

Document Number: MD00540
Revision 02.01

August 14, 2007

 Working with ScratchPad RAMS for
 MIPS32® Cores
 Application Note

Working with ScratchPad RAMS for MIPS32® Cores Application Note, Revision 02.01 3

Contents

Section 1: Introduction... 4

Section 2: Detecting SPRAM ... 4

Section 3: Reading SPRAM Configuration... 5

Section 4: Modifying SPRAM Configuration .. 6

Section 5: Accessing DSPRAM ... 7

Section 6: Accessing ISPRAM... 8

Section 7: Debugging Code Executing from ISPRAM... 9

Section 8: DSPRAM Performance ... 10

Section 9: Example SPRAM Target Code... 12

Section 10: References .. 13

Section 11: Revision History ... 14

4 Working with ScratchPad RAMS for MIPS32® Cores Application Note, Revision 02.01

1 Introduction

The MIPS32® 24K®, 34K®, and 1004K™ processor core families support the addition of high-speed local memory
blocks during configuration. These blocks, referred to as ScratchPad RAM (or SPRAM), provide low-latency storage
for critical code and/or data. SPRAM access speed is similar to that of locked cache lines, but without impact on
cache performance or maintenance.

This application note provides an introduction to working with SPRAM on a 24K-, 34K- or 1004K-based hardware
target and includes example code you can use as a starting point for your SPRAM system software design. An archive
of the code and scripts used in this application note can be downloaded from the MIPS Technologies website as
MD00540-2B-SPRAM-APP.tgz.

The following tools were used during the development of this note:

• Malta™ Development Board with YAMON™ (v2.13) ROM Monitor (see MIPS documents MD00048 and
MD00009).

• CoreFPGA3™ core card with “A00076-34Kc-2_3_0-REF0170-XC4VLX200.fl” (see MIPS document
MD00481).

• MIPS® SDE Lite software development tools (v6.06.01) (see MIPS document MD00428).

• FS2™ System Navigator™ for MIPS (ver 2.2.0.0) (see <install dir>/SysNav/Doc/).

Information in this note and the accompanying files may require modification when used with other processors1,
boards, or tool environments. Device and tool behavior may also change as new versions add or enhance features.

This application note assumes you are familiar with the listed tools, and that you have a functional working environ-
ment where you are able to use the FS2 Console to control your target hardware. For additional information, refer to
the documentation for each tool.

2 Detecting SPRAM

Two types of SPRAM blocks may be implemented: Instruction SPRAM (ISPRAM) and Data SPRAM (DSPRAM).
To determine if your processor implementation contains SPRAM, check the ISP and DSP fields in the CP0 Config
register: ISPRAM is implemented when ISP (bit 24) is set, and DSPRAM is implemented when DSP (bit 23) is set.

You can use the FS2 Console to read the CP0 Config register by name, or by using the cop command, specifying the

coprocessor, register number, and select value.2, 3

1. The scripts and code may require small modifications to work with members of the 4K® or 4KE® processor core families.
2. The device command sets the default device (34K vpe) where commands are sent. Skip this command if you are not

using a 34K. (I have chosen vpe0, because this device is enabled from reset. You can use vpe1, but additional steps are
required to execute non-debug mode code.)

3. Some CP0 (Coprocessor 0) registers are accessible by name from the FS2 Console (case sensitive in the case of Config). The
cop console command can be used to access any coprocessor register.

Working with ScratchPad RAMS for MIPS32® Cores Application Note, Revision 02.01 5

21> device vpe0
vpe0
vpe0:2> Config
0x81840483
vpe0:3> cop 0 16 0
0x81840483

If you know some Tcl, you can easily add a procedure to the debugger to extract and format the specific information

of interest.4, 5

vpe0:33> proc spram {} {
puts "Config ISP/DSP: [expr ([Config] >> 24) & 1]/[expr ([Config] >> 23) & 1]"
}
vpe0:34> spram
Config ISP/DSP: 1/1

3 Reading SPRAM Configuration

Reading or modifying a SPRAM block’s configuration is not as straightforward. SPRAM configuration information
is stored in special “pseudo tags” which are accessed using the “instruction/data index load/store tag” variants of the
cache instruction while the SPR field (bit 28) in the CP0 ErrCtl register is set.

