
Document Number: MD00582
Revision 5.04

January 15, 2014

MIPS® Architecture for Programmers
Volume II-B: The microMIPS32™

Instruction Set

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCI, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

aLt{ϯ !ǊŎƘƛǘŜŎǘǳǊŜ ŦƻǊ tǊƻƎǊŀƳƳŜǊǎ ±ƻƭǳƳŜ LLπ.Υ ¢ƘŜ ƳƛŎǊƻaLt{онϰ LƴǎǘǊǳŎǘƛƻƴ {ŜǘΣ wŜǾƛǎƛƻƴ рΦлп

3 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 4

5 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Table of Contents

Chapter 1: About This Book .. 18
1.1: Typographical Conventions ... 18

1.1.1: Italic Text.. 19
1.1.2: Bold Text .. 19
1.1.3: Courier Text ... 19

1.2: UNPREDICTABLE and UNDEFINED ... 19
1.2.1: UNPREDICTABLE... 19
1.2.2: UNDEFINED .. 20
1.2.3: UNSTABLE .. 20

1.3: Special Symbols in Pseudocode Notation... 20
1.4: For More Information ... 23

Chapter 2: Guide to the Instruction Set .. 24
2.1: Understanding the Instruction Fields ... 24

2.1.1: Instruction Fields .. 25
2.1.2: Instruction Descriptive Name and Mnemonic... 26
2.1.3: Format Field ... 26
2.1.4: Purpose Field ... 27
2.1.5: Description Field .. 27
2.1.6: Restrictions Field.. 27
2.1.7: Operation Field... 28
2.1.8: Exceptions Field... 28
2.1.9: Programming Notes and Implementation Notes Fields.. 29

2.2: Operation Section Notation and Functions.. 29
2.2.1: Instruction Execution Ordering... 29
2.2.2: Pseudocode Functions... 29

2.2.2.1: Coprocessor General Register Access Functions.. 29
2.2.2.2: Memory Operation Functions ... 31
2.2.2.3: Floating Point Functions ... 34
2.2.2.4: Miscellaneous Functions .. 37

2.3: Op and Function Subfield Notation.. 38
2.4: FPU Instructions .. 38

Chapter 3: Introduction .. 41
3.1: Release 3 of the MIPS Architecture .. 41
3.2: Default ISA Mode .. 42
3.3: Software Detection .. 42
3.4: Compliance and Subsetting... 42
3.5: ISA Mode Switch ... 43
3.6: Branch and Jump Offsets .. 43
3.7: Coprocessor Unusable Behavior... 44

Chapter 4: Instruction Formats ... 45
4.1: Instruction Stream Organization and Endianness ... 48

Chapter 5: microMIPS Re-encoded Instructions ... 51

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 6

5.1: 16-Bit Category.. 51
5.1.1: Frequent MIPS32 Instructions.. 51
5.1.2: Frequent MIPS32 Instruction Sequences .. 54
5.1.3: Instruction-Specific Register Specifiers and Immediate Field Encodings .. 55

5.2: 16-bit Instruction Register Set ... 56
5.3: 32-Bit Category.. 58

5.3.1: New 32-bit instructions... 58
5.4: New Instructions .. 61

ADDIUPC .. 62
ADDIUR1SP.. 64
ADDIUR2... 66
ADDIUSP .. 68
ADDIUS5... 70
ADDU16 .. 72
ANDI16.. 74
AND16... 76
B16 .. 78
BEQZ16... 80
BEQZC.. 82
BGEZALS.. 84
BLTZALS... 86
BNEZ16... 88
BNEZC .. 90
BREAK16 .. 92
JALR16.. 94
JALRS16 ... 96
JALRS ... 98
JALRS.HB ... 100
JALS.. 104
JALX.. 106
JR16 .. 108
JRADDIUSP.. 110
JRC ... 112
LBU16 ... 114
LHU16 ... 116
LI16 ... 118
LW16... 120
LWM32.. 122
LWM16.. 124
LWP... 126
LWGP.. 128
LWSP .. 130
LWXS .. 132
MFHI16.. 134
MFLO16 .. 136
MOVE16.. 138
MOVEP ... 140
NOT16... 142
OR16 ... 144
SB16.. 146
SDBBP16 .. 148
SH16 ... 150
SLL16 .. 152

7 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

SRL16 ... 154
SUBU16 .. 156
SW16... 158
SWSP.. 160
SWM32.. 162
SWM16.. 164
SWP .. 166
XOR16... 168

5.5: Recoded 32-Bit Instructions .. 169
ABS.fmt ... 170
ADD... 172
ADD.fmt... 173
ADDI.. 175
ADDIU ... 176
ADDU .. 177
ALNV.PS ... 178
AND... 181
ANDI.. 182
B.. 183
BLEZ ... 184
BAL.. 186
BC1F ... 188
BC1T ... 190
BC2F ... 192
BC2T ... 194
BEQ... 196
BGEZ... 197
BGEZAL .. 198
BGTZ... 199
BLTZ.. 201
BLTZAL ... 202
BNE... 203
BREAK .. 204
C.cond.fmt ... 205
CACHE.. 211
CACHEE ... 218
CEIL.L.fmt ... 225
CEIL.W.fmt .. 227
CFC1... 229
CFC2... 231
CLO... 232
CLZ.. 233
COP2... 234
CTC1... 235
CTC2... 238
CVT.D.fmt.. 239
CVT.L.fmt .. 241
CVT.PS.S .. 243
CVT.S.fmt.. 245
CVT.S.PL .. 247
CVT.S.PU.. 249
CVT.W.fmt... 251
DERET .. 253

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 8

DI... 255
DIV .. 257
DIV.fmt .. 259
DIVU.. 260
EHB... 261
EI ... 263
ERET... 265
ERETNC.. 266
EXT ... 268
FLOOR.L.fmt ... 270
FLOOR.W.fmt.. 272
INS .. 274
J... 277
JAL .. 278
JALR.. 280
JALR.HB.. 282
JR.. 286
JR.HB.. 288
LB.. 291
LBE.. 292
LBU ... 294
LBUE... 296
LDC1 ... 298
LDC2 ... 299
LH.. 300
LHE ... 302
LHU ... 304
LHUE... 306
LL .. 308
LLE.. 310
LUI... 312
LUXC1... 313
LW... 315
LWE... 316
LWC1 .. 318
LWC2 .. 319
LWL... 320
LWLE... 322
LWR .. 324
LWRE.. 326
LWU .. 328
LWXC1.. 330
MADD.. 332
MADD.fmt.. 333
MADDU ... 335
MFC0... 336
MFC1... 337
MFC2... 338
MTHC0.. 340
MFHC1.. 341
MFHC2.. 342
MFHI.. 343
MFLO .. 344

9 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

MOV.fmt .. 345
MOVF.. 347
MOVF.fmt .. 348
MOVN.. 350
MOVN.fmt.. 351
MOVT.. 353
MOVT.fmt .. 354
MOVZ.. 356
MOVZ.fmt .. 357
MSUB.. 359
MSUB.fmt .. 360
MSUBU ... 362
MTC0... 363
MTC1... 365
MTC2... 367
MTHC1.. 368
MTHC2.. 369
MTHI.. 371
MTLO .. 372
MUL... 373
MUL.fmt... 375
MULT... 377
MULTU.. 379
NEG.fmt... 381
NMADD.fmt ... 383
NMSUB.fmt ... 385
NOP... 387
NOR .. 388
OR... 389
ORI .. 390
PAUSE .. 392
PLL.PS .. 394
PLU.PS.. 395
PREF... 396
PREFE .. 400
PREFX .. 403
PUL.PS.. 405
PUU.PS... 406
RDHWR... 407
RDPGPR... 410
RECIP.fmt ... 411
ROTR .. 413
ROTRV.. 414
ROUND.L.fmt .. 415
ROUND.W.fmt... 417
RSQRT.fmt.. 419
SB.. 421
SBE ... 422
SC ... 424
SCE... 428
SDBBP .. 431
SDC1... 432
SDC2... 433

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 10

SEB ... 434
SEH... 436
SH ... 438
SHE... 440
SLL .. 442
SLLV.. 443
SLT.. 444
SLTI... 445
SLTIU .. 446
SLTU ... 447
SQRT.fmt .. 448
SRA... 450
SRAV... 451
SRL ... 452
SRLV... 453
SSNOP.. 454
SUB... 455
SUB.fmt ... 456
SUBU .. 458
SUXC1 .. 459
SW... 460
SWC1.. 461
SWC2.. 462
SWE .. 464
SWL... 466
SWLE .. 468
SWR.. 471
SWRE.. 474
SWXC1.. 477
SYNC .. 479
SYNCI ... 485
SYSCALL .. 488
TEQ... 489
TEQI .. 490
TGE... 491
TGEI .. 492
TGEIU ... 493
TGEU .. 494
TLBP ... 496
TLBR ... 498
TLBWI ... 500
TLBWR.. 502
TLT .. 504
TLTI ... 505
TLTIU .. 506
TLTU ... 507
TNE ... 508
TNEI .. 509
TRUNC.L.fmt... 510
TRUNC.W.fmt ... 512
WAIT ... 514
WRPGPR .. 516
WSBH.. 517

11 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

XOR... 519
XORI.. 520

Chapter 6: Opcode Map ... 521
6.1: Major Opcodes .. 521
6.2: Minor Opcodes .. 523
6.3: Floating Point Unit Instruction Format Encodings ... 531

Chapter 7: Compatibility .. 533
7.1: Assembly-Level Compatibility.. 533
7.2: ABI Compatibility ... 534
7.3: Branch and Jump Offsets .. 535
7.4: Relocation Types... 535
7.5: Boot-up Code shared between microMIPS32 and MIPS32 .. 535
7.6: Coprocessor Unusable Behavior... 536
7.7: Other Issues Affecting Software and Compatibility ... 536

Appendix 8: References... 537

Appendix 9: Revision History.. 539

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 12

13 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

List of Tables

Table 1.1: Symbols Used in Instruction Operation Statements... 20
Table 2.1: AccessLength Specifications for Loads/Stores.. 33
Table 4.1: microMIPS Opcode Formats.. 48
Table 5.1: 16-Bit Re-encoding of Frequent MIPS32 Instructions.. 52
Table 5.2: 16-Bit Re-encoding of Frequent MIPS32 Instruction Sequences... 54
Table 5.3: Instruction-Specific Register Specifiers and Immediate Field Values ... 55
Table 5.4: 16-Bit Instruction General-Purpose Registers - $2-$7, $16, $17 ... 56
Table 5.5: SB16, SH16, SW16 Source Registers - $0, $2-$7, $17... 57
Table 5.6: 16-Bit Instruction Implicit General-Purpose Registers ... 58
Table 5.7: 16-Bit Instruction Special-Purpose Registers... 58
Table 5.8: 32-bit Instructions introduced within microMIPS .. 58
Table 5.9: Encoded and Decoded Values of the Immediate Field .. 66
Table 5.10: Encoded and Decoded Values of Immediate Field .. 68
Table 5-1: Encoded and Decoded Values of Signed Immediate Field.. 70
Table 5-2: Encoded and Decoded Values of Immediate Field.. 74
Table 5.11: Offset Field Encoding Range -1, 0..14... 114
Table 5.12: LI16 -1, 0..126 Immediate Field Encoding Range.. 118
Table 5.13: Encoded and Decoded Values of the Enc_Dest Field ... 140
Table 5.14: Encoded and Decoded Values of the Enc_rs and Enc_rt Fields ... 140
Table 5.15: Shift Amount Field Encoding.. 152
Table 5.16: Shift Amount Field Encoding.. 154
Table 5.17: FPU Comparisons Without Special Operand Exceptions .. 207
Table 5.18: FPU Comparisons With Special Operand Exceptions for QNaNs ... 208
Table 5.19: Usage of Effective Address.. 211
Table 5.20: Encoding of Bits[17:16] of CACHE Instruction... 212
Table 5.21: Encoding of Bits [20:18] of the CACHE Instruction.. 213
Table 5.22: Usage of Effective Address.. 218
Table 5.23: Encoding of Bits[22:21] of CACHEE Instruction... 219
Table 5.24: Encoding of Bits [20:18] of the CACHEE Instruction.. 220
Table 5.25: Values of hint Field for PREF Instruction ... 396
Table 5.26: Values of hint Field for PREFE Instruction... 401
Table 5.27: RDHWR Register Numbers ... 407
Table 5.28: Encodings of the Bits[10:6] of the SYNC instruction; the SType Field... 481
Table 6.1: Symbols Used in the Instruction Encoding Tables... 522
Table 6.2: microMIPS32 Encoding of Major Opcode Field ... 523
Table 6.3: Legend for Minor Opcode Tables .. 524
Table 6.4: POOL32A Encoding of Minor Opcode Field .. 524
Table 6.5: POOL32Axf Encoding of Minor Opcode Extension Field... 525
Table 6.6: POOL32F Encoding of Minor Opcode Field... 526
Table 6.7: POOL32Fxf Encoding of Minor Opcode Extension Field ... 527
Table 6.8: POOL32B Encoding of Minor Opcode Field .. 527
Table 6.9: POOL32C Encoding of Minor Opcode Field .. 528
Table 6.10: LD-EVA Encoding of Minor Opcode Field.. 528
Table 6.11: ST-EVA Encoding of Minor Opcode Field.. 528
Table 6.12: POOL32I Encoding of Minor Opcode Field.. 529
Table 6.13: POOL16A Encoding of Minor Opcode Field .. 529
Table 6.14: POOL16B Encoding of Minor Opcode Field .. 529

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 14

Table 6.15: POOL16C Encoding of Minor Opcode Field .. 530
Table 6.16: POOL16D Encoding of Minor Opcode Field .. 530
Table 6.17: POOL16E Encoding of Minor Opcode Field .. 530
Table 6.18: POOL16F Encoding of Minor Opcode Field... 531
Table 6.19: Floating Point Unit Format Encodings - S, D, PS... 531
Table 6.20: Floating Point Unit Format Encodings - S, D 1-bit ... 531
Table 6.21: Floating Point Unit Instruction Format Encodings - S, D 2-bits .. 532
Table 6.22: Floating Point Unit Format Encodings - S, W, L... 532
Table 6.23: Floating Point Unit Format Encodings - D, W, L .. 532

15 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 16

List of Figures

Figure 2.1: Example of Instruction Description ... 25
Figure 2.2: Example of Instruction Fields.. 26
Figure 2.3: Example of Instruction Descriptive Name and Mnemonic .. 26
Figure 2.4: Example of Instruction Format .. 26
Figure 2.5: Example of Instruction Purpose.. 27
Figure 2.6: Example of Instruction Description ... 27
Figure 2.7: Example of Instruction Restrictions... 28
Figure 2.8: Example of Instruction Operation.. 28
Figure 2.9: Example of Instruction Exception.. 28
Figure 2.10: Example of Instruction Programming Notes ... 29
Figure 2.11: COP_LW Pseudocode Function... 30
Figure 2.12: COP_LD Pseudocode Function.. 30
Figure 2.13: COP_SW Pseudocode Function... 30
Figure 2.14: COP_SD Pseudocode Function ... 31
Figure 2.15: CoprocessorOperation Pseudocode Function.. 31
Figure 2.16: AddressTranslation Pseudocode Function ... 31
Figure 2.17: LoadMemory Pseudocode Function ... 32
Figure 2.18: StoreMemory Pseudocode Function... 32
Figure 2.19: Prefetch Pseudocode Function... 33
Figure 2.20: SyncOperation Pseudocode Function .. 34
Figure 2.21: ValueFPR Pseudocode Function.. 34
Figure 2.22: StoreFPR Pseudocode Function .. 35
Figure 2.23: CheckFPException Pseudocode Function.. 36
Figure 2.24: FPConditionCode Pseudocode Function.. 36
Figure 2.25: SetFPConditionCode Pseudocode Function .. 36
Figure 2.26: SignalException Pseudocode Function .. 37
Figure 2.27: SignalDebugBreakpointException Pseudocode Function... 37
Figure 2.28: SignalDebugModeBreakpointException Pseudocode Function.. 37
Figure 2.29: NullifyCurrentInstruction PseudoCode Function ... 38
Figure 2.30: JumpDelaySlot Pseudocode Function.. 38
Figure 2.31: PolyMult Pseudocode Function .. 38
Figure 4.1: 16-Bit Instruction Formats... 46
Figure 4.2: 32-Bit Instruction Formats... 47
Figure 4.3: Immediate Fields within 32-Bit Instructions... 47
Figure 5.1: Example of an ALNV.PS Operation.. 178
Figure 5.2: Usage of Address Fields to Select Index and Way... 211
Figure 5.3: Usage of Address Fields to Select Index and Way... 218
Figure 5.4: Operation of the EXT Instruction .. 268
Figure 5.5: Operation of the INS Instruction ... 274
Figure 5.6: Unaligned Word Load Using LWL and LWR... 320
Figure 5.7: Bytes Loaded by LWL Instruction ... 321
Figure 5.8: Unaligned Word Load Using LWLE and LWRE.. 322
Figure 5.9: Bytes Loaded by LWLE Instruction... 323
Figure 5.10: Unaligned Word Load Using LWL and LWR... 324
Figure 5.11: Bytes Loaded by LWR Instruction... 325
Figure 5.12: Unaligned Word Load Using LWLE and LWRE.. 326
Figure 5.13: Bytes Loaded by LWRE Instruction .. 327

17 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Figure 5.14: Unaligned Word Store Using SWL and SWR ... 466
Figure 5.15: Bytes Stored by an SWL Instruction ... 467
Figure 5.16: Unaligned Word Store Using SWLE and SWRE .. 468
Figure 5.17: Bytes Stored by an SWLE Instruction... 469
Figure 5.18: Unaligned Word Store Using SWR and SWL ... 471
Figure 5.19: Bytes Stored by SWR Instruction.. 472
Figure 5.20: Unaligned Word Store Using SWRE and SWLE .. 474
Figure 5.21: Bytes Stored by SWRE Instruction ... 475
Figure 6.1: Sample Bit Encoding Table .. 521

Chapter 1

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 18

About This Book

The MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set comes as part of a
multi-volume set.

• Volume I-A describes conventions used throughout the document set, and provides an introduction to the
MIPS32® Architecture

• Volume I-B describes conventions used throughout the document set, and provides an introduction to the
microMIPS32™ Architecture

• Volume II-A provides detailed descriptions of each instruction in the MIPS32® instruction set

• Volume II-B provides detailed descriptions of each instruction in the microMIPS32™ instruction set

• Volume III describes the MIPS32® and microMIPS32™ Privileged Resource Architecture which defines and
governs the behavior of the privileged resources included in a MIPS® processor implementation

• Volume IV-a describes the MIPS16e™ Application-Specific Extension to the MIPS32® Architecture. Beginning
with Release 3 of the Architecture, microMIPS is the preferred solution for smaller code size.

• Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS64® Architecture and
microMIPS64™. It is not applicable to the MIPS32® document set nor the microMIPS32™ document set. With
Release 5 of the Architecture, MDMX is deprecated. MDMX and MSA can not be implemented at the same
time.

• Volume IV-c describes the MIPS-3D® Application-Specific Extension to the MIPS® Architecture

• Volume IV-d describes the SmartMIPS®Application-Specific Extension to the MIPS32® Architecture and the
microMIPS32™ Architecture .

• Volume IV-e describes the MIPS® DSP Module to the MIPS® Architecture

• Volume IV-f describes the MIPS® MT Module to the MIPS® Architecture

• Volume IV-h describes the MIPS® MCU Application-Specific Extension to the MIPS® Architecture

• Volume IV-i describes the MIPS® Virtualization Module to the MIPS® Architecture

• Volume IV-j describes the MIPS® SIMD Architecture Module to the MIPS® Architecture

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fonts in this book.

 About This Book

19 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

1.1.1 Italic Text

• is used for emphasis

• is used for bits, fields, registers, that are important from a software perspective (for instance, address bits used by
software, and programmable fields and registers), and various floating point instruction formats, such as S, D,
and PS

• is used for the memory access types, such as cached and uncached

1.1.2 Bold Text

• represents a term that is being defined

• is used for bits and fields that are important from a hardware perspective (for instance, register bits, which are
not programmable but accessible only to hardware)

• is used for ranges of numbers; the range is indicated by an ellipsis. For instance, 5..1 indicates numbers 5 through
1

• is used to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the
processor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions
in a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register).
Unprivileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction,
or as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause a result to be generated or not. If a result is gener-
ated, it is UNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

• Implementations of operations generating UNPREDICTABLE results must not depend on any data source
(memory or internal state) which is inaccessible in the current processor mode

• UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
is inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process

1.3 Special Symbols in Pseudocode Notation

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 20

• UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

• UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which
there is no exit other than powering down the processor). The assertion of any of the reset signals must restore
the processor to an operational state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDICTABLE values, software may depend on the fact that a sampling of an UNSTABLE value results in a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABLE values have one implementation restriction:

• Implementations of operations generating UNSTABLE results must not depend on any data source (memory or
internal state) which is inaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning

← Assignment

=, ≠ Tests for equality and inequality

|| Bit string concatenation

xy A y-bit string formed by y copies of the single-bit value x

b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the
binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the default base is 10.

0bn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).

0xn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).

xy z Selection of bits y through z of bit string x. Little-endian bit notation (rightmost bit is 0) is used. If y is less
than z, this expression is an empty (zero length) bit string.

+, − 2’s complement or floating point arithmetic: addition, subtraction

 About This Book

21 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

*, × 2’s complement or floating point multiplication (both used for either)

div 2’s complement integer division

mod 2’s complement modulo

/ Floating point division

< 2’s complement less-than comparison

> 2’s complement greater-than comparison

≤ 2’s complement less-than or equal comparison

≥ 2’s complement greater-than or equal comparison

nor Bitwise logical NOR

xor Bitwise logical XOR

and Bitwise logical AND

or Bitwise logical OR

not Bitwise inversion

&& Logical (non-Bitwise) AND

<< Logical Shift left (shift in zeros at right-hand-side)

>> Logical Shift right (shift in zeros at left-hand-side)

GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers

GPR[x] CPU general-purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR[x] is a short-hand notation for SGPR[SRSCtlCSS, x].

SGPR[s,x] In Release 2 of the Architecture and subsequent releases, multiple copies of the CPU general-purpose regis-
ters may be implemented. SGPR[s,x] refers to GPR set s, register x.

FPR[x] Floating Point operand register x

FCC[CC] Floating Point condition code CC. FCC[0] has the same value as COC[1].

FPR[x] Floating Point (Coprocessor unit 1), general register x

CPR[z,x,s] Coprocessor unit z, general register x, select s

CP2CPR[x] Coprocessor unit 2, general register x

CCR[z,x] Coprocessor unit z, control register x

CP2CCR[x] Coprocessor unit 2, control register x

COC[z] Coprocessor unit z condition signal

Xlat[x] Translation of the MIPS16e GPR number x into the corresponding 32-bit GPR number

BigEndianMem Endian mode as configured at chip reset (0 →Little-Endian, 1 → Big-Endian). Specifies the endianness of
the memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endi-
anness of Kernel and Supervisor mode execution.

BigEndianCPU The endianness for load and store instructions (0 → Little-Endian, 1 → Big-Endian). In User mode, this
endianness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be com-
puted as (BigEndianMem XOR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode only,
and is implemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRRE and User mode).

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

1.3 Special Symbols in Pseudocode Notation

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 22

LLbit Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when a linked load occurs and is tested by the conditional store. It is cleared, during other CPU operation,
when a store to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

I:,
I+n:,
I-n:

This occurs as a prefix to Operation description lines and functions as a label. It indicates the instruction
time during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a
time label of I. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections
labeled with the instruction time, relative to the current instruction I, in which the effect of that pseudocode
appears to occur. For example, an instruction may have a result that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in a section labeled I+1.
The effect of pseudocode statements for the current instruction labelled I+1 appears to occur “at the same
time” as the effect of pseudocode statements labeled I for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statements for
different instructions that occur “at the same time,” there is no defined order. Programs must not depend on a
particular order of evaluation between such sections.

PC The Program Counter value. During the instruction time of an instruction, this is the address of the instruc-
tion word. The address of the instruction that occurs during the next instruction time is determined by assign-
ing a value to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.
In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the
restart address into a GPR on a jump-and-link or branch-and-link instruction, or into a Coprocessor 0 register
on an exception. The PC value contains a full 32-bit address all of which are significant during a memory ref-
erence.

ISA Mode In processors that implement the MIPS16e Application Specific Extension or the microMIPS base architec-
tures, the ISA Mode is a single-bit register that determines in which mode the processor is executing, as fol-
lows:

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Mode into a GPR on a jump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36

physical address bits were implemented, the size of the physical address space would be 2PABITS = 236 bytes.

FP32RegistersMode Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). It is optional if the FPU has
32 64-bit FPRs in which 64-bit data types are stored in any FPR.

microMIPS64 implementations have a compatibility mode in which the processor references the FPRs as if
it were a microMIPS32 implementation. In such a case FP32RegisterMode is computed from the FR bit in
the Status register. If this bit is a 0, the processor operates as if it had 32 32-bit FPRs. If this bit is a 1, the pro-
cessor operates with 32 64-bit FPRs.
The value of FP32RegistersMode is computed from the FR bit in the Status register.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

Encoding Meaning

0 The processor is executing 32-bit MIPS instructions

1 The processor is executing MIIPS16e or microMIPS
instructions

 About This Book

23 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

1.4 For More Information

Various MIPS RISC processor manuals and additional information about MIPS products can be found at the MIPS
URL: http://www mips.com

For comments or questions on the MIPS32® Architecture or this document, send Email to support@mips.com.

InstructionInBranchDe-
laySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch
or jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the value is
false if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which
is not executed in the delay slot of a branch or jump.

SignalException(excep-
tion, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
parameter as an exception-specific argument). Control does not return from this pseudocode function—the
exception is signaled at the point of the call.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

Chapter 2

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 24

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphabetical
order in the tables at the beginning of the next chapter.

2.1 Understanding the Instruction Fields

Figure 2.1 shows an example instruction. Following the figure are descriptions of the fields listed below:

• “Instruction Fields” on page 25

• “Instruction Descriptive Name and Mnemonic” on page 26

• “Format Field” on page 26

• “Purpose Field” on page 27

• “Description Field” on page 27

• “Restrictions Field” on page 27

• “Operation Field” on page 28

• “Exceptions Field” on page 28

• “Programming Notes and Implementation Notes Fields” on page 29

 Guide to the Instruction Set

25 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Figure 2.1 Example of Instruction Description

2.1.1 Instruction Fields

EXAMPLE
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0 rt rd
0

00000
EXAMPLE

000000

6 5 5 5 5 6

Format: EXAMPLE fd,rs,rt MIPS32

Purpose: Example Instruction Name

To execute an EXAMPLE op.

Description: GPR[rd] ← GPR[r]s exampleop GPR[rt]

This section describes the operation of the instruction in text, tables, and illustrations. It
includes information that would be difficult to encode in the Operation section.

Restrictions:

This section lists any restrictions for the instruction. This can include values of the instruc-
tion encoding fields such as register specifiers, operand values, operand formats, address
alignment, instruction scheduling hazards, and type of memory access for addressed loca-
tions.

Operation:

/* This section describes the operation of an instruction in */
/* a high-level pseudo-language. It is precise in ways that */
/* the Description section is not, but is also missing */
/* information that is hard to express in pseudocode. */
temp ← GPR[rs] exampleop GPR[rt]
GPR[rd] ← temp

Exceptions:

A list of exceptions taken by the instruction

Programming Notes:

Information useful to programmers, but not necessary to describe the operation of the
instruction

Implementation Notes:

Like Programming Notes, except for processor implementors

Example Instruction Name EXAMPLEInstruction Mnemonic and
Descriptive Name

Instruction encoding
constant and variable field
names and values

Architecture level at which
instruction was defined/redefined

Assembler format(s) for each
definition

Short description

Symbolic description

Full description of
instruction operation

Restrictions on instruction
and operands

High-level language
description of instruction
operation

Exceptions that
instruction can cause

Notes for programmers

Notes for implementors

2.1 Understanding the Instruction Fields

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 26

Fields encoding the instruction word are shown in register form at the top of the instruction description. The follow-
ing rules are followed:

• The values of constant fields and the opcode names are listed in uppercase (SPECIAL and ADD in Figure 2.2).
Constant values in a field are shown in binary below the symbolic or hexadecimal value.

• All variable fields are listed with the lowercase names used in the instruction description (rs, rt, and rd in Figure
2.2).

• Fields that contain zeros but are not named are unused fields that are required to be zero (bits 10:6 in Figure 2.2).
If such fields are set to non-zero values, the operation of the processor is UNPREDICTABLE.

Figure 2.2 Example of Instruction Fields

2.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as shown in Figure
2.3.

Figure 2.3 Example of Instruction Descriptive Name and Mnemonic

2.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defined are
given in the Format field. If the instruction definition was later extended, the architecture levels at which it was
extended and the assembler formats for the extended definition are shown in their order of extension (for an example,
see C.cond fmt). The MIPS architecture levels are inclusive; higher architecture levels include all instructions in pre-
vious levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the
extended architecture.

Figure 2.4 Example of Instruction Format

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the lowercase names of the appropriate fields. The architectural level at
which the instruction was first defined, for example “MIPS32” is shown at the right side of the page.

There can be more than one assembler format for each architecture level. Floating point operations on formatted data
show an assembly format with the actual assembler mnemonic for each valid value of the fmt field. For example, the
ADD fmt instruction lists both ADD.S and ADD.D.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
ADD

100000

6 5 5 5 5 6

Add Word ADD

Format: ADD fd,rs,rt MIPS32

 Guide to the Instruction Set

27 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

The assembler format lines sometimes include parenthetical comments to help explain variations in the formats (once
again, see C.cond.fmt). These comments are not a part of the assembler format.

The term decoded_immediate is used if the immediate field is encoded within the binary format but the assembler for-
mat uses the decoded value. The term left_shifted_offset is used if the offset field is encoded within the binary format
but the assembler format uses value after the appropriate amount of left shifting.

2.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

Figure 2.5 Example of Instruction Purpose

2.1.5 Description Field

If a one-line symbolic description of the instruction is feasible, it appears immediately to the right of the Description
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operation.

Figure 2.6 Example of Instruction Description

The body of the section is a description of the operation of the instruction in text, tables, and figures. This description
complements the high-level language description in the Operation section.

This section uses acronyms for register descriptions. “GPR rt” is CPU general-purpose register specified by the
instruction field rt. “FPR fs” is the floating point operand register specified by the instruction field fs. “CP1 register
fd” is the coprocessor 1 general register specified by the instruction field fd. “FCSR” is the floating point Control /
Status register.

2.1.6 Restrictions Field

The Restrictions field documents any possible restrictions that may affect the instruction. Most restrictions fall into
one of the following six categories:

• Valid values for instruction fields (for example, see floating point ADD fmt)

• ALIGNMENT requirements for memory addresses (for example, see LW)

• Valid values of operands (for example, see ALNV.PS)

Purpose: Add Word

To add 32-bit integers. If an overflow occurs, then trap.

Description: GPR[rd] ← GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to produce a 32-bit
result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination
register is not modified and an Integer Overflow exception occurs.

• If the addition does not overflow, the 32-bit result is placed into GPR rd.

2.1 Understanding the Instruction Fields

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 28

• Valid operand formats (for example, see floating point ADD fmt)

• Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline hazards
for which some processors do not have hardware interlocks (for example, see MUL).

• Valid memory access types (for example, see LL/SC)

Figure 2.7 Example of Instruction Restrictions

2.1.7 Operation Field

The Operation field describes the operation of the instruction as pseudocode in a high-level language notation resem-
bling Pascal. This formal description complements the Description section; it is not complete in itself because many
of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Figure 2.8 Example of Instruction Operation

See 2.2 “Operation Section Notation and Functions” on page 29 for more information on the formal notation used
here.

2.1.8 Exceptions Field

The Exceptions field lists the exceptions that can be caused by Operation of the instruction. It omits exceptions that
can be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be caused by asyn-
chronous external events such as an Interrupt. Although a Bus Error exception may be caused by the operation of a
load or store instruction, this section does not list Bus Error for load and store instructions because the relationship
between load and store instructions and external error indications, like Bus Error, are dependent upon the implemen-
tation.

Figure 2.9 Example of Instruction Exception

An instruction may cause implementation-dependent exceptions that are not present in the Exceptions section.

Restrictions:

None

Operation:

temp ← (GPR[rs]31||GPR[rs]31..0) + (GPR[rt]31||GPR[rt]31..0)
if temp32 ≠ temp31 then

SignalException(IntegerOverflow)
else

GPR[rd] ← temp
endif

Exceptions:

Integer Overflow

 Guide to the Instruction Set

29 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

2.1.9 Programming Notes and Implementation Notes Fields

The Notes sections contain material that is useful for programmers and implementors, respectively, but that is not
necessary to describe the instruction and does not belong in the description sections.

Figure 2.10 Example of Instruction Programming Notes

2.2 Operation Section Notation and Functions

In an instruction description, the Operation section uses a high-level language notation to describe the operation per-
formed by each instruction. Special symbols used in the pseudocode are described in the previous chapter. Specific
pseudocode functions are described below.

This section presents information about the following topics:

• “Instruction Execution Ordering” on page 29

• “Pseudocode Functions” on page 29

2.2.1 Instruction Execution Ordering

Each of the high-level language statements in the Operations section are executed sequentially (except as constrained
by conditional and loop constructs).

2.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudocode more
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and
include the following:

• “Coprocessor General Register Access Functions” on page 29

• “Memory Operation Functions” on page 31

• “Floating Point Functions” on page 34

• “Miscellaneous Functions” on page 37

2.2.2.1 Coprocessor General Register Access Functions

Defined coprocessors, except for CP0, have instructions to exchange words and doublewords between coprocessor
general registers and the rest of the system. What a coprocessor does with a word or doubleword supplied to it and
how a coprocessor supplies a word or doubleword is defined by the coprocessor itself. This behavior is abstracted
into the functions described in this section.

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

2.2 Operation Section Notation and Functions

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 30

COP_LW

The COP_LW function defines the action taken by coprocessor z when supplied with a word from memory during a
load word operation. The action is coprocessor-specific. The typical action would be to store the contents of mem-
word in coprocessor general register rt.

Figure 2.11 COP_LW Pseudocode Function

COP_LW (z, rt, memword)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memword: A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */

endfunction COP_LW

COP_LD

The COP_LD function defines the action taken by coprocessor z when supplied with a doubleword from memory
during a load doubleword operation. The action is coprocessor-specific. The typical action would be to store the con-
tents of memdouble in coprocessor general register rt.

Figure 2.12 COP_LD Pseudocode Function

COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memdouble: 64-bit doubleword value supplied to the coprocessor.

/* Coprocessor-dependent action */

endfunction COP_LD

COP_SW

The COP_SW function defines the action taken by coprocessor z to supply a word of data during a store word opera-
tion. The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in
coprocessor general register rt.

Figure 2.13 COP_SW Pseudocode Function

dataword ← COP_SW (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
dataword: 32-bit word value

/* Coprocessor-dependent action */

endfunction COP_SW

COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store dou-
bleword operation. The action is coprocessor-specific. The typical action would be to supply the contents of the low-
order doubleword in coprocessor general register rt.

 Guide to the Instruction Set

31 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Figure 2.14 COP_SD Pseudocode Function

datadouble ← COP_SD (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
datadouble: 64-bit doubleword value

/* Coprocessor-dependent action */

endfunction COP_SD

CoprocessorOperation

The CoprocessorOperation function performs the specified Coprocessor operation.

Figure 2.15 CoprocessorOperation Pseudocode Function

CoprocessorOperation (z, cop_fun)

/* z: Coprocessor unit number */
/* cop_fun: Coprocessor function from function field of instruction */

/* Transmit the cop_fun value to coprocessor z */

endfunction CoprocessorOperation

2.2.2.2 Memory Operation Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the smallest byte
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for a little-endian
ordering this is the least-significant byte.

In the Operation pseudocode for load and store operations, the following functions summarize the handling of virtual
addresses and the access of physical memory. The size of the data item to be loaded or stored is passed in the
AccessLength field. The valid constant names and values are shown in Table 2.1. The bytes within the addressed unit
of memory (word for 32-bit processors or doubleword for 64-bit processors) that are used can be determined directly
from the AccessLength and the two or three low-order bits of the address.

AddressTranslation

The AddressTranslation function translates a virtual address to a physical address and its cacheability and coherency
attribute, describing the mechanism used to resolve the memory reference.

Given the virtual address vAddr, and whether the reference is to Instructions or Data (IorD), find the corresponding
physical address (pAddr) and the cacheability and coherency attribute (CCA) used to resolve the reference. If the vir-
tual address is in one of the unmapped address spaces, the physical address and CCA are determined directly by the
virtual address. If the virtual address is in one of the mapped address spaces then the TLB or fixed mapping MMU
determines the physical address and access type; if the required translation is not present in the TLB or the desired
access is not permitted, the function fails and an exception is taken.

Figure 2.16 AddressTranslation Pseudocode Function

(pAddr, CCA) ← AddressTranslation (vAddr, IorD, LorS)

/* pAddr: physical address */
/* CCA: Cacheability&Coherency Attribute,the method used to access caches*/

2.2 Operation Section Notation and Functions

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 32

/* and memory and resolve the reference */

/* vAddr: virtual address */
/* IorD: Indicates whether access is for INSTRUCTION or DATA */
/* LorS: Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

LoadMemory

The LoadMemory function loads a value from memory.

This action uses cache and main memory as specified in both the Cacheability and Coherency Attribute (CCA) and
the access (IorD) to find the contents of AccessLength memory bytes, starting at physical location pAddr. The data is
returned in a fixed-width naturally aligned memory element (MemElem). The low-order 2 (or 3) bits of the address
and the AccessLength indicate which of the bytes within MemElem need to be passed to the processor. If the memory
access type of the reference is uncached, only the referenced bytes are read from memory and marked as valid within
the memory element. If the access type is cached but the data is not present in cache, an implementation-specific size
and alignment block of memory is read and loaded into the cache to satisfy a load reference. At a minimum, this
block is the entire memory element.

Figure 2.17 LoadMemory Pseudocode Function

MemElem ← LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a natural alignment. The */
/* width is the same size as the CPU general-purpose register, */
/* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */
/* respectively. */
/* CCA: Cacheability&CoherencyAttribute=method used to access caches */
/* and memory and resolve the reference */

/* AccessLength: Length, in bytes, of access */
/* pAddr: physical address */
/* vAddr: virtual address */
/* IorD: Indicates whether access is for Instructions or Data */

endfunction LoadMemory

StoreMemory

The StoreMemory function stores a value to memory.

The specified data is stored into the physical location pAddr using the memory hierarchy (data caches and main mem-
ory) as specified by the Cacheability and Coherency Attribute (CCA). The MemElem contains the data for an aligned,
fixed-width memory element (a word for 32-bit processors, a doubleword for 64-bit processors), though only the
bytes that are actually stored to memory need be valid. The low-order two (or three) bits of pAddr and the AccessLen-
gth field indicate which of the bytes within the MemElem data should be stored; only these bytes in memory will
actually be changed.

Figure 2.18 StoreMemory Pseudocode Function

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

 Guide to the Instruction Set

33 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */
/* AccessLength: Length, in bytes, of access */
/* MemElem: Data in the width and alignment of a memory element. */
/* The width is the same size as the CPU general */
/* purpose register, either 4 or 8 bytes, */
/* aligned on a 4- or 8-byte boundary. For a */
/* partial-memory-element store, only the bytes that will be*/
/* stored must be valid.*/
/* pAddr: physical address */
/* vAddr: virtual address */

endfunction StoreMemory

Prefetch

The Prefetch function prefetches data from memory.

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may
increase performance but must not change the meaning of the program or alter architecturally visible state.

Figure 2.19 Prefetch Pseudocode Function

Prefetch (CCA, pAddr, vAddr, DATA, hint)

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */
/* pAddr: physical address */
/* vAddr: virtual address */
/* DATA: Indicates that access is for DATA */
/* hint: hint that indicates the possible use of the data */

endfunction Prefetch

Table 2.1 lists the data access lengths and their labels for loads and stores.

SyncOperation

The SyncOperation function orders loads and stores to synchronize shared memory.

Table 2.1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning

DOUBLEWORD 7 8 bytes (64 bits)

SEPTIBYTE 6 7 bytes (56 bits)

SEXTIBYTE 5 6 bytes (48 bits)

QUINTIBYTE 4 5 bytes (40 bits)

WORD 3 4 bytes (32 bits)

TRIPLEBYTE 2 3 bytes (24 bits)

HALFWORD 1 2 bytes (16 bits)

BYTE 0 1 byte (8 bits)

2.2 Operation Section Notation and Functions

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 34

This action makes the effects of the synchronizable loads and stores indicated by stype occur in the same order for all
processors.

Figure 2.20 SyncOperation Pseudocode Function

SyncOperation(stype)

/* stype: Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

2.2.2.3 Floating Point Functions

The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are inter-
preted to form a formatted value. If an FPR contains a value in some format, rather than unformatted contents from a
load (uninterpreted), it is valid to interpret the value in that format (but not to interpret it in a different format).

ValueFPR

The ValueFPR function returns a formatted value from the floating point registers.

Figure 2.21 ValueFPR Pseudocode Function

value ← ValueFPR(fpr, fmt)

/* value: The formattted value from the FPR */

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */
/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */
/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in SWC1 and SDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:

valueFPR ← FPR[fpr]

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)

if (fpr0 ≠ 0) then
valueFPR ← UNPREDICTABLE

else
valueFPR ← FPR[fpr+1]31..0 || FPR[fpr]31..0

endif
else

valueFPR ← FPR[fpr]
endif

L, PS:
if (FP32RegistersMode = 0) then

valueFPR ← UNPREDICTABLE

 Guide to the Instruction Set

35 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

else
valueFPR ← FPR[fpr]

endif

DEFAULT:
valueFPR ← UNPREDICTABLE

endcase
endfunction ValueFPR

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored into CP1
registers by a computational or move operation. This binary representation is visible to store or move-from instruc-
tions. Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a
different format.

StoreFPR

Figure 2.22 StoreFPR Pseudocode Function

StoreFPR (fpr, fmt, value)

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */
/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */
/* value: The formattted value to be stored into the FPR */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in LWC1 and LDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:

FPR[fpr] ← value

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)

if (fpr0 ≠ 0) then
UNPREDICTABLE

else
FPR[fpr] ← UNPREDICTABLE32 || value31..0
FPR[fpr+1] ← UNPREDICTABLE32 || value63..32

endif
else

FPR[fpr] ← value
endif

L, PS:
if (FP32RegistersMode = 0) then

UNPREDICTABLE
else

FPR[fpr] ← value
endif

endcase

2.2 Operation Section Notation and Functions

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 36

endfunction StoreFPR

The pseudocode shown below checks for an enabled floating point exception and conditionally signals the exception.

CheckFPException

Figure 2.23 CheckFPException Pseudocode Function

CheckFPException()

/* A floating point exception is signaled if the E bit of the Cause field is a 1 */
/* (Unimplemented Operations have no enable) or if any bit in the Cause field */
/* and the corresponding bit in the Enable field are both 1 */

if ((FCSR17 = 1) or
((FCSR16..12 and FCSR11..7) ≠ 0))) then

SignalException(FloatingPointException)
endif

endfunction CheckFPException

FPConditionCode

The FPConditionCode function returns the value of a specific floating point condition code.

Figure 2.24 FPConditionCode Pseudocode Function

tf ←FPConditionCode(cc)

/* tf: The value of the specified condition code */

/* cc: The Condition code number in the range 0..7 */

if cc = 0 then
FPConditionCode ← FCSR23

else
FPConditionCode ← FCSR24+cc

endif

endfunction FPConditionCode

SetFPConditionCode

The SetFPConditionCode function writes a new value to a specific floating point condition code.

Figure 2.25 SetFPConditionCode Pseudocode Function

SetFPConditionCode(cc, tf)
if cc = 0 then

FCSR ← FCSR31..24 || tf || FCSR22..0
else

FCSR ← FCSR31..25+cc || tf || FCSR23+cc..0
endif

endfunction SetFPConditionCode

 Guide to the Instruction Set

37 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

2.2.2.4 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

SignalException

The SignalException function signals an exception condition.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.26 SignalException Pseudocode Function

SignalException(Exception, argument)

/* Exception: The exception condition that exists. */
/* argument: A exception-dependent argument, if any */

endfunction SignalException

SignalDebugBreakpointException

The SignalDebugBreakpointException function signals a condition that causes entry into Debug Mode from non-
Debug Mode.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.27 SignalDebugBreakpointException Pseudocode Function

SignalDebugBreakpointException()

endfunction SignalDebugBreakpointException

SignalDebugModeBreakpointException

The SignalDebugModeBreakpointException function signals a condition that causes entry into Debug Mode from
Debug Mode (i.e., an exception generated while already running in Debug Mode).

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.28 SignalDebugModeBreakpointException Pseudocode Function

SignalDebugModeBreakpointException()

endfunction SignalDebugModeBreakpointException

NullifyCurrentInstruction

The NullifyCurrentInstruction function nullifies the current instruction.

The instruction is aborted, inhibiting not only the functional effect of the instruction, but also inhibiting all exceptions
detected during fetch, decode, or execution of the instruction in question. For branch-likely instructions, nullification
kills the instruction in the delay slot of the branch likely instruction.

2.3 Op and Function Subfield Notation

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 38

Figure 2.29 NullifyCurrentInstruction PseudoCode Function

NullifyCurrentInstruction()

endfunction NullifyCurrentInstruction

JumpDelaySlot

The JumpDelaySlot function is used in the pseudocode for the PC-relative instructions in the MIPS16e ASE. The
function returns TRUE if the instruction at vAddr is executed in a jump delay slot. A jump delay slot always immedi-
ately follows a JR, JAL, JALR, or JALX instruction.

Figure 2.30 JumpDelaySlot Pseudocode Function

JumpDelaySlot(vAddr)

/* vAddr:Virtual address */

endfunction JumpDelaySlot

PolyMult

The PolyMult function multiplies two binary polynomial coefficients.

Figure 2.31 PolyMult Pseudocode Function

PolyMult(x, y)
temp ← 0
for i in 0 .. 31

if xi = 1 then
temp ← temp xor (y(31-i)..0 || 0

i)
endif

endfor

PolyMult ← temp

endfunction PolyMult

2.3 Op and Function Subfield Notation

In some instructions, the instruction subfields op and function can have constant 5- or 6-bit values. When reference is
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction,
op=COP1 and function=ADD. In other cases, a single field has both fixed and variable subfields, so the name con-
tains both upper- and lowercase characters.

2.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfields in an instruction format (such as fs, ft, imme-
diate, and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown in upper-
case.

For the sake of clarity, an alias is sometimes used for a variable subfield in the formats of specific instructions. For
example, rs=base in the format for load and store instructions. Such an alias is always lowercase since it refers to a
variable subfield.

 Guide to the Instruction Set

39 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Bit encodings for mnemonics are given in Volume I, in the chapters describing the CPU, FPU, MDMX, and MIPS16e
instructions.

See “Op and Function Subfield Notation” on page 38 for a description of the op and function subfields.

2.4 FPU Instructions

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 40

Chapter 3

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 41

Introduction

In today’s market, the lowest price/performance points must be satisfied, especially for deeply-embedded applica-
tions such as microcontroller applications. Moreover, customers require efficient solutions that can be turned into
products quickly. To meet this need, the MIPS® instruction set has been optimized and re-encoded into a new vari-
able- length scheme. This solution is called microMIPSTM.

microMIPS minimizes the resulting code footprint of applications and it therefore reduces the cost of memory, which
is particularly high for embedded memory. Simultaneously, the high performance of MIPS cores is maintainedUsing
this technology, the customer can generate best results without spending time to profile its application. The smaller
code footprint typically leads to reduced power consumption per executed task because of the smaller number of
memory accesses.

microMIPS is the preferred replacement for the existing MIPS16eTM ASE. MIPS16e could only be used for user
mode programs which did not use floating-point nor any of the Application Specific Extensions (ASEs). microMIPS
does not have these limitations - it can be used for kernel mode code as well as user mode programs; it can be used for
programs which use floating-point; it can be used with the available ASEs.

microMIPS is also an alternative to the MIPS32® instruction encoding and can be implemented in parallel or stand-
alone. The microMIPS equivalent of MIPS32 is named microMIPS32TM and the microMIPS equivalent of MIPS64 is
microMIPS64TM.

Overview of changes vs. existing MIPS32 ISA:

• 16-bit and 32-bit opcodes

• Optimized opcode/operand field definitions based on statistics

• Branch and jump delay slots will be kept for maximum compatibility and lowest risk

• Removal of branch likely instructions, emulation by assembler

• Fine-tuned register allocation algorithm in the compiler for lowest code size

3.1 Release 3 of the MIPS Architecture

Enhancements included in Release 3 of the MIPS Architecture (also known as MIPSr3TM) are:

• microMIPS: The MIPS Release 3 Architecture (also known as MIPSr3TM) supports both the MIPS32 instruction
set and microMIPS32TM instruction set. Both can be implemented either in parallel or stand-alone. For the first
implementations, microMIPS will be primarily implemented together with MIPS32 encoded instruction execu-
tion.

• microMIPS is the preferred replacement for MIPS16e. Therefore these two schemes never co-exist within the
same processor core.

3.2 Default ISA Mode

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 42

• Branch likely instructions are phased out in microMIPS and are emulated by the assembler. They remain avail-
able in the MIPS32 encoding.

Unless otherwise described in this document, all other aspects of the microMIPS32 architecture are identical to
MIPS32 Release 2.

3.2 Default ISA Mode

The instruction sets which are available within an implementation are reported by the Config3ISA register field (bits
15:14). Config1CA (bit 2) is not used for microMIPS32.

For implementations that support both microMIPS32 and MIPS32, the selected ISA mode following reset is deter-
mined by the setting of the Config3ISA register field., which is a read-only field set by a hardware signal external to the
processor core.

For implementations that support both microMIPS32 and MIPS32, the selected ISA mode upon handling an excep-
tion is determined by the setting of the Config3ISAOnExc register field (bit 16). The Config3ISAOnExc register field is
writeable by software and has a reset value that is set by a hardware signal external to the processor core. This register
field allows privileged software to change the ISA mode to be used for subsequent exceptions. This capability is for
all exception types whose vectors are offsets of the EBASE register.

For implementations that support both microMIPS32 and MIPS32, the selected ISA mode when handling a debug
exception is determined by the setting of the ISAonDebug register field in the EJTAG TAP Control register. This reg-
ister field is writeable by EJTAG probe software and has a reset value that is set by a hardware signal external to the
processor core.

For CPU cores supporting the MT ASE and multiple VPEs, the ISA mode for exceptions can be selected on a per-
VPE basis.

3.3 Software Detection

Software can determine if microMIPS32 ISA is implemented by checking the state of the ISA (Instruction Set Archi-
tecture) field in the Config3 CP0 register. Config1CA (bit 2) is not used for microMIPS32.

Software can determine if the MIPS32 ISA is implemented by checking the state of the ISA (Instruction Set Architec-
ture) register field in the Config3 CP0 register.

Software can determine which ISA is used when handling an exception by checking the state of the ISAOnExc (ISA
on Exception) field in the Config3 CP0 register.

Debug Probe Software can determine which ISA is used when handling a debug exception by checking the state of
the ISAOnDebug field in the EJTAG TAP Control register.

3.4 Compliance and Subsetting

This document does not change the instruction subsets as defined by the other MIPS architecture reference manuals,
including the subsets defined by the various ASEs.

 Introduction

43 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

3.5 ISA Mode Switch

The MIPS Release 3 architecture defines an ISA mode for each processor. An ISA mode value of 0 indicates MIPS32
instruction decoding. In processors implementing microMIPS32, an ISA mode value of 1 selects microMIPS32
instruction decoding. In processors implementing the MIPS16e ASE, an ISA mode value of 1 selects the decoding of
instructions as MIPS16e.

The ISA mode is not directly visible to user mode software. Upon an exception, the ISA mode of the faulting/inter-
rupted instruction is recorded in the least-significant address bit within the appropriate return address register - either
EPC or ErrorEPC or DebugEPC, depending on the exception type.

For the rest of this section, the following definitions are used:

Jump-and-Link-Register instructions: For the MIPS32 ISA, this means the JALR and JALR.HB instructions. For the
microMIPS32 ISA, this means the JALR, JALR.HB, JALR16, JALRS, JALRS16 and JALRS.HB instructions.

Jump-Register instructions: For the MIPS32 ISA, this means the JR and JR.HB instructions. For the microMIPS32
ISA, this means the instructions JR, JR.HB, JR16, JRC and JRADDIUSP instructions.

Mode switching between MIPS32 and microMIPS32 uses the same mechanism used by MIPS16e, namely, the JALX,
Jump-and-Link-Register and Jump-Register instructions, as described below.

• The JALX instruction executes a JAL and switches to the other mode.

• The Jump-and-Link-Register and Jump-Register instructions interpret bit 0 of the source registers as the target
ISA mode (0=MIPS32, 1=microMIPS32) and therefore set the ISA Mode bit according to the contents of bit 0 of
the source register. For the actual jump operation, the PC is loaded with the value of the source register with bit 0
set to 0. The Jump-and-Link-Register instructions save the ISA mode into bit 0 of the destination register.

