MIPS® Architecture for Programmers
Volume II-B: The microMIPS32™
Instruction Set

MIIFPS

Document Number: M D00582
Revision 5.04
January 15, 2014

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS Ill, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CorelV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCl, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

alt{t WoKISONS 120 ti23N1-Y Y SIE £286:Y'S Ln. ¥ ¢KS Yidli2alt{omm Lyail0i2y {Si wSdiai2y ponn

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

Table of Contents

Chapter 1: About ThiS BOOK .o, 18
1.1: TypOgraphiCal CONVENTIONSttt e e e e e e e ettt et e e e e e e e s s s e nabe b be e e e e eeaaeeeeaaannbbsbreeeaaaaeas 18
0 | = o I = TP PO PP TP PT P PPPPPRPPPPPPPRN 19

IO 2 =T o B) T PP RPRUPPTP 19

G O 0o U 1Y g I 4 AT PP TR PPPRRRPRR 19

1.2: UNPREDICTABLE and UNDEFINEDc.uutiiiiiiiiiie ittt ettt et e e snne e e s neeeanes 19
1.2.1: UNPREDICTABLE ...ttt ettt ekttt e bttt e ekt e e ekt e e e e nb e e e anb e e e enbe e e anneas 19

1.2.2: UNDEFRINEDceiiiiitit ittt ettt ettt ekttt e ettt skt e e ket e 4k bt e e eb b e e ekt e e emb e e e anbe e e enbneeanteas 20

L.2.3: UNSTABLE ..tttk bttt e e a bt o4kt e e kb e e ok bt e e eh bt e ekt e e e emb e e e anb e e e anbneeanneas 20

1.3: Special Symbols in PSeUdOCOAE NOTATIONuuuiiiiiiiieaeie ittt e e e e e e e e e e e e e e e e an 20
1.4: FOIr MOTE INFOIMALION ...ttt e et e et e e e ekt e e et e e e e e e s e e e e e e 23
Chapter 2: Guide to the INSITUCHION Stcooeiiiiiii e e 24
2.1: Understanding the INStrUCHON FIEIASuiiiiiiiiiie et 24
2200 I T 1S3 B o 1 o T 1= o £SO 25

2.1.2: Instruction Descriptive Name and MNEMONIC.cuuuriieiiiiiiieeiiiiee ettt 26

0 I o T 0= L = o USSP 26

2. 1.4 PUIPOSE FIEIA ...ttt ettt et e ettt e e e st e e ettt e e s 27

2.1.5: DESCHIPLION FIEIeeeieiieeeee ettt et e e st e e et e e e s ennneeas 27

0 I G =] 1 T 1o K = o SO PPP 27

P S O o1 =i o] o N = (o PRSP PRPTPTP 28

2.1.8: EXCEPLIONS FIEI ...ttt ettt e ettt e s et e et e e as 28

2.1.9: Programming Notes and Implementation NOtes Fields. ..., 29

2.2: Operation Section NOtation and FUNCHONSuuiiiiiiiiii et eieree e 29
2.2.1: INSLruction EXECULION OFOEITNG . .eeiieiitiiiieeiiitie ettt ekt e et e e s sttt e e s e e e s annneeas 29

2.2.2: PSEUAOCOUE FUNCHIONS.ttt ettt ettt e ettt e s sttt e e ettt e e s et e e e s annnne s 29
2.2.2.1: Coprocessor General Register ACCESS FUNCHIONSccoiiiiiiiiiiiiiieeeiiiee e 29

2.2.2.2: Memory OpPeration FUNCLIONSuiiiiiiiiiieeiite ittt e et e e 31

2.2.2.3: Floating POINT FUNCHIONSiiiiiiiiiie ettt 34

2.2.2.4: MIiSCEIIaN@OUS FUNCHIONSeiiiiiiiiiit ettt ettt e et e e e et e e e 37

2.3: Op and Function SUDfIEld NOTATION.iituiiiieiieii et e et e st e e s abbreeee e 38
P2 S e O 1 1 1 T o P 38
Chapter 3: INtrOAUCTION oo 41
3.1: Release 3 0f the MIPS AIrCHITECIUIooooiiiiieeieeeeeeee ettt e e e e e e e as 41
I B 1< - 1U] I Y AN 1Y (o o [T PO 42
R TS0 11Tz (SR B L= (= Tex 1 o1 o IR 42
3.4: Compliance and SUDSEIING........cccuiiiiiiiii e e e s s e e et e e e e e e s e e e e eeeeaeae s e e e rrarreaaaeas 42
R T IS AN 1Y, oL [T Y/ (o o FO PSP 43
I = = U o a 1= U (o B TN] o @1 £ £SO PPR 43
3.7: Coprocessor UNUSADIE BERNAVIOLuuiiiiiee ittt e e e e e e e s e e e e e e e e s e e reaaeeaeeas 44
Chapter 4: INStruCtion FOIMALScoooiiii i, 45
4.1: Instruction Stream Organization and ENGIANNESSuuiiiiiiiiiiiaai e e e e e e e e e eenneees 48
Chapter 5: microMIPS Re-encoded INStrUCTIONSccoviiiiiiiiiiie e e e e 51

5 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

LT R KSR Y1 A G- 11T [0 Y

5.1.1: Frequent MIPS32 INSTIUCTIONS.cuiiiai ittt ettt e e e e e e e bbbt e e e e e e e e e e s e annberbeeeeeeas
5.1.2: Frequent MIPS32 INStrUCLION SEOUENCESueiiiiiiiiaaieiiiiiiiiie ettt e e ettt e e e e e e e e et eeeeas
5.1.3: Instruction-Specific Register Specifiers and Immediate Field ENCOdingsccvveeeeiiiiiiiiiiiiieenen.
5.2: 16-Dit INSrUCLION REQISIEN SEL ...uuiiiiii i e aeaas
LR A 12 =11 G- 11T o [0 Y
5.3.1: NEW 32-Dit INSIUCTIONSeeiiiiiiiiiii et e et e et e e
5,47 NEW INSITUCTIONSeeiiiiiieit ettt e ettt e sttt e e ekttt e e ekttt e et e e s nanb e et e e s annnreeeeas
ADDIUPC ...ttt ettt oo E e e oo E ettt e et e et e bt e e e e e e e e r e e e
ADDIURILSP ...ttt ettt ookttt e oottt e oot e e oo Rt e oot ee e et e et e bt e e e e e e e e e e e
ADDIURZ. ...ttt oot e e Rt e oo E e e e oot e e e e b e e e e n e e e e r e e e
ADDIUSP ..ttt E e e oot e e e e et e e e e b e e e e s e e e e e e e e
ADDIUSS ... et e e R e oot e e e et e et et e e e e e e e e e e e e
ADDULLB ...ttt e Rt e e oo et e e et e et e e e e e e n et e e e r e e e
ANDILG ...ttt b oo E e oo E et e e e Rt e et e b et e e e e e e e e e e e
ANDLG ...ttt oo oo oo oo R oo e oo Rt e e oo R et e et e bt e e e e e e e e e e e e
=3 PO P PP RT PP PP PPP PP
BEQZLOG ...ttt e oo et e et e r e s
BEQZ C ..ottt e st e e
BGEZALS ...ttt
BLTZALS ..ttt ettt e e et e s et e e e e e
BINEZLGceeeiiiteiee ettt ettt E et e et e n et e et e n e e e s
BINEZC .ottt oo et e e et e et e e e
BREAKILS ...ttt ettt ettt et ee et e e e e s
JALRLG ...ttt oo R e e oo et e e e e et e e e e bt e e e e e e e e a e e e e
JALRSLOG ...ttt oo e R e oot et e et e e e et e e e e e e e e e e e
JALRS e oo et E e e oottt e e et e et et e e e et e e e e e
JALRS . HB ..ttt a ettt 100
] R ST PP OP PP P P PPPPPPPPPP 104
] TP P PP P P PPPPPPRPPI 106
TR ettt oo E et e oot e e ettt ettt s 108
JRADDIUSP ...ttt ettt oottt e oot e 4okt e ettt ettt s 110
| OO P PP P P PPPPPPPPPI 112
LBULB ..ottt ettt e e et oot e e et e e et e e e e e 114
[1O T PP P PP PR OPPPPPPON 116
[G PP TP PP P PP PR PP PPPPPON 118
I PP O PP PP PP PR OPPRPPPON 120
Y PP T PP P PP PR OPPRPPPON 122
LWVIMILG ..ttt 4 ettt e et e e et e e e e e 124
PP PP PP P PP PR OPPPPPON 126
LMV GIP ettt et et e e e e 128
T PP PP PP U P PR PP PPPPPON 130
[T SO P TP PP P U P PR PP PRPPPON 132
Y o G PP TP P PR OPPPPPPON 134
IMIFLOLG ..ottt 4 et 4 ettt e et e e e e 136
IMMOVELG ...ttt ettt ettt oottt e 4ot ee o4t ee oot e et e e e e e 138
IMIOVER .ttt e et 44t e o4t e oot e et e e e 140
N[O I PP PP P U P PR PO PPRPPPON 142
LO 3 X PP T P P P TP PP PO TP PP PPPPPPPPPPPPRTN 144
1= G TP PP PP PO TP PP PP PPPPPPPPPPPPRTN 146
SDBBPLG ...ttt e et e et e b et e e et e e et e e e e s e e e e e 148
ST 1 R TP PP PP PO PP PP PP PUPPPPPPPPPPRTN 150
I I PP P PP PO TP PPP P PPPPPPPPPPPPRTN 152

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

S U= U TSR 156
S AT R 158
S AT A] =R 160
AT LY R 162
SWVIMLB....coiiiieeeeeeee et e et e et e e e e e e e e e e e ettt ettt ettt e bbb e e e e e e e e e e e e e e eeteaee e ettt aa et et e e e e aaaaaaaaeaaeaeaes 164
LS oYL R 166
DO] 3 TR 168
5.5: Recoded 32-Bit INSIIUCTIONSuuuiiiiiiiiiie et e et e e e et e e e e e e et e e e e e e et b e e e e s ses b e eeeeesaaanans 169
F Y TN 11 1] SR RURURRPRPRPPNE 170
ADD ...t b e eeeeeeeeeeeeeeeeetetettt——————————————— e ieaeaeaeaaeaaeaeaeaeeterrrrar——————. 172
F Y] {0 SRRSO PRPPNE 173
ADDI ..ttt eeeeeeeeeeeeeeeeetetettt——————————————— e ieaeaeaaeaeaaeaeararerrrrrr——————. 175
ADDIU ..ottt ettt e e e e e e e e e e e e e eeee e et ettt ————— e aeaeaaaaeaeeaaaeaeeterrrrrr———————. 176
ADDU ..ttt e e e e e eeeeeeeeeeeeeeet ettt ————————— e ieaeaeaaeeeaaeaeaeererrrrrr——————. 177
ANV P S ittt e e e e e e e et et ettt eieaeaeeaeaaeaeaeaeateerrrr——————. 178
AND ..ttt ettt e ettt b eeeeeeeeeeeeeeeeeetttttta—————————————— i ieieieaeaaeeeaaeaeereterrrrrrr—r————. 181
e N5 R PTRTRRPRPRPPNE 182
B ettt e e eeeeeeeeeeeeeeeeeeteeteett————————— L. ————— e eaeaeaeaeeeeeteeeterttrar i ——————————————— 183
B L Z ettt e e ettt eeeeeaeaeeeeeeeaeaetttt————————————————————————— 184
A SO 186
T O OO 188
T O SO 190
Bl 2 e et eeeeeaeaeeeeeaeaetetae it ————————————————————— 192
1728 OO 194
2] L PP P PP RRRPOTPP 196
B G EZ ...ttt eeaeaeeeeeeeeeaetet ittt —————————————————————— 197
BGEZAL ..o eeeeeaeaeeeeeaeaeteta it ————————————————————— 198
] OO 199
B LT et ettt e et e ettt eeeaeaeaeeeeeaeaeterttta————————————————————————— 201
]I 174 ST 202
BN E sttt ettt e e e e e e e e et e e e e et e ettt ——— e eeaeaeaeeeeeaeteaettttar . ——————————————— 203
BRI AK .. i et ettt e et e eaeeeaeaeeeeeeeaetettt i —————————————————————— 204
(O oTo] oo 1 { 1 0| PO TS PPPPRR 205
(7Y O | R 211
(07 Y O | = R 218
(O 1 I I 11 0| AR 225
(OF = LYV {0 | R 227
(O 031 RS 229
(O = G2 R 231
(O 1O LR 232
O R 233
(10 = R 234
O 131 RS 235
O 1O R 238
(A I 10| SRR 239
(@A I 1R 1 1 | R 241
(ORI =S SRR 243
(A IR {11 R 245
(A I = R 247
(A I = U R 249
(A I VLY {01 R 251
DE R E T oot eeeeeeaeaeeeeeaeaeteraer————————————————————————— 253

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

DIV e e e e e e e et e r e e e e e e 257
D AV {10 PP PO P PP PR OPPPPPPON 259
DIV U e e e et r e a e e e e 260
B B et e e 261
PO PP OO PPN 263
B R E T et e e 265
ERETINC .ottt e e e et et e e e e e e et e et e e e e e 266
KT e e e e e et e e e e e e 268
FLOOR . LML ettt e et o4t e o4 a et e oot e e e e et e e et e e e e e e e 270
FLOORWVIIME. .ottt oot e o4 et e e ekt e oo e e e e e et e e e et e e e e e nenes 272
LN S TP PP P PP T PPN 274
8PP PP PPTPPTTPP 277
T L e e e e e e e e e e e e e 278
JA L R L e e e 280
JALR HB e e 282
TR e e e e r e e e e 286
TR H B e e e e 288
PO PP TP PP T TP 291
LB e e e e e e et r e e e e e 292
LB e e e e e e e e et e e r e e e e e e 294
LB e e e e e e e et e e e e e e e 296
3 O PP PP PPN 298
LD 2 e e e e e e e e et e e e e e e e 299
o PP PP P PPN 300
LHE e e e e e et r e e e e e 302
LU e e e e e e e e et e e a e e e e 304
LHU E oo e e e e e e e e et e e e e e e 306
PO PP P PPN 308
L e e e e e e e e e e e e e et e e r e e e e e e 310
0O PO PP OO PPN 312
LU O PO PP TP 313
YOO PP P PP PTPP PPN 315
L e e e e e e et r e e e e e 316
LWV L e e e e e e e st e e e e e e e 318
L 2 et e e e e e e et e e e e e e e 319
Y TP PO PP PP PPN 320
Y PO PP PO P PPN 322
L R e e e e et r e e e e e 324
L MV RE e e e et r e e e e 326
L VU e e e e e e e e e e et e e a e e e e e 328
LMV XC L ettt e e e e e e e et e e r e e e e e 330
IMIADID ..t e e e e e e e e e e e et e e e e e e e e e 332
IVIADIDD . FIMIE . .ttt ettt oot 4 ettt e e e e e 333
IMADDU ...ttt e e e e e e e e e et e e r e e e e e 335
Y O O PO PP OO PP T PPN 336
Y O PP PP P PP TPT PPN 337
Y OO PO PP TPT TP PPN 338
IMITHECO .ottt e e e e e e e e e e bbb et e et e e e e e e e s e s bbb e e et e e e e e e e e e s e babe s 340
IMIFHC L et e e e e oo e et et e e e e e e e s e e s er e e e e e e e 341
IMIFHCZ ettt e e e e e s e e e et e e e e e e s s e st e e e e e e e 342
L | PP PP OO PP PPTPPPN 343
IVIFLO ettt e et e e e e e e et e et e e e e e 344

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 8

OV ettt e e e e e e e e e e e e e et e r e e e e e 347
(@AY o i 1 | PP TP PO PR OPPRPPPON 348
VIOV N Lttt e ettt e e e e e e e s e e o e ettt e e e e e e e et e e e e e e e e e 350
IMIOVIN L FIMIE. ¢ttt ettt e oot e o4 a ket e ookt ee e e et e e et e e e e e e e e 351
L 1 PO PP TP PPN 353
(@AY I 1 | PP T PR P U U PR OPPPPPN 354
MOV Z ettt et e e oo e et e et e e e e e et e e a e e e e 356
(@AY i 1 | PP TP PP P O PR OPPPPPPON 357
IMISUB et e e e e e e e e e e e et e e e e e e e e 359
IVESUB IMIT .ttt e et oot e oo e et e e et e e et e et e e e e 360
IMISUBU .ottt et e e e e e e st e e e e e e e e e e e r e e e e e e e 362
Y O O PP PP PP PPN 363
Y L PO PP P PP PPN 365
Y PO PP P PR PPN 367
IMITHC L Lot e e et e e e e e e e st e e e e e e e e e s e e s bbb e e et e e e e e e e e e s e eeb b e re s 368
IMITHCZ et e e e e e e e e e et et e e e e e e e s e s bbb e et e e e e e e e e e s e eeb b e re e 369
I | PO PP TP PPN 371
Y I X PO PP PP PPTPPON 372
1YL PO PO PP PPTPPON 373
Y1 T o 1 TP PP PO P PP PR PP PPPPPON 375
171 PO PP P PP PPN 377
IVIULTU ettt oottt e e e e oo e e e o bbb e ettt e e e e e e e s e e s bbb e e e e e e e e e e e e e s e aeebbnne e 379
N = TN 101 ST PO T PP PP PR OPPPPPPON 381
INIMADD . FIMIE ettt oottt ookt e o4 a et e e et e e et e e et e e e e 383
INIMISUB LTIME .ttt e et o4kt e o4 a ket e ookt ee e e et e e et e e e e e e e e e enes 385
N[O PO PP OO PP PPN 387
N[O PP PP OO PP PPN 388
L0] o PP PP PP T PP PPTRPTTPPR 389
L0] PO PP PP TR 390
PAUSE ..o et e e 392
P L P S e e et r e e e 394
P LU P S e et r e e e 395
P R R < r e e 396
P REFE oo e e e e e 400
P R E X e e r e e 403
P U L P S e e et r e e 405
PUU P S e et e e e oo e e e e e e e et r e e e e 406
RDHWR Lot e e e e e e et ee e e e e e e e s et e e a e e e e e 407
RDPGPR .. e e r e e 410
RECIP.IIMT ettt oottt e ookt e e 4 et e oot e et e e e e e e 411
RO T R e e e et e e e e e e e e 413
ROTRY ettt e e e oo e e e e et e e e e e e s s e st er e e e e e e e e e 414
ROUND .LFIME .ttt e et e e et e e ekt e e e e et e e et e e e e e e e e enes 415
ROUND WL TIMIT ...ttt e oot e o4t e e et e e e et e e e e et e e e e e e e e enes 417
ST O I {1 1| S PP PP PR PP PRPPPON 419
= TP PP PP TP 421
OB e e e e e e e e e 422
] OO PP PP PR 424
] O PP PP P PP TP 428
SDBBP .. e e e e e e 431
IS L PP PP PP PPTPPTPPTP 432
S L O PP PPTRRTPPP 433

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

SEH vttt ettt ettt e ettt e e ettt et ee e et r e er e 436
SH oottt ettt ettt ettt e et ee et e e e r e 438
SHE ettt ettt ettt ettt e ettt ettt e et e et ee e e et e e r e 440
SLL 1ottt ettt ettt ettt et ettt e e et e e st e e et ee et ee e et e e e s 442
SLLV ettt ettt ettt ettt e ettt e ettt e et e et ee e et e e 443
ST ettt ettt ettt ettt e ettt e ettt ettt e et e e 444
STl ettt ettt ettt e et e ettt ettt e ettt ee et ee e e et e e e r e 445
SLTIU oottt et et e et e e e e e et e et e et e et e e et e et ee e ee e e s 446
SLTU oottt ettt e e et e e ettt ettt e ettt e et e et e et e e s 447
SQRTME cvvveeeeeee ettt ee e e eee e e e e e e e e e e e e e s ee e e st es e s e esees e es et es e s ee e eseeeseeseeeseeeeeesesenes 448
SRA ettt ettt ettt e et ee e e et e e r e 450
SRAV ..ottt ettt ettt ettt e et e ettt e et ee et e e s e 451
SRL .ottt ettt ettt ettt e ettt e et et e et et e et e et ee et e e e 452
SRLY. oottt ettt ettt ettt e ettt e et e et e e 453
SSNOP ...ttt e et e et e ettt ettt ettt e et e ettt e et ee e e e e e e 454
SUB ..ottt ettt ettt ettt ettt e ettt e ettt e et ee et et er e s r e 455
SUBLIME ..ot ee e e e et e st ee e s e e eee e e e e e et e s e et s e es e s ee e s e st es et eetees e e eseeeeees e s e eeeseeeees 456
SUBU oottt e s e et e e e e ettt et e ettt ee et ee e e ee e e e s r e 458
SUXCL et e e e ee e s e e st e e e e e e et e e e e s e et e e et ee et et e e et ee et s et ee e reeenes 459
SW ettt ettt ettt e et e e e e e 460
SWCL oottt e et e e e e ettt ettt e et e ettt ee et et e et e e r e 461
SWC2 ..ottt e ettt ettt ettt ettt ettt et e st er e e r e 462
SWE oottt ettt ettt ettt ettt ettt e et e et ee e et e e 464
WLttt ettt e ettt e ettt e ettt e ettt e et e et ee e et e e 466
SWLE oottt ettt ettt ettt e ettt ettt e et e et ee e r e 468
SWR oottt ettt e ettt ettt ettt ettt e et e et ee et ee e e 471
SWWRE ...ttt ettt et e e et e et e e e et ettt e ettt e et ee e e et e e r e 474
SWWXC Lottt e e e st e e e e s e et e et ee et e e e ettt es et ee e e e e s 477
SYNC oottt ettt ettt e ettt ettt e ettt e ettt e et ee et ee e et e e r e 479
SYNCH ettt e et e et e e et e e e et e et et e et e e ettt e et ee et ee e et s e 485
SYSCALL oottt e et e et e et et e et e et et e et s et ee e e et e e r e 488
TEQ ettt ettt ee e e e e ettt et ettt e ettt ettt e et e ettt e e 489
TEQ vttt ettt ee e e e ee e e e ettt ee ettt ee ettt ettt ettt ettt e et 490
TG ettt ee ettt ettt ettt ettt ettt e et et er e 491
TG E] oottt et et e e et ettt et e ettt ettt ettt ettt ettt 492
TGEIU oottt e e e e e ee ettt e e e e et e ettt ettt e e et 493
TGEU oottt ettt ettt ettt ettt ettt et 494
TLBP oottt ettt ee et e ettt ettt ettt ee ettt ettt e ettt ee e et er e 496
TLBR oottt et eeee e e e e e e e e e e e et ee ettt ee et e ettt ettt et e e ee e e e 498
TLBWI oottt eee e e s e e e e e et e e et e e et e e e e e et eeeee e et e et e s et e et e e e ee e et e ee e er e 500
TLBWR .ottt ee e eeee e eee e e eeeee s ee e e e et e e e et e s e eeee e e e ee e e st e e e st e e et e et ee e e e et s et ee e er e 502
T T ettt ettt e e e e e e e et e ettt ettt ee et e ettt ettt ettt e e e et 504
T T T ettt ee e e ee e e e e e e e ettt et ee e et e ettt et e et e et et e e et e e e e 505
TLTIU ettt e et e e et ee e e e et e et e ettt e et e e e s e 506
TLTU oottt e e e e e e et e e et ee e e e et e e et e et e ettt e e et e et er e 507
TNE ettt ettt e et e e e e ettt e et ettt e ettt ettt ettt e ettt e e ee s e 508
TINED oottt e e e e e e e e e e e et e e et ettt ee e e e eeeee e et e e et e et ee e et e et 509
TRUNC.LME 1ottt ee e st e e e s ee e e ee s e s e e e es e s e et eeeee e e e s ee e s e s eseeeseeeeseseenees 510
TRUNC.MW.FMIE 1.ttt e e s e e e e s ee e s ee s e s e e s eee e s e ee s es e s ee e seeeseeseees e eseseenee 512
WVAIT oottt e e e e e e e e ee e e e e ettt ee e e e e e e et e et e et e st e e e et e e 514
WRPGPR ..ot ee e e e ee e e e e e et e e et ee e e e e e e e e et e et e e et e s et e st ee e s e s et e s et ee e e eer oo 516
WVSBH. oottt ee e eee s e s e e ee e e e st e e st e e et ee e e e et eeee e e sttt e et e et ee e e e e et er e 517

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 10

D@ L PRSP 520
Chapter 6: OPCOAE MAP ..ccoo e 521
(S 1V = o] g @ o oo o L= O PP P PP PP P PR OPUPPPPTPPP 521
(S |V 11 e To] g @ o oo o[- O TP PP PP PP R OPUPPPPTPPP 523
6.3: Floating Point Unit Instruction FOrmat ENCOTINGScuvuvriiiiiiiiiieiiiiiee ettt 531
Chapter 7: COmMPALIDIITY ...oooeiiii e e e e e e e e e e 533
7.1: Assembly-Level ComPatiDility........cc.uuieiieiiieie e e e e e e e e s e r e e e e e e s 533
A7 N = B O 1 4] 0= 111 o1 U 534
7.3: BranCh @and JUMP OffSES ..uiiiii ittt e et e e e e e e e s e ae bt eeaeeeeeeesaeannnrnrnees 535
A S = oY= o 1Y/ 01 SRR 535
7.5: Boot-up Code shared between microMIPS32 and MIPS32 ...t 535
7.6: Coprocessor UNUSADIEe BERNAVIOLuuiiiiiiie ettt e e e e e e e s e e e e e e e e e e e e s e e snnsrnenees 536
7.7: Other Issues Affecting Software and Compatibilityoeeveeeiiiiiiiiee e 536
APPENTIX 8 RETEBIBINCESttt e e ettt e e e e e e et e e e e e e s s et e e eee s 537
APPENAIX 9: REVISION HISTOTIY 1.uiuiiiiiiiiiiiiiiiiiisitiiesiessrsesrsseesseessssreseesrarsraesrssrraeeraerraerrrrerar—e——————.— 539

11 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

12

List of Tables

Table 1.1: Symbols Used in Instruction Operation StatemMENTS.uuiiiiiiiiiiiiiiiie e 20
Table 2.1: AccessLength Specifications for LOAUS/STOIESc..uuiiiiiiiiiie ettt 33
Table 4.1: MICrOMIPS OPCOUE FOMMIALS.....ciii ittt e e e e ettt e e e e e e e e e s st bbb e e et e e eaeeeaaaanns 48
Table 5.1: 16-Bit Re-encoding of Frequent MIPS32 INSIIUCHONScviiiiiiiiiiiiiiiiii et 52
Table 5.2: 16-Bit Re-encoding of Frequent MIPS32 INStruction SEQUENCES.uuiiiiiiiiaiiiiiiiiiiiiie e 54
Table 5.3: Instruction-Specific Register Specifiers and Immediate Field Values............cccooiiiiiiiiiis 55
Table 5.4: 16-Bit Instruction General-Purpose Registers - $2-$7, $L6, $L7oocveerieiiieiieiiie e 56
Table 5.5: SB16, SH16, SW16 Source Registers - $0, $2-87, $L7......coiiiiiiiiiiieiie e 57
Table 5.6: 16-Bit Instruction Implicit General-PUurpoSe REQISIEIScoiiiiiiiiiiiiiiiiii e 58
Table 5.7: 16-Bit Instruction Special-PurpoSe REQISIEIS.ooiiuiiiiiiiiiiie e 58
Table 5.8: 32-bit Instructions introduced within MICTOMIPSooiiiiiii e 58
Table 5.9: Encoded and Decoded Values of the Immediate Field............ooooiiiiiiiiiiiice e 66
Table 5.10: Encoded and Decoded Values of Immediate Field ..o 68
Table 5-1: Encoded and Decoded Values of Signed Immediate Field.............ooooiiiiiiee e 70
Table 5-2: Encoded and Decoded Values of Immediate Field. ... 74
Table 5.11: Offset Field Encoding RanNge -1, 0..14 ...t e e e e e e e e e e e e as 114
Table 5.12: L116 -1, 0..126 Immediate Field ENCOAING RANGE..........uuuiiiiiiiiiiiii e 118
Table 5.13: Encoded and Decoded Values of the ENc_Dest Fieldcccoiiiiiiiiiiiiiie e 140
Table 5.14: Encoded and Decoded Values of the Enc_rs and Enc_rt Fieldscccoov i 140
Table 5.15: Shift AMount Field ENCOAINGuiiiiiiiiiie et e e e e e e e e e et e e e e e e as 152
Table 5.16: Shift AMouNnt Field ENCOAINGuiiiiiiiii et as 154
Table 5.17: FPU Comparisons Without Special Operand EXCEPLIONSccoiiiiiiiiiiiiiiiiiiieeee e 207
Table 5.18: FPU Comparisons With Special Operand Exceptions for QNaNScciiiiiiiiiiiiiiiiiieee e 208
Table 5.19: Usage Of EffECHVE AQUIESS.....uu it e e e e e e e e e e e e e e et e e e e e e as 211
Table 5.20: Encoding of Bits[17:16] of CACHE INSTIUCTIONooiiiiiiiiiiiiieie et e e 212
Table 5.21: Encoding of Bits [20:18] of the CACHE INSIIUCHIONuviiiiiiiiieiiiiiiiieee e 213
Table 5.22: Usage Of EffECHVE AQUIESS.....uu it e a s 218
Table 5.23: Encoding of Bits[22:21] of CACHEE INSTIUCTION.uutiiiiiiiiiiie ettt 219
Table 5.24: Encoding of Bits [20:18] of the CACHEE INSIrUCHON.cuiiiiiiiiiiiiiiiiiee e 220
Table 5.25: Values of hint Field for PREF INSTIUCTIONoiiiiiiiiiei ettt 396
Table 5.26: Values of hint Field for PREFE INSTIUCTIONcoiiiiiiiiiiiiiic et 401
Table 5.27: RDHWR RegIStEr NUMDEISuuuiiiiii i e e e e e e e e e e e e e e e e as 407
Table 5.28: Encodings of the Bits[10:6] of the SYNC instruction; the SType Field...........cccccooiiiiiiiiiiis 481
Table 6.1: Symbols Used in the Instruction ENcoding TablesS..............uuuiiiiiiiiiiie e 522
Table 6.2: microMIPS32 Encoding of Major Opcode FIeldccuuiiiiiiiiiiiieeee e 523
Table 6.3: Legend for MiNOr OPCOAE TaAbBIESttt e e a e e e e e e e 524
Table 6.4: POOL32A Encoding of Minor Opcode Fieldoooiiiiiiiiiiiiieee e 524
Table 6.5: POOL32Axf Encoding of Minor Opcode EXtenSion Field............ooooiiiiiiiiiiii e 525
Table 6.6: POOL32F Encoding of Minor OPCode FIeld........cooiiiiiiiiiiiiiiiie et 526
Table 6.7: POOL32Fxf Encoding of Minor Opcode EXtension Field ... 527
Table 6.8: POOL32B Encoding of Minor Opcode Fieldoooiiiiiiiiiiiiieee e 527
Table 6.9: POOL32C Encoding of Minor Opcode FIeld ..o 528
Table 6.10: LD-EVA Encoding of Minor Opcode FIeld..........coooiiiiiiiiiiiieeee e 528
Table 6.11: ST-EVA Encoding of Minor Opcode FIeld...........oooiiiiiiiiiiiiieee e 528
Table 6.12: POOL32I Encoding of Minor Opcode Field...........ooiiiiiiiiiiiee e 529
Table 6.13: POOL16A Encoding of Minor Opcode Feld ...t 529
Table 6.14: POOL16B Encoding of Minor Opcode Field ... 529

13 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Table 6.15:
Table 6.16:
Table 6.17:
Table 6.18:
Table 6.19:
Table 6.20:
Table 6.21:
Table 6.22:
Table 6.23:

POOL16C Encoding of Minor Opcode FIEld ... 530
POOL16D Encoding of Minor Opcode FIEld ... 530
POOL16E Encoding of MiNOr OPCOde FIeldooiiiiiiiiiiiiieeee e 530
POOL16F Encoding of Minor Opcode FIeld............oo i 531
Floating Point Unit Format ENcodings - S, D, PS....ooeriiiiieien e 531
Floating Point Unit Format ENcodings - S, D L1-Dituuuuiiiiiiiiiiiiiie e 531
Floating Point Unit Instruction Format Encodings - S, D 2-bitS.........ccccooiiiiiiiiiiee e, 532
Floating Point Unit Format ENCOAINGS = S, W, L..ciiiriiiiieiiee et 532
Floating Point Unit Format ENCOdiNgs = D, W, L ..ecvveiiiiiiiiiie e 532

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 14

15

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

List of Figures

Figure 2.1: Example of INStruCtion DESCIIPLIONeeiiiiiiiiiiiiie ettt e e e e e e e e e e e eeeeeeeas 25
Figure 2.2: Example of INSIrUCHON FIEIASeiiiiiiiieii e e 26
Figure 2.3: Example of Instruction Descriptive Name and MNEMONICuuuiiiiiiiiiaiiiiiiiiiiiieee e 26
Figure 2.4: Example of INStrUCTION FOMMIAL.........iiiiiiiiiiiiii e e e e e e e e eeeeeas 26
Figure 2.5: Example of INSrUCHION PUIPOSEiiiiiiiieiiii ittt e et e e e e e e e e s eeeeeas 27
Figure 2.6: Example of INStruCtion DESCIIPLIONeeiiiiiiiiiiiiie ettt r e e e e e e e e e eeeeeeeas 27
Figure 2.7: Example of INStruCtioN RESIICHIONS.coiiiiiiitiiie ettt e e e e e e e eeeeeas 28
Figure 2.8: Example of INStrUCTION OPEIatION.cciiiiiiiiiiiiiie ettt e e et e e e e e e e e e e e bbb eeeeeeeas 28
Figure 2.9: Example of INStrUCHION EXCEPIION.ciiiiiiiiiiiiiiie ettt e e e e e e e e et eeeeas 28
Figure 2.10: Example of Instruction Programming NOTEScouiiiiiiiiiiiiiiiiiiii e 29
Figure 2.11: COP_LW PSeud0oCO0E FUNCHONoviiiiiiiiiiiieis e e e s e e e e e e e ettt s e s e e e e e e e aeaeaaaaaaaeaaeees 30
Figure 2.12: COP_LD PSeUAOCOOE FUNCLON.........ciiiiiiiiiiiiiiiees e e e e e e e e e e e e e e e e et e et e s s e s e e e e e aaeeaaaaaaaaeaaneees 30
Figure 2.13: COP_SW PSeudoCOde FUNCHION.........c.iuiiiiiiiitieese e e e e e e e e e e e ettt s e s e s e e e e e e e aeaaaaaaeaaeeees 30
Figure 2.14: COP_SD PSeudOCOTE FUNCLONceiiiiiiiiiiiiiieis e e e e e e e e e e e e ettt s e e s e e e e e e e aaaeaaaaaaaaanaens 31
Figure 2.15: CoprocessorOperation PSeudoCode FUNCLONiiiiiiiiiiiiiiii et 31
Figure 2.16: AddressTranslation PSeudoCode FUNCLONuiiiiiiiiiiii e e e e e e e e e e e e aaaaanaens 31
Figure 2.17: LoadMemory PSeudOCOde FUNCHIONuuuiiiiiieie i e e e e ettt s e e e e e e e e e e e aaaaaaaaaaaees 32
Figure 2.18: StoreMemory PSeudoCOdE FUNCHION..........uuuieiiiiie it e e e e e e e e e e e aeaaaaaaaaaees 32
Figure 2.19: Prefetch PSeUdOCOAE FUNCLION...........iiiiiiiiiiiie s et e s e e e e e e e e e aeaaaaaaaaaaaees 33
Figure 2.20: SyncOperation PSEUdOCOTE FUNCHONoouiiiiiiiiiiiiee et 34
Figure 2.21: ValueFPR PSeUAOCOAE FUNCLON..........ouiiiiiiiiiiie s e e e ettt e s e e e e e e e e e aeaaaaaaaaaaeees 34
Figure 2.22: StoreFPR PSeudOCOdE FUNCLIONouiiiiiiiiiiiiie s e e ettt s e e e e e e e e e e e aaaaaaaaaneees 35
Figure 2.23: CheckFPEXxception PSEUAOCOUE FUNCHION.uuiiiiiiiiiaie ittt ettt e e 36
Figure 2.24: FPConditionCode PSeudOCOTE FUNCLION.........uuuuiiiiiiie e e e e e e e e e e e e e e e aaaaeees 36
Figure 2.25: SetFPConditionCode PSeudocode FUNCHIONuiiiiiii e e e e e e e e e e e e e e aaaeaees 36
Figure 2.26: SignalException PSEUdOCOTE FUNCHIONuuiiiiiiiiiiiie et 37
Figure 2.27: SignalDebugBreakpointException PSeudocode FUNCHON..........uuiiiiiiiiiiiiiiiiiiiieee e 37
Figure 2.28: SignalDebugModeBreakpointException Pseudocode FUNCLION............oooiiiiiiiiiiiiiiiiiieeeeeee 37
Figure 2.29: NullifyCurrentinstruction PSeudoCode FUNCHONcoiiii i e e e e e e e e e e 38
Figure 2.30: JumpDelaySIot PSEUAOCOTE FUNCHION ...ttt e e e e e e eeeeeas 38
Figure 2.31: PolyMult PSEUdOCOTE FUNCLIONcoiiiiiiiiiiiiiee ettt e s e e e e e e e e e aeaaaaaaaaaaeees 38
Figure 4.1: 16-Bit INSIrUCHION FOIMMIALS........ccoiiiiiiiieieeiie e e e e e e e e e e e e e et et e e et e e ae et e e e s e e e e e aaaeaeaaaeaaeaaaeees 46
Figure 4.2: 32-Bit INSIIUCTION FOIMMIALS........cciiiiiiiiieieeeee e e e e e e e e e e e e et et et e e e e e e ae it et e a e s e s e e e aaeeaeaaaaaaaaaeeens a7
Figure 4.3: Immediate Fields within 32-Bit INStIUCHIONS.........uuuiiiiiii e e e e e e e e e e e e aaaaaaes 47
Figure 5.1: Example of an ALNV.PS OPEIaAtIONccouiiiiiiiiiiiieie ettt e et e e e e e e e e e 178
Figure 5.2: Usage of Address Fields to Select IndeX and Way ..o 211
Figure 5.3: Usage of Address Fields to Select IndeX and Way ..o 218
Figure 5.4: Operation Of the EXT INSITUCTIONoiiiiiiiiiiiiiie e e e e e e e 268
Figure 5.5: Operation Of the INS INSIIUCTIONiiiiiiiiiiii et e e e e e 274
Figure 5.6: Unaligned Word Load UsiNg LWL and LWR.........uuuiiiiiii e a e e e e 320
Figure 5.7: Bytes Loaded DY LWL INSIFUCTIONcooiiieiiiieiiii e et a e a e e e e e e e e aaaaeaeees 321
Figure 5.8: Unaligned Word Load Using LWLE @nd LWREcccoiiiiiiiii s 322
Figure 5.9: Bytes Loaded DY LWLE INSIIUCTIONuuiiiiiiiiieiiees et e e e e et e e e e e e e e e aeaaeaeaeees 323
Figure 5.10: Unaligned Word Load Using LWL and LWR..........uiiiiiiii st e e e 324
Figure 5.11: Bytes Loaded by LWR INSITUCHION.........oeiiiiiiiiieice ettt a e e e e e e e e aaaaeaees 325
Figure 5.12: Unaligned Word Load Using LWLE and LWRE ... 326
Figure 5.13: Bytes Loaded by LWRE INSITUCTIONovviiiiiiiiiiie i s e et ea e e e e e e e e aaeaaaees 327
MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 16

Figure 5.14:
Figure 5.15:
Figure 5.16:
Figure 5.17:
Figure 5.18:
Figure 5.19:
Figure 5.20:

Unaligned Word Store Using SWL and SWRuuiiiiiiiiii e a e 466
Bytes Stored by an SWL INSITUCTIONvviiiiiiiiiie et n e e e e e e e e e aeaeees 467
Unaligned Word Store Using SWLE and SWREccoooiiiiiiiiicc s 468
Bytes Stored by an SWLE INSTIUCHIONuuuieiiiiieis et a e e e e e e e e e aeaeees 469
Unaligned Word Store USINg SWR @nNd SWLuuiiiiiiiiici s a e e 471
Bytes Stored by SWR INSITUCTION..........ooiiiiieiieee e e e e e e e e e e e aeaeees 472
Unaligned Word Store Using SWRE and SWLEccoooiiiiiiiiiieee e 474

Figure 5.21: Bytes Stored by SWRE INSITUCTIONvvviiiiiiiiiieei st e e e e e e e e e e e aaaaeaeees 475
Figure 6.1: Sample Bit ENCOAING TaADIEuiiiiiiiieeeie et e 521
17 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Chapter 1

About This Book

The MIPS® Architecture for Programmers Volume I1-B: The microMIPS32™ Instruction Set comes as part of a
multi-volume set.

* VolumeI-A describes conventions used throughout the document set, and provides an introduction to the
MIPS32® Architecture

* Volume I-B describes conventions used throughout the document set, and provides an introduction to the
microMIPS32™ Architecture

* Volumell-A provides detailed descriptions of each instruction in the MIPS32® instruction set
* Volumell-B provides detailed descriptions of each instruction in the microMIPS32™ instruction set

e Volume Il describes the MIPS32® and microMIPS32™ Privileged Resource Architecture which defines and
governs the behavior of the privileged resources included in a MIPS® processor implementation

* VolumeIV-adescribesthe MIPS16e™ A pplication-Specific Extension to the MIPS32® Architecture. Beginning
with Release 3 of the Architecture, microMIPS is the preferred solution for smaller code size.

* Volume IV-b describes the MDM X ™ A pplication-Specific Extension to the Ml Architecture and
microMI1PS64™. It is not applicable to the MIPS32® document set nor the microMIPS32™ document set. With
Release 5 of the Architecture, MDMX is deprecated. MDMX and MSA can not be implemented at the same
time.

* Volume IV-c describes the MIPS-3D® A pplication-Specific Extension to the MIPS® Architecture

* Volume IV-d describes the SmartM 1 PS®A pplication-Specific Extension to the MIPS32® Architecture and the
microMIPS32™ Architecture .

* Volume IV-e describes the MIPS® DSP Module to the MIPS® Architecture

* Volume IV-f describesthe MIPS® MT Module to the MIPS® Architecture

* Volume IV-h describes the MIPS® MCU A pplication-Specific Extension to the MIPS® Architecture
* Volume IV-i describesthe MIPS® Virtualization Module to the MIPS® Architecture

e Volume IV-j describes the MIPS® SIMD Architecture Module to the MIPS® Architecture
1.1 Typographical Conventions

This section describes the use of italic, bold and courier fontsin this book.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 18

About This Book

1.1.1 ltalic Text

isused for emphasis

isused for hits, fields, registers, that are important from a software perspective (for instance, address bits used by
software, and programmabl e fields and registers), and various floating point instruction formats, suchas S, D,
and PS

is used for the memory access types, such as cached and uncached

1.1.2 Bold Text

represents aterm that is being defined

is used for bits and fields that are important from a hardware perspective (for instance, register bits, which are
not programmable but accessible only to hardware)

is used for ranges of numbers; the range isindicated by an ellipsis. For instance, 5..1 indicates numbers 5 through
1

is used to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined bel ow.

1.1.3 Courier Text

courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

19

Theterms UNPREDI CTABLE and UNDEFINED are used throughout this book to describe the behavior of the
processor in certain cases. UNDEFINED behavior or operations can occur only asthe result of executing instructions
inaprivileged mode (i.e., in Kernel Mode or Debug Mode, or with the CPO usable bit set in the Status register).
Unprivileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDI CTABLE results may vary from processor implementation to implementation, instruction to instruction,
or as afunction of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause aresult to be generated or not. If aresult is gener-
ated, itisUNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDI CTABLE results or operations have several implementation restrictions:

Implementations of operations generating UNPREDICTABLE results must not depend on any data source
(memory or internal state) which is inaccessible in the current processor mode

UNPREDI CTABLE operations must not read, write, or modify the contents of memory or internal state which
isinaccessible in the current processor mode. For example, UNPREDICTABL E operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

1.3 Special Symbols in Pseudocode Notation

* UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as afunction of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

 UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which

there is no exit other than powering down the processor). The assertion of any of the reset signals must restore
the processor to an operationa state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as afunction of time on the same implementation or instruction. Unlike
UNPREDI CTABLE values, software may depend on the fact that a sampling of an UNSTABLE value resultsin a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABL E values have one implementation restriction:

* Implementations of operations generating UNSTABL E results must not depend on any data source (memory or
internal state) which isinaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning
«— Assignment
= # Tests for equality and inequality
[Bit string concatenation
xY A y-bit string formed by y copies of the single-bit value x
b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the

binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the default baseis 10.

Obn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).
Ooxn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).
Xy 2 Selection of bitsy through z of bit string x. Little-endian bit notation (rightmost bit is0) isused. If yisless

than z, this expression is an empty (zero length) bit string.

+,— 2's complement or floating point arithmetic: addition, subtraction

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 20

About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning
* X 2's complement or floating point multiplication (both used for either)
div 2's complement integer division
mod 2's complement modulo
/ Floating point division
< 2's complement less-than comparison
> 2's complement greater-than comparison
< 2's complement less-than or equal comparison
> 2's complement greater-than or equal comparison
nor Bitwise logical NOR
xor Bitwiselogical XOR
and Bitwiselogical AND
or Bitwiselogical OR
not Bitwise inversion
&& Logical (non-Bitwise) AND
<< Logical Shift left (shift in zeros at right-hand-side)
>> Logical Shift right (shift in zeros at left-hand-side)
GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers
GPR[X] CPU general-purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR[X] is ashort-hand notation for SGPR[SRSCltlcgs, X].
SGPR[s,X] In Release 2 of the Architecture and subsequent rel eases, multiple copies of the CPU general-purpose regis-
ters may be implemented. SGPR[s,X] refersto GPR set s, register x.
FPR[X] Floating Point operand register x
FCC[C(C] Floating Point condition code CC. FCC[0] has the same value as COCJ[1] .
FPR[X] Floating Point (Coprocessor unit 1), general register x
CPR[zx,5] Coprocessor unit z, general register x, select s
CP2CPR[X] Coprocessor unit 2, general register x
CCR[zX] Coprocessor unit z, control register x
CP2CCR[X] Coprocessor unit 2, control register x
COC[Z] Coprocessor unit z condition signal
Xlat[x] Trandation of the MIPS16e GPR number x into the corresponding 32-bit GPR number

BigEndianMem Endian mode as configured at chip reset (O —Little-Endian, 1 — Big-Endian). Specifies the endianness of
the memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endi-
anness of Kernel and Supervisor mode execution.

BigEndianCPU The endianness for load and store instructions (0 — Little-Endian, 1 — Big-Endian). In User mode, this
endianness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be com-
puted as (BigEndianMem XOR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode only,
and isimplemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRRrg and User mode).

21

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

1.3 Special Symbols in Pseudocode Notation

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

LLbit Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when alinked load occurs and istested by the conditional store. It is cleared, during other CPU operation,
when astore to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

I This occurs as a prefix to Operation description lines and functions as alabel. It indicates the instruction
I+n:, time during which the pseudocode appearsto “execute.” Unless otherwise indicated, all effects of the current
I-n: instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a
timelabel of |. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the

instruction time of another instruction. When this happens, the instruction operation is written in sections
|abeled with the instruction time, relative to the current instruction |, in which the effect of that pseudocode
appearsto occur. For example, an instruction may have aresult that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in asection labeled 1+1.

The effect of pseudocode statements for the current instruction labelled | +1 appears to occur “at the same
time” asthe effect of pseudocode statements labeled | for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statements for
different instructions that occur “at the sametime,” there is no defined order. Programs must not depend on a
particular order of evaluation between such sections.

PC The Program Counter value. During the instruction time of an instruction, thisis the address of the instruc-
tion word. The address of theinstruction that occurs during the next instruction timeis determined by assign-
ing avalue to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.

In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the
restart address into a GPR on ajump-and-link or branch-and-link instruction, or into a Coprocessor O register
on an exception. The PC value contains afull 32-bit address all of which are significant during amemory ref-

erence.

ISA Mode In processors that implement the M1PS16e Application Specific Extension or the microMIPS base architec-
tures, the ISA Mode isasingle-bit register that determines in which mode the processor is executing, asfol-
lows:

Encoding Meaning
0 The processor is executing 32-bit MIPS instructions
1 The processor is executing M11PS16e or microMIPS
instructions

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Modeinto a GPR on ajump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS The number of physical address bitsimplemented is represented by the symbol PABITS. As such, if 36
physical address bits were implemented, the size of the physical address space would be 2PABITS = 236 pyteg,

FP32RegistersMode | Indicates whether the FPU has 32-bit or 64-hit floating point registers (FPRS). Itisoptional if the FPU has
32 64-bit FPRsin which 64-bit data types are stored in any FPR.

microM | PS64 implementations have a compatibility mode in which the processor references the FPRs as if
it were amicroMIPS32 implementation. In such a case FP32Register M ode is computed from the FR bit in
the Satusregister. If thishitisa0, the processor operates asif it had 32 32-bit FPRs. If thishitisal, the pro-
cessor operates with 32 64-bit FPRs.

The value of FP32Register sM ode is computed from the FR bit in the Satus register.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 22

About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning
InstructioninBranchDe- | Indicates whether the instruction at the Program Counter address was executed in the delay slot of abranch
laySlot or jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the valueis

falseif abranch or jump occursto an instruction whose PC immediately follows abranch or jump, but which
is not executed in the delay dlot of abranch or jump.

Signal Exception(excep- | Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
tion, argument) parameter as an exception-specific argument). Control does not return from this pseudocode function—the

exception is signaled at the point of the call.

1.4 For More Information

Various MIPS RISC processor manuals and additional information about M1PS products can be found at the MIPS
URL: http://www mips.com

For comments or questions on the MIPS32® Architecture or this document, send Email to support@mips.com.

23 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Chapter 2

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphabetical
order in the tables at the beginning of the next chapter.

2.1 Understanding the Instruction Fields

Figure 2.1 shows an example instruction. Following the figure are descriptions of the fields listed below:
* “Instruction Fields’ on page 25

» “Instruction Descriptive Name and Mnemonic” on page 26

e “Format Field” on page 26

» “Purpose Field” on page 27

» “Description Field” on page 27

» “Restrictions Field” on page 27

* “Operation Field” on page 28

+ “Exceptions Field” on page 28

» “Programming Notes and Implementation Notes Fields’ on page 29

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 24

Guide to the Instruction Set

Figure 2.1 Example of Instruction Description

gircur?sg:e'\/,\l‘lmom% Example Instruction Name EXAMPLE
EXAMPLE
Instruction encoding 31 26 25 21 20 16 15 11 10 6 5 0
e seoA [. " o [B
000000 00000 000000
6 5 5 5 5 6

Architecture level at which

instruction was defined/redefined \A

/7 Format: EXAMPLE fd,rs,rt MIPS32
Assembler format(s) for each
definition

/D Purpose: Example Instruction Name
Short description

To execute an EXAMPLE op.

Symbolic description ————J> Description: GPR[rd] « GPR[r]s exampleop GPR[rt]

Full description of ———————=> This section describes the operation of the instruction in text, tables, and illustrations. It
instruction operation includes information that would be difficult to encode in the Operation section.

Restrictions on instruction ~ Restrictions:

and operands
This section lists any restrictions for the instruction. This can include values of the instruc-
tion encoding fields such as register specifiers, operand values, operand formats, address
alignment, instruction scheduling hazards, and type of memory access for addressed loca
tions.

High-level language ———>> Operation:

description of instruction

operation /* This section describes the operation of an instruction in */
/* a high-level pseudo-language. It 1is precise in ways that */
/* the Description section is not, but is also missing */
/* information that is hard to express in pseudocode. */
temp ¢ GPR[rs] exampleop GPR[rt]

GPR[rd] « temp

Exceptions that = Exceptions:
instruction can cause

A list of exceptions taken by the instruction

Notes for programmers _—T Programming Notes:

Information useful to programmers, but not necessary to describe the operation of the
instruction

Notes for implementors ———J~ TImplementation Notes:

Like Programming Notes, except for processor implementors

2.1.1 Instruction Fields

25 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

2.1 Understanding the Instruction Fields
Fields encoding the instruction word are shown in register form at the top of the instruction description. The follow-
ing rules are followed:

» Thevalues of constant fields and the opcode names are listed in uppercase (SPECIAL and ADD in Figure 2.2).
Constant valuesin afield are shown in binary below the symbolic or hexadecimal value.

* All variable fields are listed with the lowercase names used in the instruction description (rs, rt, and rd in Figure
2.2).

» Fieldsthat contain zeros but are not named are unused fields that are required to be zero (bits 10:6 in Figure 2.2).
If such fields are set to non-zero values, the operation of the processor is UNPREDICTABLE.

Figure 2.2 Example of Instruction Fields

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs " rd 0 ADD
000000 00000 100000
6 5 5 5 5 6

2.1.2 Instruction Descriptive Name and Mnemonic

Theinstruction descriptive name and mnemonic are printed as page headings for each instruction, as shown in Figure
2.3.

