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Chapter 1

Introduction

The MIPS32® 74K™ core is the first member of afamily of synthesizable CPU cores launched in 2007, and offers
the highest performance yet from a synthesizable core. It doesthis by issuing two instructions simultaneously (where
possible) and by using along pipeline to enable relatively high frequency operation. Conventional high-throughput
designs of this type are slowed by dependencies between consecutive instructions, so 74K family cores use out-of-
order execution to work around short-term dependencies and keep the pipeline full.

74K Cores offer better performance in the same process compared to MIPS Technologies' mid-range 24K® family, at
the cost of alarger and more complex core.

Intended Audience

This document is for programmers who are already familiar with the MIPS® architecture and who can read MI1PS
assembler language (if that's not you yet, you'd probably benefit from reading a generic MIPS book - see Appendix
A, “References’ on page 135).

More precisely, you should definitely be reading this manual if you have an OS, compiler, or low-level application
which aready runs on some earlier MIPS CPU, and you want to adapt it to the 74K core. So this document concen-
trates on where aMIPS 74K family core behaves differently from its predecessors. That's either:

»  Behavior which is not completely specified by Release 2 of the MIPS32® architecture: these either concern priv-
ileged operation, or are timing-rel ated.

»  Behavior which was standardized only in the recent Release 2 of the M1PS32 specification (and not in previous

versions). All Release 2 features are formally documented in [M1PS32]%, and [M1PS32V 1] describes the main
changes added by Release 2.

But the summary istoo brief to program from, and the details are widely spread; so you'll find areminder of the
changes here. Changes to user-privilege instructions are found in Appendix C, “MIPS® Architecture quick-
reference sheet(s)” on page 151, and changes to kernel-privilege (OS) instructions and facilities are detailed in
Chapter 5, “Kernel-mode (OS) programming and Release 2 of the MIPS32® Architecture” on page 67.

» Detailsof timing, relevant to engineers optimizing code (and that very small audience of compiler writers), found
in Section 4.5 “Tuning software for the 74K* family pipeline”.

Thismanual is distinct from the [SUM] reference manual: that is a CPU reference organized from a hardware view-
point. If you need to write processor subsystem diagnostics, this manual will not be enough! If you want a very care-
ful corner-cases-included delineation of exactly what an instruction does, you'll need [MI1PS32]... and so on.

For readability, some MIPS32 materia is repeated here, particularly where areference would involve alarge excur-
sion for the reader for asmall saving for the author. Appendices mention every user-level-programming difference
any active MIPS software engineer is likely to notice when programming the 74K core.

1. References (in square brackets) arelisted in Appendix A, “References’ on page 135.
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1.1 Chapters of this manual

All 74K cores are able to run programs encoded with the MIPS16e™ instruction set extension - which makes the
binary significantly smaller, with some trade-off in performance. MIPS16e code israrely seen - it's aimost exclu-
sively produced by compilers, and in adebugger view is pretty much a subset of the regular M1PS32 instruction set -
so you'll find no further mention of it in this manual; please refer to [M1PS16€].

The document is arranged functionally: very approximately, the features are described in the order they’d come into
play in asystem asit bootstrapsitself and prepares for business. But alot of the CPU-specific datais presented in co-

processor zero (“CPQ”) registers, so you'll find a cross-referenced list of 74K core CPO registersin Appendix B, “CPO
register summary and reference” on page 137.

1.1 Chapters of this manual

e Chapter 2, “Initialization and identity” on page 21: what happens from power-up? boot ROM material, but a
good place to cover how you recognize hardware options and configure software-controlled ones.

e Chapter 3, “Memory map, caching, reads, writes and translation” on page 29: everything about memory
acCesses.

e Chapter 4, “Programming the 74K ™ core in user mode” on page 55: features relevant to user-level program-
ming; instruction timing and tuning, hardware registers, prefetching.

e Chapter 5, “Kernel-mode (OS) programming and Release 2 of the MIPS32® Architecture” on page 67: 74K -
core-specific information about privileged mode programming.

e Chapter 6, “Floating point unit” on page 77: the 74K core’s floating point unit, available on models called
TAKE™,

e Chapter 7, “The MIPS32® DSP ASE” on page 87: A brief summary of the MIPS DSP ASE (revision 2), avail-
able on members of the 74K core family.

e Chapter 8, “74K™ corefeatures for debug and profiling” on page 102: the debug unit, performance counters and
watchpoints.

* Appendix A, “References’ on page 135: more reading to broaden your knowledge.

» Appendix B, “CPO register summary and reference” on page 137: al the registers, and references back into the
main text.

e Appendix C, “MIPS® Architecture quick-reference sheet(s)” on page 151: afew reference sheets, and some
notes on what was new in MIPS32 and its second release.

1.2 Conventions

Instruction mnemonics are in bold monospace; register names in small monospace. Register fields are shown
after the register name in square brackets, so the interrupt enable bit in the status register appears as Status[IE].

w_n

CPO register numbers are denoted by n . s, where “n” isthe register number (between 0-31) and “s” isthe “select”
field (0-7). If the select field is omitted, it's zero. A select field of “x” denotes all eight potential select numbers.

In this book most registers are described in context, spread through various sections, so there are cross-referenced
tables to help you find specific registers. To find aregister by name, look in Table B.1, then ook up the CPO number
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Introduction

in Table B.2 and you will find alink to the register description (a hotlink if you’'re reading on-screen, and areference
including page number if you're reading paper).

Register diagrams in this book are found in the list of figures. Register fields may show a background color, coded to
distinguish different types of fields:

read-write read-only reserved, unused software-only write has
always zero unusual effect.

Numeric values below the field diagram show the post-reset value for afield which isreset to a known value.

1.3 74K™ core features

13

All 74K family cores conform to Release 2 of the MIPS32 architecture. You may have the following options:

|- and D-Caches: 4-way set associative; |-cache may be 0 Kbytes, 16K bytes, 32K bytes or 64K bytesin size. D-

cache may be 0 Kbytes, 16Kbytes, 32Kbytes or 64K bytesin size. 32K byte caches are likely to be the most pop-
ular; 64K byte caches will involve some cost in frequency in most processes. The D-cache may even be entirely

omitted, when the system is fitted with high-speed memory on the cache interface (scratchpad RAM or SPRAM:
see Section 3.6 “Scratchpad memory/SPRAM™.)

The caches are virtually indexed but physically tagged (the D-cache also keeps a virtual tag which is used to save
alittletime, but the final hit/miss decision is always checked with the physical tag). Optionally (but usually) the

32K and 64K 2 D-cache configurations can be made free of cache aliases — see Section 3.4.9, "Cache dliases’,
which explains some software-visible effects. The option is selected when the “ cache wrapper” was defined for
the 74K core in your design and shows up asthe Config7[AR] bit. L2 (secondary) cache: you can configure your
74K corewith MIPS Technologies' L2 cache between 128K byte and IMbyte in size. Full detailsarein “MIPS®
PDtrace™ Interface and Trace Control Block Specification”, MIPS Technol ogies document MD00439. Current
revision is 4.30: you need revision 4 or greater to get multithreading trace information. [L2CACHE], but pro-
gramming information isin Section 3.4 “Caches’ of this manual.

Fast multiplier: 1-per-clock repeat rate for 32x32 multiply and multiply/accumul ate.

DSP ASE: thisinstruction set extension adds alot of new computational instructions with a fixed-point math unit
crafted to speed up popular signal-processing algorithms, which form alarge part of the computational load for
voice and imaging applications. Some of these functions do two math operations at once on two 16-bit values
held in one 32-hit register. 74K family cores support Revision 2 of the DSP ASE.

There'saguide to the DSP ASE in Chapter 7, “The MIPS32® DSP ASE” on page 87 and the full manual is
[MIPSDSP.

Floating point unit (FPU): if fitted, thisis a 64-bit unit (with 64-bit load/store operations), which most often runs
at half or two-thirds the clock rate of the integer unit (you can build the system to run the FPU at the same clock
rate as the integer core, but it will then limit the speed of the whole CPU).

The“ CorExtend®” instruction set extension: is available on all 74K CPUs. [CorExtend] defines a hardware
interface which makesit relatively straightforward to add logic to implement new computational (register-to-reg-
ister) instructions in your CPU, using predefined instruction encodings. 1t's matched by a set of software tools

Note that a4-way set associative cache of 16Kbyte or less (assuming a 4K byte minimum page size) can’t suffer
from aliases.

Programming the MIPS32® 74K™ Core Family, Revision 02.14



1.4 A brief guide to the 74K™ core implementation

which allow users to create assembly language mnemonics and C macros for the new instructions. But there's
very little about the CorExtend ASE in this manual.

1.4 A brief guide to the 74K™ core implementation

The 74K family is based around along (14-19 stage) pipeline with dual issue, and executes instructions out-of-order
to maintain progress around short-term dependencies. The longer pipeline allows for a higher frequency than can be
reached by 24K® family cores (in a comparable process), and the more sophisticated instruction scheduling means
that the 74K core also gets more work done per cycle.

Long-pipeline CPUs can trip up on dependencies (they need a result from a previous instruction), on branches (they
don’'t know where to fetch the next instructions until the branch instruction is substantially complete), and on loads
(even on cache hits, the data cannot be available for some number of instructions). Earlier MIPS Technologies cores
had no real trouble with dependencies (dependent instructions, in aimost all cases, can run in consecutive cycles).
That's not so in the longer-pipeline 74K core, and its key trick to get around dependencies is out-of-order execution.
But the techniques used to deal with branches and loads still include branch prediction, non-blocking loads and late
writes— all familiar from MIPS Technologies' 24K and 34K® core families.

Figure 1.1 Overview of The 74K™ Pipeline

AF|AM|AC|AB|
74K pipeline stages | IT | |D| IS | B |DD|DR|DS|DM |WB|GC|
EM|EA|EC|ES|EB|

P cache miss data
e T updates
file /=
-/
_|rename| _
IFU \i\ map
IDU v completion buffers
ALU GRU
J\ J\ AGEN
x4 x2 X2
“/ “/ in-order
, out-of-order execution completion
issue B
speculative D-cache memory pipeline
fetch loads. stores, etc
BHT
external read data
read/write

1.4.1 Notes on pipeline overview diagram (Figure 1.1):

Although this diagram is considerably simpler (and further abstracted from reality) than thosein [SUM], thereis still
alot to digest. Rectangles and circles with athick outline are major functional units — the rectangles are the active
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units and each has aphrase (in italics) summarizing what it does. The three-letter acronyms match those found in the
detailed descriptions, and the pipeline stage names used in the detailed descriptions are across the top. To simplify the
picture the integer multiply unit and the (optional) floating point unit have been omitted — once you figure out what's
going on, they shouldn’t be too hard to put back. So:

The 74K core'sinstruction fetch unit (“1FU”) is semi-autonomous. It’s 128 bits wide, and handles four instruc-
tions at abite.

The IFU works a bit like adog being taken for awalk. It rushes on ahead as long as the lead will stretch (the IFU,
processing instructions four at atime, can rapidly get ahead). Even though you're in charge, your dog likesto go
first - and so it iswith the IFU. Like adog, the IFU guesses where you want to go, strongly influenced by the way
you usualy go. If you make an unexpected turn there isabrief hiatus while the dog comes back and gets up front

again.

TheIFU has a queue to keep instructions in when it’s running ahead of the rest of the CPU. Thiskind of designis
called a*“decoupled” IFU.

Issue: the IDU (“instruction decode/dispatch unit™) keeps its own gqueue of instructions and tries to find two of
them which can beissued in parallel. Theinstruction set is strictly divided into AGEN instructions (loads, stores,
prefetch, cacheops; conditional moves, branches and jumps) and ALU (everything else). If al elseis good, the
IDU can issue oneinstruction of each typein every cycle. Instructions are marked with their place in the program
seguence, but are not necessarily issued in order. Aninstruction may leapfrog ahead of program order in the
IDU’s queue, if all the datait needsisready (or at least will be ready by the time it's needed).

Instructions which execute ahead of time can't write data to real registers — that would disrupt the operation of
their program predecessors, which might execute later. It may turn out that such an instruction shouldn’t have run
at al if there was a mispredicted branch, or an earlier-in-program-order instruction took an exception. Instead,
each instruction is assigned a completion buffer (CB) entry to receiveitsresult. The CB entry also keepsinforma-
tion about the instruction and where it came from. An instruction which is dependent on this one for a source reg-
ister value but runs soon afterward can get its data from the CB. CB-resident values can be found through the
rename map; that map isindexed by register number and points to the CB reserved by the instruction which will
write or has written aregister value.

out-of-order execution: the effect of the above isthat instructions areissued in “ dataflow” order, as determined by
their dependencies on register values produced by other instructions. Up to 32 instructions can be somewhere
between avail able for issue and completed in the 74K core — those instructions are often said to be in flight. The
32 possible instructions correspond to 32 CB entries— 14 for AGEN instructions, 18 for ALU instructions.

Inside the “execution” box the AGEN and ALU instructions proceed strictly through two internally-pipelined
units of the same names. The two pipelines are in lockstep, and are kept that way. This sounds rigid, but is help-
ful. When the IDU issues an instruction, it does not have to know that an instruction’s datais ready “right now”:
it's enough that the instruction producing that datais far enough along either execution pipeline. When no other
progress can be made its probably best to think of the IDU issuing a*“no-op” or “bubble” into either or both pipe-
lines.

Most of the time the execution pipelines just keep running — the IDU tries to detect any reason why an instruc-
tion cannot run through either the AGEN or ALU pipe.When dependent instructions run close together, the data
doesn’t have time to go into aregister or CB entry and be read out again. Instead it can flow down a dedicated
bypass connection between two particular pipestages — aroutine trick used in pipelined logic. In the 74K core
there are bypasses interconnecting the AGEN and ALU pipelines, as well as within each pipeline. But whereas
pipeline multiplexing in a conventional design is controlled by comparing register numbers, in 74K cores we
compare completion buffer entry IDs.

Programming the MIPS32® 74K™ Core Family, Revision 02.14



1.4 A brief guide to the 74K™ core implementation

There are afew simpleinstructions where the ALU produces its resultsin one clock (they’relisted in Table 4.3),
but most ALU instructions require two clocks: so, in the 74K core, dependent ALU instructions cannot usually
be run back-to-back. This would have a catastrophic effect on the performance of an in-order CPU, because
many instructions are dependent on their immediate predecessor. But an out-of-order CPU will run just fine,
because there are a so a reasonable number of cases where an instruction is not dependent on itsimmediate pre-
decessor, so the pipeline can find something to run. The CPU will slow down if fed with a sequence of relatively
long-latency instructions each of which is dependent on its predecessor, of course. For example, in the AGEN
pipelineit takes four cycles to turn aload address into load data (assuming a cache hit). So chasing a chain of
pointers through memory will take at least four cycles per pointer.

»  Optimistic issue: any instruction which isissued may yet not run to completion (there might be an exception on
an earlier-in-program instruction, for example). But some instructions are issued even though they are directly
dependent on something we're not sure about — they’reissued optimistically. The most common exampleis that
instructions dependent on load data are issued as if we were confident the load will hit in the L1 cache.

Sometimes it turns out we were wrong. Notably, sometimes the load we're dependent on suffersacache miss. In
this case the hardware does the simplest thing: rather than attempt to single out the now unviable instruction, we
take aredirect on the load-val ue-consuming instruction we issued optimistically — that is, we discard all work
on that instruction and its successors, and ask the front end of the pipeline to start again from scratch, re-fetching
the instruction from the I-cache.

* In-order completion: at the end of the execution unit we take the oldest in-flight instruction (with luck, the sec-

ond-oldest too) and, if it’sresults are ready, we graduate3 one or two instructions (“GRU” stands for “graduation
unit”). Before we do that, we make a last minute check for exceptions: if one of the proposed graduates has
encountered a condition which should cause an exception it will be carrying that information with it, we discard
that instruction and do aredirect to the start of the appropriate exception handler. On successful graduation the
instruction’s results are copied from its CB entry back to areal CPU register, and it’s finished.

Because instruction effects aren’t “publicly” visible until graduation, our out-of-order CPU appears to the pro-
grammer to be running sequentially just like any other M1PS32-compliant CPU.

More details about out-of-order execution

That's the basic flow. But the dual-issue, out-of-order design has some subtle points which can affect how programs
run:

»  Mispredicted branches and redirects. because of the long pipeline, the 74K core relies very heavily on good
branch prediction. When the IFU guesses wrong about a conditional branch, or can't compute the target for a
jump-register instruction, that's detected somewhere down the AGEN pipeline (usually the“EC” stage). By then
we'll have done a minimum of 12 cycles of work on the wrong path.

Whenever abranch isresolved the prediction result is sent back to the IFU to maintain its history table. For most
branches, the prediction result is sent back at the same time as we resolve the branch, which means that afew
branches which don’t graduate can affect the branch history. That's OK, it was only a heuristic.

e Exceptions: can't be resolved until we're committed to running an instruction and have completed all its prede-
cessors. So they're resolved only at graduation. That posts an exception handler address down to the front of a
pipe, clearing out all prefetched and speculatively-executed instructions in the process. There will be at least 19

3. Curioudly, the alternative word to “graduation” (for an instruction being committed in an out-of-order design) is“retirement”:
arather different stage of one’s career. | guess that from a software point of view we're glad that the instruction is now grown
up and real, while the hardware is now ready to wave goodbye to it.
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cycles between the point where the exception is processed in the graduation unit and the time when the first
instruction of the exception handler graduates.

Loads and Stores: the L1 cache lookup happensinside the out-of-order execution pipeline. But only loads which
hit in the L1 cache are complete when they graduate. Other loads and stores graduate and then start actionsin the
memory pipeline. It's probably fairly obvious how a store can be “ stored” — so long as the hardware keeps a note
of the address and data of the store, the cache/memory update can be done later. On the 74K core, even awrite
into the L1 cache is deferred until after graduation. While the write is pending, the cache hardware hasto keep a
note in case some later instruction wants to load the same value before we've completed the write; but that’s
familiar technology.

It's less obvious that we can allow load instructions which L 1-miss to graduate. But on the 74K core, loads are
non-blocking — aload executes, and results in data being loaded into a GP register at sometime in the future.
Any later instruction which reads the register value must wait until the load data has arrived. So load instructions
are allowed to graduate regardless of how far away their datais. Once the instruction graduatesits CB entry must
be given back, so data arriving for a graduated load is sent directly to the register file.

There's another key reason why we did this: with only L1 accesses done out-of-order, loads and stores only
become visible outside the CPU after they graduate, so there’s no worry about other parts of the system seeing
unexpected effects from specul ative instructions.

An instruction which depends on aload which misses will (unlessit was along, long way behind in instruction
seguence) have to wait. Most often the consuming instruction will become a candidate for issue before we know
whether the load hit in the L1 cache. In this case the dependent instruction is issued: we're optimists, hoping for
ahit. If aconsuming instruction reaches graduation and finds the load missed, we must do a “redirect”, re-fetch-
ing the consuming instruction and everything later in program order). Next time the consuming instruction is an
issue candidate, we'll know the load has missed, and the consumer will not get issued until the load data has
arrived. The redirect for the consuming instruction is quite expensive (19 or more cycles), but in most cases that
overhead will be hidden in the time taken to return data for the cache miss.

Stores are less complicated. But since even the cache must not be updated until the store instruction graduates,
the memory pipelineis used for writing the L1 cache too: even store L 1-hits result in action in the memory pipe-
line.

1.4.2 Branches and branch delays

The MIPS architecture defines that the instruction following a branch (the “branch delay slot” instruction) is aways

executed®. That means that the CPU has one instruction it knows will be executed while it's figuring out where a
branch is going. But with the 74K core’s long pipeline we don’t finally know whether a conditional branch should be
taken, and won’'t have computed the target address for ajump-register, until about 8 stages down the pipeline. It's bet-
ter to guess (and pay the price when we're wrong) than to wait to be certain. Several different tricks are used:

The decoupled IFU (the electronic dog) runs ahead of the rest of the CPU by fetching four instructions per clock.

Branch instructions are identified very early (in fact, they’re marked when instructions are fetched into the |-
cache). MIPS branch and jump instructions (at |east those not dependent on register values) are easy to decode,
and the IFU decodes them locally to calculate the target address.

That's not quite accurate: there are special forms of conditional branches called “branch likely” which are defined to execute
the branch delay slot instruction only when the branch is taken. Note that the “likely” part of the name has nothing to do with
branch prediction; the 74K core's branch prediction system treats the “likelies’ just like any other branches. The dependency
between a branch condition and the branch delay slot instruction is annoying to keep track of in an out-of-order machine, and
MIPS would prefer you not to use branch-likely instructions.
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The IFU’s branch predictor guesses whether conditional branches will be taken or not - it’s not magic, it usesa
BHT (a“Branch History Table" ) of what happened to branchesin the past, indexed by the low bits of the loca-
tion of the branch instruction. This particular hardware is an example of Combined branch prediction (majority
voting between three different algorithms, one of which is gshare; if you want to know, there’s a good wikipedia
article whose topic name is *“Branch Predictor”). The branch predictor istaking a good guess. It can seem sur-
prising that the predictor makes no attempt to discover whether the history stored in aBHT dlot isreally that of
the current branch, or another one which happened to share the same low address bits; we're going to be wrong
sometimes. It guesses correctly most of the time.

In thisway the IFU can predict the next-instruction address and continue to run ahead.

*  When the IFU guesses wrong, it doesn’t know (the dog just rushes ahead until its owner reaches the fork). The
branch mispredict will be noticed once the branch instruction has been issued and carried through to the AGEN
“EC” stage, and is executed in its full context (“resolved”). On detecting a mispredict, the CPU must discard the
instructions based on the bad guess (which will not have graduated yet, so will not have changed any vital

machine state) and start fetching instructions from the correct target5. The exact penalty paid by aprogram which
suffers amispredict depends on how busy the execution unit is, and how early it resolves the branch; the mini-
mum penalty is 12 cycles.

» Even when we guess right, the branch target calculation in the IFU takes a little while to operate. A rapid
seguence of correctly-predicted branches can empty the queues, causing a program to run slower.

» Jump-register instruction targets are unpredictable: the IFU has no knowledge of register data and can’'t in gen-
eral anticipate it. But jump-register instructions are relatively rare, except for subroutine returns. In the MIPS
I SA you return from subroutines using a jump-register instruction, jr $31 (register 31 is, by a strong conven-
tion, used to hold the return address). So on every call instruction, the |FU pushes the return address onto a small

stack; and on every jr $31 it pops the value of the stack and uses that asits guess for the branch targete.

We have no way of knowing the target of a jr instruction which uses aregister other than $31. When we find
one of those, instruction fetch stops until the correct address is computed up in the AGEN pipeline, 12 or more
clocks later.

1.4.3 Loads and load-to-use delays

Even short-pipeline MIPS CPUs can’t deliver load data to the immediately following instruction without a delay,
even on a cache hit. Simple MIPS pipelinestypically deliver the data one clock later: aone clock “load-to-use delay”.
Compilers and programmers try to put some useful and non-dependent operation between the load and itsfirst use.

The 74K core'slong pipeline means that afull D-cache hit takes four clocks to return the data, not two: that would be
athree-clock “load-to-use delay”. A pair of loads dependent on each other (one fetches the other’s base address) must
beissued at least four cycles apart (that's optimistic, hoping-for-a-hit timing).

But the AGEN and ALU pipelines are “ skewed”, with ALU results delivered a cycle later than AGEN results. That
means that when an ALU operation is dependent on aload, it can beissued only three cycles after the load. There'sa
priceto pay: aload/store whose base address is computed by a preceding ALU instruction must be issued a clock

5. In*“branch-likely” variants of conditional branch instructions a mispredict means we a so did the wrong thing with the
instruction in the branch delay slot. To fix that up, we need to refetch the branch itself, so the penalty is at least one cycle
higher.

6. Thereturn-stack guess will be wrong for subroutines containing nested calls deeper than the size of the return stack; but sub-
routines high up the call tree are much more rarely executed, so thisisn’t so bad.
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later than an ALU instruction with the same dependency — that’s usually athree cycle delay, because most ALU
operations already take an extra clock to produce their result.

It's like the skewed pipeline which expertsin MIPS Technologies' 24K® family might remember, and has the same
motivation: ALU operations dependent on recent loads are more common than |oads dependent on recent ALU oper-
ations.

1.4.4 Queues, Resource limits and Consequences

Queues which can fill up include:

e Cacheréfillsin flight: Is dependent on the size of the “FSB” queue - this and other queues are described in more
detail under Section 3.3, "Reads, writes and synchronization". The CPU does not wait for a cache refill process
— at least not until it needs data from the cache miss. But in practice most |oad datais used almost at once, so the
CPU will stop very soon after amiss. Asaresult, you're unlikely to ever have four refillsin flight unlessyou are
using prefetch or otherwise deliberately optimizing loops. If a series of aggressive prefetches miss often enough,
the fourth outstanding load-miss will use the last FSB entry, preventing further |oads from graduating and even-
tually blocking up the whole CPU until the load datareturns. It'slikely to be good practice for code making con-
scious use of prefetches to ration itself to anumber of operations dlightly less than the size of the FSB.

* Non-blocking loads to registers (nine): there are nine entriesin the “LDQ", each of which remembers one out-
standing load, and which register the datais destined to return to. Compiled code is unlikely to reach thislimit. If
you write carefully optimized code where you try to fill load-use delays (perhaps for data you think will not hitin
the D-cache) you may hit this problem.

e Linesevicted from the cache awaiting writeback (4+): writes are collected in the “WBB” queue. The 74K core's
ability towritedatawill in almost al circumstances exceed the bandwidth available to memory; so along enough
burst of uncached or write-through writes will eventually slow to memory speed. Otherwise, you're unlikely to
suffer from this.

*  Queuesin the coprocessor interface: the 74K core hides its out-of-order character from any coprocessors, so
coprocessor hardware need be no more complicated thanitisfor MIPS Technologies' 24K core. The coprocessor
hardware sees itsinstructions strictly in order. Each coprocessor instruction also makes its own way through the
integer execution unit. Between the execution unit and coprocessor there are some queues which can fill up:

* 10IQ (8 entries): instructions being issued — strictly in program order — to a coprocessor.

» CBIDQ (8 entries): databeing returned from a coprocessor by an instruction which writes a GP register. But
prior to graduation the data goes back to a completion buffer (hence the queue acronym).

» CLDQ (8 entries): track data being loaded to coprocessor registers (the job done for the GPRs by the LDQ
above). CLDQ dataisn’t necessarily provided in instruction sequence: in particular MIPS Technol ogies
floating-point unit accepts FP load data as and when it arrives, making FP loads non-blocking.

The dispatch process stalls (flooding the ALU and AGEN pipes with bubbles) when there is no space in any of
these queues.
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Chapter 2

Initialization and identity

What happens when the CPU isfirst powered up? These functions are perhaps more often associated with a ROM

monitor than an OS.

2.1 Probing your CPU - Config CPO registers

The four registers Config and Config1-3 are 32-bit CPO registers which contain information about the CPU’s capa-
bilities. Config1-3 are strictly read-only. The few writable fieldsin Config — notably Config[KO] — are there for

historic compatibility, and are typically written once soon after bootstrap and never changed again.

The 74K core also defines Config7 for some implementation-specific settings (which most programmers will never

use).

Broadly speaking the registers have these roles:

Table 2.1 Roles of Config registers

Config

A mix of historical and CPU-dependent information, described in Figure 2.1 below. Some
fields are writable.

Configl

Config2

Read-only, strictly to the MIPS32 architecture. Config1 shows the primary cache configuration
and basic CPU capabilities, while Config2 showsinformation about L2 and L3 caches, if fitted
(the L2 and the L3 cache is unavailable in 74K family cores). Shown in Figure 2.2 and Figure
2.3 below.

Config3

Read-only, strictly to Release 2 of the [MIPS32] architecture.
More CPU capability information.

Config6

Provides information about the presence of optional extensions to the base M1PS32 architec-
ture in addition to those specified in Config2 and Config3.

Config7

74K -core-specific, with both read-only and writable fields. It's a strong convention that the
writable fields should default to “ expected” behavior, so beginners may simply leave these
fields aone. Thefields are described | ater, in Section B.2.1 “The Config7 register”.

Whileinitializing your CPU, you might also want to look at the EBase register, which can be used to relocate your

exception entry points: see Figure 5.2 and the text round it.
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2.1 Probing your CPU - Config CPO registers

2.1.1 The Config register

Figure 2.1 Fields in the Config Register
3130 2827 25 24 23 22 21 20 19 18 17 16 15 141312 109 76 4 3 2 O

M| K23 KU [ISP|DSP{UDI|SB|0|WC/MM|O0|BMBE| AT | AR | MT | 0 |VI| KO

1 2 2 0 1 0 1 0 2

InFigure2.1:
M: reads 1 if Configl isavailable (it dwaysis).

K23, KU, KO: set the cacheability attributes of chunks of the memory map by writing these fields. All share a 3-bit
encoding with the cacheability field found in TLB entries, which is described in Table 3.3 in Section
3.4.2 “Cacheahility options’.

Config[KO0] sets the cacheability of kseg0, but it would be very unusual to make that anything other than cacheable
(on different, cache-coherent CPUs, it may want to be set to cacheable-coherent). The power-on value of this standard
field is not mandated by the [M1PS32] architecture; but the 74K core follows the recommendation to set itto "2",
making "kseg0" uncached. That can be surprising; early system initialization software typicaly re-writesitto"3" in
order that ksegO will be cached, as expected.

If your 74K core-based system uses fixed mapping instead of having a TLB, Config[K23] isfor program addresses
0xC000.0000-0xFFFF.FFFF (the “kseg2” and “kseg3” areas), while Config[KU] isfor program addresses
0x0000.0000-0x7FFF.FFFF (the “kuseg” area). If you have a TL B, these regions are mapped and these fields are
unused (write only zeroes to them).

ISP, DSP: read 1 if I-side and/or D-side scratchpad (SPRAM) isfitted, see Section 3.6, " Scratchpad memory/
SPRAM".

(Don't confuse this with the MIPS DSP ASE, whose presence is indicated by Config3[DDSP].)

UDI: reads 1 if your core implements user-defined "CorExtend" instructions. “CorExtend” is available on cores whose
name endsin "Pro".

SB: read-only "SimpleBE" bus mode indicator. If set, meansthat this core will only do simple partial-word transfers on
its OCP interface; that is, the only partial-word transfers will be byte, aligned half-word and aligned word.

If zero, it may generate partial-word transfers with an arbitrary set of bytes enabled (which some memory controllers
may not like).

WC: Warning: thisis a diagnostic/test field, not intended for customer use, and may vanish without notice from a
future version of the core.

Set this 1 to make the Config1[IS] and Config1[DS] fields writable, which alows you to reduce the number of avail-
able L1 I- and D-cache ""sets per way", and shrink the usable cache size. You'd never want to do thisin areal system,
but it is conceivable it might be useful for debug or performance analysis. If you have an L2 cache configured, then
this makes Config2[SS] writable in the same way.

MM: writable: set 1 if you want writes resulting from separate store instructions in write-through mode merged into a

single (possibly burst) transaction at the interface. This has no affect on cache writebacks (which are always whole
blocks together) or uncached writes (which are never merged).
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BM: read-only - tells you whether your bus uses sequential or sub-block burst order; set by hardware to match your sys-
tem controller.

BE: reads 1 for big-endian, O for little-endian.

AT: MIPS32 or MIPS64 compliance On 74K family coresit will read “0”, but the possible values are:

0 MIPS32
1 MIPS64 instruction set but M1PS32 address map
2 MIPS64 instruction set with full address map

AR: Architecture revision level. On 74K family coresit will read “1”, denoting release 2 of the MI1PS32 specification.

0 MIPS32/MIPS64 Release 1
1 MIPS32/MIPS64 Release 2

MT: MMU type (all MIPS Technologies cores may be configured astype 1 or 3):

0 None

1 MIPS32/64 compliant TLB

2 “BAT” type

3 MIPS-standard fixed mapping

VI: 1if theL1 I-cacheisvirtual (both indexed and tagged using virtual address). No contemporary MIPS Technologies
core has avirtual I-cache.

KO: as described in the notes above on Config[K 23] etc, this field determines the cacheing behaviour of the fixed ksegO
memory region .

2.1.2 The Configl-2 registers

These two read-only registerstell you the size of the TLB, and the size and organization of L1, L2 and L3 caches (a
zero “line size” is used to indicate a cache which isn't there). They're best described together.

Configl has some fields which tell you about the presence of some of the older extensions to the base MIPS32 archi-
tecture are implemented on this core. These bits ran out, and other extensions are noted in Config3.

Figure 2.2 Fields in the Configl Register

31 30 25 24 2221 19 18 16 15 13 12 109 7 6 5 4 3 2 1 0
M MMUSize IS IL 1A DS DL DA |C2|MD | PC|WR|CA |EP|FP
1 4 3 4 3 0o 1 1 1 1

Figure 2.3 Fields in the Config2 Register

31 30 28 27 24 23 20 19 16 15 13 12 11 8 7 4 3 0
M TU TS TL TA SuU L2B SS SL SA
1 0 0 0 0 0 0

Config1[M]: continuation bit, 1 if Config2 isimplemented.
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Configl[MMUSize]: the size of the TLB array (the array has MMUSize+1 entries).

Config1[IS,IL,IA,DS,DL,DA]: for each cache this reports

S Number of sets per way. Calculate as: 64 x 25

L Linesize. Zero means no cache at all, otherwise calculate as; 2 x 2t
A Associativity/number of ways - calculateas A + 1

Soif (IS, IL, IA) is(2,4,3) you have 256 sets/way, 32 bytes per line and 4-way set associative: that’s a 32K byte cache.

Configl[C2,FP]: 1if coprocessor 2 or or an FPU (coprocessor 1) fitted, respectively. A coprocessor 2 would be a cus-
tomer-designed coprocessor.

Configl[MD]: 1 if MDMX ASE isimplemented in the floating point unit (very unlikely for the 74K core).
Configl[PC]: thereis at least one performance counter implemented, see Section 8.4, "Performance counters'.
Configl[WRY]: reads 1 because the 74K core always has watchpoint registers, see Section 8.3, "CP0O Watchpoints'.

Config1[CA]: reads 1 because the MIPS16e compressed-code instruction set is available (asit generally ison MIPS
Technologies cores).

Config1[EP]: reads 1 because an EJTAG debug unit is always provided, see Section 8.1, "EJTAG on-chip debug unit".
Config2[M]: continuation bit, 1 if Config3 isimplemented.

Config2[TU]: implementation-specific bits related to tertiary cache, if fitted. Can be writable.

Config2[TS,TL, TA]: tertiary cache size and shape - encoded just like Config1[IS,IL,IA] which see above.
Config2[SU]: implementation-specific bits for secondary cache, if fitted. Can be writable.

Config2[L2B]: Set to disable L2 cache (“bypassmode”). Setting thisbit also forces Config2[SL] to 0 — most OS code
will conclude that thereisn't an L2 cache on the system, which can be useful.

Writing this bit controls asignal out to the L2 cache hardware. However, reading it does not read back what you just
wrote: it reflects the value of asignal sent back from the L2 cache. With MIPS Technologies L2 cache logic, that
feedback signal will reflect the value you just wrote, with some implementation-dependent delay (it's unlikely to be
100 cycles, but it could easily be more than 10). For more details refer to “MIPS® PDtrace™ Interface and Trace
Control Block Specification”, MIPS Technol ogies document MD00439. Current revision is4.30: you need revision 4
or greater to get multithreading trace information. [L2CACHE].

Config2[SS,SL,SA]: secondary cache size and shape, encoded like Config1[IS,IL,IA] above.

2.1.3 The Config3 register

Config3 provides information about the presence of optional extensions to the base MIPS32 architecture. A few of
them were in Config2, but that ran out of bits.

Figure 2.4 Config3 Register Format
31 30 29 28 14 13 12 11 10 9 87 6 5 4 3 2 1 0

M | 0| CMGCR ULRI | 0 | DSP2P | DSPP | CTXTC | O | VEIC | VInt | SP [CDMM | MT | SM | TL
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31

31 30 29 28 14 13 12 11 10 9 87 6 5 4 3 2 1 0

Fields shown in Figure 2.4 include:
Config3[M]: continuation bit which is zero, because there is no Config4.

Config3[CMCGRY]: reads 1 if Global Control Register in the Coherence Manager are implemented and the
CMGCRBase register is present. Reads 0 otherwise

Config3[ULRI]: reads 1 if the core implements the UserLocal register, typically used by software threads packages.
DSP2P, DSPP: DSPP reads 1 if the MIPS DSP extension isimplemented — as described in Chapter 7, “The
MIPS32® DSP ASE” on page 87. If so, DSP2P reads 1 if your CPU conforms to revision 2 of the DSP ASE — as

the 74K core does.

CTXTC: reads 1 when the ContextConfig register isimplemented. The width of the BadVPN2 field in the Context
register depends on the contents of this register.

VEIC: read-only bit from the core input signal SI_EICPresent which should be set in the SoC to alert software to the
availability of an EIC-compatible interrupt controller, see Section 5.2, "MIPS32® Architecture Release 2 - enhanced
interrupt system(s)".

Vint: reads 1 when the 74K core can handle vectored interrupts.

SP: reads 0 when the 74K core does not support sub-4Kbyte page sizes.

CDMM: reads 0 when the 74K core does not support the Common Device Memory Map.

SM: reads 0, the 74K core does not handle instructions from the "SmartM|PS" ASE.

TL: reads 1 if your coreis configured to do instruction trace.

2.1.4 The Config6 register

Config3 provides information about the presence of optional extensionsto the base M1PS32 architecture in addition to
those specified in Config2 and Config3.

Figure 2.5 Config6 Register Format
15 14 13 12 10 9 8 7 2 1 0

0 SPCD |SYND| [IFUPerfCll | NMRUP| NMRUD 0 JRCP|JRCD

25

SPCD disables performance counter clock shutdown. The primary use of this hit isto keep performance counters
alive when the coreisin sleep mode.

SYND disables Synonym tag update. By default, all synonym load misses will opportunistically update the tag so
that subsequent loads will hit at lookup.

IFUPerfCtl encodes IFU events that provide debug and performance information for the IFU pipeline.

NMRUP indicates that a Not Most Recently Used JTLB replacement scheme is present.
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NMRUD disables the Most Recently Used JTLB replacement scheme bit.
JRCP indicates that a JR Cache isimplemented.

JRCD indicates that JR Cache Prediction is enabled.

2.1.5 CPU-specific configuration — Config7

Config7 is packed with implementation-specific fields. Most of the time, you leave them aone (afew of them might
sometimes need to be set as required by your SoC designer). So we've left these registers defined in the al-CPO
appendix, in Section B.2.1 “The Config7 register”.

2.2 PRId register — identifying your CPU type

Thisregister identifies the CPU to software. 1t's appropriately printed as part of the start-up display by any software
telling the world about the CPU on start-up; but when portable software is configuring itself around different CPU
attributes, it's always preferable to sense those attributes directly — look in other Config registers, or perhaps use a
directed software probe.

Figure 2.6 Fields in the PRId Register
31 24 23 16 15 8 7 5 4 2 10

CoOpt ColD Imp

Major Minor | Patch

1 0x97

PRIA[CoOpt]: Whatever is specified by the SoC builder who synthesizes the core — refer to your SoC manual. It
should be a number between 0 and 127 — higher values are reserved by MIPS Technologies.

PRId[ColID]: Company ID, which in thiscaseis“1” for MIPS Technologies Inc.:

PRId[Imp]: Identifiesthe particular processor, which in this case is 0x97 for the 74K family. Any processor with differ-
ent CPO features must have anew PRId field.

PRId[RevV]: The revision number of the core design, used to index entriesin erratalists etc. By MIPS Technologies
convention the revision field is divided into three subfields: a major and minor number; with a nonzero "patch” revi-
sion number isfor arelease with no functional change. Core licensees can consult [ERRATA] for authoritative infor-
mation about the revision IDs associated with releases of the 74K core.

Thefollowing incomplete and not up-to-date table of historical revisionsis provided as a guide to program-
merswho don’t have [ERRATA] on hand:

Table 2.2 74K™® core releases and PRId[Revision] fields

Release PRId[Revision]

Identifier | Maj.min.patch/hex Description Date
20~ 1.0.0/0x20 First (GA) release of the 34K core September 30, 2005
21 2.1.0/0x44 MR1 release. Bug fixes, 8KB cache support. March 10, 2006
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Table 2.2 74K™® core releases and PRId[Revision] fields

220 2.2.0/0x48 Allow upto 9 TCs, dlias-free 64KB L1 D-cache option. | August 31, 2006
221 2.2.1/0x49 Enable use of MIPS SOC-it® L2 Cache Controller. October 12, 2006
23* 2.3.0/ 0x4c Lessinterlocks round cache instructions, relocatable January 3, 2007
reset exception vector location.
24 2.4.0/0x50 New UserLocal register, alias-proof |-cache hit-invalidate | October 31, 2007
operation, can wait with interrupts disabled, per-TC per-
formance counters.
25* 2.5.0/0x54 Erratafixes January, 2009
11+ 1.1.0/0x24 Errata fixes January, 2009
12+ 1.2.0/0x28 Feature updates: improved low power support, fast debug | July, 2009
channel, on-chip PDtrace buffers
20¢* 2.0.0/0x40 General availability of 24K core. March 19, 2004
30* 3.0.0/ 0x60 COP2 option improvements. September 30, 2004
32* 3.2.0/ 0x68 PDtrace available. March 18, 2005
34* 3.4.0/ 0x6c ISPRAM (I-side scratchpad) option added June 30, 2005
35* 3.5.0/0x74 8KB cache option December 30, 2005
36* 3.6.0/0x78 L2 support., 64K B alias-free D-cache option, option to July 12, 2006
have up to 8 outstanding cache misses (previous maximum
4).
37 3.7.0/0x7c Lessinterlocks round cache instructions, relocatable January 3, 2007
reset exception vector location.
40* 4.0.0/0x80 New UserLocal register, alias-proof |-cache hit-invalidate | October 31, 2007
operation, can wait with interrupts disabled.
41* 4.1.0/0x84 Errata fixes January, 2009
20~ 2.0.0/ 0x40 General availability of 24KE core. June 30, 2005
21 2.1.0/0x44 8KB cache option December 30, 2005
22* 2.2.0/0x48 L2 support., 64K B alias-free D-cache option, option to July 12, 2006
have up to 8 outstanding cache misses (previous maximum
4).
23* 2.3.0/ 0x4c Lessinterlocks round cache instructions, relocatable January 3, 2007
reset exception vector location.
24 2.4.0/ 0x50 New UserLocal register, alias-proof |-cache hit-invalidate | October 31, 2007
operation, can wait with interrupts disabled.
250 2.5.0/0x54 Erratafixes January, 2009
10* 1.0.0/0x20 Early-access release of 74K family RTL. January 31, 2007
200 2.0.0/0x40 First generally-available release of 74K family core. May 11, 2007
210 2.1.0/0x44 Canwait with interrupts disabled. October 31, 2007
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Chapter 3

Memory map, caching, reads, writes and translation

In this chapter:

e Section 3.1, "The memory map": basic memory map of the system.
e Section 3.3, "Reads, writes and synchronization”

*  Section 3.4, "Caches"

»  Section 3.6, "Scratchpad memory/SPRAM": optional on-chip, high-speed memory (particularly useful when
dual-ported to the OCP interface).