• When exceptions or interrupts occur and the processor writes to EPC, DEPC, or ErrorEPC, the ISA Mode bit is
saved into bit 0 of these registers. Then the ISA Mode bit is set according to the Config3ISA register field. On
return from an exception, the processor loads the ISA Mode bit based on the value from either EPC, DEPC, or
ErrorEPC.

If only one ISA mode exists (either MIPS32 or microMIPS32) then this mode switch mechanism does not exist, but
the ISA Mode bit is still maintained and has a fixed value (0=MIPS32, 1=microMIPS32). This is to maintain code
compatibility between devices which implement both ISA modes and devices which implement only one ISA mode.
Executing the JALX instruction will cause a Reserved Instruction exception. Jump-Register and Jump-and-Link-Reg-
ister instructions cause an Address exception on the target instruction fetch when bit 0 of the source register is differ-
ent from the fixed ISA mode. Exception handlers must use the instruction set binary format supported by the
processor. The Jump-and-Link-Register instructions must still save the fixed ISA mode into bit 0 of the destination
register.

3.6 Branch and Jump Offsets

In the MIPS32 architecture, because instructions are always 32 bits in size, the jump and branch target addresses are
word (32-bit) aligned. Jump/branch offset fields are shifted left by two bits to create a word-aligned effective address.

3.7 Coprocessor Unusable Behavior

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 44

In the microMIPS32 architecture, because instructions can be either 16 or 32 bits in size, the jump and branch target
addresses are halfword (16-bit) aligned. Branch/jump offset fields are shifted left by only one bit to create halfword-
aligned effective addresses.

To maintain the existing MIPS32 ABIs, link unit/object file entry points are restricted to 32-bit word alignments. In
the future, a microMIPS32-only ABI can be created to remove this restriction.

3.7 Coprocessor Unusable Behavior

If an instruction associated with a non-implemented coprocessor is executed, it is implementation specific whether a
processor executing in microMIPS32 mode raises an RI exception or a coprocessor unusable exception. This behav-
ior is different from the MIPS32 behavior in which coprocessor unusable exception is signalled for such cases.

If the microMIPS32 implementation chooses to use RI exception in such cases, the microMIPS32 RI exception han-
dler must check for coprocessor instructions being executed while the associated coprocessor is implemented but has
been disabled (StatusCUx set to zero).

Chapter 4

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 45

Instruction Formats

This chapter defines the formats of microMIPS instructions. The microMIPS variable-length encoding comprises 16-
bit and 32-bit wide instructions. The 6-bit major opcode is left-aligned within the instruction encoding. Instructions
can have 0 to 4 register fields. For 32-bit instructions, the register field width is 5 bits, while for most 16-bit instruc-
tions, the register field width is 3 bits, utilizing instruction-specific register encoding. All 5-bit register fields are
located at a constant position within the instruction encoding.

The immediate field is right-aligned in the following instructions:

• some 16-bit instructions with 3-bit register fields

• 32-bit instructions with 16-bit or 26-bit immediate field

The name ‘immediate field’ as used here includes the address offset field for branches and load/store instructions as
well as the jump target field.

Other instruction-specific fields are typically located between the immediate and minor opcode fields. Instructions
that have multiple “other” fields are listed in alphabetical order according to the name of the field, with the first name
of the order located at the lower bit position. An empty bit field that is not explicitly shown in the instruction format
is located next to the minor opcode field.

Figure 4.1 and Figure 4.2 show the 16-bit and 32-bit instruction formats.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 46

Figure 4.1 16-Bit Instruction Formats

15 10 9 0

S3R0 Major Opcode Minor Opc/Imm

15 10 9 7 6 0

S3R1I7 Major Opcode rs1/d Minor Opc/Imm

15 10 9 6 5 3 2 0

S3R2I0 Major Opcode Minor Opc rs2/d rs1

15 10 9 7 6 4 3 1 0

S3R2I3 Major Opcode rs2/d rs1 Imm M

15 10 9 7 6 4 3 0

S3R2I4 Major Opcode rs2/d rs1 MInor Opc/Imm

15 10 9 7 6 4 3 1 0

S3R3I0 Major Opcode rd rs2 rs1 M

15 10 9 5 4 0

S5R1I0 Major Opcode Minor opc rs1/d

15 10 9 5 4 0

S5R1I5 Major Opcode rd Minor Opc/Imm

15 10 9 5 4 0

S5R2I0 Major Opcode rd rs1

 Instruction Formats

47 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Figure 4.2 32-Bit Instruction Formats

Figure 4.3 Immediate Fields within 32-Bit Instructions

31 26 25 0

R0 Major Opcode Immediate/Minor Opcode/Other

31 26 25 21 20 16 15 0

R1 Major Opcode Imm/Other rs/fs/base Immediate/Minor Opcode/Other

31 26 25 21 20 16 15 0

R2 Major Opcode rt/ft/index rs/fs/base Immediate/Minor Opcode/Other

31 26 25 21 20 16 15 11 10 0

R3 Major Opcode rt/ft/index rs/fs/base rd/fd Immediate/Minor Opcode/Other

31 26 25 21 20 16 15 11 10 6 5 0

R4 Major Opcode rt/ft rs/fs rd/fd rr/fr Minor Opcode/Other

32-bit instruction formats with 26-bit immediate fields:

31 26 25 0

R0I26 Major Opcode Immediate

31 26 25 16 15 0

R0I16 Major Opcode Minor Opcode/Other Immediate

32-bit instruction formats with 16-bit immediate fields:

31 26 25 21 20 16 15 0

R1I16 Major Opcode Minor Opcode/Other rs/fs Immediate

31 26 25 21 20 16 15 0

R2I16 Major Opcode rt/ft rs/fs Immediate

32-bit instruction formats with 12-bit immediate fields:

31 26 25 21 20 16 15 12 11 0

R1I12 Major Opcode Other rs/fs Minor Opcode Immediate

31 26 25 21 20 16 15 12 11 0

R2I12 Major Opcode rt/ft rs/fs Minor Opcode Immediate

4.1 Instruction Stream Organization and Endianness

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 48

The instruction size can be completely derived from the major opcode. For 32-bit instructions, the major opcode also
defines the position of the minor opcode field and whether or not the immediate field is right-aligned.

Instructions formats are named according to the number of the register fields and the size of the immediate field. The
names have the structure R<x>I<y>. For example, an instruction based on the format R2I16 has 2 register fields and a
16-bit immediate field.

Table 4.1 shows all formats. The 16-bit formats refer to either 3-bit or 5-bit register fields. To visualize this, a 16-bit
format name starts with the prefix S3 or S5 respectively.

4.1 Instruction Stream Organization and Endianness

16-bit instructions are placed within the 32-bit (or 64-bit) memory element according to system endianness.

• On a 32-bit processor in big-endian mode, the first instruction is read from bits 31..16, and the second instruction
is read from bits 15..0.

Table 4.1 microMIPS Opcode Formats

32-bit Instruction
Formats (existing

instructions)

32-bit
Instruction

Formats
(additional

format(s) for
new

instructions)

16-bit
Instruction

Formats

R0I0 R2I12 S3R0I0

R0I8 S3R0I10

R0I16 S3R1I7

R0I26 S3R2I0

R1I0 S3R2I3

R1I2 S3R2I4

R1I7 S3R3I1

R1I8 S5R1I0

R1I10 S5R1I4

R1I16 S5R2I0

R2I0

R2I2

R2I3

R2I4

R2I5

R2I10

R2I16

R3I0

R3I3

R4I0

 Instruction Formats

49 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

• On a 32-bit processor in little-endian mode, the first instruction is read from bits 15..0, and the second instruction
is read from bits 31..16.

The above rule also applies to the halfwords of 32-bit instructions. This means that a 32-bit instruction is not treated
as a word data type; instead, the halfwords are treated in the same way as individual 16-bit instructions. The halfword
containing the major opcode is always the first in the sequence.

Example:
SRL r1, r1, 7 binary opcode fields: 000000 00001 00001 00111 00001 000000

hex representation: 0021 3840

Address: 3 2 1 0
Little Endian: Data: 38 40 00 21

Address: 0 1 2 3
Big Endian: Data: 00 21 38 40

Instructions are placed in memory such that they are in-order with respect to the address.

4.1 Instruction Stream Organization and Endianness

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 50

Chapter 5

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 51

microMIPS Re-encoded Instructions

This chapter lists all microMIPS re-encoded instructions, sorted into 16-bit and 32-bit categories.

In the 16-bit category:

• Frequent MIPS32 instructions and macros, re-encoded as 16-bit. Register and immediate fields are reduced in
size by using encodings of frequently occurring values.

In the 32-bit category:

• All MIPS32 instructions, including all application-specific extensions except MIPS16e, re-encoded:
MIPS32, MIPS-3D ASE, MIPS DSP ASE, MIPS MT ASE, and SmartMIPS ASE.

• Opcode space for user-defined instructions (UDIs).

• New instructions designed primarily to reduce code size.

To differentiate between 16-bit and 32-bit encoded instructions, the instruction mnemonic can be optionally extended
with the suffix “16” or “32” respectively. This suffix is placed at the end of the instruction before the first ‘.’ if there is
one. For example:

ADD16, ADD32, ADD32.PS

If these suffixes are omitted, the assembler automatically chooses the smallest instruction size.

For each instruction, the tables in this chapter provide all necessary information about the bit fields. The formats of
the instructions are defined in Chapter 4, “Instruction Formats” on page 45. Together with the major and minor
opcode encodings, which can be derived from the tables in Chapter 6, “Opcode Map” on page 521, the complete
instruction encoding is provided.

Most register fields have a width of 5 bits. 5-bit register fields use linear encoding (r0=’00000’, r1=’00001’, etc.). For
16-bit instructions, whose register field size is variable, the register field width is explicitly stated in the instruction
table (Table 5.1 and Table 5.2), and the individual register and immediate encodings are shown in Table 5.3. The
‘other fields’ are defined by the respective column, with the order of these fields in the instruction encoding defined
by the order in the tables.

5.1 16-Bit Category

5.1.1 Frequent MIPS32 Instructions

These are frequent MIPS32 instructions with reduced register and immediate fields containing frequently used regis-
ters and immediate values.

5.1 16-Bit Category

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 52

MOVE is a very frequent instruction. It therefore supports full 5-bit unrestricted register fields for maximum effi-
ciency. In fact, MOVE used to be a simplified macro of an existing MIPS32 instruction.

There are 2 variants of the LW and SW instructions. One variant implicitly uses the SP register to allow for a larger
offset field. The value in the offset field is shifted left by 2 before it is added to the base address.

There are four variants of the ADDIU instruction:

1. A variant with one 5-bit register specifier that allows any GPR to be the source and destination register

2. A variant that uses the stack pointer as the implicit source and destination register

3. A variant that has separate 3-bit source and destination register specifiers

4. A variant that has the stack pointer as the implicit source register and one 3-bit destination register specifier

A 16-bit NOP instruction is needed because of the new 16-bit instruction alignment and the need in specific cases to
align instructions on a 32-bit boundary. It can save code size as well. NOP is not shown in the table because it is real-
ized as a macro (as is NEGU).

NOP16 = MOVE16 r0, r0

NEGU16 rt, rs = SUBU16 rt, r0, rs

Because microMIPS instructions are 16-bit aligned, the 16-bit branch instructions support 16-bit aligned branch tar-
get addresses. The offset field is left shifted by 1 before it is added to the PC.

The compact instruction JRC is to be used instead of JR, when the jump delay slot after JR cannot be filled. This
saves code size. Because JRC may execute as fast as JR with a NOP in the delay slot, JR is preferred if the delay slot
can be filled.

The breakpoint instructions, BREAK and SDBBP, include a 16-bit variant that allows a breakpoint to be inserted at
any instruction address without overwriting more than a single instruction.

Table 5.1 16-Bit Re-encoding of Frequent MIPS32 Instructions

Instruction

Major
Opcode
Name

Number of
Register
Fields

Immediate
Field Size

(bit)

Register
Field
Width
(bit)

Total
Size of
Other
Fields

Empty 0
Field Size

(bit)

Minor
Opcode
Size (bit) Comment

ADDIUS5 POOL16D 5bit:1 4 5 0 1 Add Immediate
Unsigned Word Same
Register

ADDIUSP POOL16D 0 9 0 0 1 Add Immediate
Unsigned Word to
Stack Pointer

ADDIUR2 POOL16E 2 3 3 0 1 Add Immediate
Unsigned Word
Two Registers

 microMIPS Re-encoded Instructions

53 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

ADDIUR1SP POOL16E 1 6 3 0 1 Add Immediate
Unsigned Word
One Registers and
Stack Pointer

ADDU16 POOL16A 3 0 3 0 1 Add Unsigned Word

AND16 POOL16C 2 0 3 0 4 AND

ANDI16 ANDI16 2 4 3 0 0 AND Immediate

B16 B16 0 10 0 0 Branch

BREAK16 POOL16C 0 0 4 0 6 Cause Breakpoint
Exception

JALR16 POOL16C 1 0 5 0 5 Jump and Link
Register, 32-bit delay-
slot

JALRS16 POOL16C 1 0 5 0 5 Jump and Link
Register, 16-bit delay-
slot

JR16 POOL16C 1 0 5 0 5 Jump Register

LBU16 LBU16 2 4 3 0 0 Load Byte Unsigned

LHU16 LHU16 2 4 3 0 0 Load Halfword

LI16 LI16 1 7 3 0 0 Load Immediate

LW16 LW16 2 4 3 0 0 Load Word

LWGP LWGP16 1 7 3 0 0 Load Word GP

LWSP LWSP16 5bit:1 5 5 0 0 Load Word SP

MFHI16 POOL16C 1 0 5 0 5 Move from
HI Register

MFLO16 POOL16C 1 0 5 0 5 Move from
LO Register

MOVE16 MOVE16 2 0 5 0 0 Move

NOT16 POOL16C 2 0 3 0 4 NOT

OR16 POOL16C 2 0 3 0 4 OR

SB16 SB16 2 4 3 0 0 Store Byte

SDBBP16 POOL16C 0 0 4 0 6 Cause Debug
Breakpoint Exception

SH16 SH16 2 4 3 0 0 Store Halfword

SLL16 POOL16B 2 3 3 0 1 Shift Word Left
Logical

SRL16 POOL16B 2 3 3 0 1 Shift Word Right
Logical

SUBU16 POOL16A 3 0 3 0 1 Sub Unsigned

Table 5.1 16-Bit Re-encoding of Frequent MIPS32 Instructions (Continued)

Instruction

Major
Opcode
Name

Number of
Register
Fields

Immediate
Field Size

(bit)

Register
Field
Width
(bit)

Total
Size of
Other
Fields

Empty 0
Field Size

(bit)

Minor
Opcode
Size (bit) Comment

5.1 16-Bit Category

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 54

5.1.2 Frequent MIPS32 Instruction Sequences

These 16-bit instructions are equivalent to frequently-used short sequences of MIPS32 instructions. The instruction-
specific register and immediate value selection are shown in Table 5.3.

SW16 SW16 2 4 3 0 0 Store Word

SWSP SWSP16 5bit:1 5 5 0 0 Store Word SP

XOR16 POOL16C 2 0 3 0 4 XOR

Table 5.2 16-Bit Re-encoding of Frequent MIPS32 Instruction Sequences

Instruction

Major
Opcode
Name

Number of
Register
Fields

Immediate
Field Size

(bit)

Register
Field
Width
(bit)

Total
Size of
Other
Fields

Empty 0
Field Size

(bit)

Minor
Opcode
Size (bit) Comment

BEQZ16 BEQZ16 1 7 3 0 0 Branch on Equal Zero

BNEZ16 BNEZ16 1 7 3 0 0 Branch on
Not Equal Zero

JRADDIUSP POOL16C 0 5 5 Jump Register;
ADDIU SP

JRC POOL16C 1 0 5 0 5 Jump Register Com-
pact

LWM16 POOL16C 0 4 2 0 4 Load Word Multiple

MOVEP POOL16F 3 (encoded) 0 3(encoded) 0 1 Move Register Pair

SWM16 POOL16C 0 4 2 0 4 Store Word Multiple

Table 5.1 16-Bit Re-encoding of Frequent MIPS32 Instructions (Continued)

Instruction

Major
Opcode
Name

Number of
Register
Fields

Immediate
Field Size

(bit)

Register
Field
Width
(bit)

Total
Size of
Other
Fields

Empty 0
Field Size

(bit)

Minor
Opcode
Size (bit) Comment

 microMIPS Re-encoded Instructions

55 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

5.1.3 Instruction-Specific Register Specifiers and Immediate Field Encodings

Table 5.3 Instruction-Specific Register Specifiers and Immediate Field Values

Instruction

Number
of

Register
Fields

Immediate
Field Size

(bit)

Register 1
Decoded

Value

Register 2
Decoded

Value

Register 3
Decoded

Value
Immediate Field Decoded

Value

ADDIUS5 5bit:1 4 rd: 5 bit field -8..0..7

ADDIUSP 0 9 (-258..-3, 2..257) << 2

ADDIUR2 2 3 rs1:2-7,16, 17 rd:2-7,16, 17 -1, 1, 4, 8, 12, 16, 20, 24

ADDIUR1SP 1 6 rd:2-7,16, 17 (0..63) << 2

ADDU16 3 0 rs1:2-7,16, 17 rs2:2-7,16, 17 rd:2-7,16, 17

AND16 2 0 rs1:2-7,16, 17 rd:2-7,16, 17

ANDI16 2 4 rs1:2-7,16, 17 rd:2-7,16, 17 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63,
64, 128, 255, 32768, 65535

B16 0 10 (-512..511) << 1

BEQZ16 1 7 rs1:2-7,16, 17 (-64..63) << 1

BNEZ16 1 7 rs1:2-7,16, 17 (-64..63) << 1

BREAK16 0 4 0..15

JALR16 5bit:1 0 rs1:5 bit field

JALRS16 5bit:1 0 rs1:5 bit field

JRADDIUSP 0 5 (0..31) << 2

JR16 5bit:1 0 rs1:5 bit field

JRC 5bit:1 0 rs1:5 bit field

LBU16 2 4 rb:2-7,16,17 rd:2-7,16, 17 -1,0..14

LHU16 2 4 rb:2-7,16,17 rd:2-7,16, 17 (0..15) << 1

LI16 1 7 rd:2-7,16, 17 -1,0..126

LW16 2 4 rb:2-7,16,17 rd:2-7,16, 17 (0..15) << 2

LWM16 2bit list:1 4 (0..15)<<2

LWGP 1 7 rd:2-7,16,17 (-64..63)<<2

LWSP 5bit:1 5 rd:5-bit field (0..31)<<2

MFHI16 5bit:1 0 rd:5-bit field

MFLO16 5bit:1 0 rd:5-bit field

MOVE16 5bit:2 0 rd:5-bit field rs1:5-bit field

MOVEP 3 0 rd, re:
(5,6),(5,7),(6,7),
(4,21),(4,22),(4,

5),(4,6),(4,7)

rt:0,2,7,16-20 rs:0,2,7,16-20

NOT16 2 0 rs1:2-7,16, 17 rd:2-7,16, 17

OR16 2 0 rs1:2-7,16, 17 rd:2-7,16, 17

SB16 2 4 rb:2-7,16,17 rs1:0, 2-7, 17 0..15

5.2 16-bit Instruction Register Set

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 56

5.2 16-bit Instruction Register Set

Many of the 16-bit instructions use 3-bit register specifiers in their binary encodings. The register set used for most of
these 3-bit register specifiers is listed in Table 5.5. The register set used for SB16, SH16, SW16 source register is
listed in Table 5.5. These register sets are a true subset of the register set available in 32-bit mode; the 3-bit register
specifiers can directly access 8 of the 32 registers available in 32-bit mode (which uses 5-bit register specifiers).

In addition, specific instructions in the 16-bit instruction set implicitly reference the stack pointer register (sp), global
pointer register (gp), the return address register (ra), the integer multiplier/divider output registers (HI/LO) and the
program counter (PC). Of these, Table 5.6 lists sp, gp and ra. Table 5.7 lists the microMIPS special-purpose registers,
including PC, HI and LO.

The microMIPS also contains some 16-bit instructions that use 5-bit register specifiers. Such 16-bit instructions pro-
vide access to all 32 general-purpose registers.

SDBBP16 0 0 0..15

SH16 2 4 rb:2-7,16,17 rs1:0, 2-7, 17 (0..15) << 1

SLL16 2 3 rs1:2-7,16, 17 rd:2-7,16, 17 1..8 (see encoding tables)

SRL16 2 3 rs1:2-7,16, 17 rd:2-7,16, 17 1..8 (see encoding tables)

SUBU16 3 0 rs1:2-7,16, 17 rs2:2-7,16, 17 rd:2-7,16, 17

SW16 2 4 rb:2-7,16,17 rs1:0, 2-7, 17 (0..15) << 2

SWSP 5bit:1 5 rs1: 5 bit field (0..31) << 2

SWM16 2 bit list:1 4 (0..15)<<2

XOR16 2 0 rs1:2-7,16, 17 rd:2-7,16, 17

Table 5.4 16-Bit Instruction General-Purpose Registers - $2-$7, $16, $17

16-Bit
Register

Encoding1

32-Bit MIPS
Register

Encoding2

Symbolic Name
(From

ArchDefs.h) Description

0 16 s0 General-purpose register

1 17 s1 General-purpose register

2 2 v0 General-purpose register

3 3 v1 General-purpose register

4 4 a0 General-purpose register

5 5 a1 General-purpose register

6 6 a2 General-purpose register

Table 5.3 Instruction-Specific Register Specifiers and Immediate Field Values (Continued)

Instruction

Number
of

Register
Fields

Immediate
Field Size

(bit)

Register 1
Decoded

Value

Register 2
Decoded

Value

Register 3
Decoded

Value
Immediate Field Decoded

Value

 microMIPS Re-encoded Instructions

57 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

7 7 a3 General-purpose register

1. “0-7” correspond to the register’s 16-bit binary encoding and show how that encoding
relates to the MIPS registers. “0-7” never refer to the registers, except within the binary
microMIPS instructions. From the assembler, only the MIPS names ($16, $17, $2, etc.) or
the symbolic names (s0, s1, v0, etc.) refer to the registers. For example, to access register
number 17 in the register file, the programmer references $17 or s1, even though the micro-
MIPS binary encoding for this register is 001.

2. General registers not shown in the above table are not accessible through the 16-bit instruc-
tion using 3-bit register specifiers. The Move instruction can access all 32 general-purpose
registers.

Table 5.5 SB16, SH16, SW16 Source Registers - $0, $2-$7, $17

16-Bit
Register

Encoding1

1. “0-7” correspond to the register’s 16-bit binary encoding and show how that encoding
relates to the MIPS registers. “0-7” never refer to the registers, except within the binary
microMIPS instructions. From the assembler, only the MIPS names ($16, $17, $2, etc.) or
the symbolic names (s0, s1, v0, etc.) refer to the registers. For example, to access register
number 17 in the register file, the programmer references $17 or s1, even though the micro-
MIPS binary encoding for this register is 001.

32-Bit MIPS
Register

Encoding2

2. General registers not shown in the above table are not accessible through the 16-bit instruc-
tions using 3-bit register specifier. The Move instruction can access all 32 general-purpose
registers.

Symbolic Name
(From

ArchDefs.h) Description

0 0 zero Hard-wired Zero

1 17 s1 General-purpose register

2 2 v0 General-purpose register

3 3 v1 General-purpose register

4 4 a0 General-purpose register

5 5 a1 General-purpose register

6 6 a2 General-purpose register

7 7 a3 General-purpose register

Table 5.4 16-Bit Instruction General-Purpose Registers - $2-$7, $16, $17 (Continued)

16-Bit
Register

Encoding1

32-Bit MIPS
Register

Encoding2

Symbolic Name
(From

ArchDefs.h) Description

5.3 32-Bit Category

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 58

5.3 32-Bit Category

5.3.1 New 32-bit instructions

The following table lists the 32-bit instructions introduced in the microMIPS ISA.

Table 5.6 16-Bit Instruction Implicit General-Purpose Registers

16-Bit
Register
Encoding

32-Bit MIPS
Register
Encoding

Symbolic Name
(From

ArchDefs.h) Description

Implicit 28 gp Global pointer register

Implicit 29 sp Stack pointer register

Implicit 31 ra Return address register

Table 5.7 16-Bit Instruction Special-Purpose Registers

Symbolic Name Purpose

PC Program counter. The PC-relative ADDIU can access this
register as an operand.

HI Contains high-order word of multiply or divide result.

LO Contains low-order word of multiply or divide result.

Table 5.8 32-bit Instructions introduced within microMIPS

Instruction

Major
Opcode
Name

Number of
Register
Fields

Immediate
Field Size

(bit)

Register
Field
Width
(bit)

Total
Size of
Other
Fields

Empty 0
Field Size

(bit)

Minor
Opcode
Size (bit) Comment

ADDIUPC ADDIUPC 1 23 3 0 0 ADDIU PC-Relative

BEQZC POOL32I 2:5 bit 16 5 0 Branch on
Equal to Zero, No
Delay Slot

BNEZC POOL32I 2:5 bit 16 5 0 Branch on
Not Equal to Zero, No
Delay Slot

JALRS POOL32A 2:5 bit 0 5 16 Jump and Link Regis-
ter, Short Delay Slot

JALRS.HB POOL32A 2:5 bit 0 5 16 Jump and Link Regis-
ter with Hazard Bar-
rier, Short Delay Slot

 microMIPS Re-encoded Instructions

59 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

JALS JALS32 0 26 0 Jump and Link, Short
Delay Slot

JALX JALX 26 5 0 5 Jump and Link
Exchange

LWP POOL32B 2:5 bit 12 5 0 4 Load Word Pair

LWXS POOL32A 3:5 bit 0 5 0 1 10 Load Word Indexed,
Scale

LWM32 POOL32B 1:5bit 12 5 0 4 Load Word Multiple

SWP POOL32B 2:5 bit 12 0 4 Load Word Pair

SWM32 POOL32B 1:5bits 12 5 0 4 Store Word Multiple

Table 5.8 32-bit Instructions introduced within microMIPS (Continued)

Instruction

Major
Opcode
Name

Number of
Register
Fields

Immediate
Field Size

(bit)

Register
Field
Width
(bit)

Total
Size of
Other
Fields

Empty 0
Field Size

(bit)

Minor
Opcode
Size (bit) Comment

5.3 32-Bit Category

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 60

Chapter 5

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 61

5.4 New Instructions

This section defines all new instructions introduced with microMIPS. Existing instructions and macros are not covered.

Add Immediate Unsigned Word (PC-Relative) ADDIUPC

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 62

Format: ADDIUPC rs, left_shifted_immediate microMIPS

Purpose: Add Immediate Unsigned Word (PC-Relative)

To add a constant to the program counter.

Description: GPR[translated(rs)] ← PC + (immediate << 2)

The 23-bit immediate is left shifted by two bits, sign-extended and added to the address of the ADDIU instruction.
Before the addition, the two lower bits of the instruction address are cleared.

The result of the addition is placed in GPR rs.

No integer overflow exception occurs under any circumstances.

Unlike the MIPS16 version of this instruction, the program counter value of the ADDIUPC instruction is always
used, even when the ADDIUPC instruction is placed in the delay-slot of a jump or branch instruction.

Restrictions:

The 3-bit register field can only specify GPRs $2-$7, $16, $17.

Operation:

temp ← (PCGPRLEN-1..2 || 0
2) + sign_extend(immediate || 02)

GPR[Xlat(rs)] ← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

The assembler LA (Load Address) pseudo-instruction is implemented as a PC-relative add.

The 25-bit immediate (field shifted by 2 bits) allows addresses within 32MB of the instruction PC location to be gen-
erated.

31 26 25 23 22 0

ADDIUPC
011110

rs Immediate

6 3 23

Add Immediate Unsigned Word (PC-Relative) ADDIUPC

63 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Add Immediate Unsigned Word One Register (16-bit instr size) ADDIUR1SP

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 64

Format: ADDIUR1SP rd, decoded_immediate_value microMIPS

Purpose: Add Immediate Unsigned Word One Register (16-bit instr size)

To add a constant to a 32-bit integer.

Description: GPR[rd] ← GPR[29] + zero_extend(immediate << 2)

The 6-bit immediate field is first shifted left by two bits and then zero-extended. This amount is added to the 32-bit
value in GPR 29 and the 32-bit arithmetic result is placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

temp ← GPR[29] + zero_extend(immediate || 02)
GPR[rd] ← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

15 10 9 7 6 1 0

POOL16E
011011

rd Immediate 1

6 3 6 1

Add Immediate Unsigned Word One Register (16-bit instr size) ADDIUR1SP

65 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Add Immediate Unsigned Word Two Registers (16-bit instr size) ADDIUR2

67 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

Add Immediate Unsigned Word to Stack Pointer(16-bit instr size) ADDIUSP

69 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Operation:

temp ← GPR[29] + sign_extend(decoded immediate || 02)
GPR[29] ← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

Add Immediate Unsigned Word 5-Bit Register Select (16-bit instr size) ADDIUS5

71 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Restrictions:

None

Operation:

temp ← GPR[rd] + sign_extend(immediate)
GPR[rd] ← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

Add Unsigned Word (16-bit instr size) ADDU16

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 72

Format: ADDU16 rd, rs, rt microMIPS

Purpose: Add Unsigned Word (16-bit instr size)

To add 32-bit integers

Description: GPR[rd] ← GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs, and the 32-bit arithmetic result is placed into
GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

temp ← GPR[rs] + GPR[rt]
GPR[rd] ← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

15 10 9 7 6 4 3 1 0

POOL16A
000001

rd rt rs 0

6 3 3 3 1

Add Unsigned Word (16-bit instr size) ADDU16

73 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

And Immediate (16-bit instr size) ANDI16

75 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Operation:

GPR[rd] ← GPR[rs] and zero_extend(decoded immediate)

Exceptions:

None

And (16-bit instr size) AND16

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 76

Format: AND16 rt, rs microMIPS

Purpose: And (16-bit instr size)

To do a bitwise logical AND

Description: GPR[rt] ← GPR[rs] AND GPR[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical AND operation. The result is
placed into GPR rt.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

GPR[rt] ← GPR[rs] and GPR[rt]

Exceptions:

None

15 10 9 6 5 3 2 0

POOL16C
010001

AND16
0010

rt rs

6 4 3 3

And (16-bit instr size) AND16

77 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Unconditional Branch (16-bit instr size) IB16

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 78

Format: B16 offset microMIPS

Purpose: Unconditional Branch (16-bit instr size)

To do an unconditional branch

Description: branch

A 11-bit signed offset (the 10-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 01)
I+1: PC ← PC + target_offset

Exceptions:

None

Programming Notes:

With the 11-bit signed instruction offset, the branch range is ± 1 Kbytes. Use jump (J) or jump register (JR) or 32-bit
branch instructions to branch to addresses outside this range.

15 10 9 0

B16
110011

offset

6 10

Unconditional Branch (16-bit instr size) B16

79 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Branch on Equal to Zero (16-bit instr size) IBEQZ16

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 80

Format: BEQZ16 rs, offset microMIPS

Purpose: Branch on Equal to Zero (16-bit instr size)

To compare a GPR to zero then do a PC-relative conditional branch

Description: if GPR[rs] = 0 then branch

A 8-bit signed offset (the 7-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs equals zero, branch to the effective target address after the instruction in the delay slot is
executed.

Restrictions:

The 3-bit register field can only specify GPRs $2-$7, $16, $17.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0)
condition ← (GPR[rs] == 0)

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 8-bit signed instruction offset, the conditional branch range is ± 64 Bytes. Use 32-bit branch, jump (J) or
jump register (JR) instructions to branch to addresses outside this range.

15 10 9 7 6 0

BEQZ16
100011

rs
offset

6 3 7

Branch on Equal to Zero (16-bit instr size) BEQZ16

81 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Branch on Equal to Zero, Compact IBEQZC

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 82

Format: BEQZC rs, offset microMIPS

Purpose: Branch on Equal to Zero, Compact

To test a GPR then do a PC-relative conditional branch.

Description: if (GPR[rs] = 0) then branch

The 16-bit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR rs is equal to zero, the program branches to the target address, with no
delay slot instruction.

Restrictions:

Processor operation is UNPREDICTABLE if the instruction is placed in a delay slot of a branch or jump.

Operation:

I: tgt_offset ← sign_extend(offset || 0)
condition ← (GPR[rs] = 0GPRLEN)
if condition then

PC ← PC + 4 + tgt_offset
endif

Exceptions:

None

Programming Notes:

Unlike most MIPS ‘branch’ instructions, BEQZC does not have a delay slot.

31 26 25 21 20 16 15 0

POOL32I
010000

BEQZC
00111

rs offset

6 5 5 16

Branch on Equal to Zero, Compact BEQZC

83 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Branch on Greater Than or Equal to Zero and Link, Short Delay-Slot IBGEZALS

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 84

Format: BGEZALS rs, offset microMIPS

Purpose: Branch on Greater Than or Equal to Zero and Link, Short Delay-Slot

To test a GPR then do a PC-relative conditional procedure call

Description: if GPR[rs] ≥ 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

A 17-bit signed offset (the 16-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed.

Restrictions:

The delay-slot instruction must be 16-bits in size. Processor operation is UNPREDICTABLE if a 32-bit instruction
is placed in the delay slot of BGEZAL.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Operation:

I: target_offset ← sign_extend(offset || 01)
condition ← GPR[rs] ≥ 0GPRLEN
GPR[31] ← PC + 6

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is ± 64 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

BGEZALS r0, offset, expressed as BAL offset, is the assembly idiom used to denote a PC-relative branch and link.
BAL is used in a manner similar to JAL, but provides PC-relative addressing and a more limited target PC range.

31 26 25 21 20 16 15 0

POOL32I
010000

BGEZALS
10011

rs offset

6 5 5 16

Branch on Greater Than or Equal to Zero and Link, Short Delay-Slot BGEZALS

85 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Branch on Less Than Zero and Link, Short Delay-Slot IBLTZALS

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 86

Format: BLTZALS rs, offset microMIPS

Purpose: Branch on Less Than Zero and Link, Short Delay-Slot

To test a GPR then do a PC-relative conditional procedure call

Description: if GPR[rs] < 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

A 17-bit signed offset (the 16-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay slot is executed.

Restrictions:

The delay-slot instruction must be 16-bits in size. Processor operation is UNPREDICTABLE if a 32-bit instruction
is placed in the delay slot of BLTZAL.

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 01)
condition ← GPR[rs] < 0GPRLEN

GPR[31] ← PC + 6
I+1: if condition then

PC ← PC + target_offset
endif

Exceptions:

None

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is ± 64 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

31 26 25 21 20 16 15 0

POOL32I
010000

BLTZALS
10001

rs offset

6 5 5 16

Branch on Less Than Zero and Link, Short Delay-Slot BLTZALS

87 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Branch on Not Equal to Zero (16-bit instr size) IBNEZ16

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 88

Format: BNEZ16 rs, offset microMIPS

Purpose: Branch on Not Equal to Zero (16-bit instr size)

To compare a GPR to zero then do a PC-relative conditional branch

Description: if GPR[rs] != 0 then branch

A 8-bit signed offset (the 7-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs does not equal zero, branch to the effective target address after the instruction in the delay
slot is executed.

Restrictions:

The 3-bit register field can only specify GPRs $2-$7, $16, $17.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0)
condition ← (GPR[rs] != 0)

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 8-bit signed instruction offset, the conditional branch range is ± 64 Bytes. Use 32-bit branch, jump (J) or
jump register (JR) instructions to branch to addresses outside this range.

15 10 9 7 6 0

BNEZ16
101011

rs
offset

6 3 7

Branch on Not Equal to Zero (16-bit instr size) BNEZ16

89 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Branch on Not Equal to Zero, Compact IBNEZC

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 90

Format: BNEZC rs, offset microMIPS

Purpose: Branch on Not Equal to Zero, Compact

To test a GPR then do a PC-relative conditional branch.

Description: if (GPR[rs] ≠ 0) then branch

The 16-bit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR rs is not equal to zero, the program branches to the target address, with
no delay slot instruction.

Restrictions:

Processor operation is UNPREDICTABLE if the instruction is placed in a delay slot of a branch or jump.

Operation:

I: tgt_offset ← sign_extend(offset || 0)
condition ← (GPR[rs] ≠ 0GPRLEN)
if condition then

PC ← PC + 4 + tgt_offset
endif

Exceptions:

None

Programming Notes:

Unlike most MIPS ‘branch’ instructions, BNEZC does not have a delay slot.

31 26 25 21 20 16 15 0

POOL32I
010000

BNEZC
00101 rs offset

6 5 5 16

Branch on Not Equal to Zero, Compact BNEZC

91 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Breakpoint IBREAK16

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 92

Format: BREAK16 microMIPS

Purpose: Breakpoint

To cause a Breakpoint exception

Description:

A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handler. The
code field is available for use as software parameters, but is retrieved by the exception handler only by loading the
contents of the memory word containing the instruction.

Restrictions:

None

Operation:

SignalException(Breakpoint)

Exceptions:

Breakpoint

15 10 9 4 3 0

POOL16C
010001

BREAK16
101000

code

6 6 4

Breakpoint BREAK16

93 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Jump and Link Register (16-bit instr size) IJALR16

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 94

Format: JALR16 rs microMIPS

Purpose: Jump and Link Register (16-bit instr size)

To execute a procedure call to an instruction address in a register

Description: GPR[31] ← return_addr, PC ← GPR[rs]

Place the return address link in GPR r31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

For processors that do not implement the MIPS32 ISA:

• Jump to the effective target address in GPR rs. Execute the instruction that follows the jump, in the branch delay
slot, before executing the jump itself. Bit 0 of the target address is always zero so that no Address Exceptions
occur when bit 0 of the source register is one.

For processors that do implement the MIPS32 ISA:

• Jump to the effective target address in GPR rs. Execute the instruction that follows the jump, in the branch delay
slot, before executing the jump itself. Set the ISA Mode bit to the value in GPR rs bit 0. Bit 0 of the target address
is always zero so that no Address Exceptions occur when bit 0 of the source register is one.

Restrictions:

The delay-slot instruction must be 32-bits in size. Processor operation is UNPREDICTABLE if a 16-bit instruction
is placed in the delay slot of JALR16.

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS32 and if the ISAMode bit of the target is MIPS32 (bit 0 of GPR rs is 0) and
address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruc-
tion.

For processors that do not implement MIPS32 ISA, if the intended target ISAMode is MIPS32 (bit 0 of GPR rs is
zero), an Address Error exception occurs when the jump target is fetched as an instruction.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: temp ← GPR[rs]
GPR[31] ← PC + 6

I+1:if Config3ISA = 1 then
PC ← temp

else
PC ← tempGPRLEN-1..1 || 0
ISAMode ← temp0

endif

15 10 9 5 4 0

POOL16C
010001

JALR16
01110 rs

6 5 5

Jump and Link Register (16-bit instr size) JALR16

95 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Exceptions:

None

Jump and Link Register, Short Delay-Slot(16-bit instr size) IJALRS16

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 96

Format: JALRS16 rs microMIPS

Purpose: Jump and Link Register, Short Delay-Slot(16-bit instr size)

To execute a procedure call to an instruction address in a register

Description: GPR[31] ← return_addr, PC ← GPR[rs]

Place the return address link in GPR r31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

For processors that do not implement the MIPS32 ISA:

• Jump to the effective target address in GPR rs. Execute the instruction that follows the jump, in the branch delay
slot, before executing the jump itself. Bit 0 of the target address is always zero so that no Address Exceptions
occur when bit 0 of the source register is one.

For processors that do implement the MIPS32 ISA:

• Jump to the effective target address in GPR rs. Execute the instruction that follows the jump, in the branch delay
slot, before executing the jump itself. Set the ISA Mode bit to the value in GPR rs bit 0. Bit 0 of the target address
is always zero so that no Address Exceptions occur when bit 0 of the source register is one.

Restrictions:

The delay-slot instruction must be 16-bits in size. Processor operation is UNPREDICTABLE if a 32-bit instruction
is placed in the delay slot of JALRS16.

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS32 and if ISAMode bit of the target is MIPS32 (bit 0 of GPR rs is 0) and
address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruc-
tion.

For processors that do not implement MIPS32 ISA, if the target ISAMode is MIPS32 (bit 0 of GPR rs is zero), an
Address Error exception occurs when the jump target is fetched as an instruction.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: temp ← GPR[rs]
GPR[31] ← PC + 4

I+1:if Config3ISA = 1 then
PC ← temp

else
PC ← tempGPRLEN-1..1 || 0
ISAMode ← temp0

endif

15 10 9 5 4 0

POOL16C
010001

JALRS16
01111 rs

6 5 5

Jump and Link Register, Short Delay-Slot(16-bit instr size) JALRS16

97 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Exceptions:

None

Jump and Link Register, Short Delay Slot IJALRS

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 98

Format: JALRS rs (rt = 31 implied) microMIPS
JALRS rt, rs microMIPS

Purpose: Jump and Link Register, Short Delay Slot

To execute a procedure call to an instruction address in a register

Description: GPR[rt] ← return_addr, PC ← GPR[rs]

Place the return address link in GPR rt. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

For processors that do not implement the MIPS32 ISA:

• Jump to the effective target address in GPR rs. Execute the instruction that follows the jump, in the branch delay
slot, before executing the jump itself. Bit 0 of the target address is always zero so that no Address Exceptions
occur when bit 0 of the source register is one.

For processors that do implement the MIPS32 ISA:

• Jump to the effective target address in GPR rs. Execute the instruction that follows the jump, in the branch delay
slot, before executing the jump itself. Set the ISA Mode bit to the value in GPR rs bit 0. Bit 0 of the target address
is always zero so that no Address Exceptions occur when bit 0 of the source register is one.

Restrictions:

The delay-slot instruction must be 16-bits in size. Processor operation is UNPREDICTABLE if a 32-bit instruction
is placed in the delay slot of JALRS.

Register specifiers rs and rt must not be equal, because such an instruction does not have the same effect when reex-
ecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception han-
dler to resume execution by re-executing the branch when an exception occurs in the branch delay slot.

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS32 and if if ISAMode bit of the target is MIPS32 (bit 0 of GPR rs is 0) and
address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruc-
tion.

For processors that do not implement MIPS32ISA, if the intended target ISAMode is MIPS32(bit 0 of GPR rs is
zero), an Address Error exception occurs when the jump target is fetched as an instruction.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: temp ← GPR[rs]
GPR[rt] ← PC + 6

I+1:if Config1CA = 0 then
PC ← temp

else

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt rs
JALRS

0100111100
POOL32AXf

111100

6 5 5 10 6

Jump and Link Register, Short Delay Slot JALRS

99 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

PC ← tempGPRLEN-1..1 || 0
ISAMode ← temp0

endif

Exceptions:

None

Programming Notes:

This branch-and-link instruction can select a register for the return link; other link instructions use GPR 31. The
default register for GPR rd, if omitted in the assembly language instruction, is GPR 31.

Jump and Link Register with Hazard Barrier, Short Delay-Slot IJALRS.HB

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 100

Format: JALRS.HB rs (rt = 31 implied) microMIPS
JALRS.HB rt, rs microMIPS

Purpose: Jump and Link Register with Hazard Barrier, Short Delay-Slot

To execute a procedure call to an instruction address in a register and clear all execution and instruction hazards

Description: GPR[rt] ← return_addr, PC ← GPR[rs], clear execution and instruction
hazards

Place the return address link in GPR rt. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

For processors that do not implement the MIPS32 ISA:

• Jump to the effective target address in GPR rs. Execute the instruction that follows the jump, in the branch
delay slot, before executing the jump itself. Bit 0 of the target address is always zero so that no Address
Exceptions occur when bit 0 of the source register is one.

For processors that do implement the MIPS32 ISA:

• Jump to the effective target address in GPR rs. Execute the instruction that follows the jump, in the branch
delay slot, before executing the jump itself. Set the ISA Mode bit to the value in GPR rs bit 0. Bit 0 of the tar-
get address is always zero so that no Address Exceptions occur when bit 0 of the source register is one.

JALRS.HB implements a software barrier that resolves all execution and instruction hazards created by Coprocessor
0 state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolv-
ing instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the JALRS.HB instruction jumps. An equivalent
barrier is also implemented by the ERET instruction, but that instruction is only available if access to Coprocessor 0
is enabled, whereas JALRS.HB is legal in all operating modes.

This instruction clears both execution and instruction hazards. Refer to the EHB instruction description for the
method of clearing execution hazards alone.

Restrictions:

The delay-slot instruction must be 16-bits in size. Processor operation is UNPREDICTABLE if a 32-bit instruction
is placed in the delay slot of JALRS.HB.

Register specifiers rs and rd must not be equal, because such an instruction does not have the same effect when reex-
ecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception han-
dler to resume execution by re-executing the branch when an exception occurs in the branch delay slot.

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS32 and if ISAMode bit of the target is MIPS32 (bit 0 of GPR rs is 0) and
address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruc-
tion.

For processors that do not implement MIPS32 ISA, if the intended target ISAMode is MIPS32(bit 0 of GPR rs is

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rd rs
JALRS.HB
0101111100

POOL32AXf
111100

6 5 5 10 6

Jump and Link Register with Hazard Barrier, Short Delay-Slot JALRS.HB

101 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

zero), an Address Error exception occurs when the jump target is fetched as an instruction.

After modifying an instruction stream mapping or writing to the instruction stream, execution of those instructions
has UNPREDICTABLE behavior until the instruction hazard has been cleared with JALR.HB, JALRS.HB, JR.HB,
ERET, or DERET. Further, the operation is UNPREDICTABLE if the mapping of the current instruction stream is
modified.

JALRS.HB does not clear hazards created by any instruction that is executed in the delay slot of the JALRS.HB. Only
hazards created by instructions executed before the JALR.HB are cleared by the JALRS.HB.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: temp ← GPR[rs]
GPR[rt] ← PC + 6

I+1:if Config1CA = 0 then
PC ← temp

else
PC ← tempGPRLEN-1..1 || 0
ISAMode ← temp0

endif
ClearHazards()

Exceptions:

None

Programming Notes:

This branch-and-link instruction can select a register for the return link; other link instructions use GPR 31. The
default register for GPR rt, if omitted in the assembly language instruction, is GPR 31.

This instruction implements the final step in clearing execution and instruction hazards before execution continues. A
hazard is created when a Coprocessor 0 or TLB write affects execution or the mapping of the instruction stream, or
after a write to the instruction stream. When such a situation exists, software must explicitly indicate to hardware that
the hazard should be cleared. Execution hazards alone can be cleared with the EHB instruction. Instruction hazards
can only be cleared with a JR.HB, JALR.HB, JALRS.HB or ERET instruction. These instructions cause hardware to
clear the hazard before the instruction at the target of the jump is fetched. Note that because these instructions are
encoded as jumps, the process of clearing an instruction hazard can often be included as part of a call (JALR[S][16])
or return (JR) sequence, by simply replacing the original instructions with the HB equivalent.

Example: Clearing hazards due to an ASID change

/*
 * Code used to modify ASID and call a routine with the new
 * mapping established.
 *
 * a0 = New ASID to establish
 * a1 = Address of the routine to call
 */

mfc0 v0, C0_EntryHi /* Read current ASID */
li v1, ~M_EntryHiASID /* Get negative mask for field */
and v0, v0, v1 /* Clear out current ASID value */
or v0, v0, a0 /* OR in new ASID value */
mtc0 v0, C0_EntryHi /* Rewrite EntryHi with new ASID */
jalr.hb a1 /* Call routine, clearing the hazard */
nop

Jump and Link Register with Hazard Barrier, Short Delay-Slot IJALRS.HB

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 102

Jump and Link Register with Hazard Barrier, Short Delay-Slot JALRS.HB

103 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Jump and Link, Short Delay Slot IJALS

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 104

Format: JALS target microMIPS

Purpose: Jump and Link, Short Delay Slot

To execute a procedure call within the current 128 MB-aligned region

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call.

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 128 MB-aligned region.
The low 27 bits of the target address is the instr_index field shifted left 1 bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot, before
executing the jump itself.

Restrictions:

The delay-slot instruction must be 16-bits in size. Processor operation is UNPREDICTABLE if a 32-bit instruction
is placed in the delay slot of JALS.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: GPR[31] ← PC + 6
I+1: PC ← PCGPRLEN-1..27 || instr_index || 0

1

Exceptions:

None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC is an
advantage if all program code addresses fit into a 128 MB region aligned on a 128 MB boundary. It allows a branch
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the branch instruction is in the last word of a 128 MB
region, it can branch only to the following 128 MB region containing the branch delay slot.

31 26 25 0

JALS32
011101

instr_index

6 26

Jump and Link, Short Delay Slot JALS

105 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Jump and Link Exchange (microMIPS Format) IJALX

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 106

Format: JALX target microMIPS

Purpose: Jump and Link Exchange (microMIPS Format)

To execute a procedure call within the current 256 MB-aligned region and change the ISA Mode from microMIPS to
32-bit MIPS.

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call. The value stored in GPR 31 bit 0 reflects the current
value of the ISA Mode bit.

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
The low 26 bits of the target address is the target field shifted left 2 bits. The remaining upper bits are the correspond-
ing bits of the address of the instruction following the branch (not the branch itself).

Jump to the effective target address, toggling the ISA Mode bit. Execute the instruction that follows the jump, in the
branch delay slot, before executing the jump itself.

Restrictions:

The delay-slot instruction must be 32-bits in size. Processor operation is UNPREDICTABLE if a 16-bit instruction
is placed in the delay slot of JALX.

Processor operation is UNPREDICTABLE if a branch or jump instruction is placed in the delay slot of a jump.

If the MIPS32 ISA is not implemented, a Reserved Instruction Exception is initiated.

Operation:

I: GPR[31] ← (PC + 8)GPRLEN-1..1 || ISAMode
I+1: PC ← PCGPRLEN-1..28 || target || 0

2

ISAMode ← (not ISAMode)

Exceptions:

None

Programming Notes:

Forming the jump target address by concatenating PC and the 26-bit target address rather than adding a signed offset
to the PC is an advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It
allows a jump to anywhere in the region from anywhere in the region which a signed relative offset would not allow.

This definition creates the boundary case where the jump instruction is in the last word of a 256 MB region and can
therefore jump only to the following 256 MB region containing the following instruction.

31 26 25 0

JALX32
111100

target

6 26

Jump and Link Exchange (microMIPS Format) JALX

107 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Jump Register (16-bit instr size) IJR16

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 108

Format: JR16 rs microMIPS

Purpose: Jump Register (16-bit instr size)

To execute a branch to an instruction address in a register

Description: PC ← GPR[rs]

Jump to the effective target address in GPR rs. Execute the instruction following the jump, in the branch delay slot,
before jumping.

For processors that implement MIPS32 ISA, set the ISA Mode bit to the value in GPR rs bit 0. Bit 0 of the target
address is always zero so that no Address Exceptions occur when bit 0 of the source register is one

Restrictions:

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS32 and the ISAMode bit of the target address is MIPS32 (bit 0 of GPR rs is 0)
and address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an
instruction.

For processors that do not implement MIPS32 ISA, if the intended target ISAMode is MIPS32 (bit 0 of GPR rs is
zero), an Address Error exception occurs when the jump target is fetched as an instruction.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: temp ← GPR[rs]
I+1:if Config3ISA = 1 then

PC ← temp
else

PC ← tempGPRLEN-1..1 || 0
ISAMode ← temp0

endif

Exceptions:

None

15 10 9 5 4 0

POOL16C
010001

JR16
01100 rs

6 5 5

Jump Register (16-bit instr size) JR16

109 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Jump Register, Adjust Stack Pointer (16-bit) IJRADDIUSP

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 110

Format: JRADDIUSP decoded_immediate microMIPS

Purpose: Jump Register, Adjust Stack Pointer (16-bit)

To execute a branch to an instruction address in a register and adjust stack pointer

Description: PC ← GPR[ra]; SP ← SP + zero_extend(Immediate << 2)

The program unconditionally jumps to the address specified in GPR 31. If MIPS32 is implemented, the instruction
sets the ISA Mode bit to the value in GPR 31 bit 0.

Bit 0 of the target address is always zero so that no Address Exceptions occur when bit 0 of the source register is one.

The 5-bit immediate field is first shifted left by two bits and then zero-extended. This amount is then added to the 32-
bit value of GPR 29 and the 32-bit arithmetic result is placed into GPR 29. No Integer Overflow exception occurs
under any circumstances for the update of GPR 29.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS32 and the ISAMode bit of the target address is MIPS32 (bit 0 of GPR rs is 0)
and address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an
instruction.

For processors that do not implement MIPS32 ISA, if the intended target ISAMode is MIPS32 (bit 0 of GPR rs is
zero), an Address Error exception occurs when the jump target is fetched as an instruction.

Operation:

I:
PC ← GPR[31]GPRLEN-1..1 || 0
if (Config3ISA > 1)

ISAMode ← GPR[31]0
endif

I+1:
temp ← GPR[29] + zero_extend(immediate || 02)
GPR[29] ← temp

Exceptions:

None.

Programming Notes:

Unlike most MIPS “jump” instructions, JRADDIIUSP does not have a delay slot.