Figure 2.3 Example of Instruction Descriptive Name and Mnemonic

Add Word ADD

2.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defined are
given in the Format field. If the instruction definition was later extended, the architecture levels at which it was
extended and the assembl er formats for the extended definition are shown in their order of extension (for an example,
see C.cond fmt). The MIPS architecture levels are inclusive; higher architecture levelsinclude all instructionsin pre-
vious levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the
extended architecture.

Figure 2.4 Example of Instruction Format

Format: ADD fd,rs,rt MIPS32

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the lowercase names of the appropriate fields. The architectura level at
which the instruction was first defined, for example “MIPS32” is shown at the right side of the page.

There can be more than one assembler format for each architecture level. Floating point operations on formatted data

show an assembly format with the actual assembler mnemonic for each valid value of the fnt field. For example, the
ADD fmt instruction lists both ADD.S and ADD.D.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 26

Guide to the Instruction Set

The assembler format lines sometimes include parenthetical commentsto help explain variations in the formats (once
again, see C.cond.fmt). These comments are not a part of the assembler format.

Theterm decoded immediateis used if theimmediate field is encoded within the binary format but the assembler for-

mat uses the decoded value. Theterm left_shifted_offset isused if the offset field is encoded within the binary format
but the assembler format uses value after the appropriate amount of left shifting.

2.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

Figure 2.5 Example of Instruction Purpose
Purpose: Add Word

To add 32-hit integers. If an overflow occurs, then trap.

2.1.5 Description Field

If aone-line symbolic description of the instruction is feasible, it appearsimmediately to the right of the Description
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operation.

Figure 2.6 Example of Instruction Description

Description: GPR[rd] « GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rsto produce a 32-bit
result.

» |If theaddition resultsin 32-bit 2's complement arithmetic overflow, the destination
register is not modified and an Integer Overflow exception occurs.

» |If the addition does not overflow, the 32-bit result is placed into GPR rd.

The body of the section is a description of the operation of the instruction in text, tables, and figures. This description
complements the high-level language description in the Operation section.

This section uses acronyms for register descriptions. “GPR rt” is CPU general-purpose register specified by the
instruction field rt. “FPR fs" is the floating point operand register specified by theinstruction field fs. “ CP1 register

fd” isthe coprocessor 1 general register specified by the instruction field fd. “FCSR” is the floating point Control /
Status register.

2.1.6 Restrictions Field

The Restrictions field documents any possible restrictions that may affect the instruction. Most restrictions fall into
one of the following six categories:

» Validvaluesfor instruction fields (for example, see floating point ADD fmt)
* ALIGNMENT requirements for memory addresses (for example, see LW)

» Vaidvalues of operands (for example, see ALNV.PS)

27 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

2.1 Understanding the Instruction Fields

» Valid operand formats (for example, see floating point ADD fmt)

» Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline hazards
for which some processors do not have hardware interlocks (for example, see MUL).

» Vaid memory access types (for example, see LL/SC)

Figure 2.7 Example of Instruction Restrictions

Restrictions:

None

2.1.7 Operation Field

The Operation field describes the operation of the instruction as pseudocode in a high-level language notation resem-
bling Pascal. Thisformal description complements the Description section; it is not complete in itself because many
of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Figure 2.8 Example of Instruction Operation

Operation:

temp < (GPR[rsli;||GPR[rslz; o) + (GPR[rtlsq||GPR[rtls; o)
if temps;, # temps; then
SignalException (IntegerOverflow)
else
GPR[rd] ¢« temp
endif

See 2.2 “Operation Section Notation and Functions” on page 29 for more information on the formal notation used
here.

2.1.8 Exceptions Field

The Exceptions field lists the exceptions that can be caused by Operation of the instruction. It omits exceptions that
can be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be caused by asyn-
chronous external events such as an Interrupt. Although a Bus Error exception may be caused by the operation of a
load or store instruction, this section does not list Bus Error for load and store instructions because the relationship
between load and store instructions and external error indications, like Bus Error, are dependent upon the implemen-
tation.

Figure 2.9 Example of Instruction Exception
Exceptions:

Integer Overflow

Aninstruction may cause implementation-dependent exceptions that are not present in the Exceptions section.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 28

Guide to the Instruction Set

2.1.9 Programming Notes and Implementation Notes Fields

The Notes sections contain material that is useful for programmers and implementors, respectively, but that is not
necessary to describe the instruction and does not belong in the description sections.

Figure 2.10 Example of Instruction Programming Notes

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

2.2 Operation Section Notation and Functions

29

In an instruction description, the Operation section uses a high-level language notation to describe the operation per-
formed by each instruction. Special symbols used in the pseudocode are described in the previous chapter. Specific
pseudocode functions are described bel ow.

This section presents information about the following topics:

* “Instruction Execution Ordering” on page 29

» “Pseudocode Functions’ on page 29

2.2.1 Instruction Execution Ordering

Each of the high-level language statementsin the Operations section are executed sequentially (except as constrained
by conditional and loop constructs).

2.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudocode more
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and
include the following:

» “Coprocessor General Register Access Functions’ on page 29

» “Memory Operation Functions’ on page 31

* “Floating Point Functions’ on page 34

» “Miscellaneous Functions’ on page 37

2.2.2.1 Coprocessor General Register Access Functions

Defined coprocessors, except for CPO, have instructions to exchange words and doublewords between coprocessor
genera registers and the rest of the system. What a coprocessor does with aword or doubleword supplied to it and
how a coprocessor supplies aword or doubleword is defined by the coprocessor itself. This behavior is abstracted
into the functions described in this section.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

2.2 Operation Section Notation and Functions

COP_LW

The COP_LW function defines the action taken by coprocessor z when supplied with aword from memory during a
load word operation. The action is coprocessor-specific. The typical action would be to store the contents of mem-

word in coprocessor general register rt.

Figure 2.11 COP_LW Pseudocode Function

COP_LW (z, rt, memword)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memword: A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */
endfunction COP_LW
COP_LD

The COP_LD function defines the action taken by coprocessor z when supplied with a doubleword from memory
during aload doubleword operation. The action is coprocessor-specific. The typical action would be to store the con-

tents of memdouble in coprocessor general register rt.
Figure 2.12 COP_LD Pseudocode Function

COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memdouble: 64-bit doubleword value supplied to the coprocessor.

/* Coprocessor-dependent action */
endfunction COP_LD
COP_SW

The COP_SW function defines the action taken by coprocessor z to supply aword of data during a store word opera-
tion. The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in

coprocessor general register rt.
Figure 2.13 COP_SW Pseudocode Function

dataword ¢« COP_SW (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
dataword: 32-bit word value

/* Coprocessor-dependent action */
endfunction COP_SW
COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store dou-
bleword operation. The action is coprocessor-specific. The typical action would be to supply the contents of the low-

order doubleword in coprocessor general register rt.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 30

Guide to the Instruction Set

Figure 2.14 COP_SD Pseudocode Function
datadouble ¢« COP_SD (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
datadouble: 64-bit doubleword value
/* Coprocessor-dependent action */

endfunction COP_SD

CoprocessorOperation
The CoprocessorOperation function performs the specified Coprocessor operation.

Figure 2.15 CoprocessorOperation Pseudocode Function
CoprocessorOperation (z, cop_fun)

/* z: Coprocessor unit number */
/* cop_fun: Coprocessor function from function field of instruction */

/* Transmit the cop_fun value to coprocessor z */
endfunction CoprocessorOperation

2.2.2.2 Memory Operation Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword isthe smallest byte
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for alittle-endian
ordering thisis the least-significant byte.

In the Operation pseudocode for load and store operations, the foll owing functions summarize the handling of virtual
addresses and the access of physical memory. The size of the dataitem to be loaded or stored is passed in the
AccessLength field. The valid constant names and values are shown in Table 2.1. The bytes within the addressed unit
of memory (word for 32-bit processors or doubleword for 64-bit processors) that are used can be determined directly
from the AccessLength and the two or three low-order bits of the address.

AddressTranslation

The AddressTranslation function trandates a virtual address to a physical address and its cacheability and coherency
attribute, describing the mechanism used to resolve the memory reference.

Given the virtual address vAddr, and whether the referenceis to Instructions or Data (lorD), find the corresponding
physical address (pAddr) and the cacheability and coherency attribute (CCA) used to resolve the reference. If the vir-
tual addressisin one of the unmapped address spaces, the physical address and CCA are determined directly by the
virtual address. If the virtual addressisin one of the mapped address spaces then the TLB or fixed mapping MMU
determines the physical address and access type; if the required translation is not present in the TLB or the desired
access is not permitted, the function fails and an exception is taken.

Figure 2.16 AddressTranslation Pseudocode Function
(pAddr, CCA) <« AddressTranslation (vAddr, IorD, LorS)

/* pAddr: physical address */
/* CCA: Cacheability&Coherency Attribute, the method used to access caches*/

31 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

2.2 Operation Section Notation and Functions

/* and memory and resolve the reference */

/* vAddr: virtual address */
/* IorD: Indicates whether access is for INSTRUCTION or DATA */
/* LorS: Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

LoadMemory
The LoadMemory function loads a value from memory.

This action uses cache and main memory as specified in both the Cacheability and Coherency Attribute (CCA) and
the access (lorD) to find the contents of AccessLength memory bytes, starting at physical location pAddr. The datais
returned in a fixed-width naturally aligned memory element (MemElem). The low-order 2 (or 3) bits of the address
and the AccessLength indicate which of the bytes within MemElem need to be passed to the processor. If the memory
accesstype of the reference is uncached, only the referenced bytes are read from memory and marked as valid within
the memory element. If the accesstypeis cached but the datais not present in cache, an implementation-specific size
and alignment block of memory is read and loaded into the cache to satisfy aload reference. At a minimum, this
block is the entire memory element.

Figure 2.17 LoadMemory Pseudocode Function

MemElem ¢« LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a natural alignment. The */
/* width is the same size as the CPU general-purpose register, */

/* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */

/* respectively. */

/* CCA: Cacheability&CoherencyAttribute=method used to access caches */

/* and memory and resolve the reference */

/* AccessLength: Length, in bytes, of access */

/* pAddr: physical address */
/* vAddr: virtual address */
/* IorD: Indicates whether access is for Instructions or Data */

endfunction LoadMemory

StoreMemory
The StoreMemory function stores a value to memory.

The specified datais stored into the physical location pAddr using the memory hierarchy (data caches and main mem-
ory) as specified by the Cacheability and Coherency Attribute (CCA). The MemElem contains the data for an aligned,
fixed-width memory element (aword for 32-bit processors, a doubleword for 64-bit processors), though only the
bytesthat are actually stored to memory need be valid. The low-order two (or three) bits of pAddr and the AccessLen-
gth field indicate which of the bytes within the MemElem data should be stored; only these bytesin memory will
actually be changed.

Figure 2.18 StoreMemory Pseudocode Function

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 32

Guide to the Instruction Set

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */

/* AccessLength: Length, in bytes, of access */

/* MemElem: Data in the width and alignment of a memory element. */

/* The width is the same size as the CPU general */

/* purpose register, either 4 or 8 bytes, */

/* aligned on a 4- or 8-byte boundary. For a */

/* partial-memory-element store, only the bytes that will be*/
/* stored must be valid.*/

/* pAddr: physical address */

/* VAddr: virtual address */

endfunction StoreMemory

Prefetch
The Prefetch function prefetches data from memory.

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may
increase performance but must not change the meaning of the program or alter architecturally visible state.

Figure 2.19 Prefetch Pseudocode Function
Prefetch (CCA, pAddr, vAddr, DATA, hint)
/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */
/* pAddr: physical address */
/* vAddr: virtual address */
/* DATA: Indicates that access is for DATA */
/* hint: hint that indicates the possible use of the data */

endfunction Prefetch

Table 2.1 lists the data access lengths and their labels for loads and stores.

Table 2.1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning
DOUBLEWORD 7 8 bytes (64 hits)
SEPTIBYTE 6 7 bytes (56 bits)
SEXTIBYTE 5 6 bytes (48 bits)
QUINTIBYTE 4 5 bytes (40 bits)
WORD 3 4 bytes (32 bits)
TRIPLEBYTE 2 3 bytes (24 bits)
HALFWORD 1 2 bytes (16 bits)
BYTE 0 1 byte (8 bits)

SyncOperation

The SyncOperation function orders loads and stores to synchronize shared memory.

33 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

2.2 Operation Section Notation and Functions

This action makes the effects of the synchronizable |oads and storesindicated by stype occur in the same order for all
processors.

Figure 2.20 SyncOperation Pseudocode Function
SyncOperation (stype)
/* stype: Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

2.2.2.3 Floating Point Functions

The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are inter-
preted to form aformatted value. If an FPR contains a value in some format, rather than unformatted contents from a
load (uninterpreted), it is valid to interpret the value in that format (but not to interpret it in a different format).

ValueFPR
The ValueFPR function returns a formatted value from the floating point registers.

Figure 2.21 ValueFPR Pseudocode Function
value ¢« ValueFPR (fpr, fmt)

/* value: The formattted value from the FPR */

/* fpr: The FPR number */

/* fmt: The format of the data, one of: */
/* s, D, w, L, PS, */

/* OB, QH, */

/* UNINTERPRETED_WORD, */

/* UNINTERPRETED_DOUBLEWORD */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* 1s not known as, for example, in SWC1l and SDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:
valueFPR « FPR[fpr]

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)
if (fprg # 0) then
valueFPR ¢« UNPREDICTABLE
else
valueFPR < FPR[fpr+lls; o || FPRIfprls; o
endif
else
valueFPR « FPR[fpr]
endif

L, PS:

if (FP32RegistersMode = 0) then
valueFPR <« UNPREDICTABLE

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 34

Guide to the Instruction Set

else
valueFPR « FPR[fpr]
endif

DEFAULT:
valueFPR <« UNPREDICTABLE

endcase
endfunction ValueFPR

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored into CP1
registers by a computational or move operation. This binary representation is visible to store or move-from instruc-
tions. Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a
different format.

StoreFPR

Figure 2.22 StoreFPR Pseudocode Function

StoreFPR (fpr, fmt, value)

/* fpr: The FPR number */

/* fmt: The format of the data, one of: */
/* s, D, W, L, PS, */

/* OB, QH, */

/* UNINTERPRETED WORD, */

/* UNINTERPRETED_DOUBLEWORD */

/* value: The formattted value to be stored into the FPR */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in LWC1 and LDC1l */

case fmt of
S, W, UNINTERPRETED_WORD:
FPR[fpr] « value

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)
if (fprg # 0) then
UNPREDICTABLE
else
FPR[fpr] < UNPREDICTABLE’? || value;;
FPR[fpr+l] <« UNPREDICTABLE’? || valueg; 3,
endif
else
FPR[fpr] <« value
endif

L, PS:
if (FP32RegistersMode = 0) then
UNPREDICTABLE
else
FPR[fpr] <« value
endif

endcase

35 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

2.2 Operation Section Notation and Functions

endfunction StoreFPR

The pseudocode shown below checks for an enabled floating point exception and conditionally signals the exception.
CheckFPException
Figure 2.23 CheckFPException Pseudocode Function
CheckFPException ()
/* A floating point exception is signaled if the E bit of the Cause field is a 1 */

/* (Unimplemented Operations have no enable) or if any bit in the Cause field */
/* and the corresponding bit in the Enable field are both 1 */

if | (FCSRy7 = 1) or
((FCSR1g. .15 and FCSRqq_ . 7) # 0))) then
SignalException (FloatingPointException)
endif

endfunction CheckFPException

FPConditionCode
The FPConditionCode function returns the value of a specific floating point condition code.
Figure 2.24 FPConditionCode Pseudocode Function
tf «FPConditionCode (cc)
/* tf: The value of the specified condition code */
/* cc: The Condition code number in the range 0..7 */
if cc = 0 then
FPConditionCode ¢« FCSRj3
else
FPConditionCode ¢ FCSRyg,cc

endif
endfunction FPConditionCode
SetFPConditionCode
The SetFPConditionCode function writes a new value to a specific floating point condition code.

Figure 2.25 SetFPConditionCode Pseudocode Function

SetFPConditionCode(cc, tf)
if cc = 0 then

FCSR ¢« FCSR3; 24 || tf || FCSRyy. g
else
FCSR ¢ FCSR31. 254cc | | tf | | FCSR334cc. .0

endif

endfunction SetFPConditionCode

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 36

Guide to the Instruction Set

37

2.2.2.4 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

SignhalException
The Signal Exception function signals an exception condition.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.26 SignalException Pseudocode Function
SignalException (Exception, argument)

/* Exception: The exception condition that exists. */
/* argument: A exception-dependent argument, if any */

endfunction SignalException

SignhalDebugBreakpointException

The Signal DebugBreakpointException function signals a condition that causes entry into Debug Mode from non-
Debug Mode.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.27 SignalDebugBreakpointException Pseudocode Function
SignalDebugBreakpointException ()
endfunction SignalDebugBreakpointException

SignalDebugModeBreakpointException

The Signal DebugM odeBreakpointException function signals a condition that causes entry into Debug Mode from
Debug Mode (i.e., an exception generated while already running in Debug Mode).

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.28 SignalDebugModeBreakpointException Pseudocode Function
SignalDebugModeBreakpointException ()
endfunction SignalDebugModeBreakpointException
NullifyCurrentinstruction

The NullifyCurrentInstruction function nullifies the current instruction.

Theinstruction isaborted, inhibiting not only the functional effect of the instruction, but also inhibiting all exceptions
detected during fetch, decode, or execution of the instruction in question. For branch-likely instructions, nullification
killsthe instruction in the delay slot of the branch likely instruction.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

2.3 Op and Function Subfield Notation

Figure 2.29 NullifyCurrentinstruction PseudoCode Function
NullifyCurrentInstruction ()
endfunction NullifyCurrentInstruction
JumpDelaySlot

The JumpDelaySlot function is used in the pseudocode for the PC-rélative instructions in the MIPS16e ASE. The
function returns TRUE if the instruction at vAddr is executed in ajump delay slot. A jump delay slot always immedi-
ately followsaJr, JAL, JALR, or JALX instruction.

Figure 2.30 JumpDelaySlot Pseudocode Function
JumpDelaySlot (vAddr)
/* vAddr:Virtual address */
endfunction JumpDelaySlot
PolyMult
The PolyMult function multiplies two binary polynomial coefficients.
Figure 2.31 PolyMult Pseudocode Function

PolyMult (x, vy)

temp < 0
for i in 0 .. 31
if x; = 1 then
temp ¢« temp xor (y(31-i)..0 || 0%)
endif
endfor

PolyMult <« temp

endfunction PolyMult

2.3 Op and Function Subfield Notation

In some instructions, the instruction subfields op and function can have constant 5- or 6-bit values. When referenceis
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction,
op=COP1 and function=ADD. In other cases, asingle field has both fixed and variable subfields, so the name con-

tains both upper- and lowercase characters.

2.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfieldsin an instruction format (such asfs, ft, imme-
diate, and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown in upper-

case.

For the sake of clarity, an aliasis sometimes used for a variable subfield in the formats of specific instructions. For
example, rs=base in the format for load and store instructions. Such an aliasis always lowercase since it refersto a

variable subfield.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 38

Guide to the Instruction Set

39

Bit encodings for mnemonics are given in Volume , in the chapters describing the CPU, FPU, MDMX, and MIPS16e
instructions.

See “Op and Function Subfield Notation” on page 38 for a description of the op and function subfields.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

2.4 FPU Instructions

40

Chapter 3

Introduction

In today’s market, the lowest price/performance points must be satisfied, especially for deeply-embedded applica-
tions such as microcontroller applications. Moreover, customers require efficient solutions that can be turned into
products quickly. To meet this need, the MIPS® instruction set has been optimized and re-encoded into a new vari-
able- length scheme. This solution is called microMIPS™,

microM I PS minimizes the resulting code footprint of applications and it therefore reduces the cost of memory, which
is particularly high for embedded memory. Simultaneously, the high performance of MIPS coresis maintainedUsing
this technology, the customer can generate best results without spending time to profile its application. The smaller
code footprint typically leads to reduced power consumption per executed task because of the smaller number of
MEeMmOory aCccesses.

microMIPSis the preferred replacement for the existing MIPS16e™ ASE. MI1PS16e could only be used for user
mode programs which did not use floating-point nor any of the Application Specific Extensions (ASEs). microMIPS
does not have these limitations - it can be used for kernel mode code aswell as user mode programs; it can be used for
programs which use floating-point; it can be used with the available ASEs.

microMIPS is also an aternative to the MIPS32® instruction encoding and can be implemented in parallel or stand-
alone. The microMIPS equivalent of MIPS32 is named microM|1PS32™ and the microMIPS equivalent of MIPS64 is
microM I PS64™,

Overview of changesvs. existing MIPS32 ISA:

e 16-bit and 32-bit opcodes

» Optimized opcode/operand field definitions based on statistics

* Branch and jump delay slots will be kept for maximum compatibility and lowest risk
* Removal of branch likely instructions, emulation by assembler

* Fine-tuned register allocation algorithm in the compiler for lowest code size
3.1 Release 3 of the MIPS Architecture

Enhancements included in Release 3 of the MIPS Architecture (also known as MIPSr3™) are:

e microMIPS: The MIPS Release 3 Architecture (also known as MIPSr3™) supports both the MIPS32 instruction
set and microM|1PS32™ instruction set. Both can be implemented either in parallel or stand-alone. For the first
implementations, microMIPS will be primarily implemented together with MIPS32 encoded instruction execu-
tion.

* microMIPSisthe preferred replacement for MIPS16e. Therefore these two schemes never co-exist within the
same processor core.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 41

3.2 Default ISA Mode

» Branch likely instructions are phased out in microM1PS and are emulated by the assembler. They remain avail-
able in the MIPS32 encoding.

Unless otherwise described in this document, all other aspects of the microMIPS32 architecture are identical to
MIPS32 Release 2.

3.2 Default ISA Mode

Theinstruction sets which are available within an implementation are reported by the Config3,sa register field (bits
15:14). Configlcp (bit 2) is not used for microM|PS32.

For implementations that support both microM1PS32 and MI1PS32, the selected ISA mode following reset is deter-
mined by the setting of the Config3,qa register field., which isaread-only field set by ahardware signal external to the

[processor core.

For implementations that support both microMIPS32 and MIPS32, the selected ISA mode upon handling an excep-
tion is determined by the setting of the Config3,gsaonexc register field (bit 16). The Config3,saonexc register field is
writeable by software and has areset value that is set by a hardware signal external to the processor core. Thisregister
field allows privileged software to change the |SA mode to be used for subsequent exceptions. This capability isfor
all exception types whose vectors are offsets of the EBASE register.

For implementations that support both microMI1PS32 and MI1PS32, the selected | SA mode when handling a debug
exception is determined by the setting of the ISAonDebug register field in the EJTAG TAP Control register. Thisreg-
ister field is writeable by EJTAG probe software and has areset value that is set by a hardware signal external to the
processor core.

For CPU cores supporting the MT ASE and multiple VPEs, the ISA mode for exceptions can be selected on a per-
VPE basis.

3.3 Software Detection

Software can determine if microMI1PS32 | SA isimplemented by checking the state of the ISA (Instruction Set Archi-
tecture) field in the Config3 CPO register. Configlcp (bit 2) is not used for microMIPS32.

Software can determine if the MIPS32 | SA isimplemented by checking the state of the ISA (Instruction Set Architec-
ture) register field in the Config3 CPO register.

Software can determine which 1SA is used when handling an exception by checking the state of the ISAONnEXxc (I1SA
on Exception) field in the Config3 CPO register.

Debug Probe Software can determine which ISA is used when handling a debug exception by checking the state of
the ISAONnDebug field in the EJITAG TAP Control register.

3.4 Compliance and Subsetting

This document does not change the instruction subsets as defined by the other MIPS architecture reference manuals,
including the subsets defined by the various ASEs.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 42

Introduction

3.5 ISA Mode Switch

The MIPS Release 3 architecture defines an | SA mode for each processor. An | SA mode value of 0 indicates M1PS32
instruction decoding. In processors implementing microMPS32, an ISA mode value of 1 selects microM I PS32
instruction decoding. In processorsimplementing the MIPS16e ASE, an ISA mode value of 1 selects the decoding of
instructions as MIPS16e.

The ISA mode is not directly visible to user mode software. Upon an exception, the ISA mode of the faulting/inter-
rupted instruction is recorded in the | east-significant address bit within the appropriate return address register - either
EPC or ErrorEPC or DebugEPC, depending on the exception type.

For the rest of this section, the following definitions are used:

Jump-and-Link-Register instructions: For the MIPS32 ISA, this means the JALR and JALR.HB instructions. For the
microM1PS32 ISA, thismeansthe JALR, JALR.HB, JALR16, JALRS, JALRS16 and JALRS.HB instructions.

Jump-Register instructions: For the MIPS32 | SA, this means the JR and JR.HB instructions. For the microM1PS32
ISA, this means the instructions JR, JR.HB, JR16, JRC and JRADDIUSP instructions.

M ode switching between M1PS32 and microM I PS32 uses the same mechanism used by M1PS16e, namely, the JALX,
Jump-and-Link-Register and Jump-Register instructions, as described bel ow.

« TheJALX instruction executes a JAL and switches to the other mode.

* The Jump-and-Link-Register and Jump-Register instructions interpret bit O of the source registers as the target
ISA mode (0=MI1PS32, 1=microM1PS32) and therefore set the |SA Mode bit according to the contents of bit O of
the source register. For the actual jump operation, the PC isloaded with the value of the source register with bit O
set to 0. The Jump-and-Link-Register instructions save the ISA mode into bit O of the destination register.

* When exceptions or interrupts occur and the processor writes to EPC, DEPC, or ErrorEPC, the ISA Mode bit is
saved into bit O of these registers. Then the ISA Mode bit is set according to the Config3,ga register field. On
return from an exception, the processor |oads the ISA Mode bit based on the value from either EPC, DEPC, or
ErrorEPC.

If only one ISA mode exists (either MIPS32 or microM|1PS32) then this mode switch mechanism does not exist, but
the ISA Mode hit is still maintained and has a fixed value (0=MIPS32, 1=microMI1PS32). Thisisto maintain code
compatibility between devices which implement both |SA modes and devices which implement only one |SA mode.
Executing the JALX instruction will cause a Reserved Instruction exception. Jump-Register and Jump-and-Link-Reg-
ister instructions cause an Address exception on the target instruction fetch when bit 0 of the source register is differ-
ent from the fixed | SA mode. Exception handlers must use the instruction set binary format supported by the
processor. The Jump-and-Link-Register instructions must still save the fixed ISA mode into bit 0 of the destination
register.

3.6 Branch and Jump Offsets

In the MIPS32 architecture, because instructions are always 32 bits in size, the jump and branch target addresses are
word (32-bit) aligned. Jump/branch offset fields are shifted left by two bitsto create aword-aligned effective address.

43 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

3.7 Coprocessor Unusable Behavior

In the microM1PS32 architecture, because instructions can be either 16 or 32 bitsin size, the jump and branch target
addresses are halfword (16-bit) aligned. Branch/jump offset fields are shifted |eft by only one bit to create halfword-
aligned effective addresses.

To maintain the existing MI1PS32 ABIs, link unit/object file entry points are restricted to 32-bit word alignments. In
the future, amicroMIPS32-only ABI can be created to remove this restriction.

3.7 Coprocessor Unusable Behavior

If an instruction associated with a non-implemented coprocessor is executed, it isimplementation specific whether a
processor executing in microM|1PS32 mode raises an Rl exception or a coprocessor unusabl e exception. This behav-
ior is different from the MIPS32 behavior in which coprocessor unusable exception is signalled for such cases.

If the microM1PS32 implementation chooses to use RI exception in such cases, the microMIPS32 RI exception han-

dler must check for coprocessor instructions being executed while the associated coprocessor isimplemented but has
been disabled (Statusqyy Set to zero).

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 44

Chapter 4

Instruction Formats

This chapter defines the formats of microMIPS instructions. The microMIPS variable-length encoding comprises 16-
bit and 32-bit wide instructions. The 6-bit major opcode is |eft-aligned within the instruction encoding. Instructions
can have 0 to 4 register fields. For 32-bit instructions, the register field width is 5 bits, while for most 16-bit instruc-
tions, the register field width is 3 bits, utilizing instruction-specific register encoding. All 5-bit register fields are
located at a constant position within the instruction encoding.

The immediate field isright-aligned in the following instructions:
e some 16-bit instructions with 3-bit register fields
* 32-bit instructions with 16-bit or 26-bit immediate field

The name ‘immediate field' as used here includes the address offset field for branches and load/store instructions as
well asthe jump target field.

Other instruction-specific fields are typically located between the immediate and minor opcode fields. Instructions
that have multiple “other” fields are listed in al phabetical order according to the name of thefield, with the first name
of the order located at the lower bit position. An empty bit field that is not explicitly shown in the instruction format
islocated next to the minor opcode field.

Figure 4.1 and Figure 4.2 show the 16-bit and 32-bit instruction formats.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 45

S3RO

S3R1I7

S3R2I10

S3R2I3

S3R214

S3R3I0

S5R1I0

S5R1I5

S5R2I10

Figure 4.1 16-Bit Instruction Formats

15 10 9 0
| Major Opcode | Minor Opc/Imm |
15 10 9 7 6 0
| Major Opcode | rsl/d | Minor Opc/lmm |
15 10 9 6 5 3 2 0
| Major Opcode | Minor Opc | rs2/d | rsl |
15 10 9 7 6 4 3 1 0
| Major Opcode | rs2/d | rsl | Imm | M |
15 10 9 7 6 4 3 0
| Major Opcode | rs2/d | rsl | Minor Opc/Imm |
15 10 9 7 6 4 3 1 0
| Major Opcode | rd | rs2 | rsl | M |
15 10 9 5 4 0
| Major Opcode | Minor opc | rsl/d |
15 10 9 5 4 0
| Major Opcode | rd | Minor Opc/lmm |
15 10 9 5 4 0
| Major Opcode ‘ rd ‘ rsl ‘

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

46

Instruction Formats

Figure 4.2 32-Bit Instruction Formats

31 26 25 0
RO | Major Opcode | Immediate/Minor Opcode/Other |
31 26 25 21 20 16 15 0
R1 | Major Opcode | Imm/Other | rs/fs/base | Immediate/Minor Opcode/Other |
31 26 25 21 20 16 15 0
R2 | Major Opcode | rt/ft/index | rs/fs/base | Immediate/Minor Opcode/Other |
31 26 25 21 20 16 15 11 10 0
R3 | Major Opcode | rt/ft/index | rs/fs/base | rd/fd | Immediate/Minor Opcode/Other |
31 26 25 21 20 16 15 11 10 6 5 0
R4 | Major Opcode | rt/ft | rsifs ‘ rd/fd ‘ rr/fr Minor Opcode/Other ‘

Figure 4.3 Immediate Fields within 32-Bit Instructions

32-bit instruction formats with 26-bit immediate fields:

31 26 25 0

ROI26 | Major Opcode | Immediate |

31 26 25 16 15 0

ROI16 | Major Opcode | Minor Opcode/Other Immediate |

32-bit instruction formats with 16-bit immediate fields:

31 26 25 21 20 16 15 0
R1116 | Major Opcode |Min0rOpcode/Other| rs/fs | Immediate |
31 26 25 21 20 16 15 0
R2I16 | Major Opcode | rt/ft | rs/fs ‘ Immediate ‘

32-bit instruction formats with 12-bit immediate fields:

31 26 25 21 20 16 15 12 11 0
R1I12 | Major Opcode | Other | rsifs | Minor Opcode | Immediate |

31 26 25 21 20 16 15 12 11 0
R2I12 | Major Opcode | rt/ft | rsifs ‘ Minor Opcode ‘ Immediate ‘

a7 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

4.1 Instruction Stream Organization and Endianness

Theinstruction size can be completely derived from the major opcode. For 32-bit instructions, the major opcode also

defines the position of the minor opcode field and whether or not the immediate field is right-aligned.

Instructions formats are named according to the number of the register fields and the size of theimmediate field. The
names have the structure R<x>I<y>. For example, an instruction based on the format R2116 has 2 register fieldsand a

16-bit immediate field.

Table 4.1 shows all formats. The 16-hit formats refer to either 3-bit or 5-hit register fields. To visualize this, a 16-bit
format name starts with the prefix S3 or S5 respectively.

Table 4.1 microMIPS Opcode Formats

32-bit
Instruction
Formats
(additional
32-bit Instruction format(s) for 16-bit
Formats (existing new Instruction

instructions) instructions) Formats
ROIO R2112 S3R0I0
ROI8 S3R0I10
ROI16 S3R117
ROI26 S3R210
R1I0 S3R2I3
R1I2 S3R214
R1I7 S3R3I1
R1I8 S5R110
R1110 S5R114
R1116 S5R210
R210
R212
R2I3
R214
R2I5
R2110
R2116
R3I10
R3I3
R410

4.1 Instruction Stream Organization and Endianness

16-hit instructions are placed within the 32-bit (or 64-hit) memory element according to system endianness.

» Ona32-hit processor in big-endian mode, thefirst instruction isread from bits 31..16, and the second instruction

isread from bits 15..0.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

48

Instruction Formats

49

* Ona32-bit processor in little-endian mode, thefirst instruction isread from bits 15..0, and the second instruction
isread from bits 31..16.

The above rule also applies to the halfwords of 32-hit instructions. This means that a 32-bit instruction is not treated
asaword datatype; instead, the halfwords are treated in the same way asindividua 16-bit instructions. The halfword
containing the major opcode is always the first in the sequence.

Example:
SRL rl, rl, 7 binary opcode fields: 000000 00001 00001 00111 00001 000000
hex representation: 0021 3840
Address: 32 1 0
Little Endian: Data: 38 40 00 21
Address: o 1 2 3
Big Endian: Data: 00 21 38 40

Instructions are placed in memory such that they are in-order with respect to the address.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

4.1 Instruction Stream Organization and Endianness

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

50

Chapter 5

microMIPS Re-encoded Instructions

This chapter lists al microMIPS re-encoded instructions, sorted into 16-bit and 32-bit categories.
In the 16-bit category:

* Frequent MIPS32 instructions and macros, re-encoded as 16-bit. Register and immediate fields are reduced in
size by using encodings of frequently occurring values.

In the 32-bit category:

* All MIPS32 instructions, including all application-specific extensions except M1PS16e, re-encoded:
MIPS32, MIPS-3D ASE, MIPSDSP ASE, MIPSMT ASE, and SmartMI1PS ASE.

» Opcode space for user-defined instructions (UDIs).

* New instructions designed primarily to reduce code size.

To differentiate between 16-bit and 32-bit encoded instructions, the instruction mnemonic can be optionally extended
with the suffix “16” or “ 32" respectively. This suffix is placed at the end of the instruction beforethefirst ‘. if thereis
one. For example:

ADD16, ADD32, ADD32.PS

If these suffixes are omitted, the assembler automatically chooses the smallest instruction size.

For each instruction, the tables in this chapter provide all necessary information about the bit fields. The formats of
the instructions are defined in Chapter 4, “Instruction Formats’ on page 45. Together with the major and minor
opcode encodings, which can be derived from the tables in Chapter 6, “Opcode Map” on page 521, the complete
instruction encoding is provided.

Most register fields have awidth of 5 bits. 5-bit register fields use linear encoding (rO="00000’, r1="00001", etc.). For
16-bit instructions, whose register field size is variable, the register field width is explicitly stated in the instruction
table (Table 5.1 and Table 5.2), and the individual register and immediate encodings are shown in Table 5.3. The

‘other fields' are defined by the respective column, with the order of these fields in the instruction encoding defined
by the order in the tables.

5.1 16-Bit Category

5.1.1 Frequent MIPS32 Instructions

These are frequent MIPS32 instructions with reduced register and immediate fields containing frequently used regis-
ters and immediate values.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 51

5.1 16-Bit Category

MOVE isavery frequent instruction. It therefore supports full 5-bit unrestricted register fields for maximum effi-
ciency. In fact, MOVE used to be a simplified macro of an existing M1PS32 instruction.

There are 2 variants of the LW and SW instructions. One variant implicitly uses the SP register to allow for alarger
offset field. The value in the offset field is shifted left by 2 before it is added to the base address.

There are four variants of the ADDIU instruction:
1. A variant with one 5-bit register specifier that allows any GPR to be the source and destination register
2. A variant that uses the stack pointer as the implicit source and destination register
3. A variant that has separate 3-bit source and destination register specifiers
4. A variant that has the stack pointer asthe implicit source register and one 3-bit destination register specifier

A 16-bit NOP instruction is needed because of the new 16-hit instruction alignment and the need in specific cases to
aigninstructions on a 32-bit boundary. It can save code size aswell. NOP is not shown in the table because it isreal-
ized as amacro (asis NEGU).

NOP16 = MOVEl6 r0, r0

NEGUl6 rt, rs = SUBU1l6 rt, r0, rs

Because microMIPS instructions are 16-hit aligned, the 16-bit branch instructions support 16-bit aligned branch tar-
get addresses. The offset field is left shifted by 1 beforeit is added to the PC.

The compact instruction JRC is to be used instead of JR, when the jump delay slot after JR cannot befilled. This
saves code size. Because JRC may execute as fast as JR with aNOP in the delay slot, JR is preferred if the delay slot
can befilled.

The breakpoint instructions, BREAK and SDBBP, include a 16-bit variant that allows a breakpoint to be inserted at
any instruction address without overwriting more than a single instruction.

Table 5.1 16-Bit Re-encoding of Frequent MIPS32 Instructions

Register | Total
Major Number of | Immediate Field Sizeof | Empty O Minor
Opcode Register Field Size Width Other |Field Size | Opcode

Instruction Name Fields (bit) (bit) Fields (bit) Size (bit) Comment

ADDIUS5 POOL 16D 5bit:1 4 5 0 1 Add Immediate
Unsigned Word Same
Register

ADDIUSP POOL 16D 0 9 0 0 1 Add Immediate
Unsigned Word to
Stack Pointer

ADDIUR2 POOL 16E 2 3 3 0 1 Add Immediate
Unsigned Word
Two Registers

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

52

microMIPS Re-encoded Instructions

Table 5.1 16-Bit Re-encoding of Frequent MIPS32 Instructions (Continued)

Register | Total
Major Number of | Immediate Field Sizeof | Empty O Minor
Opcode Register Field Size Width Other |Field Size | Opcode
Instruction Name Fields (bit) (bit) Fields (bit) Size (bit) Comment
ADDIUR1SP | POOL16E 1 6 3 0 1 Add Immediate
Unsigned Word
One Registers and
Stack Pointer
ADDU16 POOL 16A 3 0 1 Add Unsigned Word
AND16 POOL16C 2 0 4 AND
ANDI16 ANDI16 2 0 0 AND Immediate
B16 B16 0 10 0 0 Branch
BREAK16 POOL 16C 0 0 4 0 6 Cause Breakpoint
Exception
JALR16 POOL16C 1 0 5 0 5 Jump and Link
Register, 32-bit delay-
slot
JALRS16 POOL16C 1 0 5 0 5 Jump and Link
Register, 16-bit delay-
slot
JR16 POOL 16C 1 0 5 0 5 Jump Register
LBU16 LBU16 2 4 3 0 0 Load Byte Unsigned
LHU16 LHU16 2 4 3 0 0 Load Halfword
LI16 LI16 1 7 3 0 0 Load Immediate
LW16 LW16 2 4 3 0 0 Load Word
LWGP LWGP16 1 7 3 0 0 Load Word GP
LWSP LWSP16 5hit:1 5 5 0 0 Load Word SP
MFHI16 POOL16C 1 0 5 0 5 Move from
HI Register
MFLO16 POOL16C 1 0 5 0 5 Move from
LO Register
MOVE16 MOVE16 2 0 5 0 0 Move
NOT16 POOL 16C 2 0 3 0 4 NOT
OR16 POOL16C 2 0 3 0 4 OR
SB16 SB16 2 4 3 0 0 Store Byte
SDBBP16 POOL16C 0 0 4 0 6 Cause Debug
Breakpoint Exception
SH16 SH16 2 3 0 0 Store Halfword
SLL16 POOL 16B 2 3 Shift Word Left
Logical
SRL16 POOL 16B 2 3 3 0 1 Shift Word Right
Logical
SUBU16 POOL 16A 3 0 3 0 1 Sub Unsigned
53 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

5.1 16-Bit Category

Table 5.1 16-Bit Re-encoding of Frequent MIPS32 Instructions (Continued)

Register | Total
Major Number of | Immediate Field Sizeof | Empty O Minor
Opcode Register Field Size Width Other |Field Size | Opcode
Instruction Name Fields (bit) (bit) Fields (bit) Size (bit) Comment
SW16 SW16 2 4 3 0 Store Word
SWSP SWSP16 5hit:1 5 5 0 Store Word SP
XOR16 POOL16C 2 0 3 0 XOR

5.1.2 Frequent MIPS32 Instruction Sequences

These 16-bit instructions are equivalent to frequently-used short sequences of MIPS32 instructions. The instruction-
specific register and immediate value selection are shown in Table 5.3.

Table 5.2 16-Bit Re-encoding of Frequent MIPS32 Instruction Sequences

Register | Total
Major Number of | Immediate Field Sizeof | Empty O Minor
Opcode Register Field Size Width Other |Field Size | Opcode
Instruction Name Fields (bit) (bit) Fields (bit) Size (bit) Comment
BEQZ16 BEQZ16 1 7 3 0 Branch on Equal Zero
BNEZ16 BNEZ16 1 7 3 0 Branch on
Not Equal Zero
JRADDIUSP | POOL16C 0 5 5 Jump Register;
ADDIU SP
JRC POOL 16C 1 0 5 0 5 Jump Register Com-
pact
LWM16 POOL16C 0 4 2 4 Load Word Multiple
MOVEP POOL16F | 3 (encoded) 3(encoded) Move Register Pair
SWM16 POOL16C 0 2 4 Store Word Multiple

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

54

microMIPS Re-encoded Instructions

5.1.3 Instruction-Specific Register Specifiers and Immediate Field Encodings

Table 5.3 Instruction-Specific Register Specifiers and Immediate Field Values

Number
of Immediate Register 1 Register 2 Register 3
Register | Field Size Decoded Decoded Decoded Immediate Field Decoded
Instruction Fields (bit) Value Value Value Value
ADDIUS5 5hit:1 4 rd: 5 bit field -8..0..7
ADDIUSP 0 9 (-258..-3,2..257) << 2
ADDIUR2 2 3 rsl:2-7,16, 17 rd:2-7,16, 17 -1,1, 4,8, 12, 16, 20, 24
ADDIUR1SP 1 6 rd:2-7,16, 17 (0..63) << 2
ADDU16 3 0 rsl:2-7,16, 17 rs2:2-7,16, 17 rd:2-7,16, 17
AND16 2 0 rsl:2-7,16, 17 rd:2-7,16, 17
ANDI16 2 4 rsl:2-7,16, 17 rd:2-7,16, 17 1,2,3,4,7,8,15, 16, 31, 32, 63,
64, 128, 255, 32768, 65535
B16 0 10 (-512.511) << 1
BEQZ16 1 7 rsl:2-7,16, 17 (-64..63) << 1
BNEZ16 1 7 rsl:2-7,16, 17 (-64..63) << 1
BREAK16 0 4 0..15
JALR16 5hit:1 0 rsl:5 bit field
JALRS16 5hit:1 0 rs1:5 bit field
JRADDIUSP 0 5 (0.31) << 2
JR16 5hit:1 0 rsL:5 bit field
JRC 5hit:1 0 rs1:5 bit field
LBU16 2 4 rb:2-7,16,17 rd:2-7,16, 17 -1,0..14
LHU16 2 4 rb:2-7,16,17 rd:2-7,16, 17 (0..15) << 1
LI16 1 7 rd:2-7,16, 17 -1,0..126
LW16 2 4 rb:2-7,16,17 rd:2-7,16, 17 (0..15) << 2
LWM16 2bit list:1 4 (0..15)<<2
LWGP 1 7 rd:2-7,16,17 (-64..63)<<2
LWSP 5hit:1 5 rd:5-bit field (0..31)<<2
MFHI16 5hit:1 0 rd:5-bit field
MFLO16 5hit:1 0 rd:5-bit field
MOVE16 5hit:2 0 rd:5-bit field rs1:5-bit field
MOVEP 3 0 rd, re: rt:0,2,7,16-20 rs.0,2,7,16-20
(5.6).(5.7).(6,7),
(4,21),(4,22),(4,
5),(4.6).(4,7)
NOT16 2 rsl:2-7,16, 17 rd:2-7,16, 17
OR16 2 rsl:2-7,16, 17 rd:2-7,16, 17
SB16 2 rb:2-7,16,17 rsl:0, 2-7, 17 0..15

55

MIPS® Architecture for Programmers Volume II-B

: The microMIPS32™ Instruction Set, Revision 5.04

5.2 16-bit Instruction Register Set

Table 5.3 Instruction-Specific Register Specifiers and Immediate Field Values (Continued)

Number
of Immediate Register 1 Register 2 Register 3
Register | Field Size Decoded Decoded Decoded Immediate Field Decoded
Instruction Fields (bit) Value Value Value Value
SDBBP16 0 0 0..15
SH16 2 4 rb:2-7,16,17 rsl:0, 2-7, 17 (0.15) << 1
SLL16 2 3 rsl:2-7,16, 17 rd:2-7,16, 17 1..8 (see encoding tables)
SRL16 2 3 rsl:2-7,16, 17 rd:2-7,16, 17 1..8 (see encoding tables)
SUBU16 3 0 rsl:2-7,16, 17 rs2:2-7,16, 17 rd:2-7,16, 17
SW16 2 4 rb:2-7,16,17 rsl.0, 2-7, 17 (0..15) << 2
SWSP 5hit:1 5 rsl: 5 bit field (0.31) << 2
SWM16 2 hit list:1 4 (0..15)<<2
XOR16 2 0 rsl:2-7,16, 17 rd:2-7,16, 17

5.2 16-bit Instruction Register Set

Many of the 16-bit instructions use 3-bit register specifiersin their binary encodings. The register set used for most of

these 3-bit register specifiersislisted in Table 5.5. The register set used for SB16, SH16, SW16 source register is

listed in Table 5.5. These register sets are atrue subset of the register set available in 32-bit mode; the 3-bit register
specifiers can directly access 8 of the 32 registers available in 32-bit mode (which uses 5-bit register specifiers).

In addition, specific instructions in the 16-bit instruction set implicitly reference the stack pointer register (sp), global

pointer register (gp), the return address register (ra), the integer multiplier/divider output registers (HI/LO) and the

program counter (PC). Of these, Table 5.6 lists sp, gp and ra. Table 5.7 lists the microM | PS special -purpose registers,
including PC, HI and LO.

The microMIPS also contains some 16-hit instructions that use 5-bit register specifiers. Such 16-bit instructions pro-
vide access to all 32 general-purpose registers.

Table 5.4 16-Bit Instruction General-Purpose Registers - $2-$7, $16, $17

16-Bit 32-Bit MIPS | symbolic Name
Register Register (From
Encoding® | Encoding? ArchDefs.h) Description
0 16 0 General-purpose register
1 17 sl General-purpose register
2 2 vO General-purpose register
3 3 vl General-purpose register
4 4 a0 General-purpose register
5 5 al General-purpose register
6 6 a2 General-purpose register

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

56

microMIPS Re-encoded Instructions

Table 5.4 16-Bit Instruction General-Purpose Registers - $2-$7, $16, $17 (Continued)

Register Register (From
Encoding? Encoding? ArchDefs.h) Description
7 7 a3 General-purpose register

1.“0-7" correspond to the register’s 16-bit binary encoding and show how that encoding
relatesto the MIPS registers. “0-7" never refer to the registers, except within the binary
microMIPS instructions. From the assembler, only the MIPS names ($16, $17, $2, etc.) or
the symbolic names (<0, sl, VO, etc.) refer to the registers. For example, to access register
number 17 in the register file, the programmer references $17 or s1, even though the micro-
MIPS binary encoding for this register is 001.

2. General registers not shown in the above table are not accessible through the 16-bit instruc-
tion using 3-bit register specifiers. The Move instruction can access all 32 general-purpose

registers.

Table 5.5 SB16, SH16, SW16 Source Registers - $0, $2-$7, $17

16-Bit 32-Bit MIPS | symbolic Name
Register Register (From
Encoding® | Encoding? ArchDefs.h) Description

0 0 zero Hard-wired Zero

1 17 sl General-purpose register
2 2 v0 General-purpose register
3 3 vl General-purpose register
4 4 a0 General-purpose register
5 5 al General-purpose register
6 6 a2 General-purpose register
7 7 a3 General-purpose register

1.“0-7" correspond to the register’s 16-bit binary encoding and show how that encoding
relatesto the MIPS registers. “0-7" never refer to the registers, except within the binary
microMIPS instructions. From the assembler, only the MIPS names ($16, $17, $2, etc.) or
the symbolic names (<0, s1, VO, etc.) refer to the registers. For example, to access register
number 17 in the register file, the programmer references $17 or sl, even though the micro-
MIPS binary encoding for this register is 001.

2. General registers not shown in the above table are not accessible through the 16-bit instruc-
tions using 3-bit register specifier. The Move instruction can access all 32 general-purpose

registers.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Table 5.6 16-Bit Instruction Implicit General-Purpose Registers

5.3 32-Bit Category

16-Bit 32-Bit MIPS | Symbolic Name

Register Register (From

Encoding Encoding ArchDefs.h) Description
Implicit 28 ap Global pointer register
Implicit 29 p Stack pointer register
Implicit 31 ra Return address register

Table 5.7 16-Bit Instruction Special-Purpose Registers

Symbolic Name Purpose
PC Program counter. The PC-relative ADDIU can access this
register as an operand.
HI Contains high-order word of multiply or divide result.
LO Contains low-order word of multiply or divide result.

5.3 32-Bit Category

5.3.1 New 32-bit instructions

The following table lists the 32-bit instructions introduced in the microMIPS | SA.

Table 5.8 32-bit Instructions introduced within microMIPS

Register | Total
Major Number of | Immediate Field Sizeof | Empty O Minor
Opcode Register Field Size Width Other |Field Size | Opcode
Instruction Name Fields (bit) (bit) Fields (bit) Size (bit) Comment
ADDIUPC | ADDIUPC 1 23 3 0 0 ADDIU PC-Relative
BEQzC POOL32I 2:5 hit 16 5 0 Branch on
Equal to Zero, No
Delay Slot
BNEZC POOL32I 2:5 hit 16 5 0 Branch on
Not Equal to Zero, No
Delay Slot
JALRS POOL32A 2:5 bit 0 5 16 Jump and Link Regis-
ter, Short Delay Slot
JALRS.HB POOL 32A 2:5 hit 0 5 16 Jump and Link Regis-
ter with Hazard Bar-
rier, Short Delay Slot

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

58

microMIPS Re-encoded Instructions

Table 5.8 32-bit Instructions introduced within microMIPS (Continued)

Register | Total
Major Number of | Immediate Field Sizeof | Empty O Minor
Opcode Register Field Size Width Other |Field Size | Opcode
Instruction Name Fields (bit) (bit) Fields (bit) Size (bit) Comment
JALS JALS32 0 26 0 Jump and Link, Short
Delay Slot
JALX JALX 26 5 0 5 Jump and Link
Exchange
LWP POOL32B 2:5 hit 12 5 0 4 Load Word Pair
LWXS POOL32A 3:5 hit 0 5 0 1 10 Load Word Indexed,
Scale
LWM32 POOL32B 1:5hit 12 5 0 4 Load Word Multiple
SWP POOL32B 2:5 hit 12 0 4 Load Word Pair
SWM32 POOL32B 1:5hits 12 5 0 4 Store Word Multiple

59 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

5.3 32-Bit Category

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 60

Chapter 5

5.4 New Instructions

This section defines all new instructions introduced with microMIPS. Existing instructions and macros are not covered.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

61

Add Immediate Unsigned Word (PC-Relative) ADDIUPC

31 26 25 23 22 0
ADDIUPC i
r
011110 S Immediate
6 3 23
Format: ADDIUPC rs, left_shifted_immediate microM | PS

Purpose: Add Immediate Unsigned Word (PC-Relative)
To add a constant to the program counter.

Description: GPR[translated(rs)] < PC + (immediate << 2)

The 23-bit immediate is left shifted by two bits, sign-extended and added to the address of the ADDIU instruction.
Before the addition, the two lower bits of the instruction address are cleared.

Theresult of the additionis placed in GPR rs.

No integer overflow exception occurs under any circumstances.

Unlike the MIPS16 version of this instruction, the program counter value of the ADDIUPC instruction is always
used, even when the ADDIUPC instruction is placed in the delay-slot of ajump or branch instruction.

Restrictions:

The 3-bit register field can only specify GPRs $2-$7, $16, $17.

Operation:
temp ¢ (PCaprren-1. 2 || 0%?) + sign_extend(immediate || 0?)
GPR[Xlat(rs)] <« temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

The assembler LA (Load Address) pseudo-instruction isimplemented as a PC-rel ative add.

