MIFPS

MIPS MT Training
Fine Grain Multi Threading

WWW.mips.com

This section covers fine-grained multithreading | will describe what it is as
it pertains to the MIPS multithreading architecture.

Principal of Multi Threading

= Multithreading arises in large measure from the notion that:

» |f a single sequential program is fundamentally unable to make fully efficient use of a
processor’s resources, the processor should be able to share some of those resources
among multiple concurrent threads of program execution.

= The result does not necessarily make any particular program execute more quickly -
indeed, some multithreading schemes actually degrade the performance of a single
thread of program execution - but it allows a collection of concurrent instruction streams to
run in less time and/or on a smaller number of processors.

MIFPS

Fine Grain MT

= POSIX Threads

= POSIX implements Multi-threading as execution model that allows multiple threads
to exist within the context of a single process, sharing the process' resources but
able to execute independently. Each thread is scheduled by the OS by time slicing
or when other thread is waiting for an event such as /0.

MIFPPS

First we’ll talk about POSIX threads so we can get an idea what threading
is then I'll go into fine-grained multithreading.

POSIX implements threads as a multithreaded execution model that allows
multiple threads to exist in the context of a single process sharing the
processes resources but able to execute independently each thread is
scheduled by the OS by time slicing or when another thread is waiting for
an event such as 1/0.

Fine Grain MT

* Fine Grain Multi Threads

* |Implements Multi-threading as an execution model, that allows multiple threads to
exist within the context of a CPU.
*» Threads share some CPU resources but are able to execute independently.
= Each thread is scheduled by a policy manager hardwired into the CPU.

» Each thread has its own General Purpose registers. This enables each stage in the
MT pipeline to contain an instruction from a different thread.

= CPU scheduling takes advantage of stalls in the CPU pipeline such as occurs when
there is a cache miss.

MIFPPS

Fine-grained multithreading has executed by the MIPS multithreading
architecture implements multithreading as an execution model that allows
multiple threads to exist within the context of one CPU

+ Threads share some CPU resources but are able to execute
independently

+ Each thread is scheduled by the policy manager this is a way of
controlling the priority of each thread.

+ Each thread has its own set of general purpose registers. This enables
each stage of a multithreaded pipeline to contain instructions from different
threads So that execution of those instructions a effects only the registers
of the thread the instruction is from.

+ The CPU scheduling through the policy manager takes advantage of
stalls in the CPU pipeline such as when the risk cache miss.

Fine Grain MT

Threads can execute until there is a cache miss.

Thread1 [Ioad] [add] [store] [Ioad lmiss [miss]miss]miss]

Thread 2 X e £
Thread 3 B &=
C‘?mn.]on [Ioad lload [Ioad Joad Jadd [icad |store Jioad [fload Jada Jsub “store | store |
pipeline

Time

Here is an illustration of 3 threads sharing the Cores pipeline. Each thread
has its own instruction stream. Instructions are dispatched into to the pipe
line in a round robin manner until thread 1 has a cache miss. Then
instructions from just thread 2 and 3 are dispatched while thread 1s cache
miss is handled.

+ Threads to execute in this matter until there is a cache miss. When there
is a cache miss in one thread the remaining threads continue to execute.

MIPS MT ASE

= The MIPS MT ASE is an application-specific extension of the MIPS32/MIPS64
instruction set and privileged resource architecture, meaning that it is a true
architectural superset.

= A virtual processing element, or VPE, is an instantiation of the full MIPS32/MIPS64
ISA and privileged resource architecture (PRA), sufficient to run a per-processor OS
image. A VPE can be thought of as an “exception domain”, as exception state and
priority apply globally within a VPE, and only one exception can be dispatched at a
time on a VPE.

= A conventional MIPS core embodies a single VPE.

= A thread context, or TC, is the hardware state necessary to support a thread of
execution. This includes a set of general purpose registers (GPRs), a program
counter (PC), and some coprocessor state.

= A thread of execution, or thread, is a sequential MIPS32/MIPS64 ISA instruction
stream. A conventional MIPS processor runs a single thread at a time.

MIFPS

Resource Allocation Within a MT Core
Common to Core IFU || L1 Caches | | LD/ST |[MDU | | ALU | | __Mastervre |

Trace Control I
T

MPEQ 1 ' All Other CPO___ |
VPE 1 | | MMU || TLB |iExcegtionllnterrupt| All Other CPO

Registers not in
another block

GPRs 0 - 31

e

MIFPPS

Here is an illustration of how resources are distributed within a MT Core.

+ These are the resources that are common at the Core level are: the
Pipeline, the Instruction Fetch Unit, the L1 Caches, the Load Store unit,
the multiply divide unit, the arithmetic logic unit and the memory. There are
also CPO registers that are shared by all VPEs.

+ Each VPE has its own MMU, TLB and exception and interrupt logic. All
CPO Register that are not Common to the Core are duplicated for each
VPE. In addition to the Standard MIPS CPO registers there are additional
registers are defined to be per-VPE, common for all TCs within the VPE.

+ There can be 2 Virtual Processors per core.

+ Each Thread Contest has it's own General Purpose Registers and
internal Program counter. There are also several CPO registers in each
Thread Context.

+ There can be up to 9 Thread Contexts in the core. Each Thread context
is associated with a specific VPE.

The all MT specific CPO register will be discussed more in upcoming sections.