The included file, spram.tcl (available in the companion archive), can be sourced from the FS2 Console to add

SPRAM-specific commands (Tcl procedures) to the FS2 System Navigator Console debugger. 6, 7, 8

vpe0:42> cd c:/temp/MD00540-2B-SPRAM-APP/fs2_scripts
vpe0:43> source spram.tcl
<spram.tcl> ::vpe0
 ispram ?<Enable> ?<BasePAddr>?? (Display/modify ISPRAM configuration.)
 dspram ?<Enable> ?<BasePAddr>?? (Display/modify DSPRAM configuration.)
 ispramfill ?<ByteCount>? (Fill ISPRAM from memory at same physical address.)
 ispramdump ?<ByteCount>? (Dump ISPRAM to memory at same physical address.)
 spramtest

4. The FS2 System Navigator Console is based on TkCon, a Tcl/Tk-based console. Tcl/Tk documentation will be helpful in
understanding command syntax for specific commands. There is a simple Tcl/Tk command reference under the Help Menu.
(For a complete reference, I recommend the book “Practical Programming in Tcl/Tk”.)

5. Tcl allows dynamic addition of commands(/procedures) using the proc command. Commands added to the Console debug-
ger in this way are lost when you exit the Console application.

6. If you want to access files in a path which includes spaces in the name, you will need to escape the spaces with backslashes.
7. To reuse procedure definitions, save them in a file and source that file with the source command.
8. Some CP0 registers are not normally accessible by name from the FS2 Console. Sourcing spram.tcl makes a few addi-

tional CP0 registers available by name so as to improve readability of the supplied procedures.

6 Working with ScratchPad RAMS for MIPS32® Cores Application Note, Revision 02.01

The added ispram and dspram commands greatly simplify SPRAM detection and configuration. Without any

parameters, the ispram and dspram commands read and decode their respective SPRAM configuration tags. 9, 10, 11

vpe0:187> ispram
ISPRAM tag0: 0x00258000 (BasePAddr: 0x00258000p, Enable: 0)
ISPRAM tag1: 0x00008000 (Size: 32 Kbytes, 0x00258000p..0x0025ffffp)
vpe0:188> dspram
DSPRAM tag0: 0x00058000 (BasePAddr: 0x00058000p, Enable: 0)
DSPRAM tag1: 0x00008000 (Size: 32 Kbytes, 0x00058000p..0x0005ffffp)

4 Modifying SPRAM Configuration

The ispram and dspram commands added to the debugger by sourcing spram.tcl can also be used to modify a
SPRAM block’s configuration. They take one or two optional parameters. The first is a binary enable flag (0 or 1) and

the second is a physical base address. 12, 13, 14, 15, 16, 17

vpe0:194> ispram 1
ISPRAM tag0: 0x00258080 (BasePAddr: 0x00258000p, Enable: 1)
ISPRAM tag1: 0x00008000 (Size: 32 Kbytes, 0x00258000p..0x0025ffffp)
vpe0:195> ispram 1 0x00a00000p
ISPRAM tag0: 0x00A00080 (BasePAddr: 0x00a00000p, Enable: 1)
ISPRAM tag1: 0x00008000 (Size: 32 Kbytes, 0x00a00000p..0x00a07fffp)
vpe0:196> ispram 0
ISPRAM tag0: 0x00A00000 (BasePAddr: 0x00a00000p, Enable: 0)
ISPRAM tag1: 0x00008000 (Size: 32 Kbytes, 0x00a00000p..0x00a07fffp)
vpe0:197> dspram 0 0x00b00000
DSPRAM tag0: 0x00B00000 (BasePAddr: 0x00b00000p, Enable: 0)
DSPRAM tag1: 0x00008000 (Size: 32 Kbytes, 0x00b00000p..0x00b07fffp)
vpe0:198> dspram 1
DSPRAM tag0: 0x00B00080 (BasePAddr: 0x00b00000p, Enable: 1)
DSPRAM tag1: 0x00008000 (Size: 32 Kbytes, 0x00b00000p..0x00b07fffp)

9. The FS2 System Navigator Console debugger use the “p” suffix to denote a physical address.
10. Some example implementations of SPRAM allowed multiple blocks of ISPRAM and/or DSPRAM to be instantiated. The

example SPRAM block supplied with the 24K/34K/1004K Processor Core Family implements at most 1 block of each. (If
you wish to implement multiple blocks of ISPRAM or DSPRAM, please follow MIPS recommendations for self-identifying
block configuration, as this will allow seamless software development tool support.)