15 10 9 5 4 0

POOL16C
010001

JRADDIUSP
11000

Immediate

6 5 5

Jump Register, Adjust Stack Pointer (16-bit) JRADDIUSP

111 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Jump Register, Compact (16-bit) IJRC

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 112

Format: JRC rs microMIPS

Purpose: Jump Register, Compact (16-bit)

To execute a branch to an instruction address in a register

Description: PC ← GPR[rs]

The program unconditionally jumps to the address specified in GPR rs, with no delay slot instruction. If MIPS32 is
implemented, the instruction sets the ISA Mode bit to the value in GPR rs bit 0.

If MIPS32 is implemented, bit 0 of the target address is always zero so that no Address Exceptions occur when bit 0
of the source register is one.

Restrictions:

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS32 and the ISAMode bit of the target address is MIPS32 (bit 0 of GPR rs is 0)
and address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an
instruction.

For processors that do not implement MIPS32 ISA, if the intended target ISAMode is MIPS32 (bit 0 of GPR rs is
zero), an Address Error exception occurs when the jump target is fetched as an instruction.

Operation:

I: PC ← GPR[rs]GPRLEN-1..1 || 0
if (Config3ISA > 1)

ISAMode ← GPR[rs1]0
endif

Exceptions:

None.

Programming Notes:

Unlike most MIPS “jump” instructions, JRC does not have a delay slot.

15 10 9 5 4 0

POOL16C
010001

JRC16
01101

rs

6 5 5

Jump Register, Compact (16-bit) JRC

113 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Byte Unsigned (16-bit instr size) ILBU16

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 114

Format: LBU16 rt, decoded_offset(base) microMIPS

Purpose: Load Byte Unsigned (16-bit instr size)

To load a byte from memory as an unsigned value

Description: GPR[rt] ← memory[GPR[base] + decoded_offset]

The encoded offset field is decoded to get the actual offset value. This decoded value is added to the contents of base
register to create the effective address. Table 5.11 shows the encoded and decode values of the offset field.

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, zero-extended,
and placed in GPR rt. The 4-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

decoded_offset ← Decode(encoded_offset)

15 10 9 7 6 4 3 0

LBU16
000010

rt base encoded
offset

6 3 3 4

Table 5.11 Offset Field Encoding Range -1, 0..14

Encoded Input
(Hex)

Decoded Value
(Decimal)

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

a 10

b 11

c 12

d 13

e 14

f -1

Load Byte Unsigned (16-bit instr size) LBU16

115 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

vAddr ← sign_extend(decoded_offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
memword ← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr1..0 xor BigEndianCPU2

GPR[rt] ← zero_extend(memword7+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Watch

Load Halfword Unsigned (16-bit instr size) ILHU16

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 116

Format: LHU16 rt, left_shifted_offset(base) microMIPS

Purpose: Load Halfword Unsigned (16-bit instr size)

To load a halfword from memory as an unsigned value

Description: GPR[rt] ← memory[GPR[base] + (offset × 2)]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
zero-extended, and placed in GPR rt. The 4-bit unsigned offset is left shifted by one bit and then added to the contents
of GPR base to form the effective address.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ← zero_extend(offset || 0) + GPR[base]
if vAddr0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE–1..2 || (pAddr1..0 xor (ReverseEndian || 0))
memword ← LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr1..0 xor (BigEndianCPU || 0)
GPR[rt] ← zero_extend(memword15+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Watch

15 10 9 7 6 4 3 0

LHU16
001010

rt base offset

6 3 3 4

Load Halfword Unsigned (16-bit instr size) LHU16

117 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Immediate Word (16-bit instr size) ILI16

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 118

Format: LI16 rd, decoded_immediate microMIPS

Purpose: Load Immediate Word (16-bit instr size)

To load a 6-bit constant into a register.

Description: GPR[rd] ← decoded_immediate

The 7-bit encoded Immediate field is decoded to obtain the actual immediate value. Table 5.12 shows the encoded
values of the Immeidiate field and the actual immediate values.

The actual decoded immediate value is sign-extended and placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

decoded_immediate ← Decode(encoded_immediate)
temp ← sign_extend(decoded_immediate)
GPR[rd] ← temp31..0

Exceptions:

None

15 10 9 7 6 0

LI16
111011

rd Encoded
Immediate

6 3 7

Table 5.12 LI16 -1, 0..126 Immediate Field Encoding Range

Encoded Input
(Hex)

Decoded Value
(Decimal)

0 0

1 1

2 2

3 3

... ...

7e 126

7f -1

Load Immediate Word (16-bit instr size) LI16

119 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Word (16-bit instr size) ILW16

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 120

Format: LW16 rt, left_shifted_offset(base) microMIPS

Purpose: Load Word (16-bit instr size)

To load a word from memory as a signed value

Description: GPR[rt] ← memory[GPR[base] + (offset × 4)]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 4-bit signed offset is left shifted by two
bits and then is added to the contents of GPR base to form the effective address.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset|| 02) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ← memword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

15 10 9 7 6 4 3 0

LW16
011010

rt base offset

6 3 3 4

Load Word (16-bit instr size) LW16

121 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Word Multiple ILWM32

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 122

Format: LWM32 {sre16, } {ra}, offset(base) microMIPS

Purpose: Load Word Multiple

To load a sequence of consecutive words from memory

Description: {GPR[16],{GPR[17],{GPR[18],{GPR[19],{GPR[20],{GPR[21],{GPR[22],{GPR[23],
{GPR[30]}}}}}}}}}{GPR[31]} ←
memory[GPR[base]+offset],...,memory[GPR[base]+offset+4*(fn(reglist))]

The contents of consecutive 32-bit words at the memory location specified by the 32-bit aligned effective address are
fetched, sign-extended to the GPR register length if necessary, and placed in the GPRs defined by reglist. The 12-bit
signed offset is added to the contents of GPR base to form the effective address.

The following table shows the encoding of the reglist field.

The register numbers and the effective addresses are correlated using the order listed in the table, starting with the

31 26 25 21 20 16 15 12 11 0

POOL32B
001000

reglist base
LWM32

0101
offset

6 5 5 4 12

reglist Encoding
(binary) List of Registers Loaded

0 0 0 0 1 GPR[16]

0 0 0 1 0 GPR[16], GPR[17]

0 0 0 1 1 GPR[16], GPR[17], GPR[18]

0 0 1 0 0 GPR[16], GPR[17], GPR[18], GPR[19]

0 0 1 0 1 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20]

0 0 1 1 0 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21]

0 0 1 1 1 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22]

0 1 0 0 0 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23]

0 1 0 0 1 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[30]

1 0 0 0 0 GPR[31]

1 0 0 0 1 GPR[16], GPR[31]

1 0 0 1 0 GPR[16], GPR[17], GPR[31]

1 0 0 1 1 GPR[16], GPR[17], GPR[18], GPR[31]

1 0 1 0 0 GPR[16], GPR[17], GPR[18], GPR[19], GPR[31]

1 0 1 0 1 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[31]

1 0 1 1 0 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[31]

1 0 1 1 1 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[31]

1 1 0 0 0 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[31]

1 1 0 0 1 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[30], GPR[31]

All other combinations Reserved

Load Word Multiple LWM32

123 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

left-most register on the list and ending with the right-most register on the list. The effective address is incremented
for each subsequent register on the list.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

The effective address must be 32-bit aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

The behavior of the instruction is UNPREDICTABLE, if base is included in reglist. Reason for this is to allow
restartability of the operation if an interrupt or exception has aborted the operation in the middle.

The behavior of this instruction is UNPREDICTABLE, if it is placed in a delay slot of a jump or branch.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
for i←0 to fn(reglist)

(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[gpr(reglist,i)] ← memword
vAddr ← vAddr + 4

endfor

function fn(list)
fn ← (number of entries in list) - 1

endfunction

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

Load Word Multiple (16-bit) ILWM16

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 124

Format: LWM16 s0, {s1, {s2, {s3,}}} ra, left_shifted_offset(sp) microMIPS

Purpose: Load Word Multiple (16-bit)

To load a sequence of consecutive words from memory

Description: GPR[16], {GPR[17], {GPR[18], {GPR[19],}}} GPR[31] ←
memory[GPR[29]+(offset<<2)],...,memory[GPR[19]+(offset<<2)+4*(fn(reglist))]

The contents of consecutive 32-bit words at the memory location specified by the 32-bit aligned effective address are
fetched, sign-extended to the GPR register length if necessary, and placed in the GPRs defined by reglist. The 4-bit
unsigned offset is first left shifted by two bits and then added to the contents of GPR sp to form the effective address.

The following table shows the encoding of the reglist field.

The register numbers and the effective addresses are correlated using the order listed in the table, starting with the
left-most register on the list and ending with the right-most register on the list. The effective address is incremented
for each subsequent register on the list.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

The effective address must be 32-bit aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

The behavior of this instruction is UNPREDICTABLE, if it is placed in a delay slot of a jump or branch.

Operation:

vAddr ← zero_extend(offset||02) + GPR[sp]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
for i←0 to fn(reglist)

(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[gpr(reglist,i)] ← memword
vAddr ← vAddr + 4

endfor

15 10 9 6 5 4 3 0

POOL16C
010001

LWM16
0100

reglist offset

6 4 2 4

reglist Encoding
(binary) List of Registers Loaded

0 0 GPR[16], GPR[31]

0 1 GPR[16], GPR[17], GPR[31]

1 0 GPR[16], GPR[17], GPR[18], GPR[31]

1 1 GPR[16], GPR[17], GPR[18], GPR[19], GPR[31]

Load Word Multiple (16-bit) LWM16

125 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

function fn(list)
fn ← number of entries in list - 1

endfunction

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

Load Word Pair ILWP

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 126

Format: LWP rd, offset(base) microMIPS

Purpose: Load Word Pair

To load two consecutive words from memory

Description: GPR[rd], GPR[rd+1] ← memory[GPR[base] + offset]

The contents of the two consecutive 32-bit words at the memory location specified by the 32-bit aligned effective
address are fetched, sign-extended to the GPR register length if necessary, and placed in GPR rd and (rd+1). The
12-bit signed offset is added to the contents of GPR base to form the effective address.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

The effective address must be 32-bit aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

The behavior of the instructions is UNPREDICTABLE if rd equals r31.

The behavior of the instruction is UNPREDICTABLE, if base and rd are the same. Reason for this is to allow
restartability of the operation if an interrupt or exception has aborted the operation in the middle.

The behavior of this instruction is UNPREDICTABLE, if it is placed in a delay slot of a jump or branch.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rd] ← memword
vAddr ← sign_extend(offset) + GPR[base] + 4
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rd+1]← memword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

31 26 25 21 20 16 15 12 11 0

POOL32B
001000

rd base
LWP
0001

offset

6 5 5 4 12

Load Word Pair LWP

127 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Word from Global Pointer (16-bit instr size) ILWGP

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 128

Format: LWGP rt, left_shifted_offset(gp) microMIPS

Purpose: Load Word from Global Pointer (16-bit instr size)

To load a word from memory as a signed value

Description: GPR[rt] ← memory[GPR[28] + (offset × 4)]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 7-bit signed offset is left shifted by two
bits and then added to the contents of GPR 28 to form the effective address.

Restrictions:

The 3-bit register field can only specify GPRs $2-$7, $16, $17.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset|| 02) + GPR[28]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ← memword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

15 10 9 7 6 0

LWGP16
011001

rt offset

6 3 7

Load Word from Global Pointer (16-bit instr size) LWGP

129 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Word from Stack Pointer (16-bit instr size) ILWSP

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 130

Format: LWSP rt, left_shifted_offset(sp) microMIPS

Purpose: Load Word from Stack Pointer (16-bit instr size)

To load a word from memory as a signed value

Description: GPR[rt] ← memory[GPR[29] + (offset × 4)]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 5-bit signed offset is left shifted by two
bits, zero-extended and then is added to the contents of GPR 29 to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← zero_extend(offset|| 02) + GPR[29]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ← memword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

15 10 9 5 4 0

LWSP16
010010

rt offset

6 5 5

Load Word from Stack Pointer (16-bit instr size) LWSP

131 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Word Indexed, Scaled ILWXS

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 132

Format: LWXS rd, index(base) microMIPS

Purpose: Load Word Indexed, Scaled

To load a word from memory as a signed value, using scaled indexed addressing.

Description: GPR[rd] ← memory[GPR[base] + (GPR[index] × 4)]

The contents of GPR index is multiplied by 4 and the result is added to the contents of GPR base to form an effective
address. The contents of the 32-bit word at the memory location specified by the aligned effective address are
fetched, sign-extended to the GPR register length if necessary, and placed in GPR rd.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← (GPR[index]29..0 || 02) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rd] ← memword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

index base rd 0
LWXS

0100011000

6 5 5 5 1 10

Load Word Indexed, Scaled LWXS

133 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Move From HI Register (16-bit instr size) IMFHI16

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 134

Format: MFHI16 rd microMIPS

Purpose: Move From HI Register (16-bit instr size)

To copy the special purpose HI register to a GPR

Description: GPR[rd] ← HI

The contents of special register HI are loaded into GPR rd.

Restrictions:

None

Operation:

GPR[rd] ← HI

Exceptions:

None

Historical Information:

In the MIPS I, II, and III architectures, the two instructions which follow the MFHI must not modify the HI register.
If this restriction is violated, the result of the MFHI is UNPREDICTABLE. This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

15 10 9 5 4 0

POOL16C
010001

MFHI16
10000

rd

6 5 5

Move From HI Register (16-bit instr size) MFHI16

135 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Move From LO Register IMFLO16

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 136

Format: MFLO16 rd microMIPS

Purpose: Move From LO Register

To copy the special purpose LO register to a GPR

Description: GPR[rd] ← LO

The contents of special register LO are loaded into GPR rd.

Restrictions:

None

Operation:

GPR[rd] ← LO

Exceptions:

None

Historical Information:

In the MIPS I, II, and III architectures, the two instructions which follow the MFHI must not modify the HI register.
If this restriction is violated, the result of the MFHI is UNPREDICTABLE. This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

15 10 9 5 4 0

POOL16C
010001

MFLO16
10010

rd

6 5 5

Move From LO Register MFLO16

137 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Move Register (16-bit instr size) IMOVE16

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 138

Format: MOVE16 rd, rs microMIPS

Purpose: Move Register (16-bit instr size)

To copy one GPR to another GPR.

Description: GPR[rd] ← GPR[rs]

The contents of GPR rs are placed into GPR rd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs]

Exceptions:

None

15 10 9 5 4 0

MOVE16
000011

rd rs

6 5 5

Move Register (16-bit instr size) MOVE16

139 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Invert (16-bit instr size) INOT16

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 142

Format: NOT16 rt, rs microMIPS

Purpose: Invert (16-bit instr size)

To do a bitwise logical inversion.

Description: GPR[rt] ← GPR[rs] XOR 0xffffffff

Invert the contents of GPR rs in a bitwise fashion and place the result into GPR rt.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

GPR[rt] ← GPR[rs] xor 0xffffffff

Exceptions:

None

15 10 9 6 5 3 2 0

POOL16C
010001

NOT16
0000

rt rs

6 4 3 3

Invert (16-bit instr size) NOT16

143 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Or (16-bit instr size) IOR16

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 144

Format: OR16 rt, rs MIPS32

Purpose: Or (16-bit instr size)

To do a bitwise logical OR

Description: GPR[rt] ← GPR[rs] or GPR[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical OR operation. The result is
placed into GPR rt.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

GPR[rt] ← GPR[rs] or GPR[rt]

Exceptions:

None

15 10 9 6 5 3 2 0

POOL16C
010001

OR16
0011

rt rs

6 4 3 3

Or (16-bit instr size) OR16

145 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Byte (16-bit instr size) ISB16

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 146

Format: SB16 rt, offset(base) microMIPS

Purpose: Store Byte (16-bit instr size)

To store a byte to memory

Description: memory[GPR[base] + offset] ← GPR[rt]

The least-significant 8-bit byte of GPR rt is stored in memory at the location specified by the effective address. The
4-bit unsigned offset is added to the contents of GPR base to form the effective address.

Restrictions:

The 3-bit base register field can only specify GPRs $2-$7, $16, $17.

The 3-bit rt register field can only specify GPRs $0, $2-$7, $17.

Operation:

vAddr ← zero_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
bytesel ← vAddr1..0 xor BigEndianCPU2

dataword ← GPR[rt]31–8*bytesel..0 || 0
8*bytesel

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch

15 10 9 7 6 4 3 0

SB16
100010

rt base offset

6 3 3 4

Store Byte (16-bit instr size) SB16

147 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Software Debug Breakpoint (16-bit instr size) ISDBBP16

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 148

Format: SDBBP16 code EJTAG+microMIPS

Purpose: Software Debug Breakpoint (16-bit instr size)

To cause a debug breakpoint exception

Description:

This instruction causes a debug exception, passing control to the debug exception handler. If the processor is execut-
ing in Debug Mode when the SDBBP instruction is executed, the exception is a Debug Mode Exception, which sets
the DebugDExcCode field to the value 0x9 (Bp). The code field can be used for passing information to the debug
exception handler, and is retrieved by the debug exception handler only by loading the contents of the memory word
containing the instruction, using the DEPC register. The CODE field is not used in any way by the hardware.

Restrictions:

Operation:

If DebugDM = 0 then
SignalDebugBreakpointException()

else
SignalDebugModeBreakpointException()

endif

Exceptions:

Debug Breakpoint Exception
Debug Mode Breakpoint Exception

15 10 9 4 3 0

POOL16C
010001

SDBBP16
101100

code

6 6 4

Software Debug Breakpoint (16-bit instr size) SDBBP16

149 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Halfword (16-bit instr size) ISH16

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 150

Format: SH16 rt, left_shifted_offset(base) microMIPS

Purpose: Store Halfword (16-bit instr size)

To store a halfword to memory

Description: memory[GPR[base] + (offset × 2)] ← GPR[rt]

The least-significant 16-bit halfword of register rt is stored in memory at the location specified by the aligned effec-
tive address. The 4-bit unsigned offset is left shifted by one bit and then added to the contents of GPR base to form
the effective address.

Restrictions:

The 3-bit base register field can only specify GPRs $2-$7, $16, $17.

The 3-bit rt register field can only specify GPRs $0, $2-$7, $17.

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ← zero_extend(offset|| 0) + GPR[base]
if vAddr0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor (ReverseEndian || 0))
bytesel ← vAddr1..0 xor (BigEndianCPU || 0)
dataword ← GPR[rt]31–8*bytesel..0 || 0

8*bytesel

StoreMemory (CCA, HALFWORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

15 10 9 7 6 4 3 0

SH16
101010

rt base offset

6 3 3 4

Store Halfword (16-bit instr size) SH16

151 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Shift Word Left Logical (16-bit instr size) ISLL16

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 152

Format: SLL16 rd, rt, decoded_sa microMIPS

Purpose: Shift Word Left Logical (16-bit instr size)

To left-shift a word by a fixed number of bits

Description: GPR[rd] ← GPR[rt] << decoded_sa

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting zeros into the emptied bits; the word
result is placed in GPR rd. The bit-shift amount is specified by decoding the encoded_sa field. Table 5.15 lists the
encoded values of the encoded_sa field and the actual bit shift amount values.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

decoded_sa ← DECODE(encoded_sa)
s ← decoded_sa
temp ← GPR[rt](31-s)..0 || 0

s

GPR[rd] ← temp

Exceptions:

None

Programming Notes:

15 10 9 7 6 4 3 1 0

POOL16B
001001

rd rt
encoded

sa
0

6 3 3 3 1

Table 5.15 Shift Amount Field Encoding

Encoded Input
(Hex)

Decoded Value
(Decimal)

0 8

1 1

2 2

3 3

4 4

5 5

6 6

7 7

Shift Word Left Logical (16-bit instr size) SLL16

153 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Shift Word Right Logical (16-bit instr size) ISRL16

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 154

Format: SRL16 rd, rt, decoded_sa microMIPS

Purpose: Shift Word Right Logical (16-bit instr size)

To execute a logical right-shift of a word by a fixed number of bits

Description: GPR[rd] ← GPR[rt] >> decoded_sa (logical)

The contents of the low-order 32-bit word of GPR rt are shifted right, inserting zeros into the emptied bits; the word
result is placed in GPR rd. The bit-shift amount is specified by . by decoding the encoded_sa field. Table 5.16 lists the
encoded values of the encoded_sa field and the actual bit shift amount values.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

decoded_sa ← DECODE(encoded_sa)
s ← decoded_sa
temp ← 0s || GPR[rt]31..s
GPR[rd] ← temp

Exceptions:

None

15 10 9 7 6 4 3 1 0

POOL16B
001001

rd rt
encoded

sa
1

6 3 3 3 1

Table 5.16 Shift Amount Field Encoding

Encoded Input
(Hex)

Decoded Value
(Decimal)

0 8

1 1

2 2

3 3

4 4

5 5

6 6

7 7

Shift Word Right Logical (16-bit instr size) SRL16

155 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Subtract Unsigned Word (16-bit instr size) ISUBU16

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 156

Format: SUBU16 rd, rs, rt microMIPS

Purpose: Subtract Unsigned Word (16-bit instr size)

To subtract 32-bit integers

Description: GPR[rd] ← GPR[rs] − GPR[rt]

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rs and the 32-bit arithmetic result is and
placed into GPR rd.

No integer overflow exception occurs under any circumstances.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

temp ← GPR[rs] − GPR[rt]
GPR[rd] ← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

15 10 9 7 6 1 0

POOL16A
000001

rd rt rs 1

6 3 3 3 1

Subtract Unsigned Word (16-bit instr size) SUBU16

157 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Word (16-bit instr size) ISW16

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 158

Format: SW16 rt, left_shifted_offset(base) microMIPS

Purpose: Store Word (16-bit instr size)

To store a word to memory

Description: memory[GPR[base] + (offset × 4)] ← GPR[rt]

The least-significant 32-bit word of GPR rt is stored in memory at the location specified by the aligned effective
address. The 4-bit unsigned offset is left-shifted by two bits and then added to the contents of GPR base to form the
effective address.

Restrictions:

The 3-bit base register field can only specify GPRs $2-$7, $16, $17.

The 3-bit rt register field can only specify GPRs $0, $2-$7, $17.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← zero_extend(offset || 02) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[rt]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

15 10 9 7 6 4 3 0

SW16
111010

rt base offset

6 3 3 4

Store Word (16-bit instr size) SW16

159 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Word to Stack Pointer (16-bit instr size) ISWSP

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 160

Format: SWSP rt, left_shifted_offset(base) microMIPS

Purpose: Store Word to Stack Pointer (16-bit instr size)

To store a word to memory

Description: memory[GPR[29] + (offset × 4)] ← GPR[rt]

The least-significant 32-bit word of GPR rt is stored in memory at the location specified by the aligned effective
address. The 5-bit signed offset is left shifted by two bits, zero-extended and then is added to the contents of GPR 29
to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← zero_extend(offset|| 02) + GPR[29]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[rt]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

15 10 9 5 4 0

SWSP16
110010

rt offset

6 5 5

Store Word to Stack Pointer (16-bit instr size) SWSP

161 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Word Multiple ISWM32

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 162

Format: SWM32 {sregs, } {ra}, offset(base) microMIPS

Purpose: Store Word Multiple

To store a sequence of consecutive words to memory

Description: memory[GPR[base]+offset],...,memory[GPR[base]+offset+4*(fn(reglist))] ←
{GPR[16],{GPR[17],{GPR[18],{GPR[19],{GPR[20],{GPR[21],{GPR[22],{GPR[23],
{GPR[30]}}}}}}}}}{GPR[31]}

The least-significant 32-bit words of the GPRs defined by reglist are stored in memory at the location specified by the
aligned effective address. The 12-bit signed offset is added to the contents of GPR base to form the effective address.

The following table shows the encoding of the reglist field.

The register numbers and the effective addresses are correlated using the order listed in the table, starting with the
left-most register on the list and ending with the right-most register on the list. The effective address is incremented

31 26 25 21 20 16 15 12 11 0

POOL32B
001000

reglist base
SWM
1101

offset

6 5 5 4 12

reglist Encoding
(binary) List of Registers Loaded

0 0 0 0 1 GPR[16]

0 0 0 1 0 GPR[16], GPR[17]

0 0 0 1 1 GPR[16], GPR[17], GPR[18]

0 0 1 0 0 GPR[16], GPR[17], GPR[18], GPR[19]

0 0 1 0 1 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20]

0 0 1 1 0 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21]

0 0 1 1 1 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22]

0 1 0 0 0 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23]

0 1 0 0 1 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[30]

1 0 0 0 0 GPR[31]

1 0 0 0 1 GPR[16], GPR[31]

1 0 0 1 0 GPR[16], GPR[17], GPR[31]

1 0 0 1 1 GPR[16], GPR[17], GPR[18], GPR[31]

1 0 1 0 0 GPR[16], GPR[17], GPR[18], GPR[19], GPR[31]

1 0 1 0 1 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[31]

1 0 1 1 0 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[31]

1 0 1 1 1 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[31]

1 1 0 0 0 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[31]

1 1 0 0 1 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[30], GPR[31]

All other combinations Reserved

Store Word Multiple SWM32

163 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

for each subsequent register on the list.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

The effective address must be 32-bit aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

The behavior of this instruction is UNPREDICTABLE, if it is placed in a delay slot of a jump or branch.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
for i←0 to fn(reglist)

(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[gpr(reglist,i)]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
vAddr ← vAddr + 4

endfor

function fn(list)
fn ← (number of entries in list) - 1

endfunction

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Store Word Multiple (16-bit) ISWM16

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 164

Format: SWM16 s0, {s1, {s2, {s3,}}} ra, left_shifted_offset(sp) microMIPS

Purpose: Store Word Multiple (16-bit)

To store a sequence of consecutive words to memory

Description: memory[GPR[29]],...,memory[GPR[29]+(offset<<2)+4*(2+fn(reglist))] ←
GPR[16], {GPR[17], {GPR[18], {GPR[19],}}} GPR[31]

The least-significant 32-bit words of the GPRs defined by reglist are stored in memory at the location specified by the
aligned effective address. The 4-bit unsigned offset is added to the contents of GPR sp to form the effective address.

The following table shows the encoding of the reglist field.

The register numbers and the effective addresses are correlated using the order listed in the table, starting with the
left-most register on the list and ending with the right-most register on the list. The effective address is incremented
for each subsequent register on the list.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

The effective address must be 32-bit aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

The behavior of this instruction is UNPREDICTABLE, if it is placed in a delay slot of a jump or branch.

Operation:

vAddr ← zero_extend(offset||02) + GPR[sp]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
for i←0 to fn(reglist)

(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[gpr(reglist,i)]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
vAddr ← vAddr + 4

endfor

function fn(list)

15 10 9 6 5 4 3 0

POOL16C
010001

SWM16
0101

reglist offset

6 4 2 4

reglist Encoding
(binary) List of Registers Stored

0 0 GPR[16], GPR[31]

0 1 GPR[16], GPR[17], GPR[31]

1 0 GPR[16], GPR[17], GPR[18], GPR[31]

1 1 GPR[16], GPR[17], GPR[18], GPR[19], GPR[31]

Store Word Multiple (16-bit) SWM16

165 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

fn ← number of entries in list - 1
endfunction

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Store Word Pair ISWP

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 166

Format: SWP rs1, offset(base) microMIPS

Purpose: Store Word Pair

To store two consecutive words to memory

Description: memory[GPR[base] + offset] ← GPR[rs1], GPR[rs1+1]

The least-significant 32-bit words of GPR rs1 and GPR rs1+1 are stored in memory at the location specified by the
aligned effective address. The 12-bit signed offset is added to the contents of GPR base to form the effective address.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

The effective address must be 32-bit aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

The behavior of the instructions is UNDEFINED if rd equals $31.

The behavior of this instruction is UNDEFINED, if it is placed in a delay slot of a jump or branch.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[rs1]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

vAddr ← sign_extend(offset) + GPR[base] + 4
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[rs1+1]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

31 26 25 21 20 16 15 12 11 0

POOL32B
001000

rs1 base
SWP
1001

offset

6 5 5 4 12

Store Word Pair SWP

167 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Exclusive OR (16-bit instr size) IXOR16

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 168

Format: XOR16 rt, rs microMIPS

Purpose: Exclusive OR (16-bit instr size)

To do a bitwise logical Exclusive OR

Description: GPR[rt] ← GPR[rs] XOR GPR[rt]

Combine the contents of GPR rs and GPR rt in a bitwise logical Exclusive OR operation and place the result into
GPR rt.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

GPR[rt] ← GPR[rs] xor GPR[rt]

Exceptions:

None

15 10 9 6 5 3 2 0

POOL16C
010001

XOR16
0001

rt rs

6 4 3 3

Chapter 5

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 169

5.5 Recoded 32-Bit Instructions

This section defines the recoded instructions of the existing instruction sets.

Floating Point Absolute Value ABS.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 170

Format: ABS.fmt
ABS.S ft, fs microMIPS
ABS.D ft, fs microMIPS
ABS.PS ft, fs microMIPS

Purpose: Floating Point Absolute Value

Description: FPR[ft] ← abs(FPR[fs])

The absolute value of the value in FPR fs is placed in FPR ft. The operand and result are values in format fmt. ABS.PS
takes the absolute value of the two values in FPR fs independently, and ORs together any generated exceptions.

Cause bits are ORed into the Flag bits if no exception is taken.

If FIRHas2008=0 or FCSRABS2008=0 then this operation is arithmetic. For this case, any NaN operand signals invalid
operation.

If FCSRABS2008=1 then this operation is non-arithmetic. For this case, both regular floating point numbers and NAN
values are treated alike, only the sign bit is affected by this instruction. No IEEE exception can be generated for this
case.

Restrictions:

The fields fs and ft must specify FPRs valid for operands of type fmt. If they are not valid, the result is UNPREDICT-
ABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of ABS.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model;
i.e. it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(ft, fmt, AbsoluteValue(ValueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

31 26 25 21 20 16 15 14 13 12 6 5 0

POOL32F
010101

ft fs 0 fmt
ABS

0001101
POOL32FXf

111011

6 5 5 1 2 7 6

Floating Point Absolute Value ABS.fmt

171 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Add Word ADD

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 172

Format: ADD rd, rs, rt microMIPS

Purpose: Add Word

To add 32-bit integers. If an overflow occurs, then trap.

Description: GPR[rd] ← GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to produce a 32-bit result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs.

• If the addition does not overflow, the 32-bit result is placed into GPR rd.

Restrictions:

None

Operation:

temp ← (GPR[rs]31||GPR[rs]31..0) + (GPR[rt]31||GPR[rt]31..0)
if temp32 ≠ temp31 then

SignalException(IntegerOverflow)
else

GPR[rd] ← temp
endif

Exceptions:

Integer Overflow

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs rd
0 ADD

0100010000

6 5 5 5 1 10

Floating Point Add ADD.fmt

173 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: ADD.fmt
ADD.S fd, fs, ft microMIPS
ADD.D fd, fs, ft microMIPS
ADD.PS fd, fs, ft microMIPS

Purpose: Floating Point Add

To add floating point values

Description: FPR[fd] ← FPR[fs] + FPR[ft]

The value in FPR ft is added to the value in FPR fs. The result is calculated to infinite precision, rounded by using to
the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.
ADD.PS adds the upper and lower halves of FPR fs and FPR ft independently, and ORs together any generated excep-
tions.

Cause bits are ORed into the Flag bits if no exception is taken.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is UNPRE-
DICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of ADD.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model;
i.e. it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) +fmt ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Inexact, Overflow, Underflow

31 26 25 21 20 16 15 11 10 9 8 7 0

POOL32F
010101

ft fs fd 0 fmt
ADD

00110000

6 5 5 5 1 2 8

Floating Point Add ADD.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 174

Add Immediate Word ADDI

175 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: ADDI rt, rs, immediate microMIPS

Purpose: Add Immediate Word

To add a constant to a 32-bit integer. If overflow occurs, then trap.

Description: GPR[rt] ← GPR[rs] + immediate

The 16-bit signed immediate is added to the 32-bit value in GPR rs to produce a 32-bit result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs.

• If the addition does not overflow, the 32-bit result is placed into GPR rt.

Restrictions:

None

Operation:

temp ← (GPR[rs]31||GPR[rs]31..0) + sign_extend(immediate)
if temp32 ≠ temp31 then

SignalException(IntegerOverflow)
else

GPR[rt] ← temp
endif

Exceptions:

Integer Overflow

Programming Notes:

ADDIU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 0

ADDI32
000100

rt rs immediate

6 5 5 16

Add Immediate Unsigned Word ADDIU

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 176

Format: ADDIU rt, rs, immediate microMIPS

Purpose: Add Immediate Unsigned Word

To add a constant to a 32-bit integer

Description: GPR[rt] ← GPR[rs] + immediate

The 16-bit signed immediate is added to the 32-bit value in GPR rs and the 32-bit arithmetic result is placed into
GPR rt.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

temp ← GPR[rs] + sign_extend(immediate)
GPR[rt] ← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 0

ADDIU32
001100

rt rs immediate

6 5 5 16

Add Unsigned Word ADDU

177 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: ADDU rd, rs, rt microMIPS

Purpose: Add Unsigned Word

To add 32-bit integers

Description: GPR[rd] ← GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs and the 32-bit arithmetic result is placed into
GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

temp ← GPR[rs] + GPR[rt]
GPR[rd] ← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 11 10 0

POOL32A
000000

rt rs rd 0
ADDU

0101010000

6 5 5 5 1 10

Floating Point Align Variable ALNV.PS

179 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

else
StoreFPR(fd, PS, ValueFPR(ft, PS)31..0 || ValueFPR(fs,PS)63..32)

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

ALNV.PS is designed to be used with LUXC1 to load 8 bytes of data from any 4-byte boundary. For example:

/* Copy T2 bytes (a multiple of 16) of data T0 to T1, T0 unaligned, T1 aligned.
Reads one dw beyond the end of T0. */

LUXC1 F0, 0(T0) /* set up by reading 1st src dw */
LI T3, 0 /* index into src and dst arrays */
ADDIU T4, T0, 8 /* base for odd dw loads */
ADDIU T5, T1, -8/* base for odd dw stores */

LOOP:
LUXC1 F1, T3(T4)
ALNV.PS F2, F0, F1, T0/* switch F0, F1 for little-endian */
SDC1 F2, T3(T1)
ADDIU T3, T3, 16
LUXC1 F0, T3(T0)
ALNV.PS F2, F1, F0, T0/* switch F1, F0 for little-endian */
BNE T3, T2, LOOP
SDC1 F2, T3(T5)

DONE:

ALNV.PS is also useful with SUXC1 to store paired-single results in a vector loop to a possibly misaligned address:

/* T1[i] = T0[i] + F8, T0 aligned, T1 unaligned. */
CVT.PS.S F8, F8, F8/* make addend paired-single */

/* Loop header computes 1st pair into F0, stores high half if T1 */
/* misaligned */

LOOP:
LDC1 F2, T3(T4)/* get T0[i+2]/T0[i+3] */
ADD.PS F1, F2, F8/* compute T1[i+2]/T1[i+3] */
ALNV.PS F3, F0, F1, T1/* align to dst memory */
SUXC1 F3, T3(T1)/* store to T1[i+0]/T1[i+1] */
ADDIU T3, 16 /* i = i + 4 */
LDC1 F2, T3(T0)/* get T0[i+0]/T0[i+1] */
ADD.PS F0, F2, F8/* compute T1[i+0]/T1[i+1] */
ALNV.PS F3, F1, F0, T1/* align to dst memory */
BNE T3, T2, LOOP
SUXC1 F3, T3(T5)/* store to T1[i+2]/T1[i+3] */

/* Loop trailer stores all or half of F0, depending on T1 alignment */

Floating Point Align Variable ALNV.PS

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 180

And AND

181 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: AND rd, rs, rt microMIPS

Purpose: And

To do a bitwise logical AND

Description: GPR[rd] ← GPR[rs] AND GPR[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical AND operation. The result is
placed into GPR rd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] and GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs rd 0
AND

1001010000

6 5 5 5 1 10

And Immediate ANDI

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 182

Format: ANDI rt, rs, immediate microMIPS

Purpose: And Immediate

To do a bitwise logical AND with a constant

Description: GPR[rt] ← GPR[rs] AND immediate

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR rs in a bitwise logical AND
operation. The result is placed into GPR rt.

Restrictions:

None

Operation:

GPR[rt] ← GPR[rs] and zero_extend(immediate)

Exceptions:

None

31 26 25 21 20 16 15 0

ANDI32
110100

rt rs immediate

6 5 5 16

Unconditional Branch B

183 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: B offset Assembly Idiom

Purpose: Unconditional Branch

To do an unconditional branch

Description: branch

B offset is the assembly idiom used to denote an unconditional branch. The actual instruction is interpreted by the
hardware as BEQ r0, r0, offset.

An 17-bit signed offset (the 16-bit offset field shifted left 1 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 01)
I+1: PC ← PC + target_offset

Exceptions:

None

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is ± 64 Kbytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

BEQ32
100101

0
00000

0
00000

offset

6 5 5 16

Branch on Less Than or Equal to Zero IBLEZ

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 184

Format: BLEZ rs, offset microMIPS

Purpose: Branch on Less Than or Equal to Zero

To test a GPR then do a PC-relative conditional branch

Description: if GPR[rs] ≤ 0 then branch

A 17-bit signed offset (the 16-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are less than or equal to zero (sign bit is 1 or value is zero), branch to the effective target
address after the instruction in the delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 01)
condition ← GPR[rs] ≤ 0GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is ± 64 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

POOL32I
010000

BLEZ
00100

rs offset

6 5 5 16

Branch on Less Than or Equal to Zero BLEZ

185 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Branch and Link IBAL

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 186

Format: BAL offset Assembly Idiom

Purpose: Branch and Link

To do an unconditional PC-relative procedure call

Description: procedure_call

BAL offset is the assembly idiom used to denote an unconditional branch. The actual instruction is interpreted by the
hardware as BGEZAL r0, offset.

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 17-bit signed offset (the 16-bit offset field shifted left 1 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
re-executed. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by re-executing the branch when an exception occurs in the branch delay slot.

Operation:

I: target_offset ← sign_extend(offset || 01)
GPR[31] ← PC + 8

I+1: PC ← PC + target_offset

Exceptions:

None

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is ± 64 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

31 26 25 21 20 16 15 0

POOL32I
010000

BGEZAL
00011

0
00000

offset

6 5 5 16

Branch and Link BAL

187 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Branch on FP False IBC1F

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 188

Format: BC1F offset (cc = 0 implied) microMIPS
BC1F cc, offset microMIPS

Purpose: Branch on FP False

To test an FP condition code and do a PC-relative conditional branch

Description: if FPConditionCode(cc) = 0 then branch

A 17-bit signed offset (the 16-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FP condi-
tion code bit cc is false (0), the program branches to the effective target address after the instruction in the delay slot
is executed. An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: condition ← FPConditionCode(cc) = 0
target_offset ← (offset15)

GPRLEN-(16+1) || offset || 01

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is ± 64 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range

Historical Information:

The MIPS I architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal (Cp1Cond) and the C bit in the FP Control/Status register. MIPS I, II, and III architectures must have the CC
field set to 0, which is implied by the first format in the “Format” section.

The MIPS IV and MIPS32 architectures add seven more Condition Code bits to the original condition code 0. FP
compare and conditional branch instructions specify the Condition Code bit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

In the MIPS I, II, and III architectures there must be at least one instruction between the compare instruction that sets
the condition code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

31 26 25 21 20 18 17 16 15 0

POOL32I
010000

BC1F
11100

cc 00 offset

6 5 3 2 16

Branch on FP False BC1F

189 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Branch on FP True IBC1T

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 190

Format: BC1T offset (cc = 0 implied) microMIPS
BC1T cc, offset microMIPS

Purpose: Branch on FP True

To test an FP condition code and do a PC-relative conditional branch

Description: if FPConditionCode(cc) = 1 then branch

A 17-bit signed offset (the 16-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FP condi-
tion code bit cc is true (1), the program branches to the effective target address after the instruction in the delay slot is
executed. An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: condition ← FPConditionCode(cc) = 1
target_offset ← (offset15)

GPRLEN-(16+1) || offset || 01

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is ± 64 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Historical Information:

The MIPS I architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal (Cp1Cond) and the C bit in the FP Control/Status register. MIPS I, II, and III architectures must have the CC
field set to 0, which is implied by the first format in the “Format” section.

The MIPS IV and MIPS32 architectures add seven more Condition Code bits to the original condition code 0. FP
compare and conditional branch instructions specify the Condition Code bit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

In the MIPS I, II, and III architectures there must be at least one instruction between the compare instruction that sets
the condition code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

31 26 25 21 20 18 17 16 15 0

POOL32I
010000

BC1T
11101

cc 00 offset

6 5 3 2 16

Branch on FP True BC1T

191 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Branch on COP2 False IBC2F

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 192

Format: BC2F offset (cc = 0 implied) microMIPS
BC2F cc, offset microMIPS

Purpose: Branch on COP2 False

To test a COP2 condition code and do a PC-relative conditional branch

Description: if COP2Condition(cc) = 0 then branch

A 17-bit signed offset (the 16-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the COP2 con-
dition specified by cc is false (0), the program branches to the effective target address after the instruction in the delay
slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for
tf and nd.

I: condition ← COP2Condition(cc) = 0
target_offset ← (offset15)

GPRLEN-(16+1) || offset || 01

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is ± 64 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 18 17 16 15 0

POOL32I
010000

BC2F
10100

cc 00 offset

6 5 3 2 16

Branch on COP2 False BC2F

193 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Branch on COP2 True IBC2T

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 194

Format: BC2T offset (cc = 0 implied) microMIPS
BC2T cc, offset microMIPS

Purpose: Branch on COP2 True

To test a COP2 condition code and do a PC-relative conditional branch

Description: if COP2Condition(cc) = 1 then branch

A 17-bit signed offset (the 16-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the COP2 con-
dition specified by cc is true (1), the program branches to the effective target address after the instruction in the delay
slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for
tf and nd.

I: condition ← COP2Condition(cc) = 1
target_offset ← (offset15)

GPRLEN-(16+1) || offset || 01

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is ± 64 KBytesj. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 18 17 16 15 0

POOL32I
010000

BC2T
10101

cc 00 offset

6 5 3 2 16

Branch on COP2 True BC2T

195 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Branch on Equal IBEQ

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 196

Format: BEQ rs, rt, offset microMIPS

Purpose: Branch on Equal

To compare GPRs then do a PC-relative conditional branch

Description: if GPR[rs] = GPR[rt] then branch

A 17-bit signed offset (the 16-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are equal, branch to the effective target address after the instruction in the delay
slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 01)
condition ← (GPR[rs] = GPR[rt])

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is ± 64 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

BEQ r0, r0 offset, expressed as B offset, is the assembly idiom used to denote an unconditional branch.

31 26 25 21 20 16 15 0

BEQ32
100101

rt rs offset

6 5 5 16

Branch on Greater Than or Equal to Zero BGEZ

197 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: BGEZ rs, offset microMIPS

Purpose: Branch on Greater Than or Equal to Zero

To test a GPR then do a PC-relative conditional branch

Description: if GPR[rs] ≥ 0 then branch

A 17-bit signed offset (the 16-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 01)
condition ← GPR[rs] ≥ 0GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is ± 64 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

POOL32I
010000

BGEZ
00010

rs offset

6 5 5 16

Branch on Greater Than or Equal to Zero and Link IBGEZAL

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 198

Format: BGEZAL rs, offset microMIPS

Purpose: Branch on Greater Than or Equal to Zero and Link

To test a GPR then do a PC-relative conditional procedure call

Description: if GPR[rs] ≥ 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

A 17-bit signed offset (the 16-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed.

Restrictions:

The delay-slot instruction must be 32-bits in size. Processor operation is UNPREDICTABLE if a 16-bit instruction
is placed in the delay slot of BGEZAL.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Operation:

I: target_offset ← sign_extend(offset || 01)
condition ← GPR[rs] ≥ 0GPRLEN
GPR[31] ← PC + 8

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is ± 64 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

BGEZAL r0, offset, expressed as BAL offset, is the assembly idiom used to denote a PC-relative branch and link.
BAL is used in a manner similar to JAL, but provides PC-relative addressing and a more limited target PC range.

31 26 25 21 20 16 15 0

POOL32I
010000

BGEZAL
00011

rs offset

6 5 5 16

Branch on Greater Than Zero BGTZ

199 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: BGTZ rs, offset microMIPS

Purpose: Branch on Greater Than Zero

To test a GPR then do a PC-relative conditional branch

Description: if GPR[rs] > 0 then branch

A 17-bit signed offset (the 16-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than zero (sign bit is 0 but value not zero), branch to the effective target address
after the instruction in the delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 01)
condition ← GPR[rs] > 0GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is ± 64 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

POOL32I
010000

BGTZ
00110

rs offset

6 5 5 16

Branch on Greater Than Zero IBGTZ

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 200

Branch on Less Than Zero BLTZ

201 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: BLTZ rs, offset microMIPS

Purpose: Branch on Less Than Zero

To test a GPR then do a PC-relative conditional branch

Description: if GPR[rs] < 0 then branch

A 17-bit signed offset (the 16-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:
I: target_offset ← sign_extend(offset || 01)

condition ← GPR[rs] < 0GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is ± 64 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

31 26 25 21 20 16 15 0

POOL32I
010000

BLTZ
00000

rs offset

6 5 5 16

Branch on Less Than Zero and Link IBLTZAL

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 202

Format: BLTZAL rs, offset microMIPS

Purpose: Branch on Less Than Zero and Link

To test a GPR then do a PC-relative conditional procedure call

Description: if GPR[rs] < 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

A 17-bit signed offset (the 16-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay slot is executed.

Restrictions:

The delay-slot instruction must be 32-bits in size. Processor operation is UNPREDICTABLE if a 16-bit instruction
is placed in the delay slot of BLTZAL.

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 01)
condition ← GPR[rs] < 0GPRLEN

GPR[31] ← PC + 8
I+1: if condition then

PC ← PC + target_offset
endif

Exceptions:

None

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is ± 64 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

31 26 25 21 20 16 15 0

POOL32I
010000

BLTZAL
00001

rs offset

6 5 5 16

Branch on Not Equal BNE

203 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: BNE rs, rt, offset microMIPS

Purpose: Branch on Not Equal

To compare GPRs then do a PC-relative conditional branch

Description: if GPR[rs] ≠ GPR[rt] then branch

A 17-bit signed offset (the 16-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are not equal, branch to the effective target address after the instruction in the
delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 01)
condition ← (GPR[rs] ≠ GPR[rt])

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is ± 64 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

BNE32
101101

rt rs offset

6 5 5 16

Breakpoint IBREAK

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 204

Format: BREAK microMIPS

Purpose: Breakpoint

To cause a Breakpoint exception

Description:

A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handler. The
code field is available for use as software parameters, but is retrieved by the exception handler only by loading the
contents of the memory word containing the instruction.

Restrictions:

None

Operation:

SignalException(Breakpoint)

Exceptions:

Breakpoint

31 26 25 6 5 0

POOL32A
000000

code
BREAK32

000111

6 20 6

Floating Point Compare C.cond.fmt

205 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: C.cond.fmt
C.cond.S fs, ft (cc = 0 implied) microMIPS
C.cond.D fs, ft (cc = 0 implied) microMIPS
C.cond.PS fs, ft(cc = 0 implied) microMIPS
C.cond.S cc, fs, ft microMIPS
C.cond.D cc, fs, ft microMIPS
C.cond.PS cc, fs, ft microMIPS

Purpose: Floating Point Compare

To compare FP values and record the Boolean result in a condition code

Description: FPConditionCode(cc) ← FPR[fs] compare_cond FPR[ft]

The value in FPR fs is compared to the value in FPR ft; the values are in format fmt. The comparison is exact and nei-
ther overflows nor underflows.

If the comparison specified by the cond field of the instruction is true for the operand values, the result is true; other-
wise, the result is false. If no exception is taken, the result is written into condition code CC; true is 1 and false is 0.

In the cond field of the instruction: cond2..1 specify the nature of the comparison (equals, less than, and so on); cond0

specifies whether the comparison is ordered or unordered, i.e. false or true if any operand is a NaN; cond3 indicates
whether the instruction should signal an exception on QNaN inputs, or not (see Table 3.26).

c.cond.PS compares the upper and lower halves of FPR fs and FPR ft independently and writes the results into condi-
tion codes CC +1 and CC respectively. The CC number must be even. If the number is not even the operation of the
instruction is UNPREDICTABLE.

If one of the values is an SNaN, or cond3 is set and at least one of the values is a QNaN, an Invalid Operation condi-
tion is raised and the Invalid Operation flag is set in the FCSR. If the Invalid Operation Enable bit is set in the FCSR,
no result is written and an Invalid Operation exception is taken immediately. Otherwise, the Boolean result is written
into condition code CC.

There are four mutually exclusive ordering relations for comparing floating point values; one relation is always true
and the others are false. The familiar relations are greater than, less than, and equal. In addition, the IEEE floating
point standard defines the relation unordered, which is true when at least one operand value is NaN; NaN compares
unordered with everything, including itself. Comparisons ignore the sign of zero, so +0 equals -0.

The comparison condition is a logical predicate, or equation, of the ordering relations such as less than or equal,
equal, not less than, or unordered or equal. Compare distinguishes among the 16 comparison predicates. The Bool-
ean result of the instruction is obtained by substituting the Boolean value of each ordering relation for the two FP val-
ues in the equation. If the equal relation is true, for example, then all four example predicates above yield a true
result. If the unordered relation is true then only the final predicate, unordered or equal, yields a true result.

Logical negation of a compare result allows eight distinct comparisons to test for the 16 predicates as shown in Table
3.25. Each mnemonic tests for both a predicate and its logical negation. For each mnemonic, compare tests the truth
of the first predicate. When the first predicate is true, the result is true as shown in the “If Predicate Is True” column,
and the second predicate must be false, and vice versa. (Note that the False predicate is never true and False/True do
not follow the normal pattern.)

The truth of the second predicate is the logical negation of the instruction result. After a compare instruction, test for
the truth of the first predicate can be made with the Branch on FP True (BC1T) instruction and the truth of the second

31 26 25 21 20 16 15 13 12 11 10 9 6 5 0

POOL32F
010101

ft fs cc 0 fmt cond c.cond fmt
111100

6 5 5 3 1 2 4 6

Floating Point Compare IC.cond.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 206

can be made with Branch on FP False (BC1F).

Table 3.26 shows another set of eight compare operations, distinguished by a cond3 value of 1 and testing the same 16
conditions. For these additional comparisons, if at least one of the operands is a NaN, including Quiet NaN, then an
Invalid Operation condition is raised. If the Invalid Operation condition is enabled in the FCSR, an Invalid Operation
exception occurs.

Floating Point Compare C.cond.fmt

207 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Table 5.17 FPU Comparisons Without Special Operand Exceptions

Instruction Comparison Predicate Comparison CC Result Instruction

Cond
Mnemonic

Name of Predicate and Logically Negated
Predicate (Abbreviation)

Relation
Values

If Predicate
Is True

Inv Op
Excp. if
QNaN?

Condition
Field

> < = ? 3 2..0

F False [this predicate is always False] F F F F F No 0 0

True (T) T T T T

UN Unordered F F F T T 1

Ordered (OR) T T T F F

EQ Equal F F T F T 2

Not Equal (NEQ) T T F T F

UEQ Unordered or Equal F F T T T 3

Ordered or Greater Than or Less Than (OGL) T T F F F

OLT Ordered or Less Than F T F F T 4

Unordered or Greater Than or Equal (UGE) T F T T F

ULT Unordered or Less Than F T F T T 5

Ordered or Greater Than or Equal (OGE) T F T F F

OLE Ordered or Less Than or Equal F T T F T 6

Unordered or Greater Than (UGT) T F F T F

ULE Unordered or Less Than or Equal F T T T T 7

Ordered or Greater Than (OGT) T F F F F

Key: ? = unordered, > = greater than, < = less than, = is equal, T = True, F = False

Floating Point Compare IC.cond.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 208

Table 5.18 FPU Comparisons With Special Operand Exceptions for QNaNs

Restrictions:

The fields fs and ft must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPREDICT-
ABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of C.cond.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model;
it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU,.

The result of C.cond.PS is UNPREDICTABLE if the condition code number is odd.

Operation:
if SNaN(ValueFPR(fs, fmt)) or SNaN(ValueFPR(ft, fmt)) or

QNaN(ValueFPR(fs, fmt)) or QNaN(ValueFPR(ft, fmt)) then
less ← false
equal ← false
unordered ← true
if (SNaN(ValueFPR(fs,fmt)) or SNaN(ValueFPR(ft,fmt))) or
(cond3 and (QNaN(ValueFPR(fs,fmt)) or QNaN(ValueFPR(ft,fmt)))) then

SignalException(InvalidOperation)
endif

else
less ← ValueFPR(fs, fmt) <fmt ValueFPR(ft, fmt)
equal ← ValueFPR(fs, fmt) =fmt ValueFPR(ft, fmt)

Instruction Comparison Predicate Comparison CC Result Instruction

Cond
Mnemonic

Name of Predicate and Logically Negated
Predicate (Abbreviation)

Relation
Values

If Predicate
Is True

Inv Op
Excp If
QNaN?

