
1

Our Coherent Processing systems can have an optional Global Interrupt
Controller. This section covers its configuration and use.

The GIC handles the distribution of interrupts between the Processor Elements in
the Multi core cluster. A processor element is a Virtual Processor Element or VPE
in a multi processor system made up of MT cores or a single processor in a multi
processor system made up of single non-MT cores.

+ Your system can have up to 256 external interrupt sources.

+ The GIC Distributes interrupt sources between the available processor
Elements in the system. You can configure it to connect any interrupt source to
any interrupt input which can be an Interrupt pin, an NMI pin or a Yield Qualifier
pin on a MT Core.

+ It Allows any Processing Element to interrupt any other Processing Element.

+ It Routs local interrupts such as Timer, Watchdog, GIC Count/Compare,
Performance Counters, and Software Interrupts.

to interrupt pin, NMI or Yield Qualifier on the local core.

It is Backward compatible with the legacy and vectored interrupt modes.

And it’s able to integrate interrupt messages from peripherals such as
HyperTransport and PCI-Express.

2

The interface to the GIC is through memory mapped registers. To get
started using the GIC registers you must first know where they are in the
memory map. The address of the GIC registers should be programmed by
the boot code in the GCR GIC Base register. This register is located within
the Global Configuration Register Block at offset 80 hex.

As you can see from the table the address is on a 128K boundary so the
lower 17 bits will always be 0. This leaves space for additional information
in the register. The GIC_EN field controls the enabling of the GIC. Once
the boot code configures the GIC it should enable it by setting this bit.

3

Starting at the GCR GIC Base address mentioned in the previous slide, the GIC address
space is accessed with uncached load and store commands. For each load or store
command the hardware supplies the physical address and the number of the Processing
Element of the requester. The Processing Element number is used as an index to
reference the appropriate subset of the instantiated control registers. By using the
Processing Element number information, the hardware writes or reads the correct subset
of the control registers pertaining to the “local” Processing Element so your software does
not need to explicitly calculate the register index for the “local” Processing Element – it’s
done entirely by hardware.

The GIC is divided into sections:

The first section starts at the Base address of the GIC. This shared section is where the
external interrupt sources are registered, masked, and assigned to a particular Processing
Element and interrupt pin. This section is used by all Processing Elements.

Next is the local section which starts at the Base address plus 8 thousand hex. This is the
section in which interrupts local to a Processing Element are registered, masked, and
assigned to a particular interrupt pin.

The “local” Processing Element can access the local registers of another Processing
Element by using the Other local address space. Software must write the Other
Addressing Register before accessing these address spaces. The value of this register is
used by hardware to index the appropriate subset of the control registers for the other
Processing Element.

An additional section called the User-Mode Visible section is used to give quick user-
mode read access to specific GIC registers. The use of this section is meant to avoid the
overhead of system calls to read GIC resources, such as counter registers.

4

I’m going to start with the Shared section of the Global Interrupt Controller.
This section of registers can be accessed by all Processing Elements
while in kernel mode. Most of the registers in this section are used to
configure the Global Interrupt Controller. Usually you would do this
configuration in your boot code using Processing Element 0. In most
cases, Other Processing Elements only access these registers for status
information. The names of the registers in this section all start with GIC
underscore the SH to indicate they are Global Interrupt Controller Shared
Section registers.

5

The Configuration register is the first register in the shared section located
at offset 0. It contains configuration information and a control bit.

The Count stop bit is a control bit that will stop the GIC counters.

The Count Bits field encodes the number of bits in the GIC counter. In the
current implementation there are always 64 bits in the counter so count bit
will always be 8.

I’ll cover the counter registers a little later in this section.

The boot code will use the Numinterrupts field to determine how many
external interrupt sources there are. Interrupt sources are configured in the
core in groups of 8. This field tells you how many groups of 8 plus 1 the
core has. 0 would indicate 1 group of 8, 1 would indicate 2 groups of 8,
and so on.

