0

MIFPPS

27

Link.ld Uses the

+ .section directives in the isr.s source file to

+ Link the code for each interrupt routines

+ To their vector address.

27

Order Setting in Code - reminder

= set noreorder

= The order of instructions is important. The noreorder setting tells the compiler not to
optimize this section of code, so the programmer has control over what goes into the
branch delay slots

MIFPPS

28

| will now cover the start.s file that initializes the interrupts in detail.

One of the first things you will see in the start.s file is dot set no reorder.
This is done because | want to control what goes into the branch delay
slots of the Assemble code.

28

Setting Vectored Mode

= To configure the CPU for Vectored Interrupt mode set the IV bit, bit 23 in the
Cause register.

mfcO t0, CO_CAUSE # Get Cause register

li t1,1

ins t0, t1, 23, 1 # set bit 23

mtcO t0, CO_CAUSE # Write it back to enable interrupts

ehb # Wait for change to take effect
Cause

31 30 2928 27 26 23 22 15 10 9 8 7 6 2 10

BD TI CE DC PCI 0 v WP 0 IP[7:2] IP1..IPO 0 Exc Code 0

Interrupt Vector - Indicates whether an interrupt exception uses the
general (IV=0) or special interrupt vector (IV=1)

MIFPPS

29

The next piece of code will enable vector interrupt mode.

If vectored interrupt mode is not enabled all interrupts will go to the
general interrupt vector.

+ To enable vectored interrupt mode | need to set bit 23 of the cause
register.

+ First | read the cause register into the t0 register using the move from
Coprocessor zero instruction

+ then the next 2 instructions will set bit 23 in the t0 register by first
moving a 1 to the t1 register and then using the insert instruction,
inserting the first bit of register t1 into bit 23 of the t0 register

+ Now that the bit is set | will writ the value back to the cause register
using the move to coprocessor zero instruction

+ I'll use the ehb instruction to clear any hazard barrier that could exist

29

with the write to the cause register.

29

Set Interrupt Code Spacing

mfcO t0, CO_INTCTL # Get Interrupt Control register
li t1, 0x200 # Set Space between vectors to 512
ins t0, t1, 0, 10 # insert spacing
mtc0 t0, CO_INTCTL # move the GPR to the CPO register
ehb
31 29 28 26 9 5
IPTI IPPCI 0 VS 0

4_________/7
|__Encoding | Spacing between vectors

Hex Hex Decimal
00 000 0

01 020 32
02 040 64
04 080 128
08 100 256
10 200 512

MIFPPS

30

You can set the spacing between the interrupt vectors to suit your needs.
From no space which is usually not desirable because all you could do is
fall into the next vector to 512 bytes where you might place a complete
interrupt routine.

| am going to set it for the max of 512 bytes.

+ First | read the interrupt control register into the t0 register using the
move from Coprocessor zero instruction

+ load the value to be inserted

+ Notice how the register is laid out so you can set the lower bits to the
actual spacing you want so all | have to do is insert the spacing value into
the t0 register.

+ then | just move the to register back to the interrupt control register using
the move to coprocessor zero instruction.

30

Interrupt Routine - Stack Setup

» [nterrupt Routine function
= This is a vectored interrupt function example that uses the system’s GPR set
= Setup stack for saving registers and calling a C function
addiu k1, sp, -180 #Add 180 bytes to the stack
/* align to word boundary */
ori k1, k1, Ox7
xori k1, k1, Ox7

MIFPPS "

Now for the interrupt functions themselves. | am going to show you an
interrupt function that will call a C function to do most of the work. In this
example there is not much to do so the C function is very small but is will
serve as an example for how you would go about calling a ¢ function from
a interrupt routine.

+ The first one | will go through is the non shadow set version.

+ as already covered in the assemble section of this training course,
registers KO and K1 are always free for an interrupt routine to use as long
as interrupts are disabled. | will use them in this interrupt routine to adjust
the stack pointer. This function will continue to use the current stack to
store registers and call a C function. To do this | need to allocate room on
the stack for the registers | want to save.

+ | use the stack pointer stored in the general purpose register sp and
since stacks grow downward | will subtract the amount of stack space |
need from the sp register.

+ | also need to make sure the pointer is aligned to a word boundary.

31

Interrupt Routine - Saving GPRs

= Need to save all GPRs except kO and k1 which we can use freely for
interrupt handling (not used by C functions)

= NOTE: allow space (16 bytes) for C arguments in compliance with the ABI.

SW
SwW
SW
SW
SwW

sSw

at, 20(k1)
V0, 24(k1)
v1, 28(k1)
a0, 32(k1)
at, 36(k1)
a2, 40(k1)

ven.... Save rest

MIFPPS

32

Now that the stack is setup | can start saving context.

