MIIFPS

MIPS® BusBridge™ 2 Module Users
Manual

Document Number: M D00429
Revision 02.06
October 5, 2011

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS Ill, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CorelV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCl, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

alt{t .. MRISu 1 a2RitS ! &SI al-yal wSHalRy nHonc

Table of Contents

TADIE OF CONTENTS ...ttt e et e ek e e e et e e et e s et e e e e e breeeeeas 3
LISt Of TADIES ...t e et e e e e e e e e e e e e e as 6
[R o] o [N] £ PP PP PT PRSPPI 7
Chapter 1: INTFOGUCTION «.ooiieie ettt e et e e et e e e e e e e e e e e e e 9
102 DESIGN TRAIUIMNES ...t e etttk ettt e ookt e e e h b et oo ookt e e oo e a b bt e e e e e e et e e e e s b e e e e e e b e e e e e e annne s 9
1.2: DESIGN TIMILALIONS ..cetteeeee ittt e ekttt e e et et o4 e h bt e e e ok e e e e e aa b bt e e e e b be e e e e s annneeeeenne 10
Chapter 2: DeSigN Data@haseuuuiiiiiii e e e e e e e e e e e e e e e 11
2.1: Overview Of Delivery DIreCLOrY STIUCTUIE.......cciiiiiiiie ittt ettt e et e e s abbreea e 11
2.1.1: “external” Directory ($TECH_DIR & $TECH_GATE_DIR).......cocvovrrreeeeeeeeeeeeeeeeeeseseneneee e, 11

P i o1 B 1 (=Tt (o] Y PRSPPI 11

P e 01 (=To | = L1 T I [T =Tox (o VTP PP 12

2.1.4: “design/rtl” Directory (BSUBSYS_RTL_DIR)ciiiiiiiiiiieiie et e et seeeesnaee e neee e 12

2.1 4.1 deSIgNIITIIMAD ... 12

2.1.4.2: 7 deSIgN/ITI"ICONTIQ ... 12

2.1.4.3: deSIGN/ITI"ISNAIEAeee e 12

P YL 1 i B T £ =T (o] Y2 T PR RPP 12

P T V1= ¢ L 1 o PO R PP PRR 12

2.1.5.2: “VEIITIISNAIEA ... 12

2.1.5.3: VI INCIUAE ..ot e e e 12

2.1.5.4: VeI D _CONTIQ «oieiiteeee e 12

2.1.5.5: “VeTIT ICUSTOM_TD o 12

2.1.6: “regression” Directory ($SUBSYS_SW_DIR)...ccoiiiiiiiiieiiiee ettt seee e sneeeeeeeee e 13
2.0.6. 1 TEOIESSION " EESESttiie ettt 13

2.0.6.2: TEOIESSION" SYS ittt ettt etttk e bbb 13

2.1.6.3: 1egreSSION"/INCIUAEcoiiiiiiee et 13

2.1.7: “synth” Directory ($SUBSYS_SYNTH_DIR)oovriireeeieeeeeieteeeeeeeseseeeeeeieeeeeseeeses s s s 13

A O 0 =Y 11 I (o o T PSSP PRPRP 13

2.1.8: “build” Directory (3SUBSYS_BUILD _DIR)........c.cooueeeeeeeeeeieeeeeeeeeeeeeeeseseseeesesases e seeenenenenneneeen. 13

P e o (o Lol B I (=Tt (o] Y PR PP PPPTPP 14

2.2: Install and Setup the DeSigN DAtahaSEcccoiiiiiiiiiiiii et e e s eee e 14
2.2.1: Creating Common Design INtErface filESoiiiiiiiiie s 14
0 I S = I I 1Y/ o =SSP 14

2.2.0. 22 VIMC IMOTEI ..ttt e et e e e e e ettt e e e 14

2.2.1.3: BEM MOEL ...ttt 14

A | Y | I e (o Tot=To (U PR PPR PP 14

R M 1= 1 1] g0] = 1 =T PO RPPOPPPPRPOTPPPR 18
2.3.1: SIMPIE SIMUIATION TESES....eetiiiiiiiiit ettt ettt e et e e e s bt e e e et e e e e e nneeas 18

2.3.2: SIMPIE SYNTNESIS TOST.utteiiei ittt ettt et e e s sttt e e sttt e e s sttt e e s annneeas 19

A STl o] oTo] g (=Te I WoTo IV /=T = (o] o K SR RPPPOUPPRPOTPPPR 19
Chapter 3: Design IMPIEMENTATIONcoiiiiiiiiiiiii e e e e e e e r e e e e e aannes 21
0 I [011 £ To (0T 1T o IO PP TP PPRPTUPRPPPRRPPIN 21

T B <1 T | e o = £ 21

3.3 USEI INTEITACE ...ttt e ket e e oottt e e e et e e e e aa bt e e e e an e e e e anr e e e e 21
R I I = 1 L ol @ o 1=T = 1o PR TR PPPPPPP 22
3.3.2: ClIOCKING ANU RESELot e et e e e e et e e e e ettt ettt e et e e e s e s e e e aaeaeeaeaeaeaerearaees 23

O o = (ool [BT g o] 1 o o WO PP TR P PP PPRPPPP 24
i L IMAB_BIU ettt 24
Bi4.2: MAB _BIUZIB ...ttt 24
3.4.3: MAB_BRIDGEoiiiiiiitite ettt 25

3.4.3.1: The Address, Control Datapath UNIt:oooooiiiiii e 25
3.4.3.2: The Main CONrOlEr UNIL:oiiiiiiie e 26

R T |V = 11 S o = | 26
3.5.1: EXEErNal SIgNAI IStot e e e e e e e e e e e e ettt a e e e e aeaaaaaaaaaraaa 26
3.5.2: INTEINAI BUSSES ...ttt ettt ettt e et e e st e e e e 29

B.5.2.11 1B, CIMD .ttt Rttt 29
ST O = T OO PP PP PP PPPPPP 30
3.5.2.3: SPECIAI SIGN@US ...ttt et e et a e e e e e 30

3.B8: RTL MOAUIES ...tttk s e o ke e ekt e ek bt e e bt e e b et e bt e e e nnbe e e antre e 31
TG I 0 T= Lo T (o IO TP PP PP 31
T T2 o 4= Lo T o | LU= PP PPPUURUPSTP 32
3.6.3: MAD_DIU_BUS ...t 32
3.6.4: Mab_biU_TEAUS2L06BSccoiiiiieeeeeeee e e et e e e e e e e e e e e e e e et et et e e et et a e e e e e e e aaaeaaaaaaaaaraaa 33
36,5 MAD_DIUZID.....eee e 33
TSI ST o 4 F= Lo T [T 1 o PSPPSR 34
T T A o 4= 1o T o [[TP PUPUUSRP 34
3.6.8: Mab_bridge_adPath ...t a e e e as 34
T OIS I o 0= Lo T o o [T o] 1 1 RSP PPPPPPRRROS 35

3.7 RegiSter IMPIEMENTATION. ... it e ettt e e e e e e s e e e bbbttt e e e e e e e e s e aanbbbebeeeeaeas 35
3.7.0: GENEIIC MOUUIES ...ttt et e et e e et e e et e e e e e e s 35

e T B =TS o [I @0 1o [0 =11 [] o I 36

B.0: REFEIEINCES ...ttt oot e ookttt e et e e et e et e e e e s e e e 37

Chapter 4: Functional SImulation ..., 39

4.1: The Verilog TesthenCh ENVIFONIMENT.coiiiiiiiiiii ettt e e 39
g O T Toa (o B =111 0= o] o PP PUPRPRRRIN 39
4.1.2: RaNAOM TESIDENCN ..ottt e e e e e e e et e e e e e e e e e e e e e ennneeenees 40
4.1.3: TESIDENCN COMPONENESeiiiieiiieie ettt ettt e e et e e e e bt e e e e bt e e e e e nees 42

4.1.3.1: CIOCK/RESEE GENEIALIONeeiiiiieieiii ittt e e e e ettt e e e e e e e e s ettt e e e aeaeeeesaaannneeseeeeeeeas 42
R T2l = ToTo | g = (@ 1Y I (S 3) PP 43
I e S Y/ (o] 1 (o | O (5722 O PP O TP PP PPP 43
T S = Y|V (53) ST RPPR 44
IR T Ao [0 (=TS =T o Lo [O R TR 44
G T Y 1 (= PRSPPSO 45
4.1.3.7: RANUOM AHB SIAVE......euiiiiiiiiiie ettt e e e e e e ettt e e e e e e e e e e s e e annnbb e eeeeaeas 45
G S T =11 0 1= o o PP PSPTPPPPPI 46
4.1.3.9: TRE CPU MOUEI ...ttt e et e et e e e st e e e ne 46
o G T O 0= (ol o ST O (= = [= U 46

A =11 o 1T o [od IR Tl 1] o) £ O PP PP P T PUPRRR PP 46
4.2.1: The "configure_mMab. Pl SCHPTeiii e a7
4.2.2: The “configure_mab_th.pl” SCHIPTooiiiiiie e a7
e M I o TR AT T (S ol] o TP PP P TP TUPPPP PP 49
4.2.4: THE “TUN_TEQGIESSION" SCIIPT...etiiiitiiite ettt ettt e et e et e et e e s e e e e e nb e e e e nees 51

4.3: Using the Verilog TESIDENCHoii et 52
e = W11 [o [T g To = =2 S P PP TP PUPPPP PP 55

4.3.2: Rules for Tests on the Verilog TeSthenCh ... 55

4.3.3: RUNNING the All TESES ..ttt s sttt e ettt e s e e e e e e e e e e aeaeaeeeeeeeeeeeesesssesrnsnnnnas 56
4.4: Tests Performed with the Verilog TEeStDENCN..........uuuiiiiii e 56
4.4.1: TeSt DeSCHPLION FOMMIAL. ... ittt e et e e e e e e e et b b e e e e e e e e e e e aaeannnanes 56
4.4.1.1: hello_world (The Famous Hello World EXample)oeeiiiiiiiiiiiiiieeeee e 56

4.4.1.2: walking_one (A Light Version of cache_01.01)ccccoiiiiiiiiiiiiiieeee e 57

A I TR 4 = Lo =1 (o Tod TSP PPPPPTTPTIN 58
4.4.2.1: cache_01.01 and cache_01.02 (Comprehensive TEeSE) ...t 58

4.4.2.2: endian_01.01 and endian_01.02 (Software Test of ENdianness)..............evvvevviiiiiiiiieiieeeeeennn. 58

4.4.2.3: interrupt_01.01 and interrupt_01.02 (The Use of INterrupt)coocevviiiiiiiiieeeiniiiiieeeeen 59

4.4.2.4: sleep_01.01 and SlEep_0L1.02 ...t as 60

4.4.3: The “tranSaCtioONS” BIOCKcc.uuiiiiiiiiiiieee ettt e e e e e e e e e e e e e aaneaees 60
4.4.3.1: read_01.01 (2 Single Word Read TranSaCtiONS)cccccveieieeeeeieieeeeeeeeeeeee e 60

4.4.3.2: read_01.02 (2 Single Halfword Read TranSactions).........ccccooviiiiiiiiiiiiiiiiiee e 61

4.4.3.3: read_01.03 (2 Single Byte Read TranSaCtioNS).......ccceeiieieieeeieiiieieeeeeeeeee e 62

4.4.3.4: read_01.04 (mixed-sized single read tranSactionS)cccoeiiiiiiiiiiiiiiie e 62

4.4.3.5: read_02.01 (2 Bursted Read TranSaCiONS)ceeiiiiiiiieeeeeeeeeeeeeeeeeeeee e 63

4.4.3.6: write_01.01 (2 single word write tranSaCtiONS)ccccceiiieiiieeeee e 63

4.4.3.7: write_01.02 (2 Single Halfword Write TranSactions)cccoooviiiiiiiiiiiiiiiieeee e 64

4.4.3.8: write_01.03 (2 Single Byte Write TranSacCtioNS)cccccveieieeeieiiiiiieeeeeeeee e 64

4.4.3.9: write_01.04 (Mixed-sized Single Write TranSactions)cccovviiiiiiiiiiiiiiiiiiee e 65
4.4.3.10: write_02.01 (2 bursted Write tranSACHIONS)uuiiiiiiiiiee e 66

4.5: Test performed in RaNAOm tESIDENCHi i 66
4.5.1: Setup to run a simulation using random teStDENCcooii it 67
4.5.2: Example to run random teSTDENCH ... 67
4.6: POSt SYNthESIS SIMUIATION ... oo e e e e e e e e et et et et e e e et s e s s e s e s e e e aaeaeeaaaanaraaaenes 67
4.6.1: Gate Level NetliSt fOr IMBB2........... i ittt e e e e e e et e et e e e e e e e e e e nnebeeeees 67
4.6.2: Using a Gate Level Netlist 0f the CPU COreoooiiiiiiieieees s e e e e e e e 67
4.7: Creating and using a Custom TeStDENCIvviiiic e 68
4.8: Interactive Simulation With NC-VerilOg™uuiuiiiiiiiiieie et a e e e e e e e aaaaeaaaeees 69
4.9: Simulation With MIPSSIM ™ HBIMuuiiiiiiiiiiiie ettt et e e s st e e e s st e e e sse e e e e e s ansseeeesanneeeas 69
Chapter 5: SYNtheSiS .o 71
5.1 SYNTNESIS FIOW ...ttt ekt e e ook et e e ek bt e e e e ettt e e e ea b b e e e e atb e e e e 71
5.2: SEArting the SYNTNESIS.eei ittt e st e et e e s e e e s 72
5.2.1: Checkpointing the SYNTNESIS FUN ... 72
5.2.2: RE-TUNNING SYNTNESIS ...ttt et e et e e et e e et e e e e abeeas 72
5.3: Constraints and Library CONfIQUIATIONeviiiiiiiiiee ittt e e s ee e 73
5.4: Collecting the SYNtNESIS RESUILSeiiiiiiiiii et e e ee e 73
5.5: DELAIEA ANAIYSISeeiiiiiieieee ittt et ekttt ettt e e e s 74
APPENdiX A: REVISION HISTOTY .oiiiiiiiiiiiiiii ettt e e e e e e e e e e reaee s 75

List of Tables

Table 2.1:
Table 2.2:
Table 3.1:
Table 3.2:
Table 3.3:
Table 3.4:
Table 4.1:
Table 4.2:
Table 4.3:
Table 4.4:
Table 4.5:
Table 4.6:
Table 4.7:
Table 4.8:

SOUICE.IME VAIADIES ...ttt e e e e et e e e e e e e e e e s e nannaees 15
Mab_CPU_MOAELINTO ENEMES ...ttt e e e e e e e bbb e e e e e e e e e e 16
External INterface SIGNAISiiiiiiii i e e e e e e et 26
IB SIGNAIS ...t e e e e e e e e et e e et —————————— e ae e e e e aaaeaeaeaeaeteta e aaa—————————_ 29
L8 = 83 o | = £ SSPPRPP 30
L IO o 1T U = U1 o] o 36
The Memory Map used for Directed teStheNnCh.oeiiiiii e 44
Generic CPU Configuration in Top-Level TeStDENCN ... 46
Command line options for configure_Mab.pl............ooi e a7
Command line options for configure_mab_th.pl SCrPt........ooiiiiiii e 48
Command liNe OPLIONS FOF FUN_TESTeiiiieiiii et e e e e e e eeeae s 49
Command line OPtioNS fOF FUN_TEOIESSIONu.uiiiiiiiiie ettt e e e et e e e e e e e s e bbb e e e aeaeas 51
=TS O D L= T e 0] VRS U Tod (1 = PRSP 52
SOUICe FIleS iN @ TESE DIFECIOINYccceiiiiiieeeee et e e e ettt e s e e e e e e e aaaaaeaeaeees 52

Table 4.9: Makefile Controllable OPLIONSoooiiiiiie ettt e e e e e e r et e e e e e e e aaaans 53
Table 4.10: Valid Block_Name and TeSt NAMEccooiiiiiiiiie e e e e e e e e e e e e e e e as 55
Table 4.11: Directories for 4AK™, M4K™, 24K™ and 34K™ BFM LESIS......ccoiiiiiiiiiiiiiiiiie et 66

List of Figures

Figure 3-1: Top level connections of the BusBridge™ 2 moduleccuuiiiiiiiiiiiiine e 22
FIQUIrE 3-2: MBB2 TOP LEVEL ...ttt ettt e e e e e oo ettt e e e e e e e e e e e ebb bbb beeeeeeas 24
Figure 3-3: MBB2 BIOCK DIAQIAMciciii e e e e e et e e e e e e e e e e e e et et e e e e eaeteea et e e s e s e e eaaeeaaaaaaaaeaneeees 25
Figure 3-4: Indication Of NCIK PRASEccooiiiiie sttt s e e e e e e e e e e e aaaaaaeaaaaees 31
Figure 4-1: Directed Testbench of the BusBridge™ 2 MOdUIEcoooiiiiiiiiiiieer e 41
Figure 4-2: Random Testbench of the BusBridge™ 2 modulecoooiiiiiiiiiiiiierre e 42

Chapter 1

Introduction

MIPS™ BusBridge™ 2 module features an easily configurable, high-performance, low latency MIPS® coreinterface
to the AMBA™ AHB. The module supports all members of the M4K™, 4K E™, 24K ™ 34K ™ fami ly of high-per-

formance RISC cores and allows for easy integration of the coresinto any 32-bit AHB system. The interfaceis
designed for semiconductor manufacturing companies, ASIC devel opers, and system OEMs wishing to rapidly inte-
grate aMIPS core into an AHB-based system.