Condition
Field

> < = ? 3 2..0

SF Signaling False [this predicate always False] F F F F F Yes 1 0

Signaling True (ST) T T T T

NGLE Not Greater Than or Less Than or Equal F F F T T 1

Greater Than or Less Than or Equal (GLE) T T T F F

SEQ Signaling Equal F F T F T 2

Signaling Not Equal (SNE) T T F T F

NGL Not Greater Than or Less Than F F T T T 3

Greater Than or Less Than (GL) T T F F F

LT Less Than F T F F T 4

Not Less Than (NLT) T F T T F

NGE Not Greater Than or Equal F T F T T 5

Greater Than or Equal (GE) T F T F F

LE Less Than or Equal F T T F T 6

Not Less Than or Equal (NLE) T F F T F

NGT Not Greater Than F T T T T 7

Greater Than (GT) T F F F F

Key: ? = unordered, > = greater than, < = less than, = is equal, T = True, F = False

Floating Point Compare C.cond.fmt

209 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

unordered ← false
endif
condition ← (cond2 and less) or (cond1 and equal)

or (cond0 and unordered)
SetFPConditionCode(cc, condition)

For c.cond.PS, the pseudo code above is repeated for both halves of the operand registers, treating each half as an
independent single-precision values. Exceptions on the two halves are logically ORed and reported together. The
results of the lower half comparison are written to condition code CC; the results of the upper half comparison are
written to condition code CC+1.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

Programming Notes:

FP computational instructions, including compare, that receive an operand value of Signaling NaN raise the Invalid
Operation condition. Comparisons that raise the Invalid Operation condition for Quiet NaNs in addition to SNaNs
permit a simpler programming model if NaNs are errors. Using these compares, programs do not need explicit code
to check for QNaNs causing the unordered relation. Instead, they take an exception and allow the exception handling
system to deal with the error when it occurs. For example, consider a comparison in which we want to know if two
numbers are equal, but for which unordered would be an error.

comparisons using explicit tests for QNaN
c.eq.d $f2,$f4 # check for equal
nop
bc1t L2 # it is equal
c.un.d $f2,$f4 # it is not equal,

but might be unordered
bc1t ERROR # unordered goes off to an error handler

not-equal-case code here
...

equal-case code here
L2:
--
comparison using comparisons that signal QNaN

c.seq.d $f2,$f4 # check for equal
nop
bc1t L2 # it is equal
nop

it is not unordered here
...

not-equal-case code here
...

equal-case code here

Floating Point Compare IC.cond.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 210

Perform Cache Operation ICACHE

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 212

operations (where the address is used to index the cache but need not match the cache tag) software should use
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions nor TLB
Refill exceptions with a cause code of TLBS. This instruction never causes Execute-Inhibit nor Read-Inhibit excep-
tions.

The effective address may be an arbitrarily-aligned by address. The CACHE instruction never causes an Address
Error Exception due to an non-aligned address.

A Cache Error exception may occur as a by-product of some operations performed by this instruction. For example, if
a Writeback operation detects a cache or bus error during the processing of the operation, that error is reported via a
Cache Error exception. Similarly, a Bus Error Exception may occur if a bus operation invoked by this instruction is
terminated in an error. However, cache error exceptions must not be triggered by an Index Load Tag or Index Store
tag operation, as these operations are used for initialization and diagnostic purposes.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It is implementation dependent whether a data watch is triggered by a cache instruction whose address matches the
Watch register address match conditions.

The CACHE instruction and the memory transactions which are sourced by the CACHE instruction, such as cache
refill or cache writeback, obey the ordering and completion rules of the SYNC instruction.

Bits [22:21] of the instruction specify the cache on which to perform the operation, as follows:

Bits [25:23] of the instruction specify the operation to perform. To provide software with a consistent base of cache
operations, certain encodings must be supported on all processors. The remaining encodings are recommended

For implementations which implement multiple level of caches and where the hardware maintains the smaller cache
as a proper subset of a larger cache (every address which is resident in the smaller cache is also resident in the larger
cache; also known as the inclusion property), it is recommended that the CACHE instructions which operate on the
larger, outer-level cache; should first operate on the smaller, inner-level cache. For example, a Hit_Writeback
_Invalidate operation targeting the Secondary cache, should first operate on the primary data cache first. If the
CACHE instruction implementation does not follow this policy then any software which flushes the caches must
mimic this behavior. That is, the software sequences must first operate on the inner cache then operate on the outer
cache. The software must place a SYNC instruction after the CACHE instruction whenever there are possible write-
backs from the inner cache to ensure that the writeback data is resident in the outer cache before operating on the
outer cache. If neither the CACHE instruction implementation nor the software cache flush sequence follow this pol-
icy, then the inclusion property of the caches can be broken, which might be a condition that the cache management
hardware cannot properly deal with.

For implementations which implement multiple level of caches without the inclusion property, the use of a SYNC
instruction after the CACHE instruction is still needed whenever writeback data has to be resident in the next level of
memory hierarchy.

Table 5.20 Encoding of Bits[17:16] of CACHE Instruction

Code Name Cache

0b00 I Primary Instruction

0b01 D Primary Data or Unified Primary

0b10 T Tertiary

0b11 S Secondary

Perform Cache Operation CACHE

213 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

For multiprocessor implementations that maintain coherent caches, some of the Hit type of CACHE instruction oper-
ations may optionally affect all coherent caches within the implementation. If the effective address uses a coherent
Cache Coherency Attribute (CCA), then the operation is globalized, meaning it is broadcast to all of the coherent
caches within the system. If the effective address does not use one of the coherent CCAs, there is no broadcast of the
operation. If multiple levels of caches are to be affected by one CACHE instruction, all of the affected cache levels
must be processed in the same manner - either all affected cache levels use the globalized behavior or all affected
cache levels use the non-globalized behavior.

Table 5.21 Encoding of Bits [20:18] of the CACHE Instruction

Code Caches Name

Effective
Address
Operand

Type Operation
Compliance
Implemented

0b000 I Index Invalidate Index Set the state of the cache block at the specified
index to invalid.
This required encoding may be used by software
to invalidate the entire instruction cache by step-
ping through all valid indices.

Required

D Index Writeback
Invalidate / Index

Invalidate

Index For a write-back cache: If the state of the cache
block at the specified index is valid and dirty,
write the block back to the memory address
specified by the cache tag. After that operation
is completed, set the state of the cache block to
invalid. If the block is valid but not dirty, set the
state of the block to invalid.

For a write-through cache: Set the state of the
cache block at the specified index to invalid.
This required encoding may be used by software
to invalidate the entire data cache by stepping
through all valid indices. Note that Index Store
Tag should be used to initialize the cache at
power up.

Required

S, T Index Writeback
Invalidate / Index

Invalidate

Index Required if S, T cache
is implemented

0b001 All Index Load Tag Index Read the tag for the cache block at the specified
index into the TagLo and TagHi Coprocessor 0
registers. If the DataLo and DataHi registers
are implemented, also read the data correspond-
ing to the byte index into the DataLo and
DataHi registers. This operation must not cause
a Cache Error Exception.
The granularity and alignment of the data read
into the DataLo and DataHi registers is imple-
mentation-dependent, but is typically the result
of an aligned access to the cache, ignoring the
appropriate low-order bits of the byte index.

Recommended

Perform Cache Operation ICACHE

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 214

0b010 All Index Store Tag Index Write the tag for the cache block at the specified
index from the TagLo and TagHi Coprocessor
0 registers. This operation must not cause a
Cache Error Exception.
This required encoding may be used by software
to initialize the entire instruction or data caches
by stepping through all valid indices. Doing so
requires that the TagLo and TagHi registers
associated with the cache be initialized first.

Required

0b011 All Implementation
Dependent

Unspecified Available for implementation-dependent opera-
tion.

Optional

0b100 I, D Hit Invalidate Address If the cache block contains the specified
address, set the state of the cache block to
invalid.
This required encoding may be used by software
to invalidate a range of addresses from the
instruction cache by stepping through the
address range by the line size of the cache.

In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.

Required (Instruction
Cache Encoding
Only), Recom-

mended otherwise

S, T Hit Invalidate Address Optional, if
Hit_Invalidate_D is
implemented, the S

and T variants are rec-
ommended.

0b101 I Fill Address Fill the cache from the specified address. Recommended

D Hit Writeback Inval-
idate / Hit Invalidate

Address For a write-back cache: If the cache block con-
tains the specified address and it is valid and
dirty, write the contents back to memory. After
that operation is completed, set the state of the
cache block to invalid. If the block is valid but
not dirty, set the state of the block to invalid.
For a write-through cache: If the cache block
contains the specified address, set the state of
the cache block to invalid.
This required encoding may be used by software
to invalidate a range of addresses from the data
cache by stepping through the address range by
the line size of the cache.

In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.

Required

S, T Hit Writeback Inval-
idate / Hit Invalidate

Address Required if S, T cache
is implemented

Table 5.21 Encoding of Bits [20:18] of the CACHE Instruction (Continued)

Code Caches Name

Effective
Address
Operand

Type Operation
Compliance
Implemented

Perform Cache Operation CACHE

215 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Restrictions:

The operation of this instruction is UNDEFINED for any operation/cache combination that is not implemented.

0b110 D Hit Writeback Address If the cache block contains the specified address
and it is valid and dirty, write the contents back
to memory. After the operation is completed,
leave the state of the line valid, but clear the
dirty state. For a write-through cache, this oper-
ation may be treated as a nop.

In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.

Recommended

S, T Hit Writeback Address Optional, if
Hit_Writeback_D is
implemented, the S

and T variants are rec-
ommended.

0b111 I, D Fetch and Lock Address If the cache does not contain the specified
address, fill it from memory, performing a
writeback if required, and set the state to valid
and locked. If the cache already contains the
specified address, set the state to locked. In set-
associative or fully-associative caches, the way
selected on a fill from memory is implementa-
tion dependent.
The lock state may be cleared by executing an
Index Invalidate, Index Writeback Invalidate,
Hit Invalidate, or Hit Writeback Invalidate oper-
ation to the locked line, or via an Index Store
Tag operation to the line that clears the lock bit.
Note that clearing the lock state via Index Store
Tag is dependent on the implementation-depen-
dent cache tag and cache line organization, and
that Index and Index Writeback Invalidate oper-
ations are dependent on cache line organization.
Only Hit and Hit Writeback Invalidate opera-
tions are generally portable across implementa-
tions.
It is implementation dependent whether a locked
line is displaced as the result of an external
invalidate or intervention that hits on the locked
line. Software must not depend on the locked
line remaining in the cache if an external invali-
date or intervention would invalidate the line if
it were not locked.
It is implementation dependent whether a Fetch
and Lock operation affects more than one line.
For example, more than one line around the ref-
erenced address may be fetched and locked. It is
recommended that only the single line contain-
ing the referenced address be affected.

Recommended

Table 5.21 Encoding of Bits [20:18] of the CACHE Instruction (Continued)

Code Caches Name

Effective
Address
Operand

Type Operation
Compliance
Implemented

Perform Cache Operation ICACHE

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 216

The operation of this instruction is UNDEFINED if the operation requires an address, and that address is uncache-
able.

The operation of the instruction is UNPREDICTABLE if the cache line that contains the CACHE instruction is the
target of an invalidate or a writeback invalidate.

If this instruction is used to lock all ways of a cache at a specific cache index, the behavior of that cache to subsequent
cache misses to that cache index is UNDEFINED.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Any use of this instruction that can cause cacheline writebacks should be followed by a subsequent SYNC instruction
to avoid hazards where the writeback data is not yet visible at the next level of the memory hierarchy.

Operation:

vAddr ← GPR[base] + sign_extend(offset)
(pAddr, uncached) ← AddressTranslation(vAddr, DataReadReference)
CacheOp(op, vAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception

Coprocessor Unusable Exception

Address Error Exception

Cache Error Exception

Bus Error Exception

Programming Notes:

For cache operations that require an index, it is implementation dependent whether the effective address or the trans-
lated physical address is used as the cache index. Therefore, the index value should always be converted to an
unmapped address (such as an kseg0 address - by ORing the index with 0x80000000 before being used by the cache
instruction). For example, the following code sequence performs a data cache Index Store Tag operation using the
index passed in GPR a0:

li a1, 0x80000000 /* Base of kseg0 segment */
or a0, a0, a1 /* Convert index to kseg0 address */
cache DCIndexStTag, 0(a1) /* Perform the index store tag operation */

Perform Cache Operation CACHE

217 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Perform Cache Operation EVA CACHEE

219 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

operations (where the address is used to index the cache but need not match the cache tag) software should use
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions nor TLB
Refill exceptions with a cause code of TLBS. This instruction never causes Execute-Inhibit nor Read-Inhibit excep-
tions.

The effective address may be an arbitrarily-aligned by address. The CACHEE instruction never causes an Address
Error Exception due to an non-aligned address.

A Cache Error exception may occur as a by-product of some operations performed by this instruction. For example, if
a Writeback operation detects a cache or bus error during the processing of the operation, that error is reported via a
Cache Error exception. Similarly, a Bus Error Exception may occur if a bus operation invoked by this instruction is
terminated in an error. However, cache error exceptions must not be triggered by an Index Load Tag or Index Store
tag operation, as these operations are used for initialization and diagnostic purposes.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It is implementation dependent whether a data watch is triggered by a cache instruction whose address matches the
Watch register address match conditions.

The CACHEE instruction and the memory transactions which are sourced by the CACHEE instruction, such as cache
refill or cache writeback, obey the ordering and completion rules of the SYNC instruction.

Bits [22:21] of the instruction specify the cache on which to perform the operation, as follows:

Bits [25:23] of the instruction specify the operation to perform. To provide software with a consistent base of cache
operations, certain encodings must be supported on all processors. The remaining encodings are recommended

For implementations which implement multiple level of caches and where the hardware maintains the smaller cache
as a proper subset of a larger cache (every address which is resident in the smaller cache is also resident in the larger
cache; also known as the inclusion property), it is recommended that the CACHEE instructions which operate on the
larger, outer-level cache; should first operate on the smaller, inner-level cache. For example, a Hit_Writeback
_Invalidate operation targeting the Secondary cache, should first operate on the primary data cache first. If the
CACHEE instruction implementation does not follow this policy then any software which flushes the caches must
mimic this behavior. That is, the software sequences must first operate on the inner cache then operate on the outer
cache. The software must place a SYNC instruction after the CACHEE instruction whenever there are possible write-
backs from the inner cache to ensure that the writeback data is resident in the outer cache before operating on the
outer cache. If neither the CACHEE instruction implementation nor the software cache flush sequence follow this
policy, then the inclusion property of the caches can be broken, which might be a condition that the cache manage-
ment hardware cannot properly deal with.

For implementations which implement multiple level of caches without the inclusion property, the use of a SYNC
instruction after the CACHEE instruction is still needed whenever writeback data has to be resident in the next level
of memory hierarchy.

Table 5.23 Encoding of Bits[22:21] of CACHEE Instruction

Code Name Cache

0b00 I Primary Instruction

0b01 D Primary Data or Unified Primary

0b10 T Tertiary

0b11 S Secondary

Perform Cache Operation EVA ICACHEE

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 220

For multiprocessor implementations that maintain coherent caches, some of the Hit type of CACHEE instruction
operations may optionally affect all coherent caches within the implementation. If the effective address uses a coher-
ent Cache Coherency Attribute (CCA), then the operation is globalized, meaning it is broadcast to all of the coherent
caches within the system. If the effective address does not use one of the coherent CCAs, there is no broadcast of the
operation. If multiple levels of caches are to be affected by one CACHEE instruction, all of the affected cache levels
must be processed in the same manner - either all affected cache levels use the globalized behavior or all affected
cache levels use the non-globalized behavior.

The CACHEE instruction functions in exactly the same fashion as the CACHE instruction, except that address trans-
lation is performed using the user mode virtual address space mapping in the TLB when accessing an address within
a memory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access
modes are also accessible . Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5EVA field being set to one.

Table 5.24 Encoding of Bits [20:18] of the CACHEE Instruction

Code Caches Name

Effective
Address
Operand

Type Operation
Compliance
Implemented

0b000 I Index Invalidate Index Set the state of the cache block at the specified
index to invalid.
This required encoding may be used by software
to invalidate the entire instruction cache by step-
ping through all valid indices.

Required

D Index Writeback
Invalidate / Index

Invalidate

Index For a write-back cache: If the state of the cache
block at the specified index is valid and dirty,
write the block back to the memory address
specified by the cache tag. After that operation
is completed, set the state of the cache block to
invalid. If the block is valid but not dirty, set the
state of the block to invalid.

For a write-through cache: Set the state of the
cache block at the specified index to invalid.
This required encoding may be used by software
to invalidate the entire data cache by stepping
through all valid indices. Note that Index Store
Tag should be used to initialize the cache at
power up.

Required

S, T Index Writeback
Invalidate / Index

Invalidate

Index Required if S, T cache
is implemented

Perform Cache Operation EVA CACHEE

221 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

0b001 All Index Load Tag Index Read the tag for the cache block at the specified
index into the TagLo and TagHi Coprocessor 0
registers. If the DataLo and DataHi registers
are implemented, also read the data correspond-
ing to the byte index into the DataLo and
DataHi registers. This operation must not cause
a Cache Error Exception.
The granularity and alignment of the data read
into the DataLo and DataHi registers is imple-
mentation-dependent, but is typically the result
of an aligned access to the cache, ignoring the
appropriate low-order bits of the byte index.

Recommended

0b010 All Index Store Tag Index Write the tag for the cache block at the specified
index from the TagLo and TagHi Coprocessor
0 registers. This operation must not cause a
Cache Error Exception.
This required encoding may be used by software
to initialize the entire instruction or data caches
by stepping through all valid indices. Doing so
requires that the TagLo and TagHi registers
associated with the cache be initialized first.

Required

0b011 All Implementation
Dependent

Unspecified Available for implementation-dependent opera-
tion.

Optional

0b100 I, D Hit Invalidate Address If the cache block contains the specified
address, set the state of the cache block to
invalid.
This required encoding may be used by software
to invalidate a range of addresses from the
instruction cache by stepping through the
address range by the line size of the cache.

In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.

Required (Instruction
Cache Encoding
Only), Recom-

mended otherwise

S, T Hit Invalidate Address Optional, if
Hit_Invalidate_D is
implemented, the S

and T variants are rec-
ommended.

Table 5.24 Encoding of Bits [20:18] of the CACHEE Instruction (Continued)

Code Caches Name

Effective
Address
Operand

Type Operation
Compliance
Implemented

Perform Cache Operation EVA ICACHEE

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 222

0b101 I Fill Address Fill the cache from the specified address. Recommended

D Hit Writeback Inval-
idate / Hit Invalidate

Address For a write-back cache: If the cache block con-
tains the specified address and it is valid and
dirty, write the contents back to memory. After
that operation is completed, set the state of the
cache block to invalid. If the block is valid but
not dirty, set the state of the block to invalid.
For a write-through cache: If the cache block
contains the specified address, set the state of
the cache block to invalid.
This required encoding may be used by software
to invalidate a range of addresses from the data
cache by stepping through the address range by
the line size of the cache.

In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.

Required

S, T Hit Writeback Inval-
idate / Hit Invalidate

Address Required if S, T cache
is implemented

0b110 D Hit Writeback Address If the cache block contains the specified address
and it is valid and dirty, write the contents back
to memory. After the operation is completed,
leave the state of the line valid, but clear the
dirty state. For a write-through cache, this oper-
ation may be treated as a nop.

In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.

Recommended

S, T Hit Writeback Address Optional, if
Hit_Writeback_D is
implemented, the S

and T variants are rec-
ommended.

Table 5.24 Encoding of Bits [20:18] of the CACHEE Instruction (Continued)

Code Caches Name

Effective
Address
Operand

Type Operation
Compliance
Implemented

Perform Cache Operation EVA CACHEE

223 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Restrictions:

The operation of this instruction is UNDEFINED for any operation/cache combination that is not implemented.

The operation of this instruction is UNDEFINED if the operation requires an address, and that address is uncache-
able.

The operation of the instruction is UNPREDICTABLE if the cache line that contains the CACHEE instruction is the
target of an invalidate or a writeback invalidate.

If this instruction is used to lock all ways of a cache at a specific cache index, the behavior of that cache to subsequent
cache misses to that cache index is UNDEFINED.

Any use of this instruction that can cause cacheline writebacks should be followed by a subsequent SYNC instruction
to avoid hazards where the writeback data is not yet visible at the next level of the memory hierarchy.

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

0b111 I, D Fetch and Lock Address If the cache does not contain the specified
address, fill it from memory, performing a
writeback if required, and set the state to valid
and locked. If the cache already contains the
specified address, set the state to locked. In set-
associative or fully-associative caches, the way
selected on a fill from memory is implementa-
tion dependent.
The lock state may be cleared by executing an
Index Invalidate, Index Writeback Invalidate,
Hit Invalidate, or Hit Writeback Invalidate oper-
ation to the locked line, or via an Index Store
Tag operation to the line that clears the lock bit.
Note that clearing the lock state via Index Store
Tag is dependent on the implementation-depen-
dent cache tag and cache line organization, and
that Index and Index Writeback Invalidate oper-
ations are dependent on cache line organization.
Only Hit and Hit Writeback Invalidate opera-
tions are generally portable across implementa-
tions.
It is implementation dependent whether a locked
line is displaced as the result of an external
invalidate or intervention that hits on the locked
line. Software must not depend on the locked
line remaining in the cache if an external invali-
date or intervention would invalidate the line if
it were not locked.
It is implementation dependent whether a Fetch
and Lock operation affects more than one line.
For example, more than one line around the ref-
erenced address may be fetched and locked. It is
recommended that only the single line contain-
ing the referenced address be affected.

Recommended

Table 5.24 Encoding of Bits [20:18] of the CACHEE Instruction (Continued)

Code Caches Name

Effective
Address
Operand

Type Operation
Compliance
Implemented

Perform Cache Operation EVA ICACHEE

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 224

Operation:

vAddr ← GPR[base] + sign_extend(offset)
(pAddr, uncached) ← AddressTranslation(vAddr, DataReadReference)
CacheOp(op, vAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception

Coprocessor Unusable Exception

Reserved Instruction

Address Error Exception

Cache Error Exception

Bus Error Exception

Programming Notes:

For cache operations that require an index, it is implementation dependent whether the effective address or the trans-
lated physical address is used as the cache index. Therefore, the index value should always be converted to a kseg0
address by ORing the index with 0x80000000 before being used by the cache instruction. For example, the following
code sequence performs a data cache Index Store Tag operation using the index passed in GPR a0:

li a1, 0x80000000 /* Base of kseg0 segment */
or a0, a0, a1 /* Convert index to kseg0 address */
cache DCIndexStTag, 0(a1) /* Perform the index store tag operation */

Fixed Point Ceiling Convert to Long Fixed Point CEIL.L.fmt

225 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: CEIL.L.fmt
CEIL.L.S ft, fs microMIPS
CEIL.L.D ft, fs microMIPS

Purpose: Fixed Point Ceiling Convert to Long Fixed Point

To convert an FP value to 64-bit fixed point, rounding up

Description: FPR[ft] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounding toward +∞
(rounding mode 2). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 263–1, is written to fd.

Restrictions:

The fields fs and ft must specify valid FPRs; fs for type fmt and fd for long fixed point; if they are not valid, the result
is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(ft, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

31 26 25 22 21 20 16 15 14 13 6 5 0

POOL32F
010101

ft fs 0 fmt
CEIL.L

01001100
POOL32FXf

111011

6 5 5 1 1 8 6

Fixed Point Ceiling Convert to Long Fixed Point ICEIL.L.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 226

Floating Point Ceiling Convert to Word Fixed Point CEIL.W.fmt

227 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: CEIL.W.fmt
CEIL.W.S ft, fs microMIPS
CEIL.W.D ft, fs microMIPS

Purpose: Floating Point Ceiling Convert to Word Fixed Point

To convert an FP value to 32-bit fixed point, rounding up

Description: FPR[ft] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format and rounding toward +∞
(rounding mode 2). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 231–1, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for word fixed point; if they are not valid, the result
is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(ft, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

31 26 25 22 21 20 16 15 14 13 6 5 0

POOL32F
010101

ft fs 0
fm
t

CEIL.W
01101100

POOL32FXf
111011

6 5 5 1 1 8 6

Floating Point Ceiling Convert to Word Fixed Point ICEIL.W.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 228

Move Control Word From Floating Point CFC1

229 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: CFC1 rt, fs microMIPS

Purpose: Move Control Word From Floating Point

To copy a word from an FPU control register to a GPR

Description: GPR[rt] ← FP_Control[fs]

Copy the 32-bit word from FP (coprocessor 1) control register fs into GPR rt.

The definition of this instruction has been extended in Release 5 to support user mode read of StatusFR under the
control of Config5UFR. This required feature is meant to facilitate transition from FR=0 to FR=1 floating-point reg-
ister modes in order to obsolete FR=0 mode.

Restrictions:

There are a few control registers defined for the floating point unit. The result is UNPREDICTABLE if fs specifies a
register that does not exist.

In particular, the result is UNPREDICTABLE if fs specifies the UNFR write-only control. R5.03 implementations
are required to produce a Reserved Instruction Exception; software must assume it is UNPREDICTABLE.

Operation:

if fs = 0 then
temp ← FIR

elseif fs = 1 and FIRUFRP then /* read UFR (CP1 Register 1) */
if Config5UFR

temp ← StatusFR
else

signalException(RI)
endif

/* note: fs=4 UNFR not supported for reading - UFR suffices */
elseif fs = 25 then /* FCCR */

temp ← 024 || FCSR31..25 || FCSR23
elseif fs = 26 then /* FEXR */

temp ← 014 || FCSR17..12 || 0
5 || FCSR6..2 || 0

2

elseif fs = 28 then /* FENR */
temp ← 020 || FCSR11.7 || 0

4 || FCSR24 || FCSR1..0
elseif fs = 31 then /* FCSR */

temp ← FCSR
else

temp ← UNPREDICTABLE
endif
GPR[rt] ← temp

Exceptions:

Coprocessor Unusable, Reserved Instruction

Historical Information:

For the MIPS I, II and III architectures, the contents of GPR rt are UNPREDICTABLE for the instruction immedi-

31 26 25 21 20 16 15 14 13 6 5 0

POOL32F
010101

rt fs 00
CFC1

01000000
POOL32FXf

111011

6 5 5 2 8 6

Move Control Word From Floating Point ICFC1

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 230

ately following CFC1.

MIPS V and MIPS32 introduced the three control registers that access portions of FCSR. These registers were not
available in MIPS I, II, III, or IV.

MIPS32r5 introduced the UFR and UNFR register aliases that allow user level access to StatusFR.

Move Control Word From Coprocessor 2 CFC2

231 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: CFC2 rt, Impl microMIPS

The syntax shown above is an example using CFC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Control Word From Coprocessor 2

To copy a word from a Coprocessor 2 control register to a GPR

Description: GPR[rt] ← CP2CCR[Impl]

Copy the 32-bit word from the Coprocessor 2 control register denoted by the Impl field. The interpretation of the Impl
field is left entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

The result is UNPREDICTABLE if Impl specifies a register that does not exist.

Operation:

temp ← CP2CCR[Impl]
GPR[rt] ← temp

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt Impl
CFC2

1100110100
POOL32AXf

111100

6 5 5 10 6

Count Leading Ones in Word ICLO

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 232

Format: CLO rt, rs microMIPS

Purpose: Count Leading Ones in Word

To count the number of leading ones in a word

Description: GPR[rt] ← count_leading_ones GPR[rs]

Bits 31..0 of GPR rs are scanned from most significant to least significant bit. The number of leading ones is counted
and the result is written to GPR rt. If all of bits 31..0 were set in GPR rs, the result written to GPR rt is 32.

Restrictions:

Operation:

temp ← 32
for i in 31 .. 0

if GPR[rs]i = 0 then
temp ← 31 - i
break

endif
endfor
GPR[rt] ← temp

Exceptions:

None

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt rs
CLO

0100101100
POOL32AXf

111100

6 5 5 10 6

Count Leading Zeros in Word CLZ

233 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: CLZ rt, rs microMIPS

Purpose: Count Leading Zeros in Word

Count the number of leading zeros in a word

Description: GPR[rt] ← count_leading_zeros GPR[rs]

Bits 31..0 of GPR rs are scanned from most significant to least significant bit. The number of leading zeros is counted
and the result is written to GPR rt. If no bits were set in GPR rs, the result written to GPR rt is 32.

Restrictions:

Operation:

temp ← 32
for i in 31 .. 0

if GPR[rs]i = 1 then
temp ← 31 - i
break

endif
endfor
GPR[rt] ← temp

Exceptions:

None

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt rs
CLZ

0101101100
POOL32AXf

111100

6 5 5 10 6

Coprocessor Operation to Coprocessor 2 ICOP2

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 234

Format: COP2 func microMIPS

Purpose: Coprocessor Operation to Coprocessor 2

To perform an operation to Coprocessor 2

Description: CoprocessorOperation(2, cofun)

An implementation-dependent operation is performed to Coprocessor 2, with the cofun value passed as an argument.
The operation may specify and reference internal coprocessor registers, and may change the state of the coprocessor
conditions, but does not modify state within the processor. Details of coprocessor operation and internal state are
described in the documentation for each Coprocessor 2 implementation.

Restrictions:

Operation:

CoprocessorOperation(2, cofun)

Exceptions:

Coprocessor Unusable
Reserved Instruction

31 26 25 3 2 0

POOL32A
000000

cofun
COP2
010

6 23 3

Move Control Word to Floating Point CTC1

235 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: CTC1 rt, fs microMIPS

Purpose: Move Control Word to Floating Point

To copy a word from a GPR to an FPU control register

Description: FP_Control[fs] ← GPR[rt]

Copy the low word from GPR rt into the FP (coprocessor 1) control register indicated by fs.

Writing to the floating point Control/Status register, the FCSR, causes the appropriate exception if any Cause bit
and its corresponding Enable bit are both set. The register is written before the exception occurs. Writing to FEXR
to set a cause bit whose enable bit is already set, or writing to FENR to set an enable bit whose cause bit is already set
causes the appropriate exception. The register is written before the exception occurs and the EPC register contains
the address of the CTC1 instruction.

The definition of this instruction has been extended in Release 5 to support user mode set and clear of StatusFR under
the control of Config5UFR. This required feature is meant to facilitate transition from FR=0 to FR=1 floating-point
register modes in order to obsolete FR=0 mode.

Restrictions:

There are a few control registers defined for the floating point unit. The result is UNPREDICTABLE if fs specifies a
register that does not exist.

Furthermore, the result is UNPREDICTABLE if fd specifies the UFR or UNFR aliases, with fs anything other than
00000, GPR[0]. R5.03 implementations are required to produce a Reserved Instruction Exception; software must
assume it is UNPREDICTABLE.

Operation:

temp ← GPR[rt]31..0
if fs = 1 and rt = 0 and FIRUFRP then /* clear UFR (CP1 Register 1)*/

if Config5UFR
StatusFR ← 0

else
signalException(RI)

endif
elseif fs = 4 and rt = 0 and FIRUFRP then /* clear UNFR (CP1 Register 4) */

if Config5UFR
StatusFR ← 1

else
signalException(RI)

endif
elseif fs = 25 then /* FCCR */

if temp31..8 ≠ 024 then
UNPREDICTABLE

else
FCSR ← temp7..1 || FCSR24 || temp0 || FCSR22..0

endif

31 26 25 21 20 16 15 14 13 6 5 0

POOL32F
010101

rt fs 00
CTC1

01100000
POOL32FXf

111011

6 5 5 2 8 6

Move Control Word to Floating Point ICTC1

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 236

elseif fs = 26 then /* FEXR */
if temp31..18 ≠ 0 or temp11..7 ≠ 0 or temp2..0 ≠ 0then

UNPREDICTABLE
else

FCSR ← FCSR31..18 || temp17..12 || FCSR11..7 ||
temp6..2 || FCSR1..0

endif
elseif fs = 28 then /* FENR */

if temp31..12 ≠ 0 or temp6..3 ≠ 0 then
UNPREDICTABLE

else
FCSR ← FCSR31..25 || temp2 || FCSR23..12 || temp11..7
|| FCSR6..2 || temp1..0

endif
elseif fs = 31 then /* FCSR */

if (FCSRImpl field is not implemented) and(temp22..18 ≠ 0) then
UNPREDICTABLE

elseif (FCSRImpl field is implemented) and temp20..18 ≠ 0 then
UNPREDICTABLE

else
FCSR ← temp

endif
else

UNPREDICTABLE
endif
CheckFPException()

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Division-by-zero, Inexact, Overflow, Underflow

Historical Information:

For the MIPS I, II and III architectures, the contents of floating point control register fs are UNPREDICTABLE for
the instruction immediately following CTC1.

MIPS V and MIPS32 introduced the three control registers that access portions of FCSR. These registers were not
available in MIPS I, II, III, or IV.

MIPS32r5 introduced the UFR and UNFR register aliases that allow user level access to StatusFR.

Move Control Word to Floating Point CTC1

237 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Move Control Word to Coprocessor 2 ICTC2

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 238

Format: CTC2 rt, Impl microMIPS

The syntax shown above is an example using CTC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Control Word to Coprocessor 2

To copy a word from a GPR to a Coprocessor 2 control register

Description: CP2CCR[Impl] ← GPR[rt]

Copy the low word from GPR rt into the Coprocessor 2 control register denoted by the Impl field. The interpretation
of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

The result is UNPREDICTABLE if rd specifies a register that does not exist.

Operation:

temp ← GPR[rt]
CP2CCR[Impl] ← temp

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt Impl
CTC2

1101110100
POOL32AXf

111100

6 5 5 10 6

Floating Point Convert to Double Floating Point CVT.D.fmt

239 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: CVT.D.fmt
CVT.D.S ft, fs microMIPS
CVT.D.W ft, fs microMIPS
CVT.D.L ft, fs microMIPS

Purpose: Floating Point Convert to Double Floating Point

To convert an FP or fixed point value to double FP

Description: FPR[ft] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in double floating point format and rounded according to
the current rounding mode in FCSR. The result is placed in FPR ft. If fmt is S or W, then the operation is always exact.

Restrictions:

The fields fs and ft must specify valid FPRs—fs for type fmt and ft for double floating point—if they are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

For CVT.D.L, the result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit
FPU register model; i.e. it is the FR=0 32-bit FPU register model; it is predictable if executing on a 64-bit FPU in the
FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (ft, D, ConvertFmt(ValueFPR(fs, fmt), fmt, D))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

31 26 25 21 20 16 15 14 13 12 6 5 0

POOL32F
010101

ft fs 0 fmt
CVT.D

1001101
POOL32FXf

111011

6 5 5 1 2 7 6

Floating Point Convert to Double Floating Point ICVT.D.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 240

Floating Point Convert to Long Fixed Point CVT.L.fmt

241 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: CVT.L.fmt
CVT.L.S ft, fs microMIPS
CVT.L.D ft, fs microMIPS

Purpose: Floating Point Convert to Long Fixed Point

To convert an FP value to a 64-bit fixed point

Description: FPR[ft] ← convert_and_round(FPR[fs])

Convert the value in format fmt in FPR fs to long fixed point format and round according to the current rounding
mode in FCSR. The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 263–1, is written to fd.

Restrictions:

The fields fs and ft must specify valid FPRs—fs for type fmt and fd for long fixed point—if they are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (ft, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact,

31 26 25 21 20 16 15 14 13 6 5 0

POOL32F
010101

ft fs 0 fmt
CVT.L

00000100
POOL32FXf

111011

6 5 5 1 1 8 6

Floating Point Convert to Long Fixed Point ICVT.L.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 242

Floating Point Convert Pair to Paired Single ICVT.PS.S

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 244

Floating Point Convert to Single Floating Point CVT.S.fmt

245 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: CVT.S.fmt
CVT.S.D ft, fs microMIPS
CVT.S.W ft, fs microMIPS
CVT.S.L ft, fs microMIPS

Purpose: Floating Point Convert to Single Floating Point

To convert an FP or fixed point value to single FP

Description: FPR[ft] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in single floating point format and rounded according to the
current rounding mode in FCSR. The result is placed in FPR ft.

Restrictions:

The fields fs and ft must specify valid FPRs—fs for type fmt and fd for single floating point. If they are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

For CVT.S.L, the result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit
FPU register model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a
32-bit FPU.

Operation:

StoreFPR(ft, S, ConvertFmt(ValueFPR(fs, fmt), fmt, S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow, Underflow

31 26 25 21 20 16 15 14 13 12 6 5 0

POOL32F
010101

ft fs 0 fmt
CVT.S

1101101
POOL32FXf

111011

6 5 5 1 2 7 6

Floating Point Convert to Single Floating Point ICVT.S.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 246

Floating Point Convert Pair Lower to Single Floating Point CVT.S.PL

247 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: CVT.S.PL ft, fs microMIPS

Purpose:

Floating Point Convert Pair Lower to Single Floating Point

To convert one half of a paired single FP value to single FP

Description: FPR[ft] ← FPR[fs]31..0

The lower paired single value in FPR fs, in format PS, is converted to a value in single floating point format. The
result is placed in FPR ft. This instruction can be used to isolate the lower half of a paired single value.

The operation is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and ft must specify valid FPRs—fs for type PS and ft for single floating point. If they are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format PS; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of CVT.S.PL is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model;
it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (ft, S, ConvertFmt(ValueFPR(fs, PS), PL, S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

31 26 25 21 20 16 15 14 13 6 5 0

POOL32F
010101

ft fs 0 fmt
CVT.S.PL
10000100

POOL32FXf
111011

6 5 5 2 8 6

Floating Point Convert Pair Lower to Single Floating Point ICVT.S.PL

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 248

Floating Point Convert Pair Upper to Single Floating Point CVT.S.PU

249 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: CVT.S.PU ft, fs microMIPS

Purpose: Floating Point Convert Pair Upper to Single Floating Point

To convert one half of a paired single FP value to single FP

Description: FPR[ft] ← FPR[fs]63..32

The upper paired single value in FPR fs, in format PS, is converted to a value in single floating point format. The
result is placed in FPR ft. This instruction can be used to isolate the upper half of a paired single value.

The operation is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and ft must specify valid FPRs—fs for type PS and ft for single floating point. If they are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format PS; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of CVT.S.PU is UNPREDICTABLE if the processor is executing ithe FR=0 32-bit FPU register model; it
is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU

Operation:

StoreFPR (ft, S, ConvertFmt(ValueFPR(fs, PS), PU, S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

31 26 25 21 20 16 15 14 13 6 5 0

POOL32F
010101

ft fs 0 fmt
CVT.S.PU
10100100

POOL32FXf
111011

6 5 5 1 1 8 6

Floating Point Convert Pair Upper to Single Floating Point ICVT.S.PU

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 250

Floating Point Convert to Word Fixed Point CVT.W.fmt

251 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: CVT.W.fmt
CVT.W.S ft, fs microMIPS
CVT.W.D ft, fs microMIPS

Purpose: Floating Point Convert to Word Fixed Point

To convert an FP value to 32-bit fixed point

Description: FPR[ft] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format and rounded according to
the current rounding mode in FCSR. The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 231–1, is written to ft.

Restrictions:

The fields fs and ft must specify valid FPRs—fs for type fmt and ft for word fixed point—if they are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(ft, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

31 26 25 21 20 16 15 14 13 6 5 0

POOL32F
010101

ft fs 0 fmt
CVT.W

00100100
POOL32FXf

111011

6 5 5 1 1 8 6

Floating Point Convert to Word Fixed Point ICVT.W.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 252

Debug Exception Return DERET

253 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: DERET EJTAG microMIPS

Purpose: Debug Exception Return

To Return from a debug exception.

Description:

DERET clears execution and instruction hazards, returns from Debug Mode and resumes non-debug execution at the
instruction whose address is contained in the DEPC register. DERET does not execute the next instruction (i.e. it has
no delay slot).

Restrictions:

A DERET placed between an LL and SC instruction does not cause the SC to fail.

If the DEPC register with the return address for the DERET was modified by an MTC0 or a DMTC0 instruction, a
CP0 hazard exists that must be removed via software insertion of the appropriate number of SSNOP instructions (for
implementations of Release 1 of the Architecture) or by an EHB, or other execution hazard clearing instruction (for
implementations of Release 2 of the Architecture).

DERET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the DERET returns.

This instruction is legal only if the processor is executing in Debug Mode.The operation of the processor is UNDE-
FINED if a DERET is executed in the delay slot of a branch or jump instruction.

Operation:

DebugDM ← 0
DebugIEXI ← 0
if IsMIPS16Implemented() | (Config3ISA > 0) then

PC ← DEPC31..1 || 0
ISAMode ← DEPC0

else
PC ← DEPC

endif
ClearHazards()

Exceptions:

Coprocessor Unusable Exception
Reserved Instruction Exception

31 26 25 16 15 6 5 0

POOL32A
000000

0
0000000000

DERET
1110001101

POOL32AXf
111100

6 10 10 6

Debug Exception Return IDERET

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 254

Disable Interrupts DI

255 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: DI microMIPS
DI rs microMIPS

Purpose: Disable Interrupts

To return the previous value of the Status register and disable interrupts. If DI is specified without an argument, GPR
r0 is implied, which discards the previous value of the Status register.

Description: GPR[rs] ← Status; StatusIE ← 0

The current value of the Status register is loaded into general register rs. The Interrupt Enable (IE) bit in the Status
register is then cleared.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

data ← Status
GPR[rs] ← data
StatusIE ← 0

Exceptions:

Coprocessor Unusable
Reserved Instruction (Release 1 implementations)

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading Status into a GPR,
clearing the IE bit, and writing the result back to Status. Unlike the multiple instruction sequence, however, the DI
instruction cannot be aborted in the middle by an interrupt or exception.

This instruction creates an execution hazard between the change to the Status register and the point where the change
to the interrupt enable takes effect. This hazard is cleared by the EHB, JALR.HB, JR.HB, or ERET instructions. Soft-
ware must not assume that a fixed latency will clear the execution hazard.

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

0
00000

rs
DI

0100011101
POOL32AXf

111100

6 5 5 10 6

Disable Interrupts IDI

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 256

Divide Word DIV

257 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: DIV rs, rt microMIPS

Purpose: Divide Word

To divide a 32-bit signed integers

Description: (HI, LO) ← GPR[rs] / GPR[rt]

The 32-bit word value in GPR rs is divided by the 32-bit value in GPR rt, treating both operands as signed values.
The 32-bit quotient is placed into special register LO and the 32-bit remainder isplaced into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If the divisor in GPR rt is zero, the arithmetic result value is UNPREDICTABLE.

Operation:
q ← GPR[rs]31..0 div GPR[rt]31..0
LO ← q
r ← GPR[rs]31..0 mod GPR[rt]31..0
HI ← r

Exceptions:

None

Programming Notes:

No arithmetic exception occurs under any circumstances. If divide-by-zero or overflow conditions are detected and
some action taken, then the divide instruction is typically followed by additional instructions to check for a zero divi-
sor and/or for overflow. If the divide is asynchronous then the zero-divisor check can execute in parallel with the
divide. The action taken on either divide-by-zero or overflow is either a convention within the program itself, or more
typically within the system software; one possibility is to take a BREAK exception with a code field value to signal
the problem to the system software.

As an example, the C programming language in a UNIX® environment expects division by zero to either terminate
the program or execute a program-specified signal handler. C does not expect overflow to cause any exceptional con-
dition. If the C compiler uses a divide instruction, it also emits code to test for a zero divisor and execute a BREAK
instruction to inform the operating system if a zero is detected.

By default, most compilers for the MIPS architecture will emit additional instructions to check for the divide-by-zero
and overflow cases when this instruction is used. In many compilers, the assembler mnemonic “DIV r0, rs, rt” can be
used to prevent these additional test instructions to be emitted.

In some processors the integer divide operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the divide so that other instructions can execute in parallel.

Historical Perspective:

In MIPS 1 through MIPS III, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of

31 26 25 21 20 16 15 5 0

POOL32A
000000

rt rs
DIV

1010101100
POOL32Axf

111100

6 5 5 9 6

Divide Word IDIV

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 258

the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subse-
quent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV and
MIPS32 and all subsequent levels of the architecture.

Floating Point Divide DIV.fmt

259 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: DIV.fmt
DIV.S fd, fs, ft microMIPS
DIV.D fd, fs, ft microMIPS

Purpose: Floating Point Divide

To divide FP values

Description: FPR[fd] ← FPR[fs] / FPR[ft]

The value in FPR fs is divided by the value in FPR ft. The result is calculated to infinite precision, rounded according
to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRED-
ICABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) / ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Invalid Operation, Unimplemented Operation, Division-by-zero, Overflow, Underflow

31 26 25 21 20 16 15 11 10 9 8 7 5 0

POOL32F
010101

ft fs fd 0 fmt
DIV

11110000

6 5 5 5 1 2 8

Divide Unsigned Word IDIVU

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 260

Format: DIVU rs, rt microMIPS

Purpose: Divide Unsigned Word

To divide a 32-bit unsigned integers

Description: (HI, LO) ← GPR[rs] / GPR[rt]

The 32-bit word value in GPR rs is divided by the 32-bit value in GPR rt, treating both operands as unsigned values.
The 32-bit quotient is placed into special register LO and the 32-bit remainder is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If the divisor in GPR rt is zero, the arithmetic result value is UNPREDICTABLE.

Operation:

q ← (0 || GPR[rs]31..0) div (0 || GPR[rt]31..0)
r ← (0 || GPR[rs]31..0) mod (0 || GPR[rt]31..0)
LO ← sign_extend(q31..0)
HI ← sign_extend(r31..0)

Exceptions:

None

Programming Notes:

See “Programming Notes” for the DIV instruction.

Historical Perspective:

In MIPS 1 through MIPS III, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of
the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subse-
quent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV and
MIPS32 and all subsequent levels of the architecture.

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt rs
DIVU

1011101100
POOL32AXf

111100

6 5 5 10 6

Execution Hazard Barrier EHB

261 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: EHB microMIPS

Purpose: Execution Hazard Barrier

To stop instruction execution until all execution hazards have been cleared.

Description:

EHB is the assembly idiom used to denote execution hazard barrier. The actual instruction is interpreted by the hard-
ware as SLL r0, r0, 3.

This instruction alters the instruction issue behavior on a pipelined processor by stopping execution until all execu-
tion hazards have been cleared. Other than those that might be created as a consequence of setting StatusCU0, there
are no execution hazards visible to an unprivileged program running in User Mode. All execution hazards created by
previous instructions are cleared for instructions executed immediately following the EHB, even if the EHB is exe-
cuted in the delay slot of a branch or jump. The EHB instruction does not clear instruction hazards—such hazards are
cleared by the JALR.HB, JR.HB, and ERET instructions.

Restrictions:

None

Operation:

ClearExecutionHazards()

Exceptions:

None

Programming Notes:

In MIPS32 Release 2 implementations, this instruction resolves all execution hazards. On a superscalar processor,
EHB alters the instruction issue behavior in a manner identical to SSNOP. For backward compatibility with Release 1
implementations, the last of a sequence of SSNOPs can be replaced by an EHB. In Release 1 implementations, the
EHB will be treated as an SSNOP, thereby preserving the semantics of the sequence. In Release 2 implementations,
replacing the final SSNOP with an EHB should have no performance effect because a properly sized sequence of
SSNOPs will have already cleared the hazard. As EHB becomes the standard in MIPS implementations, the previous
SSNOPs can be removed, leaving only the EHB.

31 26 25 21 20 16 15 11 10 6 5 0

POOL32A
000000

0
00000

0
00000

3
00011

0
00000

SLL32
000000

6 5 5 5 5 6

Execution Hazard Barrier IEHB

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 262

Enable Interrupts EI

263 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: EI microMIPS
EI rs microMIPS

Purpose: Enable Interrupts

To return the previous value of the Status register and enable interrupts. If EI is specified without an argument, GPR
r0 is implied, which discards the previous value of the Status register.

Description: GPR[rt] ← Status; StatusIE ← 1

The current value of the Status register is loaded into general register rt. The Interrupt Enable (IE) bit in the Status
register is then set.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

data ← Status
GPR[rs] ← data
StatusIE ← 1

Exceptions:

Coprocessor Unusable
Reserved Instruction (Release 1 implementations)

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading Status into a GPR, set-
ting the IE bit, and writing the result back to Status. Unlike the multiple instruction sequence, however, the EI
instruction cannot be aborted in the middle by an interrupt or exception.

This instruction creates an execution hazard between the change to the Status register and the point where the change
to the interrupt enable takes effect. This hazard is cleared by the EHB, JALR.HB, JR.HB, or ERET instructions. Soft-
ware must not assume that a fixed latency will clear the execution hazard.

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

0
00000

rs
EI

0101011101
POOL32AXf

111100

6 5 5 10 6

Enable Interrupts IEI

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 264

Exception Return ERET

265 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: ERET microMIPS

Purpose: Exception Return

To return from interrupt, exception, or error trap.

Description:

ERET clears execution and instruction hazards, conditionally restores SRSCtlCSS from SRSCtlPSS in a Release 2
implementation, and returns to the interrupted instruction at the completion of interrupt, exception, or error process-
ing. ERET does not execute the next instruction (i.e., it has no delay slot).

Restrictions:

The operation of the processor is UNDEFINED if an ERET is executed in the delay slot of a branch or jump instruc-
tion.

An ERET placed between an LL and SC instruction will always cause the SC to fail.

ERET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the ERET returns.

In a Release 2 implementation, ERET does not restore SRSCtlCSS from SRSCtlPSS if StatusBEV = 1, or if
StatusERL = 1 because any exception that sets StatusERL to 1 (Reset, Soft Reset, NMI, or cache error) does not save
SRSCtlCSS in SRSCtlPSS. If software sets StatusERL to 1, it must be aware of the operation of an ERET that may be
subsequently executed.

Operation:

if StatusERL = 1 then
temp ← ErrorEPC
StatusERL ← 0

else
temp ← EPC
StatusEXL ← 0
if (ArchitectureRevision ≥ 2) and (SRSCtlHSS > 0) and (StatusBEV = 0) then

SRSCtlCSS ← SRSCtlPSS
endif

endif
if IsMIPS16Implemented() | (Config3ISA > 0) then

PC ← temp31..1 || 0
ISAMode ← temp0

else
PC ← temp

endif
LLbit ← 0
ClearHazards()

Exceptions:
Coprocessor Unusable Exception

31 26 25 16 15 6 5 0

POOL32A
000000

0
0000000000

ERET
1111001101

POOL32AXf
111100

6 10 10 6

Exception Return No Clear IERETNC

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 266

Format: ERETNC microMIPS Release 5

Purpose: Exception Return No Clear

To return from interrupt, exception, or error trap without clearing the LLbit.

Description:

ERETNC clears execution and instruction hazards, conditionally restores SRSCtlCSS from SRSCtlPSS when imple-
mented, and returns to the interrupted instruction at the completion of interrupt, exception, or error processing.
ERETNC does not execute the next instruction (i.e., it has no delay slot).

ERETNC is identical to ERET except that an ERETNC will not clear the LLbit that is set by execution of an LL
instruction, and thus when placed between an LL and SC sequence, will never cause the SC to fail.

An ERET should continue to be used by default in interrupt and exception processing handlers: the handler may have
accessed a synchronizable block of memory common to code that is atomically accessing the memory, and where the
code caused the exception or was interrupted. Similarly, a process context-swap must also continue to use an ERET
in order to avoid a possible false success on execution of SC in the restored context.

Multiprocessor systems with non-coherent cores (i.e., without hardware coherence snooping) should also continue to
use ERET, since it is the responsibility of software to maintain data coherence in the system.

An ERETNC is useful in cases where interrupt/exception handlers and kernel code involved in a process context-
swap can guarantee no interference in accessing synchronizable memory across different contexts. ERETNC can also
be used in an OS-level debugger to single-step through code for debug purposes, avoiding the false clearing of the
LLbit and thus failure of an LL and SC sequence in single-stepped code.

Software can detect the presence of ERETNC by reading Config5LLB.

Restrictions:

The operation of the processor is UNDEFINED if an ERETNC is executed in the delay slot of a branch or jump
instruction.

ERETNC implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes. (For Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream.) The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction in the PC to which the ERETNC returns.

Operation:

if StatusERL = 1 then
temp ← ErrorEPC
StatusERL ← 0

else
temp ← EPC
StatusEXL ← 0
if (ArchitectureRevision ≥ 2) and (SRSCtlHSS > 0) and (StatusBEV = 0) then

SRSCtlCSS ← SRSCtlPSS
endif

endif
if IsMIPS16Implemented() | (Config3ISA > 0) then

31 26 25 16 15 6 5 0

POOL32A
000000

0
000000000

1
ERET

1111001101
POOL32AXf

111100

6 9 1 10 6

Exception Return No Clear ERETNC

267 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

PC ← temp31..1 || 0
ISAMode ← temp0

else
PC ← temp

endif
ClearHazards()

Exceptions:
Coprocessor Unusable Exception

Extract Bit Field IEXT

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 268

Format: EXT rt, rs, pos, size microMIPS

Purpose: Extract Bit Field

To extract a bit field from GPR rs and store it right-justified into GPR rt.