»  Section 3.8, "The TLB and translation”: how trandation is done and supporting CPO registers.
3.1 The memory map

A 74K core system can be configured with either a TLB (virtual memory trandation unit) or a fixed memory map-
ping.

A TLB-equipped sees the memory map described by the [M1PS32] architecture (which will be familiar to anyone
who has used a 32-bit MIPS architecture CPU) and is summarized in Table 3.1. The TLB gives you accessto afull
32-hit physical address on the system interface. More information about the TLB in Section 3.8, "The TLB and

trandation".
Table 3.1 Basic MIPS32® architecture memory map
Segment Virtual range What happens to accesses here?
Name
kuseg| 0x0000.0000-0x7FFF.FFFF |Theonly region accessible to user-privilege programs.

Mapped by TLB entries.

kseg0| 0x8000.0000-0x9FFF.FFFF |afixed-mapping window onto physical addresses
0x0000.0000-0x1FFF.FFFF. Almost invariably cache-
able - but in fact other choices are available, and are
selected by Config[K0], see Figure 2.1.

Accessible only to kernel-privilege programs.

ksegl| 0xA000.0000-0xBFFF.FFFF |afixed-mapping window onto the same physical
address range 0x0000.0000-0x 1FFF.FFFF as “ kseg0”
- but accesses here are uncached.

Accessible only to kernel-privilege programs.

kseg2| 0xC000.0000-0xDFFF.FFFF |Mapped through TLB, accessible with supervisor or

sseg kernel privilege (hence the alternate name).
kseg3| 0xE000.0000-0xFFFF.FFFF |Mapped through TLB, accessible only with kernel
privileges.
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3.2 Fixed mapping option

With the fixed mapping option, virtual address ranges are hard-wired to particular physical address windows, and
cacheability options are set through CPO register fields as summarized in Table 3.2:

Table 3.2 Fixed memory mapping

Segment Virtual range Physical range Cacheabhility
Name bits from
kuseg| 0x0000.0000-0x7FFF.FFFF | 0x4000.0000-0xBFFF .FFFF |Config[KU]
ksegO| 0x8000.0000-0x9FFF.FFFF | 0x0000.0000-0x1FFF.FFFF |Config[KO]
ksegl| 0xA000.0000-0xBFFF.FFFF | 0x0000.0000-0x1FFF.FFFF |(uncached)
kseg2/3| 0xC000.0000-0xFFFF.FFFF | 0xC000.0000-0xFFFF.FFFF |Config[K23]

Even in fixed-mapping mode, the cache parity error status bit Status[ERL] still hasthe effect (required by the MIPS32
architecture) of taking over the normal mapping of “kuseg”; addressesin that range are used unmapped as physical
addresses, and all accesses are uncached, until Status[ERL] is cleared again.

3.3 Reads, writes and synchronization

The MIPS architecture permits implementations a fair anount of freedom as to the order in which loads and stores
appear at the CPU interface. Most of the time anything goes: so long as the software behaves correctly, the MIPS
architecture places few constraints on the order of reads and writes seen by some other agent in a system.

3.3.1 Read/write ordering and cache/memory data queues in the 74K™ core

To understand the timing of loads and stores (and sometimes instruction fetches), we need to say alittle more about
theinternal construction of the 74K core. In order to maximize performance:

» Loadsare non-blocking: execution continues “through” aload instruction, and only stops when the program tries
to use the GPR value it just loaded.

* Writesare*” posted” : awrite from the coreis put aside (the hardware stores both address and data) until the CPU
can get access to the system interface and send it off. Even writes which hit in the cache are posted, occurring
after the instruction graduates.

» Cacheréfills are handled after the “ missing” load has graduated: most of the time the CPU will quite soon get
hung up on an instruction which needs the data from the miss, but thisis not necessarily the case. The CPU runs
on after the load instruction, with the memory pipeline logic remembering and handling the load completion.

All of these are implemented with “queues’, called the LDQ, WBB and FSB (for “fill/store buffer” — it’s used both
for writes which hit and for refills after a cache miss) respectively. All the queues handle data first-come, first served.
The WBB and FSB queues need to be snooped - a subsequent store to alocation with aload pending had better not be
allowed to go ahead until the original load data has reached the cache, for example. So each queue entry is tagged
with the address of the data it contains.

An LDQ entry isrequired for every load that missesin the cache. This queue allows the CPU to keep running even
though there are outstanding loads. When the load datais finally returned from the system, the LDQ and the main
core logic act together to write this datainto the correct GPR (which will then free up any instructions whoseissueis
blocked waiting for this data).
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The WBB (Write Back Buffer) queue holds data waiting to be sent out over the system interface, either from D-cache
writebacks or uncached/write-through store instructions.

FSB (Fill Store buffer) queue entries are used to hold data that is waiting to be written into the D-cache. An FSB entry
gets used during a cache miss (when it holds the refill data), or awrite which hitsin the cache (when it holds the data
the CPU wrote). Loads and stores snoop the FSB so that accesses to lines “in flight” can be dealt with correctly.

All this has a number of consequences which may be visible to software:

*  Number of non-blocking loads which may be pending: the CPU has nine LDQ entries. That limits the number of
outstanding loads.

* Hit-under-miss: the D-cache continues to supply data on a hit, even when there are outstanding misses with data
in flight. FSB entries remember the in-flight data. So it is quite normal for aread which hitsin the cache to be
“completed” - in the sense that the data reaches aregister - before a previous read which missed.

*  Write-under-miss: the CPU pipeline continues and can generate external store cycles even though aread is pend-
ing, so long as WBB dlots are available. The 74K core’s “OCP’ interface is hon-blocking too (reads consist of
separate address and data phases, and writes are permitted between them), so this behavior can often be visible to
the system.

*  Missunder miss: the 74K core can continue to run until the pending read operations exhaust FSB or LDQ entries.
More often, of course, it will try to use the data from the pending miss and stall before it gets that far.

» Coreinterface ordering: at the coreinterface, read operations may be split into an address phase and a later data
phase, with other bus operationsin between.

The 74K core - asis permitted by [MIPS32] - makes only limited promises about the order in which reads and
writes happen at the system interface. In particular, uncached or write-through writes may be overtaken by cache
line reads triggered by aload/store cache miss later in sequence. However, uncached reads and writes are always
presented in their program sequence. When some particular program needs to do things “really in order”, the
sync instruction can help, as described in the next section.

Cache management operations interact with several queues: see Section 3.4.6 “L1 Cache instruction timing”.

3.3.2 The “sync” instruction in 74K™ family cores

If you want to be sure that some other agent in the system sees apair of transactions to uncached memory in the order

of the instructions that caused them, you should put a sync instruction between the instructions. Other M1PS32/64-

compliant CPUs may reorder loads and stores even more; portable code should use sync’.

But sometimesit’s useful to know more precisely what sync does on a particular core. On 74K sync:

» Stallsgraduation (preventing any later load/store from graduating and becoming externally visible) until all
pending reads, cached writes and OCP writes are completed — that is, until the FSB and WBB are empty;

* Insome systems the CPU will also generate a synchronizing transaction on the OCP system interface if
Config7[ES] bit is set®. Not all systems do this. See Section B.2.1 “The Config7 register” for more details.

Note that sync is described as only working on “uncached pages or cacheable pages marked as coherent”. But sync also
acts as a synchronization barrier to the effects produced by routine cache-manipulation instructions - hit-writeback and hit-
invalidate.
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A new set of lightweight SY NC instructions have been introduced. As compared to the completion barrier, the order-
ing barrier isalighter-weight operation as it does not require the specified instructions before the SYNC to be already

completed. Instead it only requires that those specified instructions which are subsequent to the SYNC in the instruc-
tion stream are never re-ordered for processing ahead of the specified instructions which are before the SYNC in the

instruction stream. This potentially reduces how many cycles the barrier instruction must stall before it completes.

Because the core processes |oads and storesin order, ordering barriers are much lighter weight. Details about the set
of supported lightweight SYNC instructions can be found in the Software User’s Reference Manual

3.3.3 Write gathering and “write buffer flushing” in 74K™ family cores

We mentioned above that writes to the system (whether uncached writes or cache write-backs) are performed some-
what lazily, the write being held in the WBB queue until a convenient moment. That can have two system-visible
effects:

»  Writes can happen later than you think. Your write will happen before the next uncached read or write, but that’s
all you know. And your write might still be posted somewhere in a system controller, unless you know your sys-
tem is built to prevent it. Sometimesiit's better to code a dummy uncached read from a nearby location (which
will “flush out” buffered writes on pretty much any system).

» |If your cacheis configured for write-through, then cached writes to locationsin the same “ cache line”-sized
chunk of memory may be gathered - stored together in the WBB, and then dealt with by a single “wider” OCP
write than the one you originally coded. Sometimes, thisis what you want. When it isn’t, put a sync between
your successive writes. Regular uncached writes are never merged, but specia “ uncached accelerated” writes
may be — see Section 3.4.3 below.

3.4 Caches

Most of thetime cachesjust work and are invisible to software... though your programs would go twenty times slower
without them. But this section is about when caches aren’t invisible any more.

Like most modern MIPS CPUs, the 74K core has separate primary |- and D-caches. They are virtually-indexed and
physically-tagged, so you may need to deal with cache aliases, see Section 3.4.9, "Cache aiases'. The design pro-
vides for 16K byte, 32Kbyte or 64K byte caches; but the largest of those are likely to come with some speed penalty.
The 74K core's primary caches are 4-way set associative.

Your 74K core can optionally be built with aL2 (level 2 or secondary) cache. see section below for details.

But don't hard-wire any of thisinformation into your software. Instead, probe the Config1 register defined by
[MIPS32] (and described in) to determine the shape and size of the L1 and any L2 cache.

3.4.1 The L2 cache option

The L2 cacheisan option available to your SoC builder. Basic facts and figures:

* Thel2 cacheis attached to the core’s standard 64-bit OCP system interface, and when you fit it everything else
is attached to the core through the L2 cache, which has a system-side interface for that purpose. The core-side

8. Thiswill bearead with the signal OC_MReqInfo[3] set. Handling of this transaction is system dependent, but atypical sys-
tem controller will flush any external write buffers and complete all pending transactions before telling the CPU that the
transaction is completed. Ask your system integrator how it worksin your SoC.
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interface is enhanced and augmented to support cache instructions targeted at the L2, and to carry back perfor-
mance counter information and so on.

» Thel2 ssize can be 128K bytes, 256K bytes, 512K bytes or 1Mbyte. However, there are options which allow the
SoC builder to have one or more of the ways of the cache memory array visible as hormal system memory
instead. There's very little in this manual about that option. — see “MIPS® PDtrace™ Interface and Trace
Control Block Specification”, MIPS Technol ogies document MD00439. Current revision is 4.30: you need
revision 4 or greater to get multithreading trace information. [L2CACHE].

» Thel2 cacheisindexed and tagged with the physical address, so is unaffected by cache aliases.

» Cachelinesareeither 32 byteslong (matching the L1 caches) or 64 bytes. The L2 cache's memories are accessed
256 hits at atime internally, though it has 64-bit interfaces.

* It can be configured with 4-way or 8-way set-associative organization. In a4-way cache the line replacement pol-
icy is“least recently used” (LRU); true LRU isimpractical for an 8-way set associative cache, so something sim-
pler (a“pseudo-LRU") is used.

»  The cache has an option for error detection and correction. 1-bit data errors can be corrected and all 2-bit errors
detected with an 8-bit-per-doubleword ECC field. Check bits are provided on cache tags, too. If your L2 hasECC
fitted, ErrCtl[L2P] will be writable — see Section 3.4.17 “ErrCtl register” for details.

* Thecacheiswrite-back but does not alocate aline on awrite miss (write missdatais just sent directly to the sys-
tem memory). It is write-through for memory regions which request that policy -- see Section
3.4.2 “Cacheability options” for details.

»  TheL2 cache can run synchronously to the CPU core, but (particularly for memory arrays larger than
256K bytes) would typically then be the critical path for timing. It will more often usea 1:2 or 2:3 clock ratio.
The L2 sfar-side OCP interface may run at any of awide range of ratios from the L2 clock down.

* Inan effort to keep everything going the cache manages multiple outstanding transactions (it can handle as many
as 15 outstanding misses). Misses are resolved and responses sent as they happen, not in the order of presenta-
tion.

» Latency: the L2 logic allows the memory access to be pipelined, areasonable choice for larger or slower arrays:
ask your SoC builder. The L2 delivers hit datain a burst of four 64-bit doublewords. The first doubleword
appears after 9 or 10 L2 clocks (10 for pipelined-array systems) and the rest of the burst follows on consecutive
clocks. Added to thisis some extra time taken for the original L1 missto be discovered, synchronizing to the L2
clock, and returning the data to the CPU: typically, add 5 CPU clocks.

An L2 missis slightly more expensive than an L1 miss from the same memory, since we don't start the memory
access until we've discovered that the dataisn’t in the L2. The L2 memory interface can be configured to be 64-
bit or 256-bit wide. An L2 misswill deliver miss datato the CPU corein burst of four 64-bit doublewords
.Because the CPU connects to the rest of the system through the L2 cache, it also adds 4 L2 cyclesto the latency
of al transactions which bypassthe L2.

»  ThelL2 cache requires software management, and you can apply the same cache instructionsto it astotheL1 D-
cache.

3.4.2 Cacheability options

Any read or write made by the 74K core will be cacheable or not according to the virtual memory map. For addresses
translated by the TLB the cacheability is determined by the TLB entry; the key field appears as EntryLo[C]. Table 3.3
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shows the code values used in EntryLo[C] - the same codes are used in the Config entries used to set the behavior of
regions with fixed mappings (the latter are described in Table 3.2.)

Some of the undefined cacheability code values are reserved for use in cache-coherent systems.

Table 3.3 Cache Code Values

Code | Cached? How it Writes Notes
0 cached |write-through An unusual choice for a high-speed CPU, probably only for debug
2 uncached
3 cached |writeback All normal cachesble areas
7 uncached |“Uncached Accel- | Unusua and interesting mode for high-bandwidth write-only hardware; see
erated” Section 3.4.3, "Uncached accelerated writes'. Such writes just bypass the L2
cache, if thereisone.

3.4.3 Uncached accelerated writes

The 74K core permits memory regionsto be marked as “ uncached accelerated”. Thistype of region is useful to hard-
warewhich is “write only” - perhaps video frame buffers, or some other hardware stream. Sequential word storesin
such regions are gathered into cache-line-sized chunks, before being written with a single burst cycle on the CPU
interface.

Such regions are uncached for read, and partial-word or out-of-sequence writes have “unpredictable” effects - don't
do them. The burst write is normally performed when software writesto the last |ocation in the memory block or does
an uncached-accel erated write to some other block; but it can also be triggered by a syne instruction, a

pref nudge, amatching load or any exception. If the block is not completely written by the timeit’s pushed out, it
will be written using a series of doubleword or smaller write cycles over the 74K core's 64-hit memory interface.

If you have an L2 cache, regions marked as “uncached accelerated” are L2-uncached.

3.4.4 The cache instruction and software cache management

The 74K core's caches are not fully “coherent” and require OS intervention at times. The cache instruction isthe
building block of such OS interventions, and is required for correct handling of DMA data and for cache initidiza-
tion. Historically, the cache instruction also had a role when writing instructions (unless the programmer takes some
action, those instructions may only be in the D-cache whereas you need them to be fetched through the I-cache when
the time comes). But where possible use synci for that purpose, as described in Section 3.4.8 “Cache management
when writing instructions - the “synci” instruction”.

A cache operation instruction iswritten cache op, addr where addr isjust an address format, written as for aload/
store instruction. Cache operations are privileged and can only run in kernel mode (synci worksin user mode,
though). Generally we're not showing you instruction encodings in this book (you have software tools for that stuff)
but in this caseit’s probably necessary, so take alook at Figure 3.1.

31 26 25 21 20 18 17 16 15 0
cache base op offset
47 register what todo | which cache

Figure 3.1 Fields in the encoding of a cache instruction
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The op field packs together a 2-bit field which selects which cache to work on:

0 L1I-cache

1 L1 D-cache

2 reserved for L3 cache
3 L2 cache

and then adds a 3-bit field which encodes a command to be carried out on the line the instruction selects.

Before we list out the individual commands in Table 3.4; the cache commands come in three flavors which differ in
how they pick the cache entry (the “cache line”) they will work on:

Hit-type cache operation: presents an address (just like aload/store), which islooked up in the cache. If thisloca-
tion isin the cache (it “ hits") the cache operation is carried out on the enclosing line. If thislocation is not in the
cache, nothing happens.

Address-type cache operation: presents an address of some memory data, which is processed just like a cached
access - if the cache was previoudly invalid the data is fetched from memory.

Index-type cache operation: as many low bits of the address as are required are used to select the byte within the
cache line, then the cache line address inside one of the four cache ways, and then the way. You have to know the
size of your cache (discoverable from the Configl-2 registers, see) to know exactly where the field boundaries
are, but your address is used something like this:

31 5 4 0

| Unused | Way1-0| Index | byte-withi n-Iine|

Beware: the MIPS32 specification leaves CPU designers to choose whether to derive the index from the virtual or
physical address. Don't leave it to chance: with index-type operations use a kseg0 address, so that the virtual and
physical address are the same (at least apart from some high bits which certainly won't affect any cache index).
This also avoids a potential pitfall related to cache aliases.

The L1 caches are 4-way set-associative, so datafrom any given address has four possible cache locations - same
index, different value of the “Way1-0" bits as above.

Don't define your own C names for cache manipulation operation codes, at least not if you can use a standard header
file from MIPS Technol ogies on open-source terms: see [m32¢0 h].

3.4.5 Cache instructions and CPO cache tag/data registers

MIPS Technologies' cores use different CPO registersfor cache operations targeted at different caches. That's already
quite confusing, but to make it more interesting these registers have somehow got different names — those used here
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3.4 Caches

Value

Command

What it does

0

Index invalidate

Setsthelineto “invalid”. If it'sa D-cache or L2 cache linewhich isvalid and
“dirty” (has been written by CPU since fetched from memory), then write the con-
tents back to memory first. Thisisthe best and simplest way to invalidate an |-
cache when initializing the CPU - though if your cache is parity-protected, you
also need to fill it with good-parity data, see Fill below.

Thisinstruction is not suitable for initializing caches, where it might cause ran-
dom write-backs: seethe Index Store Tag type below.

Index Load Tag

Read the cache line tag bits and addressed doubleword data into the TagLo etc
registers (see Table 3.1 for names). Operation for diagnostics and geeks only.

Index Store Tag

Set the cache tag from the TagLo registers.
To initialize awritable cache from an unknown state, set the TagLo registersto
zero and then do thisto each line.

Index Store Data

Write cache-line data. Not commonly used for caches, but it is used for manage-
ment of scratchpad RAM regions described in Section 3.6 “ Scratchpad memory/
SPRAM”.

Hit invalidate

hit-type invalidate - do not writeback the data even if dirty. May cause dataloss
unless you know the lineis not dirty.

Certain CPUsimplement aspecial form of the I-side hit invalidate, where multiple
searches are done to ensure that any line matching the effective physical addressis
invalidated (evenif it doesn’t match the supplied virtual addressfor page color) —
see Section 3.4.9 “Cache aliases’ below.

Sorry, different meanings for code “ 5" on L1 |-cache.

Writeback invalidate

On the L1D-cache or L2 cache: (hit-type operation) invalidate the line but only
after writing it back, if dirty. Thisisthe recommended way of invalidating a writ-
able linein arunning cache.

Fill

Onan L1 I-cache: (address-type operation) fill a suitable cache line from the data
at the supplied address - it will be selected just asif you were processing an |-
cache miss at this address.

Used to initialize an |-cache line's data field, which should be done when setting
up the CPU when the cache is parity protected.

Hit writeback

If thelineis dirty, write it back to memory but leave it valid in the cache. Used in
arunning system where you want to ensure that data is pushed into memory for
access by aDMA device or other CPU.

Fetch and Lock

An address-type operation. Get the addressed data into the same line as would be
used on aregular cached reference (if the datawasn’t already cached that might
involve writing back the previous occupant of the cache line).

Then lock the line. Locked lines are not replaced on a cache miss.

It stays locked until explicitly invalidated with a cache

An attempt to lock the last entry available at some particular index fails silently.
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and in C header files. | hope Table 3.1 helps. In the rest of this document we'll either use the full software name or
(quite often) just talk of TagLo without qualification.:

Table 3.1 Caches and their CPO cache tag/data registers

Cache CPO Registers CPO number
ITagLo 28.0
11 ceche ITagHi 29.0
IDatalLo 28.1
IDtataHi 29.1
DTagLo 28.2
L1 D-cache DTagHi 29.2
DDatalo 28.3
L23TaglLo! 28.4
L2 cache L23DatalLo 28.5
L23DataHi 29.5

1. In past versions of thismanual L23TagLo wasknown as
“STagLo”, and so on. But this hame is more mnemonic.

3.4.6 L1 Cache instruction timing

Most CPO instructions are used rarely, in code which is not timing-critical. But an OS which has to manage caches
around 1/O operations or otherwise may haveto sit in atight loop issuing hundreds of cache operations at atime, so
performance can be important. Firstly, any D-side cache instruction will check the FSB queue (as described in
Section 3.3 “Reads, writes and synchronization”) for potentially matching entries. The “potential match” check uses
the cache index, and avoids taking any action for most irrelevant FSB activity. But on a potential match the cacheop
waits (stalling the memory pipeline) while any pending cache refills happen, and while any dirty lines evicted from
the cache are sent out at |east to the CPU’s write buffer. Typically, thiswill not take more than afew clocks, and will
only need to be done once for a stream of cacheops.

In the 74K core, the whole cacheop is executed in the memory pipeline, after the cache instruction graduates. All
cache instructions except for “index load...” run through graduation without delay — and in particular, any stream of
hit-type operations which missin the cache can run 1-per-clock.

A younger instruction which has run ahead of the cacheop is checked while it waits for graduation; if it might run
incorrectly because of an incomplete cacheop, the younger instruction is cancelled and the whole execution unit
backed off so it can be re-issued from scratch (an EU “replay” — expensive but infrequent).

3.4.7 L2 cache instruction timing

The L2 cache run synchronously with the CPU but at a configurable clock ratio. The L2 operations will be signifi-
cantly slower than L1 versions even at the same clock ratio. Exactly how slow is dependent on the performance of the
memory blocks used to build your L2 cache and the L2 clock ratio.

3.4.8 Cache management when writing instructions - the “synci” instruction

The synci instruction (new to the MIPS32 Release 2 update) provides a clean mechanism - available to user-level
code, not just at kernel privilege level - for ensuring that instructions you've just written are correctly presented for
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execution (it combines a D-cache writeback with an I-cache invalidate). You should useit in preference to the tradi-
tional alternative of a D-cache writeback followed by an I-cache invalidate.

synci does nothing to an L2 cache — the L2 cache is unified, and there’s no need to do anything special thereto
make data visible for instruction fetch.

3.4.9 Cache aliases

The 74K has L1 cacheswhich are virtually indexed but physically tagged. Since it's quite routine to have multiple
virtual mappings of the same physical data, it's possible for such a cache to end up with two copies of the same data.
That becomes troublesome:

*  When you want to write the data: if alineis stored in two places, you'll only update one of them and some data
will belost (at least, there’'s a 50% chance it will belost!) Thisis obviously disastrous: systems generally work
hard to avoid aliases in the D-cache.

»  When you want to invalidate the line in the cache: there’s a danger you might invalidate one copy but not the
other. This (more subtle) problem can affect the I-cache too.

It can be worked around. There's no problem for different virtual mappings which generate the same cache index;
those lines will all compete for the 4 ways at that index, and then be correctly identified through the physical tag.

The 74K CPU’s smallest page size is 4K bytes, that's 212 bytes. The paged memory translation means that the low 12
bits of avirtual addressis always reproduced in the physical address. Since a 16K byte, 4-way set-associative, cache
getsitsindex from the low 12 bits of the address, the 16K byte cache is alias-free. In general, you can’t get aliases if
each cache “way” is ho larger than the page size.

In 32K byte and 64K byte caches, one or two top bits used for the index are not necessarily the same as the correspond-
ing hits of the physical address, and aliases are possible. The value of the one or two critical virtual address bitsis
sometimes called the page color.

It's possible for software to avoid aliasesif it can ensure that where multiple virtual mappingsto a physical page exist,
they all have the same color. An OS can do that by enforcing virtual-memory alignment rules (to at least a 16K byte
boundary) for shareable regions. It turns out thisis practicable over alarge range of OS activities. sharing code and
libraries, and deliberate interprocess shared memory. It is not so easy to do in other circumstances, particularly when

pages to be mapped start their life as buffers for some disk or network operation®...

So the 74K contains logic to make a 32K byte or 64K byte D-cache alias-free (effectively one or two index bits are
from the physical address, and used late in the cache access process to maintain performance). Thislogic is abuild
option, and Config7[AR] flag should read 1 if your was built to have an alias-free D-cache.

A 32K byte or 64Kbyte I-cacheis subject to aliases. It's not immediately obvious why this matters; you certainly can’t
end up losing writes, as you might in an alias-prone D-cache. But |-cache aliases can |lead to unexpected events when
you deliberately invalidate some cache content using the cache instruction. An invalidation directed at one virtual
address translated to a particular physical line may leave an undesirable valid copy of the same physical dataindexed
by avirtual alias of adifferent color. To solve this, some 74K s are built to strengthen hit-type I-cache invalidate
instructions (those include hit-type cache instructions and the synci instruction), so as to guarantee that no copy of
the addressed physical line remainsin the cache. Thisfacility isavailable if the Config7[IAR] bit reads 1; but if it's

9. There'safair amount of rather ugly code in the MIPS Linux kernel to work around aliases. D-cache aliases (in particular) are
dealt with at the cost of quite alarge number of extrainvalidate operations.
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available but your software doesn’t need it, you can restore “legacy” behavior by setting Config7[IVA] to 1. Refer to
Section B.2.1 “The Config7 register” for details.

The MIPS Technology supplied L2 cache (if configured) is physically indexed and physically tagged, so does not suf-
fer from aliases.

3.4.10 Cache locking

[MIPS32] provides for amechanism to lock a cacheline so it can't be replaced. This avoids cache misses on one par-
ticular piece of data, at the cost of reducing overall cache efficiency.

Caution: in complex software systemsit is hard to be sure that cache locking provides any overall benefit - most often,

it won't. You should probably only use locking after careful measurements have shown it to be effective for your
application.

Lock alineusing acache FetchAndLock (it will notinfact re-fetch alinewhich isalready inthe cache). Unlock

it using any kind of relevant cache “invalidate” instruction'® - but note that synei won't do the job, and should not
be used on data/instruction locations which are cache-locked.

3.4.11 Cache initialization and tag/data registers

The cache tag and data registers — listed in Table 3.1 above — are used for staging tag information being read from
or written to the cache. [MIPS32] declares that the contents of these registers is implementation dependent, so they
need some words here.

The“I-" registers are used for the I-cache and the “D-" registers for the D-cache'’. Some other MIPS CPUs use the
same staging register(s) for all caches, and even simpleinitialization software written for such CPUsis hot portableto
the 74K core.

Before getting into the details, note that it's a strong convention that you can write all-zeros to both TagLo registers
and then use cache IndexStoreTag to initialize acache entry to alegitimate (but empty) state. Your cache ini-
tialization software should rely on that, not on the details of the registers.

Only diagnostic and test software will need to know details; but Figure 3.2 shows all the fields (there’'sno “D” -for-
dirty bit in 74K cores, where access to the dirty bitsis done separately, see Section B.3.1 “Different views of ITagL o/
DTaglLo":

Figure 3.2 Fields in the TagLo Registers
12 11 10 9 8 7 6 5 4 2 1 0

PTagLo U 0O ([V|E|L 0 P1 PO

The cache tag registers ITagLo and DTagLo can be used in special modes, controlled by bitsin the ErrCtl register,
where the register layout changes completely. Set ErrCtl[SPR] for access to SPRAM control fields, as described in
Figure 3.8 and its notes below. Set ErrCtI[WST] or ErrCtI[DYT] for diagnostic-only access to the “way select” or “dirty
bit” sections of the cache control memory, as described in Section B.3.1 “Different views of ITagLo/DTagLo”. But
let’slook at the standard fields first:

10.

11.

It's possible to lock and unlock lines by manipulating values in the TagLo register and then using a
cacheIndex_Load_Tag instruction... but highly non-portable and likely to cause trouble. Probably for diagnostics only.
Some documentation just numbers the TagLo registers, starting from 0 and in the same order as their CPO numbering: see
Table 3.1 in this chapter.
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PTagLo: the cache addresstag - aphysical address because the 74K core's caches are physically tagged. It holds bits
31-12 of the physical address - the low 12 bits of the address are implied by the position of the data in the cache.

x: afield not described for the 74K core but which might not always read zero.

V: 1 when this cache lineisvalid.

E: awaysO

L: 1 when this cache line islocked, see Section 3.4.10, "Cache locking".

PO: parity bit for tag fields other than the TagLo[D] bit, which is actually held separately in the "way-select” RAM.
When you use the TagLo register to write a cache tag with cache IndexStoreTag the TagLo[P]: bit is generally
not used - instead the hardware puts together your other fields and ensures it writes correct parity. However, it is pos-

sible to force parity to exactly this value by first setting ErrCtI[PO].

3.4.12 L23TagLo Regiser

Thisregister in the 74K core isimplemented to support access to external L2 cachetags viacache instructions. The
definition of the fields of this 32 bit register are defined by the SoC designer. Refer to the section on L2 Transactions

in the document ““MIPS32® 74K Co'€Trade processor core Family Integrator’s Guide, MD00499” for further informa-
tion on using this register.

Figure 3.3 L23TagLo Register Format

31 0

DATA

3.4.13 L23DatalLo Register

On 74K family cores, test software can read or write cache data using a cache index load/store data instruction.
Which word of the cache line is transferred depends on the low address fed to the cache instruction.

Figure 3.4 L23DatalLo Register Format

31 0

DATA

Table 3.5 L23Datalo Register Field Description

Fields
Read /
Name Bit(s) Description Write Reset State
DATA 31:0 Low-order data read from the cache data array. R/W Undefined

3.4.14 L23DataHi Register

On 74K family cores, test software can read or write cache data using a cache index |oad/store data instruction.
Which word of the cache lineis transferred depends on the low address fed to the cache instruction.

Programming the MIPS32® 74K™ Core Family, Revision 02.14 40



Memory map, caching, reads, writes and translation

41

Figure 3.5 L23DataHi Register Format

31 0

DATA

Table 3.6 L23DataHi Register Field Description

Fields
Read /
Name Bit(s) Description Write Reset State
DATA 310 High-order data read from the cache data array. R/W Undefined

3.4.15 TaglLo registers in special modes

The usual TagLo register fields are aview of the underlying cache tags. But load-tag/store tag cacheops act differently
in special modes activated by setting bitsin ErrCtl (see Section 3.4.17 “ErrCtl register” for details):

e When ErrCtl[SPR] is set, the L1 TagLo registers are used to configure scratchpad memory, if fitted. That's
described in Section 3.6 “ Scratchpad memory/SPRAM” below, where you'll find afield diagram for the TagLo
registersin that mode.

e When ErrCti[WST] or ErrCti[DYT] is set, the tag registers are used to provide diagnostic/test software with direct
read-write access to the “way select RAM” or “dirty RAM” respectively — parts of the cache array. Thisis
highly CPU-dependent and is described in Section B.3 “Registers for Cache Diagnostics’.

3.4.16 Parity error exception handling and the CacheErr register

The 74K core does not check parity on data (or control fields) from the external interface - so this section really isjust
about parity protection in the cache. It's a build-time option, selected by your system integrator, whether to include
check bitsin the cache and logic to monitor them.

At asystem level, acache parity exception isusually fatal - though recovery might be possible sometimes, whenitis
useful to know that the exception is taken in “error mode” (that is, Status[ERL] is set), the restart addressisin
ErrorEPC and you can return from the exception with an eret — it uses ErrorEPC when Status[ERL] is Set.

But mainly, diagnostic-code authors will probably find the CacheErr register’s extrainformation useful.

Figure 3.6 Fields in the CacheErr Register
31 30 29 28 27 26 25 24 23 22 21 19 18 17 16 0

ER| EC | ED | ET |ES|EE|EB | EF |SP| EW | Way DR| 0O Index

ER: wasthe error on an I-fetch (0) or on data (1)? Applicable only to L1 cache errors.
EC: in L1 cache (0) or L2-or-higher cache (1)?

ED,ET: 1 for error in data field/tag field respectively.

ES: Error source, Not Supported.

EE: Error external, Not Supported.
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EB: 1if dataand instruction-fetch error reported on same instruction, which is unrecoverable. If so, the rest of the regis-
ter reports on the instruction-fetch error.

OnanL2error: 1if an error occurred in more than one of the cache's memory arraysif EC is also set— the hardware
manual [SUM] renames this field as CacheErr[EM]. The rest of the register can only reflect information about one of
the errors: it showstag errors as highest priority, then data, then way-select.

EF: unrecoverable (fatal) error (other than the EB type above). Some parity errors can be fixed by invalidating the cache
line and relying on good data from memory. But if this bit is set, all islost... It's one of the following:

1. Linebeing displaced from cache (*victim”) has atag parity error, so we don’'t know whether to write it back,
or whether the writeback location (which needs a correct tag) would be correct.

2. Thevictim’'stag indicates it has been written by the CPU since it was obtained from memory (thelineis
“dirty” and needs awrite-back), but it has a data parity error.

3. Writeback store miss and CacheErr[EW] error.

4. At least one more cache parity error happened concurrently with or after this one, but before we reached the
relative safety of the cache parity error exception handler.

If the EC hit is set this bit isreferring to the errorsin L2 (external) cache.
SP: error affecting a scratchpad RAM access, see Section 3.6, "Scratchpad memory/SPRAM" below.

EW: parity error on the “dirty” (cache modified) or way-selection bits. This means|oss of LRU information, which —
most of the time — isrecoverable.

Way: the way-number of the cache entry where the error occurred. Caution: for the L1 caches (which are no more than
4-way set associative) thisisatwo-hit field. But an L2 cache might be more highly set-associative, and then thisfield
grows down. In particular, MIPS (possibly 8-way set associative) L2 cache uses a 3-bit Way field as shown.

DR: A 1 bit indicates that the reported error affected the cache line "dirty" bits.

Index: the index (within the cache way) of the cache entry where the error occurred... except that the low bits are not
meaningful. Theindex isaligned asif it's a byte address, which is good because that’s what Index-type cache
instructions need. It resolves the failing doubleword for adata error, or just the failing line for atag error. We've
shown a 14-bit field, because that’s large enough to provide the index for the 74K core’s largest configurable (4 ways
by 16KB) L1 cache option.

Two other fields are related to the processing of cache errors. Other implementations have laid claim to all of the bits
in this register, so these bits were relegated to the ErrCtl register. The FE and SE bitsin that register are used to detect
nested cache errors and are described in the next section.

If you want to study this error further, you'll probably use an index-type cache instruction to read out the tags and/

or data. The cacheinstruction’s “index” needs the way-number bits added to CacheErr[Index]’s contents; see Figure
3.1 and its notes above for how to do that.

3.4.17 ErrCitl register

Thisregister hastwo distinct roles. It contains “mode bits’ which provide different views of the TagLo registerswhen
they’'re used for access to internal memory arrays and cache diagnostics. But it also controls parity protection of the
caches (if it was configured in your corein thefirst place).
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Figure 3.7 Fields in the ErrCtl Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 12 11 43 0
PE|PO|WST|SPR|PCO|ITC|LBE|WABE| L2P |PCD|DYT| SE | FE 0 Pl PD
0 0o 0 0 O O 0 ORI )

Two fields are ‘overflow’ from the CacheErr register and relate to the error state:

FE/SE: Used to detect nested errors. FE (FirstError) is set on any cache error. SE (Second Error) is set when an error is
seen and FE is set. Software should clear FE once it has logged enough error information that taking a second error
will not be fatal.

Therest of the fields can be summarized as such: running software should set just the parity enable (PE) bit to enable
cache parity checking as required, and leave it zero otherwise. The fields are as follows:

PE: 1 to enable cache parity checking. Hard-wired to zero if parity isn't implemented.

PO: (parity overwrite) - set 1 to set the parity bit regardless of parity computation, which isonly for diagnostic/test pur-
poses.

After setting this bit you can use cache IndexStoreTag to Set the cache data parity to the value currently in
ErrCti[PI] (for I-cache) or ErrCtl[PD] (for D-cache), while the tag parity is forcefully set from TagLo[P].

WST: test mode for cache IndexLoadTag/cache IndexStoreTag instructions, which then read/write the
cache'sinternal "way-selection RAM" instead of the cache tags.

SPR: when set, index-type cache instructions work on the scratchpad/SPRAM, if fitted - see Section 3.6, " Scratchpad
memory/SPRAM".

P1/PD: parity bits being read/written to caches (I- and D-cache respectively).

LBE, WABE: field indicating whether a bus error (the last one, if there's been more than one) was triggered by aload or
awrite-allocate respectively: see below. Where both aload and write-allocate are waiting on the same cache-line
refill, both could be set. These hits are “ sticky”, remaining set until explicitly written zero.

L2P: Controls ECC checking of an L2 cache, if it'sfitted and has that capability.

For backward-compatibility, you only set L2P when you want to make a different error-checking choice at the L1 and
L2 levels. So L2 error checking is enabled if ErrCtl[PE,L2P] == 01 or ErrCtl[PE,L2P] == 10.

PCD: when set 1, cache StoreData does not update I-cache precode bits, nor their parity. Thisisfor deep diagnostic
only.

DYT: set 1 to arrange that cache |oad/store data operations work on the “dirty array” — the slice of cache memory
which holds the “dirty” bits.

3.5 Bus error exception

43

The CPU’s"“OCP” hardware interface rules permit a slave device attached to the system interface to signal back when
something has gone wrong with aread. This should not be used to report aread parity error; if parity is checked exter-
nally, it would have to be reported through an interrupt. Typically abus error means that some subsystem hasfailed to
respond. Bus errors are not signalled on an OCP write cycle, and (if they were) the 74K core ignores them.
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Instruction bus error exceptions are precise (when the exception happens EPC always points to the instruction where
fetch failed). But a data-side bus error is usually caused by aload, and the (non-blocking) load which caused it may
have happened along time before the busy cycle finishes and the error is signalled. So abus error exception caused by
aload or store isimprecise; EPC does not necessarily (or even usually) point to the instruction causing the memory
read..

If software knows that a particular read might encounter a bus error - typically it’s some kind of probe - it should be
careful to stall and wait for the load value immediately, by reading the value into a register, and make sure it can han-
dleabus error at that point.

Thereisan obscure corner case. The 74K core’'s D-cacheis“write-allocate”: so awrite which missesin the cache will
trigger aread, to fill the cache line ready to receive the new data. If you're unlucky enough to get a bus error on that

read-for-refill, the bus error will be associated with astore. After abus error you can look at ErrCt[LBE]/ErrCtIWABE]
to see whether the error was caused by aload or write-allocate.

3.6 Scratchpad memory/SPRAM

The 74K core (like most of MIPS Technologies' cores) can be equipped with modestly-sized high speed on-chip data
memory, called scratchpad RAM or SPRAM. SPRAM is connected to a cache interface, alongside the |- and/or D-
cache, so is available separately for the |- and D-side (ISPRAM and DSPRAM).

MIPS Technologies provide the interface on which users can build many types and sizes of SPRAM. We a so provide
a“reference design” for both ISPRAM andDSPRAM, which iswhat is described here. If you keep the programming
interface the same as the reference design, you're more likely to be able to find software support. The reference
design allows for on-chip memories of up to IMbytesin size.

There are two possible motives for incorporating SPRAM:

»  Dedicated high-speed memory: SPRAM runs with cache timing (multi-cycle SPRAM is supported for some
other MIPS Technologies cores, but not on 74K cores).

SPRAM can be made larger than the maximum cache size.

Even for smaller sizes, it is possible to envisage applications where some particularly heavily-used piece of data
iswell-served by being permanently installed in SPRAM. Possible, but unusual. In most cases heavily-used data
will be handled well by the D-cache, and until you really know otherwise it's better for the SoC designer to max-
imize cache (compatible with his/her frequency needs.)

But there's another more compelling use for a modest-size SPRAM:

* “DMA”" accessible to external masters on the OCP interface: the SPRAM can be configured to be accessible
from an OCP interface. OCP masters will seeit just as a chunk of memory which can be read or written.