The MIPS BusBridge™ 2 module (MBB?2) is configurable, allowing the user to either implement a reduced AHB
master without arbitration (AHB Lite) or afull AHB master supporting the complete AMBA AHB specification. The
reduced master option is designed for a single master AHB system where speed and simplicity are the main design
issues. If amulti-master AHB system is required, then the full MIPS BusBridge™ 2 module configuration adds sup-
port for both arbitration and slaves using Split/Retry responses.

In order to support systems where the MIPS® core and the AHB bus system are running with the same frequency, as
well as systems where the MIPS® core is running at a higher frequency than the AHB bus, the following clock ratios
between core clock and AHB clock are supported: 1:1, 2:1, 3:1, 4:1, 5:1, and 6:1.

The following chapters make up the MIPS BusBridge™ 2 User's Manual:

Chapter 2, “Design Database” on page 11

Chapter 3, “Design Implementation” on page 21

Chapter 4, “Functional Simulation” on page 39

Chapter 5, “Synthesis’ on page 71

NOTE: in the features and limitations lists that follow those marked with (MBB2) are differences between the
MBB2 and the original MIPS™ BusBridge™ module.

1.1 Design features

* Nodeay in MBB2 module except when demanded by one of the bus protocols or timing considerations.

» CPU Core system interface (Note: Where a description applies to both the EC™ and OCP interfaces this docu-
ment will use the term CorelF)

» Supportsal Core interface access modes (single and burst read/write).
» CorelF bursts converted to AHB bursts.

» 2 outstanding read / write commands (one currently processed on the AHB bus and one stored inside the
MBB2).

Introduction

AHB interface

» All protocol modes supported including Retry, Split and Error handling.

» Full bus arbitration supported.

* 1 outstanding read / write command (required by protocol).

Completely transparent operation as seen from the core (no address mapping).

Supports 32-bit AHB only. (MBB2)

Bus width conversion provided for the case where the Corel F is 64 bits and the AHB is 32 bits.

n:1 clock ratios supported where n may beintherangel .. 6.

1.2 Design limitations

10

No endianness mixing supported. Corel F and AHB systems are both either little or big endian.

Only MIPS® cores with simple byte enable support can use the MBB2.

This design does not support clock ratios where the AHB system is running at a higher clock than the core.

Only systems where the Corel F clock (cpu_clk) and AHB clock (hclk) are in phase (i.e. rising edge of hclk cor-

respond with rising edge of cpu_clk) are supported.

Selection of clock ratio is done at synthesis time (a single design may not support both clock ratios under soft-

ware control).
AHB locked cycles are never generated, hlock will always be 0. (MBB2)
The AHB hprot signal will always be driven to 0.

No support for extended AHB addressing where Corel F = EC has a 36-bit address bus. (MBB2)

For the M4K™ CPU Core the following are not supported: The external Lock/Unlock protocol from the

MIPS32™ |l/sc instruction pair, cycle cancellation via Abort/AbortAck.

Chapter 2

Design Database

This chapter describes the directory structure and design database, as well as how to perform the installation and
setup of the design database. The following four sections make up this chapter:

Section 2.1 “Overview of Delivery Directory Structure”
Section 2.2 “Install and Setup the Design Database’
Section 2.3 “Getting Started”

Section 2.4 “ Supported Tool Versions’

2.1 Overview of Delivery Directory Structure

The directory structure contains RTL code and testbench for functional simulation and synthesis. The structure effec-
tively separates the RTL from configurations and results, making it possible to try different configurations and com-
paring results without making multiple copies of the entire database. Thiswill aso ease integration when new

releases of the MIPS™ BusBridge™ 2 module (MBB2) are received.
When the MBB2 customer deliverable is unpacked, the top level directory will normally be called *“mab’ and will

have the directory structure shown below. Note that as the installation proceeds and the user does functional simula-
tion and/or synthesis additional directories will be created.

2.1.1 “external” Directory ($TECH_DIR & $TECH_GATE_DIR)

The “externa” directory is used to hold links to the user’s Synopsys synthesis technology libraries and the Verilog
models for post-synthesis (gate-level simulation).

2.1.2 “bin” Directory

The*bin” directory contains executable scripts used globally in the design flow. In order to make the scripts reach-
able from subdirectories, the bin directory is added to the UNIX path by the bin/customer_source.me script.

Thetwo major scripts are “run_test” which is used to execute the functional verification testsand “run_synth” for the
synthesis flow.

After making a backup copy, the customer_source.me script should be modified and sourced before the design data-

base can be used. The scripts set up various environment variables required by the design flow. Refer to Section
2.2 “Install and Setup the Design Database” for more information.

11

Design Database

2.1.3 “integration” directory

This contains files needed to integrate the CPU core into the MBB2 verification structure. The major file hereis
mab_cpu_model.info.<m4k | m24k | m34k | mm4k> described in Table 2.2.

2.1.4 “design/rtl” Directory (3SUBSYS_RTL_DIR)

The “design/rtl” directory contains the Verilog description of the MIPS™ BusBridge™ 2 module design. There are
three sub-directories holding different parts of the design.

2.1.4.1 “design/rtlI”/mab
Containsthe main MBB2 RTL files. See section 5 of Chapter 3, “Design Implementation” on page 21.

2.1.4.2 “design/rtl”/config

Asdelivered, this contains a template user configuration file mab_config.vh.default. See section 7 of Chapter 3,
“Design Implementation” on page 21 for details.

2.1.4.3 “design/rtl”/shared
Contains a number of modules used for instantiated registersin the design, a header file for the MBB2 in general, and

a header file containing a number of Verilog defines derived from the main MBB2 configuration file described above.
See section 6 of Chapter 3, “Design Implementation” on page 21 for details.

2.1.5 “verif” Directory

The “verif” directory contains the scripts and test harness for running functional simulations on the MIPS™ Bus-
Bridge™ 2 module. The functional simulation and structure of the testsis described in Section 4.1 “The Verilog
Testbench environment”.

2.1.5.1 “verif’/tb

Top level testbench Verilog files and CPU ‘wrappers' used to instantiate the various coresinto the testbench. The top
testbench fileis named ‘testbench_mab.v’.

2.1.5.2 “verif”/shared

Contains the Verilog source files that constitute the AHB simulation sub-system.

2.1.5.3 “verif”/include

Verilog header files for the verification system.

2.1.5.4 “verif”/tb_config

Initially empty this directory will contain the output of the configure_mab_tb.pl script.

2.1.5.5 “verif”’/custom_tb

Contains an example of an alternative, customer, testbench. See the README file for details.

12

2.1 Overview of Delivery Directory Structure

2.1.6 “regression” Directory ($SUBSYS_SW_DIR)

The “regression” directory contains the test stimuli for the Verilog testbench. The stimuli are a collection of assem-
bler and “C” programs executed individually, or as atotal test regression suite, on the instantiated core. The structure
of thetests and the tests performed are described in Section 4.3 “Using the Verilog Testbench” and Section 4.1 “The
Verilog Testbench environment”.

2.1.6.1 “regression”/tests
A number of sub-directories hold the main “C” and assembler for the tests themselves.
2.1.6.2 “regression”/sys

Assembler code used to create wrappers in which to compile and run the tests. Includes start-up and exception han-
dling routines.

2.1.6.3 “regression”/include
“C" header files needed to compile and build the functional tests.

2.1.7 “synth” Directory ($SUBSYS_SYNTH_DIR)

The “synth” directory provides support for synthesis using Synopsys DesignCompiler™, including general scripts
and makefiles.

2.1.7.1 “synth”/config
Constraints and other configuration parameters that may be specific a given core or technology library are located
here. Note that these files are not used directly in the synthesis flow but should be copied to the synthesis build direc-

tory and then modified to the user’s requirements. See Chapter 5, “ Synthesis’ on page 71 for details on the synthesis
setup and flow.

2.1.8 “build” Directory ($SUBSYS_BUILD_DIR)

The“build” directory isthe working directory, and all configurations, compiled testbenches and results are located in
this directory. As ddlivered, the customer_source.mefilein “bin” defines a default

$SUBSYS BUILD_DIR = $SUBSY'S DIR/build/build1

and this directory is empty. Asthe user proceeds with functional simulation and synthesis new subdirectories will
appear here:

 S$SYNTH_OUT DIR - synthesis configuration, constraints and results. The default value is *“ synth™.

Defines technology used, clock period, input/output constraints, etc. used for a particular synthesis run. Output
files such as reports, logs, and netlists may also be found in this directory.

e tbh <core>_<model> - when the testbench or a software test is compiled, the compiled result is placed in one of

these directories. <core> and <model> are defined dependent on the settings of SCORE and $MODEL in
bin/customer_source.me. A VMC simulation of a4K™ core will be put in adirectory named “tb_4k_vmc".

13

Design Database

2.1.9 “doc” Directory

The“doc” directory contains

The MIPS Bus Bridge 2 ™ Users manual in PDF format.
A ReleaseNotes.txt file.
The Common Design Interface specification in PDF format.

A Howto subdirectory that hold a few useful hints and tips.

2.2 Install and Setup the Design Database

2.2.1 Creating Common Design Interface files

Before starting the installation process the user must create a Common Design Interface (CDI) file for the Core
model. For reference the CDI specification document isincluded in the ““doc” directory.

2.2.1.1 RTL Model

You should refer initialy to the appropriate section of your Core Implementors Guide for how to do this. For simplic-

ity, however, the basic commands needed are included here:

24K™ and 34K ™Cores;

<core_install>/bin/tpz_syn filelist -sim -top=tpz_top -c=<your_config_dir>> <your_CDI _file>

4K ™/AKE™/M4K™ Cores:

<core_install>/bin/m4k_filelist -sim -top=m4k_top -c=<your_config_dir> > <your_CDI_file>

2.2.1.2 VMC Model

There isatemplate - vmc.cdi.skel - provided in the “integration’ directory. Copy thisto afile of you own choosing

and edit following the instructions in the template file.

2.2.1.3 BFM model

For simulation runsthat use a Bus Functional Model (BFM) thisis not necessary since the BFM packages contain the
necessary CDI files and the MBB2 verification system will search for the appropriate one.

2.2.2 Install Procedure

In addition the user is strongly advised to read the 2 files:

14

<mab_top dir>/README

<mab _top_dir>/doc/ReleaseNotes.txt

1. Modify bin/customer_source.me reflect the core type, the link to technology libraries, the location of the build
directory etc. as per the table below. It would normally be advisable to copy the original source.meto e.g.

my_source.me and to do the edits in the copy.

See Table 2.1 below for the customer_source.me environment variabl es that need to be set or modified.

Note that $SUBSY S _DIR isthe MBB2 installation directory.

Variable

Table 2.1 source.me variables

Effect

Default

CORETY PE

Sets the CPU core type.

Values= MM4K | M4K | M4AKE | M24KC | M24KF
| M34KC | M34KF

Note: The value of CORETY PE is passed to Ver-
ilog, where identifiers may NOT begin with digits.
An*“M” is prepended to the CORE names to work
around this. Thisiswhy what iscommonly called a
4KE™ js here called an M4KE. Thisis also why
thereisa CORE named “MM4K”, which isonly to
distinguish the “M4K” from the “4KE”

None

TECH_LIB

Link to technology library used for synthesis.
Vaue =
$SUBSY S DIR/external/<any>

$SUBSY S DIR/external/lib

SUBSYS BUILD_DIR

Top level directory containing the testbench and
synthesis sub-directories
Vaue = $SUBSY'S_DIR/build/<any>.

$SUBSYS DIR/build/buildl

SYNTH_OUT DIR

Sub directory of
$SUBSYS BUILD_DIR
used for synthesis.

synth

SYNTH_INTEGRATION Points to the directory used to hold files needed to

integrate the CPU model (RTL | VMC | BFM) into
the MBB2 verification structure

$SUBSY S DIR/integration

MAB_SIMTYPE Select the type of simulator to use. None
Value=vcs|mti | nc
in either upper or lower case
MAB_GCC Selects the software tool chain type being used.
Value = CODESOURCERY |SDE
MAB_SDE_VERSION If the MAB_GCC variableisset to “ SDE” then None
Select the version of the SDE™ compilation tools
being used.
Values=<5|6>
MAB_CORE_HOME Full path to the top of the processor coreinstalla- None
tion.
MAB_CORE_RELEASE Version of the processor core used for simulation. None
Note that both RTL and VMC simulation must use
the same revision.
The value of this should be a string:
XX_YY_z7z
The corresponds to the CPU RTL revision number.
MAB_BFM_HOME Full path to the top of the BFM installation. None

2.2 Install and Setup the Design Database

15

Design Database

Variable Effect Default

MAB_BFM_RELEASE Version of the BFM used when building the random None
testbench.
The value of this should be a string:

XX_YY_zz
The corresponds to the CPU BFM revision number.

LMC_HOME Root of the Core VMC installation. Typically this None
would be set to:
$MAB_CORE_HOME/vmc_install

2. cdtotheinstalation dir and do:
source <file created in step 1 above>

3. Createalink inthe“external” directory to the synthesis technology libraries and post-synthesis Verilog models
eg.

In-s<my_tech dir>$TECH_LIB

4. Createafilein $SUBSYS INTEGRATION that pointsto the CDI files created in Section 2.2.1 “Creating
Common Design Interface files”. The file created must have one of the following names:

For 34K ™ Cores. mab_cpu_maodel.info.m34k

For 24K ™ Cores. mab_cpu_maodel.info.m24k

For 4K ™ and 4KE™Cores. mab_cpu_model.info.m4k
For M4K ™ Cores: mab_cpu_model.info.mm4k

Table 2.2 mab_cpu_model.info entries

Name Description Options Default
CPU_RTL_CDI Path to CDI file for simulation with CPU RTL Any file path none
CPU_VMC _VCS CDI Pathto CDI file for smulation with CPU VMC Any file path none
model. Simulator isVCS.
CPU_VMC _VXL_CDI Pathto CDI file for ssimulation with CPU VMC Any file path none
model. Simulator is NC-Verilog or ModelSim
CPU_NET_CDI Path to CDI file for simulation with a post synthe- Any file path none
sisor post P& R gate level netlist
CPU_BFM_CDI Here for completeness only. The user should not Any file path none

set this unlessinstructed to do so by MIPS®
Technologies technical support.

CPU_BFM_LIB The Core BFMs can be built with either the pthread | thread pthread
threads or pthreads libraries.
CPU_BFM_TYPE Leave unset unless requested. new | old new
CPU_VMC_LIB The Core VM C models can be built with either pthread | thread pthread

the threads or pthreads libraries.

16

2.2 Install and Setup the Design Database

Name Description Options Default

CPU_VMC_TYPE Leave unset unless requested. new | old new

Important Note: If an <any file path> value for one of the XXX_CDI entries does * not* start witha*/" it will be con-
sidered relative to the top level of the MBB2 installation. e.g.

<any file path> = integration/my.cdi

will beinterpreted as:

${ SUBSY'S_DIR}/integration/my.cdi

Create the synthesis result output directory:

mkdir $SUBSYS BUILD_DIR/$SYNTH_OUT_DIR

The MBB2 RTL must now be configured by creating the basic MBB2 configuration Verilog header file

$SUBSYS RTL_DIR/config/mab_config.vh

by running the configure_mab.pl script in the **bin” directory. To get alist of possible options type:

configure_mab.pl -h

The Verilog * defines in mab_config.vh are described in Table 3.4 of Chapter 3, “Design Implementation” on page 21

8.

Note 1: configure_mab.pl will set one and only one of the MAB_CONFIG_BUS XXX definesin
mab_config.vh automatically based on the value of the SCORE environment variable.

Note 2: It is possible, but not recommended, to create thisfile ‘by hand’ by copying and editing the default file:
$SUBSYS RTL_DIR/config/mab_config_default.vh

Use the configure_mab _th.pl script to create adefault testbench configuration file called *“ default.cfg”. Thiswill
appear in the ““verif”' /tb_config directory.

configure_mab_tb.pl -0 default

See Section 4.2.2 “The " configure_mab_tb.pl” script”for more details. Note that users of pre-MR1 24K ™ cores
should also set the no24k-ocp-2-1-compliant flag when creating default.cfg.

configure_mab_tb.pl -o default --no24k-ocp-2-1-compliant

A tool path should be set up to the CAD tools used: The default simulator is VCS™ from Synopsys, though

ModelSim™ from Mentor Graphics and NC-Verilog™ from Cadence are also supported. DesignCompiler™
from Synopsysis supported for synthesis.

