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Introduction

The MIPS32® 34K™ core is a 32-bit MIPS32 CPU core for SoC (“System-On-a-chip”) applications, licensed as syn-
thesizable RTL. In typical 65nm process technology it runs at up to 800MHz with a 8-9-stage pipeline. But what is
special about the 34K core are the following features:

• The MIPS® MT ASE: The multithreading ASE (“application-specific extension” to the MIPS architecture). It’s a
modest addition to the instruction set, but a profound change to the CPU, which can now run multiple threads
concurrently. The set of software-visible resources devoted to one thread are known as a TC. The MT ASE
allows for two multithreading models which are very different for software:

– Multiple Virtual Processing Elements (VPEs) in a CPU: each “VPE' has at least one TC together with its own
copies of everything required to make it just like an independent MIPS CPU. Your 2-VPE (or more) core
seems to software just like a 2-CPU “SMP” multiprocessor: indeed, it can run SMP software - software which
knows nothing about MIPS MT - without requiring any CPU-related changes.

– Multiple concurrent threads running within one VPE, usable by software which knows about MIPS MT. These
multiple threads are relatively cheap, because they’re equipped only with the resources necessary to run user-
level programs (but they share a lot of OS-controlled resources.)

The 34K core supports both models of multithreading.

Much of this manual won’t make any sense until you get your head round multithreading, so unless you’re thor-
oughly familiar with it already you should acquaint yourself with Chapter 2, “The MIPS® MT ASE -
Multithreading the RISC way” on page 17.

• DSP ASE: this adds a lot of new computational instructions with a fixed-point math unit crafted to speed up pop-
ular signal-processing algorithms, which form a large part of the computational load for voice and imaging appli-
cations. Some of these functions are ‘‘SIMD” - they might, for example, do two math operations at once on two
16-bit values packed into one 32-bit register.

There’s a guide to the DSP ASE in Chapter 9, “The MIPS32® DSP ASE” on page 123 and the formal specifica-
tion is [MIPSDSP].

1.1 Readership

This document is for programmers who are already familiar with the MIPS® architecture and who can read MIPS
assembler language (if that’s not you yet, you’d probably benefit from reading a generic MIPS book, see Appendix A,
“References” on page 173).

More precisely, you should definitely be reading this manual if you have an OS, compiler or low-level application
which already runs on some earlier MIPS CPU, and you want to adapt it to the 34K core. So this document concen-
trates on where a MIPS 34K family core behaves differently from its predecessors. That’s either:
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• Behavior which is not completely specified by Release 2 of the MIPS32® architecture: these either concern priv-
ileged operation, or are timing-related.

• Behavior which was standardized only in the recent Release 2 of the MIPS32 specification (and not in previous

versions). All Release 2 features are formally documented in [MIPS32]1, and [MIPS32V1] contains a brief sum-
mary.

But the summary is too brief to program from, and the details are widely spread; so you’ll find a shortform pre-
sentation of the changes here in Section D.2 “User-level changes with Release 2 of the MIPS32® Architecture”.

• Details of timing, relevant to engineers optimizing code (and that very small audience of compiler writers).

This manual is intentionally much more focussed and therefore smaller than the full [SUM] manual. It does leave
some material out; if you need to write processor subsystem diagnostics, this will not be enough! If you want a very
careful corner-cases-included delineation of exactly what an instruction does, you’ll need [MIPS32V2]... and so on.

For readability, some MIPS32 material is repeated here, particularly where a reference would involve a large excur-
sion for the reader for a small saving for the author. Appendices mention every user-level-programming difference
any active MIPS software engineer is likely to notice when programming the 34K core.

1.2 In this chapter

In the remainder of this chapter you’ll find:

• Section 1.3, "Chapter summary": what’s in the chapters (hot links if you’re reading online).

• Section 1.4, "Typographical conventions": a manual like this is made easier to read (though perhaps not made
more beautiful) if we use typographical conventions so you can recognize machine registers, instructions and so
on. Here’s what they look like.

• Section 1.6 “Finding information in this manual”: how to find things in here, whether you’re reading online or
on paper.

• Section 1.7, "Specification summary": a terse summary of facts and figures.

1.3 Chapter summary

• Chapter 2, “The MIPS® MT ASE - Multithreading the RISC way” on page 17: about the MIPS Multi-Threading
instruction set extension (“ASE”).

• Chapter 3, “How the 34K™ core implements multi-threading” on page 41: implementation options and more
details.

• Chapter 4, “Initialization and identity” on page 53: setting up the 34K core, including its multi-threading system.

• Chapter 5, “Memory map, caching, reads, writes and translation” on page 67: all about memory accesses and
translation.

1. References (in square brackets) are listed in Appendix A, “References” on page 173.
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• Chapter 7, “Kernel-mode (OS) programming and Release 2 of the MIPS32® Architecture” on page 101: use of
“hazard barriers”, the advanced interrupt system, shadow registers and power management.

• Chapter 10, “34K™ core features for debug and profiling” on page 138: EJTAG debug unit, watchpoints and per-
formance counters.

• Chapter 6, “Programming the 34K™ core in user mode” on page 93: on tuning code specifically for the 34K core
family.

• Chapter 8, “Floating point unit” on page 113: a software view of the (optional) 64-/32-bit floating point unit.

• Chapter 9, “The MIPS32® DSP ASE” on page 123: the instruction set extension for faster media algorithms.

Appendices:

• Appendix A, “References” on page 173: further reading.

• Appendix B, “Glossary” on page 175: a glossary of terms which may be unfamiliar (particularly relating to
multi-threading).

• Appendix C, “CP0 register summary and reference” on page 179: functionally orientated index to the 34K core’s
“co-processor zero” registers and fields, and contains descriptions of all the registers not already included in one
of the other chapters.

• Appendix D, “MIPS® Architecture quick-reference sheet(s)” on page 191: handy guide to easily-forgotten data
on MIPS.

• Appendix E, “” on page 195: for this document.

1.4 Typographical conventions

CPU register names are in oblique monospace. Co-processor zero (CP0) registers fields are shown after the register
name in brackets, so the interrupt enable bit in the Status register appears as Status[IE]. CP0 register numbers are
denoted by n.s, where “n” is the register number (between 0-31) and “s” is the “select” field (0-7). If the select field
is omitted, it’s zero. A select field of “x” denotes all eight potential select numbers.

The acronym CP0 in the paragraph above is a word defined in Chapter B, “Glossary” on page 175 and shows up in
italics - but if you’re reading on-line it also shows up as blue, showing that it’s a link which you can click to get to the
definition.

References to other manuals are collected together in Appendix A, “References” on page 173 and look like this
[MIPS32].

Instruction mnemonics and assembler code fragments are set in bold monospace, core interface signal names in
small italics, and C or other programming language constructs in monospace.

To use register and field names in your program, you’ll need a C header file or something similar. It’s probably better
and easier not to write your own: see [m32c0.h] and [mt.h].
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1.5 Register diagrams and field descriptions

It’s a tradition of MIPS CPUs that most control and status information is passed through registers - the most numer-
ous are the “CP0” registers used for kernel-level CPU control operations, but there are also memory-mapped registers
in the debug unit and to control special memory arrays. All of them are 32 bits wide.

Many of the registers are broken up into multiple fields with substantially independent meanings and effects. Any
register which is not simply a 32-bit number comes with a register “figure”, and there’s a list of figures at the start of
this manual. The register figures are growing extra information in this version of the manual:

• We’re introducing color-codes to identify fields. Fields which you can write, have some hardware effect and read
back the same are regarded as “standard” and have a white background. But the background color tells you
which fields are read-only (green), which are zero or “X” (gray), are purely for software use (blue-green), which
are not just write-and-read-back (yellow), or are reserved and where use might be dangerous (red):

If you’ve printed this manual in black-and-white, those will all look much the same, sorry!

• Register diagrams may carry a third row (below the field descriptions in the boxes) which tell you about any
value guaranteed to be in the register after a hardware reset. Those values will always be described separately in
the field descriptions, and careful programmers will probably avoid relying on them wherever they can.

1.6 Finding information in this manual

If you’re reading this manual on-screen, text shown in blue is a hot-link; click on the text to go to the section, figure or
table referenced. The chapter index and lists of tables and figures at the start of the book is click-through too.

All the special Co-processor zero (CP0) registers are listed in Appendix C, “CP0 register summary and reference” on
page 179. That appendix has the registers listed by name, by number and by function. The by-number table has hot-
links to other sections where each is mentioned - and for those reading on paper, all those links have page numbers.

1.7 Specification summary

The 34K core is provided as a synthesizable package, and customers have considerable freedom to customize it. But
all 34K cores share these:

• CPU architecture: compliant to Release 2 of the MIPS32 Architecture [MIPS32].

• Multi-threading: as defined by the Multithreading extension to the MIPS32 architecture as specified by
[MIPSMT].

The 34K core can be synthesized to be able to run nine concurrent threads (9 TCs) in up to two “virtual proces-
sors” (2 VPEs).

It may be equipped with a bank of Inter-Thread Communication storage (ITC) locations, following the recom-
mendations of [MIPSMT].

• DSP-orientated instruction set: it implements the DSP extension to the MIPS32 architecture, see [MIPSDSP].

read-only (green) zero/X (gray)
software-only (blue/

green)
not just write-back

(yellow)
reserved, take care

(red)



 Introduction

15 Programming the MIPS32® 34K™ Core Family, Revision 01.64

• MIPS16e™: the 16-bit instruction set option for compact code, see [MIPS16e].

• 8-9-stage pipeline2: a sophisticated branch prediction unit keeps the CPU efficient, even when it’s only running
one thread.

• Separate I- and D-caches: 4-way set associative. The SoC designer may choose from 8, 16, 32 or 64Kbytes size
for each cache (and can even omit either cache). Parity checking in the cache is optional.

Caches are non-blocking, and both allow for hit-under-miss and miss-under-miss - the I-cache uses that to allow
a cache-hitting thread to continue even though an I-cache refill is pending for some other thread.

The D-cache is write-back (memory regions may also be configured as write-through and a special "uncached
accelerated" write mode). You can lock data into the caches.

• OCP system interface: industry-standard interconnect.

SoC Builder’s Optional features

Some features are provided only at the option of the SoC integrator, and may depend on separate licensed material
from MIPS Technologies:

• L2 (secondary) cache: you can configure your 34K core with MIPS Technologies’ L2 cache between 128Kbyte
and 1Mbyte in size. Full details are in [L2CACHE], but programming information is in Section 5.4 “Caches” of
this manual.

• CorExtend™ user-defined instructions: the 34K Pro Series™ core family allows you to add custom instructions
as described in [CorExtend].

• Floating point unit: fitted to 34Kf™ cores, with 32 full 64-bit floating point registers.

• Fixed mapping MMU: reduces core size when a TLB is not required.

• Instruction- or data-side “scratchpad” memory: each can be up to 1Mbyte of high-performance on-chip mem-
ory, which can be dual-ported to the OCP interface for “push” I/O architectures.

• EJTAG debug unit: on-chip debug resources, summarized in Section 10.1, "EJTAG on-chip debug unit".

• Power-management options: summed up in Section 7.5, "Saving Power" below.

• OCP L2 extensions: to allow front-side L2 cache.

Refer to [INTGUIDE] for full details about the options.

1.8 Pipeline and implementation

In programming documents about MIPS Technologies cores you’d usually find a section which describes the pipe-
line, at least at a broad level useful for programmers. With the 34K core that is hard to describe without knowing
something about multi-threading so we’ve moved it to Section 3.1, "The 34K™ core pipeline and multithreading"
below.

2. Single TC configurations enable a bypass of a thread selection stage to get down to 8 stages, otherwise it’ll be 9. When exe-
cuting MIPS16e instructions, it’ll be 11 stages
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The MIPS® MT ASE - Multithreading the RISC way

We use “MT” for “multi-threading”. So what does a MIPS architecture CPU do to run multiple threads concurrently?
That question is one about “architecture” - the corresponding “how does the 34K core run multiple threads?” question
is about implementation, and is answered below in Chapter 3, “How the 34K™ core implements multi-threading” on
page 41.

In this chapter:

• Section 2.1, "What’s a thread and its context?": basic definitions.

• Section 2.2, "Why multi-threading?": motivation.

• Section 2.3, "Different kinds of multi-threading: TCs and VPEs": we offer two levels of multi-threading in one
CPU.

• Section 2.4, "When can’t threads run?": and what they’re doing when stopped.

• Section 2.5, "Thread-scheduling decisions and the policy manager": what happens and what influence can you
have.

• Section 2.6, "Multithreading, exceptions and interrupts": interrupts and other exceptions in the MIPS MT CPU.

• Section 2.7, "Multithreading, non-blocking loads and stores, and gating storage"

• Section 2.8, "MIPS® Multithreading ASE - new instructions"

• Section 2.9, "Multithreading ASE - CP0 (privileged) registers": understanding multi-threading in fine detail.

Why multi-threading takes a lot of thinking about

Any form of concurrency makes your head hurt. Our brains are doubtless extremely parallel: we can talk on a cell-
phone and drive with only a 50% increase in our chance of crashing. But our ability to reason correctly is distinctly
sequential, and so far we have not bred a race of super-kids who can write explicitly parallel software.

Multi-tasking software has been successfully understood by dividing it into sequential chunks ("threads", though a
more precise definition follows) which communicate and synchronize with each other only in carefully controlled
ways. You can then unleash a flock of threads and allow them to evolve separately. Programmers find it almost
impossible to keep track of what every thread is doing at any one time - but with simple-enough rules about the inter-
actions, the system will still work.

The multithreading CPU pushes thread concurrency down to the hardware level, so you should expect to find it some-
what mystifying from time to time. To really understand multi-threading and the 34K core you need to be able to
switch between a software-orientated threads-eye-view (where threads are internally sequenced and other threads are
happening somewhere else) and a hardware engineers CPUs-eye-view (where everything happens in sequence along
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the pipeline). This is difficult, but we hope not impossible. This chapter takes the “thread” viewpoint, and the next
chapter stays closer to the hardware.

2.1 What’s a thread and its context?

There are a couple of critical phrases and acronyms which it’s useful to define carefully before we start:

• Thread: a set of computer instructions read and activated in their programmed order.

Operating systems most often use the word “thread” specifically for application-software visible threads sched-
uled by the OS. But our wider definition means that any piece of software must have at least one thread.

By this definition something like an interrupt handler (which is not reached as a result of normal program flow)
counts as a thread in its own right. This more general definition of "thread" seems to be a more logical starting
point for describing multi-threading hardware.

• Thread context: you might want to consider the complete state of a running thread, enough so you could restart it
successfully. But for our purposes we’re particularly interested in the part of the state which gets stored inside the
CPU - what [MIPSMT] calls the “thread context”. The thread context always (of course) includes the Program
Counter (PC) and the general-purpose registers. There are some good justifications for narrowing our focus
down to the state held in the CPU:

1. We don’t need to encompass the thread’s data stored in memory, because we know how to share memory
already (for OS-defined threads, for example);

2. We don’t include state which is inherently inaccessible to this particular instruction stream - so kernel-only
readable CP0 registers are invisible to a user-privilege thread;

3. We don’t include state which is logically unnecessary, and just kept for efficiency - for example, cache con-
tents, which generally make no difference to the underlying memory image.

With this definition, what is included in the thread context varies according to what sort of software is running.
For a Linux interrupt handler on a conventional MIPS architecture CPU the CP0 registers are part of the thread
state, but for a Linux application thread they’re not visible.

You could have found the definitions of Thread and Thread context in Appendix B, “Glossary” on page 175 below.
Any word or phrase in blue (or slightly faint in real black-and-white print) is probably explained. If you’re reading
online and it’s blue, it will link to its definition: try it.

2.2 Why multi-threading?

Traditionally, a CPU only held one thread’s context (one PC, one set of registers). Operating systems providing mul-
tiple threads held all the state for the non-running threads in OS-specific data structures.

But MIPS MT CPUs are equipped with more than one PC and register set so they can hold more than one thread’s
context.

There’s more than one reason why you might want to build a multithreading CPU. For MIPS MT the main motivation
is to build a CPU which can continue to do useful work when some computation is held up for a period of a few to
some hundreds of CPU cycles - typical of cache misses and some other interactions in embedded systems. Such a
hold-up is too short to allow an OS to borrow the CPU to do something else (the OS thread-switch overhead is itself
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probably 100 cycles or more). But in many workloads such hold-ups are frequent enough that the CPU spends half its
time waiting for data.

A multithreading CPU can keep other threads making progress when one thread is held up. If (as is commonly the
case these days) the real workload is already split into multiple threads, that can turn into extra application perfor-
mance without modifying application code.

The extra thread state storage (mostly the register file) only represents a fraction of the gate count of a CPU, so this
extra performance has cost only a small increment in area and complexity. That’s why in 2005 everyone wants to do
multithreading.

2.3 Different kinds of multi-threading: TCs and VPEs

In some ways the simplest thing to do is to replicate every software-visible piece of CPU state. Then your multi-
threading CPU will look pretty much like two CPUs which happen to share memory, creating a “virtual multiproces-
sor” (VSMP). That’s what Intel’s newer multithreading x86 processors do; you can drop a Linux kernel designed for a
two-way multiprocessor onto such a CPU and it just works. It’s an easy way to get a software market for a new tech-
nology.

But performance-critical embedded applications are those where the multithreading is an explicit part of the system
design - we’ll call it “explicit multithreading” or EMT. EMT is new, so we don’t need to offer backward compatibil-
ity. An EMT application does not need the whole CPU replicated; it can manage with what is visible to user-level
programs - the PC, GPRs and a little more.

The original and ingenious trick in the MIPS MT architecture is that you have a choice of either model, and can even
do both in the same CPU at the same time. So a MIPS MT CPU has multiple TCs (the acronym started out as Thread
context), but also provides for more than one VPE (“VPE” started out as a Virtual Processing Element.) A TC pro-
vides the minimum required to do explicit multithreading, while one or more TCs with their own VPE really look like
an independent CPU, enough to provide a congenial home for software which doesn’t really want to know about
MIPS MT - perhaps even a non-MT-aware legacy operating system.

2.3.1 How an MT CPU’s hardware uses TCs and VPEs

Each instruction being run by an MT CPU has a TC number. Whenever the instruction accesses some state - reads or
writes a general-purpose register, for example - it uses its TC number to extend the register-number field which is
already defined inside the instruction. An instruction sees a different set of registers depending on the TC number: it’s
very simple, and it just works.

It’s not quite that simple on a MIPS architecture CPU, because of the TC/VPE trick mentioned above. So this instruc-
tion might be for TC #5 (it uses general purpose registers from the fifth bank) but VPE #1 (it gets most of its CP0 reg-
isters from the first bank). Again, this should just work. What’s more complicated, of course, is to get those CPU
resources working which can’t simply be reduced to registers. But that’s not architecture, it’s implementation, and
described in Chapter 3, “How the 34K™ core implements multi-threading” on page 41 below.

2.3.2 CPU resources and registers shared between all threads

Many of the CPU’s resources are not replicated for MIPS MT, just used by whichever TC is identified by the instruc-
tion accessing the resource. They include:
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• Caches: the cache’s contents are just like memory (only faster) and unproblematic. On a CISC CPU the cache is
usually completely invisible to running software, and there’s no issue at all about multiple threads - but MIPS
architecture CPUs generally need the OS to intervene in the caches at some points.

The MIPS MT ASE requires that the writeback and invalidate cache instructions used by real OS’ when run-

ning are multi-threading safe. Cache manipulations may be independently mixed by two VPEs3 without immedi-
ate harm; even if one VPE invalidates a cache entry from right under the feet of another one, everything should
keep working - the consuming VPE will either get the old copy (which it was happy with) or cache-miss and pull
in a new one (which should be just the same data).

However, arbitrary re-initialization of a cache already in use by another VPE will not be safe; writeback data
could be lost. Programs running on separate VPEs would probably be well-advised to get cache initialization
done by a thread running alone before other VPEs are enabled.

With a multithreading workload, cache performance could suffer; multiple threads will probably produce a larger
and more diverse “working set” of active memory regions. However, a cache works well (or not) when optimiz-
ing repeated accesses over spans of code executing hundreds of thousands to millions of instructions. During that
time which even a single-threaded workload will climb all over application and OS space. The 34K core’s caches
are already 4-way set associative, which should be enough to minimize misses caused by overlapping hot-spots
of several concurrent threads. Our measurements to date back that up.

• Main pipeline: each of the 34K core’s main pipeline stages just serve the TC associated with the current instruc-
tion. No problem.

• The TLB (sometimes): the MIPS MT ASE allows the TLB entries to be shared between all VPEs, or partitioned
between VPEs. The 34K core can be configured to do either (to share the TLB, set MVPControl[STLB] to 1.)

If the TLB is not shared, it is partitioned by hardware so each VPE sees its own independent array of entries.

When the TLB is shared, there’s a problem of managing concurrent access by the two VPEs. It’s up to OS soft-
ware to control concurrent access by OS maintenance routines. But that still leaves the risk that one VPE’s main-
tenance software will collide with another VPE’s TLB refill exception handler: see Section 4.3.4, "Sharing and
not sharing the TLB" for how that’s avoided.

• Basic configuration registers: in a highly adaptable design like the 34K core the initialization software needs to
know the full resource complement of the CPU, or it can’t know how to share it between the VPEs.

The registers MVPControl and MVPConf0-1 allow software to see what resources are provided CPU-wide, and
these registers are not replicated per-VPE.

• Performance counters: since these are infrequently used, but it’s valuable to have as many as possible available,
the four registers are shared between both VPEs.

This is more implementation than architecture, but some software-invisible resources are also shared. Notably, the
34K core’s “branch history table” (BHT) in the instruction fetch unit is shared. That seems quite wrong: the branch
histories of different threads are certainly likely to be different. But the BHT was only statistically correct anyway;
the branch history is only recorded in entries indexed by some modest number of low virtual address bits. Even in a
conventional single-thread CPU, different branches could map onto the same entry and cause confusion (and thus

3. The CP0 registers used with the cache instruction are only replicated per-VPE, so EMT code must take
care to avoid re-entry into cache management functions by other threads.
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lower the prediction accuracy) - but there are enough different entries that this relatively rarely happens. Having mul-
tiple threads doesn’t really make it much worse, and the BHT should continue to perform well in typical applications.

2.3.3 CPU resources and registers replicated per-TC

Some state needs to be independently kept for each TC, including:

• Program counter and general purpose (integer) registers: the TC’s program counter can be seen and adjusted
(when the TC is halted, otherwise it’s a moving target) in TCRestart. The architecture does not define what you’ll
get if you read your own TCRestart; probably some "historical value".

Each TC, of course, has its own set of 32 general purpose registers. It also needs its own copies of the accumula-
tor registers in the multiply-divide unit (hi/lo), and the extra accumulator registers and control register provided
as part of the DSP ASE described in Chapter 9, “The MIPS32® DSP ASE” on page 123.

• Privilege state: some TCs (sharing a VPE) may be in the kernel while others are running user-mode software. So
each TC has its own copy of the user-mode/kernel-mode flags Status[KSU]. TCStatus[TKSU] provides a conve-
nient per-TC view of the same flags. Each TC gets a copy of the TCContext register too: it has no hardware sig-
nificance, but provides a useful scratch register for the OS to keep some key thread identifier.

• Address space: we don’t want to insist that all TCs which share a VPE must execute in the same address space.
Different address spaces in MIPS architecture CPUs are managed by only returning TLB translations for virtual
addresses when they’re presented together with the right "ASID" value, an arbitrary 8-bit token held in
EntryHi[ASID] while the system runs.

So each TC also has its own copy of the EntryHi[ASID] field - the same field is accessible as TCStatus[TASID].

• Access to co-processors: the 34K core’s FPU - when fitted - is built with just one set of registers. That makes
sense because the registers in the floating point unit already occupy a lot of logic space, and the 1-register-set
FPU design is identical to that used in the 24K™ core family. But it means that the FPU can’t be used by multi-
ple concurrent threads.

Some other co-processors might have one set of data registers per TC, supporting arbitrary multi-threading.

In the MIPS architecture you can’t use any co-processor unless you first turn on the corresponding Status[CUx]
bit in the status register.   MIPS MT uses that to provide a mechanism to share the co-processors, detailed in the
notes to Figure 2.2 below. As part of that mechanism the Status[CU3-1] bits are also visible at TCStatus[TCU3-1].

• Which VPE we’re using: a TC must know which VPE is belongs to, or it can’t get at the right copy of the per-
VPE registers. The VPE affiliation is readable and writable in TCBind[CurVPE]. (Each VPE also has a distinct
number readable at EBase[CPUNum], to allow seamless use of multi-CPU software on multiple VPEs.)

• TC halted: think of this as "TC anesthetized" - it stops the TC from wriggling around when under surgery, or
even just close inspection. It occupies its own 1-bit register TCHalt so it can be set and cleared atomically.

While this is set the TC is frozen: won’t run, can’t be picked by fork. The architecture abhors the idea of a
halted thread being half-way through a synchronization access, and any pending load/store to Gating Storage
will be rolled back when this bit is set. From a hardware point of view the gating storage access is aborted; but
unless you do something special to stop it the access will be quietly retried once the OS is finished with its main-
tenance and clears TCHalt.

• TC interrupt-exempt: set TCStatus[IXMT] to mean this TC will never be picked to handle an interrupt exception
(even if that means the interrupt is completely ignored).
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• Per-TC flags: there are also bits to control the ability of fork to seize a “free” TC and make it run a new thread,
and for other purposes. See the description of fork in Section 2.8, "MIPS® Multithreading ASE - new
instructions" and the notes on Figure 2.2.

• Debug state: the single-step bit Debug[SSt] is replicated per-TC, for fine debugger control. The debugger is also
given a control bit Debug[OffLine] which it can use to prevent TCs other than the one under debug from springing
into life during single-step or when running a thread to the next breakpoint.

2.3.4 CPU resources and registers replicated per-VPE

We want a TC running alone in a VPE to be a MIPS32-compliant processor in its own right, so each VPE replicates
all the CP0 registers required by release 2 of the MIPS32 specification (a few read-only registers are in fact shared
between VPEs on the same CPU, but they’re read-only, so who’s to know?)

So what is replicated?

• State related to exceptions: MIPS architecture experts will recall that you enter exception mode by taking an
exception, and remain in it until you either return with an eret or (more common in a complicated OS) you
carefully clean up exception-dependent information and then manually clear Status[EXL].

The MIPS MT architects determined that only one TC from a VPE is allowed to be in exception mode at any one
time - when one TC takes the exception, its VPE siblings are suspended until the first TC clears Status[EXL]. To
do otherwise would require a lot of extra replicated state, and would lead to some nasty concurrency hazards.

• Interrupt system and interrupts: interrupt signals to the chip are wired to VPEs separately (a reasonable strategy
may be to wire all the VPEs in parallel to the same inputs, but that’s an SoC designer’s decision).

The interrupt management fields in the Cause and Status registers are all per-VPE.

• Cache management registers: all the cache operation staging registers are per-VPE. In fact, most of the CP0 reg-
isters are per-VPE.

• The TLB (sometimes): on the 34K core the TLB may either be shared, or partitioned invisibly so that two VPEs

each think they have their own dedicated chunk of the TLB4.

• The EJTAG debug unit: the physical unit may or may not be replicated, but the registers in its CP0 software inter-
face (DEPC, DESAVE and Debug) are replicated per-VPE.

In debug mode all TCs other than the one running the debugger are suspended, regardless of VPE affiliation.
Moreover, the TC in debug mode continues to run even if it is otherwise marked as halted, not-allocated etc.
More details in Section 10.1.2, "Debug mode".

2.4 When can’t threads run?

A CPU can be compliant to the MIPS MT ASE without being committed to any particular thread-scheduling algo-
rithm - the decision as to which thread’s instruction to pick next is implementation-dependent. But that level of
abstraction is difficult, so let’s make some working assumptions - which will, happily, turn out to be correct for the
34K core.

4. The amount of the TLB awarded to each VPE is configurable when your core is synthesized. Ask your hardware engineer.
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Some implementations permit customizable hardware outside of the core to influence the CPU to favor one TC over
another when deciding what instruction to run next; see Section 2.5, "Thread-scheduling decisions and the policy
manager" below.

But before worrying about that, let’s look at something simpler. A practical CPU might run instructions in turn
("round-robin") from each live thread. But what about that weasel word "live"? When can a thread not make
progress? Well, it can be:

• Waiting for memory data: most often, to resolve a cache miss (for of the order of 50 cycles) - making use of this
idle time is the first motivation for contemporary multithreading.

Or this might also be an uncached read of some device-register data (of the order of 100-500 cycles) - particu-
larly relevant to embedded applications.

• Blocked on read/write “gating storage”: we envisage that multithreading applications are likely to use special
memory locations where the wait-for-transfer is used as a deliberate way of matching the speed of the software to
the arrival of data either from other threads, or some direct hardware source/sink. Waits of this kind may extend
for thousands of cycles. So the MIPS MT ASE describes how some memory locations are accessed according to
special rules which make them Gating Storage, and describes a particular application of gating storage to
optional ITC locations. See Section 3.3, "Inter-thread communication storage (ITC)" for the facility provided by
the 34K core.

• Blocked on an "interrupt-like" external signal: a thread which waits for a particular hardware signal is an obvi-
ous multithreading analogue of an interrupt handler, and likely to be useful. You’ll see how the MIPS MT
yield instruction can be used for that purpose.

• Halted - closed for maintenance: there are bound to be things the OS wants to do with TCs which can’t be done
while it’s live, and each TC comes with a "Halt" button in the TCHalt register.

• Not "allocated": the MT system includes the fork instruction, which provides a very lightweight way of start-
ing a new thread - potentially, it’s even usable from user-mode in a protected OS. An OS obviously can’t simply
relinquish control of thread scheduling, but it can arrange to provide a pool of ‘‘free’’ threads which fork can
use - they’re a bit like taxis waiting at a taxi-rank for customers. The TCs “at the rank” are prevented from run-
ning code by having their TCStatus[A] (“allocated”) bit clear. If a system doesn’t use fork, then it must take
care to set the allocated bit explicitly on any TC which is to run.

• Affiliated to an unactivated VPE: that is, one with VPEConf0[VPA] zero.

• Asleep after executing a wait instruction: in which case it won’t awake until its VPE gets an interrupt (it doesn’t
matter which TC runs the interrupt code, all TCs are woken from their sleep).

• Suspended - temporarily inhibited to avoid some concurrency problem: for example we’ll see that a VPE
becomes "single-threaded" while it is handling exceptions, so that implicitly suspends all the VPE’s other TCs.
OS software can achieve a similar effect using instructions such as dmt (stop all other threads with the same
VPE affiliation) and dvpe (stop all other threads, even in different VPEs).

• “Offlined” by a debugger: using Debug[OffLine], typically so the debugger can isolate another thread for test.

In this manual we’ll try to consistently use the word stopped for a thread subject to any of the conditions above - and
by analogy, we’ll use the same adjective to describe the TC which is executing the thread. The opposite of "stopped"
is live.

We’ll distinguish a stopped thread as either:
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• Stalled: waiting for a condition which could be experienced by a program on a single-threaded CPU - that
includes waiting for data from a cache miss or an uncached read, OR:

• Blocked: waiting for something other than the above. That’s some deliberate multithreading synchronization by
yield, a gating storage read, or explicitly stopped as a result of software activity.

The blocked state is new with MIPS MT. The nearest thing that a thread on a non-MT MIPS CPU can come to
"blocked" is when the CPU is asleep after executing wait.

For blocked threads we’ll use halted, suspended and asleep in the specific senses above. The use of these terms is
compatible with the formal specification [MIPSMT], though that uses running to instead of live. In the formal speci-
fication “running” means either live or waiting for a normal read/write.

Regardless of why a thread is stopped:

• The CPU: will be interested in issuing instructions from some other live thread. In a simple pipelined CPU, that
may involve discarding some instructions from the stopped thread, if they’ve already entered the main pipeline.

• The OS: may be interested in taking control when a thread is blocked for a long time - the TC could be in princi-
ple given another thread which might be able to make more progress. The OS overhead in changing the TC to
another thread - really the same job as a thread-switch on a conventional CPU - is likely to be more than 100
instructions so the OS should only do this when the thread is likely to remain stopped for many hundreds of
cycles.

But it’s important that the OS has the power to take a blocked thread and detach it from its TC cleanly, so it can
be restarted. That motivates some of the key features of the architecture, including the details of Gating Storage,
see Section 2.7.1, "Gating storage".

2.5 Thread-scheduling decisions and the policy manager

The MIPS MT architecture is agnostic about thread scheduling. The immediate choice of which thread to run next is
made inside the core; in the absence of any directions to the contrary, this choice is required to be fair to TCs in the
long run.

However, in MIPS Technologies cores we envisage a rather dumb in-core scheduler given long-term hints by a Policy
Manager (PM) which, living outside the core, may be customized for specific applications.

In particular the TCSchedule and VPESchedule registers (if implemented at all) will typically be inside the policy
manager block; so what they do is strictly implementation-dependent.

The way the in-core scheduler in the 34K core works is described in Section 3.2.1, "How the Dispatch Scheduler
Works", and the choice of policy managers available from MIPS Technologies is in Section 3.2.3, "MIPS Policy
managers included with the 34K‘ core family".

2.6 Multithreading, exceptions and interrupts

An exception in a single-threaded MIPS architecture CPU is usually quite disruptive in the pipeline, and is commonly
implemented by discarding a lot of execution state (pipelines get flushed and instructions discarded). An exception on
a MIPS MT machine happens within a thread context - and other threads (at least those on separate VPEs) expect to
continue undisturbed. So you’d expect there to be some difficulties when we redefine exceptions on a multithreading
machine.
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There are two types of exceptions:

• Interrupts are “asynchronous” - they happen for reasons unconnected with any particular instruction and are dis-
cussed in Section 2.6.1, "Multithreading and interrupts" below.

• Synchronous exceptions, associated with a particular instruction. That’s what we’ll look at first.

Bear in mind that an OS is a program (a set of threads, in fact). It’s not characterized by the TC which happens to exe-
cute some part of it. The OS’ exception handlers are each separate threads in their own right, in the meaning given by
our definition of Thread.

Synchronous exception handlers are run by the TC whose instruction caused the exception. The TC immediately
ceases work on its thread and starts fetching instructions from the appropriate exception handler.

The MIPS MT ASE requires that once a TC enters exception state, all the other TCs within the same VPE are sus-

pended. None of the other TC’s instructions may be executed until the VPE’s Status[EXL] bit is cleared5 by the excep-
tion handler. The exception handler (a new thread, remember) runs with kernel privileges and has access to all the
defined CP0 registers, Because only one TC can be in exception state, the exception-related CP0 registers need only
be replicated per-VPE.

In your MIPS MT system an exception not only causes a hiccup to the thread which takes it, but also suspends unre-
lated threads in the same VPE. If your application needs to maximize concurrency, you should consider minimizing
exceptions - you may be able to use a thread blocked on an ITC access or yield condition instead. And, of course,
arrange that exception handlers (as soon as they can) save the state necessary that they can drop back out of exception
mode.

2.6.1 Multithreading and interrupts

In the MIPS architecture interrupt management is by CP0 registers (in particular, Cause and Status). Those registers
are replicated per-VPE, not per-TC; so interrupt masking and steering is managed per-VPE. Even interrupt "wiring"
into the core is per-VPE.

Each interrupt input may be connected to just one VPE or to all of them: ask your hardware engineer. In some sys-
tems you may be able to redirect interrupts (outside the CPU) under software control. If you connect and unmask an
interrupt on multiple VPEs, any number of them may take the interrupt exception - you probably don’t want that to
happen, so either don’t connect or don’t enable some of them...

The interrupt exception may be taken by any available TC associated with the VPE.

The MIPS architecture already provides multiple ways to refuse an interrupt exception: an interrupt to any thread
from this VPE can be prevented by exception mode, a global interrupt-enable flag which may be zero, and by per-

interrupt mask bits: that is by Status[EXL], Status[IE] and Status[IM]6. The MIPS MT architecture adds yet another
reason not to take an interrupt. You can now set a new per-TC CP0 register field TCStatus[IXMT] to make the TC
Interrupt exempt. That will prevent the particular TC from being used for an interrupt exception. It’s most obvious
use is to permit some TC to run a thread which benefits from living in an interrupt-free universe.

5. That may seem somewhat restrictive, but is necessary: critical exception handling state in the CP0 registers is not replicated
per-TC, only per-VPE.
And it’s not so bad as it looks, because it’s already good practice to minimize the amount of code which runs with
Status[EXL] set.

6. This list is not comprehensive.
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2.7 Multithreading, non-blocking loads and stores, and gating storage

Most modern MIPS architecture cores implement non-blocking loads: that is, the core does not simply stop and wait
for the load data to arrive. Instead, the register target of the load is marked and computation continues. If the data
arrives before the program tries to use it, the data is sent directly to the register. But if some other instruction wants to
read the register before the data arrives, the "consuming" instruction waits.

That means that a thread in a MIPS MT machine which does a “slow” load stops on the consuming instruction. When
that happens the TC is still holding resources (e.g. the "fill buffer" in the CPU’s bus interface unit which remembers
the load, waits for the data, and associates it with the register).

If you are using long-delayed loads as a means of synchronizing your application, non-blocking loads are unwel-
come: it would be preferable for the thread to stop on the load itself.   So we provide a way to do that: memory loca-
tions used for synchronization can be mapped as gating storage.

2.7.1 Gating storage

The MIPS MT ASE provides for a kind of storage location whose behavior is adapted to loads which might be quite
long-delayed, and which you may want to use for intentional thread synchronization. Such a location is called Gating
Storage. A thread loading from a memory region marked as “gating” will block on the load itself. This is not the stan-
dard way of doing things: a thread which reads from a normal location which is slow to respond would run on until it
attempted to use the data (that’s a “non-blocking load”).

It turns out to be useful to generalize this to writes as well as reads: even stores to gating storage locations block until
the core gets an indication that everything went OK.

If a thread is blocked on a gated storage access and the OS decides that one of its valuable TCs has been hanging
around too long, then the OS can take action. If the OS writes a 1 to the TC’s TCHalt register any gating storage
access will be aborted, with the TCRestart address set to re-execute the load/store. Once the TC is safely halted, the
OS can decide to use the TC for something else. When the thread is eventually scheduled again, the load instruction
will be re-executed. Meanwhile the CPU hardware can forget about it.

The core interface provided for gating storage locations also permits external logic to abort an uncompleted load or
store. Perhaps it’s better to describe this as “complete the operation with an exceptional condition”. The thread doing
the access gets an exception, with the restart address set so the load/store will be retried after the exception. The gat-
ing storage exception is synchronous, and you’re guaranteed that the restart location captured in EPC will point to
the load/store (or a preceding branch, if the load/store is in a branch delay slot). The exception can only happen if the
thread is still waiting for the load/store, and the thread isn’t otherwise prevented from running.

If required an OS can take control of all GS load/stores; set VPEControl[GSI] and all GS accesses trigger an excep-
tion.

Out on the gating storage interface, no external party can see whether a TC is waiting or not. All GS transactions
involve delivering something which waits around until the other side responds (some software books call this kind of
synchronization a rendezvous).

Gated storage provides the opportunity to provide ITC locations - a form of what some of you may have read about
before as “full/empty storage”. The ITC implementation which is optional in the 34K core is described in Section 3.3,
"Inter-thread communication storage (ITC)" below.
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2.8 MIPS® Multithreading ASE - new instructions

There are very few extra instructions:

• fork rd,rs,rt: fires up a thread on a free TC (if available, see below). rs points to the instruction where the
new thread is to start, and the new thread’s rd register gets the value from the existing thread’s rt.

Some vital per-TC state is copied from the parent:

• TCStatus[TKSU]: whether you’re in kernel or user mode — the same as Status[KSU]);

• TCStatus[TASID]: what address space you’re part of — the same as EntryHi[ASID];

• UserLocal: some kind of kernel-maintained thread ID, see more in Section C.4.2 “The UserLocal register”.

When the thread has finished its job it should use yield $0 to free up the TC again.

fork/yield are the only MIPS MT instructions usable in user mode (they’re also highly original, and are
likely not to be extensively used in early MIPS MT architecture applications using substantial OS layers - they
might be hidden inside the OS, but you won’t see them for a while in Linux user code).

fork will only select a TC which is both "free" (TCStatus[A] is currently zero) and which is specifically marked
as usable by fork because TCStatus[DA] is set.

fork may fail if a suitable TC isn’t waiting at the “taxi-rank”. In that case you get an exception (“Thread Over-
flow”) which an OS may catch and fix up before restarting the application; that way the application remains
unaware of the problem. This provides the illusion of an indefinite supply of TCs, in the same way that a virtual
memory system provides an indefinite supply of memory - you’ll hear this described as that “fork has been vir-
tualized” or made Virtualizable.

yield $0 has a matching "Thread Underflow" exception, which occurs when you’re about to reach a situation
where all for-hire TCs are parked (because then the system might stop forever, with no threads running the code
which might make another thread run...).

There’s a lot more to say about yield, see the bullet below and Section 2.8.1, "Yield, Yield Qualifiers and threads
waiting for hardware events".

• mftr rd,trno,u,sel,h and mttr rt,trno,u,sel,h: are privileged (CP0) instructions ("move to/
move from thread register") which provide read/write access to another TC’s registers.

The other TC is identified by VPEControl[TargTC]. The trno,u,sel fields identify which register of that TC
you are accessing. Their encoding is complicated: we’ll present details in Table 2.1 below, but here’s a quick
summary:

– When u==0, trno is a CP0 register and sel is the auxiliary 3-bit "select" field found in mtc0/mfc0;

– When u==1 and sel==0, trno is a general purpose register;

– When u==1 and sel>0, you get to access more exotic registers, as detailed in Table 2.1 below.
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The h value should be specified as 1 when you’re obtaining the high half of a register which is double the size of
a GPR. In other cases, omit it. However, this argument is not required for the multiply unit accumulators, where
the low and high half have separate trno register numbers.

That’s fairly confusing, and the details are presented again in Table 2.1

.

The hardware does nothing, inherently, to make sure that register changes as a result of other-thread activity are
seen tidily; unless you are really sure that the other thread is currently leaving the register alone, it’s safer to
ensure that the other TC is halted (shut down for maintenance) before mftr/mttr will work reliably. One exam-
ple where you really want to halt the other TC is when it is blocked on a gating storage access - a mftr/mttr
accessing the result register for that will also block until that is resolved.

When disassembling binary code it is painful to have to hand-decode the trno,u,sel,h fields, so tool provid-
ers are recommended to support the alternative “idioms” described in Table 2.3 below, which are probably more
memorable than binary numbers. Most tools will be symmetric, so you will be able to write the idioms too: but
that doesn’t necessarily mean you should write code with them. You will, I hope, use meaningfully-named C pre-
processor constants for all the various fields in your assembly source code, so it may be kinder on those who
come after you if you expect them to remember just the mttr/mftr mnemonics.

Note that access to the registers of a TC affiliated to a different VPE is available only when VPEConf0[MVP] is
set - it’s often used as a safety-catch. In some environments (where you’re not meant to be able to get at the other
VPE’s state) you’ll find you can’t set VPEConf0[MVP].

If you attempt to read a register number which is not valid on your CPU, you will get an all-ones (-1) value back.

• dmt: suspend all other threads affiliated to the same VPE.

Under the hood this atomically clears the VPEControl[TE] bit, returning the original value of VPEControl to an

optional register argument7; so it is convenient to bracket a piece of code which needs to be single-threaded
within the VPE by:

Table 2.1 MTTR/MFTR - "U" and "SEL" values
u sel trno Other TC’s register type

0 0-7 0-31 CP0 registers.
1 0 0-31 General-purpose integer registers
1 1 0

Multiply unit lo and hi respectively.
1

4
Low and high half (respectively) of DSP accumulator 1

5

8
Low and high half (respectively) of DSP accumulator 2

9

12
Low and high half (respectively) of DSP accumulator 3

13

16 DSPControl register.
1 2 0-31 Floating point (CP1) registers
1 3 0-31 Floating point control registers, as usually accessible with cfc1/

ctc1.
1 4 0-31 Co-processor 2 data and control register sets, respectively.

Implementations are free to define large CP2 register sets; the MT
ASE provides an extra 5-bit "rx" field to provide more bits for
selecting the CP2 register, but the MT ASE does not define a stan-
dard assembler syntax to generate it.

1 5 0-31
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dmt rt
ehb # need hazard barrier to be sure it took effect
... # guaranteed to be the only live TC in this VPE
mtc0 rt, VPEControl

The “hazard barrier” should always be used when you change some CP0 condition and need to know it’s taken
effect when you run a subsequent instruction - see Section 7.1, "Hazard barrier instructions".

OS code which updates registers and resources which are only replicated per-VPE will typically need this kind of
protection, unless already multithreading-protected by something higher-level.

The emt instruction atomically sets the VPEControl[TE] bit and returns the old value. It is relatively rarely used;
it’s more robust to replace the whole original value of VPEControl with an mtc0, because then things still work
if you inadvertently nest one single-threaded block within another.

• dvpe: suspend all other threads, even those in other VPEs. In many systems VPE independence is much prized,
and then this instruction is likely to be restricted to initialization software. Under the hood it clears the
MVPControl[EVP] bit, returning the old value. Again, there’s an evpe instruction, but a single-threaded block is
better terminated by restoring the whole MVPControl register with an mtc0.

• yield rd,rs: a multi-purpose instruction, whose action depends on the value in rs. If and when it returns, rd
is set to a bit-vector which shows the active inputs to yield - at least those enabled by the YQMask register.
More in the section below.

So:

• When rs == 0: (also discussed under the bullet called “fork” at the start of Section 2.8, "MIPS®
Multithreading ASE - new instructions") terminate the thread and clear the TCStatus[A] bit, permitting re-
allocation to another purpose by fork. If this was the only live TC with TCStatus[DA] set (that is, the last
TC in the fork pool), you get a “thread underflow” exception.

• When rs == -1: polite pause while other threads get a chance to run. To be more precise, the thread will be
stopped briefly while the yield indication is sent out to an external scheduling policy manager, if fitted (see
Section 2.5, "Thread-scheduling decisions and the policy manager".) Such a policy manager may respond, in
particular, to changes communicated by writing the TCSchedule and/or VPESchedule registers.

After this sort of yield this thread will not run again for long enough that the policy manager has time to
respond. But the thread hasn’t been stopped and will normally run again soon, at the priority newly deter-
mined by the policy manager.

• When rs == -2: has no scheduling effect, purely done for the value delivered to rd. And a yield -2 never
produces a “yield scheduler” exception.

• when rs > 0: waits for one or more of a set of signals to be asserted; from up to 31 signals available on your
CPU, it is sensitive only to those selected by a “1” bit in the rs value. That’s complicated, see Section 2.8.1,
"Yield, Yield Qualifiers and threads waiting for hardware events" below.

But in particular, if the rs value includes a bit which is not set in YQMask, you get an "invalid qualifier"
exception.

7. They fit in with the encoding already used for atomic update of a CP0 register by the disable-interrupts instruction di etc.
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Software can ensure that any yield which would deschedule a thread (or any yield -1 whose return status
would be zero) produces a "yield scheduler" exception. A secure OS might do that because it wants to “scrub”
the TC’s registers of any application data before the TC is returned to the free pool. To achieve this effect set
VPEControl[YSI] (the "did any work" test depends on TCStatus[DT].)

A yield instruction must not be in a branch delay slot.

2.8.1 Yield, Yield Qualifiers and threads waiting for hardware events

When the rs argument of the yield rs instruction is positive, the thread waits for a hardware condition; the thread
will wait until the bitwise-and of rs and the hardware signal vector is non-zero. This is a cheap and efficient mecha-
nism to get a thread to wait on the state of some input signal.

Cores in the 34K family may have up to 16 external hardware signals attached. Because the yield instruction is
available to user (low-privilege) software, you might not want it to have sight of all your hardware signals. The CP0
register YQMask is a bit-field where a “1” bit marks an incoming signal as accessible to the yield instruction.

In any OS running more threads than TCs you might want to reclaim a TC blocked on such a yield. If you need to
do that while continuing to monitor the condition, then you’ll probably want your system integrator to ensure that the
yield condition is also available as an interrupt, so you can get the OS’ attention when the condition happens.

The OS can zero-out corresponding bits 0-15 of YQMask to prevent them being used - a yield rs which attempts
to use one of those bits will result in an exception.

In the two-operand form yield rd,rs the rd register gets a result, which is a bit-map with a 1 for every active
yield input which is enabled by YQMask (bits which are zeroed in YQMask may return any value, don’t rely on them).
The single-register form yield rs is really yield $0,rs.

2.8.2 All MT instructions in alphabetical order

That’s in Table 2.2 - but not quite all. There are a large number of convenience mnemonics (“assembler idioms”)
which are not separate instructions, but which map onto some variant of the access-other-TCs-register instructions
mttr and mftr. Rather than fill the table with these, we’ve consigned them to Table 2.3 below. If you’re looking up
an unfamiliar instruction, please look in both tables.

Table 2.2 MT instruction summary in alphabetical order

Instruction Brief Description

dmt rt Clear VPEControl[TE], which suspends execution of all other TCs affiliated to the same
VPE. The rt register receives the original value of VPEControl; if you don’t specify rt it
defaults to $0.

dvpe rt Disable all multithreading, including any other TCs affiliated to other VPEs, leaving this
thread running alone. Implemented as an atomic clear of the MVPControl[EVP] bit. If you
specify a register rt it receives the previous contents of the MVPControl register.

emt The “enable” pairs of dmt/dvpe respectively.
You may not need these instructions: when you’ve finished a section of code which must
be single-threaded in some sense, it may be preferable to restore the whole VPEControl/
MVPControl register from the value you got back when you ran the disable instruction, as
suggested in the description of dmt in the running text above.

evpe
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fork rd,rs,rt Find a TC and activate it, so it starts at rs. The new thread’s rd register will be set to the
value provided in rt. Lots more details above.

mftr rd,trno,u,sel,h “Move from thread register” and “Move to thread register” - get/set the value of a register
belonging to some other TC, using the general-purpose register rd as a sink, or rt as a
source. For a per-VPE register, you will access the VPE affiliated to the target register - so
to access a VPE first set up a TC affiliated to it.
The other TC is identified by VPEControl[TargTC], and the register you’re accessing is
selected by all of trno, u and sel - as described above or in Section 2.1, "MTTR/MFTR -
"U" and "SEL" values".

mttr rt,trno,u,sel,h

yield rd,rs A multi-purpose instruction, whose action depends on the value in rs. When rs==0, it ter-
minates the thread and makes the TC available for a subsequent fork.
When rs==-1, pauses while other threads run and any scheduling policy change filters
through.
yield with rs==-2 is just done to poll yield inputs.
When rs>0, you wait for one of the yield input signals, but only one for which there’s a
corresponding bit set in rs.

Table 2.3 MTTR/MFTR "assembler idioms" in alphabetical order
Write as Equivalent Description

cftc1 rd,ft mftr rd,ft,1,3 Get data from/send data to another TC’s floating-point (coprocessor
1, CP1) control register ft.cttc1 rt,ft mttr rd,ft,1,3

mftc0 rd,rt mftr rd,tc0r,0 Read other TC’s CP0 register.
mftc0 rd,rt,sel mftr rd,tc0r,0,sel

mftc1 rd,ft mftr rd,ft,1,2,0 Read low 32 bits from other TC’s floating point data register.
mftdsp rd mftr rd,16,1,1 Read other thread’s DSPControl register.
mftgpr rd,rt mftr rd,rt,1,0 Read other thread’s general purpose register rt.
mfthc1 rd,ft mftr rd,ft,1,2,1 Read high 32 bits from other TC’s floating point data register.
mfthi rd mftr rd,1,1,1 Read the other TC’s hi multiply/divide unit register, which is the

same as the first of...
mfthi rd,ac0 mftr rd,1,1,1 Read the high half of one of the other TC’s ac0-3 DSP accumula-

tors.mfthi rd,ac1 mftr rd,5,1,1

mfthi rd,ac2 mftr rd,9,1,1

mfthi rd,ac3 mftr rd,13,1,1

mftlo rd mftr rd,0,1,1 Read the other TC’s lo multiply/divide unit register, which is the
same as the zeroth of...

mftlo rd,ac0 mftr rd,0,1,1 Read the low half of the other TC’s ac0-3 DSP accumulators.
mftlo rd,ac1 mftr rd,4,1,1

mftlo rd,ac2 mftr rd,8,1,1

mftlo rd,ac3 mftr rd,12,1,1

mttc0 rt,rd mttr rt,tc0r,0 Write other TC’s CP0 register.
mttc0 rt,rd,sel mttr rt,tc0r,0,sel

mttc1 rt,fd mttr rt,fd,1,2,0 Write data from rt to the low half of the other TC’s floating point
register fd.

mttdsp rt mttr rt,16,1,1 Write to the other TC’s DSPControl register.
mttgpr rt,rd mttr rt,rd,1,0 Write to the other TC’s general purpose register rd.
mtthc1 rt,fd mttr rt,fd,1,2,1 Write data from rt to the high half of the other TC’s floating point

register fd.