11. Look in spram.tcl for the full implementation details of these procedures.
12. If a base address is not provided, the existing base address will remain unchanged.
13. You can only specify a new base address if the enable flag is also specified.
14. The physical base address supplied will be rounded down to the nearest 4Kbyte aligned address. This is a restriction of the

BaseAddr field of the SPRAM configuration tags.
15. It is not recommended to overlap ISPRAM and DSPRAM regions when using tools which auto-detect and manage ISPRAM

access.
16. Only the BaseAddr (Base Address) and En (Enable) fields of the first SPRAM tag are programmable in the 24K/34K/1004K

example SPRAM blocks. The Size field is fixed at device configure time to an integer multiple of 4Kbytes.
17. You may want to invalidate the D$ just prior to Enabling DSPRAM to make sure nothing from the overlaid address range is

in the D$. This is done for you if you use the dspram command to enable DSPRAM.

Working with ScratchPad RAMS for MIPS32® Cores Application Note, Revision 02.01 7

5 Accessing DSPRAM

The FS2 tools also allow the specification of physical addresses in commands. Using this capability, we can access an

enabled DSPRAM block located anywhere in the physical memory. 18, 19, 20

vpe0:69> dspram 1 0xf0000000p
DSPRAM tag0: 0xF0000080 (BasePAddr: 0xf0000000p, Enable: 1)
DSPRAM tag1: 0x00008000 (Size: 32 Kbytes, 0xf0000000p..0xf0007fffp)
vpe0:70> word 0xf0000000p
0x00000000
vpe0:71> word 0xf0000000p 0x33227766
vpe0:72> word 0xf0000000p
0x33227766

However, typical DSPRAM access is normally made through loads and stores to a virtual address which maps to a

physical address covered by the (enabled) DSPRAM. 21, 22

vpe0:261> dspram 0 0x00100000p
DSPRAM tag0: 0x00100000 (BasePAddr: 0x00100000p, Enable: 0)
DSPRAM tag1: 0x00008000 (Size: 32 Kbytes, 0x00100000p..0x00107fffp)
vpe0:262> word 0x80100000..+16 0x32323232 ;# Write pattern under disabled DSPRAM
vpe0:263> dspram 1
DSPRAM tag0: 0x00100080 (BasePAddr: 0x00100000p, Enable: 1)
DSPRAM tag1: 0x00008000 (Size: 32 Kbytes, 0x00100000p..0x00107fffp)
vpe0:264> word 0x80100000..+16 0xdeadbeef ;# Write pattern to enabled DSPRAM
vpe0:265> word 0x80100000..+16 ;# Display pattern in DSPRAM
0xDEADBEEF 0xDEADBEEF 0xDEADBEEF 0xDEADBEEF
vpe0:266> dspram 0
DSPRAM tag0: 0x00100000 (BasePAddr: 0x00100000p, Enable: 0)
DSPRAM tag1: 0x00008000 (Size: 32 Kbytes, 0x00100000p..0x00107fffp)
vpe0:267> word 0x80100000..+16 ;# Display memory under disabled DSPRAM
0x32323232 0x32323232 0x32323232 0x32323232

18. If there is no valid mapping to the physical address specified, a TLB entry will be borrowed to create a temporary mapping.
19. DSPRAM does not require any backing memory. Data accesses (loads and stores) to an enabled DSPRAM region are redi-

rected to the DSPRAM. Any memory and/or devices which may exist at the same physical address range are not affected.
20. The processor can not fetch code from DSPRAM. Fetching of code from memory which exists in an enabled DSPRAM is

possible but is not recommended, as this can cause debug tools to display misleading information. (Stepping through code
executing behind an enabled DSPRAM is a little disturbing, as the “disassembly” displayed by the debugger is actually the
disassembly of data in the DSPRAM over the actual code executing from the memory beneath it.)