Description: GPR[rt] ← ExtractField(GPR[rs], msbd, lsb)

The bit field starting at bit pos and extending for size bits is extracted from GPR rs and stored zero-extended and
right-justified in GPR rt. The assembly language arguments pos and size are converted by the assembler to the
instruction fields msbd (the most significant bit of the destination field in GPR rt), in instruction bits 15..11, and lsb
(least significant bit of the source field in GPR rs), in instruction bits 10..6, as follows:

msbd ← size-1
lsb ← pos

The values of pos and size must satisfy all of the following relations:

0 ≤ pos < 32
0 < size ≤ 32
0 < pos+size ≤ 32

Figure 3-9 shows the symbolic operation of the instruction.

Figure 5.4 Operation of the EXT Instruction

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

The operation is UNPREDICTABLE if lsb+msbd > 31.

Operation:

if (lsb + msbd) > 31) then
UNPREDICTABLE

endif
temp ← 032-(msbd+1) || GPR[rs]msbd+lsb..lsb

31 26 25 21 20 16 15 11 10 6 5 0

POOL32A
000000

rt rs
msbd

(size-1)
lsb

(pos)
EXT

101100

6 5 5 5 5 6

31
pos+size

lsb+msbd+1
 pos+size-1
 lsb+msbd

pos
lsb

 pos-1
 lsb-1 0

GPR rs
Initial Value

IJKL MNOP QRST

32-(pos+size)
32-(lsb+msbd+1)

size
msbd+1

pos
lsb

31
size

msbd+1
size-1
 msbd 0

GPR rt Final
Value

0 MNOP

32-size
32-(msbd+1)

size
msbd+1

Extract Bit Field EXT

269 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

GPR[rt] ← temp

Exceptions:

Reserved Instruction

Floating Point Floor Convert to Long Fixed Point IFLOOR.L.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 270

Format: FLOOR.L.fmt
FLOOR.L.S ft, fs microMIPS
FLOOR.L.D ft, fs microMIPS

Purpose: Floating Point Floor Convert to Long Fixed Point

To convert an FP value to 64-bit fixed point, rounding down

Description: FPR[ft] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded toward -∞
(rounding mode 3). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 263–1, is written to fd.

Restrictions:

The fields fs and ft must specify valid FPRs—fs for type fmt and ft for long fixed point—if they are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(ft, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

31 26 25 22 21 20 16 15 14 13 6 5 0

POOL32F
010101

ft fs 0 fmt
FLOOR.L
00001100

POOL32FXf
111011

6 5 5 1 1 8 6

Floating Point Floor Convert to Long Fixed Point FLOOR.L.fmt

271 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Floating Point Floor Convert to Word Fixed Point IFLOOR.W.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 272

Format: FLOOR.W.fmt
FLOOR.W.S ft, fs microMIPS
FLOOR.W.D ft, fs microMIPS

Purpose: Floating Point Floor Convert to Word Fixed Point

To convert an FP value to 32-bit fixed point, rounding down

Description: FPR[ft] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format and rounded toward –∞
(rounding mode 3). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 231–1, is written to ft.

Restrictions:

The fields fs and ft must specify valid FPRs—fs for type fmt and ft for word fixed point—if they are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(ft, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

31 26 25 22 21 20 16 15 14 13 6 5 0

POOL32F
010101

ft fs 0 fmt
FLOOR.W
00101100

POOL32FXf
111011

6 5 5 1 1 8 6

Floating Point Floor Convert to Word Fixed Point FLOOR.W.fmt

273 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Insert Bit Field IINS

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 274

Format: INS rt, rs, pos, size microMIPS

Purpose: Insert Bit Field

To merge a right-justified bit field from GPR rs into a specified field in GPR rt.

Description: GPR[rt] ← InsertField(GPR[rt], GPR[rs], msb, lsb)

The right-most size bits from GPR rs are merged into the value from GPR rt starting at bit position pos. The result
isplaced back in GPR rt. The assembly language arguments pos and size are converted by the assembler to the
instruction fields msb (the most significant bit of the field), in instruction bits 15..11, and lsb (least significant bit of
the field), in instruction bits 10..6, as follows:

msb ← pos+size-1
lsb ← pos

The values of pos and size must satisfy all of the following relations:

0 ≤ pos < 32
0 < size ≤ 32
0 < pos+size ≤ 32

Figure 3-10 shows the symbolic operation of the instruction.

Figure 5.5 Operation of the INS Instruction

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

31 26 25 21 20 16 15 11 10 6 5 0

POOL32A
000000

rt rs
msbd

(pos+size-1)
lsb

(pos)
INS

001100

6 5 5 5 5 6

31
size

msb-lsb+1
 size-1

 msb-lsb 0

GPR rs ABCD EFGH

32-size
32-(msb-lsb+1)

size
msb-lsb+1

31
pos+size
msb+1

 pos+size-1
 msb

pos
lsb

 pos-1
 lsb-1 0

GPR rt
Initial Value

IJKL MNOP QRST

32-(pos+size)
32-(msb+1)

size
msb-lsb+1

pos
lsb

31
pos+size

msb+1
pos+size-1

msb
pos
lsb

pos-1
lsb-1 0

GPR rt Final
Value

IJKL EFGH QRST

32-(pos+size)
32-(msb+1)

size
msb-lsb+1

pos
lsb

Insert Bit Field INS

275 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

The operation is UNPREDICTABLE if lsb > msb.

Operation:

if lsb > msb) then
UNPREDICTABLE

endif
GPR[rt] ← GPR[rt]31..msb+1 || GPR[rs]msb-lsb..0 || GPR[rt]lsb-1..0

Exceptions:

Reserved Instruction

Insert Bit Field IINS

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 276

Jump J

277 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: J target microMIPS

Purpose: Jump

To branch within the current 128 MB-aligned region

Description:

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 128 MB-aligned region.
The low 27 bits of the target address is the instr_index field shifted left 1 bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot, before
executing the jump itself.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I:
I+1: PC ← PCGPRLEN-1..27 || instr_index || 0

1

Exceptions:

None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC is an
advantage if all program code addresses fit into a 128 MB region aligned on a 128 MB boundary. It allows a branch
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the jump instruction is in the last word of a 128 MB
region, it can branch only to the following 128 MB region containing the branch delay slot.

31 26 25 0

J32
110101

instr_index

6 26

Jump and Link IJAL

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 278

Format: JAL target microMIPS

Purpose: Jump and Link

To execute a procedure call within the current 128 MB-aligned region

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call.

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 128 MB-aligned region.
The low 27 bits of the target address is the instr_index field shifted left 1 bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot, before
executing the jump itself.

Restrictions:

The delay-slot instruction must be 32-bits in size. Processor operation is UNPREDICTABLE if a 16-bit instruction
is placed in the delay slot of JAL.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: GPR[31] ← PC + 8
I+1: PC ← PCGPRLEN-1..27 || instr_index || 0

1

Exceptions:

None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC is an
advantage if all program code addresses fit into a 128 MB region aligned on a 128 MB boundary. It allows a branch
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the branch instruction is in the last word of a 128 MB
region, it can branch only to the following 128 MB region containing the branch delay slot.

31 26 25 0

JAL32
111101

instr_index

6 26

Jump and Link JAL

279 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Jump and Link Register IJALR

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 280

Format: JALR rs (rt = 31 implied) microMIPS
JALR rt, rs microMIPS

Purpose: Jump and Link Register

To execute a procedure call to an instruction address in a register

Description: GPR[rt] ← return_addr, PC ← GPR[rs]

Place the return address link in GPR rt. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

For processors that do not implement the MIPS32/64ISA:

• Jump to the effective target address in GPR rs. Execute the instruction that follows the jump, in the branch delay
slot, before executing the jump itself. Bit 0 of the target address is always zero so that no Address Exceptions
occur when bit 0 of the source register is one.

For processors that do implement the MIPS32/64ISA:

• Jump to the effective target address in GPR rs. Execute the instruction that follows the jump, in the branch delay
slot, before executing the jump itself. Set the ISA Mode bit to the value in GPR rs bit 0. Bit 0 of the target address
is always zero so that no Address Exceptions occur when bit 0 of the source register is one.

Restrictions:

The delay-slot instruction must be 32-bits in size. Processor operation is UNPREDICTABLE if a 16-bit instruction
is placed in the delay slot of JALR.

Register specifiers rs and rt must not be equal, because such an instruction does not have the same effect when reexe-
cuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception han-
dler to resume execution by re-executing the branch when an exception occurs in the branch delay slot.

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS32/64 and if the ISAMode bit of the target is MIPS32/64 (bit 0 of GPR rs is 0)
and address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an
instruction.

For processors that do not implement MIPS32/64 ISA, if the intended target ISAMode is MIPS32/64(bit 0 of GPR rs
is zero), an Address Error exception occurs when the jump target is fetched as an instruction.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: temp ← GPR[rs]
GPR[rt] ← PC + 8

I+1:if Config1CA = 0 then
PC ← temp

else

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt rs
JALR

0000111100
POOL32AXf

111100

6 5 5 10 6

Jump and Link Register JALR

281 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

PC ← tempGPRLEN-1..1 || 0
ISAMode ← temp0

endif

Exceptions:

None

Programming Notes:

This branch-and-link instruction that can select a register for the return link; other link instructions use GPR 31. The
default register for GPR rd, if omitted in the assembly language instruction, is GPR 31.

Jump and Link Register with Hazard Barrier IJALR.HB

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 282

Format: JALR.HB rs (rt = 31 implied) microMIPS
JALR.HB rt, rs microMIPS

Purpose: Jump and Link Register with Hazard Barrier

To execute a procedure call to an instruction address in a register and clear all execution and instruction hazards

Description: GPR[rt] ← return_addr, PC ← GPR[rs], clear execution and instruction
hazards

Place the return address link in GPR rt. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

For processors that do not implement the MIPS32/64 ISA:

• Jump to the effective target address in GPR rs. Execute the instruction that follows the jump, in the branch
delay slot, before executing the jump itself. Bit 0 of the target address is always zero so that no Address
Exceptions occur when bit 0 of the source register is one.

For processors that do implement the MIPS32/64 ISA:

• Jump to the effective target address in GPR rs. Execute the instruction that follows the jump, in the branch
delay slot, before executing the jump itself. Set the ISA Mode bit to the value in GPR rs bit 0. Bit 0 of the tar-
get address is always zero so that no Address Exceptions occur when bit 0 of the source register is one.

JALR.HB implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the JALR.HB instruction jumps. An equivalent bar-
rier is also implemented by the ERET instruction, but that instruction is only available if access to Coprocessor 0 is
enabled, whereas JALR.HB is legal in all operating modes.

This instruction clears both execution and instruction hazards. Refer to the EHB instruction description for the
method of clearing execution hazards alone.

Restrictions:

The delay-slot instruction must be 32-bits in size. Processor operation is UNPREDICTABLE if a 16-bit instruction
is placed in the delay slot of JAL.HB.

Register specifiers rs and rd must not be equal, because such an instruction does not have the same effect when reex-
ecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception han-
dler to resume execution by re-executing the branch when an exception occurs in the branch delay slot.

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS32/64 and if the ISAMode bit of the target address is MIPS32/64 (bit 0 of
GPR rs is 0) and address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched
as an instruction.

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rd rs
JALR.HB

0001111100
POOL32AXf

111100

6 5 5 10 6

Jump and Link Register with Hazard Barrier JALR.HB

283 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

For processors that do not implement MIPS32/64 ISA, if the intended target ISAMode is MIPS32/64 (bit 0 of GPR rs
is zero), an Address Error exception occurs when the jump target is fetched as an instruction.

After modifying an instruction stream mapping or writing to the instruction stream, execution of those instructions
has UNPREDICTABLE behavior until the instruction hazard has been cleared with JALR.HB, JALRS.HB, JR.HB,
ERET, or DERET. Further, the operation is UNPREDICTABLE if the mapping of the current instruction stream is
modified.

JALR.HB does not clear hazards created by any instruction that is executed in the delay slot of the JALR.HB. Only
hazards created by instructions executed before the JALR.HB are cleared by the JALR.HB.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: temp ← GPR[rs]
GPR[rt] ← PC + 8

I+1:if Config1CA = 0 then
PC ← temp

else
PC ← tempGPRLEN-1..1 || 0
ISAMode ← temp0

endif
ClearHazards()

Exceptions:

None

Programming Notes:

This branch-and-link instruction can select a register for the return link; other link instructions use GPR 31. The
default register for GPR rt, if omitted in the assembly language instruction, is GPR 31.

This instruction implements the final step in clearing execution and instruction hazards before execution continues. A
hazard is created when a Coprocessor 0 or TLB write affects execution or the mapping of the instruction stream, or
after a write to the instruction stream. When such a situation exists, software must explicitly indicate to hardware that
the hazard should be cleared. Execution hazards alone can be cleared with the EHB instruction. Instruction hazards
can only be cleared with a JR.HB, JALR.HB, or ERET instruction. These instructions cause hardware to clear the
hazard before the instruction at the target of the jump is fetched. Note that because these instructions are encoded as
jumps, the process of clearing an instruction hazard can often be included as part of a call (JALR) or return (JR)
sequence, by simply replacing the original instructions with the HB equivalent.

Example: Clearing hazards due to an ASID change

/*
 * Code used to modify ASID and call a routine with the new
 * mapping established.
 *
 * a0 = New ASID to establish
 * a1 = Address of the routine to call
 */

mfc0 v0, C0_EntryHi /* Read current ASID */
li v1, ~M_EntryHiASID /* Get negative mask for field */
and v0, v0, v1 /* Clear out current ASID value */
or v0, v0, a0 /* OR in new ASID value */
mtc0 v0, C0_EntryHi /* Rewrite EntryHi with new ASID */
jalr.hb a1 /* Call routine, clearing the hazard */

Jump and Link Register with Hazard Barrier IJALR.HB

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 284

nop

Jump and Link Register with Hazard Barrier JALR.HB

285 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Jump Register IJR

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 286

Format: JR rs microMIPS

Purpose: Jump Register

To execute a branch to an instruction address in a register

Description: PC ← GPR[rs]

Jump to the effective target address in GPR rs. Execute the instruction following the jump, in the branch delay slot,
before jumping.

For processors that implement the MIPS32/64 ISA, set the ISA Mode bit to the value in GPR rs bit 0. Bit 0 of the tar-
get address is always zero so that no Address Exceptions occur when bit 0 of the source register is one

Restrictions:

The delay-slot instruction must be 32-bits in size. Processor operation is UNPREDICTABLE if a 16-bit instruction
is placed in the delay slot of JALR.

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS32/64 and the ISAMode bit of the target address is MIPS32/64 (bit 0 of
GPR rs is 0) and address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched
as an instruction.

For processors that do not implement MIPS32/64 ISA, if the intended target ISAMode is MIPS32/64(bit 0 of GPR rs
is zero), an Address Error exception occurs when the jump target is fetched as an instruction.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: temp ← GPR[rs]
I+1:if Config1CA = 0 then

PC ← temp
else

PC ← tempGPRLEN-1..1 || 0
ISAMode ← temp0

endif

Exceptions:

None

Programming Notes:

Software should use the value 31 for the rs field of the instruction word on return from a JAL, JALR, or BGEZAL,
and should use a value other than 31 for remaining uses of JR.

31 26 25 21 20 16 15 14 13 6 5 0

POOL32A
000000

00000
rs 00

JALR
00111100

POOL32AXf
111100

6 5 5 2 8 6

Jump Register JR

287 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Jump Register with Hazard Barrier IJR.HB

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 288

Format: JR.HB rs microMIPS

Purpose: Jump Register with Hazard Barrier

To execute a branch to an instruction address in a register and clear all execution and instruction hazards.

Description: PC ← GPR[rs], clear execution and instruction hazards

Jump to the effective target address in GPR rs. Execute the instruction following the jump, in the branch delay slot,
before jumping.

JR.HB implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the JR.HB instruction jumps. An equivalent barrier
is also implemented by the ERET instruction, but that instruction is only available if access to Coprocessor 0 is
enabled, whereas JR.HB is legal in all operating modes.

This instruction clears both execution and instruction hazards. Refer to the EHB instruction description for the
method of clearing execution hazards alone.

For processors that implement the MIPS32/64 ISA, set the ISA Mode bit to the value in GPR rs bit 0. Bit 0 of the tar-
get address is always zero so that no Address Exceptions occur when bit 0 of the source register is one.

Restrictions:

The delay-slot instruction must be 32-bits in size. Processor operation is UNPREDICTABLE if a 16-bit instruction
is placed in the delay slot of JALR.

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS32/64 and the ISAMode bit of the target address is MIPS32/64 (bit 0 of
GPR rs is 0) and address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched
as an instruction.

For processors that do not implement MIPS32/64 ISA, if the intended target ISAMode is MIPS32/64(bit 0 of GPR rs
is zero), an Address Error exception occurs when the jump target is fetched as an instruction.

After modifying an instruction stream mapping or writing to the instruction stream, execution of those instructions
has UNPREDICTABLE behavior until the hazard has been cleared with JALR.HB, JALRS.HB, JR.HB, ERET, or
DERET. Further, the operation is UNPREDICTABLE if the mapping of the current instruction stream is modified.

JR.HB does not clear hazards created by any instruction that is executed in the delay slot of the JR.HB. Only hazards
created by instructions executed before the JR.HB are cleared by the JR.HB.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: temp ← GPR[rs]
I+1:if Config1CA = 0 then

PC ← temp

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

0
00000

rs
JALR.HB
01111100

POOL32AXf
111100

6 5 5 10 6

Jump Register with Hazard Barrier JR.HB

289 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

else
PC ← tempGPRLEN-1..1 || 0
ISAMode ← temp0

endif
ClearHazards()

Exceptions:

None

Programming Notes:

This instruction implements the final step in clearing execution and instruction hazards before execution continues. A
hazard is created when a Coprocessor 0 or TLB write affects execution or the mapping of the instruction stream, or
after a write to the instruction stream. When such a situation exists, software must explicitly indicate to hardware that
the hazard should be cleared. Execution hazards alone can be cleared with the EHB instruction. Instruction hazards
can only be cleared with a JR.HB, JALR.HB, or ERET instruction. These instructions cause hardware to clear the
hazard before the instruction at the target of the jump is fetched. Note that because these instructions are encoded as
jumps, the process of clearing an instruction hazard can often be included as part of a call (JALR) or return (JR)
sequence, by simply replacing the original instructions with the HB equivalent.

Example: Clearing hazards due to an ASID change

/*
 * Routine called to modify ASID and return with the new
 * mapping established.
 *
 * a0 = New ASID to establish
 */

mfc0 v0, C0_EntryHi /* Read current ASID */
li v1, ~M_EntryHiASID /* Get negative mask for field */
and v0, v0, v1 /* Clear out current ASID value */
or v0, v0, a0 /* OR in new ASID value */
mtc0 v0, C0_EntryHi /* Rewrite EntryHi with new ASID */
jr.hb ra /* Return, clearing the hazard */
nop

Example: Making a write to the instruction stream visible

/*
 * Routine called after new instructions are written to
 * make them visible and return with the hazards cleared.
 */

{Synchronize the caches - see the SYNCI and CACHE instructions}
sync /* Force memory synchronization */
jr.hb ra /* Return, clearing the hazard */
nop

Example: Clearing instruction hazards in-line

la AT, 10f
jr.hb AT /* Jump to next instruction, clearing */
nop /* hazards */

10:

Jump Register with Hazard Barrier IJR.HB

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 290

Load Byte LB

291 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: LB rt, offset(base) microMIPS

Purpose: Load Byte

To load a byte from memory as a signed value

Description: GPR[rt] ← memory[GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, sign-extended,
and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
memword ← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr1..0 xor BigEndianCPU2

GPR[rt] ← sign_extend(memword7+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Watch

31 26 25 21 20 16 15 0

LB32
000111

rt base offset

6 5 5 16

Load Byte EVA ILBE

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 292

Format: LBE rt, offset(base) microMIPS

Purpose: Load Byte EVA

To load a byte as a signed value from user mode virtual address space when executing in kernel mode.

Description: GPR[rt] ← memory[GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, sign-extended,
and placed in GPR rt. The 9-bit signed offset is added to the contents of GPR base to form the effective address.

The LBE instruction functions in exactly the same fashion as the LB instruction, except that address translation is
performed using the user mode virtual address space mapping in the TLB when accessing an address within a mem-
ory segment configured to use the MUSUK access mode and executing in kernel mode. Memory segments using
UUSK or MUSK access modes are also accessible. Refer to Volume III, Enhanced Virtual Addressing section for
additional information.

Implementation of this instruction is specified by the Config5EVA field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and accessing an address within a segment configured using
UUSK, MUSK or MUSUK access mode.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
memword ← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr1..0 xor BigEndianCPU2

GPR[rt] ← sign_extend(memword7+8*byte..8*byte)

Exceptions:

TLB Refill

TLB Invalid

Bus Error

Address Error

Watch

Reserved Instruction

Coprocessor Unusable

31 26 25 21 20 16 15 12 11 9 8 0

POOL32C
011000

rt base
LD-EVA

0110
LBE
100

offset

6 5 5 4 3 9

Load Byte EVA LBE

293 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Byte Unsigned ILBU

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 294

Format: LBU rt, offset(base) microMIPS

Purpose: Load Byte Unsigned

To load a byte from memory as an unsigned value

Description: GPR[rt] ← memory[GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, zero-extended,
and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
memword ← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr1..0 xor BigEndianCPU2

GPR[rt] ← zero_extend(memword7+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Watch

31 26 25 21 20 16 15 0

LBU32
000101

rt base offset

6 5 5 16

Load Byte Unsigned LBU

295 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Byte Unsigned EVA ILBUE

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 296

Format: LBUE rt, offset(base) microMIPS

Purpose: Load Byte Unsigned EVA

To load a byte as an unsigned value from user mode virtual address space when executing in kernel mode.

Description: GPR[rt] ← memory[GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, zero-extended,
and placed in GPR rt. The 9-bit signed offset is added to the contents of GPR base to form the effective address.

The LBUE instruction functions in exactly the same fashion as the LBU instruction, except that address translation is
performed using the user mode virtual address space mapping in the TLB when accessing an address within a mem-
ory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes
are also accessible. Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5EVA field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and accessing an address within a segment configured using
UUSK, MUSK or MUSUK access mode.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
memword ← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr1..0 xor BigEndianCPU2

GPR[rt] ← zero_extend(memword7+8*byte..8*byte)

Exceptions:

TLB Refill

TLB Invalid

Bus Error

Address Error

Watch

Reserved Instruction

Coprocessor Unusable

31 26 25 21 20 16 15 12 11 9 8 0

POOL32C
011000

rt base
LD-EVA

0110
LBUE

000
offset

6 5 5 4 3 9

Load Byte Unsigned EVA LBUE

297 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Doubleword to Floating Point ILDC1

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 298

Format: LDC1 ft, offset(base) microMIPS

Purpose: Load Doubleword to Floating Point

To load a doubleword from memory to an FPR

Description: FPR[ft] ← memory[GPR[base] + offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in FPR ft. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0 ≠ 0 (not doubleword-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr2..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
paddr ← paddr xor ((BigEndianCPU xor ReverseEndian) || 02)
memlsw ← LoadMemory(CCA, WORD, pAddr, vAddr, DATA)
paddr ← paddr xor 0b100
memmsw ← LoadMemory(CCA, WORD, pAddr, vAddr+4, DATA)
memdoubleword ← memmsw || memlsw
StoreFPR(ft, UNINTERPRETED_DOUBLEWORD, memdoubleword)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, Address Error, Watch

31 26 25 21 20 16 15 0

LDC132
101111

ft base offset

6 5 5 16

Load Doubleword to Coprocessor 2 LDC2

299 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: LDC2 rt, offset(base) microMIPS

Purpose: Load Doubleword to Coprocessor 2

To load a doubleword from memory to a Coprocessor 2 register

Description: CPR[2,rt,0] ← memory[GPR[base] + offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in Coprocessor 2 register rt. The 12-bit signed offset is added to the contents of GPR base to form the
effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0 ≠ 0 (not doubleword-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr2..0 ≠ 03 then SignalException(AddressError) endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
paddr ← paddr xor ((BigEndianCPU xor ReverseEndian) || 02)
memlsw ← LoadMemory(CCA, WORD, pAddr, vAddr, DATA)
paddr ← paddr xor 0b100
memmsw ← LoadMemory(CCA, WORD, pAddr, vAddr+4, DATA)
←memlsw
←memmsw

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, Address Error, Watch

31 26 25 21 20 16 15 12 11 0

POOL32B
001000

rt base
LDC2
0010

offset

6 5 5 4 12

Load Halfword ILH

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 300

Format: LH rt, offset(base) microMIPS

Purpose: Load Halfword

To load a halfword from memory as a signed value

Description: GPR[rt] ← memory[GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
sign-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE–1..2 || (pAddr1..0 xor (ReverseEndian || 0))
memword ← LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr1..0 xor (BigEndianCPU || 0)
GPR[rt] ← sign_extend(memword15+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

31 26 25 21 20 16 15 0

LH32
001111

rt base offset

6 5 5 16

Load Halfword LH

301 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Halfword EVA ILHE

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 302

Format: LHE rt, offset(base) microMIPS

Purpose: Load Halfword EVA

To load a halfword as a signed value from user mode virtual address space when executing in kernel mode.

Description: GPR[rt] ← memory[GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
sign-extended, and placed in GPR rt. The 9-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

The LHE instruction functions in exactly the same fashion as the LH instruction, except that address translation is
performed using the user mode virtual address space mapping in the TLB when accessing an address within a mem-
ory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes
are also accessible. Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5EVA field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and accessing an address within a segment configured using
UUSK, MUSK or MUSUK access mode.

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE–1..2 || (pAddr1..0 xor (ReverseEndian || 0))
memword ← LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr1..0 xor (BigEndianCPU || 0)
GPR[rt] ← sign_extend(memword15+8*byte..8*byte)

Exceptions:

TLB Refill

TLB Invalid

Bus Error

Address Error

Watch

Reserved Instruction

Coprocessor Unusable

31 26 25 21 20 16 15 12 11 9 8 0

POOL32C
011000

rt base
LD-EVA

0110
LHE
101

offset

6 5 5 4 3 9

Load Halfword EVA LHE

303 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Halfword Unsigned ILHU

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 304

Format: LHU rt, offset(base) microMIPS

Purpose: Load Halfword Unsigned

To load a halfword from memory as an unsigned value

Description: GPR[rt] ← memory[GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
zero-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE–1..2 || (pAddr1..0 xor (ReverseEndian || 0))
memword ← LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr1..0 xor (BigEndianCPU || 0)
GPR[rt] ← zero_extend(memword15+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Watch

31 26 25 21 20 16 15 0

LHU32
001101

rt base offset

6 5 5 16

Load Halfword Unsigned LHU

305 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Halfword Unsigned EVA ILHUE

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 306

Format: LHUE rt, offset(base) microMIPS

Purpose: Load Halfword Unsigned EVA

To load a halfword as an unsigned value from user mode virtual address space when executing in kernel mode.

Description: GPR[rt] ← memory[GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
zero-extended, and placed in GPR rt. The 9-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

The LHUE instruction functions in exactly the same fashion as the LHU instruction, except that address translation is
performed using the user mode virtual address space mapping in the TLB when accessing an address within a mem-
ory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes
are also accessible. Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5EVA field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and accessing an address within a segment configured using
UUSK, MUSK or MUSUK access mode.

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE–1..2 || (pAddr1..0 xor (ReverseEndian || 0))
memword ← LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr1..0 xor (BigEndianCPU || 0)
GPR[rt] ← zero_extend(memword15+8*byte..8*byte)

Exceptions:

TLB Refill

TLB Invalid

Bus Error

Address Error

Watch

Reserved Instruction

Coprocessor Unusable

31 26 25 21 20 16 15 12 11 9 8 0

POOL32C
011000

rt base
LD-EVA

0110
LHUE

001
offset

6 5 5 4 3 9

Load Halfword Unsigned EVA LHUE

307 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Linked Word ILL

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 308

Format: LL rt, offset(base) microMIPS

Purpose: Load Linked Word

To load a word from memory for an atomic read-modify-write

Description: GPR[rt] ← memory[GPR[base] + offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
written into GPR rt. The 12-bit signed offset is added to the contents of GPR base to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LL is executed it starts an active RMW sequence replacing any other sequence that was active. The RMW
sequence is completed by a subsequent SC instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.

Executing LL on one processor does not cause an action that, by itself, causes an SC for the same block to fail on
another processor.

An execution of LL does not have to be followed by execution of SC; a program is free to abandon the RMW
sequence without attempting a write.

Restrictions:

The addressed location must be synchronizable by all processors and I/O devices sharing the location; if it is not, the
result is UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective address is non-
zero, an Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ← memword
LLbit ← 1

Exceptions:

TLB Refill, TLB Invalid, Address Error, Watch

31 26 25 21 20 16 15 12 11 0

POOL32C
011000

rt base
LL32
0011

offset

6 5 5 5 12

Load Linked Word LL

309 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Linked Word EVA ILLE

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 310

Format: LLE rt, offset(base) microMIPS

Purpose: Load Linked Word EVA

To load a word from a user mode virtual address when executing in kernel mode for an atomic read-modify-write

Description: GPR[rt] ← memory[GPR[base] + offset]

The LLE and SCE instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations using user mode virtual addresses while executing in kernel mode.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
written into GPR rt. The 12-bit signed offset is added to the contents of GPR base to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LLE is executed it starts an active RMW sequence replacing any other sequence that was active. The RMW
sequence is completed by a subsequent SCE instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.

Executing LLE on one processor does not cause an action that, by itself, causes an SCE for the same block to fail on
another processor.

An execution of LLE does not have to be followed by execution of SCE; a program is free to abandon the RMW
sequence without attempting a write.

The LLE instruction functions in exactly the same fashion as the LL instruction, except that address translation is per-
formed using the user mode virtual address space mapping in the TLB when accessing an address within a memory
segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are
also accessible. Refer to Volume III, Segmentation Control for additional information.

Implementation of this instruction is specified by the Config5EVA field being set to one.

Restrictions:

The addressed location must be synchronizable by all processors and I/O devices sharing the location; if it is not, the
result is UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SCE instruction for the formal definition.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective address is non-
zero, an Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ← memword
LLbit ← 1

31 26 25 21 20 16 15 12 11 9 8 0

POOL32C
011000

rt base
LD-EVA

0110
LLE
110

offset

6 5 5 4 3 9

Load Linked Word EVA LLE

311 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Watch, Coprocessor Unusable

Programming Notes:

Load Upper Immediate ILUI

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 312

Format: LUI rs, immediate microMIPS

Purpose: Load Upper Immediate

To load a constant into the upper half of a word

Description: GPR[rs] ← immediate || 016

The 16-bit immediate is shifted left 16 bits and concatenated with 16 bits of low-order zeros. The 32-bit result is
placed into GPR rt.

Restrictions:

None

Operation:

GPR[rs] ← immediate || 016

Exceptions:

None

31 26 25 21 20 16 15 0

POOL32I
010000

LUI
01101

rs immediate

6 5 5 16

Load Doubleword Indexed Unaligned to Floating Point LUXC1

313 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: LUXC1 fd, index(base) microMIPS
microMIPS

Purpose: Load Doubleword Indexed Unaligned to Floating Point

To load a doubleword from memory to an FPR (GPR+GPR addressing), ignoring alignment

Description: FPR[fd] ← memory[(GPR[base] + GPR[index])PSIZE-1..3]

The contents of the 64-bit doubleword at the memory location specified by the effective address are fetched and
placed into the low word of FPR fd. The contents of GPR index and GPR base are added to form the effective address.
The effective address is doubleword-aligned; EffectiveAddress2..0 are ignored.

Restrictions:

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

vAddr ← (GPR[base]+GPR[index])63..3 || 0
3

(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
paddr ← paddr xor ((BigEndianCPU xor ReverseEndian) || 02)
memlsw ← LoadMemory(CCA, WORD, pAddr, vAddr, DATA)
paddr ← paddr xor 0b100
memmsw ← LoadMemory(CCA, WORD, pAddr, vAddr+4, DATA)
memdoubleword ← memmsw || memlsw
StoreFPR(ft, UNINTERPRETED_DOUBLEWORD, memdoubleword)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, Watch

31 26 25 21 20 16 15 11 10 9 8 0

POOL32F
010101

index base fd 00 LUXC1
101001000

6 5 5 5 2 9

Load Doubleword Indexed Unaligned to Floating Point ILUXC1

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 314

Load Word LW

315 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: LW rt, offset(base) microMIPS

Purpose: Load Word

To load a word from memory as a signed value

Description: GPR[rt] ← memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 16-bit signed offset is added to the con-
tents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ← memword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

31 26 25 21 20 16 15 0

LW32
111111

rt base offset

6 5 5 16

Load Word EVA ILWE

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 316

Format: LWE rt, offset(base) microMIPS

Purpose: Load Word EVA

To load a word from user mode virtual address space when executing in kernel mode.

Description: GPR[rt] ← memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 9-bit signed offset is added to the contents
of GPR base to form the effective address.

The LWE instruction functions in exactly the same fashion as the LW instruction, except that address translation is
performed using the user mode virtual address space mapping in the TLB when accessing an address within a mem-
ory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes
are also accessible. Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5EVA field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ← memword

Exceptions:

TLB Refill

TLB Invalid

Bus Error

Address Error

Watch

Reserved Instruction

Coprocessor Unusable

31 26 25 21 20 16 15 12 11 9 8 0

POOL32C
011000

rt base
LD-EVA

0110
LWE
111

offset

6 5 5 4 3 9

Load Word EVA LWE

317 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Word to Floating Point ILWC1

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 318

Format: LWC1 ft, offset(base) microMIPS

Purpose: Load Word to Floating Point

To load a word from memory to an FPR

Description: FPR[ft] ← memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of FPR ft. If FPRs are 64 bits wide, bits 63..32 of FPR ft become UNPREDICTABLE. The
16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0 ≠ 0 (not word-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)

memword ← LoadMemory(CCA, WORD, pAddr, vAddr, DATA)

StoreFPR(ft, UNINTERPRETED_WORD,
memword)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

31 26 25 21 20 16 15 0

LWC132
100111

ft base offset

6 5 5 16

Load Word to Coprocessor 2 LWC2

319 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: LWC2 rt, offset(base) microMIPS

Purpose: Load Word to Coprocessor 2

To load a word from memory to a COP2 register

Description: CPR[2,rt,0] ← memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of COP2 (Coprocessor 2) general register rt. The 12-bit signed offset is added to the con-
tents of GPR base to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0 ≠ 0 (not word-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr12..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)

memword ← LoadMemory(CCA, DOUBLEWORD, pAddr, vAddr, DATA)

CPR[2,rt,0] ← memword

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

31 26 25 21 20 16 15 12 11 0

POOL32B
001000

rt base
LWC2
0000

offset

6 5 5 4 12

Load Word Left LWL

321 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Figure 5.7 Bytes Loaded by LWL Instruction

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
if BigEndianMem = 0 then

pAddr ← pAddrPSIZE-1..2 || 02

endif
byte ← vAddr1..0 xor BigEndianCPU

2

memword ← LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ← memword7+8*byte..0 || GPR[rt]23-8*byte..0
GPR[rt] ← temp

Exceptions:

None

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroing bits
63..32 of the destination register when bit 31 is loaded.

Historical Information:

In the MIPS I architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restriction.
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the
same destination register would correctly merge the 1 to 4 loaded bytes with the data loaded by the previous instruc-
tion. All such restrictions were removed from the architecture in MIPS II.

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 ←big-endian

I J K L offset (vAddr1. 0) e f g h

3 2 1 0 ←little-endian most least

most least — significance —

— significance —

Destination register contents after instruction (shaded is unchanged)

Big-endian vAddr1..0 Little-endian

I J K L 0 L f g h

J K L h 1 K L g h

K L g h 2 J K L h

L f g h 3 I J K L

Load Word Left EVA LWLE

323 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Figure 5.9 Bytes Loaded by LWLE Instruction

Restrictions:

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
if BigEndianMem = 0 then

pAddr ← pAddrPSIZE-1..2 || 02

endif
byte ← vAddr1..0 xor BigEndianCPU

2

memword ← LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ← memword7+8*byte..0 || GPR[rt]23-8*byte..0
GPR[rt] ← temp

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch, Reserved Instruction, Coprocessor Unusable

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroing bits
63..32 of the destination register when bit 31 is loaded.

Historical Information:

In the MIPS I architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restriction.
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the
same destination register would correctly merge the 1 to 4 loaded bytes with the data loaded by the previous instruc-
tion. All such restrictions were removed from the architecture in MIPS II.

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 ←big-endian

I J K L offset (vAddr1. 0) e f g h

3 2 1 0 ←little-endian most least

most least — significance —

— significance —

Destination register contents after instruction (shaded is unchanged)

Big-endian vAddr1..0 Little-endian

I J K L 0 L f g h

J K L h 1 K L g h

K L g h 2 J K L h

L f g h 3 I J K L

Load Word Right LWR

325 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Figure 5.11 Bytes Loaded by LWR Instruction

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
if BigEndianMem = 0 then

pAddr ← pAddrPSIZE-1..2 || 02

endif
byte ← vAddr1..0 xor BigEndianCPU

2

memword ← LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ← memword31..32-8*byte || GPR[rt]31–8*byte..0
GPR[rt] ← temp

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroing bits
63..32 of the destination register when bit 31 is loaded.

Historical Information:

In the MIPS I architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restriction.
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the
same destination register would correctly merge the 1 to 4 loaded bytes with the data loaded by the previous instruc-
tion. All such restrictions were removed from the architecture in MIPS II.

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 ←big-endian

I J K L offset (vAddr1. 0) e f g h

3 2 1 0 ←little-endian most least

most least — significance—

— significance —

Destination register contents after instruction (shaded is unchanged)

Big-endian vAddr1..0 Little-endian

e f g I 0 I J K L

e f I J 1 e I J K

e I J K 2 e f I J

I J K L 3 e f g I

Load Word Right EVA LWRE

327 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Figure 5.13 Bytes Loaded by LWRE Instruction

Restrictions:

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
if BigEndianMem = 0 then

pAddr ← pAddrPSIZE-1..2 || 02

endif
byte ← vAddr1..0 xor BigEndianCPU

2

memword ← LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ← memword31..32-8*byte || GPR[rt]31–8*byte..0
GPR[rt] ← temp

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch, Reserved Instruction, Coprocessor Unusable

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroing bits
63..32 of the destination register when bit 31 is loaded.

Historical Information:

In the MIPS I architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restriction.
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the
same destination register would correctly merge the 1 to 4 loaded bytes with the data loaded by the previous instruc-
tion. All such restrictions were removed from the architecture in MIPS II.

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 ←big-endian

I J K L offset (vAddr1. 0) e f g h

3 2 1 0 ←little-endian most least

most least — significance—

— significance —

Destination register contents after instruction (shaded is unchanged)

Big-endian vAddr1..0 Little-endian

e f g I 0 I J K L

e f I J 1 e I J K

e I J K 2 e f I J

I J K L 3 e f g I

Load Word Unsigned ILWU

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 328

Format: LWU rt, offset(base) microMIPS64

Purpose: Load Word Unsigned

To load a word from memory as an unsigned value

Description: GPR[rt] ← memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, zero-
extended, and placed in GPR rt. The 12-bit signed offset is added to the contents of GPR base to form the effective
address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ← 032 || memword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Reserved Instruction, Watch

31 26 25 21 20 16 15 12 11 0

POOL32C
011000

rt base
LWU
1110

offset

6 5 5 4 12

Load Word Unsigned LWU

329 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Word Indexed to Floating Point ILWXC1

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 330

Format: LWXC1 fd, index(base) microMIPS
microMIPS

Purpose: Load Word Indexed to Floating Point

To load a word from memory to an FPR (GPR+GPR addressing)

Description: FPR[fd] ← memory[GPR[base] + GPR[index]]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of FPR fd. If FPRs are 64 bits wide, bits 63..32 of FPR fs become UNPREDICTABLE. The
contents of GPR index and GPR base are added to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0 ≠ 0 (not word-aligned).

Compatibility and Availability:

LWXC1: Required in all versions of MIPS64 since MIPS64r1. Not available in MIPS32r1. Required by MIPS32r2
and subsequent versions of MIPS32. When required, required whenever FPU is present, whether a 32-bit or 64-bit
FPU, whether in 32-bit or 64-bit FP Register Mode (FIRF64=0 or 1, StatusFR=0 or 1).

Operation:

vAddr ← GPR[base] + GPR[index]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)

memword ← LoadMemory(CCA, WORD, pAddr, vAddr, DATA)

StoreFPR(fd, UNINTERPRETED_WORD,
memword)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

31 26 25 21 20 16 15 11 10 9 8 0

POOL32F
010101

index base fd 00 LWXC1
001001000

6 5 5 5 2 9

Load Word Indexed to Floating Point LWXC1

331 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Multiply and Add Word to Hi,Lo IMADD

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 332

Format: MADD rs, rt microMIPS

Purpose: Multiply and Add Word to Hi,Lo

To multiply two words and add the result to Hi, Lo

Description: (HI,LO) ← (HI,LO) + (GPR[rs] × GPR[rt])

The 32-bit word value in GPR rs is multiplied by the 32-bit word value in GPR rt, treating both operands as signed
values, to produce a 64-bit result. The product is added to the 64-bit concatenated values of HI and LO. The most sig-
nificant 32 bits of the result are written into HI and the least signficant 32 bits are written into LO. No arithmetic
exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

temp ← (HI || LO) + (GPR[rs] × GPR[rt])
HI ← temp63..32
LO ← temp31..0

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt rs
MADD

1100101100
POOL32AXf

111100

6 5 5 10 6

Floating Point Multiply Add MADD.fmt

333 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: MADD.fmt
MADD.S fd, fr, fs, ft microMIPS
MADD.D fd, fr, fs, ft microMIPS
MADD.PS fd, fr, fs, ft microMIPS

Purpose: Floating Point Multiply Add

To perform a combined multiply-then-add of FP values

Description: FPR[fd] ← (FPR[fs] × FPR[ft]) + FPR[fr]

The value in FPR fs is multiplied by the value in FPR ft to produce an intermediate product.

The intermediate product is rounded according to the current rounding mode in FCSR. The value in FPR fr is added
to the product. The result sum is calculated to infinite precision, rounded according to the current rounding mode in
FCSR, and placed into FPR fd. The operands and result are values in format fmt. The results and flags are as if sepa-
rate floating-point multiply and add instructions were executed.

MADD.PS multiplies then adds the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and ORs
together any generated exceptional conditions.

Cause bits are ORed into the Flag bits if no exception is taken.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is
UNPREDICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of MADD.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model;
i.e. it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Compatibility and Availability:

MADD.S and MADD.D: Required in all versions of MIPS64 since MIPS64r1. Not available in MIPS32r1. Required
by MIPS32r2 and subsequent versions of MIPS32. When required, required whenever FPU is present, whether a 32-
bit or 64-bit FPU, whether in 32-bit or 64-bit FP Register Mode (FIRF64=0 or 1, StatusFR=0 or 1).

Operation:

vfr ← ValueFPR(fr, fmt)
vfs ← ValueFPR(fs, fmt)

31 26 25 21 20 16 15 11 10 6 5 0

POOL32F
010101

ft fs fd fr MADD.S
000001

6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

POOL32F
010101

ft fs fd fr MADD.D
001001

6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

POOL32F
010101

ft fs fd fr MADD.PS
010001

6 5 5 5 5 6

Floating Point Multiply Add IMADD.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 334

vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, (vfs ×fmt vft) +fmt vfr)

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

Multiply and Add Unsigned Word to Hi,Lo MADDU

335 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: MADDU rs, rt microMIPS

Purpose: Multiply and Add Unsigned Word to Hi,Lo

To multiply two unsigned words and add the result to HI, LO.

Description: (HI,LO) ← (HI,LO) + (GPR[rs] × GPR[rt])

The 32-bit word value in GPR rs is multiplied by the 32-bit word value in GPR rt, treating both operands as unsigned
values, to produce a 64-bit result. The product is added to the 64-bit concatenated values of HI and LO. The most sig-
nificant 32 bits of the result are written into HI and the least signficant 32 bits are written into LO. No arithmetic
exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

temp ← (HI || LO) + (GPR[rs] × GPR[rt])
HI ← temp63..32
LO ← temp31..0

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt rs
MADDU

1101101100
POOL32AXf

111100

6 5 5 10 6

Move from Coprocessor 0 IMFC0

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 336

Format: MFC0 rt, rs microMIPS
MFC0 rt, rs, sel microMIPS

Purpose: Move from Coprocessor 0

To move the contents of a coprocessor 0 register to a general register.

Description: GPR[rt] ← CPR[0,rs,sel]

The contents of the coprocessor 0 register specified by the combination of rs and sel are loaded into general register
rt. Note that not all coprocessor 0 registers support the sel field. In those instances, the sel field must be zero.

Restrictions:

The results are UNDEFINED if coprocessor 0 does not contain a register as specified by rs and sel.

Operation:

reg = rs
data ← CPR[0,reg,sel]
GPR[rt] ← data

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 14 13 11 10 6 5 0

POOL32A
000000

rt rs 00 sel
MFC0
00011

POOL32AXf
111100

6 5 5 3 5 6

Move Word From Floating Point MFC1

337 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: MFC1 rt, fs microMIPS

Purpose: Move Word From Floating Point

To copy a word from an FPU (CP1) general register to a GPR

Description: GPR[rt] ← FPR[fs]

The contents of FPR fs are loaded into general register rt.

Restrictions:

Operation:

data ← ValueFPR(fs, UNINTERPRETED_WORD)
GPR[rt] ← data

Exceptions:

Coprocessor Unusable, Reserved Instruction

Historical Information:

For MIPS I, MIPS II, and MIPS III the contents of GPR rt are UNPREDICTABLE for the instruction immediately
following MFC1.

31 26 25 21 20 16 15 14 13 6 5 0

POOL32F
010101

rt fs 00
MFC1

10000000
POOL32FXf

111011

6 5 5 2 8 6

Move Word From Coprocessor 2 IMFC2

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 338

Format: MFC2 rt, Impl microMIPS

The syntax shown above is an example using MFC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Word From Coprocessor 2

To copy a word from a COP2 general register to a GPR

Description: GPR[rt] ← CP2CPR[Impl]

The contents of the coprocessor 2 register denoted by the Impl field are and placed into general register rt. The inter-
pretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

The results are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist.

Operation:

data ← CP2CPR[Impl]
GPR[rt] ← data

Exceptions:

Coprocessor Unusable

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt Impl
MFC2

0100110100
POOL32AXf

111100

6 5 5 10 6

Move Word From Coprocessor 2 MFC2

339 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Move to High Coprocessor 0 IMTHC0

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 340

Format: MTHC0 rt, rs microMIPS Release 5
MTHC0 rt, rs, sel microMIPS Release 5

Purpose: Move to High Coprocessor 0

To copy a word from a GPR to the upper 32 bits of a COP2 general register that has been extended by 32 bits.

Description: CPR[0, rs, sel][63:32] ← GPR[rt]

The contents of general register rt are loaded into the Coprocessor 0 register specified by the combination of rs and
sel. Not all Coprocessor 0 registers support the sel field, and when this is the case, the sel field must be set to zero.

Restrictions:

The results are UNDEFINED if Coprocessor 0 does not contain a register as specified by rs and sel, or if the register
exists but is not extended by 32 bits, or the register is extended for XPA, but XPA is not supported or enabled.

Operation:

data ← GPR[rt]
reg ← rs
CPR[0,reg,sel][63:32] ← data

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 14 13 11 10 6 5 0

POOL32A
000000

rt rs 00 sel
MTHC0
01011

POOL32P
110100

6 5 5 2 3 5 6

Move Word From High Half of Floating Point Register MFHC1

341 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: MFHC1 rt, fs microMIPS

Purpose: Move Word From High Half of Floating Point Register

To copy a word from the high half of an FPU (CP1) general register to a GPR

Description: GPR[rt] ← FPR[fs]63..32

The contents of the high word of FPR fs are loaded into general register rt. This instruction is primarily intended to
support 64-bit floating point units on a 32-bit CPU, but the semantics of the instruction are defined for all cases.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

The results are UNPREDICTABLE if StatusFR = 0 and fs is odd.

Operation:

data ← ValueFPR(fs, UNINTERPRETED_DOUBLEWORD)63..32
GPR[rt] ← data

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 14 13 6 5 0

POOL32F
010101

rt fs 00
MFHC1
1100000

POOL32FXf
111011

6 5 5 2 8 6

Move Word From High Half of Coprocessor 2 Register IMFHC2

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 342

Format: MFHC2 rt, Impl microMIPS

The syntax shown above is an example using MFHC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Word From High Half of Coprocessor 2 Register

To copy a word from the high half of a COP2 general register to a GPR

Description: GPR[rt] ← CP2CPR[Impl]63..32

The contents of the high word of the coprocessor 2 register denoted by the Impl field are placed into GPR rt. The
interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the archi-
tecture.

Restrictions:

The results are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist, or if that register is
not 64 bits wide.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

data ← CP2CPR[Impl]63..32
GPR[rt] ← data

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt Impl
MFHC2

1000110100
POOL32AXf

111100

6 5 5 10 6

Move From HI Register MFHI

343 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: MFHI rs microMIPS

Purpose: Move From HI Register

To copy the special purpose HI register to a GPR

Description: GPR[rs] ← HI

The contents of special register HI are loaded into GPR rs.

Restrictions:

None

Operation:

GPR[rs] ← HI

Exceptions:

None

Historical Information:

In the MIPS I, II, and III architectures, the two instructions which follow the MFHI must not modify the HI register.
If this restriction is violated, the result of the MFHI is UNPREDICTABLE. This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

0
00000

rs
MFHI32

0000110101
POOL32AXf

111100

6 5 5 10 6

Move From LO Register IMFLO

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 344

Format: MFLO rs microMIPS

Purpose: Move From LO Register

To copy the special purpose LO register to a GPR

Description: GPR[rs] ← LO

The contents of special register LO are loaded into GPR rs.

Restrictions:

None

Operation:

GPR[rs] ← LO

Exceptions:

None

Historical Information:

In the MIPS I, II, and III architectures, the two instructions which follow the MFLO must not modify the HI register.
If this restriction is violated, the result of the MFLO is UNPREDICTABLE. This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

0
00000

rs
MFLO32

0001110101
POOL32AXf

111100

6 5 5 10 6

Floating Point Move MOV.fmt

345 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: MOV.fmt
MOV.S ft, fs microMIPS
MOV.D ft, fs microMIPS
MOV.PS ft, fs microMIPS

Purpose: Floating Point Move

To move an FP value between FPRs

Description: FPR[ft] ← FPR[fs]

The value in FPR fs is placed into FPR ft. The source and destination are values in format fmt. In paired-single format,
both the halves of the pair are copied to ft.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and ft must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPREDICT-
ABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of MOV.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model; it
is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(ft, fmt, ValueFPR(fs, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

31 26 25 21 20 16 15 14 13 12 6 5 0

POOL32F
010101

ft fs 0 fmt
MOV

0000001
POOL32FXf

111011

6 5 5 1 2 7 6

Floating Point Move IMOV.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 346

Move Conditional on Floating Point False MOVF

347 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: MOVF rt, rs, cc microMIPS

Purpose: Move Conditional on Floating Point False

To test an FP condition code then conditionally move a GPR

Description: if FPConditionCode(cc) = 0 then GPR[rt] ← GPR[rs]

If the floating point condition code specified by CC is zero, then the contents of GPR rs are placed into GPR rt.

Restrictions:

Operation:

if FPConditionCode(cc) = 0 then
GPR[rt] ← GPR[rs]

endif

Exceptions:

Reserved Instruction, Coprocessor Unusable

31 26 25 22 21 20 16 15 14 13 12 6 5 0

POOL32F
010101

rt rs cc
MOVF

0000101
POOL32FXf

111011

6 5 5 3 7 6

Floating Point Move Conditional on Floating Point False IMOVF.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 348

Format: MOVF.fmt
MOVF.S ft, fs, cc microMIPS
MOVF.D ft, fs, cc microMIPS
MOVF.PS ft, fs, cc microMIPS

microMIPS

Purpose: Floating Point Move Conditional on Floating Point False

To test an FP condition code then conditionally move an FP value

Description: if FPConditionCode(cc) = 0 then FPR[ft] ← FPR[fs]

If the floating point condition code specified by CC is zero, then the value in FPR fs is placed into FPR ft. The source
and destination are values in format fmt.

If the condition code is not zero, then FPR fs is not copied and FPR ft retains its previous value in format fmt. If ft did
not contain a value either in format fmt or previously unused data from a load or move-to operation that could be
interpreted in format fmt, then the value of ft becomes UNPREDICTABLE.

MOVF.PS conditionally merges the lower half of FPR fs into the lower half of FPR ft if condition code CC is zero,
and independently merges the upper half of FPR fs into the upper half of FPR ft if condition code CC+1 is zero. The
CC field must be even; if it is odd, the result of this operation is UNPREDICTABLE.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and ft must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPREDICT-
ABLE. The operand must be a value in format fmt; if it is not, the result is UNPREDITABLE and the value of the
operand FPR becomes UNPREDICTABLE.