In addition these tools from MIPS Technologies should be in the tools path:

» SDE-MIPS or SDE-L.ite gcc based toolchain.
* The MIPSSIm™ instruction simulator (if MIPSSim + BFM simulations are desired).

17

Design Database

See Section 2.4 “Supported Tool Versions’ for acomplete list.
If the user wishesto do VMC simulation afew additional setup steps are necessary. It is assumed for what fol-
lows that the VM C installation process for the correct platform has been performed in the CPU core install direc-
tory and so the following environment variables have been set correctly. See “ The CPU Model” section of
Chapter 4.

e LMC_HOME isset. In general thiswill beto SMAB_CORE_HOME/vmc_install.

* LD _LIBRARY PATH includesapathto SLMC_HOME/lib/sun4Solaris.lib or
SLMC_HOME/1ib/x86_linux.lib

* LM _LICENSE FILE includesapath tothe user'sVMC licensefile.

9. GenerateaVMC templatefilein the SSUBSYS_DIR/vmc-models directory. For VCS simulation this would
be:

cd $SUBSY'S_DIR/vmc-models
vcs -Ime-swift-template <vmc_model_name>
where <vmc_model_name> is one of m34k_vmc_model, m24k_vmc_model or m4ke vmc_model

For details on the creation of this template file for other simulators see the VM C section of your core Integrator’s
Guide.

10. Now run the configure_mab_th.pl script with the following options to generate a testbench configuration file for
basic VMC simulation (see Section 4.2.2 “The " configure_mab_tb.pl” script” for more details on this script):

e --core-model=VMC
* --tb-type=DIRECTED

e -o<vmc_tb_config_name>

2.3 Getting Started

18

Itisnow possibleto run functional simulation or synthesis using the scriptsin the bin directory. For full details seethe
Verification and Synthesis chapters of this manual, but at this stage the user is recommended to try out the simpletests
outlined below to ‘sanity check’ the installation.

2.3.1 Simple Simulation Tests

When the core and the MIPS™ BusBridge™ 2 module installations have been set up, try to build the testbench and
run asimple RTL simulation by invoking this command:

run_test --build --config=default samples/hello_world

The text similar to the one shown below should appear on the terminal window:

Chronologic VCS simulator copyright 1991-2001
Contains Synopsys proprietary information.

2.4 Supported Tool Versions

Compiler version 6.0; Runtime version 6.0; Sep 25 17:29 2001

Info: Core is shiny 4K(TM) running MIPS32 (TM)
Info: Verbose level is V0. Print enabled, VCD dump enabled
Info: Running in Little Endian
Info: Clock Ratio = 1:1
Info: Multi Master Priority:
Round Robin
Default = Master # 2

Message: Starts at time 13866
Message: Running in Little Endian
Message: Verbose level is VO
Message: Ends at Time 83590
Message:

kkhkkkhkkhkkkkhkkhhkkkk*k

* Hello World *

R R S S I S S

Info: Program terminated OK with exit code 00000000
Info: Simulation time: 114752

$finish at simulation time 114752000

vV _CeSs Simulation Report
Time: 114752000 ps
CPU Time: 49.290 seconds; Data structure size: 2.7Mb
Tue Sep 25 17:30:31 2001

To test that aVMC installation has been set up correctly the following command should give similar outputs to the
previous one;

run_test --build --config=<vmc_tb_config_name> samples’hello_world
where <vmc_tb_config_name> isthat same as that used in step 10 of the installation.

For further information on more detailed simulation and regression refer to Chapter 4, “ Functional Simulation” on
page 39 and the README file found in the root of the design database.

2.3.2 Simple Synthesis Test

While afull description of the synthesisflow is delegated to Chapter 5, “ Synthesis” on page 71 a simple check on the
setup should be performed here by running the synthesis command to initialise the synthesis output directory:

run_synth -t init -b mab

Thiswill produce a number of sub-directoriesin $SUBSYS BUILD _DIR/$SYNTH_OUT_DIR: WORK, check,
checkpoint, gate, report, log, mapped, unmapped.

2.4 Supported Tool Versions

VCS™: Version 2011.03.

NC-Verilog™: IUS Version 8.20.s8

19

Design Database

ModelSim™: Questa Version 6.5¢
DesignCompiler™: Version 2005.09.

The CodeSourcery CodeBench version for MIPS® microprocessors. Version 2011.03-92 or later. A freely download-
able*'Lite” edition isavailable from this page (look for the MI1PS download section):

http://www.mentor.com/embedded-software/sourcery-tool s/sourcery-codebench/lite-edition

MIPSSIm™ instruction set simulator: Version 4.9.6.

20

Chapter 3

Design Implementation

3.1 Introduction

This document describes the new MIPS™ bus bridge product, the MIPS™ BusBridge™ 2 module (MBB2). MBB2

will interface aMIPS® processor core with either the EC™ or OCP system interface to the AMBA™ AHB. MBB2
will support the full EC, OCP, and AHB specifications as described in Figure 3-1, Figure 3-2, Figure 3-3.

This design will support clocking ratios where the Core interface is running at the same speed or faster than the AHB
interface but not the case where the AHB is running faster than the Core.

Note:
» Where adescription applies to both the EC™ and OCP interfaces this document will use the term Corel F.

» Throughout this document clock ration 2:1 is used to mean all clock ratios n:1 with n>1.

3.2 Design goals

» Thedesign must be synthesized with clock frequency up to that of the 4K™ 24K™ 34K ™ coresin same tech-
nology.

* Themaximum latency degradation should be one clock on commands outbound to AHB and one clock on read
datainbound from the AHB.

» Deayson signa originating from the AHB bus are to be kept at a minimum. In particular, the delay on hready
and hresp[1:0] must be minimized since they are late signal in an AHB system.

3.3 User interface

Top level connection of the MBB2 is shown in Figure 3-1.

21

Design Implementation

Figure 3-1 Top level connections of the BusBridge™ 2 module

cpu_clk
—— cpu_reset
helk_phase Alternative I/Fs
hready ——
| OCMXXX . OCP hresp[1:0] ———
— 1 OC_SXXX ! hresetn ———
' haddr[35:0] ———
. htrans{1:0] ——
— EB_XXX ' EC hwrite ———
. hsize[2:0] ————
: hburst[2:0] ———
—1 IS XXX ' SRAM hprot[3:0]——
—] DS XXX . hwdata[31:0] ——
! hrdata[31:0)
— ! si_wberr_int hbusreq———
——1 si_wberr_ack hlock
.) hgrant——
—— si_endian
— 1 s_simple_be
— | si_deep
— | s shlock
— mab_scanin[x:0]
——— mab_scanout[x:0]
| mab_scanenable

ThesignasEB_XXX (EC™ bus) and OC_XXX (OCP bus) are alternatives selected at configuration time. For a
description of these signals see Section 3.5.1 “External signal list”. Note that the bus signals names match those of
the top level module of the CPU core for ease of integration.

3.3.1 Basic Operation.

There are some major differences between the Corel F and the AHB that the MBB2 must allow for

Protocol differences -

Multiple masters: The AHB bus accepts multiple masters and therefore requires arbitration of the bus, where
the Corel F only has one - the core.

* Pendingtransfers: The Corel F accepts a number of outstanding transactions, whereas the AHB only allows one
outstanding transaction before the master must stall and wait for the completion (hready) of the pending transfer.

* Address/data phases: For both the Corel F and the AHB, each transaction has an address phase and a data phase.
But there is afundamental difference between them in that for AHB the data phase istied to the previous valid
address phase whereas the Corel F's read and write data phases are decoupled from the address phase.

Note also that the AHB has no notion of sub-block ordering for bursts.
» Early burst termination: When the MBB2 e.g. has started a burst on agranted AHB, it is hot certain that the

MBB2 can keep the AHB granted until the burst has completed. E.g. another master with higher priority can take
the bus from the MBB2.

22

3.3 User interface

* Split/Retry: Even after the MBB2 has been granted the bus and started an address phase on AHB the selected
slave may respond with a SPLIT/RETRY on the hresp response bus and the MBB2's bus grant will be with-
drawn. Under these circumstances the MBB2 must restart the arbitration process, reaquire the bus, and repeat the
transfer attempt. From an AHB master’s point of view slave SPLIT and RETRY responses are identical.

AHB transfer types generated -

* Singletransfer: Thistransfer type consists of one address phase and one data phase. The data width can be 8,
16, 32 and 64 hit, and can change for each single transfer. The transfer datawidth of 64 bit isonly supported by a
64 bit core.

Because the CorelF isa** byte enable” busand the AHB isa* size/address’ bus translations of complex byte
enable patterns would take several AHB transfers. For this reason the Corel F will operate in ** simple byte
enable” mode where only natural byte patterns appear.

» Burst transfer: Thistransfer type consists of multiple address and data phases. The datawidth in aburst is
determined by the AHB bus width (32/64 with 64 bit not supported by 4K ™cores). For a 64 bit Corel F on a 32
bit AHB the number of beatsin aburst will be 8, otherwise it will be 4.The core always transfers burstsin
wrap-mode, and therefore only wrap-bursts on the AHB are supported.

For this reason we will assume that
1. CorelF transactions are handled one at atime in the order they arrive at the MBB2.

2. Atleast onelevel of transaction pipelining will be supported - one command actually going out on the AHB
while the next is being received from the Corel . In fact, in order to keep the AHB transfers streaming as
much as possible, FIFOs will be provided between the Corel F and the AHB that can store at least 4
addresses/write-data pairs.

3. If aburstisinterrupted for any reason before completion, the remaining transfers will be transformed into
single transfers. There are no timing differences on the AHB between asingle transfer back-to-back and a
burst transfer. The only differenceisthat a slave and the arbiter during aburst know how long the transfer is.

4. This specification requires that the core is running in simple byte enable mode (SimpleBE mode) and that
sequential ordering protocol is selected (sequential addressing mode).

Note that in the above discussion bus arbitration is not relevant to AHB-Lite where there is only one master, the
MBB2. Thisis a configuration option for the MBB2 which has the effect of hard-wiring the hgrant signal to*1’, and
allows the hresp[1:0] bus to take on only the values‘OK’ or ‘ERROR'.

3.3.2 Clocking and Reset

An externa circuit must generate the required clocks (bus_clk for Corel F and hclk for the AHB) with the proper
phase relationship. An external clock phase (" hclk_phase') signal is used to indicate the phase of hclk related to
bus clk See Figure 3-4. In the case where Corel F = OCP the bus_clk may not be the same as the Core clock since the
24K™ 34K ™core families allows the Coreto run at a higher speed than the OCP interface. If thisisthe case then it
isthe responsibility of the user to generate the SI_ OCPSync signal that relates bus_clk to the Core clock.

All flip flops in the design are effectively clocked on the positive edge of the internal gclk which is, effectively, aglo-

bally gated (by si_sleep) version of the input bus_clk. Note that thisimplies that the AHB clock, hclk, isnot used in
the design.

23

Design Implementation
The hresetn from the AHB signal is synchronized to the cpu_clk clock domain and used as reset for the internal regis-
ters of the MBB2. The cpu_reset signal is, configurably, an input or an output.
» Ifiitisan output then it is driven from the synchronised hresetn described above.

« Ifitisaninput thenitisor’ ed together with the synchronised hresetn to from the internal MBB2 reset.

3.4 Block Description

Figure 3-2 shows atop level picture of the MBB2 Bridge. As can be seen thereisaBus Interface block (MAB_BIU),
build time sel ectable between OCP, EC, SRAM with acommon interface viaCMD to ablock called MAB_BIUZ2IB.
From there the IB bus connects to the main bridge module (MAB_BRIDGE). Also instantiated at thislevel isthe
clocking, reset, and fixed output block MAB_GLUE.

Note that the busses shown here are described in Section 3.5 “Main Signals”.

Figure 3-2 MBB2 Top Level

MAB_BIU MAB_BIU2IB
OCPinterface | : : C ----- d
. OCPVersion . ' omman
a4 : : ' FIFO :
--------------- ' Bypass |
EC™ interface| [""" 777777 |CMD 'B MAB BRIDGE ANB
. EC Version . P Command ' [P - <>
-—p . : X X
L . FAFO
M4K_TMSfRAM
interface ESRAM Version ' WriteData !
. FAFO |
........... , MAB_GLUE

3.4.1 MAB_BIU

The user can instantiate one of three modules depending on whether CorelF is OCP, EC, or SRAM. The output is
called the CMD bus which is very similar to the EC™ bus in that it has an address for each beat of a burst and write
datais aligned with write address and control information. Therefore the EC™ BIU module does very little work in
contrast to the OCP.

3.4.2 MAB_BIU2IB
Thisisbasically a4 deep FIFO that takes in commands on CMD and stores/forwards them onto IB. IB and CMD are

infact very little different. See Section 3.5 “Main Signals’ for a description of the CMD and IB busses. Note that for
fast start-up the address/command FIFO can be bypassed.

24

3.4 Block Description

3.4.3 MAB_BRIDGE

Figure 3-3 shows a block diagram of the MBB2 BRIDGE module.

Figure 3-3 MBB2 Block Diagram

ib_wdata " Address, Control, and Datapath hwdata
ib_wdata_done ! >
— Read data pipeline
ib_rdata, ib_rdval ' ' hrdata
ib_rberr 4—— - hresp, hr
ib a ib be Lo Split/Retry Path Selection
ib_burst, ib_write ' R haddr,
ib_bfirst Lo » hwrite
Vo hprot, hsize
C L ¢
v Multiplexer
L Decode > htrans, hburst
Ca Internal Storage registers cycletype
- Internal Status and
; ; v Control busses
ib_cmd_valid, . } (R
ib_wdata valid, ib: wdata |ast Main Controller described as*CB

L »
|b_cmd_done< i 4 » hbusreq
si_wberr_int < hgrant
si_wberr_ack » hresp, hready
Internal BIU to

Bridge bus called ‘' IB’

I:I Optional blocks

The design for the MAB_BRIDGE block is divided into two subblocks as shown in Figure 3-3.

3.4.3.1 The Address, Control Datapath unit:
The Address, Control and Datapath unit processes address and control informations passing from the IB to the AHB
bus. For the most part IB values are passed straight to the AHB. The exceptions to this are the AHB htrans and hburst
busses. The unit also hasto store IB information in case an AHB slave responds with a SPLIT or RETRY.

Read datais passed directly from the AHB busto the IB or, optionally, viaa pipeline register. Write data goes straight
from the IB to the AHB since it has already been registered in the MB_BIU2IB FIFO block.

25

Design Implementation

3.4.3.2 The Main Controller unit:
The Main Controller unit provides control signals for the address/data path unit, primarily for AHB address phase
pipelining and sends acknowledge signal s back to the MAB_BIU2IB FIFOs when addresses and write data have been
committed onto the AHB.
It also provides the appropriate handling for any error or SPLIT/RETRY responses from the AHB.

FInally, it handles the hbusreg/hgrant arbitration for the AHB. Note that in AHB-LITE mode the hgrant signal is
hard-wired active at the top level of the MBB2.

3.5 Main Signals

3.5.1 External signal list

Table 3.1 External Interface Signals

26

Count Name Function Direction
CorelF common signals
1 cpu_clk Corel F bus clock. |
1 cpu_reset Reset signal related to Corel F bus. |
1 hphase Phase indicator for hclk relative to cpu_clk |
1 si_wberr_int Asserted if write bus error occurred (0]
1 si_sleep Indicate if the MBB2 should enter sleep mode |
1 Si_wberr_ack When asserted clears any write buffer error interrupts. |
1 si_simple be Indicates to the core that simple byte enable should be used. (0]
1 si_shlock Indicates to the core that sequential addressing should be used. (0]
1 si_endian Indicate byte order of MBB2 |
'0’ => Littleendian
"1’ =>Big endian
EC™ - bussignals
1 EB_ARdy Ready to next address from core. (@)
1 EB Avalid Address valid indication from core. |
1 EB_Instr Indicate if aread operation is an instruction fetch |
1 EB_ Write Asserted if an transaction is write direction |
1 EB_Burst Asserted if current transaction is part of aburst |
1 EB_BFirst Asserted if current transaction isfirst word in a burst |
1 EB_BLast Asserted if current transaction is last word in a burst I
2 EB_Blen[1:0] Indicates length of current burst (if any) I
4(8) EB_BE[3:0] ([7:0]) Indicates active byte lanes in current transaction I
35(34) EB_A[35:2] ([35:3]) Addressinformation related to current transaction I
32(64) EB_WData[31:0] ([63:0]) Write databus I
32(64) EB_RData[31:0] ([63:0]) Read data bus]
1 EB_Rdval Asserted if EB_RData holds valid data 0]

3.5 Main Signals

Count Name Function Direction
1 EB_WDRdy Indicates if MBB2is ready to accept write data (always asserted) (0]
1 EB_RBErr Asserted together with EB_rdval if bus error occurred (0]
1 EB_WBErr Indicates write bus error (never asserted by current MBB2) (0]
1 EB_EWBE Indicates if write operation is stored inside MBB2 (0]

OCP Bus Signals
3 OC_MCmd[2:0] Address phase command. |
29/32 OC_MAddr[31:X] Address bus. X = 3 for 24K™ cores prior to MR4 and = 0 other- |
wise.