21. Although the 24K/34K/1004K example SPRAM blocks can be accessed at uncached addresses, restricting SPRAM accesses
to cached addresses will keep software portable. (Some SPRAM implementations my require access via cached addresses.)

22. Keeping the physical address range of the DSPRAM in the lowest 512 Mbytes (<0x20000000) allows access to the DSPRAM
using the unmapped cacheable kseg0 address range (0x80000000..0x9fffffff.)

8 Working with ScratchPad RAMS for MIPS32® Cores Application Note, Revision 02.01

6 Accessing ISPRAM

While becoming familiar with ISPRAM, you should disable the FS2 tools automatic handling of debugger accesses
to enabled ISPRAM blocks:

vpe0:5> config UseSpram off
off

Access to ISPRAM is only possible through processor fetching or through execution of “instruction index load/store
tag/data” variations of the cache instruction.

If you have located an ISPRAM block over valid memory, you can use the added ispramfill command to fill

ISPRAM from the memory it overlays.23

vpe0:274> ispram 0 0x1fc00000p ;# Locate/disable ISPRAM over boot code.
ISPRAM tag0: 0x1FC00000 (BasePAddr: 0x1fc00000p, Enable: 0)
ISPRAM tag1: 0x00008000 (Size: 32 Kbytes, 0x1fc00000p..0x1fc07fffp)
vpe0:275> ispramfill 64 ;# Fill first 64 bytes of ISPRAM from memory under it.
Filling first 64 bytes of ISPRAM from underlay (via kseg0).
(Each '.' is 256 bytes of progress. Press [Esc] key to cancel.)

You can also use the added ispramdump command to dump ISPRAM contents into the memory it

overlays.24, 25, 26, 27

vpe0:276> ispram 0 0x00b00000p ;# Locate/disable ISPRAM over some system memory.
ISPRAM tag0: 0x00B00000 (BasePAddr: 0x00b00000p, Enable: 0)
ISPRAM tag1: 0x00008000 (Size: 32 Kbytes, 0x00b00000p..0x00b07fffp)
vpe0:277> word 0x80b00000..+64 0xdeadc0de ;# Pattern memory under ISPRAM.
vpe0:278> ispramdump 32 ;# Dump first 32 bytes of ISPRAM into the memory.
Dumping first 32 bytes of ISPRAM into underlay (via kseg0).
(Each '.' is 256 bytes of progress. Press [Esc] key to cancel.)

vpe0:279> dasm 0x80b00000..+40 ;# Look at the contents of memory.
80B00000 0x10000005 b 0x80B00018
80B00004 0x00000000 nop
80B00008 0x00000000 nop
80B0000C 0x00000000 nop
80B00010 0x00012520 add $a0,$0,$at
80B00014 0xFFFFFFFF sd $ra,0xFFFFFFFF($ra)
80B00018 0x00000000 nop
80B0001C 0x40809000 mtc0 $0,WatchLo
80B00020 0xDEADC0DE ld $t5,0xFFFFC0DE($s5)
80B00024 0xDEADC0DE ld $t5,0xFFFFC0DE($s5)

23. This method is slow but you can use the optional “ByteCount” parameter to limit how much of the ISPRAM is filled.
24. If no ByteCount is provided ispramfill and ispramdump will process the entire ISPRAM block.
25. Using the [Esc] key to cancel a long ispramfill or ispramdump will leave the system with corrupted CP0 registers.
26. An ISPRAM block does not need to be enabled for the ispramfill or ispramdump commands to work.
27. ISPRAM access is done two words at a time. The ispramfill and ispramdump ByteCount parameter is rounded up to a

multiple of 8 bytes.