Because SPRAM stands in for the cache, data passed through the SPRAM in thisway doesn’t require any soft-
ware cache management. This makesit spectacularly efficient as a staging areafor communicating with complex
I/0 devices. agreat way to implement “push” style I/O (that is where the device writes incoming data close to the
CPU).

SPRAM must be located somewhere within the physical address map of the CPU, and is usually accessed through

some “cached” region of memory (uncached region accesses to scratchpad work with the 74K reference design, but
may not do so on other implementations - better to accessiit through cacheable regions). It's usually better to putitin
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the first 512Mbytes of physical space, because then it will be accessible through the simple ksegO “ cached,
unmapped” region - with no need to set up specific TLB entries.

Because the SPRAM is close to the cache, it inherits some bits of cache housekeeping. In particular the cache
instruction and the cache tag CPO registers are used to provide away for software to probe for and establish the size

of SPRAM12,

Probing for SPRAM configuration

The presence of scratchpad RAM in your coreisindicated by a“1” hit in one or both of the CPO Config[ISP,DSP] reg-
ister flags described in . The MIPS Technologies reference design requires that you can query the size of and adjust
the location of scratchpad RAM through “cachetags’.

To access the SPRAM “tags’ (where the configuration information is to be found) first set the ErrCti[SPR] bit (see
Section 3.4.17 “ErrCtl register”).

Now acache Index_Load_Tag D, KSEGO_BASE+0%instruction fetches half the configuration information
into DTagLo, and acache Index_Load_Tag, KSEGO0_BASE+8 getsthe other half (the“8” stepsto the next
feasible tag location - an artefact of the 64-hit width of the cache interface.) The corresponding operations directed at
the primary |-cache read the halves of the I-side scratchpad tag, thistimeinto ITagLo. The “tag” for I-side and D-side
SPRAM appearsin TagLo fields as shown in Figure 3.8.

Figure 3.8 SPRAM (scratchpad RAM) configuration information in TagLo

31 12 11 8 7 6 5 41 0
addr == base address31:12] 0 En 0
addr == 8| size of region in bytes/4KB 0 En 0

Where:
» baseaddresy[31:12]: the high-order bits of the physical base address of this chunk of SPRAM;

*  En: enable the SPRAM. From power-up this bit is zero, and until you set it to 1 the SPRAM isinvisible. The En
bit isalso visible in the second (size) configuration word — it can even be written there, but it’s not a good idea
to write the size word other than for far-out diagnostics,

» sizeof region in bytes/4KB: the number of page-size chunks of data mapped. If you take the whole 32 bits, it
returns the sizein bytes (but it will always be a multiple of 4KB).

In some MIPS cores using this sort of tag setup there could be multiple scratchpad regions indicated by two or more
of these tag pairs. But the reference design provided with the 74K core can only have one I-side and one D-side
region.

You can load software into the ISPRAM using cacheops. Each pair of instructionsto beloaded are put in the registers
IDataHi/IDataLo, and then you use acache Index_ Store_Data_TI at the appropriate index. Thetwo dataregis-
ters work together to do a 64-bit transfer. Note that the 74K core’'s instruction memory really is 128 bitswide, so
you'll need two cacheops to fully write a specific index. For a CPU configured big-endian the first instruction in
sequence is loaded into IDataHi, but for a CPU configured little-endian the first instruction is loaded into IDatalLo.

12.

13.

What follows is a hardware convention which SoC designers are not compelled to follow; but MIPS Technologies recom-
mends designers to do SPRAM this way to ease software porting.
The instructions are written asif using C “#define” names from [m32c0 h]
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Don't forget to set ErrCtl[SPR] back to zero when you're done.
3.7 Common Device Memory Map

In order to preserve the limited CPO register address space, many new architectural enhancements, particularly those
requiring several registers, will be memory mapped, that is, accessed by uncached |oad and storeinstructions. In order
to avoid creating dozens of memory regions to be managed, the common device memory map (CDMM) was created
to group them into one region. A single physical address region, up to 32KB, is defined for CDMM. The address of
thisregion is programmable viathe CDMMBase CPO register shown in Figure 3-9.

Having this region physically addressed enables some additional access controls. On acore with a TLB, theregion
would typically belocated in the first 256MB, allowing direct ksegl access. However, if user or supervisor access was
desired, TLB mappings could be established to map a useg address to the same region. On FMT based cores, it might
be mapped to a ksegl address if user access was hot needed, or to a useg/kuseg address if it was.

The block of addressesis further broken up into 64-byte Device Register Blocks(DRB). A ‘device' (feature requiring
memory mapped accesses), can use from 1-63 DRBs - up to 4K B of addressable registers. The first 64 hits of the first
DRB associated with adevice is allocated for an Access Control and Status Register (of which only 32 are in use cur-
rently). The ACSR provides information about the device - ID, version, and size - and aso contains control bits that
can enable user and supervisor read and/or write access to the device. Thisregister is shown in Figure 3.10

CDMM devices are packed into the lowest available DRBs. Starting with O (or 1 if CDMMBase[Cl] ==1), software
should read the ACSR, determining both the current device type as well as the starting location for the next device.
Iterating through this process will create amap of al devices which you would presumably storein amore convienent
format.

Thefirst device that has been defined in CDMM is the Fast Debug Channel which is described in Section
8.1.10 “Fast Debug Channel”. This device is a UART-like communication channel that utilizes the EJTAG pins for
off-chip access. The UART isanatural fit for amemory mapped device, although many types of devices can be envi-

sioned.
Figure 3-9 Fields in the CDMMBase Register
31 11 10 9 8 0
CDMM_UPPER_ADDR EN | ClI CDMMSize
0
Where:

CDMM_UPPER_ADDR:: Thisfield containsthe upper bits of the base physical address of the CDMM region. Thisfield
is shifted by 4b, so that bits 31..11 correspond to PA bits 35..15. Unimplemented physical address bits such as 35..32
in many coreswill be tied to 0.

EN: Enables CDMM. When this bit is cleared, loads and stores to the CDMM region will go to memory. This bit resets
to 0 to avoid stepping on other things in the system address map.

Cl: Indicates that the first 64-byte device register block is reserved for additional CDMM information and is not a nor-
mal device. This extrainformation hasn’t been dreamed up yet, so thisfield should just be treated as reserved.

CDMMSize: Thisfield indicates how many 64-byte device register blocks are in the CDMM region. (0 means 1 DRB
and so forth)
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Each device within the CDMM begins with an Access Control and Status Register which gives information about the
device and also provides ameans for giving user and supervisor programs access to the rest of the device. The
FDACSR isshown in Figure 3.10.

Figure 3.10 Fields in the Access Control and Status (ACSR) Register
31 24 23 22 21 16 15 12 11 4 3 2 1 0

DeviD Zero DevSize DevRev zero Uw Ur Sw Sr

Where:
DevID: (read only) indicates the device ID.
DevsSize: (read only) indicates how many additional 64B blocks this device uses
DevRev: (read only) Revision number of the device.

Uw/Ur: control whether write and reads, respectively, from user programs are allowed to accessthe device registers. If O,
reads will return 0 and writes will be dropped.

Sw/Sr: Same idea as Uw/Ur, but for supervisor access

3.8 The TLB and translation

The TLB isthe key piece of hardware which MIPS architecture CPUs have for memory management. It's a hardware
array, and for maintenance you access fields by their index. For memory trandation, it'sareal content-addressed
memory, whose input is a virtual page address together with the “address space identifier” from EntryHIi[ASID]. The
table also stores a physical address plus “ cacheability” attributes, which becomes the output of the translation lookup.

The hardware TLB is relatively small, configurable with 16, 32, 48 or 64 entries (read Configl[MMUSize] for the
number configured for your core). Each entry can map a 2-page-size virtual region to apair of physical pages. Entries
can map different size pages, too.

System software maintains the TLB as a cache of a much larger number of possible trandations. An attempt to use a
mapped-space address for which no trandation isin the hardware TLB invokes a special exception handler whichis
carefully crafted to find and load the right entry as quickly as possible. Read on for a summary of al the fields and
how it gets used; but the OS ramifications are far too extensive to cover here; for a better description in context see
[SEEMIPSRUN]:, and for full details of the architectural specification see [MIPS32].

3.8.1 ATLB entry

Let’s start with a sketch of a TLB entry. For MIPS32 cores, that consists of avirtual address portion to match against
and two output sections, something like Figure 3.11 - which also shows which TLB fields are carried in which CPO
registers.
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Figure 3.11 Fields in a 74K™ core TLB entry
EntryHi EntryHi

Flags Flags
VPN2 PageMask ASID G PFN CDV PFN CDV

PageMask EntryLol EntryLoO

Some points to make about the TLB entry:

e Theinput-side virtual address fields (to the |eft) have the fiel ds necessary to match an incoming address against
thisentry. “VPN" is (by OS tradition) a“virtual page number” - the high bits of the program (virtual) address.

“VPN2" isused to remind you that this addressis for a double-page-size virtual region which will map to a pair
of physical pages...

» Theright-hand side (physical) fields are the information used to output atranslation. There are a pair of outputs
for each input-match, and which of them is used is determined by the highest within-match address bit. Soin
standard form (when we're using 4K byte pages) each entry trandates an 8K byte region of virtual address, but we
can map each 4K byte page onto any physical address (with any permission flag bits).

» Thesize of theinput region is configurable because the “ PageMask” determines how many incoming address bits
to match. The 74K core allows page sizes of 4Kbytes, 16K bytes and going on in powers of 4 up to 256M bytes.
That's expressed by the legal values of PageMask, shown below.

 The"ASID” field extends the virtual address with an 8-bit, OS-assigned memory-space identifier so that tranda
tions for multiple different applications can co-exist in the TLB (in Linux, for example, each application has dif-
ferent code and data lying in the same virtual address region).

 The"G" (global) bit is not quite sure whether it's on the input or output side - there’s only one, but it can be read
and written through either of EntryLo0-1. When set, it causes addresses to match regardless of their ASID value,
thus defining a part of the address space which will be shared by all applications. For example, Linux applica
tions share some “kseg2” space used for kernel extensions.

3.8.2 Live translation and micro-TLBs

When you're really tuning out the last cycle, you need to know that in the 74K core the |-side translation is done by a
little table local to the instruction fetch unit, and called the ITLB (sometimes “micro-TLB” or “uTLB"). There are
only 4 entriesin the ITLB, and it is functionally invisible to software: it's automatically refilled from the main TLB
(in this context it's often called the joint TLB or JTLB) when required, and automatically cleared whenever the TLB is
updated. It costs six extra clocks to refill the ITLB for any access whose trandlation is not already present. In 74K
family cores (unlike other cores from MIPS Technologies) there is no D-side micro-TLB — D-side translation uses
themain TLB directly. uTLB entries can only map 4KB and 16KB pages (main TLB entries can handle awhole
range of sizesfrom 4KB to 256MB). When the uTLB isreloaded a trandation marked for a size other than 4KB or
16K B is down-converted as required.

3.8.3 Reading and writing TLB entries: Index, Random and Wired

Two CPO registers work as simple indexes into the TLB array for programming: Index and Random. The oddly-
named Wired controls Random’s behavior.
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Of these: Index determines which TLB entry is accessed by t1bwi. It's aso used for the result of at1bp (the
instruction you use to see whether a particular address would be successfully translated by the CPU). Index only
implements enough bits to index the TLB, however big that is; but a t 1bp which fails to find a match for the speci-
fied virtual address sets bit 31 of Index (it's easy to test for).

Random isimplemented asafull CPU clock-rate downcounter. It won't decrement below the value of Wired (when it
gets there it bounces off and starts again at the highest legal index). In practice, when used inside the TLB refill
exception handler, it delivers arandom index into the TLB somewhere between the value of Wired and the top.
Wired can therefore be set to reserve some TLB entries from random replacement - agood place for an OS to keep
transl ations which must never cause a TL B transl ation-not-present exception.Previously, at1bwr instruction would
simply write to the TLB entry that the Random register currently indicated. The core has been enhanced with afea-
ture (whose presenceisindicated by Config6yyrup = 1) to put alittle more brains behind selecting a TLB entry to be
replaced. A table of the most recently used TLB entries is maintained and the core attempts to avoid sel ecting one of
those. This avoids replacing often used pages and has been shown to reduce the number of TLB missesin most cases.
Certain workloads, particularly those accessing data sequentially where the working set just exceeds the mappable
capacity of the non-wired TLB entries, may benefit from having a more random replacement where you sometimes
get lucky and find along unused page not yet replaced. For those applications, this function can be disabled by setting
Configbnmrup = 1, but you are probably better off leaving it aone.

3.8.4 Reading and writing TLB entries - EntryLoO0-1, EntryHi and PageMask registers

The TLB is accessed through staging registers which between them represent all the fieldsin each TLB entry; they're
called EntryHi, PageMask and EntryLo0-1. The fields from EntryHi and PageMask are shown in Figure 3.12.

Figure 3.12 Fields in the EntryHi and PageMask registers
31 29 28 1312 87 0
E”tfyHi| VPN2 | 0 | ASID |

PageMask| 0 | Mask | 0 |

All these fields act as staging posts for entries being written to or read from the TLB. But some of them are more
magic than that...

EntryHi[VPN2]: is the page-pair address to be matched by the entry this reads/writes - see above.

However, on a TLB-related exception VPN2 is automagically set to the virtual address we were trying to trandate
when we got the exception. If - asis most often the case - the outcome of the exception handler isto find and install a
tranglation to that address, VPN2 (and generally the whole of EntryHi) will turn out to already have the right valuesin
it.

EntryHIi[ASID]: does double-duty. It is used to stage data to and from the TLB, but in normal running software it’s also

the source of the current "ASID" value, used to extend the virtual address to make sure you only get trandations for
the current process.
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PageMask[Mask]: acts as akind of backward mask, in that a 1 bit means "don’t compare this address bit when matching
this address’. However, only arestricted range of PageMask values are legal (that’s with "1"sfilling the
PageMask[Mask] field from low bits upward, two at atime):

PageMask Sze of each output page PageMask Sze of each output page
0x0000.0000 4Kbytes| 0x007F.E000 4Mbytes
0x0000.6000 16Kbytes| 0x01FF.E000 16Mbytes
0x0001.E000 64Kbytes| 0x07FF.E000 64Mbytes
0x0007.E000 256Kbytes| 0x1FFF.E000 256Mbytes
0x001F.E000 1Mbyte

Note that the uTLBs handle only 4K byte and 16K byte page sizes; other page sizes are down-converted to 4Kbyte or
16K byte as they are referenced. For other page sizes this may cause an unexpectedly high rate of uTLB misses, which
could be noticeable in unusual circumstances.

Then moving our attention to the output side, the two EntryLo0-1 are identical in format as shown in Figure 3.13.

Figure 3.13 Fields in the EntryLoO-1 registers

31 3029 65 3210
| 0 | PFN |C |D|V|G|

In EntryLo0-1:

PFN: the "physical frame number" - traditional OS name for the high-order bits of the physical address. 24 bits of PFN
together with 12 bits of in-page address make up a 36-bit physical address; but the 74K core has a 32-bit physical
address bus, and does not implement the four highest bits (which aways read back as zero).

C: acodeindicating how to cache datain this page - pages can be marked uncacheable and various flavours of cache-
able. The codes here are shared with those used in CPO registers for the cacheability of fixed address regions. see
Table 3.3 in Section 3.4.2, "Cacheability options' on page 33 .

D: the"dirty" flag. In hardware termsit’s just a write-enable (when it's 0 you can't do a store using addresses trand ated
here, you'll get an exception instead). However, software can use it to track pages which have been written to; when
you first map a page you leave this bit clear, and then afirst write causes an exception which you note somewherein
the OS'" memory management tables (and of course remember to set the bit).

V: the "valid" flag. You'd think it doesn’t make much sense - why load an entry if it's not valid? But thisis very helpful
s0 you can make just one of apair of pages valid.

G: the "global" bit. Thisreally belongs to the input side, and there aren’t really two independent values for it. So you
should always make sure you set EntryLoO[G] and EntryLo1[G} the same.

3.8.5 TLB initialization and duplicate entries

TLB entries come up to random values on power-up, and must be initialized by hardware before use. Generally, early
bootstrap software should go through setting each entry to a harmless “invalid” value.

Sincethe TLB isafully-associative array and entries are written by index, it's possible to load duplicate entries - two

or more entries which match the same virtual address/ASID. In older MIPS CPUs it was essentia to avoid duplicate
entries - even duplicate entries where all the entries are marked “invalid”. Some designs could even suffer hardware
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damage from duplicates. Because of the need to avoid duplicates, even initialization code ought to use a different vir-
tual address for each invalid entry; it's common practice to use “kseg0” virtual addresses for the initial all-invalid
entries.

Most MIPS Technol ogies cores protect themselves and you by taking a “ machine check” exception if a TLB update
would have created a duplicate entry Some earlier MIPS Technologies cores suffer amachine check even if duplicate
entries are both invalid. That can happen when initializing. For example, when an OS isinitializing the TLB it may
well re-use the same entries as already exist - perhaps the ROM monitor already initialized the TLB, and (derived
from the same source code) happened to use the same dummy addresses. If you do that, your second initialization run
will cause a machine check exception. The solution isfor the initializing routine to check the TLB for a matching
entry (using the t 1bp instruction) before each update.

For portability you should probably include the probe step in initialization routines: it’'s not essential on the 74K core,
where we repeat that the machine check exception doesn’'t happen.

3.8.6 TLB exception handlers — BadVaddr, Context, and ContextConfig registers

31

These three registers are provided mainly to simplify TLB refill handlers.

BadVAddr isaplain 32-bit register which holds the virtual address which caused the last address-related exception,
and isread-only. It is set for the following exception types only: Address error (AdEL or AdES), TLB/XTLB Réfill,
TLB Invalid (TLBL, TLBS) and TLB Modified (for more on exception codesin Cause[ExcCode], see the notesto
TableB.5.)

Context contains the useful mix of pre-programmed and borrowed-from-BadVAddr bits shown in Figure 3.14.

Figure 3.14 Fields in the Context register when Config3ctxtc=0 and Config3gy=0
23 22 4 3 0

PTEBase BadVPN2 0

Context[PTEBase,BadVPNZ2]: the PTEBase field is just software-writable and readable, with no hardware effect.

The PTEBase field is for use by the operating system and is normally written with a value that allows the operating
system to use the Context Register as a pointer into the current PTE array in memory. Thefield has no direct hardware
effect. The BadVPN2 field is written by hardware on a TLB exception. It contains bits VA3, 13 of the virtual address

that caused the exception.

In apreferred scheme for software management of page tables, PTEBase can be set to the base address of a (suitably
aligned) page table in memory; then the BadVPN2 number (see below) comes from the virtual address associated
with the exception—-it’s just bits from BadVAddr, repackaged. In this case the virtual address bits are shifted such
that each ascending 8K byte translation unit generates another step through a page table (assuming that each entry is
2 x 32-bit words in size — reasonable since you need to store at |east the two candidate EntryLo0-1 valuesin it).

An OS which can accept a page table in thisformat can contrive that in the time-critical simple TLB refill exception,
Context automagically points to the right page table entry for the new trandlation.

Thisisagreat idea, but modern OS' tend not to use it — the demands of portability mean it’'s too much of a stretch to
bend the page table information to fit this model.
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If Config3ctxTc =0 and Config3gy =0, then the Context register is organized in such away that the operating system

can directly reference a 16-byte structure in memory that describes the mapping. For PTE structures of other sizes,
the content of this register can be used by the TLB refill handler after appropriate shifting and masking.

If Config3ctxTc =0 and Config3gy, =0 then a TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits
VA3, 13 0of thevirtual address to be written into the BadVPN2 field of the Context register. The PTEBase field is writ-
ten and used by the operating system.

The BadVPN2 field of the Context register is not defined after an address error exception and this field may be modi-
fied by hardware during the address error exception sequence.

Figure 3.14 shows the format of the Context Register when Config3crx1c =0 and Config3gy =0.

If Config3ctxTc =1 or Config3gy =1 then the pointer implemented by the Context register can point to any power-of-
two-sized PTE structure within memory. Thisalowsthe TLB refill handler to use the pointer without additional shift-
ing and masking steps. Depending on the value in the ContextConfig register, it may point to an 8-byte pair of 32-bit
PTEswithin asingle-level page table scheme, or to afirst level page directory entry in atwo-level lookup scheme.

If Config3cxTc =1 or Config3gy =1 then thea TLB exception (Refill, Invalid, or Modified) causes bits VAy ;g.y +g 10

be written to avariable range of bits“(X-1):Y" of the Context register, where this range corresponds to the contiguous
range of set hits in the ContextConfig register. Bits 31:X are R/W to software, and are unaffected by the exception.
Bits Y-1:0 will alwaysread asO. If X =23 and Y =4, i.e. bits 22:4 are set in ContextConfig, the behavior isidentical
to the standard M1PS32 Context register (bits 22:4 are filled with VA34.13). Although the fields have been made vari-

able in size and interpretation, the MIPS32 nomenclature is retained. Bits 31:X are referred to as the PTEBase field,
and bits X-1:Y arereferred to as BadVPN2.

The value of the Context register is UNPREDICTABL E following a modification of the contents of the
ContextConfig register.

Figure 3.15 shows the format of the Context Register when Config3crxt¢ =1 or Config3gy =1.

Figure 3.15 Fields in the Context register when Config3ctxtc=1 or Config3gy=1
31 X X1 Y Y1 0

PTEBase BadVPN2 0

The ContextConfig register defines the bits of the Context register into which the high order bits of the virtual address
causing a TLB exception will be written, and how many bits of that virtual address will be extracted. Bits above the
selected of the Context register are R/W to software and serve as the PTEBase field. Bits below the selected field of
the Context register will read as zeroes.

Thefield to contain the virtual addressindex is defined by a single block of contiguous non-zero bits within the
ContextConfig register's Virtuallndex field. Any zero hits to the right of the least significant one bit cause the corre-
sponding Context register bitsto read as zero. Any zero bitsto the left of the most significant one bit cause the corre-
sponding Context register bitsto be R/W to software and unaffected by TLB exceptions.

A value of all ones in the ContextConfig register means that the full 32 bits of the faulting virtual address will be cop-

ied into the context register, making it duplicate the BadVvAddr register. A value of all zeroes means that the full 32
bits of the Context register are R/W for software and unaffected by TLB exceptions.
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The ContextConfig register is optional and its existence is denoted by the Config3crx ¢ Or Config3gy register fields.

Figure 3.16 shows the formats of the ContextConfig Register.

Figure 3.16 Fields in the ContextConfig register
31 0

Virtual Index

Virtuallndex is amask of 0 to 32 contiguous 1 bits that cause the corresponding bits of the Context register to be writ-
ten with the high-order bits of the virtual address causing a TLB exception. Behavior of the processor is UNDE-
FINED if non-contiguous 1 bits are written into the register field.

Itispermissible to implement a subset of the ContextConfig register, in which some number of bits are read-only and
set to one or zero as appropriate. It is possible for software to determine which bits are implemented by alternately
writing all zeroes and all onesto the register, and reading back the resulting values. Table 3.7 describes some useful
ContextConfig values.

Table 3.7 Recommended ContextConfig Values

Page Table
Value Organization Page Size PTE Size Compliance
(0x00000000007ffff0 Single Level 4K 64 hit¥page | REQUIRED
0x00000000003ffff8 Single Level 4K 32 hits/page RECOMMENDED
0x00000000007ffff8 Single Level 2K 32 hits/page RECOMMENDED
0x0000000000fffff8 Single Level 1K 32 hits/page RECOMMENDED
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Chapter 4

Programming the 74K™ core in user mode

This chapter is not very long, because in user mode one M1PS32-compliant CPU looks much like another. But not
everything — sections include:

e Section 4.1, "User-mode accessible “Hardware registers’™
e Section 4.2, "Prefetching data’: how it works.

»  Section 4.3, "Using “synci” when writing instructions': writing instructions without needing to use privileged
cache management instructions.

»  Section 4.4, "The multiplier": multiply, multiply/accumulate and divide timings.

e Section 4.5, "Tuning software for the 74K* family pipeline": for determined programmers, and for compiler writ-
ers. It includes information about the timing of the DSP ASE instructions.

*  Section 4.6 “Tuning floating-point”: the floating-point unit often runs at half speed, and some of its interactions
(particularly about potential exceptions) are complicated. This section offers some guidance about the timing
issues you'll encounter.

4.1 User-mode accessible “Hardware registers”

The 74K core complies with Revision 2 of the M1PS32 specification, which introduces hardware registers, CPU-
dependent registers which are readable by unprivileged user space programs, usually to share information which is
worth making accessible to programs without the overhead of a system call.

The hardware registers provide useful information about the hardware, even to unprivileged (user-mode) software,
and are readable with the rahwr instruction. [M1PS32] defines four registers so far. The OS can control accessto
each register individually, through a bitmask in the CPO register HWREna - (set bit O to enable register 0 etc).
HWREna is cleared to all-zeroes on reset, so software has to explicitly enable user access — see Section 5.6 “The
HWREnaregister - Control user rdhwr access’. Privileged code can access any hardware register.

Thefive standard registers are:

e CPUNum (0): Number of the CPU on which the program is currently running. This comes directly from the
coprocessor 0 EBase[CPUNum] field.

«  SYNCI_Sep (1): the effective size of an L1 cache line'; thisis now important to user programs because they can
now do things to the caches using the synci instruction to make instructions you've written visible for execu-
tion. Then SYNCI_Step tellsyou the “ step size” - the address increment between successive synei’srequired to
cover all the instructionsin arange.

14. Strictly, it'sthe lesser of the I-cache and D-cache line size, but it's most unusual to make them different.

Programming the MIPS32® 74K™ Core Family, Revision 02.14 55



4.2 Prefetching data

If SYNCI_Step returns zero, that means that your hardware ensures that your caches are instruction/data coher-
ent, and you don’t need to use synci at all.

e CC (2): user-mode read-only access to the CPO Count register, for high-resolution counting. Which wouldn’t be
much good without.

*  CCRes(3): which tellsyou how fast Count counts. It's adivider from the pipeline clock — if the rdhwr instruc-
tion reads avalue of “2”, then Count increments every 2 cycles, at half the pipeline clock rate.For 74K family
coresthat is precisely what you will read.

* UL (30): user-mode read-only accessto the CPO UserLocal register. Thisregister can be used to provide athread
identifier to user-mode programs. See Section C.4.2 “The UserLocal register” for more details

4.2 Prefetching data

MIPS32 CPUs are being increasingly used for computations which feature loops accessing large arrays, and the run-
time is often dominated by cache misses.

These are excellent candidates for using the pre£ instruction, which gets data into the cache without affecting the
CPUs other state. In awell-optimized loop with prefetch, data for the next iteration can be fetched into the cache in
parallel with computation for the last iteration.

It's apretty major principle that pre£ should have no software-visible effect other than to make things go faster.
pref islogically ano-op?®.

Thepref instruction comes with various possible “ hints’ which allow the program to express its best guess about the
likely fate of the cacheline. In 74K family coresthe “load” and “store” variants of the hints do the same thing; but it
makes good sense to use the hint which matches your program’sintention - you might one day port it to a CPU where
it makes a difference, and it can’'t do any harm.

The 74K core acts on hints as summarized in Table 4.1.
4.3 Using “synci” when writing instructions

The synci instruction (introduced with Revision 2 of the MIPS32 architecture specification, [M1PS32]) ensures that
instructions written by a program (necessarily through the D-cache, if you're running cached) get written back from
the D-cache and corresponding I-cache locations invalidated, so that any future execution at the address will reliably
execute the new instructions. synci takes an address argument, and it takes effect on awhole enclosing cache-line
sized piece of memory. User-level programs can discover the cache line size becauseit’'s availablein a“ hardware reg-
isters’ accessed by rdhwr, as described in Section 4.1, "User-mode accessible “ Hardware registers’™ above.

Since synci is modifying the program’s own instruction stream, it’s inherently an “instruction hazard”: so when
you've finished writing your instructions and issued the last syneci, you should then use ajr . hb or equivalent to call
the new instructions — see Section 5.1 “Hazard barrier instructions”.

15. Thisisn't quite true any more; pre£ with the “ PrepareForStore” hint can zero out some data which wasn't previously zero.
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Table 4.1 Hints for “pref” instructions

What happensin the 74K core

Why would you use it?

Hint
No Name
0 load
1 sore

Read the cache line into the D-cache if
not present.

When you expect to read the data soon.
Use “store” hint if you also expect to
modify it.

4 load_streamed
5 store_streamed

Fetch data, but always use cache way
zero - so alarge sequence of “streamed”
prefetcheswill only ever use aquarter of
the cache.

For data you expect to process sequen-
tialy, and can afford to discard from the
cache once processed

6 load retained
7 dstore retained

Fetch data, but never use cache way
zero. That meansif you do a mixture of
“streamed” and “retained” operations,
they will not displace each other from
the cache.

For data you expect to use more than
once, and which may be subject to com-
petition from “ streamed” data.

25 writeback_invalidate/
nudge

If thelineisin the cache, invalidate it
(writing it back first if it was dirty).
Otherwise do nothing.

However (with the 74K core only): if
thislineisin aregion marked for
“uncached accelerated write” behavior,
then write-back this line.

When you know you've finished with
the data, and want to make sure it loses
in any future competition for cache
resources.

30 PrepareForStore

If thelineis not in the cache, create a
cache line - but instead of reading it
from memory, fill it with zeroes and
mark it as“dirty”.

If the line is @ready in the cache do
nothing - this operation cannot berelied
upon to zero theline.

When you know you will overwrite the
whole line, so reading the old data from
Memory is unnecessary.

A recycled lineis zero-filled only
because its former contents could have
belonged to a sensitive application -
alowing them to be visible to the new
owner would be a security breach.

31 PrepareForStoreNZ

Astype 30 above, except that thelineis
not filled with zeroes.

Yields the highest possible performance
when you're going to overwrite the
whole line. However, thisis at the cost
of asecurity leak: a user-mode applica-
tion which uses this prefetch can (some-
what randomly) obtain aview of kernel
or other-process memory data it should
not be able to see. An OS can make this
instruction safe (same aspref 30
above) by keeping Config7[FPFS] zero
— see Figure B.3 and notes.

4.4 The multiplier

57

Asistraditional with MIPS CPUs, the integer multiplier is a semi-detached unit with its own pipeline. All MIPS32

CPUs implement:

*  mult/multu: a32x32 multiply of two GPRs (signed and unsigned versions) with a 64-bit result delivered in the
multiply unit’'s pseudo-registers hi and lo (readable only using the special instructionsmfhi and mf£lo, which are

interlocked and stall until the result is available).

*  madd, maddu, msub, msubu: multiply/accumulate instructions collecting their result in hi/lo.

*  mul/mulu: Simple 3-operand multiply as a single instruction.
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* div/divu: divide - the quotient goesinto lo and the remainder into hi.

Many of the most powerful instructionsin the MIPS DSP ASE are variants of multiply or multiply-accumul ate oper-
ations, and are described in Chapter 9, “The MIPS32® DSP ASE” on page 121Chapter 7, “The MIPS32® DSP ASE”
on page 87. The DSP ASE also provides three additional “accumulators’ which behave like the hi/lo pair).

No multiply/divide operation ever produces an exception - even divide-by-zero issilent - so compilerstypically insert
explicit check code whereit’s required.

The 74K core multiplier is high performance and pipelined; multiply/accumulate instructions can run at arate of 1
per clock, but a 32x32 3-operand multiply takes six clocks longer than asimple ALU operation. Divides use a bit-per-
clock algorithm, which is short-cut for smaller dividends. Multiply/divide instructions are generally slow enough that
it isdifficult to arrange programs so that their results will be ready when needed.

4.5 Tuning software for the 74K™ family pipeline

This section is addressed to low-level programmers who are tuning software by hand and to those working on effi-
cient compilers or code trandators.

74K family cores have a complex out-of-order pipeline, which makes fine-grain instruction interactions very difficult
to summarize. See Section 1.4 “A brief guide to the 74K* core implementation” for a reasonably accurate picture of
the basic pipeline, from which you will be able to foresee some effects. We hope that alater version of this manual
may be able to be more helpful, but with a complex out-of-order CPU like this one you will always get more insight
from running code on areal CPU or a cycle-accurate simulator.

4.5.1 Cache delays and mitigating their effect

Inatypical 74K CPU implementation a cache miss which has to be refilled from DRAM memory (in the very next
chip on the board) will be delayed by a period of time long enough to run 50-200 instructions. A miss or uncached
read (perhaps of a device register) may easily be severa times slower. These really are important!

Because these delays are so large, there’s not alot you can do to help a cache-missing program make progress. But
every little bit helps. The 74K core has non-blocking loads, so if you can move your load instruction producer away
from its consumer, you won't start paying for your memory delay until you try to run the consuming instruction.

Compilers and programmers find it difficult to move fragments of algorithm backwards like this, so the architecture
also provides prefetch instructions (which fetch designated data into the D-cache, but do nothing else). Because
they’'re free of most side-effectsit’s easier to issue prefetches very early. Any loop which walks predictably through a
large array isacandidate for prefetch instructions, which are conveniently placed within one iteration to prefetch data
for the next.

Thepref PrepareForsStore prefetch savesacacherefill read, for cache lines which you intend to overwrite in
their entirety. Read more about prefetch in Section 4.2, "Prefetching data" above.

Tuning data-intensive common functions

Bulk operations like bcopy () and bzero () will benefit from CPU-specific tuning. To get excellent performance
for in-cache data, it’s only necessary to reorganize the software enough to cover the address-to-store and |oad-to-use
delays. But to get the loop to achieve the best performance when cache missing, you probably want to use some
prefetches. MIPS Technologies may have example code of such functions — ask.
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4.5.2 Branch delay slot
It's afeature of the MIPS architecture that it always attempts to execute the instruction immediately following a

branch. Therationale for thisisthat it's extremely difficult to fetch the branch target quickly enough to avoid adelay,
so the extrainstruction runs “for free”...

Most of the time, the compiler deals well with this single delay slot. MIPS low-level programmersfind it odd at first,
but you get used to it!

4.6 Tuning floating-point

It seemed to make more sense to put this information into the FPU chapter: read from Section 6.5 “FPU pipeline and
instruction timing”.
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4.7 Branch misprediction delays

In along-pipeline design like this, branches would be expensive if you waited until the branch was executed before
fetching any moreinstructions. See Section 1.4 “A brief guide to the 74K* core implementation” for what is done
about this: but the upshot isthat where the fetch logic can’t compute the target address, or guesses wrong, that’s going
to cost 12 or more lost cycles (since when we're not blocked on a cache miss we hope to average substantially more
than one instruction per clock, that’s worse than it sounds). It does depend what sort of branch: the conditional branch
which closes atight loop will almost always be predicted correctly after the first time around.

However, too many branches in too short a period of time can overwhelm the ability of the instruction fetch logic to
keep ahead with its predictions, even if the predictions are almost always right. Three empty cycles occur between the
delivery of the branch delay slot instruction and thefirst instruction(s) from the branch target location. Where branchy
code can be replaced by conditional moves or tight loops “unrolled” alittle to get at least 6-8 instructions between
branches, you'll get significant benefits.

The branch-likely instructions deprecated by the MIPS32 architecture document are predicted just like any other
branch. Misprediction of branch-likelies costs an extracycle or two, because the branch and the delay slot instruction
needs to be re-executed after a mispredict. Branch-likely instructions sometimes improve the performance of small
loops on 74K family cores, but they set problems for the designers of complex CPUs, and may one day disappear
from the standard. Good compilers for the M1PS32 architecture should provide an option to avoid these instructions.

4.8 Load delayed by (unrelated) recent store

Load instructions are handled within the execution unit (the AGEN pipeline) with “standard” timing, just so long as
they hit in the cache. When aload misses (or, handled the same way, turns out to be uncached) then a dependent oper-
ation which has already been issued will have to be replayed if the dependent instruction has been dispatched. That
generates long delays, but you already know about that. If the dependent instruction has not been dispatched at all
then it will wait in the DDQ until the load data becomes available.

However, store instructions are graduated before they are completed — which sounds problematic, but in fact you
can't afford to let instructions write the cache (or commit awrite to real memory) until they graduate and cease to be
speculative.

This presents a problem. A programmer may write code which stores a value in memory, then immediately |oads the
same value. The CPU pipeline detects circumstances where instructions are dependent for register values, but cannot
go doing the same for addresses. The load can get the right data from an incomplete store as a side-effect of checking
whether the data we want might be in the FSB (the “fill/store buffer”) attached to the D-cache: see Section

3.3.1 “Read/write ordering and cache/memory data queues in the 74K* core” for more information. The store data
can also be in intermediate stages/queues before being written into the FSB. Any data that matches storesin such
intermediate queues will also be bypassed back to the pipeline asif the load hit in the cache.

4.9 Minimum load-miss penalty

74K family coreswill typically run at high frequencies, so any load which missesin the L1 D-cacheislikely to be
substantially delayed, waiting for the memory data to come back. However, if you ever use the core with avery fast
memory, it's worth observing that even afast-serviced missis still a serious event. If an instruction which consumes
the loaded data issues before we're sure the load missed (and most of the time the consumer will only be afew places
behind in instruction sequence, and will have issued), then that instruction will have to be re-executed by stopping
execution and starting again on the consuming instruction. That means it has to be re-fetched from the I-cache, and
involves adelay of 15 cycles or so.
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The 74K core's out-of-order pipeline does a very good job of running dependent instructions as soon as possible, in
hardware. So to some extent it makes it unnecessary to manage data delays by moving instructions around in the pro-
gram sequence (and if you feel you should try, it makesit tricky to predict the effect of your tuning). Ideally, you
should use an instrumented real CPU or cycle-accurate simulator to get insight into detailed tuning effects.

Compilers might reasonably try to schedule code to create more opportunities for dual-issue and so that instructions
might be issued at full speed despite dependencies, but should rarely do so if the cost is significant — the hardware is
already gaining much of this advantage within its out-of-order window (think of it aslooking 7-15 instructions ahead
in the program sequence), and compiler scheduling will not be worth many extrainstructions or significant code bloat
unless it reaches beyond such awindow. Loop unrolling will often help, but local scheduling will be unlikely to make
alot of difference.

We've attempted to tabulate al possible producer/consumer delays affecting user-level code (we're not discussing
CPO registers here), but excluding floating point (which isin the next section). These are just fixed delays, of course:
if aload missesin the cache, that's different (and there are notes about it, above).

The MIPS instruction set is efficient for short pipelines because, most of the time, dependent instructions can be run
nose-to-tail, just one clock apart, without extra delay. Even in the more sophisticated 74K family CPUs, most depen-
dent instructions can run just two clocks apart. Each register hasa* standard” place in the pipeline where the producer
should deliver its value and another place in the pipeline where the consumer picksit up: where those places are 1
cycle apart, the dependent instructions to run in successive cycles. Producer/consumer delays happen when either the
producer is late delivering aresult to the register (a“lazy producer”), or the consumer insists on obtaining its operand
early (an “eager consumer”). If alazy producer feeds an eager consumer, the delays add up.

Most of these delays are hidden by out-of-order execution. Moreover, non-dependent ALU and AGEN instructions
may be issued simultaneously, so sometimes even adelay of zero cyclesis painful.

Different register classes are read/written in different “ standard” pipeline slots, so it’simportant to be clear what class
of registersisinvolved in any of these delays. For non-floating-point user-level code, there are just three:

»  Genera purpose registers (“GPR”).

e Themultiply unit’s hi/lo pair together with the three additional multiply-unit accumulators defined by the MIPS
DSP ASE (“ACC").

The MIPS architecture encourages implementations to provide integer multiply and divide operationsin a sepa-
rately-pipelined unit (see Section 4.4 “The multiplier”), and in 74K family coresthis unit is capable of doing
multiply-accumul ate operations at arate of one per clock. No multiply unit operation ever causes an exception,
which makes the longer multiply-unit pipeline rather invisible. It shows up in late delivery of GPR values by
those few multiply-unit instructions which deliver GPR results.

» Thefields of the DSPControl register, used for condition codes and exceptional conditions resulting from DSP
ASE operations.

So that gives us two tables: Table 4.2 for our eager consumers, and Table 4.3 for the producers (we've listed even the
non-lazy producers, since there aren’t very many of them).
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Table 4.2 Register — eager consumer delays

Reg — Eager consumer Del Applies when...
GPR — load/store 1]the GPR value Is an address operand. Store data IS
not needed early.
ACC — multiply instructions 3|the ACC value came from any multiply instruction
which saturates the accumul ator value.
ACC — DSPinstructions which extract selected 3|Always

bits from an accumulator: extp...,
extr.. etc.