+ One note there are 16 bytes that need to be available for C argument
storage by C functions so | will leave the first 16 bytes of the stack free so

the base register offset value for saving values to the stack will start at 20.

+ will use the store word instruction using the K1 register that has the
adjusted stack pointer as a base register and increment a offset value as |
save the registers.

32

Interrupt Routine - Save Critical CP0 Registers

mfcO t1, CO_STATUS # Get status register

sw t1, 136(k1) # Save status register value to stack
mfc0 t2, CO_EPC # Get EPC register’

sw t2, 140(k1) # Save EPC register value to stack

= Reset the interrupt source so interrupt will not be raised agin once
interrupts are enabled

MIFPPS

33

| want to show you what you need to do to nest interrupts to do this there
are some coprocessor 0 register that need to be saved.

+ Here | will read the values of the status register and the Error Program
Counter.

+ And save them to the stack.

Before allowing nested interrupts reset the interrupt source so this interrupt
won’t be raised again when interrupts are enabled

33

Interrupt Routine - Enable Interrupts

= Clear EXL to allow nested interrupts
= ins t1, zero, 1,1
= mtcO t1, CO_STATU

= NOTE: You should also mask particular interrupts'before doing this
according to your interrupt priorities.

Status Register

MIFPPS ’

To enable interrupts | must clear the exl bit of the status register. Register
t1 holds the value of the status register so | don’t need to get it again and
since | have already saved the value to the stack | can make changes to
the t1 register. | use the insert instruction to insert a 0 into bit 1 of the
register which is the EXL bit and the move it back to the status register.

+ one thing to note you should also change the interrupt mask to mask out
interrupts of equal to and less than the priority level you are servicing.

34

Interrupt Routine — Adjust stack pointer

= Set stack pointer and jump to C function with argument

move sp, k1 # Copy new stack pointer to sp
jal C_function # jump to ¢ function
liao, 2 # put argument into a0 (BD slot)
MIFPPS 25

Last, | copy the stack pointer | have been using that is in the K1 register to
the sp register and put an argument into the first argument register. The
argument will be used in the C function to increment a counter in the
global array.

35

Interrupt Routine - Post Processing

» Restore status and EPC registers from stack

move k1, sp # use k1 for stack pointer
lw k0, 136(k1) # retrieve the value of CO_STATUS
mtcO kO, CO_STATUS # restore CO_STATUS
ehb
lw t2, 140(k1) # retrieve the value of CO_EPC
mtcO t2, CO_EPC # Restore EPC register
ehb # Wait for change to take effect
MIFPPS a

After the code returns from the called C function | need to restore the state
of the processor so it can continue processing what ever it was doing
before being interrupted.

+ | copy the stack pointer to K1 and use K1 as a base register to load
values from the stack.

+ I'll restore the status register, Note this also has the effect of disabling
interrupts since EXL should be set when this value was saved. Interrupts
need to be disabled while we restore the rest of the registers.

+ I'll restore the Error PC which has the address where processing will
continue after the error return

36

Interrupt Routine - Post Processing continued
* Restore GPRs

w at, 20(k1)
lw v0, 24(k1)
lw v1, 28(k1)
lw a0, 32(k1)
lw al, 36(k1)
lw a2, 40(k1)
lw a3, 44(k1)
lw tO, 48(k1)
w t1, 52(k1)
w t2, 56(k1) Restore all
MIFPPS =

Next restore all the GPR registers

37

Interrupt Routine - Post Processing continued

= Return from interrupt exception
= eret will clear EXL in status register

eret # Exception Return

MIFPPS

38

And last use the error return instruction to atomically clear the EXL bit in
the status register and returning execution to the point before the interrupt.

38

Shadow Register Sets

= Additional General Purpose Register set Assigned to interrupt vector (only
for vectored mode)

= Interrupt does not use processes General Purpose Registers
= Cuts overhead of saving the processes GPRs to the stack

MIFPPS

39

This core can have additional General purpose register set that can be
used by interrupts instead of using the normal register set, GPR set 0The

next slide will show how a register set is assigned to a particular interrupt
vector.

39

Shadow Register Sets

= Configured into the core at core build time
= Up to 3 shadow register set

MIFPPS

40

Shadow register set are configured into the core at core build time. These
do take up more space in the core so they do add to the cost of the Chip.