Working with ScratchPad RAMS for MIPS32® Cores Application Note, Revision 02.01 9

7 Debugging Code Executing from ISPRAM

The low-level FS2 probe driver can be configured to automatically detect enabled ISPRAM blocks, and to use

cacheops instead of normal loads and stores for all debugger accesses to those regions. 28, 29 This facilitates sup-

port of software breakpoints and disassembly of code in ISPRAM. 30

vpe0:342> config UseSpram auto ;# Turn on automatic handling of (enabled) ISPRAM.
auto
vpe0:343> ispram 0 0x00a00000p
ISPRAM tag0: 0x00A00000 (BasePAddr: 0x00a00000p, Enable: 0)
ISPRAM tag1: 0x00008000 (Size: 32 Kbytes, 0x00a00000p..0x00a07fffp)
vpe0:344> word 0x80a00000..+64 0x7000003f ;# fill memory under (disabled) ISPRAM
with sdbbp
vpe0:345> ispram 1 ;# Enable ISPRAM (resynchronize debugger’s ISPRAM support.)
ISPRAM tag0: 0x00A00080 (BasePAddr: 0x00a00000p, Enable: 1)
ISPRAM tag1: 0x00008000 (Size: 32 Kbytes, 0x00a00000p..0x00a07fffp)
vpe0:346> copy 0xbfc00000..+64 0x80a00000 ;# fill ispram with copy of some code.
64
vpe0:347> pc 0x80a00000 ;# Point the “PC” to the ISPRAM (via kseg0.)
0x80A00000
vpe0:348> dasm [pc]..+32 ;# Show the code in the ISPRAM.
80A00000 0x10000005 b 0x80A00018
80A00004 0x00000000 nop
80A00008 0x00000000 nop
80A0000C 0x00000000 nop
80A00010 0x00012520 add $a0,$0,$at
80A00014 0xFFFFFFFF sd $ra,0xFFFFFFFF($ra)
80A00018 0x00000000 nop
80A0001C 0x40809000 mtc0 $0,WatchLo
vpe0:349> bkpt setsw 0x80a00018 ;# Set a software breakpoint on code in ISPRAM.
{0x80A00018 sw}
vpe0:350> go ;# Start executing code from ISPRAM. (Should hit breakpoint.)
vpe0: Software breakpoint.
80A00018 0x00000000 nop

28. The tools require that ISPRAM and DSPRAM blocks do not overlap.
29. When the “UseSpram” configuration item is set to on/auto, remember that all debugger accesses to memory under an enabled

ISPRAM block are redirected to the ISPRAM block, and the memory (if any) under the ISPRAM block is not accessible from
the debugger until the ISPRAM is disabled or the UseSpram is configured to “off”. The memory under ISPRAM is always
accessible (via loads and stores) from code executing on the processor.

30. If you manually modify SPRAM configuration information, you will need to synchronize the tools to the new configuration
by configuring UseSpram to off and then to your desired setting. This is done for you if you use the ispram and dspram
commands.

10 Working with ScratchPad RAMS for MIPS32® Cores Application Note, Revision 02.01

If we disable ISPRAM, we can see that the memory beneath it was not changed by the debugger.

vpe0:351> ispram 0 ;# Disable ISPRAM
ISPRAM tag0: 0x00A00000 (BasePAddr: 0x00a00000p, Enable: 0)
ISPRAM tag1: 0x00008000 (Size: 32 Kbytes, 0x00a00000p..0x00a07fffp)
vpe0:352> dasm 0x80a00000..+32 ;# Look at contents of memory under disabled ISPRAM.
80A00000 0x7000003F sdbbp 0x00000
80A00004 0x7000003F sdbbp 0x00000
80A00008 0x7000003F sdbbp 0x00000
80A0000C 0x7000003F sdbbp 0x00000
80A00010 0x7000003F sdbbp 0x00000
80A00014 0x7000003F sdbbp 0x00000
80A00018 0x7000003F sdbbp 0x00000
80A0001C 0x7000003F sdbbp 0x00000

8 DSPRAM Performance

DSPRAM has a one-cycle load-to-use requirement. If you load something from DSPRAM and try to use it in the next

instruction, the pipeline will stall for one cycle. 31

All DSPRAM requests complete across the DSPRAM interface in order. 32 Because stores to DSPRAM complete at

the end of the pipeline, the worst case DSPRAM access sequence is: store, load, use-load-data. 33

31. This is the same as the data cache’s one-cycle load-hit-to-use requirement. (Multithreading can remove these stalls.)
32. There is no bypass from a DSPRAM store to a DSPRAM load of the same data.
33. The addresses of the DSPRAM store and load have no affect on the stall.