The result of MOVF.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model;
it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

if FPConditionCode(cc) = 0 then
StoreFPR(ft, fmt, ValueFPR(fs, fmt))

else
StoreFPR(ft, fmt, ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

31 26 25 21 20 16 15 13 12 11 10 9 8 5 0

POOL32F
010101

ft fs cc
0
00 fmt

MOVF
000100000

6 5 5 3 2 2 9

Floating Point Move Conditional on Floating Point False MOVF.fmt

349 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Move Conditional on Not Zero IMOVN

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 350

Format: MOVN rd, rs, rt microMIPS

Purpose: Move Conditional on Not Zero

To conditionally move a GPR after testing a GPR value

Description: if GPR[rt] ≠ 0 then GPR[rd] ← GPR[rs]

If the value in GPR rt is not equal to zero, then the contents of GPR rs are placed into GPR rd.

Restrictions:

None

Operation:

if GPR[rt] ≠ 0 then
GPR[rd] ← GPR[rs]

endif

Exceptions:

None

Programming Notes:

The non-zero value tested might be the condition true result from the SLT, SLTI, SLTU, and SLTIU comparison
instructions or a boolean value read from memory.

31 26 25 21 20 16 15 11 10 9 5 0

POOL32A
000000

rt rs rd 0
MOVN

0000011000

6 5 5 5 1 10

Floating Point Move Conditional on Not Zero MOVN.fmt

351 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: MOVN.fmt
MOVN.S fd, fs, rt microMIPS
MOVN.D fd, fs, rt microMIPS
MOVN.PS fd, fs, rt microMIPS

Purpose: Floating Point Move Conditional on Not Zero

To test a GPR then conditionally move an FP value

Description: if GPR[rt] ≠ 0 then FPR[fd] ← FPR[fs]

If the value in GPR rt is not equal to zero, then the value in FPR fs is placed in FPR fd. The source and destination are
values in format fmt.

If GPR rt contains zero, then FPR fs is not copied and FPR fd contains its previous value in format fmt. If fd did not
contain a value either in format fmt or previously unused data from a load or move-to operation that could be inter-
preted in format fmt, then the value of fd becomes UNPREDICTABLE.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of MOVN.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model;
it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

if GPR[rt] ≠ 0 then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))

else
StoreFPR(fd, fmt, ValueFPR(fd, fmt))

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

31 26 25 21 20 16 15 11 10 9 8 7 0

POOL32F
010101

ft fs fd 0 fmt
MOVN

00111000

6 5 5 5 1 2 8

Floating Point Move Conditional on Not Zero IMOVN.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 352

Move Conditional on Floating Point True MOVT

353 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: MOVT rt, rs, cc microMIPS

Purpose: Move Conditional on Floating Point True

To test an FP condition code then conditionally move a GPR

Description: if FPConditionCode(cc) = 1 then GPR[rt] ← GPR[rs]

If the floating point condition code specified by CC is one, then the contents of GPR rs are placed into GPR rt.

Restrictions:

Operation:

if FPConditionCode(cc) = 1 then
GPR[rt] ← GPR[rs]

endif

Exceptions:

Reserved Instruction, Coprocessor Unusable

31 26 25 22 21 20 16 15 13 12 6 5 0

POOL32F
010101

rt rs cc
MOVT

0100101
POOL32FXf

111011

6 5 5 3 7 6

Floating Point Move Conditional on Floating Point True IMOVT.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 354

Format: MOVT.fmt
MOVT.S ft, fs, cc microMIPS
MOVT.D ft, fs, cc microMIPS
MOVT.PS ft, fs, cc microMIPS

Purpose: Floating Point Move Conditional on Floating Point True

To test an FP condition code then conditionally move an FP value

Description: if FPConditionCode(cc) = 1 then FPR[ft] ← FPR[fs]

If the floating point condition code specified by CC is one, then the value in FPR fs is placed into FPR ft. The source
and destination are values in format fmt.

If the condition code is not one, then FPR fs is not copied and FPR ft contains its previous value in format fmt. If ft did
not contain a value either in format fmt or previously unused data from a load or move-to operation that could be
interpreted in format fmt, then the value of ft becomes UNPREDICTABLE.

MOVT.PS conditionally merges the lower half of FPR fs into the lower half of FPR ft if condition code CC is one, and
independently merges the upper half of FPR fs into the upper half of FPR ft if condition code CC+1 is one. The CC
field should be even; if it is odd, the result of this operation is UNPREDICTABLE.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE. The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value
of the operand FPR becomes UNPREDICTABLE.

The result of MOVT.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model;
it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

if FPConditionCode(cc) = 1 then
StoreFPR(ft, fmt, ValueFPR(fs, fmt))

else
StoreFPR(ft, fmt, ValueFPR(ft, fmt))

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

31 26 25 21 20 16 15 13 12 11 10 9 8 0

POOL32F
010101

ft fs cc
0

00 fmt
MOVT

001100000

6 5 5 3 2 2 9

Floating Point Move Conditional on Floating Point True MOVT.fmt

355 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Move Conditional on Zero IMOVZ

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 356

Format: MOVZ rd, rs, rt microMIPS

Purpose: Move Conditional on Zero

To conditionally move a GPR after testing a GPR value

Description: if GPR[rt] = 0 then GPR[rd] ← GPR[rs]

If the value in GPR rt is equal to zero, then the contents of GPR rs are placed into GPR rd.

Restrictions:

None

Operation:

if GPR[rt] = 0 then
GPR[rd] ← GPR[rs]

endif

Exceptions:

None

Programming Notes:

The zero value tested might be the condition false result from the SLT, SLTI, SLTU, and SLTIU comparison instruc-
tions or a boolean value read from memory.

31 26 25 21 20 16 15 11 10 9 5 0

POOL32A
000000

rt rs rd 0
MOVZ

0001011000

6 5 5 5 1 10

Floating Point Move Conditional on Zero MOVZ.fmt

357 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: MOVZ.fmt
MOVZ.S fd, fs, rt microMIPS
MOVZ.D fd, fs, rt microMIPS
MOVZ.PS fd, fs, rt microMIPS

Purpose: Floating Point Move Conditional on Zero

To test a GPR then conditionally move an FP value

Description: if GPR[rt] = 0 then FPR[fd] ← FPR[fs]

If the value in GPR rt is equal to zero then the value in FPR fs is placed in FPR fd. The source and destination are val-
ues in format fmt.

If GPR rt is not zero, then FPR fs is not copied and FPR fd contains its previous value in format fmt. If fd did not con-
tain a value either in format fmt or previously unused data from a load or move-to operation that could be interpreted
in format fmt, then the value of fd becomes UNPREDICTABLE.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of MOVZ.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model;
it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

if GPR[rt] = 0 then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))

else
StoreFPR(fd, fmt, ValueFPR(fd, fmt))

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

31 26 25 21 20 16 15 11 10 9 8 7 0

POOL32F
010101

ft fs fd 0 fmt
MOVZ

01111000

6 5 5 5 1 2 8

Floating Point Move Conditional on Zero IMOVZ.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 358

Multiply and Subtract Word to Hi,Lo MSUB

359 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: MSUB rs, rt microMIPS

Purpose: Multiply and Subtract Word to Hi,Lo

To multiply two words and subtract the result from HI, LO

Description: (HI,LO) ← (HI,LO) - (GPR[rs] × GPR[rt])

The 32-bit word value in GPR rs is multiplied by the 32-bit value in GPR rt, treating both operands as signed values,
to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values of HI and LO. The most sig-
nificant 32 bits of the result are written into HI and the least signficant 32 bits are written into LO. No arithmetic
exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

temp ← (HI || LO) - (GPR[rs] × GPR[rt])
HI ← temp63..32
LO ← temp31..0

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt rs
MSUB

1110101100
POOL32AXf

111100

6 5 5 10 6

Floating Point Multiply Subtract IMSUB.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 360

Format: MSUB.fmt
MSUB.S fd, fr, fs, ft microMIPS
MSUB.D fd, fr, fs, ft microMIPS
MSUB.PS fd, fr, fs, ft microMIPS

Purpose: Floating Point Multiply Subtract

To perform a combined multiply-then-subtract of FP values

Description: FPR[fd] ← (FPR[fs] × FPR[ft]) − FPR[fr]

The value in FPR fs is multiplied by the value in FPR ft to produce an intermediate product. The intermediate product
is rounded according to the current rounding mode in FCSR. The subtraction result is calculated to infinite precision,
rounded according to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values
in format fmt. The results and flags are as if separate floating-point multiply and subtract instructions were executed.

MSUB.PS multiplies then subtracts the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and ORs
together any generated exceptional conditions.

Cause bits are ORed into the Flag bits if no exception is taken.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is
UNPREDICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of MSUB.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model;
i.e. it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Compatibility and Availability:

MSUB.S and MSUB.D: Required in all versions of MIPS64 since MIPS64r1. Not available in MIPS32r1. Required
by MIPS32r2 and subsequent versions of MIPS32. When required, required whenever FPU is present, whether a 32-
bit or 64-bit FPU, whether in 32-bit or 64-bit FP Register Mode (FIRF64=0 or 1, StatusFR=0 or 1).

Operation:

vfr ← ValueFPR(fr, fmt)
vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, (vfs ×fmt vft) −fmt vfr))

31 26 25 21 20 16 15 11 10 6 5 0

POOL32F
010101

ft fs fd fr MSUB.S
100001

6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

POOL32F
010101

ft fs fd fr MSUB.D
101001

6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

POOL32F
010101

ft fs fd fr MSUB.PS
110001

6 5 5 5 5 6

Floating Point Multiply Subtract MSUB.fmt

361 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

Multiply and Subtract Word to Hi,Lo IMSUBU

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 362

Format: MSUBU rs, rt microMIPS

Purpose: Multiply and Subtract Word to Hi,Lo

To multiply two words and subtract the result from HI, LO

Description: (HI,LO) ← (HI,LO) − (GPR[rs] × GPR[rt])

The 32-bit word value in GPR rs is multiplied by the 32-bit word value in GPR rt, treating both operands as unsigned
values, to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values of HI and LO. The
most significant 32 bits of the result are written into HI and the least signficant 32 bits are written into LO. No arith-
metic exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

temp ← (HI || LO) - (GPR[rs] × GPR[rt])
HI ← temp63..32
LO ← temp31..0

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt rs
MSUBU

1111101100
POOL32AXf

111100

6 5 5 10 6

Move to Coprocessor 0 MTC0

363 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: MTC0 rt, rs microMIPS
MTC0 rt, rs, sel microMIPS

Purpose: Move to Coprocessor 0

To move the contents of a general register to a coprocessor 0 register.

Description: CPR[0, rs, sel] ← GPR[rt]

The contents of general register rt are loaded into the coprocessor 0 register specified by the combination of rs and
sel. Not all coprocessor 0 registers support the the sel field. In those instances, the sel field must be set to zero.

In Release 5, for a 32-bit processor, the MTC0 instruction writes all zeroes to the high-order bits of selected COP0
registers that have been extended beyond 32 bits. This is required for compatibility with legacy software that does not
use MTHC0, yet has hardware support for extended COP0 registers (such as for Extended Physical Addressing
(XPA)). Because MTC0 overwrites the result of MTHC0, software must first read the high-order bits before writing
the low-order bits, then write the high-order bits back either modified or unmodified. For initialization of an extended
register, software may first write the low-order bits, then the high-order bits, without first reading the high-order bits.

Restrictions:

The results are UNDEFINED if coprocessor 0 does not contain a register as specified by rs and sel.

Operation:

data ← GPR[rt]
reg ← rs
if (Config5MVH = 1) then

// The most-significant bit may vary by register. Only supported
// bits should be written 0.
// Extended LLAddr is not written with 0s, as it is a read-only register.
// BadVAddr is not written with 0s, as it is read-only
if (Config3LPA = 1) then

if (reg,sel = EntryLo0 or EntryLo1) then CPR[0,reg,sel]63:32 = 0
32

if (reg,sel = MAAR) then CPR[0,reg,sel]63:32 = 0
32

// TagLo is zeroed only if the implementation-dependent bits are
// writeable
if (reg,sel = TagLo) then CPR[0,reg,sel]63:32 = 0

32

if (Config3VZ = 1) then
if (reg,sel = EntryHi) then CPR[0,reg,sel]63:32 = 0

32

endif
endif

endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 14 13 11 10 6 5 0

POOL32A
000000

rt rs 00 sel
MTC0
01011

POOL32AXf
111100

6 5 5 2 3 5 6

Move to Coprocessor 0 IMTC0

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 364

Move Word to Floating Point MTC1

365 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: MTC1 rt, fs microMIPS

Purpose: Move Word to Floating Point

To copy a word from a GPR to an FPU (CP1) general register

Description: FPR[fs] ← GPR[rt]

The low word in GPR rt is placed into the low word of FPR fs.

Restrictions:

Operation:

data ← GPR[rt]31..0
StoreFPR(fs, UNINTERPRETED_WORD, data)

Exceptions:

Coprocessor Unusable

Historical Information:

For MIPS I, MIPS II, and MIPS III the value of FPR fs is UNPREDICTABLE for the instruction immediately fol-
lowing MTC1.

31 26 25 21 20 16 15 14 13 6 5 0

POOL32F
010101

rt fs 00
MTC1

10100000
POOL32FXf

111011

6 5 5 2 8 6

I

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 366

Move Word to Coprocessor 2 MTC2

367 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: MTC2 rt, Impl microMIPS

The syntax shown above is an example using MTC1 as a model. The specific syntax is implementation-dependent.

Purpose: Move Word to Coprocessor 2

To copy a word from a GPR to a COP2 general register

Description: CP2CPR[Impl] ← GPR[rt]

The low word in GPR rt is placed into the low word of a Coprocessor 2 general register denoted by the Impl field.
The interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the
architecture.

Restrictions:

The results are UNPREDICTABLE if Impl specifies a Coprocessor 2 register that does not exist.

Operation:

data ← GPR[rt]
CP2CPR[Impl] ← data

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt Impl
MTC2

0101110100
POOL32AXf

111100

6 5 5 10 6

Move Word to High Half of Floating Point Register IMTHC1

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 368

Format: MTHC1 rt, fs microMIPS

Purpose: Move Word to High Half of Floating Point Register

To copy a word from a GPR to the high half of an FPU (CP1) general register

Description: FPR[fs]63..32 ← GPR[rt]

The word in GPR rt is placed into the high word of FPR fs. This instruction is primarily intended to support 64-bit
floating point units on a 32-bit CPU, but the semantics of the instruction are defined for all cases.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

The results are UNPREDICTABLE if StatusFR = 0 and fs is odd.

Operation:

newdata ← GPR[rt]olddata ← ValueFPR(fs, UNINTERPRETED_DOUBLEWORD)31..0
StoreFPR(fs, UNINTERPRETED_DOUBLEWORD, newdata || olddata)

Exceptions:

Coprocessor Unusable

Reserved Instruction

Programming Notes

When paired with MTC1 to write a value to a 64-bit FPR, the MTC1 must be executed first, followed by the MTHC1.
This is because of the semantic definition of MTC1, which is not aware that software will be using an MTHC1
instruction to complete the operation, and sets the upper half of the 64-bit FPR to an UNPREDICTABLE value.

31 26 25 21 20 16 15 14 13 6 5 0

POOL32F
010101

rt fs 00
MTHC1

11100000
POOL32FXf

111011

6 5 5 2 8 6

Move Word to High Half of Coprocessor 2 Register MTHC2

369 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: MTHC2 rt, Impl microMIPS

The syntax shown above is an example using MTHC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Word to High Half of Coprocessor 2 Register

To copy a word from a GPR to the high half of a COP2 general register

Description: CP2CPR[Impl]63..32 ← GPR[rt]

The word in GPR rt is placed into the high word of coprocessor 2 general register denoted by the Impl field. The
interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the archi-
tecture.

Restrictions:

The results are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist, or if that register is
not 64 bits wide.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

data ← GPR[rt]
CP2CPR[Impl] ← data || CPR[2,rd,sel]31..0

Exceptions:

Coprocessor Unusable

Reserved Instruction

Programming Notes

When paired with MTC2 to write a value to a 64-bit CPR, the MTC2 must be executed first, followed by the MTHC2.
This is because of the semantic definition of MTC2, which is not aware that software will be using an MTHC2
instruction to complete the operation, and sets the upper half of the 64-bit CPR to an UNPREDICTABLE value.

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt Impl
MTHC2

1001110100
POOL32AXf

111100

6 5 5 10 6

Move Word to High Half of Coprocessor 2 Register IMTHC2

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 370

Move to HI Register MTHI

371 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: MTHI rs microMIPS

Purpose: Move to HI Register

To copy a GPR to the special purpose HI register

Description: HI ← GPR[rs]

The contents of GPR rs are loaded into special register HI.

Restrictions:

A computed result written to the HI/LO pair by DIV, DIVU,MULT, or MULTU must be read by MFHI or MFLO
before a new result can be written into either HI or LO.

If an MTHI instruction is executed following one of these arithmetic instructions, but before an MFLO or MFHI
instruction, the contents of LO are UNPREDICTABLE. The following example shows this illegal situation:

MULT r2,r4 # start operation that will eventually write to HI,LO
... # code not containing mfhi or mflo
MTHI r6
... # code not containing mflo
MFLO r3 # this mflo would get an UNPREDICTABLE value

Operation:

HI ← GPR[rs]

Exceptions:

None

Historical Information:

In MIPS I-III, if either of the two preceding instructions is MFHI, the result of that MFHI is UNPREDICTABLE.
Reads of the HI or LO special register must be separated from any subsequent instructions that write to them by two
or more instructions. In MIPS IV and later, including MIPS32 and MIPS64, this restriction does not exist.

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

0
00000

rs
MTHI

0010110101
POOL32AXf

111100

6 5 5 10 6

Move to LO Register IMTLO

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 372

Format: MTLO rs microMIPS

Purpose: Move to LO Register

To copy a GPR to the special purpose LO register

Description: LO ← GPR[rs]

The contents of GPR rs are loaded into special register LO.

Restrictions:

A computed result written to the HI/LO pair by DIV, DIVU, MULT, or MULTU must be read by MFHI or MFLO
before a new result can be written into either HI or LO.

If an MTLO instruction is executed following one of these arithmetic instructions, but before an MFLO or MFHI
instruction, the contents of HI are UNPREDICTABLE. The following example shows this illegal situation:

MULT r2,r4 # start operation that will eventually write to HI,LO
... # code not containing mfhi or mflo
MTLO r6
... # code not containing mfhi
MFHI r3 # this mfhi would get an UNPREDICTABLE value

Operation:

LO ← GPR[rs]

Exceptions:

None

Historical Information:

In MIPS I-III, if either of the two preceding instructions is MFHI, the result of that MFHI is UNPREDICTABLE.
Reads of the HI or LO special register must be separated from any subsequent instructions that write to them by two
or more instructions. In MIPS IV and later, including MIPS32 and MIPS64, this restriction does not exist.

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

0
00000

rs
MTLO

0011110101
POOL32AXf

111100

6 5 5 10 6

Multiply Word to GPR MUL

373 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: MUL rd, rs, rt microMIPS

Purpose: Multiply Word to GPR

To multiply two words and write the result to a GPR.

Description: GPR[rd] ← GPR[rs] × GPR[rt]

The 32-bit word value in GPR rs is multiplied by the 32-bit value in GPR rt, treating both operands as signed values,
to produce a 64-bit result. The least significant 32 bits of the product are written to GPR rd. The contents of HI and
LO are UNPREDICTABLE after the operation. No arithmetic exception occurs under any circumstances.

Restrictions:

Note that this instruction does not provide the capability of writing the result to the HI and LO registers.

Operation:

temp ← GPR[rs] × GPR[rt]
GPR[rd] ← temp31..0
HI ← UNPREDICTABLE
LO ← UNPREDICTABLE

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read GPR rd before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs rd 0
MUL

1000010000

6 5 5 5 1 10

Multiply Word to GPR IMUL

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 374

Floating Point Multiply MUL.fmt

375 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: MUL.fmt
MUL.S fd, fs, ft microMIPS
MUL.D fd, fs, ft microMIPS
MUL.PS fd, fs, ft microMIPS

Purpose: Floating Point Multiply

To multiply FP values

Description: FPR[fd] ← FPR[fs] × FPR[ft]

The value in FPR fs is multiplied by the value in FPR ft. The result is calculated to infinite precision, rounded accord-
ing to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.
MUL.PS multiplies the upper and lower halves of FPR fs and FPR ft independently, and ORs together any generated
exceptional conditions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of MUL.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model; it
is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) ×fmt ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

31 26 25 21 20 16 15 11 10 9 8 7 0

POOL32F
010101

ft fs fd 0 fmt
MUL

10110000

6 5 5 5 1 2 8

Floating Point Multiply IMUL.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 376

Multiply Word MULT

377 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: MULT rs, rt microMIPS

Purpose: Multiply Word

To multiply 32-bit signed integers

Description: (HI, LO) ← GPR[rs] × GPR[rt]

The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both operands as signed values,
to produce a 64-bit result. The low-order 32-bit word of the result is placed into special register LO, and the high-
order 32-bit word is splaced into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

None

Operation:

prod ← GPR[rs]31..0 × GPR[rt]31..0
LO ← prod31..0
HI ← prod63..32

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt rs
MULT

1000101100
POOL32AXf

111100

6 5 5 10 6

Multiply Word IMULT

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 378

Multiply Unsigned Word MULTU

379 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: MULTU rs, rt microMIPS

Purpose: Multiply Unsigned Word

To multiply 32-bit unsigned integers

Description: (HI, LO) ← GPR[rs] × GPR[rt]

The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both operands as unsigned val-
ues, to produce a 64-bit result. The low-order 32-bit word of the result is placed into special register LO, and the high-
order 32-bit word is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

None

Operation:

prod ← (0 || GPR[rs]31..0) × (0 || GPR[rt]31..0)
LO ← prod31..0
HI ← prod63..32

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt rs
MULTU

1001101100
POOL32AXf

111100

6 5 5 10 6

Multiply Unsigned Word IMULTU

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 380

Floating Point Negate NEG.fmt

381 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: NEG.fmt
NEG.S ft, fs microMIPS
NEG.D ft, fs microMIPS
NEG.PS ft, fs microMIPS

Purpose: Floating Point Negate

To negate an FP value

Description: FPR[ft] ← -FPR[fs]

The value in FPR fs is negated and placed into FPR ft. The value is negated by changing the sign bit value. The oper-
and and result are values in format fmt. NEG.PS negates the upper and lower halves of FPR fs independently, and
ORs together any generated exceptional conditions.

If FIRHas2008=0 or FCSRABS2008=0 then this operation is arithmetic. For this case, any NaN operand signals invalid
operation.

If FCSRABS2008=1 then this operation is non-arithmetic. For this case, both regular floating point numbers and NAN
values are treated alike, only the sign bit is affected by this instruction. No IEEE exception can be generated for this
case.

Restrictions:

The fields fs and ft must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPREDICT-
ABLE. The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the
operand FPR becomes UNPREDICTABLE.

The result of NEG.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model; it
is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(ft, fmt, Negate(ValueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

31 26 25 21 20 16 15 14 13 12 6 5 0

POOL32F
010101

ft fs 0 fmt
NEG

0101101
POOL32FXf

111011

6 5 5 1 2 7 6

Floating Point Negate INEG.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 382

Floating Point Negative Multiply Add NMADD.fmt

383 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: NMADD.fmt
NMADD.S fd, fr, fs, ft microMIPS
NMADD.D fd, fr, fs, ft microMIPS
NMADD.PS fd, fr, fs, ft microMIPS

Purpose: Floating Point Negative Multiply Add

To negate a combined multiply-then-add of FP values

Description: FPR[fd] ← − ((FPR[fs] × FPR[ft]) + FPR[fr])

The value in FPR fs is multiplied by the value in FPR ft to produce an intermediate product. The intermediate product
is rounded according to the current rounding mode in FCSR. The value in FPR fr is added to the product.

The result sum is calculated to infinite precision, rounded according to the current rounding mode in FCSR, negated
by changing the sign bit, and placed into FPR fd. The operands and result are values in format fmt. The results and
flags are as if separate floating-point multiply and add and negate instructions were executed.

NMADD.PS applies the operation to the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and
ORs together any generated exceptional conditions.

Cause bits are ORed into the Flag bits if no exception is taken.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is
UNPREDICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of NMADD.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; i.e. it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit
FPU.

Compatibility and Availability:

NMADD.S and NMADD.D: Required in all versions of MIPS64 since MIPS64r1. Not available in MIPS32r1.
Required by MIPS32r2 and subsequent versions of MIPS32. When required, required whenever FPU is present,
whether a 32-bit or 64-bit FPU, whether in 32-bit or 64-bit FP Register Mode (FIRF64=0 or 1, StatusFR=0 or 1).

Operation:

vfr ← ValueFPR(fr, fmt)

31 26 25 21 20 16 15 11 10 6 5 0

POOL32F
010101

ft fs fd fr NMADD.S
000010

6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

POOL32F
010101

ft fs fd fr NMADD.D
001010

6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

POOL32F
010101

ft fs fd fr NMADD.PS
010010

6 5 5 5 5 6

Floating Point Negative Multiply Add INMADD.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 384

vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, −(vfr +fmt (vfs ×fmt vft)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

Floating Point Negative Multiply Subtract NMSUB.fmt

385 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: NMSUB.fmt
NMSUB.S fd, fr, fs, ft microMIPS
NMSUB.D fd, fr, fs, ft microMIPS
NMSUB.PS fd, fr, fs, ft microMIPS

Purpose: Floating Point Negative Multiply Subtract

To negate a combined multiply-then-subtract of FP values

Description: FPR[fd] ← − ((FPR[fs] × FPR[ft]) − FPR[fr])

The value in FPR fs is multiplied by the value in FPR ft to produce an intermediate product. The intermediate product
is rounded according to the current rounding mode in FCSR. The value in FPR fr is subtracted from the product.

The result is calculated to infinite precision, rounded according to the current rounding mode in FCSR, negated by
changing the sign bit, and placed into FPR fd. The operands and result are values in format fmt. The results and flags
are as if separate floating-point multiply and subtract and negate instructions were executed.

NMSUB.PS applies the operation to the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and
ORs together any generated exceptional conditions.

Cause bits are ORed into the Flag bits if no exception is taken.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is
UNPREDICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of NMSUB.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; i.e. it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit
FPU.

Compatibility and Availability:

NMSUB.S and NMSUB.D: Required in all versions of MIPS64 since MIPS64r1. Not available in MIPS32r1.
Required by MIPS32r2 and subsequent versions of MIPS32. When required, required whenever FPU is present,
whether a 32-bit or 64-bit FPU, whether in 32-bit or 64-bit FP Register Mode (FIRF64=0 or 1, StatusFR=0 or 1).

Operation:

vfr ← ValueFPR(fr, fmt)

31 26 25 21 20 16 15 11 10 6 5 0

POOL32F
010101

ft fs fd fr NMSUB.S
100010

6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

POOL32F
010101

ft fs fd fr NMSUB.D
101010

6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

POOL32F
010101

ft fs fd fr NMSUB.PS
110010

6 5 5 5 5 6

Floating Point Negative Multiply Subtract INMSUB.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 386

vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, −((vfs ×fmt vft) −fmt vfr))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

No Operation NOP

387 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: NOP Assembly Idiom microMIPS

Purpose: No Operation

To perform no operation.

Description:

NOP is the assembly idiom used to denote no operation. The actual instruction is interpreted by the hardware as SLL
r0, r0, 0.

Restrictions:

None

Operation:

None

Exceptions:

None

Programming Notes:

The zero instruction word, which represents SLL, r0, r0, 0, is the preferred NOP for software to use to fill branch and
jump delay slots and to pad out alignment sequences.

31 26 25 21 20 16 15 11 10 5 0

POOL32A
000000

0
00000

0
00000

0
00000

0
00000

SLL
000000

6 5 5 5 5 6

Not Or INOR

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 388

Format: NOR rd, rs, rt microMIPS

Purpose: Not Or

To do a bitwise logical NOT OR

Description: GPR[rd] ← GPR[rs] NOR GPR[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical NOR operation. The result is
placed into GPR rd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] nor GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs rd 0
NOR

1011010000

6 5 5 5 1 10

Or OR

389 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: OR rd, rs, rt microMIPS

Purpose: Or

To do a bitwise logical OR

Description: GPR[rd] ← GPR[rs] or GPR[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical OR operation. The result is
placed into GPR rd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] or GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs rd 0
OR

1010010000

6 5 5 5 1 10

Or Immediate IORI

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 390

Format: ORI rt, rs, immediate microMIPS

Purpose: Or Immediate

To do a bitwise logical OR with a constant

Description: GPR[rt] ← GPR[rs] or immediate

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR rs in a bitwise logical OR
operation. The result is placed into GPR rt.

Restrictions:

None

Operation:

GPR[rt] ← GPR[rs] or zero_extend(immediate)

Exceptions:

None

31 26 25 21 20 16 15 0

ORI32
010100

rt rs immediate

6 5 5 16

Or Immediate ORI

391 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Wait for the LLBit to clear IPAUSE

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 392

Format: PAUSE microMIPS

Purpose: Wait for the LLBit to clear

Description:

Locks implemented using the LL/SC instructions are a common method of synchronization between threads of con-
trol. A typical lock implementation does a load-linked instruction and checks the value returned to determine whether
the software lock is set. If it is, the code branches back to retry the load-linked instruction, thereby implementing an
active busy-wait sequence. The PAUSE instructions is intended to be placed into the busy-wait sequence to block the
instruction stream until such time as the load-linked instruction has a chance to succeed in obtaining the software
lock.

The precise behavior of the PAUSE instruction is implementation-dependent, but it usually involves descheduling the
instruction stream until the LLBit is zero. In a single-threaded processor, this may be implemented as a short-term
WAIT operation which resumes at the next instruction when the LLBit is zero or on some other external event such as
an interrupt. On a multi-threaded processor, this may be implemented as a short term YIELD operation which
resumes at the next instruction when the LLBit is zero. In either case, it is assumed that the instruction stream which
gives up the software lock does so via a write to the lock variable, which causes the processor to clear the LLBit as
seen by this thread of execution.

The encoding of the instruction is such that it is backward compatible with all previous implementations of the archi-
tecture. The PAUSE instruction can therefore be placed into existing lock sequences and treated as a NOP by the pro-
cessor, even if the processor does not implement the PAUSE instruction.

Restrictions:

The operation of the processor is UNPREDICTABLE if a PAUSE instruction is placed in the delay slot of a branch
or a jump.

Operation:

if LLBit ≠ 0 then
EPC ← PC + 4 /* Resume at the following instruction */
DescheduleInstructionStream()

endif

Exceptions:

None

Programming Notes:

The PAUSE instruction is intended to be inserted into the instruction stream after an LL instruction has set the LLBit
and found the software lock set. The program may wait forever if a PAUSE instruction is executed and there is no
possibility that the LLBit will ever be cleared.

An example use of the PAUSE instruction is included in the following example:

acquire_lock:

31 26 25 6 5 0

POOL32A
000000

0
00000

0
00000

5
00101

0
00000

SLL
000000

6 5 5 5 5 6

Wait for the LLBit to clear PAUSE

393 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

ll t0, 0(a0) /* Read software lock, set hardware lock */
bnez t0, acquire_lock_retry: /* Branch if software lock is taken */
addiu t0, t0, 1 /* Set the software lock */
sc t0, 0(a0) /* Try to store the software lock */
bnez t0, 10f /* Branch if lock acquired successfully */
sync

acquire_lock_retry:
pause /* Wait for LLBIT to clear before retry */
b acquire_lock /* and retry the operation */
nop

10:

Critical region code

release_lock:
sync
sw zero, 0(a0) /* Release software lock, clearing LLBIT */

/* for any PAUSEd waiters */

Pair Lower Lower IPLL.PS

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 394

Format: PLL.PS fd, fs, ft microMIPS

Purpose: Pair Lower Lower

To merge a pair of paired single values with realignment

Description: FPR[fd] ← lower(FPR[fs]) || lower(FPR[ft])

A new paired-single value is formed by catenating the lower single of FPR fs (bits 31..0) and the lower single of FPR
ft (bits 31..0).

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-
DICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS)31..0 || ValueFPR(ft, PS)31..0)

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 9 8 0

POOL32F
010101

ft fs fd 00 PLL.PS
010000000

6 5 5 5 2 9

Pair Lower Upper PLU.PS

395 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: PLU.PS fd, fs, ft microMIPS

Purpose: Pair Lower Upper

To merge a pair of paired single values with realignment

Description: FPR[fd] ← lower(FPR[fs]) || upper(FPR[ft])

A new paired-single value is formed by catenating the lower single of FPR fs (bits 31..0) and the upper single of FPR
ft (bits 63..32).

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-
DICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS)31..0 || ValueFPR(ft, PS)63..32)

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 9 8 0

POOL32F
010101

ft fs fd 00 PLU.PS
011000000

6 5 5 5 2 9

Prefetch IPREF

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 396

Format: PREF hint,offset(base) microMIPS

Purpose: Prefetch

To move data between memory and cache.

Description: prefetch_memory(GPR[base] + offset)

PREF adds the 12-bit signed offset to the contents of GPR base to form an effective byte address. The hint field sup-
plies information about the way that the data is expected to be used.

PREF enables the processor to take some action, typically causing data to be moved to or from the cache, to improve
program performance. The action taken for a specific PREF instruction is both system and context dependent. Any
action, including doing nothing, is permitted as long as it does not change architecturally visible state or alter the
meaning of a program. Implementations are expected either to do nothing, or to take an action that increases the per-
formance of the program. The PrepareForStore function is unique in that it may modify the architecturally visible
state.

PREF does not cause addressing-related exceptions, including TLB exceptions. If the address specified would cause
an addressing exception, the exception condition is ignored and no data movement occurs.However even if no data is
moved, some action that is not architecturally visible, such as writeback of a dirty cache line, can take place.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREF instruction.

PREF neither generates a memory operation nor modifies the state of a cache line for a location with an uncached
memory access type, whether this type is specified by the address segment (e.g., kseg1), the programmed cacheability
and coherency attribute of a segment (e.g., the use of the K0, KU, or K23 fields in the Config register), or the per-
page cacheability and coherency attribute provided by the TLB.

If PREF results in a memory operation, the memory access type and cacheability&coherency attribute used for the
operation are determined by the memory access type and cacheability&coherency attribute of the effective address,
just as it would be if the memory operation had been caused by a load or store to the effective address.

For a cached location, the expected and useful action for the processor is to prefetch a block of data that includes the
effective address. The size of the block and the level of the memory hierarchy it is fetched into are implementation
specific.

In coherent multiprocessor implementations, if the effective address uses a coherent Cacheability and Coherency
Attribute (CCA), then the instruction causes a coherent memory transaction to occur. This means a prefetch issued on
one processor can cause data to be evicted from the cache in another processor.

The PREF instruction and the memory transactions which are sourced by the PREF instruction, such as cache refill or
cache writeback, obey the ordering and completion rules of the SYNC instruction.

31 26 25 21 20 16 15 12 11 0

POOL32C
011000

hint base
PREF
0010

offset

6 5 5 5 12

Table 5.25 Values of hint Field for PREF Instruction

Value Name Data Use and Desired Prefetch Action

0 load Use: Prefetched data is expected to be read (not modified).
Action: Fetch data as if for a load.

Prefetch PREF

397 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

1 store Use: Prefetched data is expected to be stored or modified.
Action: Fetch data as if for a store.

2-3 Reserved Reserved for future use - not available to implementations.

4 load_streamed Use: Prefetched data is expected to be read (not modified) but not reused
extensively; it “streams” through cache.
Action: Fetch data as if for a load and place it in the cache so that it does not
displace data prefetched as “retained.”

5 store_streamed Use: Prefetched data is expected to be stored or modified but not reused exten-
sively; it “streams” through cache.
Action: Fetch data as if for a store and place it in the cache so that it does not
displace data prefetched as “retained.”

6 load_retained Use: Prefetched data is expected to be read (not modified) and reused exten-
sively; it should be “retained” in the cache.
Action: Fetch data as if for a load and place it in the cache so that it is not dis-
placed by data prefetched as “streamed.”

7 store_retained Use: Prefetched data is expected to be stored or modified and reused exten-
sively; it should be “retained” in the cache.
Action: Fetch data as if for a store and place it in the cache so that it is not dis-
placed by data prefetched as “streamed.”

8-20 Reserved Reserved for future use - not available to implementations.

21-24 Implementation Dependent Unassigned by the Architecture - available for implementation-dependent use.

25 writeback_invalidate (also
known as “nudge”)

Use: Data is no longer expected to be used.
Action: For a writeback cache, schedule a writeback of any dirty data. At the
completion of the writeback, mark the state of any cache lines written back as
invalid. If the cache line is not dirty, it is implementation dependent whether
the state of the cache line is marked invalid or left unchanged. If the cache line
is locked, no action is taken.

26-29 Implementation Dependent Unassigned by the Architecture - available for implementation-dependent use.

30 PrepareForStore Use: Prepare the cache for writing an entire line, without the overhead
involved in filling the line from memory.
Action: If the reference hits in the cache, no action is taken. If the reference
misses in the cache, a line is selected for replacement, any valid and dirty vic-
tim is written back to memory, the entire line is filled with zero data, and the
state of the line is marked as valid and dirty.
Programming Note: Because the cache line is filled with zero data on a cache
miss, software must not assume that this action, in and of itself, can be used as
a fast bzero-type function.

31 Implementation Dependent Unassigned by the Architecture - available for implementation-dependent use.

Table 5.25 Values of hint Field for PREF Instruction

Prefetch IPREF

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 398

Restrictions:

None

Operation:

vAddr ← GPR[base] + sign_extend(offset)
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Bus Error, Cache Error

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

Prefetch cannot move data to or from a mapped location unless the translation for that location is present in the TLB.
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so prefetch
may not be effective for such locations.

Prefetch does not cause addressing exceptions. A prefetch may be used using an address pointer before the validity of
the pointer is determined without worrying about an addressing exception.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREF instruction. Typically, this only occurs in systems which have high-
reliability requirements.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

Hint field encodings whose function is described as “streamed” or “retained” convey usage intent from software to
hardware. Software should not assume that hardware will always prefetch data in an optimal way. If data is to be truly
retained, software should use the Cache instruction to lock data into the cache.

Prefetch PREF

399 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Prefetch EVA IPREFE

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 400

Format: PREFE hint,offset(base) microMIPS

Purpose: Prefetch EVA

To move data between user mode virtual address space memory and cache while operating in kernel mode.

Description: prefetch_memory(GPR[base] + offset)

PREFE adds the 9-bit signed offset to the contents of GPR base to form an effective byte address. The hint field sup-
plies information about the way that the data is expected to be used.

PREFE enables the processor to take some action, typically causing data to be moved to or from the cache, to
improve program performance. The action taken for a specific PREFE instruction is both system and context depen-
dent. Any action, including doing nothing, is permitted as long as it does not change architecturally visible state or
alter the meaning of a program. Implementations are expected either to do nothing, or to take an action that increases
the performance of the program. The PrepareForStore function is unique in that it may modify the architecturally vis-
ible state.

PREFE does not cause addressing-related exceptions, including TLB exceptions. If the address specified would cause
an addressing exception, the exception condition is ignored and no data movement occurs.However even if no data is
moved, some action that is not architecturally visible, such as writeback of a dirty cache line, can take place.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREFE instruction.

PREFE neither generates a memory operation nor modifies the state of a cache line for a location with an uncached
memory access type, whether this type is specified by the address segment (e.g., kseg1), the programmed cacheability
and coherency attribute of a segment (e.g., the use of the K0, KU, or K23 fields in the Config register), or the per-
page cacheability and coherency attribute provided by the TLB.

If PREFE results in a memory operation, the memory access type and cacheability&coherency attribute used for the
operation are determined by the memory access type and cacheability&coherency attribute of the effective address,
just as it would be if the memory operation had been caused by a load or store to the effective address.

For a cached location, the expected and useful action for the processor is to prefetch a block of data that includes the
effective address. The size of the block and the level of the memory hierarchy it is fetched into are implementation
specific.

In coherent multiprocessor implementations, if the effective address uses a coherent Cacheability and Coherency
Attribute (CCA), then the instruction causes a coherent memory transaction to occur. This means a prefetch issued on
one processor can cause data to be evicted from the cache in another processor.

The PREFE instruction and the memory transactions which are sourced by the PREFE instruction, such as cache
refill or cache writeback, obey the ordering and completion rules of the SYNC instruction.

The PREFE instruction functions in exactly the same fashion as the PREF instruction, except that address translation
is performed using the user mode virtual address space mapping in the TLB when accessing an address within a
memory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access
modes are also accessible. Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5EVA field being set to one.

31 26 25 21 20 16 15 12 11 9 8 0

POOL32C
011000

hint base
ST-EVA

1010

PREFE
010 offset

6 5 5 4 3 9

Prefetch EVA PREFE

401 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Table 5.26 Values of hint Field for PREFE Instruction

Value Name Data Use and Desired Prefetch Action

0 load Use: Prefetched data is expected to be read (not modified).
Action: Fetch data as if for a load.

1 store Use: Prefetched data is expected to be stored or modified.
Action: Fetch data as if for a store.

2-3 Reserved Reserved for future use - not available to implementations.

4 load_streamed Use: Prefetched data is expected to be read (not modified) but not reused
extensively; it “streams” through cache.
Action: Fetch data as if for a load and place it in the cache so that it does not
displace data prefetched as “retained.”

5 store_streamed Use: Prefetched data is expected to be stored or modified but not reused exten-
sively; it “streams” through cache.
Action: Fetch data as if for a store and place it in the cache so that it does not
displace data prefetched as “retained.”

6 load_retained Use: Prefetched data is expected to be read (not modified) and reused exten-
sively; it should be “retained” in the cache.
Action: Fetch data as if for a load and place it in the cache so that it is not dis-
placed by data prefetched as “streamed.”

7 store_retained Use: Prefetched data is expected to be stored or modified and reused exten-
sively; it should be “retained” in the cache.
Action: Fetch data as if for a store and place it in the cache so that it is not dis-
placed by data prefetched as “streamed.”

8-20 Reserved Reserved for future use - not available to implementations.

21-24 Implementation Dependent Unassigned by the Architecture - available for implementation-dependent use.

25 writeback_invalidate (also
known as “nudge”)

Use: Data is no longer expected to be used.
Action: For a writeback cache, schedule a writeback of any dirty data. At the
completion of the writeback, mark the state of any cache lines written back as
invalid. If the cache line is not dirty, it is implementation dependent whether
the state of the cache line is marked invalid or left unchanged. If the cache line
is locked, no action is taken.

26-29 Implementation Dependent Unassigned by the Architecture - available for implementation-dependent use.

Prefetch EVA IPREFE

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 402

Restrictions:

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

Operation:

vAddr ← GPR[base] + sign_extend(offset)
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Bus Error, Cache Error, Address Error, Reserved Instruction, Coprocessor Usable

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

Prefetch cannot move data to or from a mapped location unless the translation for that location is present in the TLB.
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so prefetch
may not be effective for such locations.

Prefetch does not cause addressing exceptions. A prefetch may be used using an address pointer before the validity of
the pointer is determined without worrying about an addressing exception.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREFE instruction. Typically, this only occurs in systems which have high-
reliability requirements.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

Hint field encodings whose function is described as “streamed” or “retained” convey usage intent from software to
hardware. Software should not assume that hardware will always prefetch data in an optimal way. If data is to be truly
retained, software should use the Cache instruction to lock data into the cache.

30 PrepareForStore Use: Prepare the cache for writing an entire line, without the overhead
involved in filling the line from memory.
Action: If the reference hits in the cache, no action is taken. If the reference
misses in the cache, a line is selected for replacement, any valid and dirty vic-
tim is written back to memory, the entire line is filled with zero data, and the
state of the line is marked as valid and dirty.
Programming Note: Because the cache line is filled with zero data on a cache
miss, software must not assume that this action, in and of itself, can be used as
a fast bzero-type function.

31 Implementation Dependent Unassigned by the Architecture - available for implementation-dependent use.

Table 5.26 Values of hint Field for PREFE Instruction

Prefetch Indexed PREFX

403 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: PREFX hint, index(base) microMIPS
microMIPS

Purpose: Prefetch Indexed

To move data between memory and cache.

Description: prefetch_memory[GPR[base] + GPR[index]]

PREFX adds the contents of GPR index to the contents of GPR base to form an effective byte address. The hint field
supplies information about the way the data is expected to be used.

The only functional difference between the PREF and PREFX instructions is the addressing mode implemented by
the two. Refer to the PREF instruction for all other details, including the encoding of the hint field.

Restrictions:

Compatibility and Availability:

PREFX: Required in all versions of MIPS64 since MIPS64r1. Not available in MIPS32r1. Required by MIPS32r2
and subsequent versions of MIPS32. When required, required whenever FPU is present, whether a 32-bit or 64-bit
FPU, whether in 32-bit or 64-bit FP Register Mode (FIRF64=0 or 1, StatusFR=0 or 1).

Operation:

vAddr ← GPR[base] + GPR[index]
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Coprocessor Unusable, Reserved Instruction, Bus Error, Cache Error

Programming Notes:

The PREFX instruction is only available on processors that implement floating point and should never by generated
by compilers in situations other than those in which the corresponding load and store indexed floating point instruc-
tions are generated.

Refer to the corresponding section in the PREF instruction description.

31 26 25 21 20 16 15 11 10 9 8 5 0

POOL32F
010101

index base hint 00
PREFX

110100000

6 5 5 5 2 9

Prefetch Indexed IPREFX

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 404

Pair Upper Lower PUL.PS

405 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: PUL.PS fd, fs, ft microMIPS

Purpose: Pair Upper Lower

To merge a pair of paired single values with realignment

Description: FPR[fd] ← upper(FPR[fs]) || lower(FPR[ft])

A new paired-single value is formed by catenating the upper single of FPR fs (bits 63..32) and the lower single of
FPR ft (bits 31..0).

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-
DICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS)63..32 || ValueFPR(ft, PS)31..0)

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 9 8 0

POOL32F
010101

ft fs fd 00 PUL.PS
100000000

6 5 5 5 2 9

Pair Upper Upper IPUU.PS

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 406

Format: PUU.PS fd, fs, ft microMIPS

Purpose: Pair Upper Upper

To merge a pair of paired single values with realignment

Description: FPR[fd] ← upper(FPR[fs]) || upper(FPR[ft])

A new paired-single value is formed by catenating the upper single of FPR fs (bits 63..32) and the upper single of
FPR ft (bits 63..32).

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-
DICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS)63..32 || ValueFPR(ft, PS)63..32)

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 9 8 0

POOL32F
010101

ft fs fd 00 PUU.PS
101000000

6 5 5 5 2 9

Read Hardware Register RDHWR

407 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: RDHWR rt,rs microMIPS

Purpose: Read Hardware Register

To move the contents of a hardware register to a general purpose register (GPR) if that operation is enabled by privi-
leged software.

The purpose of this instruction is to give user mode access to specific information that is otherwise only visible in
kernel mode.

Description: GPR[rt] ← HWR[rs]

If access is allowed to the specified hardware register, the contents of the register specified by rs is loaded into general
register rt. Access control for each register is selected by the bits in the coprocessor 0 HWREna register.

The available hardware registers, and the encoding of the rs field for each, are shown in Table 5.27.

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt rs
RDHWR

0110101100
POOL32AXf

111100

6 5 5 10 6

Table 5.27 RDHWR Register Numbers

Register
Number

(rd Value) Mnemonic Description

0
CPUNum Number of the CPU on which the program is currently running. This register

provides read access to the coprocessor 0 EBaseCPUNum field.

1
SYNCI_Step Address step size to be used with the SYNCI instruction, or zero if no caches

need be synchronized. See that instruction’s description for the use of this
value.

2
CC High-resolution cycle counter. This register provides read access to the copro-

cessor 0 Count Register.

3

CCRes Resolution of the CC register. This value denotes the number of cycles
between update of the register. For example:

4-28
These registers numbers are reserved for future architecture use. Access
results in a Reserved Instruction Exception.

29
ULR User Local Register. This register provides read access to the coprocessor 0

UserLocal register, if it is implemented. In some operating environments, the
UserLocal register is a pointer to a thread-specific storage block.

30-31
These register numbers are reserved for implementation-dependent use. If they
are not implemented, access results in a Reserved Instruction Exception.

CCRes Value Meaning

1 CC register increments every CPU cycle

2 CC register increments every second CPU cycle

3 CC register increments every third CPU cycle

etc.

Read Hardware Register IRDHWR

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 408

Restrictions:

In implementations of Release 1 of the Architecture, this instruction resulted in a Reserved Instruction Exception.

Access to the specified hardware register is enabled if Coprocessor 0 is enabled, or if the corresponding bit is set in
the HWREna register. If access is not allowed or the register is not implemented, a Reserved Instruction Exception is
signaled.

Operation:

case rs
0: temp ← EBaseCPUNum

1: temp ← SYNCI_StepSize()
2: temp ← Count
3: temp ← CountResolution()
29: temp ← UserLocal
30: temp ← Implementation-Dependent-Value
31: temp ← Implementation-Dependent-Value
otherwise: SignalException(ReservedInstruction)

endcase
GPR[rt] ← temp

Exceptions:

Reserved Instruction

Read Hardware Register RDHWR

409 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Read GPR from Previous Shadow Set IRDPGPR

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 410

Format: RDPGPR rt, rs microMIPS

Purpose: Read GPR from Previous Shadow Set

To move the contents of a GPR from the previous shadow set to a current GPR.

Description: GPR[rt] ← SGPR[SRSCtlPSS, rs]

The contents of the shadow GPR register specified by SRSCtlPSS (signifying the previous shadow set number) and rs

(specifying the register number within that set) is moved to the current GPR rt.

Restrictions:

In implementations prior to Release 2 of the Architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

GPR[rt] ← SGPR[SRSCtlPSS, rs]

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt rs
RDPGPR

1110000101
POOL32AXf

111100

6 5 5 10 6

Reciprocal Approximation RECIP.fmt

411 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: RECIP.fmt
RECIP.S ft, fs microMIPS
RECIP.D ft, fs microMIPS

Purpose: Reciprocal Approximation

To approximate the reciprocal of an FP value (quickly)

Description: FPR[ft] ← 1.0 / FPR[fs]

The reciprocal of the value in FPR fs is approximated and placed into FPR ft. The operand and result are values in for-
mat fmt.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
IEEE 754 Floating Point standard. The computed result differs from the both the exact result and the IEEE-mandated
representation of the exact result by no more than one unit in the least-significant place (ULP).

It is implementation dependent whether the result is affected by the current rounding mode in FCSR.

Restrictions:

The fields fs and ft must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPREDICT-
ABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Compatibility and Availability:

RECIP.S and RECIP.D: Required in all versions of MIPS64 since MIPS64r1. Not available in MIPS32r1. Required
by MIPS32r2 and subsequent versions of MIPS32. When required, required whenever FPU is present, whether a 32-
bit or 64-bit FPU, whether in 32-bit or 64-bit FP Register Mode (FIRF64=0 or 1, StatusFR=0 or 1).

Operation:

StoreFPR(ft, fmt, 1.0 / valueFPR(fs, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Division-by-zero, Unimplemented Op, Invalid Op, Overflow, Underflow

31 26 25 21 20 16 15 14 13 6 5 0

POOL32F
010101

ft fs 0 fmt
RECIP

01001000
POOL32FXf

111011

6 5 5 1 1 8 6

Reciprocal Approximation IRECIP.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 412

Rotate Word Right ROTR

413 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: ROTR rt, rs, sa SmartMIPS Crypto, microMIPS

Purpose: Rotate Word Right

To execute a logical right-rotate of a word by a fixed number of bits

Description: GPR[rt] ← GPR[rs] ↔(right) sa

The contents of the low-order 32-bit word of GPR rs are rotated right; the word result is placed in GPR rt. The bit-
rotate amount is specified by sa.

Restrictions:

Operation:

if ((ArchitectureRevision() < 2) and (Config3SM = 0)) then
UNPREDICTABLE

endif
s ← sa
temp ← GPR[rs]s-1..0 || GPR[rs]31..s
GPR[rt] ← temp

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

POOL32A
000000

rt rs sa 0
ROTR

0011000000

6 5 5 5 1 10

Rotate Word Right Variable IROTRV

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 414

Format: ROTRV rd, rt, rs SmartMIPS Crypto, microMIPS

Purpose: Rotate Word Right Variable

To execute a logical right-rotate of a word by a variable number of bits

Description: GPR[rd] ← GPR[rt] ↔(right) GPR[rs]

The contents of the low-order 32-bit word of GPR rt are rotated right; the word result is placed in GPR rd. The bit-
rotate amount is specified by the low-order 5 bits of GPR rs.

Restrictions:

Operation:

if ((ArchitectureRevision() < 2) and (Config3SM = 0)) then
UNPREDICTABLE

endif
s ← GPR[rs]4..0
temp ← GPR[rt]s-1..0 || GPR[rt]31..s
GPR[rd] ← temp

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs rd 0
ROTRV

0011010000

6 5 5 5 1 10

Floating Point Round to Long Fixed Point ROUND.L.fmt

415 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: ROUND.L.fmt
ROUND.L.S ft, fs microMIPS
ROUND.L.D ft, fs microMIPS

Purpose: Floating Point Round to Long Fixed Point

To convert an FP value to 64-bit fixed point, rounding to nearest

Description: FPR[ft] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded to nearest/
even (rounding mode 0). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to ft and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 263–1, is written to ft.