The 25-bit immediate (field shifted by 2 bits) allows addresses within 32M B of the instruction PC location to be gen-
erated.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 62

63

MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Add Immediate Unsigned Word One Register (16-bit instr size) ADDIUR1SP

15 10 9 7 6 1 0
POOL 16E '
011011 rd Immediate 1
6 3 6 1
Format: ADDIURISP rd, decoded_immediate_value microM I PS

Purpose: Add Immediate Unsigned Word One Register (16-bit instr size)
To add a constant to a 32-hit integer.

Description: GPR[rd] « GPR[29] + zero_extend(immediate << 2)

The 6-bit immediate field is first shifted left by two bits and then zero-extended. This amount is added to the 32-bit
value in GPR 29 and the 32-bit arithmetic result is placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:
temp < GPR[29] + zero_extend (immediate || 0%)
GPR[rd] <« temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. Thisinstruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 64

65

MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Add Immediate Unsigned Word Two Registers (16-bit instr size) ADDIUR2
15 10 9 7 6 4 3 1 0
POOL16E d < Encoded 0
011011 Immediate
6 3 3 3 1
Format: ADDIUR2 rd, rsl, decoded_immediate_value microMIPS

Purpose: Add Immediate Unsigned Word Two Registers (16-bit instr size)

To add a constant to a 32-bit integer.

Description: GPR[rd] « GPR[rs] + sign_extend(decoded immediate)
The encoded immediate field is decoded to obtain the actual immediate value.

The decoded immediate value is sign-extended and then added to the 32-bit value in GPR rs, and the 32-bit arithmetic
result is placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Table 5.9 Encoded and Decoded Values of the Immediate Field

Encoded Encoded Decoded Decoded
Value of Value of Value of Value of
Instr;_4 Instr;_4 Immediate | Immediate
(Decimal) (Hex) (Decimal) (Hex)
0 0x0 1 0x0001
1 0x1 4 0x0004
2 0x2 8 0x0008
3 0x3 12 0x000c
4 0x4 16 0x0010
5 0x5 20 0x0014
6 0x6 24 0x0018
7 0x7 -1 Oxffff

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

temp ¢« GPR[rs] + sign_extend(decoded immediate)
GPR[rd] « temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not

MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04 66

trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

67 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Add Immediate Unsigned Word to Stack Pointer(16-bit instr size) ADDIUSP
15 10 1 0
POOL16D Encoded |
010011 Immediate
6 5]
Format: ADDIUSP decoded_immediate_value microMIPS

Purpose: Add Immediate Unsigned Word to Stack Pointer(16-bit instr size)

To add a constant to the stack pointer.

Description: GPR[29] « GPR[29] + sign_extend(decoded immediate << 2)
The encoded immediate field is decoded to obtain the actual immediate value.

The actual immediate value is first shifted left by two bits and then sign-extended. This amount is added to the 32-bit
value in GPR 29, and the 32-bit arithmetic result is placed into GPR 29.

No Integer Overflow exception occurs under any circumstances.

Table 5.10 Encoded and Decoded Values of Immediate Field

Encoded Encoded Decoded Decoded
Value of Value of Value of Value of
Instrg 4 Instrg 4 Immediate Immediate
(Decimal) (Hex) (Decimal) (Hex)
0 0x0 256 0x0100
1 0x1 257 0x0101
2 0x2 2 0x0002
3 0x3 3 0x0003
254 Oxfe 254 0x00fe
255 Oxff 255 0x00£F
256 0x100 -256 0xff00
257 0x101 -255 0xff01
508 Ox1fc -4 Oxfffc
509 0x1fd -3 Oxfifd
510 Oxl1fe -258 Oxfefe
511 0x1ff 257 Oxfeff

Restrictions:

None

MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04 68

Add Immediate Unsigned Word to Stack Pointer(16-bit instr size) ADDIUSP

69

Operation:
temp < GPR[29] + sign_extend(decoded immediate || 0?)
GPR[29] « temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. Thisinstruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Add Immediate Unsigned Word 5-Bit Register Select (16-bit instr size) ADDIUS5
15 10 9 5 4 1 0
POOL16D .
010011 rd Immediate | O
6 5 4 1
Format: ADDIUS5 rd, decoded_immediate_value microMIPS

Purpose: Add Immediate Unsigned Word 5-Bit Register Select (16-bit instr size)

To add a constant to a 32-bit integer

Description: GPR[rd] « GPR[rd] + sign_extend(immediate)

The 4-bit immediate field is sign-extended and then added to the 32-bit value in GPR 7d. The 32-bit arithmetic result
is placed into GPR 74d.

The 5-bit register select allows this 16-bit instruction to use any of the 32 GPRs as the destination register.

No Integer Overflow exception occurs under any circumstances.

Table 5-1 Encoded and Decoded Values of Signed Immediate Field

Encoded Encoded Decoded Decoded
Value of Value of Value of Value of
Instry 4 Instry 4 Immediate Immediate
(Decimal) (Hex) (Decimal) (Hex)
0 0x0 0 0x0000
1 0x1 1 0x0001
2 0x2 2 0x0002
3 0x3 3 0x0003
4 0x4 4 0x0004
5 0x5 5 0x0005
6 0x6 6 0x0006
7 0x7 7 0x0007
8 0x8 -8 0xfH8
9 0x9 -7 0xfffo
10 Oxa -6 Oxfffa
11 0xb -5 0xfib
12 Oxc -4 Oxfffc
13 Oxd -3 Oxffftd
14 Oxe -2 Oxfffe
15 0xf -1 Oxfiff

MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04 70

Add Immediate Unsigned Word 5-Bit Register Select (16-bit instr size) ADDIUS5

71

Restrictions:

None

Operation:
temp ¢« GPR[rd] + sign_extend(immediate)
GPR[rd] <« temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. Thisinstruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Add Unsigned Word (16-bit instr size) ADDU16

15 10 9 7 6 4 3 1 0
POOL16A
000001 rd rt rs 0
6 3 3 3 1
Format: ADDU16 rd, rs, rt microM I PS

Purpose: Add Unsigned Word (16-bit instr size)
To add 32-hit integers

Description: GPR[rd] ¢« GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs, and the 32-hit arithmetic result is placed into
GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

The 3-hit register fields can only specify GPRs $2-$7, $16, $17.

Operation:
temp < GPR[rs] + GPR[rt]
GPR[rd] <« temp
Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. Thisinstruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 72

73

MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Format:

And Immediate (16-bit instr size)

15 10 9 6 4 0
ANDI16 d . Encoded
001011 Immediate
6 3 3 4

Purpose: And Immediate (16-bit instr size)

To do a bitwise logical AND with a constant

ANDI16 rd, rs, decoded_immediate_value

Description: GPR[rd] ¢« GPR[rs] AND decoded immediate value

The encoded immediate field is decoded to obtain the actual immediate value

ANDI16

microMIPS

The decoded immediate is zero-extended to the left and combined with the contents of GPR rs in a bitwise logical
AND operation. The result is placed into GPR rd.

Restrictions:

Table 5-2 Encoded and Decoded Values of Immediate Field

Encoded Encoded Decoded Decoded
Value of Value of Value of Value of
Instrs o Instr; Immediate Immediate
(Decimal) (Hex) (Decimal) (Hex)

0 0x0 128 0x80

1 0x1 1 0x1

2 0x2 2 0x2

3 0x3 3 0x3

4 0x4 4 0x4

5 0x5 7 0x7

6 0x6 8 0x8

7 0x7 15 Oxf

8 0x8 16 0x10

9 0x9 31 Ox1f

10 Oxa 32 0x20

11 0xb 63 0x3f

12 Oxc 64 0x40

13 0xd 255 Oxff

14 Oxe 32768 0x8000

15 0xf 65535 Oxffif

The 3-bit register fields can only specify GPRs $2-$7, $16. $17.

MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

74

Operation:

GPR[rd] ¢« GPR[rs] and zero_extend(decoded immediate)

Exceptions:

None

75 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

And (16-bit instr size)

15

10

POOL16C
010001

AND16
0010

rt

rs

6
Format: AND16 rt, rs

Purpose: And (16-bit instr size)
To do abitwise logical AND

Description: GPR[rt] ¢« GPR[rs] AND GPR[rt]

AND16

microM I PS

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical AND operation. The result is

placed into GPR rt.

Restrictions:

The 3-hit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

GPR[rt] ¢« GPR[rs] and GPRI[rt]

Exceptions:

None

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

76

77

MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Unconditional Branch (16-bit instr size) B16

15 10 9 0
B16
110011 offset
6 10
Format: B16 offset microM | PS

Purpose: Unconditional Branch (16-bit instr size)
To do an unconditional branch

Description: branch
A 11-bit signed offset (the 10-bit offset field shifted |eft 1 bits) is added to the address of the instruction following the
branch (not the branch itself), in the branch delay dlot, to form a PC-relative effective target address.
Restrictions:
Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.
Operation:
I: target_offset « sign_extend(offset || oh)
I+1: PC « PC + target_offset
Exceptions:

None

Programming Notes:

With the 11-hit signed instruction offset, the branch range is+ 1 Kbytes. Use jump (J) or jump register (JR) or 32-bit
branch instructions to branch to addresses outside this range.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 78

79

MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Branch on Equal to Zero (16-bit instr size)

15 10 9

BEQZ16
100011

s

offset

6
Format: BEQZ16 rs, offset

Purpose: Branch on Equal to Zero (16-bit instr size)
To compare a GPR to zero then do a PC-relative conditional branch

Description: if GPR[rs] = 0 then branch

BEQZ16

microM I PS

A 8-bit signed offset (the 7-bit offset field shifted left 1 bits) is added to the address of the instruction following the

branch (not the branch itself), in the branch delay dlot, to form a PC-relative effective target address.

If the contents of GPR rs equals zero, branch to the effective target address after the instruction in the delay dlot is

executed.

Restrictions:

The 3-hit register field can only specify GPRs $2-$7, $16, $17.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the

delay dot of abranch or jump.
Operation:
I: target_offset ¢« sign_extend(offset || 0)
condition <« (GPR[rs] == 0)

I+1: if condition then
PC « PC + target_offset
endif

Exceptions:

None

Programming Notes:

With the 8-hit signed instruction offset, the conditional branch range is = 64 Bytes. Use 32-bit branch, jump (J) or
jump register (JR) instructions to branch to addresses outside this range.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

80

81

MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Branch on Equal to Zero, Compact BEQzC

31 26 25 21 20 16 15 0
POOL 32 BEQZC
010000 00111 rs offset
6 5 5 16
Format: BEQZC rs, offset microM | PS

Purpose: Branch on Equal to Zero, Compact
To test a GPR then do a PC-relative conditional branch.

Description: if (GPR[rs] = 0) then branch

The 16-bit offset is shifted |eft 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR rsis equal to zero, the program branches to the target address, with no
delay dlot instruction.

Restrictions:

Processor operation is UNPREDICTABLE if theinstruction is placed in adelay slot of abranch or jump.

Operation:

I: tgt_offset ¢ sign_extend(offset || 0)
condition ¢« (GPR[rs] = OCFRLEN)
if condition then
PC < PC + 4 + tgt_offset
endif

Exceptions:

None

Programming Notes:

Unlike most MIPS *branch’ instructions, BEQZC does not have adelay dot.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 82

83

MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Branch on Greater Than or Equal to Zero and Link, Short Delay-Slot BGEZALS

31 26 25 21 20 16 15 0
POOL 32I BGEZALS
010000 10011 rs offset
6 5 5 16
Format: BGEZALS rs, offset microM | PS

Purpose: Branch on Greater Than or Equal to Zero and Link, Short Delay-Slot
To test a GPR then do a PC-relative conditional procedure call

Description: if GPR[rs] 2 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

A 17-hit signed offset (the 16-hit offset field shifted |eft 1 bits) is added to the address of the instruction following the
branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rsare greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed.

Restrictions:

The delay-dlot instruction must be 16-bits in size. Processor operation is UNPREDICTABLE if a 32-bit instruction
isplaced in the delay slot of BGEZAL.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occursin the branch delay dot.

Operation:

I: target_offset « sign_extend(offset || 01)
condition ¢« GPR[rs] > QCFRLEN
GPR[31] « PC + 6

I+1: if condition then
PC < PC + target_offset
endif
Exceptions:
None

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is + 64 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

BGEZALS r0, offset, expressed as BAL offset, is the assembly idiom used to denote a PC-relative branch and link.
BAL isused in amanner similar to JAL, but provides PC-relative addressing and a more limited target PC range.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 84

85

MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Branch on Less Than Zero and Link, Short Delay-Slot BLTZALS

31 26 25 21 20 16 15 0
POOL 321 BLTZALS
010000 10001 rs offset
6 5 5 16
Format: BLTZALS rs, offset microM I PS

Purpose: Branch on Less Than Zero and Link, Short Delay-Slot
To test a GPR then do a PC-relative conditional procedure call

Description: if GPR[rs] < 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

A 17-hit signed offset (the 16-hit offset field shifted |eft 1 bits) is added to the address of the instruction following the
branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay dot is executed.

Restrictions:

The delay-dlot instruction must be 16-bits in size. Processor operation is UNPREDICTABLE if a 32-bit instruction
isplaced in the delay dlot of BLTZAL.

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occursin the branch delay slot.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

I: target_offset « sign_extend(offset || oh)
condition ¢« GPR[rs] < OQCFRLEN
GPR[31] « PC + 6

I+1: if condition then
PC < PC + target_offset
endif
Exceptions:
None

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is + 64 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 86

87

MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Branch on Not Equal to Zero (16-bit instr size)

15 10 9

BNEZ16
101011

s

offset

6
Format: BNEZ16 rs, offset

Purpose: Branch on Not Equal to Zero (16-bit instr size)
To compare a GPR to zero then do a PC-relative conditional branch

Description: if GPR[rs] != 0 then branch

BNEZ16

microM I PS

A 8-bit signed offset (the 7-bit offset field shifted left 1 bits) is added to the address of the instruction following the

branch (not the branch itself), in the branch delay dlot, to form a PC-relative effective target address.

If the contents of GPR rs does not equal zero, branch to the effective target address after the instruction in the delay

slot is executed.

Restrictions:

The 3-hit register field can only specify GPRs $2-$7, $16, $17.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the

delay dot of abranch or jump.

Operation:

I: target_offset ¢« sign_extend(offset || 0)

condition ¢« (GPR[rs] !=
I+1: if condition then
PC « PC + target_offset
endif

Exceptions:

None

Programming Notes:

0)

With the 8-hit signed instruction offset, the conditional branch range is = 64 Bytes. Use 32-bit branch, jump (J) or
jump register (JR) instructions to branch to addresses outside this range.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

88

89

MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Branch on Not Equal to Zero, Compact BNEZC

31 26 25 21 20 16 15 0
POOL32I BNEZC
010000 00101 rs offset
6 5 5 16
Format: BNEZC rs, offset microM I PS

Purpose: Branch on Not Equal to Zero, Compact
To test a GPR then do a PC-relative conditional branch.

Description: if (GPR[rs] # 0) then branch

The 16-bit offset is shifted |eft 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR rsis not equal to zero, the program branches to the target address, with
no delay slot instruction.

Restrictions:

Processor operation is UNPREDICTABLE if theinstruction is placed in adelay slot of abranch or jump.

Operation:

I: tgt_offset ¢ sign_extend(offset || 0)
condition ¢ (GPR[rs] # 0CPRLEN)
if condition then
PC ¢ PC + 4 + tgt_offset
endif

Exceptions:

None

Programming Notes:

Unlike most MIPS *branch’ instructions, BNEZC does not have a delay dot.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 90

91

MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Breakpoint

15

10

POOL16C
010001

BREAK16
101000

code

6

Format: BREAK16

Purpose: Breskpoint
To cause a Breakpoint exception

Description:

6

BREAK16

microM I PS

A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handler. The
code field is available for use as software parameters, but is retrieved by the exception handler only by loading the
contents of the memory word containing the instruction.

Restrictions:

None

Operation:

SignalException (Breakpoint)

Exceptions:
Breakpoint

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

92

93

MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Jump and Link Register (16-bit instr size) JALR16

15 10 9 5 4 0
POOL16C JALR16 s
010001 01110
6 5 5
Format: JALR16 rs microM I PS

Purpose: Jump and Link Register (16-bit instr size)
To execute a procedure call to an instruction address in aregister

Description: GPR[31] ¢ return_addr, PC < GPR[rs]

Place the return address link in GPR r31. Thereturn link isthe address of the second instruction following the branch,
where execution continues after a procedure call.

For processors that do not implement the MIPS32 | SA:

e Jump to the effective target address in GPR rs. Execute the instruction that follows the jump, in the branch delay
dot, before executing the jump itself. Bit O of the target address is always zero so that no Address Exceptions
occur when hit 0 of the source register is one.

For processors that do implement the MIPS32 | SA:

» Jumpto the effective target addressin GPR rs. Execute the instruction that follows the jump, in the branch delay
dot, before executing the jump itself. Set the |SA Mode bit to the value in GPR rshbit 0. Bit O of the target address
isalways zero so that no Address Exceptions occur when bit O of the source register is one.

Restrictions:

The delay-dlot instruction must be 32-bits in size. Processor operation is UNPREDICTABLE if a 16-bit instruction
isplaced in the delay dot of JALR16.

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS32 and if the ISAMode hit of the target is MIPS32 (bit 0 of GPR rsis 0) and
address hit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruc-
tion.

For processors that do not implement MIPS32 ISA, if the intended target ISAMode is MIPS32 (bit 0 of GPR rsis
zero), an Address Error exception occurs when the jump target is fetched as an instruction.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the

delay slot of abranch or jump.
Operation:
I: temp < GPR[rs]
GPR[31] « PC + 6
I+1l:if Config3;gy = 1 then
PC « temp
else
PC « tempgprren-1..1 || 0
ISAMode <« tempg
endif

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 94

Exceptions:

None

95 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Jump and Link Register, Short Delay-Slot(16-bit instr size) JALRS16

15 10 9 5 4 0
POOL16C JALRS16 s
010001 01111
6 5 5
Format: JALRS16 rs microM | PS

Purpose: Jump and Link Register, Short Delay-Slot(16-bit instr size)
To execute a procedure call to an instruction address in aregister

Description: GPR[31] ¢ return_addr, PC < GPR[rs]

Place the return address link in GPR r31. Thereturn link isthe address of the second instruction following the branch,
where execution continues after a procedure call.

For processors that do not implement the MIPS32 | SA:

e Jump to the effective target address in GPR rs. Execute the instruction that follows the jump, in the branch delay
dot, before executing the jump itself. Bit O of the target address is always zero so that no Address Exceptions
occur when hit 0 of the source register is one.

For processors that do implement the MIPS32 | SA:

» Jumpto the effective target addressin GPR rs. Execute the instruction that follows the jump, in the branch delay
dot, before executing the jump itself. Set the |SA Mode bit to the value in GPR rshbit 0. Bit O of the target address
isalways zero so that no Address Exceptions occur when bit O of the source register is one.

Restrictions:

The delay-dlot instruction must be 16-bits in size. Processor operation is UNPREDICTABLE if a 32-bit instruction
isplaced in the delay ot of JALRS16.

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS32 and if ISAMode bit of the target is MIPS32 (bit 0 of GPRrs is 0) and
address hit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruc-
tion.

For processors that do not implement MIPS32 I1SA, if the target ISAMode is MIPS32 (bit 0 of GPR rsis zero), an
Address Error exception occurs when the jump target is fetched as an instruction.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

I: temp < GPR[rs]
GPR[31] « PC + 4
I+l:if Config3qgy = 1
PC « temp
else
PC « tempgprren-1..1 || 0
ISAMode <« tempg
endif

then

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 96

Exceptions:

None

97 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Jump and Link Register, Short Delay Slot JALRS

31 26 25 21 20 16 15 6 5 0
POOL32A t s JALRS POOL 32A X f
000000 0100111100 111100
6 5 5 10 6
Format: JALRS rs (rt = 31 implied) microM I PS
JALRS rt, rs microMIPS

Purpose: Jump and Link Register, Short Delay Slot
To execute a procedure call to an instruction address in aregister

Description: GPR[rt] « return_addr, PC « GPRI[rs]

Place the return address link in GPR rt. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

For processors that do not implement the MIPS32 | SA:

» Jumpto the effective target addressin GPR rs. Execute the instruction that follows the jump, in the branch delay
dot, before executing the jump itself. Bit O of the target address is always zero so that no Address Exceptions
occur when hit 0 of the source register is one.

For processors that do implement the MIPS32 | SA:

» Jumpto the effective target addressin GPR rs. Execute the instruction that follows the jump, in the branch delay
dot, before executing the jump itself. Set the |SA Mode bit to the value in GPR rsbit 0. Bit O of the target address
isaways zero so that no Address Exceptions occur when bit O of the source register is one.

Restrictions:

The delay-dlot instruction must be 16-bits in size. Processor operation is UNPREDICTABLE if a 32-hit instruction
isplaced in the delay slot of JALRS.

Register specifiersrs and rt must not be equal, because such an instruction does not have the same effect when reex-
ecuted. The result of executing such aninstructionis UNPREDICTABLE. Thisrestriction permits an exception han-
dler to resume execution by re-executing the branch when an exception occurs in the branch delay slot.

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS32 and if if ISAMode bit of the target is MIPS32 (bit 0 of GPR rsis 0) and
address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruc-
tion.

For processors that do not implement MIPS32ISA, if the intended target ISAMode is MIPS32(bit O of GPR rsis
zero), an Address Error exception occurs when the jump target is fetched as an instruction.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay dlot of abranch or jump.

Operation:

I: temp < GPR[rs]
GPR[rt] « PC +
I+1l:if Configly, =
PC « temp
else

6
0 then

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 98

PC ¢« tempgprren-1..1 || O
ISAMode < tempg
endif

Exceptions:

None

Programming Notes:

This branch-and-link instruction can select a register for the return link; other link instructions use GPR 31. The
default register for GPR rd, if omitted in the assembly language instruction, is GPR 31.

99 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Jump and Link Register with Hazard Barrier, Short Delay-Slot JALRS.HB

31 26 25 21 20 16 15 6 5 0
POOL32A d s JALRS.HB POOL 32A X f
000000 0101111100 111100
6 5 5 10 6
Format: JALRS.HB rs (rt = 31 implied) microM I PS
JALRS.HB rt, rs microMIPS

Purpose: Jump and Link Register with Hazard Barrier, Short Delay-Slot

To execute a procedure call to an instruction address in aregister and clear all execution and instruction hazards

Description: GPR[rt] ¢ return_addr, PC « GPR[rs], clear execution and instruction
hazards

Place the return address link in GPR rt. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

For processors that do not implement the MIPS32 | SA:

» Jump to the effective target address in GPR rs. Execute the instruction that follows the jump, in the branch
delay dot, before executing the jump itself. Bit O of the target address is always zero so that no Address
Exceptions occur when bit O of the source register is one.

For processors that do implement the MIPS32 | SA:

* Jump to the effective target address in GPR rs. Execute the instruction that follows the jump, in the branch
delay slot, before executing the jump itself. Set the |SA Mode bit to the valuein GPR rsbit 0. Bit O of the tar-
get address is always zero so that no Address Exceptions occur when bit O of the source register is one.

JALRS.HB implements a software barrier that resolves all execution and instruction hazards created by Coprocessor
0 state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolv-
ing instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the JALRS.HB instruction jumps. An equivalent
barrier is also implemented by the ERET instruction, but that instruction is only available if access to Coprocessor 0
is enabled, whereas JALRS.HB islegal in al operating modes.

This instruction clears both execution and instruction hazards. Refer to the EHB instruction description for the
method of clearing execution hazards alone.

Restrictions:

The delay-dlot instruction must be 16-bits in size. Processor operation is UNPREDICTABLE if a 32-bit instruction
isplaced in the delay slot of JALRS.HB.

Register specifiers rs and rd must not be equal, because such an instruction does not have the same effect when reex-
ecuted. The result of executing such an instruction is UNPREDICTABLE. Thisrestriction permits an exception han-
dler to resume execution by re-executing the branch when an exception occurs in the branch delay slot.

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS32 and if ISAMode bit of the target is MIPS32 (bit O of GPR rsis 0) and
address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruc-
tion.

For processors that do not implement MIPS32 ISA, if the intended target ISAMode is MIPS32(bit 0 of GPR rs is

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 100

Jump and Link Register with Hazard Barrier, Short Delay-Slot JALRS.HB

101

zero), an Address Error exception occurs when the jump target is fetched as an instruction.

After modifying an instruction stream mapping or writing to the instruction stream, execution of those instructions
has UNPREDICTABL E behavior until the instruction hazard has been cleared with JALR.HB, JALRS.HB, JR.HB,
ERET, or DERET. Further, the operation is UNPREDICTABLE if the mapping of the current instruction stream is
modified.

JALRS.HB does not clear hazards created by any instruction that is executed in the delay slot of the JALRS.HB. Only
hazards created by instructions executed before the JALR.HB are cleared by the JALRS.HB.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

I: temp ¢« GPR[rs]
GPR[rt] ¢« PC + 6
I+1l:if Configlyy = 0 then
PC « temp
else
PC ¢« tempgppren-1..1 || 0
ISAMode <« tempg
endif
ClearHazards ()

Exceptions:

None

Programming Notes:

This branch-and-link instruction can select a register for the return link; other link instructions use GPR 31. The
default register for GPR rt, if omitted in the assembly language instruction, is GPR 31.

This instruction implements the final step in clearing execution and instruction hazards before execution continues. A
hazard is created when a Coprocessor 0 or TLB write affects execution or the mapping of the instruction stream, or
after awrite to the instruction stream. When such a situation exists, software must explicitly indicate to hardware that
the hazard should be cleared. Execution hazards alone can be cleared with the EHB instruction. Instruction hazards
can only be cleared with a JR.HB, JALR.HB, JALRS.HB or ERET instruction. These instructions cause hardware to
clear the hazard before the instruction at the target of the jump is fetched. Note that because these instructions are
encoded as jumps, the process of clearing an instruction hazard can often be included as part of acall (JALR[S][16])
or return (JR) sequence, by simply replacing the original instructions with the HB equivalent.

Example: Clearing hazards due to an ASID change

/*

* Code used to modify ASID and call a routine with the new

* mapping established.

*

* a0 = New ASID to establish

* al = Address of the routine to call

*/
mfc0 v0, CO_EntryHi /* Read current ASID */
1i vl, ~M_EntryHiASID /* Get negative mask for field */
and v0, v0, vl /* Clear out current ASID value */
or v0, v0, a0 /* OR in new ASID value */
mtc0 v0, CO_EntryHi /* Rewrite EntryHi with new ASID */
jalr.hb al /* Call routine, clearing the hazard */
nop

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 102

103 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Jump and Link, Short Delay Slot JALS

31 26 25 0
JALS32 . .
011101 instr_index
6 26
Format: JALS target microM I PS

Purpose: Jump and Link, Short Delay Slot
To execute a procedure call within the current 128 MB-aligned region

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call.

Thisis a PC-region branch (not PC-relative); the effective target address is in the “current” 128 MB-aligned region.
Thelow 27 hits of the target addressistheinstr_index field shifted left 1 bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay dlot, before
executing the jJump itself.
Restrictions:

The delay-dlot instruction must be 16-bits in size. Processor operation is UNPREDICTABLE if a 32-bit instruction
is placed in the delay slot of JALS.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the

delay slot of abranch or jump.
Operation:
I: GPR[31] « PC + 6
I+l: PC « PCuppran-1. 27 || instr_index || o!
Exceptions:
None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC is an
advantage if all program code addresses fit into a 128 MB region aligned on a 128 MB boundary. It allows a branch
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the branch instruction is in the last word of a 128 MB
region, it can branch only to the following 128 MB region containing the branch delay sot.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 104

105 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Jump and Link Exchange (microMIPS Format) JALX

31 26 25 0
JALX32
111100 target
6 26
Format: JALX target microM | PS

Purpose: Jump and Link Exchange (microMIPS Format)

To execute a procedure call within the current 256 M B-aligned region and change the ISA Mode from microMIPS to
32-bit MIPS.

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call. The value stored in GPR 31 bit O reflects the current
value of the |SA Mode bit.

Thisis a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
Thelow 26 bits of the target addressis the target field shifted |eft 2 bits. The remaining upper bits are the correspond-
ing hits of the address of the instruction following the branch (not the branch itself).

Jump to the effective target address, toggling the |SA Mode bit. Execute the instruction that follows the jump, in the
branch delay slot, before executing the jump itself.
Restrictions:

The delay-dlot instruction must be 32-bits in size. Processor operation is UNPREDICTABLE if a 16-bit instruction
isplaced in the delay dlot of JALX.

Processor operation is UNPREDICTABLE if a branch or jump instruction is placed in the delay slot of ajump.
If the MIPS32 ISA is not implemented, a Reserved Instruction Exception isinitiated.

Operation:
I: GPR[31] « (PC + 8)gprrEn-1..1 || ISAMode
I+l: PC < PCuprrmn-1. .28 || target || 02

ISAMode ¢« (not ISAMode)

Exceptions:

None

Programming Notes:

Forming the jump target address by concatenating PC and the 26-hit target address rather than adding a signed offset
to the PC is an advantage if al program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It
allows ajump to anywhere in the region from anywhere in the region which a signed relative offset would not allow.

This definition creates the boundary case where the jump instruction is in the last word of a 256 MB region and can
therefore jJump only to the following 256 MB region containing the following instruction.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 106

107 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Jump Register (16-bit instr size) JR16

15 10 9 5 4 0
POOL16C JR16 s
010001 01100
6 5 5
Format: JR16 rs microM | PS

Purpose: Jump Register (16-bit instr size)
To execute a branch to an instruction address in a register

Description: PC < GPR[rs]

Jump to the effective target address in GPR rs. Execute the instruction following the jump, in the branch delay slot,
before jumping.

For processors that implement MIPS32 I1SA, set the ISA Mode bit to the value in GPR rs bit 0. Bit 0 of the target
addressis always zero so that no Address Exceptions occur when bit O of the source register is one

Restrictions:

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS32 and the ISAMode bit of the target addressis MIPS32 (bit O of GPR rsis0)
and address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an
instruction.

For processors that do not implement MIPS32 ISA, if the intended target ISAMode is MIPS32 (bit 0 of GPR rsis
zero), an Address Error exception occurs when the jump target is fetched as an instruction.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

I: temp < GPR[rs]
I+1l:if Config3;gy = 1 then
PC « temp
else
PC ¢ tempgppren-1..1 || 0
ISAMode <« tempg
endif

Exceptions:

None

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 108

109 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Jump Register, Adjust Stack Pointer (16-bit) JRADDIUSP

15 10 9 5 4 0
POOL16C JRADDIUSP Immediate
010001 11000
6 5 5
Format: JRADDIUSP decoded_immediate microM | PS

Purpose: Jump Register, Adjust Stack Pointer (16-bit)

To execute abranch to an instruction address in aregister and adjust stack pointer

Description: PC ¢<— GPR[ral; SP <SP + zero_extend(Immediate << 2)

The program unconditionally jumps to the address specified in GPR 31. If MIPS32 is implemented, the instruction
sets the 1SA Mode bit to the value in GPR 31 bit 0.

Bit O of the target address is always zero so that no Address Exceptions occur when bit O of the source register is one.

The 5-bit immediate field isfirst shifted left by two bits and then zero-extended. This amount is then added to the 32-
bit value of GPR 29 and the 32-bit arithmetic result is placed into GPR 29. No Integer Overflow exception occurs
under any circumstances for the update of GPR 29.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS32 and the ISAMode bit of the target address is MIPS32 (bit 0 of GPR rsis0)
and address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an
instruction.

For processors that do not implement MIPS32 ISA, if the intended target ISAMode is MIPS32 (bit 0 of GPR rsis
zero), an Address Error exception occurs when the jump target is fetched as an instruction.

Operation:

I:
PC < GPRI[31lcprren-1..1 || O
if (Config3igy > 1)
ISAMode <«— GPR[31],
endif
I+1:
temp < GPR[29] + zero_extend(immediate || 02)
GPR[29] « temp

Exceptions:

None.

Programming Notes:

Unlike most MIPS “jump” instructions, JRADDIIUSP does not have adelay dot.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 110

111 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Jump Register, Compact (16-bit) JRC

15 10 9 5 4 0
POOL16C JRC16 ‘s
010001 01101
6 5 5
Format: JRC rs microM | PS

Purpose: Jump Register, Compact (16-bit)

To execute a branch to an instruction address in a register

Description: PC < GPR[rs]

The program unconditionally jumps to the address specified in GPR rs, with no delay dlot instruction. If MIPS32 is
implemented, the instruction sets the |SA Mode bit to the value in GPR rsbit O.

If MIPS32 isimplemented, bit O of the target address is always zero so that no Address Exceptions occur when bit 0
of the source register is one.
Restrictions:

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS32 and the ISAMode bit of the target addressis MIPS32 (bit O of GPR rsis0)
and address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an
instruction.

For processors that do not implement MIPS32 ISA, if the intended target ISAMode is MIPS32 (bit 0 of GPR rsis
zero), an Address Error exception occurs when the jump target is fetched as an instruction.
Operation:

I: PC < GPRI[rslgprren-1..1 || O
if (Config3igp > 1)
ISAMode ¢ GPR[rsl]j
endif

Exceptions:

None.

Programming Notes:

Unlike most MIPS “jump” instructions, JRC does not have a delay slot.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 112

113 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Byte Unsigned (16-bit instr size) LBU16

15 10 9 7 6 4 3 0
LBU16 encoded
000010 t base offset
6 3 3 4
Format: 1BU16 rt, decoded offset (base) microM I PS

Purpose: Load Byte Unsigned (16-bit instr size)
To load a byte from memory as an unsigned value

Description: GPR[rt] <« memory[GPR[base] + decoded_offset]

The encoded offset field is decoded to get the actual offset value. This decoded value is added to the contents of base
register to create the effective address. Table 5.11 shows the encoded and decode values of the offset field.

Table 5.11 Offset Field Encoding Range -1, 0..14

Encoded Input | Decoded Value
(Hex) (Decimal)
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
a 10
b 11
c 12
d 13
e 14
f -1

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, zero-extended,
and placed in GPR rt. The 4-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

decoded_offset <« Decode(encoded_offset)

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 114

vAddr ¢« sign_extend(decoded_offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
pPAddr ¢« PAdArpgrgg-1. .2 || (pAddr; , xor ReverseEndian?)
memword ¢« LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte « vAddr, xor BigEndianCPU?

GPR[rt] « zero_extend(memwordy,gsphyte..8*byte)

Exceptions:
TLB R€fill, TLB Invalid, Address Error, Watch

115 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Halfword Unsigned (16-bit instr size) LHU16

15 10 9 7 6 4 3 0
LHU16
001010 rt base offset
6 3 3 4
Format: LHU16 rt, left_shifted offset (base) microM I PS

Purpose: Load Halfword Unsigned (16-bit instr size)
To load a halfword from memory as an unsigned value

Description: GPR[rt] « memory[GPR[base] + (offset x2)]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
zero-extended, and placed in GPR rt. The 4-bit unsigned offset is left shifted by one bit and then added to the contents
of GPR base to form the effective address.

Restrictions:
The 3-hit register fields can only specify GPRs $2-$7, $16, $17.

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ¢« zero_extend(offset || 0) + GPR[basel
if vAddry # 0 then
SignalException (AddressError)
endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
PAddr ¢« pAddrpgrge-1..o2 || (PAddr; , xor (ReverseEndian || 0))
memword ¢« LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte « vAddr,; o xor (BigEndianCPU || 0)
GPR[rt] « zero_extend(memword s gspyte..8*byte)

Exceptions:
TLB R€fill, TLB Invalid, Address Error, Watch

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 116

117 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Immediate Word (16-bit instr size) LI16

15 10 9 7 6 0
LI16 rd Encoded
111011 Immediate
6 3 7
Format: 1LI16 rd, decoded_immediate microM I PS

Purpose: Load Immediate Word (16-bit instr size)
To load a 6-bit constant into a register.

Description: GPR[rd] « decoded_immediate

The 7-bit encoded Immediate field is decoded to obtain the actual immediate value. Table 5.12 shows the encoded
values of the Immeidiate field and the actual immediate values.

Table 5.12 LI16 -1, 0..126 Immediate Field Encoding Range

Encoded Input | Decoded Value
(Hex) (Decimal)
0 0
1 1
2 2
3 3
e 126
7f -1

The actual decoded immediate value is sign-extended and placed into GPR rd.
No Integer Overflow exception occurs under any circumstances.

Restrictions:
The 3-hit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

decoded_immediate <« Decode (encoded_immediate)
temp ¢ sign_extend(decoded_immediate)
GPR[rd] <« temps3q g

Exceptions:

None

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 118

119 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Word (16-bit instr size)

15 10 9

LW16
011010

rt

offset

6

Format: 1Lwlé rt, left shifted offset (base)

Purpose: Load Word (16-bit instr size)
To load aword from memory as asigned value

3

Description: GPR[rt] « memory[GPR[base] + (offset x4)]

LW16

microM I PS

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 4-bit signed offset is left shifted by two

bits and then is added to the contents of GPR base to form the effective address.

Restrictions:

The 3-hit register fields can only specify GPRs $2-$7, $16, $17.
The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr < sign_extend(offset]|| 0%) + GPR[base]

if vAddr; , # 02 then
SignalException (AddressError)

endif

(pAddr, CCA) ¢« AddressTranslation

memword ¢« LoadMemory (CCA, WORD, pAddr,

GPR[rt] ¢« memword

Exceptions:

TLB R€fill, TLB Invalid, Bus Error, Address Error, Watch

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

(vAddr,

vAddr,

DATA, LOAD)

DATA)

120

121 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Word Multiple LWM32
31 26 25 21 20 16 15 12 11 o
POOL32B . LWM32
001000 reglist base 0101 offset
6 5 5 4 12
Format: 1wM32 {srel6, } {ra}, offset(base) microMIPS

Purpose: Load Word Multiple

To load a sequence of consecutive words from memory

Description: {GPR[16], {GPR[17],{GPR[18], {GPR[19], {GPR[20], {GPR[21], {GPR[22], {GPR[23],
{GPR[30]}3}}}}}}}}{GPR[31]} «
memory [GPR[base]+offset], ..., memory[GPR[base]+offset+4* (fn(reglist))]

The contents of consecutive 32-bit words at the memory location specified by the 32-bit aligned effective address are
fetched, sign-extended to the GPR register length if necessary, and placed in the GPRs defined by reglist. The 12-hit
signed offset is added to the contents of GPR base to form the effective address.

The following table shows the encoding of the reglist field.

reglist Encoding
(binary) List of Registers Loaded
00001 GPR[16]
00010 GPR[16], GPR[17]
00011 GPR[16], GPR[17], GPR[18]
00100 GPR[16], GPR[17], GPR[18], GPR[19]
00101 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20]
00110 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21]
00111 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22]
01000 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23]
01001 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[30]
10000 GPR[31]
10001 GPR[16], GPR[31]
10010 GPR[16], GPR[17], GPR[31]
10011 GPR[16], GPR[17], GPR[18], GPR[31]
10100 GPR[16], GPR[17], GPR[18], GPR[19], GPR[31]
10101 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[31]
10110 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[31]
10111 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[31]
11000 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[31]
11001 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[30], GPR[31]
All other combinations Reserved

The register numbers and the effective addresses are correlated using the order listed in the table, starting with the

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

122

Load Word Multiple LWM32

123

left-most register on the list and ending with the right-most register on the list. The effective address is incremented
for each subsequent register on the list.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

The effective address must be 32-bit aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

The behavior of the instruction is UNPREDICTABLE, if base is included in reglist. Reason for this is to alow
restartability of the operation if an interrupt or exception has aborted the operation in the middle.

The behavior of thisinstruction isUNPREDICTABLE, if itis placed in adelay slot of ajump or branch.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]

if vAddr; # 07 then
SignalException (AddressError)

endif

for i<0 to fn(reglist)
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memword ¢« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[gpr (reglist,i)] <« memword
vAddr ¢« vAddr + 4

endfor

function fn(list)

fn < (number of entries in list) - 1
endfunction
Exceptions:

TLB R€fill, TLB Invalid, Bus Error, Address Error, Watch

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Word Multiple (16-bit) LWM16

15 10 9 6 5 4 3 0
POOL16C LWM16 .
010001 o0 | redlist) offst
6 4 2 4
Format: LwM16 sO, {sl, {s2, {s3,}}} ra, left_shifted_ offset (sp) microM I PS

Purpose: Load Word Multiple (16-bit)

To load a sequence of consecutive words from memory
Description: GPR[16], {GPR[17], {GPR[18], {GPR[19],}}} GPR[31] «
memory [GPR[29]+ (offset<<2)], ..., memory[GPR[19]+ (offset<<2)+4* (fn(reglist))]

The contents of consecutive 32-bit words at the memory location specified by the 32-bit aligned effective address are
fetched, sign-extended to the GPR register length if necessary, and placed in the GPRs defined by reglist. The 4-hit
unsigned offset isfirst left shifted by two bits and then added to the contents of GPR sp to form the effective address.

The following table shows the encoding of the reglist field.

reglist Encoding
(binary) List of Registers Loaded
00 GPR[16], GPR[31]
01 GPR[16], GPR[17], GPR[31]
10 GPR[16], GPR[17], GPR[18], GPR[31]
11 GPR[16], GPR[17], GPR[18], GPR[19], GPR[31]

The register numbers and the effective addresses are correlated using the order listed in the table, starting with the
left-most register on the list and ending with the right-most register on the list. The effective address is incremented
for each subsequent register on the list.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

The effective address must be 32-bit aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

The behavior of thisinstruction isUNPREDICTABLE, if itis placed in adelay slot of ajump or branch.

Operation:

vAddr « zero_extend (offset]||0?) + GPR[sp]

if vAddr; , # 02 then
SignalException (AddressError)

endif

for i<0 to fn(reglist)
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memword ¢« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[gpr (reglist,i)] <« memword
vAddr ¢« vAddr + 4

endfor

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 124

function fn(list)
fn < number of entries in list - 1
endfunction

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error, Watch

125 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Word Pair LWP

31 26 25 21 20 16 15 12 11 0
POOL32B LWP
001000 rd base 0001 offset
6 5 5 2 12
Format: LwP rd, offset (base) microM I PS

Purpose: Load Word Pair
To load two consecutive words from memory

Description: GPR[rd], GPR[rd+l] « memory[GPR[base] + offset]

The contents of the two consecutive 32-bit words at the memory location specified by the 32-bit aligned effective
address are fetched, sign-extended to the GPR register length if necessary, and placed in GPR rd and (rd+1). The
12-bit signed offset is added to the contents of GPR base to form the effective address.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

The effective address must be 32-bit aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

The behavior of theinstructionsis UNPREDICTABLE if rd equals r31.

The behavior of the instruction is UNPREDICTABLE, if base and rd are the same. Reason for this is to allow
restartability of the operation if an interrupt or exception has aborted the operation in the middle.

The behavior of thisinstruction is UNPREDICTABLE, if it isplaced in adelay slot of ajump or branch.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr, o # 0% then

SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rd] ¢« memword
vAddr ¢« sign_extend(offset) + GPR[base] + 4
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memword ¢« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rd+1l]¢ memword

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error, Watch

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 126

127 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Word from Global Pointer (16-bit instr size) LWGP

15 10 9 7 6 0
LWGP16
011001 rt offset
6 3 7
Format: LWGP rt, left_shifted offset (gp) microM I PS

Purpose: Load Word from Global Pointer (16-bit instr size)
To load aword from memory as asigned value

Description: GPR[rt] <« memory[GPR[28] + (offset x4)]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 7-bit signed offset is left shifted by two
bits and then added to the contents of GPR 28 to form the effective address.

Restrictions:

The 3-hit register field can only specify GPRs $2-$7, $16, $17.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr « sign_extend(offset|| 0%) + GPR[28]
if vAddr; , # 02 then

SignalException (AddressError)
endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
memword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ¢« memword

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error, Watch

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 128

129 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Word from Stack Pointer (16-bit instr size) LWSP

15 10 9 5 4 0
LWSP16
010010 rt offset
6 5 5
Format: LwSP rt, left_shifted offset (sp) microM I PS

Purpose: Load Word from Stack Pointer (16-bit instr size)
To load aword from memory as asigned value

Description: GPR[rt] « memory[GPR[29] + (offset x4)]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 5-bit signed offset is left shifted by two
bits, zero-extended and then is added to the contents of GPR 29 to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

VAddr « zero_extend(offset]|| 0%) + GPR[29]
if vAddr; # 02 then

SignalException (AddressError)
endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
memword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ¢« memword

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error, Watch

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 130

131 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Word Indexed, Scaled LWXS

31 26 25 21 20 16 15 11 10 9 0
POOL 324 index base rd 0 LWXS
000000 0100011000
6 5 5 5 1 10
Format: LwWXS rd, index(base) microM I PS

Purpose: Load Word Indexed, Scaled

To load aword from memory as asigned value, using scaled indexed addressing.

Description: GPR[rd] <« memory[GPR[base] + (GPR[index] X 4)]

The contents of GPR index is multiplied by 4 and the result is added to the contents of GPR base to form an effective
address. The contents of the 32-bit word at the memory location specified by the aligned effective address are
fetched, sign-extended to the GPR register length if necessary, and placed in GPR rd.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr « (GPR[index],y o || 0%) + GPR[base]
if vAddr, o # 0% then

SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rd] ¢« memword

Exceptions:

TLB R€fill, TLB Invalid, Bus Error, Address Error

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 132

133 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Move From HI Register (16-bit instr size)

15 10 9

POOL16C
010001

MFHI16
10000

rd

6
Format: MFHI16 rd

5

Purpose: Move From HI Register (16-bit instr size)

To copy the specia purpose HI register to aGPR

Description: GPR[rd] « HI

The contents of special register HI are loaded into GPR rd.

Restrictions:

None

Operation:

GPR[rd] « HI

Exceptions:

None

Historical Information:

MFHI16

microM I PS

Inthe MIPS, I, and |11 architectures, the two instructions which follow the MFHI must not modify the HI register.
If this restriction is violated, the result of the MFHI is UNPREDICTABLE. This restriction was removed in MIPS

IV and MIPS32, and all subsequent levels of the architecture.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

134

135 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Move From LO Register MFLO16

15 10 9 5 4 0
POOL16C MFLO16 d
010001 10010
6 5 5
Format: MFLOl6 rd microM I PS

Purpose: Move From LO Register
To copy the specia purpose LO register to a GPR

Description: GPR[rd] ¢« LO

The contents of special register LO are loaded into GPR rd.

Restrictions:

None

Operation:

GPR[rd] « LO

Exceptions:

None

Historical Information:

Inthe MIPS, I, and |11 architectures, the two instructions which follow the MFHI must not modify the HI register.
If this restriction is violated, the result of the MFHI is UNPREDICTABLE. This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 136

137 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

15 10 9 5 4 0
MOVE16
000011 rd rs
6 5 5
Format: MOVE16 rd, rs microM | PS

Purpose: Move Register (16-bit instr size)
To copy one GPR to another GPR.

Description: GPR[rd] < GPR[rs]

The contents of GPR rs are placed into GPR rd.

Restrictions:

None

Operation:

GPR[rd] ¢« GPR[rs]

Exceptions:

None

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 138

139 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Move a Pair of Registers MOVEP
15 10 9 7 6 4 3 1 0
POOL16F)
100001 éllC_dCSt enc_rt €nc_rs 0
6 3 3 3 1
Format: MOVEP rd, re, rs, rt microMIPS
Purpose: Move a Pair of Registers
To copy two GPRs to another two GPRs.
Description: GPR[rd] ¢« GPR[rs]; GPR[re] ¢« GPR[rt];
The contents of GPR 7 are placed into GPR rd. The contents of GPR 77 are placed into GPR re.
The register numbers 7d and re are determined by the encoded enc_dest field:
Table 5.13 Encoded and Decoded Values of the Enc_Dest Field
Encoded Encoded
Value of Value of Decoded Decoded
Instrg_7 Instrg_7 Value of rd | Value of re
(Decimal) (Hex) (Decimal) (Decimal)
0 0x0 5 6
1 0x1 5 7
2 0x2 6 7
3 0x3 4 21
-+ 0x4 4 22
5 0x5 4 5
6 0x6 4 6
7 0x7 4 7
The register numbers 7:s and 77 are determined by the encoded enc_rs and enc_rt fields:
Table 5.14 Encoded and Decoded Values of the Enc_rs and Enc_rt Fields
Encoded Encoded Decoded
Value of Value of Value of rt Symbolic
Instrg 4 (or Instrg 4 (or (or rs) Name
Instr 4) Instr 4) (From
(Decimal) (Hex) (Decimal) ArchDefs.h)
0 0x0 0 zero
1 0x1 17 sl
2 0x2 2 v0
3 0x3 3 vl
4 0x4 16 s0
5 0x5 18 s2
6 0x6 19 s3
MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04 140

Move a Pair of Registers

141

Table 5.14 Encoded and Decoded Values of the Enc_rs and Enc_rt Fields

Encoded Encoded Decoded
Value of Value of Value of rt Symbolic
Instrg_4 (or Instrg_4 (or (or rs) Name
Instr;_4) Instrs_4) (From
(Decimal) (Hex) (Decimal) ArchDefs.h)
7 0x7 20 s4

MOVEP

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

The destination register pair field, enc_dest, can only specify the register pairs defined in Table 5.13.

The source register fields enc_rs and enc_rt can only specify GPRs 0,2-3,16-20.

The behavior of this instruction is UNPREDICTABLE, if it is placed in a delay slot of a jump or branch.

Operation:

GPR[rd] ¢« GPR[rs]; GPR[re] « GPR[rt]

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Invert (16-bit instr size)

15

10

POOL16C
010001

NOT16
0000

rt

rs

6
Format: NOT16 rt, rs

Purpose: Invert (16-bit instr size)
To do a bitwise logical inversion.

Description: GPR[rt] « GPR[rs] XOR Oxffffffff

Invert the contents of GPR rsin a bitwise fashion and place the result into GPR rt.

Restrictions:

The 3-hit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

GPR[rt] ¢« GPR[rs] xor Oxffffffff

Exceptions:

None

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

NOT16

microM I PS

142

143 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Or (16-bit instr size)

15

10

POOL16C
010001

OR16
0011

rt

rs

6
Format: OR16 rt, rs

Purpose: Or (16-bit instr size)
To do abitwise logical OR

Description: GPR[rt] « GPR[rs] or GPR[rt]

OR16

MIPS32

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical OR operation. The result is

placed into GPR rt.

Restrictions:

The 3-hit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

GPR[rt] ¢« GPR[rs] or GPRI[rt]

Exceptions:

None

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

144

145 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Byte (16-bit instr size) SB16

15 10 9 7 6 4 3 0
SB16
100010 rt base offset
6 3 3 4
Format: SB16 rt, offset(base) microM I PS

Purpose: Store Byte (16-bit instr size)
To store a byte to memory

Description: memory[GPR[base] + offset] « GPR[rt]

The least-significant 8-bit byte of GPR rt is stored in memory at the location specified by the effective address. The
4-bit unsigned offset is added to the contents of GPR base to form the effective address.

Restrictions:

The 3-bit base register field can only specify GPRs $2-$7, $16, $17.

The 3-hit rt register field can only specify GPRs $0, $2-$7, $17.

Operation:

vAddr ¢« zero_extend(offset) + GPR[base]

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
pAddr ¢« pAddrpgrze-1. .2 || (PAddr; , xor ReverseEndian?)
bytesel <« vAddr,; xor BigEndianCPU?

dataword ¢ GPR[rtlj;_gspytesel..o || o8 bytesel
StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 146

147 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Software Debug Breakpoint (16-bit instr size)

15 10 9

POOL16C
010001

SDBBP16
101100

code

6
Format: SDBBP16 code

6

Purpose: Software Debug Breakpoint (16-bit instr size)

To cause a debug breakpoint exception

Description:

SDBBP16

EJTAG+microMIPS

This instruction causes a debug exception, passing control to the debug exception handler. If the processor is execut-
ing in Debug Mode when the SDBBP instruction is executed, the exception is a Debug Mode Exception, which sets
the Debugpgeyccode field to the value 0x9 (Bp). The code field can be used for passing information to the debug
exception handler, and is retrieved by the debug exception handler only by loading the contents of the memory word
containing the instruction, using the DEPC register. The CODE field is not used in any way by the hardware.

Restrictions:

Operation:

If Debugpy = 0 then
SignalDebugBreakpointException ()
else

SignalDebugModeBreakpointException ()

endif

Exceptions:

Debug Breakpoint Exception
Debug Mode Breakpoint Exception

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

148

149 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Halfword (16-bit instr size) SH16

15 10 9 7 6 4 3 0
SH16
101010 rt base offset
6 3 3 4
Format: SH16 rt, left _shifted_ offset (base) microM I PS

Purpose: Store Halfword (16-bit instr size)
To store a halfword to memory

Description: memory[GPR[base] + (offset x2)] ¢« GPR[rt]

The least-significant 16-bit halfword of register rt is stored in memory at the location specified by the aligned effec-
tive address. The 4-bit unsigned offset is left shifted by one bit and then added to the contents of GPR base to form
the effective address.