PVPE tells you how many Processing Elements there are in the system.

6

You can configure the polarity of the interrupt source by using the Polarity
registers. There are enough registers instantiated for the number of
interrupt sources in the Coherent Processing System. As I have gone over
in the GIC Configuration register slide the NUMINTERRUPTS field can be
decoded to give you the total number of interrupt sources. Since each bit
in each Polarity register controls a source, to find out how many polarity
registers there are you divide the total number interrupt sources by 32,
always rounding up if there is carry over. Interrupt source 0 is bit 0 of the
first polarity register located at offset 100 hex. This register will control the
first 32 interrupt sources, then the next register will control the next 32
interrupt sources 32 through 63 and so on. There are other registers I will
cover next that determine the interrupt type which can be level, single
edge or dual edge sensitive.

+ If the interrupt type is level sensitive then setting the corresponding
source bit to 1 will configure the source to active High, and setting it to 0
will configure it to be active low.

+ If the interrupt is single edge sensitive then setting the corresponding
source bit to 1 will configure the source to rising edge toggle and setting it
to 0 will configure it to falling edge toggle.

7

You can configure the type of the interrupt source by using the trigger
registers. There are enough Trigger registers to cover the number of
interrupt sources implemented. The calculation of the number of registers
is the same as it was for the polarity registers.

+ If a bit is set to 0 the interrupt is level type.

+ If a bit is set to 1 the interrupt is Edge type. The next slide show how to
configure it as single or dual edge.

8

If you configured a source to be edge sensitive you can further configure it
for single edge or dual edge using the Dual Edge registers. As was the
case for the previous 2 registers there are enough Dual Edge registers to
cover the number of interrupt sources implemented. The calculation is the
same as it was for the polarity registers.

+ If the bit is set to 0 the interrupt is single edge.

+ If the bit is set to 1 the interrupt is dual edge.

9

The Write edge register is used to support inter-processor interrupts.

If you want to send an interrupt to another processor the interrupt source
must be configured to be single or dual edge sensitive. Polarity does not
matter -- setting the interrupt will always activate it.

+ The RW field determines if you are setting or clearing the interrupt. To
send an interrupt set this bit, and to clear an interrupt clear this bit.

+ Along with the RW bit you need to set the interrupt field to the interrupt
number to send the interrupt to. The processor that receives the interrupt
would clear the RW bit and set the interrupt field to the interrupt number to
clear the interrupt condition.

To set up the system for inter processor interrupts you would determine
which interrupt sources to use for this purpose and which processors
should enable a specific one of those interrupts. In this way each interrupt
can be programmed for a specific processor or any number of processors
could be interrupted by a single interrupt.

The Boot Code section of this class gives a coding example of setting up
interrupts 24 through 39 for the purpose of inter processor interrupts.

10

The next 3 Register groups control the enabling, disabling, reporting enabled state, and
reporting pending interrupts. As with the Polarity, Trigger, and Dual Edge registers, there
are enough instantiated registers in each group for the number of interrupt sources in the
Coherent Processing System.

+ The table shows the address offset ranges for each register group.

+ The Reset Mask register is a write only register. Use it to Disable an interrupt by setting
the bit that corresponds to the interrupt.

+ The set Mask Register is a write only register. Use it to Enable an interrupt source by
setting the bit that corresponds to the interrupt.

When you write to the Set or Reset registers only the bits you set are affected so if you
want to disable interrupt source 3 you would just set bit 3 of the first Reset Register and
only interrupt source 3 would be affected.

+ To check to see if an interrupt source is enabled or disabled you read the Mask
Registers. Any set bits indicate that the corresponding interrupt is enabled.

+ To check to see which interrupts are active, you read the Pending registers. Any bits
that are set indicate the corresponding interrupt is active and waiting to be processed.