DSP instructions which write a shifted
value back to the accumulator: mthlip,
shilo, shilov.
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Table 4.3 Producer — register delays

Lazy producer — Reg D€ Applies when...
All'bitwiselogical instructions, including 0
immediate versions
lui These instructions only are “not lazy”: their result
addu rd, rs, $0 (add zero, akamov) can be used in the next cycle by any ALU instruc-
s11 with shift amount 8 or less GPR tion. Note that addu rd, rs, $0 isused for
srl with shift amount 25 or more mov . Results from add, addi, addi and addiu are
set-on-condition (s1t, s1ti, sltiu, available to consumersin ALU pipe with O delay.
sltu) Consumersin AGEN pipe will see adelay of 1.
seb, seh
add, addu, addi, addiu
Any other ALU instruction 1
Nor-multiply DSP ASE Insiructions which GPR 2-beat ALU for al but the simplest operations
don’t saturate.
DSP“ALU” instructions (which neither GPR [ 2 [Always
read nor write an accumulator, nor do a
multiplication), but do saturate.
Conditional move movn, movz GPR [ 3 [Runinthe AGEN pipeline. They create trouble
because they implicitly have three register operands
(the “no-move’ caseis handled by reading the orig-
inal value of the destination register and writing it
back) — but in 74K cores an instruction may only
use two read portsin the register file. So a condi-
tiona move instruction isissued in two consecutive
clock phases: one to do the move, one to fetch the
original value and write it back again. That makes
sure that the right value is available in the CB entry
and the pipeline by-passes.
Any load GPR 2 | That'sacached load which hits, of course.
sc (store conditional) GPR [ 8 [The GPRisreceiving the success/failure code. The
instruction which consumes this code is not issued
until the store has graduated and been acted on. The
delay could belonger if there iswork queued up in
the load/store pipe, but in the normal 11/sec busy
loop the dependency on the 11 load will have left
the pipeidle.
Integer multiply instructions producing a 6
GPR result (mul, mulu €fc). GER Always (because the multiply unit pipelineis
Instructions reading accumulators and longer than the integer unit’s).
writing GPR (e.g. mf10).
div/divu ACC [10-20(dividend 255 or less
10-50|dividend 256 or more
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How to use the tables

Suppose we've got an instruction sequence like this one:

addiu $a0, $al, 8

1w st0, 0(sa0) # [1]
1w Stl, 4(%a0)

addu St2, $t0, stl# [2]
mul Sv0, $t2, s$t3

sw sv0, 0(sal) # [3]

Then alook at the tables should help us discover whether any instructions will be held up. Look at the dependencies
where an instruction is dependent on its predecessor:

[1] The 1w will be held up by two clocks. One clock because addiu takes 2 clocks to produce its result, and another
because its GPR address operand $a0 was computed by the immediately preceding instruction (see the “load/store
address’ box of Table 4.2.) The second 1w will be OK.

[2] Theaddu will betwo clocks late, because the load data from the preceding 1w arriveslate in the GPR $t1 (seethe
“load” box of Table 4.3.)

[3] The sw will be 6 clocks late starting while it waits for aresult from the multiply pipe (the “multiply” box of Table
4.3)

These can be additive. In the pointer-chasing sequence;

1w stl, 0(st0)
1w $t2, 0(stl

The second load will be held up three clocks: two because of the late delivery of load datain $t1 (“load” box of
Table 4.3), plus another because that datais required to form the address (*load/store address’ box of Table 4.2.)

Delays caused by dependencies on DSPControl fields

Some DSP ASE instructions are dependent because they produce and consume values kept in fields of the
DSPControl register. However, the most performance-critical of these dependencies are “by-passed” to make sure no
delay will occur - those are the dependencies between:

addsc — DSPControl[c] — addwc
cmp.x — DSPControl [ccond] — pick.x
wrdsp — DSPControl[pos,scount] — insv

But other dependencies passed in DSPControl may cause delays; in particular the DSPControl[ouflag] bits set by vari-
ous kinds of overflow are not ready for a succeeding rddsp instruction. The accessisinterlocked, and will lead to a
delay of up to three clocks. We don’t expect that to be a problem (but if you know different, please get in touch with
MIPS Technologies).

4.10.1 More complicated dependencies

There can be delays which are dependent on the dynamic allocation of resourcesinside the CPU. In general you can’t
really figure out how much these matter by doing a static code analysis, and we earnestly advise you to get somekind
of high-visibility cycle-accurate simulator or trace equipment.
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4.11 Advice on tuning instruction sequences (particularly DSP)

DSP algorithm functions are often the subject of intense tuning. There is some specific and helpful advice (with
examples) included in the white paper [DSPWP] published by MIPS Technologies.

But you need to know the basic latencies of instructions as executed by the 74K core (that is, how many cycles later
can a dependent instruction be issued). For these purposes there are four classes of instructions:

A group of specially-simple ALU instructions run in one cycle. Thisincludes bitwise logical instructions, mov
(an adiasfor adadu with $0), shiftsup to 8 positions down or up, test-and-set instructions, and sign-extend instruc-
tions. Seethelist at the top of Table 4.3.

Simple DSP ASE operations (no multiply, no saturation) have 2-cycle latency, the same as most regular M1PS32
arithmetic.

Non-multiply DSP instructions which feature saturation or rounding have 3-cycle latency.

Special DSP multiply operations (or any other access to the multiply unit accumulators): these have timings like
standard multiply and multiply-accumulate instructions, so they’re in with the multiply operations under the next
heading.

Instruction dependencies relating to different fieldsin the DSPControl register are tracked separately, and effi-
ciently, asif they were separate registers. But any rddsp or wrdsp instruction which reads/writes multiple fields
at once is dependent on multiple fields, and that can’t be tracked through the CB system. Such arddsp is not
issued until all predecessors have graduated, and such awrdsp must graduate before its successors can issue.
You can often avoid this by using the “masked” versions of these instructions to read or write only the field
you're particularly interested in.

4.12 Multiply/divide unit and timings
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Asistraditional with MIPS CPUs, the integer multiplier is a semi-detached unit with its own pipeline. All MIPS32
CPUs implement:

mult/multu: multiply two 32-bit numbers from GPRs (signed and unsigned versions) with a 64-bit result deliv-
ered in the multiply unit’s accumulator. The accumulator was traditionally seen as pseudo-registers hi and lo,
readable only using the special instructionsmfhi and mf1o.Operations into the accumulator do not hold up the
main CPU and run independently, but mfhi/mflo areinterlocked and delay execution as required until the result
isavailable.

madd, maddu, msub, msubu: multiply/accumulate instructions collecting their result in the accumulator.
mul/mulu: Simple 3-operand multiply asasingle instruction.

div/divu: divide - the quotient goesinto lo and the remainder into hi.

Many of the most powerful instructionsin the MIPS DSP ASE are variants of multiply or multiply-accumul ate oper-
ations, and are described in Chapter 7, “ The MIPS32® DSP ASE” on page 87. The DSP ASE a so provides three
additional “accumulators’” which behave like the hi/lo pair: the now four accumulators are called ac0-3). When we
talk about the “multiply/divide” group of instructions we include any instruction which reads or writes any accumula-

tor.
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No multiply/divide operation ever produces an exception - even divide-by-zero is silent — compilerstypicaly insert
explicit check code whereit’s required.

Timing varies. Multiply-accumulate instructions (there are many different flavors of MAC in the DSP ASE) have
been pipelined and tuned to achieve a 1-instruction-per-clock repeat rate, even for sequences of instructions targeting
the same accumulator. But because that requires a relatively long pipeline, multiply/divide unit instructions which
produce aresult in a GP register are relatively “slow”: for example, an instruction consuming the register value from
amflo Will not beissued until at least 7 cycles after them£lo.

Divides are much slower again. All the timings are summarized in Table 4.3.

What that means is that in an instruction sequence like:

mult $1, $2
mflo $3
addu $2, $3, 1

Them£1lo will beissued 4 cycles after themult, and the addu will go at least 2 cycles after themf1lo. The execution
unit may (or may not) be able to find other instructions to keep it busy, but each trip through that code sequence will
take aminimum of 9 cycles.
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Chapter 5

Kernel-mode (OS) programming and Release 2 of the
MIPS32® Architecture

[MIPS32] tells you how to write OS code which is portable across all compliant CPUs. Most OS code should be
CPU-independent, and we won'’t tell you how to write it here. But release 2 of the MIPS32 Specification [M1PS32]
introduced a few new optional features which are not yet well known, so are worth describing here:

* A better way of managing software-visible pipeline and hardware delays associated with CPO programming in
Section 5.1, "Hazard barrier instructions”.

* New interrupt facilities described in Section 5.2, "MIPS32® Architecture Release 2 - enhanced interrupt
system(s)";

* Thatled onto Section 5.3.1 “Summary of exception entry points’: where do exceptions go, and what options are
available?

»  The ahility to use one or more extra sets of registers (“shadow sets’) to reduce context-saving overhead in inter-
rupt handlers, in Section 5.4, " Shadow registers’.

* How to get at any power-saving features, in Section 5.5, " Saving Power"

*  How to control user-privilege accessto “hardware registers’, in Section 5.6 “The HWREna register - Control
user rdhwr access’.

5.1 Hazard barrier instructions

When privileged “CPQ” instructions change the machine state, you can get unexpected behavior if an effect is
deferred out of its normal instruction sequence. But that can happen because the relevant control register only gets
written some way down the pipeline, or because the changes it makes are sensed by other instructions early in their
pipeline sequence: thisis called a CPO hazard.

Your 74K family core offers you the option of removing many CPO hazards by setting the Config7[IHB] option bit as
described in the notes to Table B.3. But you might be better off sticking to the rules described in [MIPS32], so your
code will run on any compliant CPU: it may be best to see this feature as the way to rescue legacy code.

It's possible to get hazards in user mode code too, and many of the instructions described here are not solely for ker-
nel-privilege code. But they're most often met around CPO read/writes, so they found their way to this chapter.

Traditionally, MIPS CPUs left the kernel/low-level software engineer with the job of designing sequences which are
guaranteed to run correctly, usually by padding the dangerous operation with enough nop or ssnop instructions.

From Release 2 of the MIPS32 specification thisis replaced by explicit hazard barrier instructions. If you execute a

hazard barrier between the instruction which makes the change (the “ producer”) and the instruction which is sensitive
toit (the “consumer”), you are guaranteed that the change will be seen as complete. Hazards can appear when the pro-
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ducer affects even the instruction fetch of the consumer - that’s an “instruction hazard” - or only affecting the opera-
tion of the consuming instruction (an “execution hazard”). Hazard barriers come in two strengths: ehb deals only
with execution hazards, while eret, jr.hb and jalr.hb are barriers to both kinds of hazard.

In most implementations the strong hazard barrier instructions are quite costly, often discarding most or al of the
pipeline contents: they should not be used indiscriminately. For efficiency you should use the weaker ehb whereit is
enough. Since some implementations work by holding up execution of all instructions after the barrier, it’s preferable
to place the barrier just before the consumer, not just after the producer.

For example you might be updating a TLB entry:

mtcO0 Index, tO

# other stuff, if there’s stuff to do
ehb

tlbwi

jr.hb ra

The ehb makes sure that the change to Index has been made before you attempt to write the TLB entry, which isfine.
But updating the TLB might affect how instructions are fetched in mapped space, so you should not return to code
which might be running in mapped space until you've cleared the “instruction hazard”. That's dealt with by the
jr.hb.

The unconditional hardware interlock between anmtco and anm£co instruction has been removed. An ehb instruc-
tion is now required between an MTCO and a MFCO instruction type only when there is a CPO register dependency.
This optimization reduces the stall cyclesincurred by software TLB refill exception handlers when accessing excep-
tion and TLB-related state, The reduction in overhead of handling TLB refill exceptions has a significant impact on
system performance. For more information, refer to the description of the syne instruction in the 74K™ Software
User's Manual .

Porting software to use the new instructions

If you know your software will only ever run on aMIPS32 Release 2 or higher CPU, then that’s great. But to maintain
software which has to continue running on older CPUSs:

» ehbisano-op: onall previous CPUs. So you can substitute an ehb for the last no-op in your sequence of
“enough no-ops’, and your software is now safe on all future CPUs which are compliant with Release 2.

» jrhbandjalr.hb: are decoded as plain jump-register and call-by-register instructions on earlier CPUs. Again, pro-

vided you already had enough no-ops for your worst-case older CPU, your system should now be safe on Release
2 and higher CPUs.

5.2 MIPS32® Architecture Release 2 - enhanced interrupt system(s)

The features for handling interrupts include:

» Vectored Interrupt (V1) mode offers multiple entry points (one for each of the interrupt sources), instead of the
single general exception entry point.

External Interrupt Controller (EIC) mode goes further, and reinterprets the six core interrupt input signalsas a

64-valuefield - potentially 63 distinguished interrupts each with their own entry point (the zero code, of course,
isreserved to mean “no interrupt active”).
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Both these modes need to be explicitly enabled by setting bits in the Config3 register; if you don’t do that, the
CPU behavesjust asthe original (release 1) MIPS32 specification required.

»  Shadow registers - aternate sets of registers, often reserved for interrupt handlers, are described in Section 5.4,
"Shadow registers’. Interrupt handlers using shadow registers avoid the overhead of saving and restoring user
GPR values.

*  The Causel[Tl], Cause[FDCI],and Cause[PCI] bits (see Section B.1.3.1 “The Cause register”) provide a direct
indication of pending interrupts from the on-core timer, fast debug channel, and performance counter subsystems
(these interrupts are potentially shared with other interrupt inputs, and it previously required system-specific pro-
gramming to discover the source of the interrupt and handle it appropriately).

The new interrupt options are enabled by the IntCtl register, whose fields are shown in Figure 5.1.

Figure 5.1 Fields in the IntCtl Register
31 29 28 26 25 10 9 5 4 0

IPTI IPPCI IPFEDCI 0 VS 0

X X X 0 0

IntCtI[IPTI,IPPCI,IPFDCI]: IPTI, IPPCI, and IPFDCI are read-only 3-bit fields, telling you how internal timer, perfor-
mance counter, and fast debug channel interrupts are wired up. They are relevant in non-vectored and simple-vec-
tored ("VI") interrupt modes, but not if you're using an EIC interrupt controller.

Read thisfield to get the number of the Cause[IPnn] where the corresponding interrupt is seen. Because
Cause[IP1-0] are software interrupt bits, unconnected to any input, legal valuesfor IntCtI[IPTI], IntCtI[IPPCI], and
INtCtI[IPFDCI] are between 2 and 7.

The timer, performance counter, and fast debug channel interrupt signals are taken out to the core interface and the
SoC designer connects them back to one of the core’s interrupt inputs. The SoC designer is supposed to hard-wire
some core inputs which show up as the IntCtI[IPTI,IPPCI,IPFDCI] fields to match.

IntCtl[VS]: iswritable to give you software control of the vector spacing; if thevaluein VS is VS, you will get a spac-
ing of 32 x 2(VS1 pytes,

Only values of 1, 2, 4, 8 and 16 work (to give spacings of 32, 64, 128, 256, and 512 bytes respectively). A value of
zero gives a zero spacing, so all interrupts arrive at the same address — the legacy behavior.

5.2.1 Traditional MIPS® interrupt signalling and priority

Before we discuss the new features, we should remind you what was there already. On traditional MIPS systems the
CPU takes an interrupt exception on any cycle where one of the eight possible interrupt sources visible in Cause[IP]
is active, enabled by the corresponding enable hit in Status[IM], and not otherwise inhibited. When that happens con-
trol is passed to the general exception handler (see Table 5.1 for exception entry point addresses), and is recognized
by the “interrupt” value in Cause[ExcCode]. All interrupt are equal in the hardware, and the hardware does nothing
specid if two or more interrupts are active and enabled simultaneously. All priority decisions are down to the soft-
ware.

Six of the interrupt sources are hardware signals brought into the CPU, while the other two are “ software interrupts”
taking whatever value is written to them in the Cause register.
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The original MIPS32 specification adds an option to this. If you set the Cause[lV] bit, the same priority-blind inter-
rupt handling happens but control is passed to an interrupt exception entry point which is separate from the general
exception handler.

5.2.2 VI mode - multiple entry points, interrupt signalling and priority

Thetraditional interrupt system fits with a RISC philosophy (it leaves al interrupt priority policy to software). It's
also OK with complex operating systems, which commonly have asingle piece of code which does the housekeeping
associated with interrupts prior to calling an individual device-interrupt handler.

A single entry point doesn't fit so well with embedded systems using very low-level interrupt handlers to perform
small near-the-hardware tasks. So Release 2 of the MIPS32 architecture adds “ V1 interrupt mode” where interrupts
are despatched to one of eight possible entry points. To make this happen:

1. Config3[VInt] must be set, to indicate that your core has the vectored-interrupts feature - but all coresin the 74K
family haveit;

2. You write Cause[lV] = 1 to request that interrupts use the specia interrupt entry point; and:
3. You set IntCtI[VS] non-zero, setting the spacing between successive interrupt entry points.

Then interrupt exceptionswill go to one of eight distinct entry points. The bit-number in Cause[IP] corresponding to
the highest-numbered active interrupt becomes the “vector number” in the range 0-7. The vector number is multiplied
by the “spacing” implied by the OS-written field IntCtI[VS] (see above) to generate an offset. This offset isthen added
to the special interrupt entry point (already an offset of 0x200 from the value defined in EBase) to produce the entry
point to be used.

If multiple interrupts are active and enabled, the entry point will be the one associated with the higher-numbered
interrupt: in VI mode interrupts are no longer all equal, and the hardware now has somerole in interrupt “priority”.

5.2.3 External Interrupt Controller (EIC) mode

Embedded systems have lots of interrupts, typically far exceeding the six input signalstraditionally available. Most
systems have an external interrupt controller to allow these interrupts to be masked and selected. If your interrupt con-
troller is“EIC compatible” and you use these features, then you get 63 distinct interrupt entry points.

To do this the same six hardware signals used in traditional and VI modes are redefined as a bus with 64 possible val-

ues!®: 0 means“no interrupt” and 1-63 represent distinct interrupts. That's “EIC interrupt mode”, and you'rein EIC
mode if you would bein VI mode (see previous section) and additionally the Config3[VEIC] bit isset. EIC modeisa
little deceptive: the programming interface hardly seemsto change, but the meaning of fields change quite a bit.

Firstly, once the interrupt bits are grouped the interrupt mask bitsin Status[IM] can’t just be bitwise enables any more.
Instead thisfield (strictly, the 6 high order bits of this field, excluding the mask bits for the software interrupts) is
recycled to become a 6-bit Status[IPL] (“interrupt priority level”) field. Most of the time (when running application
code, or even normal kernel code) Status[IPL] will be zero; the CPU takes an interrupt exception when the interrupt
controller presents a number higher than the current value of Status[IPL] on its“bus’ and interrupts are not otherwise
inhibited.

16. Theresulting system will be familiar to anyone who's used a Motorola 68000 family device (or further back, aDEC PDP/11
or any of its successors).
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Asbefore, the interrupt handler will see the interrupt request number in Cause[IP] bits - see Section B.1.3.1 “The
Causeregister”; the six M S of those bits are now relabelled as Cause[RIPL] (“requested IPL"). In EIC mode the soft-
ware interrupt bits are not used in interrupt selection or prioritization: see below. But there’'s an important difference;
Cause[RIPL] holds a snapshot of the value presented to the CPU when it decided to take the interrupt, whereas the old

Cause[IP] bits simply reflected the real-time state of the input signals'’.

When an exception is triggered the new IPL - as captured in Cause[RIPL] - is used directly as the interrupt number;
it's multiplied by the interrupt spacing implied by IntCtl[RS] and added to the special interrupt entry point, as
described in the previous section. Cause[RIPL] retainsits value until the CPU next takes any exception.

Software interrupts: the two bitsin Cause[IP1-0] are till writable, but now becomereal signals which are fed out of
the CPU core, and in most cases will become inputs - presumably low-priority ones - to the EIC-compliant interrupt
controller.

In EIC mode the usual association of the internal timer, performance-counter overflow, and fast debug channel inter-
rupts with individual bits of Cause[IP] islost. These interrupts are turned into output signals from the core, and will
themselves become inputs to the interrupt controller. Ask your system integrator how they are wired.

5.3 Exception Entry Points
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Early versions of the MIPS architecture had a rather simple exception system, with a small number of architecture-
fixed entry points.

But there were aready complications. When a CPU starts up main memory istypically random and the M1PS caches
are unusable until initialized; so MIPS CPUs start up in uncached ROM memory space and the exception entry points
are dl therefor awhile (in fact, for so long as Status[BEV] is set); these “ROM entry points’ are clustered near the

top of ksegl, corresponding to Ox1FC0.0000 physical 18, which must decode as ROM.

ROM isslow and rigid; handlers for some exceptions are performance-critical, and OS' want to handle exceptions
without relying on ROM code. So once the OS boots up it's essential to be able to redirect OS-handled exceptions
into cached locations mapped to main memory (what exceptions are not OS-handled? well, there are no alternate
entry points for system reset, NMI, and EJTAG debug).

So when Status[BEV] isflipped to zero, OS-relevant exception entry points are moved to the bottom of ksegO, start-
ing from 0 in the physical map. The cache error exception is an exception... it would be silly to respond to a cache
error by transferring control to a cached location, so the cache error entry point is physically close to all the others,
but always mapped through the uncached “ksegl” region.

In MIPS CPUs prior to the MIPS32 architecture (with afew infrequent special cases) only common TLB miss excep-
tions got their own entry point; interrupts and all other OS-handled exceptions were all funneled through asingle
“general” exception entry point.

The MIPS32® architecture: interrupts get their own entry point

Embedded systems often make heavy use of interrupts and the OS may be less centralized; so MIPS32 CPUs allow
you to redirect al interrupts to anew “special interrupt” entry point; you just set anew hit in the Cause register,
Cause[lV] — see Section B.1.3 “Exception control: Cause and EPC registers’.

17.

18.

Since theincoming IPL can change at any time - depending on the priority views of the interrupt controller - thisis essential
if the handler is going to know which interrupt it's servicing.

Even this address can be changed by a brave and determined SoC integrator, see the note on RBASE in Section

5.3.1 “Summary of exception entry points’.

Programming the MIPS32® 74K™ Core Family, Revision 02.14



31

5.3 Exception Entry Points

Release 2: relocate all the exception entry points with EBase

The new-with-release 2 EBase register doestwo vital jobs: oneisto allow software to know which CPU it’s running
on and the other is to rel ocate the exception entry points. It is primarily supplied for multi-CPU systems (or with a
MIPSMT CPU, for systems using multiple VPES).

The latter is necessary because CPUs sharing a memory map (as SMP CPUs often do) have their exception entry
pointsin kseg0. By setting EBase differently on each CPU, you can give them distinct exception handlers.

Figure 5.2 Fields in the EBase Register
30 29 12 11 10 9 0

1

0 VA 0 CPUNum

0

EBase[VA]: the base address for the exception vectors, adjustable to aresolution of 4Kbytes. See the exception entry

points table for how that moves all the exception entry points. The top two address hits are fixed to “10”, which
means that the base address is constrained to being somewhere in the “unmapped” kseg0/ksegl memory regions.

By setting EBase on any CPU and/or V PE of amultiprocessor and/or multithreading system to a unique value, that
CPU can have its own unigque exception handlers.

Write thisfield only when Status[BEV] is set, so that any unexpected exception will be handled through the ROM
entry points (otherwise you would be changing the exception address under your own feet, and the results of that are
undefined).

EBase[CPUNum]: On single-threaded CPUs thisisjust asingle "CPU number" field (set by the core interface bus

SI_CPUNum, which the SoC designer will tie to some suitable value).

5.3.1 Summary of exception entry points

Theincremental growth of exception entry points has left no one place where all the entry points are summarized; so
here's Table 5.1. But first:

BASE is 0x8000.0000, as it will be where the software, ignoring the EBase register, leavesit at its power-on value —

that's also compatible with older MIPS CPUs. Otherwise BASE is the 4Kbyte-aligned address found in EBase after
you ignore the low 12 hits...

RBASE isthe ROM/reset entry point base, usualy 0xBFC0.0000. However, 74K family cores can be configured to

use a different base address by fixing some input signals to the core. Specifically, if the coreiswired with
S|_UseExceptionBase asserted, then RBASE bits 29-12 will be set by the values of the inputs
SI_ExceptionBase[29:12] (the two high bits will be “10" to select the kseg0/ksegl regions, and the low 12 bits are
always zero). Relocating RBASE is strictly not compliant with the MIPS32 specification and may bresk al sorts of
useful pieces of software, so it’s not to be done lightly.

DebugVectorAddr is an alternative entry point for debug exceptions. It is specified via a drseg memory mapped register

of the same name and enabled through the Debug Control Register. The probe handler still takes precedence, but this
is higher priority than the regular ROM entry points.
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Table 5.1 All Exception entry points
Memory region Entry point Exceptions handled here

EJTAG probe-mapped 0xFF20.0200 EJTAG debug, when mapped to “probe’ memory.

Alternate Debug Vector DebugVectorAddr EJTAG debug, not probe, relocated, DCR[RDVec]==1

ROM-only entry points RBASE+0x0480 EJTAG debug, when using normal ROM memory.DCR[RDVec]==1
RBASE+0x0000 Post-reset and NMI entry point.
ROM entry points (when RBASE+0x0200 Simple TLB Refill (Status[EXL]==0).
Status[BEV]==1) RBASE+0x0300 Cache Error. Note that regardless of any relocation of RBASE (see
above) the cache error entry point is always forced into ksegl.
RBASE+0x0400 Interrupt specia (Cause[lV]==1).
RBASE+0x0380 All others

“RAM” entry points BASE+0x100 Cacheerror - in RAM. but always through uncached ksegl window.
(Status[BEV]==0) BASE+0x000 Simple TLB Réfill (Status[EXL]==0).
BASE+0x200 Interrupt special (Cause[lV]==1).
BASE+0x200+. .. multipleinterrupt entry points - seven morein “VI1” mode, 63in

“EIC" mode; see Section 5.2, "MIPS32® Architecture Release 2 -
enhanced interrupt system(s)".
BASE+0x180 All others

5.4 Shadow registers
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In hardware terms, shadow registers are deceptively simple: just add one or more extra copies of the register file. If
you can automatically change register set on an exception, the exception handler will run with its own context, and
without the overhead of saving and restoring the register values belonging to the interrupted program. On to the
details...

MIPS shadow registers come as one or more extra compl ete set of 32 general purpose registers. The CPU only
changes register sets on an exception or when returning from an exception with eret.

Selecting shadow sets - SRSCitl
The shadow set selectors are in the SRSCtl register, shown in Figure 5.3.

Figure 5.3 Fields in the SRSCtl Register

31 30 29 26 25 22 21 18 17 16 15 12 11 10 9 6 5 4 3 0

0 HSS 0 EICSS 0 ESS 0 PSS 0 CSS

0 0

SRSCtI[HSS]: the highest-numbered register set available on this CPU (i.e. the number of available register sets minus

one.) If it reads zero, your CPU has just one set of GPR registers and no shadow-set facility.

SRSCII[EICSS]: In EIC mode, the external interrupt controller proposes a shadow register set number with each

requested interrupt (nonzero IPL). When the CPU takes an interrupt, the externally-supplied set number determines
the next set and is made visible herein SRSCHI[EICSS] until the next interrupt.

The CPU isin EIC modeif Config3[VEIC] (indicating the hardware is EI C-compliant), and software has set

Cause[lV] to enable vectored interrupts. There’s more about EIC modein Section 5.2.3 “External Interrupt
Controller (EIC) mode”.
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If the CPU is not in EIC mode, this field reads zero.

5.4 Shadow registers

In VI mode (no external interrupt controller, Config3[VInt] reads 1 and Cause[lV] has been set 1) the core sees only
eight possible interrupt numbers; the SRSMap register contains eight 4-bit fields defining the register set to use for
each of the eight interrupt levels.

If you are remaining with “classic” interrupt mode (Cause[lV] is zero), it's still possible to use one shadow set for all
exception handlers — including interrupt handlers — by setting SRSCtI[ESS] non-zero.

SRSCII[ESS]: thiswritable field is the software-sel ected register set to be used for "all other" exceptions; that’s other

than an interrupt in VI or EIC mode (both have their own special ways of selecting aregister set).

Unpredictable things will happen if you set ESS to a non-existent register set number (ie, if you set it higher than the
valuein SRSCtI[HSS].

SRSCI[CSS,PSS]: CSS istheregister set currently in use, and isaread-only field. I1t's set on any exception, replaced
by the valuein SRSCtI[PSS] on an eret.

PSS isthe "previous' register set, which will be used following the next eret. It'swritable, allowing the OS to dis-
patch code in anew register set; load this value and then execute an eret. If you write alarger number than the total
number of implemented register sets the result is unpredictable.

You can get at the values of registersin the previous set using rdpgpr and wrpgpr.

Just anote: SRSCtI[PSS] and SRSCtI[CSS] are not updated by all exceptions, but only those which write a new

return addressto EPC (or equivalently, those occasions where the exception level bit Status[EXL] goes from zero to
one). Exceptions where EPC is not written include:

»  Exceptions occurring with Status[EXL] already set;

»  Cacheerror exceptions, where the return address is loaded into ErrorEPC,;

»  EJTAG debug exceptions, where the return address is loaded into DEPC.

How new shadow sets get selected on an interrupt

In EIC mode, the external interrupt controller proposes a shadow register set number with each requested interrupt
(nonzero IPL). When the CPU takes an interrupt, the externally-supplied set number determines the next set and is

made visiblein SRSCHI[EICSS] until the next interrupt.

In VI mode (no external interrupt controller) the core sees only eight possible interrupt numbers; the SRSMap register
contains eight 4-bit fields, defining the register set to use for each of the eight interrupt levels, as shownin Figure 5.4.

31

28 27

24 23

Figure 5.4 Fields in the SRSMap Register
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In SRSMap, each of the SSV7-0 fields has the shadow set number to be used when handling the interrupt for the cor-

responding Cause[IP7-0] bit. A zero shadow set humber means not to use a shadow set. A number than the highest

valid set (as found in SRSCtI[HSS]) has unpredictable results: don’t do that.
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If you are remaining with “classic” interrupt mode, it’s still possible to use one shadow set for all exception handlers
- including interrupt handlers - by setting SRSCtI[ESS] non-zero.

In “EIC” interrupt mode, this register has no effect and the shadow set number to be used is determined by an input
bus from the interrupt controller.

Software support for shadow registers

Shadow registerswork “asif by magic” for short interrupt routines which run entirely in exception mode (that is, with
Status[EXL] set). The shadow registers are not just efficient because there’s no need to save user registers; the shadow
registers can also be used to hold contextual information for one or more interrupt routines which uses a particular
shadow set. For more ambitious interrupt nesting schemes, software must save and stack copies of SRSCHI[PSS]
alongsideits copies of EPC; and it's entirely up to the software to determine when an interrupt handler can just go
ahead and use aregister set, and when it needs to save values on entry and restore them on exit. That's at |east as dif-
ficult asit sounds: shadow sets are probably best used purely for very low-level, high-speed handlers.

5.5 Saving Power

There are basicaly just a couple of facilities:
In some cores — distinguished by having Config7[WII] set to 1 — await condition will be terminated by an
active interrupt signal, even if that signal is prevented from causing an interrupt by Status[IE] being clear. It's
not immediately obvious why that behavior is useful, but it avoids atricky race condition for an OS which uses a
wait instruction initsidle loop. For programming details consult and Section B.2.1 “The Config7 register”.

*  The Status[RP] bit: thisdoesn’t do anything inside the core, but its state is made available at the core interface as

SI_RP. Logic outside the core is encouraged to use thisto control any logic which trades off power for speed -
most often, that will be slowing the master clock input to the CPU.

5.6 The HWREna register - Control user rdhwr access

HWREna alowsthe OSto control which (if any) hardware registers are readable in user mode using rdhwr: see aso
Section 4.1 “User-mode accessible “Hardware registers’”.

Thelow four bits (3-0) relate to the four registers required by the MIPS32 standard. The two high bits (31-30) are
available for implementation-dependent use.

Thewholeregister is cleared to zero on reset, so that no hardware register is accessible without positive OS clearance.

Figure 5.5 Fields in the HWREna Register

3130 29 28 4 3 2 1 0
Impl UL 0 CCRes|CC|SYNCI_Step| CPUNum
0O O 0 0 0 0

HWREna[Impl]: Read 0. If there were any implementati on-dependent hardware registers, you could control accessto
them here. Currently, no 74K family core has any such extraregisters.

HWREna[UL]: Set thishit 1 to permit user programs to obtain the value of the UserLocal CPO register through
rdhwr $29.
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5.6 The HWREna register - Control user rdhwr access

HWREnNa[CCRes]: Set thishit 1 so auser-mode rdhwr 3 can determine whether Count runs at the full clock rate or
some divisor.

HWRENa[CC]: Set thisbit 1 so auser-mode rdhwr 2 can read out the value of the Count register.

HWRENa[SYNCI_Step]: Set thisbit 1 so auser-mode rdhwr 1 can read out the cache line size (actualy, the smaller
of the L1 I-cache line size and D-cache line size). That line size determines the step between successive uses of the
synci instruction, which does the cache manipulation necessary to ensure that the CPU can correctly execute
instructions which you just wrote.

HWRENna[CPUNum]: Set thisbit 1 so a user-mode rdhwr 0 reads out the CPU ID number, asfound in
EBase[CPUNum].
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Chapter 6

Floating point unit

The 74Kf™ member of the 74K family has a hardware floating point unit (FPU). This:

* Isa64-bit FPU: with instructions working on both 64-bit and 32-bit floating point numbers, whose formats are
compatible with the “double precision” and “single precision” recommendations of [|EEE754].

* Iscompatible with the MIPS64 Architecture: implements the floating point instruction set defined in
[MIPS64V 2]; because the 74K family integer coreis a 32-bit processor, a couple of additional instructions
mfhcl andmthel are available to help pack and unpack 64-bit values when copying data between integer and
FP registers - see Section C.3 “FPU changes in Release 2 of the MIPS32® Architecture” or for full details
[MIPS32].

e Usually runs at half or two-thirds of the integer core’s clock rate: the design is tested to work with the FPU run-
ning at the core speed, but in likely processes the FPU will then limit the achievable frequency of the whole core.
You can query the Config7[FPR,FPR1] fieldsin Section B.2.1 “The Config7 register” to check which optionis
used on your CPU.

»  Canrun without an exception handler: the FPU offers arange of options to handle very large and very small
numbers in hardware. With the 74K core full IEEE754 compliance does require that some operand/operation
combinations be trapped and emulated, but high performance and good accuracy are available with settings
which get the hardware to do everything - see Section 6.4.2, "FPU “unimplemented” exceptions (and how to
avoid them)”.

*  Omits* paired single” and MIPS-3D extensions: those are primarily aimed at 3D graphics, and are described as
optional in [MIPS64V2].

» Usesan autonomous 7-stage pipeline: al datatransfers are interlocked, so the programmer is never aware of the
pipeline. Compiler writers and daemon subroutine tuners do need to know: there’s timing information in Section
6.5, "FPU pipeline and instruction timing".

» Haslimited dual issue: the FPU has two parallel pipelines, and under optimum conditions can issue two instruc-

tions simultaneously. One handles all arithmetic operations, the other deals with loads, stores and data transfers
to/from integer registers.

6.1 Data representation

If you'd like to read up on floating point in general you might like to read [SEEMIPSRUN]:. But it's probably useful
to remind you (in Figure 6.1) what 32-bit and 64-bit floating point numbers on MIPS architecture CPUs look like.
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6.2 Basic instruction set

Figure 6.1 How floating point numbers are stored in a register

float |31 24123 16| 15 8 |7 0
. _______& ]
sign  exp mantissa
double |63 56 [ 55 48| 47 40 39 32]31 24123 16| 15 8 |7 0
I
sign exp mantissa

Just to remind you:

» sign: FP numbers are positive numbers with a separate sign bit; “1” denotes a negative number.

*  mantissa: represents a binary number. But thisis afloating point number, so the units depend on:
*  exp: the exponent.

When 32-bit datais held in a 64-bit register, the high 32 bits are don't care.

The MIPS Architecture's 32-bit and 64-bit floating point formats are compatible with the definitions of “single preci-
sion” and “double precision” in [|EEE754].

FP registers can aso hold simple 2s-complement signed integers too, just like the same number held in the integer
registers. That happens whenever you load integer data, or convert to an integer data type.

Floating point datain memory is endianness-dependent, in just the same way as integer datais; the higher bit-num-
bered bytes shown in Figure 6.1 will be at the lowest memory location when the core is configured big-endian, and
the highest memory location when the coreis little-endian.

6.2 Basic instruction set

Whenever it makes senseto do so, FP instructions exist in aversion for each datatype. In assembler that’s denoted by
asuffix of:

single-precision
double-precision
32-hit integer (“word")
64-hit integer

HE oo

There's agood readable summary of the floating point instruction set in [SEEMIPSRUN]:, and you can find the fine
technical detailsin [MIPS64V2].

As a one-minute guide: the FPU provides basic arithmetic (add, multiply, subtract, divide and square root). It's all
register-to-register (like the integer unit). It's written “ destination first” like integer instructions; sometimes that's
unexpected in that evt . d. s isa“ convert from single to double”. It has a set of multiply/add instructions which
work on four registers: madd a, b, ¢, d does

a=c*d+b
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asasingle operation. There are arich set of conversion operations. A bewildering variety of compare instructions
record their results in any one of eight condition flags, and there are branch and conditional-move instructions which
test those flags.

You won't find any higher-level functions: no exponential, log, sine or cosine. Thisis a RISC instruction set, you're
expected to get library functions for those things.

6.3 Floating point loads and stores

FP data does not normally pass through the integer registers; the FPU hasits own load and store instructions. The
FPU is conceptually a replaceable tenant of coprocessor 1: while arithmetic FP operations get recognizable names
like add.d, the load/store instructions will be found under names like 1dc1 in [MI1PS64V 2] and other formal docu-
mentation. In assembler code, you'll more often use mnemonics like 1 . & which you'll find will work just fine.

Because FP-intensive programs are often dealing with one- or two-dimensional arrays of values, the FPU gets special
load/store instructions where the address is formed by adding two registers; they're called 1dxc1 etc. In assembler
you just use the 1 . d mnemonic with an appropriate address syntax, and all will be well.

6.4 Setting up the FPU and the FPU control registers
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There'safair amount of state which you set up to change the way the FPU works; thisis controlled by fieldsin the
FPU control registers, described here.

6.4.1 IEEE options

[IEEET754] defines five classes of exceptional result. For each class the programmer can select whether to get an
| EEE-defined “exceptional result” or to be interrupted. Exceptional results are sometimes just normal numbers but
where precision has been lost, but also can be an infinity or NaN (“not-a-number”) value.

Control over the interrupt-or-not options is done through the FCSR[Enable] field (or more cleanly through FENR,
the same control bits more conveniently presented); see Table 6.1 below.

It's overwhelmingly popular to keep FENR zero and thus never generate an |EEE exception; see Section 6.5, "FPU
pipeline and instruction timing" for why thisis a particularly good ideaif you want the best performance.

6.4.2 FPU “unimplemented” exceptions (and how to avoid them)

It's along-standing feature of the MIPS Architecture that FPU hardware need not support every corner-case of the
|EEE standard. But to ensure proper | EEE compatibility to the software system, an FPU which can’t manage to gen-
erate the correct value in every case must detect a combination of operation and operandsiit can’t do right. It then
takes an unimplemented exception, which the OS should catch and arrange to software-emulate the offending instruc-
tion.

The 74K core’'s FPU will handle everything |EEE can throw at it, except for tiny numbers: it can’t use or produce
non-zero values which are too small for the standard (“normalized”) representation®®.

19. |EEE754 defines an alternative “denormalized” representation for these numbers.
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6.4 Setting up the FPU and the FPU control registers

Here you get a choice: you can either configure the CPU to depart from | EEE perfection (see the description of the
FCSR[FS,FO,FN] bitsin the notes to Section 6.1, "FPU (co-processor 1) control registers'), or provide a software
emulator and resign yourself to a small number of “unimplemented” exceptions.

6.4.3 FPU control register maps

There are five FP control registers:

Table 6.1 FPU (co-processor 1) control registers

Conventional CP1ctrl Description
Name reg num
FCSR 31 Extensive control register - the only FPU control register on histori-
cal MIPS CPUs.

Contains all the control bits. But in practice some of them are more
conveniently accessed through FCCR, FEXR and FENR below.

FIR 0 FPimplementation register: read-only information about the capa-
bility of this FPU.
FCCR 25 Convenient partial views of FCSR are better structured, and allow
FEXR 26 you to update fields without interfering with the operation of inde-
FENR 28 pendent bits.

FCCR has FP condition codes, FEXR contains |EEE exceptional-
condition information (cause and flag bits) you read, and FENR is
| EEE exceptional-condition enables you write.

The FP implementation (FIR) register
Figure 6.2 shows thefieldsin FIR and the read-only values they always have for 74K family FPUs:

Figure 6.2 Fields in the FIR register

31 25 24 23 22 21 20 19 18 17 16 15 8 7 0
0 FC|0|F64|L|W|3D|PS|D| S Processor ID Revision
1 1 11 0 0 11 0x97 whatever

The fields have the following meanings:

*  FC: “full convert range”: the hardware will complete any conversion operation without running out of bits and
causing an “unimplemented” exception.

*  F64/L/WID/S thisisa64-hit floating point unit and implements 64-bit integer (“L"), 32-bit integer (“W”), 64-bit
FP double (“D") and 32-bit FP single (“S”) operations.

*  3D: does not implement the MIPS-3D ASE.
* PS does not implement the paired-single instructions described in [M1PS64V 2]
*  Processor ID/Revision: major and minor revisions of the FPU - asis usual with revisionsit’s very useful to print

these out from a verbose sign-on message, and rarely a good idea to have software behave differently according
to the values.
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The FP control/status registers (FCSR, FCCR, FEXR, FENR)

Figure 6.3 shows all these registers and their bits

31 2524 23 22 2120 181716 1211 8 76 3 21 O
FCSR| FCC7-1 |FS|FCCO|FO|FN| 0 |E|Cause|Enab|es| Flags |RM|

FCCR] 0 [ FCCr0 |
FEXRl 0 | E | Cause| 0 | Flags | 0 |
FENRl 0 | Enable£| 0 |FS| RM |

Figure 6.3 Floating point control/status register and alternate views

Where:

FCC7-0: the floating point condition codes: set by compare instructions, tested by appropriate branch and conditional
move instructions.

FS/FO/FN: optionsto avoid "unimplemented" exceptions when handling tiny ("denormalized") numbers?, They do so
at the cost of |EEE compatibility, by replacing the very small number with either zero or with the nearest nonzero
quantity with a normalized representation.

The FO (“flush override”) bit causes all tiny operand and result values to be replaced.

The FS (“flush to zero™) bit causes all tiny operand and result values to be replaced, but additionally does the same
substitution for any tiny intermediate value in a multiply-add instruction. Thisis provided both for legacy reasons,
and in caseyou don't like theideathat the result of a multiply/add can change according to whether you use the fused
instruction or a separate multiply and add.