Restrictions:

The 3-bit base register field can only specify GPRs $2-$7, $16, $17.

The 3-hit rt register field can only specify GPRs $0, $2-$7, $17.

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ¢« zero_extend(offset|| 0) + GPR[basel
if vAddry # 0 then
SignalException (AddressError)

endif

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)

PAddr < pAddrpgrge-1..2 || (pAddr; , xor (ReverseEndian || 0))
bytesel « vAddr, , xor (BigEndianCPU || 0)

dataword ¢ GPR[rtl;;_gspytesel..o || p8rbytesel

StoreMemory (CCA, HALFWORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 150

151 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Shift Word Left Logical (16-bit instr size)

15 10 9 7 6 4 3 1
POOL16B rd t encoded
001001 sa
6 3 3 3

Format: SLL16 rd, rt, decoded_sa

Purpose: Shift Word Left Logical (16-bit instr size)

To left-shift aword by a fixed number of bits

Description: GPR[rd] « GPR[rt] << decoded_sa

SLL16

microM I PS

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting zeros into the emptied bits; the word
result is placed in GPR rd. The bit-shift amount is specified by decoding the encoded_sa field. Table 5.15 lists the
encoded values of the encoded sa field and the actual bit shift amount values.

Table 5.15 Shift Amount Field Encoding

Encoded Input | Decoded Value
(Hex) (Decimal)
0 8
1 1
2 2
3 3
4 4
5 5
6 6
7 7

Restrictions:

The 3-hit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

decoded_sa ¢« DECODE (encoded_sa)
s ¢« decoded_sa
temp — GPR[rt] (31-s)..0 | | OS
GPR[rd] « temp

Exceptions:

None

Programming Notes:

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

152

153 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Shift Word Right Logical (16-bit instr size) SRL16

15 10 9 7 6 4 3 1 0
POOL16B encoded
001001 rd rt a |!
6 3 3 3 1
Format: SRL16 rd, rt, decoded_sa microM I PS

Purpose: Shift Word Right Logical (16-bit instr size)
To execute alogical right-shift of aword by afixed number of bits

Description: GPR[rd] « GPR[rt] >> decoded_sa (logical)

The contents of the low-order 32-bit word of GPR rt are shifted right, inserting zeros into the emptied bits; the word
result is placed in GPR rd. The bit-shift amount is specified by . by decoding the encoded_safield. Table 5.16 liststhe
encoded values of the encoded sa field and the actual bit shift amount values.

Table 5.16 Shift Amount Field Encoding

Encoded Input | Decoded Value
(Hex) (Decimal)

0 8

N|o|g| b~ W[N]
N|o|g| b~ W[N]

Restrictions:

The 3-hit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

decoded_sa ¢« DECODE (encoded_sa)
s ¢« decoded_sa
temp < 0° || GPR[rtls; o
GPR[rd] « temp

Exceptions:

None

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 154

155 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Subtract Unsigned Word (16-bit instr size) SUBU16

15 10 9 7 6 1 0
POOL 16A
000001 rd rt rs 1
6 3 3 3 1
Format: SUBU16 rd, rs, rt microM | PS

Purpose: Subtract Unsigned Word (16-bit instr size)
To subtract 32-bit integers

Description: GPR[rd] ¢« GPR[rs] — GPR[rt]

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rs and the 32-bit arithmetic result is and
placed into GPR rd.

No integer overflow exception occurs under any circumstances.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:
temp ¢ GPR[rs] — GPR[rt]
GPR[rd] ¢« temp
Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 156

157 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Word (16-bit instr size) SW16

15 10 9 7 6 4 3 0
SW16
111010 rt base offset
6 3 3 4
Format: swlé rt, left shifted_ offset (base) microM I PS

Purpose: Store Word (16-bit instr size)
To store aword to memory

Description: memory[GPR[base] + (offset x4)] « GPR[rt]

The least-significant 32-bit word of GPR rt is stored in memory at the location specified by the aligned effective
address. The 4-bit unsigned offset is left-shifted by two bits and then added to the contents of GPR base to form the
effective address.

Restrictions:

The 3-bit base register field can only specify GPRs $2-$7, $16, $17.

The 3-hit rt register field can only specify GPRs $0, $2-$7, $17.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ¢« zero_extend(offset || 0%) + GPR[base]
if vAddr; , # 02 then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
dataword < GPR[rt]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 158

159 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Word to Stack Pointer (16-bit instr size) SWSP

15 10 9 5 4 0
SWSP16
110010 rt offset
6 5 5
Format: sSwsSP rt, left shifted_ offset (base) microM I PS

Purpose: Store Word to Stack Pointer (16-bit instr size)
To store aword to memory

Description: memory[GPR[29] + (offset x4)] « GPR[rt]

The least-significant 32-bit word of GPR rt is stored in memory at the location specified by the aligned effective
address. The 5-bit signed offset is |eft shifted by two bits, zero-extended and then is added to the contents of GPR 29
to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

VAddr « zero_extend(offset]|| 0%) + GPR[29]
if vAddr; # 02 then
SignalException (AddressError)
endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)
dataword < GPR[rt]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 160

161 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Word Multiple SWM32
31 26 25 21 20 16 15 12 11 0
POOL32B . SWM
001000 reglist base 1101 offset
6 5 5 4 12
Format: sSwM32 {sregs, } {ra}, offset (base) microM I PS
Purpose: Store Word Multiple
To store a sequence of consecutive words to memory
Description: memory[GPR[base]+offset], ..., memory[GPR[base]+offset+4* (fn(reglist))] «

{GPR[16], {GPR[17], {GPR[18], {GPR[19], {GPR[20], {GPR[21], {GPR[22], {GPR[23],
{GPR[301}}}}}3}}}{GPR[31]}

The least-significant 32-bit words of the GPRs defined by reglist are stored in memory at the location specified by the
aligned effective address. The 12-bit signed offset is added to the contents of GPR base to form the effective address.

The following table shows the encoding of the reglist field.

reglist Encoding
(binary) List of Registers Loaded
00001 GPR[16]
00010 GPR[16], GPR[17]
00011 GPR[16], GPR[17], GPR[18]
00100 GPR[16], GPR[17], GPR[18], GPR[19]
00101 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20]
00110 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21]
00111 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22]
01000 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23]
01001 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[30]
10000 GPR[31]
10001 GPR[16], GPR[31]
10010 GPR[16], GPR[17], GPR[31]
10011 GPR[16], GPR[17], GPR[18], GPR[31]
10100 GPR[16], GPR[17], GPR[18], GPR[19], GPR[31]
10101 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[31]
10110 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[31]
10111 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[31]
11000 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[31]
11001 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[30], GPR[31]
All other combinations Reserved

The register numbers and the effective addresses are correlated using the order listed in the table, starting with the
left-most register on the list and ending with the right-most register on the list. The effective address is incremented

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

162

Store Word Multiple

163

for each subsequent register on the list.

SWM32

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this

instruction.

Restrictions:

The effective address must be 32-bit aligned. If either of the 2 least-significant bits of the address is non-zero, an

Address Error exception occurs.
The behavior of thisinstruction is UNPREDICTABLE, if it isplaced in adelay slot of ajump or branch.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]

if vAddr; # 02 then
SignalException (AddressError)

endif

for i<0 to fn(reglist)
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)
dataword <« GPR[gpr (reglist,i)]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
vAddr ¢« vAddr + 4

endfor

function fn(list)

fn < (number of entries in list) - 1
endfunction
Exceptions:

TLB R€fill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Word Multiple (16-bit) SWM16

15 10 9 6 5 4 3 0
POOL16C SWM16 .
010001 o1 | redlist) offst
6 4 2 4
Format: swM16 sO0, {sl, {s2, {s3,}}} ra, left_shifted_ offset (sp) microM I PS

Purpose: Store Word Multiple (16-bit)

To store a sequence of consecutive words to memory
Description: memory [GPR[29]], ..., memory [GPR[29]+ (offset<<2)+4* (2+fn(reglist))] <«
GPR[16], {GPR[17], {GPR[18], {GPR[19],}}} GPR[31]

The least-significant 32-bit words of the GPRs defined by reglist are stored in memory at the location specified by the
aligned effective address. The 4-bit unsigned offset is added to the contents of GPR sp to form the effective address.

The following table shows the encoding of the reglist field.

reglist Encoding
(binary) List of Registers Stored
00 GPR[16], GPR[31]
01 GPR[16], GPR[17], GPR[31]
10 GPR[16], GPR[17], GPR[18], GPR[31]
11 GPR[16], GPR[17], GPR[18], GPR[19], GPR[31]

The register numbers and the effective addresses are correlated using the order listed in the table, starting with the
left-most register on the list and ending with the right-most register on the list. The effective address is incremented
for each subsequent register on the list.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

The effective address must be 32-bit aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

The behavior of thisinstruction isUNPREDICTABLE, if itis placed in adelay slot of ajump or branch.

Operation:

vAddr « zero_extend (offset]||0?) + GPR[sp]

if vAddr; , # 02 then
SignalException (AddressError)

endif

for i<0 to fn(reglist)
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
dataword ¢« GPR[gpr(reglist,i)]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
vAddr ¢« vAddr + 4

endfor

function fn(list)

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 164

fn < number of entries in list - 1
endfunction

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Address Error, Watch

165 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Word Pair SWP

31 26 25 21 20 16 15 12 11 0
POOL32B SWP
001000 rsl base 1001 offset
6 5 5 4 12
Format: sSwp rsl, offset (base) microM | PS

Purpose: Store Word Pair

To store two consecutive words to memory

Description: memory[GPR[base] + offset] « GPR[rsl], GPR[rsl+1]

The least-significant 32-bit words of GPR rsl and GPR rsl+1 are stored in memory at the location specified by the
aligned effective address. The 12-hit signed offset is added to the contents of GPR base to form the effective address.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

The effective address must be 32-bit aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

The behavior of theinstructionsis UNDEFINED if rd equals $31.
The behavior of thisinstruction is UNDEFINED, if it is placed in adelay slot of ajump or branch.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr; , # 02 then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
dataword <« GPR[rsl]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

vAddr ¢« sign_extend(offset) + GPR[base] + 4

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
dataword ¢« GPR[rsl+1]

StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 166

167 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Exclusive OR (16-bit instr size)

15

10

POOL16C
010001

XOR16
0001

rt

rs

6
Format: XOR16 rt, rs

Purpose: Exclusive OR (16-bit instr size)

To do abitwise logical Exclusive OR

Description: GPR[rt] ¢« GPR[rs] XOR GPR[rt]

XOR16

microM I PS

Combine the contents of GPR rs and GPR rt in a bitwise logical Exclusive OR operation and place the result into

GPRrt.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

GPR[rt] ¢« GPR[rs] xor GPRI[rt]

Exceptions:

None

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

168

Chapter 5

5.5 Recoded 32-Bit Instructions

This section defines the recoded instructions of the existing instruction sets.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 169

Floating Point Absolute Value ABS.fmt

31 26 25 21 20 16 15 14 13 12 6 5 0
POOL32F " s ol fme ABS POOL 32FXf
010101 0001101 111011
6 5 5 1 2 7 6

Format: ABS.fmt

ABS.S ft, fs microMIPS
ABS.D ft, fs microMIPS
ABS.PS ft, fs microM I PS

Purpose: Floating Point Absolute Value

Description: FPR[ft] « abs (FPR[fs])

The absolute value of the valuein FPR fsis placed in FPR ft. The operand and result are valuesin format fmt. ABS.PS
takes the absolute value of the two values in FPR fs independently, and ORs together any generated exceptions.

Cause bits are ORed into the Flag bitsif no exception is taken.

If FIRHas0008=0 Or FCSRagsp00s=0 then this operation is arithmetic. For this case, any NaN operand signals invalid
operation.

If FCSRaps00s=1 then this operation is non-arithmetic. For this case, both regular floating point numbers and NAN
values are treated alike, only the sign bit is affected by this instruction. No |EEE exception can be generated for this

case.
Restrictions:

Thefields fs and ft must specify FPRs valid for operands of type fnt. If they are not valid, the result isUNPREDICT -
ABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABL E and the value of the operand
FPR becomes UNPREDICTABLE.

The result of ABS.PSis UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model;
i.e. itispredictableif executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(ft, fmt, AbsoluteValue(ValueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 170

171 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Add Word ADD

31 26 25 21 20 16 15 1 10 9 0
POOL32A 0 ADD
rt rs rd
000000 0100010000
6 5 5 5 1 10
Format: 2ADD rd, rs, rt microM I PS

Purpose: Add Word
To add 32-bit integers. If an overflow occurs, then trap.

Description: GPR[rd] « GPR[rs] + GPR[rt]
The 32-bit word value in GPR rt is added to the 32-bit value in GPR rsto produce a 32-bit result.

» |If the addition resultsin 32-bit 2's complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs.

» |If the addition does not overflow, the 32-bit result is placed into GPR rd.

Restrictions:

None

Operation:

temp < (GPR[rsli;||GPR[rslz; o) + (GPR[rtlsqi||GPR[rtlsq o)
if temp;, # temps;; then
SignalException (IntegerOverflow)
else
GPR[rd] <« temp
endif
Exceptions:

Integer Overflow

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 172

Floating Point Add ADD.fmt

31 26 25 21 20 16 15 11 10 9 8 7 0
POOL 32F ADD
010101 ft fs fd O fmt 00110000
6 5 5 5 1 2 P

Format: ADD. fmt

ADD.S fd, fs, ft microMIPS
ADD.D fd, fs, ft microMIPS
ADD.PS fd, fs, ft microM I PS

Purpose: Floating Point Add
To add floating point values

Description: FPR[fd] « FPR[fs] + FPR[ft]

Thevauein FPR ft is added to the value in FPR fs. The result is calculated to infinite precision, rounded by using to
the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.
ADD.PS adds the upper and lower halves of FPR fs and FPR ft independently, and ORs together any generated excep-
tions.

Cause bits are ORed into the Flag bitsif no exception is taken.

Restrictions:

Thefields fs, ft, and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is UNPRE-
DICTABLE.

The operands must be values in format ft; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of ADD.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-hit FPU register mode!;
i.e.itispredictableif executing on a64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) +¢, ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Inexact, Overflow, Underflow

173 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 174

Add Immediate Word ADDI

175

31 26 25 21 20 16 15 0
ADDI32 .)
000100 rt rs immediate
6 5 5 16
Format: ADDI rt, rs, immediate microM I PS

Purpose: Add Immediate Word
To add a constant to a 32-bit integer. If overflow occurs, then trap.

Description: GPR[rt] < GPR[rs] + immediate

The 16-bit signed immediate is added to the 32-bit value in GPR rsto produce a 32-bit result.

» |If the addition resultsin 32-bit 2's complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs.

» |f the addition does not overflow, the 32-bit result is placed into GPR rt.

Restrictions:

None

Operation:

temp < (GPR[rsli;||GPR[rslz; o) + sign_extend(immediate)
if temp;, # temps;; then
SignalException (IntegerOverflow)
else
GPR[rt] « temp
endif
Exceptions:

Integer Overflow

Programming Notes:

ADDIU performs the same arithmetic operation but does not trap on overflow.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Add Immediate Unsigned Word ADDIU

31 26 25 21 20 16 15 0
ADDIU32 . !
001100 rt rs immediate
6 5 5 16
Format: ADDIU rt, rs, immediate microM | PS

Purpose: Add Immediate Unsigned Word
To add a constant to a 32-bit integer

Description: GPR[rt] < GPR[rs] + immediate

The 16-bit signed immediate is added to the 32-bit value in GPR rs and the 32-bit arithmetic result is placed into
GPR rt.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:
temp ¢« GPR[rs] + sign_extend(immediate)
GPR[rt] <« temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. Thisinstruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 176

Add Unsigned Word ADDU

177

31 26 25 21 20 16 15 11 10 0
POOL32A t s d 0 ADDU
000000 0101010000
6 5 5 5 1 10
Format: ADDU rd, rs, rt microM I PS

Purpose: Add Unsigned Word
To add 32-hit integers

Description: GPR[rd] ¢« GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs and the 32-bit arithmetic result is placed into
GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:
temp < GPR[rs] + GPR[rt]
GPR[rd] <« temp
Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. Thisinstruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Floating Point Align Variable ALNV.PS

31 26 25 21 20 16 15 1 10 6 5 0
POOL32F ALNVPS
010101 fi fs B ™ 011001
6 5 5 5 5 6
Format: ALNV.PS fd, fs, ft, rs microMIPS

Purpose: Floating Point Align Variable
To align a misaligned pair of paired single values
Description: FPR[£d] « ByteAlign(GPR[rsl, o, FPR[fs], FPR[ft])

FPR fs is concatenated with FPR ft and this value is funnel-shifted by GPR 75, g bytes. and written into FPR fd. If
GPR 15, gis 0, FPR fd receives FPR fs. If GPR rs; g is 4, the operation depends on the current endianness.

Figure 3-1 illustrates the following example: for a big-endian operation and a byte alignment of 4, the upper half of
FPR fd receives the lower half of the paired single value in fs, and the lower half of FPR fd receives the upper half of
the paired single value in FPR f7.

Figure 5.1 Example of an ALNV.PS Operation
FPRJfs FPRft
AL PRI

[]
[—— |

—

|

63 323 0

—
FPRIfd]

The move is non arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields f5, f#, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-
DICTABLE.

If GPR 154 (are non-zero, the results are UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model:; i.e. it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit
FPU.

Operation:

if GPR[rs],; .o = 0 then
StoreFPR(fd, PS,ValueFPR(fs,PS))
else if GPR[rsl,; o # 4 then
UNPREDICTABLE
else if BigEndianCPU then
StoreFPR(fd, PS, ValueFPR(fs, PS)3;. o || ValueFPR(ft,PS)¢;. 32)

MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04 178

Floating Point Align Variable ALNV.PS

else
StoreFPR(fd, PS, ValueFPR(ft, PS)3; o || ValueFPR(fs,PS)g3. 35)
endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

ALNV.PSisdesigned to be used with LUXC1 to load 8 bytes of data from any 4-byte boundary. For example:

/* Copy T2 bytes (a multiple of 16) of data TO to T1l, TO unaligned, Tl aligned.
Reads one dw beyond the end of TO. */

LUXC1 FO, 0(TO0) /* set up by reading lst src dw */
LI T3, 0 /* index into src and dst arrays */
ADDIU T4, TO, 8 /* base for odd dw loads */
ADDIU T5, Tl, -8/* base for odd dw stores */
LOOP:
LUXC1 F1l, T3(T4)
ALNV.PS F2, FO, Fl1, TO/* switch FO, Fl for little-endian */
SDC1 F2, T3(T1)
ADDIU T3, T3, 16
LUXC1 FO, T3(TO)
ALNV.PS F2, F1, FO, TO/* switch F1l, FO for little-endian */
BNE T3, T2, LOOP
SDC1 F2, T3(T5)
DONE :

ALNV.PSisaso useful with SUXCL1 to store paired-single results in a vector loop to a possibly misaligned address:

/* T1[i] = TO[i] + F8, TO aligned, T1 unaligned. */
CVT.PS.S F8, F8, F8/* make addend paired-single */

/* Loop header computes lst pair into FO0, stores high half if T1 */
/* misaligned */

LOOP:
LDC1 F2, T3(T4)/* get TO[i+2]/TO0[i+3] */
ADD.PS Fl, F2, F8/* compute T1[i+2]/T1[i+43] */
ALNV.PS F3, FO, F1, Tl1/* align to dst memory */
SUXC1 F3, T3(T1l)/* store to T1[i+0]/T1[i+1] */
ADDIU T3, 16 /* 1 =1+ 4 */
LDC1 F2, T3(TO0)/* get TO[i+0]/TO[i+1] */
ADD.PS FO, F2, F8/* compute T1[i+0]/T1[i+1] */
ALNV.PS F3, F1, FO, Tl/* align to dst memory */
BNE T3, T2, LOOP
SUXC1 F3, T3(T5)/* store to T1[i+2]/T1[i+3] */

/* Loop trailer stores all or half of FO, depending on Tl alignment */

179 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 180

And

181

AND
31 26 25 21 20 16 15 11 10 9 0
POOL 32A rt s d 0 AND
000000 1001010000
6 5 5 5 1 10
Format: AND rd, rs, rt microM | PS

Purpose: And
To do abitwise logical AND

Description: GPR[rd] ¢« GPR[rs] AND GPR[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical AND operation. The result is
placed into GPR rd.

Restrictions:

None

Operation:

GPR[rd] ¢« GPR[rs] and GPR[rt]

Exceptions:

None

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

And Immediate ANDI
31 26 25 21 20 16 15 0
ANDI32 .)
110100 rt rs immediate
6 5 5 16
Format: ANDI rt, rs, immediate microM I PS

Purpose: And Immediate

To do a bitwise logical AND with a constant

Description: GPR[rt] ¢« GPR[rs] AND immediate

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR rsin abitwiselogical AND

operation. Theresult is placed into GPR rt.

Restrictions:

None

Operation:

GPR[rt]

Exceptions:

None

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

< GPR[rs] and zero_extend(immediate)

182

Unconditional Branch B

183

31 26 25 21 20 16 15 0
BEQ32 0 0
100101 00000 00000 offset
6 5 5 16
Format: B offset Assembly Idiom

Purpose: Unconditional Branch
To do an unconditional branch

Description: branch

B offset is the assembly idiom used to denote an unconditional branch. The actual instruction is interpreted by the
hardware as BEQ r0, r0, offset.

An 17-bit signed offset (the 16-hit offset field shifted left 1 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.
Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

I: target_offset ¢« sign_extend(offset || ol
I+1: PC < PC + target_offset

Exceptions:

None

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is + 64 Kbytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Branch on Less Than or Equal to Zero BLEZ

31 26 25 21 20 16 15 0
POOL 321 BLEZ
010000 00100 rs offset
6 5 5 16
Format: BLEZ rs, offset microM I PS

Purpose: Branch on Less Than or Equal to Zero
To test a GPR then do a PC-relative conditiona branch

Description: if GPR[rs] < 0 then branch

A 17-bit signed offset (the 16-bit offset field shifted |eft 1 bits) is added to the address of the instruction following the
branch (not the branch itself), in the branch delay dlot, to form a PC-relative effective target address.

If the contents of GPR rs are less than or equal to zero (sign bit is 1 or value is zero), branch to the effective target
address after the instruction in the delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

I: target_offset ¢« sign_extend(offset || ol
condition ¢« GPR[rs] < QGPRLEN
I+1: if condition then
PC « PC + target_offset
endif

Exceptions:

None

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is + 64 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 184

185 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Branch and Link BAL

31 26 25 21 20 16 15 0
POOL32I BGEZAL 0 offset
010000 00011 00000
6 5 5 16
Format: BAL offset Assembly Idiom

Purpose: Branch and Link
To do an unconditional PC-relative procedure call

Description: procedure_call

BAL offset isthe assembly idiom used to denote an unconditional branch. The actual instruction is interpreted by the
hardware as BGEZAL rO0, offset.

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 17-bit signed offset (the 16-hit offset field shifted left 1 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.
Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay dot of abranch or jump.

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
re-executed. The result of executing such an instructionis UNPREDICTABLE. Thisrestriction permits an exception
handler to resume execution by re-executing the branch when an exception occurs in the branch delay slot.
Operation:

I: target_offset ¢« sign_extend(offset || ot
GPR[31] « PC + 8
I+1: PC « PC + target_offset
Exceptions:

None

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is + 64 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 186

187 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Branch on FP False BC1F

31 26 25 21 20 18 17 16 15 0
POOL 32I BCI1F
00
010000 11100 ce offset
6 5 3 2 16
Format: BC1F offset (cc = 0 implied) microM I PS
BC1F cc, offset microMIPS

Purpose: Branch on FP False
To test an FP condition code and do a PC-relative conditional branch

Description: 1f FPConditionCode(cc) = 0 then branch

A 17-hit signed offset (the 16-hit offset field shifted |eft 1 bits) is added to the address of the instruction following the
branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FP condi-
tion code bit cc isfalse (0), the program branches to the effective target address after the instruction in the delay slot
is executed. An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:
Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.
Operation:
I: condition ¢ FPConditionCode(cc) = 0
target_offset « (offset;g)CPRMEN-(16+1) || offget || of
I+1: if condition then
PC « PC + target_offset
endif
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is + 64 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range

Historical Information:

The MIPS | architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal (CplCond) and the C hit in the FP Control/Status register. MIPS 1, 11, and I11 architectures must have the CC
field set to O, which isimplied by thefirst format in the “ Format” section.

The MIPS 1V and MIPS32 architectures add seven more Condition Code hits to the original condition code 0. FP
compare and conditional branch instructions specify the Condition Code bit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

Inthe MIPSI, I, and Il architectures there must be at least one instruction between the compare instruction that sets
the condition code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 188

189 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Branch on FP True BC1T

31 26 25 21 20 18 17 16 15 0
POOL 32I BC1T
00
010000 11101 ce offset
6 5 3 2 16
Format: BC1T offset (cc = 0 implied) microM I PS
BC1T cc, offset microMIPS

Purpose: Branch on FP True
To test an FP condition code and do a PC-relative conditional branch

Description: if FPConditionCode(cc) = 1 then branch

A 17-hit signed offset (the 16-hit offset field shifted |eft 1 bits) is added to the address of the instruction following the
branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FP condi-
tion code hit cc istrue (1), the program branches to the effective target address after the instruction in the delay slot is
executed. An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:
Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.
Operation:
I: condition ¢« FPConditionCode(cc) = 1
target_offset « (offset;g)CPRMEN-(16+1) || offget || of
I+1: if condition then
PC « PC + target_offset
endif
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is + 64 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Historical Information:

The MIPS | architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal (CplCond) and the C hit in the FP Control/Status register. MIPS 1, 11, and I11 architectures must have the CC
field set to O, which isimplied by thefirst format in the “ Format” section.

The MIPS 1V and MIPS32 architectures add seven more Condition Code hits to the original condition code 0. FP
compare and conditional branch instructions specify the Condition Code bit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

Inthe MIPSI, I, and Il architectures there must be at least one instruction between the compare instruction that sets
the condition code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 190

191 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Branch on COP2 False BC2F
31 26 25 21 20 18 17 16 15 0
POOL32I BC2F
00
010000 10100 ce offset
6 5 3 2 16
Format: BC2F offset (cc = 0 implied) microM I PS
BC2F cc, offset microMIPS

Purpose: Branch on COP2 False

To test a COP2 condition code and do a PC-relative conditional branch

Description: 1f cop2Condition (cc)

A 17-hit signed offset (the 16-hit offset field shifted |eft 1 bits) is added to the address of the instruction following the
branch (not the branch itself) in the branch delay dlot to form a PC-relative effective target address. If the COP2 con-
dition specified by cc isfalse (0), the program branches to the effective target address after the instruction in the delay

slot is executed.

Restrictions:

0 then branch

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the

delay slot of abranch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for

tf and nd.

I: condition « COP2Condition(cc) =
target_offset « (offset;g)CPRMEN-(16+1) || offget || of

I+1: if condition then
PC « PC + target_offset

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is + 64 KBytes. Use jump (J) or jump register

(JR) instructions to branch to addresses outside this range.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

192

193 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Branch on COP2 True BC2T
31 26 25 21 20 18 17 16 15 0
POOL 32I BC2T
00
010000 10101 © offset
6 5 3 2 16
Format: BC2T offset (cc = 0 implied) microM I PS
BC2T cc, offset microMIPS

Purpose: Branch on COP2 True

To test a COP2 condition code and do a PC-relative conditional branch

Description: if cop2Condition (cc)

A 17-hit signed offset (the 16-hit offset field shifted |eft 1 bits) is added to the address of the instruction following the
branch (not the branch itself) in the branch delay dlot to form a PC-relative effective target address. If the COP2 con-
dition specified by ccistrue (1), the program branches to the effective target address after the instruction in the delay

slot is executed.

Restrictions:

1 then branch

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the

delay slot of abranch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for

tf and nd.

I: condition « COP2Condition(cc) =
target_offset « (offset;g)CPRMEN-(16+1) || offget || of

I+1: if condition then
PC « PC + target_offset

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch rangeis+ 64 KBytes. Use jump (J) or jump register

(JR) instructions to branch to addresses outside this range.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

194

195 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Branch on Equal BEQ

31 26 25 21 20 16 15 0
BEQ32
100101 rt rs offset
6 5 5 16
Format: BEQ rs, rt, offset microM | PS

Purpose: Branch on Equa
To compare GPRs then do a PC-relative conditional branch

Description: if GPR[rs] = GPR[rt] then branch

A 17-bit signed offset (the 16-bit offset field shifted |eft 1 bits) is added to the address of the instruction following the
branch (not the branch itself), in the branch delay dlot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are equal, branch to the effective target address after the instruction in the delay
dot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

I: target_offset ¢« sign_extend(offset || ol
condition ¢« (GPR[rs] = GPR[rt])
I+1: if condition then
PC « PC + target_offset
endif

Exceptions:

None

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is + 64 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

BEQ r0, rO offset, expressed as B offset, is the assembly idiom used to denote an unconditional branch.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 196

Branch on Greater Than or Equal to Zero BGEZ

197

31 26 25 21 20 16 15 0
POOL 321 BGEZ
010000 00010 rs offset
6 5 5 16
Format: BGEZ rs, offset microM | PS

Purpose: Branch on Greater Than or Equal to Zero
To test a GPR then do a PC-relative conditiona branch

Description: if GPR[rs] 2 0 then branch

A 17-bit signed offset (the 16-bit offset field shifted |eft 1 bits) is added to the address of the instruction following the
branch (not the branch itself), in the branch delay dlot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

I: target_offset ¢« sign_extend(offset || ol
condition ¢« GPR[rs] 2 QGPRLEN
I+1: if condition then
PC « PC + target_offset
endif

Exceptions:

None

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is + 64 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Branch on Greater Than or Equal to Zero and Link BGEZAL

31 26 25 21 20 16 15 0
POOL 32I BGEZAL
010000 00011 rs offset
6 5 5 16
Format: BGEZAL rs, offset microM I PS

Purpose: Branch on Greater Than or Equal to Zero and Link
To test a GPR then do a PC-relative conditional procedure call

Description: if GPR[rs] 2 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

A 17-hit signed offset (the 16-hit offset field shifted |eft 1 bits) is added to the address of the instruction following the
branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rsare greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed.

Restrictions:

The delay-dlot instruction must be 32-bits in size. Processor operation is UNPREDICTABLE if a 16-bit instruction
isplaced in the delay slot of BGEZAL.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occursin the branch delay dot.

Operation:

I: target_offset ¢« sign_extend(offset || oh)
condition ¢« GPR[rs] > QCFRLEN
GPR[31] « PC + 8
I+1: if condition then
PC < PC + target_offset
endif

Exceptions:

None

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is + 64 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

BGEZAL r0, offset, expressed as BAL offset, is the assembly idiom used to denote a PC-relative branch and link.
BAL isused in amanner similar to JAL, but provides PC-relative addressing and a more limited target PC range.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 198

Branch on Greater Than Zero BGTZ
31 26 25 21 20 16 15 0
POOL 32I BGTZ
010000 00110 rs offset
6 5 5 16
Format: BGTZ rs, offset microM | PS

199

Purpose: Branch on Greater Than Zero

To test a GPR then do a PC-relative conditiona branch

Description: if GPR[rs] > 0 then branch

A 17-bit signed offset (the 16-bit offset field shifted |eft 1 bits) is added to the address of the instruction following the

branch (not the branch itself), in the branch delay dlot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than zero (sign bit is 0 but value not zero), branch to the effective target address

after the instruction in the delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the

delay slot of abranch or jump.

Operation:

I:

I+1:

Exceptions:

None

Programming Notes:

target_offset <« sign_extend(offset || 0%)
condition ¢« GPR[rs] > QGPRLEN
if condition then
PC « PC + target_offset
endif

With the 17-bit signed instruction offset, the conditional branch range is + 64 KBytes. Use jump (J) or jump register

(JR) instructions to branch to addresses outside this range.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 200

Branch on Less Than Zero BLTZ

201

31 26 25 21 20 16 15 0
POOL 321 BLTZ
010000 00000 rs offset
6 5 5 16
Format: BLTZ rs, offset microM I PS

Purpose: Branch on Less Than Zero
To test a GPR then do a PC-relative conditiona branch

Description: if GPR[rs] < 0 then branch

A 17-bit signed offset (the 16-bit offset field shifted |eft 1 bits) is added to the address of the instruction following the
branch (not the branch itself), in the branch delay dlot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay dot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:
I: target_offset « sign_extend(offset || oh)
condition ¢« GPR[rs] < (QGPRLEN
I+1l: if condition then
PC « PC + target_offset
endif

Exceptions:

None

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is + 64 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Branch on Less Than Zero and Link BLTZAL

31 26 25 21 20 16 15 0
POOL 321 BLTZAL
010000 00001 rs offset
6 5 5 16
Format: BLTZAL rs, offset microM I PS

Purpose: Branch on Less Than Zero and Link
To test a GPR then do a PC-relative conditional procedure call

Description: if GPR[rs] < 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

A 17-hit signed offset (the 16-hit offset field shifted |eft 1 bits) is added to the address of the instruction following the
branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay dot is executed.

Restrictions:

The delay-dlot instruction must be 32-bits in size. Processor operation is UNPREDICTABLE if a 16-bit instruction
isplaced in the delay dlot of BLTZAL.

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occursin the branch delay slot.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

I: target_offset « sign_extend(offset || oh)
condition ¢« GPR[rs] < OQCFRLEN
GPR[31] « PC + 8

I+1: if condition then
PC < PC + target_offset
endif
Exceptions:
None

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is + 64 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 202

Branch on Not Equal BNE

203

31 26 25 21 20 16 15 0
BNE32
101101 rt rs offset
6 5 5 16
Format: BNE rs, rt, offset microM | PS

Purpose: Branch on Not Equal
To compare GPRs then do a PC-relative conditional branch

Description: if GPR[rs] # GPR[rt] then branch

A 17-bit signed offset (the 16-bit offset field shifted |eft 1 bits) is added to the address of the instruction following the
branch (not the branch itself), in the branch delay dlot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are not equal, branch to the effective target address after the instruction in the
delay dot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

I: target_offset ¢« sign_extend(offset || ol
condition <« (GPR[rs] # GPR[rt])
I+1: if condition then
PC « PC + target_offset
endif

Exceptions:

None

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is + 64 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Breakpoint BREAK

31 26 25 6 5 0
POOL32A code BREAK32
000000 000111
6 20 6
Format: BREAK microM I PS

Purpose: Breskpoint
To cause a Breakpoint exception

Description:

A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handler. The
code field is available for use as software parameters, but is retrieved by the exception handler only by loading the
contents of the memory word containing the instruction.

Restrictions:

None

Operation:

SignalException (Breakpoint)

Exceptions:
Breakpoint

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 204

Floating Point Compare C.cond.fmt
31 26 25 21 20 16 15 13 12 11 10 9 0
POOL 32F c.cond fmt
n
010101 ft fs cc 0| fmt cond 111100
6 5 5 3 1 2 4 6
Format: C.cond.fmt

C.cond.S fs, ft (cc = 0 implied) microMIPS
C.cond.D fs, ft (cc = 0 implied) microM I PS
C.cond.PS fs, ft(cc = 0 implied) microM I PS
C.cond.S cc, fs, ft microM I PS
C.cond.D cc, fs, ft microM I PS
C.cond.PS cc, fs, ft microM I PS

205

Purpose: Floating Point Compare
To compare FP values and record the Boolean result in a condition code

Description: FpConditionCode(cc) « FPR[fs] compare_cond FPR[ft]

Thevaluein FPR fsis compared to the value in FPR ft; the values are in format fmt. The comparison is exact and nei-
ther overflows nor underflows.

If the comparison specified by the cond field of the instruction is true for the operand values, the result is true; other-
wise, the result isfalse. If no exception is taken, the result is written into condition code CC; trueis 1 and falseis 0.

In the cond field of the instruction: cond, 4 specify the nature of the comparison (equals, less than, and so on); cond,
specifies whether the comparison is ordered or unordered, i.e. false or true if any operand is a NaN; conds indicates
whether the instruction should signal an exception on QNaN inputs, or not (see Table 3.26).

c.cond.PS compares the upper and lower halves of FPR fs and FPR ft independently and writes the results into condi-
tion codes CC +1 and CC respectively. The CC number must be even. If the number is not even the operation of the
instruction is UNPREDICTABLE.

If one of the valuesisan SNaN, or conds is set and at least one of the valuesis a QNaN, an Invalid Operation condi-
tion israised and the Invalid Operation flag is set in the FCSR. If the Invalid Operation Enable bit is set in the FCSR,
no result is written and an Invalid Operation exception is taken immediately. Otherwise, the Boolean result is written
into condition code CC.

There are four mutually exclusive ordering relations for comparing floating point values; one relation is always true
and the others are false. The familiar relations are greater than, less than, and equal. In addition, the |EEE floating
point standard defines the relation unordered, which is true when at least one operand value is NaN; NaN compares
unordered with everything, including itself. Comparisons ignore the sign of zero, so +0 equals -0.

The comparison condition is a logical predicate, or equation, of the ordering relations such as less than or equal,
equal, not less than, or unordered or equal. Compare distinguishes among the 16 comparison predicates. The Bool-
ean result of the instruction is obtained by substituting the Boolean value of each ordering relation for the two FP val-
ues in the equation. If the equal relation is true, for example, then all four example predicates above yield a true
result. If the unordered relation is true then only the final predicate, unordered or equal, yields a true result.

Logica negation of acompare result allows eight distinct comparisons to test for the 16 predicates as shownin Table
3.25. Each mnemonic tests for both a predicate and its logical negation. For each mnemonic, compare tests the truth
of thefirst predicate. When the first predicate is true, the result is true as shown in the “ If Predicate Is True” column,
and the second predicate must be false, and vice versa. (Note that the False predicate is never true and False/True do
not follow the normal pattern.)

The truth of the second predicate is the logical negation of the instruction result. After a compare instruction, test for
the truth of thefirst predicate can be made with the Branch on FP True (BCLT) instruction and the truth of the second

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Floating Point Compare C.cond.fmt

can be made with Branch on FP False (BCL1F).

Table 3.26 shows another set of eight compare operations, distinguished by aconds value of 1 and testing the same 16

conditions. For these additional comparisons, if at least one of the operandsis a NaN, including Quiet NaN, then an
Invalid Operation condition israised. If the Invalid Operation condition is enabled in the FCSR, an Invalid Operation
exception occurs.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 206

Floating Point Compare C.cond.fmt

Table 5.17 FPU Comparisons Without Special Operand Exceptions

Instruction Comparison Predicate Comparison CC Result | Instruction
Relation Inv Op Con_dition
Cond Name of Predicate and Logically Negated Values If Predicate| Excp. if Field
Mnemonic Predicate (Abbreviation) >|<|=]|7? Is True QNaN? 3 2.0
F False [this predicate is always False] FIF|F|F F No 0 0
True (T) T|IT|T|T
UN Unordered FIF|F[T T 1
Ordered (OR) T|IT|T|F F
EQ Equal FIF|T|F T 2
Not Equal (NEQ) T|IT|F|T F
UEQ Unordered or Equal FIF|T|T T 3
Ordered or Greater Than or Less Than (OGL) T|T|F|F F
OLT Ordered or Less Than FIT|F|F T 4
Unordered or Greater Than or Equal (UGE) TIF|T|T F
ULT Unordered or Less Than FIT|F[T T 5
Ordered or Greater Than or Equal (OGE) TIF|T|F F
OLE Ordered or Less Than or Equal FIT|T|F T 6
Unordered or Greater Than (UGT) TIF|F|T F
ULE Unordered or Less Than or Equal FIT|T|T T 7
Ordered or Greater Than (OGT) T|F|F|F F
Key: ?=unordered, > = greater than, < =lessthan, =isequal, T = True, F = False

207 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Floating Point Compare C.cond.fmt
Table 5.18 FPU Comparisons With Special Operand Exceptions for QNaNs
Instruction Comparison Predicate Comparison CC Result | Instruction
Relation Inv Op Con.dition
Cond Name of Predicate and Logically Negated Values If Predicate| Excp If Field
Mnemonic Predicate (Abbreviation) > <|=]7 Is True QNaN? 3 2.0
SF Signaling False [this predicate always False] FIF|F|F F Yes 1 0
Signding True (ST) TIT|T|T
NGLE Not Greater Than or Less Than or Equal FIF|IF[T T 1
Greater Than or Less Than or Equal (GLE) T|IT|T|F F
SEQ Signaling Equal FIF|T|F T 2
Signaling Not Equal (SNE) TIT|F|T F
NGL Not Greater Than or Less Than FIF|IT|T T 3
Greater Than or Less Than (GL) T|IT|F|F F
LT Less Than FIT|F|F T 4
Not Less Than (NLT) TIF|T|T F
NGE Not Greater Than or Equal FIT|F[T T 5
Greater Than or Equal (GE) TIF|T|F F
LE Less Than or Equal FIT|T|F T 6
Not Less Than or Equal (NLE) TIF|F|T F
NGT Not Greater Than FIT|T|T T 7
Greater Than (GT) T|F|F|F F
Key: ?=unordered, > = greater than, < =lessthan, =isequal, T = True, F = False
Restrictions:

Thefields fs and ft must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPREDICT -

ABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

Theresult of C.cond.PSis UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model;
it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU,.

The result of C.cond.PSis UNPREDICTABLE if the condition code number is odd.

Operation:

if SNaN (ValueFPR(fs,

fmt))
QNaN (ValueFPR(fs, fmt))
less « false

equal <« false
unordered « true

if (SNaN(ValueFPR(fs, fmt))

(cond; and (QNaN(ValueFPR(fs, fmt))

SignalException (InvalidOperation)

endif

else
less « ValueFPR(fs, fmt)
equal « ValueFPR(fs, fmt)

or SNaN (ValueFPR(ft,
or QNaN (ValueFPR(ft,

or SNaN (ValueFPR(ft,fmt)))
or QNaN (ValueFPR(ft,fmt))))

<¢fmt ValueFPR(ft,
=fmt ValueFPR(ft,

fmt))
fmt))

or
then

fmt)

fmt)

or

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

then

208

Floating Point Compare C.cond.fmt

209

unordered <« false
endif
condition ¢« (cond, and less) or (cond; and equal)
or (condy and unordered)
SetFPConditionCode (cc, condition)

For c.cond.PS, the pseudo code above is repeated for both halves of the operand registers, treating each half as an
independent single-precision values. Exceptions on the two halves are logically ORed and reported together. The
results of the lower half comparison are written to condition code CC; the results of the upper half comparison are
written to condition code CC+1.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

Programming Notes:

FP computational instructions, including compare, that receive an operand value of Signaling NaN raise the Invalid
Operation condition. Comparisons that raise the Invalid Operation condition for Quiet NaNs in addition to SNaNs
permit a simpler programming model if NaNs are errors. Using these compares, programs do not need explicit code
to check for QNaNs causing the unordered relation. Instead, they take an exception and allow the exception handling
system to deal with the error when it occurs. For example, consider a comparison in which we want to know if two
numbers are equal, but for which unordered would be an error.

comparisons using explicit tests for QNaN
c.eq.d $f2,sf4 # check for equal
nop
bclt L2
c.un.d $f2,$f4

it is equal
it is not equal,
but might be unordered
bclt ERROR unordered goes off to an error handler
not-equal-case code here

#
#
#
#

equal-case code here
L2:

comparison using comparisons that signal QNaN
c.seq.d $f2,$f4 # check for equal
nop
bclt L2 # it is equal
nop
it is not unordered here

not-equal-case code here

equal-case code here

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 210

Perform Cache Operation CACHE

211

31 26 25 21 20 16 15 12 1 0
POOL32B o base CACHE offset
001000 P 0110
6 5 5 4 12
Format: CACHE op, offset (base) microMIPS

Purpose: Perform Cache Operation

To perform the cache operation specified by op.

Description:

The 12-bit offset is sign-extended and added to the contents of the base register to form an effective address. The
effective address is used in one of the following ways based on the operation to be performed and the type of cache as
described in the following table.

Table 5.19 Usage of Effective Address

Operation Type of
Requires an Cache Usage of Effective Address
Address Virtual The effective address is used to address the cache. An address translation may or

may not be performed on the effective address (with the possibility that a TLB
Refill or TLB Invalid exception might occur)

Address Physical | The effective address is translated by the MMU to a physical address. The physical
address is then used to address the cache

Index N/A The effective address is translated by the MMU to a physical address. It is imple-
mentation dependent whether the effective address or the translated physical
address is used to index the cache. As such, an unmapped address (such as within
kseg0) should always be used for cache operations that require an index. See the
Programming Notes section below.

Assuming that the total cache size in bytes is CS, the associativity is A, and the
number of bytes per tag is BPT, the following calculations give the fields of the
address which specify the way and the index:

OffsetBit « Log2 (BPT)

IndexBit « Log2(CS / A)

WayBit ¢« IndexBit + Ceiling(Log2(A))

Way < Addryaypit-1..IndexBit

Index < Addringexpit-1..0ffsetBit
For a direct-mapped cache, the Way calculation is ignored and the Index value fully
specifies the cache tag. This is shown symbolically in the figure below.

Figure 5.2 Usage of Address Fields to Select Index and Way
WayBit OffsetBit

[[[:

Unused Way Index Byte Index

IndexBit

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For index

MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Perform Cache Operation CACHE

operations (where the address is used to index the cache but need not match the cache tag) software should use
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions nor TLB
Refill exceptions with a cause code of TLBS. This instruction never causes Execute-Inhibit nor Read-Inhibit excep-
tions.

The effective address may be an arbitrarily-aligned by address. The CACHE instruction never causes an Address
Error Exception due to an non-aligned address.

A Cache Error exception may occur as a by-product of some operations performed by thisinstruction. For example, if
a Writeback operation detects a cache or bus error during the processing of the operation, that error is reported viaa
Cache Error exception. Similarly, a Bus Error Exception may occur if a bus operation invoked by this instruction is
terminated in an error. However, cache error exceptions must not be triggered by an Index Load Tag or Index Store
tag operation, as these operations are used for initialization and diagnostic purposes.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It is implementation dependent whether a data watch is triggered by a cache instruction whose address matches the
Watch register address match conditions.

The CACHE instruction and the memory transactions which are sourced by the CACHE instruction, such as cache
refill or cache writeback, obey the ordering and compl etion rules of the SYNC instruction.

Bits [22:21] of the instruction specify the cache on which to perform the operation, as follows:

Table 5.20 Encoding of Bits[17:16] of CACHE Instruction

Code Name Cache
0b00 I Primary Instruction

0ObO1 D Primary Data or Unified Primary

0Ob10 T Tertiary

Ob11 S Secondary

Bits [25:23] of the instruction specify the operation to perform. To provide software with a consistent base of cache
operations, certain encodings must be supported on all processors. The remaining encodings are recommended

For implementations which implement multiple level of caches and where the hardware maintains the smaller cache
as a proper subset of alarger cache (every address which is resident in the smaller cache is aso resident in the larger
cache; also known as the inclusion property), it is recommended that the CACHE instructions which operate on the
larger, outer-level cache; should first operate on the smaller, inner-level cache. For example, a Hit_ Writeback
_Invalidate operation targeting the Secondary cache, should first operate on the primary data cache first. If the
CACHE instruction implementation does not follow this policy then any software which flushes the caches must
mimic this behavior. That is, the software sequences must first operate on the inner cache then operate on the outer
cache. The software must place a SYNC instruction after the CACHE instruction whenever there are possible write-
backs from the inner cache to ensure that the writeback data is resident in the outer cache before operating on the
outer cache. If neither the CACHE instruction implementation nor the software cache flush sequence follow this pol-
icy, then the inclusion property of the caches can be broken, which might be a condition that the cache management
hardware cannot properly deal with.

For implementations which implement multiple level of caches without the inclusion property, the use of a SYNC
instruction after the CACHE instruction is still needed whenever writeback data hasto be resident in the next level of
memory hierarchy.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 212

Perform Cache Operation

CACHE

For multiprocessor implementations that maintain coherent caches, some of the Hit type of CACHE instruction oper-
ations may optionally affect al coherent caches within the implementation. If the effective address uses a coherent
Cache Coherency Attribute (CCA), then the operation is globalized, meaning it is broadcast to all of the coherent
caches within the system. If the effective address does not use one of the coherent CCAs, there is no broadcast of the
operation. If multiple levels of caches are to be affected by one CACHE instruction, all of the affected cache levels
must be processed in the same manner - either al affected cache levels use the globalized behavior or all affected
cache levels use the non-globalized behavior.

Table 5.21 Encoding of Bits [20:18] of the CACHE Instruction

Code

Effective
Address
Operand

Type

Compliance

Caches Name Operation Implemented

0b000

| Index Invalidate Index Set the state of the cache block at the specified
index to invalid.

Thisrequired encoding may be used by software
to invalidate the entire instruction cache by step-

ping through all valid indices.

Required

Index Writeback
Invalidate / Index
Invalidate

Index

ST

Index Writeback
Invalidate / Index
Invalidate

Index

For awrite-back cache: If the state of the cache
block at the specified index isvalid and dirty,
write the block back to the memory address
specified by the cache tag. After that operation
is completed, set the state of the cache block to
invalid. If the block isvalid but not dirty, set the
state of the block to invalid.

For awrite-through cache: Set the state of the
cache block at the specified index to invalid.
Thisrequired encoding may be used by software
to invalidate the entire data cache by stepping
through all valid indices. Note that Index Store
Tag should be used to initialize the cache at
power up.

Required

Requiredif S, T cache

isimplemented

0b001

All

Index Load Tag

Index

Read the tag for the cache block at the specified
index into the TagLo and TagHi Coprocessor O
registers. If the DatalLo and DataHi registers
are implemented, also read the data correspond-
ing to the byte index into the Datal.o and
DataHi registers. This operation must not cause
a Cache Error Exception.

The granularity and alignment of the data read
into the DatalLo and DataHi registersisimple-
mentation-dependent, but is typically the result
of an aligned access to the cache, ignoring the
appropriate low-order bits of the byte index.

Recommended

213

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Perform Cache Operation

CACHE

Table 5.21 Encoding of Bits [20:18] of the CACHE Instruction (Continued)

Code

Caches

Name

Effective

Address

Operand
Type

Operation

Compliance
Implemented

0b010

All

Index Store Tag

Index

Write the tag for the cache block at the specified
index from the TagLo and TagHi Coprocessor
O registers. This operation must not cause a
Cache Error Exception.

Thisrequired encoding may be used by software
to initialize the entire instruction or data caches
by stepping through al valid indices. Doing so
requires that the TagLo and TagHi registers
associated with the cache be initialized first.

Required

0b011

All

Implementation
Dependent

Unspecified

Available for implementation-dependent opera-
tion.

Optional

0b100

Hit Invalidate

Address

ST

Hit Invalidate

Address

If the cache block contains the specified
address, set the state of the cache block to
invalid.

Thisrequired encoding may be used by software
toinvalidate arange of addresses from the
instruction cache by stepping through the
address range by the line size of the cache.

In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.

Required (Instruction
Cache Encoding
Only), Recom-
mended otherwise

Optional, if
Hit_Invalidate D is
implemented, the S

and T variants are rec-
ommended.

0b101

Fill

Address

Fill the cache from the specified address.

Recommended

Hit Writeback Inval-
idate/ Hit Invalidate

Address

ST

Hit Writeback Inval-
idate/ Hit Invalidate

Address

For awrite-back cache: If the cache block con-
tains the specified address and it isvalid and
dirty, write the contents back to memory. After
that operation is completed, set the state of the
cache block to invalid. If the block isvalid but
not dirty, set the state of the block to invalid.
For awrite-through cache: If the cache block
contains the specified address, set the state of
the cache block to invalid.

Thisrequired encoding may be used by software
to invalidate arange of addresses from the data
cache by stepping through the address range by
the line size of the cache.

In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.

Required

Requiredif S, T cache
isimplemented

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

214

Perform Cache Operation

CACHE

Table 5.21 Encoding of Bits [20:18] of the CACHE Instruction (Continued)

Code

Caches

Name

Effective

Address

Operand
Type

Operation

Compliance
Implemented

0b110

D

Hit Writeback

Address

ST

Hit Writeback

Address

If the cache block contains the specified address
and itisvalid and dirty, write the contents back
to memory. After the operation is completed,
|eave the state of the line valid, but clear the
dirty state. For awrite-through cache, this oper-
ation may be treated as a nop.

In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to al coherent caches within the sys-
tem.

Recommended

Optional, if
Hit_Writeback D is
implemented, the S

and T variants are rec-
ommended.

Ob111

Fetch and Lock

Address

If the cache does not contain the specified
address, fill it from memory, performing a
writeback if required, and set the state to valid
and locked. If the cache already contains the
specified address, set the state to locked. In set-
associative or fully-associative caches, the way
selected on afill from memory isimplementa-
tion dependent.

The lock state may be cleared by executing an
Index Invalidate, Index Writeback Invalidate,
Hit Invalidate, or Hit Writeback Invalidate oper-
ation to the locked line, or viaan Index Store
Tag operation to the line that clears the lock bit.
Note that clearing the lock state via Index Store
Tag is dependent on the implementati on-depen-
dent cache tag and cache line organization, and
that Index and Index Writeback Invalidate oper-
ations are dependent on cache line organization.
Only Hit and Hit Writeback Invalidate opera-
tions are generally portable across implementa-
tions.