Table 2.2 MT instruction summary in alphabetical order

Instruction Brief Description
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mtthi rt mttr rt,1,1,1 Write to the other TC’s hi multiply unit register, which is the same
as the zeroth of...

mtthi rt,ac0 mttr rt,1,1,1 Write to high part of the other TC’s ac0-3 accumulator.
mtthi rt,ac1 mttr rt,5,1,1

mtthi rt,ac2 mttr rt,9,1,1

mtthi rt,ac3 mttr rt,13,1,1

mttlo rt mttr rt,0,1,1 Write to the other TC’s lo multiply unit register, which is the same
as the zeroth of...

mttlo rt,ac0 mttr rt,0,1,1 Write to low part of the other TC’s ac0-3 accumulator.
mttlo rt,ac1 mttr rt,4,1,1

mttlo rt,ac2 mttr rt,8,1,1

mttlo rt,ac3 mttr rt,12,1,1

Table 2.3 MTTR/MFTR "assembler idioms" in alphabetical order
Write as Equivalent Description
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2.9 Multithreading ASE - CP0 (privileged) registers

All the CP0 registers new to or affected by the MT ASE are in Table 2.4.

2.9.1 What CP0 registers are per-TC, per-VPE and per-CPU?

At first sight the CP0 register map looks like quite a chaotic mixture of fields replicated per-TC, per-VPE or not rep-
licated at all. But in fact the rules are fairly simple, and there are only a few special cases:

• All registers called “TCxx” and UserLocal are per-TC.

Table 2.4 CP0 registers required by MIPS® MT ASE
Register Description

Per-TC registers
TCStatus Per-TC run-time control/status fields. Includes alternate views of per-TC fields in old CP0 registers.
TCBind VPE affiliation and own TC number of this TC.
TCHalt Per-TC - write one to halt the TC for maintenance, zero to let it run again. No further description

needed.
TCRestart Per-TC - address of instruction the TC will run next. Unambiguous only when the TC is halted.

Writing TCRestart (to control where the TC executes from next time it is made live) has side-
effects; in particular it clears the link bit which associates a load-linked/store-conditional pair, see
Section 3.5, "Synchronization: "ll" and "sc" instructions implementation".

TCContext per-TC 32-bit read-write scratch register for OS use, no hardware-interpreted fields.
Per-VPE registers
VPEControl Per-VPE - status and control fields for exception and mftr/mttr instruction support.
VPEConf0-1 read-only status of VPE setup
YQMask bitfield where “1” bits define valid select bits for a yield instruction - see Section 2.8.1, "Yield,

Yield Qualifiers and threads waiting for hardware events".
VPEopt Can be used to mark any cache "way" (a quarter) of the primary I- and D-caches as inaccessible to

the owning VPE, to keep it clear for the other one.
SRSConf0-4 Fixes which TC’s GPRs are recycled as shadow register sets.
Whole-CPU control and availability of MT resources
MVPControl writable register to determine how multiprocessing facilities work.
MVPConf0-1 read-only summary of CPU MT resources
Software hints and controls on thread scheduling
TCSchedule Per-TC, writable register to influence thread scheduling. It’s not really part of the core, and the

description is for our sample thread scheduling policy manager.
VPESchedule Per-VPE, writable register to influence scheduling
TCScheFBack Optional read-only register providing statistical information about thread scheduling.
Software Thread ID register (not just MT CPUs)
UserLocal This plain 32-bit register is replicated per TC. It’s not hardware-interpreted at all, but its value is

readable by a user-space program using rdhwr $29. It’s intended for use by OS kernels which
provide some kind of thread ID for user-space software, typically a thread library of some kind. Its
value is inherited by the child TC of a successful fork. More information in Section C.4.2 “The
UserLocal register”.

New fields in old registers
EBase[CPUNum] Identity of running VPE within CPU
Config3[MT] set if this CPU implements the MIPS MT ASE.
Debug[OffLine] a per-TC bit which a debugger can set to quiesce a TC while it debugs another thread (but without

affecting any non-debug state).
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• All other CP0 registers (not called "TCxx") are per-VPE except for:

– MVPControl, MVPConf0-1 are not replicated, there’s just one set on a CPU.

– The performance counter count and control registers are per-TC.

– A handful of fields in pre-MT MIPS32-standard registers are replicated per-TC: they include those which are
found in TCStatus as fields called “Txx”, plus the debugger controls Debug[OffLine] (a “thread halt” control
for debuggers) and Debug[SSt] (single-step).

Like all other CP0 registers, many fields are not initialized by hardware when the CPU is reset. Unless you are confi-
dent that random contents in some particular register are safe, it’s your responsibility to write registers to sensible val-
ues.

2.9.2 VPEControl

In VPEControl:

YSI, GSI: "intercept" bits for yield and Gating Storage operations. By setting one or both of these bits 1, an OS can
arrange to be notified (by an exception) if any thread would otherwise become blocked by a yield instruction, or on
an access to gating storage. The exception will only happen if the TC’s TCStatus[DT] bit is set, that is if the TC has
run an instruction since it was last deallocated.

YSI affects any yield instruction which would block; but a yield which tests for a condition which is already true,
or a yield -2 will not be affected (a yield -2 is just a poll - see the bullet on "yield")

GSI affects any gating storage access which will block the thread8.

EXCPT: encodes the cause of the last thread exception. This refines the information returned by Cause[ExcCode] - we
don’t have enough reserved values to encode all the thread exceptions separately. Like the old cause register field,
VPEControl[EXCPT] is only valid so long as the TC remains in exception mode (recall that in exception mode only
one TC within the VPE may run).

The possible values are:

Figure 2.1 Fields in the VPEControl register
31 22 21 20 19 18 16 15 14 8 7 0

VPEControl 0 YSI GSI 0 EXCPT TE 0 TargTC

8. Gating storage operations are uncached, and may be slow; but GSI won’t lead to an exception because the access is slow, only
if the gating storage interface is told that the operation is blocked.

Table 2.5 Thread exception codes in VPEControl[EXCPT]
0 Thread underflow on yield.
1 Thread overflow on fork.
2 Bad qualifier fed to yield.
3 Exception on gating storage operation
4 yield which would have blocked run while VPEControl[YSI] is set to 1.
5 Gating storage access which would have blocked attempted while

VPEControl[GSI] is set to 1.
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TE: "enable multithreading" - when clear, only one TC attached to the VPE is allowed to issue instructions. You nor-
mally set/unset this using the dmt/emt instructions.

TargTC: selects the TC number of the "other thread context" in the mttr/mftr instructions - TCs are numbered from 0
upward. There isn’t room to encode the TC number in the instructions. Note that since the whole of VPEControl is a
per-VPE register, TC-multithreaded software will need some kind of lock (perhaps dmt/emt brackets) around any
code which uses mttr/mftr.

2.9.3 TCRestart, TCHalt and TCContext

Three registers without internal fields:

• TCRestart holds the thread’s “PC” - more accurately, when the TC is halted it holds the instruction address
where the TC will restart. If a TC is to retry an instruction in a delay slot, TCRestart will point to the branch but
the TCStatus[TDS] flag will be set.

• TCHalt: just write a 1 to the register, and the TC will halt and will be safe to inspect and reprogram. Write a zero
to let it run again. TCHalt is for the use of MT-aware OS code.

• TCContext is a pure 32-bit software register, without any hardware effect. OS software finds it useful to have a
per-TC register where it can write an ID or key pointer which identifies the thread.

2.9.4 TCStatus

TCU3-0, TMX, TCEE, TKSU, TASID: These fields - most of those starting with a "T", in fact - provide convenient alter-
nate views of some fields in legacy CP0 registers. They are fields which, with MIPS MT, need to be replicated per-
TC. This is valuable because code can change them without the difficulty of doing a non-atomic read-modify-write
sequence on one of the legacy registers (which would mean having to read-write many fields which are shared with
any other TCs in the VPE.)

The fields listed are views of the Status[CU0-3], Status[MX], Status[CEE], Status[KSU] and EntryHi[ASID] fields
respectively, and to get a complete view of what any of them do you are recommended to look at the notes on each of
those CP0 registers.

We’ll deal with these alternate-view fields first:

TCU3-0: set a bit to enable this TC to run instructions for the corresponding co-processor. There are four bits but only
two feasible co-processors: CP1 is the floating point unit (if fitted) and CP2 is available for custom use. CP3 is not
available on cores in the 34K family, so TCStatus[TCU3] always reads zero.

The floating-point unit available as coprocessor 1 for 34K family cores has only one set of registers, so it may only be
used by one TC. It is the OS’ responsibility to make sure that’s done. Custom or future coprocessors may replicate all
their state per-TC (so they may be freely multithreaded) or provide fewer, perhaps just one, register set.

TMX: another view of Status[MX], which is the enable bit for the instructions in the MIPS DSP ASE (in theory it plays
the same role for the older but less-used MDMX, but that will never be found in a 34K family core.) It’s visible here
because it’s a per-TC field.

Figure 2.2 Fields in the TCStatus register
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 0
TCU3-0 TMX 0 RNST 0 TDS DT 0 TCEE 0 DA 0 A TKSU IXMT 0 TASID
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TCEE: another view of the per-TC Status[CEE] enable bit implemented by a "CorExtend" (user-defined) instruction
block which needs it, usually because it includes some registers which it may need a kernel to save across exceptions
and context switches.

TKSU: a convenient view of the per-TC Status[KSU] bits which determines the privilege state of the CPU.

TASID: a convenient alternative view of the per-TC EntryHi[ASID] field.

RNST: (read-only) status, which can be used to find out why a blocked TC is blocked, with values meaning:

TDS: qualifies the per-TC restart address TCRestart, indicating that the thread is stopped in a branch delay slot (in
which case TCRestart will point to the branch.) An analogue of Cause[BD].

DT: "dirty" bit - set whenever the thread being run by the TC makes progress. More precisely, set when any of this TC’s
instructions completes (though instructions in exception, error-exception or debug mode are not counted); it is also
set if the TC is successfully started as a result of a fork.

This is for the use of an OS overseeing applications forking at user level; it can inspect its free-TC pool and discover
which ones have done any work since last time it looked. This may be important, because a TC which has done work

for one application9 might have some of that application’s data in its registers, and cannot be automatically allocated
to a different application for fear of leaking data (applications are not supposed to see one another’s data). The OS
must make sure it scrubs all the TC’s registers before that happens; this bit is part of the mechanism which lets it find
out when it needs to scrub.

DA: "dynamically allocatable" - when clear, this TC may not be allocated as a result of a fork. If as a result a fork
can’t find a TC to use, it takes a "thread overflow" exception.

If the only dynamically allocatable and live TC executes a yield (which might lead to the silence of the grave), it
takes a "thread underflow" exception instead.

A: "activated" (sometimes, "allocated"). Can’t run instructions without this bit, which is set by fork and cleared by
yield $0.

IXMT: set 1 to prevent this TC from handling interrupts.

Summary TC status

The TCHalt and TCStatus[A,DA] fields interact as shown in Figure 2.6 and may be best understood together. Note that
the EJTAG debug Debug[OffLine] bit, if set, overrides all of them and prevents the TC from executing its thread.
OffLine, though, doesn’t affect whether a TC may be selected by a fork.

0 Not blocked.
1 Asleep after a wait.
2 Blocked on yield (that is, waiting for one or more of the Yield

Qualifier signals to activate).
3 Waiting for gating storage load/store to complete.

9. In a Linux context "process" would be more precise than "application".
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2.9.5 TCBind

CurTC: (read-only) returns the TC’s own identity - the ID of the TC which ran the mfc0 instruction, or which is the
target of a mftr.

The zero field which occupies bits 18-20 below CurTC is reserved by the architectural definition. It can save a mask
operation when you need to use CurTC as an index into an array of 4- or 8-byte objects.

TBE: set by hardware when a transaction causing a bus error is identified as resulting from a load issued by this TC: see
Section 5.5, "Bus error exception" for details. It remains set until explicitly written to zero.

CurVPE: the ID number of the VPE affiliation of this TC. You write this field to change a TC’s affiliation, but only
when the "VPE configuration mode" safety-catch bit MVPControl[VPC] is set. In principle it’s possible for a thread to
set its own TC’s affiliation, but that seems fraught with difficulty. This will most often be set by some supervisory
thread using an mttr instruction).

2.9.6 MVPConf0-1 - read-only multithreading-specific configuration information

The MVPConf0-1 registers present a read-only summary of the CPU’s multithreading resources.

MVPConf0[M]: a "continuation" bit - if zero, MVPConf1 isn’t implemented, and acts as if it was all-zero.

MVPConf0[TLBS]: 1 if it’s possible to share the TLB. To do that you’d have to set MVPControl[STLB], see Figure 2.5.

MVPConf0[GS]: reads 1 if the CPU is able to support Gating Storage as described in Section 2.7.1, "Gating storage".

Table 2.6 TC summary state as expressed in per-TC register fields
Register bits What happens to TC

TCHalt TCStatus

[A] [DA]

1 X X TC is halted, fit for inspection and maintenance by software running
on some other TC

0 0 0 TC is not running, nor may it be used by fork.
0 0 1 TC is "parked at the taxi-rank" ready to be used as a result of a

fork instruction
0 1 X TC is working through the instructions of some thread. Maybe it’s

not currently live, but that will be for a thread-specific reason.

Figure 2.3 Fields in the TCBind register
31 29 28 21 20 18 17 16 4 3 0

0 CurTC 0 TBE 0 CurVPE

Figure 2.4 Fields in the MVPConf0-1 registers
31 30 29 28 27 26 25 16 15 14 13 10 9 8 7 0

MVPConf0 M 0 TLBS GS PCP 0 PTLBE TCA 0 PVPE 0 PTC

31 30 29 28 27 20 19 18 17 10 9 8 7 0

MVPConf1 C1M C1F 0 PCX 0 PCP2 0 PCP1
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MVPConf0[PCP]: read-only bit. Reads 1 if it’s possible to deny access to one or more primary cache "ways" to each
VPE. This feature must be enabled in MVPControl[CPA] and the way inhibition programmed in VPEopt, as
described in Section 2.9.10, "VPEOpt register - reserve some cache "way" for use of one VPE".

MVPConf0[PTLBE]: the number of TLB slots which may be provided to different VPEs according to initialization soft-
ware. Will read zero - even on a CPU with a sharable TLB - if the TLB configuration has no option other than shared
or split in some fixed way.

MVPConf0[TCA]: reads 1 on 34K, because it is possible to dynamically assign TCs to a VPE (by writing
TCBind[CurVPE].) Other MIPS MT implementations may not let you do that.

MVPConf0[PVPE,PTC]: how many separate VPEs/TCs respectively are available on this CPU (the field encodes “num-
ber of things minus one”, so that zero means “one VPE” (or TC).

MVPConf1[C1M]: the floating point unit (co-processor 1) implements the old MDMX™ extension to the instruction set.
This will always be zero on CPUs in the 34K core family.

MVPConf1[C1F]: co-processor 1 implements 64-bit floating point instructions as defined in [MIPS64V2].

MVPConf1[PCX,PCP2,PCP1]: how many register set contexts are available for CorExtend™, co-processor 2 and co-
processor 1 respectively.

2.9.7 MVPControl Register - CPU-wide VPE control

MVPControl is a read/write per-CPU control/status register.

MVPControl[CPA]: set 1 to enable the per-VPE VPEOpt registers (see Figure 2.7 and notes) to prevent a VPE from
being allocated new lines in one or more ways of the primary caches. Check MVPConf0[PCP] first, to see whether
this feature is available.

MVPControl[STLB]: set to enable TLB sharing between the VPEs, see Section 4.3.4, "Sharing and not sharing the TLB".

MVPControl[VPC]: "configuration mode" - a heavy-duty safety catch. When this bit is set to "1", it becomes possible to
write to configuration register fields which are read-only on conventional MIPS32-compliant CPUs.

This is obviously a fairly dangerous thing to do, and it’s unlikely to be a good idea to change the configuration regis-
ters except when launching a VPE with software which believes it is re-initializing itself. In particular, make sure that
no other VPE is running by executing a dvpe; ehb sequence - the ehb (“hazard barrier”) instruction makes sure
that subsequent instructions don’t start until the dvpe has taken effect.

But with this bit set ("unsafe"), a MIPS MT CPU can be set up by MT-aware software to configure a VPE with its
choice of CPU resources, then pass that VPE to legacy (non-MIPS-MT-aware) software with that choice of resources
presented by the standard ConfigNN registers.

With this bit zero, the fields in the ConfigNN registers revert to read-only.

MVPControl is writable only if the "master VPE" safety catch VPEConf0[MVP] is set to 1.

Figure 2.5 Fields in the MVPControl register
31 4 3 2 1 0

MVPControl 0 CPA STLB VPC EVP
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MVPControl[EVP]: when clear, instructions will only be executed for the thread which was running when this bit was
cleared - even TCs affiliated to other VPEs will not be run. This bit is usually manipulated with the dvpe/mtc0
instructions.

2.9.8 VPEConf0-1 registers - initializable per VPE resource lists

These are per-VPE registers which are read to show what resources are available to software on the VPE. Some fields
are writable, but that’s only when the VPE-access safety catch VPEConf0[MVP] is already set. That means that setting
your own VPEConf0[MVP] to zero is an irreversible abdication from inter-VPE power if other VPEs do the same.

VPEConf0[XTC]: When only one TC in a VPE is running because the VPE is in exception mode or VPEControl[TE] is
clear, this field identifies that one running TC. XTC can be written by mttr as part of cross-VPE initialization if you
want to initialize a VPE so it starts with just one TC running alone. Anything might happen if you tried to write this
field on a running VPE, so you’re prevented from doing so - the field is not writable unless the target VPE’s
VPEControl[VPA] is zero.

Of course the initializing thread, running such a mttr, will need its own copy of VPEConf0[MVP] set to do cross-
VPE access in the first place.

VPEConf0[TCS,SCS,DCS,ICS]: read-only bits which tell software which caches are shared with at least one other VPE.
The separate bits are for tertiary, secondary, L1 D-cache and L1 I-cache respectively. There’s no way for a 34K core
to be fitted with un-shared caches, so a 34K core will have DCS and ICS set (and will have the other bits set if it has
L2 or L3 cache).

VPEConf0[MVP]: "master virtual processor" - a safety catch bit, which must be set before software can touch registers in
different VPEs (or in the TCs of different VPE affiliation).

It also controls write access to MVPControl.

VPEConf0[VPA]: Virtual Processor Activated. If zero, no TCs bound to this VPE will run.

VPEConf1[NCX,NCP2,NCP1]: number of CorExtend, coprocessor-2 and coprocessor-1/floating-point contexts
available to this VPE. These fields are writable at configuration time to zero, one or the number of TCs affiliated to
the VPE10 and will be reflected in the VPE’s view of Config[UDI] (for CorExtend) and Config1[C2,FP]. If a thread
within the VPE is to run a legacy OS, you can use that to determine whether the legacy software sees UDI, CP2 and/
or floating point capability.

2.9.9 YQMask register - enable yield “conditions”

YQMask is a bit-map where you write a “1” bit to make the corresponding yield condition usable for the
yield mask instruction, as described in Section 2.8.1 “Yield, Yield Qualifiers and threads waiting for hardware
events”.

Figure 2.6 Fields in the VPEConf0-1 registers
31 30 29 28 21 20 19 18 17 16 15 2 1 0

VPEConf0 1 0 XTC 0 TCS SCS DCS ICS 0 MVP VPA

31 28 27 20 19 18 17 10 9 8 7 0

VPEConf1 0 NCX 0 NCP2 0 NCP1

10. If this field was set to “number of TCs” but the number of TCs affiliated to the VPE subsequently changes (it can happen) the
field will be automatically updated.
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2.9.10 VPEOpt register - reserve some cache "way" for use of one VPE

Two OS programs running on separate VPEs of a MIPS MT CPU progress independently of each other, and the
thread scheduling rules usually make sure that each gets a fair proportion of the CPU’s attention. However, one
unavoidable interaction is that threads on both VPEs are competing for the same cache resources.

The 34K core’s primary caches are 4-way set associative, and this is usually enough to provide for the active “work-
ing set” of all loaded threads.

Occasionally a critical routine may need such a good response time that it is unacceptable for it to be dislodged from
the cache by an unrelated thread. Where this affects a tiny piece of code, your best bet is probably to lock the code
concerned into the cache, as described in Section 5.4.11, "Cache locking".

But if some legacy code consigned to the independent environment of one VPE is suffering because of competition
for cache locations from an unrelated program on the other VPE, you may also have the choice of reserving some part
of the cache for the use of a VPE: to check whether this facility is available on your core, test MVPConf0[PCP].

This facility is large-scale, affecting a whole cache “way” - that’s 25% of a cache, removing one out of the four cache
locations available to store any particular cache-line sized piece of memory. It’s implemented by getting a VPE to
sacrifice the ability to load data into one or more cache ways, effectively reserving it for the other VPE. Once the data
is loaded, either VPE can access it.

Caution: You almost certainly shouldn’t do this. This is a facility offered to dig systems out of a very particular kind
of hole. Only use it after careful measurement has convinced you that you have a problem caused by competition for
cache resources, and keep measuring to make sure you’re getting the effect you need.

But once you’re sure: to enable this facility at all, you need to set MVPControl[CPA]. Then to renounce the ability to
obtain new lines from one of the four cache ways in the I- or D-cache for anything you miss on in future, set the cor-
responding IWXnn/DWXnn bit in the VPEOpt register, as shown in Figure 2.7. Since this is done on a per-VPE basis,
you could try to completely deny yourself use of some part of the cache — such an operation will fail, silently.

After CPU reset these fields are cleared to zero, so if you don’t need this facility, just ignore it.

2.9.11 Shadow register configuration SRSConf0-4

A TC’s registers can be borrowed and used as a “shadow set” for another TC. These registers control how this is
done. It seemed simpler to combine their description with the rest of the shadow register system in Section 7.4,
"Shadow registers".

2.9.12 Thread scheduling hints - TCSchedule, TCScheFBack, VPESchedule

The TCSchedule, TCScheFBack, and VPESchedule registers are inputs to wholly implementation-dependent logic,
so their description is not in this chapter, but in Section 3.2, "Thread scheduling in the 34K‘ core" below.

Figure 2.7 Fields in the VPEOpt register
31 12 11 8 7 4 3 0

VPEOpt 0 IWX3-0 0 DWX3-0



Chapter 3

Programming the MIPS32® 34K™ Core Family, Revision 01.64 41

How the 34K™ core implements multi-threading

In this chapter:

• Section 3.1, "The 34K™ core pipeline and multithreading" how it all runs.

• Section 3.2, "Thread scheduling in the 34K‘ core"

• Section 3.3, "Inter-thread communication storage (ITC)"

• Section 3.4, "The 34K™ core and interrupts"

3.1 The 34K™ core pipeline and multithreading

The 34K pipeline is shown in Figure 3-1. It inherits the 24K core’s basic pipeline.

Figure 3.1 The 34K™ core pipeline

Notes on the pipeline diagram Figure 3.1:

The 34K core issues one instruction per clock and executes instructions for a particular thread strictly in order. We’ll
say an instruction is “fetched” when it’s read from the I-cache in the IF stage, it’s “issued” when it’s sent to the RF
stage and “executed” when it emerges from the ER stage without causing an exception.

• Instruction fetch unit: The instruction fetch unit ("IFU") occupies the three first stages and is decoupled from the
main pipeline.
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Each TC in the processor has some of its own fetch unit state, and in particular each TC has a dedicated instruc-
tion queue which is kept filled whenever the TC is not stopped.

The IFU works a bit like a dog being taken for a walk. It rushes on ahead as long as the lead will stretch (the IFU,
processing instructions two at a time, can rapidly get ahead). Even though you’re in charge, your dog likes to go
first - and so it is with the IFU. Like a dog, the IFU guesses where you want to go, strongly influenced by its
observations of your habits. If you make an unexpected turn there is a brief hiatus while the dog comes back and
gets up front again... but now we’re anticipating the next bullet on "branch prediction". This kind of design is
called a "decoupled" IFU.

Once instructions are issued from the IFU they are either completed in order or nullified (that is, essentially
turned into a nop - such instructions continue to occupy a pipeline slot). When a thread stops for any reason (see
Section 2.4, "When can’t threads run?") any of its instructions which have entered the main pipeline after the
"stopping" victim will be nullified; the fetch unit holds the last couple of instructions issued in its Skid buffer, so
it isn’t necessarily going to have to go back and fetch the instructions from the I-cache all over again.

Even going back to the skid buffer is an avoidable overhead if the thread which stopped was the last runnable
one. The hardware may detect this condition and decide to stall the main pipeline with the post-blockage instruc-
tions still in it when it knows there are no other runnable threads (in the hardware documents this is called “sin-
gle-threaded mode”).

• Branch prediction: The fetch unit has a couple of ways of predicting the branch target, allowing it to fill a TC’s
instruction buffer speculatively without waiting for the main pipeline to do calculations and report on branch
conditions. It has:

• Target computation: the fetch unit has logic which can compute the target of both PC-relative branches and
long-displacement format jal/j instructions.

• A branch history table: which is shared by all the TCs, is used to guess the direction of conditional branches.
The table is indexed by the low address bits of the instruction’s location, and keeps 2 bits of state for each
slot. It’s surprisingly effective, guessing right over 90% of the time. All branches (including the misnamed
"branch likely" instructions) are treated the same.

• A return prediction stack: a small stack on which the IFU pushes the return address of any subroutine call
instruction. Subroutine return (i.e. jr ra) instructions pop the stack and guess that it delivers the correct
target address.

When multiple TCs are running, only one of them may use this stack. A TC gets to use the stack whenever
all other TCs are blocked for relatively long-term reasons, and gets to keep it (even though conditions
change and other TCs become unblocked) until some other TC qualifies.

When the guess turns out to be wrong or the execution unit encounters an unpredictable computed branch the
execution unit issues a Redirect and nullifies any of the TC’s instructions in the pipe; the IFU has to discard all
queued instructions for this TC, and start fetching again from the corrected address.

• Main pipeline: like the 24K core, the main pipeline is adjusted to provide something more than two clocks for
accessing the L1 caches. It also shares the "skewed ALU" - load/store address calculation is done in the dedi-
cated AG stage ahead of the EX stage where arithmetic and logical functions happen. The skewed ALU keeps
the load-to-use delay down to just one clock.

There’s no such thing as a free lunch; the downside is that a load/store instruction whose address generation
depends on the immediately preceding instruction will have to wait for one clock. Compilers probably find it eas-
ier to move the address calculation back one place in the instruction stream, rather than to find yet another useful
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instruction which can be moved between the load and use of the data. But code which follows a pointer chain is
guaranteed to take at least three cycles per pointer.

3.1.1 Resource limits and consequences

The long pipeline, data interlocks, and the semi-autonomous IFU mean that the whole pipeline does not advance in
lock-step as in the simplest MIPS architecture CPUs. Updates to internal states are not so easy to schedule at fixed
times; instead they tend to wait in queues until a convenient moment. Most of the time, the convenient moment
arrives quickly and there is no software-visible effect. But sometimes an unusual code sequence causes updates to be
generated faster than they can be dealt with, the queue fills up and execution of the thread - perhaps the whole CPU
pipeline - has to be stopped while the updates are done. The various relevant queues are discussed in Section
5.3.1 “Read/write ordering and cache/memory data queues in the 34K‘ core”.

Outstanding actions which can fill up the queues include:

• Cache refills in flight: there can be four or eight D-cache refills (at build-time option), and two I-cache refills. In
a single-threaded application you’re unlikely to reach this limit unless you are using prefetch or otherwise delib-
erately optimizing loops. If a series of prefetches use all available resources, the next unrelated load-miss will
stall the pipeline.

A hard-working multi-threading application might get there more often - hence the option to handle eight D-
cache refills in flight.

• Non-blocking loads to registers: the 34K core has enough resources to have one load outstanding on each TC.
They’re used not just for non-blocking loads, but also for a TC blocked on gating storage. Compiled code is
unlikely to reach this limit.

• Lines evicted from the cache awaiting writeback (four): the 34K core’s ability to write data will in almost all cir-
cumstances exceed the bandwidth available to memory: this queue will absorb short bursts without delaying any-
thing. A long enough burst of writes will eventually slow to memory speed.

• Register file write port: only one instruction can write a register value in each clock. For instructions which exe-
cute down the main CPU pipe this is not in the least problematic: they arrive at their register-write stage one at a
time in sequence. But some instructions with their own pipeline (multiply/divide operations, loads/stores, copro-
cessor operations), and any result from such an instruction which is delivered to a general-purpose register must
wait for a slot in which the main-pipeline instruction doesn’t need to write a register. Typically, this happens very
soon: but it depends on the instruction sequence.

More complicated interactions happen with some specialist operations, particularly the cache-management (cache)
instruction: see Section 5.4.6 “L1 Cache instruction timing” for details.

3.1.2 Choosing what TC’s instruction to issue next

There’s a critical piece of logic called the Dispatch Scheduler running in the IS/IT pipeline stages. It’s job is to decide
which TC’s instruction to issue next, and that’s the subject of the next section.

But if we look at the whole CPU, we see that the instructions in the main pipeline are not necessarily (nor even usu-
ally) all from the same TC. The hardware carries a TC number down the pipeline with each instruction, and that TC
number is used to extend any register number defined by the instruction to read and write a register from the TC’s
own set.
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This is fine, so long as no threads block. When a thread blocks, the fetch unit gets to know about it and will not issue
any more instructions for that TC; but by that time some more instructions for that TC are likely to be in the main
pipeline. These instructions are now doomed, but must be allowed to continue through the pipeline: otherwise

instructions from unrelated, unblocked TCs could not make progress11. The doomed instructions are marked as "nul-
lified": they will cause no exception, no load or store, and no register write-back.

Meanwhile, the TC’s own instruction queue is told of the blockage, and told where to restart after the thread is
unblocked. The instruction at the head of the TC’s instruction queue won’t be the restart one (because one or more
instructions were entered into the main pipeline and nullified). To avoid discarding the whole instruction queue and
re-fetching all the instructions, the instruction queue includes a "skid buffer", which keeps a copy of a couple of
instructions which have been issued but might still be nullified. So the TC which is stopped can back-up the skid
buffer and wait to be running again.

3.2 Thread scheduling in the 34K™ core

In any multithreading CPU you have somehow to determine which instruction to run next. Of course, this decision
gets much easier if you have configured the core with a single TC. So much easier that a pipeline stage used for thread
selection is completely bypassed in that configuration. Speaking of bypasses, feel free to bypass this section if you are
working with such a core.

The logic which does this job in the 34K core is called the Dispatch Scheduler (“DS”). On every cycle the DS selects
an instruction from one of the per-TC instruction buffers and puts it into the main pipeline. Its decision is influenced
by signals from the main pipeline but also by per-TC signals delivered from a piece of logic outside the core, the
Policy Manager (PM). The simplest PMs just tie some interface signals to fixed levels; there are others which just
feed back some bit-fields from the TCSchedule and VPESchedule registers. Customers can use a MIPS-supplied PM
or create their own - for more details see Section 3.2.3, "MIPS Policy managers included with the 34K‘ core family".

Instructions are fetched at the front of the IFU: so how do we choose the TC for which we’ll fetch a pair of instruc-
tions for this clock? That’s fairly simple. Fetch will rotate through each running TC which has room on its instruction
queue (though there are minor tweaks in the hardware so an empty queue gets attention quickly).

3.2.1 How the Dispatch Scheduler Works

The dispatch scheduler computes a priority for each TC. Where there are TCs with different priorities, it will do a
cycle-by-cycle round-robin between the highest-priority TCs which are running.

The priority calculation includes the following bits, in something like this order:

• The MS bit represents "running": that means the priority mechanism automatically makes sure that we avoid
selecting an instruction from a blocked TC (and we don’t need any special purpose logic to do that).

• The priority may include a bit which is clear when the TC is waiting for cache miss or uncached-read data to
become available, causing any other TC which has no pending load to get priority. If this feature is available, the
Config7[BTLM] bit is writable - set it to 1 to enable the feature as described in Section C.4.5, "The Config7
register". This is likely to provide a small performance advantage to most general-purpose multithreading sys-
tems: in most code sequences the CPU will usually block waiting for data very soon after a load. A thread wait-
ing for a load is therefore likely not to make much progress in the short term, and this feature will put resources
into an alternate runnable thread which is able to progress. Additionally, this can prevent a greedy thread from

11. If there is only one running thread (so nothing else can happen if the stopped thread is evicted from the pipeline) the whole
34K pipeline may be stalled.
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using up all of the load miss slots

But there can be special-purpose system (which issue critical loads far ahead of use, for example) where this is
undesirable -- that’s why you have to set this explicitly.

• The priority includes the 2-bit per-TC priority which is supplied by the Policy Manager.

• The LS "priority" bits are for "round-robin" - again, the priority check is overloaded to implement the round-
robin algorithm for otherwise-equal-priority TCs.

Along with the real TCs, the DS can have one or more Relax numbers (a bogus TC number different from all real
TCs); when a "relax" number wins the arbitration no instruction is issued, and perhaps some energy is saved. This
feature is controlled from the external policy manager (see below) and in particular the VPESchedule register.

3.2.2 The Policy Manager interface

The interface is hardware, really. But if you are programming a core equipped with a custom PM, you probably need
to know something about the hardware interface.

The TCSchedule and VPESchedule registers (if implemented at all) are inside the policy manager and their values
may influence its behavior in any way the designer thinks fit. The PMs supplied by MIPS to licensees are described in
the next section.

The policy manager supplies the core with:

• A 2-bit "group number" for each TC, mapping each onto one of four "scheduling groups".

• A 2-bit priority for every group. A TC then gets a priority from its group, which influences the internal dispatch
scheduler as to which TC’s instruction to schedule next.

• A per-TC "block" signal which when asserted freezes the TC completely. This is not used (that is, it’s hard-wired
deasserted) in MIPS Technologies’ own PM designs.

• A set of "relax" signals corresponding to a bogus "relax" TC for each VPE; each has its own 2-bit priority and an
enable.

The PM has access to many signals from the core. Per-TC information includes:

• VPE membership

• Instruction completion strobe.

Signals below here are part of the interface, but not used by any MIPS-designed PM:

• TC state: running, yielded, halted, suspended, waiting ITC, wait, used as SRS.

• TC running, as used by the dispatch scheduler. Note, though, that by the time the PM acts on signals like this it is
always somewhat late; so it would be foolish to build hardware which attempted to respond to core signals with-
out any "averaging".

• TC issue strobe, from DS.

• "TC has been forked". A 1-clock pulse asserted as a fork instruction completes.
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• Architectural run-level (user/supervisor/kernel, exception, debug exception, error exception).

3.2.3 MIPS Policy managers included with the 34K™ core family

MIPS Technologies will ship the core with a couple of worked-example PMs, which themselves will be useful for
many purposes. You can choose between:

Equal priority (Basic round-robin)

Just wire all the TC priority group values the same, and disable the do-nothing "relax" field in VPESchedule. Then
you’ll get simple round-robin influenced only by the heuristics used by the core to keep its pipeline full.

Many applications will work just fine with this simple mechanism. You are positively recommended to avoid using
anything more complicated until you really understand why!

Fixed priority

Hard-wire TC groups and priorities as required, and disable "relax". TCs of equal priority will round-robin, but the
scheduler will favor higher-priority TCs.

The most likely arrangement is a two-level scheme offering higher priority for TCs to be used for threads which both
(a) have real-time deadlines, and (b) can be trusted not to consume excess CPU cycles when they have no real work to
do.

The "Weighted Round Robin" (WRR) policy manager

It seems like a MIPS MT CPU with two running TCs can only be told to make them equal or to give one uncondi-
tional priority over the other. You might be interested in a system which - instead - would ensure that one of the TCs
consistently got more cycles than the other, but that the less-favoured TC wouldn’t be starved. You can do that, by
feeding the CPU with a rapidly-changing set of priorities which average out to what you want.

The building block of this is a machine which runs through a sequence of states, allowing us to provide four distinct
priority “groups”: other things being equal, TCs in groups 0-3 get respectively 1/15, 2/15, 4/15 and 8/15 of the CPU.
In our policy manager, we can now maintain a “priority group number” for each TC and have it turned into a cycle-
by-cycle priority to achieve our goal.

We run a 15-cycle counter and in each cycle of 15 award different priorities to the groups as shown in Table 3.1:

The WRR PM uses dynamic priorities as shown above. You program it through the TCSchedule register, shown at
Figure 3.2

Table 3.1 Dynamic priorities for finer resolution - group priority sequences
Priority in cycle (higher is better)

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Group0 0 1 0 1 0 1 0 3 0 1 0 1 0 1 0
Group1 1 0 1 3 1 0 2 1 2 0 1 3 1 0 2
Group2 2 3 2 0 2 3 1 2 1 3 2 0 2 3 1
Group3 3 2 3 2 3 2 3 0 3 2 3 2 3 2 3
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.

TCSchedule and VPESchedule have lots of space for use by future (more sophisticated) policy managers. The
fields defined are as follows:

STP: set 1 to prevent the associated TC running any instructions at all; for VPESchedule[STP] it disables the “relax”
issue-nothing condition, which can be scheduled to save power.

GRP: determines which of the four priority groups this TC will be in, as described above; for VPESchedule[GRP]
this is the scheduling group for the “relax” condition.

This policy manager does not define a VPEScheFBack register.

TCScheFBack register

TCScheFBack counts up when any instruction is completed by this TC; it is an unsigned 32-bit value, which satu-
rates at the maximum representable value. It is software’s job to write it to zero or some other low value periodically.

3.3 Inter-thread communication storage (ITC)

ITC locations are magic memory locations used to provide low-level thread synchronization - which might be inter-
thread (hence “ITC”, from “Inter-Thread Communication storage”) but could also be between customer-specific
hardware and the software thread. Because ITC locations are places where threads wait for potentially long periods of
time, they’re accessed - always uncached - as Gating Storage - described in Section 2.7.1, "Gating storage" above.
The ITC block is a piece of logic outside of the 34K core and connects through the gating storage interface. Because
it’s outside the core, SoC integrators are free to use the MIPS-supplied example logic in whole, in part, or to write
their own. This section only describes the features of the sample ITC block supplied in the core package.

Each ITC Cell presents 32 bits of data. You should read/write these locations only as 32-bit data: partial-word loads
and stores may misbehave. Be careful about compiled code too, to make sure optimization doesn’t remove or alter
any load or store operations. There are 16 different “views” of the same cell, all mapped to double-word boundaries
for compatibility with 64-bit implementations, so each cell occupies 16×64-bits (128 bytes) of memory space. The
different views have behaviors designed to support efficient implementations of popular synchronization operations,
as listed in Table 3.2. You can build your system with some or all of the ITC cells being FIFOs; to find out which
cells are FIFOs look at the fields in the control view, described in Figure 3.3.

Figure 3.2 Fields in the TCSchedule and VPESchedule registers (WRR policy manager)
31 4 3 2 1 0

STP 0 GRP
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Figure 3.3 Field layout in an ITC cell control view

The fields in the ITC cell control view mean:

FIFODepth: indicates the number of entries in a FIFO. Zero for a non-FIFO, otherwise the FIFO has 2FIFODepth entries.

FIFO_PTR: the index of the oldest FIFO entry (on a read that’s the next to be returned), but will read zero unless this is
a FIFO cell. Write the ITC control view with FIFO_PTR zero, Full = 0 and Empty = 1 to reset the FIFO.

FIFO: (read-only) 1 if this cell is a FIFO (that is, it has more than one word of storage.) In the ITC implementation dis-
tributed with the 34K family, all ITC FIFOs have four words of storage.

T: "trap" bit - causes any data access (i.e. any "empty/full" or "P/V" access) to this cell to result in an exception. Set by
an OS which wants to keep track of reads and writes, perhaps because it’s recycled a TC which was waiting here and
wants to know when it might have been unblocked.

Full/Empty: described in Table 3.2. There are separate full and empty bits to allow ITC cells to quietly grow into FIFOs
with multiple words of storage.   Write Empty to 1 to reset the FIFO to a clean empty state.

Table 3.2 ITC cell views and what they do

View
offset
(bytes) Behavior

0 "bypass": load/store just read and write the data, without affecting the flags.
If the cell is a FIFO, you write the newest entry and read the oldest (but without pushing the FIFO).

8 “control” view: read or write cell state, as shown in Figure 3.3.

16 "empty/full" synchronized view: the cell remembers whether anything has been written to it making it non-
empty (and if it’s not a FIFO, making it full at once). Loads from an empty cell block, as do stores to a full
cell. A load from a full cell makes it non-full, and (eventually, if it’s a FIFO) might empty it.

24 Empty/Full "try" (non-blocking) view. A load from an empty cell returns, but the data is always zero. A store
to a full cell is quietly discarded, and the thread continues to run; but (more usefully) you can use an sc
(store-conditional) instruction targeting this view and it will return 1 if the data was written, 0 if it was dis-
carded.

32 "P/V" synchronized view: this implements a "P/V" counting semaphore. This synchronization trick was
invented by Dijkstra - "p" and "v" are the "wait if zero, then count down" and "count up" functions respec-
tively.
A load from a zero cell blocks until a non-zero value appears. Otherwise the load returns the value and (atom-
ically) decrements the stored value.

Any store causes an atomic increment of the cell value, up to a maximum value of 216-1, at which it saturates.
Stores never block.
P/V operations do not modify the empty and full bits, which should both be cleared before an entry is used for
P/V purposes.
The P/V view of a FIFO location doesn’t make sense, and the result of any such access is undefined.

40 P/V "try" (non-blocking) view. Same as the synchronized P/V view, except that a load does not block, even if
the cell value is zero.
Again, don’t use this view for a FIFO cell

48-56 Reserved for future versions of the MIPS MT ASE.

64-120 Implementation-dependent views.

31 28 27 21 20 18 17 16 15 2 1 0

FIFODepth 0 FIFO_PTR FIFO T 0 Full Empty
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3.3.1 Configuring ITC base address and cell repeat interval

The configuration information for the ITC space is held in two “tags” accessed by overloading the
cache Index_Load_Tag_D and cache Index_Store_Tag_D instructions (it’s much like the mechanism
used for scratchpad RAM). Set the ErrCtl[ITC] bit to tell the instructions to access ITC space configuration “tags”, and
use addresses 0 or 8 in the cache instruction address field:

The ITC-configuration "tags" show up as in Figure 3.4.

What can you do with these?

BaseAddress, AddrMask: allow you to set the ITC starting physical address and region size, with at best a 1Kbyte reso-
lution. Once this is set up and enabled, all accesses to this physical address range will go to ITC, and will no longer
show up on the main system interface - so these locations will “overlay” anything else you expected to be there. Take
care not to overlap any vital address.

The ITC cells can be put at any address whose alignment matches the total size of the ITC region (if you had 64 ITC
cells at 256byte intervals you could place them at any 16Kbyte aligned address).

To do that set AddrMask:

ITC_en: set 1 to use ITC - it’s zero from reset, making ITC invisible until you want it.

NumEntries: a read-only field which tells you how many 32-bit ITC cells are provided12.

EntryGrain: let’s you control the cell spacing. Tightly spaced cells save on memory space, but widely spaced cells
spread across a number of TLB pages, permitting different cells to be mapped to different processes. If you set the
cell spacing very high, you’ll limit the number of cells you can access in the usual ITC region.

Figure 3.4 ITC configuration information
31 10 9 1 0

Addr=0 BaseAddress 0 ITC_En

31 30 20 19 17 16 10 9 3 2 0

Addr=8 M NumEntries 0 AddrMask 0 EntryGrain

AddrMask ITC region size AddrMask ITC region size

0 = 1Kbyte 0xF = 16Kbytes
1 = 2Kbytes 0x1F = 32Kbytes
3 = 4Kbytes 0x3F = 64Kbytes
7 = 8Kbytes 0x7F = 128Kbytes

12. Earlier versions of this specification used a "logarithmic" code for number of entries.
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When the EntryGrain field is zero, cells are packed at 128-byte intervals. Other values result in cells at intervals of

128×2EntryGrain bytes, or:

To program these locations first set the ErrCtl[ITC] bit, which tells the cache instruction to access ITC information.
Read the registers to find out how many ITC cells are available; then program your choice of cell interval and base
address, with the region size set to match.

Don’t forget to clear ErrCtl[ITC] afterwards, so that cache operations can continue as usual.

3.4 The 34K™ core and interrupts

As you may recall from Section 2.6.1, "Multithreading and interrupts", the interrupt system is replicated per-VPE; so
the 34K core may have two interrupt systems. Interrupt inputs (including Int0-5, NMI and the EJTAG debug interrupt
DINT) are presented separately for the two VPEs at the core interface.

Only the internally-generated timer, fast debug channel, and performance counter overflow interrupts are always local
to the VPE (you can find out what interrupt number they use by looking in the IntCtl register shown as Figure 7.1).

In the 34K core any TC which is not interrupt-exempt may handle an interrupt. However, where there is a choice:

• An interrupt will be delivered to any thread which is asleep after a wait instruction (if there is one); otherwise:

• The interrupt will be delivered to any non-exempt, active thread which is not blocked waiting for a gating storage
access; and only then:

• The interrupt will be delivered to an active-but-blocked thread.

See Section 7.2, "MIPS32® Architecture Release 2 - enhanced interrupt system(s)" for information about the inter-
rupt signalling and handling options that the 34K core shares with other MIPS32 CPUs.

3.5 Synchronization: "ll" and "sc" instructions implementation

In coherent multi-processor or software multi-threaded systems, the ll and sc instructions work together to provide
an RMW operation on a memory variable (with an arbitrary modification of the value) which succeeds only if it is
guaranteed to have been atomic - that is, no other thread can have seen the value of the same variable between the
read and the write. Moreover, sc returns a value which reports when atomicity could not be guaranteed, and the store
wasn’t done; that allows software to build a retry loop to implement atomic operations. The risk of non-atomicity is
detected by the cache snoop logic for cache-coherent multiprocessors, and by the intervention of an exception on
software-scheduled uniprocessors.

The MIPS MT ASE requires that ll/sc also work between concurrent threads on an MT CPU. Each TC is equipped
with a CP0 register called LLAddr, which remembers the physical address (at least to the enclosing 32-byte block) of
the target location of any ll/sc sequence. The 34K core detects possible non-atomicity by checking every write
made by any thread against the LLAddr of all other TCs.

EntryGrain ITC cell interval EntryGrain ITC cell interval

0 = 128bytes 4 = 2Kbytes
1 = 256bytes 5 = 4Kbytes
2 = 512bytes 6 = 8Kbytes
3 = 1Kbyte 7 = 16Kbytes
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The hardware keeps a single bit of state per TC called a "link bit" - the link bit is not directly visible to software. The
link bit is most often zero, but is set by a ll instruction and then cleared by any condition threatening atomicity. It’s
cleared if:

• Some other TC’s store is to the same block as our LLAddr;

• An eret instruction runs for this TC’s VPE (which means there’s been an exception, which could mean this TC
has been rescheduled in the middle of its sequence);

• Some other software wrote this TC’s TCRestart register to cause it to execute elsewhere. This is to catch condi-
tions where OS software running on some other thread "reschedules" the TC: we don’t want the link bit to sur-
vive such indignities.

Then the sc succeeds only if the link bit is still set when it executes.

In the MIPS MT ASE the sc instruction is also used (in this case independently of ll or the link bit) to provide feed-
back from a store to an ITC location which might fail: see Section 3.3, "Inter-thread communication storage (ITC)".
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Initialization and identity

What happens when the CPU is first powered up? These functions are perhaps more often associated with a ROM
monitor than an OS.

4.1 Probing your CPU - Config CP0 registers

The four registers Config and Config1-3 are 32-bit CP0 registers which contain information about the CPU’s capa-
bilities. Config1-3 are strictly read-only. The few writable fields in Config — notably Config[K0] — are there for
historic compatibility, and are typically written once soon after bootstrap and never changed again.

The 34K core also defines Config7 for some implementation-specific settings (which most programmers will never
use).

Broadly speaking the registers have these roles:

While initializing your CPU, you might also want to look at the EBase register, which can be used to relocate your
exception entry points: see Figure 7.2 and the text round it.

Table 4.1 Roles of Config registers

Config A mix of historical and CPU-dependent information, described in Figure 4.1 below. Some
fields are writable.

Config1 Read-only, strictly to the MIPS32 architecture. Config1 shows the primary cache configuration
and basic CPU capabilities, while Config2 shows information about L2 and L3 caches, if fitted
(the L2 cache is optional and the L3 cache is unavailable in 34K family cores). Shown in
Figure 4.2 and Figure 4.3 below.

Config2

Config3 Read-only, strictly to Release 2 of the [MIPS32] architecture.
More CPU capability information.

Config6 Provides information about the presence of optional extensions to the base MIPS32 architec-
ture in addition to those specified in Config2 and Config3.

Config7 34K-core-specific, with both read-only and writable fields. It’s a strong convention that the
writable fields should default to “expected” behavior, so beginners may simply leave these
fields alone. The fields are described later, in Section C.4.5 “The Config7 register”.
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4.1.1 The Config register

Figure 4.1 Fields in the Config Register

In Figure 4.1:

M: reads 1 if Config1 is available (it always is).

K23, KU, K0: set the cacheability attributes of chunks of the memory map by writing these fields. All share a 3-bit
encoding with the cacheability field found in TLB entries, which is described in Table 5.3 in Section
5.4.2 “Cacheability options”.

Config[K0] sets the cacheability of kseg0, but it would be very unusual to make that anything other than cacheable
(on different, cache-coherent CPUs, it may want to be set to cacheable-coherent). The power-on value of this standard
field is not mandated by the [MIPS32] architecture; but the 34K core follows the recommendation to set it to "2",
making "kseg0" uncached. That can be surprising; early system initialization software typically re-writes it to "3" in
order that kseg0 will be cached, as expected.

If your 34K core-based system uses fixed mapping instead of having a TLB, Config[K23] is for program addresses
0xC000.0000-0xFFFF.FFFF (the “kseg2” and “kseg3” areas), while Config[KU] is for program addresses
0x0000.0000-0x7FFF.FFFF (the “kuseg” area). If you have a TLB, these regions are mapped and these fields are
unused (write only zeroes to them).

ISP, DSP: read 1 if I-side and/or D-side scratchpad (SPRAM) is fitted, see Section 5.6, "Scratchpad memory/
SPRAM".

(Don’t confuse this with the MIPS DSP ASE, whose presence is indicated by Config3[DDSP].)

UDI: reads 1 if your core implements user-defined "CorExtend" instructions, and if the CorExtend unit is made avail-
able to this VPE by the setting of the VPEConf0 register. “CorExtend” is available on cores whose name ends in
"Pro".

SB: read-only "SimpleBE" bus mode indicator. If set, means that this core will only do simple partial-word transfers on
its OCP interface; that is, the only partial-word transfers will be byte, aligned half-word and aligned word.

If zero, it may generate partial-word transfers with an arbitrary set of bytes enabled (which some memory controllers
may not like).

WC: Warning: this is a diagnostic/test field, not intended for customer use, and may vanish without notice from a
future version of the core.

Set this 1 to make the Config1[IS] and Config1[DS] fields writable, which allows you to reduce the number of avail-
able L1 I- and D-cache ``sets per way'', and shrink the usable cache size. You'd never want to do this in a real system,
but it is conceivable it might be useful for debug or performance analysis. If you have an L2 cache configured, then
this makes Config2[SS] writable in the same way.