The FN bit (“flush to nearest”) bit causes all result values to be replaced with somewhat better accuracy than you
usualy get with FS: the result is either zero or a smallest-normalized-number, whichever is closer. Without FN set
you can only replace your tiny number with anonzero result if the “RP” or “RM” rounding modes (round towards
more positive, round towards more negative) are in effect.

For full IEEE-compatibility you must set FCSR[FS,FO,FN] == [0,0,0].

To get the best performance compatible with a guarantee of no “unimplemented” exceptions, set FCSR[FS,FO,FN]
== [1,1,1].

Just occasionally for legacy applications developed with older MIPS CPUs which did not have the FO and FN options,
you might set FCSR[FS,FO,FN] == [1,0,0].

E: (often shown in documents as part of the Cause array) isa status bit indicating that the last FP instruction caused an
"unimplemented” exception, as discussed in Section 6.4.2, "FPU “unimplemented” exceptions (and how to avoid
them)".

20. See[SEEMIPSRUN]: for an explanation of “normalized” and “denormalized”.
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Cause/Enables/Flags: each of thesefields is broken up into five bits, each representing an | EEE-recognized class of

exceptional results?! which can be individually treated either by interrupting the computation, or substituting an
| EEE-defined exceptional value. So each field contains:

bitnumber 4 3 2 1 0
field[V]Z[O[ U] T
The bitsare V for invalid operation (e.g. square root of -1), Z for divide-by-zero, O for overflow (a number too large
to represent), U for underflow (a number too small to represent) and | for inexact - even 1/3 isinexact in binary.

Then the:

— Enables field is"write 1 to take a MIPS exception if this condition occurs' - rarely done. With the IEEE
exception-catcher disabled, the hardware/emulator together will provide a suitable exceptional result.

— Cause field records what if any conditions occurred in the last-executed FP instruction. Because that’s often
too transient, the

— Flags field remembers all and any conditions which happened since it was last written to zero by software.
RM: is the rounding mode, as required by | EEE:

RM Meaning

0 Round to nearest - RN
If theresult is exactly half-way between the nearest values, pick the one whose
mantissa bit0 is zero.

1 Round toward zero - RZ

2 Round towards plus infinity - RP
“Round up” (but unambiguous about what you do about negative numbers).

3 Round towards minusinfinity - RM

6.5 FPU pipeline and instruction timing

Thisis not so simple. The floating point unit (FPU) has its own pipeline. More often than not, the FPU uses a slower
clock rate than the integer core - afull-speed FPU is abuild option, but in that case the FPU will usually limit the
clock rate which your design can reach. For 74K family cores, the FPU will commonly be built with atwo-thirds
clock. You can find how your coreis set up by looking at the Config7[FPR1-0] bits, defined in the notes to Figure
B.3

Nonetheless, thisis a powerful 64-bit floating point unit which can deliver very good performance. The FPU pipeline
isshownin Figure 6.4.

21. Sorry about the ugly wording. The |EEE standard talks of “exceptions’ which makes more sense but gets mixed up with
MIPS “exceptions’, and they’'re not the same thing.
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Figure 6.4 Overview of the FPU pipeline
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FPU instructions are fetched and despatched through the integer core. In the out-of-order 74K pipeline, FP instruc-
tions must also be dispatched in program order into the (conventional, in-order) FPU pipeline. The core has common
logic which is available to other coprocessors which gets the instructions in order and passes them through a short
FIFO to the coprocessor pipeline. However, the FPU has two pipelines: one for computational instructions, the other
handling loads, stores and moves to and from integer registers. The FPU can issue two instructions simultaneously if
one of each type is presented.

bypasses

¥ O N

The FPU is a multiply-add pipeline, and all register-to-register instructions go through six stages:

FR: obtains FP register values and converts them into an expanded internal format.

When the FPU runs at a slower speed than the core, instructions issued from the integer core may have to wait for the
next FPU clock cycle to start.

The 74K core has an out-of-order pipeline, but FP instructions are always issued and run in order relative to each
other (there is no FP equivalent of the “completion buffer” array used by integer instructions). That is, no FP instruc-
tion can be issued into the main pipeline — and thus to the FP pipeline — until all FP predecessors have been issued
before it. Moreover, no FP instruction can be allowed to write FP registers at the “FW™ stage until it is non-specula-
tive, and that requires that all its program-order predecessors (integer and FP instructions alike) have graduated.
Because the FP pipeline is longer and clocked more slowly than the integer pipeline, that is unlikely to cause much
delay.

M1, M2: multiply operation as required. Some long-latency operations loop in the M1 stage until complete, holding up

any subsequent FP instruction which would otherwise enter M1. Instructions issued earlier (and thus further down the
pipeline) continue to run, leaving bubbles in the FP pipeline stages M2 through FW.

A1, A2: add-unit operation as required.
FP: convert result back to standard stored form and round.

FW: write back to FP register.
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6.5.1 FPU register dependency delays

Any FPU instruction must go through pipeline stages from M 1 through A2 before it produces aresult, which can then
(as shown by the “bypass’ linesin the pipeline diagram) be used by a dependent instruction reaching the M1 stage. If
you want to keep the FPU pipeline full, that means it’s enough to have three non-dependent instructions between the
consumer and producer of an FP value. However, there’s no guarantee that all the FP pipeline slots will be filled, and
then threeintervening instructions will be excessive. Good compilers should try to schedule FPinstructions, but not at
unreasonabl e cost.

6.5.2 Delays caused by long-latency instructions looping in the M1 stage

Instructions which take only one clock in M1 go through the pipeline smoothly and can be completed one per FPU
clock period. Instructions which take longer in M1 always prevent the next instruction from starting in the next clock,
regardless of any data dependency. Those long-latency instructions - double-precision multiplies and all division and
sguare root operations - are listed in Table 6.2. Aninstruction which runsfor 2 cyclesin M1 holds up the FPU pipe-
line for one clock and so on - and of course the cycle counts are for FPU cycles.

Table 6.2 Long-latency FP instructions

Operand Instruction type Instructions CyclesinM1
Double-precision (64-bit)  Any multiplication mul.dmadd.d msub.dnmadd.d, nmsub.d 2
Single-precision (32-hit) Reciprocal recip.s 10

divide, square-root div.s,sqrt.s 14

reciprocal square root rsqrt.s 14

Double-precision (64-bit) Reciprocal recip.d 21
divide, square-root div.d,sqrt.d 29

reciprocal square root rsqrt.d 31

6.5.3 Delays on FP load and store instructions

FP store instructions graduate from the main pipeline (subject to dependencies and freedom from address excep-
tions), and then wait in a special queue until FP datais delivered. The store data will be significantly delayed com-
pared to an integer store instruction: but unless some other instruction reads the target cache line, the program will
probably not see much delay.

FP load instructions in the main pipeline are treated like integer loads; an FP load which hitsin the cache can be com-
pleted in the main pipeline. The load datais passed from D-cache into the FPU pipeline, and you should see no more
than the usua FP producer-consumer delay from load to use. FPU load instructions which miss are processed in the
memory pipeline. FP loads are non-blocking too, so it will be the consuming instruction (if any) which is delayed.

6.5.4 Delays when main pipeline waits for FPU to decide not to take an exception

The MIPS architecture requires FP exceptions to be “precise”, which (in particular) means that no instruction after
the FP instruction causing the exception may do anything software-visible. That means that an FP instruction in the
main pipeline may not be committed, nor leave the main pipeline, until the FPU can either report the exception, or
confirm that the instruction will not cause an exception.

Floating point instructions cause exceptions not only because a user program has requested the system to trap IEEE
exceptional conditions (which is unusual) but also because the hardware is not capable of generating or accepting
very small (“denormalized”) numbers in accordance with the IEEE standards. The latter (“unimplemented”) excep-
tionisused to call up a software emulator to patch up some rare cases. But the main pipeline must be stalled until the
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FP hardware can rule out an exception, and that leads to a delay on every non-trivial FP operation. With a half-rate
FPU, this stall will most likely be 6-7 clocks.

Software which can tolerate some deviation from |EEE precision can avoid these delays by opting to replace all
denormalized inputs and results by zero - controlled by the FCSR[FS,FO,FN] register bits described in Section 6.1,
"FPU (co-processor 1) control registers” and its notes. If you have also disabled all I1EEE traps, you get no possibility
of FP exceptions and no extra main pipeline delay.

6.5.5 Delays when main pipeline waits for FPU to accept an instruction

FP instructions are queued (some queues are shared with other co-processors, if fitted) for transmission to the FPU
hardware. If that queue (which has 8 entries) fills up, the CPU will be unable to issue more FP instructions — and
since FP instructions are issued in-order, that will quickly clog up the CPU

6.5.6 Delays on mfcl/mtcl instructions

mtcl goes down the main pipe and getsits GP register data just like any other instruction (from the register file, a
completion buffer or a by-pass): then it passesit across to the FPU. In the FPU pipeline, themtc1 looks like an FP
load which hits: the data is sent to the FP unit a predictable number of cycles after it isissued

mfcl (in the FPU pipeline) resembles a FP store. The FP datais sent back the same FPU-to-EU data path asis used
in astore, but then written into the CB which belongs to the integer AGEN pipeline’s version of the samemfec1l
instruction. The timing is awkward because you have to find a free completion buffer write port. Once the dataisin
the CB, themfc1 isacandidate for graduation. Since the FPU pipelineislong and it usually runs slower than the
integer pipeline, the effective latency of m£c1 can be high. A program will run faster if themfc1 can be placed 10-15
instruction positions ahead of its consumer.

6.5.7 Delays caused by dependency on FPU status register fields

The conditional branch instructionsbe1£/bec1t and the conditional moves movE/movt execute in the main pipe-
line, but test a FP condition bit generated by the various FPU compare instructions.

belf/belt (like other conditional branches) are executed speculatively in the execution unit. FP condition values
are not passed through CBs, so the check for a mispredict is not made until the branch instruction tries to graduate.
That means that mispredicted FP branches are a couple of cycles more expensive than regular mispredictions.

MIPS recommends that you don’t use the “branch likely” (be1£1/be1t1) versions of these instructionsin new code.

6.5.8 Slower operation in MIPS I™ compatibility mode

Historic 32-bit MIPS CPUs had only 16 “even-numbered” floating point registers usable for arithmetic, with odd-
numbered registers working together with them to let you load, store and transfer double-precision (64-bit) values.
Software written for those old CPUs isincompatible with the full modern FPU, so there's a compatibility bit provided
in Status[FR] - set zero to use MIPS | compatible code. This comes at the cost of slower repeat rates for FP instruc-
tions, because in compatibility mode not all the bypasses shown in the pipeline diagram above are active.
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Chapter 7

The MIPS32® DSP ASE

The MIPS DSP ASE is provided to accelerate alarge range of DSP algorithms. You can get most programming infor-
mation from this chapter. There’s more detail in the formal DSP A SE specification [MIPSDSP], but expect to read
through lots of material aimed at hardware implementors. You may also find [DSPWP] useful for tips and examples
of converting DSP agorithms for the DSP ASE.

Different target applications generally need different data size and precision:

32-bit data: audio (non-hand-held) decoding/encoding - awide range of “hi-fi” standards for consumer audio or
television sound.

Raw audio data (as found on CD) is 16-hit; but if you do your processing in 16 bits you lose precision beyond
what is acceptable for hi-fi.

16-bit data: digital voice for telephony. International telephony code/decode standards include G.723.1
(8Ksample/s, 5-6K bit/s data rate, 37ms delay), G.729 (8Khit/s, 15ms delay) and G.726 (16-40K bit/s, computa-
tionally simpler and higher quality, good for carrying analogue modem tones). Application-specific filters are
used for echo cancellation, noise cancellation, and channel equalization.

Also used for soft modems and much general “DSP” work (filters, correlation, convolution); lo-fi devices use 16
bits for audio.

8-bit data: processing of printer images, JPEG (still) images and video data.

7.1 Features provided by the MIPS® DSP ASE

Those target applications can benefit from unconventional architecture features because they rely on:

Fixed-point fractional data types: It is not yet economical (in terms of either chip size or power budget) to use
floating point calculations in these contexts. DSP applications use fixed-point fractions. Such afractionisjust a
signed integer, but understood to represent that integer divided by some power of two. A 32-hit fractional format

where the implicit divisor is 21° (65536) would be referred to as a Q15.16 format; that’'s because there are 16 bits
devoted to fractional precision and 15 hits to the whole number range (the highest bit does duty as asign bit and
isn't counted).

With this notation Q31.0 is a conventional signed integer, and Q0.31 is afraction representing numbers between
-land 1 (well, nearly 1). It turns out that Q0.31 is the most popular 32-bit format for DSP applications, since it
won't overflow when multiplied (except in the corner case where -1x-1 leads to the just-too-large value 1).
Q0.31 is often abbreviated to Q31.

The DSP ASE provides support for Q31 and Q15 (signed 16-bit) fractions.

Saturating arithmetic: 1t's not practicable to build in overflow checks to DSP algorithms - they need to be too
fast. Clever algorithms may be built to be overflow-proof; but not al can be. Often the least worst thing to do
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when a calculation overflows isto make the result the most positive or most negative representable value. Arith-
metic which doesthat is called saturating - and quite alot of operationsin the DSP ASE saturate (in many cases
there are saturating and non-saturating versions of what is otherwise the same instruction).

»  Multiplying fractions: if you multiply two Q31 fractions by re-using a full-precision integer multiplier, then
you'll get a64-bit result which consists of a Q62 result with (in the very highest bit) a second copy of the sign bit.
Thisisabit peculiar, so it's more useful if you always do a |eft-shift-by-1 on this value, producing a Q63 format
(amore natural way to use 64 bits). Q15 multiplies which generate a Q31 value have to do the shift-1eft too.
That’'s what all themulq... instructions do.

* Rounding: some fractional operationsimplicitly discard less significant bits. But you get a better approximation
if you bump the truncated result by one when the discarded bits represent more than ahalf of thevalueof alin
the new LS position. That’s what we mean by rounding in this chapter.

*  Multiply-accumul ate sequences with choice of four accumulators: (with fixed-point types, sometimes saturating).

The 74K already has quite a slick integer multiply-accumulate operation, but it's not so efficient when used for
fractional and saturating operations.

The sequences are made more usable by having four 64-hit result/accumul ator registers - (the old MIPS multiply
divide unit hasjust one, accessible as the hi/lo registers). The new ac0 isthe old hi/lo, for backward compatibility.

*  Benefit from* SMD” operations.: Many DSP calculations are a good match for “ Single Instruction Multiple
Data” or vector operations, where the same arithmetic operation is applied in parallel to several sets of operands.

In the MIPS DSP ASE, some operations are SIMD type - two 16-bit operations or four 8-bit operations are car-
ried out in parallel on operands packed into a single 32-bit general-purpose register. Instructions operating on
vectors can be recognized because the name includes. ph (paired-half, usually signed, often fractional) or . gb
(quad-byte, always unsigned, only occasionally fractional).

The DSP ASE hardware involves an extensive re-work of the normal integer multiply/divide unit. As mentioned
above it has four 64-bit accumulators (not just one) and a new control register, described immediately below.

7.2 The DSP ASE control register

Thisisapart of the user-mode programming model for the DSP ASE, and is a 32-hit value read and written with the
rddsp/wrdsp instructions. It holds state information for some DSP sequences.

Figure 7.1 Fields in the DSPControl Register

31 28 27 24 23 16 15 14 13 12 7 6 5 0
[ O [ ccond | ouflag | O [EFI] ¢ [ scount | O | pos |

InFigure 7.1

ccond: condition bits set by compare instructions (there have to be four to report on compares between vector types).
"Compare" operations on scalars or vectors of length two only touch the lower-numbered bits. DSPControl bits 31:28
are used for more ccond bits in 64-bit machines.
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ouflag: one of these bits may be set when a result overflows (whether or not the result is saturated depends on the
instruction - theflag is set in either case). The "ou" stands for "overflow/underflow” - "underflow" is used here for a
value which is negative but with excessive absolute value.

Any overflowed/underflowed result produced by any DSP ASE instruction sets aouflag bit, except for addsc/
addwc and shilo/shilov.

The 6 bits are set according to the destination of the operation which overflowed, and the kind of operation it
was:

Bit No Overflowed destination/instruction
16-19 Destination register isamultiply unit accumulator:
separate bits are respectively for accumulators 0-3.
20 Add/subtract.
21 Multiplication of somekind.
22 Shift left or conversion to smaller type
23 Accumulator shift-then-extract

EFI: set by any of the accumulator-to-register bitfield extract instructions extp, extpv, extpdp, Or extpdp. It'Sset
to 1if and only if the instruction finds there are insufficient bitsto extract. That is, if DSPControl[pos] - which is
supposed to mark the highest-numbered bit of the field we' re extracting - is less than the size value specified by the
instruction.

c: Carry bit for 32-bit add/carry instructions addsc and addwec.

scount, pos: Fields for use by "variable" bitfield insert and extract instructions, such as insv (the normal MIPS32
ins/ext instructions have the field size and position hard-coded in the instruction).

scount specifies the size of the bit field to be inserted, while pos specifies the insert position.
Caution: in al inserts (following the lead of the standard MIPS32 insert/extract instructions) pos is set to the
lowest bit number in the field. But in the DSP ASE extract-from-accumul ator instructions (extp, extpv, ext-

pdp and extpdpv), pos identifies the highest-numbered bit in the field.

The latter two (“dp”) instructions post-decrement pos (by the bitfield length size), to help software which is
unpacking a series of bitfields from a dense data structure.

Themthlip instruction will increment the pos value by 32 after copying the value of o to hi.
7.2.1 DSP accumulators
Whereas a standard M1PS32 architecture CPU has just one 64-bit multiply unit accumulator (accessible as hi/lo), the

DSP ASE provides three 64-bit accumulators. I nstructions accessing the extra accumulators specify a 2-hit field as 0-
3 (0 selects the original accumulator).

7.3 Software detection of the DSP ASE

You can find out if your core supports the DSP ASE by testing the Config3[DDSP] bit (see notes to Figure 2.4).

Then you need to enable use of instructions from the MIPS DSP ASE by setting Status[MX] to 1.
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7.4 DSP instructions

The DSPinstruction set is nothing like the regular and orthogonal MIPS32 instruction set. It's a collection of special-
case instructions, in many cases aimed at the known hot-spots of important algorithms.

We'll summarize the instructions under headings, but then list all of them in Section 7.2, "DSP instructionsin

alphabetical order”, an aphabetically-ordered list which provides a terse but usually-sufficient description of what
each instruction does.

7.4.1 Hints in instruction names

Aninstruction’s name may have some suffixes which are often informative:

q: generally meansit treats operands as fractions (which isn’t important for adds and subtracts, but isimportant for
multiplications and convert operations);

_s: usually means the full-precision result is saturated to the size of the destination; _sa isused for instructions which
saturate intermediate results before accumulating; and x: denotes rounding (see above);

.w, .ph, .gb: suggest the operation is dealing with 32-bit, paired-half or quad-byte values respectively. Where there
aretwo of these (asinmacq_s.w.phl) thefirst one suggests the type of the result, and the second the type of the
operand(s).

v: (in ashift instruction) suggests that the shift amount is defined in aregister, rather than being encoded in afield of
the instruction.

To help you get your arms around this collection of instructionswe'll group them by likely usage - guided by the type
of the result performed, with an eye to the application. The multiplication instructions are more tricky: most of them
have multiple uses. We've sorted them by the most obvious use (likely aso the most common). The classification
we've chosen divides them into:

*  Arithmetic - 64-bit

e Arithmetic - saturating and/or SIMD Types

e  Bit-shifts- saturating and/or SIMD types

e Comparison and "conditional-move" operations on SIMD types - includes pick instructions.

e Conversionsto and from SIMD types

e Multiplication - SIMD types with result in GP register

e Multiply Q15sfrom paired-half and accumulate

e Load with register+register address

«  DSPControl register access

e Accumulator access instructions

» Dot products and building blocks for complex multiplication - includes full-word (Q31) multiply-accumulate

Other DSP ASE instructions - everything else...
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7.4.2 Arithmetic - 64-bit

addsc/addwc generate and use a carry hit, for efficient 64-bit add.

7.4.3 Arithmetic - saturating and/or SIMD Types

e 32-bit signed saturating arithmetic: addq_s.w, subg_s.wand absq_s.w.

»  Paired-half and quad-byte SMD arithmetic: perform the same operation simultaneously on both 16-bit halves or
all four 8-bit bytes of a 32-hit register. The “q” in the instruction mnemonic for the PH operations hereis cos-
metic: Q15 and signed 16-bit integer add/subtract operations are bit-identical - Q15 only behavesvery differently
when converted or multiplied.

The paired half operations are: addq.ph/addq_s.ph, subg.ph/subqg_s.ph and absq_s.ph.
The quad-byte operations (all unsigned) are: addu . gb/addu_s . gb, subu.gb/subu_s.qgb.

»  Sumof quad-byte vector: raddu.w. gb doesan unsigned sum of the four bytesfound in aregister, zero extends
the result and deliversit as a 32-bit value.

7.4.4 Bit-shifts - saturating and/or SIMD types

woon

All shifts can either have a shift amount encoded in the instruction, or - indicated by atrailing “v” in the instruction
name - provided as aregister operand. PH and 32-hit shifts have optional forms which saturate the result.

e 32-hit signed shifts: include a saturating version of shift left, sh11l_s.w; and an auto-rounded shift right (just
the “arithmetic”, sign-propagating form): shra_r .w. Recall from above that rounding can be imagined as pre-
adding a half to the least significant surviving bit.

» Paired-half and quad-byte SMD shifts: sh1l.ph/shllv.ph/shll_s.ph/shllv_s areas above. For PH
only there's a shift-right-arithmetic instruction (* arithmetic” means it propagates the sign bit downward)
shra.ph, which has avariant which rounds theresult shra_r.ph.

The quad-byte shifts are unsigned and don’t round or saturate: sh11l.qgb/shllv.qgb, shrl.gb/shrlv.qgb.

7.4.5 Comparison and “conditional-move” operations on SIMD types

The“cmp” operations simultaneously compare and set flags for two or four values packed in a vector (with equality,
less-than and |ess-than-or-equal tests). For PH that's cmp . eq.ph, cmp .1t .ph and cmp . 1e.ph. Theresult isleft
in the two LS bits of DSPControl[ccond)].

For quad-byte values cmpu . eq . gb, cmpu.lt.gb and cmpu. le.gb simultaneously compare and set flags for
four bytesin DSPControl[ccond] - the flag relating to the bytes found in the low-order bits of the source register isin
the lowest-numbered bit (and so on). There's an alternative set of instructions cmpgu . eq.gb, cmpgu.lt.qgb and
cmpgu. le.gb which leave the 4-bit result in a specified general-purpose register.

pick.ph usesthetwo LS bits of DSPControl[ccond] (usually the outcome of a paired-half compare instruction, see
above) to determine whether corresponding halves of the result should come from the first or second source register.
Among other things, this can implement a paired-half conditional move. You can reverse the order of your conditional
inputs to do a move dependent on the complementary condition, too.

pick.qgb doesthe same for QB types, thistime using four bits of DSPControl[ccond].
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7.4.6 Conversions to and from SIMD types

Conversion operations from larger to smaller fractional types have names which start “precrq. . .” for “precision
reduction, fractional”. Conversion operations from smaller to larger have names which start “prece. . .” for “preci-
sion expansion”.

Form vector from high/low parts of two other paired-half values: packrl .ph makes a paired-half vector from
two half vectors, swapping the position of each sub-vector. It can be used to acquire a properly formed sub-vector
from anon-aligned data stream.

One Q15 from a paired-half to a Q31 value: preceq.w.phl/preceq.w.phr select respectively the “left”
(high bit numbered) or “right” (low bit numbered) Q15 value from a paired-half register, and load it into the
result register asa Q31 (that is, it's put in the high 16 bits and the low 15 bits are zeroed).

Two bytes from a quad-byte to paired-half: precequ.ph.gbl/precequ.ph.gbr pickstwo bytesfrom
either the “left” (high bit numbered) or “right” (low bit numbered) halves of a quad-byte value, and unpacksto a
pair of Q15 fractions.

precequ.ph.gbla doesthe same, except that it pickstwo “aternate”’ bytes from bits 31-24 and 15-8, while
precequ.ph.gbra picks bytesfrom bits 23-16 and 7-0.

Similar instructions without the q - preceu.ph.gbl, preceu.ph.gbr, preceu.ph.gbla” and pre-
ceu.ph.gbra - work on the same register fields, but treat the quantities as integers, so the 16-bit results get
their low bits set.

2xQ31 to a paired-half: both operands and result are assumed to be signed fractions, so precrq.ph.w just
takes the high halves of the two source operands and packs them into a paired-half; precrq rs.ph.w rounds
and saturates the results to Q15.

2xpaired-haf to quad-byte: you need two source registers to provide four paired-half values, of course. Thisisa
fractional operation, soit's the low bits of the 16-bit fractions which are discarded.

precrq.gb.ph treats the paired-half operands as unsigned fractions, retaining just the 8 high bits of each 16-
bit component.

precrqu_s.qgb.ph treats the paired-half operands as Q15 signed fractions and both rounds and saturates the
result (in particular, a negative Q15 fraction produces a zero byte, since zero isthe lowest representabl e quantity).

Replicate immediate or register value to paired-half: in repl .ph the value to be replicated is a 10-hit signed
immediate value (that'sintherange -512 < x <511) whichis sign-extended to 16 bits, whereasin replv.ph
the value - assumed to be already a Q15 value - isin aregister.

Replicate single value to quad-byte: there's both a register-to-register form replv.gb and an immediate form
repl.gb.

7.4.7 Multiplication - SIMD types with result in GP register

When amultiply’s destination is a general -purpose register, the operation is still done in the multiply unit, and you
should expect it to overwrite the hi/lo registers (otherwise known as ac0.)

8-bitx16-bit 2-way SIMD multiplication: muleu_s.ph.gbl/muleu_s.ph.gbr picksthe“left” (high bit
numbered) or “right” (low bit numbered) pair of byte values from one source register and a pair of 16-bit values

Programming the MIPS32® 74K™ Core Family, Revision 02.14 92



The MIPS32® DSP ASE
from the other. Two unsigned integer multiplications are done at once, the results unsigned-saturated and deliv-
ered to the two 16-bit halves of the destination.

The asymmetric use of the source operandsis not a bit like a Q15 operation. But 8x16 multiplies are heavily
used in imaging and video processing (JPEG image encode/decode, for example).

» Paired-half SMD multiplication: mulg_rs.ph multipliestwo Q15s at once and deliversit to a paired-half
valuei n agenera-purpose register, with rounding and saturation.

*  Multiply half-PH operandsto a Q31 result: muleq s.w.phl/muleq s.w.phr pick the“left’/"right” Q15
value respectively from each operand, multiply and store a Q31 value.

“Precision-doubling” multiplications like this can overflow, but only in the extreme case where you multiply -
Ix-1, and can’t represent 1 exactly.

7.4.8 Multiply Q15s from paired-half and accumulate

maqg_s.w.phl/maq s.w.phr pickseither the left/high or right/low Q15 value from each operand, multiplies
them to Q31 and accumulates to a Q32.31 result. The multiply is saturated only when it's -1x-1.

maq sa.w.phl/mag sa.w.phr differinthat thefinal result is saturated to a Q31 value held in the low half of
the accumulator (required by some ITU voice encoding standards).

7.4.9 Load with register + register address

Previously available only for floating point data®®: 1w for 32-bit loads, 1hx for 16-bit loads (sign-extended) and
1bux for 8-hit loads, zero-extended.

7.4.10 DSPControl register access

wrdsp rs,mask sets DSPControl fields, but only those fields which are enabled by a 1 bit in the 6-bit mask.

rddsp reads DSPControl into a GPR; but again it takes a mask field. Bitfields in the GPR corresponding to
DSPControl fields which are not enabled will be set al-zero.

The mask bitstie up with fields like this:

Table 7.1 Mask bits for instructions accessing the DSPControl register
Mask Bit DSPControl field

0 pos

1 scount
2 e

3 ouflag
4 ccond
5 EFT

22. WEll, an integer instruction is also included in the MIPS SmartMIPS™ ASE.
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7.4.11 Accumulator access instructions

* Historical instructions which now access new accumulators: the familiar mfhi/mflo/mthi/mtlo instructions
now take an optional extra accumulator-number parameter.

e Shift and move to general register: extr.w/extr_r.w/extr_rs.w getsa 32-bit field from an accumulator
(starting at bit 0 up to 31) and puts the value in ageneral purpose register. At your option you can specify round-
ing and signed 32-bit saturation.

extrv.w/extrv_r.wlextrv_rs.w dothe same but specify the field's starting bit number with aregister.

e Extract hitfield from accumulator: extp/extpv takes a bitfield (up to 32 bits) from an accumulator and moves
it to aGPR. The length of the field can be an immediate value or from aregister. The position of thefield is deter-
mined by DSPControl[pos], which holds the bit number of the most significant bit.

extpdp/extpdpv do the same, but al so auto-decrement DSPControl[pos] to the bit-number just below thefield
you extracted.

e Accumulator rearrangement: shilo/shilov hasasigned shift value between -32 and +31, where positive
numbers shift right, and negative ones shift left. The “v” version, as usual, takes the shift value from aregister.
Theright shiftisa“logical” type so the result is zero extended.

e Fill accumulator pushing low half to high: mth1ip movesthe low half of the accumulator to the high half, then
writes the GPR value in the low half. Generally used to bring 32 more bits from a bitstream into the accumulator
for parsing by the various ext... instructions.

7.4.12 Dot products and building blocks for complex multiplication

In 2-dimensional vector math (or in any doubled-up step of a multiply-accumulate sequence which has been opti-
mized for 2-way SIMD) you're often interested in the dot product of two vectors:

v[0]l*w[0] + v[1l]*w[1]

In many cases you take the dot product of a series of vectors and add it up, too.

Some algorithms use complex numbers, represented by 2D vectors. Complex numbers use i to stand for “the square
root of -1”, and avector [a, b] isinterpreted as a + ib (mathematicians leave out the multiply sign and use single-

letter variables, habits which would not be appreciated in C programming!) Complex multiplication just follows the

rules of multiplying out sums, remembering that i *i=-1, so:

(a + ib)*(c + 1d) = (a*c - b*d) + i(a*d + b*c)
Or in vector format:
[a, b] * [c, d] = [a*c - b*d, a*d + b*c]

Thefirst element of the result (the “real component”) islike a dot product but with a subtraction, and the second (the
“imaginary component”) islike adot product but with the vectors crossed.
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* Q15 dot product from paired-half, and accumulate: dpaq_s .w.ph doesa SIMD multiply of the Q15 halves of
the operands, then adds the results and saturates to form a Q31 fraction, which is accumulated into a Q32.31 frac-
tion in the accumulator.

dpsqg_s.w.ph does the same but subtracts the dot product from the accumulator.

For the imaginary component of a complex multiply, first swap the Q15 numbers in one of the register operands
with arot (bit-rotate) instruction.

For the real component of acomplex Q15 multiply, you have the difference-of-products instruction
mulsaq s.w.ph, which parallel-multiplies both Q15 halves of the PH operands, then computes the difference
of the two results and leavesit in an accumulator in Q32.31 format (beware: this does not accumulate the result).

» 16-hit integer dot-product from paired-half, and accumulate: dpau.h.gbl/dpau.h.gbr pickstwo QB val-
ues from each source register, parallel-multiplies the corresponding pairs to integer 16-bit values, adds them
together and then adds the whole lot into an accumulator. dpsu.h.gbl/dpsu.h.gbr do the same sum-of-
products, but the result is then subtracted from the accumulator. In both cases, note thisis integer (not fractional)
arithmetic.

* Q31 saturated multiply-accumulate: is the nearest thing you can get to a dot-product for Q31 values.
dpag_sa.l.w doesaQ31 multiplication and saturates to produce a Q63 result, which is added to the accumu-
lator and saturated again. dpsg_sa .1 .w does the same, except that the multiply result is subtracted from the
accumulator (again, useful for the real component of a complex number).

7.4.13 Other DSP ASE instructions

e Branch on DSPControl field: bposge32 branchesif DSPControl[pos]=32.
Typicaly thetest isfor “isit time to load another 32 bits of data from the bitstream yet?”.

e Circular buffer index update: modsub takes an operand which packs both a maximum index value and an index
step, and uses it to decrement a“ buffer index” by the step value, but arranging to step from zero to the provided
maximum.

» Bitfield insert with variable size/position: insv isabit-insert instruction. It acts like the M1PS32 standard
instruction ins except that the position and size of the inserted field are specified not asimmediates inside the
instruction, but are obtained from DSPControl[pos] (which should be set to the lowest numbered bit of the field
you want) and DSPControl[scount] respectively.

e Bit-order reversal: bitrev reversesthe bitsin the low 16 bits of the register. The high half of the destination is
zero.

The bit-reverse operation is a computationally crucia step in buffer management for FFT algorithms, and a 16-
bit operation supports up to a 32K-point FFT, which is much more than enough. A full 32-bit reversal would be
expensive and slow.

7.5 Macros and typedefs for DSP instructions

It's useful to be able to use fragments of C code to describe what some instructions do. To do that, we need to be able
to refer to fractional types, saturation and vectors. Here are the definitions we're usi ngZ3:
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typedef long long int64;
typedef int int32;

/* accumulator type */
typedef signed long long g32_31;

typedef signed int g31;

#define MAX31 Ox7FFFFFFF
#define MIN31 - (1<<31)
#define SAT31(x) (x > MAX31 ? MAX31l: x < MIN31 ? MIN31l: x)

typedef signed short glb5;

#define MAX15 Ox7FFF

#define MIN15 - (1<<15)

#define SAT15(x) (x > MAX15 ? MAX15: x < MIN15 ? MIN15: x)

typedef unsigned char u§;
#define MAXUBYTE 255
#define SATUBYTE (x) (x > MAXUBYTE ? MAXUBYTE: x < 0 ? 0: x)

/* fields in the vector types are specified by relative bit
position, but C definitions are in memory order, so these
definitions need to be endianness-dependent */

#ifdef BIG_ENDIAN

typedef struct({
gl5 hl, ho;

} ph;

typedef struct{
u8 b3, b2, bl, bo;

} ab;

#else

typedef struct{
gl5 hO, hil;

} ph;

typedef struct({

u8 b0, bl, b2, b3;
} ab;
#endif

7.6 Almost Alphabetically-ordered table of DSP ASE instructions

Table 7.2 DSP instructions in alphabetical order

Instruction Description
absq s.w rd,rt Q31/signed Integer absolute value with saturation
addg.ph rd,rs,rt 2xSIMD Q15 addition, without and with saturation of the result
addq_s.ph rd,rs,rt
addq _s.w rd,rs,rt Q31/signed integer addition with saturation

23. This page needs more work, and | hope it will be improved in afuture version of the manual.
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Table 7.2 DSP instructions in alphabetical order

Instruction

Description

addsc rd,rs,rt
addwec rd,rs,rt

Add setting carry, then add with carry. The carry bit iskept in DSPControl[c|. So to add
the 64-bit valuesin registers yhi/ylo, zhi/zlo to produce a 64-bit value in xhi/xlo, just do:
addsc xlo, ylo, zlo; addwc xhi, yhi, zhi

addu.gb rd,rs,rt
addu_s.qgb rd,rs,rt

4xSIMD QBYTE addition, without and with SATUBY TE saturation.

bitrev rd,rt

Deliversthe bit-reversal of the low 16 bits of the input (result has high half zero).

bposge32 offset

Branch if DSPControl[pos]>=32. Like most branch instruction, it has a 16-bit “PC-rel-
ative” target encoding.

cmp.eqg.ph rs,rt
cmp.le.ph rs,rt
cmp.lt.ph rs,rt

Signed compare of both halves of two paired-half (“PH") values. Results are written into
DSPControl[ccond1-0] for high and low halves respectively (1 for true, O for false).
A signed compare works for both Q15 or signed 16-bit values.

cmpgu.eq.gb rd,rs,rt
cmpgu.le.gb rd,rs,rt
cmpgu.lt.gb rd,rs,rt

Unsigned simultaneous compare of al four bytes in quad-byte values. The four result
bits are written into the four LS bits of general register rd.

cmpu.eqg.gb rs,rt
cmpu.le.gb rs,rt
cmpu.lt.gb rs,rt

Unsigned simultaneous compare of al four bytes in quad-byte values. The four result
bits are written into register DSPControl[cond3-0].

dpaq s.w.ph ac,rs,rt

“Dot product and accumulate”, with Q31 saturation of each multiply result:
ph rs,rt; ac += SAT31(rs.hO*rt.h0 + rs.hl*rt.hl);
The accumulator is effectively used as a Q32.31 fraction.

dpag_sa.l.w ac,rs,rt

Q31 saturated multiply-accumulate

dpau.h.gbl

dpau.h.gbr

agb rs, rt;

ac += rs.b3*rt.b3 + rs.b2*rt.b2;

Dot-product and accumulate of quad-byte values ("1" for left, because these are the
higher bit-numbered bytes in the 32-hit register).

Not afractional computation, just unsigned 8-bit integers.

Then for the lower bit-numbered bytes:

gb rs, rt;

ac += rs.bl*rt.bl + rs.b0*rt.b0;

dpsq s.w.ph ac,rs,rt

Paired-half fractional “dot product and subtract from accumulator”

ph rs, rt;
g32_31 ac;
ac -= SAT31(rs.hl*rt.hl + rs.hO*rt.hO);

dpsq sa.l.w ac,rs,rt

Q31 saturated fractional -multiply, then subtract from accumulator:
g3l rs, rt; g32_31 ac;
ac -= SAT31(rs*rt);

dpsu.h.gbl ac,rs,rt

dpsu.h.gbr ac,rs,rt

QB format dot-product and subtract from accumulator. Thisis an integer (not fractional)
multiplication and comesin “left” and “right” (higher/lower-bit numbered pair) versions:
agb rs,rt;

ac -= rs.b3*rt.b3 + rs.b2*rt.b2;

agb rs,rt;

ac -= rs.bl*rt.bl + rs.b0*rt.b0;

extp rt,ac,size
extpdp rt,ac,size
extpdpv rt,ac,rs
extpv rt,ac,rs

Extract bitfield from an accumulator to register. The length of the field (number of bits)
can be an immediate constant or can be provided by a second source register (in the v
variants).

Thefield position, though, comes from DSPControl[pos], which marks the highest-
numbered bit of the field (note that the MIPS32 standard bitfield extract instructions
specify the lowest bit number in the field). In the dp variants like extpdp/extpdpv,
DSPControl[pos] is auto-decremented by the length of the field extracted, which is use-
ful when unpacking the accumulator into a series of fields.
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Table 7.2 DSP instructions in alphabetical order

Instruction

Description

extr.w rt,ac,shift
extr r.w rt,ac,shift
extr rs.w rt,ac,shift
extrv.w rt,ac,rs
extrv_r.w rt,ac,rs
extrv _rs.w rt,ac,rs

Extractsahit field from an accumulator into a general purpose register. The LS bit of the
extracted field can start anywhere from bit zero to 31 of the accumulator:

int64 ac; unsigned int rt;

rt = (ac >> shift) & OxXFFFFFFFF;

At option you can specify rounding (_r names):

int64 ac; unsigned int rt;

rt = ((ac + l<<(shift-1)) >> shift) & OxFFFFFFFF;

and signed 32-bit saturation of the result (_s/_rs names).

Theextrv. .. variants specify the shift amount (still limited to 31 positions) with a
register.

extr_s.h rt,ac,shift
extrv_s.h rt,ac,rs

Obtain aright-shifted value from an accumulator and form a signed 16-bit saturated
result.

insv rt,rs

The bitfield insert in the standard MIPS32 instruction setisins rt, rs,pos, size,
and the position and size must be constants (encoded as immediates in the instruction
itself). Thisinstruction permits the position and size to be cal culated by the program, and
then supplied as DSPControl[pos] and DSPControl[scount] respectively.

In this case DSPControl[pos] must be set to the lowest numbered bit in the field to be
inserted: yes, that's different from the extp. . . instructions.

lbux rd, index(base)
lhx rd, index(base)
lwx rd, index(base)

Load operations with register+register address formation. 1bux isaload byte and zero
extend, 1hx |oads half-word and sign-extends, and 1ws loads a whole word. The full
address must be naturally aligned for the data type.

maq s.w.phl ac,rs,rt
maqg s.w.phr ac,rs,rt
maq sa.w.phl ac,rs,rt
maq sa.w.phr ac,rs,rt

Non-SIMD Q15 multiply-accumulate, with operands coming from either the “left”
(higher bit number) or “right” (lower bit number) half of each of the operand registers.
In all versionsthe Q15 multiplication is saturated to a Q31 results. The“_sa’ variants
saturates the add result in the accumulator to a Q31, too.

mfhi rd, ac
mflo rd, ac

Legacy instruction, which now works on new accumulators (if you provide a second
nonzero argument). Copies high/low half (respectively) of accumulator to rd.

modsub rd,rs,rt

Circular buffer index update. rt packs both the decrement amount (low 8 bits) and the
highest index (high 24 bits), then this instruction calcul ates:
rd = (rs == 0) ? ((unsigned) rt >> 8): rs - (rt & OxXFF);

mthi rs, ac

Legacy instruction working on new accumulators. Moves datafrom rd to the high half of
an accumulator.

mthlip rs, ac

Movesthe low half of the accumulator to the high half, then writes the GPR value in the
low half.

mtlo rs, ac

Legacy instruction working on new accumulators. Moves data from rd to the low half of
an accumul ator.

muleqg s.w.phl rd,rs,rt
muleqg s.w.phr rd,rs,rt

Multiply selected Q15 values from “left”/“right” (higher/lower numbered bits) of rd/rs
to a Q31 result in agenera purpose register, Q31-saturating.