It isimplementation dependent whether alocked
lineis displaced as the result of an external
invalidate or intervention that hits on the locked
line. Software must not depend on the locked
line remaining in the cache if an external invali-
date or intervention would invalidate the line if
it were not locked.

It isimplementation dependent whether a Fetch
and Lock operation affects more than one line.
For example, more than one line around the ref-
erenced address may be fetched and locked. Itis
recommended that only the single line contain-
ing the referenced address be affected.

Recommended

215

Restrictions:

The operation of thisinstruction is UNDEFINED for any operation/cache combination that is not implemented.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Perform Cache Operation CACHE

The operation of this instruction is UNDEFINED if the operation requires an address, and that address is uncache-
able.

The operation of the instruction is UNPREDICTABLE if the cache line that contains the CACHE instruction is the
target of an invalidate or awriteback invalidate.

If thisinstruction is used to lock all ways of acache at a specific cache index, the behavior of that cache to subsequent
cache missesto that cache index is UNDEFINED.

If access to Coprocessor O is not enabled, a Coprocessor Unusable Exception is signaled.

Any use of thisinstruction that can cause cacheline writebacks should be followed by a subsequent SYNC instruction
to avoid hazards where the writeback datais not yet visible at the next level of the memory hierarchy.

Operation:

vAddr ¢« GPR[base] + sign_extend(offset)
(pAddr, uncached) ¢« AddressTranslation (vAddr, DataReadReference)
CacheOp (op, vAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception
Coprocessor Unusable Exception
Address Error Exception

Cache Error Exception

Bus Error Exception

Programming Notes:

For cache operations that require an index, it is implementation dependent whether the effective address or the trans-
lated physical address is used as the cache index. Therefore, the index value should aways be converted to an
unmapped address (such as an kseg0 address - by ORing the index with 0x80000000 before being used by the cache
instruction). For example, the following code sequence performs a data cache Index Store Tag operation using the
index passed in GPR &0:

1i al, 0x80000000 /* Base of kseg0 segment */
or a0, a0, al /* Convert index to kseg0 address */
cache DCIndexStTag, 0(al) /* Perform the index store tag operation */

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 216

217 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Perform Cache Operation EVA

CACHEE

31 26 25 21 20 16 15 12 1 9 8
POOL32C ST-EVA | CACHEE
011000 P base 1010 011 .
6 5 5 4 3 9

Format: CACHEE op,

offset (base)

Purpose: Perform Cache Operation EVA

To perform the cache operation specified by op using a user mode virtual address while in kernel mode.

Description:

microMIPS

The 9 bit offset is sign-extended and added to the contents of the base register to form an effective address. The effec-
tive address is used in one of the following ways based on the operation to be performed and the type of cache as

described in the following table.

Table 5.22 Usage of Effective Address

Operation Type of
Requires an Cache Usage of Effective Address

Address Virtual The effective address is used to address the cache. An address translation may or
may not be performed on the effective address (with the possibility that a TLB
Refill or TLB Invalid exception might occur)

Address Physical | The effective address is translated by the MMU to a physical address. The physical
address 1s then used to address the cache

Index N/A The effective address is translated by the MMU to a physical address. It is imple-

mentation dependent whether the effective address or the translated physical
address is used to index the cache. As such, a kseg0 address should always be used
for cache operations that require an index. See the Programming Notes section
below.

Assuming that the total cache size in bytes is CS, the associativity is A, and the
number of bytes per tag is BPT, the following calculations give the fields of the
address which specify the way and the index:

OffsetBit « Log2 (BPT)

IndexBit « Log2(CS / A)

WayBit ¢« IndexBit + Ceiling(Log2(A))

Way < Addryaypit-1..IndexBit

Index < Addringexpit-1..0ffsetBit
For a direct-mapped cache, the Way calculation is ignored and the Index value fully
specifies the cache tag. This is shown symbolically in the figure below.

Figure 5.3 Usage of Address Fields to Select Index and Way

WayBit OffsetBit

[[[:

IndexBit

Unused

Way Index Byte Index

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For index

MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

218

Perform Cache Operation EVA CACHEE

219

operations (where the address is used to index the cache but need not match the cache tag) software should use
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions nor TLB
Refill exceptions with a cause code of TLBS. This instruction never causes Execute-Inhibit nor Read-Inhibit excep-
tions.

The effective address may be an arbitrarily-aligned by address. The CACHEE instruction never causes an Address
Error Exception due to an non-aligned address.

A Cache Error exception may occur as a by-product of some operations performed by thisinstruction. For example, if
a Writeback operation detects a cache or bus error during the processing of the operation, that error is reported viaa
Cache Error exception. Similarly, a Bus Error Exception may occur if a bus operation invoked by this instruction is
terminated in an error. However, cache error exceptions must not be triggered by an Index Load Tag or Index Store
tag operation, as these operations are used for initialization and diagnostic purposes.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It is implementation dependent whether a data watch is triggered by a cache instruction whose address matches the
Watch register address match conditions.

The CACHEE instruction and the memory transactions which are sourced by the CACHEE instruction, such as cache
refill or cache writeback, obey the ordering and compl etion rules of the SYNC instruction.

Bits [22:21] of the instruction specify the cache on which to perform the operation, as follows:

Table 5.23 Encoding of Bits[22:21] of CACHEE Instruction

Code Name Cache
0b00 I Primary Instruction

0ObO1 D Primary Data or Unified Primary

0Ob10 T Tertiary

Ob11 S Secondary

Bits [25:23] of the instruction specify the operation to perform. To provide software with a consistent base of cache
operations, certain encodings must be supported on all processors. The remaining encodings are recommended

For implementations which implement multiple level of caches and where the hardware maintains the smaller cache
as a proper subset of alarger cache (every address which is resident in the smaller cache is aso resident in the larger
cache; also known as the inclusion property), it is recommended that the CACHEE instructions which operate on the
larger, outer-level cache; should first operate on the smaller, inner-level cache. For example, a Hit_ Writeback
_Invalidate operation targeting the Secondary cache, should first operate on the primary data cache first. If the
CACHEE instruction implementation does not follow this policy then any software which flushes the caches must
mimic this behavior. That is, the software sequences must first operate on the inner cache then operate on the outer
cache. The software must place a SY NC instruction after the CACHEE instruction whenever there are possible write-
backs from the inner cache to ensure that the writeback data is resident in the outer cache before operating on the
outer cache. If neither the CACHEE instruction implementation nor the software cache flush sequence follow this
policy, then the inclusion property of the caches can be broken, which might be a condition that the cache manage-
ment hardware cannot properly deal with.

For implementations which implement multiple level of caches without the inclusion property, the use of a SYNC
instruction after the CACHEE instruction is still needed whenever writeback data has to be resident in the next level
of memory hierarchy.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Perform Cache Operation EVA CACHEE

For multiprocessor implementations that maintain coherent caches, some of the Hit type of CACHEE instruction
operations may optionally affect all coherent caches within the implementation. If the effective address uses a coher-
ent Cache Coherency Attribute (CCA), then the operation is globalized, meaning it is broadcast to all of the coherent
caches within the system. If the effective address does not use one of the coherent CCAs, there is no broadcast of the
operation. If multiple levels of caches are to be affected by one CACHEE instruction, al of the affected cache levels
must be processed in the same manner - either al affected cache levels use the globalized behavior or all affected
cache levels use the non-globalized behavior.

The CACHEE instruction functions in exactly the same fashion as the CACHE instruction, except that address trans-
lation is performed using the user mode virtual address space mapping in the TLB when accessing an address within
a memory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access
modes are also accessible . Refer to Volume |11, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5g,, field being set to one.

Table 5.24 Encoding of Bits [20:18] of the CACHEE Instruction

Effective
Address
Operand Compliance
Code Caches Name Type Operation Implemented
0b000 | Index Invalidate Index Set the state of the cache block at the specified Required
index toinvalid.
Thisrequired encoding may be used by software
to invalidate the entire instruction cache by step-
ping through al valid indices.
D Index Writeback Index For awrite-back cache: If the state of the cache Required
Invalidate / Index block at the specified index isvalid and dirty,
Invalidate write the block back to the memory address
specified by the cache tag. After that operation
ST Index Writeback Index ?s °°T“p' eted, set the_ state_ of the cache block to Requiredif S, T cache
Invalidate / Index invalid. If the block |_sval_|d but not dirty, set the is implemented
Invalidate state of the block to invalid.

For awrite-through cache: Set the state of the
cache block at the specified index to invalid.
Thisrequired encoding may be used by software
to invalidate the entire data cache by stepping
through all valid indices. Note that Index Store
Tag should be used to initialize the cache at
power up.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 220

Perform Cache Operation EVA

CACHEE

Table 5.24 Encoding of Bits [20:18] of the CACHEE Instruction (Continued)

Code

Caches

Name

Effective

Address

Operand
Type

Operation

Compliance
Implemented

0b001

All

Index Load Tag

Index

Read the tag for the cache block at the specified
index into the TagLo and TagHi Coprocessor O
registers. If the Datal.o and DataHi registers
are implemented, also read the data correspond-
ing to the byte index into the DatalLo and
DataHi registers. This operation must not cause
a Cache Error Exception.

The granularity and alignment of the data read
into the DatalLo and DataHi registersisimple-
mentation-dependent, but istypically the result
of an aligned access to the cache, ignoring the
appropriate low-order bits of the byte index.

Recommended

0b010

All

Index Store Tag

Index

Write the tag for the cache block at the specified
index from the TagLo and TagHi Coprocessor
O registers. This operation must not cause a
Cache Error Exception.

Thisrequired encoding may be used by software
to initialize the entire instruction or data caches
by stepping through all valid indices. Doing so
requires that the TagLo and TagHi registers
associated with the cache be initialized first.

Required

0b011

All

Implementation
Dependent

Unspecified

Available for implementation-dependent opera-
tion.

Optional

0b100

Hit Invalidate

Address

ST

Hit Invalidate

Address

If the cache block contains the specified
address, set the state of the cache block to
invalid.

Thisrequired encoding may be used by software
to invalidate arange of addresses from the
instruction cache by stepping through the
address range by the line size of the cache.

In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.

Required (Instruction
Cache Encoding
Only), Recom-
mended otherwise

Optional, if
Hit_Invalidate D is
implemented, the S

and T variants are rec-
ommended.

221

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Perform Cache Operation EVA

CACHEE

Table 5.24 Encoding of Bits [20:18] of the CACHEE Instruction (Continued)

Code

Caches

Name

Effective
Address
Operand

Type

Operation

Compliance
Implemented

0b101

Fill

Address

Fill the cache from the specified address.

Recommended

D

Hit Writeback Inval-
idate / Hit Invalidate

Address

ST

Hit Writeback Inval-
idate/ Hit Invalidate

Address

For awrite-back cache: If the cache block con-
tains the specified address and it is valid and
dirty, write the contents back to memory. After
that operation is completed, set the state of the
cache block to invalid. If the block isvalid but
not dirty, set the state of the block to invalid.
For awrite-through cache: If the cache block
contains the specified address, set the state of
the cache block to invalid.

Thisrequired encoding may be used by software
to invalidate a range of addresses from the data
cache by stepping through the address range by
the line size of the cache.

In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.

Required

Requiredif S, T cache
isimplemented

0b110

Hit Writeback

Address

ST

Hit Writeback

Address

If the cache block contains the specified address
and it isvalid and dirty, write the contents back
to memory. After the operation is completed,
|leave the state of the line valid, but clear the
dirty state. For awrite-through cache, this oper-
ation may be treated as a nop.

In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.

Recommended

Optional, if
Hit_Writeback D is
implemented, the S

and T variants are rec-
ommended.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

222

Perform Cache Operation EVA CACHEE

Table 5.24 Encoding of Bits [20:18] of the CACHEE Instruction (Continued)

Code

Effective
Address
Operand Compliance
Caches Name Type Operation Implemented

Ob111

I,D Fetch and Lock Address If the cache does not contain the specified
address, fill it from memory, performing a Recommended
writeback if required, and set the state to valid
and locked. If the cache already contains the
specified address, set the state to locked. In set-
associative or fully-associative caches, the way
selected on afill from memory isimplementa
tion dependent.

The lock state may be cleared by executing an
Index Invalidate, Index Writeback Invalidate,
Hit Invalidate, or Hit Writeback Invalidate oper-
ation to the locked line, or viaan Index Store
Tag operation to the line that clears the lock hit.
Note that clearing the lock state via Index Store
Tag is dependent on the implementati on-depen-
dent cache tag and cache line organization, and
that Index and Index Writeback Invalidate oper-
ations are dependent on cache line organization.
Only Hit and Hit Writeback Invalidate opera-
tions are generally portable across implementa-
tions.

It isimplementation dependent whether alocked
line is displaced as the result of an external
invalidate or intervention that hits on the locked
line. Software must not depend on the locked
line remaining in the cache if an external invali-
date or intervention would invalidate the line if
it were not locked.

It isimplementation dependent whether a Fetch
and Lock operation affects more than one line.
For example, more than one line around the ref-
erenced address may be fetched and locked. It is
recommended that only the single line contain-
ing the referenced address be affected.

223

Restrictions:
The operation of thisinstruction is UNDEFINED for any operation/cache combination that is not implemented.

The operation of this instruction is UNDEFINED if the operation requires an address, and that address is uncache-
able.

The operation of the instruction is UNPREDI CTABL E if the cache line that contains the CACHEE instruction is the
target of an invalidate or awriteback invalidate.

If thisinstruction is used to lock all ways of acache at a specific cache index, the behavior of that cache to subsequent
cache missesto that cache index is UNDEFINED.

Any use of thisinstruction that can cause cacheline writebacks should be followed by a subsequent SYNC instruction
to avoid hazards where the writeback datais not yet visible at the next level of the memory hierarchy.

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Perform Cache Operation EVA CACHEE

Operation:

vAddr ¢« GPR[base] + sign_extend(offset)
(pAddr, uncached) ¢« AddressTranslation(vAddr, DataReadReference)
CacheOp (op, VvAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception
Coprocessor Unusable Exception
Reserved Instruction

Address Error Exception

Cache Error Exception

Bus Error Exception

Programming Notes:

For cache operations that require an index, it is implementation dependent whether the effective address or the trans-
lated physical addressis used as the cache index. Therefore, the index value should aways be converted to a ksegO
address by ORing the index with 0x80000000 before being used by the cache instruction. For example, the following
code sequence performs a data cache Index Store Tag operation using the index passed in GPR &0:

1i al, 0x80000000 /* Base of kseg0 segment */
or a0, a0, al /* Convert index to kseg0 address */
cache DCIndexStTag, 0(al) /* Perform the index store tag operation */

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 224

Fixed Point Ceiling Convert to Long Fixed Point CEIL.L.fmt

225

31 26 25 22 21 20 16 15 14 13 6 5 0
POOL 32F f s o ltmt CEIL.L POOL 32FXf
010101 01001100 111011
6 5 5 1 1 8 6

Format: CEIL.L.fmt
CEIL.L.S ft, fs microMIPS
CEIL.L.D ft, fs microMIPS

Purpose: Fixed Point Ceiling Convert to Long Fixed Point
To convert an FP value to 64-bit fixed point, rounding up

Description: FPR[ft] « convert_and_round (FPR[fs])

Thevaluein FPR fs, in format fnt, is converted to a value in 64-bit long fixed point format and rounding toward +co
(rounding mode 2). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range -25 to 283-1, the result cannot be
represented correctly, an |EEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 2631, is written to fd.

Restrictions:

Thefields fs and ft must specify valid FPRs; fsfor type fmt and fd for long fixed point; if they are not valid, the result
isUNPREDICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-hit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(ft, L, ConvertFmt (ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 226

Floating Point Ceiling Convert to Word Fixed Point CEIL.W.fmt

31 26 25 22 21 20 16 15 14 13 6 5 0
POOL 32F f s o |fm CEILW POOL 32FXf
010101 t 01101100 111011
6 5 5 1 1 8 6

Format: CEIL.W.fmt
CEIL.W.S ft, fs microMIPS
CEIL.W.D ft, fs microMIPS
Purpose: Floating Point Ceiling Convert to Word Fixed Point

To convert an FP value to 32-bit fixed point, rounding up

Description: FPR[ft] « convert_and_round (FPR[fs])

Thevauein FPR fs, in format fnt, is converted to avalue in 32-bit word fixed point format and rounding toward +co
(rounding mode 2). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range -23! to 231-1, the result cannot be
represented correctly, an |EEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 2311, is written to fd.

Restrictions:

Thefields fs and fd must specify valid FPRs; fsfor type fmt and fd for word fixed point; if they are not valid, the result
isUNPREDICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(ft, W, ConvertFmt (ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

227 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 228

Move Control Word From Floating Point CFC1

229

31 26 25 21 20 16 15 14 13 6 5 0
POOL 32F r fs 00 CFC1 POOL 32FXf
010101 01000000 111011
6 5 5 2 8 6
Format: cCrcl rt, fs microM | PS

Purpose: Move Control Word From Floating Point
To copy aword from an FPU control register to aGPR

Description: GPR[rt] « FP_Control[fs]
Copy the 32-bit word from FP (coprocessor 1) control register fsinto GPR rt.

The definition of this instruction has been extended in Release 5 to support user mode read of Statusgi under the
control of Config5gr. This required feature is meant to facilitate transition from FR=0 to FR=1 floating-point reg-
ister modes in order to obsolete FR=0 mode.

Restrictions:

There are afew control registers defined for the floating point unit. The result is UNPREDICTABLE if fs specifiesa
register that does not exist.

In particular, the result is UNPREDICTABLE if fs specifies the UNFR write-only control. R5.03 implementations
are required to produce a Reserved I nstruction Exception; software must assume it is UNPREDICTABLE.

Operation:

if fs = 0 then
temp <« FIR
elseif fs = 1 and FIRypgp then /* read UFR (CPl Register 1) */
if Config5ypgr
temp ¢ Statusgy
else
signalException (RI)
endif
/* note: fs=4 UNFR not supported for reading - UFR suffices */
elseif fs = 25 then /* FCCR */

temp « 0%% || FCSR3; ,5 || FCSR,
elseif fs = 26 then /* FEXR */

temp « 0'* || FCSRyy 15 || 0° || FCSRg ., || 07
elseif fs = 28 then /* FENR */

temp « 02° || FCSRy; 5 || 0% || FCSRy, || FCSR; o

elseif fs = 31 then /* FCSR */
temp <« FCSR
else
temp ¢« UNPREDICTABLE
endif
GPR[rt] <« temp
Exceptions:

Coprocessor Unusable, Reserved Instruction

Historical Information:

For the MIPS I, Il and |11 architectures, the contents of GPR rt are UNPREDICTABLE for the instruction immedi-

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

ately following CFC1.

MIPS V and MIPS32 introduced the three control registers that access portions of FCSR. These registers were not
availablein MIPSI, 11, I11, or IV.

MIPS32r5 introduced the UFR and UNFR register aliases that allow user level access to Statusgg.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 230

Move Control Word From Coprocessor 2 CFC2

231

31 26 25 21 20 16 15 6 5 0
POOL32A " . CFC2 POOL32AXF
000000 P 1100110100 111100
6 5 5 10 6
Format: CFC2 rt, Impl microM I PS

The syntax shown above is an example using CFC1 as amodel. The specific syntax is implementation dependent.

Purpose: Move Control Word From Coprocessor 2

To copy aword from a Coprocessor 2 control register to a GPR

Description: GPR[rt] ¢« CP2CCR[Impl]

Copy the 32-hit word from the Coprocessor 2 control register denoted by the Impl field. Theinterpretation of the Impl
field isleft entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

Theresult isUNPREDICTABLE if Impl specifies aregister that does not exist.

Operation:

temp ¢ CP2CCR[Impl]
GPR[rt] <« temp

Exceptions:

Coprocessor Unusable, Reserved Instruction

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Count Leading Ones in Word CLO
31 26 25 21 20 16 15 0
POOL32A it rs CLO POOL 32A X f
000000 0100101100 111100
6 5 5 10 6
Format: CLO rt, rs microMIPS

Purpose: Count Leading Onesin Word

To count the number of leading onesin aword

Description: GPR[rt] « count_leading_ones GPR[rs]

Bits 31..0 of GPR rsare scanned from most significant to least significant bit. The number of leading onesis counted
and the result iswritten to GPR rt. If all of bits 31..0 were set in GPR rs, the result written to GPR rt is 32.

Restrictions:

Operation:

temp ¢« 32
for i in 31

if GPR[rs]; = 0 then

temp « 31 - i

break
endif
endfor
GPR[rt] ¢« temp

Exceptions:

None

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

232

Count Leading Zeros in Word CLz

31 26 25 21 20 16 15 6 5 0
POOL32A r rs CLZ POOL 32A Xf
000000 0101101100 111100
6 5 5 10 6
Format: CcLz rt, rs microM | PS

Purpose: Count Leading Zerosin Word
Count the number of leading zerosin aword

Description: GPR[rt] « count_leading_zeros GPR[rs]

Bits 31..0 of GPR rsare scanned from most significant to least significant bit. The number of leading zerosis counted
and the result iswritten to GPR rt. If no bits were set in GPR rs, the result written to GPR rt is 32.

Restrictions:

Operation:

temp ¢« 32
for i in 31 .. 0
if GPR[rs]; = 1 then
temp « 31 - i
break
endif
endfor
GPR[rt] ¢« temp

Exceptions:

None

233 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Coprocessor Operation to Coprocessor 2 COP2

31 26 25 3 2 0
POOL 32A cofun COP2
000000 010
6 23 3
Format: cop2 func microM | PS

Purpose: Coprocessor Operation to Coprocessor 2
To perform an operation to Coprocessor 2

Description: CoprocessorOperation(2, cofun)

An implementati on-dependent operation is performed to Coprocessor 2, with the cofun value passed as an argument.
The operation may specify and reference internal coprocessor registers, and may change the state of the coprocessor
conditions, but does not modify state within the processor. Details of coprocessor operation and internal state are
described in the documentation for each Coprocessor 2 implementation.

Restrictions:

Operation:

CoprocessorOperation (2, cofun)

Exceptions:

Coprocessor Unusable
Reserved Instruction

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 234

Move Control Word to Floating Point CTC1

235

31 26 25 21 20 16 15 14 13 6 5 0
POOL 32F r fs 00 CTC1 POOL 32FXf
010101 01100000 111011
6 5 5 2 8 6
Format: cTCl rt, fs microM | PS

Purpose: Move Control Word to Floating Point
To copy aword from a GPR to an FPU control register

Description: Fp_Control[fs] « GPR[rt]
Copy the low word from GPR rt into the FP (coprocessor 1) control register indicated by fs.

Writing to the floating point Control/Status register, the FCSR, causes the appropriate exception if any Cause bit
and its corresponding Enable bit are both set. The register is written before the exception occurs. Writing to FEXR
to set a cause bit whose enable bit is already set, or writing to FENR to set an enable bit whose cause bit is already set
causes the appropriate exception. The register is written before the exception occurs and the EPC register contains
the address of the CTC1 instruction.

The definition of thisinstruction has been extended in Release 5 to support user mode set and clear of Statusgg under
the control of Configsgr. This required feature is meant to facilitate transition from FR=0 to FR=1 floating-point
register modes in order to obsolete FR=0 mode.

Restrictions:

There are afew control registers defined for the floating point unit. The result is UNPREDICTABLE if fs specifiesa
register that does not exist.

Furthermore, the result is UNPREDICTABLE if fd specifies the UFR or UNFR aliases, with fs anything other than
00000, GPRJ[0Q]. R5.03 implementations are required to produce a Reserved Instruction Exception; software must
assumeitis UNPREDICTABLE.

Operation:

temp < GPR[rtlszq g
if fs = 1 and rt = 0 and FIRypgp then /* clear UFR (CPl Register 1)*/
if Configbypg
Statuspg < 0
else
signalException (RI)
endif
elseif fs = 4 and rt = 0 and FIRypgp then /* clear UNFR (CPl Register 4) */
if Configbypg
Statuspg < 1

else
signalException (RI)
endif
elseif fs = 25 then /* FCCR */
if temps, g # 02* then
UNPREDICTABLE
else
FCSR « tempy; 1 || FCSRy, || tempg || FCSRyy o
endif

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Move Control Word to Floating Point CTC1

elseif fs = 26 then /* FEXR */
if tempszq 13 # 0 or temp;; 7 # 0 or temp, o # Othen
UNPREDICTABLE
else
FCSR ¢ FCSR3; 18 || tempyy 15 || FCSRyp 7 ||
tempg. 5 || FCSRy.
endif
elseif fs = 28 then /* FENR */
if tempsz;. 15 # 0 or tempg 3 # 0 then

UNPREDICTABLE

else
FCSR ¢« FCSR31 45 || temp, || FCSRy3. 15 || tempqiq. 4
|| FCSRg. o || tempy o

endif

elseif fs = 31 then /* FCSR */
if (FCSRyppy field is not implemented) and(tempyy 15 # 0) then
UNPREDICTABLE
elseif (FCSRyqy; field is implemented) and tempy; 1 # 0 then
UNPREDICTABLE
else
FCSR « temp
endif
else
UNPREDICTABLE
endif
CheckFPException ()

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Division-by-zero, Inexact, Overflow, Underflow

Historical Information:

For the MIPS 1, 1l and |11 architectures, the contents of floating point control register fs are UNPREDICTABLE for
the instruction immediately following CTCL1.

MIPS V and MIPS32 introduced the three control registers that access portions of FCSR. These registers were not
availablein MIPS I, 11, 11, or IV.

MIPS32r5 introduced the UFR and UNFR register aliases that allow user level access to Statusgg.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 236

237 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Move Control Word to Coprocessor 2 CTC2

31 26 25 21 20 16 15 6 5 0
POOL 32A r Imol CTC2 POOL 32A Xf
000000 P 1101110100 111100
6 5 5 10 6
Format: cTC2 rt, Impl microM I PS

The syntax shown above is an example using CTC1 as a model. The specific syntax isimplementation dependent.

Purpose: Move Control Word to Coprocessor 2

To copy aword from a GPR to a Coprocessor 2 control register

Description: CP2CCR[Impl] « GPR[rt]

Copy the low word from GPR rt into the Coprocessor 2 control register denoted by the Impl field. The interpretation
of the Impl field isleft entirely to the Coprocessor 2 implementation and is not specified by the architecture.
Restrictions:

Theresult isUNPREDICTABLE if rd specifies aregister that does not exist.

Operation:

temp ¢« GPR[rt]
CP2CCR[Impl] « temp

Exceptions:

Coprocessor Unusable, Reserved Instruction

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 238

Floating Point Convert to Double Floating Point CVT.D.fmt

239

31 26 25 21 20 16 15 14 13 12 6 5 0
POOL 32F ft fs ol fmt CVT.D POOL 32FXf
010101 1001101 111011

6 5 5 1 2 7 6

Format: CvT.D. fmt

CVT.D.S ft, fs microMIPS
CVT.D.W ft, fs microMIPS
CVT.D.L ft, fs microM I PS

Purpose: Floating Point Convert to Double Floating Point
To convert an FP or fixed point value to double FP

Description: FPR[ft] « convert_and_round (FPR[fs])

The value in FPR fs, in format fnt, is converted to a value in double floating point format and rounded according to
the current rounding modein FCSR. Theresultisplaced in FPR ft. If fmt is S or W, then the operation is always exact.
Restrictions:

Thefieldsfsand ft must specify valid FPRs—fs for type fmt and ft for double floating point—if they are not valid, the
resultis UNPREDICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABL E and the value of the operand
FPR becomes UNPREDICTABLE.

For CVT.D.L, the result of thisinstruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit
FPU register modedl; i.e. it isthe FR=0 32-hit FPU register model; it is predictableif executing on a 64-bit FPU in the
FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (ft, D, ConvertFmt (ValueFPR(fs, fmt), fmt, D))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 240

Floating Point Convert to Long Fixed Point CVT.L.fmt

241

31 26 25 21 20 16 15 14 13 6 5 0
POOL 32F it s o lfme CVTL POOL 32FXf
010101 00000100 111011
6 5 5 1 1 8 6

Format: CvT.L.fmt
CVT.L.S ft, fs microMIPS
CVT.L.D ft, fs microMIPS
Purpose: Floating Point Convert to Long Fixed Point

To convert an FP value to a 64-bit fixed point

Description: FPR[ft] « convert_and_round (FPR[fs])

Convert the value in format fmt in FPR fs to long fixed point format and round according to the current rounding
mode in FCSR. Theresult is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range -2%° to 2%3-1, the result cannot be
represented correctly, an |EEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 262-1, is written to fd.

Restrictions:

The fields fs and ft must specify valid FPRs—fs for type fmt and fd for long fixed point—if they are not valid, the
resultis UNPREDICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (ft, L, ConvertFmt (ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact,

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 242

Floating Point Convert Pair to Paired Single CVT.PS.S

31 26 25 21 20 16 15 11 10 9 8 0
POOL32F CVT.PS.S
010101 f fs fd 00 110000000
6 5 5 5 2 9
Format: cvT.PS.s fd, fs, ft microMIPS

Purpose: Floating Point Convert Pair to Paired Single

To convert two FP values to a paired single value

Description: FPR[fd] ¢« FPR[fsl3j..o || FPRIftlas..o

The single-precision values in FPR fs and f7 are written into FPR fd as a paired-single value. The value in FPR fs is
written into the upper half, and the value in FPR f7 is written into the lower half.

fs ft

31 0 31 0

CVT.PS.S is similar to PLL.PS, except that it expects operands of format S instead of PS.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and ff must specify FPRs valid for operands of type S if they are not valid, the result is UNPREDICT-
ABLE.

The operand must be a value in format S; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(fd, S, ValueFPR(fs,S) || ValueFPR(ft,S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation

243 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 244

Floating Point Convert to Single Floating Point CVT.S.fmt

245

31 26 25 21 20 16 15 14 13 12 6 5 0
POOL 32F ft fs ol fmt CVTS POOL 32FXf
010101 1101101 111011

6 5 5 1 2 7 6

Format: CvT.S.fmt

CVT.S.D ft, fs microMIPS
CVT.S.W ft, fs microMIPS
CVT.S.L ft, fs microM I PS

Purpose: Floating Point Convert to Single Floating Point
To convert an FP or fixed point value to single FP

Description: FPR[ft] « convert_and_round (FPR[fs])

Thevauein FPR fs, in format fmt, is converted to avalue in single floating point format and rounded according to the
current rounding mode in FCSR. Theresult is placed in FPR ft.

Restrictions:

Thefields fs and ft must specify valid FPRs—fs for type fmt and fd for single floating point. If they are not valid, the
resultis UNPREDICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABL E and the value of the operand
FPR becomes UNPREDICTABLE.

For CVT.S.L, the result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit
FPU register model; it is predictable if executing on a64-bit FPU in the FR=1 mode, but not with FR=0, and not on a
32-hit FPU.

Operation:

StoreFPR(ft, S, ConvertFmt (ValueFPR(fs, fmt), fmt, S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow, Underflow

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 246

Floating Point Convert Pair Lower to Single Floating Point CVT.S.PL
31 26 25 21 20 16 15 14 13 0
POOL 32F ft fs 0 |fmt CVT.S.PL POOL 32FXf
010101 10000100 111011
6 5 5 2 P 6
Format: cvT.s.pL ft, fs microMIPS

247

Purpose:

Floating Point Convert Pair Lower to Single Floating Point
To convert one half of a paired single FP value to single FP

Description: FPR[ft] « FPR[fsl3q. ¢

The lower paired single value in FPR fs, in format PS is converted to a value in single floating point format. The
result is placed in FPR ft. Thisinstruction can be used to isolate the lower half of apaired single value.

The operation is non-arithmetic; it causes no | EEE 754 exceptions.

Restrictions:

The fields fs and ft must specify valid FPRs—fs for type PS and ft for single floating point. If they are not valid, the
resultis UNPREDICTABLE.

The operand must be avalue in format PS; if it is not, the result is UNPREDICTABL E and the value of the operand
FPR becomes UNPREDICTABLE.

Theresult of CVT.S.PL is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model;
it ispredictableif executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-hit FPU.

Operation:

StoreFPR

Exceptions:

(ft, S, ConvertFmt (ValueFPR(fs,

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

PS),

S))

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 248

Floating Point Convert Pair Upper to Single Floating Point CVT.S.PU

249

31 26 25 21 20 16 15 14 13 6 5 0
POOL32F ft fs 0 | fmt CVT.SPU POOL 32FXf
010101 10100100 111011
6 5 5 1 1 8 6
Format: CvT.s.PU ft, fs microM | PS

Purpose: Floating Point Convert Pair Upper to Single Floating Point
To convert one half of a paired single FP value to single FP

Description: FPR[ft] « FPR[fslgz. 35

The upper paired single value in FPR fs, in format PS is converted to a value in single floating point format. The
result is placed in FPR ft. Thisinstruction can be used to isolate the upper half of a paired single value.

The operation is non-arithmetic; it causes no | EEE 754 exceptions.

Restrictions:

The fields fs and ft must specify valid FPRs—fs for type PS and ft for single floating point. If they are not valid, the
resultis UNPREDICTABLE.

The operand must be avalue in format PS; if it is not, the result is UNPREDICTABL E and the value of the operand
FPR becomes UNPREDICTABLE.

Theresult of CVT.S.PU isUNPREDICTABLE if the processor is executing ithe FR=0 32-bit FPU register model; it
is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU

Operation:

StoreFPR (ft, S, ConvertFmt (ValueFPR(fs, PS), PU, S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 250

Floating Point Convert to Word Fixed Point CVT.W.fmt
31 26 25 21 20 16 15 14 13 0
POOL 32F ft fs 0 | fmt CVT.W POOL 32FXf
010101 00100100 111011
6 5 5 1 1 P 6
Format: cvT.w.fmt

CVT.W.S ft, microM | PS
CVT.W.D ft, microM | PS

251

Purpose: Floating Point Convert to Word Fixed Point

To convert an FP value to 32-bit fixed point

Description: FPR[ft] « convert_and_round (FPR[fs])

Thevauein FPR fs, in format fmt, is converted to avaluein 32-bit word fixed point format and rounded according to

the current rounding mode in FCSR. Theresult is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range -23! to 231-1, the result cannot be
represented correctly, an |EEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 2311, is written to ft.

Restrictions:

The fields fs and ft must specify valid FPRs—fs for type fmt and ft for word fixed point—if they are not valid, the

result is UNPREDICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(ft, W, ConvertFmt (ValueFPR (fs,

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

fmt) ,

fmt, wW))

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 252

Debug Exception Return DERET

31 26 25 16 15 6 5 0
POOL32A 0 DERET POOL 32AXf
000000 0000000000 1110001101 111100
6 10 10 6
Format: DERET EJTAG microMIPS

Purpose: Debug Exception Return
To Return from a debug exception.

Description:

DERET clears execution and instruction hazards, returns from Debug Mode and resumes non-debug execution at the
instruction whose address is contained in the DEPC register. DERET does not execute the next instruction (i.e. it has
no delay slot).

Restrictions:
A DERET placed between an LL and SC instruction does not cause the SC to fail.

If the DEPC register with the return address for the DERET was modified by an MTCO or a DMTCO instruction, a
CPO hazard exists that must be removed via software insertion of the appropriate number of SSNOP instructions (for
implementations of Release 1 of the Architecture) or by an EHB, or other execution hazard clearing instruction (for
implementations of Release 2 of the Architecture).

DERET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the DERET returns.

Thisinstruction is legal only if the processor is executing in Debug Mode.The operation of the processor is UNDE-
FINED if aDERET is executed in the delay slot of a branch or jump instruction.

Operation:

Debugpy < 0

Debugipxr < 0

if IsMIPSlé6Implemented() | (Config3;gy > 0) then
PC < DEPC3y..1 || O
ISAMode « DEPC,

else
PC « DEPC

endif

ClearHazards ()

Exceptions:

Coprocessor Unusable Exception
Reserved Instruction Exception

253 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 254

Disable Interrupts DI

31 26 25 21 20 16 15 6 5 0
POOL32A 0 s DI POOL 32A Xf
000000 00000 0100011101 111100
6 5 5 10 6
Format: DI microM I PS
DI rs microMIPS

Purpose: Disable Interrupts

To return the previous value of the Status register and disable interrupts. If DI is specified without an argument, GPR
rOisimplied, which discards the previous value of the Status register.

Description: GPR[rs] « Status; Statusggy ¢ 0

The current value of the Status register isloaded into general register rs. The Interrupt Enable (1E) bit in the Status
register is then cleared.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

data « Status
GPR[rs] « data
Statusip < O

Exceptions:

Coprocessor Unusable
Reserved Instruction (Release 1 implementations)

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading Status into a GPR,
clearing the IE bit, and writing the result back to Status. Unlike the multiple instruction sequence, however, the DI
instruction cannot be aborted in the middle by an interrupt or exception.

Thisinstruction creates an execution hazard between the change to the Status register and the point where the change
to the interrupt enable takes effect. This hazard is cleared by the EHB, JALR.HB, JR.HB, or ERET instructions. Soft-
ware must not assume that afixed latency will clear the execution hazard.

255 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 256

Divide Word DIV

257

31 26 25 21 20 16 15 5 0
POOL 32A rt s DIV POOL 32Axf
000000 1010101100 111100
6 5 5 9 6
Format: DIV rs, rt microM | PS

Purpose: Divide Word
To divide a 32-bit signed integers

Description: (HI, LO) « GPR[rs] / GPR[rt]

The 32-bit word value in GPR rs is divided by the 32-bit value in GPR rt, treating both operands as signed values.
The 32-bit quotient is placed into special register LO and the 32-bit remainder isplaced into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:
If the divisor in GPR rt is zero, the arithmetic result valueis UNPREDICTABLE.

Operation:
g ¢ GPRI[rslszy, .o div GPR[rtls;. .o
LO < g
r < GPR[rsls3;, .o mod GPR[rtls;, . ¢
HI <« r

Exceptions:

None

Programming Notes:

No arithmetic exception occurs under any circumstances. If divide-by-zero or overflow conditions are detected and
some action taken, then the divide instruction is typically followed by additional instructionsto check for a zero divi-
sor and/or for overflow. If the divide is asynchronous then the zero-divisor check can execute in parallel with the
divide. The action taken on either divide-by-zero or overflow is either a convention within the program itself, or more
typically within the system software; one possibility is to take a BREAK exception with a code field value to signal
the problem to the system software.

As an example, the C programming language in a UNIX® environment expects division by zero to either terminate
the program or execute a program-specified signal handler. C does not expect overflow to cause any exceptional con-
dition. If the C compiler uses a divide instruction, it also emits code to test for a zero divisor and execute a BREAK
instruction to inform the operating system if azero is detected.

By default, most compilers for the MIPS architecture will emit additional instructionsto check for the divide-by-zero
and overflow cases when this instruction is used. In many compilers, the assembler mnemonic “DIV r0, rs, rt” can be
used to prevent these additional test instructions to be emitted.

In some processors the integer divide operation may proceed asynchronously and allow other CPU instructions to
execute beforeit is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the divide so that other instructions can execute in parallel.

Historical Perspective:

In MIPS 1 through MIPS 11, if either of the two instructions preceding the divide is an MFHI or MFL O, the result of

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subse-
quent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV and
MIPS32 and all subsequent levels of the architecture.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 258

Floating Point Divide DIV.fmt
31 26 25 21 20 16 15 11 10 9 8 0
POOL 32F DIV
010101 ft fs fd fmt 11110000
6 5 5 5 2 P
Format: DIV.fmt
DIV.S fd, fs, ft microMIPS
DIV.D fd, fs, ft microMIPS

259

Purpose: Floating Point Divide
To divide FP values

Description: FPR[fd] « FPR[fs] / FPR[ft]

Thevauein FPR fsis divided by the value in FPR ft. The result is calculated to infinite precision, rounded according
to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are valuesin format fmt.

Restrictions:

Thefieldsfs, ft, and fd must specify FPRs valid for operands of type fnt; if they are not valid, the result is UNPRED-

ICABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs,

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

fmt)

/ ValueFPR(ft,

fmt))

Inexact, Invalid Operation, Unimplemented Operation, Division-by-zero, Overflow, Underflow

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Divide Unsigned Word DIVU

31 26 25 21 20 16 15 6 5 0
POOL32A r rs DIVU POOL 32A Xf
000000 1011101100 111100
6 5 5 10 6
Format: DIVU rs, rt microM | PS

Purpose: Divide Unsigned Word
To divide a 32-bit unsigned integers

Description: (HI, LO) « GPR[rs] / GPR[rt]

The 32-bit word value in GPR rsis divided by the 32-bit value in GPR rt, treating both operands as unsigned values.
The 32-bit quotient is placed into special register LO and the 32-bit remainder is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If the divisor in GPR rt is zero, the arithmetic result valueis UNPREDICTABLE.

Operation:
g <« (0 || GPRIrslszy,.o) div (0 || GPRIrtlaj,.o)
r ¢« (0 || GPR[rslay, o) mod (0 || GPR[rtlay,_ . g)
LO « sign_extend(dss..g)
HI <« sign_extend(rsq, . g)

Exceptions:

None

Programming Notes:

See “Programming Notes” for the DIV instruction.

Historical Perspective:

In MIPS 1 through MIPS 11, if either of the two instructions preceding the divide is an MFHI or MFL O, the result of
the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO specia register must be separated from subse-
guent instructions that write to them by two or more instructions. This restriction was removed in MIPS |V and
MIPS32 and all subsequent levels of the architecture.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 260

Execution Hazard Barrier EHB

261

31 26 25 21 20 16 15 11 10 6 5 0
POOL32A 0 0 3 0 (?(I)_Olz)?())%)
000000 00000 00000 00011 00000
6 5 5 5 5 6
Format: EHB microM I PS

Purpose: Execution Hazard Barrier

To stop instruction execution until all execution hazards have been cleared.

Description:

EHB is the assembly idiom used to denote execution hazard barrier. The actual instruction is interpreted by the hard-
wareas SLL r0, r0, 3.

This instruction alters the instruction issue behavior on a pipelined processor by stopping execution until all execu-
tion hazards have been cleared. Other than those that might be created as a consequence of setting Statuscyyo, there
are no execution hazards visible to an unprivileged program running in User Mode. All execution hazards created by
previous instructions are cleared for instructions executed immediately following the EHB, even if the EHB is exe-
cuted in the delay slot of abranch or jump. The EHB instruction does not clear instruction hazards—such hazards are
cleared by the JALR.HB, JR.HB, and ERET instructions.

Restrictions:

None

Operation:

ClearExecutionHazards ()

Exceptions:

None

Programming Notes:

In MIPS32 Release 2 implementations, this instruction resolves all execution hazards. On a superscalar processor,
EHB alters the instruction issue behavior in amanner identical to SSNOP. For backward compatibility with Release 1
implementations, the last of a sequence of SSNOPs can be replaced by an EHB. In Release 1 implementations, the
EHB will be treated as an SSNOP, thereby preserving the semantics of the sequence. In Release 2 implementations,
replacing the final SSNOP with an EHB should have no performance effect because a properly sized sequence of
SSNOPs will have aready cleared the hazard. As EHB becomes the standard in MIPS implementations, the previous
SSNOPs can be removed, leaving only the EHB.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 262

Enable Interrupts El

263

31 26 25 21 20 16 15 6 5 0
POOL32A 0 s El POOL 32A X f
000000 00000 0101011101 111100
6 5 5 10 6
Format: ETI microM I PS
EI rs microMIPS

Purpose: Enable Interrupts

To return the previous value of the Status register and enable interrupts. If El is specified without an argument, GPR
rOisimplied, which discards the previous value of the Status register.

Description: GPR[rt] « Status; Statusy « 1

The current value of the Status register isloaded into general register rt. The Interrupt Enable (IE) bit in the Status
register is then set.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

data « Status
GPR[rs] « data
Statusip < 1

Exceptions:

Coprocessor Unusable
Reserved Instruction (Release 1 implementations)

Programming Notes:

The effects of thisinstruction are identical to those accomplished by the sequence of reading Status into a GPR, set-
ting the IE bit, and writing the result back to Status. Unlike the multiple instruction sequence, however, the El
instruction cannot be aborted in the middle by an interrupt or exception.

Thisinstruction creates an execution hazard between the change to the Status register and the point where the change
to the interrupt enable takes effect. This hazard is cleared by the EHB, JALR.HB, JR.HB, or ERET instructions. Soft-
ware must not assume that afixed latency will clear the execution hazard.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 264

Exception Return ERET

265

31 26 25 16 15 6 5 0
POOL32A 0 ERET POOL 32AXf
000000 0000000000 1111001101 111100
6 10 10 6
Format: ERET microM I PS

Purpose: Exception Return
To return from interrupt, exception, or error trap.

Description:

ERET clears execution and instruction hazards, conditionally restores SRSCtlcsg from SRSCtlpgg in a Release 2

implementation, and returns to the interrupted instruction at the completion of interrupt, exception, or error process-
ing. ERET does not execute the next instruction (i.e., it has no delay slot).

Restrictions:

The operation of the processor is UNDEFINED if an ERET is executed in the delay slot of a branch or jump instruc-
tion.

An ERET placed between an LL and SC instruction will always cause the SC to fail.

ERET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the ERET returns.

In a Release 2 implementation, ERET does not restore SRSCtlcgg from SRSCllpgg if Statusggy = 1, or if
Statusgr = 1 because any exception that sets Statusgg to 1 (Reset, Soft Reset, NMI, or cache error) does not save
SRSCltlcsgin SRSCltlpgg If software sets Statusgg, to 1, it must be aware of the operation of an ERET that may be
subsequently executed.

Operation:

if Statusgg, = 1 then
temp ¢ ErrorEPC
Statusggp ¢« 0
else
temp <« EPC
Statusgy;, < O
if (ArchitectureRevision = 2) and (SRSCtlygg > 0) and (Statusggy = 0) then
SRSCtlegg ¢ SRSCtlpgg
endif
endif
if IsMIPSl6Implemented() | (Config3iga > 0) then
PC « tempz; 3 |[O
ISAMode <« tempg
else
PC « temp
endif
LLbit « O
ClearHazards ()

Exceptions:
Coprocessor Unusable Exception

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Exception Return No Clear ERETNC

31 26 25 16 15 6 5 0
POOL32A 0 1 ERET POOL 32AXf
000000 000000000 1111001101 111100
6 9 1 10 6
Format: ERETNC microM | PS Release 5

Purpose: Exception Return No Clear
To return from interrupt, exception, or error trap without clearing the L Lbit.

Description:

ERETNC clears execution and instruction hazards, conditionally restores SRSCtl-gg from SRSCtlpgs when imple-

mented, and returns to the interrupted instruction at the completion of interrupt, exception, or error processing.
ERETNC does not execute the next instruction (i.e., it has no delay slot).

ERETNC is identical to ERET except that an ERETNC will not clear the LLbit that is set by execution of an LL
instruction, and thus when placed between an LL and SC sequence, will never cause the SC to fail.

An ERET should continue to be used by default in interrupt and exception processing handlers: the handler may have
accessed a synchronizable block of memory common to code that is atomically accessing the memory, and where the
code caused the exception or was interrupted. Similarly, a process context-swap must also continue to use an ERET
in order to avoid a possible false success on execution of SC in the restored context.

Multiprocessor systems with non-coherent cores (i.e., without hardware coherence snooping) should also continue to
use ERET, since it isthe responsibility of software to maintain data coherence in the system.

An ERETNC is useful in cases where interrupt/exception handlers and kernel code involved in a process context-
Sswap can guarantee no interference in accessing synchronizable memory across different contexts. ERETNC can also
be used in an OS-level debugger to single-step through code for debug purposes, avoiding the false clearing of the
LLbit and thus failure of an LL and SC sequence in single-stepped code.

Software can detect the presence of ERETNC by reading Config5, | 5

Restrictions:

The operation of the processor is UNDEFINED if an ERETNC is executed in the delay slot of a branch or jump
instruction.

ERETNC implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes. (For Release 2 implementations, refer to the SY NCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream.) The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction in the PC to which the ERETNC returns.

Operation:

if Statusgg; = 1 then
temp ¢ ErrorEPC
Statusgg, < 0
else
temp « EPC
Statusgyp, < O
if (ArchitectureRevision 2 2) and (SRSCtlyqg > 0) and (Statusggy = 0) then
SRSCtlegg ¢ SRSCtlpgg
endif
endif
if IsMIPSl6Implemented/() | (Config3;ga > 0) then

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 266

PC « temps; 1 || O
ISAMode ¢« temp,
else
PC « temp
endif
ClearHazards ()

Exceptions:
Coprocessor Unusable Exception

267 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Extract Bit Field EXT
31 26 25 21 20 16 15 11 10 6 5 0
POOL32A rt s mshd Isb EXT
000000 (size-1) (pos) 101100
6 5 5 5 5 6
Format: EXT rt, rs, pos, size microM I PS

Purpose: Extract Bit Field
To extract a bit field from GPR rsand store it right-justified into GPR rt.

Description: GPR[rt] ¢ ExtractField(GPR[rs], msbd, 1lsb)

The hit field starting at bit pos and extending for size bits is extracted from GPR rs and stored zero-extended and
right-justified in GPR rt. The assembly language arguments pos and size are converted by the assembler to the
instruction fields msbd (the most significant bit of the destination field in GPR rt), in instruction bits 15..11, and Isb

(least significant bit of the source field in GPR rs), in instruction bits 10..6, as follows:

msbd < size-1
1lsb <« pos
The values of pos and size must satisfy al of the following relations:
0 < pos < 32
<

0 size < 32
0 < pos+size < 32

Figure 3-9 shows the symbolic operation of the instruction.

Figure 5.4 Operation of the EXT Instruction

pos+size pos+size-1 pos pos-1
31 Isb+msbd+1 Isb+msbd Isb Isb-1 0
IJKL MNOP ~_| QRST
GPR s 32-(pos+size) size
Initial Value 32-(Isb+msbd+1) msbd+1
size size-1
31 msbd+1 mshd 0
0 MNOP
GPR rtFinal 32-size size
Value 32-(msbd+1) msbhd+1
Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-

tion.
The operation is UNPREDICTABLE if Isb+mshd > 31.

Operation:
if (1sb + msbd) > 31) then
UNPREDICTABLE
endif

temp « 0227 SPIL || GPRIrS] cpaiish. .16b

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

268

GPR[rt] <« temp

Exceptions:

Reserved Instruction

269 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Floating Point Floor Convert to Long Fixed Point FLOOR.L.fmt

31 26 25 22 21 20 16 15 14 13 6 5 0
POOL 32F i s o lfmt FLOOR.L POOL 32FXf
010101 00001100 111011
6 5 5 1 1 8 6

Format: FLOOR.L.fmt
FLOOR.L.S ft, fs microMIPS
FLOOR.L.D ft, fs microMIPS
Purpose: Floating Point Floor Convert to Long Fixed Point

To convert an FP value to 64-bit fixed point, rounding down

Description: FPR[ft] « convert_and_round (FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded toward -
(rounding mode 3). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range -2%° to 2%3-1, the result cannot be
represented correctly, an |EEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 262-1, is written to fd.

Restrictions:

The fields fs and ft must specify valid FPRs—fs for type fmt and ft for long fixed point—if they are not valid, the
resultis UNPREDICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(ft, L, ConvertFmt (ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 270

271 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Floating Point Floor Convert to Word Fixed Point

FLOOR.W.fmt

31 26 25 22 21 20 16 15 14 13
POOL32F FLOOR.W POOL 32FXf
ft fs 0 |fmt
010101 00101100 111011
6 5 5 1 1 8 6
Format: FLOOR.W.fmt
FLOOR.W.S ft, fs microMIPS
FLOOR.W.D ft, fs microMIPS

Purpose: Floating Point Floor Convert to Word Fixed Point

To convert an FP value to 32-bit fixed point, rounding down

Description: FPR[ft] « convert_and_round (FPR[fs])

Thevaluein FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format and rounded toward —o

(rounding mode 3). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range -23! to 231-1, the result cannot be
represented correctly, an |EEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 2311, is written to ft.

Restrictions:

The fields fs and ft must specify valid FPRs—fs for type fmt and ft for word fixed point—if they are not valid, the
resultis UNPREDICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(ft, W, ConvertFmt (ValueFPR (fs,

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

fmt) ,

fmt, wW))

272

273 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Insert Bit Field INS

31 26 25 21 20 16 15 11 10 6 5 0
POOL32A rt s mshd Isb INS
000000 (postsize-1) (pos) 001100
6 5 5 5 5 6
Format: INS rt, rs, pos, size microM I PS

Purpose: Insert Bit Field
To merge aright-justified bit field from GPR rsinto a specified field in GPR rt.

Description: GPR[rt] ¢ InsertField(GPR[rt], GPR[rs], msb, 1lsb)

The right-most size bits from GPR rs are merged into the value from GPR rt starting at bit position pos. The result
isplaced back in GPR rt. The assembly language arguments pos and size are converted by the assembler to the
instruction fields msb (the most significant bit of the field), in instruction bits 15..11, and Isb (least significant bit of
the field), in instruction bits 10..6, as follows:

msb < pos+size-1
1lsb <« pos

The values of pos and size must satisfy al of the following relations:
0 pos < 32

<
0 < size £ 32
0 < pos+size < 32

Figure 3-10 shows the symbolic operation of the instruction.