31 30 28 27 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 7 6 4 3 2 0

M K23 KU ISP DSP UDI SB 0 WC MM 0 BM BE AT AR MT 0 VI K0

1 2 2 0 1 0 1 0 2
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MM: writable: set 1 if you want writes resulting from separate store instructions in write-through mode merged into a
single (possibly burst) transaction at the interface. This has no affect on cache writebacks (which are always whole
blocks together) or uncached writes (which are never merged).

Note that the Config[MM] bit is not replicated per-VPE (like most CP0 fields): there’s only one per CPU and anything
written by one VPE affects the other one.

BM: read-only - tells you whether your bus uses sequential or sub-block burst order; set by hardware to match your sys-
tem controller.

BE: reads 1 for big-endian, 0 for little-endian.

AT: MIPS32 or MIPS64 compliance  On 34K family cores it will read “0”, but the possible values are:

AR: Architecture revision level. On 34K family cores it will read “1”, denoting release 2 of the MIPS32 specification.

MT: MMU type (all MIPS Technologies cores may be configured as type 1 or 3):

VI: 1 if the L1 I-cache is virtual (both indexed and tagged using virtual address). No contemporary MIPS Technologies
core has a virtual I-cache.

K0: as described in the notes above on Config[K23] etc, this field determines the cacheing behaviour of the fixed kseg0
memory region .

0 MIPS32
1 MIPS64 instruction set but MIPS32 address map
2 MIPS64 instruction set with full address map

0 MIPS32/MIPS64 Release 1
1 MIPS32/MIPS64 Release 2

0 None
1 MIPS32/64 compliant TLB
2 “BAT” type
3 MIPS-standard fixed mapping
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4.1.2 The Config1-2 registers

These two read-only registers tell you the size of the TLB, and the size and organization of L1, L2 and L3 caches (a
zero “line size” is used to indicate a cache which isn’t there). They’re best described together.

Config1 has some fields which tell you about the presence of some of the older extensions to the base MIPS32 archi-
tecture are implemented on this core.  These bits ran out, and other extensions are noted in Config3.

Figure 4.2 Fields in the Config1 Register

Figure 4.3 Fields in the Config2 Register

Config1[M]: continuation bit, 1 if Config2 is implemented.

Config1[MMUSize]: the size of the TLB array (the array has MMUSize+1 entries). On this multithreading core this is
a read-only field which automagically returns the number of entries available to your VPE - unless the TLB is shared,
in which case it returns the size of the whole array.

Config1[IS,IL,IA,DS,DL,DA]: for each cache this reports

So if (IS, IL, IA) is (2,4,3) you have 256 sets/way, 32 bytes per line and 4-way set associative: that’s a 32Kbyte cache.

Config1[C2,FP]: 1 if coprocessor 2 or or an FPU (coprocessor 1) fitted, respectively. A coprocessor 2 would be a cus-
tomer-designed coprocessor. In a multithreading core these bits reflect whether the units are really available to this
VPE, which depends on the setting of VPEConf0[NCP2,NCP1].

Config1[MD]: 1 if MDMX ASE is implemented in the floating point unit (very unlikely for the 34K core).

Config1[PC]: there is at least one performance counter implemented, see Section 10.4 “Performance counters”.

Config1[WR]: reads 1 if the 34K core has watchpoint registers, see Section 10.3 “CP0 Watchpoints”.

Config1[CA]: reads 1 if the MIPS16e compressed-code instruction set is available (as it generally is on MIPS Technol-
ogies cores).

Config1[EP]: reads 1 because an EJTAG debug unit is always provided, see Section 10.1, "EJTAG on-chip debug
unit".

Config2[M]: continuation bit, 1 if Config3 is implemented.

31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 5 4 3 2 1 0

M MMUSize IS IL IA DS DL DA C2 MD PC WR CA EP FP

1 4 3 4 3 0 1 1 1 1

31 30 28 27 24 23 20 19 16 15 13 12 11 8 7 4 3 0

M TU TS TL TA SU L2B SS SL SA

1 0 0 0 0 0 0

S Number of sets per way. Calculate as: 64 × 2S

L Line size. Zero means no cache at all, otherwise calculate as: 2 × 2L

A Associativity/number of ways - calculate as A + 1
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Config2[TU]: implementation-specific bits related to tertiary cache, if fitted. Can be writable.

Config2[TS,TL,TA]: tertiary cache size and shape - encoded just like Config1[IS,IL,IA] which see above.

Config2[SU]: implementation-specific bits for secondary cache, if fitted. Can be writable.

Config2[L2B]: Set to disable L2 cache (“bypass mode”). Setting this bit also forces Config2[SL] to 0 — most OS code
will conclude that there isn't an L2 cache on the system, which can be useful.

Writing this bit controls a signal out to the L2 cache hardware. However, reading it does not read back what you just
wrote: it reflects the value of a signal sent back from the L2 cache. With MIPS Technologies' L2 cache logic, that
feedback signal will reflect the value you just wrote, with some implementation-dependent delay (it's unlikely to be
100 cycles, but it could easily be more than 10). For more details refer to [L2CACHE].

Config2[SS,SL,SA]: secondary cache size and shape, encoded like Config1[IS,IL,IA] above.

4.1.3 The Config3 register

Config3 provides information about the presence of optional extensions to the base MIPS32 architecture.  A few of
them were in Config2, but that ran out of bits.

Figure 4.4 Config3 Register Format

Fields shown in Figure 4.4 include:

Config3[M]: continuation bit which is zero, because there is no Config4.

Config3[CMCGR]: reads 1 if Global Control Register in the Coherence Manager are implemented and the
CMGCRBase register is present. Reads 0 otherwise

Config3[ULRI]: reads 1 if the core implements the UserLocal register, typically used by software threads packages.
More information in Section C.4.2 “The UserLocal register”.

DSP2P, DSPP: DSPP reads 1 if the MIPS DSP extension is implemented — as described in Chapter 9, “The
MIPS32® DSP ASE” on page 123. DSP2P reads 0 — it distinguishes CPUs which conform to the later revision 2 of
the DSP ASE.

CTXTC: reads 1 when the ContextConfig register is implemented. The width of the BadVPN2 field in the Context
register depends on the contents of this register.

VEIC: read-only bit from the core input signal SI_EICPresent which should be set in the SoC to alert software to the
availability of an EIC-compatible interrupt controller, see Section 7.2, "MIPS32® Architecture Release 2 - enhanced
interrupt system(s)".

VInt: reads 1 when the 34K core can handle vectored interrupts.

SP: reads 0 when the 34K core does not support sub-4Kbyte page sizes.

CDMM: reads 0 when the 34K core does not support the Common Device Memory Map.

31 30 29 28 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M 0 CMGCR ULRI 0 DSP2P DSPP CTXTC 0 VEIC VInt SP CDMM MT SM TL

0 1 1 0 1 0
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MT: reads 1 to show that 34K family cores implement the MIPS MT (multithreading) extension.

SM: reads 0, the 34K core does not handle instructions from the "SmartMIPS" ASE.

TL: reads 1 if your core is configured to do instruction trace.

4.1.4 The Config6 register

Config3 provides information about the presence of optional extensions to the base MIPS32 architecture in addition to
those specified in Config2 and Config3.

Figure 4.5 Config6 Register Format

SPCD disables performance counter clock shutdown. The primary use of this bit is to keep performance counters
alive when the core is in sleep mode.

SYND disables Synonym tag update. By default, all synonym load misses will opportunistically update the tag so
that subsequent loads will hit at lookup.

IFUPerfCtl encodes IFU events that provide debug and performance information for the IFU pipeline.

NMRUP indicates that a Not Most Recently Used JTLB replacement scheme is present.

NMRUD disables the Most Recently Used JTLB replacement scheme bit.

JRCP indicates that a JR Cache is implemented.

JRCD indicates that JR Cache Prediction is enabled.

4.1.5 CPU-specific configuration — Config7

Config7 is packed with implementation-specific fields. Most of the time, you leave them alone (a few of them might
sometimes need to be set as required by your SoC designer). So we’ve left these registers defined in the all-CP0
appendix, in Section C.4.5 “The Config7 register”.

4.2 PRId register — identifying your CPU type

This register identifies the CPU to software. It’s appropriately printed as part of the start-up display by any software
telling the world about the CPU on start-up; but when portable software is configuring itself around different CPU

31 15 14 13 12 10 9 8 7 2 1 0

0 SPCD SYND IFUPerfCtl NMRUP NMRUD 0 JRCP JRCD
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attributes, it’s always preferable to sense those attributes directly — look in other Config registers, or perhaps use a
directed software probe.

Figure 4.6 Fields in the PRId Register

PRId[CoOpt]: Whatever is specified by the SoC builder who synthesizes the core — refer to your SoC manual.  It
should be a number between 0 and 127 — higher values are reserved by MIPS Technologies.

PRId[CoID]: Company ID, which in this case is “1” for MIPS Technologies Inc.:

PRId[Imp]: Identifies the particular processor, which in this case is 0x95 for the 34K family. Any processor with differ-
ent CP0 features must have a new PRId field.

PRId[Rev]: The revision number of the core design, used to index entries in errata lists etc. By MIPS Technologies’
convention the revision field is divided into three subfields: a major and minor number; with a nonzero "patch" revi-
sion number is for a release with no functional change. Core licensees can consult [ERRATA] for authoritative infor-
mation about the revision IDs associated with releases of the 34K core.

The following incomplete and possibly not up-to-date table of historical revisions is provided as a guide to program-
mers who don’t have [ERRATA] on hand:

31 24 23 16 15 8 7 5 4 2 1 0

CoOpt CoID Imp
Rev

Major Minor Patch

1 0x95

Table 4.2 34K™® core releases and PRId[Revision] fields

Release
Identifier

PRId[Revision]
Maj.min.patch/hex Description Date

2_0_* 1.0.0 / 0x20 First (GA) release of the 34K core September 30, 2005

2_1_* 2.1.0 / 0x44 MR1 release. Bug fixes, 8KB cache support. March 10, 2006

2_2_0 2.2.0 / 0x48 Allow up to 9 TCs, alias-free 64KB L1 D-cache option. August 31, 2006

2_2_1 2.2.1 / 0x49 Enable use of MIPS SOC-it® L2 Cache Controller. October 12, 2006

2_3_* 2.3.0 / 0x4c Less interlocks round cache instructions, relocatable
reset exception vector location.

January 3, 2007

2_4_* 2.4.0 / 0x50 New UserLocal register, alias-proof I-cache hit-invalidate
operation, can wait with interrupts disabled, per-TC per-
formance counters.

October 31, 2007

2_5_* 2.5.0/0x54 Errata fixes January, 2009

1_1_* 1.1.0/0x24 Errata fixes January, 2009

1_2_* 1.2.0/0x28 Feature updates: improved low power support, fast debug
channel, on-chip PDtrace buffers

July, 2009

2_0_* 2.0.0 / 0x40 General availability of 24K core. March 19, 2004

3_0_* 3.0.0 / 0x60 COP2 option improvements. September 30, 2004

3_2_* 3.2.0 / 0x68 PDtrace available. March 18, 2005
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3_4_* 3.4.0 / 0x6c ISPRAM (I-side scratchpad) option added June 30, 2005

3_5_* 3.5.0 / 0x74 8KB cache option December 30, 2005

3_6_* 3.6.0 / 0x78 L2 support., 64KB alias-free D-cache option, option to
have up to 8 outstanding cache misses (previous maximum
4).

July 12, 2006

3_7_* 3.7.0 / 0x7c Less interlocks round cache instructions, relocatable
reset exception vector location.

January 3, 2007

4_0_* 4.0.0 / 0x80 New UserLocal register, alias-proof I-cache hit-invalidate
operation, can wait with interrupts disabled.

October 31, 2007

4_1_* 4.1.0/0x84 Errata fixes January, 2009

2_0_* 2.0.0 / 0x40 General availability of 24KE core. June 30, 2005

2_1_* 2.1.0 / 0x44 8KB cache option December 30, 2005

2_2_* 2.2.0 / 0x48 L2 support., 64KB alias-free D-cache option, option to
have up to 8 outstanding cache misses (previous maximum
4).

July 12, 2006

2_3_* 2.3.0 / 0x4c Less interlocks round cache instructions, relocatable
reset exception vector location.

January 3, 2007

2_4_* 2.4.0 / 0x50 New UserLocal register, alias-proof I-cache hit-invalidate
operation, can wait with interrupts disabled.

October 31, 2007

2_5_0 2.5.0/0x54 Errata fixes January, 2009

1_0_* 1.0.0 / 0x20 Early-access release of 74K family RTL. January 31, 2007

2_0_0* 2.0.0 / 0x40 First generally-available release of 74K family core. May 11, 2007

2_1_0* 2.1.0 / 0x44 Can wait with interrupts disabled. October 31, 2007

Table 4.2 34K™® core releases and PRId[Revision] fields
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4.3 Multi-Threaded bootstrap issues

You are likely to deal with MIPS MT features at three stages as you boot the system:

• Boot the system, probably without dependence on the MIPS MT extension. It’s good if first-level system boot-
strap (which is bound to be awkward, system-dependent code) is not also sensitive to changes in the CPU feature
set.

So the first-level bootstrap typically wants to make sure that any new multithreading behavior is suppressed until
wanted: see Section 4.3.1, "Bootstrapping without worrying about multithreading".

• Set up VPEs and TCs.

Once you reach the point where you’re running software which wants to exploit multithreading, you need to dis-
cover what resources the CPU has, and to set them up. That’s described in Section 4.3.2, "Configuring your
choice of VPEs and TCs".

Special care should be taken when you’re initializing a VPE which is to run non-MT-aware “legacy” software -
perhaps a whole legacy operating system: notes in Section 4.3.3, "Setting up a VPE for legacy software"

If you are running co-operative software on two VPEs and are able to make minor changes to the source code, it
will usually be more efficient to share the TLB entries (the “legacy-ready” approach is really a hard-wired parti-
tion of the entries): see Section 4.3.4, "Sharing and not sharing the TLB".

• Thread initialization for explicit multi-threading, see Section 4.3.5, "Setting up a TC to run a thread".

4.3.1 Bootstrapping without worrying about multithreading

It’s usually going to make sense to deal with the complexities of multi-threading only at the point in the system where
you start to use the facilities. For many systems that means that initial bootstrap software (perhaps a boot monitor or
reset-time diagnostic) will be better off ignoring multithreading.

Fortunately that’s straightforward. A MIPS MT CPU comes out of reset with just TC #0 running, affiliated to VPE
#0, and looking single-threaded. Moreover, the VPEConf0[MVP] bit is set, so the bootstrap software is all-powerful
and can do whatever is required to set up the right VPEs and threads for the system.

To help out with post-mortem diagnosis of software errors, most per-TC registers belonging to TCs other than TC#0
are left unchanged by reset. In particular, TCRestart is unaffected, so you get some idea of where various threads had
got to.

Now bootstrap your computer. If the software needs to know it, it can read its own TC and VPE number from TCBind.

As always, bootstrap software is responsible for initializing CP0 registers; a register may only be skipped if you are
certain that random contents in it will not disrupt your software.

4.3.2 Configuring your choice of VPEs and TCs

When you arrive at that software which wants to start an extra VPE or TC, you first need to discover what resources
your CPU has. The pre-multithreading Config and Config1-3 registers used to tell you everything; but in a MT CPU,
those registers reflect just one VPE’s resources, which in turn depend on what has been configured through
MVPControl and VPEConf0-1 (details in Figure 2.5 and Figure 2.6 and the notes to them) In fact, since in the 34K
core initialization software has a fair amount of control over what resources are allocated to each VPE, some fields in
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the previously read-only Config registers are writable. However, that’s only done where necessary: for example, since
all VPEs share the caches, all VPEs can and do use read-only cache information from Config1-2.)

The total CPU resources are enumerated in MVPConf0-1, which you can see in detail in Figure 2.4 .

Getting a second VPE/TC into use

Suppose you have some software loaded into memory, but you want to start running it with TC #1 bound to VPE #1.
Currently both the per-VPE and per-TC registers and other resources are in their post-reset state: the critical ones
need software initialization before they can start.

Only a thread with VPEConf0[MVP] set can do this - fortunately VPE #0 will come out of reset with MVP set (if you
already cleared it, you’ve resigned. Reset the CPU and try again!). Then set MVPControl[VPC].

Set VPEControl[TargTC] to 1, the other TC’s number, so you can write the other TCs registers with mttr.

You certainly don’t want the other VPE running while you do this sort of thing, and you should clear your
VPEControl[EVP] bit while you’re working. You should probably use the dvpe/mtc0 instructions as a "bracket",
rather than manipulating the EVP bit directly. So your overall flow should be like this:

  dvp t0
  ehb # execution hazard barrier, make sure dvp takes effect
  ...
  set MVPControl[VPC]
  (initialise VPE #1 and TC #1)
  ...
  mtc0 t0, VPEControl  # undo the dvp

OK, so now let’s look at how you "initialize VPE #1 and TC #1".

From now on mttr will operate on the TC of your choice. You’ll probably want to do quite a lot of set-up of both
per-TC and per-VPE fields

So for TC#1:

• Set TCHalt. In fact TC#1 can’t run anything yet, because you’re still under dvpe control - but the MT specifica-
tion allows CPUs to treat the “halted” state specially. Don’t omit this.

• TC #1’s VPE affiliation may not be set as you wish, so set TCBind[CurVPE] to 1 (the other VPE’s number)

• A word of warning. This section lists all the “important” fields. When any MIPS CPU is powered up, only a
rather small set of CP0 register fields are initialized. But when a MIPS MT CPU is powered up, only fields for
VPE #0 and TC #0 are initialized at all. Your new VPE may have random garbage in any writable CP0 field. So
if yours may be the first use of that VPE from power-on, iterate over all the CP0 registers setting all writable
fields to “safe” values.

• Set TCStatus. TCStatus[A]:will have to be set to 1 so the TC can run (this bit is the “allocated” bit for fork, and
is required when setting up a thread manually.) All other bits can be zero, at least to start with - once you get
something working, though, go back to the detailed description in for any other fields in Section 2.9.4,
"TCStatus" on page 35.

• Set TCRestart to the program location where you want your new thread to start.

Now let’s look at VPE#1’s registers:.
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• Set VPEControl zero, and set VPEConf0 to leave VPEConf0[XTC] = 1 (it should match your affiliated TC number,
and must do so if you want to start the software “single-threaded”), VPEConf0[MVP] = 0, VPEConf0[VPA] = 1.
For full details consult Figure 2.1 and Figure 2.6 and their notes.

• Set VPE #1/TC #1’s Status register: If your intention is to have VPE #1’s software mimic "coming out of reset"
you might want to set its Status[EXL] set 1, so it starts in exception mode. Think about Status[BEV] - if set and
your new thread takes an exception (which quite often happens with brand new code, due to one slip or another),
then with BEV set it will use the ROM exception vectors, which are always shared with VPE #0 - and might not
be what you wanted. On the other hand, if you do clear Status[BEV], make sure you’ve set up code to catch any
exceptions delivered at the non-ROM address.You might also set EBase to give VPE #1 different exception entry
points from VPE #0 (unless you really want to share them).

• Set VPE #1’s VPEConf1 register. VPEConf1[NCP2, NCP1, NCX] determine whether your new VPE will be able
to use coprocessors 2 and 1 (CP1 is the floating point unit) and the UDI instruction set, respectively. If the co-
processor has only one bank of registers, you may well want to deny use of the co-processor to all but one of the
VPEs.

At the end of our sequence you re-enable multithreading (by restoring the old value of VPEControl). Your last step is
to use mttr to write TC #1’s TCHalt to zero. Now TC#1 should start up and start running your code.

4.3.3 Setting up a VPE for legacy software

In general you can support only one piece of legacy software on a 34K family core. The VPEs see the same basic
MIPS architecture memory map, and a few things are commonly shared - not least the exception entry points.

Your legacy software has to be told (by some means, beyond the scope of this manual) not to use all the physical
memory in the system. Most likely the new MT-aware software will also need to use some virtual memory in the
kseg0/kseg1 regions, too.

The "legacy" VPE needs to be carefully set up to fool the old software into seeing and using a congenial MIPS32
CPU. That means:

1. Set up this VPE with just one TC;

2. You’ll initialize all the relevant new MIPS MT registers and resources to keep the legacy software happy for its
lifetime. Consult the full list of registers in Section 2.9, "Multithreading ASE - CP0 (privileged) registers".

4.3.4 Sharing and not sharing the TLB

It’s not really visible to software whether there is really more than one TLB in any 34K core, but you can software
configure it so that you get either:

• Hard partition: each VPE appears to have its own TLB fully compatible with the MIPS32 architecture (the sizes
of the VPE’s TLBs are as set when the SoC was built - so while this will often be half-size each, it may not be);
OR

• Shared: the VPEs share all the TLB’s entries (up to a maximum of 64 entries). This is certainly a good choice if
one of the VPEs doesn’t use the TLB at all (which is not unusual in many legacy embedded systems.)

But it is also particularly likely to be a good choice if the VPEs are to run the same software and that software is
under your control; for example, if you’re using them to run a close approximation to a dual-CPU SMP Linux OS
(a VSMP system.)
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But to share the TLB you will need to make some modifications to the TLB maintenance code, as described
below.

To partition the TLB just set MVPControl[STLB] zero. Each VPE’s Config1[MMUSize] field will show the size allo-
cated to it, as configured by your SoC designer.

To share the TLB set MVPControl[STLB] to 1. It will probably be convenient to set Config1[MMUSize] to show the full
array. A change to STLB should be made only by "unmapped" code, and with the TLB empty of valid entries.

You don’t usually need to make any change to the critical TLB refill exception handler, so long as - as is usual - it
relies on random replacement (that is, the update to the TLB is done with a tlbwr instruction.) The TLB CP0 regis-
ters used in a typical TLB miss handler include Context, EntryHi, EntryLo0-1 and PageMask. All are replicated for
each VPE.

The Random register is handled specially. tlbwr will not use a value for Random which coincides with the other
VPE’s value of the manually-set TLB index register Index.

Meanwhile, other kernel software may be doing software-driven updates to the TLB (mostly that means removing
entries). The TLB maintenance software will need to run single-threaded, at least in part. There are three possible
sources of unwanted concurrency, and software has to attend to two of them:

1. The other VPE may itself be performing some TLB maintenance. This can be fixed with a one-thread-at-a-time
software semaphore, just like the ones you use in an SMP OS.

2. Another TC belonging to the same VPE may get a TLB-related exception. This can be fixed by bracketing criti-
cal parts of the TLB maintenance routine with a dmt/mtc0 pair, disabling all TC-level parallelism while the
operation is completed.

3. A TC belonging to the other VPE may get a TLB-related exception. But the hardware makes this OK. The only
resources the two VPEs share are the TLB entries itself, and the only entry the other VPE will access is the one
used by tlbwr as indexed by the Random register. The hardware will ensure that the Random value used by the
other VPE will be different from the Index value you’re using for your maintenance routine. So no software fix is
needed.

For efficient use of TLB entries, maintenance software should return Index to an unused value (which represents no
entry) as soon as it has finished - otherwise you’re blocking Random from selecting some particular TLB slot. The
recommended value is 0x8000.0000; the top bit of Index is writable on MIPS MT CPUs for this purpose.

There’s another more subtle change. The TLB is used early in the pipeline to translate instruction addresses. A TLB-
related exception (“TLB Invalid” for example) detected at this stage is not taken until and unless the instructions are
scheduled into the main pipeline. By that time many instructions from other threads may have gone past, and perhaps
one of them may have done a refill which dislodged the invalid TLB entry. So the TLB invalid exception handler
might find there’s no translation entry in the TLB at all: your best bet, in that case, is probably to just return from the
exception without doing anything, which will lead to a TLB miss exception and all should get fixed up.

4.3.5 Setting up a TC to run a thread

The easiest way to set a previously-unoccupied TC running a thread is to use the fork instruction.

To prepare to use fork you need to make sure there is at least one TC with the TCStatus[DA] bit set to 1 (which indi-
cates it’s available for fork), the bit TCStatus[A] zero (i.e. the TC is not already in use), and TCHalt zero.
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However, there’s nothing to prevent you from setting up a TC manually; just set the thread restart address TCRestart
and set TCStatus[A]. You should almost always set TCHalt before doing manual adjustments on a TC, and clear it
when you’ve finished. If the TC started to run (perhaps an interrupt routine) while being worked on it would be likely
to lead to confusion.

4.3.6 TCs recycled as Shadow registers

The MIPS32 architecture permits CPUs to be configured such that a particular interrupt handler (or in some cases all
exception handlers) should be invoked with a complete alternate set of general-purpose registers: a Shadow register
set. That allows you to write a very low-overhead handler, because you don’t have to save the interrupted thread’s reg-
isters.

There are some applications where explicit multithreading will fix your problem better than shadow registers. But
there are other cases where you really want shadow registers rather than multiple TCs, and the 34K core gives you the
choice - you can close down a TC for thread business, and make its registers available for shadow set use. See Section
7.4.1, "Recycling multi-threading CPU’s TCs as shadow sets".
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Memory map, caching, reads, writes and translation

In this chapter:

• Section 5.1, "The memory map": basic memory map of the system.

• Section 5.3, "Reads, writes and synchronization"

• Section 5.4, "Caches"

• Section 5.6, "Scratchpad memory/SPRAM": optional on-chip, high-speed memory (particularly useful when
dual-ported to the OCP interface).

• Section 5.8, "The TLB and translation": how translation is done and supporting CP0 registers.

5.1 The memory map

A 34K core system can be configured with either a TLB (virtual memory translation unit) or a fixed memory map-
ping, or even with one VPE using the TLB and one with fixed mapping.

A TLB-equipped VPE sees the memory map described by the [MIPS32] architecture (which will be familiar to any-
one who has used a 32-bit MIPS architecture CPU) and is summarized in Table 5.1. The TLB gives you access to a
full 32-bits physical address on the system interface. More information about the TLB in Section 5.8, "The TLB and
translation".

Table 5.1 Basic MIPS32® architecture memory map
Segment Virtual range What happens to accesses here?

Name
kuseg 0x0000.0000-0x7FFF.FFFF The only region accessible to user-privilege programs.

Mapped by TLB entries.
kseg0 0x8000.0000-0x9FFF.FFFF a fixed-mapping window onto physical addresses

0x0000.0000-0x1FFF.FFFF. Almost invariably cache-
able - but in fact other choices are available, and are
selected by Config[K0], see Figure 4.1.
Accessible only to kernel-privilege programs.

kseg1 0xA000.0000-0xBFFF.FFFF a fixed-mapping window onto the same physical
address range 0x0000.0000-0x1FFF.FFFF as “kseg0”
- but accesses here are uncached.
Accessible only to kernel-privilege programs.

kseg2 0xC000.0000-0xDFFF.FFFF Mapped through TLB, accessible with supervisor or
kernel privilege (hence the alternate name).sseg

kseg3 0xE000.0000-0xFFFF.FFFF Mapped through TLB, accessible only with kernel
privileges.
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5.2 Fixed mapping option

To save chip area for applications not needing a full TLB, threads in one or both VPEs can use a simple fixed map-
ping (“FMT”) memory translator, which plays the same role. You can find out whether a VPE has fixed mappings by
reading the CP0 field Config[MT] (see Figure 4.1 and descriptions). With the fixed mapping option, virtual address
ranges are hard-wired to particular physical address windows, and cacheability options are set through CP0 register
fields as summarized in Table 5.2:

Even in fixed-mapping mode, the cache parity error status bit Status[ERL] still has the effect (required by the MIPS32
architecture) of taking over the normal mapping of “kuseg”; addresses in that range are used unmapped as physical
addresses, and all accesses are uncached, until Status[ERL] is cleared again.

5.3 Reads, writes and synchronization

The MIPS architecture permits implementations a fair amount of freedom as to the order in which loads and stores
appear at the CPU interface. Most of the time anything goes: so long as the software behaves correctly, the MIPS
architecture places few constraints on the order of reads and writes seen by some other agent in a system.

5.3.1 Read/write ordering and cache/memory data queues in the 34K™ core

To understand the timing of loads and stores (and sometimes instruction fetches), we need to say a little more about
the internal construction of the 34K core. In order to maximize performance:

• Loads are non-blocking: execution continues “through” a load instruction, and only stops when the program tries
to use the GPR value it just loaded.

• Writes are “posted”: a write from the core is put aside (the hardware stores both address and data) until the CPU
can get access to the system interface and send it off.

• Cache refills are completed “opportunistically”: the CPU may still be running on from a non-blocking load or
prefetch when data arrives back from the cache. The data required to make good a miss is forwarded to the rele-
vant GP register, so the returning data is not urgently needed in the cache. The data waits until a convenient
moment before it gets put into the cache line.

All of these are implemented with “queues”, called the LDQ, WBB and FSB (for “fill/store buffer” — it’s used both
for writes which hit and for refills after a cache miss) respectively. All the queues handle data first-come, first served.
The WBB and FSB queues need to be snooped - a subsequent store to a location with a load pending had better not be
allowed to go ahead until the original load data has reached the cache, for example. So each queue entry is tagged
with the address of the data it contains.

An LDQ entry is required for every load that misses in the cache. Moreover, an LDQ entry must be available for any
load - even if it will hit in the cache, the logic requires that the LDQ entry is available if needed. This queue allows the

Table 5.2 Fixed memory mapping
Segment Virtual range Physical range Cacheability

Name bits from
kuseg 0x0000.0000-0x7FFF.FFFF 0x4000.0000-0xBFFF.FFFF Config[KU]
kseg0 0x8000.0000-0x9FFF.FFFF 0x0000.0000-0x1FFF.FFFF Config[K0]
kseg1 0xA000.0000-0xBFFF.FFFF 0x0000.0000-0x1FFF.FFFF (uncached)

kseg2/3 0xC000.0000-0xFFFF.FFFF 0xC000.0000-0xFFFF.FFFF Config[K23]
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CPU to keep running even though there are outstanding loads. When the load data is finally returned from the system,
the LDQ and the main core logic act together to write this data into the correct GPR (which will then restart the pro-
gram, if it was blocked on an attempt to use this register).

The WBB (Write Back Buffer) queue holds data waiting to be sent out over the system interface, either from D-cache
writebacks or uncached/write-through store instructions.

FSB (Fill Store buffer) queue entries are used to hold data that is waiting to be written into the D-cache. An FSB entry
gets used during a cache miss (when it holds the refill data), or a write which hits in the cache (when it holds the data
the CPU wrote). Loads and stores snoop the FSB so that accesses to lines “in flight” can be dealt with correctly.

All this has a number of consequences which may be visible to software:

• Number of non-blocking loads which may be pending: the CPU has either four ornine LDQ entries according to
configuration (but it’s always at least one per TC). That limits the number of outstanding loads. As mentioned
above, you can’t start a load - even one which will in fact hit in the cache - unless you have a free LDQ entry.

• Hit-under-miss: the D-cache continues to supply data on a hit, even when there are outstanding misses with data
in flight. FSB entries remember the in-flight data. So it is quite normal for a read which hits in the cache to be
“completed” - in the sense that the data reaches a register - before a previous read which missed.

• Write-under-miss: the CPU pipeline continues and can generate external store cycles even though a read is pend-
ing, so long as WBB slots are available. The 34K core’s “OCP” interface is non-blocking too (reads consist of
separate address and data phases, and writes are permitted between them), so this behavior can often be visible to
the system.

• Miss under miss: the 34K core can continue to run until the pending read operations exhaust FSB or LDQ entries.
More often, of course, it will try to use the data from the pending miss and stall before it gets that far.

• Core interface ordering: at the core interface, read operations may be split into an address phase and a later data
phase, with other bus operations in between.

The 34K core - as is permitted by [MIPS32] - makes only limited promises about the order in which reads and
writes happen at the system interface. In particular, uncached or write-through writes may be overtaken by cache
line reads triggered by a load/store cache miss later in sequence. However, uncached reads and writes are always
presented in their program sequence (program sequence inside a thread). When some particular program needs to
do things “really in order”, the sync instruction can help, as described in the next section.

Cache management operations interact with several queues: see Section 5.4.6 “L1 Cache instruction timing”.

5.3.2 The “sync” instruction in 34K™ family cores

If you want to be sure that some other agent in the system sees a pair of transactions to uncached memory in the order
of the instructions that caused them, you should put a sync instruction between the instructions. Other MIPS32/64-

compliant CPUs may reorder loads and stores even more; portable code should use sync13.

But sometimes it’s useful to know more precisely what sync does on a particular core. On 34K sync:

13. Note that sync is described as only working on “uncached pages or cacheable pages marked as coherent”. But sync also
acts as a synchronization barrier to the effects produced by routine cache-manipulation instructions - hit-writeback and hit-
invalidate.
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• Stalls until all loads, stores, refills are completed and all write buffers are empty (that is until the LDQ, FSB and
WBB are empty);

• In some systems the CPU will also generate a synchronizing transaction on the OCP system interface if

Config7[ES] bit is set14. Not all systems do this. See Section C.4.5 “The Config7 register” for more details.

5.3.3 Write gathering and “write buffer flushing” in 34K™ family cores

We mentioned above that writes to the system (whether uncached writes or cache write-backs) are performed some-
what lazily, the write being held in the WBB queue until a convenient moment. That can have two system-visible
effects:

• Writes can happen later than you think. Your write will happen before the next uncached read or write, but that’s
all you know. To make sure that a write has gone out on the OCP bus you can use a sync (as above): but that
meaning of sync is CPU-dependent, so that code is non-portable. And your write might still be posted some-
where in a system controller, unless you know your system is built to prevent it. Sometimes it’s better to code a
dummy uncached read from a nearby location (which will “flush out” buffered writes on pretty much any sys-
tem).

• If your cache is configured for write-through, then cached writes to locations in the same “cache line”-sized
chunk of memory may be gathered - stored together in the WBB, and then dealt with by a single “wider” OCP
write than the one you originally coded. Sometimes, this is what you want. When it isn’t, put a sync between
your successive writes. Regular uncached writes are never merged, but special “uncached accelerated” writes
may be — see Section 5.4.3 below.

5.4 Caches

Most of the time caches just work and are invisible to software... though your programs would go twenty times slower
without them. But this section is about when caches aren’t invisible any more.

Like most modern MIPS CPUs, the 34K core has separate primary I- and D-caches. They are virtually-indexed and
physically-tagged, so you may need to deal with cache aliases, see Section 5.4.10, "Cache aliases". The design pro-
vides for 8Kbyte, 16Kbyte, 32Kbyte or 64Kbyte caches; but the largest of those are likely to come with some speed
penalty. The 34K core’s primary caches are 4-way set associative.

Your 34K core can optionally be built with a L2 (level 2 or secondary) cache. see section below for details.

But don’t hard-wire any of this information into your software. Instead, probe the Config1 register defined by
[MIPS32] (and described in the notes to Figure 4.2) to determine the shape and size of the L1 and any L2 cache.

5.4.1 The L2 cache option

The L2 cache is an option available to your SoC builder. Basic facts and figures:

• The L2 cache is attached to the core’s standard 64-bit OCP system interface, and when you fit it everything else
is attached to the core through the L2 cache, which has a system-side interface for that purpose. The core-side

14. This will be a read with the signal OC_MReqInfo[3] set. Handling of this transaction is system dependent, but a typical sys-
tem controller will flush any external write buffers and complete all pending transactions before telling the CPU that the
transaction is completed. Ask your system integrator how it works in your SoC.
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interface is enhanced and augmented to support cache instructions targeted at the L2, and to carry back perfor-
mance counter information and so on.

• The L2 ‘s size can be 128Kbytes, 256Kbytes, 512Kbytes or 1Mbyte. However, there are options which allow the
SoC builder to have one or more of the ways of the cache memory array visible as normal system memory
instead. There’s very little in this manual about that option. — see [L2CACHE].

• The L2 cache is indexed and tagged with the physical address, so is unaffected by cache aliases.

• Cache lines are either 32 bytes long (matching the L1 caches) or 64 bytes. The L2 cache’s memories are accessed
256 bits at a time internally, though it has 64-bit interfaces.

• It can be configured with 4-way or 8-way set-associative organization. In a 4-way cache the line replacement pol-
icy is “least recently used” (LRU); true LRU is impractical for an 8-way set associative cache, so something sim-
pler (a “pseudo-LRU”) is used.

• The cache has an option for error detection and correction. 1-bit data errors can be corrected and all 2-bit errors
detected with an 8-bit-per-doubleword ECC field. Check bits are provided on cache tags, too. If your L2 has ECC
fitted, ErrCtl[L2P] will be writable — see Section 5.4.18 “ErrCtl register” for details.

• The cache is write-back but does not allocate a line on a write miss (write miss data is just sent directly to the sys-
tem memory). It is write-through for memory regions which request that policy -- see Section
5.4.2 “Cacheability options” for details.

• The L2 cache can run synchronously to the CPU core, but (particularly for memory arrays larger than
256Kbytes) would typically then be the critical path for timing. It will more often use a 1:2 or 2:3 clock ratio.
The L2’s far-side OCP interface may run at any of a wide range of ratios from the L2 clock down.

• In an effort to keep everything going the cache manages multiple outstanding transactions (it can handle as many
as 15 outstanding misses). Misses are resolved and responses sent as they happen, not in the order of presenta-
tion.

• Latency: the L2 logic allows the memory access to be pipelined, a reasonable choice for larger or slower arrays:
ask your SoC builder. The L2 delivers hit data in a burst of four 64-bit doublewords. The first doubleword
appears after 9 or 10 L2 clocks (10 for pipelined-array systems) and the rest of the burst follows on consecutive
clocks. Added to this is some extra time taken for the original L1 miss to be discovered, synchronizing to the L2
clock, and returning the data to the CPU: typically, add 5 CPU clocks.

An L2 miss is slightly more expensive than an L1 miss from the same memory, since we don’t start the memory
access until we’ve discovered that the data isn’t in the L2. The L2 memory interface can be configured to be 64-
bit or 256-bit wide. An L2 miss will deliver miss data to the CPU core in burst of four 64-bit doublewords
.Because the CPU connects to the rest of the system through the L2 cache, it also adds 4 L2 cycles to the latency
of all transactions which bypass the L2.

• The L2 cache requires software management, and you can apply the same cache instructions to it as to the L1 D-
cache.

5.4.2 Cacheability options

Any read or write made by the 34K core will be cacheable or not according to the virtual memory map. For addresses
translated by the TLB the cacheability is determined by the TLB entry; the key field appears as EntryLo[C]. Table 5.3
shows the code values used in EntryLo[C] - the same codes are used in the Config entries used to set the behavior of
regions with fixed mappings (the latter are described in Table 5.2.)
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Some of the undefined cacheability code values are reserved for use in cache-coherent systems.

5.4.3 Uncached accelerated writes

The 34K core permits memory regions to be marked as “uncached accelerated”. This type of region is useful to hard-
ware which is “write only” - perhaps video frame buffers, or some other hardware stream. Sequential word stores in
such regions are gathered into cache-line-sized chunks, before being written with a single burst cycle on the CPU
interface.

Such regions are uncached for read, and partial-word or out-of-sequence writes have “unpredictable” effects - don’t
do them. The burst write is normally performed when software writes to the last location in the memory block or does
an uncached-accelerated write to some other block; but it can also be triggered by a sync instruction, a
pref nudge, a matching load or any exception. If the block is not completely written by the time it’s pushed out, it
will be written using a series of doubleword or smaller write cycles over the 34K core’s 64-bit memory interface.

If you have an L2 cache, regions marked as “uncached accelerated” are L2-uncached.

5.4.4 The cache instruction and software cache management

The 34K core’s caches are not fully “coherent” and require OS intervention at times. The cache instruction is the
building block of such OS interventions, and is required for correct handling of DMA data and for cache initializa-
tion. Historically, the cache instruction also had a role when writing instructions (unless the programmer takes some
action, those instructions may only be in the D-cache whereas you need them to be fetched through the I-cache when
the time comes). But where possible use synci for that purpose, as described in Section 5.4.8 “Cache management
when writing instructions - the “synci” instruction”.

A cache operation instruction is written cache op,addr where addr is just an address format, written as for a load/
store instruction. Cache operations are privileged and can only run in kernel mode (synci works in user mode,
though). Generally we’re not showing you instruction encodings in this book (you have software tools for that stuff)
but in this case it’s probably necessary, so take a look at Figure 5.1.

Table 5.3 Cache Code Values

Code Cached? How it Writes Notes

0 cached write-through An unusual choice for a high-speed CPU, probably only for debug

2 uncached

3 cached writeback All normal  cacheable areas

7 uncached “Uncached Accel-
erated”

Unusual and interesting mode for high-bandwidth write-only hardware; see
Section 5.4.3, "Uncached accelerated writes". Such writes just bypass the L2
cache, if there is one.

31 26 25 21 20 18 17 16 15 0
cache base op offset
47 register what to do which cache

Figure 5.1 Fields in the encoding of a cache instruction
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The op field packs together a 2-bit field which selects which cache to work on:

and then adds a 3-bit field which encodes a command to be carried out on the line the instruction selects.

Before we list out the individual commands in Table 5.4; the cache commands come in three flavors which differ in
how they pick the cache entry (the “cache line”) they will work on:

• Hit-type cache operation: presents an address (just like a load/store), which is looked up in the cache. If this loca-
tion is in the cache (it “hits”) the cache operation is carried out on the enclosing line. If this location is not in the
cache, nothing happens.

• Address-type cache operation: presents an address of some memory data, which is processed just like a cached
access - if the cache was previously invalid the data is fetched from memory.

• Index-type cache operation: as many low bits of the address as are required are used to select the byte within the
cache line, then the cache line address inside one of the four cache ways, and then the way. You have to know the
size of your cache (discoverable from the Config1-2 registers, see the notes to Figure 4.3) to know exactly where
the field boundaries are, but your address is used something like this:

Beware: the MIPS32 specification leaves CPU designers to choose whether to derive the index from the virtual or
physical address. Don’t leave it to chance: with index-type operations use a kseg0 address, so that the virtual and
physical address are the same (at least apart from some high bits which certainly won’t affect any cache index).
This also avoids a potential pitfall related to cache aliases.

The L1 caches are 4-way set-associative, so data from any given address has four possible cache locations - same
index, different value of the “Way1-0” bits as above.

Don’t define your own C names for cache manipulation operation codes, at least not if you can use a standard header
file from MIPS Technologies on open-source terms: see [m32c0 h].

5.4.5 Cache instructions and CP0 cache tag/data registers

MIPS Technologies’ cores use different CP0 registers for cache operations targeted at different caches. That’s already
quite confusing, but to make it more interesting these registers have somehow got different names — those used here

0 L1 I-cache
1 L1 D-cache
2 reserved for L3 cache
3 L2 cache

31 5 4 0

Unused Way1-0 Index byte-within-line
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Table 5.4 Operations on a cache line available with the cache instruction

Value Command What it does

0 Index invalidate Sets the line to “invalid”. If it’s a D-cache or L2 cache line which is valid and
“dirty” (has been written by CPU since fetched from memory), then write the con-
tents back to memory first. This is the best and simplest way to invalidate an I-
cache when initializing the CPU - though if your cache is parity-protected, you
also need to fill it with good-parity data, see Fill below.
This instruction is not suitable for initializing caches, where it might cause ran-
dom write-backs: see the Index Store Tag type below.

1 Index Load Tag Read the cache line tag bits and addressed doubleword data into the TagLo etc
registers (see Table 5.1 for names). Operation for diagnostics and geeks only.

2 Index Store Tag Set the cache tag from the TagLo registers.
To initialize a writable cache from an unknown state, set the TagLo registers to
zero and then do this to each line.

3 Index Store Data Write cache-line data. Not commonly used for caches, but it is used for manage-
ment of scratchpad RAM regions described in Section 5.6 “Scratchpad memory/
SPRAM”.

4 Hit invalidate hit-type invalidate - do not writeback the data even if dirty. May cause data loss
unless you know the line is not dirty.
Certain CPUs implement a special form of the I-side hit invalidate, where multiple
searches are done to ensure that any line matching the effective physical address is
invalidated (even if it doesn’t match the supplied virtual address for page color) —
see Section 5.4.10 “Cache aliases” below.

5 Sorry, different meanings for code “5” on L1 I-cache.

Writeback invalidate On the L1D-cache or L2 cache: (hit-type operation) invalidate the line but only
after writing it back, if dirty. This is the recommended way of invalidating a writ-
able line in a running cache.

Fill On an L1 I-cache: (address-type operation) fill a suitable cache line from the data
at the supplied address - it will be selected just as if you were processing an I-
cache miss at this address.
Used to initialize an I-cache line’s data field, which should be done when setting
up the CPU when the cache is parity protected.

6 Hit writeback If the line is dirty, write it back to memory but leave it valid in the cache. Used in
a running system where you want to ensure that data is pushed into memory for
access by a DMA device or other CPU.

7 Fetch and Lock An address-type operation. Get the addressed data into the same line as would be
used on a regular cached reference (if the data wasn’t already cached that might
involve writing back the previous occupant of the cache line).
Then lock the line. Locked lines are not replaced on a cache miss.
It stays locked until explicitly invalidated with a cache
An attempt to lock the last entry available at some particular index fails silently.
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and in C header files. I hope Table 5.1 helps. In the rest of this document we’ll either use the full software name or
(quite often) just talk of TagLo without qualification.:

5.4.6 L1 Cache instruction timing

Most CP0 instructions are used rarely, in code which is not timing-critical. But an OS which has to manage caches
around I/O operations or otherwise may have to sit in a tight loop issuing hundreds of cache operations at a time, so
performance can be important. Firstly, any D-side cache instruction will check the FSB queue (as described in

Section 5.3 “Reads, writes and synchronization”) for potentially matching entries15. The “potential match” check
uses the cache index, and avoids taking any action for most irrelevant FSB activity. But on a potential match the
cacheop waits (stalling the whole CPU pipeline) while any pending cache refills happen, and while any dirty lines
evicted from the cache are sent out at least to the CPU’s write buffer. Typically, this will not take more than a few
clocks.

Once this is done, hit-type cache instructions which miss in the cache and therefore do nothing (and that’s probably
much the commonest case) run through the pipeline with no delay. Instructions which take some action, though, stall
the pipeline and delay all subsequent instructions by a few cycles. The various possibilities are shown in Table 5.5.

Table 5.1 Caches and their CP0 cache tag/data registers

Cache CP0 Registers CP0 number

L1 I-cache

ITagLo 28.0

IDataLo 28.1

IDtataHi 29.1

L1 D-cache

DTagLo 28.2

DDataLo 28.3

L2 cache

L23TagLo1

1. In past versions of this manual L23TagLo was known as
“STagLo”, and so on. But this name is more mnemonic.

28.4

L23DataLo 28.5

L23DataHi 29.5

15. In earlier versions of the 24K and 34K family cores, no index check is performed and any D-side cacheop waits until the FSB
is empty. There are unusual conditions where this can noticeably impact performance.
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5.4.7 L2 cache instruction timing

The L2 cache run synchronously with the CPU but at a configurable clock ratio. The L2 operations will be signifi-
cantly slower than L1 versions even at the same clock ratio. Exactly how slow is dependent on the performance of the
memory blocks used to build your L2 cache and the L2 clock ratio.

5.4.8 Cache management when writing instructions - the “synci” instruction

The synci instruction (new to the MIPS32 Release 2 update) provides a clean mechanism - available to user-level
code, not just at kernel privilege level - for ensuring that instructions you’ve just written are correctly presented for
execution (it combines a D-cache writeback with an I-cache invalidate). You should use it in preference to the tradi-
tional alternative of a D-cache writeback followed by an I-cache invalidate.

synci does nothing to an L2 cache — the L2 cache is unified, and there’s no need to do anything special there to
make data visible for instruction fetch.

5.4.9 Cache management and multithreaded CPUs

The cache management registers are all replicated per-VPE but not per-TC, so obviously you have to avoid multiple
threads on the same VPE attempting to use cache operations concurrently.

Moreover, in 34K family cores the two VPEs share the cache. In general write-back operations and the kind of inval-
idate which automatically writes-back a dirty line may be safely run by either VPE at any time. All other operations
may cause undesirable effects unless you make sure they’re done by only one VPE at a time; and in particular, you
should get the cache initialized by one VPE running alone.

There are also some corner cases which can lead to short-term unfair scheduling of two threads which are concur-
rently using I-side cacheops. The hardware is designed to ensure that such operations don’t overlap, so if two threads
A and B do cache instructions concurrently, thread B will be stopped. As is usual in the 34K core’s pipeline, thread
B is temporarily suspended with the intention of re-issuing its last couple of instructions when the I-cache is free
again. But with bad luck and the ill-timed intervention of thread C (which would have to be running largely from
cache), our thread’s cacheop can find itself persistently scheduled after another thread which is making heavy use of

Table 5.5 Cache instruction timings.

Operation
Line
State Action

Delay (CPU
cycles)

Hit Invalidate × Invalidate cache line, no memory traffic 3

Hit writeback Clean Nothing happens 4

Dirty Write back cache line 8

Hit writeback invalidate Clean Invalidate line 5

Dirty Write back line and invalidate 8

Index Store Tag Update tag 3

Fetch and lock Hit Line is in cache, just lock it 3

Miss Line has to be fetched into cache, and this is a
blocking operation. Wait for that then add...

7
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cache operations, and may be repeatedly pushed back. At worst it may make no progress until the other cacheop-
using thread has moved on to other activities.

There are some other obscure cases where threads are suspended when CPU resources run out, where the same sort of
thing can theoretically happen: instructions dependent on a div result, or a load/store waiting for an FSB slot.

5.4.10 Cache aliases

The 34K  has L1 caches which are virtually indexed but physically tagged. Since it’s quite routine to have multiple
virtual mappings of the same physical data, it’s possible for such a cache to end up with two copies of the same data.
That becomes troublesome:

• When you want to write the data: if a line is stored in two places, you’ll only update one of them and some data
will be lost (at least, there’s a 50% chance it will be lost!) This is obviously disastrous: systems generally work
hard to avoid aliases in the D-cache.

• When you want to invalidate the line in the cache: there’s a danger you might invalidate one copy but not the
other. This (more subtle) problem can affect the I-cache too.

It can be worked around. There’s no problem for different virtual mappings which generate the same cache index;
those lines will all compete for the 4 ways at that index, and then be correctly identified through the physical tag.

The 34K CPU’s smallest page size is 4Kbytes, that’s 212 bytes. The paged memory translation means that the low 12
bits of a virtual address is always reproduced in the physical address. Since a 16Kbyte, 4-way set-associative, cache
gets its index from the low 12 bits of the address, the 16Kbyte cache is alias-free. In general, you can’t get aliases if
each cache “way” is no larger than the page size.

In 32Kbyte and 64Kbyte caches, one or two top bits used for the index are not necessarily the same as the correspond-
ing bits of the physical address, and aliases are possible. The value of the one or two critical virtual address bits is
sometimes called the page color.

It’s possible for software to avoid aliases if it can ensure that where multiple virtual mappings to a physical page exist,
they all have the same color. An OS can do that by enforcing virtual-memory alignment rules (to at least a 16Kbyte
boundary) for shareable regions. It turns out this is practicable over a large range of OS activities: sharing code and
libraries, and deliberate interprocess shared memory. It is not so easy to do in other circumstances, particularly when

pages to be mapped start their life as buffers for some disk or network operation16...

So the 34K  contains logic to make a 32Kbyte or 64Kbyte D-cache alias-free (effectively one or two index bits are
from the physical address, and used late in the cache access process to maintain performance). This logic is a build
option, and Config7[AR] flag should read 1 if your  was built to have an alias-free D-cache.

A 32Kbyte or 64Kbyte I-cache is subject to aliases. It’s not immediately obvious why this matters; you certainly can’t
end up losing writes, as you might in an alias-prone D-cache. But I-cache aliases can lead to unexpected events when
you deliberately invalidate some cache content using the cache instruction. An invalidation directed at one virtual
address translated to a particular physical line may leave an undesirable valid copy of the same physical data indexed
by a virtual alias of a different color. To solve this, some 34K s are built to strengthen hit-type I-cache invalidate
instructions (those include hit-type cache instructions and the synci instruction), so as to guarantee that no copy of
the addressed physical line remains in the cache. This facility is available if the Config7[IAR] bit reads 1; but if it’s

16. There’s a fair amount of rather ugly code in the MIPS Linux kernel to work around aliases. D-cache aliases (in particular) are
dealt with at the cost of quite a large number of extra invalidate operations.
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available but your software doesn’t need it, you can restore “legacy” behavior by setting Config7[IVA] to 1. Refer to
Section C.4.5 “The Config7 register” for details.