40

Shadow Register Set Assignment

li t1, 0x00001000 # Each field is 4 bits. For this example,
“ # set vector 3 to use register set 1

mtc0 t1, CO_SRSmap
ehb # Wait for change to take effect

SRS Map Register

31 28 27 24 23 20 19 16 15, 12 il 8 T 4 3 0

SSV7 SSV6 SSVS SSv4 SSv3 SSv2 SSV1 SSV0

N A J
Y

Hardware interrupts 0 - 5

Software interrupts
0,1

MIFPS

41

Each interrupt vector can be assigned a specific register set. The default
is the normal register set, GPR set 0.

In the next examples or a interrupt routine, | will be using a shadow
register set so | need to configure which register set will be used by that
interrupt vector. | want hardware interrupt 1 to use shadow register set 1.
Hardware interrupt 1 goes to interrupt vector 3 since the first two interrupt
vectors, zero and one are for software interrupts.

Each field in the Shadow register set map register is 4 bits, Each contains
the number of the register set to use with a zero indicating the general
propose register set and a one through fifteen indicating a shadow
register set. Note most Cores only allow 4 shadow register set so some
of the values will be illegal. You can check how many shadow register
sets a core has by reading the HSS field in the Shadow Register Set
Control register.

In this example only one vector will be using a shadow register set so |
can just write the number of the shadow set to the correct field and set
the rest to zero.

+ | do this by setting bit 12 of register t1 which effectively writes a 1 to

41

SSV3 so vector 3 will use shadow register set 1 and the rest will use the general
purpose registers.

+ Then | move this value to the Shadow Register Set Map register using the
Move to Coprocessor zero instruction

41

Interrupt Routine using a Shadow Register

» This is a vectored interrupt function that uses a shadow register set.
= This makes the code smaller and faster

= Setup stack for arguments and CPO register saves; NOTE: much less stack
space
addiu sp, sp, -28 # push stack for registers +args

MIFPPS

42

Now I'll go through the code for hardware vector one. Hardware vector 1 is
set up with a shadow register set.

Using the shadow register set is less overhead and makes it quicker to
start servicing the interrupt device due to the fact that you don’t need to
save all the general purpose registers.

I'll go through quick the steps involved because they are much the same
as | have shown you for hardware vector zero just a few less.

+ first you need to create a stack frame to save some of the registers and
argument area before calling a C function

42

Interrupt Routine using a Shadow Register continuea

= Save critical CPO registers

mfc0 t1, CO_STATUS # Get the value of the status register
sSwW t1, 20(sp) # Store status value on the stack
mfc0 t2, CO_EPC # Get the value of EPC
swW t2, 24(sp) # Store the value of EPC on the stack
MIIFPS «

You need to save the status and error Program counter to the stack the
same as before but you don’t need to save any other registers.

43

Interrupt Routine using a Shadow Register continue

= Reset the interrupt source so interrupt will not be raised again once
interrupts are enabled

* Mask this interrupt and enable nested interrupts

ins t1, zero, 1, 1 # clear EXL (bit 1)
ins t1, zero, 11, 1 # clear (mask off) HW Vector 1 (bit 11)
mtcO t1, CO_STATUS
ehb
* Jump to C function with argument
jal C_function # Jump to C function
li a0, 3 # put argument into a0 (BD Slot)
MIFPPS s

nextyouneed to F€SE1 the Interrupt
source so interrupt will not
be raised again once
Interrupts are enabled

+ then you are ready to enable interrupts. Here | show the masking of the
interrupt vector of the interrupt we are servicing

+ once that is done you can jump to the C function that will handle the rest
of the interrupt processing

44

Interrupt Routine - Post Processing

using a Shadow Register
= Reset EPC and Status registers

Iw t2, 24(sp) # retrieve the saved value of CO_EPC
mtc0 t2, CO_EPC # Write it back to CO_EPC

ehb # Wait for change to take effect

Iw {1, 20(sp) # retrieve the value of CO_STATUS
mtc0 t1, CO_STATUS # Write the value to CO_STATUS
ehb # Wait for change to take effect

addiu sp, sp, 28 # set the stack pointer back to were

it was when interrupt routine was entered
eret # Exception Return

MIFPPS -

After the interrupt device has bee serviced

+restore the Error Program Counter and Status register

+ reset the stack pointer and return from the interrupt.

45

External Interrupt Mode

* The vector spacing is set up the same as it is in vectored interrupt mode.
= All other rules apply the same as they are in vectored interrupt mode

* For system equipped with the MIPS GIC there will be more information on
programming the GIC in a later section of the class.

MIFPPS

46

+Vector spacing works the same as in vectored interrupt mode

+ and the interrupt routines and calling of C functions work the same

46

MIIFPS

End of

Exceptions

This section covers Exceptions.

WWW.mips.com

47