Figure 5.5 Operation of the INS Instruction

size size-1
31 msb-Isb+1 msb-Isb 0
GPR s ABCD EFGH
32-size size
32-(msb-Isb+1) msb-Isb+1
pos+size pos+size-1 pos pos-1
31 msb+1 msb Isb Ish-1 0
/ IJKL MNOP / QRST
GPR rt 32-(pos+size) size pos
Initial Value 32-(msb+1) msb-Isb+1 Isb
pos+size pos+size-1 pos pos-1
31 msb+1 msb Isb Isb-1 0
IKL EFGH QRST
GPRrtFinal 32-(pos+size) size pos
Valie 22-fmsh+1) msh-lsh+1 Ish

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 274

The operation is UNPREDICTABLE if Isb > msb.

Operation:

if 1sb > msb) then
UNPREDICTABLE
endif
GPR[rt] ¢ GPRIrtlsy pepe1 || GPRITSIngp1sp..0 || GPRIXtligy 1. .0
Exceptions:

Reserved Instruction

275 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 276

Jump J

31 26 25 0
J32 . .
110101 instr_index
6 26
Format: J target microM I PS

Purpose: Jump
To branch within the current 128 MB-aligned region

Description:

Thisis a PC-region branch (not PC-relative); the effective target address is in the “current” 128 MB-aligned region.
Thelow 27 bits of the target addressistheinstr_index field shifted left 1 bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot, before
executing the jump itself.
Restrictions:
Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.
Operation:
I:
I+l: PC ¢ PCqpprmy.1..27 || instr_index || 0!
Exceptions:

None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC isan
advantage if all program code addresses fit into a 128 MB region aigned on a 128 MB boundary. It allows a branch
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the jump instruction is in the last word of a 128 MB
region, it can branch only to the following 128 MB region containing the branch delay sot.

277 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Jump and Link JAL

31 26 25 0
JAL32 . .
111101 instr_index
6 26
Format: JAL target microM I PS

Purpose: Jump and Link
To execute a procedure call within the current 128 MB-aligned region

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call.

Thisis a PC-region branch (not PC-relative); the effective target address is in the “current” 128 MB-aligned region.
Thelow 27 hits of the target addressistheinstr_index field shifted left 1 bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay dlot, before
executing the jJump itself.
Restrictions:

The delay-dlot instruction must be 32-bits in size. Processor operation is UNPREDICTABLE if a 16-bit instruction
isplaced in the delay dlot of JAL.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the

delay slot of abranch or jump.
Operation:
I: GPR[31] « PC + 8
I+l: PC « PCuppran-1. 27 || instr_index || o!
Exceptions:
None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC is an
advantage if all program code addresses fit into a 128 MB region aligned on a 128 MB boundary. It allows a branch
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the branch instruction is in the last word of a 128 MB
region, it can branch only to the following 128 MB region containing the branch delay sot.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 278

279 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Jump and Link Register JALR

31 26 25 21 20 16 15 6 5 0
POOL32A t s JALR POOL 32A X f
000000 0000111100 111100
6 5 5 10 6
Format: JALR rs (rt = 31 implied) microM I PS
JALR rt, rs microMIPS

Purpose: Jump and Link Register

To execute a procedure call to an instruction address in aregister

Description: GPR[rt] « return_addr, PC « GPRI[rs]

Place the return address link in GPR rt. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

For processors that do not implement the MIPS32/641 SA:

» Jumpto the effective target addressin GPR rs. Execute the instruction that follows the jump, in the branch delay
dot, before executing the jump itself. Bit O of the target address is always zero so that no Address Exceptions
occur when hit 0 of the source register is one.

For processors that do implement the MIPS32/641 SA:

» Jumpto the effective target addressin GPR rs. Execute the instruction that follows the jump, in the branch delay
dot, before executing the jump itself. Set the |SA Mode bit to the value in GPR rsbit 0. Bit O of the target address
isaways zero so that no Address Exceptions occur when bit O of the source register is one.

Restrictions:

The delay-dlot instruction must be 32-bits in size. Processor operation is UNPREDICTABLE if a 16-hit instruction
isplaced in the delay slot of JALR.

Register specifiersrsand rt must not be equal, because such an instruction does not have the same effect when reexe-
cuted. The result of executing such an instruction is UNPREDICTABLE. Thisrestriction permits an exception han-
dler to resume execution by re-executing the branch when an exception occurs in the branch delay slot.

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS32/64 and if the ISAMaode bit of the target is MIPS32/64 (bit O of GPR rsis0)
and address hit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an
instruction.

For processors that do not implement MIPS32/64 | SA, if the intended target ISAMode is M1PS32/64(bit 0 of GPR rs
is zero), an Address Error exception occurs when the jump target is fetched as an instruction.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay dot of abranch or jump.

Operation:

I: temp < GPR[rs]
GPR[rt] « PC +
I+1l:if Configly, =
PC « temp
else

8
0 then

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 280

PC ¢« tempgprren-1..1 || O
ISAMode < tempg
endif

Exceptions:

None

Programming Notes:

This branch-and-link instruction that can select aregister for the return link; other link instructions use GPR 31. The
default register for GPR rd, if omitted in the assembly language instruction, is GPR 31.

281 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Jump and Link Register with Hazard Barrier JALR.HB

31 26 25 21 20 16 15 6 5 0
POOL32A d s JALR.HB POOL 32A X f
000000 0001111100 111100
6 5 5 10 6
Format: JALR.HB rs (rt = 31 implied) microM I PS
JALR.HB rt, rs microMIPS

Purpose: Jump and Link Register with Hazard Barrier
To execute a procedure call to an instruction address in aregister and clear all execution and instruction hazards

Description: GPR[rt] ¢ return_addr, PC « GPR[rs], clear execution and instruction
hazards

Place the return address link in GPR rt. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

For processors that do not implement the MIPS32/64 | SA:

» Jump to the effective target address in GPR rs. Execute the instruction that follows the jump, in the branch
delay dot, before executing the jump itself. Bit O of the target address is always zero so that no Address
Exceptions occur when bit O of the source register is one.

For processors that do implement the MIPS32/64 1 SA:

* Jump to the effective target address in GPR rs. Execute the instruction that follows the jump, in the branch
delay slot, before executing the jump itself. Set the |SA Mode bit to the valuein GPR rsbit 0. Bit O of the tar-
get address is always zero so that no Address Exceptions occur when bit O of the source register is one.

JALR.HB implements a software barrier that resolves all execution and instruction hazards created by Coprocessor O
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the JALR.HB instruction jumps. An equivalent bar-
rier is a'so implemented by the ERET instruction, but that instruction is only available if access to Coprocessor 0 is
enabled, whereas JALR.HB islegal in al operating modes.

This instruction clears both execution and instruction hazards. Refer to the EHB instruction description for the
method of clearing execution hazards alone.

Restrictions:

The delay-dlot instruction must be 32-bits in size. Processor operation is UNPREDICTABLE if a 16-bit instruction
is placed in the delay slot of JAL.HB.

Register specifiers rs and rd must not be equal, because such an instruction does not have the same effect when reex-
ecuted. The result of executing such an instruction is UNPREDICTABLE. Thisrestriction permits an exception han-
dler to resume execution by re-executing the branch when an exception occurs in the branch delay slot.

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS32/64 and if the ISAMode hit of the target address is MIPS32/64 (bit O of
GPR rsis0) and address hit 1 isone, an Address Error exception occurs when the jump target is subsequently fetched
as an instruction.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 282

Jump and Link Register with Hazard Barrier JALR.HB

283

For processors that do not implement MIPS32/64 | SA, if theintended target ISAMaode is MIPS32/64 (bit 0 of GPR rs
is zero), an Address Error exception occurs when the jump target is fetched as an instruction.

After modifying an instruction stream mapping or writing to the instruction stream, execution of those instructions
has UNPREDICTABL E behavior until the instruction hazard has been cleared with JALR.HB, JALRS.HB, JR.HB,
ERET, or DERET. Further, the operation is UNPREDICTABLE if the mapping of the current instruction stream is
modified.

JALR.HB does not clear hazards created by any instruction that is executed in the delay slot of the JALR.HB. Only
hazards created by instructions executed before the JALR.HB are cleared by the JALR.HB.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

I: temp ¢« GPR[rs]
GPR[rt] ¢« PC + 8
I+1l:if Configlyy = 0 then
PC « temp
else
PC ¢« tempgppren-1..1 || 0
ISAMode <« tempg
endif
ClearHazards ()

Exceptions:

None

Programming Notes:

This branch-and-link instruction can select a register for the return link; other link instructions use GPR 31. The
default register for GPR rt, if omitted in the assembly language instruction, is GPR 31.

This instruction implements the final step in clearing execution and instruction hazards before execution continues. A
hazard is created when a Coprocessor 0 or TLB write affects execution or the mapping of the instruction stream, or
after awrite to the instruction stream. When such a situation exists, software must explicitly indicate to hardware that
the hazard should be cleared. Execution hazards alone can be cleared with the EHB instruction. Instruction hazards
can only be cleared with a JR.HB, JALR.HB, or ERET instruction. These instructions cause hardware to clear the
hazard before the instruction at the target of the jump is fetched. Note that because these instructions are encoded as
jumps, the process of clearing an instruction hazard can often be included as part of a cal (JALR) or return (JR)
sequence, by simply replacing the original instructions with the HB equivalent.

Example: Clearing hazards due to an ASID change

/*

* Code used to modify ASID and call a routine with the new

* mapping established.

*

* a0 = New ASID to establish

* al = Address of the routine to call

*/
mfc0 v0, CO_EntryHi /* Read current ASID */
1i vl, ~M_EntryHiASID /* Get negative mask for field */
and v0, v0, vl /* Clear out current ASID value */
or v0, v0, a0 /* OR in new ASID value */
mtc0 v0, CO_EntryHi /* Rewrite EntryHi with new ASID */
jalr.hb al /* Call routine, clearing the hazard */

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

nop

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 284

285 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Jump Register JR

31 26 25 21 20 16 15 14 13 6 5 0
POOL 32A 00000 s 00 JALR POOL 32A X f
000000 00111100 111100
6 5 5 2 3 6
Format: JR rs microM | PS

Purpose: Jump Register
To execute a branch to an instruction address in a register

Description: PC < GPR[rs]
Jump to the effective target address in GPR rs. Execute the instruction following the jump, in the branch delay slot,
before jumping.

For processors that implement the MIPS32/64 I1SA, set the | SA Mode bit to the value in GPR rs bit 0. Bit O of the tar-
get address is always zero so that no Address Exceptions occur when bit 0 of the source register is one

Restrictions:

The delay-dlot instruction must be 32-bits in size. Processor operation is UNPREDICTABLE if a 16-bit instruction
isplaced in the delay slot of JALR.

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS32/64 and the ISAMode bit of the target address is MIPS32/64 (bit O of
GPR rsis0) and address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched
as an instruction.

For processors that do not implement MIPS32/64 | SA, if the intended target ISAMode is M1PS32/64(bit 0 of GPR rs
is zero), an Address Error exception occurs when the jump target is fetched as an instruction.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

I: temp < GPR[rs]
I+1l:if Configley = 0 then
PC « temp
else
PC ¢« tempgppren-1..1 || 0
ISAMode <« tempg
endif

Exceptions:

None

Programming Notes:

Software should use the value 31 for the rsfield of the instruction word on return from a JAL, JALR, or BGEZAL,
and should use a value other than 31 for remaining uses of JR.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 286

287 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Jump Register with Hazard Barrier JR.HB

31 26 25 21 20 16 15 6 5 0
POOL32A 0 rs JALR.HB POOL 32AXf
000000 00000 01111100 111100
6 5 5 10 6
Format: JR.HB rs microM | PS

Purpose: Jump Register with Hazard Barrier
To execute a branch to an instruction address in aregister and clear al execution and instruction hazards.

Description: PC « GPR[rs], clear execution and instruction hazards

Jump to the effective target address in GPR rs. Execute the instruction following the jump, in the branch delay slot,
before jumping.

JR.HB implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the JR.HB instruction jumps. An equivalent barrier
is also implemented by the ERET instruction, but that instruction is only available if access to Coprocessor O is
enabled, whereas JR.HB islegal in all operating modes.

This instruction clears both execution and instruction hazards. Refer to the EHB instruction description for the
method of clearing execution hazards alone.

For processors that implement the MIPS32/64 | SA, set the |SA Mode bit to the value in GPR rsbit 0. Bit O of the tar-
get address is always zero so that no Address Exceptions occur when bit O of the source register is one.

Restrictions:

The delay-dlot instruction must be 32-bits in size. Processor operation is UNPREDICTABLE if a 16-hit instruction
isplaced in the delay slot of JALR.

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS32/64 and the ISAMode bit of the target address is MIPS32/64 (bit O of
GPR rsis0) and address bit 1 isone, an Address Error exception occurs when the jump target is subsequently fetched
as an instruction.

For processors that do not implement MIPS32/64 | SA, if the intended target ISAMode is M1PS32/64(bit O of GPR rs
is zero), an Address Error exception occurs when the jump target is fetched as an instruction.

After modifying an instruction stream mapping or writing to the instruction stream, execution of those instructions
has UNPREDICTABLE behavior until the hazard has been cleared with JALR.HB, JALRS.HB, JR.HB, ERET, or
DERET. Further, the operation is UNPREDICTABLE if the mapping of the current instruction stream is modified.

JR.HB does not clear hazards created by any instruction that is executed in the delay ot of the JR.HB. Only hazards
created by instructions executed before the JR.HB are cleared by the JR.HB.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay sot of abranch or jump.
Operation:

I: temp < GPR[rs]
I+1l:if Configley = 0 then
PC « temp

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 288

Jump Register with Hazard Barrier JR.HB

else
PC < tempgprren-1..1 || O
ISAMode <« tempg

endif

ClearHazards ()

Exceptions:

None

Programming Notes:

Thisinstruction implements the final step in clearing execution and instruction hazards before execution continues. A
hazard is created when a Coprocessor 0 or TLB write affects execution or the mapping of the instruction stream, or
after awrite to the instruction stream. When such a situation exists, software must explicitly indicate to hardware that
the hazard should be cleared. Execution hazards alone can be cleared with the EHB instruction. Instruction hazards
can only be cleared with a JR.HB, JALR.HB, or ERET instruction. These instructions cause hardware to clear the
hazard before the instruction at the target of the jump is fetched. Note that because these instructions are encoded as
jumps, the process of clearing an instruction hazard can often be included as part of a call (JALR) or return (JR)
sequence, by simply replacing the original instructions with the HB equivalent.

Example: Clearing hazards due to an ASID change

/*
* Routine called to modify ASID and return with the new
* mapping established.

*

* a0 = New ASID to establish

*/
mfc0 v0, CO_EntryHi /* Read current ASID */
1i vl, ~M_EntryHiASID /* Get negative mask for field */
and v0, v0, vl /* Clear out current ASID value */
or v0, v0, a0 /* OR in new ASID value */
mtc0 v0, CO_EntryHi /* Rewrite EntryHi with new ASID */
jr.hb ra /* Return, clearing the hazard */
nop

Example: Making awrite to the instruction stream visible

/*
* Routine called after new instructions are written to
* make them visible and return with the hazards cleared.

*/
{Synchronize the caches - see the SYNCI and CACHE instructions}
sync /* Force memory synchronization */
jr.hb ra /* Return, clearing the hazard */
nop

Example: Clearing instruction hazardsin-line

la AT, 10f
jr.hb AT /* Jump to next instruction, clearing */
nop /* hazards */

10:

289 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 290

Load Byte LB
31 26 25 21 20 16 15 0
LB32
000111 rt base offset
6 5 5 16
Format: LB rt, offset (base) microM | PS

291

Purpose: Load Byte
To load a byte from memory as asigned value

Description: GPR[rt] <« memory[GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, sign-extended,
and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

None

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
PAAdr « pPAdArpgrgm-1..2 || (pAddr; , xor ReverseEndian?)
memword ¢ LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ¢« vAddr, , xor BigEndianCPU?

GPR[rt] « sign extend(memword;,g+pyte..8*byte)

Exceptions:

TLB R€fill, TLB Invalid, Address Error, Watch

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Byte EVA LBE

31 26 25 21 20 16 15 12 11 9 8 0
POOL32C LD-EVA LBE
011000 t base 0110 100 offset
6 5 5 7 3 9
Format: LBE rt, offset (base) microM I PS

Purpose: Load Byte EVA
To load a byte as a signed value from user mode virtual address space when executing in kernel mode.

Description: GPR[rt] <« memory[GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, sign-extended,
and placed in GPR rt. The 9-bit signed offset is added to the contents of GPR base to form the effective address.

The LBE instruction functions in exactly the same fashion as the LB instruction, except that address trandlation is
performed using the user mode virtual address space mapping in the TLB when accessing an address within a mem-
ory segment configured to use the MUSUK access mode and executing in kernel mode. Memory segments using
UUSK or MUSK access modes are also accessible. Refer to Volume 111, Enhanced Virtual Addressing section for
additional information.

Implementation of this instruction is specified by the Config5g,, field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and accessing an address within a segment configured using

UUSK, MUSK or MUSUK access mode.

Operation:
vAddr ¢« sign_extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
pPAAdr < pPAdArpgrgm-1..2 || (pAdAdr; , xor ReverseEndian?)
memword ¢« LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ¢« vAddr, , xor BigEndianCPU?
GPR[rt] « sign_extend(memwordy,gspyte..8*byte)

Exceptions:

TLB Refill

TLB Invaid

Bus Error

Address Error

Watch

Reserved Instruction

Coprocessor Unusable

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 292

293 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Byte Unsigned LBU

31 26 25 21 20 16 15 0
LBU32
000101 rt base offset
6 5 5 16
Format: LBU rt, offset (base) microM I PS

Purpose: Load Byte Unsigned
To load a byte from memory as an unsigned value

Description: GPR[rt] <« memory[GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, zero-extended,
and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effective address.
Restrictions:

None

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
PAAdr « pPAdArpgrgm-1..2 || (pAddr; , xor ReverseEndian?)
memword ¢ LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ¢« vAddr, , xor BigEndianCPU?

GPR[rt] ¢« zero_extend(memwordy,gspyte..8*byte)

Exceptions:

TLB R€fill, TLB Invalid, Address Error, Watch

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 294

295 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Byte Unsigned EVA LBUE

31 26 25 21 20 16 15 12 11 9 8 0
POOL32C LD-EVA | LBUE
011000 t base 0110 000 offset
6 5 5 4 3 9
Format: LBUE rt, offset(base) microM I PS

Purpose: Load Byte Unsigned EVA
To load a byte as an unsigned value from user mode virtual address space when executing in kernel mode.

Description: GPR[rt] <« memory[GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, zero-extended,
and placed in GPR rt. The 9-bit signed offset is added to the contents of GPR base to form the effective address.

The LBUE instruction functions in exactly the same fashion as the LBU instruction, except that address trandlation is
performed using the user mode virtual address space mapping in the TLB when accessing an address within a mem-
ory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes
are also accessible. Refer to Volume 111, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5g,, field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and accessing an address within a segment configured using

UUSK, MUSK or MUSUK access mode.

Operation:
vAddr ¢« sign_extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
pPAAdr < pPAdArpgrgm-1..2 || (pAdAdr; , xor ReverseEndian?)
memword ¢« LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ¢« vAddr, , xor BigEndianCPU?
GPR[rt] ¢« zero_extend(memwordy,g+pyte..8*byte)

Exceptions:

TLB Refill

TLB Invaid

Bus Error

Address Error

Watch

Reserved Instruction

Coprocessor Unusable

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 296

297 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Doubleword to Floating Point LDC1

31 26 25 21 20 16 15 0
LDC132
101111 ft base offset
6 5 5 16
Format: 1LDC1 ft, offset (base) microM | PS

Purpose: Load Doubleword to Floating Point
To load a doubleword from memory to an FPR

Description: FPR[ft] « memory[GPR[base] + offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in FPR ft. The 16-bit signed offset is added to the contents of GPR base to form the effective address.
Restrictions:

An Address Error exception occursif EffectiveAddress, g # 0 (not doubleword-aligned).

Operation:

vAddr <« sign_extend(offset) + GPR[base]
if vAddr, , #0° then
SignalException (AddressError)

endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
paddr ¢« paddr xor ((BigEndianCPU xor ReverseEndian) || 02)

memlsw ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
paddr ¢« paddr xor 0b100

memmsw < LoadMemory (CCA, WORD, pAddr, vAddr+4, DATA)
memdoubleword ¢« memmsw || memlsw

StoreFPR(ft, UNINTERPRETED_DOUBLEWORD, memdoubleword)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Réfill, TLB Invalid, Address Error, Watch

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 298

Load Doubleword to Coprocessor 2 LDC2

31 26 25 21 20 16 15 12 11 0
POOL 328 LDC2
001000 t base 0010 offset
6 5 5 4 12
Format: 1DC2 rt, offset(base) microM I PS

Purpose: Load Doubleword to Coprocessor 2
To load a doubleword from memory to a Coprocessor 2 register

Description: CPR[2,rt,0] < memory[GPR[base] + offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in Coprocessor 2 register rt. The 12-bit signed offset is added to the contents of GPR base to form the
effective address.

Restrictions:

An Address Error exception occursif EffectiveAddress, g # 0 (not doubleword-aligned).

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]

if vAddr, # 0% then SignalException(AddressError) endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
paddr ¢« paddr xor ((BigEndianCPU xor ReverseEndian) || 02)
memlsw ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)

paddr ¢« paddr xor 0b100

memmsw ¢ LoadMemory (CCA, WORD, pAddr, vAddr+4, DATA)
—memlsw

—memmsw

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Réfill, TLB Invalid, Address Error, Watch

299 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Halfword LH
31 26 25 21 20 16 15 0
LH32
001111 rt base offset
6 5 5 16
Format: LH rt, offset (base) microM I PS

Purpose: Load Halfword
To load a halfword from memory as a signed value

Description: GPR[rt] <« memory[GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
sign-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effec-

tive address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address

Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddry # 0 then
SignalException (AddressError)
endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢« pAddrpgrge-1..2 || (PAddr; , xor (ReverseEndian || 0))
memword ¢ LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ¢« vAddr, , xor (BigEndianCPU || 0)
GPR[rt] « sign_extend(memwordis,gspyte..8*byte)

Exceptions:
TLB Ré€fill, TLB Invalid, Bus Error, Address Error, Watch

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

300

301 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Halfword EVA LHE

31 26 25 21 20 16 15 12 11 9 8 0
POOL32C LD-EVA LHE
011000 t base 0110 101 offset
6 5 5 Z 3 9
Format: LHE rt, offset (base) microM I PS

Purpose: Load Hafword EVA
To load a halfword as a signed value from user mode virtual address space when executing in kernel mode.

Description: GPR[rt] <« memory[GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
sign-extended, and placed in GPR rt. The 9-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

The LHE instruction functions in exactly the same fashion as the LH instruction, except that address trandlation is
performed using the user mode virtual address space mapping in the TLB when accessing an address within a mem-
ory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes
are also accessible. Refer to Volume 111, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5g,, field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and accessing an address within a segment configured using
UUSK, MUSK or MUSUK access mode.

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.
Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

PAddr ¢« pAddrpgrzp-1..2 || (pAddr; , xor (ReverseEndian || 0))
memword < LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte « vAddr, , xor (BigEndianCPU || 0)

GPR[rt] « sign_extend(memword;s,gspyte..g*byte)

Exceptions:

TLB Refill

TLB Invaid

Bus Error

Address Error

Watch

Reserved Instruction
Coprocessor Unusable

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 302

303 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Halfword Unsigned LHU
31 26 25 21 20 16 15 0
LHU32
001101 rt base offset
6 5 5 16
Format: LHU rt, offset (base) microM I PS

Purpose: Load Hafword Unsigned
To load a halfword from memory as an unsigned value

Description: GPR[rt] <« memory[GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
zero-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effec-

tive address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address

Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddry # 0 then
SignalException (AddressError)
endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢« pAddrpgrge-1..2 || (PAddr; , xor (ReverseEndian || 0))
memword ¢ LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ¢« vAddr, , xor (BigEndianCPU || 0)
GPR[rt] « zero_extend(memword s, gspyte..8*byte)

Exceptions:
TLB R€fill, TLB Invalid, Address Error, Watch

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

304

305 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Halfword Unsigned EVA LHUE

31 26 25 21 20 16 15 12 11 9 8 0
POOL 32C LD-EVA LHUE
011000 t base 0110 001 offset
6 5 5 4 3 9
Format: LHUE rt, offset(base) microM I PS

Purpose: Load Hafword Unsigned EVA
To load a halfword as an unsigned value from user mode virtual address space when executing in kernel mode.

Description: GPR[rt] <« memory[GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
zero-extended, and placed in GPR rt. The 9-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

The LHUE instruction functionsin exactly the same fashion as the LHU instruction, except that address trandation is
performed using the user mode virtual address space mapping in the TLB when accessing an address within a mem-
ory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes
are also accessible. Refer to Volume 111, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5g,, field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and accessing an address within a segment configured using
UUSK, MUSK or MUSUK access mode.

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.
Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

PAddr ¢« pAddrpgrzp-1..2 || (pAddr; , xor (ReverseEndian || 0))
memword < LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte « vAddr, , xor (BigEndianCPU || 0)

GPR[rt] ¢« zero_extend(memword;s,gspyte..8*byte)

Exceptions:

TLB Refill

TLB Invaid

Bus Error

Address Error

Watch

Reserved Instruction
Coprocessor Unusable

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 306

307 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Linked Word LL

31 26 25 21 20 16 15 12 11 0
POOL 32C LL32
011000 t base 0011 offset
6 5 5 5 12
Format: LL rt, offset (base) microM I PS

Purpose: Load Linked Word
To load aword from memory for an atomic read-modify-write

Description: GPR[rt] <« memory[GPR[base] + offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
written into GPR rt. The 12-bit signed offset is added to the contents of GPR base to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LL is executed it starts an active RMW sequence replacing any other sequence that was active. The RMW
sequence is completed by a subsequent SC instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.

Executing LL on one processor does not cause an action that, by itself, causes an SC for the same block to fail on
another processor.

An execution of LL does not have to be followed by execution of SC; a program is free to abandon the RMW
sequence without attempting awrite.

Restrictions:

The addressed location must be synchronizable by all processors and /O devices sharing the location; if it is not, the
result is UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective address is non-
zero, an Address Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr, o # 02 then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ¢« memword
LLbit « 1

Exceptions:
TLB Réfill, TLB Invalid, Address Error, Watch

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 308

309 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Linked Word EVA LLE

31 26 25 21 20 16 15 12 11 9 8 0
POOL32C LD-EVA LLE
011000 t base 0110 110 offset
6 5 5 4 3 9
Format: LLE rt, offset (base) microM I PS

Purpose: Load Linked Word EVA
To load aword from a user mode virtual address when executing in kernel mode for an atomic read-modify-write

Description: GPR[rt] <« memory[GPR[base] + offset]

The LLE and SCE instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations using user mode virtual addresses while executing in kernel mode.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
written into GPR rt. The 12-bit signed offset is added to the contents of GPR base to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LLE is executed it starts an active RMW sequence replacing any other sequence that was active. The RMW
sequence is completed by a subsequent SCE instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.

Executing LLE on one processor does not cause an action that, by itself, causes an SCE for the same block to fail on
another processor.

An execution of LLE does not have to be followed by execution of SCE; a program is free to abandon the RMW
sequence without attempting awrite.

The LLE instruction functions in exactly the same fashion asthe LL instruction, except that address translation is per-
formed using the user mode virtual address space mapping in the TLB when accessing an address within a memory
segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are
also accessible. Refer to Volume 111, Segmentation Control for additional information.

Implementation of thisinstruction is specified by the Config5g, field being set to one.

Restrictions:

The addressed location must be synchronizable by all processors and 1/O devices sharing the location; if it is not, the
result is UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SCE instruction for the formal definition.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective address is non-
zero, an Address Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr; # 02 then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ¢ memword
LLbit « 1

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 310

Exceptions:
TLB Réfill, TLB Invalid, Address Error, Reserved Instruction, Watch, Coprocessor Unusable

Programming Notes:

311 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Upper Immediate LUI

31 26 25 21 20 16 15 0
POOL 32I LUI .)
010000 01101 rs immediiate
6 5 5 16
Format: LUI rs, immediate microM | PS

Purpose: Load Upper Immediate
To load a constant into the upper half of aword

Description: GPR[rs] ¢« immediate || 0%°

The 16-bit immediate is shifted left 16 bits and concatenated with 16 bits of low-order zeros. The 32-bit result is
placed into GPR rt.

Restrictions:

None

Operation:

GPR[rs] ¢« immediate || 0%°

Exceptions:

None

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 312

Load Doubleword Indexed Unaligned to Floating Point LUXC1

313

31 26 25 21 20 16 15 11 10 9 8 0
POOL32F . LUXC1
010101 index base fd 0 101001000
6 5 5 5 2 9
Format: LUXC1 fd, index(base) microM I PS
microMIPS

Purpose: Load Doubleword Indexed Unaligned to Floating Point
To load a doubleword from memory to an FPR (GPR+GPR addressing), ignoring alignment

Description: FPR[fd] ¢« memory[(GPR[base] + GPR[index])pgrzp-1..3]

The contents of the 64-bit doubleword at the memory location specified by the effective address are fetched and
placed into the low word of FPR fd. The contents of GPR index and GPR base are added to form the effective address.
The effective address is doubleword-aligned; EffectiveAddress, g are ignored.

Restrictions:

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:
vAddr <« (GPR[base]+GPR[index])¢; 5 || 03
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
paddr ¢« paddr xor ((BigEndianCPU xor ReverseEndian) || 02)

memlsw ¢« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
paddr <« paddr xor 0bl00

memmsw ¢ LoadMemory (CCA, WORD, pAddr, vAddr+4, DATA)
memdoubleword ¢« memmsw || memlsw

StoreFPR(ft, UNINTERPRETED_DOUBLEWORD, memdoubleword)

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Réfill, TLB Invalid, Watch

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 314

Load Word

315

31

26 25

21 20 16 15

LW

LW32
111111

rt

offset

6

5

Format: 1w rt, offset(base)

Purpose: Load Word
To load aword from memory as asigned value

Description: GPR[rt] <« memory[GPR[base] + offset]

16

microM I PS

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 16-bit signed offset is added to the con-
tents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]

if vAddr; # 02 then

SignalException (AddressError)

endif
(pAddr,

memword ¢ LoadMemory

GPR[rt]

Exceptions:

TLB R€fill, TLB Invalid, Bus Error, Address Error, Watch

CCA) ¢« AddressTranslation

— memword

(CCA, WORD, pAddr,

(vAddr,

vAddr,

DATA, LOAD)

DATA)

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Word EVA LWE

31 26 25 21 20 16 15 12 11 9 8 0
POOL32C LD-EVA LWE
011000 t base 0110 111 offset
6 5 5 Z 3 9
Format: LWE rt, offset (base) microM I PS

Purpose: Load Word EVA
To load aword from user mode virtual address space when executing in kernel mode.

Description: GPR[rt] <« memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 9-bit signed offset is added to the contents
of GPR base to form the effective address.

The LWE instruction functions in exactly the same fashion as the LW instruction, except that address trandation is
performed using the user mode virtual address space mapping in the TLB when accessing an address within a mem-
ory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes
are also accessible. Refer to Volume 111, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5g,, field being set to one.
Restrictions:

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.
Operation:

vAddr ¢« sign_extend(offset) + GPR[base]

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memword ¢« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ¢« memword

Exceptions:

TLB Refill

TLB Invaid

Bus Error

Address Error
Watch

Reserved Instruction

Coprocessor Unusable

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 316

317 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Word to Floating Point LWC1
31 26 25 21 20 16 15 0
LWC132
100111 ft base offset
6 5 5 16
Format: 1wCl ft, offset (base) microM I PS

Purpose: Load Word to Floating Point
To load aword from memory to an FPR

Description: FPR[ft] « memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of FPR ft. If FPRs are 64 bits wide, bits 63..32 of FPR ft become UNPREDICTABLE. The
16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

An Address Error exception occursif EffectiveAddress, o+ 0 (nhot word-aligned).

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]

if vAddr; , # 02 then
SignalException (AddressError)
endif

(pAddr, CCA) ¢« AddressTranslation (vAddr,

memword ¢« LoadMemory (CCA, WORD, pAddr, vAddr,

StoreFPR(ft, UNINTERPRETED_ WORD,
memword)

Exceptions:

DATA, LOAD)

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 318

Load Word to Coprocessor 2 LwC2

31 26 25 21 20 16 15 12 11 0
POOL 328 LWC2
001000 t base 0000 offset
6 5 5 4 12
Format: LwC2 rt, offset(base) microM I PS

Purpose: Load Word to Coprocessor 2
To load aword from memory to a COP2 register

Description: CPR[2,rt,0] < memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of COP2 (Coprocessor 2) general register rt. The 12-bit signed offset is added to the con-
tents of GPR base to form the effective address.

Restrictions:

An Address Error exception occursif EffectiveAddress, g+ 0 (hot word-aligned).

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr,, o #02? then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

memword ¢« LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
CPR[2,rt,0] ¢« memword

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

319 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Word Left LWL

31 26 25 21 20 16 15 12 1 0
POOL32C ot base LWL32 offset
011000 0000
6 5 5 5 12
Format: LWL rt, offset (base) microMIPS

Purpose: Load Word Left

To load the most-significant part of a word as a signed value from an unaligned memory address

Description: GPR[rt] ¢« GPR[rt] MERGE memory[GPR[base] + offset]

The 12-bit signed offset is added to the contents of GPR base to form an effective address (Effdddr). EffAddr is the
address of the most-significant of 4 consecutive bytes forming a word () in memory starting at an arbitrary byte
boundary.

The most-significant 1 to 4 bytes of W is in the aligned word containing the Eff4ddr. This part of W is loaded into the
most-significant (left) part of the word in GPR 77. The remaining least-significant part of the word in GPR 77 is
unchanged.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4 con-
secutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes, is in the aligned word con-
taining the most-significant byte at 2. First, LWL loads these 2 bytes into the left part of the destination register word
and leaves the right part of the destination word unchanged. Next, the complementary LWR loads the remainder of
the unaligned word

Figure 5.6 Unaligned Word Load Using LWL and LWR

Word at byte 2 in big-endian memory; each memory byte contains its own address
most - significance - least
[o]r[2]s3f«ls[e]7]e]¢] Memory initial contents

I 2 I 3 | 4 | 5 I Then after LWR $24,5(%$0)

GPR 24 Initial contents

After executing LWL $24,2($0)

The bytes loaded from memory to the destination register depend on both the offset of the effective address within an
aligned word, that is, the low 2 bits of the address (vAddr; (). and the current byte-ordering mode of the processor

(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte ordering.

MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04 320

Load Word Left LWL

Figure 5.7 Bytes Loaded by LWL Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 «bhig-endian
| | | J | K | L | offset (vAddry o) ’ e ‘ f ‘ g ‘ h ‘
3 2 1 0 «little-endian most least
most least — significance —
— significance —
Destination register contents after instruction (shaded is unchanged)
Big-endian VvAddry o Little-endian
I J K L 0 L | f g h
J K L | h 1 K L | g h
K L | g h 2 J K L | h
L | f g h 3] J K L

Restrictions:

None

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

PAdAr ¢« pPAdArpgrze-1. .2 || (PAAdr; o xor ReverseEndian?)
if BigEndianMem = 0 then

pAddr ¢« pAddrpsizp-1..z || 07
endif

byte ¢« vAddr; o xor BigEndianCPU?
memword <« LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ¢ memwords,gspyte..0 || GPRITtlz3 gepyte. .o
GPR[rt] « temp
Exceptions:
None

TLB R€fill, TLB Invalid, Bus Error, Address Error, Watch

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroing bits
63..32 of the destination register when bit 31 isloaded.

Historical Information:

In the MIPS | architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restriction.
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the
same destination register would correctly merge the 1 to 4 loaded bytes with the data loaded by the previous instruc-
tion. All such restrictions were removed from the architecturein MIPS 1.

321 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Word Left EVA LWLE

31 26 25 21 20 16 15 12 1 9 8 0
POOL32C LD-EVA | LwLE
011000 “ base 0110 010 .
6 5 5 4 3 9
Format: LWLE rt, offset (base) microMIPS

Purpose: Load Word Left EVA

To load the most-significant part of a word as a signed value from an unaligned user mode virtual address while exe-
cuting in kernel mode.

Description: GPR[rt] ¢« GPR[rt] MERGE memory[GPR[base] + offset]

The 9-bit signed offsef is added to the contents of GPR base to form an effective address (Effdddr). EffAddr is the
address of the most-significant of 4 consecutive bytes forming a word () in memory starting at an arbitrary byte
boundary.

The most-significant 1 to 4 bytes of # is in the aligned word containing the Eff4ddr. This part of W is loaded into the
most-significant (left) part of the word in GPR 77. The remaining least-significant part of the word in GPR 77 is
unchanged.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4 con-
secutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes, is in the aligned word con-
taining the most-significant byte at 2. First, LWLE loads these 2 bytes into the left part of the destination register
word and leaves the right part of the destination word unchanged. Next, the complementary LWRE loads the remain-
der of the unaligned word

Figure 5.8 Unaligned Word Load Using LWLE and LWRE

Word at byte 2 in big-endian memory; each memory byte contains its own address
most - significance - least
[o]r[2]s3f«ls[e]7]e]¢] Memory initial contents

I 2 I 3 | 4 | 5 I Then after LWRE $24,5($0)

GPR 24 Initial contents

After executing LWLE $24,2($0)

The bytes loaded from memory to the destination register depend on both the offset of the effective address within an
aligned word, that is, the low 2 bits of the address (vAddr; (). and the current byte-ordering mode of the processor

(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte ordering.

The LWLE instruction functions in exactly the same fashion as the LWL instruction, except that address translation is
performed using the user mode virtual address space mapping in the TLB when accessing an address within a mem-
ory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes
are also accessible. Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5z;,, field being set to one.

MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04 322

Load Word Left EVA LWLE

323

Figure 5.9 Bytes Loaded by LWLE Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 «bhig-endian
| | | J | K | L | offset (vAddry o) ’ e ‘ f ‘ g ‘ h ‘
3 2 1 0 «little-endian most least
most least — significance —
— significance —

Destination register contents after instruction (shaded is unchanged)

Big-endian VvAddry o Little-endian
I J K L 0 L | f g h
J K L | h 1 K L | g h
K L | g h 2 J K L | h
L | f g h 3 I J K L

Restrictions:

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

pAddr ¢« pAddrpgrzg-1. .2 || (PAddr; , xor ReverseEndian?)
if BigEndianMem = 0 then

pAddr « pAddrpgizpi..z || 0
endif

byte « vAddr, o xor BigEndianCPU?

memword ¢ LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ¢ memwordy,gspyre..0 || GPRITt]as_gipyre. .o

GPR[rt] « temp

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch, Reserved | nstruction, Coprocessor Unusable

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroing bits
63..32 of the destination register when bit 31 isloaded.

Historical Information:

In the MIPS | architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restriction.
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the
same destination register would correctly merge the 1 to 4 loaded bytes with the data loaded by the previous instruc-
tion. All such restrictions were removed from the architecturein MIPS 1.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Word Right LWR

31 26 25 21 20 16 15 12 1 0
POOLSIC rt base L 2 offset
011000 0001
6 5 5 5 12
Format: LWR rt, offset (base) microMIPS

Purpose: Load Word Right

To load the least-significant part of a word from an unaligned memory address as a signed value

Description: GPR[rt] ¢« GPR[rt] MERGE memory[GPR[base] + offset]

The 12-bit signed offset is added to the contents of GPR base to form an effective address (Effdddr). EffAddr is the
address of the least-significant of 4 consecutive bytes forming a word (#) in memory starting at an arbitrary byte
boundary.

A part of W, the least-significant 1 to 4 bytes, is in the aligned word containing Eff4ddr. This part of W is loaded into
the least-significant (right) part of the word in GPR 77. The remaining most-significant part of the word in GPR 77 is
unchanged.

Executing both LWR and LWL, in either order. delivers a sign-extended word value in the destination register.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4 con-
secutive bytes in 2..5 form an unaligned word starting at location 2. A part of . 2 bytes, is in the aligned word con-
taining the least-significant byte at 5. First. LWR loads these 2 bytes into the right part of the destination register.
Next, the complementary LWL loads the remainder of the unaligned word.

Figure 5.10 Unaligned Word Load Using LWL and LWR

Word at byte 2 in big-endian memory; each memory byte contains its own address
most - significance - least
(o] "]2]3f4a[s]s]7)8[2] Memory initial contents

GPR 24 Initial contents

After executing LWR $24,5($0)

I 2 I 3 I 4 | 5 I Then after LWL $24,2($0)

The bytes loaded from memory to the destination register depend on both the offset of the effective address within an
aligned word, that is, the low 2 bits of the address (vAddr; (). and the current byte-ordering mode of the processor

(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte ordering.

MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04 324

Load Word Right LWR

Figure 5.11 Bytes Loaded by LWR Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 «big-endian
| I | 3 | K | L | offset (vAddry) ‘ e ‘ f ‘ g ‘ h ‘
3 2 1 0 «little-endian most least
most least — significance—
— significance —
Destination register contents after instruction (shaded is unchanged)
Big-endian VAddry o Little-endian
e f g | I 0] J K L
e f | I J 1 e | I J K
e | I J K 2 e f | I J
I J K L 3 e f g | I

Restrictions:

None

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

PAdAr ¢« pPAdArpgrze-1. .2 || (PAAdr; o xor ReverseEndian?)
if BigEndianMem = 0 then

pAddr ¢« pAddrpsizp-1..z || 07
endif

byte ¢« vAddr; o xor BigEndianCPU?

memword <« LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ¢ memwords; 3z-gspyte || GPRITtI3i_gspyte..o
GPR[rt] « temp

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error, Watch

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroing bits
63..32 of the destination register when bit 31 isloaded.

Historical Information:

In the MIPS | architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restriction.
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the
same destination register would correctly merge the 1 to 4 loaded bytes with the data loaded by the previous instruc-
tion. All such restrictions were removed from the architecturein MIPS 1.

325 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Word Right EVA LWRE

31 26 25 21 20 16 15 12 1 9 8 0
POOL32C LD-EVA LWRE
011000 “ base 0110 011 .
6 5 5 4 3 9
Format: LWRE rt, offset (base) microMIPS

Purpose: Load Word Right EVA

To load the least-significant part of a word from an unaligned user mode virtual memory address as a signed value
while executing in kernel mode.

Description: GPR[rt] ¢« GPR[rt] MERGE memory[GPR[base] + offset]

The 9-bit signed offsef is added to the contents of GPR base to form an effective address (Effdddr). EffAddr is the
address of the least-significant of 4 consecutive bytes forming a word (#) in memory starting at an arbitrary byte
boundary.

A part of W, the least-significant 1 to 4 bytes, is in the aligned word containing Eff4ddr. This part of W is loaded into
the least-significant (right) part of the word in GPR 77. The remaining most-significant part of the word in GPR 77 is
unchanged.

Executing both LWRE and LWLE, in either order, delivers a sign-extended word value in the destination register.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4 con-
secutive bytes in 2..5 form an unaligned word starting at location 2. A part of . 2 bytes, is in the aligned word con-
taining the least-significant byte at 5. First, LWRE loads these 2 bytes into the right part of the destination register.
Next, the complementary LWLE loads the remainder of the unaligned word.

The LWRE instruction functions in exactly the same fashion as the LWR instruction. except that address translation
is performed using the user mode virtual address space mapping in the TLB when accessing an address within a
memory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access
modes are also accessible. Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5z, field being set to one.

Figure 5.12 Unaligned Word Load Using LWLE and LWRE

Word at byte 2 in big-endian memory; each memory byte contains its own address
most - significance - least

|0|1 23475 6|7|8|9| Memory initial contents

GPR 24 Initial contents

After executing LWRE $24,5($0)

I 2 I 3 | 4 | 5 I Then after LWLE $24,2($0)

The bytes loaded from memory to the destination register depend on both the offset of the effective address within an
aligned word, that is, the low 2 bits of the address (vAddr; (). and the current byte-ordering mode of the processor

(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte ordering.

MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04 326

Load Word Right EVA LWRE

Figure 5.13 Bytes Loaded by LWRE Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 «big-endian
| I | 3 | K | L | offset (vAddry) ‘ e ‘ f ‘ g ‘ h ‘
3 2 1 0 «little-endian most least
most least — significance—
— significance —
Destination register contents after instruction (shaded is unchanged)
Big-endian VAddry o Little-endian
e f g | I 0 I J K L
e f | I J 1 e | I J K
e | I J K 2 e f | I J
I J K L 3 e f g | I

Restrictions:

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

PAdAr ¢« pPAdArpgrze-1. .2 || (PAAdr; o xor ReverseEndian?)
if BigEndianMem = 0 then

pAddr ¢« pAddrpsizp-1..z || 07
endif

byte ¢« vAddr; o xor BigEndianCPU?

memword <« LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ¢ memwords; 3z-gspyte || GPRITtI3i_gspyte..o
GPR[rt] « temp

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch, Reserved I nstruction, Coprocessor Unusable

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroing bits
63..32 of the destination register when bit 31 isloaded.

Historical Information:

In the MIPS | architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restriction.
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the
same destination register would correctly merge the 1 to 4 loaded bytes with the data loaded by the previous instruc-
tion. All such restrictions were removed from the architecturein MIPS 1.

327 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Word Unsigned LWu

31 26 25 21 20 16 15 12 11 0
POOL32C LWuU
011000 t base 1110 offset
6 5 5 4 12
Format: LwU rt, offset (base) microM | PS64

Purpose: Load Word Unsigned
To load aword from memory as an unsigned value

Description: GPR[rt] ¢« memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, zero-
extended, and placed in GPR rt. The 12-bit signed offset is added to the contents of GPR base to form the effective
address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr, o # 02 then

SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] « 032 || memword

Exceptions:

TLB R€fill, TLB Invalid, Bus Error, Address Error, Reserved | nstruction, Watch

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 328

329 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Load Word Indexed to Floating Point LWXC1
31 26 25 21 20 16 15 11 10 9 8 0
POOL 32F . LWXC1
010101 index base fd 0 001001000
6 5 5 5 2 9
Format: LwxCl fd, index(base) microM I PS
microMIPS

Purpose: Load Word Indexed to Floating Point

To load aword from memory to an FPR (GPR+GPR addressing)

Description: FPR[fd] « memory[GPR[base] + GPR[index]]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of FPR fd. If FPRs are 64 bitswide, bits 63..32 of FPR fs become UNPREDICTABLE. The
contents of GPR index and GPR base are added to form the effective address.

Restrictions:

An Address Error exception occursif EffectiveAddress, g 0 (not word-aligned).

Compatibility and Availability:

LWXCL: Required in al versions of MIPS64 since MIPS64rl. Not available in MIPS32r1. Required by MI1PS32r2
and subsequent versions of MIPS32. When required, required whenever FPU is present, whether a 32-bit or 64-bit

FPU, whether in 32-bit or 64-bit FP Register Mode (FIRgg4=0 or 1, Statusgg=0 or 1).

Operation:

vAddr <« GPR[base] + GPR[index]
if vAddr; , # 02 then

SignalException (AddressError)
endif

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

memword ¢ LoadMemory (CCA, WORD, pAddr, vAddr,

StoreFPR(fd, UNINTERPRETED_ WORD,
memword)

Exceptions:

DATA)

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

330

331 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Multiply and Add Word to Hi,Lo MADD

31 26 25 21 20 16 15 6 5 0
POOL32A r rs MADD POOL 32AXf
000000 1100101100 111100
6 5 5 10 6
Format: MADD rs, rt microM I PS

Purpose: Multiply and Add Word to Hi,Lo
To multiply two words and add the result to Hi, Lo

Description: (HI,LO) « (HI,LO) + (GPR[rs] X GPR[rt])

The 32-bit word value in GPR rsis multiplied by the 32-bit word value in GPR rt, treating both operands as signed
values, to produce a 64-bit result. The product is added to the 64-bit concatenated values of HI and LO. The most sig-
nificant 32 bits of the result are written into HI and the least signficant 32 bits are written into LO. No arithmetic
exception occurs under any circumstances.

Restrictions:

None
Thisinstruction does not provide the capability of writing directly to atarget GPR.

Operation:

temp ¢« (HI || LO) + (GPR[rs] X GPR[rt])
HI <« temp63”32
LO « temp31__0

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 332

Floating Point Multiply Add MADD.fmt

31 26 25 21 20 16 15 11 10 6 5 0
POOL 32F MADD.S
010101 ft fs fd fr 000001
6 5 5 5 5 6
31 26 25 21 20 16 15 11 10 6 5 0
POOL 32F MADD.D
010101 ft fs fd fr 001001
6 5 5 5 5 6
31 26 25 21 20 16 15 11 10 6 5 0
POOL 32F MADD.PS
010101 ft fs fd fr 010001
6 5 5 5 5 6
Format: MADD. fmt
MADD.S fd, fr, fs, ft microMIPS
MADD.D fd, fr, fs, ft microMIPS
MADD.PS fd, fr, fs, ft microMIPS

Purpose: Floating Point Multiply Add
To perform a combined multiply-then-add of FP values

Description: FPR[fd] « (FPR[fs] x FPR[ft]) + FPR[fr]
Thevauein FPR fsismultiplied by the value in FPR ft to produce an intermediate product.

The intermediate product is rounded according to the current rounding mode in FCSR. The value in FPR fr is added
to the product. The result sum is calculated to infinite precision, rounded according to the current rounding mode in
FCSR, and placed into FPR fd. The operands and result are values in format fmt. The results and flags are as if sepa-
rate floating-point multiply and add instructions were executed.

MADD.PS multiplies then adds the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and ORs
together any generated exceptional conditions.

Cause bits are ORed into the Flag bitsif no exception is taken.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is
UNPREDICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

Theresult of MADD.PSis UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register mode!;
i.e.itispredictableif executing on a64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Compeatibility and Availability:

MADD.S and MADD.D: Required in all versions of MIPS64 since MIPS64r1. Not available in MIPS32r1. Required
by MIPS32r2 and subsequent versions of MIPS32. When required, required whenever FPU is present, whether a 32-
bit or 64-bit FPU, whether in 32-bit or 64-bit FP Register Mode (FIRgg,=0 or 1, Statusgr=0 or 1).

Operation:

vir <« ValueFPR(fr, fmt)
vis <« ValueFPR(fs, fmt)

333 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

vit < ValueFPR(ft, fmt)
StoreFPR(fd, fmt, (vEs Xgpe VEL) +gpe VED)

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 334

Multiply and Add Unsigned Word to Hi,Lo MADDU

335

31 26 25 21 20 16 15 6 5 0
POOL32A r rs MADDU POOL 32AXf
000000 1101101100 111100
6 5 5 10 6
Format: MADDU rs, rt microM I PS

Purpose: Multiply and Add Unsigned Word to Hi,Lo
To multiply two unsigned words and add the result to HI, LO.

Description: (HI,LO) « (HI,LO) + (GPR[rs] X GPR[rt])

The 32-bit word value in GPR rsis multiplied by the 32-bit word value in GPR rt, treating both operands as unsigned
values, to produce a 64-bit result. The product is added to the 64-bit concatenated values of HI and LO. The most sig-
nificant 32 bits of the result are written into HI and the least signficant 32 bits are written into LO. No arithmetic
exception occurs under any circumstances.

Restrictions:

None
Thisinstruction does not provide the capability of writing directly to atarget GPR.

Operation:

temp < (HI || LO) + (GPR[rs] X GPR[rt])
HI « temp63”32
LO « temp31__0

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Move from Coprocessor 0 MFCO

31 26 25 21 20 16 15 14 13 11 10 6 5 0
POOL32A ft s 00 « MFCO POOL32AXf
000000 00011 111100
6 5 5 3 5 6
Format: MFCO rt, rs microM | PS
MFCO rt, rs, sel microMIPS

Purpose: Move from Coprocessor O

To move the contents of a coprocessor O register to a general register.

Description: GPR[rt] « CPR[O,rs,sel]

The contents of the coprocessor 0 register specified by the combination of rs and sel are loaded into general register
rt. Note that not all coprocessor 0 registers support the sel field. In those instances, the sel field must be zero.

Restrictions:

Theresults are UNDEFINED if coprocessor 0 does not contain aregister as specified by rsand sel.