Working with ScratchPad RAMS for MIPS32® Cores Application Note, Revision 02.01 11

If your core was configured with PDTraceTM, you can use it to view a cycle-accurate trace of this worst case

DSPRAM access sequence. 34, 35, 36

halt
config UseSpram auto
tracemode +ca +io ;# Cycle accurate, inhibit overflow
ispram 1 0x00100000 ;# enable ISPRAM over (cacheable direct-mapped) kseg0
dspram 1 0x00108000 ;# enable DSPRAM just past ISPRAM
asm 0x80100000 {lui r2 0x8010}
asm {ori r2, r2, 0x8000} ;# Load r2 with base of DSPRAM
asm {lw r4, 0x10(r2)}
asm {or r3,r3,r4} ;# Load to use will cause 1-cycle stall.
asm {sw r3, 0x10(r2)}
asm {lw r4, 0x40(r2)}
asm {or r3,r3,r4} ;# Store to Load to use will cause 6-cycle stall.
asm {sdbbp} ;# Add a software breakpoint to get us back into the debugger.
pc 0x80100000 ; dasm [pc]..+32
go ; pt info ; pt all dasm

…
0.23: { cpu 0 tc 0 } mode kernel (exl=0, erl=0), isa=MIPS32, asid=0x00
0.23: { cpu 0 tc 0 } pc 0x00:0x80100000 0x3C028010 lui $v0,0x8010
1.14: { cpu 0 tc 0 } pc 0x00:0x80100004 0x34428000 ori $v0,$v0,0x8000
1.61: { cpu 0 tc 0 } idle cycles 1
1.62: { cpu 0 tc 0 } pc 0x00:0x80100008 0x8C440010 lw $a0,0x0010($v0)
2.18: { cpu 0 tc 0 } idle cycles 1
2.19: { cpu 0 tc 0 } pc 0x00:0x8010000C 0x00641825 or $v1,$v1,$a0
2.28: { cpu 0 tc 0 } pc 0x00:0x80100010 0xAC430010 sw $v1,0x0010($v0)
2.37: { cpu 0 tc 0 } pc 0x00:0x80100014 0x8C440040 lw $a0,0x0040($v0)
2.51: { cpu 0 tc 0 } idle cycles 6
2.52: { cpu 0 tc 0 } pc 0x00:0x80100018 0x00641825 or $v1,$v1,$a0
2.62: { cpu 0 tc 0 } mode debug, isa=MIPS32, asid=0x00
2.62: { cpu 0 tc 0 } idle cycles 2

34. To save time, you can copy a command sequence and paste it into the FS2 Console to execute the list of commands.
35. Red highlighting was added to help understand dependencies leading to stalls.
36. The first single-cycle stall in the trace output shown has nothing to do with DSPRAM. (It is an ALU to AGEN stall.)

12 Working with ScratchPad RAMS for MIPS32® Cores Application Note, Revision 02.01

9 Example SPRAM Target Code

The SPRAM manipulations we have done so far have all been carried out by code executing in debug-mode on the
target CPU via debugger commands. The same manipulations can be done by executing non-debug-mode code on the
target. If you have a very simple task (like reading CP0 Config), you can use FS2 Console to assemble some MIPS32
code directly into memory to accomplish this task.