#define GIC_SH_RMASK31_0 0x0300 // offset fro the GIC base address for bits
for corresponding interrupt number
li a1, GIC_BASE_ADDR
li a0, 0x8000000 // interrupt number 31 (bit 31)
sw a0, GIC_SH_RMASK31_0(a1)

11

These next slides cover the mapping of an interrupt source to an interrupt
pin on a specific Processor. The MIPS architecture defines 2 software
interrupts and 6 hardware interrupt pins for each Processor. The Global
Interrupt Controller can map any interrupt source to any hardware interrupt
pin on any Processor. In addition any interrupt source can be mapped to
the non-maskable interrupt pin or on an MT system any of the yield
qualifier pins.

+ The map to pin registers are used to map to a hardware interrupt pin on
a processor.

+ And the Map to VPE registers are used to map the interrupt source to a
particular Processor.

12

The Map to Pin register is used to map a interrupt source to a interrupt pin.

+ For every interrupt source there is a 32 bit, map to pin register. The address of
the register that corresponds to any interrupt source is the GIC base address plus
500 hex, plus the interrupt source number times 4, because the addresses are
on word boundaries of 4 bytes each, plus the offset into the GIC.

+ There are three bits that control the type of pin that is assigned to the interrupt
source. While there is nothing to prevent you from setting more than one of these
bits, only one of these bits should be set.

+ The map to pin bit means you will be mapping to an interrupt pin of the
Processor that you will be assigning in Map to Vpe register. The actual pin or
interrupt vector will be set in the map field of this register.

+ The map to NMI bit will map the source to the NMI input of the Processing
Element.

+ The Map to YQ should only be used if your multi core is made up of multi-
threaded processors. In that case, it will map the interrupt source to one of the
Yield Qualifiers of a VPE.

+ The map field setting depends on whether you are mapping to a pin or a Yield
qualifier. For pin mapping it is simply the pin number you are assigning the
interrupt source to. If you are using EIC mode, then it is the vector number
between 0 and 63. For a Yield Qualifier it is simply the number of the YQ pin you
want this source to activate.

13

Each interrupt source can be routed to any Processor or VPE on a MT
core. This is done by programming the Global Interrupt Map to VPE
registers. There are 2 of these registers for each interrupt source so you
can map Processing Elements from 0 to 63.

+ Each of these pairs is located on a 32 byte boundary. The first pair for
interrupt source 0 is located at offset 2000 hex in the GIC address space.
The second pair at offset 2020 hex and so on.

+ On a multi core system made up of single cores we currently support 4
cores so only bits 0 through 3 of the first register in the pair can be used.
On a multi core system made up of Multi-Threaded cores you can have 4
cores with 2 VPEs each so in this case you can have 8 Processors. For
this type of core, bits 0 through 7 of the first register are used.

You can map an interrupt source to more than one VPE that way all VPEs
can synchronize on an interrupt. This is useful for processor to processor
interrupts. Software would need to control which VPE did the house
keeping if needed for the interrupt.

14

In summary;

+I have shown you how to set the interrupt type by using the Global
Polarity, Trigger, Dual Edge registers and how to send and clear inter-
processor interrupts using the Write Edge register

15

+ How to set the interrupt state using the Set Mask Registers to enable
and the Reset Mask Registers disable interrupts.

+ How to detect the Interrupt state using the Mask and Pending Registers.

16

+ How to map external interrupt sources using the Map to Pin and Map to
VPE registers.

17

Here is the big picture summary of the registers for external interrupts.

18

The local and other sections are used to process any interrupts which are
generated locally within a processing element. This

includes the watchdog timer, software interrupts, local performance
counters, and the count and compare interrupts. All of these interrupts can
be routed to an interrupt pin on the local core.

+ A local shadow register set can be mapped to an EIC interrupt source.

+ There are 2 identical sections. The local section is the registers for the
processor Element that is executing the code. The Other section is the
section of another processor. By using the other section one processor can
program all the other processors.