Operation:

reg = rs
data <« CPRI[O0,reg,sell
GPR[rt] ¢« data

Exceptions:
Coprocessor Unusable
Reserved Instruction

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 336

Move Word From Floating Point MFC1
31 26 25 21 20 16 15 14 13 0
POOL 32F r fs 00 MFC1 POOL 32FXf
010101 10000000 111011
6 5 5 2 P 6
Format: wMrFC1 rt, fs microM | PS

337

Purpose: Move Word From Floating Point
To copy aword from an FPU (CP1) general register to aGPR

Description: GPR[rt] « FPR[fs]

The contents of FPR fsare loaded into general register rt.
Restrictions:

Operation:

data < ValueFPR(fs, UNINTERPRETED_WORD)
GPR[rt] <« data

Exceptions:

Coprocessor Unusable, Reserved Instruction

Historical Information:

For MIPS |, MIPS 11, and MIPS 111 the contents of GPR rt are UNPREDICTABLE for the instruction immediately

following MFCL1.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Move Word From Coprocessor 2 MFC2

31 26 25 21 20 16 15 6 5 0
POOL 32A r Imol MFC2 POOL 32A Xf
000000 P 0100110100 111100
6 5 5 10 6
Format: MFC2 rt, Impl microM I PS

The syntax shown above is an example using MFC1 as amodel. The specific syntax isimplementation dependent.

Purpose: Move Word From Coprocessor 2

To copy aword from a COP2 general register to a GPR

Description: GPR[rt] « CP2CPR[Impl]

The contents of the coprocessor 2 register denoted by the Impl field are and placed into general register rt. The inter-
pretation of the Impl field isleft entirely to the Coprocessor 2 implementation and is not specified by the architecture.
Restrictions:

Theresults are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist.

Operation:

data <« CP2CPR[Impl]
GPR[rt] <« data

Exceptions:

Coprocessor Unusable

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 338

339 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Move to High Coprocessor 0O

MTHCO

31 26 25 21 20 16 15 14 13 11 10 0
POOL32A rt s 00 MTHCO POOL32P
000000 01011 110100
6 5 5 2 5 6
Format: MTHCO rt, rs microM | PS Release 5
MTHCO rt, rs, sel microM | PS Release 5

Purpose: Moveto High Coprocessor O

To copy aword from a GPR to the upper 32 bits of a COP2 general register that has been extended by 32 bits.

Description: CPR[O,

rs,

sel] [63:32]

< GPR[rt]

The contents of general register rt are loaded into the Coprocessor O register specified by the combination of rs and
sel. Not all Coprocessor 0 registers support the sel field, and when thisis the case, the sel field must be set to zero.

Restrictions:

Theresults are UNDEFINED if Coprocessor 0 does not contain aregister as specified by rsand sel, or if the register
exists but is not extended by 32 bits, or the register is extended for XPA, but XPA is not supported or enabled.

Operation:

data < GPR[rt]
reg « rs

CPR[0,reg,sel] [63:32]

Exceptions:
Coprocessor Unusable
Reserved Instruction

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

< data

340

Move Word From High Half of Floating Point Register MFHC1

341

31 26 25 21 20 16 15 14 13 6 5 0
POOL 32F r fs 00 MFHC1 POOL 32FXf
010101 1100000 111011
6 5 5 2 8 6
Format: MFHC1 rt, fs microM I PS

Purpose: Move Word From High Half of Floating Point Register
To copy aword from the high half of an FPU (CP1) general register to aGPR

Description: GPR[rt] « FPR[fslgz. 39

The contents of the high word of FPR fs are loaded into general register rt. Thisinstruction is primarily intended to
support 64-hit floating point units on a 32-bit CPU, but the semantics of the instruction are defined for all cases.
Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Theresultsare UNPREDICTABLE if Statusgg = 0 and fsis odd.

Operation:

data < ValueFPR(fs, UNINTERPRETED_DOUBLEWORD) g3 35
GPR[rt] <« data

Exceptions:

Coprocessor Unusable
Reserved Instruction

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Move Word From High Half of Coprocessor 2 Register MFHC2

31 26 25 21 20 16 15 6 5 0
POOL 32A r Imol MFHC2 POOL 32A Xf
000000 P 1000110100 111100
6 5 5 10 6
Format: MFHC2 rt, Impl microM I PS

The syntax shown above is an example using MFHCL as a model. The specific syntax isimplementation dependent.

Purpose: Move Word From High Half of Coprocessor 2 Register
To copy aword from the high half of a COP2 general register to aGPR

Description: GPR[rt] « CP2CPR[Impllgs. 35

The contents of the high word of the coprocessor 2 register denoted by the Impl field are placed into GPR rt. The
interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the archi-
tecture.

Restrictions:

The results are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist, or if that register is
not 64 bits wide.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.
Operation:

data <« CP2CPR[Impllgs. 35
GPR[rt] <« data

Exceptions:
Coprocessor Unusable
Reserved Instruction

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 342

Move From HI Register MFHI
31 26 25 21 20 16 15 0
POOL32A 0 rs MFHI32 POOL 32A X f
000000 00000 0000110101 111100
6 5 5 10 6
Format: MFHI rs microM | PS

343

Purpose: Move From HI Register
To copy the specia purpose HI register to a GPR

Description: GPR[rs] « HI

The contents of special register HI are loaded into GPR rs.

Restrictions:

None

Operation:

GPR[rs] ¢« HI

Exceptions:

None

Historical Information:

Inthe MIPS, I, and 111 architectures, the two instructions which follow the MFHI must not modify the HI register.
If this restriction is violated, the result of the MFHI is UNPREDICTABLE. This restriction was removed in MIPS

IV and MIPS32, and all subsequent levels of the architecture.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Move From LO Register MFLO

31 26 25 21 20 16 15 6 5 0
POOL32A 0 s MFLO32 POOL 32A Xf
000000 00000 0001110101 111100
6 5 5 10 6
Format: MFLO rs microM I PS

Purpose: Move From LO Register
To copy the specia purpose LO register to aGPR

Description: GPR[rs] « LO

The contents of special register LO areloaded into GPR rs.

Restrictions:

None

Operation:

GPR[rs] « LO

Exceptions:

None

Historical Information:

Inthe MIPS, I1, and 111 architectures, the two instructions which follow the MFLO must not modify the HI register.
If this restriction is violated, the result of the MFLO is UNPREDICTABLE. This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 344

Floating Point Move MOV.fmt
31 26 25 21 20 16 15 14 13 12 0
POOL 32F ft fs ol fmt MOV POOL 32FXf
010101 0000001 111011
6 5 5 1 2 7 6
Format: MOV.fmt
MOV.S ft, fs microMIPS
MOV.D ft, fs microMIPS
MOV.PS ft, fs microM I PS

345

Purpose: Floating Point Move

To move an FP value between FPRs

Description: FPR[ft] « FPR[fs]

Thevauein FPR fsis placed into FPR ft. The source and destination are valuesin format fmt. In paired-single format,

both the halves of the pair are copied to ft.

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

Thefields fs and ft must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPREDICT -

ABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABL E and the value of the operand
FPR becomes UNPREDICTABLE.

Theresult of MOV.PSisUNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register mode!; it
is predictableif executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(ft, fmt,

Exceptions:

ValueFPR (fs,

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

fmt))

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 346

Move Conditional on Floating Point False MOVF

31 26 25 22 21 20 16 15 14 13 12 6 5 0
POOL32F f s " 0,\(;'(%\]{('): 1 POOL 32FXf
010101 111011
6 5 5 3 7 6
Format: MOVF rt, rs, cc microM I PS

Purpose: Move Conditional on Floating Point False
To test an FP condition code then conditionally move a GPR
Description: if FPConditionCode(cc) = 0 then GPR[rt] « GPR[rs]

If the floating point condition code specified by CC is zero, then the contents of GPR rs are placed into GPR rt.
Restrictions:

Operation:

if FPConditionCode(cc) = 0 then
GPR[rt] ¢« GPR[rs]
endif

Exceptions:

Reserved Instruction, Coprocessor Unusable

347 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Floating Point Move Conditional on Floating Point False MOVF.fmt

31 26 25 21 20 16 15 13 12 11 10 9 8 5 0
POOL 32F " s o 0 | MOVF
010101 00 000100000
6 5 5 3 2 2 9

Format: MOVF.fmt

MOVF.S ft, fs, cc microMIPS
MOVF.D ft, fs, cc microMIPS
MOVF.PS ft, fs, cc microM I PS

microMIPS

Purpose: Floating Point Move Conditional on Floating Point False
To test an FP condition code then conditionally move an FP value

Description: if FPConditionCode(cc) = 0 then FPR[ft] « FPR[fs]

If the floating point condition code specified by CC is zero, then the valuein FPR fsis placed into FPR ft. The source
and destination are values in format fmt.

If the condition codeis not zero, then FPR fsis not copied and FPR ft retains its previous value in format fmt. If ft did
not contain a value either in format fmt or previously unused data from aload or move-to operation that could be
interpreted in format fmt, then the value of ft becomes UNPREDICTABLE.

MOV FE.PS conditionally merges the lower half of FPR fs into the lower half of FPR ft if condition code CC is zero,
and independently merges the upper half of FPR fsinto the upper half of FPR ft if condition code CC+1 is zero. The
CC field must be even; if it is odd, the result of this operation is UNPREDICTABLE.

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

Thefields fs and ft must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPREDICT -
ABLE. The operand must be a value in format fmt; if it is not, the result is UNPREDITABLE and the value of the
operand FPR becomes UNPREDICTABLE.

Theresult of MOVFE.PSis UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model;
itis predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:
if FPConditionCode(cc) = 0 then
StoreFPR(ft, fmt, ValueFPR(fs, fmt))
else

StoreFPR(ft, fmt, ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 348

349 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Move Conditional on Not Zero MOVN

31 26 25 21 20 16 15 11 10 9 5 0
POOL 32A rt s d 0 MOVN
000000 0000011000
6 5 5 5 1 10
Format: MOVN rd, rs, rt microM | PS

Purpose: Move Conditional on Not Zero
To conditionally move a GPR after testing a GPR value

Description: if GPR[rt] # 0 then GPR[rd] <« GPR[rs]

If thevaluein GPR rt is not equal to zero, then the contents of GPR rs are placed into GPR rd.

Restrictions:

None

Operation:

if GPR[rt] # 0 then
GPR[rd] ¢« GPR[rs]
endif

Exceptions:

None

Programming Notes:

The non-zero value tested might be the condition true result from the SLT, SLTI, SLTU, and SLTIU comparison
instructions or a boolean value read from memory.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 350

Floating Point Move Conditional on Not Zero

351

MOVN.fmt

31 26 25 21 20 16 15 11 10 9 8 0
POOL 32F MOVN
010101 ft fs fd O fmt 00111000
6 5 5 5 1 2 P

Format: MOVN. fmt
MOVN.S fd, fs, rt
MOVN.D fd, fs, rt
MOVN.PS fd, fs, rt

Purpose: Floating Point Move Conditional on Not Zero

To test a GPR then conditionally move an FP value

Description: if GPR[rt] # 0 then FPR[fd] ¢« FPRI[fs]

microMIPS
microMIPS
microM I PS

If the valuein GPR rtisnot equal to zero, then the valuein FPR fsis placed in FPR fd. The source and destination are

valuesin format fmt.

If GPR rt contains zero, then FPR fsis not copied and FPR fd contains its previous value in format fmt. If fd did not
contain a value either in format fmt or previously unused data from aload or move-to operation that could be inter-
preted in format fmt, then the value of fd becomes UNPREDICTABLE.

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-

DICTABLE.

The operand must be avaluein format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand

FPR becomes UNPREDICTABLE.

Theresult of MOVN.PSisUNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model;
it ispredictableif executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-hit FPU.

Operation:

if GPR[rt] # 0 then

StoreFPR(fd, fmt, ValueFPR(fs,
else

StoreFPR(fd, fmt, ValueFPR(fd,
endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

fmt))

fmt))

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 352

Move Conditional on Floating Point True MOVT

31 26 25 22 21 20 16 15 13 12 6 5 0
POOL32F f s © OI\J/_IOOO\J/_;)rl POOL 32FX f
010101 111011
6 5 5 3 7 6
Format: MOVT rt, rs, cc microM I PS

Purpose: Move Conditional on Floating Point True
To test an FP condition code then conditionally move a GPR

Description: if FPConditionCode(cc) = 1 then GPR[rt] « GPR[rs]

If the floating point condition code specified by CC is one, then the contents of GPR rs are placed into GPR rt.
Restrictions:

Operation:

if FPConditionCode(cc) = 1 then
GPR[rt] ¢« GPR[rs]
endif

Exceptions:

Reserved Instruction, Coprocessor Unusable

353 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Floating Point Move Conditional on Floating Point True MOVT.fmt

31 26 25 21 20 16 15 13 12 11 10 9 8 0
POOL 32F " s o 0 | MOVT
010101 00 001100000
6 5 5 3 2 2 9

Format: MOVT.fmt

MOVT.S ft, fs, cc microMIPS
MOVT.D ft, fs, cc microMIPS
MOVT.PS ft, fs, cc microM I PS

Purpose: Floating Point Move Conditional on Floating Point True
To test an FP condition code then conditionally move an FP value

Description: if FPConditionCode(cc) = 1 then FPR[ft] « FPR[fs]

If the floating point condition code specified by CC is one, then the value in FPR fsis placed into FPR ft. The source
and destination are values in format fmt.

If the condition code is not one, then FPR fsis not copied and FPR ft containsits previous valuein format fmt. If ft did
not contain a value either in format fmt or previously unused data from aload or move-to operation that could be
interpreted in format fmt, then the value of ft becomes UNPREDICTABLE.

MOV T.PS conditionally merges the lower half of FPR fsinto the lower half of FPR ft if condition code CC isone, and
independently merges the upper half of FPR fs into the upper half of FPR ft if condition code CC+1 isone. The CC
field should be even; if it is odd, the result of this operation is UNPREDICTABLE.

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE. The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value
of the operand FPR becomes UNPREDICTABLE.

Theresult of MOVT.PSis UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model;
it ispredictableif executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-hit FPU.

Operation:
if FPConditionCode(cc) = 1 then
StoreFPR(ft, fmt, ValueFPR(fs, fmt))
else
StoreFPR(ft, fmt, ValueFPR(ft, fmt))
endif
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 354

355 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Move Conditional on Zero MOVZ

31 26 25 21 20 16 15 11 10 9 5 0
POOL 32A rt s d 0 MOvVZ
000000 0001011000
6 5 5 5 1 10
Format: Movz rd, rs, rt microM | PS

Purpose: Move Conditiona on Zero
To conditionally move a GPR after testing a GPR value

Description: if GPR[rt] = 0 then GPR[rd] ¢ GPR[rs]

If thevaluein GPR rt is equal to zero, then the contents of GPR rs are placed into GPR rd.

Restrictions:

None

Operation:

if GPR[rt] = 0 then
GPR[rd] ¢« GPR[rs]
endif

Exceptions:

None

Programming Notes:

The zero value tested might be the condition false result from the SLT, SLTI, SLTU, and SLTIU comparison instruc-
tions or a boolean value read from memory.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 356

Floating Point Move Conditional on Zero

MOVZ.fmt

31 26 25 21 20 16 15 11 10 9 8 0
POOL 32F MOvz
010101 ft fs fd 0 fmt 01111000
6 5 5 5 1 2 P
Format: MOvz.fmt
MoOvz.S fd, fs, rt microMIPS
MOVZ.D fd, fs, rt microMIPS
MOVZ.PS fd, fs, rt microMIPS
Purpose: Floating Point Move Conditional on Zero
To test a GPR then conditionally move an FP value
Description: if GPR[rt] = 0 then FPR[fd] ¢« FPR[fs]

If thevaluein GPR rtisequal to zero then the value in FPR fsis placed in FPR fd. The source and destination are val-

uesin format fmt.

If GPR rt isnot zero, then FPR fsis not copied and FPR fd contains its previous value in format fmt. If fd did not con-
tain avalue either in format fmt or previously unused data from aload or move-to operation that could be interpreted
in format fmt, then the value of fd becomes UNPREDICTABLE.

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fnt; if they are not valid, the result is UNPRE-

DICTABLE.

The operand must be avaluein format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand

FPR becomes UNPREDICTABLE.

Theresult of MOVZ.PSis UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model;
it ispredictableif executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-hit FPU.

Operation:

if GPR[rt] = 0 then

StoreFPR(fd, fmt, ValueFPR(fs,

else

StoreFPR(fd, fmt, ValueFPR(fd,

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

fmt))

fmt))

357 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 358

Multiply and Subtract Word to Hi,Lo MSUB

359

31 26 25 21 20 16 15 6 5 0
POOL32A r rs MSUB POOL 32A Xf
000000 1110101100 111100
6 5 5 10 6
Format: MSUB rs, rt microM | PS

Purpose: Multiply and Subtract Word to Hi,Lo
To multiply two words and subtract the result from HI, LO

Description: (HI,LO) « (HI,LO) - (GPR[rs] X GPR[rt])

The 32-bit word value in GPR rsis multiplied by the 32-bit value in GPR rt, treating both operands as signed values,
to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values of HI and LO. The most sig-
nificant 32 bits of the result are written into HI and the least signficant 32 bits are written into LO. No arithmetic
exception occurs under any circumstances.

Restrictions:

None

Thisinstruction does not provide the capability of writing directly to atarget GPR.

Operation:

temp ¢« (HI || LO) - (GPR[rs] X GPR[rt])
HI <« temp63”32
LO « temp31__0

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Floating Point Multiply Subtract MSUB.fmt

31 26 25 21 20 16 15 11 10 6 5 0
POOL 32F MSUB.S
010101 ft fs fd fr 100001
6 5 5 5 5 6
31 26 25 21 20 16 15 11 10 6 5 0
POOL 32F MSUB.D
010101 ft fs fd fr 101001
6 5 5 5 5 6
31 26 25 21 20 16 15 11 10 6 5 0
POOL 32F MSUB.PS
010101 ft fs fd fr 110001
6 5 5 5 5 6
Format: MSUB. fmt
MSUB.S fd, fr, fs, ft microMIPS
MSUB.D fd, fr, fs, ft microMIPS
MSUB.PS fd, fr, fs, ft microMIPS

Purpose: Floating Point Multiply Subtract
To perform a combined multiply-then-subtract of FP values

Description: FPR[fd] « (FPR[fs] x FPR[ft]) — FPR[fr]

Thevauein FPR fsis multiplied by the value in FPR ft to produce an intermediate product. The intermediate product
is rounded according to the current rounding mode in FCSR. The subtraction result is calculated to infinite precision,
rounded according to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values
in format fmt. The results and flags are as if separate floating-point multiply and subtract instructions were executed.

MSUB.PS muiltiplies then subtracts the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and ORs
together any generated exceptional conditions.

Cause bits are ORed into the Flag bitsif no exception is taken.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is
UNPREDICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

Theresult of MSUB.PSis UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model;
i.e. itispredictableif executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-hit FPU.

Compatibility and Availability:

MSUB.S and MSUB.D: Required in all versions of MIPS64 since MIPS64r1. Not available in MIPS32rl. Required
by MIPS32r2 and subsequent versions of MIPS32. When required, required whenever FPU is present, whether a 32-
bit or 64-bit FPU, whether in 32-bit or 64-bit FP Register Mode (FIRgg,=0 or 1, Statusgr=0 or 1).

Operation:

vir <« ValueFPR(fr, fmt)
vis <« ValueFPR(fs, fmt)
vit <« ValueFPR(ft, fmt)
StoreFPR(fd, fmt, (vfs Xgpe vEt) —gpe vEr))

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 360

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

361 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Multiply and Subtract Word to Hi,Lo MSUBU

31 26 25 21 20 16 15 6 5 0
POOL 32A rt s MSUBU POOL 32A X f
000000 1111101100 111100
6 5 5 10 6
Format: MSUBU rs, rt microM | PS

Purpose: Multiply and Subtract Word to Hi,Lo
To multiply two words and subtract the result from HI, LO

Description: (HI,LO) « (HI,LO) — (GPR[rs] X GPR[rt])

The 32-bit word value in GPR rsis multiplied by the 32-bit word value in GPR rt, treating both operands as unsigned
values, to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values of HI and LO. The
most significant 32 bits of the result are written into HI and the least signficant 32 bits are written into LO. No arith-
metic exception occurs under any circumstances.

Restrictions:

None
Thisinstruction does not provide the capability of writing directly to atarget GPR.

Operation:

temp ¢« (HI || LO) - (GPR[rs] X GPR[rt])
HI <« temp63”32
LO « temp31__0

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 362

Move to Coprocessor O MTCO

31 26 25 21 20 16 15 14 13 11 10 6 5 0
POOL32A it s 00 « MTCO POOL 32A Xf
000000 01011 111100
6 5 5 2 3 5 6
Format: MTCO rt, rs microMIPS
MTCO rt, rs, sel microMIPS

Purpose: Moveto Coprocessor 0

To move the contents of a general register to a coprocessor O register.

Description: CPR[0, rs, sel] « GPR[rt]

The contents of general register rt are loaded into the coprocessor O register specified by the combination of rs and
sel. Not all coprocessor 0 registers support the the sel field. In those instances, the sel field must be set to zero.

In Release 5, for a 32-bit processor, the MTCO instruction writes all zeroes to the high-order bits of selected COPO
registers that have been extended beyond 32 bits. Thisisrequired for compatibility with legacy software that does not
use MTHCQO, yet has hardware support for extended COPO registers (such as for Extended Physical Addressing
(XPA)). Because MTCO overwrites the result of MTHCO, software must first read the high-order bits before writing
the low-order bits, then write the high-order bits back either modified or unmodified. For initialization of an extended
register, software may first write the low-order bits, then the high-order bits, without first reading the high-order bits.

Restrictions:

Theresults are UNDEFINED if coprocessor 0 does not contain aregister as specified by rsand sel.

Operation:

data < GPR[rt]
reg « rs
if (Configbyyy = 1) then
// The most-significant bit may vary by register. Only supported
// bits should be written 0.
// Extended LLAddr is not written with 0s, as it is a read-only register.
// BadVAddr is not written with 0Os, as it is read-only
if (Config3;py = 1) then
if (reg,sel = EntryLo0O or EntryLol) then CPR[0,reg,sellg3.35 = 032
if (reg,sel = MAAR) then CPR[0,reg,sellg3.35 = 032
// TagLo is zeroed only if the implementation-dependent bits are
// writeable
if (reg,sel = TagLo) then CPR[0,reg,sellgs.3; = 032
if (Config3yy = 1) then
if (reg,sel = EntryHi) then CPR[0,reg,sellg3.35 = 032
endif
endif
endif

Exceptions:
Coprocessor Unusable
Reserved Instruction

363 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 364

Move Word to Floating Point MTC1
31 26 25 21 20 16 15 14 13 0
POOL 32F r fs 00 MTC1 POOL 32FXf
010101 10100000 111011
6 5 5 2 P 6
Format: wMTC1 rt, fs microM | PS

365

Purpose: Move Word to Floating Point

To copy aword from a GPR to an FPU (CP1) general register

Description: FPR[fs] « GPR[rt]

Thelow word in GPR rt is placed into the low word of FPR fs.

Restrictions:

Operation:

data <« GPR[rt]sp .
StoreFPR(fs,

Exceptions:

Coprocessor Unusable

Historical Information:

For MIPS I, MIPS I1, and MIPS 111 the value of FPR fsis UNPREDICTABLE for the instruction immediately fol-

lowing MTCL.

UNINTERPRETED_WORD, data)

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 366

Move Word to Coprocessor 2 MTC2

367

31 26 25 21 20 16 15 6 5 0
POOL32A " . MTC2 POOL32AXF
000000 P 0101110100 111100
6 5 5 10 6
Format: MTC2 rt, Impl microM I PS

The syntax shown above is an example using MTC1 as amodel. The specific syntax isimplementation-dependent.

Purpose: Move Word to Coprocessor 2

To copy aword from a GPR to a COP2 general register

Description: CP2CPR[Impl] « GPR[rt]

The low word in GPR rt is placed into the low word of a Coprocessor 2 general register denoted by the Impl field.
The interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the
architecture.

Restrictions:

Theresults are UNPREDICTABLE if Impl specifies a Coprocessor 2 register that does not exist.

Operation:

data <« GPR[rt]
CP2CPR[Impl] <« data

Exceptions:
Coprocessor Unusable
Reserved Instruction

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Move Word to High Half of Floating Point Register MTHC1

31 26 25 21 20 16 15 14 13 6 5 0
POOL 32F r fs 00 MTHC1 POOL 32FXf
010101 11100000 111011
6 5 5 2 8 6
Format: MTHC1 rt, fs microM I PS

Purpose: Move Word to High Half of Floating Point Register
To copy aword from a GPR to the high half of an FPU (CP1) general register

Description: FPR[fslg3 35 < GPRIrt]

The word in GPR rt is placed into the high word of FPR fs. This instruction is primarily intended to support 64-bit
floating point units on a 32-bit CPU, but the semantics of the instruction are defined for all cases.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Theresultsare UNPREDICTABLE if Statusgg = 0 and fsis odd.

Operation:
newdata < GPR[rt]olddata ¢ ValueFPR(fs, UNINTERPRETED_DOUBLEWORD)3
StoreFPR(fs, UNINTERPRETED_DOUBLEWORD, newdata || olddata)

Exceptions:

Coprocessor Unusable
Reserved Instruction

Programming Notes

When paired with MTC1 to write avalue to a 64-bit FPR, the MTC1 must be executed first, followed by the MTHC1.
This is because of the semantic definition of MTC1, which is not aware that software will be using an MTHC1
instruction to complete the operation, and sets the upper half of the 64-bit FPR to an UNPREDICTABLE value.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 368

Move Word to High Half of Coprocessor 2 Register MTHC2

31 26 25 21 20 16 15 6 5 0
POOL32A " . MTHC2 POOL32AXF
000000 P 1001110100 111100
6 5 5 10 6
Format: MTHC2 rt, Impl microM I PS

The syntax shown above is an example using MTHC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Word to High Half of Coprocessor 2 Register
To copy aword from a GPR to the high half of a COP2 general register

Description: CP2CPR[Impllg; 35 ¢« GPR[rt]

The word in GPR rt is placed into the high word of coprocessor 2 general register denoted by the Impl field. The
interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the archi-
tecture.

Restrictions:

The results are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist, or if that register is
not 64 bits wide.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

data <« GPR[rt]
CP2CPR[Impl] «data || CPR[2,rd,sell;;

Exceptions:
Coprocessor Unusable
Reserved Instruction

Programming Notes

When paired with MTC2 to write avalue to a 64-bit CPR, the M TC2 must be executed first, followed by the MTHC2.
This is because of the semantic definition of MTC2, which is not aware that software will be using an MTHC2
instruction to complete the operation, and sets the upper half of the 64-bit CPR to an UNPREDICTABLE value.

369 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 370

Move to HI Register

MTHI

31 26 25 21 20 16 15 0
POOL32A 0 rs MTHI POOL 32AXf
000000 00000 0010110101 111100
6 5 5 10 6
Format: MTHI rs microM I PS

Purpose: Moveto HI Register
To copy a GPR to the specia purpose HI register

Description: HI « GPR[rs]

The contents of GPR rs are loaded into special register HI.

Restrictions:

A computed result written to the HI/LO pair by DIV, DIVU,MULT, or MULTU must be read by MFHI or MFLO
before a new result can be written into either Hl or LO.

If an MTHI instruction is executed following one of these arithmetic instructions, but before an MFLO or MFHI
instruction, the contents of LO are UNPREDICTABLE. The following example shows thisillegal situation:

MULT 12

MTHT r6

WFLO 13
Operation:

,r4d # start operation that will eventually write to HI,LO

code not containing mfhi or mflo

code not containing mflo
this mflo would get an UNPREDICTABLE value

HI <« GPR[rs]

Exceptions:

None

Historical Information:

In MIPS I-111, if either of the two preceding instructions is MFHI, the result of that MFHI is UNPREDICTABLE.
Reads of the HI or LO special register must be separated from any subsequent instructions that write to them by two
or moreingtructions. In MIPS IV and later, including M1PS32 and M1PS64, this restriction does not exist.

371

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Move to LO Register

MTLO

31 26 25 21 20 16 15 0
POOL32A 0 s MTLO POOL 32A X f
000000 00000 0011110101 111100
6 5 5 10 6
Format: MTLO rs microM I PS

Purpose: Moveto LO Register
To copy a GPR to the special purpose LO register

Description: LO < GPR[rs]

The contents of GPR rs are loaded into special register LO.

Restrictions:

A computed result written to the HI/LO pair by DIV, DIVU, MULT, or MULTU must be read by MFHI or MFLO
before a new result can be written into either Hl or LO.

If an MTLO instruction is executed following one of these arithmetic instructions, but before an MFLO or MFHI

instruction, the contents of HI are UNPREDICTABLE. The following example shows thisillegal situation:

MULT r2,rd #

.. #

MTLO 16

R #

MFHI r3 #
Operation:

LO « GPR[rs]

Exceptions:

None

start operation that will eventually write to HI,LO

code not containing mfhi or mflo

code not containing mfhi

this mfhi would get an UNPREDICTABLE value

Historical Information:

In MIPS I-111, if either of the two preceding instructions is MFHI, the result of that MFHI is UNPREDICTABLE.
Reads of the HI or LO special register must be separated from any subsequent instructions that write to them by two
or moreingtructions. In MIPS IV and later, including M1PS32 and M1PS64, this restriction does not exist.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

372

Multiply Word to GPR MUL

31 26 25 21 20 16 15 11 10 9 0
POOL 32A it s d 0 MUL
000000 1000010000
6 5 5 5 1 10
Format: MUL rd, rs, rt microM | PS

Purpose: Multiply Word to GPR
To multiply two words and write the result to a GPR.

Description: GPR[rd] ¢ GPR[rs] X GPR[rt]

The 32-bit word value in GPR rsis multiplied by the 32-bit value in GPR rt, treating both operands as signed values,
to produce a 64-bit result. The least significant 32 bits of the product are written to GPR rd. The contents of HI and
LO are UNPREDICTABLE after the operation. No arithmetic exception occurs under any circumstances.

Restrictions:

Note that this instruction does not provide the capability of writing the result to the HI and LO registers.

Operation:

temp < GPR[rs] X GPR[rt]

GPR[rd] <« temps3q g

HI < UNPREDICTABLE

LO < UNPREDICTABLE
Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read GPR rd before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

373 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 374

Floating Point Multiply

375

31

26 25

21 20

16 15

MUL.fmt

POOL32F
010101

ft

fs

fmt

MUL
10110000

6

Format: MUL. fmt

MUL.S fd, fs,
MUL.D fd, f£s,
MUL.PS f£fd,

fs,

ft

Purpose: Floating Point Multiply

To multiply FP values

Description: FPR[fd] « FPR[fs] X FPR[ft]

8

microMIPS
microMIPS
microM I PS

Thevaluein FPR fsis multiplied by the value in FPR ft. The result is cal culated to infinite precision, rounded accord-
ing to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.
MUL.PS multiplies the upper and lower halves of FPR fs and FPR ft independently, and ORs together any generated
exceptiona conditions.

Restrictions:

Thefields fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-

DICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the

operand FPRs becomes UNPREDICTABLE.

Theresult of MUL.PSis UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register moddl; it
is predictableif executing on a64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs,

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

fmt) Xgne ValueFPR(ftL,

fmt))

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 376

Multiply Word MULT

31 26 25 21 20 16 15 6 5 0
POOL32A r rs MULT POOL 32AXf
000000 1000101100 111100
6 5 5 10 6
Format: MULT rs, rt microM I PS

Purpose: Multiply Word
To multiply 32-bit signed integers

Description: (HI, LO) « GPR[rs] X GPR[rt]

The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both operands as signed values,
to produce a 64-bit result. The low-order 32-bit word of the result is placed into special register LO, and the high-
order 32-bit word is splaced into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

None

Operation:

prod < GPR[rsls3; o X GPR[rtls;.
LO « prodsq g
HI <« prodgs. 33

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

377 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 378

Multiply Unsigned Word MULTU

31 26 25 21 20 16 15 6 5 0
POOL32A r rs MULTU POOL 32A Xf
000000 1001101100 111100
6 5 5 10 6
Format: MULTU rs, rt microM | PS

Purpose: Multiply Unsigned Word
To multiply 32-bit unsigned integers

Description: (HI, LO) « GPR[rs] X GPR[rt]

The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both operands as unsigned val-
ues, to produce a 64-bit result. The low-order 32-bit word of the result is placed into special register LO, and the high-
order 32-bit word is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

None

Operation:

prod <« (0 || GPR[rslz; o) X (0 || GPRIrtlsi o)
LO « prodsq. g
HI < prod63__32

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

379 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 380

Floating Point Negate NEG.fmt

381

31 26 25 21 20 16 15 14 13 12 6 5 0
POOL 32F ft fs ol fmt NEG POOL 32FXf
010101 0101101 111011

6 5 5 1 2 7 6

Format: NEG. fmt

NEG.S ft, fs microMIPS
NEG.D ft, fs microMIPS
NEG.PS ft, fs microM I PS

Purpose: Floating Point Negate
To negate an FP value

Description: FPR[ft] « -FPR[fs]

Thevauein FPR fsis negated and placed into FPR ft. The value is negated by changing the sign bit value. The oper-
and and result are values in format fmt. NEG.PS negates the upper and lower halves of FPR fs independently, and
ORs together any generated exceptional conditions.

If FIRHas2008=0 Or FCSRps2008=0 then this operation is arithmetic. For this case, any NaN operand signalsinvalid
operation.

If FCSRARso00s=1 then this operation is non-arithmetic. For this case, both regular floating point numbers and NAN
values are treated alike, only the sign bit is affected by this instruction. No |EEE exception can be generated for this
case.

Restrictions:

Thefields fs and ft must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPREDICT -
ABLE. The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABL E and the value of the
operand FPR becomes UNPREDICTABLE.

Theresult of NEG.PSis UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model; it
is predictable if executing on a64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(ft, fmt, Negate(ValueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 382

Floating Point Negative Multiply Add NMADD.fmt

383

31 26 25 21 20 16 15 11 10 6 5 0
POOL 32F NMADD.S
010101 ft fs fd fr 000010
6 5 5 5 5 6
31 26 25 21 20 16 15 11 10 6 5 0
POOL 32F NMADD.D
010101 ft fs fd fr 001010
6 5 5 5 5 6
31 26 25 21 20 16 15 11 10 6 5 0
POOL 32F NMADD.PS
010101 ft fs fd fr 010010
6 5 5 5 5 6

Format: NMADD. fmt

NMADD.S fd, fr, fs, ft microMIPS
NMADD.D fd, fr, fs, ft microM I PS
NMADD.PS fd, fr, fs, ft microMIPS

Purpose: Floating Point Negative Multiply Add
To negate a combined multiply-then-add of FP values

Description: FPR[£fd] « — ((FPR[fs] x FPR[ft]) + FPR[fr])

Thevauein FPR fsis multiplied by the value in FPR ft to produce an intermediate product. The intermediate product
isrounded according to the current rounding modein FCSR. The value in FPR fr is added to the product.

The result sum is calculated to infinite precision, rounded according to the current rounding mode in FCSR, negated
by changing the sign hit, and placed into FPR fd. The operands and result are values in format fmt. The results and
flags are as if separate floating-point multiply and add and negate instructions were executed.

NMADD.PS applies the operation to the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and
ORs together any generated exceptional conditions.

Cause bits are ORed into the Flag bitsif no exception is taken.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is
UNPREDICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of NMADD.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; i.e. it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-hit
FPU.

Compeatibility and Availability:

NMADD.S and NMADD.D: Required in al versions of MIPS64 since MIPS64rl. Not available in MIPS32r1.
Required by MIPS32r2 and subsequent versions of MIPS32. When required, required whenever FPU is present,
whether a 32-bit or 64-bit FPU, whether in 32-bit or 64-bit FP Register Mode (FIRgg,4=0 or 1, Statusgg=0 or 1).

Operation:

vir <« ValueFPR(fr, fmt)

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

vis < ValueFPR(fs, fmt)
vit <« ValueFPR(ft, fmt)
StoreFPR(fd, fmt, —(vir +s (VEs Xgpe VEE)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 384

Floating Point Negative Multiply Subtract NMSUB.fmt

385

31 26 25 21 20 16 15 11 10 6 5 0
POOL 32F NMSUB.S
010101 ft fs fd fr 100010
6 5 5 5 5 6
31 26 25 21 20 16 15 11 10 6 5 0
POOL 32F NMSUB.D
010101 ft fs fd fr 101010
6 5 5 5 5 6
31 26 25 21 20 16 15 11 10 6 5 0
POOL 32F NMSUB.PS
010101 ft fs fd fr 110010
6 5 5 5 5 6

Format: NMSUB. fmt

NMSUB.S fd, fr, fs, ft microMIPS
NMSUB.D fd, fr, fs, ft microM I PS
NMSUB.PS fd, fr, fs, ft microMIPS

Purpose: Floating Point Negative Multiply Subtract
To negate a combined multiply-then-subtract of FP values

Description: FPR[£fd] « — ((FPR[fs] x FPR[ft]) — FPR[fr])

Thevauein FPR fsis multiplied by the value in FPR ft to produce an intermediate product. The intermediate product
isrounded according to the current rounding modein FCSR. The value in FPR fr is subtracted from the product.

The result is calculated to infinite precision, rounded according to the current rounding mode in FCSR, negated by
changing the sign hit, and placed into FPR fd. The operands and result are values in format fmt. The results and flags
are asif separate floating-point multiply and subtract and negate instructions were executed.

NMSUB.PS applies the operation to the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and
ORs together any generated exceptional conditions.

Cause bits are ORed into the Flag bitsif no exception is taken.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is
UNPREDICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of NMSUB.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; i.e. it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-hit
FPU.

Compeatibility and Availability:

NMSUB.S and NMSUB.D: Required in al versions of MIPS64 since MIPS64rl. Not available in MIPS32r1.
Required by MIPS32r2 and subsequent versions of MIPS32. When required, required whenever FPU is present,
whether a 32-bit or 64-bit FPU, whether in 32-bit or 64-bit FP Register Mode (FIRgg,4=0 or 1, Statusgg=0 or 1).

Operation:

vir <« ValueFPR(fr, fmt)

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

vis < ValueFPR(fs, fmt)
vit <« ValueFPR(ft, fmt)
StoreFPR(fd, fmt, —((vfs Xge vEL) —ge VEr))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 386

No Operation NOP

387

31 26 25 21 20 16 15 11 10 5 0
POOL 32A 0 0 0 0 SLL
000000 00000 00000 00000 00000 000000
6 5 5 5 5 6
Format: wnop Assembly Idiom microM 1 PS

Purpose: No Operation
To perform no operation.

Description:

NOP is the assembly idiom used to denote no operation. The actual instruction is interpreted by the hardware as SLL
ro, ro, 0.

Restrictions:

None

Operation:

None

Exceptions:

None

Programming Notes:

The zero instruction word, which represents SLL, r0, r0, O, isthe preferred NOP for software to use to fill branch and
jump delay slots and to pad out alignment sequences.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Not Or NOR

31 26 25 21 20 16 15 11 10 9 0
POOL 32A rt s d 0 NOR
000000 1011010000
6 5 5 5 1 10
Format: NOR rd, rs, rt microM | PS

Purpose: Not Or
To do a bitwise logical NOT OR

Description: GPR[rd] ¢« GPR[rs] NOR GPR[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical NOR operation. The result is
placed into GPR rd.

Restrictions:

None

Operation:

GPR[rd] ¢« GPR[rs] nor GPR[rt]

Exceptions:

None

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 388

31

26 25

21 20

16 15

11 10 9

POOL32A
000000

rt

rs

rd

OR
1010010000

6

5

Format: OR rd, rs, rt

Purpose: Or

To do a bitwise logical OR

Description: GPR[rd] <« GPR[rs] or GPR[rt]

10

microMIPS

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical OR operation. The result is
placed into GPR rd.

Restrictions:

None

Operation:

GPR[rd] ¢« GPR[rs] or GPR[rt]

Exceptions:

None

389

MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Or Immediate ORI
31 26 25 21 20 16 15 0
ORI32 . !
010100 rt rs immediate
6 5 5 16
Format: ORI rt, immediate microM | PS

Purpose: Or Immediate
To do a bitwise logical OR with a constant

Description: GPR[rt] « GPR[rs] or immediate

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR rsin a bitwise logical OR

operation. Theresult is placed into GPR rt.

Restrictions:

None

Operation:

GPR[rt]

Exceptions:

None

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

< GPR[rs]

or zero_extend (immediate)

390

391 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Wait for the LLBit to clear PAUSE

31 26 25 6 5 0
POOL 32A 0 0 5 0 SLL
000000 00000 00000 00101 00000 000000
6 5 5 5 5 6
Format: PAUSE microM | PS

Purpose: Wait for the LLBit to clear

Description:

Locks implemented using the LL/SC instructions are a common method of synchronization between threads of con-
trol. A typical lock implementation does aload-linked instruction and checks the value returned to determine whether
the software lock is set. If it is, the code branches back to retry the load-linked instruction, thereby implementing an
active busy-wait sequence. The PAUSE instructions is intended to be placed into the busy-wait sequence to block the
instruction stream until such time as the load-linked instruction has a chance to succeed in obtaining the software
lock.

The precise behavior of the PAUSE instruction isimplementation-dependent, but it usually involves descheduling the
instruction stream until the LLBIt is zero. In a single-threaded processor, this may be implemented as a short-term
WAIT operation which resumes at the next instruction when the LLBit is zero or on some other external event such as
an interrupt. On a multi-threaded processor, this may be implemented as a short term YIELD operation which
resumes at the next instruction when the LLBit is zero. In either case, it is assumed that the instruction stream which
gives up the software lock does so via a write to the lock variable, which causes the processor to clear the LLBIt as
seen by this thread of execution.

The encoding of the instruction is such that it is backward compatible with all previousimplementations of the archi-
tecture. The PAUSE instruction can therefore be placed into existing lock sequences and treated as a NOP by the pro-
cessor, even if the processor does not implement the PAUSE instruction.

Restrictions:

The operation of the processor is UNPREDICTABLE if a PAUSE instruction is placed in the delay slot of a branch
or ajump.

Operation:

if LLBit # 0 then
EPC « PC + 4 /* Resume at the following instruction */
DescheduleInstructionStream()

endif

Exceptions:
None

Programming Notes:

The PAUSE instruction is intended to be inserted into the instruction stream after an LL instruction has set the LLBIt
and found the software lock set. The program may wait forever if a PAUSE instruction is executed and there is no
possibility that the LLBIt will ever be cleared.

An example use of the PAUSE instruction isincluded in the following example:

acquire_lock:

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 392

11 t0, 0(al) /* Read software lock, set hardware lock */
bnez t0, acquire_lock_retry: /* Branch if software lock is taken */
addiu tO0, tO0, 1 /* Set the software lock */
sc t0, 0(a0l) /* Try to store the software lock */
bnez t0, 10f /* Branch if lock acquired successfully */
sync

acquire_lock_retry:
pause /* Wait for LLBIT to clear before retry */
b acquire_lock /* and retry the operation */
nop

10:

Critical region code
release_lock:

sync

sw zero, 0(al) /* Release software lock, clearing LLBIT */
/* for any PAUSEd waiters */

393 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Pair Lower Lower PLL.PS
31 26 25 21 20 16 15 11 10 9 8 0
POOL 32F PLL.PS
010101 ft fs fd 0 010000000
6 5 5 5 2 9
Format: PLL.PS fd, fs, ft microM | PS

Purpose: Pair Lower Lower

To merge a pair of paired single values with realignment

Description: FPR[fd] « lower (FPR[fs])

|| lower (FPR[ft])

A new paired-single value is formed by catenating the lower single of FPR fs (bits 31..0) and the lower single of FPR

ft (bits 31..0).

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-

DICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS)3; o || ValueFPR(ft, PS)3; .

Exceptions:

Coprocessor Unusable, Reserved Instruction

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

394

Pair Lower Upper PLU.PS
31 26 25 21 20 16 15 11 10 9 8 0
POOL 32F PLU.PS
010101 ft fs fd 0 011000000
6 5 5 5 2 9
Format: pPLU.PS fd, fs, ft microM I PS

395

Purpose: Pair Lower Upper

To merge a pair of paired single values with realignment

Description: FPR[fd] « lower (FPR[fs])

| | upper (FPR[ft])

A new paired-single value is formed by catenating the lower single of FPR fs (bits 31..0) and the upper single of FPR

ft (bits 63..32).

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-

DICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS)3; o || ValueFPR(ft, PS)g3 .

Exceptions:

Coprocessor Unusable, Reserved Instruction

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Prefetch PREF

31 26 25 21 20 16 15 12 11 0
POOL32C) PREF
011000 hint base 0010 offset
6 5 5 5 12
Format: PREF hint,offset (base) microM | PS

Purpose: Prefetch
To move data between memory and cache.

Description: prefetch_memory (GPR[base] + offset)

PREF adds the 12-hit signed offset to the contents of GPR base to form an effective byte address. The hint field sup-
pliesinformation about the way that the datais expected to be used.

PREF enables the processor to take some action, typically causing data to be moved to or from the cache, to improve
program performance. The action taken for a specific PREF instruction is both system and context dependent. Any
action, including doing nothing, is permitted as long as it does not change architecturally visible state or ater the
meaning of a program. Implementations are expected either to do nothing, or to take an action that increases the per-
formance of the program. The PrepareForStore function is unique in that it may modify the architecturally visible
state.

PREF does not cause addressing-related exceptions, including TLB exceptions. If the address specified would cause
an addressing exception, the exception condition isignored and no data movement occurs.However even if no datais
moved, some action that is not architecturally visible, such aswriteback of adirty cache line, can take place.

It isimplementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as abyproduct of the action taken by the PREF instruction.

PREF neither generates a memory operation nor modifies the state of a cache line for a location with an uncached
memory access type, whether thistype is specified by the address segment (e.g., ksegl), the programmed cacheability
and coherency attribute of a segment (e.g., the use of the KO, KU, or K23 fields in the Config register), or the per-
page cacheability and coherency attribute provided by the TLB.

If PREF results in a memory operation, the memory access type and cacheability& coherency attribute used for the
operation are determined by the memory access type and cacheability& coherency attribute of the effective address,
just asit would be if the memory operation had been caused by aload or store to the effective address.

For a cached location, the expected and useful action for the processor is to prefetch a block of data that includes the
effective address. The size of the block and the level of the memory hierarchy it is fetched into are implementation
specific.

In coherent multiprocessor implementations, if the effective address uses a coherent Cacheability and Coherency
Attribute (CCA), then the instruction causes a coherent memory transaction to occur. This means a prefetch issued on
one processor can cause data to be evicted from the cache in another processor.

The PREF instruction and the memory transactions which are sourced by the PREF instruction, such as cache refill or
cache writeback, obey the ordering and completion rules of the SYNC instruction.

Table 5.25 Values of hint Field for PREF Instruction

Value Name Data Use and Desired Prefetch Action

0 load Use: Prefetched datais expected to be read (not modified).
Action: Fetch dataasif for aload.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 396

Prefetch

397

PREF

Table 5.25 Values of hint Field for PREF Instruction

store

Use: Prefetched datais expected to be stored or modified.
Action: Fetch dataasif for astore.

2-3

Reserved

Reserved for future use - not available to implementations.

load_streamed

Use: Prefetched datais expected to be read (not modified) but not reused
extensively; it “streams’ through cache.

Action: Fetch dataasif for aload and place it in the cache so that it does not
displace data prefetched as “retained.”

store_streamed

Use: Prefetched datais expected to be stored or modified but not reused exten-
sively; it “streams’ through cache.

Action: Fetch dataasiif for astore and placeit in the cache so that it does not
displace data prefetched as “ retained.”

load retained

Use: Prefetched datais expected to be read (not modified) and reused exten-
sively; it should be “retained” in the cache.

Action: Fetch dataasif for aload and place it in the cache so that it is not dis-
placed by data prefetched as “ streamed.”

store retained

Use: Prefetched datais expected to be stored or modified and reused exten-
sively; it should be “retained” in the cache.

Action: Fetch dataasif for a store and place it in the cache so that it is not dis-
placed by data prefetched as “ streamed.”

8-20

Reserved

Reserved for future use - not available to implementations.

21-24

Implementation Dependent

Unassigned by the Architecture - available for implementation-dependent use.

25

writeback_invalidate (also
known as “nudge’)

Use: Datais no longer expected to be used.

Action: For awriteback cache, schedule awriteback of any dirty data. At the
completion of the writeback, mark the state of any cache lines written back as
invalid. If the cache lineis not dirty, it isimplementation dependent whether
the state of the cache line is marked invalid or left unchanged. If the cacheline
islocked, no action is taken.

26-29

Implementation Dependent

Unassigned by the Architecture - available for implementation-dependent use.

30

PrepareForStore

Use: Prepare the cache for writing an entire line, without the overhead
involved in filling the line from memory.

Action: If the reference hitsin the cache, no action is taken. If the reference
misses in the cache, aline is selected for replacement, any valid and dirty vic-
tim iswritten back to memory, the entire line isfilled with zero data, and the
state of the lineis marked as valid and dirty.

Programming Note: Because the cache lineisfilled with zero data on a cache
miss, software must not assume that this action, in and of itself, can be used as
afast bzero-type function.

31

Implementation Dependent

Unassigned by the Architecture - available for implementation-dependent use.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Prefetch PREF

Restrictions:

None

Operation:
vAddr ¢« GPR[base] + sign_extend(offset)
(pAddr, CCA) ¢« AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Bus Error, Cache Error

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

Prefetch cannot move data to or from a mapped |ocation unless the trandation for that location is present in the TLB.
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so prefetch
may not be effective for such locations.

Prefetch does not cause addressing exceptions. A prefetch may be used using an address pointer before the validity of
the pointer is determined without worrying about an addressing exception.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREF instruction. Typically, this only occurs in systems which have high-
reliability requirements.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

Hint field encodings whose function is described as “ streamed” or “retained” convey usage intent from software to
hardware. Software should not assume that hardware will always prefetch datain an optimal way. If dataisto betruly
retained, software should use the Cache instruction to lock datainto the cache.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 398

399 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Prefetch EVA PREFE

31 26 25 21 20 16 15 12 11 9 8 0
POOL32C hirt base ST-EVA P%Eg - offset
011000 1010
6 5 5 4 3 9
Format: PREFE hint,offset (base) microMIPS

Purpose: Prefetch EVA

To move data between user mode virtual address space memory and cache while operating in kernel mode.

Description: prefetch_memory (GPR[base] + offset)

PREFE adds the 9-bit signed offset to the contents of GPR base to form an effective byte address. The hint field sup-
pliesinformation about the way that the data is expected to be used.

PREFE enables the processor to take some action, typically causing data to be moved to or from the cache, to
improve program performance. The action taken for a specific PREFE instruction is both system and context depen-
dent. Any action, including doing nothing, is permitted as long as it does not change architecturally visible state or
alter the meaning of a program. Implementations are expected either to do nothing, or to take an action that increases
the performance of the program. The PrepareForStore function is unique in that it may modify the architecturaly vis-
ible state.

PREFE does not cause addressing-related exceptions, including TLB exceptions. If the address specified would cause
an addressing exception, the exception condition is ignored and no data movement occurs.However even if no datais
moved, some action that is not architecturaly visible, such aswriteback of adirty cache line, can take place.

It isimplementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as abyproduct of the action taken by the PREFE instruction.

PREFE neither generates a memory operation nor modifies the state of a cache line for alocation with an uncached
memory access type, whether thistype is specified by the address segment (e.g., ksegl), the programmed cacheability
and coherency attribute of a segment (e.g., the use of the KO, KU, or K23 fields in the Config register), or the per-
page cacheability and coherency attribute provided by the TLB.

If PREFE results in a memory operation, the memory access type and cacheability& coherency attribute used for the
operation are determined by the memory access type and cacheability& coherency attribute of the effective address,
just asit would be if the memory operation had been caused by aload or store to the effective address.

For a cached location, the expected and useful action for the processor isto prefetch a block of data that includes the
effective address. The size of the block and the level of the memory hierarchy it is fetched into are implementation
specific.

In coherent multiprocessor implementations, if the effective address uses a coherent Cacheability and Coherency
Attribute (CCA), then the instruction causes a coherent memory transaction to occur. This means a prefetch issued on
one processor can cause data to be evicted from the cache in another processor.

The PREFE instruction and the memory transactions which are sourced by the PREFE instruction, such as cache
refill or cache writeback, obey the ordering and completion rules of the SYNC instruction.