4 OC_MTagID[3:0] Tag for read command. |
3 OC_MBurstLength[2:0] Transaction burst length. Only values 1 and 4 will be generated by |

aMIPS™ 24K ™ or 34K ™core.

8 OC_MByteEN[7:0] Read command byte enables. |
OC_MBurstSeq[2:0] Requested burst sequence. Will aways be sequential. |
OC_MReqInfo[3:0] Additiona information for the address phase of a cycle. Unused at |

present by the MBB2.
64 OC_MDatg[63:0] Write data. |
8 OC_MDatabyteEn[7:0] Write Data byte enables. |
1 OC_MDatavalid Write data and byte enable busisvalid. |
1 OC_MDatal ast Last write data for current command. |
4 OC_MDataTagID[3:0] Unused by MBB2. |
1 OC_MBurstSinglereq A burst cycle has only a single address. Will dwaysbe ‘1’ from a |
MIPS™ 24K™ or 34K™ core.

1 OC_MBurstPprecise A burst cycle must have exactly the number of data phases speci- |
fied by OC_Mburstlength. Will awaysbe ‘1" from aMIPS™
24K™ or 34K™ core.

1 OC_SCmdA ccept MBB2 has accepted the command currently on OC_Mcmd. (0]

1 OC_SDataA ccept MBB?2 has accepted the write dataon OC_Mdata. (0]

64 OC_SDatd[63:0] Read data return to core. (0]
4 OC_STagID[3:0] Read data tag. (0]
2 OC_Sresp[1:Q] Read response type. (0]
1 OC_SrespL ast Last read datais on OC_Sdata. (@)
8 oc_sdatainfo[7:0] Unused by Core. Always driven to 0 by MBB2. (0]
1 oc_serror Unused by Core. Always driven to 0 by MBB2. (0]

SRAM signals

1 IS Read Instruction side Read request. (0]

1 IS Write Instruction side Write request. (0]

1 IS Sync Instruction side Sync request. (0]
1 IS WhCtl External write buffer flush (not used on current MBB2 version). (0]
1 IS Instr Instruction side request is for an instruction fetch. Only relevant if (0]

the M4K™ isin unified SRAM mode.

30 IS _Addr Instruction side address.

4 IS BE Instruction side byte enables for request, (0]

IS_Abort Instruction side request to abort transfer.

27

Design Implementation

28

Count Name Function Direction

32 IS RData Instruction side read response data. |
1 IS Error Instruction side read error. |
4 IS RBE Instruction side read response byte enables. |
1 IS _Stall Instruction side request to stall the transfer. |
1 IS_AbortAck Instruction side abort acknowledge |
1 DS Read Data side Read request.

1 DS Write Data side Write request.
1 DS Sync Data side Sync request.
1 DS WhCtl External write buffer flush (not used on current MBB2 version).

30 DS Addr Dat side address. (0]
4 DS BE Data side byte enables for request, (0]
1 DS_Abort Data side request to abort transfer. (0]

32 DS RData Data side read response data. (0]
1 DS _Error Data side read error. (0]
4 DS RBE Data side read response byte enables. (0]
1 DS stall Data side request to stall the transfer. (0]
1 DS AbortAck Data side abort acknowledge |

AHB Bussignals
1 hresetn AHB bus reset. |
32 haddr Address bus. (0]
2 htrans Current transaction type. (0]
1 hwrite Current transaction isa write. (0]
3 hsize Size of current transaction - 8, 16, 32, 64 bits. (@]
3 hburst Burst length and type of current transaction. (0]
4 hprot Always driven to O by MBB2. (0]
32 hwdata Write data bus. (0]
32 hrdata Read data bus. |
1 hready Asserted when data phase ends on AHB bus. |
2 hrest[1:0] Asserted by dave to indicate response type. |
1 hbusreq Asserted if MBB2 requests the bus (0]
1 hlock Asserted if current transaction islocked. Always driven to 0 by the (0]
MBB2.

1 hgrant Indicate if MBB2 is bus master |

Other signals
Scan test signals

4 mab_scanin[x:0] Scan chain input signals (humber depend of scan length require- |
ment)

4 mab_scanout[x:0] Scan chain output signals (number depend of scan length require- (0]
ment)

1 mab_scanenable Enable scan mode of flip flops |

3.5 Main Signals

3.5.2 Internal Busses

3.5.2.1 1B, CMD

This forms the connection between the mab_biu <BUS>, the BIU FIFO module mab_biu2ib, and the main Bus-
Bridge™ 2 RTL top level module mab_bridge. The purposeis to have acommon set of signals, with an EC-like pro-
tocol, so that AHB portion of the RTL isidentical in both the EC™ bus and OCP cases. Note that CMD and IB are
very similar so that only one will be documented, ib_ XXX, if the description of cmd XXX isthe same.

In the table below the Direction column indicates whether the signalsisan input to (1) or and output from (O) the BIU
block.

Table 3.2 IB signals

Name Width Description Direction

ib_cmd [1:0] valid command on IB. Encoding is: (0]
bit 1: Command valid.
bit O: Pipelined command present.

ib_cmd_done 1 Command on IB has been sent out to the AHB. Assert- (0]
ing this signal shifts the next command from the FIFO
in BIU2IB.
ib_a [31:0] Address bus (0]
ib_bfirst 1 Address phase isfirst beat of a sequence. Note that this (0]

is asserted for asingle 32-hit transfer request and the
first beat of adword request from the OCP.

ib_blast 1 Address phaseislast beat of asequence. Note similar to (0]
ib_bfirst so that ib_bfirst and ib_blast active at the same
time imply asingle transfer.

ib_write 1 Command isawrite. (@)
ib_burst 1 Command is part of area burst request from the CPU. (0]
Thisis not set for dwords from and OCP CPU.
ib_size [2:0] Transfer size encoded as per AHB. (0]
ib_blen [2:0] Burst length as per the EC™ specification. 0x1 =>4 (@)
words, 0x2 => 8 words.
ib_rdata [31:Q] Read data. I
ib_rdva 1 Read datais valid. I
ib_rberr 1 Read error. I
ib_threadid [2:0] OCP thread 1D returned along with read data. N/A for I
EC™ cores.
ib_wdata valid 1 Dataonib wdataisvalid. O
ib_wdata done 1 Writedatain ib_wdata has been sent to AHB. Asserting I
thissignal will shift the next entry out of the write data
FIFOin BIU2IB.
ib_wdata [31:0] Write data. 0]
cmd_active 1 From BIU to BIU2IB indicating that the CMD bus hasa I
valid address phase beat,
cmd_stop 1 Indicates that the FIFO in BIU2IB is amost full. For

EC™ cores this can allow for one overrun cycle.

29

Design Implementation

Table 3.2 IB signals (Continued)

30

Name Width Description Direction

cmd_a [31:2] CMD is abyte enable bus so doesn’t have the 2 | sbs.

cmd_be [3:0] Byte enables for current CMD bus beat, o
3522 CB

This forms the connection between the BusBridge™ 2 modul€’s controller unit and the data path, address path, and
bus request units. In the table below the Direction column indicates whether the signalsisan input to (1) or and output
from (O) the main controller module mab_cntrl.

Table 3.3 CB signals

Name Description Direction
ahb_aphase The MBB2 should drive an address and com- (0]
mand type on AHB.
ahb_dphase TheMBB2isinthe data phase of atransaction it (0]
has started.
ahb_retry _pending A selected slave responded during an MBB2 (0]
data phase with RETRY or SPLIT.

3.5.2.3 Special signals

Most interface signalsto the MBB2 modul e are made up of the Corel F port and the AHB bus port. These signals con-
form to the specifications for these two interface standards. In addition to these pins, a number of extra pins exist,
with the functions described below.

si_sleep

Thisisan input from the core. If configured for sleep mode the MBB2 will shutdown its internal clock in reponse to
this when all pending commands have been completed all the way to the AHB.

si_subblock
An output that, when active, tells the core to use sub-block order for bursts. The MBB2 will always drive thisto 0.
si_simplebe

An output that, when active, tellsthe core to use only ““natural” byte enable patternsi.e those for single byes,
half-words, words, and double words. The MBB2 will always drive thisto 1.

si_wberr_int, si_wberr_ack
Signalling of write errorsis performed by using of a general purpose interrupt pin on the core

If awrite transaction on the AHB bus ends with an error response, then thisis signalled to the core by asserting the
si_whberr_int signal. Thissignal remains asserted until cleared by si_wberr_ack.

1. Whilesi_wberr_ack is asserted, any new write error does not cause a new interrupt to the core.

2. Whileawriteerror issignalled by the si_wberr_int signal, the MBB2 module functions normally.

3.6 RTL Modules

3. Thesi_wberr_ack signal may be driven by any general purpose pin inthe system, so istreated as asynchronousto
cpu_clk and is synchronized before use.

hclk_phase

Thissignal isused in systemswhere the Corel F clock isrunning at 2, 3, 4, or 5 times the frequency of the AHB clock.
The hclk_phase is used to indicate the rising cpu_clk edge that corresponds with arising hclk edge, with the correct
assertion of hclk_phase shown in Figure 3-4. In systems where the Corel F clock and the AHB clock are running at
the same freguency, the hclk_phase should be driven with a constant 1.

Note that hclk is not connected to the MBB2 module and is only shown here for reference.

Figure 3-4 Indication of hclk Phase
0" T o o Y o I N B
holk| I I I I I I I
holk phase / \ / \ / \ /

2:1 Clock ratio

cpu_clk

. B s BN ey I
helk_phase’\ [\ [\

3:1 Clock ratio

oua LI LT LT LT LITLTLT L
o L[L
helk_phase’\ /T \ [

4:1 Clock ratio

3.6 RTL Modules

The MBB2 implementation is organized in anumber of Verilog modules, one file for each of the major blocks. These
Verilog modules are held in files located in the design database under design/rtl/mab/.

Note that all modulestakein gclk, gclk_en, greset, and mab_scanenable so these are omitted from the interface list
except for the mab_glue module.

3.6.1 mab_top

Top level file. Includes the necessary sub block depending on configuration.

Functions:

31

Design Implementation

32

* Instantiates one of the 2 BIU modules mab_biu_ocp or mab_biu_ec depending on the value of the configuration
define MAB_CONFIG_OCP.

* Instantiates the actual top level bridge module mab_bridge and connectsit to the selected BIU viathe internal 1B
bus.

* Instantiates the clock and reset generator module
I nterface:

* OCPor EC™ hus: All.

* AHB bus: All.

e Externa clock and reset signals.

3.6.2 mab_glue

Clock and reset control.

Functions:

» Generating the MBB2 internal clock gclk.

* Generating the MBB2 internal reset signal greset.

» Global clock gating.

Interface:

* Inputs: cpu_clk, cpu_reset, hresetn (from AHB), si_sleep (from core)hclk_phase.
» Outputs: gclk, greset.

3.6.3 mab_biu_BUS

Bus interface for CorelF. BUS="ocp”," ec”, ‘‘sram’”.
Functions:

* Receives commands from the core bus (OCP™, EC™, or the SRAM interface of the M4K™ CPU core) and
tranglates them into an internal, IB/CMD, form to be passed to the mab_bridge module.

Note that the IB address phaseis very similar to the EC™ bus so that in the case where BUS = ec this module
does very little work. For BUS = ocp, however, it must generate multiple address phase beats since the OCP
interface of a24K™ or 34K ™ core only provides a single address phase per transaction. For BUS = sram it,
internally, converts the SRAM coreinterface to EC.

* Receivesread responses from the mab_bridge module and converts them into the correct, OCP or EC, format.
For Corel F=OCP or EC64 the 32->64 width conversion is done viathe mab_biu_read32to64 module instantiated
here.

3.6 RTL Modules

» Doeswrite data splitting in the case where the Corel F is 64-bit and the AHB is 32-bit. Also for Corel F=OCP it
alignswrite datawith the addressinformation on CMD since for OCP write data may occur any time after acom-
mand phase has been accepted.

* Saves|B address phase information at the point where it is committed to the AHB (asindicated by
ib_cmd_done). Thisisused by the mab_biu_read32to64 module to do the correct 32->64 bit packing for read
data.

* Pipelineregistersfor OCP input signalsif needed for high speed operation.

Interface:

» OCPor EC™ bus: All.

e CMD bus: All.

IB bus: ib_rdata, ib_rdval, ib_rberr, ib_bfirst, ib_blast, ib_write, ib_a, ib_threadid, ib_cmd_done.
e §_endian.
3.6.4 mab_biu_read32to64

Read data path for 64 bit CPUs.

Functions:

e Takesinthe 32-hit read data and read data response signals from the IB as well as the cycle type information
(single, last, odd word) and outputs a 64 bit value on every other clock cycle for non-single word cycles. For sin-
gle words the incoming IB read datais driven onto both halves of the 64 bit output bus.

e Alsosuppliesread datavalid information in OCP format.

Interface:

e |IB:ib_rdata, ib_rdval, ib_rberr.

e Other: rdresp_ib _single, rdresp_ib_last, rdresp_ib_odd, cpu_rdata, cpu_rdresp, cpu_rdlast.

3.6.5 mab_biu2ib

Module that implements the MAB_BIU2IB FIFO function between the CMD and 1B busses.
Functions:

* Address phase FIFO for values on the CMD bus.

* Writedata FIFO for values on the CMD bus.

» Command FIFO bypass.

* Generatesib_cmd pipelining information from knowledge about the state of the FIFO and bypass logic.

33

Design Implementation

34

Interface:
. Internal 1B bus: All.
e Internal CMD bus: All.

3.6.6 mab_genfifo

Thisis‘“generic’ RAM based FIFO configurable for width, depth (in powers of 2), and amost-full condition.
Functions:

« TBA.

Interface:

« TBA

3.6.7 mab_bridge

Top level wrapper for the main AHB protocol control and data paths

Functions:

* Instantiates and connects the mab_bridge _apath, mab_bridge dpath, mab_bridge cntrl modules.
I nterface:

* Internal IB bus: All.

« AHB:AIl
3.6.8 mab_bridge_adpath

AHB address phase path unit.
Functions:

» ConnectstheIB to the AHB address, size, burst mode, write, and transfer type (htrans) signals. Thisis done com-
binatorially every time the CB indicates that and AHB address is starting viathe ahb_aphase signal.

» Stores|B address phase signals in the case where the AHB responds with SPLIT/RETRY.

» Connectsthe AHB read data and read responses to the IB read data path. This can be, configurably, pipelined if
the MBB2 isrunning at a high core clock rate.

» Connectsthe B write data path to the AHB write data bus. Thisis done directly.
* Records the occurrence of write errors on the AHB.

Interface:

3.7 Register Implementation

« IB:ib_a ib_write ib_burst, ib_blen, ib_bfirst, ib_blast, ib_wdata, ib_rdata, ib_rdval, ib_rberr, ib_wdata done.

AHB: All.

CB: All.
e Other: si_wberr_int, si_whberr_ack, si_endian.
3.6.9 mab_bridge_cntrl

Main controller unit.
Functions:
» AHB bus acquisition via hbusreg/hgrant.

» AHB protocol sequencing: A state machine handles AHB address phase start and address pipelining, passing
address phase information to the data phase, SPLIT/RETRY responses.

» Flow control along the IB busviaib_cmd _done, ib_wdata done.
Interface:

* AHB: hresp, hready, hgrant, hbusreq.

 IB:ib_cmd, ib_cmd done, ib_wdata valid.

. CB: All.

3.7 Register Implementation

All instantiated registersin the design are clocked by gclk (derived from cpu_clk in the mab_glue module) and imple-
mented through one of the generic flip-flop modules (listed in Section 3.7.1 “Generic modules’ below) athoughitis
possible for the user to replace them with customer specific versions. All conditional registers may be implemented

with either afeedback multiplexer or with local clock gating, decided during configuration viaMAB_CONFIG_GC.

For RTL simulation the supplied module mab_gcondclock.v will be used but for synthesis the user should replace this
with a gate level netlist for the implementation technology. See step 5. of Section 5.1 “Synthesis Flow”

3.7.1 Generic modules

Generic modules for flip-flops and clock gating logic are stored under design/rtl/shared. The following generic mod-
ules are used in the design.

* mab_greg Unconditional |oaded register.

* mab_gcreg Conditional loaded register. Implemented using either "'mab_gcreg_mux’ or
"mab_gcreg_gclk’ module depending on define settings.

* mab_gcreg_mux Conditional loaded register implemented with a feedback multiplexer.

35

Design Implementation

* mab_gcreg_gclk Conditional loaded register implemented with gated clock. Clock gating will be made
with ’mab_gcondclock’ or ’mab_gcondclock_n' module depending on define
settings.

» mab_gcondclock Clock gating module with active high control input used for RTL level functional
simulation.

« mab_gcondclock Clock gating module with active high control input used for RTL level functional
simulation.

» mab_clockandlatch_example An example synthesisable clock gating module with active high control input..
3.8 Design Configuration

The MBB2 design uses only 2 Verilog configuration header files.:

» mab_config.vh User configuration. Thisisthe only file where the user should make changes during
configuration. Held in $SUBSY S_DIR/design/rtl/config.