The MIPS Technology supplied L2 cache (if configured) is physically indexed and physically tagged, so does not suf-
fer from aliases.

5.4.11 Cache locking

[MIPS32] provides for a mechanism to lock a cache line so it can’t be replaced. This avoids cache misses on one par-
ticular piece of data, at the cost of reducing overall cache efficiency.

Caution: in complex software systems it is hard to be sure that cache locking provides any overall benefit - most often,
it won’t. You should probably only use locking after careful measurements have shown it to be effective for your
application.

Lock a line using a cache FetchAndLock (it will not in fact re-fetch a line which is already in the cache). Unlock

it using any kind of relevant cache “invalidate” instruction17 - but note that synci won’t do the job, and should not
be used on data/instruction locations which are cache-locked.

5.4.12 Cache initialization and tag/data registers

The cache tag/data registers (listed out in Table 5.1) are used for staging tag information being read from or written to
the cache (the 34K core has no “TagHi” registers, which are only needed for CPUs with a bigger physical address
range). [MIPS32] declares that the contents of these registers is implementation dependent, so they need some words
here.

ITagLo is used for the I-cache, DTagLo for the D-cache, and L23TagLo for the L2 cache, if configured. Some other
MIPS CPUs use the same staging register for all caches, and initialization software written for such CPUs is not por-
table to the 34K core.

Before getting into the details, note that it’s a strong convention that you can write all-zeros to the appropriate TagLo
register and then use cache IndexStoreTag to initialize a cache entry to a legitimate (but empty) state. Your
cache initialization software should rely on that, not on the details of the registers.

Only diagnostic and test software will need to know details; but Figure 5.2 shows all the fields:

Figure 5.2 Fields in the TagLo Registers

ITagLo and DTagLo can be used in a special mode; when ErrCtl[WST] is 1, the appropriate TagLo register’s fields
change completely, as shown in Figure 5.8 and its notes below. But let’s look at the standard fields first:

TagLo: the cache address tag — the low 12 bits of the address are implied by the position of the data in the cache.

×: a field not described for the 34K core but which might not always read zero.

V: 1 when this cache line is valid.

17. It’s possible to lock and unlock lines by manipulating values in the TagLo register and then using a
cacheIndex_Load_Tag instruction... but highly non-portable and likely to cause trouble. Probably for diagnostics only.

31 12 11 10 8 7 6 5 4 1 0

TagLo U 0 V D L 0 P
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D: 1 when this cache line is dirty (that is, it has been written by the CPU since being read from memory).

L: 1 when this cache line is locked, see Section 5.4.11, "Cache locking".

P: parity bit for tag fields other than the TagLo[D] bit, which is actually held separately in the "way-select" RAM. When
you use the TagLo register to write a cache tag with cacheIndexStoreTag the TagLo[P]: bit is generally not used
- instead the hardware puts together your other fields and ensures it writes correct parity. However, it is possible to
force parity to exactly this value by first setting ErrCtl[PO].

E: always 0

P0: parity bit for tag fields other than the TagLo[D] bit, which is actually held separately in the "way-select" RAM.
When you use the TagLo register to write a cache tag with cacheIndexStoreTag the TagLo[P]: bit is generally
not used - instead the hardware puts together your other fields and ensures it writes correct parity. However, it is pos-
sible to force parity to exactly this value by first setting ErrCtl[PO].

5.4.13 L23TagLo Regiser

This register in the 34K core is implemented to support access to external L2 cache tags via cache instructions. The
definition of the fields of this 32 bit register are defined by the SoC designer. Refer to the section on L2 Transactions

in the document ““MIPS32® 34KCoreTrade Processor core Family Integrator’s Guide, MD00499” for further informa-
tion on using this register.

Figure 5.3 L23TagLo Register Format

5.4.14 L23DataLo Register

On 34K family cores, test software can read or write cache data using a cache index load/store data instruction.
Which word of the cache line is transferred depends on the low address fed to the cache instruction.

Figure 5.4 L23DataLo Register Format

5.4.15 L23DataHi Register

On 34K family cores, test software can read or write cache data using a cache index load/store data instruction.
Which word of the cache line is transferred depends on the low address fed to the cache instruction.

31 0

DATA

31 0

DATA

Table 5.6 L23DataLo Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

DATA 31:0 Low-order data read from the cache data array. R/W Undefined
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Figure 5.5 L23DataHi Register Format

5.4.16 TagLo registers in special modes

The usual TagLo register fields are a view of the underlying cache tags. But load-tag/store tag cacheops act differently
in special modes activated by setting bits in ErrCtl (see Section 5.4.18 “ErrCtl register” for details):

• When ErrCtl[SPR] is set, the L1 TagLo registers are used to configure scratchpad memory, if fitted. That’s
described in Section 5.6 “Scratchpad memory/SPRAM” below, where you’ll find a field diagram for the TagLo
registers in that mode.

• When ErrCtl[WST] is set, the tag registers are used to provide diagnostic/test software with direct read-write
access to the “way select RAM” — parts of the cache array. This is highly CPU-dependent and is described in
Section C.4.7 “Cache registers in special diagnostic modes”.

5.4.17 Parity error exception handling and the CacheErr register

The 34K core does not check parity on data (or control fields) from the external interface - so this section really is just
about parity protection in the cache. It’s a build-time option, selected by your system integrator, whether to include
check bits in the cache and logic to monitor them.

At a system level, a cache parity exception is usually fatal - though recovery might be possible sometimes, when it is
useful to know that the exception is taken in “error mode” (that is, Status[ERL] is set), the restart address is in
ErrorEPC and you can return from the exception with an eret — it uses ErrorEPC when Status[ERL] is set.

But mainly, diagnostic-code authors will probably find the CacheErr register’s extra information useful.

Figure 5.6 Fields in the CacheErr Register

ER: was the error on an I-fetch (0) or on data (1)? Applicable only to L1 cache errors.

EC: in L1 cache (0) or L2-or-higher cache (1)?

ED,ET: 1 for error in data field/tag field respectively.

Not Supported

31 0

DATA

Table 5.7 L23DataHi Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

DATA 31:0 High-order data read from the cache data array. R/W Undefined

31 30 29 28 27 26 25 24 23 22 21 20 19 18 0

ER EC ED ET 0 EB EF SP EW Way 0 Index

For L2 cache errors only Way
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Not Supported

EB: 1 if data and instruction-fetch error reported on same instruction, which is unrecoverable. If so, the rest of the regis-
ter reports on the instruction-fetch error.

On an L2 error: 1 if an error occurred in more than one of the cache's memory arrays if EC is also set— the hardware
manual [SUM] renames this field as CacheErr[EM]. The rest of the register can only reflect information about one of
the errors: it shows tag errors as highest priority, then data, then way-select.

EF: unrecoverable (fatal) error (other than the EB type above). Some parity errors can be fixed by invalidating the cache
line and relying on good data from memory. But if this bit is set, all is lost... It’s one of the following:

1. Line being displaced from cache (“victim”) has a tag parity error, so we don’t know whether to write it back,
or whether the writeback location (which needs a correct tag) would be correct.

2. The victim’s tag indicates it has been written by the CPU since it was obtained from memory (the line is
“dirty” and needs a write-back), but it has a data parity error.

3. Writeback store miss and CacheErr[EW] error.

4. At least one more cache parity error happened concurrently with or after this one, but before we reached the
relative safety of the cache parity error exception handler.

If the EC bit is set this bit is referring to the errors in L2 (external) cache.

SP: error affecting a scratchpad RAM access, see Section 5.6, "Scratchpad memory/SPRAM" below.

EW: parity error on the “dirty” (cache modified) or way-selection bits. This means loss of LRU information, which —
most of the time — is recoverable.

Way: the way-number of the cache entry where the error occurred. Caution: for the L1 caches (which are no more than
4-way set associative) this is a two-bit field. But an L2 cache might be more highly set-associative, and then this field
grows down. In particular, MIPS’ (possibly 8-way set associative) L2 cache uses a 3-bit Way field as shown.

Index: the index (within the cache way) of the cache entry where the error occurred... except that the low bits are not
meaningful. The index is aligned as if it’s a byte address, which is good because that’s what Index-type cache
instructions need. It resolves the failing doubleword for a data error, or just the failing line for a tag error. We’ve
shown a 14-bit field, because that’s large enough to provide the index for the 34K core’s largest configurable (4 ways
by 16KB) L1 cache option.

Two other fields are related to the processing of cache errors. Other implementations have laid claim to all of the bits
in this register, so these bits were relegated to the ErrCtl register. The FE and SE bits in that register are used to detect
nested cache errors and are described in the next section.

If you want to study this error further, you’ll probably use an index-type cache instruction to read out the tags and/
or data. The cache instruction’s “index” needs the way-number bits added to CacheErr[Index]’s contents; see Figure
5.1 and its notes above for how to do that.

5.4.18 ErrCtl register

This register has two distinct roles. It contains “mode bits” which provide different views of the TagLo registers when
they’re used for access to internal memory arrays and cache diagnostics. But it also controls parity protection of the
caches (if it was configured in your core in the first place).
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Figure 5.7 Fields in the ErrCtl Register

Two fields are ‘overflow’ from the CacheErr register and relate to the error state:

FE/SE: Used to detect nested errors. FE (FirstError) is set on any cache error. SE (Second Error) is set when an error is
seen and FE is set. Software should clear FE once it has logged enough error information that taking a second error
will not be fatal.

The rest of the fields can be summarized as such: running software should set just the parity enable (PE) bit to enable
cache parity checking as required, and leave it zero otherwise. The fields are as follows:

PE: 1 to enable cache parity checking. Hard-wired to zero if parity isn’t implemented.

PO: (parity overwrite) - set 1 to set the parity bit regardless of parity computation, which is only for diagnostic/test pur-
poses.

After setting this bit you can use cache IndexStoreTag to set the cache data parity to the value currently in
ErrCtl[PI] (for I-cache) or ErrCtl[PD] (for D-cache), while the tag parity is forcefully set from TagLo[P].

WST: test mode for cache IndexLoadTag/cache IndexStoreTag instructions, which then read/write the
cache’s internal "way-selection RAM" instead of the cache tags.

SPR: when set, index-type cache instructions work on the scratchpad/SPRAM, if fitted - see Section 5.6, "Scratchpad
memory/SPRAM".

PI/PD: parity bits being read/written to caches (I- and D-cache respectively).

ITC: set to make cache IndexLoadTag/cache IndexStoreTag operate on the control/configuration "tags"
for ITC storage locations - see Section 3.3.1 “Configuring ITC base address and cell repeat interval”.

LBE, WABE: field indicating whether a bus error (the last one, if there’s been more than one) was triggered by a load or
a write-allocate respectively: see below. Where both a load and write-allocate are waiting on the same cache-line
refill, both could be set. These bits are “sticky”, remaining set until explicitly written zero.

L2P: Controls ECC checking of an L2 cache, if it's fitted and has that capability.

For backward-compatibility, you only set L2P when you want to make a different error-checking choice at the L1 and
L2 levels. So L2 error checking is enabled if ErrCtl[PE,L2P] == 01 or ErrCtl[PE,L2P] == 10.

5.5 Bus error exception

The CPU’s “OCP” hardware interface rules permit a slave device attached to the system interface to signal back when
something has gone wrong with a read. This should not be used to report a read parity error; if parity is checked exter-
nally, it would have to be reported through an interrupt. Typically a bus error means that some subsystem has failed to
respond. Bus errors are not signalled on an OCP write cycle, and (if they were) the 34K core ignores them.

Instruction bus error exceptions are precise (when the exception happens EPC always points to the instruction where
fetch failed). But a data-side bus error is usually caused by a load, and the (non-blocking) load which caused it may

31 30 29 28 27 26 25 24 23 22 21 20 19 18 13 12 11 4 3 0

PE PO WST SPR ITC LBE WABE L2P 0 SE FE 0 PI PD

0 0 0 0 0 0 0  0 0
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have happened a long time before the busy cycle finishes and the error is signalled. So a bus error exception caused by
a load or store is imprecise; EPC does not necessarily (or even usually) point to the instruction causing the memory
read. In fact, the exception may not be taken by the TC which ran the load/store instruction: all we know is that the
exception will be delivered to some TC affiliated to the same VPE. It’s even possible for a bus error on a cache refill
to affect two threads (any number of threads could be waiting on the arrival of the same cache line). In this obscure
case an exception will be delivered to some TC in each affected VPE.

On a load the hardware knows which TC or TCs were waiting for the load which went wrong, and the TCBind[TBE]
bit will be set for each suffering TC.

If software knows that a particular read might encounter a bus error - typically it’s some kind of probe - it should be
careful to stall and wait for the load value immediately, by reading the value into a register, and make sure it can han-
dle a bus error at that point.

There is an obscure corner case. The 34K core’s D-cache is “write-allocate”: so a write which misses in the cache will
trigger a read, to fill the cache line ready to receive the new data. If you’re unlucky enough to get a bus error on that
read-for-refill, the bus error will be associated with a store. After a bus error you can look at ErrCtl[LBE]/ErrCtl[WABE]
to see whether the error was caused by a load or write-allocate.

5.6 Scratchpad memory/SPRAM

The 34K core (like most of MIPS Technologies’ cores) can be equipped with modestly-sized high speed on-chip data
memory, called scratchpad RAM or SPRAM.   SPRAM is connected to a cache interface, alongside the I- and/or D-
cache, so is available separately for the I- and D-side (ISPRAM and DSPRAM).

MIPS Technologies provide the interface on which users can build many types and sizes of SPRAM. We also provide
a “reference design” for both ISPRAM and DSPRAM, which is what is described here. If you keep the programming
interface the same as the reference design, you’re more likely to be able to find software support. The reference
design allows for on-chip memories of up to 1Mbytes in size.

There are two possible motives for incorporating SPRAM:

SPRAM can be made larger than the maximum cache size.

Even for smaller sizes, it is possible to envisage applications where some particularly heavily-used piece of data
is well-served by being permanently installed in SPRAM. Possible, but unusual. In most cases heavily-used data
will be handled well by the D-cache, and until you really know otherwise it’s better for the SoC designer to max-
imize cache (compatible with his/her frequency needs.)

But there’s another more compelling use for a modest-size SPRAM:

• “DMA” accessible to external masters on the OCP interface: the SPRAM can be configured to be accessible
from an OCP interface. OCP masters will see it just as a chunk of memory which can be read or written.

Because SPRAM stands in for the cache, data passed through the SPRAM in this way doesn’t require any soft-
ware cache management. This makes it spectacularly efficient as a staging area for communicating with complex
I/O devices: a great way to implement “push” style I/O (that is where the device writes incoming data close to the
CPU).

SPRAM must be located somewhere within the physical address map of the CPU, and is usually accessed through
some “cached” region of memory (uncached region accesses to scratchpad work with the 34K reference design, but
may not do so on other implementations - better to access it through cacheable regions). It’s usually better to put it in
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the first 512Mbytes of physical space, because then it will be accessible through the simple kseg0 “cached,
unmapped” region - with no need to set up specific TLB entries.

Because the SPRAM is close to the cache, it inherits some bits of cache housekeeping. In particular the cache
instruction and the cache tag CP0 registers are used to provide a way for software to probe for and establish the size

of SPRAM18.

Probing for SPRAM configuration

The presence of scratchpad RAM in your core is indicated by a “1” bit in one or both of the CP0 Config[ISP,DSP] reg-
ister flags described in Figure 4.1. The MIPS Technologies reference design requires that you can query the size of
and adjust the location of scratchpad RAM through “cache tags”.

To access the SPRAM “tags” (where the configuration information is to be found) first set the ErrCtl[SPR] bit (see
Section 5.4.18 “ErrCtl register”).

Now a cache Index_Load_Tag_D, KSEG0_BASE+019 instruction fetches half the configuration information
into DTagLo, and a cache Index_Load_Tag, KSEG0_BASE+8 gets the other half (the “8” steps to the next
feasible tag location - an artefact of the 64-bit width of the cache interface.) The corresponding operations directed at
the primary I-cache read the halves of the I-side scratchpad tag, this time into ITagLo. The “tag” for I-side and D-side
SPRAM appears in TagLo fields as shown in Figure 5.8.

Where:

• base address[31:12]: the high-order bits of the physical base address of this chunk of SPRAM;

• En: enable the SPRAM. From power-up this bit is zero, and until you set it to 1 the SPRAM is invisible. The En
bit is also visible in the second (size) configuration word — it can even be written there, but it’s not a good idea
to write the size word other than for far-out diagnostics;

• size of region in bytes/4KB: the number of page-size chunks of data mapped. If you take the whole 32 bits, it
returns the size in bytes (but it will always be a multiple of 4KB).

In some MIPS cores using this sort of tag setup there could be multiple scratchpad regions indicated by two or more
of these tag pairs. But the reference design provided with the 34K core can only have one I-side and one D-side
region.

You can load software into the ISPRAM using cacheops. Each pair of instructions to be loaded are put in the registers
IDataHi/IDataLo, and then you use a cache Index_Store_Data_I at the appropriate index. The two data regis-
ters work together to do a 64-bit transfer. For a CPU configured big-endian the first instruction in sequence is loaded
into IDataHi, but for a CPU configured little-endian the first instruction is loaded into IDataLo.

18. What follows is a hardware convention which SoC designers are not compelled to follow; but MIPS Technologies recom-
mends designers to do SPRAM this way to ease software porting.

19. The instructions are written as if using C “#define” names from [m32c0 h]

Figure 5.8 SPRAM (scratchpad RAM) configuration information in TagLo
31 12 11 8 7 6 5 4 1 0

addr == 0 base address[31:12] 0 En 0
addr == 8 size of region in bytes/4KB 0 En 0
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Don’t forget to set ErrCtl[SPR] back to zero when you’re done.

5.7 Common Device Memory Map

In order to preserve the limited CP0 register address space, many new architectural enhancements, particularly those
requiring several registers, will be memory mapped, that is, accessed by uncached load and store instructions. In order
to avoid creating dozens of memory regions to be managed, the common device memory map (CDMM) was created
to group them into one region. A single physical address region, up to 32KB, is defined for CDMM. The address of
this region is programmable via the CDMMBase CP0 register shown in Figure 5-9.

Having this region physically addressed enables some additional access controls. On a core with a TLB, the region
would typically be located in the first 256MB, allowing direct kseg1 access. However, if user or supervisor access was
desired, TLB mappings could be established to map a useg address to the same region. On FMT based cores, it might
be mapped to a kseg1 address if user access was not needed, or to a useg/kuseg address if it was.

The block of addresses is further broken up into 64-byte Device Register Blocks(DRB). A ‘device’ (feature requiring
memory mapped accesses), can use from 1-63 DRBs - up to 4KB of addressable registers. The first 64 bits of the first
DRB associated with a device is allocated for an Access Control and Status Register (of which only 32 are in use cur-
rently). The ACSR provides information about the device - ID, version, and size - and also contains control bits that
can enable user and supervisor read and/or write access to the device. This register is shown in Figure 5.10

CDMM devices are packed into the lowest available DRBs. Starting with 0 (or 1 if CDMMBase[CI] ==1), software
should read the ACSR, determining both the current device type as well as the starting location for the next device.
Iterating through this process will create a map of all devices which you would presumably store in a more convienent
format.

The first device that has been defined in CDMM is the Fast Debug Channel which is described in Section
10.1.10 “Fast Debug Channel”. This device is a UART-like communication channel that utilizes the EJTAG pins for
off-chip access. The UART is a natural fit for a memory mapped device, although many types of devices can be envi-
sioned.

Figure 5-9 Fields in the CDMMBase Register

Where:

CDMM_UPPER_ADDR:: This field contains the upper bits of the base physical address of the CDMM region. This field
is shifted by 4b, so that bits 31..11 correspond to PA bits 35..15. Unimplemented physical address bits such as 35..32
in many cores will be tied to 0.

EN: Enables CDMM. When this bit is cleared, loads and stores to the CDMM region will go to memory. This bit resets
to 0 to avoid stepping on other things in the system address map.

CI: Indicates that the first 64-byte device register block is reserved for additional CDMM information and is not a nor-
mal device. This extra information hasn’t been dreamed up yet, so this field should just be treated as reserved.

CDMMSize: This field indicates how many 64-byte device register blocks are in the CDMM region. (0 means 1 DRB
and so forth)

31 11 10 9 8 0

CDMM_UPPER_ADDR EN CI CDMMSize

0
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Each device within the CDMM begins with an Access Control and Status Register which gives information about the
device and also provides a means for giving user and supervisor programs access to the rest of the device. The
FDACSR is shown in Figure 5.10.

Figure 5.10 Fields in the Access Control and Status (ACSR) Register

Where:

DevID: (read only) indicates the device ID.

DevSize: (read only) indicates how many additional 64B blocks this device uses

DevRev: (read only) Revision number of the device.

Uw/Ur: control whether write and reads, respectively, from user programs are allowed to access the device registers. If 0,
reads will return 0 and writes will be dropped.

Sw/Sr: Same idea as Uw/Ur, but for supervisor access

5.8 The TLB and translation

The TLB is the key piece of hardware which MIPS architecture CPUs have for memory management. It’s a hardware
array, and for maintenance you access fields by their index. For memory translation, it’s a real content-addressed
memory, whose input is a virtual page address together with the “address space identifier” from EntryHi[ASID]. The
table also stores a physical address plus “cacheability” attributes, which becomes the output of the translation lookup.

The hardware TLB is relatively small, configurable with 16, 32 or 64 entries (read Config1[MMUSize] for the number
configured for your core). Each entry can map a 2-page-size virtual region to a pair of physical pages. Entries can
map different size pages, too.

System software maintains the TLB as a cache of a much larger number of possible translations. An attempt to use a
mapped-space address for which no translation is in the hardware TLB invokes a special exception handler which is
carefully crafted to find and load the right entry as quickly as possible. Read on for a summary of all the fields and
how it gets used; but the OS ramifications are far too extensive to cover here; for a better description in context see
[SEEMIPSRUN]:, and for full details of the architectural specification see [MIPS32].

5.8.1 A TLB entry

Let’s start with a sketch of a TLB entry. For MIPS32 cores, that consists of a virtual address portion to match against
and two output sections, something like Figure 5.11 - which also shows which TLB fields are carried in which CP0
registers.

31 24 23 22 21 16 15 12 11 4 3 2 1 0

DevID zero DevSize DevRev zero Uw Ur Sw Sr
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Some points to make about the TLB entry:

• The input-side virtual address fields (to the left) have the fields necessary to match an incoming address against
this entry. “VPN” is (by OS tradition) a “virtual page number” - the high bits of the program (virtual) address.

“VPN2” is used to remind you that this address is for a double-page-size virtual region which will map to a pair
of physical pages...

• The right-hand side (physical) fields are the information used to output a translation. There are a pair of outputs
for each input-match, and which of them is used is determined by the highest within-match address bit. So in
standard form (when we’re using 4Kbyte pages) each entry translates an 8Kbyte region of virtual address, but we
can map each 4Kbyte page onto any physical address (with any permission flag bits).

• The size of the input region is configurable because the “PageMask” determines how many incoming address bits
to match. The 34K core allows page sizes of 4Kbytes, 16Kbytes and going on in powers of 4 up to 256Mbytes.
That’s expressed by the legal values of PageMask, shown below.

• The “ASID” field extends the virtual address with an 8-bit, OS-assigned memory-space identifier so that transla-
tions for multiple different applications can co-exist in the TLB (in Linux, for example, each application has dif-
ferent code and data lying in the same virtual address region).

• The “G” (global) bit is not quite sure whether it’s on the input or output side - there’s only one, but it can be read
and written through either of EntryLo0-1. When set, it causes addresses to match regardless of their ASID value,
thus defining a part of the address space which will be shared by all applications. For example, Linux applica-
tions share some “kseg2” space used for kernel extensions.

5.8.2 The TLB and Multithreading

cores in the 34K family are built with just one piece of TLB hardware. However, you can configure your CPU with
the TLB either shared between two VPEs, or partitioned so that each VPE sees a standard (though smaller) TLB
array.

TLB sharing will usually provide the best performance for when the VPEs are running the same kernel, are closely
collaborating, or when one of them makes little or no use of translated addresses. TLB sharing is not completely soft-
ware-transparent, and some OS work will be needed. See Section 4.3.4 “Sharing and not sharing the TLB” for
details.

5.8.3 Live translation and micro-TLBs

When you’re really tuning out the last cycle, you need to know that in the 34K core the translation is actually done by
two little tables local to the instruction fetch unit and the load/store unit - called the ITLB and DTLB respectively
(collectively they’re “micro-TLBs” or “uTLBs”). There are only 4 entries in the ITLB, and 8 in the DTLB and they
are functionally invisible to software: they’re automatically refilled from the main TLB (in this context it’s often
called the joint TLB or JTLB) when required, and automatically cleared whenever the TLB is updated. It costs just

Figure 5.11 Fields in a 34K™ core TLB entry
EntryHi EntryHi

VPN2 PageMask ASID G PFN
Flags

PFN
Flags

C D V C D V

PageMask EntryLo1 EntryLo0
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three extra clocks to refill the uTLB for any access whose translation is not already in the appropriate uTLB. uTLB
entries can only map 4KB and 1MB pages (main TLB entries can handle a whole range of sizes from 4KB to
256MB). When the uTLB is reloaded a translation marked for a size other than 4KB or 1MB is down-converted as
required.

5.8.4 Reading and writing TLB entries: Index, Random and Wired

Two CP0 registers work as simple indexes into the TLB array for programming: Index and Random. The oddly-
named Wired controls Random’s behavior.

Of these: Index determines which TLB entry is accessed by tlbwi. It’s also used for the result of a tlbp (the
instruction you use to see whether a particular address would be successfully translated by the CPU). Index only
implements enough bits to index the TLB, however big that is; but a tlbp which fails to find a match for the speci-
fied virtual address sets bit 31 of Index (it’s easy to test for).

Random is implemented as a full CPU clock-rate downcounter. It won’t decrement below the value of Wired (when it
gets there it bounces off and starts again at the highest legal index). In practice, when used inside the TLB refill
exception handler, it delivers a random index into the TLB somewhere between the value of Wired and the top.
Wired can therefore be set to reserve some TLB entries from random replacement - a good place for an OS to keep
translations which must never cause a TLB translation-not-present exception. In a MT CPU like 34K, Random is a
per-VPE register; and to avoid the danger that random replacement of a TLB entry inside the TLB miss exception
handler could conflict with programmed updates made by the other VPE Random is prevented from taking the same
value as the other VPE’s Index. See Section 4.3.4 “Sharing and not sharing the TLB” for more on this unexpected
feature.

5.8.5 Reading and writing TLB entries - EntryLo0-1, EntryHi and PageMask registers

The TLB is accessed through staging registers which between them represent all the fields in each TLB entry; they’re
called EntryHi, PageMask and EntryLo0-1. The fields from EntryHi and PageMask are shown in Figure 5.12.

All these fields act as staging posts for entries being written to or read from the TLB. But some of them are more
magic than that...

EntryHi[VPN2]: is the page-pair address to be matched by the entry this reads/writes - see above.

However, on a TLB-related exception VPN2 is automagically set to the virtual address we were trying to translate
when we got the exception. If - as is most often the case - the outcome of the exception handler is to find and install a
translation to that address, VPN2 (and generally the whole of EntryHi) will turn out to already have the right values in
it.

EntryHi[ASID]: does double-duty. It is used to stage data to and from the TLB, but in normal running software it’s also
the source of the current "ASID" value, used to extend the virtual address to make sure you only get translations for

Figure 5.12 Fields in the EntryHi and PageMask registers
31 29 28 13 12 8 7 0

EntryHi VPN2 0 ASID

PageMask 0 Mask 0
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the current process. Because of that role it is replicated per-TC in MIPS MT systems, and is also visible as
TCStatus[TASID].

PageMask[Mask]: acts as a kind of backward mask, in that a 1 bit means "don’t compare this address bit when matching
this address". However, only a restricted range of PageMask values are legal (that’s with "1"s filling the
PageMask[Mask] field from low bits upward, two at a time):

Note that the uTLBs handle only 4Kbyte and 1MB page sizes; other page sizes are down-converted to 4Kbyte or
1MB as they are referenced. For other page sizes this may cause an unexpectedly high rate of uTLB misses, which
could be noticeable in unusual circumstances.

Then moving our attention to the output side, the two EntryLo0-1 are identical in format as shown in Figure 5.13.

In EntryLo0-1:

PFN: the "physical frame number" - traditional OS name for the high-order bits of the physical address. 24 bits of PFN
together with 12 bits of in-page address make up a 36-bit physical address; but the 34K core has a 32-bit physical
address bus, and does not implement the four highest bits (which always read back as zero).

C: a code indicating how to cache data in this page - pages can be marked uncacheable and various flavours of cache-
able.  The codes here are shared with those used in CP0 registers for the cacheability of fixed address regions:  see
Table 5.3 in Section 5.4.2, "Cacheability options" on page 71 .

D: the "dirty" flag. In hardware terms it’s just a write-enable (when it’s 0 you can’t do a store using addresses translated
here, you’ll get an exception instead). However, software can use it to track pages which have been written to; when
you first map a page you leave this bit clear, and then a first write causes an exception which you note somewhere in
the OS’ memory management tables (and of course remember to set the bit).

V: the "valid" flag. You’d think it doesn’t make much sense - why load an entry if it’s not valid? But this is very helpful
so you can make just one of a pair of pages valid.

G: the "global" bit. This really belongs to the input side, and there aren’t really two independent values for it. So you
should always make sure you set EntryLo0[G] and EntryLo1[G} the same.

5.8.6 TLB initialization and duplicate entries

TLB entries come up to random values on power-up, and must be initialized by hardware before use. Generally, early
bootstrap software should go through setting each entry to a harmless “invalid” value.

PageMask Size of each output page PageMask Size of each output page
0x0000.0000 4Kbytes 0x007F.E000 4Mbytes
0x0000.6000 16Kbytes 0x01FF.E000 16Mbytes
0x0001.E000 64Kbytes 0x07FF.E000 64Mbytes
0x0007.E000 256Kbytes 0x1FFF.E000 256Mbytes
0x001F.E000 1Mbyte

Figure 5.13 Fields in the EntryLo0-1 registers
31 30 29 6 5 3 2 1 0

0 PFN C D V G
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Since the TLB is a fully-associative array and entries are written by index, it’s possible to load duplicate entries - two
or more entries which match the same virtual address/ASID. In older MIPS CPUs it was essential to avoid duplicate
entries - even duplicate entries where all the entries are marked “invalid”. Some designs could even suffer hardware
damage from duplicates. Because of the need to avoid duplicates, even initialization code ought to use a different vir-
tual address for each invalid entry; it’s common practice to use “kseg0” virtual addresses for the initial all-invalid
entries.

Most MIPS Technologies cores protect themselves and you by taking a “machine check” exception if a TLB update
would have created a duplicate entry.But the attempted creation of duplicate entries is difficult to prevent on a multi-
threaded core.If you’re using more than one TC in the same address space in a memory-mapped system, there’s a
chance that two threads will access the same currently-unmapped page, so that both threads cause a TLB refill excep-
tion, and the second one will try to load a valid duplicate mapping. In the 34K CPU, no machine check exception is
taken but rather the hardware detects the duplicate valid mapping and simply doesn’t do the second write. While this
particular example would generally utilize the tlbwr instruction, the hardware will drop both tlbwi and tlbwr writes
when a conflict is detected.

More recent (non-MT) cores only only take a machine check exception if both of the conflicting entries are valid.
Some earlier MIPS Technologies cores suffer a machine check even if duplicate entries are both invalid. That can
happen when initializing. For example, when an OS is initializing the TLB it may well re-use the same entries as
already exist - perhaps the ROM monitor already initialized the TLB, and (derived from the same source code) hap-
pened to use the same dummy addresses. If you do that, your second initialization run will cause a machine check
exception. The solution is for the initializing routine to check the TLB for a matching entry (using the tlbp instruc-
tion) before each update.

For portability you should probably include the probe step in initialization routines: it’s not essential on the 34K core
or any machine conforming to the MIPS MT ASE, where we repeat that the machine check exception doesn’t happen.

5.8.7 TLB exception handlers — BadVaddr, Context, and ContextConfig registers

These three registers are provided mainly to simplify TLB refill handlers.

BadVAddr is a plain 32-bit register which holds the virtual address which caused the last address-related exception,
and is read-only. It is set for the following exception types only: Address error (AdEL or AdES), TLB/XTLB Refill,
TLB Invalid (TLBL, TLBS) and TLB Modified (for more on exception codes in Cause[ExcCode], see the notes to
Table C.4.)

Context contains the useful mix of pre-programmed and borrowed-from-BadVAddr bits shown in Figure 5.14.

Figure 5.14 Fields in the Context register when Config3CTXTC=0 and Config3SM=0

Context[PTEBase,BadVPN2]: the PTEBase field is just software-writable and readable, with no hardware effect.

The PTEBase field is for use by the operating system and is normally written with a value that allows the operating
system to use the Context Register as a pointer into the current PTE array in memory. The field has no direct hardware
effect. The BadVPN2 field is written by hardware on a TLB exception. It contains bits VA31..13 of the virtual address
that caused the exception.

In a preferred scheme for software management of page tables, PTEBase can be set to the base address of a (suitably
aligned) page table in memory; then the BadVPN2 number (see below) comes from the virtual address associated
with the exception—-it’s just bits from BadVAddr, repackaged. In this case the virtual address bits are shifted such

31 23 22 4 3 0

PTEBase BadVPN2 0
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that each ascending 8Kbyte translation unit generates another step through a page table (assuming that each entry is
2 x 32-bit words in size — reasonable since you need to store at least the two candidate EntryLo0-1 values in it).

An OS which can accept a page table in this format can contrive that in the time-critical simple TLB refill exception,
Context automagically points to the right page table entry for the new translation.

This is a great idea, but modern OS’ tend not to use it — the demands of portability mean it’s too much of a stretch to
bend the page table information to fit this model.

If Config3CTXTC =0 and Config3SM =0, then the Context register is organized in such a way that the operating system
can directly reference a 16-byte structure in memory that describes the mapping. For PTE structures of other sizes,
the content of this register can be used by the TLB refill handler after appropriate shifting and masking.

If Config3CTXTC =0 and Config3SM =0 then a TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits
VA31..13 of the virtual address to be written into the BadVPN2 field of the Context register. The PTEBase field is writ-
ten and used by the operating system.

The BadVPN2 field of the Context register is not defined after an address error exception and this field may be modi-
fied by hardware during the address error exception sequence.

Figure 5.14 shows the format of the Context Register when Config3CTXTC =0 and Config3SM =0.

If Config3CTXTC =1 or Config3SM =1 then the pointer implemented by the Context register can point to any power-of-
two-sized PTE structure within memory. This allows the TLB refill handler to use the pointer without additional shift-
ing and masking steps. Depending on the value in the ContextConfig register, it may point to an 8-byte pair of 32-bit
PTEs within a single-level page table scheme, or to a first level page directory entry in a two-level lookup scheme.

If Config3CTXTC =1 or Config3SM =1 then the a TLB exception (Refill, Invalid, or Modified) causes bits VAX+9:Y+9 to
be written to a variable range of bits “(X-1):Y” of the Context register, where this range corresponds to the contiguous
range of set bits in the ContextConfig register. Bits 31:X are R/W to software, and are unaffected by the exception.
Bits Y-1:0 will always read as 0. If X = 23 and Y = 4, i.e. bits 22:4 are set in ContextConfig, the behavior is identical
to the standard MIPS32 Context register (bits 22:4 are filled with VA31:13). Although the fields have been made vari-
able in size and interpretation, the MIPS32 nomenclature is retained. Bits 31:X are referred to as the PTEBase field,
and bits X-1:Y are referred to as BadVPN2.

The value of the Context register is UNPREDICTABLE following a modification of the contents of the
ContextConfig register.

Figure 5.15 shows the format of the Context Register when Config3CTXTC =1 or Config3SM =1.

Figure 5.15 Fields in the Context register when Config3CTXTC=1 or Config3SM=1

The ContextConfig register defines the bits of the Context register into which the high order bits of the virtual address
causing a TLB exception will be written, and how many bits of that virtual address will be extracted. Bits above the
selected of the Context register are R/W to software and serve as the PTEBase field. Bits below the selected field of
the Context register will read as zeroes.

31 X X-1 Y Y-1 0

PTEBase BadVPN2 0
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The field to contain the virtual address index is defined by a single block of contiguous non-zero bits within the
ContextConfig register’s VirtualIndex field. Any zero bits to the right of the least significant one bit cause the corre-
sponding Context register bits to read as zero. Any zero bits to the left of the most significant one bit cause the corre-
sponding Context register bits to be R/W to software and unaffected by TLB exceptions.

A value of all ones in the ContextConfig register means that the full 32 bits of the faulting virtual address will be cop-
ied into the context register, making it duplicate the BadVAddr register. A value of all zeroes means that the full 32
bits of the Context register are R/W for software and unaffected by TLB exceptions.

The ContextConfig register is optional and its existence is denoted by the Config3CTXTC or Config3SM register fields.

Figure 5.16 shows the formats of the ContextConfig Register.

Figure 5.16  Fields in the ContextConfig register

VirtualIndex is a mask of 0 to 32 contiguous 1 bits that cause the corresponding bits of the Context register to be writ-
ten with the high-order bits of the virtual address causing a TLB exception. Behavior of the processor is UNDE-
FINED if non-contiguous 1 bits are written into the register field.

It is permissible to implement a subset of the ContextConfig register, in which some number of bits are read-only and
set to one or zero as appropriate. It is possible for software to determine which bits are implemented by alternately
writing all zeroes and all ones to the register, and reading back the resulting values. Table 5.8 describes some useful
ContextConfig values.

31 0

VirtualIndex

Table 5.8 Recommended ContextConfig Values

Value
Page Table

Organization Page Size PTE Size Compliance

0x00000000007ffff0 Single Level 4K 64 bits/page REQUIRED

0x00000000003ffff8 Single Level 4K 32 bits/page RECOMMENDED

0x00000000007ffff8 Single Level 2K 32 bits/page RECOMMENDED

0x0000000000fffff8 Single Level 1K 32 bits/page RECOMMENDED
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Programming the 34K™ core in user mode

This chapter is not very long, because in user mode one MIPS32-compliant CPU looks much like another. But not
everything — sections include:

• Section 6.1, "User-mode accessible “Hardware registers”"

• Section 6.2, "Prefetching data": how it works.

• Section 6.3, "Using “synci” when writing instructions": writing instructions without needing to use privileged
cache management instructions.

• Section 6.4, "The multiplier": multiply, multiply/accumulate and divide timings.

• Section 6.5, "Tuning software for the 34K‘ family pipeline": for determined programmers, and for compiler writ-
ers. It includes information about the timing of the DSP ASE instructions.

• Section 6.6 “Tuning floating-point”: the floating-point unit often runs at half speed, and some of its interactions
(particularly about potential exceptions) are complicated. This section offers some guidance about the timing
issues you’ll encounter.

6.1 User-mode accessible “Hardware registers”

The 34K core complies with Revision 2 of the MIPS32 specification, which introduces hardware registers; CPU-
dependent registers which are readable by unprivileged user space programs, usually to share information which is
worth making accessible to programs without the overhead of a system call.

The hardware registers provide useful information about the hardware, even to unprivileged (user-mode) software,
and are readable with the rdhwr instruction. [MIPS32] defines four registers so far. The OS can control access to
each register individually, through a bitmask in the CP0 register HWREna - (set bit 0 to enable register 0 etc).
HWREna is cleared to all-zeroes on reset, so software has to explicitly enable user access — see Section 7.6 “The
HWREna register - Control user rdhwr access”. Privileged code can access any hardware register.

The five standard registers are:

• CPUNum (0): Number of the CPU on which the program is currently running. This comes directly from the
coprocessor 0 EBase[CPUNum] field.

• SYNCI_Step (1): the effective size of an L1 cache line20; this is now important to user programs because they can
now do things to the caches using the synci instruction to make instructions you’ve written visible for execu-
tion. Then SYNCI_Step tells you the “step size” - the address increment between successive synci’s required to
cover all the instructions in a range.

20. Strictly, it’s the lesser of the I-cache and D-cache line size, but it’s most unusual to make them different.
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If SYNCI_Step returns zero, that means that your hardware ensures that your caches are instruction/data coher-
ent, and you don’t need to use synci at all.

• CC (2): user-mode read-only access to the CP0 Count register, for high-resolution counting. Which wouldn’t be
much good without.

• CCRes (3): which tells you how fast Count counts. It’s a divider from the pipeline clock — if the rdhwr instruc-
tion reads a value of “2”, then Count increments every 2 cycles, at half the pipeline clock rate. For 34K family
cores that is precisely what you will read.

• UL (30): user-mode read-only access to the CP0 UserLocal register. This register can be used to provide a thread
identifier to user-mode programs. See Section C.4.2 “The UserLocal register” for more details

6.2 Prefetching data

MIPS32 CPUs are being increasingly used for computations which feature loops accessing large arrays, and the run-
time is often dominated by cache misses.

These are excellent candidates for using the pref instruction, which gets data into the cache without affecting the
CPUs other state. In a well-optimized loop with prefetch, data for the next iteration can be fetched into the cache in
parallel with computation for the last iteration.

It’s a pretty major principle that pref should have no software-visible effect other than to make things go faster.

pref is logically a no-op21.

The pref instruction comes with various possible “hints” which allow the program to express its best guess about the
likely fate of the cache line. In 34K family cores the “load” and “store” variants of the hints do the same thing; but it
makes good sense to use the hint which matches your program’s intention - you might one day port it to a CPU where
it makes a difference, and it can’t do any harm.

The 34K core acts on hints as summarized in Table 6.1.

6.3 Using “synci” when writing instructions

The synci instruction (introduced with Revision 2 of the MIPS32 architecture specification, [MIPS32]) ensures that
instructions written by a program (necessarily through the D-cache, if you’re running cached) get written back from
the D-cache and corresponding I-cache locations invalidated, so that any future execution at the address will reliably
execute the new instructions. synci takes an address argument, and it takes effect on a whole enclosing cache-line
sized piece of memory. User-level programs can discover the cache line size because it’s available in a “hardware reg-
isters” accessed by rdhwr, as described in Section 6.1, "User-mode accessible “Hardware registers”" above.

Since synci is modifying the program’s own instruction stream, it’s inherently an “instruction hazard”: so when
you’ve finished writing your instructions and issued the last synci, you should then use a jr.hb or equivalent to call
the new instructions — see Section 7.1 “Hazard barrier instructions”.

21. This isn’t quite true any more; pref with the “PrepareForStore” hint can zero out some data which wasn’t previously zero.
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6.4 The multiplier

As is traditional with MIPS CPUs, the integer multiplier is a semi-detached unit with its own pipeline. All MIPS32
CPUs implement:

• mult/multu: a 32×32 multiply of two GPRs (signed and unsigned versions) with a 64-bit result delivered in the
multiply unit’s pseudo-registers hi and lo (readable only using the special instructions mfhi and mflo, which are
interlocked and stall until the result is available).

• madd, maddu, msub, msubu: multiply/accumulate instructions collecting their result in hi/lo.

• mul/mulu: simple 3-operand multiply as a single instruction.

• div/divu: divide - the quotient goes into lo and the remainder into hi.

Many of the most powerful instructions in the MIPS DSP ASE are variants of multiply or multiply-accumulate oper-
ations, and are described in Chapter 9, “The MIPS32® DSP ASE” on page 123. The DSP ASE also provides three
additional “accumulators” which behave like the hi/lo pair).

No multiply/divide operation ever produces an exception - even divide-by-zero is silent - so compilers typically insert
explicit check code where it’s required.

Table 6.1 Hints for “pref” instructions
Hint What happens in the 34K core Why would you use it?

No Name
0 load Read the cache line into the D-cache if

not present.
When you expect to read the data soon.
Use “store” hint if you also expect to
modify it.

1 store

4 load_streamed Fetch data, but always use cache way
zero - so a large sequence of “streamed”
prefetches will only ever use a quarter of
the cache.

For data you expect to process sequen-
tially, and can afford to discard from the
cache once processed

5 store_streamed

6 load_retained Fetch data, but never use cache way
zero. That means if you do a mixture of
“streamed” and “retained” operations,
they will not displace each other from
the cache.

For data you expect to use more than
once, and which may be subject to com-
petition from “streamed” data.

7 store_retained

25 writeback_invalidate/
nudge

If the line is in the cache, invalidate it
(writing it back first if it was dirty).
Otherwise do nothing.
However (with the 34K core only): if
this line is in a region marked for
“uncached accelerated write” behavior,
then write-back this line.

When you know you’ve finished with
the data, and want to make sure it loses
in any future competition for cache
resources.

30 PrepareForStore If the line is not in the cache, create a
cache line - but instead of reading it
from memory, fill it with zeroes and
mark it as “dirty”.
If the line is already in the cache do
nothing - this operation cannot be relied
upon to zero the line.

When you know you will overwrite the
whole line, so reading the old data from
memory is unnecessary.
A recycled line is zero-filled only
because its former contents could have
belonged to a sensitive application -
allowing them to be visible to the new
owner would be a security breach.
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The 34K core multiplier is high performance and pipelined; multiply/accumulate instructions can run at a rate of 1
per clock, but a 32×32 3-operand multiply takes four clocks longer than a simple ALU operation. Divides use a bit-
per-clock algorithm, which is short-cut for smaller dividends. Multiply/divide instructions are generally slow enough
that it is difficult to arrange programs so that their results will be ready when needed.

6.5 Tuning software for the 34K™ family pipeline

This section is addressed to low-level programmers who are tuning software by hand and to those working on effi-
cient compilers or code translators.

Note, though, that when there is a multi-threading workload some of the following issues become less important.
There’s not so much need to mitigate cache miss delays (for example) when the time when one thread is waiting will
be cheerfully used by another thread which keeps running.

The 34K core is a pipelined design, and the pipeline and some of its consequences are described in Section 3.1 “The
34K™ core pipeline and multithreading” . That leads to a class of possible delays to do with data dependencies and
resource limitations.

For software tuning purposes it’s usually enough to know the delay which results when one instruction (the “pro-
ducer”) generates a value in some particular register for the use of the next instruction in sequence (the “consumer”).
The delay is in processor cycle time units, but it makes good sense to think of that delay as a lost opportunity to run an
instruction. To tune round data dependencies, the programmer or compiler needs to re-order the instructions so that
enough useful but independent instructions are placed between the producer and consumer that the consumer runs
without delay.

There are times when interactions are more complicated than that. While you can pore over hardware books to try to
figure out what the pipeline is doing, when it gets that difficult we advise that you should obtain a cycle-accurate sim-
ulator or other well-instrumented test environment, and try your software out.

But before getting on to data delays, we’ll look at the most important causes of slow-down: cycles lost to cache
misses and branches.

6.5.1 Cache delays and mitigating their effect

In a typical 34K CPU implementation a cache miss which has to be refilled from DRAM memory (in the very next
chip on the board) will be delayed by a period of time long enough to run 50-200 instructions. A miss or uncached
read (perhaps of a device register) may easily be several times slower. These really are important!

Of course, this is one of the main motivations for having a multithreading CPU: while one thread is stopped because
of a cache miss, other threads can keep running, greatly improving the total throughput.

Because these delays are so large, there’s not a lot you can do to help a cache-missing program make progress. But
every little bit helps. The 34K core has non-blocking loads, so if you can move your load instruction producer away
from its consumer, you won’t start paying for your memory delay until you try to run the consuming instruction.

Compilers and programmers find it difficult to move fragments of algorithm backwards like this, so the architecture
also provides prefetch instructions (which fetch designated data into the D-cache, but do nothing else). Because
they’re free of most side-effects it’s easier to issue prefetches very early. Any loop which walks predictably through a
large array is a candidate for prefetch instructions, which are conveniently placed within one iteration to prefetch data
for the next.
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The pref PrepareForStore prefetch saves a cache refill read, for cache lines which you intend to overwrite in
their entirety. Read more about prefetch in Section 6.2, "Prefetching data" above.

Tuning data-intensive common functions

Bulk operations like bcopy() and bzero() will benefit from CPU-specific tuning. To get excellent performance
for in-cache data, it’s only necessary to reorganize the software enough to cover the address-to-store and load-to-use
delays. But to get the loop to achieve the best performance when cache missing, you probably want to use some
prefetches. MIPS Technologies may have example code of such functions — ask.

6.5.2 Branch delay slot

It’s a feature of the MIPS architecture that it always attempts to execute the instruction immediately following a
branch. The rationale for this is that it’s extremely difficult to fetch the branch target quickly enough to avoid a delay,
so the extra instruction runs “for free”...

Most of the time, the compiler deals well with this single delay slot. MIPS low-level programmers find it odd at first,
but you get used to it!

6.6 Tuning floating-point

It seemed to make more sense to put this information into the FPU chapter: read from Section 8.5 “FPU pipeline and
instruction timing”.
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6.6.1 Branch misprediction delays

In a long-pipeline design like this, branches would be expensive if you waited until the branch was executed before
fetching any more instructions. See Section 3.1, "The 34K™ core pipeline and multithreading" for what is done about
this: but the upshot is that where the fetch logic can’t compute the target address, or guesses wrong, that’s going to
cost five or more lost cycles. It does depend what sort of branch: the conditional branch which closes a tight loop will
almost always be predicted correctly after the first time around. Moreover, in an MT CPU like the 34K core most of
the pain is felt by the thread which executes the branch; so long as there are other running threads the CPU can keep
busy.

However, too many branches in too short a period of time can overwhelm the ability of the instruction fetch logic to
keep ahead with its predictions. Where branchy code can be replaced by conditional moves, you’ll get significant
benefits.

The branch-likely22 instructions (officially deprecated by the MIPS32 architecture because they may perform poorly
on more sophisticated or wider-issue hardware) are predicted just like any other branch.

Although deprecated, the branch-likely instructions will probably improve the performance of loops where there is no
other way of avoiding a no-op in a loop-closing branch’s delay slot. If you’re tempted to use this, we strongly recom-
mend you make the code conditional on a #define variable tied specifically to the 34K family. If that’s difficult in
your environment and the code might need to be portable, it’s probably better not to use this.

6.6.2 Data dependency delays classified

We’ve attempted to tabulate all possible producer/consumer delays affecting user-level code (we’re not discussing
CP0 registers here), but excluding floating point (which is in the next section).

In fact, we won’t set out the tables exactly like that. The MIPS instruction set is efficient because, most of the time,
dependent instructions can be run nose-to-tail without delay. For all registers, there is a “standard” place in the pipe-

line where the producer should deliver its value and another place in the pipeline where the consumer picks it up23.
Producer/consumer delays happen when either the producer is late delivering a result to the register (we’ll abbreviate
to “lazy”), or the consumer insists on obtaining its operand early (we’ll abbreviate to “eager”). Of course, both may
happen: in that case the delays add up.

It’s important to be clear what class of registers is involved in any of these delays. For non-floating-point user-level
code, there are just three classes of registers to consider:

• General purpose registers (“GPR”);

• The hi/lo pair together with the three additional accumulators defined by the MIP DSP ASE “accumulator” pair
(“ACC”);

• The fields of the DSPControl register.

So that gives us two tables.

22. The “likely” in the instruction name is historical, and pretty misleading.
23. These are brought closer together by the magic of register file bypasses, but we don’t need to get into the details here.
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Delays caused by “eager consumers” reading values early

Delays caused by “lazy producers” delivering values late

How to use the tables

Suppose we’ve got an instruction sequence like this one:

addiu $a0, $a0, 8
lw $t0, 0($a0) # [1]
lw $t1, 4($a0)
addu $t2, $t0, $t1# [2]
mul $v0, $t2, $t3
sw $v0, 0($a1) # [3]

Table 6.2 Register → eager consumer delays
Reg → Eager consumer Del Applies when...

GPR → load/store 1 the GPR value is an address operand (store data is
not needed early).

ACC → multiply instructions 1 the ACC value came from any non-multiply or mul-
tiply instructions which saturate the accumulator
value (values generated by other multiply instruc-
tions are made available early, and thus avoid this
delay).