Like al multiplies which target general purpose registers, it may well use the multiply
unit and overwrite hi/lo, a'so known as acO.

muleu_s.ph.gbl rd,rs,rt
muleu_s.ph.gbr rd,rs,rt

A 2xSIMD 16-hitx8-bit multiplication.
muleu_s.ph.gbl does something like:
rd = ((LL_B(rs)*LEFT_H(rt)) << 16) |

((LR_B(rs) *RIGHT_H(rt));
Note that the multiplications are unsigned integer multiplications, and each half of the
result is unsigned-16-bit-saturated.
The asymmetric source operands are quite unusual, and note thisis not a fractional com-
putation.
muleu_s.ph.gbr isthe same but picks the RL and RR (low bit numbered) byte val-
uesfromrs.

mulg rs.ph rd,rs,rt

2xSIMD Q15 multiplication to two Q15 results. Result in general purpose register, hi/lo
or acO may be overwritten.
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Table 7.2 DSP instructions in alphabetical order

Instruction

Description

mulsaqg s.w.ph ac,rs,rt

ac += (LEFT_H(rs)*LEFT H(rt)) -
(RIGHT_H(rs)*RIGHT_H(rt));

The multiplications are done to Q31 values, saturated if they overflow (whichisonly
possible when -1¥%-1 makes +1). The accumulator isreally a Q32.31 value, sois
unlikely to overflow; no overflow check is done on the accumulation.

packrl.ph rd,rs,rt

pack a“right” and “left” half from different registers, ie
rd = (((rs & OxXFFFF) << 16) | (rt >> 16) & OxXFFFF) ;

pick.ph rd,rs,rt

Like a2-way SIMD conditional move:
ph rd,rs,rt;

rd.l = DSPControl[ccondl]
rd.r = DSPControl[ccond0]

rt.l;
rt.r;

? rs.l:
? rs.r:

pick.gb rd,rs,rt

Kind of a4-way SIMD conditional move:
gb rd,rs,rt;

rd.ll = DSPControl[ccond3] ? rs.ll: rt.1ll;
rd.lr = DSPControl[ccond2] ? rs.lr: rt.lr;
rd.rl = DSPControl[ccondl] ? rs.rl: rt.rl;
rd.rr = DSPControl[ccond0] ? rs.rr: rt.rr;

preceq.w.phl rd,rt
preceq.w.phr rd,rt

Convert a Q15 value (either Ieft/high or right/low half of rt) to aQ31 valuein rd.

precequ.ph.gbl rd,rt
precequ.ph.gbla rd,rt
precequ.ph.gbr rd,rt
precequ.ph.gbra rd,rt

Simultaneously convert two unsigned 8-bit fractions from rt to Q15 and load into the two
halves of rd.
precequ.ph.qgbl usesrt.ll/rt.Ir; precequ.ph.gbla usesrt.ll/rt.rl; pre-
cequ.ph.gbr usesrt.rl/rt.rr; and precequ.ph.gbra usesrt.lr/rt.rr.

preceu.ph.gbl rd,rt
preceu.ph.gbla rd,rt
preceu.ph.gbr rd,rt
preceu.ph.gbra rd,rt

Zero-extend two unsigned byte values from rt to unsigned 16-bit and load into the two
halves of rd.
preceu.ph.gbl usesrt.ll/rt.Ir; preceu.ph.gbla usesrt.ll/rt.rl; pre-
ceu.ph.qgbr usesrt.rl/rt.rr; and preceu.ph.gbra usesrt.lr/rt.rr

precrq.ph.w rd,rs,rt
precrq rs.ph.w rd,rs,rt

precrq.ph.w makesapaired-Q15 value by taking the M Sbits of the Q31 valuesinrs
and rt, like this:

rd = (rs & OxFFFF0000) | ((rt>>16) & OxFFFF);

precrq rs.ph.wisthe same, but rounds and Q15-saturates both half-results.

precrq.gb.ph rd,rs,rt

precrqu_s.gb.ph
precrqu_s.gb.ph rd,rs,rt

Form a quad-byte value from two paired-halves. We use the upper 8 bits of each half-

word value, asif we were converting an unsigned 16-hit fraction to an unsigned 8-hit

fraction.InC: rd = (rs & OxFF000000) | (rs<<8 & OxFF0000) |
(rt>>16 & OxFF00) | (rt>>8 & OxFF);

Does the same, but each conversion is rounded and saturated to an unsigned byte. Note

in particular that a negative Q15 quantity yields a zero byte, since zero is the smallest

representable value.

raddu.w.gb rd,rs

Set rd to the unsigned 32-bit integer sum of the four unsigned bytesinrs.

rddsp rt,mask

Read the contents of the DSPControl register into rt, but zeroing out any fields for
which the appropriate mask bit is zeroed, see Figure 7.1 above.

repl.ph rd, imm
replv.ph rd,rt

Replicate the same signed value into the two halves of a PH valuein rd; the valueis
either provided as an immediate whose range is limited between -512 and +511
(repl.ph) or fromthert register (replv.ph).

repl.gb rd, imm
replv.gb rd,rt

Replicate the same 8-bit value into all four parts of a QB value in rd; the value can come
from an immediate constant, or the rt register of the replv.gb instruction.

shilo ac,shift
shilov ac,rs

Do aright or left shift (use a negative value for aleft shift) of a 64-bit accumulator. The
right shift is“logical”, bringing in zeroes into the high bits.

shilo takes a constant shift amount, while shilowv get the shift amount fromrs. The
shift amount may be no more than 31 right or 32 |eft.
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Instruction

Description

shll.ph rd, rt, sa
shllv.ph rd, rt, rs
shll s.ph rd, rt, sa
shllv_s.ph rd, rt, rs

2xSIMD (pared-halt) shift left. The®v” versions take the shift amount from aregister,
and the “_s” versions saturate the result to a signed 16-bit range.

shll.gb rd, rt, sa
shllv.gb rd, rt, rs

4xSIMD quad-byte shift left, with shift-amount-in-register and saturating (to an
unsigned 8-hit result) versions.

shll s.w rd, rt, sa
shllv s.w rd, rt, rs

Signed 32-hit shift left with saturation, with shift-amount-in-register sh11v_s option.

shra.ph rd, rt, sa
shra r.ph rd, rt, sa
shrav.ph rd, rt, rs
shrav_r.ph rd, rt, rs

2xSIMD paired-half shift-right arithmetic (“arithmetic” because the vacated high bits of
the value are replaced by copies of the input bit 16, the sign bit) - thus performing a cor-
rect division by a power of two of a signed number.

Asusual the shra_v variant has the shift amount specified in aregister.

The _r versions round the result first (see the bullet on rounding above).

shra _r.w rd, rt, sa
shrav_r.w rd, rt, rs

32-bit signed/arithmetic shift right with rounding, see the bullet on rounding.

shrl.gb rd, rt, sa
shrlv.gb rd, rt, rs

4xSIMD shift right logical (“logical” means that the vacated high bits are filled with
zero, appropriate since the byte quantities in a quad-byte are usually treated as
unsigned.)

subg.ph rd,rs,rt
subg s.ph rd,rs,rt

2xSIMD subtraction. subg_s . ph saturates its results to a signed 16-bit range.

subg s.w rd,rs,rt

32-hit saturating subtraction.

subu.gb rd,rs,rt
subu_s.gb rd,rs,rt

4xSIMD quad-byte subtraction. Since quad-bytes are treated as unsigned, the saturating
variant subu_s . gb works to an unsigned byte range.

wrdsp rt,mask

Write the DSPControl register with datafrom rt, but leaving unchanged any fields for
which the appropriate mask hit is zeroed, see Figure 7.1 above.

7.7 DSP ASE instruction timing

Most DSP A SE operations are pipelined, and instructions can often be issued at the maximum CPU rate, but getting
results back into the general-purpose register file takes afew clocks. The timings are generally fairly similar to those
for the standard multiply instructions, and are listed - together with delays for the standard instruction set - in Section
6.6.2, "Data dependency delays classified".
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Chapter 8

74K™ core features for debug and profiling

In this chapter you'll find:
e Section 8.1, "EJTAG on-chip debug unit”
e Section 8.3, "CP0O Watchpoints" - monitor code and data access without using EJTAG.

»  Section 8.4, "Performance counters" - gather statistics about events, useful for understanding where your pro-
gram spends itstime.

The description hereis terse and |eaves out some information about EJTAG and PDtrace facilities which are not visi-
ble to programmers. We will document it hereif it’'s software visible, or isimplementation-dependent information not
found in the detailed documentation (see [EJTAG],).

8.1 EJTAG on-chip debug unit

Thisisacollection of in-CPU resources to support debug. Debug logic serves no direct purpose in the final end-user
application, so it's always under threat of being omitted for cost reasons. A debug unit must have virtually no perfor-
mance impact when not in use; it must use few or no dedicated package pins, and should not increase the logic gate

count too much. EJTAG solves the pin issue (and getsits name) by recycling the JTAG pins aready included in every

SoC for chip test?*.
So the debug unit requires:

e Physica communications with some kind of “probe” device (which isitself controlled by the debug host),
achieved through the JTAG pins.

e Theability for aprobeto “remote-control” the CPU. The basic trick isto get the CPU to execute instructions that
the probe supplies. In turn that’s done by directing the CPU to execute code from the magic “dmseg” region
where CPU reads and writes are made down the wire to the probe. “dmseg” isitself a part of “dseg”, see Section
8.1.5, "The “dseg” memory decode region".

» A distinguished debug exception. In MIPS EJTAG, thisis a specia “super-exception” marked by a special
debug-exception-level flag, so you can use an EJTAG debugger even on regular exception handler code. See
Section 8.1.2, "Debug mode" below;

e A number of “hardware breakpoints’. Their numerous control registers can't be accommodated in the CPO regis-
ter set, so are memory-mapped into “dseg”;

*  You can take a debug exception from a special breakpoint instruction sdbbp, on a match from an EJTAG hard-
ware breakpoint, after an EJTAG single-step, when the probe writes the break bit EJTAG_ CONTROL[EjtagBrk],
or by asserting the external DINT (debug interrupt) signal.

24. It can actually be quite useful to provide EJTAG with its own pins, if your package permits.
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*  You can configure your hardware to take periodic snapshots of the address of the currently-executing instruction
(“PC sampling”) and make those samples available to an EJTAG probe, as described in the next section.

On these foundations powerful debug facilities can be built.
The multi-vendor [EJTAG] specification has many independent options, but M1PS Technol ogies cores tend to have
fewer options and to implement the bulk of the EJTAG specification. The 74K core can be configured by your SoC

designer with either four instruction breakpoints (or none), and with two data breakpoints (or none). It is also optional
whether the dedicated debug-interrupt signal DINT is available in your SoC.

8.1.1 Debug communications through JTAG

The chip’s JTAG pins give an external probe accessto a specid registersinside the core. The JTAG standard defines a
seria protocol which lets the probe run one of anumber of JTAG “instructions’, each of which typically readsiwrites
one of anumber of registers. EJTAG's instructions are shown in Table 8.1.

Table 8.1 JTAG instructions for the EJTAG unit

JTAG “Instruction” Description

IDCODE Reads out the MIPS core and revision - not very interesting for software, not described
further here.

ImpCode Reads hit-field showing what EJTAG options are implemented - see Figure 8.5 below.

EJTAG_ADDRESS (read/write) together, allow the probe to respond to instruction fetches and data reads/

EJTAG_DATA writesin the magic “dmseg” region described in Section 8.1.5, "The “dseg” memory
decode region”.

EJTAG_CONTROL Package of flags and control fields for the probe to read and write; see Figure 8.7 below.

EJTAGBOOT The“EJTAGBOOT” instruction causes the next CPU reset to lead to CPU booting from

NORMALBOOT probe; see description of the EJTAG_CONTROL bits ProbEn, ProbTrap and

EjtagBrk in the notesto Figure 8.7.
The“NORMALBOOT” instruction reverts to the normal CPU bootstrap.

FASTDATA Specia access used to accelerate multi-word data transfers with probe. The probe reads/
writes the 33-bit register formed of a“fast” bit with EJTAG_DATA.
FDC Fast Debug Channel. Another accelerated data transfer. This one is accessible by non-

debug mode software and it includes FIFOs to separate the software views from the
physical datatransfer, making it non-blocking. See Section 8.1.10 “Fast Debug

Channel”

TCBCONTROLA Access registers used to control “PDtrace” instruction trace output, if available.

TCBCONTROLB

TCBCONTROLC

TCBCONTROLD

TCBCONTROLE

PCSAMPLE Access register which holds PC sample value, see Section 8.1.14, "PC Sampling with
EJTAG".

8.1.2 Debug mode

A special CPU state; the CPU goes into debug mode when it takes any debug exception - which can be caused by an
sdbbp instruction, ahit on an EJTAG breakpoint register, from the external “debug interrupt” signal DINT, or single-
stepping (thelatter is peculiar and described briefly below). Debug mode state is visible as Debug[DM] (see Figure 8.1
below). Debug mode (like exception mode, which is similar) disables all normal interrupts. The address map changes
in debug mode to give you access to the “dseg” region, described below. Quite alot of exceptions just won't happen
in debug mode: those which do, run peculiarly - see the relevant paragraphs in Section 8.1.2, "Debug mode".
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A CPU with a suitable probe attached can be set up so the debug exception entry point isin the “dmseg” region, run-
ning instructions provided by the probe itself. With no probe attached, the debug exception entry point isin the ROM
or potentially from an alternate memory location - see Table 5.1.

8.1.3 Exceptions in debug mode

Software debuggers will probably be coded to avoid causing exceptions (testing addresses in software, for example,
rather than risking address or TLB exceptions).

While executing in debug mode many conditions which would normally cause an exception are ignored: interrupts,
debug exceptions (other than that caused by executing sdbbp), and CPO watchpoint hits.

But other exceptions are turned into “nested debug exceptions’ when the CPU isin debug mode - afacility whichis
probably mostly valuable to debuggers using the EJTAG probe.

On such a nested debug exception the CPU jumps to the debug exception entry point, remaining in debug mode. The
Debug[DExcCode] field records the cause of the nested exception, and DEPC records the debug-mode-code restart
address. Thiswill not be survivable for the debugger unlessit saved a copy of the original DEPC soon after entering
debug mode, but it probably did that! To return from a nested debug exception like thisyou don’t use deret (which
would inappropriately take you out of debug mode), you grab the address out of DEPC and use a jump-register.

8.1.4 Single-stepping

When control returns from debug mode with aderet and the single-step bit Debug[SSt] is set, the instruction

selected by DEPC will be executed in non-debug context?>; then a debug exception will be taken on the program’s
very next instruction in sequence.

Since at least one instruction is run in normal mode it can lead to a non-debug exception; in that case the “very next
instruction in sequence” will be the first instruction of the exception handler, and you'll get a single-step debug
exception whose DEPC points at the exception handler.

8.1.5 The “dseg” memory decode region

EJTAG needs to use memory space both to accommodate lots of breakpoint registers (too many for CP0) and for its
probe-mapped communication space. This memory space pops into existence at the top of the CPU’s virtual address
map when the CPU is in debug mode, as shown in Table 8.2.

The MIPS trace solution provides software the ability to access the on-chip trace memory. The TCB Registers are
mapped to drseg space and this allows software to directly access the on-chip trace memory using load and store
instructions.

25. If DEPC pointsto a branch instruction, both the branch and branch-delay instruction will be executed normally.
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Table 8.2 EJTAG debug memory region map (“dseg”)
Virtual Address  Region/sub-regions Location/register Virtual Address

0xE000.0000 kseg2 0xE000.0000
OxXFF1F.FFFF OXFF1F.FFFF
0xFF20.0000 dseg | dmseg fastdata OxFF20.0000
0xFF20.000F 0xFF20.000F
0xFF20.0010 0xFF20.0010
0xFF20.0200 | debug entry 0xFF20.0200
O0XFF2F .FFFF O0XFF2F .FFFF
0xFF30.0000 drseg DCR register 0xFF30.0000
0xFF30.0020 DebugVectorAddr 0xFF30.0020
0xFF30.1000 IBS register 0xFF30.1000
I-breakpoint #0 regs
0xFF30.1100 IBAQ OxFF30.1100
0xFF30.1108 IBM10 OxFF30.1108
0xFF30.1110 IBASIDO OxFF30.1110
0xFF30.1118 IBCO OxFF30.1118
I-breakpoint #1 regs
0xFF30.1200 IBAl 0xFF30.1200
0xFF30.1208 IBM1 O0xFF30.1208
0xFF30.1210 IBASID21 0xFF30.1210
0xFF30.1218 IBCl 0xFF30.1218

same for next two

0xFF30.2000 DBS register 0xFF30.2000

D-breakpoint #0 regs
0xFF30.2100 DBAQO 0xFF30.2100
O0xFF30.2108 DBM10 0xFF30.2108
0xFF30.2110 DBASIDO OxFF30.2110
O0xFF30.2118 DBC10 0xFF30.2118
0xFF30.2120 DBVO 0xFF30.2120
OxFF30.2124 DBVHiO 0xFF30.2124

D-breakpoint #1 regs
0xFF30.2200 DBAl 0xFF30.2200
0xFF30.2208 DBM1 0xFF30.2208
0xFF30.2210 DBASID1 OxFF30.2210
O0xFF30.2218 DBC1 OxFF30.2218
0xFF30.2220 DBV1 0xFF30.2220
O0xFF30.2224 DBVHil O0xFF30.2224
OxFF30.2228 O0xFF30.2228
0xFF30.3000 TCB registers 0xFF30.3000
0xFF30.3238 0xFF30.3238
OxFFFF.FFFF OxFFFF.FFFF

Noteson Table 8.2:
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e dseg: isthe whole debug-mode-only memory area.

It's possible for debug-mode software to read the “kseg2”-mapped locations “underneath” by setting
Debug[LSNM] (see Figure 8.1).

» dmsag: isthe memory region where reads and writes are implemented by the probe. But if no active probeis
plugged in, or if DCR[PE] is clear, then accesses here cause reads and writes to be handled like regular “kseg3”
accesses.

e drseg: iswhere the debug unit’'s main register banks are accessed. Accessesto “drseg” don't go off core. Regis-
tersin “drseg” are word-wide, and should be accessed only with 32-bit word-wide |oads and stores.

» fast-talk: isacorner of “dmseg” where probe-mapped reads and writes use a more JTAG-efficient block-mode
probe protocol, reducing the amount of JTAG traffic and allowing for faster data transfer. There's no details about
how it's done in this document, see [EJTAG].

* debug entry: isthe debug exception entry point. Becauseit liesin “dmseg”, the debug code can be implemented
wholly in probe memory, alowing you to debug a system which has no physical memory reserved for debug.

* TCB Registers: These are the PDtrace EJTag Registers. They are physically located in the PDtrace unit, and
managed by the PDtrace unit. For software to access the on-chip trace memory, these registers are mapped to

drseg.

8.1.6 EJTAG CPO registers, particularly Debug

In normal circumstances (specifically, when not in debug mode), the only software-visible part of the debug unitisits
set of three CPO registers:

»  Debug which has configuration and control bits, and is detailed below;

» DEPC keepsthe restart address from the last debug exception (automatically used by the deret instruction);

» DESAVE isaCPO register which isjust 32-bits of read/write space. It's available for a debug exception handler
which needs to save the value of afirst general-purpose register, so that it can use that register as an address base
to save dl the others.

Debug isthe most complicated and interesting. It has so many fields defined that we've taken them in three groups:

debug exception cause bitsin Figure 8.2, information about regular exceptions which want to happen but can’t

because you're in debug mode in Figure 8.3, and everything else. The "everything else" category includes the most
important fields and comesfirst, in Figure 8.1.
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Figure 8.1 Fields in the EJTAG CPO Debug register

31 30 29 28 27 26 25 24 21 20 19 1817 1514 10 9 8 7 65 0
Count pending | cause DEXC _ cause
DBD |DM | NoDCR | LSNM | Doze|Halt DM | (Figure8.3) | x| | (Figure8.2) EJTAGver Code NoSSt [SSt| OffLine| 0 (Figure8.2)
Thesefields are:

DBD: exception happened in branch delay slot. When this happens DEPC will point to the branch instruction, which is
usually the right place to restart.

DM: debug mode - set on debug exception from user mode, cleared by deret.
Then some configuration and control bits:

NoDCR: read-only - O if there is a memory-mapped DCR register. MIPS Technologies cores will always have one. Any
EJTAG unit implementing "dseg" at all implements DCR.

LSNM: Set thisto 1 if you want debug-mode accessesto "dseg" addressesto bejust sent to system memory. This makes
most of the EJTAG unit’s control system unavailable, so will probably only be done around a particular |oad/store.

Doze: before the debug exception, CPU was in some kind of reduced power mode.
Halt: before the debug exception, the CPU was stopped - probably asleep after await instruction.

CountDM: 1 if and only if the count register continues to run in debug mode. Writable for the 74K core, so you get to
choose. On some other implementationsit’s read-only and just tells you what the CPU does.

IEXI: set to 1 to defer imprecise exceptions. Set by default on entry to debug mode, cleared on exit, but writable. The
deferred exception will come back when and if thisbit is cleared: until then you can seethat it happened by looking at
the "pending” bits shown in Figure 8.3 below.

EJTAGver: read-only - tells you which revision of the specification thisimplementation conformsto. On the 74K core it
reads 5 for version 5.0. Thefull set of legal values are:

0 Version 2.0 and earlier
1 Version 2.5
2 Version 2.6
3 Version 3.1
4 Version 4.0
5 Version 5.0

DExcCode: Cause of any non-debug exception you just handled from within debug mode - following first entry to
debug mode, thisfield is undefined. The value will be one of those defined for Cause[ExcCode], as shown in Table
B.5.

NoSSt: read-only - reads 0 because single-step is implemented (it always is on MIPS Technol ogies cores).

SSt: set 1 to enable single-step.
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Figure 8.2 Exception cause bits in the debug register
31 20 19 18 17 6 5 4 3 2 1 0

Debu9| |DDBSI mpr| DDBLImpr| | DINT | DIB | DDBS| DDBL | DBp | DSS|

DDBSImpr: imprecise store breakpoint - see Section 8.1.13, "Imprecise debug breaks' below. DEPC probably points to
an instruction some time later in sequence than the store which triggered the breakpoint. The debugger or user (or
both) have to cope as best they can.

DDBLImpr: imprecise load breakpoint. (See note on imprecise store breakpoint, above).

DINT: debug interrupt: either the DINT signal got asserted or the probe wrote EJTAG_CONTROL|[EjtagBrk] through
the JTAG signals.

DIB: instruction breakpoint. If DBp is clear, that must have been from an sdbbp.
DDBS: precise store breakpoint.
DDBL: precise load breakpoint.
DBp: any sort of match with a hardware breakpoint.
DSS: single-step exception.
Figure 8.3 Debug register - exception-pending flags

31 25 24 23 22 21 20 0
Debug | IBusEP| MCheckP| CacheEP| DBusEP|

These note exceptions caused by instructions run in debug mode, but which have not happened yet because they are
imprecise and Debug[IEXI] is set. They remain set until Debug[IEXI] is cleared explicitly or implicitly by aderet,
when the exception is delivered and the pending bit cleared:

IBUsEP: bus error on instruction fetch pending. This exception is precise on the 74K core, so this can't happen and the
field is aways zero.

MCheckP: machine check pending (usually anillegal TLB update). As above, on the 74K core, so thisis aways zero.
CacheEP: cache parity error pending.
DBusEP: bus error on data access pending.

8.1.7 The DCR (debug control) memory-mapped register

Thisisamemory-mapped EJTAG register . It'sfound in “drseg” at location 0xFF30.0000 as shown in Table 8.2 (but
only accessible if the CPU isin debug mode). The fields arein Figure 8.4:
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Figure 8.4 Fields in the memory-mapped DCR (debug control) register

31 30 29 28 27 26 25 24 23 22 21 19 18 17 16
PCno FDCI
Res ENM Res PCIM ASID DASQ|[DASe| DAS mpl DB 1B
15 14 13 12 11 10 9 8 6 5 4 3 2 1 0
IVM | DVM 0 RDVec| CBT | PCS PCR PCSE | INTE INMIE|NMIP| SRE | PE
Where:

ENM: (read only) reports CPU endianness (1 == hig).
FDCImpl: (read only) 1 if the Fast Debug Channel is available. See Section 8.1.10 “Fast Debug Channel” for details

DB/IB: (read only) 1 if data/instruction hardware breakpoints are available, respectively. The 74K core has either 0 or 2
data breakpoints, and either 0 or 4 instruction breakpoints.

IVM: (read-only) tellsyou if an inverted data value match on data hardware breakpoints is implemented.
DVM: (read-only) tellsyou if adata value store on a data val ue breakpoint match is implemented.

RdVec: If set, use the address specified in DebugVectorAddr register for debug exceptions instead of the default ROM
address. If the probe is handling debug exceptions, it will continue to take precedence over this.

CBT: (read-only) tellsyou if a complex breakpoint block is implemented.

PCS, PCR: PCS, PCSE,PCIM,PCnoASID: PCS reads 1 if the PC sampling feature is available, asit can be on the 74K
core. Then PCSE enables PC sampling and PCR is athree-bit field defining the sampling frequency as one sample
every 2(5*FCR) cycles. PCnoASID indicates or controls whether the ASID field isincluded in the sample. PCIM, if set-
table, enables only sampling the PC of instructions that missed in the instruction cache. See Section 8.1.14, "PC
Sampling with EJTAG" for details.

DAS, DASQ, DASE: DAS reads 1 if the Data Address Sampling feature is available. If supported, this feature builds on
top of the PC sampling mechanisms to sample data addresses. DASE enables DAsampling and is not mutually exclu-
sive with PCSE. DASQ limits the data address samples to those addresses that match on data breakpoint 0.

INTE/NMIE: set DCR[INTE] zero to disable interrupts in non-debug mode (it's a separate bit from the various non-debug-
mode visible interrupt enables). Theideais that the debugger might want to step through kernel code or run kernel
subroutines (perhaps to discover OS-related information) without losing control because interrupts start up again.

DCR[NMIE] masks hon-maskable interrupt in non-debug mode (a nice paradox). Both bitsare "1" from reset.

NMIP: (read-only) tells you that a non-maskable interrupt is pending, and will happen when you leave debug mode (and
according to DCR[NMIE] as above).

SRE: if implemented, write zero to mask soft-reset causes. Thissignal has no effect inside the 74K core but is presented
at the interface, where customer reset logic could be influenced by it.

PE: (read only) software-readable version of the probe-controlled enable bit EJTAG_CONTROL[ProbEn], which you
could look at in Figure 8.7.
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8.1.8 The DebugVectorAddr memory-mapped register

Thisis another memory-mapped EJTAG register . It'sfound in “drseg” at location 0xFF30.0020 as shown in Table
8.2 (but only accessible if the CPU isin debug mode). Thefields arein Figure 8.5:

If enabled viathe RdVec hit in the DCR, this register will control the address used for debug exceptions when a
debug probeis not handling them. By default, the exception handler is located in the boot ROM. If the debugger is
allowed some spacein RAM, it can both customize the debug handler and execute faster than from ROM. You can
even make the handler cacheable to speed it up further - of course with the penalty of altering the cache behavior of
the program you are debugging. In some cases, that trade-off may be useful

Figure 8.5 Fields in the memory-mapped DCR (debug control) register
31 30 29 7 6 1 0

10 DebugVectorOffset 0 ISA

Where:

DebugVectorOffset: Specify the intermediate bits of the desired debug exception vector. The upper bits of the vector are
fixed to restrict it to ksegO or ksegl. The lower bits of the vector are fixed to save some hardware costs for no real loss
in functionality.

ISA: In coreswith the microMIPS | SA, this bit can specify which ISA the exception handler isbuiltin. Thisistiedto O

on this core as the MIPS16 ASE does not have the priviedged operations that would make it useful as an exception
handler.

8.1.9 JTAG-accessible registers

We're wandering away from what is relevant to software here: these registers are available for read and write only by
the prabe, and are not software-accessible.

But you can't really understand the EJTAG unit without knowing what dials, knobs and switches are available to the
probe, so it seems easier to give alittle too much information.

First of all there are two informational fields provided to the probe, IDCODE (just reflects some inputs brought in to

the core by the SoC team, not very interesting) and the Implementation Register; then there's the main CPU interac-
tion control/status register EJTAG_CONTROL (Figure 8.7).

Figure 8.6 IFields in the JTAG-accessible Implementation register

31 29 28 25 24 23 21 20 17 16 15 14 13 11 10 1 0
. MIPS32/

EJTAGver Res DINTsup| ASIDsize Res MIPS16| O |[NoDMA | Type Typelnfo 64

5=5.0 0 seenote | seenote 1 1 0

Notes on the Implementation register fields:

EJTAGver: same value (and meaning) as the Debug[EJTAGver] field, see the notes on Figure 7-2.
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DINTsup: whether JTAG-connected probe has a DINT signal to interrupt the CPU. Configured by your SoC designer
(who should know) by hard-wiring the core interface signal EJ_DINTsup.
The probe can aways interrupt the CPU by a JTAG command using the EJTAG_CONTROL[EjtagBrk], but DINT is
much faster, which is useful if you're cross-triggering one piece of hardware from another. However, it is fed to both

VPEs at once, and it’s unpredictable which of them will take the resulting debug exception (only one can).

ASIDsize: usualy 2 (indicating the 8-bit EntryHi[ASID] field size required by the M1PS32 standard), but can be O if your
core has been built with the no-TLB option (i.e. afixed-mapping MMU).

MIPS16: 1 because the 74K core always supports the MIPS16 instruction set extension.

NoDMA: 1 - MIPS Technologies cores do not provide EJTAG "DMA" (which would allow a probe to directly read and
write anything attached to the 74K core’s OCP interface).

MIPS32/64: the zero indicates thisis a 32-bit CPU.
Type: indicates what type of entity is associated with this TAP and if the Typelnfo field is used.
Typelnfo: identifier information specific to the entity associated with this TAP.

Rocc: "reset occurred” - reads 1 while areset signal is applied to the CPU - and then the 1 value persists until overwrit-
ten with a zero from the JTAG side. Until the probe reads this as zero most of the other fields are nonsense.

The EJTAG_CONTROL register is shown in Figure 8.7:

Table 8.3 Fields in the JTAG-accessible EJTAG_CONTROL register
31 30 29 28 24 23 22 21 20 19 18 17 16 15 14 13 12 11 4 3 2 0

Rocc| Ps Res Res |Doze|Halt|PerRst| PRNW | PrAcc | Res| PrRst| ProbEn | ProbTrap | Res| EjtagBrk Res DM | Res

Figure 8.7 Fields in the JTAG-accessible EJTAG_CONTROL register
31 30 29 28 23 22 21 20 19 18 17 16 15 14 13 12 11 4 3 2 0

|Rocc| Psz | 0 |Doze|HaIt|PerRst|PRnW|PrAcc|0|PrRst|ProbEn|ProbTrap|O|EjtagBrk| 0 |DM| 0 |

Notes on the fields;

Rocc: (read/write) is 1 when a CPU reset has occurred since the bit was last cleared. The Rocc bit will keep the 1 value
aslong asreset is applied. This bit must be cleared by the probe, to acknowledge that the incident was detected. The
EJTAG Control register is not updated in the Update-DR state unless Rocc is O, or written to 0. Thisisin order to
ensure proper handling of processor access.
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Psz: (read-only) when software reads or writes"dmseg" thistells the probe whether it was aword, byte or whatever-size

transfer:
Byte-within-word Sze code Transfer Sze
address
EJTAG_ADDRESS[1-0] EJTAG_CONTROL[Psz]
X 0 Byte
00 1 Halfword
10
00 2 Word
00 3 Tri-byte (lowest address 3 bytes)
01 Tri-byte (highest address 3 bytes)

Doze/Halt: (read-only) indicates CPU not fully awake. Doze reflects any reduced-power mode, whereas Halt is set only
if the CPU isasleep after await or similar.

PerRst: write to set the EJ_PerRst output signal from the core, which can be used to reset non-core logic (ask your
SoC designer whether it’s connected to anything).

For thisand al other fields which change core state, we recommend that the probe should write the field and then poll
for the change to be reflected in this register, which may take a short while. In some cases the bit isjust an output one,
when the readback will be pointless (but harmless).

PRnW/PrAcc: PrAcc is 1 when the CPU is doing aread/write of the"dmseg" region, and the probe should serviceit. The
"dow" read/write protocol involves the probe flipping this bit back to zero to tell the CPU the transfer is ready.

While PrAcc is active the read-only PRnW bit distinguishes writes (1) from reads (0).

PrRst: controlsthe EJ_PrRst signal from the core, which may be wired back to reset the CPU and related logic. Write
altoreset. If it works, the probe will eventually see the bit fall back to O by itself, asthe CPU resets. Most probes are
wired up with adirect CPU reset signal, which is more reliable.

ProbEn, ProbTrap, EjtagBrk: ProbEn must be set before CPU accesses to "dmseg" will be sent to the probe. It can be

written by the probe directly. ProbTrap relocates the debug exception entry point from OxB FC0.0480%8 (when 0) to
the “dmseg” location OxFF20.0200 - required when the debug exception handler itself is supplied by the probe.

EjtagBrk can be written 1 to "interrupt”" the CPU into debug mode.
The three come together into atrick to support systems wanting to boot from EJTAG. The value of al these three bits
ispreset by the “EJTAGBOOT” JTAG instruction. When the CPU resets with all of these set to 1, then the CPU will
immediately enter debug mode and start reading instructions from the probe.
DM: (read-only) indicates the CPU isin debug mode, a probe-readable version of Debug[DM].
8.1.10 Fast Debug Channel

The Fast Debug Channel (or FDC) is an interesting creature. It provides a mechanism for data transfers between the
probe and the core, but unlike some of the other mechanisms of that type, it is not constrained to debug mode access.
Kernel mode software can access the memory mapped interface and can even grant access rights to user or supervisor
programs. The memory mapped registers provide basic configuration, status, and control information as well as giv-

26. The ROM-exception-area debug entry point can be relocated by hardware option, see Table 5.1 and its notes.

Programming the MIPS32® 74K™ Core Family, Revision 02.14 112



74K™ core features for debug and profiling

31

ing accessto the transmit (core to probe) and receive FIFOs. These FIFOs are included to isolate the software visible
interface from the physical transfer of bits to the probe and allow some ‘burstiness’ of data. Associated with each 32-
bit piece of dataisa4-bit Channel ID. Figure 8.8 shows a high level view of the data paths.

Figure 8.8 Fast Debug Channel

CPU r— — — 7
| EJ TDI
Sores || TXAIFO || v g
| Nal O g
L
| | 0]
I A8 =
I
| EJ_TDQ
AP

The memory mapped registers are part of the Common Device Memory Map, see Section 3.7 “Common Device

Memory Map” for details. Table 8.4 shows the address offsets of the FDC registers within the device block.

Table 8.4 FDC Register Mapping

Offset in CDMM Register
device block Mnemonic Register Name and Description
0x0 FDACSR FDC Access Control and Status Register
0x8 FDCFG FDC Configuration Register
0x10 FDSTAT FDC Status Register
0x18 FDRX FDC Receive Register
0x20 + 0x8* n FDTXn FDC Transmit Register n (0 < n < 15)

Each device within the CDMM begins with an Access Control and Status Register which gives information about the
device and also provides ameans for giving user and supervisor programs access to the rest of the device. The
FDACSR isshown in Figure 8.9

Figure 8.9 Fields in the FDC Access Control and Status (FDACSR) Register
24 23 22 21 16 15 12 11 4 3 2 1 0

DeviD Zero DevSize DevRev zero Uw Ur Sw Sr
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Where:
DevID: (read only) indicates the device ID - Oxfd in this case.

DevSize: (read only) indicates how many 64B blocks (minus 1) this device uses - value of 2, indicating 3 blocks for
FDC

DevRev: (read only) Revision number of the device - currently O.

Uw/Ur: control whether write and reads, respectively, from user programs are allowed to access the device registers. If O,
reads will return 0 and writes will be dropped.

Sw/Sr: Same idea as Uw/Ur, but for supervisor access

The FDCFG register gives some configuration information and allows software to specify if and when FDC interrupts
are to be generated. The interrupt thresholds can be adjusted for different aims: no interrupts, minimizing the CPU
overhead by allowing the CPU to completely fill or drain the FIFO with one interrupt, maximizing bandwidth by
interrupting slightly earlier to avoid wasting transfers of null transmit data or non accepted receive data, or minimum
latency to be interrupted as soon as datais available. Thisregister is shown in Figure 8.10

Figure 8.10 Fields in the FDC Config (FDCFG) Register
31 20 19 18 17 16 15 8 7 0

0 TxIntThresh | RxIntThresh TxFIFOSize RxFIFOSize

Where:

TxIntThresh: Controls when an interrupt is generated based on the occupancy of the transmit FIFO
0 - Interrupts Disabled
1 - FIFO empty (minimum CPU overhead)
2 - FIFO not full
3 - Almost empty - 0 or 1 entries in use (maximum bandwidth)

RxIntThresh: Controls when an interrupt is generated based on the occupancy of the receive FIFO
0 - Interrupts Disabled
1 - FIFO full (minimum CPU overhead)
2 - FIFO not empty (minimum latency)
3 - Almost full - 0 or 1 entriesin use (maximum bandwidth)

Tx/RxFIFOSize: (read only) indicates how many entries are in each FIFO

The FDSTAT register isaread-only register that gives the current status of the FIFOs. The fields are shown in Figure
8.11.

Figure 8.11 Fields in the FDC Status (FDSTAT) Register
31 24 23 16 15 8 7 4 3 2 2 0

TxCount RxCount 0 RxChan RXE | RxF | TXE | TxF
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Where:

Tx/RxCount: Optional fields indicating how many FIFO entries arein use. These fields are not implemented and will
read asO

RxChan: Channel Identifier for the receive data at the head of the RxFIFO. Not meaningful if RxE==1

RXE/RxF/TXE/TxF: Status of each FIFO. Each one can be either Empty, Full, or somewherein the middle, in which case
neither E nor F would be set.
TxF must be checked prior to attempting awrite to the transmit FIFO
RxE must be checked prior to attempting aread from the receive FIFO
The other two status bits would not generally be as useful, but are provided for symmetry

The FDRX register is aread-only register that returns the top entry in the receive FIFO. It is undefined if
FDSTAT[RxE]==1, so that register should be checked prior to reading. That check will also return the ChannelID so
you know what type of datathisis.

Figure 8.12 Fields in the FDC Receive (FDRX) Register
31 0

RxData

The FDTXn registers are 16 write-only registers that write into the bottom entry in the transmit FIFO. The 16 copies
provide the means for selecting a ChannellD for the write data. The address used for the write is decoded into the 4-
bit ChannelID and written into the FIFO with the data. Results are undefined if FDSTAT[TxF]==1, so that register
should be checked prior to writing data.

Figure 8.13 Fields in the FDC Transmit (FDTXn) Registers
31 0

TxData

8.1.11 EJTAG breakpoint registers

It's optional whether the 74K core has EJTAG breskpoint registers. But if it has instruction breakpoints, it has four of
them; and if it has data breakpoints, it has two. The breakpoints:

*  Work only on virtual addresses, not physical addresses. However, you can restrict the breakpoint to asingle
address space by specifying an “ASID” value to match. Debuggers will need the co-operation of the OS to get
thisright.

*  Useabit-wise address mask to permit a degree of fuzzy matching.

» Onthedataside, you can break only when a particular value isloaded or stored. However, such breakpoints are
imprecisein a CPU like the 74K core - see Section 8.1.13, "Imprecise debug breaks' below.

There areinstruction-side and data-side breakpoint status registers (they’re located in “drseg”, accessible only when
in debug mode, and their addresses arein Section 8.2, "EJTAG debug memory region map (“dseg”)".) They're called
IBS and DBS. The latter has, in theory, two extrafields (bits 29-28) used to flag implementations which can’t do a
load/store break conditional on the data value. However, MIPS cores with hardware breakpoints always include the
value check, so these bits read zero anyway. So the registers are as shown in Figure 8.14.
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Figure 8.14 Fields in the IBS/DBS (EJTAG breakpoint status) registers

31 30 29 2827 24 23 4321 0
DBS Jaso| BCN =2 0 |BSL-0
IBS sup BCN =4 0 | BSD3-0

Where:

ASIDsup: is 1 if the breakpoints can use ASID matching to distinguish addresses from different address spaces; on the
74K corethat's availableif and only if a TLB isfitted.

BCN: the number of hardware breakpoints available (two data, four instructions).

BS1-0, BSD3-0: hitfields showing breakpoints which have been matched. Debug software hasto clear down abit after a
breakpoint is detected.

Then each EJTAG hardware breakpoint (“n” is 0-3 to select a particular breakpoint) is set up through 4-6 separate
registers:

* IBCn, DBCn: breakpoint control register shown at Figure 7-9 below;
* IBAN, DBAN: breakpoint address;

* IBAMm, DBAMnN: bitwise mask for breakpoint address comparison. A "1" in the mask marks an address bit which
will be excluded from comparison, so set this zero for exact matching.

Ingeniously, IBAMm[0] corresponds to the slightly-bogus instruction address bit zero used to track whether the
CPU is running MIPS16 instructions, and allows you to determine whether an EJTAG I-breakpoint may apply
only in MIPS16 (or non-MIPS16) mode.

* IBASIDn, DBASIDn specifies an 8-bit ASID, which may be compared against the current EntryHIi[ASID] field to
filter breakpoints so that they only happen to a program in the right "address space”. The ASID check can be
enabled or disabled using IBCn[ASIDuse] or DBCn[ASIDuse] respectively - see Figure 7-9 and its notes below. 1D
(so that the break will only affect one Linux process, for example).

The higher 24 bits of each of these registersis aways zero.

*  DBVn, DBVHin the value to be matched on load/store breakpoints. DBCHin defines bits 63-32 to be matched for
64-bit load/stores: the 32-bit?>’ 74K has 64-bit |oad/store instructions for floati ng point.