* mab.vh Contains derived defines for configuration as well asthe AHB bus signal definitions.
Held in $SUBSY S_DIR/design/rtl/shared..

Table 3.4 lists the possible configuration parametersin mab_config.vh

Table 3.4 RTL Configuration

Configuration control

Define name Description

Main Configuration

MAB_CONFIG_BUS OCP If set the Corel F is OCP.

MAB_CONFIG_BUS EC32 If set the CorelF isthe EC32™bus used by 4K™ and 4KE™ cores.
MAB_CONFIG_BUS EC64 If set the CorelF is the EC64™bus used by 5K™.

MAB_CONFIG_BUS SRAM If set the CorelF isthe SRAM bus used by M4K™ cores.

MAB_AHB_LOWLATENCY If set the MBB will move a cycle appearing on the Corel F directly to the AHB, assuming

that the MBB2 is already the bus master.

MAB_CONFIG_OCP_PIPE_INPUTS Only relevant for OCP. Set this to add a pipeline stage between the Core OCP bus and the
logicin mab_biu_oc. Allows for operation with a very high speed core clock.

MAB_CONFIG_AHB_APHASE_REG Disablesthe command FIFO bypassin mab_hiu2ib so that AHB address phase signalsare

effectively registered.
MAB_CONFIG_AHB_RDATA_REG Adds apipeline register in the read data path from AHB -> IB.
MAB_CONFIG_CLOCKRATIO Defines the Corel F/AHB clock ratio. If not defined then the ratio is assumed 1:1.

MAB_CONFIG_SUPPORT_SLEEP If defined clock enabling for support of sleep mode isincluded in code, otherwise assert-
ing of si_deep signal will have no effect on module.

AHB Configuration

MAB_CONFIG_LITE If asingle master system is designed include this define. If not included an MBB2 module
with support for multiple AHB mastersis generated.
MAB_CONFIG_AHB64 If defined the AHB busis assumed to have a 64-bit data path. (Not yet implemented).

36

3.9 References

Configuration control

Define name

Description

Clock gating control

MAB_CONFIG_GATED_CLOCK

If defined conditional registers will be implemented with gated clock, otherwise condi-
tional registers will be implemented with feedback multiplexers.

Scan width setting

MAB_SCAN_WIDTH 4

3.9 References

With this define the width of the test scan ports of the design may be controlled.

[1] EC™ Interface Specification. MIPS Technol ogies. Document Number MD00052.
[2] Open Core Protocol Specification Release 2.1.

[3] AMBA AHB 2.0 Specification. ARM Limited. Document Number [HI 0011 A.

37

Design Implementation

38

Chapter 4

Functional Simulation

TheMIPS™ BusBridge™ 2 module (MBB2) is delivered with a Verilog testbench for functional simulation. In this
testbench, MBB2 is instantiated along with a CPU core model and tested by running software on the core.

This chapter describes the functional simulation and software test cases, aswell as briefly describes the testbench and
provides a detailed list of the tests to be performed. References to file locations in the database are provided. The fol-
lowing sections make up this chapter:

Section 4.1 “The Verilog Testbench environment”

Section 4.2 “Testbench Scripts’

Section 4.3 “Using the Verilog Testbench”

Section 4.4 “Tests Performed with the Verilog Testbench”

Section 4.5 “Test performed in Random testbench”

4.1 The Verilog Testbench environment

This section describes the verilog testbenches used for verification. There are two types of testbenches, Directed and
Random. The Directed testbench instantiates a model of core and uses directed tests written in C or assembly to cre-
ate stimuli. The core model for the Directed tests can be RTL, VMC, or MIPSsim w/BFM. The Random testbench
instantiates a Bus Functional Model (BFM) of a CPU core and uses a pre-generated stimuli of random bus cycles.
Only the BFM is used in the Random tests.

4.1.1 Directed Testbench

This section briefly describes the Directed testbench used for MBB2 verification.

Figure 4-1 showsthe Directed testbench used for MBB2 verification. The main components of the Directed testbench
are:

1. Simple AHB Masters: The Simple AHB masters randomly assert their HBUSREQ signals to request AHB bus
from Arbiter. This causes the AHB Arbiter to take away grants to other mastersincluding the MIPS™ Bus-
Bridge™ 2 module.

2. Model of aMIPS® core. The models supported by the testbenches are the RTL, VMC and BFM with
MIPSsim™,

3. Monitor Slave: Monitor Slaveisacomplex AHB dave used for various testbench features. The slaveis described
in detail later in this document.

39

Functional Simulation

40

Boot Rom AHB Slave: Boot Rom AHB Slave is aread only memory which is pre-loaded before start of simula-
tion. The test case to be executed by the core is loaded into Boot Rom.

RAM: Thisisrandom access memory used for temporary storage and used to generate various AHB responses.
The RAM isdescribed in detail later in the document.

4.1.2 Random Testbench

This section briefly describes the Random testbench used for MBB2 verification.

Figure 4-2 shows the Random testbench used for MBB2 verification. The main components of the Random testbench

1. Simple AHB Masters. The Simple AHB masters randomly assert their HBUSREQ signals to request the AHB

bus from the Arbiter. This causes the AHB Arbiter to take away grants to other masters including the MIPS™
BusBridge™ 2 module.

BFM of aMIPS® core: The BFM is used to generate transfers to the MIPS™ BusBridge™ 2 module. It is based
on a script which randomly generates bus cycles for the BFM to execute. This has the effect of executing ran-
domly generated bus cycles.

Random AHB Slave: This AHB slave generates the random AHB responses to AHB transfers. The slave can be
configured to selectively not generate some of the AHB responses. The slave is described in detail later in the
document.

4.1 The Verilog Testbench environment

Figure 4-1 Directed Testbench of the BusBridge™ 2 module

Directed Testbench

: |
| I
| I
| I
| I
| Simple AHB Master Monitor I
| I
| I
| I
| I
I Boot Rom |
| Simple AHB Master I
| I
| I
| I
| I
I RAM :
: BusBridge™ 2 module |
| I
I Q I
I m I
| EC/OCP/SRAM Bus % |
I < I
I I
I I
| MIPS® Core or Core Model |
I Running directed tests I
I . I
| AHB Arbiter |
| |
I

I

I AHB Decoder

I Clock Generation

I

I

I

41

Functional Simulation

Figure 4-2 Random Testbench of the BusBridge™ 2 module

Random Testbench

Simple AHB Master

Random AHB Slave

Simple AHB Master

AHB Arbiter

AHB Bus

BusBridge™ 2 module
AHB Decoder

‘ EC/OCP/SRAM Bus

Core BFM Clock Generation

4.1.3 Testbench Components

This section describes the components of testbench in details. In the description that follows S1 means Slavel, S2
means Slave? etc. Similarly M1 means Masterl...

4.1.3.1 Clock/Reset Generation

Thismoduleis responsible for:

Generation of the global MIPS™ BusBridge™ 2 module clock and hclk.

42

4.1 The Verilog Testbench environment

Generation of the clock phase identifier.

Generation of the MIPS™ BusBridge™ 2 module reset.

Files:

clkgen.v: Thisfile contains al the Verilog code for the clock and reset generator.

4.1.3.2 Boot ROM (S1)

The boot ROM is read only memory containing the boot code. The boot code is pre-loaded into the memory from a
hexadecimal file “testcase.asc” that is generated by the build_test script.

Files:

boot_slave.v: Thisfile contains all the Verilog code for the boot ROM.

$SUBSY S BUILD_DIR/tb/testcase.asc: This file contains the boot code.

4.1.3.3 Monitor (S2)

The monitor isacomplex device that handles many tasks. At boot, a hexadecimal file “testcase _cfg.asc” is pre-loaded
into the monitor controlling the endianness and clearing of caches. The “testcase _cfg.asc” fileisthen generated by
the build_test script from specifications set up in the software Makefile.

These are some of the other features of the monitor:

Returning OK or error message by writing to aregister (MON_HAPPY, MON_SAD).

Allowing signal tracing to be turned off or on by writing to aregister (MON_VCDTRACE), if verbose level
(MON_VERBOSE) isset to VO or V2 (VCD dump enabled).

Terminating character 0. Writing to aregister (MON_PUTCH) basically echoes the character written to the
workstation screen, if verbose level (MON_VERBOSE) is set to VO or V1 (Print enabled). This allows usage of
printf statementsin“C” code.

Setting RAM dave split or retry responses to none or random by writing to aregister (MON_SET_SPLIT,
MON_SET _RETRTY).

Inserting none or arandom number of wait states in the RAM dlave data phase response by writing to aregister
(MON_SET_WS).

Resetting awrite error interrupt by writing to aregister (MON_ACK).
The monitor would also be modified to generate deterministic sequences of Split and retry responses.

Changing verbose level by writing to aregister (MON_VERBOSE). The verbose level is set to “VO" running a
single test, and the verbose level is set to V1 running afull regression suite. The following verbose levels are
defined:

* VO: Print enabled, VCD dump enabled
* V1: Print enabled, VCD dump disabled
* V2: Print disabled, VCD dump enabled

43

Functional Simulation

» V3: Print disabled, VCD dump disabled
Files:
e monitor.v: Thisfile contains all Verilog code for the monitor.

* $SUBSYS SW_DIR/include/monitor.h: Thisfile contains “C" defines for al the available registersin the moni-
tor.

* $SUBSYS BUILD_DIR/th/testcase _cfg.asc: Thisfile contains the boot configuration.
4.1.3.4 RAM (S3)
The RAM isarandom access memory used for data (stack) and/or the application. By setting the variable COPY =d

(copy data) in the software Makefile, the data (stack) is copied to the RAM; however, by setting the variable COPY =
ad (copy application and data) in the software Makefile, both the boot code and data (stack) are copied to the RAM.

Files:
ram_slave.v: Thisfile contains al the Verilog code for the RAM.
4.1.3.5 Address Decoder
The Address Decoder contains the address decoder logic, read data and response multiplexer, and the default slave.

For the directed testbench the address decoder logic maps the HADDR address as shown in Table 4.1.

Table 4.1 The Memory Map used for Directed testbench.

Address range Size Unit Remarks
0x0000.0000 -> 128 KByte |RAM (S3) Random access memory used for data (stack) and/ or boot
0x0001.ffff code.
0x0002.0000 -> Default dlave ($4) Free memory space.
Ox1fO1.ffff
0x1f02.0000 -> 64 KByte Monitor (S2) The monitor is used to set up the test environment and dis-
Ox1f02.ffff play to screen from inside assembler and “C” programs.
0x1f03.0000 -> Default slave ($4) Free memory space.
Ox1fbf ffff
0Ox1fc0.0000 -> 128 KByte | Boot ROM (S1) Read only memory containing the boot code.
Ox1fcl. ffff
0x1fc2.0000 -> Default slave ($4) Free memory space.
OxFfff.ffff

For the Random testbench the address decoder maps the full 32-bit address space to random AHB Slave.
The default slave is used to generate responses for transfers addressed outside any other slave (S1 to S3).
The default provides the following responses:

* ERROR response for NONSEQUENTIAL or SEQUENTIAL transfers

* OKAY responsefor IDLE or BUSY transfers.

44

4.1 The Verilog Testbench environment

Files:

decoder_top.v: Thisfile contains all Verilog code for the address decoder logic, read data and response multiplexer,
and the default slave.

4.1.3.6 Arbiter

The arbiter is controlling which master has access to the address and control bus as well as the write data bus. The
address and control multiplexer, the write data multiplexer, and the dummy master is part of the arbiter.

The testbench has three masters - the MIPS™ BusBridge™ 2 module (M1) and two instantiations of the Simple Mas-
ter (M2 and M3).

Each master has arequest signal, which is asserted when the master wants the bus granted. The arbiter grants the mas-
ter access to the bus by asserting a grant signal to the master.

It is possible to set up the arbiter to run in three different arbitration scheme modes:
e priority - high priority master is granting access before alow priority master
» round robin - the next (requesting) master is granting access, M1, M2, M3, M1, etc.

e random - the grant to MIPS™ BusBridge™ 2 module is taken away at random. In order to use it the simulator
runtime option " +randomGrants' must be specified.

It isalso possible to set up which master is the default master.

Both setups are done in the software makefile by setting the PRIORITY and DEFAULT variables described in Table
49,

The arbiter also controls split and locked transfers:

» If thearhiter receivesasplit response, then the master attempting the transfer is not granted access to the bus until
the slave indicates it is ready to complete the transfer. The dummy master must be granted the busiif all other
masters are waiting for split transfers to complete.

Files:

arbiter_top.v: Thisfile contains all Verilog code for the arbiter logic, write data multiplexer, address & control multi-
plexer, and the dummy master.

4.1.3.7 Random AHB Slave
Random AHB Slaveisasimple AHB slave which drives various types of random responses in response to AHB
transactions. The slave generates all AHB responses and adds random waits before aresponseisissued. The ave can
turn off RETRY, ERROR and SPLIT responses when simulations are run with appropriate runtime simulator options.

For read transfers slave drives the address of read transfer as the read data. For write transfer slave expects the data
which is same as address of transfer.

Run time options:

Following run time simulator options can be used with random AHB dlave:

45

Functional Simulation

1. +disableSplit: If specified, the slave does not drive SPLIT response. By default slave generates SPLIT
responses.

2. +disableError: If specified the slave does not drive ERROR response. By default slave generates ERROR
responses.

3. +disableRetry: If specified the slave does not drive RETRY response.By default slave generates RETRY
responses.

The slave aso implements a timeout counter to prevent runaway simulation.

4.1.3.8 Testbench

Thisisthe top-level of the testbench, and instantiates the MIPS™ BusBridge™ 2 module and all surrounding mod-
ules, including the core. Also, al unused signals to the core are terminated with a constant high or low.

Files:
e testbench_mab.v
4.1.3.9 The CPU Model

The CPU core executes the test programs. To speed up simulation, it is recommended that the generic configuration
of the CPU listed in Table 4.2. is used.

Table 4.2 Generic CPU Configuration in Top-Level Testbench

Option Configuration

Gated clock. Turn gated clocks off.

MMU No TLB. Usefixed map translations. None of the tests uses
the MMU, so unused functionality to slow down simula-
tion is not wanted.

Register file Use register-based.

EJTAG Disable as much as possible to reduce overhead in simula-
tions

Integrated BIST. Disable.

Cache RAMs Set to two-way associative. 4K per way. Same for both |
and D.

The generic configuration has the advantage that all logic not directly related to the MIPS™ BusBridge™ 2 moduleis
disabled. Notice that the sample software does not support the use of TLB.

4.1.3.10 Cache Clearance

With the generic configuration of all the supported core, the caches are cleared by the testbench to speed up the simu-
lations.

4.2 Testbench Scripts

This section describes the scripts used to configure the testbenches, build tests and run tests.

46

4.2 Testbench Scripts

4.2.1 The "configure_mab.pl" script

The MIPS™ BusBridge™ 2 needs to be configured before use. The Verilog include file

${SUBSYS RTL_DIR}/config/mab_config.vh specifies this configuration. While one could edit thisfile by hand, it
is recommended that the script “configure_mab.pl” is used instead. This script accepts options on the command line,
reads a default configuration file, and generates the actual mab_config.vh used. Each time a change is desired in the
MBB?2, the configure_mab.pl should be used. A list of the command line options are shown in the table bel ow.

Thefile ${ SUBSYS RTL_DIR}/config/mab_config.vh is described in detail in Section 3.8 “Design Configuration”

Table 4.3 Command line options for configure_mab.pl

Command Line Option Description Default Value
--clock_ratio=<yes| no> Specifies the whether clock ratio sup- yes
port is enabled.
--reg_ahb_outputs=<yes | no> Configuresthe RTL to register the no

AHB outputs. The possible options
areyes and no.

--reg_ahb_inputs=<yes| no> Configuresthe RTL to register the no
AHB inputs. The possible options are
yes and no.

--enable_clock_gating=<yes|no> | Configuresthe RTL to use clock gat- no
ing. The possible options are yes and
no.

--pipe_ocp_inputs=<yes | no> Configuresthe RTL to pipe the OCP no
bus inputs into the BusBridge™ 2
module. The possible options are yes
and no.

--support_sleep=<yes | no> Configuresthe RTL such that the Bus- yes
Bridge™ 2 module supports coreini-
tiated sleep. The possible options are
yes and no.

--ahb_lowlat=<yes| no> Inthe casewhere MBB2 aready owns no
the AHB bus this allows a cycle start-
ing in the CPU system interface to

appear on the AHB bus with no delay.

4.2.2 The “configure_mab_tb.pl” script

The script “run_test” isused to build and run tests. There currently 18 command line optionsto run_test, and these
specify fully the simulator, endianness, testbench type, etc. In order to save the user from having to remember and
specify such alarge set of options each time, testbench configuration files can be used. Like the configure_mab.pl
script described in the last section, configure_mab _th.pl script can be used to create configuration files for testbench
from defaults and command line options. But unlike the single configuration for MBB2, there can be many testbench
configuration files. These configuration files contain subset of command line options of the run_test script.

configure_mab_th.pl puts the config files created in the directory ${ SUBSYS VERIF_DIR}/th_config. These are
given the suffix.cfg. The command line optionsfor this script are described in the table below. If an option is specified

a7

Functional Simulation

48

in configuration and on the command line option of run_test script, the command line option overrides the valuein

configuration.