ACC → DSP instructions which extract selected
bits from an accumulator: extp...,
extr... etc.

3 Always

DSP instructions which write a shifted
value back to the accumulator: mthlip,
shilo, shilov.

Table 6.3 Lazy producer → register delays
Lazy producer → Reg Del Applies when...

Load → GPR 1 Always (familiar as the “load delay slot”).
Integer multiply unit instructions produc-

ing a GPR result.
→ GPR 4 Always (because the multiply unit pipeline is

longer than the integer unit’s).
Instructions reading accumulators and

writing GPR (e.g. mflo).
DSP “ALU” instructions (which neither
read nor write an accumulator, nor do a

multiplication).

→ GPR 1 Always

Integer divide instruction → ACC 7 8-bit dividend
9 8-bit dividend & negative operand to div

15 16-bit dividend
17 16-bit dividend & negative operand to div
23 24-bit dividend
25 24-bit dividend & negative operand to div
31 full-size dividend
33 full-size dividend & negative operand to div
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Then a look at the tables should help us discover whether any instructions will be held up. Look at the dependencies
where an instruction is dependent on its predecessor:

[1] The lw will be held up by one clock, because its GPR address operand $a0 was computed by the immediately pre-
ceding instruction (see the first box of Table 6.2.) The second lw will be OK.

[2] The addu will be one clock late, because the load data from the preceding lw arrives late in the GPR $t1 (see the
first box of Table 6.3.)

[3] The sw will be 4 clocks late starting while it waits for a result from the multiply pipe (the second box of Table 6.3.)

These can be additive. In the pointer-chasing sequence:

lw         $t1, 0($t0)
lw         $t2, 0($t1)

The second load will be held up two clocks: one because of the late delivery of load data in $t1 (first box of Table
6.3), plus another because that data is required to form the address (first box of Table 6.2.)

Delays caused by dependencies on DSPControl fields

Some DSP ASE instructions are dependent because they produce and consume values kept in fields of the
DSPControl register. However, the most performance-critical of these dependencies are “by-passed” to make sure no
delay will occur - those are the dependencies between:

But other dependencies passed in DSPControl may cause delays; in particular the DSPControl[ouflag] bits set by vari-
ous kinds of overflow are not ready for a succeeding rddsp instruction. The access is interlocked, and will lead to a
delay of up to three clocks. We don’t expect that to be a problem (but if you know different, please get in touch with
MIPS Technologies).

More complicated dependencies

There can be delays which are dependent on the dynamic allocation of resources inside the CPU. In general you can’t
really figure out how much these matter by doing a static code analysis, and we earnestly advise you to get some kind
of high-visibility cycle-accurate simulator or trace equipment (probably based on Section 10.2, "PDtrace™
instruction trace facility").

Advice on tuning DSP ASE instruction sequences

DSP algorithm functions are often the subject of intense tuning. There is more specific and helpful advice (with
examples) included in the white paper [DSPWP] published by MIPS Technologies.

addsc → DSPControl[c] → addwc
cmp.x → DSPControl[ccond] → pick.x
wrdsp → DSPControl[pos,scount] → insv
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Kernel-mode (OS) programming and Release 2 of the
MIPS32® Architecture

[MIPS32] tells you how to write OS code which is portable across all compliant CPUs. Most OS code should be
CPU-independent, and we won’t tell you how to write it here. But release 2 of the MIPS32 Specification [MIPS32]
introduced a few new optional features which are not yet well known, so are worth describing here:

• A better way of managing software-visible pipeline and hardware delays associated with CP0 programming in
Section 7.1, "Hazard barrier instructions".

• New interrupt facilities described in Section 7.2, "MIPS32® Architecture Release 2 - enhanced interrupt
system(s)";

• That led on to Section 7.3.1 “Summary of exception entry points”: where do exceptions go, and what options are
available?

• The ability to use one or more extra sets of registers (“shadow sets”) to reduce context-saving overhead in inter-
rupt handlers, in Section 7.4, "Shadow registers".

• How to get at any power-saving features, in Section 7.5, "Saving Power"

• How to control user-privilege access to “hardware registers”, in Section 7.6 “The HWREna register - Control
user rdhwr access”.

7.1 Hazard barrier instructions

When privileged “CP0” instructions change the machine state, you can get unexpected behavior if an effect is
deferred out of its normal instruction sequence. But that can happen because the relevant control register only gets
written some way down the pipeline, or because the changes it makes are sensed by other instructions early in their
pipeline sequence: this is called a CP0 hazard.

It’s possible to get hazards in user mode code too, and many of the instructions described here are not solely for ker-
nel-privilege code. But they’re most often met around CP0 read/writes, so they found their way to this chapter.

Traditionally, MIPS CPUs left the kernel/low-level software engineer with the job of designing sequences which are
guaranteed to run correctly, usually by padding the dangerous operation with enough nop or ssnop instructions.

From Release 2 of the MIPS32 specification this is replaced by explicit hazard barrier instructions. If you execute a
hazard barrier between the instruction which makes the change (the “producer”) and the instruction which is sensitive
to it (the “consumer”), you are guaranteed that the change will be seen as complete. Hazards can appear when the pro-
ducer affects even the instruction fetch of the consumer - that’s an “instruction hazard” - or only affecting the opera-
tion of the consuming instruction (an “execution hazard”). Hazard barriers come in two strengths: ehb deals only
with execution hazards, while eret, jr.hb and jalr.hb are barriers to both kinds of hazard.
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In most implementations the strong hazard barrier instructions are quite costly, often discarding most or all of the
pipeline contents: they should not be used indiscriminately. For efficiency you should use the weaker ehb where it is
enough. Since some implementations work by holding up execution of all instructions after the barrier, it’s preferable
to place the barrier just before the consumer, not just after the producer.

For example you might be updating a TLB entry:

mtc0 Index, t0
# other stuff, if there’s stuff to do
ehb
tlbwi
jr.hb ra

The ehb makes sure that the change to Index has been made before you attempt to write the TLB entry, which is fine.
But updating the TLB might affect how instructions are fetched in mapped space, so you should not return to code
which might be running in mapped space until you’ve cleared the “instruction hazard”. That’s dealt with by the
jr.hb.

Hazard barriers and multi-threading

Within a thread the hazard barriers work as advertised. But because TCs share many CP0 registers and other
resources, some hazards can be between different threads - or more precisely, an instruction can produce some effect
on other threads which affect the behavior of subsequent instructions.

In particular, the operations which disable other threads (instructions like dmt or dvpe or direct manipulation of the
associated CP0 bits VPECtl[TE] and MVPCtl[EVP]. or writes to TCHalt) may not be immediate. Instructions after
the other-thread-disable instruction in the stream might - according to the MT ASE specification [MIPSMT] - see evi-
dence of other threads continuing to run for a while. The MT ASE defines this as an instruction hazard. However, no
hazard of this kind exists in 34K family CPUs, so if you’re prepared to make your software CPU-dependent you may
make it a bit more efficient.

Porting software to use the new instructions

If you know your software will only ever run on a MIPS32 Release 2 or higher CPU, then that’s great. But to maintain
software which has to continue running on older CPUs:

• ehb is a no-op: on all previous CPUs. So you can substitute an ehb for the last no-op in your sequence of
“enough no-ops”, and your software is now safe on all future CPUs which are compliant with Release 2.

• jr.hb and jalr.hb: are decoded as plain jump-register and call-by-register instructions on earlier CPUs. Again, pro-
vided you already had enough no-ops for your worst-case older CPU, your system should now be safe on Release
2 and higher CPUs.

7.2 MIPS32® Architecture Release 2 - enhanced interrupt system(s)

The features for handling interrupts include:

• Vectored Interrupt (VI) mode offers multiple entry points (one for each of the interrupt sources), instead of the
single general exception entry point.

External Interrupt Controller (EIC) mode goes further, and reinterprets the six core interrupt input signals as a
64-value field - potentially 63 distinguished interrupts each with their own entry point (the zero code, of course,
is reserved to mean “no interrupt active”).
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Both these modes need to be explicitly enabled by setting bits in the Config3 register; if you don’t do that, the
CPU behaves just as the original (release 1) MIPS32 specification required.

• Shadow registers - alternate sets of registers, often reserved for interrupt handlers, are described in Section 7.4,
"Shadow registers". Interrupt handlers using shadow registers avoid the overhead of saving and restoring user
GPR values.

• The Cause[TI], Cause[FDCI],and Cause[PCI] bits (see the notes to Figure C.2) provide a direct indication of
pending interrupts from the on-core timer, fast debug channel, and performance counter subsystems (these inter-
rupts are potentially shared with other interrupt inputs, and it previously required system-specific programming
to discover the source of the interrupt and handle it appropriately).

The new interrupt options are enabled by the IntCtl register, whose fields are shown in Figure 7.1.

Figure 7.1 Fields in the IntCtl Register

IntCtl[IPTI,IPPCI,IPFDCI]: IPTI, IPPCI, and IPFDCI are read-only 3-bit fields, telling you how internal timer, perfor-
mance counter, and fast debug channel interrupts are wired up.  They are relevant in non-vectored and simple-vec-
tored ("VI") interrupt modes, but not if you’re using an EIC interrupt controller.

Read this field to get the number of the Cause[IPnn] where the corresponding interrupt is seen. Because
Cause[IP1-0] are software interrupt bits, unconnected to any input, legal values for IntCtl[IPTI], IntCtl[IPPCI] , and
IntCtl[IPFDCI] are between 2 and 7.

The timer, performance counter, and fast debug channel interrupt signals are taken out to the core interface and the
SoC designer connects them back to one of the core’s interrupt inputs. The SoC designer is supposed to hard-wire
some core inputs which show up as the IntCtl[IPTI,IPPCI,IPFDCI] fields to match.

These interrupt outputs are per-VPE, so there are two of them from the 34K core. The IntCtl register is also per-VPE,
reflecting the local setup.

IntCtl[VS]: is writable to give you software control of the vector spacing; if the value in VS is VS, you will get a spac-

ing of 32 × 2(VS-1) bytes.

Only values of 1, 2, 4, 8 and 16 work (to give spacings of 32, 64, 128, 256, and 512 bytes respectively). A value of
zero gives a zero spacing, so all interrupts arrive at the same address — the legacy behavior.

7.2.1 Traditional MIPS® interrupt signalling and priority

Before we discuss the new features, we should remind you what was there already. On traditional MIPS systems the
CPU takes an interrupt exception on any cycle where one of the eight possible interrupt sources visible in Cause[IP]
is active, enabled by the corresponding enable bit in Status[IM], and not otherwise inhibited. When that happens con-
trol is passed to the general exception handler (see Table 7.1 for exception entry point addresses), and is recognized
by the “interrupt” value in Cause[ExcCode]. All interrupt are equal in the hardware, and the hardware does nothing
special if two or more interrupts are active and enabled simultaneously. All priority decisions are down to the soft-
ware.

31 29 28 26 25 10 9 5 4 0

IPTI IPPCI IPFDCI 0 VS 0

X X X 0 0
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Six of the interrupt sources are hardware signals brought into the CPU, while the other two are “software interrupts”
taking whatever value is written to them in the Cause register.

The original MIPS32 specification adds an option to this. If you set the Cause[IV] bit, the same priority-blind inter-
rupt handling happens but control is passed to an interrupt exception entry point which is separate from the general
exception handler.

7.2.2 VI mode - multiple entry points, interrupt signalling and priority

The traditional interrupt system fits with a RISC philosophy (it leaves all interrupt priority policy to software). It’s
also OK with complex operating systems, which commonly have a single piece of code which does the housekeeping
associated with interrupts prior to calling an individual device-interrupt handler.

A single entry point doesn’t fit so well with embedded systems using very low-level interrupt handlers to perform
small near-the-hardware tasks. So Release 2 of the MIPS32 architecture adds “VI interrupt mode” where interrupts
are despatched to one of eight possible entry points. To make this happen:

1. Config3[VInt] must be set, to indicate that your core has the vectored-interrupts feature - but all cores in the 34K
family have it;

2. You write Cause[IV] = 1 to request that interrupts use the special interrupt entry point; and:

3. You set IntCtl[VS] non-zero, setting the spacing between successive interrupt entry points.

Then interrupt exceptions will go to one of eight distinct entry points. The bit-number in Cause[IP] corresponding to
the highest-numbered active interrupt becomes the “vector number” in the range 0-7. The vector number is multiplied
by the “spacing” implied by the OS-written field IntCtl[VS] (see above) to generate an offset. This offset is then added
to the special interrupt entry point (already an offset of 0x200 from the value defined in EBase) to produce the entry
point to be used.

If multiple interrupts are active and enabled, the entry point will be the one associated with the higher-numbered
interrupt: in VI mode interrupts are no longer all equal, and the hardware now has some role in interrupt “priority”.

7.2.3 External Interrupt Controller (EIC) mode

Embedded systems have lots of interrupts, typically far exceeding the six input signals traditionally available. Most
systems have an external interrupt controller to allow these interrupts to be masked and selected. If your interrupt con-
troller is “EIC compatible” and you use these features, then you get 63 distinct interrupt entry points.

To do this the same six hardware signals used in traditional and VI modes are redefined as a bus with 64 possible val-

ues24: 0 means “no interrupt” and 1-63 represent distinct interrupts. That’s “EIC interrupt mode”, and you’re in EIC
mode if you would be in VI mode (see previous section) and additionally the Config3[VEIC] bit is set. EIC mode is a
little deceptive: the programming interface hardly seems to change, but the meaning of fields change quite a bit.

Firstly, once the interrupt bits are grouped the interrupt mask bits in Status[IM] can’t just be bitwise enables any more.
Instead this field (strictly, the 6 high order bits of this field, excluding the mask bits for the software interrupts) is
recycled to become a 6-bit Status[IPL] (“interrupt priority level”) field. Most of the time (when running application
code, or even normal kernel code) Status[IPL] will be zero; the CPU takes an interrupt exception when the interrupt

24. The resulting system will be familiar to anyone who’s used a Motorola 68000 family device (or further back, a DEC PDP/11
or any of its successors).
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controller presents a number higher than the current value of Status[IPL] on its “bus” and interrupts are not otherwise
inhibited.

As before, the interrupt handler will see the interrupt request number in Cause[IP] bits - see Section C.4.3 “Exception
handling: Cause register”; the six MS of those bits are now relabelled as Cause[RIPL] (“requested IPL”). In EIC
mode the software interrupt bits are not used in interrupt selection or prioritization: see below. But there’s an impor-
tant difference; Cause[RIPL] holds a snapshot of the value presented to the CPU when it decided to take the interrupt,

whereas the old Cause[IP] bits simply reflected the real-time state of the input signals25.

When an exception is triggered the new IPL - as captured in Cause[RIPL] - is used directly as the interrupt number;
it’s multiplied by the interrupt spacing implied by IntCtl[RS] and added to the special interrupt entry point, as
described in the previous section. Cause[RIPL] retains its value until the CPU next takes any exception.

Software interrupts: the two bits in Cause[IP1-0] are still writable, but now become real signals which are fed out of
the CPU core, and in most cases will become inputs - presumably low-priority ones - to the EIC-compliant interrupt
controller.

In EIC mode the usual association of the internal timer, performance-counter overflow, and fast debug channel inter-
rupts with individual bits of Cause[IP] is lost. These interrupts are turned into output signals from the core, and will
themselves become inputs to the interrupt controller. Ask your system integrator how they are wired.

7.3 Exception Entry Points

Early versions of the MIPS architecture had a rather simple exception system, with a small number of architecture-
fixed entry points.

But there were already complications. When a CPU starts up main memory is typically random and the MIPS caches
are unusable until initialized; so MIPS CPUs start up in uncached ROM memory space and the exception entry points
are all there for a while (in fact, for so long as Status[BEV] is set); these “ROM entry points” are clustered near the

top of kseg1, corresponding to 0x1FC0.0000 physical26, which must decode as ROM.

ROM is slow and rigid; handlers for some exceptions are performance-critical, and OS’ want to handle exceptions
without relying on ROM code. So once the OS boots up it’s essential to be able to redirect OS-handled exceptions
into cached locations mapped to main memory (what exceptions are not OS-handled? well, there are no alternate
entry points for system reset, NMI, and EJTAG debug).

So when Status[BEV] is flipped to zero, OS-relevant exception entry points are moved to the bottom of kseg0, start-
ing from 0 in the physical map. The cache error exception is an exception... it would be silly to respond to a cache
error by transferring control to a cached location, so the cache error entry point is physically close to all the others,
but always mapped through the uncached “kseg1” region.

In MIPS CPUs prior to the MIPS32 architecture (with a few infrequent special cases) only common TLB miss excep-
tions got their own entry point; interrupts and all other OS-handled exceptions were all funneled through a single
“general” exception entry point.

25. Since the incoming IPL can change at any time - depending on the priority views of the interrupt controller - this is essential
if the handler is going to know which interrupt it’s servicing.

26. Even this address can be changed by a brave and determined SoC integrator, see the note on RBASE in Section
7.3.1 “Summary of exception entry points”.
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The MIPS32® architecture: interrupts get their own entry point

Embedded systems often make heavy use of interrupts and the OS may be less centralized; so MIPS32 CPUs allow
you to redirect all interrupts to a new “special interrupt” entry point; you just set a new bit in the Cause register,
Cause[IV] — see Section C.4.3 “Exception handling: Cause register”

Release 2: relocate all the exception entry points with EBase

The new-with-release 2 EBase register does two vital jobs: one is to allow software to know which CPU it’s running
on and the other is to relocate the exception entry points. It is primarily supplied for multi-CPU systems (or with a
MIPS MT CPU, for systems using multiple VPEs).

The latter is necessary because CPUs sharing a memory map (as SMP CPUs often do and the VPEs inside a MIPS
MT CPU are obliged to do) have their exception entry points in kseg0. By setting EBase differently on each CPU,
you can give them distinct exception handlers.

Figure 7.2 Fields in the EBase Register

EBase[VA]: the base address for the exception vectors, adjustable to a resolution of 4Kbytes.  See the exception entry
points table for how that moves all the exception entry points. The top two address bits are fixed to “10”, which
means that the base address is constrained to being somewhere in the “unmapped” kseg0/kseg1 memory regions.

By setting EBase on any CPU and/or VPE of a multiprocessor and/or multithreading system to a unique value, that
CPU can have its own unique exception handlers.

Write this field only when Status[BEV] is set, so that any unexpected exception will be handled through the ROM
entry points (otherwise you would be changing the exception address under your own feet, and the results of that are
undefined).

EBase[CPUNum]: On single-threaded CPUs this is just a single "CPU number" field (set by the core interface bus
SI_CPUNum, which the SoC designer will tie to some suitable value).

7.3.1 Summary of exception entry points

The incremental growth of exception entry points has left no one place where all the entry points are summarized; so
here’s Table 7.1. But first:

BASE is 0x8000.0000, as it will be where the software, ignoring the EBase register, leaves it at its power-on value —
that’s also compatible with older MIPS CPUs. Otherwise BASE is the 4Kbyte-aligned address found in EBase after
you ignore the low 12 bits...

RBASE is the ROM/reset entry point base, usually 0xBFC0.0000. However, 34K family cores can be configured to
use a different base address by fixing some input signals to the core. Specifically, if the core is wired with
SI_UseExceptionBase asserted, then RBASE bits 29-12 will be set by the values of the inputs
SI_ExceptionBase[29:12] (the two high bits will be “10” to select the kseg0/kseg1 regions, and the low 12 bits are
always zero). Relocating RBASE is strictly not compliant with the MIPS32 specification and may break all sorts of
useful pieces of software, so it’s not to be done lightly.

31 30 29 12 11 10 9 0

1 0 VA 0 CPUNum

0
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DebugVectorAddr is an alternative entry point for debug exceptions. It is specified via a drseg memory mapped register
of the same name and enabled through the Debug Control Register. The probe handler still takes precedence, but this
is higher priority than the regular ROM entry points.

7.4 Shadow registers

In hardware terms, shadow registers are deceptively simple: just add one or more extra copies of the register file. If
you can automatically change register set on an exception, the exception handler will run with its own context, and
without the overhead of saving and restoring the register values belonging to the interrupted program. On to the
details...

MIPS shadow registers come as one or more extra complete set of 32 general purpose registers. The CPU only
changes register sets on an exception or when returning from an exception with eret.

In the 34K core (and possibly other CPUs conforming to [MIPSMT]) there are no dedicated shadow registers, but you
can configure the CPU to make the registers of one or more TCs available as shadow sets, as described in
Section 7.4.1.

Selecting shadow sets - SRSCtl

The shadow set selectors are in the SRSCtl register, shown in Figure 7.3.

Figure 7.3 Fields in the SRSCtl Register

SRSCtl[HSS]: the highest-numbered register set available on this VPE/CPU (i.e. the number of available register sets
minus one.)  If it reads zero, your CPU has just one set of GPR registers and no shadow-set facility.

Table 7.1 All Exception entry points
Memory region Entry point Exceptions handled here

EJTAG probe-mapped 0xFF20.0200 EJTAG debug, when mapped to “probe” memory.
Alternate Debug Vector DebugVectorAddr EJTAG debug, not probe, relocated, DCR[RDVec]==1
ROM-only entry points RBASE+0x0480 EJTAG debug, when using normal ROM memory.DCR[RDVec]==1

RBASE+0x0000 Post-reset and NMI entry point.
ROM entry points (when

Status[BEV]==1)
RBASE+0x0200 Simple TLB Refill (Status[EXL]==0).
RBASE+0x0300 Cache Error. Note that regardless of any relocation of RBASE (see

above) the cache error entry point is always forced into kseg1.
RBASE+0x0400 Interrupt special (Cause[IV]==1).
RBASE+0x0380 All others

“RAM” entry points
(Status[BEV]==0)

BASE+0x100 Cache error - in RAM. but always through uncached kseg1 window.
BASE+0x000 Simple TLB Refill (Status[EXL]==0).
BASE+0x200 Interrupt special (Cause[IV]==1).

BASE+0x200+... multiple interrupt entry points - seven more in “VI” mode, 63 in
“EIC” mode; see Section 7.2, "MIPS32® Architecture Release 2 -
enhanced interrupt system(s)".

BASE+0x180 All others

31 30 29 26 25 22 21 18 17 16 15 12 11 10 9 6 5 4 3 0

0 HSS 0 EICSS 0 ESS 0 PSS 0 CSS

0 0
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On single-threaded CPUs this field is fixed. However, on the 34K core this field can change when configuration soft-
ware - that is, when VPEConf0[VPC] is set - changes the way the shadow sets are shared. See Section 7.4.1 below for
how multithreading TCs can be used as shadow sets.

SRSCtl[EICSS]: In EIC mode, the external interrupt controller proposes a shadow register set number with each
requested interrupt (nonzero IPL).  When the CPU takes an interrupt, the externally-supplied set number determines
the next set and is made visible here in SRSCtl[EICSS] until the next interrupt.

The CPU is in EIC mode if Config3[VEIC] (indicating the hardware is EIC-compliant), and software has set
Cause[IV] to enable vectored interrupts. There’s more about EIC mode in Section 7.2.3 “External Interrupt
Controller (EIC) mode”.

If the CPU is not in EIC mode, this field reads zero.

In VI mode (no external interrupt controller, Config3[VInt] reads 1 and Cause[IV] has been set 1) the core sees only
eight possible interrupt numbers; the SRSMap register contains eight 4-bit fields defining the register set to use for
each of the eight interrupt levels.

If you are remaining with “classic” interrupt mode (Cause[IV] is zero), it’s still possible to use one shadow set for all
exception handlers — including interrupt handlers — by setting SRSCtl[ESS] non-zero.

SRSCtl[ESS]: this writable field is the software-selected register set to be used for "all other" exceptions; that’s other
than an interrupt in VI or EIC mode (both have their own special ways of selecting a register set).

Unpredictable things will happen if you set ESS to a non-existent register set number (ie, if you set it higher than the
value in SRSCtl[HSS].

SRSCtl[CSS,PSS]: CSS is the register set currently in use, and is a read-only field. It’s set on any exception, replaced
by the value in SRSCtl[PSS] on an eret.

PSS is the "previous" register set, which will be used following the next eret. It’s writable, allowing the OS to dis-
patch code in a new register set; load this value and then execute an eret. If you write a larger number than the total
number of implemented register sets the result is unpredictable.

You can get at the values of registers in the previous set using rdpgpr and wrpgpr.

Just a note: SRSCtl[PSS] and SRSCtl[CSS] are not updated by all exceptions, but only those which write a new
return address to EPC (or equivalently, those occasions where the exception level bit Status[EXL] goes from zero to
one). Exceptions where EPC is not written include:

• Exceptions occurring with Status[EXL] already set;

• Cache error exceptions, where the return address is loaded into ErrorEPC;

• EJTAG debug exceptions, where the return address is loaded into DEPC.

How new shadow sets get selected on an interrupt

In EIC mode, the external interrupt controller proposes a shadow register set number with each requested interrupt
(nonzero IPL). When the CPU takes an interrupt, the externally-supplied set number determines the next set and is
made visible in SRSCtl[EICSS] until the next interrupt.
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In VI mode (no external interrupt controller) the core sees only eight possible interrupt numbers; the SRSMap register
contains eight 4-bit fields, defining the register set to use for each of the eight interrupt levels, as shown in Figure 7.4.

Figure 7.4 Fields in the SRSMap Register

In SRSMap, each of the SSV7-0 fields has the shadow set number to be used when handling the interrupt for the cor-
responding Cause[IP7-0] bit. A zero shadow set number means not to use a shadow set. A number than the highest
valid set (as found in SRSCtl[HSS]) has unpredictable results: don’t do that.

If you are remaining with “classic” interrupt mode, it’s still possible to use one shadow set for all exception handlers
- including interrupt handlers - by setting SRSCtl[ESS] non-zero.

In “EIC” interrupt mode, this register has no effect and the shadow set number to be used is determined by an input
bus from the interrupt controller.

Software support for shadow registers

Shadow registers work “as if by magic” for short interrupt routines which run entirely in exception mode (that is, with
Status[EXL] set). The shadow registers are not just efficient because there’s no need to save user registers; the shadow
registers can also be used to hold contextual information for one or more interrupt routines which uses a particular
shadow set. For more ambitious interrupt nesting schemes, software must save and stack copies of SRSCtl[PSS]
alongside its copies of EPC; and it’s entirely up to the software to determine when an interrupt handler can just go
ahead and use a register set, and when it needs to save values on entry and restore them on exit. That’s at least as dif-
ficult as it sounds: shadow sets are probably best used purely for very low-level, high-speed handlers.

7.4.1 Recycling multi-threading CPU’s TCs as shadow sets

This recycling is controlled by some TC control bits and the SRSConf0-4 registers.

In SRSConf0:

M: is a "continuation" indication. Since there is no SRSConf1 in the 34K core, it will read zero.

In general there need be no more of these registers than are required to map your core’s maximum complement of
shadow register sets.

SRS1-3: are each set to the GPR set to be used for the putative shadow set number (1-3).

Shadow set 0 refers (in a MIPS MT CPU) to the register set normally associated with the current TC.

A value of all-ones in any of the (10-bit) SRS1-3 fields (decimal 1023) indicates that this shadow set number is not
usable - it won’t select a set of registers.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

SSV7 SSV6 SSV5 SSV4 SSV3 SSV2 SSV1 SSV0

0 0 0 0 0 0 0 0

Figure 7.5 Fields in the SRSConf0 register
31 30 29 20 19 10 9 0
M 0 SRS3 SRS2 SRS1
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The fact that there are no more “SRSConf” registers means that shadow set numbers above 4 are never usable for the
34K core.

These fields may be writable (waiting to receive the number of a TC you sacrifice to provide a shadow set) or hard-
wired (representing dedicated shadow register sets, whose “GPR number” will be larger than the maximum TC# of
the machine.)

From reset, the writable fields take the value 1022. You just write the number of the TC you’re sacrificing. Unless the
donor TC is already bound to the same VPE as owns this SRSConf register, nothing happens. You should also make
sure the donor TC is halted, inactive and not usable by fork.

It’s possible to reverse this process and seize back a TC, so long as the shadow set concerned is no longer in use.

Note that SRSConf0 is replicated per-VPE.

7.5 Saving Power

There are basically just a couple of facilities:

• The wait instruction: this puts the thread running to sleep. When this happens when all other threads are sleep-
ing, halted or suspended, the core goes into a low-power mode with many clocks stopped, from which it will only
emerge when it senses an interrupt. The interrupt will be delivered to any sleeping thread, but all sleeping threads
will wake and return from their wait. That will usually be OK; it’s normal practice to loop over wait.

In some cores — distinguished by having Config7[WII] set to 1 — a wait condition will be terminated by an
active interrupt signal, even if that signal is prevented from causing an interrupt by Status[IE] being clear or
TCStatus[IXMT] being set. It’s not immediately obvious why that behavior is useful, but it avoids a tricky race
condition for an OS which uses a wait instruction in its idle loop. For programming details consult Section
C.4.1 “Status register”, Section 2.9.4 “TCStatus”, and Section C.4.5 “The Config7 register”.

• The Status[RP] bit: this doesn’t do anything inside the core, but its state is made available at the core interface as
SI_RP. Logic outside the core is encouraged to use this to control any logic which trades off power for speed -
most often, that will be slowing the master clock input to the CPU.

7.6 The HWREna register - Control user rdhwr access

HWREna allows the OS to control which (if any) hardware registers are readable in user mode using rdhwr: see
also Section 6.1 “User-mode accessible “Hardware registers””.

The low four bits (3-0) relate to the four registers required by the MIPS32 standard. The two high bits (31-30) are
available for implementation-dependent use.

The whole register is cleared to zero on reset, so that no hardware register is accessible without positive OS clearance.

Figure 7.6 Fields in the HWREna Register
31 30 29 28 4 3 2 1 0

Impl UL 0 CCRes CC SYNCI_Step CPUNum

0 0 0 0 0 0
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HWREna[Impl]: Read 0.  If there were any implementation-dependent hardware registers, you could control access to
them here.  Currently, no 34K family core has any such extra registers.

HWREna[UL]: Set this bit 1 to permit user programs to obtain the value of the UserLocal CP0 register through
rdhwr $29.

HWREna[CCRes]: Set this bit 1 so a user-mode rdhwr 3 can determine whether Count runs at the full clock rate or
some divisor.

HWREna[CC]: Set this bit 1 so a user-mode rdhwr 2 can read out the value of the Count register.

HWREna[SYNCI_Step]: Set this bit 1 so a user-mode rdhwr 1 can read out the cache line size (actually, the smaller
of the L1 I-cache line size and D-cache line size).  That line size determines the step between successive uses of the
synci instruction, which does the cache manipulation necessary to ensure that the CPU can correctly execute
instructions which you just wrote.

HWREna[CPUNum]: Set this bit 1 so a user-mode rdhwr 0 reads out the CPU ID number, as found in
EBase[CPUNum].
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Floating point unit

The 34Kf™ member of the 34K family has a hardware floating point unit (FPU). This:

• Is a 64-bit FPU: with instructions working on both 64-bit and 32-bit floating point numbers, whose formats are
compatible with the “double precision” and “single precision” recommendations of [IEEE754].

• Is compatible with the MIPS64 Architecture: implements the floating point instruction set defined in
[MIPS64V2]; because the 34K family integer core is a 32-bit processor, a couple of additional instructions
mfhc1 and mthc1 are available to help pack and unpack 64-bit values when copying data between integer and
FP registers - see Section D.3 “FPU changes in Release 2 of the MIPS32® Architecture” or for full details
[MIPS32].

• Usually runs at half the integer core’s clock rate: the design is tested to work with the FPU running at the core
speed, but in likely processes the FPU will then limit the achievable frequency of the whole core. You can query
the Config7[FPR] field to check which option is used on your CPU.

• Can run without an exception handler: the FPU offers a range of options to handle very large and very small
numbers in hardware. With the 34K core full IEEE754 compliance does require that some operand/operation
combinations be trapped and emulated, but high performance and good accuracy are available with settings
which get the hardware to do everything - see Section 8.4.2, "FPU “unimplemented” exceptions (and how to
avoid them)".

• Omits “paired single” and MIPS-3D extensions: those are primarily aimed at 3D graphics, and are described as
optional in [MIPS64V2].

• Uses an autonomous 7-stage pipeline: all data transfers are interlocked, so the programmer is never aware of the
pipeline. Compiler writers and daemon subroutine tuners do need to know: there’s timing information in Section
8.5, "FPU pipeline and instruction timing".

• Has limited dual issue: the FPU has two parallel pipelines. One handles all arithmetic operations, the other deals
with loads, stores and data transfers to/from integer registers.

8.1 Data representation

If you’d like to read up on floating point in general you might like to read [SEEMIPSRUN]:. But it’s probably useful
to remind you (in Figure 8.1) what 32-bit and 64-bit floating point numbers on MIPS architecture CPUs look like.
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Figure 8.1 How floating point numbers are stored in a register

Just to remind you:

• sign: FP numbers are positive numbers with a separate sign bit; “1” denotes a negative number.

• mantissa: represents a binary number. But this is a floating point number, so the units depend on:

• exp: the exponent.

When 32-bit data is held in a 64-bit register, the high 32 bits are don’t care.

The MIPS Architecture’s 32-bit and 64-bit floating point formats are compatible with the definitions of “single preci-
sion” and “double precision” in [IEEE754].

FP registers can also hold simple 2s-complement signed integers too, just like the same number held in the integer
registers. That happens whenever you load integer data, or convert to an integer data type.

Floating point data in memory is endianness-dependent, in just the same way as integer data is; the higher bit-num-
bered bytes shown in Figure 8.1 will be at the lowest memory location when the core is configured big-endian, and
the highest memory location when the core is little-endian.

8.2 Basic instruction set

Whenever it makes sense to do so, FP instructions exist in a version for each data type. In assembler that’s denoted by
a suffix of:

There’s a good readable summary of the floating point instruction set in [SEEMIPSRUN]:, and you can find the fine
technical details in [MIPS64V2].

As a one-minute guide: the FPU provides basic arithmetic (add, multiply, subtract, divide and square root). It’s all
register-to-register (like the integer unit). It’s written “destination first” like integer instructions; sometimes that’s
unexpected in that cvt.d.s is a “convert from single to double”. It has a set of multiply/add instructions which
work on four registers: madd a,b,c,d does

a = c*d + b

.s single-precision

.d double-precision

.w 32-bit integer (“word”)

.l 64-bit integer

float

double

1623 815 07

mantissasign exp

2431

5663 323940474855 16232431 815 07

mantissasign exp
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as a single operation. There are a rich set of conversion operations. A bewildering variety of compare instructions
record their results in any one of eight condition flags, and there are branch and conditional-move instructions which
test those flags.

You won’t find any higher-level functions: no exponential, log, sine or cosine. This is a RISC instruction set, you’re
expected to get library functions for those things.

8.3 Floating point loads and stores

FP data does not normally pass through the integer registers; the FPU has its own load and store instructions. The
FPU is conceptually a replaceable tenant of coprocessor 1: while arithmetic FP operations get recognizable names
like add.d, the load/store instructions will be found under names like ldc1 in [MIPS64V2] and other formal docu-
mentation. In assembler code, you’ll more often use mnemonics like l.d which you’ll find will work just fine.

Because FP-intensive programs are often dealing with one- or two-dimensional arrays of values, the FPU gets special
load/store instructions where the address is formed by adding two registers; they’re called ldxc1 etc. In assembler
you just use the l.d mnemonic with an appropriate address syntax, and all will be well.

8.4 Setting up the FPU and the FPU control registers

There’s a fair amount of state which you set up to change the way the FPU works; this is controlled by fields in the
FPU control registers, described here.

8.4.1 IEEE options

[IEEE754] defines five classes of exceptional result. For each class the programmer can select whether to get an
IEEE-defined “exceptional result” or to be interrupted. Exceptional results are sometimes just normal numbers but
where precision has been lost, but also can be an infinity or NaN (“not-a-number”) value.

Control over the interrupt-or-not options is done through the FCSR[Enable] field (or more cleanly through FENR,
the same control bits more conveniently presented); see Table 8.1 below.

It’s overwhelmingly popular to keep FENR zero and thus never generate an IEEE exception; see Section 8.5, "FPU
pipeline and instruction timing" for why this is a particularly good idea if you want the best performance.

8.4.2 FPU “unimplemented” exceptions (and how to avoid them)

It’s a long-standing feature of the MIPS Architecture that FPU hardware need not support every corner-case of the
IEEE standard. But to ensure proper IEEE compatibility to the software system, an FPU which can’t manage to gen-
erate the correct value in every case must detect a combination of operation and operands it can’t do right. It then
takes an unimplemented exception, which the OS should catch and arrange to software-emulate the offending instruc-
tion.

The 34K core’s FPU will handle everything IEEE can throw at it, except for tiny numbers: it can’t use or produce

non-zero values which are too small for the standard (“normalized”) representation27.

27. IEEE754 defines an alternative “denormalized” representation for these numbers.
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Here you get a choice: you can either configure the CPU to depart from IEEE perfection (see the description of the
FCSR[FS,FO,FN] bits in the notes to Section 8.1, "FPU (co-processor 1) control registers"), or provide a software
emulator and resign yourself to a small number of “unimplemented” exceptions.

8.4.3 FPU control register maps

There are five FP control registers:

The FP implementation (FIR) register

Figure 8.2 shows the fields in FIR and the read-only values they always have for 34K family FPUs:

Figure 8.2 Fields in the FIR register

The fields have the following meanings:

• FC: “full convert range”: the hardware will complete any conversion operation without running out of bits and
causing an “unimplemented” exception.

• F64/L/W/D/S: this is a 64-bit floating point unit and implements 64-bit integer (“L”), 32-bit integer (“W”), 64-bit
FP double (“D”) and 32-bit FP single (“S”) operations.

• 3D: does not implement the MIPS-3D ASE.

• PS: does not implement the paired-single instructions described in [MIPS64V2]

• Processor ID/Revision: major and minor revisions of the FPU - as is usual with revisions it’s very useful to print
these out from a verbose sign-on message, and rarely a good idea to have software behave differently according
to the values.

Table 8.1 FPU (co-processor 1) control registers
Conventional CP1 ctrl Description

Name reg num
FCSR 31 Extensive control register - the only FPU control register on histori-

cal MIPS CPUs.
Contains all the control bits. But in practice some of them are more
conveniently accessed through FCCR, FEXR and FENR below.

FIR 0 FP implementation register: read-only information about the capa-
bility of this FPU.

FCCR 25 Convenient partial views of FCSR are better structured, and allow
you to update fields without interfering with the operation of inde-
pendent bits.
FCCR has FP condition codes, FEXR contains IEEE exceptional-
condition information (cause and flag bits) you read, and FENR is
IEEE exceptional-condition enables you write.

FEXR 26
FENR 28

31 25 24 23 22 21 20 19 18 17 16 15 8 7 0

0 FC 0 F64 L W 3D PS D S Processor ID Revision

1 1 1 1 0 0 1 1 0x97 whatever
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The FP control/status registers (FCSR, FCCR, FEXR, FENR)

Figure 8.3 shows all these registers and their bits

Where:

FCC7-0: the floating point condition codes: set by compare instructions, tested by appropriate branch and conditional
move instructions.

FS/FO/FN: options to avoid "unimplemented" exceptions when handling tiny ("denormalized") numbers28. They do so
at the cost of IEEE compatibility, by replacing the very small number with either zero or with the nearest nonzero
quantity with a normalized representation.

The FO (“flush override”) bit causes all tiny operand and result values to be replaced.

The FS (“flush to zero”) bit causes all tiny operand and result values to be replaced, but additionally does the same
substitution for any tiny intermediate value in a multiply-add instruction. This is provided both for legacy reasons,
and in case you don’t like the idea that the result of a multiply/add can change according to whether you use the fused
instruction or a separate multiply and add.

The FN bit (“flush to nearest”) bit causes all result values to be replaced with somewhat better accuracy than you
usually get with FS: the result is either zero or a smallest-normalized-number, whichever is closer. Without FN set
you can only replace your tiny number with a nonzero result if the “RP” or “RM” rounding modes (round towards
more positive, round towards more negative) are in effect.

For full IEEE-compatibility you must set FCSR[FS,FO,FN] == [0,0,0].

To get the best performance compatible with a guarantee of no “unimplemented” exceptions, set FCSR[FS,FO,FN]
== [1,1,1].

Just occasionally for legacy applications developed with older MIPS CPUs which did not have the FO and FN options,
you might set FCSR[FS,FO,FN] == [1,0,0].

E: (often shown in documents as part of the Cause array) is a status bit indicating that the last FP instruction caused an
"unimplemented" exception, as discussed in Section 8.4.2, "FPU “unimplemented” exceptions (and how to avoid
them)".

31 25 24 23 22 21 20 18 17 16 12 11 8 7 6 3 2 1 0

FCSR FCC7-1 FS FCC0 FO FN 0 E Cause Enables Flags RM

FCCR 0 FCC7-0

FEXR 0 E Cause 0 Flags 0

FENR 0 Enables 0 FS RM

Figure 8.3 Floating point control/status register and alternate views

28. See [SEEMIPSRUN]: for an explanation of “normalized” and “denormalized”.
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Cause/Enables/Flags: each of these fields is broken up into five bits, each representing an IEEE-recognized class of

exceptional results29 which can be individually treated either by interrupting the computation, or substituting an
IEEE-defined exceptional value. So each field contains:

The bits are V for invalid operation (e.g. square root of -1), Z for divide-by-zero, O for overflow (a number too large
to represent), U for underflow (a number too small to represent) and I for inexact - even 1/3 is inexact in binary.

Then the:

– Enables field is "write 1 to take a MIPS exception if this condition occurs" - rarely done.  With the IEEE
exception-catcher disabled, the hardware/emulator together will provide a suitable exceptional result.

– Cause field records what if any conditions occurred in the last-executed FP instruction.  Because that’s often
too transient, the

– Flags field remembers all and any conditions which happened since it was last written to zero by software.

RM: is the rounding mode, as required by IEEE:

8.5 FPU pipeline and instruction timing

This is not so simple. The floating point unit (FPU) has its own pipeline. More often than not, the FPU uses a slower
clock rate than the integer core - a full-speed FPU is a build option, but in that case the FPU will usually limit the
clock rate which your design can reach. For 34K family cores, the FPU will commonly be built with a half rate clock.
You can find how your core is set up by looking at the Config7[FPR1-0] bits, defined in the notes to Figure C-3.

Nonetheless, this is a powerful 64-bit floating point unit which can deliver very good performance. The FPU pipeline
is shown in Figure 8.4.

29. Sorry about the ugly wording. The IEEE standard talks of “exceptions” which makes more sense but gets mixed up with
MIPS “exceptions”, and they’re not the same thing.

bit number 4 3 2 1 0
field V Z O U I

RM Meaning
0 Round to nearest - RN

If the result is exactly half-way between the nearest values, pick the one whose
mantissa bit0 is zero.

1 Round toward zero - RZ
2 Round towards plus infinity - RP

“Round up” (but unambiguous about what you do about negative numbers).
3 Round towards minus infinity - RM
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regardless of any data dependency. Those long-latency instructions - double-precision multiplies and all division and
square root operations - are listed in Table 8.2. An instruction which runs for 2 cycles in M1 holds up the FPU pipe-
line for one clock and so on - and of course the cycle counts are for FPU cycles.

8.5.3 Delays on FP load and store instructions

FP store instructions stall in the main pipeline EX stage until the register data arrives from the FPU. Provided that the
store instruction doesn’t get behind slow FP instructions, FP stores run no more than one every two instructions and
should not produce further delays.

FP load instructions are subject to the usual FPU timing. So long as the load hits in the cache, you should see no more
than the usual FP producer-consumer delay from load to use.

8.5.4 Delays when main pipeline waits for FPU to decide not to take an exception

The MIPS architecture requires FP exceptions to be “precise”, which (in particular) means that no instruction after
the FP instruction causing the exception may do anything software-visible. That means that an FP instruction in the
main pipeline may not be committed, nor leave the main pipeline, until the FPU can either report the exception, or
confirm that the instruction will not cause an exception.

Floating point instructions cause exceptions not only because a user program has requested the system to trap IEEE
exceptional conditions (which is unusual) but also because the hardware is not capable of generating or accepting
very small (“denormalized”) numbers in accordance with the IEEE standards. The latter (“unimplemented”) excep-
tion is used to call up a software emulator to patch up some rare cases. But the main pipeline must be stalled until the
FP hardware can rule out an exception, and that leads to a delay on every non-trivial FP operation. With a half-rate
FPU, this stall will most likely be 6-7 clocks.

Software which can tolerate some deviation from IEEE precision can avoid these delays by opting to replace all
denormalized inputs and results by zero - controlled by the FCSR[FS,FO,FN] register bits described in Section 8.1,
"FPU (co-processor 1) control registers" and its notes. If you have also disabled all IEEE traps, you get no possibility
of FP exceptions and no extra main pipeline delay.

8.5.5 Delays when main pipeline waits for FPU to accept an instruction

An FPU running slower than the core can only accept instructions on the appropriate clock edges: back to back FP
instructions will cause delays. But if some of your FP instructions are the long-latency ones described above, the FP
pipeline has room for just one more instruction before it backs up. Once it does back up, your whole CPU will stall
until the long-latency instruction completes.

Table 8.2 Long-latency FP instructions
Operand Instruction type Instructions Cycles in M1

Double-precision (64-bit) Any multiplication mul.d,madd.d, msub.d,nmadd.d, nmsub.d 2

Single-precision (32-bit) Reciprocal recip.s 10

divide, square-root div.s,sqrt.s 14

reciprocal square root rsqrt.s 14

Double-precision (64-bit) Reciprocal recip.d 21

divide, square-root div.d,sqrt.d 29

reciprocal square root rsqrt.d 31
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8.5.6 Delays on mfc1/mtc1 instructions

Any FP instruction with GP register operands gets sent the GP values when it is launched, so mtc1 instructions have
standard FP instruction timing. An mfc1 instructions needs to write data into the GP register file. In general it will
not complete quickly enough to use its main-pipeline register file write slot, so the value returning to the integer unit
must wait until the integer unit is not using the GP register write port. The instruction which uses the value obtained
by the mfc1 may stall until the data is available, but that usually won’t be very long.

8.5.7 Delays caused by dependency on FPU status register fields

The conditional branch instructions bc1f/bc1t and the conditional moves movf/movt execute in the main pipe-
line, but test a FP condition bit generated by the various FPU compare instructions.

8.5.8 Slower operation in MIPS I™ compatibility mode

Historic 32-bit MIPS CPUs had only 16 “even-numbered” floating point registers usable for arithmetic, with odd-
numbered registers working together with them to let you load, store and transfer double-precision (64-bit) values.
Software written for those old CPUs is incompatible with the full modern FPU, so there’s a compatibility bit provided
in Status[FR] - set zero to use MIPS I compatible code. This comes at the cost of slower repeat rates for FP instruc-
tions, because in compatibility mode not all the bypasses shown in the pipeline diagram above are active.
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The MIPS32® DSP ASE

The MIPS DSP ASE is provided to accelerate a large range of DSP algorithms. You can get most programming infor-
mation from this chapter. There’s more detail in the formal DSP ASE specification [MIPSDSP], but expect to read
through lots of material aimed at hardware implementors. You may also find [DSPWP] useful for tips and examples
of converting DSP algorithms for the DSP ASE.

Different target applications generally need different data size and precision:

• 32-bit data: audio (non-hand-held) decoding/encoding - a wide range of “hi-fi” standards for consumer audio or
television sound.

Raw audio data (as found on CD) is 16-bit; but if you do your processing in 16 bits you lose precision beyond
what is acceptable for hi-fi.

• 16-bit data: digital voice for telephony. International telephony code/decode standards include G.723.1
(8Ksample/s, 5-6Kbit/s data rate, 37ms delay), G.729 (8Kbit/s, 15ms delay) and G.726 (16-40Kbit/s, computa-
tionally simpler and higher quality, good for carrying analogue modem tones). Application-specific filters are
used for echo cancellation, noise cancellation, and channel equalization.

Also used for soft modems and much general “DSP” work (filters, correlation, convolution); lo-fi devices use 16
bits for audio.

• 8-bit data: processing of printer images, JPEG (still) images and video data.

9.1 Features provided by the MIPS® DSP ASE

Those target applications can benefit from unconventional architecture features because they rely on:

• Fixed-point fractional data types: It is not yet economical (in terms of either chip size or power budget) to use
floating point calculations in these contexts. DSP applications use fixed-point fractions. Such a fraction is just a
signed integer, but understood to represent that integer divided by some power of two. A 32-bit fractional format

where the implicit divisor is 216 (65536) would be referred to as a Q15.16 format; that’s because there are 16 bits
devoted to fractional precision and 15 bits to the whole number range (the highest bit does duty as a sign bit and
isn’t counted).

With this notation Q31.0 is a conventional signed integer, and Q0.31 is a fraction representing numbers between
-1 and 1 (well, nearly 1). It turns out that Q0.31 is the most popular 32-bit format for DSP applications, since it
won’t overflow when multiplied (except in the corner case where -1×-1 leads to the just-too-large value 1).
Q0.31 is often abbreviated to Q31.

The DSP ASE provides support for Q31 and Q15 (signed 16-bit) fractions.

• Saturating arithmetic: It’s not practicable to build in overflow checks to DSP algorithms - they need to be too
fast. Clever algorithms may be built to be overflow-proof; but not all can be. Often the least worst thing to do
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when a calculation overflows is to make the result the most positive or most negative representable value. Arith-
metic which does that is called saturating - and quite a lot of operations in the DSP ASE saturate (in many cases
there are saturating and non-saturating versions of what is otherwise the same instruction).

• Multiplying fractions: if you multiply two Q31 fractions by re-using a full-precision integer multiplier, then
you’ll get a 64-bit result which consists of a Q62 result with (in the very highest bit) a second copy of the sign
bit. This is a bit peculiar, so it’s more useful if you always do a left-shift-by-1 on this value, producing a Q63 for-
mat (a more natural way to use 64 bits). Q15 multiplies which generate a Q31 value have to do the shift-left too.
That’s what all the mulq... instructions do.

• Rounding: some fractional operations implicitly discard less significant bits. But you get a better approximation
if you bump the truncated result by one when the discarded bits represent more than a half of the value of a 1 in
the new LS position. That’s what we mean by rounding in this chapter.

• Multiply-accumulate sequences with choice of four accumulators: (with fixed-point types, sometimes saturat-
ing).

The 34K already has quite a slick integer multiply-accumulate operation, but it’s not so efficient when used for
fractional and saturating operations.

The sequences are made more usable by having four 64-bit result/accumulator registers - (the old MIPS multiply
divide unit has just one, accessible as the hi/lo registers). The new ac0 is the old hi/lo, for backward compatibility.

• Benefit from “SIMD” operations.: Many DSP calculations are a good match for “Single Instruction Multiple
Data” or vector operations, where the same arithmetic operation is applied in parallel to several sets of operands.

In the MIPS DSP ASE, some operations are SIMD type - two 16-bit operations or four 8-bit operations are car-
ried out in parallel on operands packed into a single 32-bit general-purpose register. Instructions operating on
vectors can be recognized because the name includes.ph (paired-half, usually signed, often fractional) or.qb
(quad-byte, always unsigned, only occasionally fractional).

The DSP ASE hardware involves an extensive re-work of the normal integer multiply/divide unit. As mentioned
above it has four 64-bit accumulators (not just one) and a new control register, described immediately below.

9.2 The DSP ASE control register

This is a part of the user-mode programming model for the DSP ASE, and is a 32-bit value read and written with the
rddsp/wrdsp instructions. It holds state information for some DSP sequences.

In Figure 9.1:

ccond: condition bits set by compare instructions (there have to be four to report on compares between vector types).
"Compare" operations on scalars or vectors of length two only touch the lower-numbered bits. DSPControl bits 31:28
are used for more ccond bits in 64-bit machines.

Figure 9.1 Fields in the DSPControl Register
31 28 27 24 23 16 15 14 13 12 7 6 5 0

0 ccond ouflag 0 EFI c scount 0 pos
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ouflag: one of these bits may be set when a result overflows (whether or not the result is saturated depends on the
instruction - the flag is set in either case). The "ou" stands for "overflow/underflow" - "underflow" is used here for a
value which is negative but with excessive absolute value.