19

The “Other address register” is used to select the processors registers that
are accessed through the other registers mapped section. The Processor
number is written to the lower 5 bits of this register. If you are running on
an MT system this would be a VPE number or a VP number.

20

There are 3 types of counters available to each Processor.

+ The CP0 Counter that is within each Processing element and not shared by
any other Processing element. When a value is set in CP0 “compare register”
and then the “Count register” reaches that value an interrupt can be generated.
This is covered in detail in the programming a MIPS core class. This interrupt
generates a Timer interrupt. As you will see in upcoming slides the timer interrupt
can be enabled and mapped by the GIC to an interrupt pin within the local
Processor.

+ The interval timer is very similar to the CP0 counter. It too works with count and
compare registers. The difference is that the Count register is global to all
Processors whereas the Compare registers are local to each Processor. Both of
these registers are part of the GIC and I will cover them in this class section. The
interval timer generates a Compare interrupt which like the timer interrupt can be
enabled and mapped by the GIC to a interrupt pin within the local Processor.

+ The WatchDog timer is a count down timer. It is meant to be a liveliness timer
to tell if a Processor has gotten stuck. It needs to be kept from timing out by the
software running on the local Processor. When the count in the WatchDog
register reaches 0 it generates a WatchDog interrupt. Like the other 2 timers the
WatchDog interrupt can be mapped by the GIC to an interrupt pin within the local
Processing element. Typically this would be to the NMI pin.

21

For the interval timer the count is kept in a 2 register set that counts in the
time units of the GIC.

+ Usually this is in cycles but it is implementation specific so you should
check with your system designer to make sure what frequency the counter
counts at. Since the number of count bits is fixed at 64 when the Lo
counter overflows it increments the Hi counter. This is a read write register
but you should always disable the counter by setting the Count Stop bit in
the GIC configuration register before you write to it. Note again this is a
shared register within the GIC.

+ The Compare value is set in a 2 register set within the local section of
each Processor. When the GIC Shared counter reaches the value in these
registers a compare interrupt is generated. Note again that the compare
registers are per Processor.

22

The WatchDog timer configuration register configures the actions of the
WatchDog timer.
+ If the WatchDog Reset bit is set it indicates that this Processors WatchDog
timer expired and has generated a system wide reset signal. This bit can be
cleared by writing a 1 to it.

+ The WatchDog interrupt bit indicates that this WatchDog timer generated an
interrupt. This interrupt can be cleared by writing a 1 to this bit.

+ If the Wait mode control bit is set to 1 the WatchDog timer will to continue to
count if the Processing core is in low power mode; otherwise the WatchDog will
stop decrementing when the Processing core enters low power mode.

+ If the Debug mode control bit is set to 1 the WatchDog timer will to continue to
count if the Processing core is in Debug mode; otherwise the WatchDog will stop
decrementing when the Processing core enters Debug mode.

+ The Type field determines what happens when the WatchDog reaches 0. If the
type is set to 0 the Processor stops and asserts a WatchDog interrupt signal. If it
is set to 1 the WatchDog will reset to the initial count and start decrementing
again. If it reaches 0 on the second try then it will assert the system wide reset
signal, SI_Reset. If it is set to 2 it will assert a WatchDog interrupt, reload the
initial count and start decrementing again.

+ The WD Start field is used to Start or Stop the watchdog timer or reload the
initial count. Setting this bit to 0 disables the timer. Setting this bit to 1 enables
and reloads the count set in the Watchdog Timer Initial Count Register. To reload
the count to a already enabled timer all you need to do to set this bit to 1.

23

The WatchDog timer is a 2 register set.

The WatchDog count register is a read only register that contains the
decrementing count of the watchdog. If the count in this register reaches 0
it will take action depending on the “type” set in the WatchDog
Configuration register.

The WatchDog Initial Count register is set by software with the number of
counting Elements to count down. This value will be loaded into the
WatchDog Count Register when write a 1 to the WD_ENABLE bit along
with the TYPE fields in the GIC WatchDog Timer configuration register.