Table 4.4 Command line options for configure_mab_tb.pl script

Command Line Option

Description

Default Values

--tb-config | --o=<config_name>

Name of configuration file to create.
All the configuration files are written
to

${SUBSYS VERIF _DIR}/th config
directory. A suffix of .cfg isadded to
the name of configuration specified
with this option.

mab_tb_config

--simulator | --sim=<VCS|MTI|NC|XL>

Specifies the simulator to be used for
simulations. Possible values are:
VCS, NC, MTI and XL.

V CS unless specified via the environ-
ment variable MAB_SIMTYPE

--core-model=<RTL|NET|VMC|BFM> Specifiesthe model of the coreto use. RTL
Possible values are RTL, NET (gate
level netlist), BFM or VMC.
--th-type=<DIRECTED|RANDOM> Specifiesthe type of verilog testbench DIRECTED

to use. Possible values are Directed or
Random.

--tb-top=<filename>

Specifies the top level testbench Ver-
ilog file.

verif/tb/testbench_mab.v

--ahb-type | --ahb=<FULL|LITE>

Specifiesthe AHB busto instantiate
in the testbench. The possible options
FULL or LITE.

At present the testbench only support
full AHB bus.

FULL

--Use-ves-vm | --ves-cm

Collect code coverage statistics if

Code coverage is not collected by

VCSisused as simulator. default.
--mab-model=<RTL|NET> If set to NET the simulation will use a RTL
gate level Verilog netlist for MBB2.
The source of thisnetlist is specified
by the --gate-sim-filelist option.
--gate-sim-filelist=<vc_file_name> Specifies a verilog command(vc) file None.

for testbench compilation. Thisvcfile
specify the netlist file and libraries
used by netlist. Thisvcfileisin addi-
tionto vc file used by run_test.

--[no] 24k-ocp-2-1-complaint

Specifies that the 24K ™core is OCP
2.1 compliant.

This option cannot be specified on the
command line for run_test and there-
fore configurations must be used.

24K ™core is assumed to be OCP2.1
compliant.

--[no] 4k-top-is-wrapper

Specifies that the 4AKE™core is revi-
sion3_2 Oor later.

This option cannot be specified on the
command line for run_test and there-
fore configurations must be used.

4KE™core is assumed to be revision
3 2 Oor later.

4.2 Testbench Scripts

Table 4.4 Command line options for configure_mab_tb.pl script

Command Line Option Description Default Values

--[no]cache-support-init Specifies that cachesinstantiated in No Cache init support is assumed.
the testbench supports hardware init.
This option cannot be specified on the
command line for run_test and there-
fore configurations must be used.

4.2.3 The "run_test" script

run_test isthe primary script which is used to build the testbenches, the tests, and then run the tests. The invocationiis:
run_test <options> <test name>

Internally, run_test first runs the two scripts build_tb and build_test. To build the testbench itself, run_test passes a
--build flag to “build_tb”. By default the testbench is built in the directory

$SUBSYS BUILD DIR/tb_<m34k | m24k | m4k | mm4k>
If --build-name=<othername> is specified on the run_test command line this becomes:
$SUBSYS BUILD_DIR/tb_<m34k | m24k | m4k | mm4k>_othername
Note: The output of the testbench compile phase is saved in the testbench directory as** compile.log”.

To compile and build the test, <test name> is passed to “build_test”. Thiswill compilethe <test_name> software and
copy the results to the testbench directory

“run_test” will then run the smulation.

The Table Table 4.5 shows the command line options for run_test.

Table 4.5 Command line options for run_test

Command Line Option Description Default Value
--simopts=<simulator_options> Pass<simulator_options>tosimulator | No additional runtime options are
as run time options. passed to simulator.
--vcs_cm Build with VCS code coverage Testbench is not build with VCS code

switched on. Running testbench built | coverage switch on.
with this option would collect code
coverage statistics.

--log=<log_file_ name> Create alog file with name Log file with name

log_file_name. <test name>__<act ><model__><v
cs_cm__><simopts>.log is created.

--build If --clean is*not* on the command By default testbench is not built.

line then passing this option buildsthe
testbench.

If --clean is on the command line then
passing --build will result in the con-
tents of the testbench dir. being
removed.

49

Functional Simulation

50

Table 4.5 Command line options for run_test (Continued)

Command Line Option

Description

Default Value

--build-name=<build_name>

Specifies the suffix for the build direc-
tory.

--config-file-name |
--config=<config_name>

Specifies the testbench configuration
file. The actual file used will be
config_name.cfg

in

$SUBSYS VERIF_DIR/th_config

Note: that if no config fileis specified
then run_test uses an internal default
testbench setup.

--interactive | --I Build testbench and run it interac- By default the testbench is not run
tively. interactively.
--simulator | --sim=<VCS|MTI|XL|NC> | Specifiesthe simulator to usefor run- | VCS unless specified by the environ-

ning simulation. The possible options
areVCS, NC, MTI or XL.

ment variable MAB_SIMTY PE

--core-model=<RTL|NET | VMC | BFM>

Specifies the model of coreto use.
Possible options arertl, net (gate level
netlist),bfm or vmc.

rtl is the default model used.

--tb-type=<DIRECTED | RANDOM>

Specifies the testbench to use. Possi-
ble options are rtl or random.

By default RTL testbench is used.

--tb-top=<filename>

Specifies the top level testbench Ver-
ilog file.

verif/th/testbench_mab.v

--ahb-type=<FULL|LITE>

Specifies the configuration of AHB
bus. The possible options are lite or
full.

By default AHB Busis configured as
Full AHB.

--endianness --endian=<LITTLE|BIG>

Specifiesthe endianness to be used by
testbench and tests. Possible options
arelittle or big.

By default endiannessis set to little
endian.

--master_priority=<LOW|HIGH |DEFAULT>

Specifies the priority of the Bus-
Bridge™ 2 module as a master on
AHB bus. Thisoptionisignored when
busis configured as AHB lite bus.
Possible options are LOW, HIGH or
DEFAULT.

By default master is configured asa
HIGH priority master. This generates
maximum coverage from testing point
of view.

--clean

Cleans the testbench and/or the test
directories.

The testbench directory is cleaned if
--build is on the command line.

If atest is specified on the command
line then the corresponding test direc-
tory is cleaned.

Run quietly

Build the testbench, build the test, but
stop short of actually invoking the
test.

--mab-model=<NET |RTL>

If set to NET then agate level netlist
of MBB2 will be used for simulation.
This netlist is specified by the
--gate-sim-filelist

option.

RTL

4.2 Testbench Scripts

Table 4.5 Command line options for run_test (Continued)

Command Line Option

Description

Default Value

--gate-sim-filelist=<vc_£file>

Specifies a verilog command(vc) file
for testbench compilation. Thisvcfile
specify the netlist file and libraries
used by netlist.

--clock-ratio=<RATIO> Specifiesthe clock ratio to be used for | 1:1
simulation. Supported values for
RATIO are:
1:1,2:1,3:1,4:1,51and 6:1

<test_name> Thetest nameto run should bethelast | none.

command line option. If no test name
is present only the testbenchis built if

asked for.

4.2.4 The “run_regression” script

The run_regression script can be used to run aregression using directed testsin verilog testbench.Table 4.6 below

describes the command line options for run_regression script.

Table 4.6 Command line options for run_regression

Command Line Options

Description

Default Value

--config=<config_name>

Specifies the testbench configuration
file. The actual file used will be
config_name.cfg

in

$SUBSY S VERIF_DIR/th_conf

default.

--dirname=<dirname>

The sub-directory of
$SUBSY S BUILD_DIR/log used to
hold the log files from the regression
tests. Thisnameis also passed to
“run_test” asthe build-name so that
the testbench build/run directory is
consistent with the directory in
$SUBSYS BUILD_DIR/log

defaultname

--clock-ratio=<RATIO>

Specifies the clock ratio to use for
running regression. run_regression
supports running testsin ratios 1:1,
2:1,3:1,4:1,5:10r6:1.

11

--clean

When atest isrun that has run before
(by name), the associated log direc-
tory isaways cleaned. If atest fails,
the testbench build/run directory is
left alone. If atest passes, the test-
bench build/run directory is cleaned
and only the associated log directory
remains. Setting the --clean will force
a clean of testbench build/run direc-
tory even it the test failed.

not on by default

Run quietly

not on by default

51

Functional Simulation

Table 4.6 Command line options for run_regression (Continued)

Command Line Options Description Default Value

<test> Thetest to run. If thisargument is not none.
specified then full regression for the
specified clock ratio isrun.

4.3 Using the Verilog Testbench

This section describes the rules and methods for building atest and how to execute the test. All input stimuli for a
giventest residesin asingle directory called atest directory. The directory structure for testsis organized as shown in
Table 4.7.

Table 4.7 Test Directory Structure

Test root block_name test_name
$SUBSYS_SW_DIR/tests /samples /hello_world
/walking_one

/mab /cache_01.01

f/interrupt_01.01

[transactions /read 01.01
Iread_01.02

/write_01.01
Iwrite_01.02

In the samples directory are some tests that can be used as a starting point for new tests. For example, in the directory
“regression/tests/samples/hello_world”, all filesfor the hello_world program are found.

The source files that reside in atest directory like hello_world are listed in Table 4.8.

Table 4.8 Source Files in a Test Directory

Name Description
makefile Thisfile controls various properties for the test.
<name>.c .Cfiles are C source files. At least one source file must be present with a main function.
<name>.S .Sfilesare assembler sourcefiles. Parts of atest can be written in assembler if required.
If no main function is declared in aC source file, then alabel called main must be found
in an assembler sourcefile.

52

4.3 Using the Verilog Testbench

The makefile in the test directory controls the various attributes under which the test is performed. Table 4.9 lists all
the options. These are all dynamic options, thus the same testbench build can run with all the combinations.

Table 4.9 Makefile Controllable Options

Option Variable name Values Description

Endianness ENDIAN EL or EB This variable controls the endianness
under which the CPU will execute the
test program. When the testbench
starts, the SI_Endian pin of the CPU
coreis set according to the variable.
The variableis also used by the com-
piler to compile the test program for
the right endianness.

EL: Little endian.

EB: Big Endian.

Copy application/data COPY <blank>, ad or d If required, then it is possible to copy
data or application + data to the RAM
during the boot. This can be used to
simulate the situation where boot is
done from aslow device or aread-only
device.

<blank>: No copy takes place (invalid
value except if the customer replaces
the boot ROM with aread/writable
boot slave).

ad: Both application and datais copied
to the RAM

d: Only data are copied to the RAM.

Cached or uncached operation | CACHE Oor1l This variable controls how the CPU
executes the code (cached or
uncached). There are pros and cons.
Cached operations will generate
bursts. Uncached operations on the
other hand will create more activity.
0: Run program uncached.

1: Run program cached.

Location of exception vector |EXCEP_VECTOR_AT_ B |(Oorl This variable determines where the

at boot OoOoT exception vector is placed after boot.
The option is only used by the utility
function excep_install_exc_in_ram
which can install an exception handler
specified by the test program. If the
boot ROM is used, then the value must
be 1in order to install anew exception
handler (the boot ROM daveis
read-only).

0: Exception vector placed at
0x80000000 (i.e. RAM)

1: Exception vector placed at
0xbfc00200 (i.e. in boot area)

53

Functional Simulation

54

Table 4.9 Makefile Controllable Options (Continued)

Option

Variable name

Values

Description

Clock configuration

CLKCFG

NNN
(each letter iseither 1
or 0)

This variable controls the MBB2 to
HCLK ratio.

The following values are valid:
001: Clock ratio 1:1

010: Clock ratio 2:1

011: Clock ratio 3:1

100: Clock ratio 4:1

101: Clock ratio 5:1

110: Clock ratio 6:1

Files shared with other tests

SHARED_FILES

Example: Assume test.c from some
other test is reused for thistest.
Thisoption is useful if the same test
must be run (e.g. cached/uncached, lit-
tle endian/big endian in aregression
test). This option ensures that the
source code is exactly the samein all
the tests.

SHARED_FILES=
.[../some_other_dir/test.c

Configureif the testbench will
clear the core caches or not

CLEARCACHE

Oorl

CLEARCACHE =1 (or not present)
causes the testbench to fill the caches
with O's before simulation begins (this
option only applies to the 5K™ core).
The caches can then be used without
software, saving alot of simulation
cycles. If softwareis run uncached,
then the caches do not need to be
cleared by software. Set CLEAR-
CACHE to 1 in order to save simula-
tion cycles.

If CLEARCACHE =0, then the caches
are full of X’sat simulation start. The
boot code automatically clears all
present caches. CLEARCACHE must
awaysbe0if a4K™ coreisinstanti-
ated and the software runs cached.

Multi master priority

PRIORITY

XXX_YYY 77z
(each letter iseither 1

or Q)

This variable controls the multi master
arbiter priority scheme. Thefirst 3 bits
defines the high priority master, the
next 3 bits defines the middle priority
master, and the last 3 bits defines the
low priority master.

PRIORITY =001_011_010 means:
Master M1 is high priority, master M3
ismiddle priority, and master M2 is
low priority.

If PRIORITY isset to 000_000_000,
then around-robin priority schemeis
selected

4.3 Using the Verilog Testbench

Table 4.9 Makefile Controllable Options (Continued)

Option

Variable name

Values

Description

Default master

DEFAULT

NNN

This variable controls which master is

(each letter iseither 1 | handled by the arbiter as the default

or 0)

master.
DEFAULT = 010 means that default
master is set to M2.

4.3.1 Building a Test

Thetest is built automatically by run_test when --build is specified on the command line option of run_test. The fol-
lowing run_test command can be used:

run_test <other_run_test_options> <block_name>/<test_name>

See Table 4.10 for a definition of <block_name> and <test_name>. Check warnings and errors from the build_test

script. The script compiles al files, links them, and converts the result to input files for the testbench. The testbench
files arefinally copied to the location where the testbench is executed ($SUBSY S BUILD_DIR/th). The linker will
then link with anumber of initialization routines which perform the following functions:

* Setsupthe coreregisters.

» Defines asimple exception handler.

» Clearsthe cachesif applicable.

* Changesthe code to run cached if applicable.

» If required, copies data and application to the RAM dave.

* Setsup the stack.

e Cadlsthe sub-function main.

After building the test, the script run_test runsit.

4.3.2 Rules for Tests on the Verilog Testbench

This section describes the conventions and rules for the tests that are performed on the top-level testbench. There are
conventions for the valid block_name(s) and test_name(s) shown in Table 4.10. These conventions are listed in Table

4.10.
Table 4.10 Valid Block_Name and Test_Name
Valid Valid
block_name test_name Description
samples Any text string All testsin the samples directory are intended as a starting point for new
tests. The test_name will indicate what the test is doing.

55

Functional Simulation

Table 4.10 Valid Block_Name and Test_Name (Continued)

Valid Valid
block_name test_name Description
mab <any text string>_xx.yy | All tests must have atext name followed by numbersin the format xx.yy.

The xx numbers may be used to indicate tests that belong to the same group
of tests, while the yy numbers are used to label a specific test within the
group. Thetext string will indicate what the test is doing. This document lists
al the tests that will be performed on the MIPS™ BusBridge™ 2 module.

transactions <any text string>_xx.yy | All tests must have a text name followed by numbersin the format xx.yy.
The xx numbers may be used to indicate tests that belong to the same group
of tests, while the yy numbers are used to label a specific test within the
group. Thetext string will indicate what the test is doing. This document lists
al the tests that will be performed on the MIPS™ BusBridge™ 2 module.

Any user isfreeto create additional testsin their local copy of the database with other names, but the rulesin Table
4.10 must be followed for any test in the repository.

In addition the following rules apply to al tests:
e All tests*must* terminate by writing to the MON_HAPPY register in the monitor.
* A test that passes must write the value O using the “C” command: REG32(MON_HAPPY) = 0xO0.

e Atestthat fails can write any value different than 0 to the register (e.g. REG32(MON_HAPPY) = 0x33); but the
value in case of an error can be freely selected to give additional information about the error.

4.3.3 Running the All Tests
The run_regression script described in Section 4.2.4 “The “run_regression” script” can be used to run all the tests.

4.4 Tests Performed with the Verilog Testbench

This section describes all tests performed using the top-level testbench to simulate the MIPS™ BusBridge™ 2 mod-
ule. All tests comply with the rules defined in the previous section.

4.4.1 Test Description Format

For each group of tests the following information is given:

» The purpose of the tests.

» Theoptions set in the Makefile in the test directory (i.e. if the test must runin big or little endian).
» A description of the test.