Any overflowed/underflowed result produced by any DSP ASE instruction sets a ouflag bit, except for addsc/
addwc and shilo/shilov.

The 6 bits are set according to the destination of the operation which overflowed, and the kind of operation it
was:

EFI: set by any of the accumulator-to-register bitfield extract instructions extp, extpv, extpdp, or extpdp. It’s set
to 1 if and only if the instruction finds there are insufficient bits to extract. That is, if DSPControl[pos] - which is
supposed to mark the highest-numbered bit of the field we’re extracting - is less than the size value specified by the
instruction.

c: Carry bit for 32-bit add/carry instructions addsc and addwc.

scount, pos: Fields for use by "variable" bitfield insert and extract instructions, such as insv (the normal MIPS32
ins/ext instructions have the field size and position hard-coded in the instruction).

scount specifies the size of the bit field to be inserted, while pos specifies the insert position.

Caution: in all inserts (following the lead of the standard MIPS32 insert/extract instructions) pos is set to the
lowest bit number in the field. But in the DSP ASE extract-from-accumulator instructions (extp, extpv, ext-
pdp and extpdpv), pos identifies the highest-numbered bit in the field.

The latter two (“dp”) instructions post-decrement pos (by the bitfield length size), to help software which is
unpacking a series of bitfields from a dense data structure.

The mthlip instruction will increment the pos value by 32 after copying the value of lo to hi.

9.2.1 DSP accumulators

Whereas a standard MIPS32 architecture CPU has just one 64-bit multiply unit accumulator (accessible as hi/lo), the
DSP ASE provides three 64-bit accumulators. Instructions accessing the extra accumulators specify a 2-bit field as 0-
3 (0 selects the original accumulator).

9.3 Software detection of the DSP ASE

You can find out if your core supports the DSP ASE by testing the Config3[DDSP] bit (see notes to Figure 4.4).

Then you need to enable use of instructions from the MIPS DSP ASE by setting Status[MX] (or its alternate view
TCStatus[TMX]) to 1.

Bit No Overflowed destination/instruction
16-19 Destination register is a multiply unit accumulator:

separate bits are respectively for accumulators 0-3.
20 Add/subtract.
21 Multiplication of some kind.
22 Shift left or conversion to smaller type
23 Accumulator shift-then-extract
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9.4 DSP instructions

The DSP instruction set is nothing like the regular and orthogonal MIPS32 instruction set. It’s a collection of special-
case instructions, in many cases aimed at the known hot-spots of important algorithms.

We’ll summarize the instructions under headings, but then list all of them in Section 9.2, "DSP instructions in
alphabetical order", an alphabetically-ordered list which provides a terse but usually-sufficient description of what
each instruction does.

9.4.1 Hints in instruction names

An instruction’s name may have some suffixes which are often informative:

q: generally means it treats operands as fractions (which isn’t important for adds and subtracts, but is important for
multiplications and convert operations);

_s: usually means the full-precision result is saturated to the size of the destination; _sa is used for instructions which
saturate intermediate results before accumulating; and r: denotes rounding (see above);

.w,.ph,.qb: suggest the operation is dealing with 32-bit, paired-half or quad-byte values respectively. Where there
are two of these (as in macq_s.w.phl) the first one suggests the type of the result, and the second the type of the
operand(s).

v: (in a shift instruction) suggests that the shift amount is defined in a register, rather than being encoded in a field of
the instruction.

To help you get your arms around this collection of instructions we’ll group them by likely usage - guided by the type
of the result performed, with an eye to the application. The multiplication instructions are more tricky: most of them
have multiple uses. We’ve sorted them by the most obvious use (likely also the most common). The classification
we’ve chosen divides them into:

• Arithmetic - 64-bit

• Arithmetic - saturating and/or SIMD Types

• Bit-shifts - saturating and/or SIMD types

• Comparison and "conditional-move" operations on SIMD types - includes pick instructions.

• Conversions to and from SIMD types

• Multiplication - SIMD types with result in GP register

• Multiply Q15s from paired-half and accumulate

• Load with register+register address

• DSPControl register access

• Accumulator access instructions

• Dot products and building blocks for complex multiplication - includes full-word (Q31) multiply-accumulate

• Other DSP ASE instructions  - everything else...
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9.4.2 Arithmetic - 64-bit

addsc/addwc generate and use a carry bit, for efficient 64-bit add.

9.4.3 Arithmetic - saturating and/or SIMD Types

• 32-bit signed saturating arithmetic: addq_s.w, subq_s.w and absq_s.w.

• Paired-half and quad-byte SIMD arithmetic: perform the same operation simultaneously on both 16-bit halves or
all four 8-bit bytes of a 32-bit register. The “q” in the instruction mnemonic for the PH operations here is cos-
metic: Q15 and signed 16-bit integer add/subtract operations are bit-identical - Q15 only behaves very differently
when converted or multiplied.

The paired half operations are: addq.ph/addq_s.ph, subq.ph/subq_s.ph and absq_s.ph.

The quad-byte operations (all unsigned) are: addu.qb/addu_s.qb, subu.qb/subu_s.qb.

• Sum of quad-byte vector: raddu.w.qb does an unsigned sum of the four bytes found in a register, zero extends
the result and delivers it as a 32-bit value.

9.4.4 Bit-shifts - saturating and/or SIMD types

All shifts can either have a shift amount encoded in the instruction, or - indicated by a trailing “v” in the instruction
name - provided as a register operand. PH and 32-bit shifts have optional forms which saturate the result.

• 32-bit signed shifts: include a saturating version of shift left, shll_s.w; and an auto-rounded shift right (just
the “arithmetic”, sign-propagating form): shra_r.w. Recall from above that rounding can be imagined as pre-
adding a half to the least significant surviving bit.

• Paired-half and quad-byte SIMD shifts: shll.ph/shllv.ph/shll_s.ph/shllv_s are as above. For PH
only there’s a shift-right-arithmetic instruction (“arithmetic” means it propagates the sign bit downward)
shra.ph, which has a variant which rounds the result shra_r.ph.

The quad-byte shifts are unsigned and don’t round or saturate: shll.qb/shllv.qb, shrl.qb/shrlv.qb.

9.4.5 Comparison and “conditional-move” operations on SIMD types

The “cmp” operations simultaneously compare and set flags for two or four values packed in a vector (with equality,
less-than and less-than-or-equal tests). For PH that’s cmp.eq.ph, cmp.lt.ph and cmp.le.ph. The result is left
in the two LS bits of DSPControl[ccond].

For quad-byte values cmpu.eq.qb, cmpu.lt.qb and cmpu.le.qb simultaneously compare and set flags for
four bytes in DSPControl[ccond] - the flag relating to the bytes found in the low-order bits of the source register is in
the lowest-numbered bit (and so on). There’s an alternative set of instructions cmpgu.eq.qb, cmpgu.lt.qb and
cmpgu.le.qb which leave the 4-bit result in a specified general-purpose register.

pick.ph uses the two LS bits of DSPControl[ccond] (usually the outcome of a paired-half compare instruction, see
above) to determine whether corresponding halves of the result should come from the first or second source register.
Among other things, this can implement a paired-half conditional move. You can reverse the order of your condi-
tional inputs to do a move dependent on the complementary condition, too.

pick.qb does the same for QB types, this time using four bits of DSPControl[ccond].
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9.4.6 Conversions to and from SIMD types

Conversion operations from larger to smaller fractional types have names which start “precrq...” for “precision
reduction, fractional”. Conversion operations from smaller to larger have names which start “prece...” for “preci-
sion expansion”.

• Form vector from high/low parts of two other paired-half values: packrl.ph makes a paired-half vector from
two half vectors, swapping the position of each sub-vector. It can be used to acquire a properly formed sub-vec-
tor from a non-aligned data stream.

• One Q15 from a paired-half to a Q31 value: preceq.w.phl/preceq.w.phr select respectively the “left”
(high bit numbered) or “right” (low bit numbered) Q15 value from a paired-half register, and load it into the
result register as a Q31 (that is, it’s put in the high 16 bits and the low 15 bits are zeroed).

• Two bytes from a quad-byte to paired-half: precequ.ph.qbl/precequ.ph.qbr picks two bytes from
either the “left” (high bit numbered) or “right” (low bit numbered) halves of a quad-byte value, and unpacks to a
pair of Q15 fractions.

precequ.ph.qbla does the same, except that it picks two “alternate” bytes from bits 31-24 and 15-8, while
precequ.ph.qbra picks bytes from bits 23-16 and 7-0.

Similar instructions without the q - preceu.ph.qbl, preceu.ph.qbr, preceu.ph.qbla” and pre-
ceu.ph.qbra - work on the same register fields, but treat the quantities as integers, so the 16-bit results get
their low bits set.

• 2×Q31 to a paired-half: both operands and result are assumed to be signed fractions, so precrq.ph.w just
takes the high halves of the two source operands and packs them into a paired-half; precrq_rs.ph.w rounds
and saturates the results to Q15.

• 2×paired-half to quad-byte: you need two source registers to provide four paired-half values, of course. This is a
fractional operation, so it’s the low bits of the 16-bit fractions which are discarded.

precrq.qb.ph treats the paired-half operands as unsigned fractions, retaining just the 8 high bits of each 16-
bit component.

precrqu_s.qb.ph treats the paired-half operands as Q15 signed fractions and both rounds and saturates the
result (in particular, a negative Q15 fraction produces a zero byte, since zero is the lowest representable quan-
tity).

• Replicate immediate or register value to paired-half: in repl.ph the value to be replicated is a 10-bit signed
immediate value (that’s in the range -512 ≤ x ≤ 511) which is sign-extended to 16 bits, whereas in replv.ph
the value - assumed to be already a Q15 value - is in a register.

• Replicate single value to quad-byte: there’s both a register-to-register form replv.qb and an immediate form
repl.qb.

9.4.7 Multiplication - SIMD types with result in GP register

When a multiply’s destination is a general-purpose register, the operation is still done in the multiply unit, and you
should expect it to overwrite the hi/lo registers (otherwise known as ac0.)
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• 8-bit×16-bit 2-way SIMD multiplication: muleu_s.ph.qbl/muleu_s.ph.qbr picks the “left” (high bit
numbered) or “right” (low bit numbered) pair of byte values from one source register and a pair of 16-bit values
from the other. Two unsigned integer multiplications are done at once, the results unsigned-saturated and deliv-
ered to the two 16-bit halves of the destination.

The asymmetric use of the source operands is not a bit like a Q15 operation. But 8×16 multiplies are heavily used
in imaging and video processing (JPEG image encode/decode, for example).

• Paired-half SIMD multiplication: mulq_rs.ph multiplies two Q15s at once and delivers it to a paired-half
value i n a general-purpose register, with rounding and saturation.

• Multiply half-PH operands to a Q31 result: muleq_s.w.phl/muleq_s.w.phr pick the “left”/”right” Q15
value respectively from each operand, multiply and store a Q31 value.

“Precision-doubling” multiplications like this can overflow, but only in the extreme case where you multiply -
1×-1, and can’t represent 1 exactly.

9.4.8 Multiply Q15s from paired-half and accumulate

maq_s.w.phl/maq_s.w.phr picks either the left/high or right/low Q15 value from each operand, multiplies
them to Q31 and accumulates to a Q32.31 result. The multiply is saturated only when it’s -1×-1.

maq_sa.w.phl/maq_sa.w.phr differ in that the final result is saturated to a Q31 value held in the low half of
the accumulator (required by some ITU voice encoding standards).

9.4.9 Load with register + register address

Previously available only for floating point data30: lwx for 32-bit loads, lhx for 16-bit loads (sign-extended) and
lbux for 8-bit loads, zero-extended.

9.4.10 DSPControl register access

wrdsp rs,mask sets DSPControl fields, but only those fields which are enabled by a 1 bit in the 6-bit mask.

rddsp reads DSPControl into a GPR; but again it takes a mask field. Bitfields in the GPR corresponding to
DSPControl fields which are not enabled will be set all-zero.

The mask bits tie up with fields like this:

30. Well, an integer instruction is also included in the MIPS SmartMIPS™ ASE.

Table 9.1 Mask bits for instructions accessing the DSPControl register
Mask Bit DSPControl field

0 pos

1 scount

2 c

3 ouflag

4 ccond

5 EFI
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9.4.11 Accumulator access instructions

• Historical instructions which now access new accumulators: the familiar mfhi/mflo/mthi/mtlo instructions
now take an optional extra accumulator-number parameter.

• Shift and move to general register: extr.w/extr_r.w/extr_rs.w gets a 32-bit field from an accumulator
(starting at bit 0 up to 31) and puts the value in a general purpose register. At your option you can specify round-
ing and signed 32-bit saturation.

extrv.w/extrv_r.w/extrv_rs.w do the same but specify the field’s starting bit number with a register.

• Extract bitfield from accumulator: extp/extpv takes a bitfield (up to 32 bits) from an accumulator and moves
it to a GPR. The length of the field can be an immediate value or from a register. The position of the field is
determined by DSPControl[pos], which holds the bit number of the most significant bit.

extpdp/extpdpv do the same, but also auto-decrement DSPControl[pos] to the bit-number just below the field
you extracted.

• Accumulator rearrangement: shilo/shilov has a signed shift value between -32 and +31, where positive
numbers shift right, and negative ones shift left. The “v” version, as usual, takes the shift value from a register.
The right shift is a “logical” type so the result is zero extended.

• Fill accumulator pushing low half to high: mthlip moves the low half of the accumulator to the high half, then
writes the GPR value in the low half. Generally used to bring 32 more bits from a bitstream into the accumulator
for parsing by the various ext... instructions.

9.4.12 Dot products and building blocks for complex multiplication

In 2-dimensional vector math (or in any doubled-up step of a multiply-accumulate sequence which has been opti-
mized for 2-way SIMD) you’re often interested in the dot product of two vectors:

v[0]*w[0] + v[1]*w[1]

In many cases you take the dot product of a series of vectors and add it up, too.

Some algorithms use complex numbers, represented by 2D vectors. Complex numbers use i to stand for “the square
root of -1”, and a vector [a,b] is interpreted as a+ib (mathematicians leave out the multiply sign and use single-
letter variables, habits which would not be appreciated in C programming!) Complex multiplication just follows the
rules of multiplying out sums, remembering that i*i=-1, so:

(a + ib)*(c + id) = (a*c - b*d) + i(a*d + b*c)

Or in vector format:

[a, b] * [c, d] = [a*c - b*d, a*d + b*c]

The first element of the result (the “real component”) is like a dot product but with a subtraction, and the second (the
“imaginary component”) is like a dot product but with the vectors crossed.
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• Q15 dot product from paired-half, and accumulate: dpaq_s.w.ph does a SIMD multiply of the Q15 halves of
the operands, then adds the results and saturates to form a Q31 fraction, which is accumulated into a Q32.31 frac-
tion in the accumulator.

dpsq_s.w.ph does the same but subtracts the dot product from the accumulator.

For the imaginary component of a complex multiply, first swap the Q15 numbers in one of the register operands
with a rot (bit-rotate) instruction.

For the real component of a complex Q15 multiply, you have the difference-of-products instruction
mulsaq_s.w.ph, which parallel-multiplies both Q15 halves of the PH operands, then computes the difference
of the two results and leaves it in an accumulator in Q32.31 format (beware: this does not accumulate the result).

• 16-bit integer dot-product from paired-half, and accumulate: dpau.h.qbl/dpau.h.qbr picks two QB val-
ues from each source register, parallel-multiplies the corresponding pairs to integer 16-bit values, adds them
together and then adds the whole lot into an accumulator. dpsu.h.qbl/dpsu.h.qbr do the same sum-of-
products, but the result is then subtracted from the accumulator. In both cases, note this is integer (not fractional)
arithmetic.

• Q31 saturated multiply-accumulate: is the nearest thing you can get to a dot-product for Q31 values.
dpaq_sa.l.w does a Q31 multiplication and saturates to produce a Q63 result, which is added to the accumu-
lator and saturated again. dpsq_sa.l.w does the same, except that the multiply result is subtracted from the
accumulator (again, useful for the real component of a complex number).

9.4.13 Other DSP ASE instructions

• Branch on DSPControl field: bposge32 branches if DSPControl[pos]≥32.

Typically the test is for “is it time to load another 32 bits of data from the bitstream yet?”.

• Circular buffer index update: modsub takes an operand which packs both a maximum index value and an index
step, and uses it to decrement a “buffer index” by the step value, but arranging to step from zero to the provided
maximum.

• Bitfield insert with variable size/position: insv is a bit-insert instruction. It acts like the MIPS32 standard
instruction ins except that the position and size of the inserted field are specified not as immediates inside the
instruction, but are obtained from DSPControl[pos] (which should be set to the lowest numbered bit of the field
you want) and DSPControl[scount] respectively.

• Bit-order reversal: bitrev reverses the bits in the low 16 bits of the register. The high half of the destination is
zero.

The bit-reverse operation is a computationally crucial step in buffer management for FFT algorithms, and a 16-
bit operation supports up to a 32K-point FFT, which is much more than enough. A full 32-bit reversal would be
expensive and slow.

9.5 Macros and typedefs for DSP instructions

It’s useful to be able to use fragments of C code to describe what some instructions do. To do that, we need to be able

to refer to fractional types, saturation and vectors. Here are the definitions we’re using31:
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typedef long long int64;
typedef int int32;

/* accumulator type */
typedef signed long long q32_31;

typedef signed int q31;

#define MAX31 0x7FFFFFFF
#define MIN31 -(1<<31)
#define SAT31(x) (x > MAX31 ? MAX31: x < MIN31 ? MIN31: x)

typedef signed short q15;
#define MAX15 0x7FFF
#define MIN15 -(1<<15)
#define SAT15(x) (x > MAX15 ? MAX15: x < MIN15 ? MIN15: x)

typedef unsigned char u8;
#define MAXUBYTE 255
#define SATUBYTE(x) (x > MAXUBYTE ? MAXUBYTE: x < 0 ? 0: x)

/* fields in the vector types are specified by relative bit
   position, but C definitions are in memory order, so these
   definitions need to be endianness-dependent */

#ifdef BIG_ENDIAN
typedef struct{
  q15 h1, h0;
} ph;

typedef struct{
  u8 b3, b2, b1, b0;
} qb;
#else
typedef struct{
  q15 h0, h1;
} ph;

typedef struct{
  u8 b0, b1, b2, b3;
} qb;
#endif

9.6 Almost Alphabetically-ordered table of DSP ASE instructions

31. This page needs more work, and I hope it will be improved in a future version of the manual.

Table 9.2 DSP instructions in alphabetical order
Instruction Description

absq_s.w rd,rt Q31/signed integer absolute value with saturation
addq.ph rd,rs,rt 2×SIMD Q15 addition, without and with saturation of the result
addq_s.ph rd,rs,rt

addq_s.w rd,rs,rt Q31/signed integer addition with saturation
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addsc rd,rs,rt Add setting carry, then add with carry. The carry bit is kept in DSPControl[c]. So to add
the 64-bit values in registers yhi/ylo, zhi/zlo to produce a 64-bit value in xhi/xlo, just do:
addsc xlo, ylo, zlo; addwc xhi, yhi, zhi

addwc rd,rs,rt

addu.qb rd,rs,rt 4×SIMD QBYTE addition, without and with SATUBYTE saturation.
addu_s.qb rd,rs,rt

bitrev rd,rt Delivers the bit-reversal of the low 16 bits of the input (result has high half zero).
bposge32 offset Branch if DSPControl[pos]>=32. Like most branch instruction, it has a 16-bit “PC-rel-

ative” target encoding.
cmp.eq.ph rs,rt Signed compare of both halves of two paired-half (“PH”) values. Results are written into

DSPControl[ccond1-0] for high and low halves respectively (1 for true, 0 for false).
A signed compare works for both Q15 or signed 16-bit values.

cmp.le.ph rs,rt

cmp.lt.ph rs,rt

cmpgu.eq.qb rd,rs,rt Unsigned simultaneous compare of all four bytes in quad-byte values. The four result
bits are written into the four LS bits of general register rd.cmpgu.le.qb rd,rs,rt

cmpgu.lt.qb rd,rs,rt

cmpu.eq.qb rs,rt Unsigned simultaneous compare of all four bytes in quad-byte values. The four result
bits are written into register DSPControl[cond3-0].cmpu.le.qb rs,rt

cmpu.lt.qb rs,rt

dpaq_s.w.ph ac,rs,rt “Dot product and accumulate”, with Q31 saturation of each multiply result:
ph rs,rt; ac += SAT31(rs.h0*rt.h0 + rs.h1*rt.h1);
The accumulator is effectively used as a Q32.31 fraction.

dpaq_sa.l.w ac,rs,rt Q31 saturated multiply-accumulate
dpau.h.qbl qb rs, rt;

ac += rs.b3*rt.b3 + rs.b2*rt.b2;
Dot-product and accumulate of quad-byte values ("l" for left, because these are the
higher bit-numbered bytes in the 32-bit register).
Not a fractional computation, just unsigned 8-bit integers.

dpau.h.qbr Then for the lower bit-numbered bytes:
qb rs, rt;
ac += rs.b1*rt.b1 + rs.b0*rt.b0;

dpsq_s.w.ph ac,rs,rt Paired-half fractional “dot product and subtract from accumulator”
ph rs, rt;
q32_31 ac;
ac -= SAT31(rs.h1*rt.h1 + rs.h0*rt.h0);

dpsq_sa.l.w ac,rs,rt Q31 saturated fractional-multiply, then subtract from accumulator:
q31 rs, rt; q32_31 ac;
ac -= SAT31(rs*rt);

QB format dot-product and subtract from accumulator. This is an integer (not fractional)
multiplication and comes in “left” and “right” (higher/lower-bit numbered pair) ver-
sions:

dpsu.h.qbl ac,rs,rt qb rs,rt;
ac -= rs.b3*rt.b3 + rs.b2*rt.b2;

dpsu.h.qbr ac,rs,rt qb rs,rt;
ac -= rs.b1*rt.b1 + rs.b0*rt.b0;

extp rt,ac,size Extract bitfield from an accumulator to register. The length of the field (number of bits)
can be an immediate constant or can be provided by a second source register (in the v
variants).
The field position, though, comes from DSPControl[pos], which marks the highest-
numbered bit of the field (note that the MIPS32 standard bitfield extract instructions
specify the lowest bit number in the field). In the dp variants like extpdp/extpdpv,
DSPControl[pos] is auto-decremented by the length of the field extracted, which is use-
ful when unpacking the accumulator into a series of fields.

extpdp rt,ac,size

extpdpv rt,ac,rs

extpv rt,ac,rs

Table 9.2 DSP instructions in alphabetical order
Instruction Description
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extr.w rt,ac,shift Extracts a bit field from an accumulator into a general purpose register. The LS bit of the
extracted field can start anywhere from bit zero to 31 of the accumulator:
int64 ac; unsigned int rt;
rt = (ac >> shift) & 0xFFFFFFFF;
At option you can specify rounding (_r names):
int64 ac; unsigned int rt;
rt = ((ac + 1<<(shift-1)) >> shift) & 0xFFFFFFFF;
and signed 32-bit saturation of the result (_s/_rs names).
The extrv... variants specify the shift amount (still limited to 31 positions) with a
register.

extr_r.w rt,ac,shift

extr_rs.w rt,ac,shift

extrv.w rt,ac,rs

extrv_r.w rt,ac,rs

extrv_rs.w rt,ac,rs

extr_s.h rt,ac,shift Obtain a right-shifted value from an accumulator and form a signed 16-bit saturated
result.extrv_s.h rt,ac,rs

insv rt,rs The bitfield insert in the standard MIPS32 instruction set is ins rt,rs,pos,size,
and the position and size must be constants (encoded as immediates in the instruction
itself). This instruction permits the position and size to be calculated by the program, and
then supplied as DSPControl[pos] and DSPControl[scount] respectively.
In this case DSPControl[pos] must be set to the lowest numbered bit in the field to be
inserted: yes, that’s different from the extp... instructions.

lbux rd,index(base) Load operations with register+register address formation. lbux is a load byte and zero
extend, lhx loads half-word and sign-extends, and lwx loads a whole word. The full
address must be naturally aligned for the data type.

lhx rd,index(base)

lwx rd, index(base)

maq_s.w.phl ac,rs,rt Non-SIMD Q15 multiply-accumulate, with operands coming from either the “left”
(higher bit number) or “right” (lower bit number) half of each of the operand registers.
In all versions the Q15 multiplication is saturated to a Q31 results. The “_sa” variants
saturates the add result in the accumulator to a Q31, too.

maq_s.w.phr ac,rs,rt

maq_sa.w.phl ac,rs,rt

maq_sa.w.phr ac,rs,rt

mfhi rd, ac Legacy instruction, which now works on new accumulators (if you provide a second
nonzero argument). Copies high/low half (respectively) of accumulator to rd.mflo rd, ac

modsub rd,rs,rt Circular buffer index update. rt packs both the decrement amount (low 8 bits) and the
highest index (high 24 bits), then this instruction calculates:
rd = (rs == 0) ?   ((unsigned) rt >> 8): rs - (rt & 0xFF);

mthi rs, ac Legacy instruction working on new accumulators. Moves data from rd to the high half of
an accumulator.

mthlip rs, ac Moves the low half of the accumulator to the high half, then writes the GPR value in the
low half.

mtlo rs, ac Legacy instruction working on new accumulators. Moves data from rd to the low half of
an accumulator.

muleq_s.w.phl rd,rs,rt Multiply selected Q15 values from “left”/“right” (higher/lower numbered bits) of rd/rs
to a Q31 result in a general purpose register, Q31-saturating.
Like all multiplies which target general purpose registers, it may well use the multiply
unit and overwrite hi/lo, also known as ac0.

muleq_s.w.phr rd,rs,rt

muleu_s.ph.qbl rd,rs,rt A 2×SIMD 16-bit×8-bit multiplication.
muleu_s.ph.qbl does something like:
rd = ((LL_B(rs)*LEFT_H(rt)) << 16) |
     ((LR_B(rs)*RIGHT_H(rt));
Note that the multiplications are unsigned integer multiplications, and each half of the
result is unsigned-16-bit-saturated.
The asymmetric source operands are quite unusual, and note this is not a fractional com-
putation.
muleu_s.ph.qbr is the same but picks the RL and RR (low bit numbered) byte val-
ues from rs.

muleu_s.ph.qbr rd,rs,rt

mulq_rs.ph rd,rs,rt 2×SIMD Q15 multiplication to two Q15 results. Result in general purpose register, hi/lo
or ac0 may be overwritten.

Table 9.2 DSP instructions in alphabetical order
Instruction Description
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mulsaq_s.w.ph ac,rs,rt ac += (LEFT_H(rs)*LEFT_H(rt)) -
(RIGHT_H(rs)*RIGHT_H(rt));
The multiplications are done to Q31 values, saturated if they overflow (which is only
possible when -1¥-1 makes +1). The accumulator is really a Q32.31 value, so is
unlikely to overflow; no overflow check is done on the accumulation.

packrl.ph rd,rs,rt pack a “right” and “left” half from different registers, ie
rd = (((rs & 0xFFFF) << 16) | (rt >> 16) & 0xFFFF);

pick.ph rd,rs,rt Like a 2-way SIMD conditional move:
ph rd,rs,rt;
rd.l = DSPControl[ccond1] ? rs.l: rt.l;
rd.r = DSPControl[ccond0] ? rs.r: rt.r;

pick.qb rd,rs,rt Kind of a 4-way SIMD conditional move:
qb rd,rs,rt;
rd.ll = DSPControl[ccond3] ? rs.ll: rt.ll;
rd.lr = DSPControl[ccond2] ? rs.lr: rt.lr;
rd.rl = DSPControl[ccond1] ? rs.rl: rt.rl;
rd.rr = DSPControl[ccond0] ? rs.rr: rt.rr;

preceq.w.phl rd,rt Convert a Q15 value (either left/high or right/low half of rt) to a Q31 value in rd.
preceq.w.phr rd,rt

precequ.ph.qbl rd,rt Simultaneously convert two unsigned 8-bit fractions from rt to Q15 and load into the
two halves of rd.
precequ.ph.qbl uses rt.ll/rt.lr; precequ.ph.qbla uses rt.ll/rt.rl; pre-
cequ.ph.qbr uses rt.rl/rt.rr; and precequ.ph.qbra uses rt.lr/rt.rr.

precequ.ph.qbla rd,rt

precequ.ph.qbr rd,rt

precequ.ph.qbra rd,rt

preceu.ph.qbl rd,rt Zero-extend two unsigned byte values from rt to unsigned 16-bit and load into the two
halves of rd.
preceu.ph.qbl uses rt.ll/rt.lr; preceu.ph.qbla uses rt.ll/rt.rl; pre-
ceu.ph.qbr uses rt.rl/rt.rr; and preceu.ph.qbra uses rt.lr/rt.rr.

preceu.ph.qbla rd,rt

preceu.ph.qbr rd,rt

preceu.ph.qbra rd,rt

precrq.ph.w rd,rs,rt precrq.ph.w makes a paired-Q15 value by taking the MS bits of the Q31 values in rs
and rt, like this:
rd = (rs & 0xFFFF0000) | ((rt>>16) & 0xFFFF);
precrq_rs.ph.w is the same, but rounds and Q15-saturates both half-results.

precrq_rs.ph.w rd,rs,rt

precrq.qb.ph rd,rs,rt Form a quad-byte value from two paired-halves. We use the upper 8 bits of each half-
word value, as if we were converting an unsigned 16-bit fraction to an unsigned 8-bit
fraction. In C: rd = (rs & 0xFF000000) | (rs<<8 & 0xFF0000) |
     (rt>>16 & 0xFF00) | (rt>>8 & 0xFF);

precrqu_s.qb.ph Does the same, but each conversion is rounded and saturated to an unsigned byte. Note
in particular that a negative Q15 quantity yields a zero byte, since zero is the smallest
representable value.

precrqu_s.qb.ph rd,rs,rt

raddu.w.qb rd,rs Set rd to the unsigned 32-bit integer sum of the four unsigned bytes in rs.
rddsp rt,mask Read the contents of the DSPControl register into rt, but zeroing out any fields for

which the appropriate mask bit is zeroed, see Figure 9.1 above.
repl.ph rd,imm Replicate the same signed value into the two halves of a PH value in rd; the value is

either provided as an immediate whose range is limited between -512 and +511
(repl.ph) or from the rt register (replv.ph).

replv.ph rd,rt

repl.qb rd,imm Replicate the same 8-bit value into all four parts of a QB value in rd; the value can come
from an immediate constant, or the rt register of the replv.qb instruction.replv.qb rd,rt

shilo ac,shift Do a right or left shift (use a negative value for a left shift) of a 64-bit accumulator. The
right shift is “logical”, bringing in zeroes into the high bits.
shilo takes a constant shift amount, while shilov get the shift amount from rs. The
shift amount may be no more than 31 right or 32 left.

shilov ac,rs

Table 9.2 DSP instructions in alphabetical order
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9.7 DSP ASE instruction timing

Most DSP ASE operations are pipelined, and instructions can often be issued at the maximum CPU rate, but getting
results back into the general-purpose register file takes a few clocks. The timings are generally fairly similar to those
for the standard multiply instructions, and are listed - together with delays for the standard instruction set - in Section
6.6.2, "Data dependency delays classified".

shll.ph rd, rt, sa 2×SIMD (paired-half) shift left. The “v” versions take the shift amount from a register,
and the “_s” versions saturate the result to a signed 16-bit range.shllv.ph rd, rt, rs

shll_s.ph rd, rt, sa

shllv_s.ph rd, rt, rs

shll.qb rd, rt, sa 4×SIMD quad-byte shift left, with shift-amount-in-register and saturating (to an
unsigned 8-bit result) versions.shllv.qb rd, rt, rs

shll_s.w rd, rt, sa Signed 32-bit shift left with saturation, with shift-amount-in-register shllv_s option.
shllv_s.w rd, rt, rs

shra.ph rd, rt, sa 2×SIMD paired-half shift-right arithmetic (“arithmetic” because the vacated high bits of
the value are replaced by copies of the input bit 16, the sign bit) - thus performing a cor-
rect division by a power of two of a signed number.
As usual the shra_v variant has the shift amount specified in a register.
The _r versions round the result first (see the bullet on rounding above).

shra_r.ph rd, rt, sa

shrav.ph rd, rt, rs

shrav_r.ph rd, rt, rs

shra_r.w rd, rt, sa 32-bit signed/arithmetic shift right with rounding, see the bullet on rounding.
shrav_r.w rd, rt, rs

shrl.qb rd, rt, sa 4×SIMD shift right logical (“logical” means that the vacated high bits are filled with
zero, appropriate since the byte quantities in a quad-byte are usually treated as
unsigned.)

shrlv.qb rd, rt, rs

subq.ph rd,rs,rt 2×SIMD subtraction. subq_s.ph saturates its results to a signed 16-bit range.
subq_s.ph rd,rs,rt

subq_s.w rd,rs,rt 32-bit saturating subtraction.
subu.qb rd,rs,rt 4×SIMD quad-byte subtraction. Since quad-bytes are treated as unsigned, the saturating

variant subu_s.qb works to an unsigned byte range.subu_s.qb rd,rs,rt

wrdsp rt,mask Write the DSPControl register with data from rt, but leaving unchanged any fields for
which the appropriate mask bit is zeroed, see Figure 9.1 above.

Table 9.2 DSP instructions in alphabetical order
Instruction Description
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34K™ core features for debug and profiling

In this chapter you’ll find:

• Section 10.1, "EJTAG on-chip debug unit"

• Section 10.2 “PDtrace™ instruction trace facility”

• Section 10.3 “CP0 Watchpoints” - monitor code and data access without using EJTAG.

• Section 10.4 “Performance counters” - gather statistics about events, useful for understanding where your pro-
gram spends its time.

The description here is terse and leaves out some information about EJTAG and PDtrace facilities which are not visi-
ble to programmers. We will document it here if it’s software visible, or is implementation-dependent information not
found in the detailed documentation (see [EJTAG], [PDTRACEUSAGE] and [PDTRACETCB]).

10.1 EJTAG on-chip debug unit

This is a collection of in-CPU resources to support debug. Debug logic serves no direct purpose in the final end-user
application, so it’s always under threat of being omitted for cost reasons. A debug unit must have virtually no perfor-
mance impact when not in use; it must use few or no dedicated package pins, and should not increase the logic gate
count too much. EJTAG solves the pin issue (and gets its name) by recycling the JTAG pins already included in every

SoC for chip test32.

So the debug unit requires:

• Physical communications with some kind of “probe” device (which is itself controlled by the debug host),
achieved through the JTAG pins.

• The ability for a probe to “remote-control” the CPU. The basic trick is to get the CPU to execute instructions that
the probe supplies. In turn that’s done by directing the CPU to execute code from the magic “dmseg” region
where CPU reads and writes are made down the wire to the probe. “dmseg” is itself a part of “dseg”, see Section
10.1.6, "The “dseg” memory decode region".

• A distinguished debug exception. In MIPS EJTAG, this is a special “super-exception” marked by a special
debug-exception-level flag, so you can use an EJTAG debugger even on regular exception handler code. See
Section 10.1.2, "Debug mode" below;

• A number of “hardware breakpoints”. Their numerous control registers can’t be accommodated in the CP0 regis-
ter set, so are memory-mapped into “dseg”;

32. It can actually be quite useful to provide EJTAG with its own pins, if your package permits.
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• You can take a debug exception from a special breakpoint instruction sdbbp, on a match from an EJTAG hard-
ware breakpoint, after an EJTAG single-step, when the probe writes the break bit EJTAG_CONTROL[EjtagBrk],
or by asserting the external DINT (debug interrupt) signal.

• You can configure your hardware to take periodic snapshots of the address of the currently-executing instruction
(“PC sampling”) and make those samples available to an EJTAG probe, as described in the next section.

On these foundations powerful debug facilities can be built.

The multi-vendor [EJTAG] specification has many independent options, but MIPS Technologies cores tend to have
fewer options and to implement the bulk of the EJTAG specification. The 34K core can be configured by your SoC
designer with either four instruction breakpoints (or none), and with two data breakpoints (or none). It is also optional
whether the dedicated debug-interrupt signal DINT is available in your SoC.

10.1.1 Debug communications through JTAG

The chip’s JTAG pins give an external probe access to a special registers inside the core. The JTAG standard defines a
serial protocol which lets the probe run one of a number of JTAG “instructions”, each of which typically reads/writes
one of a number of registers. EJTAG’s instructions are shown in Table 10.1.

10.1.2 Debug mode

A special CPU state; the CPU goes into debug mode when it takes any debug exception - which can be caused by an
sdbbp instruction, a hit on an EJTAG breakpoint register, from the external “debug interrupt” signal DINT, or single-

Table 10.1 JTAG instructions for the EJTAG unit
JTAG “Instruction” Description

IDCODE Reads out the MIPS core and revision - not very interesting for software, not described
further here.

ImpCode Reads bit-field showing what EJTAG options are implemented - see Figure 10.5 below.
EJTAG_ADDRESS (read/write) together, allow the probe to respond to instruction fetches and data reads/

writes in the magic “dmseg” region described in Section 10.1.6, "The “dseg” memory
decode region".

EJTAG_DATA

EJTAG_CONTROL Package of flags and control fields for the probe to read and write; see Figure 10.6
below.

EJTAGBOOT The “EJTAGBOOT” instruction causes the next CPU reset to lead to CPU booting from
probe; see description of the EJTAG_CONTROL bits ProbEn, ProbTrap and
EjtagBrk in the notes to Figure 10.6.
The “NORMALBOOT” instruction reverts to the normal CPU bootstrap.

NORMALBOOT

FASTDATA Special access used to accelerate multi-word data transfers with probe. The probe reads/
writes the 33-bit register formed of a “fast” bit with EJTAG_DATA.

FDC Fast Debug Channel. Another accelerated data transfer. This one is accessible by non-
debug mode software and it includes FIFOs to separate the software views from the
physical data transfer, making it non-blocking. See Section 10.1.10 “Fast Debug
Channel”

TCBCONTROLA Access registers used to control “PDtrace” instruction trace output, if available. See
Section 10.2.1 “34K core-specific fields in PDtrace™ JTAG-accessible registers” -
only the core-specific fields in these registers are documented here.

TCBCONTROLB

TCBCONTROLC

TCBCONTROLD

TCBCONTROLE

PCSAMPLE Access register which holds PC sample value, see Section 10.1.14, "PC Sampling with
EJTAG".
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stepping (the latter is peculiar and described briefly below). Debug mode state is visible as Debug[DM] (see Figure
10.1 below). Debug mode (like exception mode, which is similar) disables all normal interrupts. The address map
changes in debug mode to give you access to the “dseg” region, described below. Quite a lot of exceptions just won’t
happen in debug mode: those which do, run peculiarly - see the relevant paragraphs in Section 10.1.2, "Debug mode".

A CPU with a suitable probe attached can be set up so the debug exception entry point is in the “dmseg” region, run-
ning instructions provided by the probe itself. With no probe attached, the debug exception entry point is in the ROM
or potentially from an alternate memory location - see Table 7.1.

10.1.3 The debug unit and multi-threading

The software-visible resources of the EJTAG unit are replicated per VPE, and each VPE has its own distinct JTAG
“tap”. Just two bits are replicated per-TC: Debug[SSt] controls the single-step exception, and Debug[OffLine] pro-
vides a debugger with a way of controlling exactly which TCs run in between breakpoints of a debug session.

When any TC executes in debug mode, all other TCs (even in other VPEs) are suspended. There is nothing software
can do to prevent a debug-mode TC from issuing instructions: it runs regardless of the state of TCStatus[A], TCHalt,
the VPEControl[TE] bit set by dmt, the MVPControl[EVP] bit set by dvpe, the VPEConf0[VPA] bit, or even the debug-
ger’s own Debug[OffLine]. However, when you return from debug mode with a deret and one of these software
inhibit bits is active, the TC will not execute any non-debug-mode instruction.

When you execute a debug breakpoint (sdbbp) instruction or hit a synchronous (address-testing only) breakpoint,
the debug exception will be handled by the TC which ran the exception-causing instruction. But an asynchronous
entry into debug mode caused by the assertion of DINT or hitting a data-testing breakpoint may use any TC affiliated
with the VPE which owns the signal or set the breakpoint: and again, this TC is chosen regardless of its software-set-
table state, so you are guaranteed that the debug condition will be serviced.

When any TC is already executing in debug mode DINT (even if directed at another VPE) is ignored.

For non-debug code some MT facilities are protected by “safety catch” control bits. Debug-mode code is all-power-
ful, as if VPEConf0[MVP] was set.

10.1.4 Exceptions in debug mode

Software debuggers will probably be coded to avoid causing exceptions (testing addresses in software, for example,
rather than risking address or TLB exceptions).

While executing in debug mode many conditions which would normally cause an exception are ignored: interrupts,
debug exceptions (other than that caused by executing sdbbp), and CP0 watchpoint hits.

But other exceptions are turned into “nested debug exceptions” when the CPU is in debug mode - a facility which is
probably mostly valuable to debuggers using the EJTAG probe.

On such a nested debug exception the CPU jumps to the debug exception entry point, remaining in debug mode. The
Debug[DExcCode] field records the cause of the nested exception, and DEPC records the debug-mode-code restart
address. This will not be survivable for the debugger unless it saved a copy of the original DEPC soon after entering
debug mode, but it probably did that! To return from a nested debug exception like this you don’t use deret (which
would inappropriately take you out of debug mode), you grab the address out of DEPC and use a jump-register.
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10.1.5 Single-stepping

When control returns from debug mode with a deret and the (per-TC) single-step bit Debug[SSt] is set, the instruc-

tion selected by DEPC will be executed in non-debug context33; then a debug exception will be taken on the pro-
gram’s very next instruction in sequence.

Since at least one instruction is run in normal mode it can lead to a non-debug exception; in that case the “very next
instruction in sequence” will be the first instruction of the exception handler, and you’ll get a single-step debug
exception whose DEPC points at the exception handler.

In a multithreaded CPU any number of instructions from other threads might run before you get the single-step
exception. A debugger wanting to avoid that can use the various TC’s Debug[OffLine] controls to inhibit TCs other
than the one under debug.

10.1.6 The “dseg” memory decode region

EJTAG needs to use memory space both to accommodate lots of breakpoint registers (too many for CP0) and for its
probe-mapped communication space. This memory space pops into existence at the top of the CPU’s virtual address
map when the CPU is in debug mode, as shown in Table 10.2.

The MIPS trace solution provides software the ability to access the on-chip trace memory. The TCB Registers are
mapped to drseg space and this allows software to directly access the on-chip trace memory using load and store
instructions.

33. If DEPC points to a branch instruction, both the branch and branch-delay instruction will be executed normally.
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Notes on Table 10.2:

Table 10.2 EJTAG debug memory region map (“dseg”)
Virtual Address Region/sub-regions Location/register Virtual Address
0xE000.0000 kseg2 0xE000.0000

0xFF1F.FFFF 0xFF1F.FFFF

0xFF20.0000 dseg dmseg fastdata 0xFF20.0000

0xFF20.000F 0xFF20.000F

0xFF20.0010 0xFF20.0010

0xFF20.0200 debug entry 0xFF20.0200

0xFF2F.FFFF 0xFF2F.FFFF

0xFF30.0000 drseg DCR register 0xFF30.0000
0xFF30.0020 DebugVectorAddr 0xFF30.0020
0xFF30.1000 IBS register 0xFF30.1000

I-breakpoint #0 regs

0xFF30.1100 IBA0 0xFF30.1100

0xFF30.1108 IBM10 0xFF30.1108

0xFF30.1110 IBASID0 0xFF30.1110

0xFF30.1118 IBC0 0xFF30.1118

I-breakpoint #1 regs

0xFF30.1200 IBA1 0xFF30.1200

0xFF30.1208 IBM1 0xFF30.1208

0xFF30.1210 IBASID21 0xFF30.1210

0xFF30.1218 IBC1 0xFF30.1218

same for next two

...

0xFF30.2000 DBS register 0xFF30.2000
D-breakpoint #0 regs

0xFF30.2100 DBA0 0xFF30.2100

0xFF30.2108 DBM10 0xFF30.2108

0xFF30.2110 DBASID0 0xFF30.2110

0xFF30.2118 DBC10 0xFF30.2118

0xFF30.2120 DBV0 0xFF30.2120

0xFF30.2124 DBVHi0 0xFF30.2124

D-breakpoint #1 regs

0xFF30.2200 DBA1 0xFF30.2200

0xFF30.2208 DBM1 0xFF30.2208

0xFF30.2210 DBASID1 0xFF30.2210

0xFF30.2218 DBC1 0xFF30.2218

0xFF30.2220 DBV1 0xFF30.2220

0xFF30.2224 DBVHi1 0xFF30.2224

0xFF30.2228 0xFF30.2228

0xFF30.3000 TCB registers 0xFF30.3000

0xFF30.3238 0xFF30.3238

0xFFFF.FFFF 0xFFFF.FFFF



 34K™ core features for debug and profiling

143 Programming the MIPS32® 34K™ Core Family, Revision 01.64

• dseg: is the whole debug-mode-only memory area.

It’s possible for debug-mode software to read the “kseg2”-mapped locations “underneath” by setting
Debug[LSNM] (see Figure 10.1).

• dmseg: is the memory region where reads and writes are implemented by the probe. But if no active probe is
plugged in, or if DCR[PE] is clear, then accesses here cause reads and writes to be handled like regular “kseg3”
accesses.

• drseg: is where the debug unit’s main register banks are accessed. Accesses to “drseg” don’t go off core. Regis-
ters in “drseg” are word-wide, and should be accessed only with 32-bit word-wide loads and stores.

• fastdata: is a corner of “dmseg” where probe-mapped reads and writes use a more JTAG-efficient block-mode
probe protocol, reducing the amount of JTAG traffic and allowing for faster data transfer. There’s no details about
how it’s done in this document, see [EJTAG].

• debug entry: is the debug exception entry point. Because it lies in “dmseg”, the debug code can be implemented
wholly in probe memory, allowing you to debug a system which has no physical memory reserved for debug.

• TCB Registers : These are the PDtrace EJTag Registers. They are physically located in the PDtrace unit, and
managed by the PDtrace unit. For software to access the on-chip trace memory, these registers are mapped to
drseg.

10.1.7 EJTAG CP0 registers, particularly Debug

In normal circumstances (specifically, when not in debug mode), the only software-visible part of the debug unit is its
set of three CP0 registers:

• Debug which has configuration and control bits, and is detailed below;

• DEPC keeps the restart address from the last debug exception (automatically used by the deret instruction);

• DESAVE is a CP0 register which is just 32-bits of read/write space. It’s available for a debug exception handler
which needs to save the value of a first general-purpose register, so that it can use that register as an address base
to save all the others.

Debug, DEPC and DESAVE are replicated per-VPE, giving each VPE the impression of having its own EJTAG unit.

Debug is the most complicated and interesting. It has so many fields defined that we’ve taken them in three groups:
debug exception cause bits in Figure 10.2, information about regular exceptions which want to happen but can’t
because you’re in debug mode in Figure 10.3, and everything else. The "everything else" category includes the most
important fields and comes first, in Figure 10.1.
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These fields are:

DBD: exception happened in branch delay slot. When this happens DEPC will point to the branch instruction, which is
usually the right place to restart.

DM: debug mode - set on debug exception from user mode, cleared by deret.

Then some configuration and control bits:

NoDCR: read-only - 0 if there is a memory-mapped DCR register. MIPS Technologies cores will always have one. Any
EJTAG unit implementing "dseg" at all implements DCR.

LSNM: Set this to 1 if you want debug-mode accesses to "dseg" addresses to be just sent to system memory. This makes
most of the EJTAG unit’s control system unavailable, so will probably only be done around a particular load/store.

Doze: before the debug exception, CPU was in some kind of reduced power mode.

Halt: before the debug exception, the CPU was stopped - probably asleep after a wait instruction.

CountDM: 1 if and only if the count register continues to run in debug mode. Writable for the 34K core, so you get to
choose. On some other implementations it’s read-only and just tells you what the CPU does.

IEXI: set to 1 to defer imprecise exceptions. Set by default on entry to debug mode, cleared on exit, but writable. The
deferred exception will come back when and if this bit is cleared: until then you can see that it happened by looking at
the "pending" bits shown in Figure 10.3 below.

EJTAGver: read-only - tells you which revision of the specification this implementation conforms to. On the 34K core it
reads 5 for version 5.0. The full set of legal values are:

DExcCode: Cause of any non-debug exception you just handled from within debug mode - following first entry to
debug mode, this field is undefined. The value will be one of those defined for Cause[ExcCode], as shown in Table
C.4.

NoSSt: read-only - reads 0 because single-step is implemented (it always is on MIPS Technologies cores).

SSt: set 1 to enable single-step.

OffLine: prevents a TC from running any instructions (except in debug mode, but then debug mode overrides all soft-
ware inhibitions on thread scheduling). It’s there for debuggers which may need to selectively stop some threads, and

Figure 10.1 Fields in the EJTAG CP0 Debug register
31 30 29 28 27 26 25 24 21 20 19 18 17 15 14 10 9 8 7 6 5 0

DBD DM NoDCR LSNM Doze Halt
Count
DM

pending
IE
XI

cause
EJTAGver

DExc
Code

NoSSt SSt OffLine 0
cause

(Figure
10.3)

(Figure
10.2)

(Figure
10.2)

0 Version 2.0 and earlier
1 Version 2.5
2 Version 2.6
3 Version 3.1
4 Version 4.0
5 Version 5.0
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should not be used by application or OS code. This bit has to be replicated per-TC. often not implemented in non-MT
CPUs.

DDBSImpr: imprecise store breakpoint - see Section 10.1.13, "Imprecise debug breaks" below. DEPC probably points to
an instruction some time later in sequence than the store which triggered the breakpoint. The debugger or user (or
both) have to cope as best they can.

DDBLImpr: imprecise load breakpoint. (See note on imprecise store breakpoint, above).

DINT: debug interrupt: either the DINT signal got asserted or the probe wrote EJTAG_CONTROL[EjtagBrk] through
the JTAG signals.

DIB: instruction breakpoint. If DBp is clear, that must have been from an sdbbp.

DDBS: precise store breakpoint.

DDBL: precise load breakpoint.

DBp: any sort of match with a hardware breakpoint.

DSS: single-step exception.

These note exceptions caused by instructions run in debug mode, but which have not happened yet because they are
imprecise and Debug[IEXI] is set. They remain set until Debug[IEXI] is cleared explicitly or implicitly by a deret,
when the exception is delivered and the pending bit cleared:

IBusEP: bus error on instruction fetch pending. This exception is precise on the 34K core, so this can’t happen and the
field is always zero.

MCheckP: machine check pending (usually an illegal TLB update). As above, machine check exceptions are not gener-
rated on the 34K core, so this is always zero.

CacheEP: cache parity error pending.

DBusEP: bus error on data access pending.

10.1.8 The DCR (debug control) memory-mapped register

This is the only memory-mapped EJTAG register apart from the hardware breakpoints and the PDtrace TCB Regis-
ters (described in the next section). It’s found in “drseg” at location 0xFF30.0000 as shown in Table 10.2 (but only
accessible if the CPU is in debug mode). The fields are in Figure 10.4:

Figure 10.2 Exception cause bits in the debug register
31 20 19 18 17 6 5 4 3 2 1 0

Debug DDBSImpr DDBLImpr DINT DIB DDBS DDBL DBp DSS

Figure 10.3 Debug register - exception-pending flags
31 25 24 23 22 21 20 0

Debug IBusEP MCheckP CacheEP DBusEP
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Figure 10.4 Fields in the memory-mapped DCR (debug control) register

Where:

ENM: (read only) reports CPU endianness (1 == big).

FDCImpl: (read only) 1 if the Fast Debug Channel is available. See Section 10.1.10 “Fast Debug Channel” for details

DB/IB: (read only) 1 if data/instruction hardware breakpoints are available, respectively. The 34K core has either 0 or 2
data breakpoints, and either 0 or 4 instruction breakpoints.

IVM: (read-only) tells you if an inverted data value match on data hardware breakpoints is implemented.

DVM: (read-only) tells you if a data value store on a data value breakpoint match is implemented.

CBT: (read-only) tells you if a complex breakpoint block is implemented.