Note that you can disable data matching (to get an address-only data breakpoint) by setting the value byte-lane
comparison mask DBCn[BLM] to al 1s.

So now let’slook at the control registersin Figure 8.15.

27. A JTAG hardware breakpoint for areal 64-bit CPU would have 64-bit DBVn registers, so wouldn’t need DBVHin.
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Figure 8.15 Fields in the hardware breakpoint control registers (IBCn, DBCn)

31 24 23 2 1817 14 13 12 1 87 43 2 1 0

DBC”| 0 |ASIDuse| 0 | BAI7-0| NoSB | NoLB| 0 | BLM7-O| 0| TE | o| BE|

31 24 23 2 3210

'BC”| 0 |ASIDuse| 0 |TE|O|BE|
Thefields are:

ASIDuse: set 1 to comparethe ASID as well as the address.

g" 28

BAI7-0: "byte (lane) accessignor - which sounds mysterious. But thisis really an address filter.

When you set a data breakpoint, you probably want to break on any access to the data of interest. You don’t usually
want to make the break conditional on whether the accessis done with aload byte, |oad word, or even load-word-|eft:
but the obvious way of setting up the address match for a breakpoint has that effect.

To make sure you catch any access to alocation, you can use the address mask to disable sub-doubleword address
matching and then use DBCn[BAI] to mark the bytes of interest inside the doubleword: well, except that zero bits mark
the bytes of interest, and 1 bits mark the bytes to ignore (hence the mnemonic).

The DBCn[BAI] bits are numbered by the byte-lane within the 64-bit on-chip data bus; so be careful, the relationship
between the byte address of a datum and its byte lane is endianness-sensitive.

NoSB, NoLB: set 0 to enable?® breakpoint on store/load respectively.

BLM7-0: aper-byte mask for data comparison. A zero bit means compare this byte, a 1 bit meansto ignore its value. Set
thisfield all-ones to disable the data match.

TE: set 1to use astrigger for "PDtrace" instruction tracing.

BE: set 1 to activate breakpoint. This fields resets to zero, to avoid spurious breakpoints caused by random register set-
tings: don’t forget to set it!

8.1.12 Understanding breakpoint conditions

There are alot of different fields and settings which are involved in determining when a hardware breakpoint detects
its condition and causes an exception.

In all cases, there will be no break if you're in debug mode aready... but then for a break to happen:
»  For all breakpointsincluding instructions: al the following must be true:

1. The breakpoint control register enable bit IBAN[BE]/DBAN[BE] is set.

117

28. Why are there 8 bytes, when the 74K core is a 32-bit CPU with only 32-hit general purpose registers? Well, the DBCn[BAI]
and DBCn[BLM] fields each have a hit for each byte-lane across the data bus, and the 74K core has a 64-bit data bus (and in
fact can do 64-bit load and store operations, for example for floating point values).

29. “1-to-enable’ would feel morelogical. The advantage of using O-to-enable here is that the zero value means “break on either
read or write”, which is a better default than “never break at al”.
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2. theaddress generated by the program for instruction fetch, load or store matches those bits of the break-
point’s address register IBAn/DBAnN for which the corresponding address-mask register bitsin IBAn/DBAN are
zero.

3. either IBCn[ASIDuse]/DBCn[ASIDuse] iszero (so we don't care what address space we're matching against),
OR the address-space ID of the running program, i.e. EntryHi[ASID], is equal to the value in IBASIDn/
DBASIDn.
That’s all for instruction breakpoints, but for data-side breakpoints also:
»  Data compare break conditions (not value related): both the following must be true:

4. It'saload and DBCn[NoLB] is zero, or it's astore and DBCn[NoSB] is zero.

5. Theload or the store touches at least one byte-within-doubleword for which the corresponding DBCn[BAI]
bit is zero.

If you didn’t want to compare the |oad/store value then DBCn[BLM] will be all-ones, and you're done. But if you
also want to consider the value:

»  Data value compare break conditions:

6. thedataloaded or stored, asit would appear on the system bus, matches the 64-bit contents of DBVHin with
DBVn in each of those 8-bit groups for which the corresponding bit in DBCn[BLM] is zero.

That'sit.
8.1.13 Imprecise debug breaks

Instruction breakpoints, and data breakpoints filtering only on address conditions are precise; that means that:

1. DEPC will point at the fetched or load/storeinstruction itself (except if it'sin abranch delay slot, will point at the
branch instruction);

2. Theinstruction will not have caused any side effects; in particular, the load/store will not reach the cache or
memory.

Most exceptionsin MIPS architecture CPUs are precise. But because of the way the 74K core optimizes loads and
stores by permitting the CPU to run on at least until it needs to use the data from aload, data breakpoints which filter
on the data value are imprecise. The debug exception will happen to whatever instruction (typically later in the
instruction stream) is running when the hardware detects the match, and not necessarily to the same TC. The debug-
ging software must cope.

8.1.14 PC Sampling with EJTAG

A valuable trick available with recent revisions of the EJTAG specification and probes, “PC sampling” provides a
non-intrusive way to collect statistical information about the activity of a running system. You can tell whether PC
sampling is enabled by looking at DCR[PCS], as shown in Figure 7-5 above.

The hardware snapshots the “ current PC” periodically, and stores that value where it can be retrieved by a debug

probe. It's then up to software to construct a histogram of samples over aperiod of time, which (statistically) allowsa
programmer to see where the CPU has spent most cycles. Not only is this useful, but it's also familiar: systems have
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used intrusive interrupt-based PC-sampling for many years, so there are tools which can readily interpret this sort of
data.

When PC sampling is configured in your core, it runs continuously. Some sleight of hand is used if the CPU is hang-
ing on await instruction. Rather than wasting even a small amount of power running the counter and resampling the
PC of thewai t instruction, the hardware simply keepsthe “new” bit set whileit isin this state telling the profiling

software that yes, we are still at that instruction. You can choose to sample as often as once per 32 cycles or asrarely

as once per 4096 cycl es%0; at every sampling point the address of the instruction completing in that cycle (or if none
completes, the address of the next instruction to complete) is deposited in a JTAG-accessible register. Sampling rateis
controlled by the DCR[PCR] field of the debug control register shown in Figure 7-5.

In addition to the 32 bits of the instruction address, several other fields are stored by the hardware to help identify the
instruction. The aforementioned “new” bit indicates a new sample, which a probe can use to avoid double-counting
the same sample. On multi-threaded CPUs where there might be several copies of the code running, a TCID field is
also appended. The then-current ASID may also be included so that you can interpret the virtual PC. The ASID is
included unless the DCR[PCnoASID] bit is set. This bit may be hardwired in a given implementation or the bit might
be writable, so go ahead and try to change it if you feel likeit (but be sureto read it back and see if the write ‘ stuck’
so that you know how many hits to scan and how to interpret them).

EJTAG revision 5.0 adds a new optional mechanism for triggering PC sampling when an instruction fetch missesin
the I-cache. When the PCIM and PCSe fields of the Debug Control Register (DCR[26] and DCR[5]) are set to 1,
instructions that miss in the I-cache and all the uncached fetches are captured. The capturing of the I-cache misses
does not depend on the PC Sampling Rate (DCR[8:6]). Whenever there is amiss, that PC will be captured. The cap-
tured PC will be sent to EJTAG to shift out through PCSAMPLE. Over time, this collection mode resultsin an overall
picture of the instruction cache behavior and can be used to increase performance by re-arranging code to minimize
cache thrashing.

8.1.15 JTAG-accessible and memory-mapped PDtrace TCB Registers

The DCR and the hardware breakpoint registers are EJTAG registers that are both JTAG-accessible and memory-
mapped. In addition to the DCR and the hardware breakpoint registers, the EJTAG PDtrace Registerslisted in Table
8.5 are also memory-mapped to drseg. These registers allow software to access the on-chip trace memory. A load
from the EJAG register TCBTW will return the data at the address location pointed to by the read pointer TCBRDP.
See the Software User’s Manual for more details and rules to access the on-chip trace memory.

Table 8.5 Mapping TCB Registers in drseg

Offset in drseg | Register Name Description
0x3000 TCBControlA The TCBControl A register.
0x3008 TCBControlB The TCBControlB register.
0x3010 TCBControlC The TCBControl C register.
0x3018 TCBControlD The TCBControlD register.
0x3020 TCBControlE The TCBControl E register.
0x3028 TCBConfig The TCBConfig register.

30. Sinceit runs continuously, it's a good thing that from reset the sampling period defaults to its maximum.
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Table 8.5 Mapping TCB Registers in drseg (Continued)

Offset in drseg

Register Name

Description

0x3100

TCBTW

Trace Word read register. This register holds the Trace Word just read from on-line trace mem-
ory.

0x3108

TCBRDP

Trace Word Read pointer. It pointsto the location in the on-line trace memory where the next
Trace Word will beread. A TW read hasthe side-effect of post-incrementing this register value
to point to the next TW location. (A maximum value wraps the address around to the begin-
ning of the trace memory).

0x3110

TCBWRP

Trace Word Write pointer. It pointsto the location in the on-line trace memory where the next
new Trace Word will be written.

0x3118

TCBSTP

Trace Word Start Pointer. It points to the location of the oldest TW in the on-chip trace mem-
ory.

0x3120

BKUPRDP

Thisisnot a TCB register, but needed on areset to save the TCBRDP value before that regis-
ter isreset to 0. This allows the software that comes up after a (hard or soft) reset to know the
last-known good value of TCBRDP before system crash, and potentially read the trace mem-
ory from or to the appropriate trace memory location.

0x3128

BKUPWRP

Thisisnot a TCB register, but needed on areset to save the TCBWRP value before that regis-
ter isreset to 0. This allows the software that comes up after a (hard or soft) reset to know the
last-known good value of TCBWRP before system crash, and potentially read the trace mem-
ory from or to the appropriate trace memory location.

0x3130

BKUPSTP

Thisisnot aTCB register, but needed on areset to save the TCBSTP value before that register
isreset to 0. This allows the software that comes up after a (hard or soft) reset to know the last-
known good value of TCBSTP before system crash, and potentially read the trace memory
from or to the appropriate trace memory location.

0x3200-0x3238

TCBTrigX

The TCBTrigX set of registers. The number of implemented registers is determined by the
valuein TCBCONFIGtgG.
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Aningtruction trace is a set of data generated when a program runs which allows you to recreate the sequence of

instructions executed, possibly with additional information included about data values. Instruction traces rapidly

become enormous, and are typically generated in some kind of abbreviated form, which may be reconstructed by
software which isin possession of a copy of the binary code of your system.

74K family cores can be configured with PDtrace logic, which provides a non-intrusive way of finding out what
instructions your CPU ran. If your system includes PDtrace logic, Config3[TL] will read 1.

With avery high-speed CPU likethe 74K corethisis challenging, because you need to send data so fast. The PDtrace
system deals with this by:

*  Compressing the trace: a software tool in possession of the binary of your program can predict where execution
will go next, following sequential instructions and fixed branches. To trace your program it needs only to know
whether conditional branches were taken, and the destination of computed branches like jump-register.

»  Switching the trace on and off: the 74K core can be configured with up to 8 “trace triggers’, allowing you to start
and stop tracing based on EJTAG breakpoint matches: see Section 8.1.11, "EJTAG breakpoint registers’ above
and Table 8.21 below.

» High-speed connection to a debug/trace probe: optional. But if fitted, it uses advanced signalling techniquesto
get trace data from the CPU core, out of dedicated package pinsto a probe. Good probes have generous amounts
of high-speed memory to store long traces.

TraceControl2[ValidModes, TBI, TBU] (described below at Figure 7-10 and following) tell you whether you have
such a connection available on your core. You'll have to ask the hardware engineers whether they brought out the
connector, of course.

* \ery high-speed on-chip trace memory: if fitted, you may find between 256bytes and 8Mbytes of trace memory
inyour system (larger than afew Kbytesis unlikely). Again, see TraceControl2[ValidModes, TBI, TBU] to find out
what facilities you have.

*  Option to slow the CPU to match the tracing speed: when you really, really need afull trace, and are prepared to
dow down your program if necessary to wait while the trace information is sent to the probe. Thisis controlled
by TraceControl[10], see below.

»  Software access to on-chip trace memory : A new mechanism is provided to allow software to read the on-chip
trace memory. Thisis achieved by mapping all the TCB registers to drseg.

In practice the PDtrace logic depends on the existence of an EJTAG unit (described in the previous section) and an
enhanced EJTAG probe. To benefit from on-probe trace memory, the probe will need to attach to PDtrace-specific
signals.

This manual describes only the lowest-level building blocks as visible to software. For real hardware information

refer to [PDTRACETCB]; for guidance about how to use the PDtrace facilities for software development see
[PDTRACEUSAGE]. To use PDtrace facilities, you'll have to read the software manuals which come with a probe.

8.2.1 74K core-specific fields in PDtrace™ JTAG-accessible registers

The PDtrace system is controlled by the JTAG-accessible registers TCBCONTROLA, TCBCONTROLB, TCBCON-
TROLC, TCBCONTROLD, and TCBCONTROLE. Normally they are not visible to software running on the CPU,
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but we' [l document fields and configured values which are specific to 74K family CPUs. With the new feature of
enabling software to access the on-chip trace memory, all the JTAG-accessible registers are visible to software viaa
load or store to their drseg memory mapped location.

Table 8.6 Fields in the TCBCONTROLA register

31 30 29 27 26 25 24 23 22 20 19 18 17 16 15 14 13 12 54 3 2 1 0
SyPExt [ Impl [0 | VModes | ADW | SyP |TB|IO|D|E|S|K|U ASID G| TFCR | TLSM | TIM | On
In TCBCONTROLA:

VModes: reads“1 0", showing that 74K family cores support all tracing modes.
ADW: reads “1” to indicate that we support the wide (32-bit) internal trace bus.

Ineff: set to 1 to indicate that core-specific-inefficieny tracing is enabled.

Table 8.7 Fields in the TCBCONTROLB register
31 30 28 27 26 25 21 20 19 18 17 16 15 14 13 12 11 10 8 7 6 3 2 1 0

WE 0 TWSrcWidth REG WR [0| TRPAD |FDT|RM|TR|BF| TM |TLSIF| CR |Ca|TWSrcVa | CA |OfC|EN

In TCBCONTROLB:

FDT: set to 1 to indicate that Filtered Data Trace is enabled

TRPAD: set to 0 to enable software to access on-chip trace memory viathe drseg mapped TCB Registers.

NumDO: On the 74K family the number of bits to specifiy the DataOrder field within the trace format is five bits to sup-

port 32 outstanding load and stores. The outstanding loads and stores is with respect to the PDtrace unit not the Load
Store unit.

Figure 8.16 Fields in the TCBCONTROLE register
31 9 8 7 6 5 4 3 2 1 0

0 TrIDLE 0 PeCOvf | PeCFCR | PeCBP | PeCSync |PECE|PEC

Aside from TrIDLE the rest of the bitsin TCBCONTROLE are enable and control bits for performance counter tracing

TrIDLE : is set by the hardware to indicate that the trace unit is not processing any data. Thisis especially useful when
switching control from hardware to software and vice-versa. After turning trace off (recommended to turn
TraceControl[ON] , TCBCONTROLA[ON] , and TCBCONTROLBI[EN] off), this bit should be queried and if the trace
unitisidle, then it is safe to change the trace control settings. After changing the settings, trace can be turned back on,
and tracing resumes cleanly with the new control.
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Figure 8.17 Fields in the TCBCONFIG register

31 30 25 24 21 20 17 16 14 13 11 10 9 8 6 5 4 3 0
‘CFl‘ 0 TRIG 574 CRMax \ CRMin \ PW \ PIN \ onT \ OfT‘ REV
In TCBCONFIG:

CF1: read-only, reads zero because there are no more TCB configuration registers.

PiN: read-only, reads zero because the 74K core is a single-issue (single pipeline) processor.
REV: reads 1, denoting compliance with revision 4.0 of the TCB specification.

REV: reads 3, denoting compliance with revision 6.0 of the TCB specification.

8.2.2 CPO registers for the PDtrace™ logic

There are three categories of registers:

e TraceControl , TraceControl2 and TraceControl3 (Figure 8.18/Figure 8.19 ): allow the software to take charge
of what is being traced.

» UserTraceDatal and UserTraceData2 (Section 8.2.4 “UserTraceDatal reg and UserTraceData2 reg”): alows
software to send a“user format” trace record, which can be interpreted by suitable trace analysis software to
build interesting facilities.

e TraceBPC (Figure 8.21): controls whether and how individual EJTAG breakpoint trace triggers take effect.

Figure 8.18 Fields in the TraceControl Register

31 30 29 28 27 26 25 24 23 22 21 20 13 12 5 4 3 2 1 0
TS|UT| 0 |Ineff | TB|IO|D|E|K|S|U ASID_M ASID G|TFCR|TLSM | TIM |On
0 0

Figure 8.19 Fields in the TraceControl2 Register
31 30 29 12 11 7 6 5 4 3 2 0

SyPExt 0 Mode VaidModes | TBI | TBU | SyP

Figure 8.20 Fields in the TraceControl3 register
31 14 13 12 11 10 9 8 7 3 2 1 0

0 PeCOvf | PecCFCR | PeCBP | PeCSync |PECE|PEC| O TrIDLE | TRPAD | FDT

TS: set 1 to put software (manipulating this register) in control of tracing. Zero from reset.

UT: software can output a"user triggered record” (just write any 32-bit value to the UserTraceData register). There have
been two types of user-triggered record, and this bit says which to output: 0 — Type 1 record, 1 — Type 2. Thishit is
deprecated as there are now two registers UserTraceDatal and UserTraceData2. If awriteto UserTraceDatal or
UserTraceData2 occurs, then thetypeisUT1 or UT2 respectively

Ineff: set to 1 to indicate that core-specific-inefficieny tracing is enabled.
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TB: "trace all branch" - when 1, output all branch addressesin full. Normally, predictable branches need not be sent.
10: "inhibit overflow" - slow the CPU rather than lose trace data because you can’t capture it fast enough.

D, E, K, S, U: do tracein various CPU modes: separate bits independently filter for debug, exception, kernel, supervisor
and user mode. Set 1 to trace.

ASID_M, ASID, G: controls ability to trace for just one (or some) processes, recognized by their current ASID value as
found in EntryHi[ASID]. Set the G ("global™) to trace instructions from all and any ASIDs. Otherwise set
TraceControl[ASID] to the value you want to trace and ASID_M to all 1s (you can also use ASID_M as a bit mask to
select several ASID values at once).

TFCR: switch on to generate full PC addresses for all function call and return instructions.

TLSM: switch on to trace all D-cache misses (potentially including the miss address).

TIM: switch on to trace all 1-cache misses.

On: master trace on/off switch - set 0 to do no tracing at al.

Theread-only fieldsin TraceControl2 provide information about the capabilities of your PDtrace system. That system
may include a plug-in probe, and in that case the TraceControl2[SyP] field may read as garbage until the probeis
plugged in.

Mode: whenever trace is turned on, you capture an instruction trace. Mode is a bit mask which determines what |oad/
store tracing will be done3. It's coded like this:

Bit No Set  What getstraced

0 PC

1 Load addresses
2 Store addresses
3 Load data

4 Store data

However, see TraceControl2[ValidModes] (description below) for what your PDtrace unit is actually capable of doing.
Bad things can happen if you request a trace mode which isn’t available.

TraceControl2[ValidModes]: what is this PDtrace unit capable of tracing?

ValidModes What can we trace?
00 PC trace only
01 Can trace |oad/store addresses

10 Can trace |oad/store addresses and data

31. Prior to v4 of the PDtrace specification, this field wasin TraceControl, and was too small to allow all conditions to be speci-
fied independently.

Programming the MIPS32® 74K™ Core Family, Revision 02.14 124



TraceControl2[TBI, TBU]: best considered together, these read-only bitstell you whether there is an on-chip trace mem-
ory, on-prabe trace memory, or both - and which is currently in use.

TBlI TBU On-chip or probe trace memory?

0 only on-chip memory available

1 only probe memory available

0 Both available, currently using on-chip
1 Both available, currently using probe

R B O O

TraceControl2[SyP]: read-only field which lets you know how often the trace unit sends a complete PC address for syn-
chronization purposes, counted in CPU pipeline clock cycles. The periodis2 (SY® + ) Valid periodsare 2° to 212 .

TraceControl2[SyPEXxt]: Thisis an extension to the SyP. It is useful when ahigher number of cyclesis desired between
synchronization events. The same formula applies as that described above, except that it applies to the juxtaposition

of SyPExt and SyP. The period is 2 (SYFPEXE /SYP + 5) vglid periods are 2° to 231, If the user tries to specify a
period above 231, the behavior is unpredictable.

TraceControl3[FDT]: set to 1 to indicate that Filtered Data Trace is enabled

TraceControl3[TRPAD]: read-only bit that isloaded from TCBControlBtrpap-

TraceControl3[TrIDLE] :read-only bit that is set by the hardware to indicate that the trace unit is not processing any data.
Thisis especially useful when switching control from hardware to software and vice-versa. After turning trace off
(recommended to turn TraceControll[ON] , TCBCONTROLA[ON] , and TCBCONTROLBIEN] off) , this bit should be
queried and if the trace unit isidle, then it is safe to change the trace control settings. After changing the settings,
trace can be turned back on, and tracing resumes cleanly with the new control.

Therest of the bitsin TraceControl3 enable and control performance counter tracing.
8.2.3 JTAG triggers and local control through TracelBPC/TraceDBPC

Recent revisions of the PDtrace specification have defined much finer controls on tracing. In particular, you can now
trace only cycles matching some “breakpoint” criteria, and there is atwo-stage process where cycles are traced only
after an “arm” condition is detected. The new fields are shown in Figure 8.21

Figure 8.21 Fields in the TracelBPC/TraceDBPC registers
31 30 29 28 27 26 2423 2120 1817 1514 1211 98 65 32 0

TracelBPC IE IBPC3|IBPC2| IBPC1 | IBPCO
0 |PCT ATE
TraceDBPC DE DBPC1 | DBPCO

In either TracelBPC or TraceDBPC:
PCT: set to 1 and a performance counter trigger signal is generated when an EJTAG breakpoint match occurs.
IE,DE: master 1-to-enable bit for triggers from EJTAG instruction and data breakpoints respectively.
ATE: Read-only hit which lets you know whether the additional trigger controls such as ARM, DISARM, and data-qual-

ified tracing (introduced in v4.00 of the PDtrace specification) are available - which they may be on the 74K core.
Thisbit is deprecated and reads as zero.
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8.2 PDtrace™ instruction trace facility

IBPC8-0, DBPCB8-0: each three-hit field encodes tracing options independently, for up to nine EJTAG |- and D-side
breakpoints (thisis generous: your 74K core will typically have no morethan 4 |- and 2 D-breakpoints).

Each entry can be set as follows:

xBPC field Description
0 Stop tracing (no effect if off already).
1 Start tracing (no effect if on aready).
2 Trace instructions which cause this trigger.

However, do TracelBPC/TraceDBPC exist in your system? They will be there only if you have an EJTAG unit (does
Config1[EP] read 1?), and that unit has at |east one breakpoint register - check that at least one of DCR[DB,IB] is set
(as described in).

8.2.4 UserTraceDatal reg and UserTraceData2 reg

Write any 32-bit value you like here and the trace unit will send a“user” record (if only one UserTraceData register
exists, then there are two “types’ of user record, and which you output depends on TraceControl[UT], see above).
However if two UserTraceData registers exist then writing to UserTraceDatal will generate a trace record with type
UT1, and writing to UserTraceData2 will generate atrace record with type UTZ2. You need to send something your
trace analysis system will understand, of course! Perhapsit’s worth noting that this “user” islocal debug software,
and doesn’t mean low-privilege software running in “user mode” - which of course would not be able to access this
register. CPO access rules apply when writing to this“user” register.

8.2.5 Summary of when trace happens

The many different enable bits which control trace add up to (or strictly “and” up to) awhole bunch of reasons why
you won't get any trace output. So it may be worth summarizing them here. So:

» |f softwareisin charge (that is, if TraceControl[TS]==1) then:
—  TraceControl[On] must be set.
— At least one of the CPU mode filter bits TraceControl[D,E,S,K,U] must be set 1 to trace instructions in debug,
exception, supervisor, kernel or user-mode respectively. Mostly likely either just TraceControl[U] will be set (to
follow just one process in a protected OS), or TraceControl[E,S,K,U] to follow all the software at bare-iron

level (but not to trace EJTAG debug activity);

—  Either TraceControl[G] is set (to trace everything regardless of current ASID) or TraceControl[ASID] (as
masked by TraceControl[ASID_M]) matches the current value of the core-under-test’s EntryHi[ASID] field.

— Thesignal PDI_TraceOn is asserted by the trace block. Thiswill typically be true whenever the probe is
plugged in and connected to software.

— Asabovethereare D,E,S,K,U,G and ASID hits (thereisn't an “ASID_M" in this case) which must be set
appropriately in the JTAG-accessible TCBCONTROLA register, which is not otherwise described here.

Whether JTAG or TraceControl isin charge, then:
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e There must have been a cycle recently when there was an “on trigger”, that is.

— TheCPU tripped an EJTAG breakpoint with the IBCn[TE]/DBCn[TE] bit set to request atracetrigger (for I-side
and D-side respectively);

— TracelBPC[IE]/TraceDBPC[DE] (respectively) was set to enable triggers from EJTAG breakpoints;

— theappropriate TraceBPC[IBPCx]/TraceBPC[DBPCx] field has some kind of “on” trigger - and if thistrigger is
conditional on “arm” there must have been an arm event since system reset or any disarm event; or the trigger
unconditionally turns trace on.

*  And since the on-trigger time, there must not have been a cycle which acted as an “off trigger”, that is:

— The CPU tripped an EJTAG breakpoint with the IBCn[TE]/DBCn[TE] bit set, and TraceBPCJ[IE]/TraceBPC[DE]
(respectively) were still set;

— wherethe appropriate TracelBPC[IBPCn]/TraceDBPC[DBPCn] fieldsis set to disable triggering (subject to
arming).

If there is more than one breakpoint match in the same cycle, an “on” trigger wins out over any number of “off”.
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8.3 CPO Watchpoints

8.3 CPO Watchpoints

Some cores may be built with no EJTAG debug unit to save space, and some debug software may not know how to use
EJTAG resources. So it may be worth configuring the four non-EJTAG CPO watchpoint registers. In 74K cores you
get two I-side and two D-side registers.

These registers provide the interface to a debug facility that causes an exception if an instruction or data access
matches the address specified in the registers. Watch exceptions are not taken if the CPU is already in exception mode
(that isif Status[EXL] or Status[ERL] is aready set).

Watch events which trigger in exception mode are remembered, and result in a*“ deferred” exception, taken as soon as
the CPU leaves exception mode.

This CPO watchpoint system is independent of the EJTAG debug system (which provides more sophisticated hard-
ware breakpoints).

The WatchLo0-3 registers hold the address to match, while WatchHiO-3 hold a bundle of control fields.

8.3.1 The WatchLo0-3 registers

Used in conjunction with WatchHiO-3 respectively, each of these registers carries the virtual address and what-to-
match fields for a CPO watchpoint.

Figure 8.22 Fields in the WatchLo0-3 Register
31 3 2 1 O

VAddr I |R|W

WatchLoO-3[VAddr]: the address to match on, with aresolution of a doubleword.

WatchLoO-3[I,R,W]: accessesto match: |-fetches, Reads (loads), Writes (stores). 74K cores have separate |- and D-side
watchpoints, so you'll find that the I-side WatchLo0-1[R] and WatchLoO-1[W] isfixed to zero, while for the D-side-
only watchpoint, WatchLo2-3[1] will be zero.

8.3.2 The WatchHiO-3 registers

Figure 8.23 Fields in the WatchHiO-3 Register

31 30 29 24 23 16 15 12 11 3 2 1 0
M| G 0 ASID 0 Mask I | R|W
X

WatchHi0-3[M]: the WatchHiO-3[M] bit is set whenever there is one more watchpoint register pair to find; your soft-
ware should useit (starting with WatchHiO) to figure out how many watchpoints there are. That's more robust than
reading the CPU manual...

WatchHi0-3[G,ASID]: WatchHi0-3[ASID] matches addresses from a particular address space (the"ASID" islike that
in TLB entries) — except that you can set WatchHi0-3[G] ("global") to match the address in any address space.
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WatchHiO-3[Mask]: implements address ranges. Set bitsin WatchHiO-3[Mask] to mark corresponding WatchLoO-
3[VAddr] address bits to be ignored when deciding whether thisis a match.

WatchHiO0-3[I,R,W]: read your WatchHi0-3 after awatch exception, and these fields tell you what type of access (if
anything) matched.

Write a 1 to any of these bitsin order to clear it (and therefore prevent the exception from immediately happening

again). Thisbehavior isunusual among CPO registers, but it is quite convenient: to clear awatchpoint of all the excep-
tion causes you’'ve seen just read the value of WatchHi0-3 and write it back again.

8.4 Performance counters

Performance counters are provided to allow software to monitor the occurrence of events of interest within the core,
and can be very useful in analyzing system performance.

74K family CPUs are fitted with four counters, each of which can be set up to count one of alarge choice of different
events. Each 32-bit counter is accompanied by a control register whose layout is shown in Figure 8.24.

Figure 8.24 Fields in the PerfCtl0-3 Register

31 30 16 15 14 12 11 5 4 3 2 1 0
0 PCTD 0 Event IE|U|S| K| EXL
0

There are usually four counters, but software should check using the PerfCti[M] bit (which indicates “ at |east one
more”).

Then thefields are:

M: Reads 1 if there is another PerfCtl register after this one.

Event: determines which event this counter will count; see Table 8.8 below. Note that the odd-numbered and even-num-
bered counters mostly count different events, though some particularly important events can use any of the four

counters.

PCTD: setting this bit preventsthe tracing of data from this performance counter when performance counter trace mode
in PDTraceis enabled.

IE: set to cause an interrupt when the counter "overflows" into its bit 31. This can either be used to implement an
extended count, or (by presetting the counter appropriately) to notify software after a certain number of events have
happened.

U, S, K, EXL: count eventsin User mode, Supervisor mode, Kernel mode and Exception mode (i.e. when Status[EXL] is
set) respectively. Set multiple bitsto count in all cases.

The events which can be counted in the 74K core arein Table 8.8. Blank fields are reserved. But before you get there,
take alook at the next sub-section...
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8.4 Performance counters

8.4.1 Reading the event table.

There are alot of events you can count. It'srelatively cheap to wire another signal from the internals of the coreinto
acounter. It'stime consuming and expensive to formulate a signal which represents exactly what a software engineer
might want to count, and even more expensive to test it. Where the definitionsin Table 8.8 are clear and simple,
they're usually exactly right. Where they seem more obscure, tread carefully, and don't just blame the author of this
manual (though sometimesit ismy fault!) When you use a counter, useit first on a piece of code where you know the
answer, and check you're really counting what you think you are.

When reading the table:

IFU: isthe “instruction fetch unit” of the CPU pipeline. We can’t describe some events without referring to the
inside of the CPU. You might like to look back at Section 1.4 “A brief guide to the 74K* core implementation”.

LDQ, FSB, WBB: CPU queues, described in Section 3.3.1, "Read/write ordering and cache/memory data queues
inthe 74K" core".

Instruction fetch events: these include eventsin the I-cache, ITLB and main TLB (JTLB, for “joint TLB”, since it
serves both |-fetches and data loads/stores). When you count these remember you are counting instructions at the
start of the pipeline — and there are many reasons why instructions are fetched but never executed (more pre-
cisely, they never graduate):

e 74K CPUs have a 128-hit wide interface to the I-cache and fetch four instructions at once, so you only get
one cachefetch for that group of four instructions. But even then, an unconditional branch whichisnot at the
end of agroup of four instructions means the remaining instructions will not be used: you can’t just multiply
|-cache fetches by four...

*  Whenyou get an exception all work started on instructions later in sequence than the exception victim isdis-
carded: those instructions have been fetched and counted.

» ThelFU's branch predictors cause it to fetch speculatively from a predicted branch target. When that turns
out to be wrong, those speculative instructions will be discarded.

If there's an exception-causing address error during I-fetch, that fetch won't be counted.

Exceptionsin a branch delay slot: are handled by internally setting the exception-return register EPC to point to
the branch instruction. After the exception is handled and control returns, the branch instruction is re-executed:
all MIPS branch instructions are contrived so the re-execution does exactly the same thing as the first time. But
the branch instruction is “really” run twice, and any performance count will show that.

Bubble: is somewhat like a no-op, generated inside the execution unit. It travels down the pipeline like areal
instruction. When it reaches the pipeline position which is used by real instructions to access some resource, you
can be sure that resource will not be used for that cycle.

Issue pool: this document’sinformal name for the heap of instructions which are candidates for issue. These
instructions are kept in two 6-entry hardware queues which the implementation documents call DDQO and
DDQ1 (for ALU and AGEN type instructions respectively).
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Table 8.8 Performance Counter Event Codes in the PerfCtl0-3[Event] field.

Event
No counter0/2 counterl/3
0 Cycles
1 Instructions graduated
2 jr $31 (return) instructions that are predicted jr $31 predicted but guessed wrong
3 Cycleswhere no instruction isfetched becauseit has | jr $31 (return) instructions fetched and not pre-
no “next address’ candidate, or after await. dicted using RPS
4 ITLB accesses. ITLB misses, when the |-side requestsa JTLB
access.
5 Reserved JTLB instruction access fails (will lead to an excep-
tion)
6 I-cache accesses. 74K /84K have a 128-bit connec- | I-cache misses. Includes misses resulting from fetch-
tion to the I-cache and fetch instructions in fours ahead and speculation.
where possible. This counts every such access
(including instructions which are never executed).
And more: for example, following abranch which is
correctly predicted taken, one or more instructions
on the straight-through path may be accessed.
7 Cycleswhere no instruction is fetched becausewe | ReservedL 2 I-miss cycles
missed in the I-cache
8 | Cycleswherenoinstruction isfetched because we're | PDTrace back stalls
waiting for an I-fetch from uncached memory.
9 Number of replays within the IFU that happen Number of valid fetch dotskilled in the IFU due to
because Instruction buffer isfull. branches/jumps or other stalling instructions.
10 |Reserved Reserved
11 | Reserved. Reserved.
12 | Reserved
13 | Cycleswhen no instructions can be added to ALU | Cycles when no instructions can be added to AGEN
issue pool, because the pool isfull. issue pool, because the pool isfull.
14 | Cycleswhere no instructions can be added to ALU | Cycleswhere no instructions can be added to AGEN
issue pool, because we've run out of ALU CBs. issue pool, because we've run out of AGEN CBs.
15 | Cycleswhere no instructions can be added to issue | Cycles where no instructions can be added to issue
pool, because we've used al the FIFO entries (in the | pool, because we'vefilled the “in order” FIFO used
“CLDQ") which keep track of data going to the FPU. | for coprocessor instructions (the “101Q")
16 | Cycleswith no ALU-pipeissue: no instructions Cycles with no AGEN-pipe issue: no instructions
available. available.
17 | Cycleswith no ALU-pipeissue: we haveinstruc- Cycles with no AGEN-pipe issue: we have instruc-
tions, but operands not ready tions. but operands not ready
18 | Cycleswith no ALU-pipeissue: vaidinstructions | Cycles with no AGEN-pipe issue: we have load(s)

and operands ready, but some resource is unavailable
(perhaps div islooping and inhibiting MDU
instructions). CorExt resources could lead to the
same thing.

with operands ready, but there’s an ol der non-issued
store or cacheop which might turn out to affect the
load data.
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8.4 Performance counters

Table 8.8 Performance Counter Event Codes in the PerfCtl0-3[Event] field.

Event

No counter0/2 counterl/3

19 | ALU-pipe bubbleissued. The resulting empty pipe- | Reserved
stage guarantees that some resource will be unused
for a cycle, sometime soon. Used, for example, to
guarantee an opportunity to writemfec1 datainto a
CB.

20 | Cycleswhen oneinstruction isissued. Cycles when two instructions are issued (one ALU,

one AGEN)

21 | Out-of-order ALU issue (that is, theinstruction QOut-of-order AGEN issue.
issued is not the oldest in the pool).

22 | Graduated AR/JALR.HB D-Cachelinerefill (not LD/ST misses)

23 | Cacheable loads. All D-cache accesses (loads, stores, prefetch,
cacheop etc). Will include counts for some instruc-
tions which didn’t graduate.

24 | D-Cache writebacks D-Cache misses

25 | D-sideJTLB accesses D-side JTLB trand ation fails. Not quite every one
corresponds to an exception: the instruction might be
discarded by someone else’ redirect beforeit reaches
the exception resolution point.

26 | Load/storeinstruction redirects, which happen when | The 74K core's D-cache has an auxiliary virtual tag,
the load/store follows too closely on a possibly- used to help pick the right line early. When (occa
matching cacheop. sionally) the physical tag check shows some mis-

match, it istreated as a cache miss— in processing
the “miss” we'll correct the virtual tag for future
accesses. This event counts those bogus “ misses.”

27 Reserved

28 | L2 cache writebacks L2 cache accesses

29 | L2 cache misses L2 cache misses

30 [CyclesFill Store Buffer(FSB) arefull and causea | CyclesFill Store Buffer(FSB) > 1/2 full
pipe stall

31 [CyclesLoad Data Queue (LDQ) arefull and cause a | Cycles Load Data Queue(LDQ) > 1/2 full
pipe stall

32 [ Cycles Writeback Buffer(WBB) are full and cause a | Cycles Writeback Buffer(WBB) > 1/2 full
pipe stall

33 | Reserved Reserved

34 |Reserved Reserved

35 | Redirectsfollowing optimistic issue of instruction Coprocessor load instructions.
dependent on load which missed. Counted only when
the dependent instruction graduates

36 |[jr (not $31) instructions graduated. jr $31 graduated after mispredict.

37 | Branch instructions graduated (excluding CPL/CP2 | CP1/CP2 conditional branch instructions graduated.
conditional branches).

38 [ Branch-likely instructions graduated Mispredicted branch-likely instructions graduated
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Table 8.8 Performance Counter Event Codes in the PerfCtl0-3[Event] field.

Event

No counter0/2 counterl/3

39 | Branches graduated Mispredicted branches graduated

40 | Integer instructions graduated (includes all no-ops, | FPU instructions graduated (but not counting FPU
even those with side-effects like ssnop and ehb, load/store)
and also includes conditional moves)

41 | Loads (including FP) graduated Stores graduated (including FP). Of se instructions,

only successful ones are counted.

42 |j/jal graduated MIPS16 instructions graduated

43 | Co-ops graduated. integer multiply/divides graduated

44 | DSP instructions graduated ALU-DSP graduated, result was saturated.

45 [ DSP branch instructions graduated MDU-DSP graduated, result was saturated

46 | Uncached loads graduated. Uncached stores graduated.

47 | Reserved Reserved

48 | Reserved

49 | EJTAG instruction triggers EJTAG datatriggers

50 [ CP1 branches mispredicted. Reserved

51 |sc instructions graduated. sc instructions failed.

52 |prefetch instructions graduatedat the top of prefetch instructionswhich did nothing,
LSGB. because they hit in the cache.

53 | Cycleswhere no instructions graduated L oad misses graduated. Includes Floating Point

Loads.

54 | Cycleswhere oneinstruction graduated Cycles where two instructions graduated

55 | GFifo blocked cycles Floating point stores graduated

56 : ; Number of cycles 0 instructions graduated cycles
Number of cycles 0 instructions graduated from the from the time a pipekill happened due to replay until
time a pipekill happened due to mispredict until the the first new instruction graduates. Thisisan
first new instruction graduates. Thisisan indicator of indicator of the raduatign bandwidith loss due to
the graduation bandwidth loss due to mispredict. replay 9

57

58 | Exceptionstaken Replays initiated from graduation

59 [ Implementation specific CorExtend event. Con- Implementation specifc system event. Connect to
nected to UDI_perfent_event pin of UDI block. SI_PCEvent pin of the core.

60

61 Reserved for CP2 event

62 | Implementation-specific event from ISPRAM block. | Implementation-specific event from DSPRAM
MIPS standard | SPRAM (see Section block. MIPS standard DSPRAM (see Section
3.6 “Scratchpad memory/SPRAM”) does not pro- | 3.6 “Scratchpad memory/SPRAM”) does not pro-
vide such an event. vide such an event.

63 | L2 single-bit errors which were corrected. Reserved
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8.4 Performance counters
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[SUM]:“MIPS32® 74K® Processor Core Family Software User’s Manual”, M1PS Technol ogies document M DO00519.

[ERRATA]:*MIPS32® 74K® Processor Core Family RTL Errata Sheet”, MI1PS Technol ogies document MD00518.
Available only to core licensees or by arrangement.
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[MIPS32V1]: “Introduction to the MIPS32 Architecture”, MIPS Technol ogies document M D0008O0.
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Although coresin the 74K family are 32-bit cores, the optiona floating-point unit is a 64-bit one, and is as described
in:

[MIPS64V2]:“The MIPS64 Instruction Set”, MIPS Technol ogies document MD00085.
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[MIPSDSP]:“The MIPS DSP Application-Specific Extension to the MIPS32 Architecture”, MIPS Technologies
document MD00372.
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number MD00544.

[MIPS16€]:“The MIPS16e™ A pplication-Specific Extension to the MIPS32 Architecture”, MIPS Technologies
document MDO00074.

[Cor Extend]:“How To Use CorExtend® User-Defined Instructions’, MIPS Technol ogies document MD00333.

[EJTAG]:“MIPS® EJTAG Specification”, M1PS Technol ogies document MD00047.
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[PDTRACEUSAGE]:"“PDtrace™ and TCB Usage Guidelines’, MIPS Technologies document M DO00365.