vpe0:90> asm 0xa0100000 {lui r1, 0x0180} ;# r1 <- mask for ISP/DSP cp0
Config[24:23]
4
vpe0:91> asm {mfc0 r2, r16, 0} ;# r2 <- CP0 Config (No "ehb/jr.hb" for read.)
4
vpe0:92> asm {and r3, r2, r1} ;# r3 <- r2 | r1 (isolating ISP/DSP).
4
vpe0:93> asm {b 0xa010000c} ;# Branch to self (busy infinite loop.)
4
vpe0:94> asm {nop} ;# Branch (to self) delay slot (.
4
vpe0:95> pc 0xa0100000 ;# Uncached/Unmapped kseg1 addresses beyond those used by
YAMON.
0xA0100000
vpe0:96> dasm [pc]..+20 ;# Display code in memory
A0100000 0x3C010180 lui $at,0x0180
A0100004 0x40028000 mfc0 $v0,Config
A0100008 0x00411824 and $v1,$v0,$at
A010000C 0x1000FFFF b 0xA010000C
A0100010 0x00000000 nop
vpe0:97> go ;# Execute code ending in an infinite loop.
vpe0: Emulation started.
vpe0:98> halt ;# stop execution of the infinite loop.
vpe0: User halt.
A010000C 0x1000FFFF b 0xA010000C
vpe0:102> puts "r1: [r1] r2: [r2] r3: [r3]" ;# Display the value read from CP0
Config.
r1: 0x01800000 r2: 0x81840483 r3: 0x01800000

For more complex tasks, you will likely use C-level development tools, like MIPS SDE (Software Development
Environment.) The supplied kits, intrinsics, and include files will allow you to quickly build larger and more complex
programs. Below (and in the companion source archive) is an SDE example composed of a Makefile and a C pro-
gram, hasspram.c. Create a hasspram directory under the SDE examples directory and place these files in it.
You can then build executables, as shown below, to run on a Malta board using YAMON, without depending on the

FS2 tools. 37, 38

<your SDE path here >/sde/examples/hasspram/Makefile:

PROG =hasspram
SRCS =hasspram.c
CFLAGS =-g -O0
include ../make.mk

37. The SDE documentation is in <your SDE install directory name here>/doc/sde-guide.pdf
38. A local tftp server was pointed to the examples/spram directory, and YAMON environment variables were set to cause

the load command to default to tftp from that server.

Working with ScratchPad RAMS for MIPS32® Cores Application Note, Revision 02.01 13

<your SDE path here>/sde/examples/hasspram/hasspram.c:

#include <stdio.h>
#include <mips/cpu.h>

int
main (int argc, char **argv)
{
 unsigned int Config;
 int hasISPRAM, hasDSPRAM;

 Config = mips_getconfig();
 hasISPRAM = (Config >> 24) & 1;
 hasDSPRAM = (Config >> 23) & 1;

 printf ("Config ISP/DSP: %d/%d\n", hasISPRAM, hasDSPRAM);

 return 0;
}

Build using the SDE software Development tools MALTA32L “kit” (I/O will be handled by YAMON on tty0).

cygwin$ cd <Your SDE path here>/sde/examples/hasspram
cygwin$ sde-make SBD=MALTA32L
cygwin$ cp hasspramram.s3 <your tftp directory name here>

Load and run using YAMON.

YAMON> load /hasspramram.s3
About to load tftp://192.168.0.112/hasspramram.s3
Press Ctrl-C to break
...

Start = 0x80100000, range = (0x80100000, 0x8010bcaf), format = SREC
YAMON> go
Config ISP/DSP: 1/1
User application returned with code = 0x00000000

A larger set of SPRAM related functions (in the form of an SDE example) can be found in the MD00540-2B-
SPRAM-APP/sde-examples/spram directory of the accompanying archive. Copy the spram directory into
<your sde install dir>/examples, and follow the instructions outlined above.

10 References

A tarred gzipped archive of the code and scripts used in this note can be downloaded from MIPS Technologies’ web-
site: MD00540-2B-SPRAM-APP.tgz

14 Working with ScratchPad RAMS for MIPS32® Cores Application Note, Revision 02.01

11 Revision History

Change bars (vertical lines) in the margins of this document indicate significant changes in the document since its last
release. Change bars are removed for changes that are more than one revision old.

 Revision Date Description

1.00 July 30, 2007 Preliminary version.

2.00 August 14, 2007 Additional example code and links.

2.01 June 30, 2008 Update document title.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCI, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

²ƻǊƪƛƴƎ ǿƛǘƘ {ŎǊŀǘŎƘtŀŘ w!a{ ŦƻǊ aLt{онϯ /ƻǊŜǎ !ǇǇƭƛŎŀǘƛƻƴ bƻǘŜΣ wŜǾƛǎƛƻƴΥ лнΦлм

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