Theinformation can cover more than one test if the only difference between the tests are differences in the Makefile.
The test description is shown for the blocks samples, mab and transactions. The “samples’ Block

4.4.1.1 hello_world (The Famous Hello World Example)

Purpose: To have asimple program to get started.

56

M akefile options

4.4 Tests Performed with the Verilog Testbench

Makefile Options

hello_world

ENDIAN EL

COPY

CACHE

EXCEP_VECTOR_AT_BOOT 0

CLKCFG 001

CLEARCACHE 1if cache supports hw init
0if cache does not support hw
init

SHARED_FILES <empty>

PRIORITY 000_000_000

DEFAULT 010

Description:

The program is written in C and gives some examples of useful monitor commands. This program also uses printf to
show information gathered from the monitor and puts (print string) to print “Message: Hello World”. The program
ends with the MON_HAPPY command to stop simulation.

4.4.1.2 walking_one (A Light Version of cache_01.01)

Purpose: To have alittle program that makes cached and uncached accesses. The uncached accesses are different

Slzes.

M akefile options:

Makefile Options

walking_one

ENDIAN EL

COPY d

CACHE

EXCEP_VECTOR_AT_BOOT 0

CLKCFG 001

CLEARCACHE 1if cache supports hw init
0 if cache does not support hw
init

SHARED_FILES <empty>

PRIORITY 001_011 010

DEFAULT 001

Description:

The program is written in C and uses a number of tables defined in order to generate 8, 16, 32, and if applicable,
64-bit accesses. The bit pattern of the datais created in such away that only one bit is set or not set (walking 1 or

57

Functional Simulation

walking 0). All single bitsin an access size are covered (e.g. 8-bit accesses are covered with the data numbers 0x01,
0x02, 0x04, 0x08, 0x10, 0x20, 0x40 and 0x80).

Thetests create all supported access types on the bus (i.e. single fetch, burst fetch, burst read, burst write, single read

and single write).

4.4.2 The “mab” Block

4.4.2.1 cache_01.01 and cache_01.02 (Comprehensive Test)

Purpose: To verify that a number of different transactions can take place in both little and big endian.

M akefile options:

Makefile Options

cache_01.01 cache_01.02

ENDIAN EL EB
COPY d
CACHE 1
EXCEP_VECTOR_AT_BOOT 0
CLKCFG 001
CLEARCACHE 1if cache supports hw init

0 if cache does not support hw

init
SHARED_FILES <empty> ..Icache_01.0l/test.c
PRIORITY 001_011 010
DEFAULT 001

Description:

The program is written in C and shared between the tests. The test consists of the following two parts, each repeated

100 times:

1. Thefirst part of the test iswriting 255 “random” words to an array, which are then placed on the stack. The data
cacheisthen invalidated and the words are read back in order to compare them with what was written. If an error
is detected, then the simulation is stopped by the monitor slave. In case of no errors, the other part of the test is

executed.

2. The other test uses a number of tables defined in order to generate 8, 16, 32, and if applicable, 64-bit accesses.
The bit pattern of the datais created in such away that only one bit is set or not set (walking 1 or walking 0). All
single bitsin an access size are covered (e.g. 8-bit accesses are covered with the data numbers 0x01, 0x02, 0x04,

0x08, 0x10, 0x20, 0x40 and 0x80).

Thetests create all supported access types on the bus (i.e. single fetch, burst fetch, burst read, burst write, single read

and single write).

4.4.2.2 endian_01.01 and endian_01.02 (Software Test of Endianness)

Purpose: To indicate that endianness is handled correctly throughout the MIPS™ BusBridge™ 2 module in both lit-

tle and big endian.

58

M akefile options:

4.4 Tests Performed with the Verilog Testbench

Makefile Options

endian_01.01 endian_01.02

ENDIAN EL EB
COPY
CACHE
EXCEP_VECTOR_AT BOOT 0
CLKCFG 001
CLEARCACHE 1if cache supports hw init

0if cache does not support hw

init
SHARED FILES <empty> J..Jendian_01.0l/test.c
PRIORITY 001 011 010
DEFAULT 001

Description:

The program is written in C and shared between tests. The test can decide the endianness of the system, and is per-
formed by writing a 32-bit word to the RAM dave. The test then accesses a single byte within the word. Depending
on the contents of the byte, the software selects either little or big endianness.

Thistest has some limitations, asit only tests that a 32-bit write and a 8-bit read fulfill the endianness requirements.

4.4.2.3 interrupt_01.01 and interrupt_01.02 (The Use of Interrupt)

Purpose: To verify that awrite error initiatesthe MIPS™ BusBridge™ 2 module to generate an interrupt in both little

and big endian.

M akefile options:

Makefile Options

interrupt_01.01 interrupt_01.02

ENDIAN EL EB
COPY d
CACHE
EXCEP_VECTOR_AT_BOOT 0
CLKCFG 001
CLEARCACHE 1if cache supports hw init
0if cache does not support hw
init
SHARED_FILES <empty> J.[interrupt_01.01/test.c
PRIORITY 001_011 010
DEFAULT 001
Description:

59

Functional Simulation

The program iswritten in C and shared between tests. A new exception handler isinstalled and awrite error is gener-
ated by awrite access to the read-only boot ROM slave. When the interrupt occurs, the interrupt handler makes an
acknowledge signal to the MIPS™ BusBridge™ 2 module by writing to the monitor. At the same time, a messageis
printed on the screen displaying that an interrupt has been received.

4.4.2.4 sleep_01.01 and sleep_01.02

Purpose: To verify that the BusBridge™ 2 module will enter sleep mode when the core executes await instruction
and leaves it when an interrupt is received.

M akefile options:

Makefile Options

sleep_01.01 sleep_01.02
ENDIAN EL EB
COPY ad
CACHE 1
EXCEP_VECTOR_AT_BOOT 0
CLKCFG 001
CLEARCACHE 1if cache supports hw init
0 if cache does not support hw
init
SHARED_FILES <empty> J../deep 01.01/test.c
J..19eep_01.01/sleep.S
PRIORITY 001_011 010
DEFAULT 001
Description:

The main part of the test program iswritten in C. This program calls two small assemble routines that execute a wait
instruction. One of the routines execute a sw before and the other alw instruction just before the wait instruction. The
flow of asingleloop of thetestis.

1. The program starts a hardware timer (in monitor.v) that will generate ainterrupt when expired.

2. One of the assemble routines are called and the core enters sleep mode.

3. When the hardware timer expires, an interrupt is generated and the core will wake up.

4. Theinterrupt handler checks that an interrupt is expected.

This flow is run many times and the number of interrupts is compared with the expected.

4.4.3 The “transactions” Block

4.4.3.1 read_01.01 (2 Single Word Read Transactions)

Purpose: To make an example of simple transactions in which simulation results are easily inspected in a graphical
viewer (e.g. VirSim™ from Synopsys).

60

M akefile options:

4.4 Tests Performed with the Verilog Testbench

Makefile Options

read_01.01

ENDIAN EL

COPY d

CACHE

EXCEP_VECTOR_AT BOOT 0

CLKCFG 001

CLEARCACHE 1if cache supports hw init
0if cache does not support hw
init

SHARED_FILES <empty>

PRIORITY 001 011 010

DEFAULT 001

Description:

The program iswritten in assembler. The data accesses are uncached in order to make immediate activity on the ECi,
executing two load word-instructions from consecutive, uncached word-memory addresses.

4.4.3.2 read_01.02 (2 Single Halfword Read Transactions)

Purpose: To make an example of simple transactions in which simulation results are easily inspected in a graphical

viewer (e.g.VirSims).

M akefile options:

Makefile Options

read_01.02

ENDIAN EL

COPY

CACHE

EXCEP_VECTOR_AT_BOOT 0

CLKCFG 001

CLEARCACHE 1if cache supports hw init
0 if cache does not support hw
init

SHARED_FILES <empty>

PRIORITY 001_011 010

DEFAULT 001

Description:

The program iswritten in assembler. The data accesses are uncached in order to make immediate activity on the ECi,
executing two |oad halfword-instructions from consecutive, uncached word-memory addresses.

61

Functional Simulation

4.4.3.3 read_01.03 (2 Single Byte Read Transactions)

Purpose: To make an example of simple transactions in which simulation results are easily inspected in a graphical
viewer (e.g.VirSims).

M akefile options:

Makefile Options

read_01.03

ENDIAN EL

COPY

CACHE

EXCEP_VECTOR_AT BOOT 0

CLKCFG 001

CLEARCACHE 1if cache supports hw init
0if cache does not support hw
init

SHARED_FILES <empty>

PRIORITY 001 011 010

DEFAULT 001

Description:

The program iswritten in assembler. The data accesses are uncached in order to make immediate activity on the ECi,
executing two load byte-instructions from consecutive, uncached word-memory addresses.

4.4.3.4 read_01.04 (mixed-sized single read transactions)

Purpose: To make an example of simple transactions in which simulation results are easily inspected in a graphical
viewer (e.g.VirSims).

M akefile options:

Makefile Options

read_01.04

ENDIAN EL

COPY

CACHE

EXCEP_VECTOR_AT_BOOT 0

CLKCFG 001

CLEARCACHE 1if cache supports hw init
0if cache does not support hw
init

SHARED_FILES <empty>

PRIORITY 001_011 010

DEFAULT 001

62

Description:

4.4 Tests Performed with the Verilog Testbench

The program iswritten in assembler. The data accesses are uncached in order to make immediate activity on the ECi,
executing six load instructions of different bit-width from consecutive, uncached word-memory addresses.

4.4.3.5 read_02.01 (2 Bursted Read Transactions)

Purpose: To make an example of simple transactions in which simulation results are easily inspected in a graphical

viewer (e.g.VirSims).

M akefile options:

Description:

Makefile Options

read_02.01

ENDIAN EL

COPY d

CACHE

EXCEP_VECTOR_AT_BOOT 0

CLKCFG 001

CLEARCACHE 1if cache supports hw init
0 if cache does not support hw
init

SHARED_FILES <empty>

PRIORITY 001_011 010

DEFAULT 001

The program is written in assembler. The data accesses are cached in order to make bursts on the ECi, executing two
load instructions from two different cache lines.

4.4.3.6 write_01.01 (2 single word write transactions)

Purpose: To make an example of simple transactions in which simulation results are easily inspected in a graphical

viewer (e.g.VirSims).

M akefile options:

Makefile Options

write_01.01

ENDIAN EL
COPY d
CACHE 1
EXCEP_VECTOR_AT_BOOT 0
CLKCFG 001
CLEARCACHE 1if cache supports hw init

0 if cache does not support hw

init

63

Functional Simulation

Makefile Options

write_01.01
ENDIAN EL
SHARED_FILES <empty>
PRIORITY 001 011 010
DEFAULT 001

Description:

The program is written in assembler. The data accesses are uncached in order to make immediate activity on the ECi,
executing two save word-instructions from consecutive, uncached word-memory addresses.

4.4.3.7 write_01.02 (2 Single Halfword Write Transactions)

Purpose: To make an example of simple transactions in which simulation results are easily inspected in a graphical
viewer (e.g.VirSims).

M akefile options:

Makefile Options

write_01.02

ENDIAN EL

COPY d

CACHE

EXCEP_VECTOR_AT_BOOT 0

CLKCFG 001

CLEARCACHE 1if cache supports hw init
0if cache does not support hw
init

SHARED_FILES <empty>

PRIORITY 001_011 010

DEFAULT 001

Description:

The program iswritten in assembler. The data accesses are uncached in order to make immediate activity on the ECi,
executing two load halfword-instructions from consecutive, uncached word-memory addresses.

4.4.3.8 write_01.03 (2 Single Byte Write Transactions)

Purpose: To make an example of simple transactions in which simulation results are easily inspected in a graphical
viewer (e.g.VirSims).

64

M akefile options:

4.4 Tests Performed with the Verilog Testbench

Makefile Options

write_01.03

ENDIAN EL

COPY d

CACHE

EXCEP_VECTOR_AT BOOT 0

CLKCFG 001

CLEARCACHE 1if cache supports hw init
0if cache does not support hw
init

SHARED_FILES <empty>

PRIORITY 001 011 010

DEFAULT 001

Description:

The program iswritten in assembler. The data accesses are uncached in order to make immediate activity on the ECi,
executing two load byte-instructions from consecutive, uncached word-memory addresses.

4.4.3.9 write_01.04 (Mixed-sized Single Write Transactions)

Purpose: To make an example of simple transactions in which simulation results are easily inspected in a graphical

viewer (e.g.VirSims).

M akefile options:

Makefile Options

write_01.04

ENDIAN EL

COPY

CACHE

EXCEP_VECTOR_AT_BOOT 0

CLKCFG 001

CLEARCACHE 1if cache supports hw init
0 if cache does not support hw
init

SHARED_FILES <empty>

PRIORITY 001_011 010

DEFAULT 001

Description:

The program iswritten in assembler. The data accesses are uncached in order to make immediate activity on the ECi,
thereby executing six load instructions of different bit-width from consecutive, uncached word-memory addresses.

65

Functional Simulation

4.4.3.10 write_02.01 (2 bursted write transactions)

Purpose: To make an example of simple transactions in which simulation results are easily inspected in a graphical

viewer (e.g.VirSims).

M akefile options:

Makefile Options

write_02.01

ENDIAN EL

COPY

CACHE

EXCEP_VECTOR_AT BOOT 0

CLKCFG 001

CLEARCACHE 1if cache supports hw init
0if cache does not support hw
init

SHARED_FILES <empty>

PRIORITY 001 011 010

DEFAULT 001

Description:

The program is written in assembler. The data accesses are cached in order to make bursts on the ECi, and the pro-
gram fills two different cache linesin order to make write bursts.

4.5 Test performed in Random testbench

66

The random testbench uses randomly generated tests which are played to MIPS™ BusBridge™ 2 module using aBus
Functional model of a MIPS® core. The tests can be run using the run_test script.

There are separate tests for 4K™, 24K™ and 34K ™ cores and are present in the directories specified in the table

bel ow.

Table 4.11 Directories for 4AK™, M4K™ 24K™ and 34K™ BFM tests

Core Name BFM test directories
AK ™M/AKE™ ${SUSSYS SW_DIR}/bfm_tests’M4K
M4K ™ ${SUSSYS SW_DIR}/bfm_testsMM4K
24K ™ SUSSYS SW DIR}/bfm_tests/M 24K
${ ,_SW_DIR}/bfm_
34K ™ ${SUSSYS SW_DIR}/bfm_testsM 34K

The names of testsis the names of subdirectories present under the directorieslisted in Table 4.11.

4.6 Post Synthesis Simulation

4.5.1 Setup to run a simulation using random testbench

In order to run simulations using random testbench, aBFM model of the core should be setup correctly. Following are
the steps to integrate BFM models with BusBridge™ 2 modul €'s testbench.

1. Create asoft link to the top level BFM distribution directory and name it as <core_name>_bfm. <core_name>
should be mdk for 4K™ cores, m24k for 24K ™ cores, and m34k for 34K™ cores. Thetop level BFM directory
contains the directories scripts, SunOS etc.

2. The$LD_LIBRARAY_PATH environment variable should have been setup during the BFM install processto
include a path to the BFM shared objects library. If not then do this:

setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:$SUBSY S DIR/<core_name>_bfm/{Linux | SunOS}/lib
4.5.2 Example to run random testbench

Following is asimple example of ascript to run bfm test in random testbench. It assumesthat BFM is setup and work-
ing correctly.

Execute configure_mab_tb.pl. The following options must be specified:
--core-model=BFM
--tb-type=RANDOM
configure_mab_tb.pl --core-model=BFM --tb-type=RANDOM -o=core_random_tb

Execute run_test script to run test. The config file created using
configure_mab_tb.pl must be specified to run_test.
run_test --config=core_random_tb --build example

4.6 Post Synthesis Simulation

4.6.1 Gate Level Netlist for MBB2

Any of thetestsin $SUBSY S_DIR/regression/tests can be done using a post synthesis netlist. The way to do thisisto
use the run_test script like this:

run_test --mab-model=net --gate-sim-filelist=<your _filelist> <other options> <test name>
Thereis an example of the “filelist” in the $SUBSYS VERIF_DIR/gate level directory.
To run gate level regressions atestbench configuration file needs to be created:

configure_mab_tb.pl -0 <your_gate_config_name> --mab-model=net --gate-sim-filelist=<your _filelist>
Then the regressions can be run with the gate level netlist:

run_regression [--clock-ratio=XX] --config=<your_gate config_name>

4.6.2 Using a Gate Level Netlist of the CPU Core

It is possible to simulate with a post synthesis gate level netlist of the CPU coreitself. To do this the following proce-
dureisrequired:

67

Functional Simulation

Step 1: Run the netlist2top.pl scriptsin the **bin” directory asfollows:
bin/netlist2top.pl --netlist=<N> --topmodule=<M> --techlib=<T> --ramdir=<R>
where
N = full path name of your netlist Verilog file.
M = the top module name. For 24K ™ and 34|K™ coresthisistpz_top. For 4K ™/AKE™/M4K™ coresit is mdk_top
T = full path name of the technology simulation Verilog library.