Restrictions:

The fields fs and ftmust specify valid FPRs; fs for type fmt and fd for long fixed point; if they are not valid, the result
is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(ft, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation

31 26 25 21 20 16 15 14 13 6 5 0

POOL32F
010101

ft fs 0 fmt
ROUND.L
11001100

POOL32FXf
111011

6 5 5 1 1 8 6

Floating Point Round to Long Fixed Point IROUND.L.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 416

Floating Point Round to Word Fixed Point ROUND.W.fmt

417 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: ROUND.W.fmt
ROUND.W.S ft, fs microMIPS
ROUND.W.D ft, fs microMIPS

Purpose: Floating Point Round to Word Fixed Point

To convert an FP value to 32-bit fixed point, rounding to nearest

Description: FPR[ft] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format rounding to nearest/even
(rounding mode 0). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to ft and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 231–1, is written to ft.

Restrictions:

The fields fs and ft must specify valid FPRs; fs for type fmt and fd for word fixed point; if they are not valid, the result
is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(ft, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation

31 26 25 22 21 20 16 15 14 13 6 5 0

POOL32F
010101

ft fs 0 fmt
ROUND.W
11101100

POOL32FXf
111011

6 5 5 1 1 8 6

Floating Point Round to Word Fixed Point IROUND.W.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 418

Reciprocal Square Root Approximation RSQRT.fmt

419 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: RSQRT.fmt
RSQRT.S ft, fs microMIPS
RSQRT.D ft, fs microMIPS

Purpose: Reciprocal Square Root Approximation

To approximate the reciprocal of the square root of an FP value (quickly)

Description: FPR[ft] ← 1.0 / sqrt(FPR[fs])

The reciprocal of the positive square root of the value in FPR fs is approximated and placed into FPR ft. The operand
and result are values in format fmt.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
IEEE 754 Floating Point standard. The computed result differs from both the exact result and the IEEE-mandated
representation of the exact result by no more than two units in the least-significant place (ULP).

The effect of the current FCSR rounding mode on the result is implementation dependent.

Restrictions:

The fields fs and ft must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPREDICT-
ABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Compatibility and Availability:

RSQRT.S and RSQRT.D: Required in all versions of MIPS64 since MIPS64r1. Not available in MIPS32r1. Required
by MIPS32r2 and subsequent versions of MIPS32. When required, required whenever FPU is present, whether a 32-
bit or 64-bit FPU, whether in 32-bit or 64-bit FP Register Mode (FIRF64=0 or 1, StatusFR=0 or 1).

Operation:

StoreFPR(ft, fmt, 1.0 / SquareRoot(valueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Division-by-zero, Unimplemented Operation, Invalid Operation, Overflow, Underflow

31 26 25 21 20 16 15 14 13 6 5 0

POOL32F
010101

ft fs 0 fmt
RSQRT fmt
00001000

POOL32FXf
111011

6 5 5 1 1 8 6

Reciprocal Square Root Approximation IRSQRT.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 420

Store Byte SB

421 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: SB rt, offset(base) microMIPS

Purpose: Store Byte

To store a byte to memory

Description: memory[GPR[base] + offset] ← GPR[rt]

The least-significant 8-bit byte of GPR rt is stored in memory at the location specified by the effective address. The
16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
bytesel ← vAddr1..0 xor BigEndianCPU2

dataword ← GPR[rt]31–8*bytesel..0 || 0
8*bytesel

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch

31 26 25 21 20 16 15 0

SB32
000110

rt base offset

6 5 5 16

Store Byte EVA ISBE

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 422

Format: SBE rt, offset(base) microMIPS

Purpose: Store Byte EVA

To store a byte to user mode virtual address space when executing in kernel mode.

Description: memory[GPR[base] + offset] ← GPR[rt]

The least-significant 8-bit byte of GPR rt is stored in memory at the location specified by the effective address. The
9-bit signed offset is added to the contents of GPR base to form the effective address.

The SBE instruction functions in exactly the same fashion as the SB instruction, except that address translation is per-
formed using the user mode virtual address space mapping in the TLB when accessing an address within a memory
segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are
also accessible. Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5EVA field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
bytesel ← vAddr1..0 xor BigEndianCPU2

dataword ← GPR[rt]31–8*bytesel..0 || 0
8*bytesel

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill

TLB Invalid

Bus Error

Address Error

Watch

Reserved Instruction

Coprocessor Unusable

31 26 25 21 20 16 15 12 11 9 8 0

POOL32C
011000

rt base
ST-EVA

1010

SBE
100 offset

6 5 5 4 3 9

Store Byte EVA SBE

423 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Conditional Word ISC

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 424

Format: SC rt, offset(base) microMIPS

Purpose: Store Conditional Word

To store a word to memory to complete an atomic read-modify-write

Description: if atomic_update then memory[GPR[base] + offset] ← GPR[rt], GPR[rt] ← 1
else GPR[rt] ← 0

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations on syn-
chronizable memory locations. In Release 5, the behaviour of SC is modified when Config5LLB=1.

The 32-bit word in GPR rt is conditionally stored in memory at the location specified by the aligned effective address.
The 16-bit signed offset is added to the contents of GPR base to form an effective address.

The SC completes the RMW sequence begun by the preceding LL instruction executed on the processor. To complete
the RMW sequence atomically, the following occur:

• The 32-bit word of GPR rt is stored to memory at the location specified by the aligned effective address.

• A one, indicating success, is written into GPR rt.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt.

If either of the following events occurs between the execution of LL and SC, the SC fails:

• A coherent store is completed by another processor or coherent I/O module into the block of synchronizable
physical memory containing the word. The size and alignment of the block is implementation-dependent, but it is
at least one word and at most the minimum page size.

• A coherent store is executed between an LL and SC sequence on the same processor to the block of synchroniz-
able physical memory containing the word (if Config5LLB=1; else whether such a store causes the SC to fail is not
predictable).

• An ERET instruction is executed. (Release 5 includes ERETNC, which will not cause the SC to fail.)

Furthermore, an SC must always compare its address against that of the LL. An SC will fail if the aligned address of
the SC does not match that of the preceeding LL.

A load that executes on the processor executing the LL/SC sequence to the block of synchronizable physical memory
containing the word, will not cause the SC to fail (if Config5LLB=1; else such a load may cause the SC to fail).

If any of the events listed below occurs between the execution of LL and SC, the SC may fail where it could have suc-
ceeded, i.e., success is not predictable. Portable programs should not cause any of these events.

• A load or store executed on the processor executing the LL and SC that is not to the block of synchronizable
physical memory containing the word. (The load or store may cause a cache eviction between the LL and SC that
results in SC failure. The load or store does not necessarily have to occur between the LL and SC.)

31 26 25 21 20 16 15 12 11 0

POOL32C
011000

rt base
SC

1011
offset

6 5 5 5 12

Store Conditional Word SC

425 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

• Any prefetch that is executed on the processor executing the LL and SC sequence (due to a cache eviction
between the LL and SC).

• A non-coherent store executed between an LL and SC sequence to the block of synchronizable physical memory
containing the word.

• The instructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

CACHE operations that are local to the processor executing the LL/SC sequence will result in unpredictable behav-
iour of the SC if executed between the LL and SC, that is, they may cause the SC to fail where it could have suc-
ceeded. Non-local CACHE operations (address-type with coherent CCA) may cause an SC to fail on either the local
processor or on the remote processor in multiprocessor or multi-threaded systems. This definition of the effects of
CACHE operations is mandated if Config5LLB=1. If Config5LLB=0, then CACHE effects are implementation-depen-
dent.

The following conditions must be true or the result of the SC is not predictable—the SC may fail or succeed (if
Config5LLB=1, then either success or failure is mandated, else the result is UNPREDICTABLE):

• Execution of SC must have been preceded by execution of an LL instruction.

• An RMW sequence executed without intervening events that would cause the SC to fail must use the same
address in the LL and SC. The address is the same if the virtual address, physical address, and cacheability &
coherency attribute are identical.

Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one that
is associated with the state and logic necessary to implement the LL/SC semantics. Whether a memory location is
synchronizable depends on the processor and system configurations, and on the memory access type used for the
location:

• Uniprocessor atomicity: To provide atomic RMW on a single processor, all accesses to the location must be
made with memory access type of either cached noncoherent or cached coherent. All accesses must be to one or
the other access type, and they may not be mixed.

• MP atomicity: To provide atomic RMW among multiple processors, all accesses to the location must be made
with a memory access type of cached coherent.

• I/O System: To provide atomic RMW with a coherent I/O system, all accesses to the location must be made with
a memory access type of cached coherent. If the I/O system does not use coherent memory operations, then
atomic RMW cannot be provided with respect to the I/O reads and writes.

Restrictions:

The addressed location must have a memory access type of cached noncoherent or cached coherent; if it does not, the
result is UNPREDICTABLE.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)

Store Conditional Word ISC

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 426

endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[rt]
if LLbit then

StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endif
GPR[rt] ← 031 || LLbit
LLbit ← 0 // if Config5LLB=1, SC always clears LLbit regardless of address match.

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

LL and SC are used to atomically update memory locations, as shown below.

L1:
LL T1, (T0) # load counter
ADDI T2, T1, 1 # increment
SC T2, (T0) # try to store, checking for atomicity
BEQ T2, 0, L1 # if not atomic (0), try again
NOP # branch-delay slot

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided. Some examples of
these are arithmetic operations that trap, system calls, and floating point operations that trap or require software emu-
lation assistance.

LL and SC function on a single processor for cached noncoherent memory so that parallel programs can be run on
uniprocessor systems that do not support cached coherent memory access types.

Store Conditional Word SC

427 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Conditional Word EVA ISCE

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 428

Format: SCE rt, offset(base) microMIPS

Purpose: Store Conditional Word EVA

To store a word to user mode virtual memory while operating in kernel mode to complete an atomic read-modify-
write

Description: if atomic_update then memory[GPR[base] + offset] ← GPR[rt], GPR[rt] ← 1
else GPR[rt] ← 0

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for syn-
chronizable memory locations.

The 32-bit word in GPR rt is conditionally stored in memory at the location specified by the aligned effective address.
The 9-bit signed offset is added to the contents of GPR base to form an effective address.

The SCE completes the RMW sequence begun by the preceding LLE instruction executed on the processor. To com-
plete the RMW sequence atomically, the following occur:

• The 32-bit word of GPR rt is stored to memory at the location specified by the aligned effective address.

• A 1, indicating success, is written into GPR rt.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt.

If either of the following events occurs between the execution of LL and SC, the SC fails:

• A coherent store is completed by another processor or coherent I/O module into the block of synchronizable
physical memory containing the word. The size and alignment of the block is implementation dependent, but it is
at least one word and at most the minimum page size.

• An ERET instruction is executed.

If either of the following events occurs between the execution of LLE and SCE, the SCE may succeed or it may fail;
the success or failure is not predictable. Portable programs should not cause one of these events.

• A memory access instruction (load, store, or prefetch) is executed on the processor executing the LLE/SCE.

• The instructions executed starting with the LLE and ending with the SCE do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

The following conditions must be true or the result of the SCE is UNPREDICTABLE:

• Execution of SCE must have been preceded by execution of an LLE instruction.

• An RMW sequence executed without intervening events that would cause the SCE to fail must use the same
address in the LLE and SCE. The address is the same if the virtual address, physical address, and cacheability &
coherency attribute are identical.

Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one that
is associated with the state and logic necessary to implement the LLE/SCE semantics. Whether a memory location is

31 26 25 21 20 16 15 12 11 9 8 0

POOL32C
011000

rt base
ST-EVA

1010
SCE
110

offset

6 5 5 4 3 9

Store Conditional Word EVA SCE

429 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

synchronizable depends on the processor and system configurations, and on the memory access type used for the
location:

• Uniprocessor atomicity: To provide atomic RMW on a single processor, all accesses to the location must be
made with memory access type of either cached noncoherent or cached coherent. All accesses must be to one or
the other access type, and they may not be mixed.

• MP atomicity: To provide atomic RMW among multiple processors, all accesses to the location must be made
with a memory access type of cached coherent.

• I/O System: To provide atomic RMW with a coherent I/O system, all accesses to the location must be made with
a memory access type of cached coherent. If the I/O system does not use coherent memory operations, then
atomic RMW cannot be provided with respect to the I/O reads and writes.

The SCE instruction functions in exactly the same fashion as the SC instruction, except that address translation is per-
formed using the user mode virtual address space mapping in the TLB when accessing an address within a memory
segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are
also accessible. Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5EVA field being set to one.

Restrictions:

The addressed location must have a memory access type of cached noncoherent or cached coherent; if it does not, the
result is UNPREDICTABLE.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[rt]
if LLbit then

StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endif
GPR[rt] ← 031 || LLbit

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch, Reserved Instruction, Coprocessor Unusable

Programming Notes:

LLE and SCE are used to atomically update memory locations, as shown below.

L1:
LLE T1, (T0) # load counter
ADDI T2, T1, 1 # increment
SCE T2, (T0) # try to store, checking for atomicity
BEQ T2, 0, L1 # if not atomic (0), try again
NOP # branch-delay slot

Store Conditional Word EVA ISCE

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 430

Exceptions between the LLE and SCE cause SCE to fail, so persistent exceptions must be avoided. Some examples of
these are arithmetic operations that trap, system calls, and floating point operations that trap or require software emu-
lation assistance.

LLE and SCE function on a single processor for cached noncoherent memory so that parallel programs can be run on
uniprocessor systems that do not support cached coherent memory access types.

Software Debug Breakpoint SDBBP

431 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: SDBBP code EJTAG microMIPS

Purpose: Software Debug Breakpoint

To cause a debug breakpoint exception

Description:

This instruction causes a debug exception, passing control to the debug exception handler. If the processor is execut-
ing in Debug Mode when the SDBBP instruction is executed, the exception is a Debug Mode Exception, which sets
the DebugDExcCode field to the value 0x9 (Bp). The code field can be used for passing information to the debug
exception handler, and is retrieved by the debug exception handler only by loading the contents of the memory word
containing the instruction, using the DEPC register. The CODE field is not used in any way by the hardware.

Restrictions:

Operation:

If DebugDM = 0 then
SignalDebugBreakpointException()

else
SignalDebugModeBreakpointException()

endif

Exceptions:

Debug Breakpoint Exception
Debug Mode Breakpoint Exception

31 26 25 16 15 6 5 0

POOL32A
000000

code - use syscall
SDBBP

1101101101
POOL32AXf

111100

6 10 10 6

Store Doubleword from Floating Point ISDC1

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 432

Format: SDC1 ft, offset(base) microMIPS

Purpose: Store Doubleword from Floating Point

To store a doubleword from an FPR to memory

Description: memory[GPR[base] + offset] ← FPR[ft]

The 64-bit doubleword in FPR ft is stored in memory at the location specified by the aligned effective address. The
16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0 ≠ 0 (not doubleword-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr2..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
datadoubleword ← ValueFPR(ft, UNINTERPRETED_DOUBLEWORD)
paddr ← paddr xor ((BigEndianCPU xor ReverseEndian) || 02)
StoreMemory(CCA, WORD, datadoubleword31..0, pAddr, vAddr, DATA)
paddr ← paddr xor 0b100
StoreMemory(CCA, WORD, datadoubleword63..32, pAddr, vAddr+4, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

31 26 25 21 20 16 15 0

SDC132
101110

ft base offset

6 5 5 16

Store Doubleword from Coprocessor 2 SDC2

433 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: SDC2 rt, offset(base) microMIPS

Purpose: Store Doubleword from Coprocessor 2

To store a doubleword from a Coprocessor 2 register to memory

Description: memory[GPR[base] + offset] ← CPR[2,rt,0]

The 64-bit doubleword in Coprocessor 2 register rt is stored in memory at the location specified by the aligned effec-
tive address. The 12-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0 ≠ 0 (not doubleword-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr2..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
lsw ← CPR[2,rt,0]
msw ← CPR[2,rt+1,0]
paddr ← paddr xor ((BigEndianCPU xor ReverseEndian) || 02)
StoreMemory(CCA, WORD, lsw, pAddr, vAddr, DATA)
paddr ← paddr xor 0b100
StoreMemory(CCA, WORD, msw, pAddr, vAddr+4, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

31 26 25 21 20 16 15 12 11 0

POOL32B
110110

rt base
SDC2
1010

offset

6 5 5 4 12

Sign-Extend Byte ISEB

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 434

Format: SEB rt, rs microMIPS

Purpose: Sign-Extend Byte

To sign-extend the least significant byte of GPR rs and store the value into GPR rt.

Description: GPR[rt] ← SignExtend(GPR[rs]7..0)

The least significant byte from GPR rs is sign-extended and stored in GPR rt.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

GPR[rt] ← sign_extend(GPR[rs]7..0)

Exceptions:

Reserved Instruction

Programming Notes:

For symmetry with the SEB and SEH instructions, one would expect that there would be ZEB and ZEH instructions
that zero-extend the source operand. Similarly, one would expect that the SEW and ZEW instructions would exist to
sign- or zero-extend a word to a doubleword. These instructions do not exist because there are functionally-equivalent
instructions already in the instruction set. The following table shows the instructions providing the equivalent func-
tions.

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt rs
SEB

0010101100
POOL32AXf

111100

6 5 5 10 6

Expected Instruction Function Equivalent Instruction

ZEB rx,ry Zero-Extend Byte ANDI rx,ry,0xFF

ZEH rx,ry Zero-Extend Halfword ANDI rx,ry,0xFFFF

Sign-Extend Byte SEB

435 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Sign-Extend Halfword ISEH

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 436

Format: SEH rt, rs microMIPS

Purpose: Sign-Extend Halfword

To sign-extend the least significant halfword of GPR rs and store the value into GPR rt.

Description: GPR[rt] ← SignExtend(GPR[rs]15..0)

The least significant halfword from GPR rs is sign-extended and stored in GPR rt.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

GPR[rt] ← sign_extend(GPR[rs]15..0)

Exceptions:

Reserved Instruction

Programming Notes:

The SEH instruction can be used to convert two contiguous halfwords to sign-extended word values in three instruc-
tions. For example:

lw t0, 0(a1) /* Read two contiguous halfwords */
seh t1, t0 /* t1 = lower halfword sign-extended to word */
sra t0, t0, 16 /* t0 = upper halfword sign-extended to word */

Zero-extended halfwords can be created by changing the SEH and SRA instructions to ANDI and SRL instructions,
respectively.

For symmetry with the SEB and SEH instructions, one would expect that there would be ZEB and ZEH instructions
that zero-extend the source operand. Similarly, one would expect that the SEW and ZEW instructions would exist to
sign- or zero-extend a word to a doubleword. These instructions do not exist because there are functionally-equivalent
instructions already in the instruction set. The following table shows the instructions providing the equivalent func-
tions.

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt rs
SEH

0011101100
POOL32AXf

111100

6 5 5 10 6

Expected Instruction Function Equivalent Instruction

ZEB rx,ry Zero-Extend Byte ANDI rx,ry,0xFF

ZEH rx,ry Zero-Extend Halfword ANDI rx,ry,0xFFFF

Sign-Extend Halfword SEH

437 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Halfword ISH

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 438

Format: SH rt, offset(base) microMIPS

Purpose: Store Halfword

To store a halfword to memory

Description: memory[GPR[base] + offset] ← GPR[rt]

The least-significant 16-bit halfword of register rt is stored in memory at the location specified by the aligned effec-
tive address. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor (ReverseEndian || 0))
bytesel ← vAddr1..0 xor (BigEndianCPU || 0)
dataword ← GPR[rt]31–8*bytesel..0 || 0

8*bytesel

StoreMemory (CCA, HALFWORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

31 26 25 21 20 16 15 0

SH32
001110

rt base offset

6 5 5 16

Store Halfword SH

439 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Halfword EVA ISHE

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 440

Format: SHE rt, offset(base) microMIPS

Purpose: Store Halfword EVA

To store a halfword to user mode virtual address space when executing in kernel mode.

Description: memory[GPR[base] + offset] ← GPR[rt]

The least-significant 16-bit halfword of register rt is stored in memory at the location specified by the aligned effec-
tive address. The 9-bit signed offset is added to the contents of GPR base to form the effective address.

The SHE instruction functions in exactly the same fashion as the SH instruction, except that address translation is
performed using the user mode virtual address space mapping in the TLB when accessing an address within a mem-
ory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes
are also accessible. Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5EVA field being set to one.

Restrictions:

Only usable in kernel mode when accessing an address within a segment configured using UUSK, MUSK or
MUSUK access mode.

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor (ReverseEndian || 0))
bytesel ← vAddr1..0 xor (BigEndianCPU || 0)
dataword ← GPR[rt]31–8*bytesel..0 || 0

8*bytesel

StoreMemory (CCA, HALFWORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill

TLB Invalid

Bus Error

Address Error

Watch

Reserved Instruction

Coprocessor Unusable

31 26 25 21 20 16 15 12 11 9 8 0

POOL32C
011000

rt base
ST-EVA

1010
SHE
101

offset

6 5 5 4 3 9

Store Halfword EVA SHE

441 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Shift Word Left Logical ISLL

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 442

Format: SLL rt, rs, sa microMIPS

Purpose: Shift Word Left Logical

To left-shift a word by a fixed number of bits

Description: GPR[rt] ← GPR[rs] << sa

The contents of the low-order 32-bit word of GPR rs are shifted left, inserting zeros into the emptied bits; the word
result is placed in GPR rt. The bit-shift amount is specified by sa.

Restrictions:

None

Operation:

s ← sa
temp ← GPR[rs](31-s)..0 || 0

s

GPR[rt] ← temp

Exceptions:

None

Programming Notes:

SLL r0, r0, 0, expressed as NOP, is the assembly idiom used to denote no operation.

SLL r0, r0, 1, expressed as SSNOP, is the assembly idiom used to denote no operation that causes an issue break on
superscalar processors.

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs sa 0
SLL32

0000000000

6 5 5 5 1 10

Shift Word Left Logical Variable SLLV

443 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: SLLV rd, rt, rs microMIPS

Purpose: Shift Word Left Logical Variable

To left-shift a word by a variable number of bits

Description: GPR[rd] ← GPR[rt] << rs

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting zeros into the emptied bits; the result
word is placed in GPR rd. The bit-shift amount is specified by the low-order 5 bits of GPR rs.

Restrictions:

None

Operation:

s ← GPR[rs]4..0
temp ← GPR[rt](31-s)..0 || 0

s

GPR[rd] ← temp

Exceptions:

None

Programming Notes:

None

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs rd 0
SLLV

00000010000

6 5 5 5 1 10

Set on Less Than ISLT

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 444

Format: SLT rd, rs, rt microMIPS

Purpose: Set on Less Than

To record the result of a less-than comparison

Description: GPR[rd] ← (GPR[rs] < GPR[rt])

Compare the contents of GPR rs and GPR rt as signed integers and record the Boolean result of the comparison in
GPR rd. If GPR rs is less than GPR rt, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if GPR[rs] < GPR[rt] then
GPR[rd] ← 0GPRLEN-1 || 1

else
GPR[rd] ← 0GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 11 10 0

POOL32A
000000

rt rs rd 0
SLT

1101010000

6 5 5 5 1 10

Set on Less Than Immediate SLTI

445 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: SLTI rt, rs, immediate microMIPS

Purpose: Set on Less Than Immediate

To record the result of a less-than comparison with a constant

Description: GPR[rt] ← (GPR[rs] < immediate)

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers and record the Boolean result of
the comparison in GPR rt. If GPR rs is less than immediate, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if GPR[rs] < sign_extend(immediate) then
GPR[rt] ← 0GPRLEN-1|| 1

else
GPR[rt] ← 0GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 0

SLTI32
100100

rt rs immediate

6 5 5 16

Set on Less Than Immediate Unsigned ISLTIU

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 446

Format: SLTIU rt, rs, immediate microMIPS

Purpose: Set on Less Than Immediate Unsigned

To record the result of an unsigned less-than comparison with a constant

Description: GPR[rt] ← (GPR[rs] < immediate)

Compare the contents of GPR rs and the sign-extended 16-bit immediate as unsigned integers and record the Boolean
result of the comparison in GPR rt. If GPR rs is less than immediate, the result is 1 (true); otherwise, it is 0 (false).

Because the 16-bit immediate is sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range.

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then
GPR[rt] ← 0GPRLEN-1 || 1

else
GPR[rt] ← 0GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 0

SLTIU32
101100

rt rs immediate

6 5 5 16

Set on Less Than Unsigned SLTU

447 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: SLTU rd, rs, rt microMIPS

Purpose: Set on Less Than Unsigned

To record the result of an unsigned less-than comparison

Description: GPR[rd] ← (GPR[rs] < GPR[rt])

Compare the contents of GPR rs and GPR rt as unsigned integers and record the Boolean result of the comparison in
GPR rd. If GPR rs is less than GPR rt, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || GPR[rt]) then
GPR[rd] ← 0GPRLEN-1 || 1

else
GPR[rd] ← 0GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs rd 0
SLTU

1110010000

6 5 5 5 1 10

Floating Point Square Root ISQRT.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 448

Format: SQRT.fmt
SQRT.S ft, fs
SQRT.D ft, fs

Purpose: Floating Point Square Root

To compute the square root of an FP value

Description: FPR[ft] ← SQRT(FPR[fs])

The square root of the value in FPR fs is calculated to infinite precision, rounded according to the current rounding
mode in FCSR, and placed into FPR ft. The operand and result are values in format fmt.

If the value in FPR fs corresponds to – 0, the result is – 0.

Restrictions:

If the value in FPR fs is less than 0, an Invalid Operation condition is raised.

The fields fs and ft must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPREDICT-
ABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(ft, fmt, SquareRoot(ValueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Inexact, Unimplemented Operation

31 26 25 21 20 16 15 14 13 6 5 0

POOL32F
010101

ft fs 0 fmt
SQRT.fmt
00101000

POOL32FXf
111011

6 5 5 1 1 8 6

Floating Point Square Root SQRT.fmt

449 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Shift Word Right Arithmetic ISRA

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 450

Format: SRA rt, rs, sa microMIPS

Purpose: Shift Word Right Arithmetic

To execute an arithmetic right-shift of a word by a fixed number of bits

Description: GPR[rt] ← GPR[rs] >> sa (arithmetic)

The contents of the low-order 32-bit word of GPR rs are shifted right, duplicating the sign-bit (bit 31) in the emptied
bits; the word result is placed in GPR rt. The bit-shift amount is specified by sa.

Restrictions:

None

Operation:

s ← sa
temp ← (GPR[rs]31)

s || GPR[rs]31..s
GPR[rt] ← temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs sa 0
SRA

0010000000

6 5 5 5 1 10

Shift Word Right Arithmetic Variable SRAV

451 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: SRAV rd, rt, rs microMIPS

Purpose: Shift Word Right Arithmetic Variable

To execute an arithmetic right-shift of a word by a variable number of bits

Description: GPR[rd] ← GPR[rt] >> rs (arithmetic)

The contents of the low-order 32-bit word of GPR rt are shifted right, duplicating the sign-bit (bit 31) in the emptied
bits; the word result is placed in GPR rd. The bit-shift amount is specified by the low-order 5 bits of GPR rs.

Restrictions:

None

Operation:

s ← GPR[rs]4..0
temp ← (GPR[rt]31)

s || GPR[rt]31..s
GPR[rd] ← temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs rd 0
SRAV

0010010000

6 5 5 5 1 10

Shift Word Right Logical ISRL

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 452

Format: SRL rt, rs, sa microMIPS

Purpose: Shift Word Right Logical

To execute a logical right-shift of a word by a fixed number of bits

Description: GPR[rt] ← GPR[rs] >> sa (logical)

The contents of the low-order 32-bit word of GPR rs are shifted right, inserting zeros into the emptied bits; the word
result is placed in GPR rt. The bit-shift amount is specified by sa.

Restrictions:

None

Operation:

s ← sa
temp ← 0s || GPR[rs]31..s
GPR[rt] ← temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs sa 0
SRL32

0001000000

6 5 5 5 1 10

Shift Word Right Logical Variable SRLV

453 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: SRLV rd, rt, rs microMIPS

Purpose: Shift Word Right Logical Variable

To execute a logical right-shift of a word by a variable number of bits

Description: GPR[rd] ← GPR[rt] >> GPR[rs] (logical)

The contents of the low-order 32-bit word of GPR rt are shifted right, inserting zeros into the emptied bits; the word
result is placed in GPR rd. The bit-shift amount is specified by the low-order 5 bits of GPR rs.

Restrictions:

None

Operation:

s ← GPR[rs]4..0
temp ← 0s || GPR[rt]31..s
GPR[rd] ← temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs rd 0
SRLV

00010010000

6 5 5 5 1 10

Superscalar No Operation ISSNOP

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 454

Format: SSNOP microMIPS

Purpose: Superscalar No Operation

Break superscalar issue on a superscalar processor.

Description:

SSNOP is the assembly idiom used to denote superscalar no operation. The actual instruction is interpreted by the
hardware as SLL r0, r0, 1.

This instruction alters the instruction issue behavior on a superscalar processor by forcing the SSNOP instruction to
single-issue. The processor must then end the current instruction issue between the instruction previous to the SSNOP
and the SSNOP. The SSNOP then issues alone in the next issue slot.

On a single-issue processor, this instruction is a NOP that takes an issue slot.

Restrictions:

None

Operation:

None

Exceptions:

None

Programming Notes:

SSNOP is intended for use primarily to allow the programmer control over CP0 hazards by converting instructions
into cycles in a superscalar processor. For example, to insert at least two cycles between an MTC0 and an ERET, one
would use the following sequence:

mtc0 x,y
ssnop
ssnop
eret

Based on the normal issues rules of the processor, the MTC0 issues in cycle T. Because the SSNOP instructions must
issue alone, they may issue no earlier than cycle T+1 and cycle T+2, respectively. Finally, the ERET issues no earlier
than cycle T+3. Note that although the instruction after an SSNOP may issue no earlier than the cycle after the
SSNOP is issued, that instruction may issue later. This is because other implementation-dependent issue rules may
apply that prevent an issue in the next cycle. Processors should not introduce any unnecessary delay in issuing
SSNOP instructions.

31 26 25 11 10 6 5 0

POOL32A
000000

0
00000

0
00000

1
00001

0
0000

SLL32
000000

6 5 5 5 5 6

Subtract Word SUB

455 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: SUB rd, rs, rt microMIPS

Purpose: Subtract Word

To subtract 32-bit integers. If overflow occurs, then trap

Description: GPR[rd] ← GPR[rs] − GPR[rt]

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rs to produce a 32-bit result. If the sub-
traction results in 32-bit 2’s complement arithmetic overflow, then the destination register is not modified and an
Integer Overflow exception occurs. If it does not overflow, the 32-bit result is placed into GPR rd.

Restrictions:

None

Operation:

temp ← (GPR[rs]31||GPR[rs]31..0) − (GPR[rt]31||GPR[rt]31..0)
if temp32 ≠ temp31 then

SignalException(IntegerOverflow)
else

GPR[rd] ← temp31..0
endif

Exceptions:

Integer Overflow

Programming Notes:

SUBU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs rd 0
SUB

0110010000

6 5 5 5 1 10

Floating Point Subtract ISUB.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 456

Format: SUB.fmt
SUB.S fd, fs, ft microMIPS
SUB.D fd, fs, ft microMIPS
SUB.PS fd, fs, ft microMIPS

Purpose: Floating Point Subtract

To subtract FP values

Description: FPR[fd] ← FPR[fs] − FPR[ft]

The value in FPR ft is subtracted from the value in FPR fs. The result is calculated to infinite precision, rounded
according to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in for-
mat fmt. SUB.PS subtracts the upper and lower halves of FPR fs and FPR ft independently, and ORs together any gen-
erated exceptional conditions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is UNPRE-
DICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of SUB.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model; it
is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) −fmt ValueFPR(ft, fmt))

CPU Exceptions:

Coprocessor Unusable, Reserved Instruction

FPU Exceptions:

Inexact, Overflow, Underflow, Invalid Op, Unimplemented Op

31 26 25 21 20 16 15 11 10 9 8 7 5 0

POOL32F
010101

ft fs fd 0 fmt
SUB fmt
01110000

6 5 5 5 1 2 8

Floating Point Subtract SUB.fmt

457 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Subtract Unsigned Word ISUBU

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 458

Format: SUBU rd, rs, rt microMIPS

Purpose: Subtract Unsigned Word

To subtract 32-bit integers

Description: GPR[rd] ← GPR[rs] − GPR[rt]

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rs and the 32-bit arithmetic result is and
placed into GPR rd.

No integer overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

temp ← GPR[rs] − GPR[rt]
GPR[rd] ← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 11 10 6 5 0

POOL32A
000000

rt rs rd 0
SUBU32

0111010000

6 5 5 5 1 10

Store Doubleword Indexed Unaligned from Floating Point SUXC1

459 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: SUXC1 fd, index(base) microMIPS

Purpose: Store Doubleword Indexed Unaligned from Floating Point

To store a doubleword from an FPR to memory (GPR+GPR addressing) ignoring alignment

Description: memory[(GPR[base] + GPR[index])PSIZE-1..3] ← FPR[fd]

The contents of the 64-bit doubleword in FPR fd is stored at the memory location specified by the effective address.
The contents of GPR index and GPR base are added to form the effective address. The effective address is double-
word-aligned; EffectiveAddress2..0 are ignored.

Restrictions:

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

vAddr ← (GPR[base]+GPR[index])63..3 || 0
3

(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
datadoubleword ← ValueFPR(fd, UNINTERPRETED_DOUBLEWORD)
paddr ← paddr xor ((BigEndianCPU xor ReverseEndian) || 02)
StoreMemory(CCA, WORD, datadoubleword31..0, pAddr, vAddr, DATA)
paddr ← paddr xor 0b100
StoreMemory(CCA, WORD, datadoubleword63..32, pAddr, vAddr+4, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Watch

31 26 25 21 20 16 15 11 10 9 8 0

POOL32F
010101

index base fd 00 SUXC1
110001000

6 5 5 5 2 9

Store Word ISW

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 460

Format: SW rt, offset(base) microMIPS

Purpose: Store Word

To store a word to memory

Description: memory[GPR[base] + offset] ← GPR[rt]

The least-significant 32-bit word of GPR rt is stored in memory at the location specified by the aligned effective
address. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[rt]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

31 26 25 21 20 16 15 0

SW32
111110

rt base offset

6 5 5 16

Store Word from Floating Point SWC1

461 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

SWC1 ft, offset(base) microMIPS

Purpose: Store Word from Floating Point

To store a word from an FPR to memory

Description: memory[GPR[base] + offset] ← FPR[ft]

The low 32-bit word from FPR ft is stored in memory at the location specified by the aligned effective address. The
16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0 ≠ 0 (not word-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
dataword ← ValueFPR(ft, UNINTERPRETED_WORD)
StoreMemory(CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

31 26 25 21 20 16 15 0

SWC132
100110

ft base offset

6 5 5 16

Store Word from Coprocessor 2 ISWC2

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 462

Format: SWC2 rt, offset(base) microMIPS

Purpose: Store Word from Coprocessor 2

To store a word from a COP2 register to memory

Description: memory[GPR[base] + offset] ← CPR[2,rt,0]

The low 32-bit word from COP2 (Coprocessor 2) register rt is stored in memory at the location specified by the
aligned effective address. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0 ≠ 0 (not word-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
dataword ← CPR[2,rt,0]
StoreMemory(CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

31 26 25 21 20 16 15 0

POOL32B
001000

rt base
SWC2
1000

offset

6 5 5 16

Store Word from Coprocessor 2 SWC2

463 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Word EVA ISWE

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 464

Format: SWE rt, offset(base) microMIPS

Purpose: Store Word EVA

To store a word to user mode virtual address space when executing in kernel mode.

Description: memory[GPR[base] + offset] ← GPR[rt]

The least-significant 32-bit word of GPR rt is stored in memory at the location specified by the aligned effective
address. The 9-bit signed offset is added to the contents of GPR base to form the effective address.

The SWE instruction functions in exactly the same fashion as the SW instruction, except that address translation is
performed using the user mode virtual address space mapping in the TLB when accessing an address within a mem-
ory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes
are also accessible. Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5EVA field being set to one.

Restrictions:

Only usable in kernel mode when accessing an address within a segment configured using UUSK, MUSK or
MUSUK access mode.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[rt]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill

TLB Invalid

Bus Error

Address Error

Watch

Reserved Instruction

Coprocessor Unusable

31 26 25 21 20 16 15 12 11 9 8 0

POOL32C
011000

rt base
ST-EVA

1010
SWE
111

offset

6 5 5 4 3 9

Store Word EVA SWE

465 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Word Left SWL

467 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Figure 5.15 Bytes Stored by an SWL Instruction

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian2)
If BigEndianMem = 0 then

pAddr ← pAddrPSIZE-1..2 || 0
2

endif
byte ← vAddr1..0 xor BigEndianCPU2

dataword ← 024–8*byte || GPR[rt]31..24–8*byte
StoreMemory(CCA, byte, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 ←big-endian 64-bit register

i j k l offset (vAddr1. 0) A B C D E F G H

3 2 1 0 ←little-endian most — significance — least

most least 32-bit register E F G H

— significance —

Memory contents after instruction (shaded is unchanged)
Big-endian

byte ordering vAddr1..0

Little-endian
byte ordering

E F G H 0 i j k E

i E F G 1 i j E F

i j E F 2 i E F G

i j k E 3 E F G H

Store Word Left EVA SWLE

469 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Figure 5.17 Bytes Stored by an SWLE Instruction

Restrictions:

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian2)
If BigEndianMem = 0 then

pAddr ← pAddrPSIZE-1..2 || 0
2

endif
byte ← vAddr1..0 xor BigEndianCPU2

dataword ← 024–8*byte || GPR[rt]31..24–8*byte
StoreMemory(CCA, byte, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch, Reserved Instruction, Coprocessor Unus-
able

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 ←big-endian 64-bit register

i j k l offset (vAddr1. 0) A B C D E F G H

3 2 1 0 ←little-endian most — significance — least

most least 32-bit register E F G H

— significance —

Memory contents after instruction (shaded is unchanged)
Big-endian

byte ordering vAddr1..0

Little-endian
byte ordering

E F G H 0 i j k E

i E F G 1 i j E F

i j E F 2 i E F G

i j k E 3 E F G H

Store Word Left EVA ISWLE

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 470

Store Word Right ISWR

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 472

Figure 5.19 Bytes Stored by SWR Instruction

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian2)
If BigEndianMem = 0 then

pAddr ← pAddrPSIZE-1..2 || 0
2

endif
byte ← vAddr1..0 xor BigEndianCPU2

dataword ← GPR[rt]31–8*byte || 0
8*byte

StoreMemory(CCA, WORD-byte, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 ←big-endian 64-bit register

i j k l offset (vAddr1. 0) A B C D E F G H

3 2 1 0 ←little-endian most — significance — least

most least 32-bit register E F G H

— significance —

Memory contents after instruction (shaded is unchanged)
Big-endian

byte ordering vAddr1..0

Little-endian
byte ordering

H j k l 0 E F G H

G H k l 1 F G H l

F G H l 2 G H k l

E F G H 3 H j k l

Store Word Right SWR

473 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Word Right EVA SWRE

475 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Figure 5.21 Bytes Stored by SWRE Instruction

Restrictions:

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian2)
If BigEndianMem = 0 then

pAddr ← pAddrPSIZE-1..2 || 0
2

endif
byte ← vAddr1..0 xor BigEndianCPU2

dataword ← GPR[rt]31–8*byte || 0
8*byte

StoreMemory(CCA, WORD-byte, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch, Coprocessor Unusable

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 ←big-endian 64-bit register

i j k l offset (vAddr1. 0) A B C D E F G H

3 2 1 0 ←little-endian most — significance — least

most least 32-bit register E F G H

— significance —

Memory contents after instruction (shaded is unchanged)
Big-endian

byte ordering vAddr1..0

Little-endian
byte ordering

H j k l 0 E F G H

G H k l 1 F G H l

F G H l 2 G H k l

E F G H 3 H j k l

Store Word Right EVA ISWRE

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 476

Store Word Indexed from Floating Point SWXC1

477 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: SWXC1 fd, index(base) microMIPS
microMIPS

Purpose: Store Word Indexed from Floating Point

To store a word from an FPR to memory (GPR+GPR addressing)

Description: memory[GPR[base] + GPR[index]] ← FPR[fd]

The low 32-bit word from FPR fd is stored in memory at the location specified by the aligned effective address. The
contents of GPR index and GPR base are added to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0 ≠ 0 (not word-aligned).

Compatibility and Availability:

SWXC1: Required in all versions of MIPS64 since MIPS64r1. Not available in MIPS32r1. Required by MIPS32r2
and subsequent versions of MIPS32. When required, required whenever FPU is present, whether a 32-bit or 64-bit
FPU, whether in 32-bit or 64-bit FP Register Mode (FIRF64=0 or 1, FR=0 or 1,)

Operation:

vAddr ← GPR[base] + GPR[index]
if vAddr1..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
dataword ← ValueFPR(fd, UNINTERPRETED_WORD)
StoreMemory(CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

31 26 25 21 20 16 15 11 10 9 8 0

POOL32F
010101

index base fd 00 SWXC1
010001000

6 5 5 5 2 9

Store Word Indexed from Floating Point ISWXC1

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 478

SYNC

479 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: SYNC (stype = 0 implied) microMIPS
SYNC stype microMIPS

Purpose: To order loads and stores for shared memory.

Description:

These types of ordering guarantees are available through the SYNC instruction:

• Completion Barriers

• Ordering Barriers

Simple Description for Completion Barrier:

• The barrier affects only uncached and cached coherent loads and stores.

• The specified memory instructions (loads or stores or both) that occur before the SYNC instruction must be
completed before the specified memory instructions after the SYNC are allowed to start.

• Loads are completed when the destination register is written. Stores are completed when the stored value is
visible to every other processor in the system.

Detailed Description for Completion Barrier:

• Every synchronizable specified memory instruction (loads or stores or both) that occurs in the instruction
stream before the SYNC instruction must be already globally performed before any synchronizable speci-
fied memory instructions that occur after the SYNC are allowed to be performed, with respect to any other
processor or coherent I/O module.

• The barrier does not guarantee the order in which instruction fetches are performed.

• A stype value of zero will always be defined such that it performs the most complete set of synchronization
operations that are defined. This means stype zero always does a completion barrier that affects both loads
and stores preceding the SYNC instruction and both loads and stores that are subsequent to the SYNC
instruction. Non-zero values of stype may be defined by the architecture or specific implementations to per-
form synchronization behaviors that are less complete than that of stype zero. If an implementation does not
use one of these non-zero values to define a different synchronization behavior, then that non-zero value of
stype must act the same as stype zero completion barrier. This allows software written for an implementa-
tion with a lighter-weight barrier to work on another implementation which only implements the stype zero
completion barrier.

• A completion barrier is required, potentially in conjunction with SSNOP (in Release 1 of the Architecture)
or EHB (in Release 2 of the Architecture), to guarantee that memory reference results are visible across
operating mode changes. For example, a completion barrier is required on some implementations on entry to
and exit from Debug Mode to guarantee that memory effects are handled correctly.

31 26 25 16 15 6 5 0

POOL32A
000000

0
0000000000

stype
SYNC

0110101101
POOL32AXf

111100

6 5 5 10 6

ISYNC

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 480

SYNC behavior when the stype field is zero:

• A completion barrier that affects preceding loads and stores and subsequent loads and stores.

Simple Description for Ordering Barrier:

• The barrier affects only uncached and cached coherent loads and stores.

• The specified memory instructions (loads or stores or both) that occur before the SYNC instruction must
always be ordered before the specified memory instructions after the SYNC.

• Memory instructions which are ordered before other memory instructions are processed by the load/store
datapath first before the other memory instructions.

Detailed Description for Ordering Barrier:

• Every synchronizable specified memory instruction (loads or stores or both) that occurs in the instruction
stream before the SYNC instruction must reach a stage in the load/store datapath after which no instruction
re-ordering is possible before any synchronizable specified memory instruction which occurs after the
SYNC instruction in the instruction stream reaches the same stage in the load/store datapath.

• If any memory instruction before the SYNC instruction in program order, generates a memory request to the
external memory and any memory instruction after the SYNC instruction in program order also generates a
memory request to external memory, the memory request belonging to the older instruction must be globally
performed before the time the memory request belonging to the younger instruction is globally performed.

• The barrier does not guarantee the order in which instruction fetches are performed.

As compared to the completion barrier, the ordering barrier is a lighter-weight operation as it does not require the
specified instructions before the SYNC to be already completed. Instead it only requires that those specified instruc-
tions which are subsequent to the SYNC in the instruction stream are never re-ordered for processing ahead of the
specified instructions which are before the SYNC in the instruction stream. This potentially reduces how many cycles
the barrier instruction must stall before it completes.

The Acquire and Release barrier types are used to minimize the memory orderings that must be maintained and still
have software synchronization work.

Implementations that do not use any of the non-zero values of stype to define different barriers, such as ordering bar-
riers, must make those stype values act the same as stype zero.

For the purposes of this description, the CACHE, PREF and PREFX instructions are treated as loads and stores. That
is, these instructions and the memory transactions sourced by these instructions obey the ordering and completion
rules of the SYNC instruction.

SYNC

481 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Table 5.28 lists the available completion barrier and ordering barriers behaviors that can be specified using the stype
field..

Terms:

Synchronizable: A load or store instruction is synchronizable if the load or store occurs to a physical location in
shared memory using a virtual location with a memory access type of either uncached or cached coherent. Shared
memory is memory that can be accessed by more than one processor or by a coherent I/O system module.

Performed load: A load instruction is performed when the value returned by the load has been determined. The result
of a load on processor A has been determined with respect to processor or coherent I/O module B when a subsequent
store to the location by B cannot affect the value returned by the load. The store by B must use the same memory
access type as the load.

Table 5.28 Encodings of the Bits[10:6] of the SYNC instruction; the SType Field

Code Name

Older instructions
which must reach

the load/store
ordering point

before the SYNC
instruction
completes.

Younger
instructions

which must reach
the load/store
ordering point
only after the

SYNC instruction
completes.

Older instructions
which must be

globally
performed when

the SYNC
instruction
completes Compliance

0x0 SYNC
or

SYNC 0

Loads, Stores Loads, Stores Loads, Stores Required

0x4 SYNC_WMB
or

SYNC 4

Stores Stores Optional

0x10 SYNC_MB
or

SYNC 16

Loads, Stores Loads, Stores Optional

0x11 SYNC_ACQUIRE
or

SYNC 17

Loads Loads, Stores Optional

0x12 SYNC_RELEASE
or

SYNC 18

Loads, Stores Stores Optional

0x13 SYNC_RMB
or

SYNC 19

Loads Loads Optional

0x1-0x3, 0x5-0xF Implementation-Spe-
cific and Vendor

Specific Sync Types

0x14 - 0x1F RESERVED Reserved for MIPS
Technologies for

future extension of
the architecture.

ISYNC

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 482

Performed store: A store instruction is performed when the store is observable. A store on processor A is observable
with respect to processor or coherent I/O module B when a subsequent load of the location by B returns the value
written by the store. The load by B must use the same memory access type as the store.

Globally performed load: A load instruction is globally performed when it is performed with respect to all processors
and coherent I/O modules capable of storing to the location.

Globally performed store: A store instruction is globally performed when it is globally observable. It is globally
observable when it is observable by all processors and I/O modules capable of loading from the location.

Coherent I/O module: A coherent I/O module is an Input/Output system component that performs coherent Direct
Memory Access (DMA). It reads and writes memory independently as though it were a processor doing loads and
stores to locations with a memory access type of cached coherent.

Load/Store Datapath: The portion of the processor which handles the load/store data requests coming from the pro-
cessor pipeline and processes those requests within the cache and memory system hierarchy.

Restrictions:

The effect of SYNC on the global order of loads and stores for memory access types other than uncached and cached
coherent is UNPREDICTABLE.

Operation:

SyncOperation(stype)

Exceptions:

None

Programming Notes:

A processor executing load and store instructions observes the order in which loads and stores using the same mem-
ory access type occur in the instruction stream; this is known as program order.

A parallel program has multiple instruction streams that can execute simultaneously on different processors. In mul-
tiprocessor (MP) systems, the order in which the effects of loads and stores are observed by other processors—the
global order of the loads and store—determines the actions necessary to reliably share data in parallel programs.

When all processors observe the effects of loads and stores in program order, the system is strongly ordered. On such
systems, parallel programs can reliably share data without explicit actions in the programs. For such a system, SYNC
has the same effect as a NOP. Executing SYNC on such a system is not necessary, but neither is it an error.

If a multiprocessor system is not strongly ordered, the effects of load and store instructions executed by one processor
may be observed out of program order by other processors. On such systems, parallel programs must take explicit
actions to reliably share data. At critical points in the program, the effects of loads and stores from an instruction
stream must occur in the same order for all processors. SYNC separates the loads and stores executed on the proces-
sor into two groups, and the effect of all loads and stores in one group is seen by all processors before the effect of
any load or store in the subsequent group. In effect, SYNC causes the system to be strongly ordered for the executing
processor at the instant that the SYNC is executed.

Many MIPS-based multiprocessor systems are strongly ordered or have a mode in which they operate as strongly
ordered for at least one memory access type. The MIPS architecture also permits implementation of MP systems that
are not strongly ordered; SYNC enables the reliable use of shared memory on such systems. A parallel program that
does not use SYNC generally does not operate on a system that is not strongly ordered. However, a program that does
use SYNC works on both types of systems. (System-specific documentation describes the actions needed to reliably
share data in parallel programs for that system.)

The behavior of a load or store using one memory access type is UNPREDICTABLE if a load or store was previ-

SYNC

483 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

ously made to the same physical location using a different memory access type. The presence of a SYNC between the
references does not alter this behavior.

SYNC affects the order in which the effects of load and store instructions appear to all processors; it does not gener-
ally affect the physical memory-system ordering or synchronization issues that arise in system programming. The
effect of SYNC on implementation-specific aspects of the cached memory system, such as writeback buffers, is not
defined.

Processor A (writer)
Conditions at entry:
The value 0 has been stored in FLAG and that value is observable by B
SW R1, DATA # change shared DATA value
LI R2, 1
SYNC # Perform DATA store before performing FLAG store
SW R2, FLAG # say that the shared DATA value is valid

Processor B (reader)
LI R2, 1

1: LW R1, FLAG # Get FLAG
BNE R2, R1, 1B# if it says that DATA is not valid, poll again
NOP
SYNC # FLAG value checked before doing DATA read
LW R1, DATA # Read (valid) shared DATA value

The code fragments above shows how SYNC can be used to coordinate the use of shared data between separate writer
and reader instruction streams in a multiprocessor environment. The FLAG location is used by the instruction streams
to determine whether the shared data item DATA is valid. The SYNC executed by processor A forces the store of
DATA to be performed globally before the store to FLAG is performed. The SYNC executed by processor B ensures
that DATA is not read until after the FLAG value indicates that the shared data is valid.

Software written to use a SYNC instruction with a non-zero stype value, expecting one type of barrier behavior,
should only be run on hardware that actually implements the expected barrier behavior for that non-zero stype value
or on hardware which implements a superset of the behavior expected by the software for that stype value. If the hard-
ware does not perform the barrier behavior expected by the software, the system may fail.

ISYNC

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 484

Synchronize Caches to Make Instruction Writes Effective SYNCI

485 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: SYNCI offset(base) microMIPS

Purpose: Synchronize Caches to Make Instruction Writes Effective

To synchronize all caches to make instruction writes effective.

Description:

This instruction is used after a new instruction stream is written to make the new instructions effective relative to an
instruction fetch, when used in conjunction with the SYNC and JALR.HB, JR.HB, or ERET instructions, as
described below. Unlike the CACHE instruction, the SYNCI instruction is available in all operating modes in an
implementation of Release 2 of the architecture.

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective address. The
effective address is used to address the cache line in all caches which may need to be synchronized with the write of
the new instructions. The operation occurs only on the cache line which may contain the effective address. One
SYNCI instruction is required for every cache line that was written. See the Programming Notes below.

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur as a byproduct of this instruc-
tion. This instruction never causes TLB Modified exceptions nor TLB Refill exceptions with a cause code of TLBS.
This instruction never causes Execute-Inhibit nor Read-Inhibit exceptions.

A Cache Error exception may occur as a byproduct of this instruction. For example, if a writeback operation detects a
cache or bus error during the processing of the operation, that error is reported via a Cache Error exception. Similarly,
a Bus Error Exception may occur if a bus operation invoked by this instruction is terminated in an error.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It is implementation dependent whether a data watch is triggered by a SYNCI instruction whose address matches the
Watch register address match conditions.In multiprocessor implementations where instruction caches are not coher-
ently maintained by hardware, the SYNCI instruction may optionally affect all coherent icaches within the system. If
the effective address uses a coherent Cacheability and Coherency Attribute (CCA), then the operation may be global-
ized, meaning it is broadcast to all of the coherent instruction caches within the system. If the effective address does
not use one of the coherent CCAs, there is no broadcast of the SYNCI operation. If multiple levels of caches are to be
affected by one SYNCI instruction, all of the affected cache levels must be processed in the same manner - either all
affected cache levels use the globalized behavior or all affected cache levels use the non-globalized behavior.

