
1

This section covers fine-grained multithreading I will describe what it is as
it pertains to the MIPS multithreading architecture.

2

3

First we’ll talk about POSIX threads so we can get an idea what threading
is then I’ll go into fine-grained multithreading.

POSIX implements threads as a multithreaded execution model that allows
multiple threads to exist in the context of a single process sharing the
processes resources but able to execute independently each thread is
scheduled by the OS by time slicing or when another thread is waiting for
an event such as I/0.

4

Fine-grained multithreading has executed by the MIPS multithreading
architecture implements multithreading as an execution model that allows
multiple threads to exist within the context of one CPU

+ Threads share some CPU resources but are able to execute
independently

+ Each thread is scheduled by the policy manager this is a way of
controlling the priority of each thread.

+ Each thread has its own set of general purpose registers. This enables
each stage of a multithreaded pipeline to contain instructions from different
threads So that execution of those instructions a effects only the registers
of the thread the instruction is from.

+ The CPU scheduling through the policy manager takes advantage of
stalls in the CPU pipeline such as when the risk cache miss.

5

Here is an illustration of 3 threads sharing the Cores pipeline. Each thread
has its own instruction stream. Instructions are dispatched into to the pipe
line in a round robin manner until thread 1 has a cache miss. Then
instructions from just thread 2 and 3 are dispatched while thread 1s cache
miss is handled.

+ Threads to execute in this matter until there is a cache miss. When there
is a cache miss in one thread the remaining threads continue to execute.

6

7

Here is an illustration of how resources are distributed within a MT Core.

+ These are the resources that are common at the Core level are: the
Pipeline, the Instruction Fetch Unit, the L1 Caches, the Load Store unit,
the multiply divide unit, the arithmetic logic unit and the memory. There are
also CP0 registers that are shared by all VPEs.

+ Each VPE has its own MMU, TLB and exception and interrupt logic. All
CP0 Register that are not Common to the Core are duplicated for each
VPE. In addition to the Standard MIPS CP0 registers there are additional
registers are defined to be per-VPE, common for all TCs within the VPE.

+ There can be 2 Virtual Processors per core.

+ Each Thread Contest has it’s own General Purpose Registers and
internal Program counter. There are also several CP0 registers in each
Thread Context.

+ There can be up to 9 Thread Contexts in the core. Each Thread context
is associated with a specific VPE.

The all MT specific CP0 register will be discussed more in upcoming sections.

7