24

The local interrupt control register contains

+ 4 state bits that correspond to the routability of 4 local interrupts which
are: the Fast Debug Channel interrupt, Software interrupts , Performance
Counter and Timer interrupts.

+ These bits are preset at core build time.

If a bit is set the corresponding interrupt is software routable.

If its bit is not set the interrupts would be hardwired to one of the hardware
interrupt pins. Which pin they are hardwired to is implementation
dependent.

+ The EIC_MODE bit is the only writable bit. It controls the External
Interrupt Controller mode of the core. Setting this bit will set the processing
element to external interrupt mode.

Note that the state of the EIC_MODE bit is driven onto the SI_EICPresent
pin. Hardware uses this pin to update the state of the CP0 Config3.VEIC

25

bit to indicate support for and status of the EIC mode.

25

The next 4 slides all deal with the local processor (or VPE in an MT
system) interrupts. This register is the interrupt pending register. This is a
read only register that will tell you if an interrupt is pending for one of the
local interrupts regardless of whether or not the interrupt is enabled.

26

The Local Interrupt Mask register is a read only register that reports the
enabled status of a local interrupt. If an interrupt’s bit is set the interrupt is
enabled and if the interrupt occurs it will interrupt the processor (or VPE in
a MT system).

27

The interrupt Reset Mask register is a write only register. Setting an
interrupt’s bit to 1 will disable that interrupt and the processor will not be
interrupted if this interrupt is activated. But it will still show up in the
interrupt pending register as a pending interrupt that you could poll for.

28

The Local Interrupt Set Mask register is a write only register. When an
interrupt’s bit is set the interrupt will be enabled and will generate an
interrupt when the interrupt is activated.

29

For every local interrupt

+ there is a 32 bit map pin register as shown in the table. This allows a local
interrupt to be mapped to an interrupt pin of the local Processor if it is routable in
your core. Check the GIC_VPE_CTL register routable bits to see if a particular
interrupt is routable and not already hardwired.

+ There are three bits that control what the interrupt source is routed or mapped
to. While there is nothing to prevent you from setting more that one of these bits,
only one of these bits should be set.

+ The map to pin bit will map the interrupt source to an interrupt pin of the
processor. The actual pin will be set in the map field of this register.

+ The map to NMI bit will map the interrupt source to the NMI input of the
Processor.

+ The Map to YQ should only be used if your multi core is made up of multi-
threaded processors. It will map the interrupt source to one of the Yield Qualifiers
of the VPE that is set in the map field.

+ The map field setting depends on if you are mapping to a pin or a Yield
qualifier. For pin mapping it is simply the pin number you are assigning the
interrupt source to. For a Yield Qualifier it is simply the number of the YQ pin you
want this source to activate.

30

In summary I have shown you

+ How to set the interrupt state using the Set Mask Registers to enable
and the Reset Mask Registers disable interrupts.

+ How to detect the Interrupt state using the Mask and Pending Registers.

31

+ Check the Local Interrupt Control Register to see if routing/ Mapping is
possible and enables EIC mode

Then Rout the interrupts to a pin, NMI, or Yield Qualifier for a MT system

32

The Core local identification register identifies the Processor (or VPE in a
MT system) that is executing the code that is reading this register. It is also
the number the hardware uses to locate the specific group of local
registers for this processor.

33

If you are using EIC mode you must set which register set to use for each
interrupt source. This is not an initialized register so if your system does
not have shadow register sets you must set this field to 0.

+ Note that in the slide and others, offset L is the offset in the address
segment of the currently executing Processing Element,

+ and offset O is the offset in the address segment of the Processing
Element whose ID is in the VPE-Other Addressing Register.

34

The GIC Counter is the only register available in user mode. It is a alias of
the GIC Shared Counters. All other registers are only available in a
privileged mode.

35