PCS, PCR: PCS, PCSE,PCIM,PCnoASID: PCS reads 1 if the PC sampling feature is available, as it can be on the 34K
core. Then PCSE enables PC sampling and PCR is a three-bit field defining the sampling frequency as one sample

every 2(5+PCR) cycles. PCnoASID indicates or controls whether the ASID field is included in the sample. PCIM, if set-
table, enables only sampling the PC of instructions that missed in the instruction cache. See Section 10.1.14, "PC
Sampling with EJTAG" for details.

DAS, DASQ, DASE: DAS reads 1 if the Data Address Sampling feature is available. If supported, this feature builds on
top of the PC sampling mechanisms to sample data addresses. DASE enables DAsampling and is not mutually exclu-
sive with PCSE. DASQ limits the data address samples to those addresses that match on data breakpoint 0.

INTE/NMIE: set DCR[INTE] zero to disable interrupts in non-debug mode (it’s a separate bit from the various non-debug-
mode visible interrupt enables). The idea is that the debugger might want to step through kernel code or run kernel
subroutines (perhaps to discover OS-related information) without losing control because interrupts start up again.

DCR[NMIE] masks non-maskable interrupt in non-debug mode (a nice paradox). Both bits are "1" from reset.

NMIP: (read-only) tells you that a non-maskable interrupt is pending, and will happen when you leave debug mode (and
according to DCR[NMIE] as above).

SRE: if implemented, write zero to mask soft-reset causes. This signal has no effect inside the 34K core but is presented
at the interface, where customer reset logic could be influenced by it.

PE: (read only) software-readable version of the probe-controlled enable bit EJTAG_CONTROL[ProbEn], which you
could look at in Figure 10.6.

31 30 29 28 27 26 25 24 23 22 21 19 18 17 16

Res ENM Res PCIM
PCno
ASID

DASQ DASe DAS
FDCI
mpl

DB IB

15 14 13 12 11 10 9 8 6 5 4 3 2 1 0

IVM DVM 0 RDVec CBT PCS PCR PCSE INTE NMIE NMIP SRE PE
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10.1.9 JTAG-accessible registers

We’re wandering away from what is relevant to software here: these registers are available for read and write only by
the probe, and are not software-accessible.

But you can’t really understand the EJTAG unit without knowing what dials, knobs and switches are available to the
probe, so it seems easier to give a little too much information.

First of all there are two informational fields provided to the probe, IDCODE (just reflects some inputs brought in to
the core by the SoC team, not very interesting) and ImpCode (Figure 10.5); then there’s the main CPU interaction
control/status register EJTAG_CONTROL (Figure 10.6).

Notes on the ImpCode fields:

EJTAGver: same value (and meaning) as the Debug[EJTAGver] field, see the notes on Figure 7-2.

DINTsup: whether JTAG-connected probe has a DINT signal to interrupt the CPU. Configured by your SoC designer
(who should know) by hard-wiring the core interface signal EJ_DINTsup.

The probe can always interrupt the CPU by a JTAG command using the EJTAG_CONTROL[EjtagBrk], but DINT is
much faster, which is useful if you’re cross-triggering one piece of hardware from another. However, it is fed to both
VPEs at once, and it’s unpredictable which of them will take the resulting debug exception (only one can).

ASIDsize: usually 2 (indicating the 8-bit EntryHi[ASID] field size required by the MIPS32 standard), but can be 0 if your
core has been built with the no-TLB option (i.e. a fixed-mapping MMU).

MIPS16: 1 because the 34K core always supports the MIPS16 instruction set extension.

NoDMA: 1 - MIPS Technologies cores do not provide EJTAG "DMA" (which would allow a probe to directly read and
write anything attached to the 34K core’s OCP interface).

MIPS32/64: the zero indicates this is a 32-bit CPU.

Rocc: "reset occurred" - reads 1 while a reset signal is applied to the CPU - and then the 1 value persists until overwrit-
ten with a zero from the JTAG side. Until the probe reads this as zero most of the other fields are nonsense.

The EJTAG_CONTROL register is shown in Figure 10.6:

Table 10.3 Fields in the JTAG-accessible EJTAG_CONTROL register

Figure 10.5 Fields in the JTAG-accessible ImpCode register
31 29 28 25 24 23 21 20 17 16 15 14 13 1 0
EJTAGver 0 DINTsup ASIDsize 0 MIPS16 0 NoDMA 0 MIPS32/64
5 = 5.0 see note see note 1 1 0

31 30 29 28 24 23 22 21 20 19 18 17 16 15 14 13 12 11 4 3 2 0

Rocc Psz Res Doze Halt PerRst PRnW PrAcc Res PrRst ProbEn ProbTrap Res EjtagBrk Res DM Res
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Notes on the fields:

Rocc: (read/write) is 1 when a CPU reset has occurred since the bit was last cleared. The Rocc bit will keep the 1 value
as long as reset is applied. This bit must be cleared by the probe, to acknowledge that the incident was detected. The
EJTAG Control register is not updated in the Update-DR state unless Rocc is 0, or written to 0. This is in order to
ensure proper handling of processor access.

Psz: (read-only) when software reads or writes "dmseg" this tells the probe whether it was a word, byte or whatever-size
transfer:

Doze/Halt: (read-only) indicates CPU not fully awake. Doze reflects any reduced-power mode, whereas Halt is set only
if the CPU is asleep after a wait or similar.

PerRst: write to set the EJ_PerRst output signal from the core, which can be used to reset non-core logic (ask your
SoC designer whether it’s connected to anything).

For this and all other fields which change core state, we recommend that the probe should write the field and then poll
for the change to be reflected in this register, which may take a short while. In some cases the bit is just an output one,
when the readback will be pointless (but harmless).

PRnW/PrAcc: PrAcc is 1 when the CPU is doing a read/write of the "dmseg" region, and the probe should service it. The
"slow" read/write protocol involves the probe flipping this bit back to zero to tell the CPU the transfer is ready.

While PrAcc is active the read-only PRnW bit distinguishes writes (1) from reads (0).

PrRst: controls the EJ_PrRst signal from the core, which may be wired back to reset the CPU and related logic. Write
a 1 to reset. If it works, the probe will eventually see the bit fall back to 0 by itself, as the CPU resets. Most probes are
wired up with a direct CPU reset signal, which is more reliable.

ProbEn, ProbTrap, EjtagBrk: ProbEn must be set before CPU accesses to "dmseg" will be sent to the probe. It can be

written by the probe directly. ProbTrap relocates the debug exception entry point from 0xBFC0.048034 (when 0) to
the “dmseg” location 0xFF20.0200 - required when the debug exception handler itself is supplied by the probe.

Figure 10.6 Fields in the JTAG-accessible EJTAG_CONTROL register
31 30 29 28 23 22 21 20 19 18 17 16 15 14 13 12 11 4 3 2 0

Rocc Psz 0 Doze Halt PerRst PRnW PrAcc 0 PrRst ProbEn ProbTrap 0 EjtagBrk 0 DM 0

Byte-within-word Size code Transfer Size
address

EJTAG_ADDRESS[1-0] EJTAG_CONTROL[Psz]

X 0 Byte
00 1 Halfword
10

00 2 Word
00 3 Tri-byte (lowest address 3 bytes)
01 Tri-byte (highest address 3 bytes)

34. The ROM-exception-area debug entry point can be relocated by hardware option, see Table 7.1 and its notes.
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EjtagBrk can be written 1 to "interrupt" the CPU into debug mode.

The three come together into a trick to support systems wanting to boot from EJTAG. The value of all these three bits
is preset by the “EJTAGBOOT” JTAG instruction. When the CPU resets with all of these set to 1, then the CPU will
immediately enter debug mode and start reading instructions from the probe.

DM: (read-only) indicates the CPU is in debug mode, a probe-readable version of Debug[DM].

10.1.10 Fast Debug Channel

The Fast Debug Channel (or FDC) is an interesting creature. It provides a mechanism for data transfers between the
probe and the core, but unlike some of the other mechanisms of that type, it is not constrained to debug mode access.
Kernel mode software can access the memory mapped interface and can even grant access rights to user or supervisor
programs. The memory mapped registers provide basic configuration, status, and control information as well as giv-
ing access to the transmit (core to probe) and receive FIFOs. These FIFOs are included to isolate the software visible
interface from the physical transfer of bits to the probe and allow some ‘burstiness’ of data. Associated with each 32-
bit piece of data is a 4-bit Channel ID. Figure 10.7 shows a high level view of the data paths.

Figure 10.7 Fast Debug Channel

The memory mapped registers are part of the Common Device Memory Map, see Section 5.7 “Common Device
Memory Map” for details. Table 10.4 shows the address offsets of the FDC registers within the device block.

Table 10.4 FDC Register Mapping

Offset in CDMM
device block

Register
Mnemonic Register Name and Description

0x0 FDACSR FDC Access Control and Status Register

0x8 FDCFG FDC Configuration Register

0x10 FDSTAT FDC Status Register

0x18 FDRX FDC Receive Register

0x20 + 0x8* n FDTXn FDC Transmit Register n (0 ≤ n ≤ 15)

EJ_TDI

EJ_TDO

FD
C

 R
E

G
TxFIFO

RxFIFO

CPU

Stores

Loads

TAP

E
JT

A
G

 P
ro

be
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Each device within the CDMM begins with an Access Control and Status Register which gives information about the
device and also provides a means for giving user and supervisor programs access to the rest of the device. The
FDACSR is shown in Figure 10.8

Figure 10.8 Fields in the FDC Access Control and Status (FDACSR) Register

Where:

DevID: (read only) indicates the device ID - 0xfd in this case.

DevSize: (read only) indicates how many 64B blocks (minus 1) this device uses - value of 2, indicating 3 blocks for
FDC

DevRev: (read only) Revision number of the device - currently 0.

Uw/Ur: control whether write and reads, respectively, from user programs are allowed to access the device registers. If 0,
reads will return 0 and writes will be dropped.

Sw/Sr: Same idea as Uw/Ur, but for supervisor access

The FDCFG register gives some configuration information and allows software to specify if and when FDC interrupts
are to be generated. The interrupt threshholds can be adjusted for different aims: no interrupts, minimzing the CPU
overhead by allowing the CPU to completely fill or drain the FIFO with one interrupt, maximizing bandwidth by
interrupting slightly earlier to avoid wasting transfers of null transmit data or non accepted receive data, or minimum
latency to be interrupted as soon as data is available. This register is shown in Figure 10.9

Figure 10.9 Fields in the FDC Config (FDCFG) Register

Where:

TxIntThresh: Controls when an interrupt is generated based on the occupancy of the transmit FIFO
0 - Interrupts Disabled
1 - FIFO empty (minimum CPU overhead)
2 - FIFO not full
3 - Almost empty - 0 or 1 entries in use (maximum bandwidth)

RxIntThresh: Controls when an interrupt is generated based on the occupancy of the receive FIFO
0 - Interrupts Disabled
1 - FIFO full (minimum CPU overhead)
2 - FIFO not empty (minimum latency)
3 - Almost full - 0 or 1 entries in use (maximum bandwidth)

Tx/RxFIFOSize: (read only) indicates how many entries are in each FIFO

31 24 23 22 21 16 15 12 11 4 3 2 1 0

DevID zero DevSize DevRev zero Uw Ur Sw Sr

31 20 19 18 17 16 15 8 7 0

0 TxIntThresh RxIntThresh TxFIFOSize RxFIFOSize
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The FDSTAT register is a read-only register that gives the current status of the FIFOs. The fields are shown in Figure
10.10.

Figure 10.10 Fields in the FDC Status (FDSTAT) Register

Where:

Tx/RxCount: Optional fields indicating how many FIFO entries are in use. These fields are not implemented and will
read as 0

RxChan: Channel Identifier for the receive data at the head of the RxFIFO. Not meaningful if RxE==1

RxE/RxF/TxE/TxF: Status of each FIFO. Each one can be either Empty, Full, or somewhere in the middle, in which case
neither E nor F would be set.
TxF must be checked prior to attempting a write to the transmit FIFO
RxE must be checked prior to attempting a read from the receive FIFO
The other two status bits would not generally be as useful, but are provided for symmetry

The FDRX register is a read-only register that returns the top entry in the receive FIFO. It is undefined if
FDSTAT[RxE]==1, so that register should be checked prior to reading. That check will also return the ChannelID so
you know what type of data this is.

Figure 10.11 Fields in the FDC Receive (FDRX) Register

The FDTXn registers are 16 write-only registers that write into the bottom entry in the transmit FIFO. The 16 copies
provide the means for selecting a ChannelID for the write data. The address used for the write is decoded into the 4-
bit ChannelID and written into the FIFO with the data. Results are undefined if FDSTAT[TxF]==1, so that register
should be checked prior to writing data.

Figure 10.12 Fields in the FDC Transmit (FDTXn) Registers

10.1.11 EJTAG breakpoint registers

It’s optional whether the 34K core has EJTAG breakpoint registers. It can have up to 4 instruction breakpoints and up
to 2 data breakpoints. The breakpoints:

• Work only on virtual addresses, not physical addresses. However, you can restrict the breakpoint to a single
address space by specifying an “ASID” value to match. Debuggers will need the co-operation of the OS to get
this right.

• Use a bit-wise address mask to permit a degree of fuzzy matching.

31 24 23 16 15 8 7 4 3 2 2 0

TxCount RxCount 0 RxChan RxE RxF TxE TxF

31 0

RxData

31 0

TxData
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• On the data side, you can break only when a particular value is loaded or stored. However, such breakpoints are
imprecise in a CPU like the 34K core - see Section 10.1.13, "Imprecise debug breaks" below.

There are instruction-side and data-side breakpoint status registers (they’re located in “drseg”, accessible only when
in debug mode, and their addresses are in Section 10.2, "EJTAG debug memory region map (“dseg”)".) They’re
called IBS and DBS. The latter has, in theory, two extra fields (bits 29-28) used to flag implementations which can’t
do a load/store break conditional on the data value. However, MIPS cores with hardware breakpoints always include
the value check, so these bits read zero anyway. So the registers are as shown in Figure 10.13.

Where:

ASIDsup: is 1 if the breakpoints can use ASID matching to distinguish addresses from different address spaces; on the
34K core that’s available if and only if a TLB is fitted.

BCN: the number of hardware breakpoints available (up to two data, up to four instructions).

BS1-0, BSD3-0: bitfields showing breakpoints which have been matched. Debug software has to clear down a bit after a
breakpoint is detected.

Then each EJTAG hardware breakpoint (“n” is 0-3 to select a particular breakpoint) is set up through 4-6 separate
registers:

• IBCn, DBCn: breakpoint control register shown at Figure 7-9 below;

• IBAn, DBAn: breakpoint address;

• IBAMm, DBAMn: bitwise mask for breakpoint address comparison. A "1" in the mask marks an address bit which
will be excluded from comparison, so set this zero for exact matching.

Ingeniously, IBAMm[0] corresponds to the slightly-bogus instruction address bit zero used to track whether the
CPU is running MIPS16 instructions, and allows you to determine whether an EJTAG I-breakpoint may apply
only in MIPS16 (or non-MIPS16) mode.

• IBASIDn, DBASIDn specifies an 8-bit ASID, which may be compared against the current EntryHi[ASID] field to
filter breakpoints so that they only happen to a program in the right "address space". The ASID check can be
enabled or disabled using IBCn[ASIDuse] or DBCn[ASIDuse] respectively - see Figure 7-9 and its notes below. ID
(so that the break will only affect one Linux process, for example).

The higher 24 bits of each of these registers is always zero.

• DBVn, DBVHin the value to be matched on load/store breakpoints. DBCHin defines bits 63-32 to be matched for

64-bit load/stores: the 32-bit35 34K has 64-bit load/store instructions for floating point.

Figure 10.13 Fields in the IBS/DBS (EJTAG breakpoint status) registers
31 30 29 28 27 24 23 4 3 2 1 0

 DBS
0

ASID-
sup

0
BCN = 2 0 BS1-0

 IBS BCN = 4 0 BSD3-0

35. A JTAG hardware breakpoint for a real 64-bit CPU would have 64-bit DBVn registers, so wouldn’t need DBVHin.
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Note that you can disable data matching (to get an address-only data breakpoint) by setting the value byte-lane
comparison mask DBCn[BLM] to all 1s.

So now let’s look at the control registers in Figure 10.14.

The fields are:

ASIDuse: set 1 to compare the ASID as well as the address.

BAI7-0: "byte (lane) access ignore"36 - which sounds mysterious. But this is really an address filter.

When you set a data breakpoint, you probably want to break on any access to the data of interest. You don’t usually
want to make the break conditional on whether the access is done with a load byte, load word, or even load-word-left:
but the obvious way of setting up the address match for a breakpoint has that effect.

To make sure you catch any access to a location, you can use the address mask to disable sub-doubleword address
matching and then use DBCn[BAI] to mark the bytes of interest inside the doubleword: well, except that zero bits mark
the bytes of interest, and 1 bits mark the bytes to ignore (hence the mnemonic).

The DBCn[BAI] bits are numbered by the byte-lane within the 64-bit on-chip data bus; so be careful, the relationship
between the byte address of a datum and its byte lane is endianness-sensitive.

NoSB, NoLB: set 0 to enable37 breakpoint on store/load respectively.

BLM7-0: a per-byte mask for data comparison. A zero bit means compare this byte, a 1 bit means to ignore its value. Set
this field all-ones to disable the data match.

TE: set 1 to use as trigger for "PDtrace" instruction tracing as described in Section 10.2 “PDtrace™ instruction trace
facility” below.

BE: set 1 to activate breakpoint. This fields resets to zero, to avoid spurious breakpoints caused by random register set-
tings: don’t forget to set it!

10.1.12 Understanding breakpoint conditions

There are a lot of different fields and settings which are involved in determining when a hardware breakpoint detects
its condition and causes an exception.

Figure 10.14 Fields in the hardware breakpoint control registers (IBCn, DBCn)
31 24 23 22 18 17 14 13 12 11 8 7 4 3 2 1 0

DBCn 0 ASIDuse 0 BAI7-0 NoSB NoLB 0 BLM7-0 0 TE 0 BE

31 24 23 22 3 2 1 0

IBCn 0 ASIDuse 0 TE 0 BE

36. Why are there 8 bytes, when the 34K core is a 32-bit CPU with only 32-bit general purpose registers? Well, the DBCn[BAI]
and DBCn[BLM] fields each have a bit for each byte-lane across the data bus, and the 34K core has a 64-bit data bus (and in
fact can do 64-bit load and store operations, for example for floating point values).

37. “1-to-enable” would feel more logical. The advantage of using 0-to-enable here is that the zero value means “break on either
read or write”, which is a better default than “never break at all”.
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In all cases, there will be no break if you’re in debug mode already... but then for a break to happen:

• For all breakpoints including instructions: all the following must be true:

1. The breakpoint control register enable bit IBAn[BE]/DBAn[BE] is set.

2. the address generated by the program for instruction fetch, load or store matches those bits of the break-
point’s address register IBAn/DBAn for which the corresponding address-mask register bits in IBAn/DBAn are
zero.

3. either IBCn[ASIDuse]/DBCn[ASIDuse] is zero (so we don’t care what address space we’re matching against),
OR the address-space ID of the running program, i.e. EntryHi[ASID], is equal to the value in IBASIDn/
DBASIDn.

That’s all for instruction breakpoints, but for data-side breakpoints also:

• Data compare break conditions (not value related): both the following must be true:

4. It’s a load and DBCn[NoLB] is zero, or it’s a store and DBCn[NoSB] is zero.

5. The load or the store touches at least one byte-within-doubleword for which the corresponding DBCn[BAI]
bit is zero.

If you didn’t want to compare the load/store value then DBCn[BLM] will be all-ones, and you’re done. But if you
also want to consider the value:

• Data value compare break conditions:

6. the data loaded or stored, as it would appear on the system bus, matches the 64-bit contents of DBVHin with
DBVn in each of those 8-bit groups for which the corresponding bit in DBCn[BLM] is zero.

That’s it.

10.1.13 Imprecise debug breaks

Instruction breakpoints, and data breakpoints filtering only on address conditions are precise; that means that:

1. DEPC will point at the fetched or load/store instruction itself (except if it’s in a branch delay slot, will point at the
branch instruction);

2. The instruction will not have caused any side effects; in particular, the load/store will not reach the cache or
memory.

Most exceptions in MIPS architecture CPUs are precise. But because of the way the 34K core optimizes loads and
stores by permitting the CPU to run on at least until it needs to use the data from a load, data breakpoints which filter
on the data value are imprecise. The debug exception will happen to whatever instruction (typically later in the
instruction stream) is running when the hardware detects the match, and not necessarily to the same TC. The debug-
ging software must cope.
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10.1.14 PC Sampling with EJTAG

A valuable trick available with recent revisions of the EJTAG specification and probes, “PC sampling” provides a
non-intrusive way to collect statistical information about the activity of a running system. You can tell whether PC
sampling is enabled by looking at DCR[PCS], as shown in Figure 7-5 above.

The hardware snapshots the “current PC” periodically, and stores that value where it can be retrieved by a debug
probe. It’s then up to software to construct a histogram of samples over a period of time, which (statistically) allows a
programmer to see where the CPU has spent most cycles. Not only is this useful, but it’s also familiar: systems have
used intrusive interrupt-based PC-sampling for many years, so there are tools which can readily interpret this sort of
data.

When PC sampling is configured in your core, it runs continuously. Some sleight of hand is used if the CPU is hang-
ing on a wait instruction. Rather than wasting even a small amount of power running the counter and resampling the
PC of the wait instruction, the hardware simply keeps the “new” bit set while it is in this state telling the profiling
software that yes, we are still at that instruction. You can choose to sample as often as once per 32 cycles or as rarely

as once per 4096 cycles38; at every sampling point the address of the instruction completing in that cycle (or if none
completes, the address of the next instruction to complete) is deposited in a JTAG-accessible register. Sampling rate is
controlled by the DCR[PCR] field of the debug control register shown in Figure 7-5.

In addition to the 32 bits of the instruction address, several other fields are stored by the hardware to help identify the
instruction. The aforementioned “new” bit indicates a new sample, which a probe can use to avoid double-counting
the same sample. On multi-threaded CPUs where there might be several copies of the code running, a TCID field is
also appended. The then-current ASID may also be included so that you can interpret the virtual PC. The ASID is
included unless the DCR[PCnoASID] bit is set. This bit may be hardwired in a given implementation or the bit might
be writable, so go ahead and try to change it if you feel like it (but be sure to read it back and see if the write ‘stuck’
so that you know how many bits to scan and how to interpret them).

Later versions of the EJTAG specification have made further extensions to PC sampling to enable some different
types of analysis. As of this writing, these modes were not implemented, but they may be added at some point. If the
DCR[PCIM] bit is settable, it will restrict PC sampling to only report PCs of instructions that missed in the instruction
cache. This can highlight code segments that cause contention where some fine tuning of code alignment may yield
improved performance. The other major extension is data address (DA) sampling whose presence is indicated by the
DCR[PCS] bit. The enables the same sort of profiling on load and store addresses that PC sampling enables on code
addresses. To focus in on a specific subset of accesses, a data hardware breakpoint can be used to qualify which ones
are sampled. DA and PC sampling are enabled independently and can be active simultaneously (of course the two
samples share the same serial scan path, so enabling both reduces the number of samples of either)

10.1.15 JTAG-accessible and memory-mapped PDtrace TCB Registers

The DCR and the hardware breakpoint registers are EJTAG registers that are both JTAG-accessible and memory-
mapped. In addition to the DCR and the hardware breakpoint registers, the EJTAG PDtrace Registers listed in Table
10.5 are also memory-mapped to drseg. These registers allow software to access the on-chip trace memory. A load
from the EJAG register TCBTW will return the data at the address location pointed to by the read pointer TCBRDP.
See the Software User’s Manual for more details and rules to access the on-chip trace memory.

38. Since it runs continuously, it’s a good thing that from reset the sampling period defaults to its maximum.
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Table 10.5  Mapping TCB Registers in drseg

Offset in drseg Register Name Description

0x3000 TCBControlA The TCBControlA register.

0x3008 TCBControlB The TCBControlB register.

0x3010 TCBControlC The TCBControlC register.

0x3018 TCBControlD The TCBControlD register.

0x3020 TCBControlE The TCBControlE register.

0x3028 TCBConfig The TCBConfig register.

0x3100 TCBTW Trace Word read register. This register holds the Trace Word just read from on-line trace mem-
ory.

0x3108 TCBRDP Trace Word Read pointer. It points to the location in the on-line trace memory where the next
Trace Word will be read. A TW read has the side-effect of post-incrementing this register value
to point to the next TW location. (A maximum value wraps the address around to the begin-
ning of the trace memory).

0x3110 TCBWRP Trace Word Write pointer. It points to the location in the on-line trace memory where the next
new Trace Word will be written.

0x3118 TCBSTP Trace Word Start Pointer. It points to the location of the oldest TW in the on-chip trace mem-
ory.

0x3120 BKUPRDP This is not a TCB register, but needed on a reset to save the TCBRDP value before that regis-
ter is reset to 0. This allows the software that comes up after a (hard or soft) reset to know the
last-known good value of TCBRDP before system crash, and potentially read the trace mem-
ory from or to the appropriate trace memory location.

0x3128 BKUPWRP This is not a TCB register, but needed on a reset to save the TCBWRP value before that regis-
ter is reset to 0. This allows the software that comes up after a (hard or soft) reset to know the
last-known good value of TCBWRP before system crash, and potentially read the trace mem-
ory from or to the appropriate trace memory location.

0x3130 BKUPSTP This is not a TCB register, but needed on a reset to save the TCBSTP value before that register
is reset to 0. This allows the software that comes up after a (hard or soft) reset to know the last-
known good value of TCBSTP before system crash, and potentially read the trace memory
from or to the appropriate trace memory location.

0x3200-0x3238 TCBTrigX The TCBTrigX set of registers. The number of implemented registers is determined by the
value in TCBCONFIGTRIG.
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10.2 PDtrace™ instruction trace facility

An instruction trace is a set of data generated when a program runs which allows you to recreate the sequence of
instructions executed, possibly with additional information included about data values. Instruction traces rapidly
become enormous, and are typically generated in some kind of abbreviated form, which may be reconstructed by
software which is in possession of a copy of the binary code of your system.

34K family cores can be configured with PDtrace logic, which provides a non-intrusive way of finding out what
instructions your CPU ran. If your system includes PDtrace logic, Config3[TL] will read 1.

With a very high-speed CPU like the 34K core this is challenging, because you need to send data so fast. The PDtrace
system deals with this by:

• Compressing the trace: a software tool in possession of the binary of your program can predict where execution
will go next, following sequential instructions and fixed branches. To trace your program it needs only to know
whether conditional branches were taken, and the destination of computed branches like jump-register.

• Switching the trace on and off: the 34K core can be configured with up to 8 “trace triggers”, allowing you to start
and stop tracing based on EJTAG breakpoint matches: see Section 10.1.11, "EJTAG breakpoint registers" above
and Table 10.20 below.

• High-speed connection to a debug/trace probe: optional. But if fitted, it uses advanced signalling techniques to
get trace data from the CPU core, out of dedicated package pins to a probe. Good probes have generous amounts
of high-speed memory to store long traces.

TraceControl2[ValidModes,TBI,TBU] (described below at Figure 7-10 and following) tell you whether you have
such a connection available on your core. You’ll have to ask the hardware engineers whether they brought out the
connector, of course.

• Very high-speed on-chip trace memory: if fitted, you may find between 256bytes and 8Mbytes of trace memory
in your system (larger than a few Kbytes is unlikely). Again, see TraceControl2[ValidModes,TBI,TBU] to find out
what facilities you have.

• Option to slow the CPU to match the tracing speed: when you really, really need a full trace, and are prepared to
slow down your program if necessary to wait while the trace information is sent to the probe. This is controlled
by TraceControl[IO], see below.

• Software access to on-chip trace memory : A new mechanism is provided to allow software to read the on-chip
trace memory. This is achieved by mapping all the TCB registers to drseg.

In practice the PDtrace logic depends on the existence of an EJTAG unit (described in the previous section) and an
enhanced EJTAG probe. To benefit from on-probe trace memory, the probe will need to attach to PDtrace-specific
signals.

This manual describes only the lowest-level building blocks as visible to software. For real hardware information
refer to [PDTRACETCB]; for [PDTRACETCB]guidance about how to use the PDtrace facilities for software devel-
opment see [PDTRACEUSAGE]. To use PDtrace facilities, you’ll have to read the software manuals which come
with a probe.
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10.2.1 34K core-specific fields in PDtrace™ JTAG-accessible registers

The PDtrace system is controlled by the JTAG-accessible registers TCBCONTROLA, TCBCONTROLB, TCBCON-
TROLC, TCBCONTROLD, and TCBCONTROLE. Normally they are not visible to software running on the CPU,
but we’ll document fields and configured values which are specific to 34K family CPUs. With the new feature of
enabling software to access the on-chip trace memory, all the JTAG-accessible registers are visible to software via a
load or store to their drseg memory mapped location.

Table 10.6 Fields in the TCBCONTROLA register

In TCBCONTROLA:

VModes: reads “1 0”, showing that 34K family cores support all tracing modes.

ADW: reads “1” to indicate that we support the wide (32-bit) internal trace bus.

Ineff: set to 1 to indicate that core-specific-inefficieny tracing is enabled.

Table 10.7 Fields in the TCBCONTROLB register

In TCBCONTROLB:

TWSrcWidth:  "0 1", which indicates that  a 2-bit “source” field is included in the trace word to identify the VPE run-
ning the instruction, just as a multicore system would identify the CPU.

TWSrcWidth:  "1 0", which indicates that  a 4-bit “source” field is included in the trace word.

TWSrcVal: becomes writable, so the probe can set this value to a distinguishable one for each VPE.

FDT: set to 1 to indicate that Filtered Data Trace is enabled

TRPAD: set to 0 to enable software to access on-chip trace memory via the drseg mapped TCB Registers.

Table 10.8 Fields in the TCBCONTROLC register

TCBCONTROLC contains new fields for multi-threading trace support, as described in [PDTRACETCB].

31 30 29 27 26 25 24 23 22 20 19 18 17 16 15 14 13 12 5 4 3 2 1 0

SyPExt Impl 0 VModes ADW SyP TB IO D E S K U ASID G TFCR TLSM TIM On

31 30 28 27 26 25 21 20 19 18 17 16 15 14 13 12 11 10 8 7 6 3 2 1 0

WE 0 TWSrcWidth REG WR 0 TRPAD FDT RM TR BF TM TLSIF CR Cal TWSrcVal CA OfC EN

30 30 29 28 27 23 22 21 15 14 13 12 9 8 5 4 2 1 0

Res NumDO Mode Res Res
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MTtraceTC: can be set to 1 to include the TC ID in trace data.  Powers up as zero.

Figure 10.15 Fields in the TCBCONTROLE register

Aside from TrIDLE the rest of the bits in TCBCONTROLE are enable and control bits for performance counter tracing

TrIDLE : is set by the hardware to indicate that the trace unit is not processing any data. This is especially useful when
switching control from hardware to software and vice-versa. After turning trace off (recommended to turn
TraceControll[ON] , TCBCONTROLA[ON] , and TCBCONTROLB[EN] off), this bit should be queried and if the trace
unit is idle, then it is safe to change the trace control settings. After changing the settings, trace can be turned back on,
and tracing resumes cleanly with the new control.

Figure 10.16 Fields in the TCBCONFIG register

In TCBCONFIG:

CF1:  read-only, reads zero because there are no more TCB configuration registers.

PiN: read-only, reads zero because the 34K core is a single-issue (single pipeline) processor.

REV: reads 1, denoting compliance with revision 4.0 of the TCB specification.

REV: reads 3, denoting compliance with revision 6.0 of the TCB specification.

10.2.2 CP0 registers for the PDtrace™ logic

There are three categories of registers:

• TraceControl , TraceControl2 and TraceControl3 (Figure 10.17/Figure 10.18 ): allow the software to take
charge of what is being traced.

• UserTraceData1 and UserTraceData2 (Section 10.2.4 “UserTraceData1 reg and UserTraceData2 reg”):
allows software to send a “user format” trace record, which can be interpreted by suitable trace analysis software
to build interesting facilities.

• TraceBPC (Figure 10.20): controls whether and how individual EJTAG breakpoint trace triggers take effect.

Figure 10.17 Fields in the TraceControl Register

31 9 8 7 6 5 4 3 2 1 0

0 TrIDLE 0 PeCOvf PeCFCR PeCBP PeCSync PECE PEC

31 30 25 24 21 20 17 16 14 13 11 10 9 8 6 5 4 3 0

CF1 0 TRIG SZ CRMax CRMin PW PiN OnT OfT REV

31 30 29 28 27 26 25 24 23 22 21 20 13 12 5 4 3 2 1 0

TS UT 0 Ineff TB IO D E K S U ASID_M ASID G TFCR TLSM TIM On

0 0



10.2 PDtrace™ instruction trace facility

Programming the MIPS32® 34K™ Core Family, Revision 01.64 160

Figure 10.18 Fields in the TraceControl2 Register

Figure 10.19 Fields in the TraceControl3 register

TS: set 1 to put software (manipulating this register) in control of tracing. Zero from reset.

UT: software can output a "user triggered record" (just write any 32-bit value to the UserTraceData register). There have
been two types of user-triggered record, and this bit says which to output: 0 → Type 1 record, 1 → Type 2. This bit is
deprecated as there are now two registers UserTraceData1 and UserTraceData2. If a write to UserTraceData1 or
UserTraceData2 occurs, then the type is UT1 or UT2 respectively

Ineff: set to 1 to indicate that core-specific-inefficieny tracing is enabled.

TB: "trace all branch" - when 1, output all branch addresses in full. Normally, predictable branches need not be sent.

IO: "inhibit overflow" - slow the CPU rather than lose trace data because you can’t capture it fast enough.

D, E, K, S, U: do trace in various CPU modes: separate bits independently filter for debug, exception, kernel, supervisor
and user mode. Set 1 to trace.

ASID_M, ASID, G: controls ability to trace for just one (or some) processes, recognized by their current ASID value as
found in EntryHi[ASID]. Set the G ("global") to trace instructions from all and any ASIDs. Otherwise set
TraceControl[ASID] to the value you want to trace and ASID_M to all 1s (you can also use ASID_M as a bit mask to
select several ASID values at once).

TFCR: switch on to generate full PC addresses for all function call and return instructions.

TLSM: switch on to trace all D-cache misses (potentially including the miss address).

TIM: switch on to trace all I-cache misses.

On: master trace on/off switch - set 0 to do no tracing at all.

The read-only fields in TraceControl2 provide information about the capabilities of your PDtrace system. That system
may include a plug-in probe, and in that case the TraceControl2[SyP] field may read as garbage until the probe is
plugged in.

The first four fields are for tracing code running on MT CPUs:

CPUIdV, CPUId: when CPUIdV is set, trace data will only be generated by code run by the VPE identified in CPUId.
Ignored if TCV is set.

TCV, TCNum: when TCV is set, trace only instructions run by the TC whose number is stored in tTCNum.

31 30 29 12 11 7 6 5 4 3 2 0

SyPExt 0 Mode ValidModes TBI TBU SyP

31 14 13 12 11 10 9 8 7 3 2 1 0

0 PeCOvf PeCFCR PeCBP PeCSync PECE PEC 0 TrIDLE TRPAD FDT
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Mode: whenever trace is turned on, you capture an instruction trace. Mode is a bit mask which determines what load/

store tracing will be done39. It’s coded like this:

However, see TraceControl2[ValidModes] (description below) for what your PDtrace unit is actually capable of doing.
Bad things can happen if you request a trace mode which isn’t available.

TraceControl2[ValidModes]: what is this PDtrace unit capable of tracing?

TraceControl2[TBI,TBU]: best considered together, these read-only bits tell you whether there is an on-chip trace mem-
ory, on-probe trace memory, or both - and which is currently in use.

TraceControl2[SyP]: read-only field which lets you know how often the trace unit sends a complete PC address for syn-

chronization purposes, counted in CPU pipeline clock cycles. The period is 2(SyP + 5). Valid periods are 25 to 212 .

TraceControl2[SyPExt]: This is an extension to the SyP. It is useful when a higher number of cycles is desired between
synchronization events. The same formula applies as that described above, except that it applies to the juxtaposition

of SyPExt and SyP. The period is 2(SyPExt ,SyP + 5) . Valid periods are 25 to 231. If the user tries to specify a

period above 231, the behavior is unpredictable.

TraceControl3[FDT]: set to 1 to indicate that Filtered Data Trace is enabled

TraceControl3[TRPAD]: read-only bit that is loaded from TCBControlBTRPAD.

TraceControl3[TrIDLE] :read-only bit that is set by the hardware to indicate that the trace unit is not processing any data.
This is especially useful when switching control from hardware to software and vice-versa. After turning trace off
(recommended to turn TraceControll[ON] , TCBCONTROLA[ON] , and TCBCONTROLB[EN] off) , this bit should be
queried and if the trace unit is idle, then it is safe to change the trace control settings. After changing the settings,
trace can be turned back on, and tracing resumes cleanly with the new control.

The rest of the bits in TraceControl3 enable and control performance counter tracing.

Bit No Set What gets traced
0 PC
1 Load addresses
2 Store addresses
3 Load data
4 Store data

39. Prior to v4 of the PDtrace specification, this field was in TraceControl, and was too small to allow all conditions to be speci-
fied independently.

ValidModes What can we trace?
00 PC trace only
01 Can trace load/store addresses
10 Can trace load/store addresses and data

TBI TBU On-chip or probe trace memory?
0 0 only on-chip memory available
0 1 only probe memory available
1 0 Both available, currently using on-chip
1 1 Both available, currently using probe
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10.2.3 JTAG triggers and local control through TraceIBPC/TraceDBPC

Recent revisions of the PDtrace specification have defined much finer controls on tracing. In particular, you can now
trace only cycles matching some “breakpoint” criteria, and there is a two-stage process where cycles are traced only
after an “arm” condition is detected. The new fields are shown in Figure 10.20

In either TraceIBPC or TraceDBPC:

PCT: set to 1 and a performance counter trigger signal is generated when an EJTAG breakpoint match occurs.

IE,DE: master 1-to-enable bit for triggers from EJTAG instruction and data breakpoints respectively.

ATE: Read-only bit which lets you know whether the additional trigger controls such as ARM, DISARM, and data-qual-
ified tracing (introduced in v4.00 of the PDtrace specification) are available - which they may be on the 34K core.
This bit is deprecated and reads as zero.

IBPC8-0, DBPC8-0: each three-bit field encodes tracing options independently, for up to nine EJTAG I- and D-side
breakpoints (this is generous: your 34K core will typically have no more than 4 I- and 2 D-breakpoints).

Each entry can be set as follows:

However, do TraceIBPC/TraceDBPC exist in your system? They will be there only if you have an EJTAG unit (does
Config1[EP] read 1?), and that unit has at least one breakpoint register - check that at least one of DCR[DB,IB] is set
(as described in).

10.2.4 UserTraceData1 reg and UserTraceData2 reg

Write any 32-bit value you like here and the trace unit will send a “user” record (if only one UserTraceData register
exists, then there are two “types” of user record, and which you output depends on TraceControl[UT], see above).
However if two UserTraceData registers exist then writing to UserTraceData1 will generate a trace record with type
UT1, and writing to UserTraceData2 will generate a trace record with type UT2. You need to send something your
trace analysis system will understand, of course! Perhaps it’s worth noting that this “user” is local debug software,
and doesn’t mean low-privilege software running in “user mode” - which of course would not be able to access this
register. CP0 access rules apply when writing to this “user” register.

10.2.5 Summary of when trace happens

The many different enable bits which control trace add up to (or strictly “and” up to) a whole bunch of reasons why
you won’t get any trace output. So it may be worth summarizing them here. So:

Figure 10.20 Fields in the TraceIBPC/TraceDBPC registers
31 30 29 28 27 26 24 23 21 20 18 17 15 14 12 11 9 8 6 5 3 2 0

TraceIBPC
0 PCT

IE
ATE

IBPC3 IBPC2 IBPC1 IBPC0

TraceDBPC DE DBPC1 DBPC0

xBPC field Description
0 Stop tracing (no effect if off already).
1 Start tracing (no effect if on already).
2 Trace instructions which cause this trigger.
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• If software is in charge (that is, if TraceControl[TS]==1) then:

– TraceControl[On] must be set.

– At least one of the CPU mode filter bits TraceControl[D,E,S,K,U] must be set 1 to trace instructions in debug,
exception, supervisor, kernel or user-mode respectively. Mostly likely either just TraceControl[U] will be set (to
follow just one process in a protected OS), or TraceControl[E,S,K,U] to follow all the software at bare-iron
level (but not to trace EJTAG debug activity);

– Either TraceControl[G] is set (to trace everything regardless of current ASID) or TraceControl[ASID] (as
masked by TraceControl[ASID_M]) matches the current value of the core-under-test’s EntryHi[ASID] field.

– The signal PDI_TraceOn is asserted by the trace block. This will typically be true whenever the probe is
plugged in and connected to software.

– As above there are D,E,S,K,U,G and ASID bits (there isn’t an “ASID_M” in this case) which must be set
appropriately in the JTAG-accessible TCBCONTROLA register, which is not otherwise described here.

Whether JTAG or TraceControl is in charge, then:

• There must have been a cycle recently when there was an “on trigger”, that is:

– The CPU tripped an EJTAG breakpoint with the IBCn[TE]/DBCn[TE] bit set to request a trace trigger (for I-side
and D-side respectively);

– TraceIBPC[IE]/TraceDBPC[DE] (respectively) was set to enable triggers from EJTAG breakpoints;

– the appropriate TraceBPC[IBPCx]/TraceBPC[DBPCx] field has some kind of “on” trigger - and if this trigger is
conditional on “arm” there must have been an arm event since system reset or any disarm event; or the trigger
unconditionally turns trace on.

• And since the on-trigger time, there must not have been a cycle which acted as an “off trigger”, that is:

– The CPU tripped an EJTAG breakpoint with the IBCn[TE]/DBCn[TE] bit set, and TraceBPC[IE]/TraceBPC[DE]
(respectively) were still set;

– where the appropriate TraceIBPC[IBPCn]/TraceDBPC[DBPCn] fields is set to disable triggering (subject to
arming).

If there is more than one breakpoint match in the same cycle, an “on” trigger wins out over any number of “off”.
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10.3 CP0 Watchpoints

Some cores may be built with no EJTAG debug unit to save space, and some debug software may not know how to
use EJTAG resources. So it may be worth configuring the four non-EJTAG CP0 watchpoint registers. In 34K cores
you get two I-side and two D-side registers (unless, of course, the core was built without them - check Config1[WR]).

These registers provide the interface to a debug facility that causes an exception if an instruction or data access
matches the address specified in the registers. Watch exceptions are not taken if the CPU is already in exception mode
(that is if Status[EXL] or Status[ERL] is already set).

Watch events which trigger in exception mode are remembered, and result in a “deferred” exception, taken as soon as
the CPU leaves exception mode.

This CP0 watchpoint system is independent of the EJTAG debug system (which provides more sophisticated hard-
ware breakpoints).

The WatchLo0-3 registers hold the address to match, while WatchHi0-3 hold a bundle of control fields.

10.3.1 The WatchLo0-3 registers

Used in conjunction with WatchHi0-3 respectively, each of these registers carries the virtual address and what-to-
match fields for a CP0 watchpoint.

Figure 10.21 Fields in the WatchLo0-3 Register

WatchLo0-3[VAddr]: the address to match on, with a resolution of a doubleword.

WatchLo0-3[I,R,W]: accesses to match: I-fetches, Reads (loads), Writes (stores). 34K cores have separate I- and D-
side watchpoints, so you’ll find that the I-side WatchLo0-1[R] and WatchLo0-1[W] is fixed to zero, while for the D-
side-only watchpoint, WatchLo2-3[I] will be zero.

10.3.2 The WatchHi0-3 registers

Figure 10.22 Fields in the WatchHi0-3 Register

WatchHi0-3[M]: the WatchHi0-3[M] bit is set whenever there is one more watchpoint register pair to find; your soft-
ware should use it (starting with WatchHi0) to figure out how many watchpoints there are.  That’s more robust than
reading the CPU manual...

WatchHi0-3[G,ASID]: WatchHi0-3[ASID] matches addresses from a particular address space (the "ASID" is like that
in TLB entries) — except that you can set WatchHi0-3[G] ("global") to match the address in any address space.
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WatchHi0-3[Mask]: implements address ranges.  Set bits in WatchHi0-3[Mask] to mark corresponding WatchLo0-
3[VAddr] address bits to be ignored when deciding whether this is a match.

WatchHi0-3[I,R,W]: read your WatchHi0-3 after a watch exception, and these fields tell you what type of access (if
anything) matched.

Write a 1 to any of these bits in order to clear it (and therefore prevent the exception from immediately happening
again). This behavior is unusual among CP0 registers, but it is quite convenient: to clear a watchpoint of all the
exception causes you’ve seen just read the value of WatchHi0-3 and write it back again.

10.4 Performance counters

Performance counters are provided to allow software to monitor the occurrence of events of interest within the core,
and can be very useful in analyzing system performance.

34K family CPUs are fitted with counters, each of which can be set up to count one of a large choice of different
events. Each 32-bit counter is accompanied by a control register whose layout is shown in Figure 10.23.

Two different configurations are found on 34K cores, distinguished by the Config7[PCT] bit (see notes to Figure C-
3:

• If Config7[PCT] is zero there are four “global” counters: unlike almost all the other CP0 registers, the perfor-
mance counters are not replicated per-VPE: the CPU has four counters, which either VPE may use;

• If Config7[PCT] reads 1, there are two counters, but replicated per TC. Note that just because a particular con-
trol/count pair is only directly accessible by software running on its own TC, all the counters can count whatever
events for whatever TC and VPE you choose.

There’s no direct way of seeing which organization your CPU is using. But you can find out how many registers the
software can see by inspecting the PerfCtl[M] bits (see below); to check whether the counters are per-TC, check
whether a change made to a register is reflected in the value returned from the viewpoint of another TC. The mftr
instruction is your friend here — see Section 2.8 “MIPS® Multithreading ASE - new instructions”.

34K is a multi-threading CPU, and you can optionally count only events associated with a particular thread (by its TC
number), or even those events associated with threads affiliated to a particular VPE. After some thought, I haven’t
documented in detail when you might get a different count if you narrow to a particular VPE or TC. In most cases it’s
obvious whether it makes sense to count a particular event for just one TC or VPE: where it’s not obvious, experi-
ment.

Figure 10.23 Fields in the PerfCtl Registers

Software should not assume knowledge of how many counters there are. Instead, check using the PerfCtl[M] bit
(which indicates “at least one more”).

Then the fields are:

M: Reads 1 if there is another PerfCtl register after this one.
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M 0 TCID
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TCID: the TC number of the thread whose events should be counted, if just-one-TC counting is enabled (i.e.
MT_EN==10 binary.)

MT_EN: available to restrict counting to events which are attributable to a particular VPE or TC:

VPEID: defines the VPE all of whose TC’s events should be counted, if just-this-VPE counting is enabled (i.e.
MT_EN==01 binary.)

PCTD: controls whether this performance counter will be included in the performance counter trace mode of PDtrace.
Setting the bit will prevent the tracing of this counter

Event: determines which event this counter will count; see Table 10.9 below. Note that the odd-numbered and even-
numbered counters mostly count different events, though some particularly important events can use any of the
counters.

IE: set to cause an interrupt when the counter "overflows" into its bit 31. This can either be used to implement an
extended count, or (by presetting the counter appropriately) to notify software after a certain number of events have
happened. The interrupt is implemented by taking a set of signals (usually SI_PCI nt- one per VPE) out of the core,
which the system integrator will have sent back in, each as one of the core’s interrupt inputs. The output signal acti-
vated will depend on the VPE affiliation of the thread which last wrote to the control register, which will normally be
what you want.

U, S, K, EXL: count events in User mode, Supervisor mode, Kernel mode and Exception mode (i.e. when Status[EXL] is
set) respectively. Set multiple bits to count in all cases.

The events which can be counted in the 34K core are in Table 10.9. Blank fields are reserved. But before you get
there, take a look at the next sub-section...

10.4.1 Reading the event table.

There are a lot of events you can count. It’s relatively cheap to wire another signal from the internals of the core into
a counter. It’s time consuming and expensive to formulate a signal which represents exactly what a software engineer
might want to count, and even more expensive to test it. Where the definitions in Table 10.9 are clear and simple,
they’re usually exactly right. Where they seem more obscure, tread carefully, and don’t just blame the author of this
manual (though sometimes it is my fault!) When you use a counter, use it first on a piece of code where you know the
answer, and check you’re really counting what you think you are.

When reading the table:

• T, V, P: relevant only to a multithreading CPU. In the “Type” column, mark an event which can be filtered per-
TC, per-VPE or is just global (respectively). Per-TC events can be counted per-VPE, and per-VPE events can be
counted globally. When you count per-TC events per-VPE or globally the counter will advance in any cycle
where the event happens for any TC under consideration. Counters never advance faster than once per clock.

MT_EN What gets counted?
value
00 Events from all TCs & VPEs (i.e., don’t filter)
01 Count events from all TCs affiliated to the VPE specified in the

VPEID field. Some events can’t be tied to a particular VPE - use
common sense.

10 Count events only for the TC specified by the TCID field. Again,
some events are not TC-specific.

11 Reserved
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• IFU: is the “instruction fetch unit” of the CPU pipeline. We can’t describe some events without referring to the
inside of the CPU. You might like to look back at Section 3.1 “The 34K™ core pipeline and multithreading”.

• Replay: when an instruction will block for a long period, sequentially-later instructions from the same TC which
have got into the main pipeline must be discarded. These instructions will usually have been retained in the “skid
buffer” of the IFU, so the IFU queues can be adjusted so that when the instruction unblocks, the TC can continue
correctly from the following instruction. This sequence is called a “replay” and these events count the pipeline
bubbles which result.

• Refetch: if you'd like to do a replay but the relevant instructions are not available in the skid buffer, the IFU must
be instructed to discard all stored instructions for the TC and fetch them again. This event counts the number of
pipeline bubbles which result.

• Stall: in general, “stall” counters count the cycles when the whole pipeline is blocked and no TC can make for-
ward progress. If this type of counter is set for a particular TC, it will only count if this TC is causing the stall.

But subunits causing a stall can also signal a “long stall”, and the main pipeline takes that as a cue to deschedule
the blocked TC until the condition is resolved. The counters documented as “stall” or “stalled” do not count time
while one TC is blocked but others continue to run.

• Blocked cycle: “events” like this count all and any cycles when a TC is blocked by something.

• LDQ, FSB, WBB: CPU queues, described in Section 5.3.1 “Read/write ordering and cache/memory data queues
in the 34K‘ core”.

• Instruction fetch events: these include I-cache, ITLB and JTLB events. They are not as directly related to the
instructions in your program as you might think:

• 34K family CPUs have a 64-bit wide interface to the I-cache and fetch two instructions at once.

• After a cache miss is resolved, the IFU re-fetches the missed data; the counters will count this twice.

• The IFU always reads instructions ahead, and on a branch or exception some of the instructions fetched will
never be executed. Moreover, the IFU's branch predictors sometimes cause it to fetch speculatively from a
predicted branch target which turns out to be wrong: those speculative instructions will never be executed
either.

• If there's an exception-causing address error during I-fetch, it won't be counted.

• Single-threaded mode (ST mode): when only one TC is eligible for scheduling, the 34K core hardware is in “ST
mode”. In ST mode some blocking events which would otherwise have been dealt with by suspending the thread
and possibly replaying an instruction are handled by a whole-pipeline stall instead. This saves power, and is more
efficient in the case where no other TC becomes runnable until the stall condition is resolved.

• Exceptions in a branch delay slot: are handled by internally setting the exception-return register EPC to point to
the branch instruction. After the exception is handled and control returns, the branch instruction is re-executed:
all MIPS branch instructions are contrived so the re-execution does exactly the same thing as the first time. But
the instruction is “really” run twice, and any performance count will show that.
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Table 10.9 Performance counter events

 Event
No  Counter 0 and 2 Type  Counter 1 and /3 Type

 0  Cycles P Cycles P

 1  Instructions completed T Instructions Completed T

 2 Branch instructions completed. T Branch mispredictions T

 3 jr $31 (return) instructions T jr $31 predicted but guessed wrong T

 4 jr (not $31) instructions T jr $31 not predicted (the return predictor
only works for one TC at a time).