In multiprocessor implementations where instruction caches are coherently maintained by hardware, the SYNCI
instruction should behave as a NOP instruction.

Restrictions:

The operation of the processor is UNPREDICTABLE if the effective address references any instruction cache line
that contains instructions to be executed between the SYNCI and the subsequent JALR.HB, JR.HB, or ERET instruc-
tion required to clear the instruction hazard.

The SYNCI instruction has no effect on cache lines that were previously locked with the CACHE instruction. If cor-
rect software operation depends on the state of a locked line, the CACHE instruction must be used to synchronize the
caches.

The SYNCI instruction acts on the current processor at a minimum. It is implementation specific whether it affects

31 26 25 21 20 16 15 0

POOL32I
010000

SYNCI
10000

base offset

6 5 5 16

Synchronize Caches to Make Instruction Writes Effective ISYNCI

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 486

the caches on other processors in a multiprocessor system, except as required to perform the operation on the current
processor (as might be the case if multiple processors share an L2 or L3 cache).

Full visibility of the new instruction stream requires execution of a subsequent SYNC instruction, followed by a
JALR.HB, JR.HB, DERET, or ERET instruction. The operation of the processor is UNPREDICTABLE if this
sequence is not followed.

Operation:

vaddr ← GPR[base] + sign_extend(offset)
SynchronizeCacheLines(vaddr) /* Operate on all caches */

Exceptions:

Reserved Instruction Exception (Release 1 implementations only)
TLB Refill Exception
TLB Invalid Exception
Address Error Exception
Cache Error Exception
Bus Error Exception

Programming Notes:

When the instruction stream is written, the SYNCI instruction should be used in conjunction with other instructions
to make the newly-written instructions effective. The following example shows a routine which can be called after the
new instruction stream is written to make those changes effective. Note that the SYNCI instruction could be replaced
with the corresponding sequence of CACHE instructions (when access to Coprocessor 0 is available), and that the
JR.HB instruction could be replaced with JALR.HB, ERET, or DERET instructions, as appropriate. A SYNC instruc-
tion is required between the final SYNCI instruction in the loop and the instruction that clears instruction hazards.

/*
 * This routine makes changes to the instruction stream effective to the
 * hardware. It should be called after the instruction stream is written.
 * On return, the new instructions are effective.
 *
 * Inputs:
 * a0 = Start address of new instruction stream
 * a1 = Size, in bytes, of new instruction stream
 */

beq a1, zero, 20f /* If size==0, */
nop /* branch around */
addu a1, a0, a1 /* Calculate end address + 1 */
rdhwr v0, HW_SYNCI_Step /* Get step size for SYNCI from new */

/* Release 2 instruction */
beq v0, zero, 20f /* If no caches require synchronization, */
nop /* branch around */

10: synci 0(a0) /* Synchronize all caches around address */
addu a0, a0, v0 /* Add step size in delay slot */
sltu v1, a0, a1 /* Compare current with end address */
bne v1, zero, 10b /* Branch if more to do */
nop /* branch around */
sync /* Clear memory hazards */

20: jr.hb ra /* Return, clearing instruction hazards */
nop

Synchronize Caches to Make Instruction Writes Effective SYNCI

487 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

System Call ISYSCALL

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 488

Format: SYSCALL microMIPS

Purpose: System Call

To cause a System Call exception

Description:

A system call exception occurs, immediately and unconditionally transferring control to the exception handler.

The code field is available for use as software parameters, but is retrieved by the exception handler only by loading
the contents of the memory word containing the instruction.

Restrictions:

None

Operation:

SignalException(SystemCall)

Exceptions:

System Call

31 26 25 16 15 6 5 0

POOL32A
000000

code
SYSCALL

1000101101
POOL32AXf

111100

6 10 10 6

Trap if Equal TEQ

489 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: TEQ rs, rt microMIPS

Purpose: Trap if Equal

To compare GPRs and do a conditional trap

Description: if GPR[rs] = GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as signed integers; if GPR rs is equal to GPR rt, then take a Trap excep-
tion.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] = GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 12 11 6 5 0

POOL32A
000000

rt rs code
TEQ

000000
POOL32AXf

111100

6 5 5 4 6 6

Trap if Equal Immediate ITEQI

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 490

Format: TEQI rs, immediate microMIPS

Purpose: Trap if Equal Immediate

To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] = immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rs is equal to immediate,
then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] = sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

POOL32I
010000

TEQI
01110

rs immediate

6 5 5 16

Trap if Greater or Equal TGE

491 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: TGE rs, rt microMIPS

Purpose: Trap if Greater or Equal

To compare GPRs and do a conditional trap

Description: if GPR[rs] ≥ GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as signed integers; if GPR rs is greater than or equal to GPR rt, then take
a Trap exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] ≥ GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 12 11 6 5 0

POOL32A
000000

rt rs code
TGE

001000
POOL32AXf

111100

6 5 5 4 6 6

Trap if Greater or Equal Immediate ITGEI

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 492

Format: TGEI rs, immediate microMIPS

Purpose: Trap if Greater or Equal Immediate

To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] ≥ immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rs is greater than or equal
to immediate, then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] ≥ sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

POOL32I
010000

TGEI
01001

rs immediate

6 5 5 16

Trap if Greater or Equal Immediate Unsigned TGEIU

493 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: TGEIU rs, immediate microMIPS

Purpose: Trap if Greater or Equal Immediate Unsigned

To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] ≥ immediate then Trap

Compare the contents of GPR rs and the 16-bit sign-extended immediate as unsigned integers; if GPR rs is greater
than or equal to immediate, then take a Trap exception.

Because the 16-bit immediate is sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range.

Restrictions:

None

Operation:

if (0 || GPR[rs]) ≥ (0 || sign_extend(immediate)) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

POOL32I
010000

TGEIU
01011

rs immediate

6 5 5 16

Trap if Greater or Equal Unsigned ITGEU

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 494

Format: TGEU rs, rt microMIPS

Purpose: Trap if Greater or Equal Unsigned

To compare GPRs and do a conditional trap

Description: if GPR[rs] ≥ GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as unsigned integers; if GPR rs is greater than or equal to GPR rt, then
take a Trap exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if (0 || GPR[rs]) ≥ (0 || GPR[rt]) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 12 11 6 5 0

POOL32A
000000

rt rs code
TGEU
010000

POOL32AXf
111100

6 5 5 4 6 6

Trap if Greater or Equal Unsigned TGEU

495 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Probe TLB for Matching Entry ITLBP

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 496

Format: TLBP microMIPS

Purpose: Probe TLB for Matching Entry

To find a matching entry in the TLB.

Description:

The Index register is loaded with the address of the TLB entry whose contents match the contents of the EntryHi reg-
ister. If no TLB entry matches, the high-order bit of the Index register is set. In Release 1 of the Architecture, it is
implementation dependent whether multiple TLB matches are detected on a TLBP. However, implementations are
strongly encouraged to report multiple TLB matches only on a TLB write. In Release 2 of the Architecture, multiple
TLB matches may only be reported on a TLB write. In Release 3 of the Architecture, multiple TLB matches may be
reported on either TLB write or TLB probe.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

Index ← 1 || UNPREDICTABLE31

for i in 0...TLBEntries-1
if ((TLB[i]VPN2 and not (TLB[i]Mask)) =

(EntryHiVPN2 and not (TLB[i]Mask))) and
((TLB[i]G = 1) or (TLB[i]ASID = EntryHiASID))then
Index ← i

endif
endfor

Exceptions:

Coprocessor Unusable

Machine Check

31 26 25 16 15 6 5 0

POOL32A
000000

0
0000000000

TLBP
0000001101

POOL32AXf
111100

6 10 10 6

Probe TLB for Matching Entry TLBP

497 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Read Indexed TLB Entry ITLBR

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 498

Format: TLBR microMIPS

Purpose: Read Indexed TLB Entry

To read an entry from the TLB.

Description:

The EntryHi, EntryLo0, EntryLo1, and PageMask registers are loaded with the contents of the TLB entry pointed
to by the Index register. In Release 1 of the Architecture, it is implementation dependent whether multiple TLB
matches are detected on a TLBR. However, implementations are strongly encouraged to report multiple TLB matches
only on a TLB write. In Release 2 of the Architecture, multiple TLB matches may only be reported on a TLB write.
In Release 3 of the Architecture, multiple TLB matches may be detected on a TLBR.

In an implementation supporting TLB entry invalidation (Config4IE = 2 or Config4IE = 3), reading an invalidated
TLB entry causes 0 to be written to EntryHi, EntryLo0, EntryLo1 registers and the PageMaskMASK register field.

Note that the value written to the EntryHi, EntryLo0, and EntryLo1 registers may be different from that originally
written to the TLB via these registers in that:

• The value returned in the VPN2 field of the EntryHi register may havethose bits set to zero corresponding to the
one bits in the Mask field of the TLB entry (the least-significant bit of VPN2 corresponds to the least-significant
bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed after a TLB
entry is written and then read.

• The value returned in the PFN field of the EntryLo0 and EntryLo1 registers may have those bits set to zero cor-
responding to the one bits in the Mask field of the TLB entry (the least significant bit of PFN corresponds to the
least significant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed
after a TLB entry is written and then read.

• The value returned in the G bit in both the EntryLo0 and EntryLo1 registers comes from the single G bit in the
TLB entry. Recall that this bit was set from the logical AND of the two G bits in EntryLo0 and EntryLo1 when
the TLB was written.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

i ← Index
if i > (TLBEntries - 1) then

UNDEFINED
endif
if ((Config4IE = 2 or Config4IE = 3) and TLB[i]VPN2_invalid = 1) then

PagemaskMask ← 0
EntryHi ← 0
EntryLo1 ← 0

31 26 25 16 15 6 5 0

POOL32A
000000

0
0000000000

TLBR
0001001101

POOL32AXf
111100

6 10 10 6

Read Indexed TLB Entry TLBR

499 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

EntryLo0 ← 0
EntryHiEHINV ← 1

else
PageMaskMask ← TLB[i]Mask
EntryHi ←

(TLB[i]VPN2 and not TLB[i]Mask) || # Masking implem dependent
05 || TLB[i]ASID

EntryLo1 ← 02 ||
(TLB[i]PFN1 and not TLB[i]Mask) || # Masking mplem dependent
TLB[i]C1 || TLB[i]D1 || TLB[i]V1 || TLB[i]G

EntryLo0 ← 02 ||
(TLB[i]PFN0 and not TLB[i]Mask) || # Masking mplem dependent
TLB[i]C0 || TLB[i]D0 || TLB[i]V0 || TLB[i]G

endif

Exceptions:

Coprocessor Unusable

Machine Check

Write Indexed TLB Entry ITLBWI

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 500

Format: TLBWI microMIPS

Purpose: Write Indexed TLB Entry

To write or invalidate a TLB entry indexed by the Index register.

Description:

If Config4IE < 2 or EntryHiEHINV=0:

The TLB entry pointed to by the Index register is written from the contents of the EntryHi, EntryLo0, EntryLo1,
and PageMask registers. It is implementation dependent whether multiple TLB matches are detected on a
TLBWI. In such an instance, a Machine Check Exception is signaled. In Release 2 of the Architecture, multiple
TLB matches may only be reported on a TLB write. The information written to the TLB entry may be different
from that in the EntryHi, EntryLo0, and EntryLo1 registers, in that:

• The value written to the VPN2 field of the TLB entry may have those bits set to zero corresponding to the
one bits in the Mask field of the PageMask register (the least significant bit of VPN2 corresponds to the
least significant bit of the Mask field). It is implementation dependent whether these bits are preserved or
zeroed during a TLB write.

• The value written to the PFN0 and PFN1 fields of the TLB entry may have those bits set to zero correspond-
ing to the one bits in the Mask field of PageMask register (the least significant bit of PFN corresponds to
the least significant bit of the Mask field). It is implementation dependent whether these bits are preserved or
zeroed during a TLB write.

• The single G bit in the TLB entry is set from the logical AND of the G bits in the EntryLo0 and EntryLo1
registers.

If Config4IE > 1 and EntryHiEHINV=1:

The TLB entry pointed to by the Index register has its VPN2 field marked as invalid. This causes the entry to be
ignored on TLB matches for memory accesses. No Machine Check is generated.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

i ← Index
if (Config4IE = 2 or Config4IE = 3) then

TLB[i]VPN2_invalid ← 0
if (EntryHIEHINV=1) then

TLB[i]VPN2_invalid ← 1
break

endif
endif

31 26 25 16 15 6 5 0

POOL32A
000000

0000000000
TLBWI

0010001101
POOL32Axf

111100

6 10 10 6

Write Indexed TLB Entry TLBWI

501 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

TLB[i]Mask ← PageMaskMask
TLB[i]VPN2 ← EntryHiVPN2 and not PageMaskMask # Implementation dependent
TLB[i]ASID ← EntryHiASID
TLB[i]G ← EntryLo1G and EntryLo0G
TLB[i]PFN1 ← EntryLo1PFN and not PageMaskMask # Implementation dependent
TLB[i]C1 ← EntryLo1C
TLB[i]D1 ← EntryLo1D
TLB[i]V1 ← EntryLo1V
TLB[i]PFN0 ← EntryLo0PFN and not PageMaskMask # Implementation dependent
TLB[i]C0 ← EntryLo0C
TLB[i]D0 ← EntryLo0D
TLB[i]V0 ← EntryLo0V

Exceptions:

Coprocessor Unusable

Machine Check

Write Random TLB Entry ITLBWR

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 502

Format: TLBWR microMIPS

Purpose: Write Random TLB Entry

To write a TLB entry indexed by the Random register.

Description:

The TLB entry pointed to by the Random register is written from the contents of the EntryHi, EntryLo0, EntryLo1,
and PageMask registers. It is implementation dependent whether multiple TLB matches are detected on a TLBWR.
In such an instance, a Machine Check Exception is signaled. In Release 2 of the Architecture, multiple TLB matches
may only be reported on a TLB write. The information written to the TLB entry may be different from that in the
EntryHi, EntryLo0, and EntryLo1 registers, in that:

• The value written to the VPN2 field of the TLB entry may have those bits set to zero corresponding to the one
bits in the Mask field of the PageMask register (the least significant bit of VPN2 corresponds to the least signif-
icant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed during a
TLB write.

• The value written to the PFN0 and PFN1 fields of the TLB entry may have those bits set to zero corresponding to
the one bits in the Mask field of PageMask register (the least significant bit of PFN corresponds to the least sig-
nificant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed during a
TLB write.

• The single G bit in the TLB entry is set from the logical AND of the G bits in the EntryLo0 and EntryLo1 regis-
ters.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

i ← Random
if (Config4IE = 2 or Config4IE = 3) then

TLB[i]VPN2_invalid ← 0
endif

TLB[i]Mask ← PageMaskMask
TLB[i]VPN2 ← EntryHiVPN2 and not PageMaskMask # Implementation dependent
TLB[i]ASID ← EntryHiASID
TLB[i]G ← EntryLo1G and EntryLo0G
TLB[i]PFN1 ← EntryLo1PFN and not PageMaskMask # Implementation dependent
TLB[i]C1 ← EntryLo1C
TLB[i]D1 ← EntryLo1D
TLB[i]V1 ← EntryLo1V
TLB[i]PFN0 ← EntryLo0PFN and not PageMaskMask # Implementation dependent
TLB[i]C0 ← EntryLo0C
TLB[i]D0 ← EntryLo0D
TLB[i]V0 ← EntryLo0V

31 26 25 16 15 6 5 0

POOL32A
000000

0000000000
TLBWR

0011001101
POOL32Axf

111100

6 10 10 6

Write Random TLB Entry TLBWR

503 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Exceptions:

Coprocessor Unusable

Machine Check

Trap if Less Than ITLT

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 504

Format: TLT rs, rt microMIPS

Purpose: Trap if Less Than

To compare GPRs and do a conditional trap

Description: if GPR[rs] < GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as signed integers; if GPR rs is less than GPR rt, then take a Trap excep-
tion.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] < GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 12 11 6 5 0

POOL32A
000000

rt rs code
TLT

100000
POOL32AXf

111100

6 5 5 4 6 6

Trap if Less Than Immediate TLTI

505 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: TLTI rs, immediate microMIPS

Purpose: Trap if Less Than Immediate

To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] < immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rs is less than immediate,
then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] < sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

POOL32I
010000

TLTI
01000

rs immediate

6 5 5 16

Trap if Less Than Immediate Unsigned ITLTIU

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 506

Format: TLTIU rs, immediate microMIPS

Purpose: Trap if Less Than Immediate Unsigned

To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] < immediate then Trap

Compare the contents of GPR rs and the 16-bit sign-extended immediate as unsigned integers; if GPR rs is less than
immediate, then take a Trap exception.

Because the 16-bit immediate is sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

POOL32I
010000

TLTIU
01010

rs immediate

6 5 5 16

Trap if Less Than Unsigned TLTU

507 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: TLTU rs, rt microMIPS

Purpose: Trap if Less Than Unsigned

To compare GPRs and do a conditional trap

Description: if GPR[rs] < GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as unsigned integers; if GPR rs is less than GPR rt, then take a Trap
exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || GPR[rt]) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 12 11 6 5 0

POOL32A
000000

rt rs code
TLTU

101000
POOL32AXf

111100

6 5 5 4 6 6

Trap if Not Equal ITNE

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 508

Format: TNE rs, rt microMIPS

Purpose: Trap if Not Equal

To compare GPRs and do a conditional trap

Description: if GPR[rs] ≠ GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as signed integers; if GPR rs is not equal to GPR rt, then take a Trap
exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] ≠ GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 12 11 6 5 0

POOL32A
000000

rt rs code
TNE

110000
POOL32AXf

111100

6 5 5 4 6 6

Trap if Not Equal Immediate TNEI

509 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: TNEI rs, immediate microMIPS

Purpose: Trap if Not Equal Immediate

To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] ≠ immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rs is not equal to imme-
diate, then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] ≠ sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

POOL32I
010000

TNEI
01100

rs immediate

6 5 5 16

Floating Point Truncate to Long Fixed Point ITRUNC.L.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 510

Format: TRUNC.L.fmt
TRUNC.L.S ft, fs microMIPS
TRUNC.L.D ft, fs microMIPS

Purpose: Floating Point Truncate to Long Fixed Point

To convert an FP value to 64-bit fixed point, rounding toward zero

Description: FPR[ft] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded toward zero
(rounding mode 1). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to ft and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 263-1, is written to ft.

Restrictions:

The fields fs and ft must specify valid FPRs; fs for type fmt and fd for long fixed point; if they are not valid, the result
is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(ft, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Inexact

31 26 25 22 21 20 16 15 14 13 6 5 0

POOL32F
010101

ft fs 0 fmt
TRUNC.L
10001100

POOL32FXf
111011

6 5 5 1 1 8 6

Floating Point Truncate to Long Fixed Point TRUNC.L.fmt

511 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Floating Point Truncate to Word Fixed Point ITRUNC.W.fmt

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 512

Format: TRUNC.W.fmt
TRUNC.W.S ft, fs microMIPS
TRUNC.W.D ft, fs microMIPS

Purpose: Floating Point Truncate to Word Fixed Point

To convert an FP value to 32-bit fixed point, rounding toward zero

Description: FPR[ft] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format using rounding toward
zero (rounding mode 1). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to ft and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 231–1, is written to ft.

Restrictions:

The fields fs and ft must specify valid FPRs; fs for type fmt and fd for word fixed point; if they are not valid, the result
is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(ft, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Invalid Operation, Unimplemented Operation

31 26 25 22 21 20 16 15 14 13 6 5 0

POOL32F
010101

ft fs 0
fm
t

TRUNC.W
10101100

POOL32FXf
111011

6 5 5 1 1 8 6

Floating Point Truncate to Word Fixed Point TRUNC.W.fmt

513 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Enter Standby Mode IWAIT

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 514

Format: WAIT microMIPS

Purpose: Enter Standby Mode

Wait for Event

Description:

The WAIT instruction performs an implementation-dependent operation, usually involving a lower power mode.
Software may use the code bits of the instruction to communicate additional information to the processor, and the
processor may use this information as control for the lower power mode. A value of zero for code bits is the default
and must be valid in all implementations.

The WAIT instruction is typically implemented by stalling the pipeline at the completion of the instruction and enter-
ing a lower power mode. The pipeline is restarted when an external event, such as an interrupt or external request
occurs, and execution continues with the instruction following the WAIT instruction. It is implementation-dependent
whether the pipeline restarts when a non-enabled interrupt is requested. In this case, software must poll for the cause
of the restart.The assertion of any reset or NMI must restart the pipeline and the corresponding exception must be
taken.

If the pipeline restarts as the result of an enabled interrupt, that interrupt is taken between the WAIT instruction and
the following instruction (EPC for the interrupt points at the instruction following the WAIT instruction).

Restrictions:

The operation of the processor is UNDEFINED if a WAIT instruction is placed in the delay slot of a branch or a
jump.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

I: Enter implementation dependent lower power mode
I+1:/* Potential interrupt taken here */

Exceptions:

Coprocessor Unusable Exception

31 26 25 16 15 6 5 0

POOL32A
000000

Implementation-dependent code
WAIT

1001001101
POOL32AXf

111100

6 10 10 6

Enter Standby Mode WAIT

515 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Write to GPR in Previous Shadow Set IWRPGPR

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 516

Format: WRPGPR rt, rs microMIPS

Purpose: Write to GPR in Previous Shadow Set

To move the contents of a current GPR to a GPR in the previous shadow set.

Description: SGPR[SRSCtlPSS, rt] ← GPR[rs]

The contents of the current GPR rs is moved to the shadow GPR register specified by SRSCtlPSS (signifying the pre-
vious shadow set number) and rt (specifying the register number within that set).

Restrictions:

In implementations prior to Release 2 of the Architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

SGPR[SRSCtlPSS, rt] ← GPR[rs]

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt rs
WRPGPR

1111000101
POOL32AXf

111100

6 5 5 10 6

Word Swap Bytes Within Halfwords WSBH

517 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: WSBH rt, rs microMIPS

Purpose: Word Swap Bytes Within Halfwords

To swap the bytes within each halfword of GPR rs and store the value into GPR rt.

Description: GPR[rt] ← SwapBytesWithinHalfwords(GPR[rs])

Within each halfword of GPR rs the bytes are swapped, and stored in GPR rt.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

GPR[rt] ← GPR[r]23..16 || GPR[r]31..24 || GPR[r]7..0 || GPR[r]15..8

Exceptions:

Reserved Instruction

Programming Notes:

The WSBH instruction can be used to convert halfword and word data of one endianness to another endianness. The
endianness of a word value can be converted using the following sequence:

lw t0, 0(a1) /* Read word value */
wsbh t0, t0 /* Convert endiannes of the halfwords */
rotr t0, t0, 16 /* Swap the halfwords within the words */

Combined with SEH and SRA, two contiguous halfwords can be loaded from memory, have their endianness con-
verted, and be sign-extended into two word values in four instructions. For example:

lw t0, 0(a1) /* Read two contiguous halfwords */
wsbh t0, t0 /* Convert endiannes of the halfwords */
seh t1, t0 /* t1 = lower halfword sign-extended to word */
sra t0, t0, 16 /* t0 = upper halfword sign-extended to word */

Zero-extended words can be created by changing the SEH and SRA instructions to ANDI and SRL instructions,
respectively.

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt rs
WSBH

0111101100
POOL32AXf

111100

6 5 5 10 6

Word Swap Bytes Within Halfwords IWSBH

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 518

Exclusive OR XOR

519 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Format: XOR rd, rs, rt microMIPS

Purpose: Exclusive OR

To do a bitwise logical Exclusive OR

Description: GPR[rd] ← GPR[rs] XOR GPR[rt]

Combine the contents of GPR rs and GPR rt in a bitwise logical Exclusive OR operation and place the result into
GPR rd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] xor GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs rd 0
XOR

1100010000

6 5 5 5 1 10

Exclusive OR Immediate IXORI

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 520

Format: XORI rt, rs, immediate microMIPS

Purpose: Exclusive OR Immediate

To do a bitwise logical Exclusive OR with a constant

Description: GPR[rt] ← GPR[rs] XOR immediate

Combine the contents of GPR rs and the 16-bit zero-extended immediate in a bitwise logical Exclusive OR operation
and place the result into GPR rt.

Restrictions:

None

Operation:

GPR[rt] ← GPR[rs] xor zero_extend(immediate)

Exceptions:

None

31 26 25 21 20 16 15 0

XORI32
011100

rt rs immediate

6 5 5 16

Chapter 6

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 521

Opcode Map

This chapter defines the bit-level encoding of all microMIPS32 instructions, using a series of opcode tables. The basic
format of the tables is shown in Figure 6.1. The topmost row contains the high-order opcode bits (in the example table
shown here, bits 31..29), and the left-most column of the table lists the next most-significant bits of the opcode field
(bits 28..26). Decimal and binary values are shown for both rows and columns.

An instruction’s encoding is the value at the intersection of a row and column. For example, the opcode value for the
instruction EX1 is 33 (decimal) or 011011 (binary). Similarly, the opcode value for EX2 is 64 (decimal), or 110100
(binary).

Figure 6.1 Sample Bit Encoding Table

6.1 Major Opcodes

Table 6.2 defines the major opcode for each instruction. The symbols used in the table are described in Table 6.1.

31 26 25 21 20 16 15 0

opcode rs rt immediate

6 5 5 16

opcode MSB..MSB-2

0 1 2 3 4 5 6 7

MSB-3..
.MSB-5 000 001 010 011 100 101 110 111

0 000

1 001

2 010

3 011 EX1

4 100

5 101

6 110 EX2

7 111

Decimal encoding of
opcode (31..29)

Binary encoding of
opcode (31..29)

Decimal encoding of
opcode (28..26)

Binary encoding of
opcode (28..26)

6.1 Major Opcodes

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 522

Every major opcode name starting with “POOL” requires a minor opcode, as defined in Section 6.2 “Minor
Opcodes”. All other major opcodes refer to a particular instruction.

In the opcode tables, MSB denotes either bit 15 or 31, depending on instruction size.

Table 6.1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

∗ Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction must cause a Reserved Instruction Exception.

δ (Also italic field name.) Operation or field codes marked with this symbol denotes a field class.
The instruction word must be further decoded by examining additional tables that show values
for another instruction field.

β Operation or field codes marked with this symbol represent a valid encoding for a higher-order
MIPS ISA level or a new revision of the Architecture. Executing such an instruction must cause
a Reserved Instruction Exception.

∇ Operation or field codes marked with this symbol represent instructions which were only legal if
64-bit operations were enabled on implementations of Release 1 of the Architecture. In Release 2
of the architecture, operation or field codes marked with this symbol represent instructions which
are legal if 64-bit floating point operations are enabled. In other cases, executing such an instruc-
tion must cause a Reserved Instruction Exception (non-coprocessor encodings or coprocessor
instruction encodings for a coprocessor to which access is allowed) or a Coprocessor Unusable
Exception (coprocessor instruction encodings for a coprocessor to which access is not allowed).

∆ Instructions formerly marked ∇ in some earlier versions of manuals, corrected and marked ∆ in
revision 5.03. Legal on MIPS64r1 but not MIPS32r1; in release 2 and above, legal in both
MIPS64 and MIPS32, in particular even when running in “32-bit FPU Register File mode”,
FR=0, as well as FR=1.

θ Operation or field codes marked with this symbol are available to licensed MIPS partners. To
avoid multiple conflicting instruction definitions, MIPS Technologies will assist the partner in
selecting appropriate encodings if requested by the partner. The partner is not required to consult
with MIPS Technologies when one of these encodings is used. If no instruction is encoded with
this value, executing such an instruction must cause a Reserved Instruction Exception
(SPECIAL2 encodings or coprocessor instruction encodings for a coprocessor to which access is
allowed) or a Coprocessor Unusable Exception (coprocessor instruction encodings for a copro-
cessor to which access is not allowed).

σ Field codes marked with this symbol represent an EJTAG support instruction and implementa-
tion of this encoding is optional for each implementation. If the encoding is not implemented,
executing such an instruction must cause a Reserved Instruction Exception. If the encoding is
implemented, it must match the instruction encoding as shown in the table.

ε Operation or field codes marked with this symbol are reserved for MIPS Application-Specific
Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved
Instruction Exception.

 Opcode Map

523 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Examples:

1. The 32-bit instruction LW32 is assigned to the major opcode LW32 with the encoding “111111”.

2. The 16-bit instruction SUBU16 is assigned to the major opcode POOL16A with the encoding “000001”.

6.2 Minor Opcodes

While major opcodes have a fixed length of 6 bits, minor opcodes are variable in length. The minor opcodes are
defined by opcode tables of one, two, or three dimensions, depending on the size of the opcode. Minor opcodes less
than four bits are represented in a one-dimensional table (see Table 6.13), from four to six bits in a two-dimensional
table (shown in Figure 6.1 and Table 6.9), and from 7 to 10 bits in a three-dimensional table (Table 6.4). In a three-
dimensional table, the two-dimensional table is expanded to include a column on the right side that encodes the extra
bits. In the case of minor opcodes requiring multiple table cells, the instruction name appears in all cells, but the addi-
tional entries have a black background to indicate that this opcode is blocked (see Table 6.4 and the legend shown in
Table 6.3).

Example:

SRL r1, r1, 7 binary opcode fields: 000000 00001 00001 00111 00001 000000
interpretation: POOL32A r1 r1 7 SRL
hex representation: 0021 3840

All minor opcode fields are right-aligned except those in 16-bit instructions and in 32-bit instructions with a 16-bit
immediate field. These left-aligned fields are defined in a bit-reverse order, which is why, in order to accommodate
the variable length of the field to the right, a given row and column in POOL32I represents bit 20..22 and 23..25
instead of bit 22..20 and 25..23.

If table entries are marked grey, then not all available bits of the instruction have been used for the encoding, leaving
a field of empty bits. The empty bits are shown in the instruction tables in Chapter 5, “microMIPS Re-encoded
Instructions” on page 51.

Table 6.2 microMIPS32 Encoding of Major Opcode Field

Major MSB..MSB-2

MSB-3..
MSB-5

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000 POOL32A δ POOL32B δ POOL32I δ POOL32C δ * * * *

1 001 POOL16A δ POOL16B δ POOL16C δ LWGP16 POOL16F * * *

2 010 LBU16 LHU16 LWSP16 LW16 SB16 SH16 SWSP16 SW16

3 011 MOVE16 ANDI16 POOL16D δ POOL16E δ BEQZ16 BNEZ16 B16 LI16

4 100 ADDI32 ADDIU32 ORI32 XORI32 SLTI32 SLTIU32 ANDI32 JALX32

5 101 LBU32 LHU32 POOL32F δ JALS32 BEQ32 BNE32 J32 JAL32

6 110 SB32 SH32 β ADDIUPC SWC132 SDC132 β SW32

7 111 LB32 LH32 β * LWC132 LDC132 β LW32

6.2 Minor Opcodes

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 524

Not Shown
SLL r0, r0, r0 = NOP
SLL r0, r0, 1 = SSNOP
SLL r0, r0, 3 = EHB
SLL, r0, r0, 5 = PAUSE

Table 6.3 Legend for Minor Opcode Tables

Symbol Meaning

OPCODE Occupied by Opcode

OPCODE Space Utilized by another Opcode

Table 6.4 POOL32A Encoding of Minor Opcode Field

Minor bit 5..3

bit 2..0

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

bit 9..6

0 000 SLL32 * SLLV MOVN * * * * 0000 0

0 000 SRL32 * SRLV MOVZ * * * * 0001 1

0 000 SRA * SRAV * * * * * 0010 2

0 000 ROTR * ROTRV * * * * * 0011 3

0 000 * * ADD LWXS * * * * 0100 4

0 000 * * ADDU32 * * * * * 0101 5

0 000 * * SUB * * * * * 0110 6

0 000 * * SUBU32 * * * * * 0111 7

0 000 * * MUL * * * * * 1000 8

0 000 * * AND * * * * * 1001 9

0 000 * * OR32 * * * * * 1010 a

0 000 * * NOR * * * * * 1011 b

0 000 * * XOR32 * * * * * 1100 c

0 000 * * SLT * * * * * 1101 d

0 000 * * SLTU * * * * * 1110 e

0 000 * * * * * * * * 1111 f

1 001 SPECIAL2 θ SPECIAL2 θ SPECIAL2 θ SPECIAL2 θ SPECIAL2 θ SPECIAL2 θ SPECIAL2 θ SPECIAL2 θ

*

2 010 COP2 θ COP2 θ COP2 θ COP2 θ COP2 θ COP2 θ COP2 θ COP2 θ

3 011 UDI θ UDI θ UDI θ UDI θ UDI θ UDI θ UDI θ UDI θ

4 100 * INS * * * EXT * POOL32Axf δ

5 101 ε ε ε ε ε ε ε ε

6 110 ε ε

7 111 BREAK32 * * * ε * * *

 Opcode Map

525 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Table 6.5 POOL32Axf Encoding of Minor Opcode Extension Field

Extension bit 11. 9

bit 8..6 0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000 TEQ TGE TGEU * TLT TLTU TNE *

1 001 ε ε * ε ε ε * ε

2 010 ε ε ε ε ε ε ε ε

3 011 MFC0 MTC0 * * MFC0 MTC0

bit15..12

4 100 ε ε * * * * * JALR / JR 0000 0

4 100 ε ε * * * * * JALR.HB 0001 1

4 100 ε * * * * SEB * * 0010 2

4 100 ε * * * * SEH * * 0011 3

4 100 ε * * * * CLO MFC2 JALRS 0100 4

4 100 ε * * * * CLZ MTC2 JALRS.HB 0101 5

4 100 ε * * * * RDHWR β * 0110 6

4 100 ε ε * * * WSBH β * 0111 7

4 100 * * * * MULT MFHC2 * 1000 8

4 100 ε ε * * * MULTU MTHC2 * 1001 9

4 100 * * * * DIV * * 1010 a

4 100 ε ε * * * DIVU * * 1011 b

4 100 * * * * * MADD CFC2 * 1100 c

4 100 ε ε * * * MADDU CTC2 * 1101 d

4 100 * * * * * MSUB * * 1110 e

4 100 ε * * * * MSUBU * * 1111 f

bit15..12

5 101 * TLBP ε * * * MFHI32 * 0000 0

5 101 * TLBR ε * * * MFLO32 * 0001 1

5 101 * TLBWI ε * * * MTHI * 0010 2

5 101 * TLBWR ε * * * MTLO * 0011 3

5 101 * * * DI * * * * 0100 4

5 101 * * * EI * * * * 0101 5

5 101 * * * * * SYNC * * 0110 6

5 101 * * * * * * * * 0111 7

5 101 * * * * * SYSCALL * * 1000 8

6.2 Minor Opcodes

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 526

Not Shown: JR = JALR r0

5 101 * WAIT * * * * * * 1001 9

5 101 * * * * * * * * 1010 a

5 101 * * * * * * * * 1011 b

5 101 * * * * * * * * 1100 c

5 101 * ε * * * SDBBP * * 1101 d

5 101 RDPGPR DERET * * * * * * 1110 e

5 101 WRPGPR ERET * * * * * * 1111 f

6 110 ε ε * * ε * * *

7 111 ε ε ε * * * * *

Table 6.6 POOL32F Encoding of Minor Opcode Field

Minor bit 5..3

bit 2. 0

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

bit 8..6

0 000 * * * ε MOVF.fmt * ADD.fmt MOVN.fmt 000 0

0 000 * LWXC1 ∆ * ε MOVT.fmt * SUB.fmt MOVZ.fmt 001 1

0 000 PLL.PS ∇ SWXC1 ∆ * ε * * MUL.fmt * 010 2

0 000 PLU.PS ∇ LDXC1 ∆ * ε * * DIV.fmt * 011 3

0 000 PUL.PS ∇ SDXC1 ∆ * * * ADD.fmt MOVN.fmt 100 4

0 000 PUU.PS ∇ LUXC1∇ * * * SUB.fmt MOVZ.fmt 101 5

0 000 CVT.PS.S ∇ SUXC1∇ * * PREFX * MUL.fmt * 110 6

0 000 * * * * * * DIV.fmt * 111 7

1 001 MADD.S ∆ MADD.D ∆ MADD.PS ∇ ALNV.PS ∇ MSUB.S ∆ MSUB.D ∆ MSUB.PS ∇ *

2 010 NMADD.S ∆ NMADD.D ∆ NMADD.PS ∇ * NMSUB.S ∆ NMSUB.D ∆ NMSUB.PS ∇ *

3 011 * * * * * * * POOL32Fxf δ

4 100 * * * ε * * * C.cond.fmt

5 011 * * * * * * * *

6 100 * * * * * * * *

7 100 * * * * * * * *

Table 6.5 POOL32Axf Encoding of Minor Opcode Extension Field (Continued)

 Opcode Map

527 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Table 6.7 POOL32Fxf Encoding of Minor Opcode Extension Field

Extension bit10..8

bit 7..6

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

bit
13..11

0 00 * CVT.L.fmt ∇ RSQRT.fmt ∆ FLOOR.L.fmt ∇ * * * ε 000 0

0 00 * CVT.W.fmt SQRT.fmt FLOOR.W.fmt * * * ε 001 1

0 00 CFC1 * RECIP.fmt ∆ CEIL.L.fmt ∇ * * * * 010 2

0 00 CTC1 * * CEIL.W.fmt * * * * 011 3

0 00 MFC1 CVT.S.PL ∇ * TRUNC.L.fmt ∇ β * * 100 4

0 00 MTC1 CVT.S.PU ∇ * TRUNC.W.fmt β * * * 101 5

0 00 MFHC1 ∇ * * ROUND.L.fmt ∇ * * * 110 6

0 00 MTHC1 ∇ * * ROUND.W.fmt * * * * 111 7

bit
12..11

1 01 MOV.fmt MOVF * ABS.fmt * * * ε 00 0

1 01 * MOVT * NEG.fmt * * * * 01 1

1 01 * * * CVT.D.fmt * * * ε 10 2

1 01 * * * CVT.S.fmt * * * * 11 3

*

2 10 * * * * * * * *

3 11 * * * * * * * *

Table 6.8 POOL32B Encoding of Minor Opcode Field

Minor bit 15

bit 14.12

0 1

0 1

0 000 LWC2 SWC2

1 001 LWP SWP

2 010 β β

3 011 ε ε
4 100 β β

5 101 LWM32 SWM32

6 110 CACHE *

7 111 β β

6.2 Minor Opcodes

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 528

Table 6.9 POOL32C Encoding of Minor Opcode Field

Minor bit 15

bit 14..12

0 1

0 1

0 000 LWL SWL

1 001 LWR SWR

2 010 PREF ST-EVA δ

3 011 LL SC

4 100 β β

5 101 β β

6 110 LD-EVA δ β

7 111 β β

Table 6.10 LD-EVA Encoding of Minor Opcode Field

Minor

bit 11..9

0 000 LBUE

1 001 LHUE

2 010 LWLE

3 011 LWRE

4 100 LBE

5 101 LHE

6 110 LLE

7 111 LWE

Table 6.11 ST-EVA Encoding of Minor Opcode Field

Minor

bit 11..9

0 000 SWLE

1 001 SWRE

2 010 PREFE

3 011 CACHEE

4 100 SBE

5 101 SHE

6 110 SCE

7 111 SWE

 Opcode Map

529 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Table 6.12 POOL32I Encoding of Minor Opcode Field

Minor bit 22..21

bit 25..23

0 1 2 3

00 01 10 11

0 000 BLTZ BLTZAL BGEZ BGEZAL

1 001 BLEZ BNEZC BGTZ BEQZC

2 010 TLTI TGEI TLTIU TGEIU

3 011 TNEI LUI TEQI *

4 100 SYNCI BLTZALS * BGEZALS

5 101 BC2F BC2T * *

6 110 * * ε ε
bit16

7 111 BC1F BC1T * * 0

7 111 ε ε ε ε 1

Table 6.13 POOL16A Encoding of Minor Opcode Field

Minor

bit 0

0 ADDU16

1 SUBU16

Table 6.14 POOL16B Encoding of Minor Opcode Field

Minor

bit 0

0 SLL16

1 SRL16

6.2 Minor Opcodes

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 530

Table 6.15 POOL16C Encoding of Minor Opcode Field

Minor bit 6..4

bit 9..7

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000 NOT16 NOT16 NOT16 NOT16 XOR16 XOR16 XOR16 XOR16

1 001 AND16 AND16 AND16 AND16 OR16 OR16 OR16 OR16

2 010 LWM16 LWM16 LWM16 LWM16 SWM16 SWM16 SWM16 SWM16

3 011 JR16 JR16 JRC JRC JALR16 JALR16 JALRS16 JALRS16

4 100 MFHI16 MFHI16 * * MFLO16 MFLO16 * *

5 101 BREAK16 * * * SDBBP16 σ * * *

6 110 JRADDIUSP JRADDIUSP * * * * * *

7 111 * * * * * * * *

Table 6.16 POOL16D Encoding of Minor Opcode Field

Minor

bit 0

0 ADDIUS5

1 ADDIUSP

Table 6.17 POOL16E Encoding of Minor Opcode Field

Minor

bit 0

0 ADDIUR2

1 ADDIUR1SP

 Opcode Map

531 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

6.3 Floating Point Unit Instruction Format Encodings

Instruction format encodings for the floating point unit are presented in this section.

If the instruction allows Single, Double and Pair-Single formats, the following encoding is used:

If the instruction only allows Single and Double formats, the following encoding is used:

Table 6.18 POOL16F Encoding of Minor Opcode Field

Minor

bit 0

0 MOVEP

1 *

Table 6.19 Floating Point Unit Format Encodings - S, D, PS

fmt field

Mnemonic Name Bit Width Data TypeDecimal Hex

0 0 S Single 32 Floating
Point

1 1 D Double 64 Floating
Point

2 2 PS Paired Sin-
gle

2 × 32 Floating
Point

3 3 Reserved for future use by the architecture.

Table 6.20 Floating Point Unit Format Encodings - S, D 1-bit

fmt field

Mnemonic Name Bit Width Data TypeDecimal Hex

0 0 S Single 32 Floating
Point

1 1 D Double 64 Floating
Point

6.3 Floating Point Unit Instruction Format Encodings

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 532

If the instruction allows Single, Word and Long formats, the following encoding is used:

If the instruction allows Double, Word and Long formats, the following encoding is used:.

Table 6.21 Floating Point Unit Instruction Format Encodings - S, D 2-bits

fmt field

Mnemonic Name Bit Width Data TypeDecimal Hex

0 0 S Single 32 Floating
Point

1 1 D Double 64 Floating
Point

2, 3 2, 3 Reserved for future use by the architecture.

Table 6.22 Floating Point Unit Format Encodings - S, W, L

fmt field

Mnemonic Name Bit Width Data TypeDecimal Hex

0 0 S Single 32 Floating
Point

1 1 W Word 32 Integer

2 2 L Long 64 Integer

3 3 Reserved for future use by the architecture.

Table 6.23 Floating Point Unit Format Encodings - D, W, L

fmt field

Mnemonic Name Bit Width Data TypeDecimal Hex

0 0 D Double 64 Floating
Point

1 1 W Word 32 Integer

2 2 L Long 64 Integer

3 3 Reserved for future use by the architecture.

Chapter 7

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 533

Compatibility

This chapter covers various aspects of compatibility. microMIPS32 is the preferred replacement for the existing
MIPS16e ASE and uses the same mode-switch mechanism. Although microMIPS includes almost all MIPS32
instructions and therefore does not require the original MIPS32 encodings, initially it will be implemented together
with MIPS32-encoded instruction execution.

7.1 Assembly-Level Compatibility

microMIPS32 includes a re-encoding of the MIPS32 instructions, including all ASEs and UDI space. Therefore,
microMIPS provides assembly-level compatibility. Only the following cases cause some side effects:

• Re-encoded MIPS32 instructions with reduced operand fields

There are 3 classes of reduced fields:

1. Reserved or unsupported bits and encodings. This category is not a problem because utilizing a reserved or
unsupported field causes an exception, no operation, or undefined behavior, and often these cannot be
accessed by the compiler anyway. An example of this category is the ‘fmt’ field.

2. Bit fields and ranges which are defined but typically never used. This category is usually not a problem. The
assembler generates an error message if a constant is outside of the re-defined range.

3. Bit fields which are used but were reduced in order to utilize the new opcode map most efficiently. The han-
dling of these cases is similar to category 2 above—compilers do not generate such scenarios, and assem-
blers generate error messages. In the latter case, the programmer has to either fix the code or switch to the
MIPS32encoding.

• Re-encoded Branch and Jump instructions

Branch instructions support 16-bit aligned branch target addresses, providing full flexibility for microMIPS.
Because the offset field size of the 32-bit encoded branch instructions is the same as the MIPS32-encoded
instructions, and because all branch target addresses of the MIPS32 encoding are 32-bit aligned, the branch range
in microMIPS is smaller. This is partially compensated by the smaller code size of microMIPS.

Jump instructions also support 16-bit aligned target addresses. This reduces the addressable target region for J,
JAL to 128 MB instead of 256 MB. For these instructions, the effective target address is in the ‘current’ 128 MB-
aligned region. For larger ranges, the jump register instructions (JR, JRC, and JRADDIUSP) can be used.

• MIPS32 assembly instructions manually encoded using the .WORD directive

Manual encoding of MIPS32 assembly instructions can be used in assembly code as well as assembly macros in
C functions. To differentiate between microMIPS-encoded instructions and other encoded instructions or data,
the following compiler directives have been introduced:

7.2 ABI Compatibility

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 534

.set micromips ; instruction stream is microMIPS

.set nomicromips ; instruction stream is MIPS32

.insn ; If in microMIPS instruction stream mode, the location associated
; with the previous label is aligned to 16-bit bits instead of
; 32-bits
; If in microMIPS instruction stream mode and if the previous
; label is loaded to a register as the target of a jump or branch,
; the ISAMode bit is set within the branch/jump register value.

The programmer must use these directives to encode instructions in microMIPS.

For example, to manually encode a microMIPS NOP:

.set micromips

label1:
.insn
.word 0 ; label1 location - represents microMIPS NOP32 instruction

label2:
.insn
.half 0x0c00 ; label2 location - represents microMIPS NOP16 instruction

label3:
.half 0x0c00 ; label3 location - represents data value of 3072 (decimal)

To manually encode a MIPS32 NOP:

.set nomicromips

.word 0 ; represents MIPS32 NOP instruction

For MIPS32 instruction stream mode, the “.insn” directive has no effect.

• Branch likely instructions

microMIPS does not support branch likely instructions in hardware. Assembly-level compatibility is maintained
because assemblers replace branch likely instructions either by an instruction sequence or by a regular branch
instruction, and they perform some instruction reordering if reordering is possible.

7.2 ABI Compatibility

microMIPS is compatible with the existing ABIs o32, n32, and n64 calling conventions. However, a few new reloca-
tion types need to be added to these ABIs for microMIPS support, as some of the additional offset field sizes required
for microMIPS become visible to the linker. For example, the offset fields of J and SW using GP are visible to the
linker, while B and SWSP are hidden within the object files.

Functions remain 32-bit aligned as in the MIPS32 encoding as well as MIPS16e. This guarantees that static and
dynamic linking processes can link microMIPS object files with MIPS32 object files.

 Compatibility

535 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Programs can be composed of both microMIPS and MIPS32 modules, using either the JALX instructions (and/or JR
instructions with setting the ISAMode bit appropriately) to switch instruction set modes when calling routines com-
piled in an ISA different from that of the caller routine.

microMIPS provides flexibility for potential future ABIs.

7.3 Branch and Jump Offsets

microMIPS branch targets are half-word (16-bit) aligned to match half-word sized instructions. Please refer to
Section 3.6, "Branch and Jump Offsets."

7.4 Relocation Types

Compiler and linker toolchains need to be modified with new relocation types to support microMIPS. Reasons for
these new relocation types include:

1. The placement of instruction halfwords is determined by memory endianness. MIPS32 instructions are always of
word size, so there were no halfword placement issues.

2. microMIPS has 7-bit, 10-bit and 16-bit PC-relative offsets.

3. Branch and Jump offset fields are left-shifted by 1 bit (instead of 2 bits in MIPS32) to create effective target
addresses.

4. Some code-size optimizations can only be done at link time instead of compile time. Some new relocation types
are used solely within the linker to keep track of address and data information.

7.5 Boot-up Code shared between microMIPS32 and MIPS32

In some systems, it would be advantageous to place both microMIPS32 and MIPS32executables in the same boot
memory. In that way, a single system could be used for either instruction set.

To enable this, a binary code sequence is required that can be run in either instruction set and change code paths
depending on the instruction set that is being used.

The following binary sequence achieves this goal:

0x1000wxyz // where w,x,y,z represent hexadecimal digits
0x00000000

For the MIPS32instruction set, this binary sequence is interpreted as:

BEQ $0, $0, wxyz // branch to location of more MIPS32instructions
NOP

For the microMIPS instruction set, this binary sequence is interpreted as:

ADDI32 $0, $0, wxyz // do nothing
NOP // fall through to more microMIPS instructions

7.6 Coprocessor Unusable Behavior

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 536

7.6 Coprocessor Unusable Behavior

When a coprocessor instruction is executed when the associated coprocessor has not been implemented, it is allowed
for the RI exception to be signalled instead of the Coprocessor Unusable exception. Please refer to Section 3.7,
"Coprocessor Unusable Behavior."

7.7 Other Issues Affecting Software and Compatibility

microMIPS instructions can cross cache lines and page boundaries. Hardware must handle these cases so that soft-
ware need not avoid them. Since MIPS32 requires instructions to be 32-bit aligned, there is no forward compatibility
issue when transitioning to microMIPS.

Appendix 8

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 537

References

This appendix lists other publications available from MIPS Technologies, some of which are referenced elsewhere in
this document. They may be included in the $MIPS_HOME/$MIPS_CORE/doc area of a typical soft or hard core
release, or in some cases may be available on the MIPS web site, http://www mips.com.

1. MIPS® Architecture For Programmers, Volume I: Introduction to the MIPS32® Architecture
MIPS document: MD0082

2. MIPS® Architecture For Programmers, Volume II: The MIPS32® Instruction Set
MIPS document: MD0086

3. MIPS® Architecture For Programmers, Volume III: The MIPS32® and microMIPS32TM Privileged Resource
Architecture
MIPS document: MD0090

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 538

Appendix 9

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 539

Revision History

 Revision Date Description

1.08 November 25, 2009 • Clean-up for external release.

1.09 January 7, 2010 • Added shared boot-up code sequence in Compatibility
Chapter.

3.00 March 25, 2010 • Changed document revision numbering to match other
Release 3 documents. Hopefully this will be less confus-
ing.

• Moved MIPS32/64 version of JALX to Volume II-A.

3.01 October 30, 2010 • User mode instructions not allowed to product UNDE-
FINED results.

• Updated copyright page.
• Removed Margin Note - “Preliminary - Subject to

Change” in some chapters.

3.02 December 6, 2010 • POOL32Sxf binary encoding was incorrect for individ-
ual instruction description pages.

3.03 December 10, 2010 • microMIPS AFP versions security reclassification.

3.04 March 21, 2011 • RSQRT/RECIP does not need 64-bit FPU.
• MADD fmt/NMADD.fmt/MSUB fmt/NMSUB.fmt

psuedo-code was incorrect for PS format check.

3.05 April 4, 2011 • The text description was incorrect for the offset sizes for
these instructions - CACHE, LDC2, LL, LWC2, LWL,
LWR, PREF, SDC2, SWL, SWR.

• CACHE & WAIT instruction descriptions were using
the wrong instruction bit numbers.

• LWU was incorrectly included int the microMIPS32
version.

3.06 October 17, 2012 • CVT.D fmt and CVT.S fmt were in wrong positions
within Table POOL32Fxf.

3.07 October 26, 2012 • Fix Figure 6.1 - columns & rows were transposed from
the real tables.

5.00 December 14, 2012 • Some of the microMIPS instructions were not listed in
alphabetical order. Fixed. No content change.

• R5 changes: DSP and MT ASEs -> Modules
• NMADD fmt, NMSUB fmt - for IEEE2008 negate por-

tion is arithmetic.

5.01 December 16, 2012 • No technical context change:
• Update cover with microMIPS logo
• Update copyright text.
• Update pdf filname.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 540

5.03 August 21, 2012 • Resolved inconsistencies with regards to the availability
of instructions in MIPS32r2: MADD fmt family
(MADD.S, MADD.D, NMADD.S, NMADD.D,
MSUB.S, MSUB.D, NMSUB,S, NMSUB.D),
RECIP fmt family (RECIP.S, RECIP.D, RSQRT.S,
RSQRT.D), and indexed FP loads and stores (LWXC1,
LDXC1, SWXC1, SDXC1). These instructions are
required to be available in all FPUs. .

5.04 January 15, 2014 LLSC Related Changes
• Added ERETNC. New.
• Modified SC handling: refined, added, and elaborated

cases where SC can fail or was UNPREDICTABLE.
XPA Related Changes
• Added MTHC0, MFHC0 to access extensions. All new.
• Modified MTC0 for MIPS32 to zero out the extended

bits which are writeable. This is to support compatibility
of XPA hardware with non XPA software. In pseudo-
code, added registers that are impacted.

• MTHC0 and MFHC0 - Added RI conditions.

 Revision Date Description

 Revision History

541 MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