[PDTRACETCB]:*MIPS® PDtrace™ Interface and Trace Control Block Specification”, MIPS Technologies
document MDO00439. Current revisionis4.30: you need revision 4 or greater to get multithreading trace information.
[L2CACHE]:*MIPS® SOC-it® L2 Cache Controller Users Manual”, MIPS Technol ogies document MD00525.

Books about programming the MIPS® architecture

[SEEMIPSRUN]: “See MIPS Run, 2nd Edition”, author Dominic Sweetman, Morgan Kaufmann |SBN 1-55860-410-
3. A general and wide-ranging programmers introduction to the MIPS architecture, updated in 2006 to reflect the
current version of [MIPS32].

[MIPSPROG]:“MIPS Programmers Handbook”, Erin Farquar & Philip Bunce, Morgan Kaufmann ISBN 1-55860-
297-6. Restricted to the MIPS | instruction set but with alot of assembler examples.
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[EEE754]:"|EEE Standard 754 for Binary Floating-Point Arithmetic”, published by the |IEEE, widely available on the
web. Surprisingly comprehensible.

C language header files

Header files are available as part of the free-for-download “ SDE Lite” subset available from MIPS Technologies
website. You'll find them under.../sde/include/mips/. In particular:
[m32c0 h]:C definitions referred to in this manual for the names and fields of standard M1PS32 CPO registers.

[m32tlb.h]: C definitions and constants associated with the basic address space and TLB programming.
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Appendix B

CPO register summary and reference

This appendix lists all the CPO registers of the 74K core. You can find registers by name through Table B.1, by num-
ber through Table B.2 and there’s our best shot at functional groupingsin Table B.3. The registers-by-number Table
B.2 tellsyou where to find a detailed description - if you're reading on-lineit’s a hot-link.

Power-up state of CPO registers

The traditions of the MIPS architecture regard it as software’s job to initialize CPO registers. Asarule, only fields
where awrong setting would prevent the CPU from booting are forced to an appropriate state by reset; other fields -
including other fields in the same register - are random. This manual documents where afield has aforced-from-reset
value; but your rule should be that al CPO registers should be initialized unless you are quite sure that arandom value
will be harmless.

A note on unused fields in CPO registers

Unused fieldsin registers are marked either with adigit 0 or an “X”. A field marked zero should always be written
with zero, and subject to that is guaranteed to read zero on coresin the 74K family. A field marked “X” may return
any value, and nothing you write there will have any effect - but unless stated otherwise, it's usually best to write it
either as zero or with avalue you previously read from it

Table B.1 Register index by name

Name Number Name Number Name Number Name Number
BadVAddr 8.0 Debug 230 Index 0.0 SRSMap 12.3
CacheErr 27.0 DEPC 24.0 IntCtl 121 Status 12.0
Cause 13.0 DESAVE 310 ITagHi 29.0 TraceControl 23.1
CDMMBase 15.2 DTagHi 29.2 ITagLo 28.0 TraceControl2 232
Compare 11.0 DTagLo 28.2 L23DataHi |29.5 TraceControl3 242
Config 16.0 EBase 15.1 L23DatalLo [28.5 TracelPBC 23.4
Configl-2 16.1-2 EntryHi 10.0 L23TagLo |28.4 TraceDPBC 235
Config3 16.3 EntryLo0-1 |2.0 PageMask |5.0 UserLocal 4.2
3.0

Config6 16.6 EPC 14.0 PerfCnt0-3 |25.1 UserTraceDatal | 23.3

253

255

25.7
Config7 16.7 ErrCtl 26.0 PerfCtlO-3 [25.0 UserTraceData?2 | 24.3

252

254

25.6
Context 4.0 ErrorEPC 30.0 PRId 15.0 WatchHi0-3 19.0-3
ContextConfig |4.1 HWREna 7.0 Random 1.0 WatchLoO-3 18.0-3
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Table B.1 Register index by name (Continued)

Name Number Name Number Name Number Name Number
Count 9.0 IDataHi 29.1 SRSCtl 12.2 Wired 6.0
DDatalLo 28.3 IDatalLo 281
Table B.2 CPO registers by number
Nos Register Description Page
0.0 Index Index into the TLB array 3.8.3,p48
1.0 Random Randomly generated index into the TLB array 3.8.3,p48
20 EntryLoO-1 Output (physical) side of TLB entry 3.12, p.49
3.0
4.0 Context Mixture of pre-programmed and BadVVAddr bits which can act asan OS | 3.8.6, p.51
page table pointer.
41 ContextConfig Defines the bits of the Context register into which the high order bitsof |3.8.6, p.51
the virtual address causing a TLB exception will be written.
4.2 UserLocal Kernel-writable but user-readable software-defined thread 1D B.1.2, p.143
50 PageMask Control for variable page sizein TLB entries 3.12, p.49
6.0 Wired Controls the number of fixed (“wired”) TLB entries 3.8.3,p.48
7.0 HWREna Bitmask limiting user-mode access to rdhwr registers 5.6, p.75
8.0 BadVAddr Address causing the last TLB-related exception 3.8.6,p.51
9.0 Count Free-running counter at pipeline or sub-multiple speed B.1.5, p.145
10.0 |[EntryHi High-order portion of the TLB entry 3.12, p.49
11.0 |[Compare Timer interrupt control B.1.5, p.145
12.0 |Status Processor status and control B.1.1, p.141
121 |[IntCtl Setup for interrupt vector and interrupt priority features. 5.2, p.68
12.2 |[SRSCil Shadow register set selectors 5.4,p.73
123 [SRSMap Shadow set choice for each interrupt level in VI mode 5.4,p.73
13.0 |[Cause Cause of last general exception B.1.3.1, p.143
140 |[EPC Restart address from exception B.1.4, p.145
15.0 |PRId Processor identification and revision 2.2,p.26
15.1 |EBase Exception entry point base address and CPU/VPE ID 5.1, p.73
15.2 |[CDMMBase 36-hit physical base address for the Common Device Memory Map facil- | 3.7, p.46
ity
16.0 |[Config Legacy configuration register 211,p.22
16.1-2 | Configl-2 MIPS32/64 configuration registers (caches etc) 212,p.23
16.3 |[Config3 Configuration register showing ASEs etc 213,p.24
16.6 |Config6 Additional information about the presence of optional extensionstothe |2.1.4, p.25
base MIPS32 architecture
16.7 | Config7 CPU-specific configuration B.2.1, p.145
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Table B.2 CPO registers by number (Continued)

Nos Register Description Page
18.0-3 | WatchLo0-3 Watchpoint address and qualifiers 8.3.1,p.128
19.0-3 | WatchHi0-3 Watchpoint control/status 8.3.2,p.128
23.0 |Debug EJTAG Debug status/control register 8.1.6, p.106
23.1 |TraceControl Control fields for the PDtrace unit 8.1.6, p.106
23.2 | TraceControl2
24.2 | TraceControl3
23.3 |UserTraceDatal |software-generated PDtrace information registers 8.1.6, p.106
24.3 |UserTraceData2
234 |TracelBPC Addition controls for PDtrace start/stop based on the EJTAG Instruction | 8.1.6, p.106

breakpoints
235 |TraceDBPC Additional controls for PDtrace start/stop based on the EJTAG data 8.1.6, p.106
breakpoints
240 |DEPC Restart address from last EJTAG debug exception 8.1.6, p.106
25.0 |PerfCtl0-3 Performance counter control 8.4, p.129
252
254
25.6
25.1 |PerfCnt0-3 Performance counters 8.4, p.129
253
255
257
26.0 |ErrCil Software parity control and test modes for cache RAM arrays 3.4.17,p.42
27.0 |CacheErr Cache parity exception status 3.4.16, p.41
28.0 |ITagLo Read/write interface for load/store tag cacheops (but when used for 3.4.11,p.39
scratchpad RAM configuration see Section 3.8, p.45.)
28.1 |IDatalLo Read/write interface for |-cache specia cacheops B.3.4, p.150
28.2 |DTaglLo Read/write interface for |oad/store tag cacheops (but when used for 3.4.11, p.39
scratchpad RAM configuration see Section 3.8, p.45.)
28.3 |DDatalLo Low-order data read/write interface for D-cache B.3.4, p.150
284 |L23TagLo Read/Write interface for L2 and L3 cache tag 3.4.12, p.40
28.5 |L23DatalLo Low-order data read/write interface for L2 and L2 cache 3.4.13, p.40
29.0 |ITagHi I-cache pre-decode bits B.3.3, p.149
29.1 |IDataHi Read/write interface for |-cache specia cacheops B.3.4, p.150
29.2 |DTagHi D-cache virtual index (including ASID) B.3.2, p.149
295 |L23DataHi High-order data read/write interface for L2 and L3 cache 3.4.14, p.40
30.0 |ErrorEPC Restart location from areset or a cache error exception B.3.5, p.150
31.0 |DESAVE Scratch read/write register for EJTAG debug exception handler 8.1.6, p.106
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Table B.3 CP0O Registers Grouped by Function

Basic modes  Status 12.0 BadVAddr 8.0 DEPC 24.0
OS/userland  UserLocal 42 Context 4.0 EJTAG Debug DESAVE 31.0
thread ID
Exception Cause 13.0 ContextConfig 4.1 Debug 23.0
Control EPC 14.0 TLB EntryHi 10.0 TraceControl 23.1
Compare 11.0 Management  EntrylLo0-1 2.0 TraceControl2 232
Timer 30
Count 9.0 Index 0.0 TraceControl3 242
Config 16.0 PageMask 5.0 PDtrace TracelPBC 234
Configl-2 16.1-2 Random 1.0 TracelDBC 235
Config3 16.3 Wired 6.0 UserTraceDatal 23.3
Config6 16.6 DDatalo 28.3 UserTraceData2 24.3
Config7 16.7 DTagHi 29.2 PerfCnt0-3 251
253
255
25.7
CPU EBase 15.1 DTagLo 28.2 PerfCtl0-3 25.0
Configuration ) ) 25'2
Profiling 5.4
25.6
CDMMBase 152 ErrCtl 28.2 PerfCnt0-3 251
253
Cache 255
Management 257
IntCtl 12.1 ErrorEPC 26.0 ~ WatchHi0-3 19.0-3
) Debug/Analysis
PRId 15.0 IDataHi 29.1 WatchLo0-3 18.0-3
SRSCil 12.2 IDatalLo 28.1 Control rdhwr HWRE 70
Access na ’
SRSMap 12.3 ITagHi 29.0 Parity/ECC CacheE 270
control achekr )

ITagLo 28.0

L23DataHi  29.5

L23TagLo 284

B.1 Miscellaneous CPO register descriptions

Many CPO registersin the 74K core are already described earlier in this manual, in arelevant section. But those which

got missed are described below, to make sure that every CPO register field is at |east mentioned in this manual.
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B.1.1 Status register

The Status register isthe most basic (and most diverse, for historical reasons) control register in the MIPS architec-
ture, and its fields are squashed into Figure B.1. All fields are writable unless noted otherwise.

Figure B.1 Fields in the Status Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 8 7 6 5 4 3 2 1 0

’CUS‘CU2‘CU1‘CUO‘RP‘FR’RE‘MX‘R‘BEV‘TS’SR‘NMI’O‘CEE’O IM7-0 R ‘UM‘SM‘ERL‘EXL‘IE‘
In EIC (external int controller) mode| | IMO-1

000X 01 00 X 0 1

The 74K family Status has ho non-standard fields - they’re all as defined by [M1PS32]. Here and elsewhere these field
descriptions arefairly terse, and you should read behind thisif you're new to the MIPS architecture. Few of the fields
in Status are guaranteed to beinitialized by hardware on a CPU reset; bootstrap code should write areasonable value
to it early on (the same s true of many other CPO registers, and the rule is “unless you know it's safe to leave it ran-
dom, initiaizeit”).

Status[CU3-0,MX,CEE]: Enablesfor different extension instruction sets— all are per-TC. The CU3-0 bitsare for co-

processor instruction sets (replicated per-TC), and are writable when such a coprocessor exists. Since no 74K family
CPU has a co-processor 3, Status[CU3] is hard-wired zero.

CU1 ismost often used for afloating-point unit, if present, while CU2 isreserved for a customer’s coprocessor. Both
become read-only and read zero if the corresponding coprocessor isn't fitted.

Setting Status[CUQ] to 1 has the peculiar effect of allowing privileged instructions to work in user mode; not some-
thing a secure OSis likely to allow often.

MX is set to 1 to enable instructionsin either the MI1PS DSP extension to the MIPS architecture, or the MDMX ™
extension. The two may not be used together, and MDM X is unlikely to ever be available for any 74K family core.
But you can find out which by looking at Config3[DSPP] (1 if MIPS DSP isimplemented) and Configl[MD] (1 if
MIPS MDMX isimplemented).

CEE is1to enableinstructionsin the " CorExtend", user-definable instruction set. Config[UDI] tells you whether
your CPU has the CorExtend extension; but even then it may not use CEE. A user instruction set which uses only
genera -purpose registers and accumulators doesn’t need disabling and may not use this bit.

Status[RP]: Reduced power — standard field.

It's not connected inside the 74K core, but the state of the RP bit is available on the external core interface asthe
SI_RP signal. The 74K core uses clocks generated outside the core, and this could be used in your design to slow the
input clock(s).

Status[FRY]: if thereisafloating point unit, set 0 for MIPS | compatibility mode (which means you have only 16 real

FP registers, with 16 odd FP register numbers reserved for access to the high bits of double-precision values).

Status[RE]: reverse endianness for instructions run in user mode. Thisfeatureis unused by any known OS, and need

not be provided by all MIPS32-compliant CPUs.

Status[BEV]: "boot exception vectors' — when 1, relocates all exception entry points to near the reset-time start

address.
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Status[TS]: Set if software attempts to create aduplicate TLB entry (which will aso produce a"machine check” excep-
tion). Can be written back to zero, but never writtento 1. The name of the field originated asa"TLB Shutdown" —
historical MIPS CPUs quietly stopped translating addresses when they detected TLB abuse.

Status[SR]: MIPS32 architecture "soft reset” bit: the 74K core’'sinterface only supports afull external reset, so this
aways reads zero.

Status[NMI]: (read-only) — non-maskable interrupt shares the "reset" handler code, thisfield reads 1 when it was a
NMI event which caused it.

Status[IM7-0]: bitwise interrupt enable for the eight interrupt conditions also visible in Cause[IP7-0], except in the
"EIC" interrupt mode.

EIC mode is activated when Config3[VEIC] reads 1, and you set Cause[lV] and write a non-zero “vector spacing”
into IntCtl[VS].

In EIC mode IM7-2 isrecycled to become a 6-bit Status[IPL] (“interrupt priority level”) field. An interrupt is only
triggered when your interrupt controller presents an interrupt code which is numerically higher than the current value
of Status[IPL].

Status[IM1-0] always act as bitwise masks for the two software interrupt bits programmable at Cause[IP1-0].

Status[UM,SM]: execution privilege level — basically user or kernel:

Table B.4 Encoding privilege level in Status[UM,SM]

UM | SM Effect

0 |kerne

1 |supervisor

1 0 |user

Theintermediate “ supervisor” privilege level israrely used: but that's why thisis a 2-bit field.
Regardless of thisfield, the CPU isforced into kernel mode when either EXL or ERL is set.

Status[ERL,EXL]: EXL istheregular exception mode bit, set automatically when the CPU takes an exception. ERL is
the "error exception mode" bit, and is set following reset, an NMI, or a cache error exception. Either bit forces kernel
mode and disables interrupts.

There are some very special cases where nested exceptions are permitted, so an exception with EXL set does several
strange things. anested TLB Refill exception is sent to the general exception handler (not, asisusual, it's dedicated
entry point), and on anested exception EPC, Cause[BD] and SRSCtl are not overwritten. The result, broadly, isthat
when you return from the second exception you skip straight back to the code which was running before the first. For
more details see [SEEMIPSRUN] or the [MIPS32] bible.

The error level hasits own return address. when ERL is set the eret instruction getsits address from ErrorEPC, not
EPC asnormal.

Moreover, error level changes the memory map (in support of software fixing up cache errors), recycling kuseg as an
uncached, unmapped window onto 512MB of physical memory.
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Status[IE]: global interrupt enable, O to disable al interrupts. Thedi/ei instructionsallow you to write this bit with-
out affecting the rest of Status.

B.1.2 The UserLocal register

Not interpreted by hardware, this register is suitable for a kernel-maintained thread 1D whose value can be read by
user-level code with rdhwr $29, solong as HWREnNa[UL] is set.

UserLocal wasfirst implemented after the first release of the 74K family of cores. Kernels should check whether
thisregister isimplemented by inspecting Config3[ULRI], as described in Section 2.1.3 “The Config3 register”.
Useof rahwr $29 will cause an exception in CPUs not implementing this register, providing an opportunity for an
OSkernel to simulate it.

B.1.3 Exception control: Cause and EPC registers

B.1.3.1 The Cause register

Thisregister records information about the last exception, and is used by low-level exception handler code to decide
what to do next. But it has a handful of writable fields too, detailed below.

Figure B.2 Fields in the Cause Register

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 8 76 210
BD|TI| CE |DC|PCI| O [IV|WP 0 IP7-2 IP1-0|0| ExcCode| O
In EIC (external int controller) mode RIPL
0

Cause[BD]: 1if the exception happened on an instruction in a branch delay dot; in this case EPC is set to restart exe-
cution at the branch, which is usually the correct thing to do. You need only consult Cause[BD] when you need to
look at the instruction which caused the exception (perhaps to emulate it).

Cause[TI]: last interrupt was from the on-core timer (see section below for Count Compare

Cause[CE]: if that was a" co-processor unusable” exception, thisis the co-processor which you tried to use.

Cause[DC]: (writable) set 1 to disable the Count register.In some power-sensitive applications, the Count register is
not used but may still be the source of some noticeable power dissipation. This bit allows the Count register to be
stopped in such situations, for example, during low-power operation following await instruction.

Cause[PCI]: last interrupt was an overflow from the performance counters, see the PerfCnt registers.

Cause[lV]: (writable) set 1 to use aspecia exception entry point for interrupts. I1t's quite likely that if you're doing this,
you're also using multiple entry points for different interrupt levels, see the IntCtl register.

Cause[WP]: (writable to zero) — remembers that a watchpoint triggered when the CPU couldn’t take the exception
because it was already in exception mode (or error-exception mode, or debug mode). Since this bit automagically
causes the exception to happen again, it must be cleared by the watchpoint exception handler.

Cause[IP7-0]: Solong asthe CPU isnot in EIC interrupt mode, thisfield reflects the current state of the interrupt

request inputsto the core. When one of them is active and enabled by the corresponding Status[IM7-0] bit, an inter-
rupt may occur.
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The CPU isin EIC mode if Config3[VEIC] (indicating the hardware is EI C-compliant), and software has set
Cause[lV] to enable vectored interrupts. In that case thisfield isinterpreted as an unsigned binary number, and isa
snapshot of the value of the “interrupt priority level” (1PL) supplied by the interrupt controller. The snapshot isfrom
the time when the CPU decided to take the interrupt exception.

When the presented IPL is higher than the current interrupt priority level held in Status[RIPL], the CPU takes an

interrupt. A zero level on the core inputs indicates no interrupt request.

IP1-0 arewritable, and in fact always just reflect the value written here. They act as software interrupt bits masked by
Status[IM1-0] regardless of the interrupt mode.

Cause[ExcCode]: what caused that last exception. Lots of values:

Table B.5 Values found in Cause[ExcCode]

Val Code What just happened?
0 Int Interrupt
1 Mod Store, but page marked as read-only in the TLB
2 TLBL Load or fetch, but page marked asinvalid in the TLB
3 TLBS Store, but page marked asinvalid in the TLB
4 AJQEL Address error on load/fetch or store respectively. Address is either wrongly aligned, or a privilege viola
5| AdEs tion.
6 IBE Bus error signaled on instruction fetch
7 DBE Bus error signaled on load/store (imprecise)
8 Sys System call, ie syscall instruction executed.
9 Bp Breakpoint, ie break instruction executed.
10 RI Instruction code not recognized (or not legal)
11 CpU Instruction code was for a co-processor which is not enabled in Status[CU3-0].
12 ov Overflow from atrapping variant of integer arithmetic instructions.
13 Tr Condition met on one of the conditional trap instructions teq etc.
14 - Reserved
15 FPE Floating point unit exception — more details in the FPU control/status registers.
16-17 - Available for implementation dependent use
18 C2E Reserved for precise Coprocessor 2 exceptions
19-21 - Reserved
22 MDMX Tried to run an MDMX instruction but Status[MX] wasn’t set (most likely, the CPU doesn’t support the
MDMX ASE)
23| waTcH |Instruction or datareference matched a watchpoint
24| MCheck |“Machinecheck” — second valid TLB entry mapping same virtual address.
25| Thread |Thread-related exception, only for CPUs supporting the MIPSMT ASE.
26 - Reserved (some kind of thread exception for aMT CPU).
27-29 - Reserved
30| cacheErr | Parity/ECC error somewhere in the core, on either instruction fetch, load or cache refill. In fact you never
seethisvalue in Cause[ExcCode]; but some of the codesin thistable including this one can bevisiblein
the “debug mode” of the EJTAG debug unit — see and in particular the notes on the Debug register.
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Table B.5 Values found in Cause[ExcCode]

Val Code What just happened?

31 - Reserved

B.1.4 The EPC register

After any normal exception (debug and error exceptions are different, see DEPC and ErrorEPC respectively), EPC
holds the return address.

If theinstruction we'd really liketo return to isin a branch delay slot, EPC points to the branch instruction and
Cause[BD] will be set. All MIPS branch instructions may be re-executed successfully, so returning to the branch is
the right thing to do in this case.

B.1.5 Count and Compare

These two 32-hit registers form a useful and flexible timer. Count just counts. For the 74K core, that's usually once
every two clocks. But you should not rely on that: software should discover how fast Count counts by reading the
“hardware register” called “CCRes’, see Section 4.1, "User-mode accessible “Hardware registers™.

You can write Count to set avalueinit, but it's generally more valuable for an OSto leave it as afree-running counter.

When the value of Count coincides with the value in Compare, an interrupt israised. Theinterrupt is cleared every
time Compare iswritten. Thisis handy:

e For aperiodic interrupt, simply advance Compare by afixed amount each time (and check for the possibility that
Count has overrun it).

e Toset atimer for some point in the future, just set Compare to an increment more than the current value of
Count.

Thetimer interrupt isimplemented as an output signa at the core interface; but it's conventional (well, pretty compul-
sory if youwant OS' to work) to return it to the same VPE on an interrupt line - see notes on IntCtI[IPTI] below Figure
5.1. However, if you have an “EIC” interrupt controller (see Section 5.2, "MIPS32® Architecture Release 2 -
enhanced interrupt system(s)") you'll need to send the timer interrupt all the way out to the interrupt controller and
back.

B.2 Registers for CPU Configuration

145

B.2.1 The Config7 register

Config7 isfor implementation-specific fields. A few fields may need to be set to match the hardware configuration of
your system: the rest are typically for diagnostics and test, default to safe values on power up, and are best |eft alone
otherwise. If you are using these registers, you probably need to consult the core hardware bible, the [ SUM]. Much of
Config7 will be familiar to test-and-diagnostic workers who've worked on MIPS Technologies 24K or 34K core
families.
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Table B.6 Fields in the Config7 Register

| 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1513 12 11 10 9 87 6 5 4 3 2 1 0
| |WII|FPFS|IHB [FPR1|SEHB|CP2IO| IAGN |IALU DgH SG|SUl| 0 |[HCI|FPRO|AR[ O |PREF|IAR|IVA |ES|0|CP1I0|0|ULB|BP|RPS|BHT|SL

Config7[WII]: Read-only bit which tells you how wait behaves. When this bit is set, an interrupt which would occur
just so long as Status[IE] is set 1 will always be enough to terminate await instruction.

74K family CPUs where WII reads O will remain in the wait condition forever if entered with interrupts disabled.
The MIPS32 Architecture Specification permits either behavior.

But with the WII-set featureit's safe to wait with interrupts disabled using Status[IE]or TCStatus[IXMT]. This
allows OS code to avoid atricky race condition.

Config7[FPFS]: enable bit for thepref 31 prefetch, which isfast but can create a security leak, as described in Table
4.1. When thisbit isn’t set, pref 31 will behave exactly likepref 30.

Config7[IHB]: When set, this bit will remove the need for most hazard barrier instructions (see Section 5.1 “Hazard
barrier instructions”) by doing two things. Firstly, it will automatically prevent the hazard which could arise because
oneinstruction produces a CPO register value and a later instruction (which isone of mf£co, di, ei, eret Or deret)
consumes that value. Secondly, any jalr or jr instruction runin kernel mode will act as an execution hazard barrier
(infact, just like the corresponding jalr.hb or jr.hb). IHB isclear by default, which isfine so long as your code
inserts al the hazard barrier instructions required by [M1PS32].

Config7[SEHB]: "Slow EHB": mode to fix CPO sequences relying on strong semantics of ehb found on older CPUs.

By default, ehb will check whether any instructionsin flight are directly writing CPO registers: if such instructions
exist, it will block issue of instructions from the instruction buffer until al older instructions have graduated and the
pipeisempty. This eliminates CPO dependencies, leading to an 11-clock bubble only when necessary. If your soft-
ware is using ehb according to the recommendations of [M1PS32] that will be fine.

In other CPUs the effect of ehb may be unconditional, and some sequences might have relied on that. Set this bit to
make ehb block unconditionally, regardless of what instructions arein flight.

Config7[CP110,CP2I0]: By default data sent from the core to a coprocessor block is sent in an order reflecting the
internal pipeline execution sequence. Set either of these bitsto arrange that for CP1/CP2 respectively, datawill be
sent only ininstruction order.

Data from the core to the CP is tagged with an “age’ field. MIPS Technologies standard FPU accepts data out-of -
order, interpreting the age field to associated data with the correct instruction. So CP110 should not be set for the
standard FPU, unless you can think of some debug use.

Config7[IALU,IAGN]: Selective control of out-of-order behavior: issue ALU-side or load/store-side instructions
(respectively) in program order.

Config7[DGHR]: Make BHT fall back to simple bi-modal predictor (by default it uses a superior "GShare" agorithm).

Config7[SG]: Set 1 to alow only oneinstruction to graduate per cycle: not good for performance, probably only for
test purposes.
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Config7[SUI]: Strict Uncached Instruction (SUI) policy control. Set this to run uncached instruction strictly in order
and (asfar as possible) unpipelined. Thiswill be quite slow (the policy of itself will introduce a 15-cycle bubble
between each instructions), but you'll hardly notice because running uncached is already so slow. Only the branch-
delay-dot instruction of a branch is fetched without this bubble.

The advantage is that the CPU will not wander off speculatively fetching instructions from a (perhaps slow) boot
memory which are not wanted.

Config7[HCI]: read-only field which is always zero on 74K family cores. It reads 1 for some software-simulated CPUS,
to indicate that the software-modelled cache does not require initialization. Most software should ignore this bit.

Config7[FPR1-0]: read-only field informing you about the clock rate of an attached FPU relative to the integer core
clock:

Val FPU clock rate

0 full core speed
1 half core speed
2 2:3 ratio (two-thirds core speed)

Config7[AR]: read-only field, indicating that the D-cache is configured to avoid cache aliases —see Section 3.4.9,
"Cache aliases").

All the remaining fields are read/write, and control various functions. Only one of them islikely to find real system
use:

Config7[PREF]: defaultsto 2'b01.

These two hits control the prefetching of instructions into the Instruction cache. The two bits control the behavior per
thistable:

PREF Prefetch Behavior

00 | prefetch Olines of ICache on amissin addition to fetching the missed
line

01 | prefetch 1 line (sequentia next line) of ICache on amissin addition to
fetching the missed line (default behavior)

10 | Reserved

11 | prefetch 2 lines (segeuntia next 2 lines) of 1Cache on amissin addition
to fetching the missed line

Config7[IAR]: isset to “1” to indicate that this processor has hardware support to remove instruction cache aliasing.
This hardware is only present when the core is configured with a TLB and cache size of 32KB and larger. The hard-
ware is disabled viathe IVA hit.

Config7[IVA]: set 1to disable the HW alias removal on the I-cache. If thisbit is cleared, CACHE Hit Invalidate and
SYNCI instructions will look up all possible aliased locations and invalidate the given cache line in all of them. This
bit is Read-only if IAR=0.

Config7[ES]: defaultsto zero.
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Whenitissetto“1”, the sync instruction will be signalled on the core’s OCP interface as an “ordering barrier” trans-
action, using a sync-specific encoding.

Config7[ES] bit cannot be set (will always read zero and will have no effect) unless the OCP input signal
SI_SyncTxEn is asserted — it's interpreted as agreement from the connected OCP device/interconnect that it can
handle the barrier transaction.

The remaining fields default to zero and are uncommonly set. It is therefore always safe not to write Config7. Some
of these bits are for diagnostics and experimentation only:

Config7[ULB]J: set 1 to make all uncached loads blocking (a program usually only blocks when it usesthe datawhichis
loaded). You want to do this only when nothing else will work...

Config7[BP]: when set, no branch prediction is done, and all branches and jump stall as above.

Config7[RPS]: when set, the return address branch predictor isdisabled, so jr $31 istreated just like any other jump
register. Instruction fetch stalls after the branch delay slot, until the jump instruction reaches the "EX" stage in the
pipeline and can provide the right address (typically adds 5 clocks compared to a successfully predicted return
address).

Config7[BHT]: when set, the branch history table is disabled and all branches are predicted taken. Thisbitisdon’t care
if Config7[BP] is set.

Config7[SL]: when set, disables non-blocking loads. Normally the 74K core will keep running after aload instruction
even if it missesin the D-cache, until the dataisused. With this disable bit set, the CPU will stall on any load D-
cache miss.

B.3 Registers for Cache Diagnostics

Registers for regular OS-used operations on the cache and scratchpad are described in Chapter 3, “Memory map,
caching, reads, writes and translation” on page 29. But there are quite afew extra CPO registers (or different views of
familiar registers) which are solely for the use of test/diagnostic software, and they are described here.

B.3.1 Different views of ITagLo/DTagLo

The 74K core's cache memory is organized with separate RAMs to hold both “way select” information (which must
be updated to provide information for LRU replacement of cache lines) and “dirty bits” (only for the D-cache,
updated on any write). By keeping thisinformation in separate RAMs, we don’t need to write the main cache tag
memory on aread or write which hitsin the cache. But that memory is there, so thorough diagnostics should be able
to test it. You access these memories by setting bitsin the ErrCtl register and then doing index-load-tag and index-
store-tag cacheops on the appropriate cache, which stage data through the I TagL o/DTagL o registers. For each mem-
ory the fields of the registers change.

The way-select RAM is an independent slice of the cache memory (distinct from the tag and data arrays). Test soft-
ware ca access either by cache |load-tag/store-tag operations when ErrCtI[WST] is set: then you get the datain these
fields.

Figure B.3 Fields in the TagLo-WST Register
31 24 23 20 19 16 15 100 9 8 7 6 1 0

U LP L LRU 0 |U 0 U
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TagLo-WSTIL,LP]: cache-line locking control bits, held in the way select RAM, and parity over them.

TagLo-WST[LRU]: When you read or write the tag in way select test mode (that is, with ErrCtI[WST] set) thisfield
reads or writesthe LRU ("least recently used") state bits, held in the way select RAM.

The dirty RAM is another slice of the cache memory (distinct from the tag and data arrays). Test software can access
either by cache |load-tag/store-tag operations when ErrCtl[DYT] is set: then you get the datain these fields. For
experts only.

Figure B.4 Fields in the TagLo-DAT Register
31 24 23 20 19 16 15 12 11 10 9 8 7 6 1 0

U DP D U A 0 |U 0 U

TagLo-DAT[D,DP]: cache line "dirty" bits (and parity across them).

TagLo-DAT[A]: cacheline"aias" hits.

B.3.2 Dual (virtual and physical) tags in the 74K core D-cache — DTagHi register

In the 74K core the D-cache tags contain more information which is held in the DTagHi register. Regular software
probably need never touch it, and it's mostly for diagnostic and test use.

Figure B.5 Fields in the DTagHi Register
31 12 11 9 8 7 0

VTAG 0 G ASID

DTagHI[ASID,G,VTAG]: 74K family cores have a dual-tagged D-cache, combining avirtual tag for fast lookup with a
physical tag for correctness. The virtua tag provides avery fast way of predicting whether there's a cache hit, and if
so which "way" of the cache will contain the right data. But the virtual tag check is heuristic: in some cases it will
turn out, once the physical addressis available and can be checked against the physical tag, that we got it wrong.

From a software viewpoint the D-cache looks just like the “ standard” MIPS virtually-indexed physically-tagged
cache, though there is occasionally an unexpected delay when the virtual tag “prediction” is wrong — the CPU pipe-
line treats this like a cache miss, and as a side-effect the virtual tag is adjusted so it will work correctly next time.

So these fields store the information required to match avirtual address: the virtual addressitself, the ASID (tracking
the " address space identifier” maintained in EntryHi[ASID]) and aglobal (*G”) bit which can be set to make it not
necessary to match the ASID.

B.3.3 Pre-decode information in the I-cache - the ITagHi Register

For diagnostics only:

Figure B.6 Fields in the ITagHi Register
31 25 24 18 17 11 10 4 3 2 1 0

PREC_67 PREC 45 PREC 23 PREC 01 P67 | P45 | P23 | POl

ITagHI[PREC,P]: 74K family cores do some decoding of instructions when they’re loaded into the I-cache, which
helps speed instruction dispatch. When you use cache tag load/store instructions, you see that information here.
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B.3 Registers for Cache Diagnostics

Theindividua PREC fields hold precode information for pairs of adjacent instructionsin the I-cache line, and the P
fields hold parity over them.

B.3.4 The DDatalo, IDataHi and IDatalLo registers

On 74K family cores, test software can read or write data directly from/to the cache array using a cache index load
tag /store data instruction. Which word of the cache lineis transferred depends on the low address fed to the cache
instruction. D-cache load/stores transfer one word in DDatalo, but |-cache load/stores transfer two wordsin IDataHi
and IDatalo. These are obscure and for-diagnostic-only operations on the cache array, but may be used when dealing
with scratchpad memory (see Section 3.6 “ Scratchpad memory/SPRAM”).

B.3.5 The ErrorEPC register

Thisfull 32-bit register isfilled with the restart address on a cache error exception or any kind of CPU reset — in fact,
any exception which sets Status[ERL] and leaves the CPU in “error mode”.
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C.1 General purpose register numbers and names

By ancient convention the general-purpose registers in the MIPS architecture have conventional names which remind
you of their standard usage in popular MIPS ABIls. Table C.1 shows those names related to both the “032” ABI
(almost universally used for 32-bit MIPS applications), but also the minor variationsin the “n32” and “n64” ABIs
defined by Silicon Graphics.

If you're not sure what an ABI is, just read the “ 032" column!

Table C.1 Conventional names of registers with usage mnemonics

Register Nos name use
$0 zero  awayszero
$1 AT assembler temporary
$2-$3 v0-v1l return vaue from function
$4-57 a0-a3 arguments
032 n32/n64

name use name use
$8-$11 t0-t3 temporaries ad-a’7 more arguments
$12-$15 td-t7 t0-t3 temporaries
$24-525 £8-t9 t8-t9

$16-$23 s0-s7 saved registers
$26-5$27 k0-k1 reserved for interrupt/trap handler

$28 ap global pointer

$29 sp stack pointer

$30 s8/fp frame pointer if needed (additional saved register if not)
$31 ra Return address for subroutine

C.2 User-level changes with Release 2 of the MIPS32® Architecture

With the Release 2 update the MIPS32 instruction set gains some useful extra features, shown below. User-level pro-
grams also get limited access to “hardware registers’, useful for user-privilege software but which wants to adapt
(portably) to get the best out of the CPU.

C.2.1 Release 2 of the MIPS32® Architecture - new instructions for user-mode

The following instructions are new with the M1PS32 release 2 update:
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Table C.2 Release 2 of the MIPS32® Architecture - new instructions

Instruction(s)

Description

ehb
jalr.hb rd, rs
jr.hb rs

Hazard barriers; wait until side-effects from earlier instructions are all complete (that is,
can be guaranteed to apply in full to all instructions issued after the barrier).

These defend you respectively against:

ehb - execution hazards (side-effects of old instructions which affect how an instruction
executes, but excluding those which affect the instruction fetch process).
jalr.hb/jr.hb - hazards of all kinds.

Notethat eret isalso abarrier to al kinds of hazard.

ext rt, rs, pos, size
ins rt, rs, pos, size

Bitfield extract and insert operations.

mfhecl rt, fs
mthcl rt, £fs

Coprocessor/general register move instructions targeting the high-order bits of a 64-bit
floating point unit (CP1) register when the integer core is 32-hit.

mfhc2 rt, rd
mthec2 rt, rd

Coprocessor2 might be 64 hits, too (but thisistypically a customer specia unit).

rdhwr rt,rd

“read hardware register” - user-mode access read-only accessto low-level CPU informa:
tion - see “Hardware Registers’ below.

rotr rd, rt, sa
rotrv rd, rt, rs

Bitwise rotate instructions (like shifts, one has the rotate amount as an immediate field
sa, the other in an additional register argument rs).

seb rd, rt
seh rd, rt

Register-to-register sign extend instructions.

synci offset (base)

Synchronize caches to make instruction write effective. Instructions written by the CPU
for itself to execute must be written back from the D-cache and any stale data at that loca-
tion invalidated from the I-cache, before it will work properly. synci isauser-privilege
instruction which does all that is required for the enclosing cache-line sized memory
block. Very useful to JIT interpreters.

wsbh rd, rt

swap the bytes in each halfword within a 32-bit word. It was introduced together with the
rotate instructions rot/ rotv and the sign-extenders seb/ seh.

Between them you can make big savings on common byte-twiddling operations; for
example, you can swap the bytesin $2 using rot $2, $2, 16; wsbh$2, $2.

C.2.2 Release 2 of the MIPS32® Architecture - Hardware registers from user mode

The hardware registers provide useful information about the hardware, even to unprivileged (user-mode) software,
and are readable with the rahwx instruction. [MIPS32] defines four registers so far. The OS can control accessto
each register individually, through a bitmask in the CPO register HWREna - (set bit 0 to enable register O etc).
HWREna iscleared to all-zeroes on reset, so software hasto explicitly enable user access. Privileged code can access

any hardware register.

Thefiveregisters are:

e CPUNum (0): Number of the CPU on which the program is currently running. This comes directly from the
coprocessor 0 EBase[CPUNum] field.

*  SYNCI_Sep (1): the effective size of an L1 cache line32; thisis now important to user programs because they can
now do things to the caches using the synci instruction to make instructions you've written visible for execu-
tion. Then SYNCI_Step tellsyou the “step size” - the address increment between successive synci’s required
to cover al the instructionsin arange.

If SYNCI_Step returns zero, that means that you don’t need to use synci at all.

32. Strictly, it'sthe lesser of the I-cache and D-cache line size, but it's most unusual to make them different.
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e CC (2): user-mode read-only access to the CPO Count register, for high-resolution counting. Which wouldn’t be
much good without...

*  CCRes(3): whichtellsyou how fast Count counts. It’s adivider from the pipeline clock (if the rdhwr instruction
reads avalue of “2", then Count increments every 2 cycles, at half the pipeline clock rate).

e UserLocal (29): Scratch register of sorts. The kernel can store athread specific value such asathread ID or a
pointer to thread specific storage to the underlying CopO register and user mode programs can read it via rdhwr

C.3 FPU changes in Release 2 of the MIPS32® Architecture

The main changeisthat a32-hit CPU (likethe 74K core) can now be paired with a 64-bit floating point unit. The FPU
itself is compatible with the description in [M1PS64V2].

The only new feature of the instruction set are themfhe1/mthel instructions described in Section C.2, "Release 2 of
the MIPS32® Architecture - new instructions'.

But it's worth stressing that the floating point unit implements 64-bit load and store instructions. The FPU of the 74K
core is described in Chapter 6, “Floating point unit” on page 77.
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Appendix D

Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant
changesto this document sinceitslast release. Significant changes are defined as those which you should take note of
asyou use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

Revision

Date

Description

1.00

31st January 2007  First released version for 74K™ core EA.

2.00

11th May 2007

Released for 74K™ core “general availability” release.

2.10

28th September 2007 For 2.1 release of the 74K core. Changes include:

New CPO register, see Section C.4.2 “The UserLocal register”.

Alias-proof I-cache operations, see Section 3.4.9 “Cache aliases’.
Canwait with interrupts disabled, see Section 5.5 “Saving Power”.

The L2 access registers are renamed to L23TagLo etc (used to be “ STagLo”
€tc).

Miscellaneous fixes.

Change bars are vs. 2.00.

211

15th December 2007

For 2.11 release of the 74K core. Changes include:

Update the number of pipeline stages
Include Instruction Cache prefetch options
Update Performance counter definitions
Update CPO Config7 register definitions
Miscellaneous fixes

212

November 14, 2008

Bitsin TagLo register were errantly marked O instead of x
Added example idle loop code making use of Config7[WII]
Add section on PDtrace, including new registers

Update for EJTAG version to 4.14

213

June 4, 2010

Renumber HW breakpoint registersin DRSEG table to match other docs
(0..15 rather than 1..16)

Add FastDebugChannel and Common Device Memory Map description
New relocatable debug exception entry point

Mention PC sampling extensions

Changed UX, SX, KX, and PX bitsin Status Register to R (Reserved. reads
as0).

Add FDCI bit to Cause Register

Add new CPO registers Configs, CDMMBase, and ContextConfig

Add new drseg register DebugVectorAddr

Add RdVec bit to Debug Control register

Add IAR and IVA bits to Config7 register

Add CDMM and CTXT bits to Config3 register

Additions to descriptions of performance counting

Add IPFDCI bit to IntCtl register

Add PCTD bit to PerfCtl register
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Revision Date Description

214 March 30,2011 + Add Type and Typelnfo fields in implementation register.
» Add Cache miss PC Sampling feature.
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