R = full directory path to the directory containing simulation models for any RAMs used in the Core. The Verilog
sourcefilesin this directory must havea‘.v’ extension.

The result of running this script will be:

1. Thetop level module definition in the netlist file will be extracted to:
integration/<M>.v

2. A CDI filewill be created:
integration/core-gate.cdi

Step 2: Link the core configuration file used for core synthesis to the integration directory
In-s<your_core_synthesis_config_file> ${ SUBSY S_DIR}/integration

Step 3: Set the CPU_NET_CDI entry in your mab_cpu_model.info.<mdk | m24k | m34k | mmd4k> file to point the
CDl filein 2 above. i.e.

CPU_NET_CDI integration/core-gate.cdi.

You are now ready to simulate. To select Core netlist simulation usethe “*“NET"’ value for the --core-model command
line option to run_test and configure_mab_tb.pl.

4.7 Creating and using a Custom Testbench

It is possible to replace the standard testbenches that come as part of the MBB2 distribution with a user defined one.
To create one follow these steps:

1. Makeadirectory to hold the custom testbench. e.g.
mkdir §{ SUBSYS DIR}/my_test dir
2. Putthetop level Verilog file for the testbench into thisfile. e.g.

${SUBSYS DIR}/my_test dir/my_testbench_top.v

68

4.8 Interactive Simulation with NC-Verilog™
3. Createafildist for your testbench in the same directory (see below for the format of entriesto thisfile). Thisfile
must have the same root as the testbench top level Verilog file followed by a* filelist” extension. e.g.
${SUBSYS DIR}/my_test_dir/my_testbench_top.filelist
The entriesto the filelist file are of the following type:
+incdir <directory name> : For include file search directories.
-y <directory name>: For Verilog source file search directories.
-v <file name>: For Verilog files containing multiple module definitions. e.g. technology simulation libraries.
<file name>: For individual Verilog files.

To use the custom defined testbench al isrequired isto add the option to the run_test and/or configure_mab_th.pl
scripts:

--tb-top=<file defined in step 2. above>

There is a sample custom testbench in the $SUBSY S _VERIF_DIR/custom_tb directory. See the README filein
thast directory for details.

4.8 Interactive Simulation with NC-Verilog™

Readers of this section should be familiar with the NC-Verilog™ notion of access types.
When simulating non-interactively the access permissionsto simulator objects are the default ones (no read, no write,
no connectivity) whereas when simulating interactively (--I on the run_test command line) thisis added to the
NC-Verilog elaborator command line:

-ACCESS +r
While thisis sufficient for most purposes such as viewing simulation waveformsin Simvision™ or generating VCD
filesit might not be enough for some types of debug. If thisisthe case the user should create an * accessfile’” contain-
ing the required access types. The file should be:

$SUBSY'S_VERIF_DIR/config/ncelab_access.txt
If thisfile exists then

-AFile SUBSYS VERIF_DIR/config/ncelab_access.txt

is added to the elaborator command line. This applies to both interactive and non-interactive simulations.

4.9 Simulation with MIPSSim™+BFM

Thisis very straightforward assuming that the MIPSSim executable is in the serach path. The user has merely to add

--core-model=bfm --tb-type=directed

69

Functional Simulation

to the run_test or configure_mab_tb.pl command lines.

70

Chapter 5

Synthesis

The design database is supplied to enable synthesis using DesignCompil er™ from Synopsys. The subsystem deliv-
ery includes Makefiles and constraint files. For the purposes of this chapter it is assumed that the installation proce-
durein Section 2.2 “Install and Setup the Design Database” of Chapter 2, “Design Database” on page 11 has been
followed.

5.1 Synthesis Flow

The synthesis flow separates technology and timing-related information from generic setup i.e. al timing and library
configuration (constraints) are kept in $SUBSY S_SYNTH_DIR/config, while general Makefiles and DesignCom-
piler™ TCL command scriptsresidein $SUBSYS _SYNTH_DIR.

The synthesis flow requires files from three locations in the design database:

* $SUBSYS SYNTH_DIR contains a Makefile and TCL command files for running synthesis

* $SUBSYS SYNTH_DIR/config contains constraints and configuration filesin TCL format.

e $SUBSYS RTL_DIR containsthe RTL.

In addition two environment variables should have been set up during installation:

* $TECH_DIR/ pointsto technology libraries located in the $SUBSY S_DIR/external/ dir. This should aready
have been setup during the MBB2 installation process.

e $SYNTH_OUT DIR points to the users synthesis results sub-directory of $SUBSYS BUILD DIR.

To complete the preparation for synthesis -

1. Create asubdirectory $SUBSY S BUILD_DIR/$SYNTH_OUT_DIR/config.

2. Copy thefileslib_info.tcl, global_constraints.tcl, mab_constraints-<BUS>.tcl from
$SUBSYS_SYNTH_DIR/config to this dir. <BUS> = OCP if the MBB2 isto be synthesised for use with a
24K™ or 34K™ core, <BUS> = SRAM if the MBB2 isto be synthesised with an M4K™ | otherwise <BUS> =
EC.

3. Edit the copied Tcl files. See section 5.3 below for more details.

Note: $SUBSY S_SYNTH_DIR/config/examples has working samples of the lib_info.tcl and
global_constraints.tcl files.

4. Link (or copy) themab_config.vhfile (created during the installation process) from $SUBSY S RTL_DIR/config
to $SUBSYS_BUILD_DIR/$SYNTH_OUT_DIR/config.

71

Synthesis

5. If gated clocks are enabled in mab_config.vh then a clock gating module needs to be created in
$SUBSYS_RTL_DIR/shared. The module name must be “mab_clockandlatch’ and the file name
“mab_clockandlatch.v”.

Thereis an examplefile called mab_clockandlatch_example.v in this directory.

Once this setup has been completed a synthesis can be started by directly invoking the

$SUBSY S _SYNTH_DIR/Makefile

with atarget and the name of the block ($SUBSY S_BLOCK) that isto be synthesized. However it ismost easily done
by using the run_synth script (see next section for details).

5.2 Starting the Synthesis

After final setup of the synthesis output and configuration directories as per the previous section use the run_synth
script in $SUBSY S _DIR/bin to do a complete synthesis simply by invoking it thus:

run_synth -t synth -b mab
Thiswill, in effect, run 3 commands:
e run_synth -tinit -b mab: to initialise the synthesis output directory.
* run_synth -t read-b mab: to read in the design files, parse them, and create and unmapped database.

e run_synth -t compile -b mab: reads in the unmapped database from the previous step together with the synthesis
constraints files and produces a final mapped and optimised database and netlist.

For afull list of run_synth options type
run_synth -h

5.2.1 Checkpointing the synthesis run

For long synthesis runs the user may wish to protect themselves against crashes by generating checkpoint files. To do
this add this command line option to the run_synth command line;

-CP <checkpoint_period>
If the checkpoint period is 0 no checkpointing is performed.

The checkpoint fileswill be placed in the $SUBSYS BUILD_DIR/$SYNTH_OUT_DIR/check

5.2.2 Re-running synthesis

If thereisan error in either the ““read” or ** compile” phases then fixing the problem will, in general ,allow

run_synth -t synth -b mab

72

5.3 Constraints and Library Configuration

to run again and recreate the unmapped and/or the mapped databases.

However there are some circumstances under which this won't happen., e.g. DesignCompiler™ cannot find one of its
libraries. If thisis the case then the best procedureis:

1. Savewhatever information is wanted from the current $SUBYS_BUILD_DIR/$SYNTH_OUT_DIR and its
sub-directories.

2. Run
run_synth -t clean.

Thiswill remove al the subdirectories of $SUBY S BUILD_DIR/$SYNTH_OUT_DIR except for *“config”, which
will be left unchanged.

3. Re-initialise with
run_synth -t init.

The synthesis process can now be restarted.
5.3 Constraints and Library Configuration

The constraints and library configuration are found in $SUBSYS_SYNTH_DIR/config. These 2 files will require
editing after being copied into the user’s own synthesis configuration directory:

e lib_info.tcl
e global_constraints.tcl

For the variables and values that need to be modified open these files in your favourite text editor and search for the
string “__USER_DEFINED__ .

Note that the
* mab_contsraints-<BUS>.tcl
filewill, in general, not require editing and can be used as supplied. However since the timings for the AHB side of

the MBB2 are in the users' domain some changes may be needed. If so search for the string
“_MAB_AHB_TIMINGS_ ".

5.4 Collecting the Synthesis Results

The synthesis results, reports, log files etc. are held in these sub-directories of
$SUBSYS BUILD_DIR/$SYNTH_OUT_DIR:

gate Post synthesis gate level netlists

log Log files from the read and compile phases.
check Outputs from the ‘ check_design’ command.
report Timing and other reports.

73

Synthesis

checkpoint Checkpoint files produced if checkpointing is enabled

unmapped Unmapped design database produced after the read phase.
mapped Mapped database produced after the compile phase.
WORK Synthesiser working directory.

5.5 Detailed Analysis

If other types of reports are needed, then start dc_shell manually and read a design block (mapped db file). The easiest
way to accomplish thisisto use the $SUBSYS_SYNTH_DIR/Makefile, which has a target for this purpose
(read_db). The syntax is:

cd $SUBSYS SYNTH_DIR

make read_db SUBSY S_BL OCK=<blockname> [DB=mapped|unmapped)]
blockname = mab

DB = mapped or unmapped. If nothing is specified, then “mapped” is assumed.

Issuing this command reads in the design and constraint files and gives adc_shell prompt. From this prompt, the user
can run a new compile or generate various reports.

It isalso possible to use PrimeTime for generating additional reports. The syntax is then:

make pt SUBSY S BL OCK=<blockname>

74

Appendix A

Revision History

Revision Date Description

00.09 November 8, 2004 Final internal release revision.

01.00 November 9, 2004 First external release revision.

01.01 November 10, 2004 + Misspelling of date on title page corrected
» Added new section on re-running synthesis after an error..

01.03 November 10, 2004 Fixed some ™ issues

01.04 November 17, 2004 + NC-Verilog™ support now added
* Supported tools section updated.

01.06 December 8,2004 + 4KE™ support noted
* Improved description of --clean flag to run_test..

01.08 Feb. 21, 2005 » Documented all changes for MR.
* ModelSim™ support now added.

01.10 Mar 11,2005 » Added new section describing CDI generation.
» Added table of entries for the mab_cpu_model.info files.
 Added section describing simulation with a CPU core gate level netlist.
» Added section describing the creation and use of a custom testbench.
» General clean up.

01.11 Mar 17th, 2005 Spell check

02.00 Mar 18th,2005 * MR1release

02.01 Mar 25th, 2005 » Documented fix for NC-Verilog interactive simulation

02.03 April 28, 2006 » Changesfor MR2 release

02.04 May 3rd, 2006 » Small changes
» Added explicit how to for MIPSim+BFM simulation

02.05 May 16, 2006 * Small changes.

02.06 October 5, 2011 » Updated to work with the latest 24K ™ and 34K ™ rel easees.

Supported tools versions updated.
Support for the CoreSourcery toolchain.

75

Copyright © Wave Computing, Inc. All rights reserved.

www.wavecomp.ai

	Table of Contents
	List of Tables
	List of Figures
	Introduction
	1.1 Design features
	1.2 Design limitations

	Design Database
	2.1 Overview of Delivery Directory Structure
	2.1.1 “external’’ Directory ($TECH_DIR & $TECH_GATE_DIR)
	2.1.2 “bin” Directory
	2.1.3 ‘‘integration’’ directory
	2.1.4 “design/rtl” Directory ($SUBSYS_RTL_DIR)
	2.1.4.1 ‘‘design/rtl’’/mab
	2.1.4.2 ‘‘design/rtl’’/config
	2.1.4.3 ‘‘design/rtl’’/shared

	2.1.5 “verif” Directory
	2.1.5.1 ‘‘verif’’/tb
	2.1.5.2 ‘‘verif’’/shared
	2.1.5.3 ‘‘verif’’/include
	2.1.5.4 ‘‘verif’’/tb_config
	2.1.5.5 ‘‘verif’’/custom_tb

	2.1.6 “regression” Directory ($SUBSYS_SW_DIR)
	2.1.6.1 ‘‘regression’’/tests
	2.1.6.2 ‘‘regression’’/sys
	2.1.6.3 ‘‘regression’’/include

	2.1.7 “synth” Directory ($SUBSYS_SYNTH_DIR)
	2.1.7.1 ‘‘synth’’/config

	2.1.8 ‘‘build” Directory ($SUBSYS_BUILD_DIR)
	2.1.9 “doc” Directory

	2.2 Install and Setup the Design Database
	2.2.1 Creating Common Design Interface files
	2.2.1.1 RTL Model
	2.2.1.2 VMC Model
	2.2.1.3 BFM model

	2.2.2 Install Procedure

	2.3 Getting Started
	2.3.1 Simple Simulation Tests
	2.3.2 Simple Synthesis Test

	2.4 Supported Tool Versions

	Design Implementation
	3.1 Introduction
	3.2 Design goals
	3.3 User interface
	3.3.1 Basic Operation.
	3.3.2 Clocking and Reset

	3.4 Block Description
	3.4.1 MAB_BIU
	3.4.2 MAB_BIU2IB
	3.4.3 MAB_BRIDGE
	3.4.3.1 The Address, Control Datapath unit:
	3.4.3.2 The Main Controller unit:

	3.5 Main Signals
	3.5.1 External signal list
	3.5.2 Internal Busses
	3.5.2.1 IB, CMD
	3.5.2.2 CB
	3.5.2.3 Special signals

	3.6 RTL Modules
	3.6.1 mab_top
	3.6.2 mab_glue
	3.6.3 mab_biu_BUS
	3.6.4 mab_biu_read32to64
	3.6.5 mab_biu2ib
	3.6.6 mab_genfifo
	3.6.7 mab_bridge
	3.6.8 mab_bridge_adpath
	3.6.9 mab_bridge_cntrl

	3.7 Register Implementation
	3.7.1 Generic modules

	3.8 Design Configuration
	3.9 References

	Functional Simulation
	4.1 The Verilog Testbench environment
	4.1.1 Directed Testbench
	4.1.2 Random Testbench
	4.1.3 Testbench Components
	4.1.3.1 Clock/Reset Generation
	4.1.3.2 Boot ROM (S1)
	4.1.3.3 Monitor (S2)
	4.1.3.4 RAM (S3)
	4.1.3.5 Address Decoder
	4.1.3.6 Arbiter
	4.1.3.7 Random AHB Slave
	4.1.3.8 Testbench
	4.1.3.9 The CPU Model
	4.1.3.10 Cache Clearance

	4.2 Testbench Scripts
	4.2.1 The "configure_mab.pl" script
	4.2.2 The “configure_mab_tb.pl” script
	4.2.3 The "run_test" script
	4.2.4 The “run_regression” script

	4.3 Using the Verilog Testbench
	4.3.1 Building a Test
	4.3.2 Rules for Tests on the Verilog Testbench
	4.3.3 Running the All Tests

	4.4 Tests Performed with the Verilog Testbench
	4.4.1 Test Description Format
	4.4.1.1 hello_world (The Famous Hello World Example)
	4.4.1.2 walking_one (A Light Version of cache_01.01)

	4.4.2 The “mab” Block
	4.4.2.1 cache_01.01 and cache_01.02 (Comprehensive Test)
	4.4.2.2 endian_01.01 and endian_01.02 (Software Test of Endianness)
	4.4.2.3 interrupt_01.01 and interrupt_01.02 (The Use of Interrupt)
	4.4.2.4 sleep_01.01 and sleep_01.02

	4.4.3 The “transactions” Block
	4.4.3.1 read_01.01 (2 Single Word Read Transactions)
	4.4.3.2 read_01.02 (2 Single Halfword Read Transactions)
	4.4.3.3 read_01.03 (2 Single Byte Read Transactions)
	4.4.3.4 read_01.04 (mixed-sized single read transactions)
	4.4.3.5 read_02.01 (2 Bursted Read Transactions)
	4.4.3.6 write_01.01 (2 single word write transactions)
	4.4.3.7 write_01.02 (2 Single Halfword Write Transactions)
	4.4.3.8 write_01.03 (2 Single Byte Write Transactions)
	4.4.3.9 write_01.04 (Mixed-sized Single Write Transactions)
	4.4.3.10 write_02.01 (2 bursted write transactions)

	4.5 Test performed in Random testbench
	4.5.1 Setup to run a simulation using random testbench
	4.5.2 Example to run random testbench

	4.6 Post Synthesis Simulation
	4.6.1 Gate Level Netlist for MBB2
	4.6.2 Using a Gate Level Netlist of the CPU Core

	4.7 Creating and using a Custom Testbench
	4.8 Interactive Simulation with NC-Verilog™
	4.9 Simulation with MIPSSim™+BFM

	Synthesis
	5.1 Synthesis Flow
	5.2 Starting the Synthesis
	5.2.1 Checkpointing the synthesis run
	5.2.2 Re-running synthesis

	5.3 Constraints and Library Configuration
	5.4 Collecting the Synthesis Results
	5.5 Detailed Analysis

	Revision History