T

 5 ITLB accesses. There will be one for every I-
fetch in a translated address region.

T ITLB misses. Note that if two TCs cause “the
same” ITLB miss in quick succession, that will
only be counted once.

T

 6 DTLB accesses. T DTLB misses T

 7 JTLB instruction accesses (same as ITLB
misses).

T JTLB I-misses: this counts TLB misses and
TLB invalid conditions on I-fetch.

T

 8 JTLB data accesses (same as DTLB misses) T JTLB D-miss: counts TLB misses + TLB
invalid on D-access.

T

 9 Instruction cache accesses. Since pairs of
instructions are fetched over the 64-bit bus, this
is only very approximately one per two instruc-
tions. And that's every access: even though the
instruction ends up dropped because of an
exception, or a thread becoming blocked. And
instructions which are refetched will end up
being counted twice.

T Instruction cache misses. Includes misses result-
ing from fetch-ahead and speculation.

T

 10 Data cache load/stores T D-cache writebacks (strictly, the number of D-
misses or cacheops which trigger a writeback.)

T

 11 Loads/stores which miss in D-cache T Loads/stores which miss in D-cache T

12 reserved - reserved -

13 Store misses T Load Misses T

 14 Integer instructions completed T FPU instructions completed (not including loads
and stores)

T

 15 Loads completed (including FP loads) T Stores completed (includes FP stores) T

 16 j/jal instructions completed T MIPS16 instructions completed T

 17 no-ops completed. Early revision cores count
only strict nop instructions, but later ones
count any 3-operand instruction which discards
its output by writing register $0.

T Integer multiply/divide unit instructions com-
pleted

T

 18 Cycles where the main pipeline (RF stage) does
not advance. This is either because there is no
instruction scheduled, or because the ALU is
backed up and can't accept an instruction

P Refetches: that is, events where IFU is made to
re-issue instructions which were already sched-
uled once.

T

 19 sc instructions completed T sc instructions failed T

 20 Prefetch instructions to cached addresses T Prefetch instructions completed with cache hit T

 21 L2 cache writebacks P L2 cache accesses P

 22 L2 cache misses P Single-bit errors corrected in L2 P

 23 Exceptions taken T Cycles spent in “Single Threaded Mode”. T
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 24 Cycles when main pipeline is stalled while the
LSU has to do a “replay”. A good example of a
replay is when the fill buffer gets full and needs
to be emptied out to make forward progress. To
empty out the buffer, the LSU has to take con-
trol of the cache which is currently being
accessed by other in-flight LSU instructions.
To accomplish this, the pipeline is stalled, the
FSB accesses the cache to empty out its data,
and then the instructions that were in flight are
“replayed” to get their data from the cache.

T “Refetches”: Counts all replayed instructions
(instructions which are send back to IFU to be
refetched and reissued)). If an instruction has
been replayed multiple times, you get a count
for each event.

T

 25 Cycles when no instructions are available to
issue for any TC

P Cycles when main pipeline stops because an
ALU operation is taking more than one clock

P

 26 DSP Instructions Completed T ALU-DSP Saturations Done T

 27 MDU-DSP Saturations Done T

28-31 Available to count implementation-specific events signalled by wires from configurable interfaces.

 28 Available for customer PM event T Available for customer CP2 event T

 29 Available for customer ISPRAM event T Available for customer DSPRAM event

 30 Available for CorExtend event T

 31 Available for external yield manager event. T  Custom ITC event T

 32 ITC Loads. If a TC is halted or takes an excep-
tion, a pending ITC operation will be aborted,
then later retried. Each retry is counted.

T ITC Stores issued. Invisible retries counted too,
as for loads.

T

 33 Uncached Loads T Uncached Stores T

 34 fork Instructions completed T yield instructions completed T

 35 CP2 register-to-register instructions completed T mfc2/mtc2 instructions completed T

36 reserved

37-46 Count number of cycles (most often “stall cycles”, i.e. time lost), not just number of events. See note on stall
cycles above.

 37 I-cache miss blocked cycles - counts cycles
when the TC has no instruction to issue follow-
ing an I-fetch miss. This ignores the stalls due to
ITLB misses as well as the 4 cycles following a
redirect.

T D-cache miss blocked cycles - counts cycles
when TC is blocked when an instruction uses a
register value which is subject to a load miss.

T

38 SYNC Stall Cycles T FSB Index Conflict Stalls P

39 D-miss cycles P L2 miss cycles P

40 Uncached access block cycles T ITC stall cycles: when no instruction for any TC
can be issued, and a TC selected for counting is
waiting for an ITC operation

T

 41 MDU stall cycles - note that it's possible for the
MDU to indicate a “long stall” where the TC
waiting for the MDU gets suspended - that wait
will not be counted here.

T FPU stall cycles  T

 42  CP2 stall cycles T CorExtend stall cycles  T

 Event
No  Counter 0 and 2 Type  Counter 1 and /3 Type
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 43  ISPRAM stall cycles - when no instruction can
be issued because the IFU has run out of instruc-
tions, after the ISPRAM sent a “not ready” indi-
cation (which requires a retry). Doesn't include a
count for the 4 cycles after a redirect.

T DSPRAM stall cycles  T

 44  CACHE instruction stall cycles P Cycles spent stalled waiting for something
which we’d normally deal with by “parking” the
TC, but where we’ve stalled because we’re in
ST mode (ie no other TC has instructions to
schedule).
Long stalls in this sense include those which
result from cache misses or waiting for a divide
or square-root instruction.

 P

 45  Load to Use stalls T Stalls when a load/store base register was com-
puted by the preceding instruction.

 T

 46  Read-CP0-value interlock stalls. T

 47  Relax bubbles V

 48  IFU FB full refetches: count up when the IFU
has to refetch an address because the FB was
full on a miss.

T FB entry allocated  P

 49  EJTAG Instruction triggers T EJTAG data triggers  T

50-55 Monitor the state of various FIFO queues relating to loads and stores, as described in Section 5.3.1 “Read/
write ordering and cache/memory data queues in the 34K‘ core”.

 50 FSB < 1/4 full P FSB 1/4-1/2 full P

 51 FSB > 1/2 full P FSB full pipeline stalls P

 52 LDQ < 1/4 full P LDQ 1/4-1/2 full P

 53 LDQ > 1/2 full P LDQ full pipeline stalls P

 54 WBB < 1/4 full P WBB 1/4-1/2 full P

 55 WBB > 1/2 full P Cycles when whole CPU is stopped because an
instruction needs to write data out of the core,
but all write buffer entries are full.

P

56-63 Reserved

64 SI_PCEvent[0] - System specific event 0 P SI_PCEvent[1] - System specific event 1 P

65 SI_PCEvent[2] - System specific event 2 P SI_PCEvent[3] - System specific event 3 P

66 SI_PCEvent[4] - System specific event 4 P SI_PCEvent[5] - System specific event 5 P

67 SI_PCEvent[6] - System specific event 6 P SI_PCEvent[7] - System specific event 7 P

68-127 Reserved

 Event
No  Counter 0 and 2 Type  Counter 1 and /3 Type
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Glossary

ASE: “Application-Specific Extension” to an instruction set. The acronym is used by MIPS Technologies to describe
optional add-ons to the core MIPS32/MIPS64 architecture. The multi-threading package is the “MIPS MT ASE”
and there’s a bunch of others including the recent “DSP ASE” which adds computational instructions relevant to
media-stream signal processing.

Co-processor:the MIPS architecture reserves some parts of the instruction set for “co-processors” - which have a few
standard instructions, some instruction encoding space and standard registers. Co-processors can be standard but
optional (like the floating point unit); a space for customers to build their own logic (like CP2); or, in the case of
“co-processor zero”, just a way to separate the encodings of critical (and certainly not optional) processor control
operations and registers.

Co-processor zero:see CP0 below.

CP0: MIPS computers use a bunch of register fields for most CPU control purposes. They’re accessible only in high-
privilege mode, since they’re part of the protection system for a protected OS. The registers and the instructions
used to access them are defined using a built-in instruction set extension mechanism which conceives of four sets
of instruction encodings reserved for “co-processors”: the control register set, which must be present in any
MIPS32 CPU, are “co-processor zero”.

CP0 hazard:a hazard which makes some instruction sequences involving privileged operations (and particularly privi-
leged “CP0” registers) illegal. Until quite recently OS programmers were expected to deal with CP0 hazards by
inserting “enough” nop instructions between producers and consumers of CP0 values and state; but with Revi-
sion 2 of [MIPS32] there are better ways described in Section 7.1, "Hazard barrier instructions".

Dispatch Scheduler:the logical block of a MIPS MT multithreading CPU which determines which thread to favor when
issuing instructions into the sequential main pipeline.

EMT: (“Explicit Multithreading”) software which is deliberately written in terms of closely coupled (i.e. memory shar-
ing) concurrent threads. and therefore can directly benefit from multi-threading features of the underlying CPU.

Gating Storage:a kind of special uncacheable memory recognized by a multithreading CPU. It’s suitable for use for
accessing locations where the load/store will not be completed until some event external to the thread, with no
obvious maximum waiting time.

From the software’s point of view, gating storage is synchronous: no instruction, side-effect or exception from
the after the gating load/store is permitted unless and until the load/store completes. A load/store to gating stor-
age may be aborted at any time before it completes, and this will be signalled as a precise exception whose return

address is the load/store instruction40.

From the hardware’s point of view, gating storage has a special interface to the core. The storage subsystem must
signal a completed store, and the core can (at any time while waiting for a load/store to complete) ask the storage
subsystem to abort the operation. An aborted operation must be “as if it never happened”.

There will be some handshaking between the core and the storage subsystem to avoid a race condition between
completion and abort. In some circumstances, software trying to abort a gated load/store will fail, and will be told

40. Or the branch instruction in whose delay slot the load/store lives - usual MIPS exception rules.
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that the operation completed before it could be aborted, and will then have to cope with whatever side-effects the
operation had.

Hazard:(or “pipeline hazard”) - an architectural requirement which requires you to avoid some instruction sequences.
Historical MIPS CPUs had some interesting hazards (like the “load delay slot” and an exception corner case on
multiply operations). For a long time MIPS CPUs have only had hazards on code sequences using privileged
operations, see CP0 hazard.

Interrupt exempt: in a MIPS MT CPU like the 34K core a TC may be marked as interrupt-exempt by setting
TCStatus[IXMT]; then any interrupt presented to the VPE will never cause an exception to that TC. If all TCs
belonging to a VPE are marked interrupt-exempt, that’s yet another way of disabling all interrupts.

Inter-Thread Communication storage:a generalized form of empty/full storage provided with the 34K core, and attach-
ing to the gating storage (see above) interface. It’s described in Section 3.3, "Inter-thread communication storage
(ITC)".

ITC: short for “Inter-Thread Communication storage” as above.

ITC Cell:one location of ITC storage. A cell stores 32 bits of data, but has multiple views at different memory loca-
tions, each of which behaves differently.

Pipeline hazard:see Hazard above.

Redirect:what happens in the pipeline when the 34K core encounters an unpredictable or wrongly-predicted branch
instruction. The branch address and condition are finally available by the end of the “EX” pipeline stage (see
Section 3.1, "The 34K™ core pipeline"); at this point all instructions in the pipeline or fetch unit for this thread
must be discarded, and instructions fetched from the now-correct instruction instead. That’s a redirect.

Relax:used for the extra “bogus TC” on the 34K core which does nothing. The external thread scheduling “policy man-
ager” (see below) has “relax” signals alongside those for real threads; when the “relax” condition has higher pri-
ority than any running threads the CPU does nothing for a cycle. This is a way of turning down the CPU
(possibly saving energy) when no thread is urgent. See Section 3.2.3, "MIPS Policy managers included with the
34K‘ core family".

Shadow register set:an extra set of general-purpose registers which can be automatically used in an interrupt handler
(or other exception handler). Applications on MIPS32 architecture CPUs can use these shadow registers to
reduce the overhead of interrupt handlers, both by retaining quickly-used state in the shadow registers and by
avoiding the need to save and restore the state of the interrupted thread. See Section 7.4, "Shadow registers".

For software compatibility, the 34K core can recycle one or more otherwise-unused TCs’ registers as a shadow
set; see Section 4.3.6, "TCs recycled as Shadow registers".

Skid buffer:in a busy multi-threading CPU threads will block very frequently. When a thread blocks there may well be
later instructions from the same thread in the pipeline: you can’t stop the pipeline without holding up all the other
threads, and you can’t let this thread’s later instructions complete until this thread is unblocked. So those instruc-
tions must be discarded. It would be a problem if we had a full Redirect every time a thread blocked, so the 34K
core’s instruction fetch unit incorporates a “skid buffer” for each thread, which remembers the last couple of
instructions issued. When a thread blocks and instructions are discarded from the main pipeline, the skid buffer
can be backed up ready for the thread to be unblocked without having to fetch a whole lot more instructions.

TC: the logic and registers implementing a minimal thread state in the MIPS MT ASE (from “Thread Context”). A
TC has at least its own PC, general-purpose registers and some other necessary bits and pieces. One or more TCs
accessing the same complete set of CP0 registers make up a VPE.
The “Tera” project used the word “stream” for this.

Thread:a computation consisting of a set of computer instructions read and activated in their programmed order.
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Operating systems often use the word “thread” specifically for application-software-visible explicit threads
scheduled by the operating system kernel. But any code which is entered by something other than an application-
programmed branch forms a separate thread by this definition: an interrupt handler, for example.

Thread context:the complete state of a computation as held within the CPU. The thread state excludes (1) data stored in
memory, (2) state which is inaccessible to the instruction stream (such as CP0 register contents as seen by a user
task) and (3) state which is insignificant (such as cache contents, which generally make no difference to the
underlying memory image).

What comprises the thread state varies according to what sort of software is running. For a Linux OS interrupt
handler thread on a conventional MIPS CPU the CP0 registers are part of the thread context, but for a Linux
application thread they’re not. The thread state always (of course) includes the “program counter” (“PC”).

Policy Manager (PM):an implementation-dependent piece of logic (located outside of the MIPS core) which receives
thread scheduling information from the CPU and hints from the TCSchedule/VPESchedule registers, and uses
those and other customer-chosen inputs to propose a priority for the various TCs. The interface is designed to
permit the policy manager to substantially define scheduling strategy, without the system being prone to failures
caused by the inevitable delay between thread events and the PM’s response to them reaching the in-core thread
scheduler.

Program Counter (PC):A software concept - the address of the next instruction that the thread will execute. It’s realiza-
tion in hardware is somewhat elusive in a pipelined CPU implementing the MIPS architecture. However, it
makes a comeback as a hardware-visible thing with the MIPS MT ASE; it is well-defined in hardware for any
thread loaded into a TC but which is currently stopped (that is, there are no non-speculative instructions in
flight). Such threads keep their PC in the TCRestart register.

Virtualizable:a CPU feature which can be allocated from a user-privilege program and (transparently to the user pro-
gram) provided by either the hardware or automatic OS assistance.

So when an OS offers “virtual memory” there’s memory which is accessible by the user program - but when
there isn’t enough memory the user program wanders off the ready-mapped pages, generates an exception which
the OS can catch and map some more memory before restarting the application (back exactly where it was when
it tried to reference the memory which wasn’t there).

MIPS MT resources - notably the TC which runs a concurrent thread - are defined to be virtualizable too. User
programs can do their own thread creation and termination using the fork/yield $0 instructions, with an OS
intervening when no TC is available.

VSMP:a system with multiple concurrent threads running in separate VPEs (see the next entry), which behaves much
like a multi-CPU system sharing memory with coherent caches (a “symmetric multiprocessor” or SMP system).

Virtual Processing Element :see VPE, next

VPE: one or more TCs sharing a bank of CP0 registers and privileged-architecture resources make up a VPE. The
“Tera” project called this a “team”.

A single TC running in its own VPE - as seen by software unaware of the MIPS MT ASE - looks like an indepen-
dent CPU compliant with the MIPS32/MIPS64 specifications. So you can run legacy software (including any
OS) which is compatible with the MIPS architecture on a VPE even though the legacy software knows nothing
about multi-threading.

Yield Qualifier:a signal presented to the core interface which is available for test by the yield instruction; see Section
2.8.1, "Yield, Yield Qualifiers and threads waiting for hardware events".
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CP0 register summary and reference

This appendix lists all the CP0 registers of the 34K core. You can find registers by name through Table B.1, by num-
ber through Table B.3 and there’s our best shot at functional groupings below in Table B.4. The registers-by-number
Table B.3 tells you where to find a detailed description - if you’re reading on-line it’s a hot-link.

Power-up state of CP0 registers

The traditions of the MIPS architecture regard it as software’s job to initialize CP0 registers. As a rule, only fields
where a wrong setting would prevent the CPU from booting are forced to an appropriate state by reset; other fields -
including other fields in the same register - are random. This manual documents where a field has a forced-from-reset
value; but your rule should be that all CP0 registers should be initialized unless you are quite sure that a random value
will be harmless.

 A note on unused fields in CP0 registers

Unused fields in registers are marked either with a digit 0 or an “X”. A field marked zero should always be written
with zero, and subject to that is guaranteed to read zero on cores in the 34K family. A field marked “X” may return
any value, and nothing you write there will have any effect - but unless stated otherwise, it’s usually best to write it
either as zero or with a value you previously read from it.
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C.1 CP0 registers by name

C.2 CP0 registers by number

In a MIPS MT CPU almost all CP0 registers are replicated per-VPE. But registers whose name starts with “TC” are
replicated per-TC. Then the two “MVP...” registers and the performance counters are global (there’s only one of each
of these registers per CPU). Note that there are a few fields in other registers which don’t fit in with this: see Section
2.9.1 “What CP0 registers are per-TC, per-VPE and per-CPU?” for the gory details.

Table C.1 Register Index by Name

Name Number Name Number Name Number Name Number

BadVAddr 8.0 EPC 14.0 PerfCtl0-3 25.0 TCStatus 2.1

CacheErr 27.0 ErrCtl 26.0 25.2 TraceControl 23.1

Cause 13.0 ErrorEPC 30.0 25.4 TraceControl2 23.2

CDMMBase 15.2 HWREna 7.0 25.6 TraceDBPC 23.5

15.0 TraceIBPC 23.4

Compare 11.0 Index 0.0 PRId

Config 16.0 IntCtl 12.1 Random 1.0 UserLocal 4.2

Config1-2 16.1-2 IDataHi 29.1 SRSConf0-4 6.1-5 UserTraceData 23.3

Config3 16.3 IDataLo 28.1 SRSCtl 12.2 VPEConf0 1.2

Config7 16.7 ITagLo 28.0 SRSMap 12.3 VPEConf1 1.3

Context 4.0 L23DataHi 29.5 Status 12.0 VPEControl 1.1

Count 9.0 L23DataLo 28.5 TCBind 2.2 VPEOpt 1.7

Debug 23.0 L23TagLo 28.4 TCContext 2.5 WatchHi0-3 19.0-3

DEPC 24.0 LLAddr 17.0 TCHalt 2.4 WatchLo0-3 18.0-3

DESAVE 31.0 MVPConf0-1 0.2-3 TCRestart 2.3 Wired 6.0

DDataLo 28.3 MVPControl 0.1 TCSchedule 2.6 YQMask 1.4

DTagLo 28.2 PageMask 5.0 VPESchedule 1.5

EBase 15.1 PerfCnt0-3 25.1 TCScheFBack 2.7

EntryHi 10.0 25,3

EntryLo0-1 2.0 25.5

3.0 25.7

Table C.2 Cross-referenced list of CP0 registers by number

Nos Register Description Refer to

0.0 Index Index into the TLB array 5.8.4, p.88

0.1 MVPControl CPU-wide multithreading control Figure 2.5 , p. 38

0.2-3 MVPConf0-1 CPU’s multithreading resources Figure 2.4 , p. 37
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1.0 Random Randomly generated index into the TLB array 5.8.4, p.88

1.1 VPEControl VPE control and status Figure 2.1 , p. 34

1.2-3 VPEConf0-1 Initializable per VPE resource lists Figure 2.6 , p. 39

1.4 YQMask Defines valid inputs for yield instruction 2.9.9, p.39

1.5 VPESchedule Per-VPE thread policy hints 2.9.12, p.40

1.6 VPEScheFBack Per-VPE information from policy manager

1.7 VPEOpt Per-VPE cache-way inhibition 2.9.10, p.40

2.0 EntryLo0 Output (physical) side of TLB entry for even-numbered virtual pages Figure 5.13 , p. 89

2.1 TCStatus Status and control for each TC 2.9.4, p.35

2.2 TCBind VPE affiliation and own TC number of this TC Figure 2.3 , p. 37

2.3 TCRestart Where this TC will next fetch code from 2.9.3 , p. 35

2.4 TCHalt Set 1 to freeze the TC for inspection/modification 2.9.3 , p. 35

2.5 TCContext Read/write scratch register for OS to maintain thread ID 2.9.3 , p. 35

2.6 TCSchedule Per-TC thread scheduling hints 2.9.12 , p. 40

2.7 TCScheFBack Per-TC information from policy manager

3.0 EntryLo1 Output (physical) side of TLB entry for odd-numbered virtual pages Figure 5.13 , p. 89

4.0 Context Mixture of pre-programmed and BadVAddr bits which can act as an OS
page table pointer.

Figure 5.14 , p. 90

4.2 UserLocal Kernel-writable but user-readable software-defined thread ID C.4.2, p.185

5.0 PageMask Control for variable page size in TLB entries Figure 5.12 , p. 88

6.0 Wired Controls the number of fixed (“wired”) TLB entries 5.8.4 , p. 88

6.1-5 SRSConf0-4 Write these to use TCs as shadow registers Figure 7.5 , p. 109

7.0 HWREna Select which hardware registers are readable using the rdhwr instruction
in user mode.

Figure 7.6 , p. 110

8.0 BadVAddr Reports the address for the most recent TLB-related exception 5.8.7, p.90

9.0 Count Free-running counter at pipeline or sub-multiple speed C.4.4, p.187

10.0 EntryHi High-order portion of the TLB entry Figure 5.12 , p. 88

11.0 Compare Timer interrupt control C.4.4, p.187

12.0 Status Processor status and control Figure C.1 , p. 184

12.1 IntCtl Setup for interrupt vector and interrupt priority features. Figure 7.1 , p. 103

12.2 SRSCtl Shadow register set selectors Figure 7.3 , p. 107

12.3 SRSMap In VI (vectored interrupt) mode, determines which shadow set is used for
each interrupt source.

Figure 7.4 , p. 109

13.0 Cause Cause of last general exception Figure C.2 , p. 186

14.0 EPC Restart address from exception (no subfields, not described further in this
manual)

[MIPS32]

15.0 PRId Processor identification and revision Figure 4.6 , p. 59

15.1 EBase Exception entry point base address and CPU/VPE ID Figure 7.2 , p. 106

Table C.2 Cross-referenced list of CP0 registers by number

Nos Register Description Refer to
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15.2 CDMMBase Base address for common device memory map region Figure 5-9 , p. 85

16.0 Config Configuration register Figure 4.1 , p. 54

16.1-2 Config1-2 Configuration for MMU, caches etc Figure 4.2 , p. 56

16.3 Config3 Interrupt and ASE capabilities Figure 4.4 , p. 57

16.7 Config7 34K family-specific configuration Figure C-3 , p. 188

17.0 LLAddr Address associated with last ll instruction of the “load-linked/store-condi-
tional” instruction pair. Not used in normal OS code.

3.5 , p. 50

18.0-3 WatchLo0-3 Watchpoint address: WatchLo0-1 are I-side, and WatchLo2-3 are D-side Figure 10.21 , p.
16519.0-3 WatchHi0-3 Watchpoint control: again, WatchHi0-1 are I-side, and WatchHi2-3 are D-

side

23.0 Debug EJTAG Debug register Figure 10.1 , p. 144

23.1 TraceControl Control fields for the PDTrace unit. Figure 10.17 , p.
15923.2 TraceControl2

23.3 UserTraceData Software-generated PDTrace information register 10.2.4 , p. 162

23.4 TraceBPC Additional controls for PDTrace start/stop Figure 10.20 , p.
162

24.0 DEPC Restart address from last EJTAG debug exception 10.1.7 , p. 143

25.0
25.2
25.4
25.6

PerfCtl0-3 Performance counter control Figure 10.23 , p.
166

25.1
25.3
25.5
25.7

PerfCnt0-3 Performance counters

26.0 ErrCtl Software parity control and test modes for cache RAM arrays Figure 5.7 , p. 82

27.0 CacheErr Cache parity exception control and status 5.4.17, p.80

28.0 ITagLo Cache tag read/write interface for I-, D- and L2 (secondary) cache respec-
tively

5.2, p.78
C.4.7, p.19028.2 DTagLo

28.4 L23TagLo

28.1 IDataLo Low-order data read/write interface for I-, D- and L2 cache respectively...

28.3 DDataLo

29.1 IDataHi ... and high-order data for the I-cache, which is only accessible in 64-bit
units.

28.5 L23DataLo Read/write data for L2 cache

29.5 L23DataHi Read/write check bits (ECC) for L2 cache

30.0 ErrorEPC Restart location from a reset or a cache error exception 5.4.17, p.80

31.0 DESAVE Scratch read/write register for EJTAG debug exception handler 10.1.7, p.143

Table C.2 Cross-referenced list of CP0 registers by number

Nos Register Description Refer to
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C.3 CP0 registers by function

Table C.3 CP0 registers grouped by function

Basic modes
Status 12.0

Cache
Management

DDataLo 28.3 Control user
rdhwr access

HWREna 7.0

Exception
control

Cause 13.0 DTagLo 28.2 Parity/ECC
control

CacheErr 27.0

EPC 14.0 ErrCtl 26.0 Multithreading
(global)

MVPConf0-1 0.2-3

OS/userland
thread ID

UserLocal 4.2 ErrorEPC 30.0 MVPControl 0.1

IDataHi 29.1

Multithreading
(per-TC)

TCBind 2.2

Timer
Compare 11.0 IDataLo 28.1 TCContext 2.5

Count 9.0 ITagLo 28.0 TCHalt 2.4

CPU
Configuration

CDMMBASE 15.2 L23DataHi 29.5 TCRestart 2.3

Config 16.0 L23DataLo 28.5 TCScheFBack 2.7

Config1-2 16.1-2 L23TagLo 28.4 TCSchedule 2.6

Config3 16.3

EJTAG debug

DEPC 24.0 TCStatus 2.1

Config7 16.7 DESAVE 31.0 VPESchedule 1.5

EBase 15.1 Debug 23.0

Multithreading
(per-VPE)

SRSConf0-4 6.1-5

IntCtl 12.1

PDtrace block

TraceControl 23.1 TCSchedule 2.6

PRId 15.0 TraceControl2 23.2 VPEConf0 1.2

SRSCtl 12.2 TraceDBPC 23.5 VPEConf1 1.3

SRSMap 12.3 TraceIBPC 23.4 VPEControl 1.1

TLB
Management

BadVAddr 8.0 UserTraceDat
a

23.3 VPEOpt 1.7

Context 4.0
debug/analysis

WatchHi0-3 19.0-3 VPESchedule 1.5

EntryHi 10.0 WatchLo0-3 18.0-3 YQMask 1.4

EntryLo0-1
2.0

Profiling

PerfCnt0-3

25.1

Multithreading
configuration

MVPConf0-1 0.2-3

3.0 25.3 SRSConf0-4 6.1-5

Index 0.0 25.5 TCBind 2.2

PageMask 5.0 25.7 VPEConf0 1.2

Random 1.0

PerfCtl0-3

25.0 VPEConf1 1.3

Wired 6.0 25.2 VPEOpt 1.7

25.4

25.6
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C.4 Miscellaneous CP0 register descriptions

Many CP0 registers in the 34K core are already described earlier in this manual, in a relevant section. But those which
got missed are described below, to make sure that every CP0 register field is at least mentioned in this manual.

C.4.1 Status register

The Status register is the most basic (and most diverse, for historical reasons) control register in the MIPS architec-
ture, and its fields are squashed into Figure C.1. All fields are writable unless noted otherwise.

The 34K family Status has no non-standard fields - they’re all as defined by [MIPS32]. Here and elsewhere these field
descriptions are fairly terse, and you should read behind this if you’re new to the MIPS architecture. Few of the fields
in Status are guaranteed to be initialized by hardware on a CPU reset; bootstrap code should write a reasonable value
to it early on (the same is true of many other CP0 registers, and the rule is “unless you know it’s safe to leave it ran-
dom, initialize it”).

A few fields are somewhat core-specific, and they are described at more length.

CU3-0: enables for different co-processor instruction sets (replicated per-TC). Writable when such a coprocessor exists.
Since no 34K family CPU has a co-processor3, Status[CU3] is hard-wired zero.

Setting Status[CU0] to 1 has the peculiar effect of allowing privileged instructions to work in user mode; not some-
thing a secure OS is likely to allow often.

RP: Reduced power - standard field.

It’s not connected inside the 34K core, but the state of the RP bit is available on the external core interface as the
SI_RP signal. The 34K core uses clocks generated outside the core, and this could be used in your design to slow the
input clock(s).

FR: if there is a floating point unit, set 0 for MIPS I compatibility mode (which means you have only 16 real FP regis-
ters, with 16 odd FP register numbers reserved for access to the high bits of double-precision values).

RE: reverse endianness in user mode. Hard-wired to zero in the 34K core, which doesn’t provide this feature.

MX: write 1 to enable instructions in either the MIPS DSP extension to the MIPS architecture, or the MDMX™
extension. The two may not be used together, so MDMX will never be available for the 34K core. But for maximum
portability you can find out which by looking at Config3[DSPP] (1 if MIPS DSP is implemented) and Config1[MD] (1
if MIPS MDMX is implemented).

PX: see description of UX below (but always zero on the 32-bit 34K CPU).

BEV: "boot exception vectors" - when 1, relocates all exception vectors to near the reset-time start address. See Section
7.3.1 “Summary of exception entry points”. This bit is automatically set when the CPU is reset.

TS: (read-only) records whether there has been any “machine check” exception (caused by duplicate valid TLB entries,
generally a rather serious error) since the CPU was reset. Will always read 0 on 34K core.

Figure C.1 All Status register fields
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 10 9 8 7 6 5 4 3 2 1 0
CU3-0 RP FR RE MX PX BEV TS SR NMI 0 CEE 0 IM7-0 KX SX UX KSU ERL EXL IE

In EIC (external int controller) mode IPL IM1-0
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SR: MIPS32 architecture "soft reset" bit: the 34K core’s interface only supports a full external reset, so this always
reads zero.

NMI: (read-only) - non-maskable interrupt shares the "reset" handler code, this field reads 1 when it was a NMI event
which caused it.

CEE: CorExtend Enable: read/write bit. Set zero to disable "CorExtend" user-defined instructions.

Not all CorExtend blocks implement this bit (those that don’t are unconditionally enabled). But CorExtend blocks
should use this facility if they store internal state and rely on the OS to save/restore the state associated with some
particular task. In such blocks, running a CorExtend instruction with Status[CEE] set to zero will cause the CPU to
take a “CorExtend Unusable” exception - Cause[ExcCode] value 17. A suitably aware kernel will catch the exception
and use it to note that the task is one which uses CorExtend resources (and therefore will need CorExtend state saved
and restored appropriately).

Do not attempt to set this bit if CorExtend is not present.

IM7-0: bitwise interrupt enable for the eight interrupt conditions also visible in Cause[IP7-0]; except in the "EIC"
interrupt mode, see Section 7.2.3 “External Interrupt Controller (EIC) mode”. In that case (as shown) the upper six
bits become the “interrupt priority level” (“IPL”) value in the range 0-63.

KX,SX,UX: the MIPS architecture’s memory mapping system changes slightly to support 64-bit addressing, and these
bits make that change for kernel-, supervisor- and user-privilege code respectively. But the 34K core is a 32-bit CPU,
so these are always zero.

KSU: execution privilege level - basically user or kernel:

Now that the intermediate “supervisor” privilege level is rarely used, this field is often shown as two separate bits,
with the bit 4 being called UM (“1 for user mode”).

ERL: "cache parity error exception mode" - which is really a stronger version of the exception mode Status[EXL] bit
whose description follows...

EXL: exception mode bit, set automatically when you first enter an exception handler or upon reset (reset is treated like
an exception). MIPS hardware barely supports nested exceptions, so this disables interrupts and software should
avoid causing an exception in the early part of the handler41.

IE: global interrupt enable, 0 to disable all interrupts.

C.4.2 The UserLocal register

Not interpreted by hardware, this register is suitable for a kernel-maintained thread ID whose value can be read by
user-level code with rdhwr $29, so long as HWREna[UL] is set.

In multithreading CPUs, UserLocal is replicated per-TC, and the fork instruction copies the parent’s UserLocal
value to the child’s.

UserLocal was a late addition to the architecture and was first implemented after the first release of the 34K family of
cores.  Kernels should check whether this register is implemented by inspecting Config3[ULRI], as described in

0 kernel
1 supervisor
2 user

41. There are some very special cases where nested exceptions are permitted, and the architecture specifies some rather special
behaviors to support those. But they’re beyond the scope of this manual; see [SEEMIPSRUN]:: or the [MIPS32] bible.
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Section 4.1.3 “The Config3 register”.  Use of rdhwr $29 will cause an exception in CPUs not implementing this
register, providing an opportunity for an OS kernel to simulate it.

C.4.3 Exception handling: Cause register

The Cause register is the first thing to consult after you get an exception, to figure out why the exception happened
(and therefore, what to do about it):

Cause tells you about the exception which just happened. Most fields are read-only:

BD: 1 if the exception happened on an instruction in a branch delay slot; in this case EPC is set to restart execution at
the branch, which is usually the correct thing to do. You need only consult Cause[BD] when you need to look at the
instruction which caused the exception (perhaps to emulate it).

TI: last interrupt was from the on-core timer (see section below for Count/Compare.)

CE: if that was a "co-processor unusable" exception, this is the co-processor which you tried to use.

DC: (writable) set 1 to disable the Count register.

PCI: last interrupt was an overflow from the performance counters, see Section 10.4 “Performance counters”.

IV: (writable) set 1 to use a special exception entry point for interrupts, see Section 7.3.1 “Summary of exception entry
points”. It’s quite likely that if you’re doing this, you’re also using multiple entry points for different interrupt levels;
see Section 7.2 “MIPS32® Architecture Release 2 - enhanced interrupt system(s)”.

WP: (writable to zero) - remembers that a watchpoint triggered when the CPU couldn’t take the exception because it
was already in exception mode (or error-exception mode, or debug mode). Since this bit automagically causes the
exception to happen again, it must be cleared by the watchpoint exception handler.

IP7-0, RIPL: the current state of the interrupt request inputs. When one of them is active and enabled by the
corresponding Status[IM7-0] bit, an interrupt may occur.

IP1-0 are writable, and in fact always just reflect the value written here. They act as software interrupt bits.

When using “EIC” interrupt mode the interpretation of this field changes, hence the alternate name of RIPL
(“requested interrupt priority level”). In EIC mode this represents a value between 0 and 63, and reflects the code pre-
sented on the incoming interrupt lines when the exception happened. For more information see Section
7.2.3 “External Interrupt Controller (EIC) mode”.

Figure C.2 Fields in the Cause register
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 8 7 6 2 1 0
BD TI CE DC PCI 0 IV WP 0 IP7-2 IP1-0 0 ExcCode 0

In EIC (external int controller) mode RIPL
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ExcCode: what caused that last exception. Lots of values, listed in Table C.4.

C.4.4 Count and Compare

These two 32-bit registers form a useful and flexible timer. Count just counts. For the 34K core, that’s usually at the
full pipeline clock rate. But portable software can discover how fast Count counts by reading the “hardware register”
called “CCRes”, see Section 6.1 “User-mode accessible “Hardware registers””.

Table C.4 Exception Code values in Cause[ExcCode]

Val Code What just happened?

0 Int Interrupt

1 Mod Store, but page marked as read-only in the TLB

2 TLBL Load or fetch, but page marked as invalid in the TLB

3 TLBS Store, but page marked as invalid in the TLB

4 AdEL Address error on load/fetch or store respectively. Address is either wrongly aligned, or a privilege vio-
lation.5 AdES

6 IBE Bus error signaled on instruction fetch

7 DBE Bus error signaled on load/store (imprecise)

8 Sys System call, ie syscall instruction executed.

9 Bp Breakpoint, ie break instruction executed.

10 RI Instruction code not recognized (or not legal)

11 CpU Co-processor instruction encoding for co-processor which is not enabled in Status[CU3-0].

12 Ov Overflow from trapping form of integer arithmetic instructions.

13 Tr Condition met on one of the conditional trap instructions teq etc.

14 - Reserved

15 FPE Floating point unit exception - more details in FCSR.

16 - Available for implementation dependent use

17 CeU CorExtend instruction attempted when not enable by Status[CEE]

18 C2E Reserved for precise Coprocessor 2 exceptions

19-21 - Reserved

22 MDMX Tried to run an MDMX instruction but Status[MX] wasn’t set (most likely, the CPU doesn’t do
MDMX)

23 WATCH Instruction or data reference matched a watchpoint

24 MCheck “Machine check” - never happens in the 34K core.

25 Thread Thread-related exception, as described in [MIPSMT]; there’s a sub-cause field in
VPEControl[EXCPT], as shown in Figure 2.1.

26 DSP Tried to run an instruction from the MIPS DSP ASE, but it’s not enabled (that is, Status[MX] is zero).

27-29 - Reserved

30 CacheErr Parity/ECC error somewhere in the core, on either instruction fetch, load or cache refill. In fact you
never see this value in Cause[ExcCode]; but some of the codes in this table including this one can be
visible in the “debug mode” of the EJTAG debug unit - see Section 10.1 “EJTAG on-chip debug unit”,
and in particular the notes on the Debug register in Figure 10.1.

31 - Reserved
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You can write Count to set a value in it, but it’s generally more valuable for an OS to leave it as a free-running
counter.

When the value of Count coincides with the value in Compare, an interrupt is raised. The interrupt is cleared every
time Compare is written. This is handy:

• For a periodic interrupt, simply advance Compare by a fixed amount each time (and check for the possibility that
Count has overrun it).

• To set a timer for some point in the future, just set Compare to an increment more than the current value of
Count.

The timer interrupt is implemented as an output signal at the core interface; but it’s conventional (well, pretty com-
pulsory if you want OS’ to work) to return it to the CPU core on an interrupt line — to the same VPE, since the two
VPEs have separate interrupt inputs. Your system integrator should wire information pins to show where the timer
interrupt is connected: see the notes on IntCtl[IPTI] below Figure 7.1. However, if you have an “EIC” interrupt control-
ler (see Section 7.2.3 “External Interrupt Controller (EIC) mode”) you’ll need to send the timer interrupt all the way
out to the interrupt controller and back.

C.4.5 The Config7 register

The Config7 register holds CPU-specific one-time setup and basic information fields.

Figure C-3 Fields in the Config7 Register

Config7: read-only fields

Config7[WII]: Read-only bit which tells you how wait behaves.  When this bit is set, an interrupt which would occur
just so long as Status[IE] is set 1 and TCStatus[IXMT] is cleared to 0 will always be enough to terminate a wait
instruction.

34K family CPUs where WII reads 0 will remain in the wait condition forever if entered with interrupts disabled.

The MIPS32 Architecture Specification permits either behavior.

But with the WII-set feature it’s safe to wait with interrupts disabled using Status[IE] or TCStatus[IXMT]. This
allows OS code to avoid a tricky race condition.

Config7[PCT]: read-only field which reads 1 if the core has two performance counters, replicated per-TC (older cores
had four performance counters, not replicated): see Section 10.4 “Performance counters”.

Config7[HCI]: read-only field which is always zero on 34K family cores. It reads 1 for some software-simulated CPUs,
to indicate that the software-modelled cache does not require initialization. Most software should ignore this bit.

Config7[FPR]: read-only field.  Reads 1 if an FPU is fitted but (as is common) it runs at half the main core clock rate.

Config7[AR]: read-only field, indicating that the D-cache is configured to avoid cache aliases.

31 30 20 19 18 17 16 15 11 10 9 8 7 6 5 4 3 2 1 0

WII 0 PCT HCI FPR AR 0 IAR IVA ES BTLM 0 NBLSU ULB BP RPS BHT SL

0 0 0  0 0 0 0 0 0 0



 CP0 register summary and reference

189 Programming the MIPS32® 34K™ Core Family, Revision 01.64

Config7[IAR]: a read-only field which tells you that you have an I-cache whose cacheops can be made alias-proof, as
described in Section 5.4.10 “Cache aliases”.

Config7: writable fields

Config7[IVA]: is hard-wired zero when the cache is inherently alias-free, as when the cache size is 16KB or less.
Otherwise this field can be used to enforce legacy behaviour on a CPU which has “alias-proof” I-cache cacheops —
see Config7[IAR] field above.

Config7[ES]: when it is set to "1", the sync instruction will be signalled on the core’s OCP interface as an "ordering
barrier" transaction, using a sync-specific encoding. It defaults to zero at system reset

Config7[ES] bit cannot be set (will always read zero and will have no effect) unless the OCP input signal
SI_SyncTxEn is asserted — it’s interpreted as agreement from the connected OCP device/interconnect that it can
handle the barrier transaction.

In this multithreading CPU this option may be set only for the whole CPU: setting it for one VPE sets it for the other.

Config7[BTLM]: Set this bit to enable a schedule feature, where any TC which has an unresolved load miss pending
will automatically drop in scheduling priority (below any non-load-blocked runnable TC). Thread scheduling is
described in Section 3.2, "Thread scheduling in the 34K™ core".

The remaining fields default to zero and are uncommonly set. It is therefore always safe not to write Config7. Some
of these bits are for diagnostics and experimentation only:

Config7[NBLSU]: set 1 to arrange that load/store pipeline stalls will stop the main pipeline too, keeping them
synchronized. For debug and investigation only.

Config7[ULB]: set 1 to make all uncached loads blocking (a program usually only blocks when it uses the data which is
loaded). You want to do this only when nothing else will work...

Config7[BP]: when set, no branch prediction is done, and all branches and jumps cause instruction fetch to be
suspended until they are resolved.

Config7[RPS]: when set, the return address branch predictor is disabled, so jr $31 is treated just like any other jump
register.  Instruction fetch stalls after the branch delay slot, until the jump instruction reaches the "EX" stage in the
pipeline and can provide the right address (typically adds 5 clocks compared to a successfully predicted return
address).

Config7[BHT]: when set, the branch history table is disabled and all branches are predicted taken.

Config7[SL]: when set, disables non-blocking loads. Normally the 34K core will keep running after a load instruction
even if it misses in the D-cache, until the data is used.  With this disable bit set, the CPU will stall on any load D-
cache miss.
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C.4.6 The CMGCRBase register

This read-only register reports the base physical address for the Global Control Registers located in the Coherence
Manager. The presence of this register is indicated by the Config3[CMGCR] bit.

Figure C-4 Fields in the CMGCRBase Register

CMGCRBase[CMGCR_BASE_ADDR]: Base Address for the Global Control Registers. The address is shifted to
allow a 36b PA in the register (bits 31:11 correspond to PA[35:15]). SW will need to unshift it and generate a kseg1 or
mapped virtual address that will reach the phyiscal address. But even this is an improvement over just needing to
know where it is.

C.4.7 Cache registers in special diagnostic modes

Most of the way that cache tag registers work is common (to a large extent) over most recent MIPS Technologies
cores. Those common features are described in Section 5.4.12 “Cache initialization and tag/data registers”. More
obscure features are here.

DTagLo, ITagLo registers when accessing Way Select RAM

This is the view you get when ErrCtl[WST] is set.

Figure C-5 Fields in the TagLo Register (ErrCtl[WST] set)

TagLo-WST[WSD,WSDP]: cache line dirty bits are held in the "way select" RAM, to make them easier to update.
Here you can see all of them, and each has a parity bit.

TagLo-WST[LRU]: when you read or write the tag in way select test mode (that is, with ErrCtl[WST] set) this field
reads or writes the LRU ("least recently used") state bits, held in the way select RAM.

31 11 10 0

CMGCR_BASE_ADDR 0

31 24 23 20 19 16 15 10 9 8 7 5 4 1 0

U WSDP WSD LRU 0 U 0 U
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MIPS® Architecture quick-reference sheet(s)

D.1 General purpose register numbers and names

By ancient convention the general-purpose registers in the MIPS architecture have conventional names which remind
you of their standard usage in popular MIPS ABIs. Table D.1 shows those names related to both the “o32” ABI
(almost universally used for 32-bit MIPS applications), but also the minor variations in the “n32” and “n64” ABIs
defined by Silicon Graphics.

If you’re not sure what an ABI is, just read the “o32” column!

D.2 User-level changes with Release 2 of the MIPS32® Architecture

With the Release 2 update the MIPS32 instruction set gains some useful extra features, shown below. User-level pro-
grams also get limited access to “hardware registers”, useful for user-privilege software but which wants to adapt
(portably) to get the best out of the CPU.

D.2.1 Release 2 of the MIPS32® Architecture - new instructions for user-mode

The following instructions are new with the MIPS32 release 2 update:

Table D.1 Conventional names of registers with usage mnemonics
Register Nos name use
$0 zero always zero
$1 AT assembler temporary
$2-$3 v0-v1 return value from function
$4-$7 a0-a3 arguments

o32 n32/n64
name use name use

$8-$11 t0-t3 temporaries a4-a7 more arguments
$12-$15 t4-t7 t0-t3 temporaries
$24-$25 t8-t9 t8-t9
$16-$23 s0-s7 saved registers
$26-$27 k0-k1 reserved for interrupt/trap handler
$28 gp global pointer
$29 sp stack pointer
$30 s8/fp frame pointer if needed (additional saved register if not)
$31 ra Return address for subroutine
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D.2.2 Release 2 of the MIPS32® Architecture - Hardware registers from user mode

The hardware registers provide useful information about the hardware, even to unprivileged (user-mode) software,
and are readable with the rdhwr instruction. [MIPS32] defines four registers so far. The OS can control access to
each register individually, through a bitmask in the CP0 register HWREna - (set bit 0 to enable register 0 etc).
HWREna is cleared to all-zeroes on reset, so software has to explicitly enable user access. Privileged code can access
any hardware register.

The five registers are:

• CPUNum (0): Number of the CPU on which the program is currently running. This comes directly from the
coprocessor 0 EBase[CPUNum] field.

• SYNCI_Step (1): the effective size of an L1 cache line42; this is now important to user programs because they can
now do things to the caches using the synci instruction to make instructions you’ve written visible for execu-
tion. Then SYNCI_Step tells you the “step size” - the address increment between successive synci’s required
to cover all the instructions in a range.
If SYNCI_Step returns zero, that means that you don’t need to use synci at all.

Table D.2 Release 2 of the MIPS32® Architecture - new instructions
Instruction(s) Description

ehb
jalr.hb rd, rs
jr.hb rs

Hazard barriers; wait until side-effects from earlier instructions are all complete (that is,
can be guaranteed to apply in full to all instructions issued after the barrier).
These defend you respectively against:
ehb - execution hazards (side-effects of old instructions which affect how an instruction
executes, but excluding those which affect the instruction fetch process).
jalr.hb/jr.hb - hazards of all kinds.
Note that eret is also a barrier to all kinds of hazard.

ext rt, rs, pos, size
ins rt, rs, pos, size

Bitfield extract and insert operations.

mfhc1 rt, fs
mthc1 rt, fs

Coprocessor/general register move instructions targeting the high-order bits of a 64-bit
floating point unit (CP1) register when the integer core is 32-bit.

mfhc2 rt, rd
mthc2 rt, rd

Coprocessor2 might be 64 bits, too (but this is typically a customer special unit).

rdhwr rt,rd “read hardware register” - user-mode access read-only access to low-level CPU informa-
tion - see “Hardware Registers” below.

rotr rd, rt, sa
rotrv rd, rt, rs

Bitwise rotate instructions (like shifts, one has the rotate amount as an immediate field
sa, the other in an additional register argument rs).

seb rd, rt
seh rd, rt

Register-to-register sign extend instructions.

synci offset(base) Synchronize caches to make instruction write effective. Instructions written by the CPU
for itself to execute must be written back from the D-cache and any stale data at that loca-
tion invalidated from the I-cache, before it will work properly. synci is a user-privilege
instruction which does all that is required for the enclosing cache-line sized memory
block. Very useful to JIT interpreters.

wsbh rd, rt swap the bytes in each halfword within a 32-bit word. It was introduced together with the
rotate instructions rot/ rotv and the sign-extenders seb/ seh.
Between them you can make big savings on common byte-twiddling operations; for
example, you can swap the bytes in $2 using rot$2,$2,16; wsbh$2,$2.

42. Strictly, it’s the lesser of the I-cache and D-cache line size, but it’s most unusual to make them different.
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• CC (2): user-mode read-only access to the CP0 Count register, for high-resolution counting. Which wouldn’t be
much good without...

• CCRes (3): which tells you how fast Count counts. It’s a divider from the pipeline clock (if the rdhwr instruction
reads a value of “2”, then Count increments every 2 cycles, at half the pipeline clock rate).

• UserLocal (29): Scratch register of sorts. The kernel can store a thread specific value such as a thread ID or a
pointer to thread specific storage to the underlying Cop0 register and user mode programs can read it via rdhwr

D.3 FPU changes in Release 2 of the MIPS32® Architecture

The main change is that a 32-bit CPU (like the 34K core) can now be paired with a 64-bit floating point unit. The FPU
itself is compatible with the description in [MIPS64V2].

The only new feature of the instruction set are the mfhc1/mthc1 instructions described in Section D.2, "Release 2 of
the MIPS32® Architecture - new instructions".

But it’s worth stressing that the floating point unit implements 64-bit load and store instructions. The FPU of the 34K
core is described in Chapter 8, “Floating point unit” on page 113.
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Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant
changes to this document since its last release. Significant changes are defined as those which you should take note of
as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

Revision Date Description

1.00 9th August 2005 For GA release of the 34K core.

1.05 28th September 2005 For GA release of the 34K core.
Better description of policy managers and performance counters.
Compatible with v1.00 of MT ASE and DSP ASE

1.20 1st March 2006 Incremental improvements with feedback.

1.30 26th May 2006 Changes to help customers recycling the manual for reference:
• Added CP0 reference-format appendix.
• Complete review of performance counter event description.
• Many small changes in response to feedback.
• Converted to revised document templates.

1.51 23rd April 2007 Consolidating changes to core v2.3.0
• Allow up to 9 TCs;
• alias-free 64KB L1 D-cache option;
• L2 cache option described
• Relocatable boot exception vectors.
• Less interlocks around cache instructions.
• Miscellaneous minor fixes.
Change bars show functional changes vs. 1.30.

1.61 20th September 2007 For v2.4 release of the 34K core. Changes include:
• New CP0 register, see Section C.4.2 “The UserLocal register”.
• Alias-proof I-cache operations, see Section 5.4.10 “Cache aliases”.
• Can wait with interrupts disabled, see Section 7.5 “Saving Power”.
• Per-TC performance counters and a new event (odd counters, #44), see

Section 10.4 “Performance counters”.
• The L2 access registers are renamed to L23TagLo etc (used to be “STagLo”

etc).
• Miscellaneous fixes.
Change bars are vs. 1.51.

1.62 31st October 2007 Final version for v2.4 release
• BTLM scheduling control
• Add notes on L2 feature enhancement - 64B lines
• Added missing UserLocal references
Change bars are vs. 1.51.
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1.63 19th December 2008 • Fixed machine check descriptions. They are not generated on the 34K core.
• Fixed value reported for CCRes read
• Perf counters now per-TC
• Minor cleanup - stale 24K reference, broken link to revision, mttc1/mtthc1

descriptions reversed, typos
• Added example idle loop code making use of Config7[WII]

1.64 November 19, 2010 • Added example of mftr/mttr blocking on access to unhalted TC
• Added new performance counter events
• Renumbered HW breakpoint registers in DRSEG table to match other docs

(0..15 rather than 1..16)
• New relocatable debug exception entry point
• Mention PC sampling extensions
• Newer PDtrace version with memory mapped access to on-chip trace buffer
• Removed errant statement that supervisor mode was not supported
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