The PREFE instruction functions in exactly the same fashion as the PREF instruction, except that address tranglation
is performed using the user mode virtual address space mapping in the TLB when accessing an address within a
memory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access
modes are also accessible. Refer to Volume 111, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5g,, field being set to one.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 400

Prefetch EVA

401

PREFE

Table 5.26 Values of hint Field for PREFE Instruction

Value Name Data Use and Desired Prefetch Action
0 load Use: Prefetched datais expected to be read (not modified).
Action: Fetch data asif for aload.
1 store Use: Prefetched datais expected to be stored or modified.
Action: Fetch data asif for a store.
2-3 Reserved Reserved for future use - not available to implementations.
4 load_streamed Use: Prefetched datais expected to be read (not modified) but not reused
extensively; it “streams’ through cache.
Action: Fetch dataasif for aload and place it in the cache so that it does not
displace data prefetched as “retained.”
5 store_streamed Use: Prefetched datais expected to be stored or modified but not reused exten-
sively; it “streams’ through cache.
Action: Fetch dataasiif for astore and placeit in the cache so that it does not
displace data prefetched as “retained.”
6 load_retained Use: Prefetched datais expected to be read (not modified) and reused exten-
sively; it should be “retained” in the cache.
Action: Fetch dataasif for aload and place it in the cache so that it is not dis-
placed by data prefetched as “ streamed.”
7 store_retained Use: Prefetched datais expected to be stored or modified and reused exten-
sively; it should be “retained” in the cache.
Action: Fetch dataasif for a store and place it in the cache so that it is not dis-
placed by data prefetched as “ streamed.”
8-20 Reserved Reserved for future use - not available to implementations.
21-24 | Implementation Dependent Unassigned by the Architecture - available for implementation-dependent use.
25 writeback_invalidate (also Use: Datais no longer expected to be used.
known as “nudge”) Action: For awriteback cache, schedule awriteback of any dirty data. At the
completion of the writeback, mark the state of any cache lines written back as
invalid. If the cache lineis not dirty, it isimplementation dependent whether
the state of the cache line is marked invalid or left unchanged. If the cacheline
islocked, no action is taken.
26-29 | Implementation Dependent Unassigned by the Architecture - available for implementation-dependent use.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Prefetch EVA PREFE

Table 5.26 Values of hint Field for PREFE Instruction

30 PrepareForStore Use: Prepare the cache for writing an entire line, without the overhead
involved in filling the line from memory.

Action: If the reference hitsin the cache, no action is taken. If the reference
misses in the cache, aline is selected for replacement, any valid and dirty vic-
tim iswritten back to memory, the entire line is filled with zero data, and the
state of the lineis marked as valid and dirty.

Programming Note: Because the cache lineisfilled with zero data on a cache
miss, software must not assume that this action, in and of itself, can be used as
afast bzero-type function.

31 Implementation Dependent Unassigned by the Architecture - available for implementation-dependent use.

Restrictions:

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

Operation:
vAddr ¢« GPR[base] + sign_extend(offset)
(pAddr, CCA) ¢« AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Bus Error, Cache Error, Address Error, Reserved Instruction, Coprocessor Usable

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

Prefetch cannot move data to or from a mapped |ocation unless the trandation for that location is present in the TLB.
Locations in memory pages that have not been accessed recently may not have tranglations in the TLB, so prefetch
may not be effective for such locations.

Prefetch does not cause addressing exceptions. A prefetch may be used using an address pointer before the validity of
the pointer is determined without worrying about an addressing exception.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREFE instruction. Typically, this only occurs in systems which have high-
reliability requirements.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

Hint field encodings whose function is described as “streamed” or “retained” convey usage intent from software to
hardware. Software should not assume that hardware will always prefetch datain an optimal way. If dataisto betruly
retained, software should use the Cache instruction to lock datainto the cache.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 402

Prefetch Indexed PREFX

31 26 25 21 20 16 15 1 10 9 8 5 0
POOL 32F . . PREFX
010101 index base hint 0 110100000
6 5 5 5 2 9
Format: PREFX hint, index(base) microM I PS
microMIPS

Purpose: Prefetch Indexed
To move data between memory and cache.

Description: prefetch_memory[GPR[base] + GPR[index]]

PREFX adds the contents of GPR index to the contents of GPR base to form an effective byte address. The hint field
supplies information about the way the data is expected to be used.

The only functional difference between the PREF and PREFX instructions is the addressing mode implemented by
the two. Refer to the PREF instruction for all other details, including the encoding of the hint field.

Restrictions:

Compatibility and Availability:

PREFX: Required in all versions of MIPS64 since MIPS64r1. Not available in MIPS32rl. Required by MI1PS32r2
and subsequent versions of MIPS32. When required, required whenever FPU is present, whether a 32-bit or 64-bit
FPU, whether in 32-bit or 64-bit FP Register Mode (FIRgg4=0 or 1, Statusgg=0 or 1).

Operation:

vAddr ¢« GPR[base] + GPR[index]
(pAddr, CCA) <« AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Coprocessor Unusable, Reserved Instruction, Bus Error, Cache Error

Programming Notes:

The PREFX instruction is only available on processors that implement floating point and should never by generated
by compilers in situations other than those in which the corresponding load and store indexed floating point instruc-
tions are generated.

Refer to the corresponding section in the PREF instruction description.

403 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 404

Pair Upper Lower

405

PUL.PS

31 26 25 21 20 16 15 11 10 9 8 0
POOL 32F PUL.PS
010101 ft fs fd 0 100000000
6 5 5 5 2 9
Format: pUL.PS fd, fs, ft

Purpose: Pair Upper Lower

To merge a pair of paired single values with realignment

Description: FPR[fd] « upper (FPR[fs])

| | lower (FPR[ft])

microM I PS

A new paired-single value is formed by catenating the upper single of FPR fs (bits 63..32) and the lower single of
FPR ft (bits 31..0).

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-

DICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS)g3 35 || ValueFPR(ft, PS)s3q .

Exceptions:

Coprocessor Unusable, Reserved Instruction

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Pair Upper Upper

PUU.PS

31 26 25 21 20 16 15 11 10 9 8 0
POOL 32F PUU.PS
010101 ft fs fd 0 101000000
6 5 5 5 2 9
Format: puu.pPs fd, fs, ft

Purpose: Pair Upper Upper

To merge a pair of paired single values with realignment

Description: FPR[fd] « upper (FPR[fs])

| | upper (FPR[ft])

microM I PS

A new paired-single value is formed by catenating the upper single of FPR fs (bits 63..32) and the upper single of
FPR ft (bits 63..32).

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-

DICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS)g3 35 || ValueFPR(ft, PS)gs3. .

Exceptions:

Coprocessor Unusable, Reserved Instruction

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

406

Read Hardware Register RDHWR
31 26 25 21 20 16 15 6 5 0
POOL32A r rs RDHWR POOL 32A X f
000000 0110101100 111100
6 5 5 10 6
Format: RDHWR rt,rs microM | PS

407

Purpose: Read Hardware Register

To move the contents of a hardware register to a general purpose register (GPR) if that operation is enabled by privi-

leged software.

The purpose of thisinstruction is to give user mode access to specific information that is otherwise only visible in

kernel mode.

Description: GPR[rt] « HWR[rs]

If accessis allowed to the specified hardware register, the contents of the register specified by rsisloaded into general

register rt. Access control for each register is selected by the bitsin the coprocessor 0 HWREna register.

The available hardware registers, and the encoding of thersfield for each, are shown in Table 5.27.

Table 5.27 RDHWR Register Numbers

Register
Number
(rd Value) | Mnemonic Description
CPUNum | Number of the CPU on which the program is currently running. This register
0 provides read access to the coprocessor 0 EBasecpynum field.
SYNCI_Step | Address step size to be used with the SYNCI instruction, or zero if no caches
1 need be synchronized. See that instruction’s description for the use of this
value.
5 cC High-resolution cycle counter. This register provides read access to the copro-
cessor 0 Count Register.
CCRes Resolution of the CC register. This value denotes the number of cycles
between update of the register. For example:
CCRes Value Meaning
3 1 CC register increments every CPU cycle
2 CC register increments every second CPU cycle
3 CC register increments every third CPU cycle
etc.
428 These registers numbers are reserved for future architecture use. Access
) results in a Reserved Instruction Exception.
ULR User Local Register. This register provides read access to the coprocessor 0
29 UserLocal register, if it isimplemented. In some operating environments, the
UserLocal register is a pointer to a thread-specific storage block.
30-31 These register numbers are reserved for implementation-dependent use. If they
are not implemented, access results in a Reserved Instruction Exception.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Read Hardware Register RDHWR

Restrictions:
In implementations of Release 1 of the Architecture, thisinstruction resulted in a Reserved Instruction Exception.

Access to the specified hardware register is enabled if Coprocessor 0 is enabled, or if the corresponding bit is set in
the HWREna register. If accessis not allowed or the register is not implemented, a Reserved Instruction Exception is
signaled.

Operation:

case rs
0: temp <« EBasecpyyum
1: temp ¢« SYNCI_StepSize()
2: temp ¢« Count
3: temp « CountResolution/()
29: temp ¢« UserLocal
30: temp <« Implementation-Dependent-Value
31: temp < Implementation-Dependent-Value
otherwise: SignalException(ReservedInstruction)
endcase
GPR[rt] <« temp

Exceptions:

Reserved Instruction

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 408

409 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Read GPR from Previous Shadow Set

RDPGPR

31 26 25 21 20 16 15
POOL32A r rs RDPGPR POOL 32AXf
000000 1110000101 111100
6 5 5 10 6
Format: RDPGPR rt, rs microM I PS

Purpose: Read GPR from Previous Shadow Set
To move the contents of a GPR from the previous shadow set to a current GPR.

Description: GPR[rt] « SGPR[SRSCtlpgg, rs]

The contents of the shadow GPR register specified by SRSCtlpgs (signifying the previous shadow set number) and rs

(specifying the register number within that set) is moved to the current GPR rt.

Restrictions:

In implementations prior to Release 2 of the Architecture, this instruction resulted in a Reserved Instruction Excep-

tion.

Operation:

GPR[rt]

Exceptions:

Coprocessor Unusable

¢ SGPR[SRSCtlpgg,

Reserved Instruction

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

410

Reciprocal Approximation RECIP.fmt

411

26 25 21 20 16 15 14 13 6 5 0
POOL 32F ft s o limt RECIP POOL 32FXf
010101 01001000 111011
6 5 5 1 1 8 6

Format: RECIP.fmt
RECIP.S ft, fs microMIPS
RECIP.D ft, fs microMIPS
Purpose: Reciprocal Approximation

To approximate the reciprocal of an FP value (quickly)

Description: FPR[ft] « 1.0 / FPRI[fs]

Thereciprocal of the valuein FPR fsis approximated and placed into FPR ft. The operand and result are valuesin for-
mat fmt.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
| EEE 754 Floating Point standard. The computed result differs from the both the exact result and the | EEE-mandated
representation of the exact result by no more than one unit in the least-significant place (ULP).

It isimplementation dependent whether the result is affected by the current rounding mode in FCSR.

Restrictions:

Thefields fs and ft must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPREDICT -
ABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABL E and the value of the operand
FPR becomes UNPREDICTABLE.
Compatibility and Availability:

RECIPS and RECIPD: Required in all versions of MIPS64 since MIPS64r1. Not available in MIPS32r1. Required
by MIPS32r2 and subsequent versions of MIPS32. When required, required whenever FPU is present, whether a 32-
bit or 64-bit FPU, whether in 32-bit or 64-bit FP Register Mode (FIRgg,=0 or 1, Statusgr=0 or 1).

Operation:

StoreFPR(ft, fmt, 1.0 / valueFPR(fs, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Division-by-zero, Unimplemented Op, Invalid Op, Overflow, Underflow

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 412

Rotate Word Right ROTR

413

31 26 25 21 20 16 15 11 10 6 5 0
POOL 32A rt s @ 0 ROTR
000000 0011000000
6 5 5 5 1 10
Format: ROTR rt, rs, sa SmartM|PS Crypto, microMPS

Purpose: Rotate Word Right

To execute alogical right-rotate of aword by a fixed number of bits

Description: GPR[rt] « GPR[rs] ¢ (right) sa
The contents of the low-order 32-bit word of GPR rs are rotated right; the word result is placed in GPR rt. The bit-
rotate amount is specified by sa.

Restrictions:

Operation:

if ((ArchitectureRevision() < 2) and (Config3gy = 0)) then
UNPREDICTABLE

endif

S « sa

temp < GPR[rsls; o || GPRIrsls; o

GPR[rt] « temp

Exceptions:

Reserved Instruction

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Rotate Word Right Variable ROTRV

31 26 25 21 20 16 15 1 10 9 0
POOL 32A rt s d 0 ROTRV
000000 0011010000
6 5 5 5 1 10
Format: ROTRV rd, rt, rs SmartM|PS Crypto, microMPS

Purpose: Rotate Word Right Variable
To execute alogical right-rotate of aword by a variable number of bits

Description: GPR[rd] « GPR[rt] <> (right) GPR[rs]
The contents of the low-order 32-bit word of GPR rt are rotated right; the word result is placed in GPR rd. The bit-
rotate amount is specified by the low-order 5 bits of GPR rs.

Restrictions:

Operation:

if ((ArchitectureRevision() < 2) and (Config3gy = 0)) then
UNPREDICTABLE

endif

s ¢« GPRI[rsl, o

temp < GPR[rtls; o || GPRITtls; .

GPR[rd] « temp

Exceptions:

Reserved Instruction

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 414

Floating Point Round to Long Fixed Point ROUND.L.fmt

415

31 26 25 21 20 16 15 14 13 6 5 0
POOL 32F it s o lfmt ROUND.L POOL 32FXf
010101 11001100 111011
6 5 5 1 1 8 6

Format: ROUND.L.fmt
ROUND.L.S ft, fs microMIPS
ROUND.L.D ft, fs microMIPS
Purpose: Floating Point Round to Long Fixed Point

To convert an FP value to 64-bit fixed point, rounding to nearest

Description: FPR[ft] « convert_and_round (FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 64-hit long fixed point format and rounded to nearest/
even (rounding mode 0). Theresult is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range -2%° to 2%3-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to ft and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 2621, iswritten to ft.

Restrictions:

The fields fs and ftmust specify valid FPRs; fs for type fmt and fd for long fixed point; if they are not valid, the result
isUNPREDICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(ft, L, ConvertFmt (ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 416

Floating Point Round to Word Fixed Point ROUND.W.fmt
31 26 25 22 21 20 16 15 14 13 0
POOL32F ROUND.W POOL 32FXf
ft fs 0 |fmt
010101 11101100 111011
6 5 5 1 1 8 6
Format: ROUND.W.fmt
ROUND.W.S ft, fs microMIPS
ROUND.W.D ft, fs microMIPS

417

Purpose: Floating Point Round to Word Fixed Point

To convert an FP value to 32-bit fixed point, rounding to nearest

Description: FPR[ft] « convert_and_round (FPR[fs])

Thevauein FPR fs, in format fnt, is converted to avalue in 32-hit word fixed point format rounding to nearest/even

(rounding mode 0). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range -23! to 231-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to ft and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 231-1, is written to ft.

Restrictions:

Thefields fsand ft must specify valid FPRs; fsfor type fmt and fd for word fixed point; if they are not valid, the result
isUNPREDICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(ft, W, ConvertFmt (ValueFPR (fs,

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation

fmt) ,

fmt, wW))

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 418

Reciprocal Square Root Approximation RSQRT.fmt

419

31 26 25 21 20 16 15 14 13 6 5 0
POOL 32F f s o ltmt RSQRT fmt POOL 32FXf
010101 00001000 111011
6 5 5 1 1 8 6

Format: RSQRT. fmt
RSQRT. S ft, fs microMIPS
RSQRT.D ft, fs microMIPS
Purpose: Reciprocal Square Root Approximation

To approximate the reciprocal of the square root of an FP value (quickly)

Description: FPR[ft] « 1.0 / sqrt(FPR[fs])

Thereciprocal of the positive square root of the value in FPR fs is approximated and placed into FPR ft. The operand
and result are valuesin format fmt.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
|IEEE 754 Floating Point standard. The computed result differs from both the exact result and the |EEE-mandated
representation of the exact result by no more than two units in the least-significant place (ULP).

The effect of the current FCSR rounding mode on the result is implementation dependent.

Restrictions:

Thefields fs and ft must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPREDICT -
ABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABL E and the value of the operand
FPR becomes UNPREDICTABLE.
Compatibility and Availability:

RSQRT.S and RSQRT.D: Required in all versions of MIPS64 since MIPS64r1. Not availablein MIPS32r1. Required
by MIPS32r2 and subsequent versions of MIPS32. When required, required whenever FPU is present, whether a 32-
bit or 64-bit FPU, whether in 32-bit or 64-bit FP Register Mode (FIRgg,=0 or 1, Statusgr=0 or 1).

Operation:

StoreFPR(ft, fmt, 1.0 / SquareRoot (valueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Division-by-zero, Unimplemented Operation, Invalid Operation, Overflow, Underflow

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 420

Store Byte SB
31 26 25 21 20 16 15 0
SB32
000110 rt base offset
6 5 5 16
Format: SB rt, offset (base) microM I PS

421

Purpose: Store Byte
To store a byte to memory

Description: memory[GPR[base] + offset] « GPR[rt]

The least-significant 8-bit byte of GPR rt is stored in memory at the location specified by the effective address. The

16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

None

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
PAAAr « PAdArpgrze-1. .2 || (PAAdr; , xor ReverseEndian?)
bytesel « vAddr; , xor BigEndianCPU?

dataword ¢ GPR[rtlj;i_gs«pytesel..o || p8rbytesel
StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB R€fill, TLB Invaid, TLB Modified, Bus Error, Address Error, Watch

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Byte EVA SBE
31 26 25 21 20 16 15 12 11 9 8 0
SBE
POOL32C ST-EVA
011000 rt base 1010 100 offset
6 5 5 4 3 9
Format: SBE rt, offset (base) microM I PS

Purpose: Store Byte EVA
To store a byte to user mode virtual address space when executing in kernel mode.

Description: memory [GPR[base] + offset] « GPR[rt]

The least-significant 8-bit byte of GPR rt is stored in memory at the location specified by the effective address. The

9-hit signed offset is added to the contents of GPR base to form the effective address.

The SBE instruction functions in exactly the same fashion as the SB instruction, except that address translation is per-
formed using the user mode virtual address space mapping in the TLB when accessing an address within a memory
segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are

also accessible. Refer to Volume 111, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5g,, field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured

using UUSK, MUSK or MUSUK access mode.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
PAddr « pAddrpgrze-1. 2 || (pAAdr; , xor ReverseEndian?)
bytesel <« vAddr, o xor BigEndianCPU?

dataword ¢ GPRIrtl;i_gspytesel..o || p8rbytesel
StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill

TLB Invalid

Bus Error

Address Error

Watch

Reserved Instruction
Coprocessor Unusable

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

422

423 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Conditional Word SC

31 26 25 21 20 16 15 12 11 0
POOL32C SC
011000 t base 1011 offset
6 5 5 5 12
Format: sC rt, offset (base) microM | PS

Purpose: Store Conditional Word

To store aword to memory to complete an atomic read-modify-write

Description: if atomic_update then memory[GPR[base] + offset] « GPR[rt], GPR[rt] « 1
else GPR[rt] < O

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations on syn-
chronizable memory locations. In Release 5, the behaviour of SC is modified when Config5, | g=1.

The 32-bit word in GPR rt is conditionally stored in memory at the location specified by the aligned effective address.
The 16-bit signed offset is added to the contents of GPR base to form an effective address.

The SC completes the RMW seguence begun by the preceding LL instruction executed on the processor. To complete
the RMW sequence atomically, the following occur:

» The 32-bit word of GPR rt is stored to memory at the location specified by the aligned effective address.

* A one, indicating success, iswritten into GPR rt.
Otherwise, memory is not modified and a0, indicating failure, iswritten into GPR rt.
If either of the following events occurs between the execution of LL and SC, the SC falls:

e A coherent store is completed by another processor or coherent 1/0 module into the block of synchronizable
physical memory containing the word. The size and alignment of the block isimplementation-dependent, but it is
at least one word and at most the minimum page size.

e A coherent store is executed between an LL and SC sequence on the same processor to the block of synchroniz-
able physical memory containing theword (if Config5, | g=1; €lse whether such a store causes the SC to fail is not

predictable).
* AnERET instruction is executed. (Release 5 includes ERETNC, which will not cause the SC to fail.)

Furthermore, an SC must always compare its address against that of the LL. An SC will fail if the aligned address of
the SC does not match that of the preceeding LL.

A load that executes on the processor executing the LL/SC sequence to the block of synchronizable physical memory
containing the word, will not cause the SC to fail (if Config5, | g=1; else such aload may cause the SC to fail).

If any of the events listed below occurs between the execution of LL and SC, the SC may fail whereit could have suc-
ceeded, i.e, successis not predictable. Portable programs should not cause any of these events.

* Aload or store executed on the processor executing the LL and SC that is not to the block of synchronizable
physical memory containing the word. (The load or store may cause a cache eviction between the LL and SC that
resultsin SC failure. The load or store does not necessarily have to occur between the LL and SC.)

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 424

Store Conditional Word SC

425

» Any prefetch that is executed on the processor executing the LL and SC sequence (due to a cache eviction
between the LL and SC).

» A non-coherent store executed between an LL and SC sequence to the block of synchronizable physical memory
containing the word.

» Theinstructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

CACHE operations that are local to the processor executing the LL/SC sequence will result in unpredictable behav-
iour of the SC if executed between the LL and SC, that is, they may cause the SC to fail where it could have suc-
ceeded. Non-local CACHE operations (address-type with coherent CCA) may cause an SC to fail on either the local
processor or on the remote processor in multiprocessor or multi-threaded systems. This definition of the effects of
CACHE operations is mandated if Config5, | g=1. If Config5; | g=0, then CACHE effects are implementation-depen-
dent.

The following conditions must be true or the result of the SC is not predictable—the SC may fail or succeed (if
Config5, | g=1, then either success or failure is mandated, else the result is UNPREDICTABLE):

» Execution of SC must have been preceded by execution of an LL instruction.

* An RMW sequence executed without intervening events that would cause the SC to fail must use the same
addressinthe LL and SC. The addressisthe same if the virtual address, physical address, and cacheability &
coherency attribute are identical.

Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one that
is associated with the state and logic necessary to implement the LL/SC semantics. Whether a memory location is
synchronizable depends on the processor and system configurations, and on the memory access type used for the
location:

* Uniprocessor atomicity: To provide atomic RMW on asingle processor, al accesses to the location must be
made with memory access type of either cached noncoherent or cached coherent. All accesses must be to one or
the other access type, and they may not be mixed.

* MP atomicity: To provide atomic RMW among multiple processors, al accesses to the location must be made
with amemory access type of cached coherent.

* |/O System: To provide atomic RMW with acoherent 1/0 system, all accesses to the location must be made with
amemory access type of cached coherent. If the 1/0O system does not use coherent memory operations, then
atomic RMW cannot be provided with respect to the /O reads and writes.

Restrictions:

The addressed |ocation must have a memory access type of cached noncoherent or cached coherent; if it does not, the
resultis UNPREDICTABLE.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.
Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr, o # 02 then
SignalException (AddressError)

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Conditional Word

endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)
dataword < GPR[rt]
if LLbit then
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endif
GPR[rt] « 03! || LLbit
LLbit « 0 // if Config5;;z=1, SCaways clears LLbit regardless of address match.

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:
LL and SC are used to atomically update memory locations, as shown below.

Ll:
LL T1, (TO) # load counter
ADDI T2, Tl, 1 # increment
SC T2, (T0) # try to store, checking for atomicity
BEQ T2, 0, L1 # if not atomic (0), try again
NOP # branch-delay slot

SC

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided. Some examples of
these are arithmetic operations that trap, system calls, and floating point operations that trap or require software emu-

|ation assistance.

LL and SC function on a single processor for cached noncoherent memory so that parallel programs can be run on

uniprocessor systems that do not support cached coherent memory access types.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

426

427 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Conditional Word EVA SCE

31 26 25 21 20 16 15 12 11 9 8 0
POOL32C ST-EVA SCE
011000 t base 1010 110 offset
6 5 5 4 3 9
Format: SCE rt, offset (base) microM I PS

Purpose: Store Conditional Word EVA

To store a word to user mode virtual memory while operating in kernel mode to complete an atomic read-modify-
write

Description: if atomic_update then memory[GPR[base] + offset] « GPR[rt], GPR[rt] « 1
else GPR[rt] < O

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for syn-
chronizable memory locations.

The 32-bit word in GPR rt is conditionally stored in memory at the location specified by the aligned effective address.
The 9-bit signed offset is added to the contents of GPR base to form an effective address.

The SCE completes the RMW sequence begun by the preceding LLE instruction executed on the processor. To com-
plete the RMW sequence atomically, the following occur:

» The 32-bit word of GPR rt is stored to memory at the location specified by the aligned effective address.

* A1l indicating success, iswritten into GPR rt.
Otherwise, memory is not modified and a O, indicating failure, is written into GPR rt.

If either of the following events occurs between the execution of LL and SC, the SC fails:

* A coherent store is completed by another processor or coherent 1/0 module into the block of synchronizable
physical memory containing the word. The size and alignment of the block isimplementation dependent, but it is
at least one word and at most the minimum page size.

* AnERET instruction is executed.

If either of the following events occurs between the execution of LLE and SCE, the SCE may succeed or it may fail;
the success or failureis not predictable. Portable programs should not cause one of these events.

* A memory accessinstruction (load, store, or prefetch) is executed on the processor executing the LLE/SCE.

» Theinstructions executed starting with the LL E and ending with the SCE do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

The following conditions must be true or the result of the SCE is UNPREDICTABLE:
« Execution of SCE must have been preceded by execution of an LLE instruction.

« An RMW sequence executed without intervening events that would cause the SCE to fail must use the same
addressin the LLE and SCE. The address isthe same if the virtual address, physical address, and cacheability &
coherency attribute are identical.

Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one that
is associated with the state and logic necessary to implement the LL E/SCE semantics. Whether a memory location is

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 428

Store Conditional Word EVA SCE

429

synchronizable depends on the processor and system configurations, and on the memory access type used for the

|ocation:

* Uniprocessor atomicity: To provide atomic RMW on a single processor, al accesses to the location must be
made with memory access type of either cached noncoherent or cached coherent. All accesses must be to one or
the other access type, and they may not be mixed.

* MP atomicity: To provide atomic RMW among multiple processors, al accesses to the location must be made
with amemory access type of cached coherent.

* |/O System: To provide atomic RMW with acoherent 1/0 system, all accesses to the location must be made with
amemory access type of cached coherent. If the 1/0O system does not use coherent memory operations, then
atomic RMW cannot be provided with respect to the 1/O reads and writes.

The SCE instruction functions in exactly the same fashion as the SC instruction, except that address translation is per-
formed using the user mode virtual address space mapping in the TLB when accessing an address within a memory
segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are
also accessible. Refer to Volume 111, Enhanced Virtual Addressing section for additional information.

Implementation of thisinstruction is specified by the Config5g» field being set to one.

Restrictions:

The addressed location must have a memory access type of cached noncoherent or cached coherent; if it does not, the
resultis UNPREDICTABLE.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr, o # 02 then
SignalException (AddressError)

endif
(pAddr,

CCA) ¢« AddressTranslation (vAddr, DATA, STORE)

dataword <« GPR[rt]
if LLbit then
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

endif

GPR[rt] « 03! || LLbit

Exceptions:

TLB Réfill, TLB Invalid, TLB Modified, Address Error, Watch, Reserved Instruction, Coprocessor Unusable

Programming Notes:

LLE and SCE are used to atomically update memory locations, as shown below.

Ll:
LLE
ADDI
SCE
BEQ
NOP

T1, (T0) # load counter
T2, Tl, 1 # increment
T2, (TO0) # try to store, checking for atomicity
T2, 0, L1 # if not atomic (0), try again
branch-delay slot

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Conditional Word EVA SCE

Exceptions between the LLE and SCE cause SCE to fail, so persistent exceptions must be avoided. Some exampl es of
these are arithmetic operations that trap, system calls, and floating point operations that trap or require software emu-
lation assistance.

LLE and SCE function on a single processor for cached noncoherent memory so that parallel programs can be run on
uniprocessor systems that do not support cached coherent memory access types.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 430

Software Debug Breakpoint SDBBP
31 26 25 16 15 0
POOL32A code - use svscall SDBBP POOL 32A X f
000000 ¥ 1101101101 111100

431

6

10

Format: SDBBP code

Purpose: Software Debug Breakpoint

To cause a debug breakpoint exception

Description:

10

6

EJTAG microMIPS

This instruction causes a debug exception, passing control to the debug exception handler. If the processor is execut-
ing in Debug Mode when the SDBBP instruction is executed, the exception is a Debug Mode Exception, which sets
the Debugpgeyccode field to the value 0x9 (Bp). The code field can be used for passing information to the debug
exception handler, and is retrieved by the debug exception handler only by loading the contents of the memory word
containing the instruction, using the DEPC register. The CODE field is not used in any way by the hardware.

Restrictions:

Operation:

If Debugpy = 0 then
SignalDebugBreakpointException ()

else

SignalDebugModeBreakpointException ()

endif

Exceptions:

Debug Breakpoint Exception
Debug Mode Breakpoint Exception

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Doubleword from Floating Point SDC1

31 26 25 21 20 16 15 0
SDC132
101110 ft base offset
6 5 5 16
Format: sSDC1l ft, offset(base) microM I PS

Purpose: Store Doubleword from Floating Point
To store adoubleword from an FPR to memory

Description: memory[GPR[base] + offset] « FPR[ft]

The 64-bit doubleword in FPR ft is stored in memory at the location specified by the aligned effective address. The
16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

An Address Error exception occursif EffectiveAddress, g # 0 (not doubleword-aligned).

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr, , # 0° then

SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation(vAddr, DATA, STORE)
datadoubleword ¢« ValueFPR(ft, UNINTERPRETED_DOUBLEWORD)
paddr < paddr xor ((BigEndianCPU xor ReverseEndian) || 02)
StoreMemory (CCA, WORD, datadoublewords; o, pAddr, vAddr, DATA)
paddr <« paddr xor 0bl00
StoreMemory (CCA, WORD, datadoublewordgs 35, pPAddr, vAddr+4, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 432

Store Doubleword from Coprocessor 2 SDC2
31 26 25 21 20 16 15 12 11 0
POOL32B SDC2
110110 "t base 1010 offset
6 5 5 4 12
Format: SDC2 rt, offset (base) microM I PS

433

Purpose: Store Doubleword from Coprocessor 2
To store a doubleword from a Coprocessor 2 register to memory

Description: memory[GPR[base] + offset] « CPRI[2,rt,0]

Restrictions:

An Address Error exception occursif EffectiveAddress, g # 0 (not doubleword-aligned).

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr, , # 0° then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation(vAddr, DATA, STORE)
lsw « CPR[2,rt,0]
msw < CPR[2,rt+1,0]
paddr ¢« paddr xor ((BigEndianCPU xor ReverseEndian) || 02)
StoreMemory (CCA, WORD, 1lsw, pAddr, vAddr, DATA)
paddr <« paddr xor 0bl00
StoreMemory (CCA, WORD, msw, pAddr, vAddr+4, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

The 64-bit doubleword in Coprocessor 2 register rt is stored in memory at the location specified by the aligned effec-
tive address. The 12-hit signed offset is added to the contents of GPR base to form the effective address.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Sign-Extend Byte SEB

31 26 25 21 20 16 15 6 5 0
POOL32A r rs SEB POOL 32A Xf
000000 0010101100 111100
6 5 5 10 6
Format: SEB rt, rs microM | PS

Purpose: Sign-Extend Byte
To sign-extend the least significant byte of GPR rs and store the value into GPR rt.

Description: GPR[rt] « SignExtend(GPR[rsl,)

Theleast significant byte from GPR rsis sign-extended and stored in GPR rt.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

GPR[rt] ¢« sign_extend(GPR[rs]y)

Exceptions:

Reserved Instruction

Programming Notes:

For symmetry with the SEB and SEH instructions, one would expect that there would be ZEB and ZEH instructions
that zero-extend the source operand. Similarly, one would expect that the SEW and ZEW instructions would exist to
sign- or zero-extend aword to a doubleword. Theseinstructions do not exist because there are functionally-equivalent
instructions aready in the instruction set. The following table shows the instructions providing the equivalent func-

tions.
Expected Instruction Function Equivalent Instruction
ZEB rx,ry Zero-Extend Byte ANDI rx,ry, OxXFF
ZEH rx,ry Zero-Extend Halfword ANDI rx,ry,OxXFFFF

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 434

435 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Sign-Extend Halfword SEH

31 26 25 21 20 16 15 6 5 0
POOL32A r rs SEH POOL 32A Xf
000000 0011101100 111100
6 5 5 10 6
Format: SEH rt, rs microM | PS

Purpose: Sign-Extend Halfword
To sign-extend the least significant halfword of GPR rs and store the value into GPR rt.

Description: GPR[rt] « SignExtend(GPR[rslis_ g)

The least significant halfword from GPR rsis sign-extended and stored in GPR rt.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

GPR[rt] ¢« sign_extend(GPR[rs] s g)

Exceptions:

Reserved Instruction

Programming Notes:

The SEH instruction can be used to convert two contiguous halfwords to sign-extended word values in three instruc-
tions. For example:

1w t0, 0(al) /* Read two contiguous halfwords */

seh tl, tO /* tl = lower halfword sign-extended to word */

sra t0, t0, 16 /* t0 = upper halfword sign-extended to word */
Zero-extended halfwords can be created by changing the SEH and SRA instructions to ANDI and SRL instructions,
respectively.

For symmetry with the SEB and SEH instructions, one would expect that there would be ZEB and ZEH instructions
that zero-extend the source operand. Similarly, one would expect that the SEW and ZEW instructions would exist to
sign- or zero-extend aword to a doubleword. Theseinstructions do not exist because there are functionally-equivalent
instructions aready in the instruction set. The following table shows the instructions providing the equivalent func-

tions.
Expected Instruction Function Equivalent Instruction
ZEB rx,ry Zero-Extend Byte ANDI rx,ry, OXFF
ZEH rx,ry Zero-Extend Halfword ANDI rx,ry,OxXFFFF

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 436

437 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Halfword SH
31 26 25 21 20 16 15 0
SH32
001110 rt base offset
6 5 5 16
Format: SH rt, offset (base) microM I PS

Purpose: Store Halfword
To store a halfword to memory

Description: memory [GPR[base] + offset] « GPR[rt]

The least-significant 16-bit halfword of register rt is stored in memory at the location specified by the aligned effec-

tive address. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address

Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddry # 0 then
SignalException (AddressError)

endif

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)

pAddr <« pAddrpgrge-1..2 || (PAddr; , xor (ReverseEndian || 0))
bytesel « vAddr; xor (BigEndianCPU || 0)

dataword < GPRIrtlsj_gspytesel..o | o8*bytesel

StoreMemory (CCA, HALFWORD, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

438

439 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Halfword EVA SHE

31 26 25 21 20 16 15 12 11 9 8 0
POOL32C ST-EVA SHE
011000 t base 1010 101 offset
6 5 5 7 3 9
Format: SHE rt, offset (base) microM I PS

Purpose: Store Halfword EVA
To store a halfword to user mode virtual address space when executing in kernel mode.

Description: memory [GPR[base] + offset] « GPR[rt]

The least-significant 16-bit halfword of register rt is stored in memory at the location specified by the aligned effec-
tive address. The 9-bit signed offset is added to the contents of GPR base to form the effective address.

The SHE instruction functions in exactly the same fashion as the SH instruction, except that address trandlation is
performed using the user mode virtual address space mapping in the TLB when accessing an address within a mem-
ory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes
are also accessible. Refer to Volume 111, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5gy field being set to one.

Restrictions:

Only usable in kernel mode when accessing an address within a segment configured using UUSK, MUSK or
MUSUK access mode.

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.
Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)

PAddr < pAddrpgrge-1..2 || (PAddr; , xor (ReverseEndian || 0))
bytesel « vAddr, , xor (BigEndianCPU || 0)
dataword <« GPR[rt]3178*bytesel..O | | 08*bytesel

StoreMemory (CCA, HALFWORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill

TLB Invaid

Bus Error

Address Error

Watch

Reserved Instruction
Coprocessor Unusable

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 440

441 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Shift Word Left Logical SLL

31 26 25 21 20 16 15 11 10 9 0
POOL 32A ft s @ 0 SLL32
000000 0000000000
6 5 5 5 1 10
Format: SLL rt, rs, sa microM | PS

Purpose: Shift Word Left Logical
To left-shift aword by a fixed number of bits

Description: GPR[rt] < GPR[rs] << sa

The contents of the low-order 32-bit word of GPR rs are shifted left, inserting zeros into the emptied bits; the word
result is placed in GPR rt. The bit-shift amount is specified by sa.

Restrictions:

None

Operation:

S ¢« sa
temp < GPRIrs] 3;-g)..0 || OF
GPR[rt] « temp

Exceptions:

None

Programming Notes:
SLL rO, rO, 0, expressed as NOP, is the assembly idiom used to denote no operation.

SLL rO, r0, 1, expressed as SSNOP , is the assembly idiom used to denote no operation that causes an issue break on
superscalar processors.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 442

Shift Word Left Logical Variable SLLV
31 26 25 21 20 16 15 11 10 9 0
POOL32A it rs d 0 SLLV
000000 00000010000
6 5 5 5 1 10
Format: sSLLvV rd, rt, rs microMIPS

443

Purpose: Shift Word Left Logical Variable
To left-shift aword by a variable number of bits

Description: GPR[rd] « GPR[rt] << rs

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting zeros into the emptied bits; the result
word is placed in GPR rd. The bit-shift amount is specified by the low-order 5 bits of GPRrs.

Restrictions:

None

Operation:

s < GPRI[rsl,

temp ¢ GPR[rt] 31_g).
GPR[rd]

Exceptions:

None

«— temp

Programming Notes:

None

o |l o®

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Set on Less Than SLT

31 26 25 21 20 16 15 11 10 0
POOL 32A rt s d 0 SLT
000000 1101010000
6 5 5 5 1 10
Format: sSLT rd, rs, rt microM | PS

Purpose: Set onLess Than
To record the result of aless-than comparison

Description: GPR[rd] « (GPR[rs] < GPR[rt])

Compare the contents of GPR rs and GPR rt as signed integers and record the Boolean result of the comparison in
GPRrd. If GPRrsislessthan GPR rt, theresult is 1 (true); otherwise, it is O (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if GPR[rs] < GPR[rt] then
GPR[rd] ¢ OCPREEN-1 || 7
else
GPR[rd] ¢« QCPRLEN
endif

Exceptions:

None

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 444

Set on Less Than Immediate SLTI
31 26 25 21 20 16 15 0
SLTI32 . !
100100 rt rs immediate
6 5 5 16
Format: SLTI rt, rs, immediate microM I PS

445

Purpose: Set on Less Than Immediate
To record the result of aless-than comparison with a constant

Description: GPR[rt] ¢« (GPR[rs] < immediate)

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers and record the Boolean result of

the comparison in GPR rt. If GPR rsisless than immediate, the result is 1 (true); otherwise, it isO (false).
The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if GPR[rs]

GPR[rt] ¢ OCPREEN-1)| 1

else

GPR[rt] « OQCPRLEN

endif

Exceptions:

None

< sign_extend (immediate)

then

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Set on Less Than Immediate Unsigned SLTIU

31 26 25 21 20 16 15 0
SLTIU32 .)
101100 rt rs immediate
6 5 5 16
Format: SLTIU rt, rs, immediate microM | PS

Purpose: Set on Less Than Immediate Unsigned
To record the result of an unsigned less-than comparison with a constant

Description: GPR[rt] ¢« (GPR[rs] < immediate)

Compare the contents of GPR rs and the sign-extended 16-bit immediate as unsigned integers and record the Boolean
result of the comparisonin GPR rt. If GPR rsisless than immediate, the result is 1 (true); otherwise, it is 0 (false).

Because the 16-bit immediate is sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range.

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then
GPR[rt] « OQCPREEN-1 || 7

else
GPR[rt] « QGPRLEN

endif

Exceptions:

None

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 446

Set on Less Than Unsigned SLTU

447

31 26 25 21 20 16 15 11 10 9 0
POOL 32A rt s d 0 SLTU
000000 1110010000
6 5 5 5 1 10
Format: SLTU rd, rs, rt microM | PS

Purpose: Set on Less Than Unsigned
To record the result of an unsigned less-than comparison

Description: GPR[rd] « (GPR[rs] < GPR[rt])

Compare the contents of GPR rs and GPR rt as unsigned integers and record the Boolean result of the comparisonin
GPRrd. If GPRrsislessthan GPR rt, theresult is 1 (true); otherwise, it is O (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if (0 || GPRI[rs]) < (0 || GPR[rt]) then
GPR[rd] ¢ OCPREEN-1 || 7

else
GPR[rd] ¢« QCFRLEN

endif

Exceptions:

None

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Floating Point Square Root

SQRT.fmt

31 26 25 21 20 16 15 14 13
POOL32F ft fs 0 | fmt SQRT.fmt POOL 32FXf
010101 00101000 111011

6 5 5 1 1 8 6
Format: SQRT.fmt
SQRT.S ft, fs
SQRT.D ft, fs

Purpose: Floating Point Square Root

To compute the square root of an FP value

Description: FPR[ft] « SQRT(FPR[fs])

The sguare root of the value in FPR fsis calculated to infinite precision, rounded according to the current rounding

mode in FCSR, and placed into FPR ft. The operand and result are valuesin format fmt.

If the valuein FPR fs correspondsto — 0, the result is— 0.

Restrictions:

If thevaluein FPR fsisless than O, an Invalid Operation condition is raised.
Thefields fs and ft must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPREDICT -

ABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABL E and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(ft, fmt,

Exceptions:

SquareRoot (ValueFPR (fs,

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Inexact, Unimplemented Operation

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

fmt)))

448

449 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Shift Word Right Arithmetic SRA

31 26 25 21 20 16 15 11 10 9 0
POOL 32A rt s @ 0 SRA
000000 0010000000
6 5 5 5 1 10
Format: SRA rt, rs, sa microM | PS

Purpose: Shift Word Right Arithmetic
To execute an arithmetic right-shift of aword by a fixed number of bits

Description: GPR[rt] < GPR[rs] >> sa (arithmetic)

The contents of the low-order 32-bit word of GPR rs are shifted right, duplicating the sign-bit (bit 31) in the emptied
bits; the word result is placed in GPR rt. The bit-shift amount is specified by sa.

Restrictions:

None

Operation:

S « sa
temp < (GPR[rsli;;)® || GPRIrsls; ¢
GPR[rt] « temp

Exceptions:

None

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 450

Shift Word Right Arithmetic Variable SRAV

451

31 26 25 21 20 16 15 11 10 9 0
POOL 32A rt s d 0 SRAV
000000 0010010000
6 5 5 5 1 10
Format: SRAV rd, rt, rs microM | PS

Purpose: Shift Word Right Arithmetic Variable
To execute an arithmetic right-shift of aword by a variable number of bits

Description: GPR[rd] < GPR[rt] >> rs (arithmetic)

The contents of the low-order 32-bit word of GPR rt are shifted right, duplicating the sign-bit (bit 31) in the emptied
bits; the word result is placed in GPR rd. The bit-shift amount is specified by the low-order 5 bits of GPR rs.
Restrictions:

None

Operation:

S < GPR[rsl, g
temp < (GPR[rtl;1)® || GPRIrtlsp, ¢
GPR[rd] < temp

Exceptions:

None

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Shift Word Right Logical SRL
31 26 25 21 20 16 15 11 10 0
POOL32A it rs 0 SRL32
000000 0001000000
6 5 5 1 10
Format: SRL rt, rs, sa microM I PS

Purpose: Shift Word Right Logical

To execute alogical right-shift of aword by afixed number of bits

Description: GPR[rt] « GPR[rs] >> sa

(logical)

The contents of the low-order 32-bit word of GPR rs are shifted right, inserting zeros into the emptied bits; the word

result is placed in GPR rt. The bit-shift amount is specified by sa.

Restrictions:

None

Operation:

S < sa

temp « 0° || GPR[rsljz;

GPR[rt] « temp

Exceptions:

None

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

452

Shift Word Right Logical Variable SRLV

31 26 25 21 20 16 15 11 10 9 0
POOL 32A f s d 0 SRLV
000000 00010010000
6 5 5 5 1 10
Format: SRLV rd, rt, rs microM | PS

Purpose: Shift Word Right Logical Variable
To execute alogical right-shift of aword by avariable number of bits

Description: GPR[rd] « GPR[rt] >> GPR[rs] (logical)

The contents of the low-order 32-bit word of GPR rt are shifted right, inserting zeros into the emptied bits; the word
result is placed in GPR rd. The bit-shift amount is specified by the low-order 5 bits of GPR rs.

Restrictions:

None

Operation:

S < GPR[rsl, g
temp « 0° || GPR[rtlsz;
GPR[rd] < temp

Exceptions:

None

453 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Superscalar No Operation SSNOP

31 26 25 11 10 6 5 0
POOL 32A 0 0 1 0 SLL32
000000 00000 00000 00001 0000 000000
6 5 5 5 5 6
Format: ssNop microM | PS

Purpose: Superscalar No Operation
Break superscalar issue on a superscalar processor.

Description:

SSNOP is the assembly idiom used to denote superscalar no operation. The actual instruction is interpreted by the
hardware as SLL r0, r0, 1.

This instruction alters the instruction issue behavior on a superscalar processor by forcing the SSNOP instruction to
single-issue. The processor must then end the current instruction issue between the instruction previous to the SSNOP
and the SSNOP. The SSNOP then issues alone in the next issue slot.

On asingle-issue processor, thisinstruction is a NOP that takes an issue slot.

Restrictions:

None

Operation:

None

Exceptions:

None

Programming Notes:

SSNORP is intended for use primarily to allow the programmer control over CPO hazards by converting instructions
into cyclesin a superscalar processor. For example, to insert at least two cycles between an MTCO and an ERET, one
would use the following sequence:

mtcO X,Y
ssnop
ssnop
eret

Based on the normal issues rules of the processor, the MTCO issuesin cycle T. Because the SSNOP instructions must
issue alone, they may issue no earlier than cycle T+1 and cycle T+2, respectively. Finally, the ERET issues no earlier
than cycle T+3. Note that although the instruction after an SSNOP may issue no earlier than the cycle after the
SSNOP is issued, that instruction may issue later. This is because other implementation-dependent issue rules may
apply that prevent an issue in the next cycle. Processors should not introduce any unnecessary delay in issuing
SSNOP instructions.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 454

Subtract Word SUB

455

31 26 25 21 20 16 15 11 10 9 0
POOL 32A rt s d 0 SUB
000000 0110010000
6 5 5 5 1 10
Format: sSuB rd, rs, rt microM | PS

Purpose: Subtract Word
To subtract 32-bit integers. If overflow occurs, then trap

Description: GPR[rd] ¢« GPR[rs] — GPR[rt]

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rsto produce a 32-bit result. If the sub-
traction results in 32-bit 2's complement arithmetic overflow, then the destination register is not modified and an
Integer Overflow exception occurs. If it does not overflow, the 32-bit result is placed into GPR rd.

Restrictions:

None

Operation:

temp < (GPR[rslj;i||GPRIrsls; o) — (GPR[rtls;||GPRIrtls; o)
if temp;, # temps; then
SignalException (IntegerOverflow)
else
GPR[rd] <« temps3q g
endif
Exceptions:

Integer Overflow

Programming Notes:

SUBU performs the same arithmetic operation but does not trap on overflow.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Floating Point Subtract SUB.fmt

31 26 25 21 20 16 15 11 10 9 8 7 5 0
POOL 32F SUB fmt
010101 ft fs fd O fmt 01110000
6 5 5 5 1 2 P

Format: SUB. fmt

SUB.S fd, fs, ft microMIPS
SUB.D fd, fs, ft microMIPS
SUB.PS fd, fs, ft microM I PS

Purpose: Floating Point Subtract
To subtract FP values

Description: FPR[fd] « FPR[fs] — FPR[ft]

The value in FPR ft is subtracted from the value in FPR fs. The result is calculated to infinite precision, rounded
according to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in for-
mat fmt. SUB.PS subtracts the upper and lower halves of FPR fsand FPR ft independently, and ORs together any gen-
erated exceptional conditions.

Restrictions:

Thefields fs, ft, and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is UNPRE-
DICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

Theresult of SUB.PSis UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model; it
is predictableif executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) —¢,« ValueFPR(ft, fmt))

CPU Exceptions:
Coprocessor Unusable, Reserved Instruction

FPU Exceptions:
Inexact, Overflow, Underflow, Invalid Op, Unimplemented Op

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 456

457 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Subtract Unsigned Word SUBU

31 26 25 21 20 16 15 11 10 6 5 0
POOL 32A rt s d 0 SUBU32
000000 0111010000
6 5 5 5 1 10
Format: SUBU rd, rs, rt microM | PS

Purpose: Subtract Unsigned Word
To subtract 32-bit integers

Description: GPR[rd] ¢« GPR[rs] — GPR[rt]

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rs and the 32-bit arithmetic result is and
placed into GPR rd.

No integer overflow exception occurs under any circumstances.

Restrictions:

None

Operation:
temp ¢ GPR[rs] — GPR[rt]
GPR[rd] ¢« temp
Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 458

Store Doubleword Indexed Unaligned from Floating Point SUXC1

459

31 26 25 21 20 16 15 11 10 9 8 0
POOL 32F . SUXC1
010101 index base fd 00 110001000
6 5 5 5 2 9
Format: suxcl fd, index(base) microM I PS

Purpose: Store Doubleword Indexed Unaligned from Floating Point
To store a doubleword from an FPR to memory (GPR+GPR addressing) ignoring alignment

Description: memory[(GPR[base] + GPR[index])pgrzg-1..3] < FPRI[£d]

The contents of the 64-bit doubleword in FPR fd is stored at the memory location specified by the effective address.
The contents of GPR index and GPR base are added to form the effective address. The effective address is double-
word-aligned; EffectiveAddress, (are ignored.

Restrictions:

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-hit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

VAddr ¢« (GPR[base]+GPR[index])¢; 3 || 03

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
datadoubleword ¢« ValueFPR(fd, UNINTERPRETED_DOUBLEWORD)

paddr ¢« paddr xor ((BigEndianCPU xor ReverseEndian) || 02)
StoreMemory (CCA, WORD, datadoublewords; o, pAddr, vAddr, DATA)
paddr <« paddr xor 0bl00

StoreMemory (CCA, WORD, datadoublewordgs 35, PAddr, vAddr+4, DATA)

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Réfill, TLB Invalid, TLB Modified, Watch

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Word SW
31 26 25 21 20 16 15 0
SW32
111110 rt base offset
6 5 5 16
Format: sw rt, offset (base) microM I PS

Purpose: Store Word
To store aword to memory

Description: memory [GPR[base] + offset] « GPR[rt]

The least-significant 32-bit word of GPR rt is stored in memory at the location specified by the aligned effective

address. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr; # 02 then
SignalException (AddressError)
endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)
dataword <« GPR[rt]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

460

Store Word from Floating Point SWC1

461

31 26 25 21 20 16 15 0
SWC132
100110 ft base offset
6 5 5 16
SwCcl ft, offset (base) microMIPS

Purpose: Store Word from Floating Point
To store aword from an FPR to memory

Description: memory[GPR[base] + offset] « FPR[ft]

The low 32-bit word from FPR ft is stored in memory at the location specified by the aligned effective address. The
16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

An Address Error exception occursif EffectiveAddress; o+ 0 (nhot word-aligned).

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr; , # 0° then

SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation(vAddr, DATA, STORE)
dataword < ValueFPR(ft, UNINTERPRETED_WORD)
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Réfill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Word from Coprocessor 2 SWC2

31 26 25 21 20 16 15 0
POOL 328 SWC2
001000 t base 1000 offset
6 5 5 16
Format: swc2 rt, offset(base) microM I PS

Purpose: Store Word from Coprocessor 2
To store aword from a COP2 register to memory

Description: memory[GPR[base] + offset] « CPRI[2,rt,0]

The low 32-bit word from COP2 (Coprocessor 2) register rt is stored in memory at the location specified by the
aligned effective address. The 16-hit signed offset is added to the contents of GPR base to form the effective address.
Restrictions:

An Address Error exception occursif EffectiveAddress, g+ 0 (nhot word-aligned).

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr; , # 02 then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
dataword <« CPR[2,rt,0]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Réfill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 462

463 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Word EVA SWE

31 2% 25 21 20 16 15 12 11 9 8 0
POOL32C ST-EVA SWE
011000 t base 1010 111 offset
6 5 5 4 3 9
Format: SWE rt, offset (base) microM I PS

Purpose: Store Word EVA
To store aword to user mode virtual address space when executing in kernel mode.

Description: memory [GPR[base] + offset] « GPR[rt]

The least-significant 32-bit word of GPR rt is stored in memory at the location specified by the aligned effective
address. The 9-bit signed offset is added to the contents of GPR base to form the effective address.

The SWE instruction functions in exactly the same fashion as the SW instruction, except that address trandation is
performed using the user mode virtual address space mapping in the TLB when accessing an address within a mem-
ory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes
are also accessible. Refer to Volume 111, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5gy field being set to one.

Restrictions:

Only usable in kernel mode when accessing an address within a segment configured using UUSK, MUSK or
MUSUK access mode.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.
Operation:

vAddr ¢« sign_extend(offset) + GPR[base]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)
dataword ¢« GPR[rt]

StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Réfill

TLB Invalid

Bus Error

Address Error
Watch

Reserved Instruction

Coprocessor Unusable

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 464

465 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Word Left SWL
31 26 25 21 20 16 15 12 1 0
POOL32C ot base SWL offset
011000 1000
6 5 5 5 12
Format: SWL rt, offset (base) microMIPS

Purpose: Store Word Left

To store the most-significant part of a word to an unaligned memory address

Description: memory[GPR[base] + offset] ¢« GPR[rt]

The 12-bit signed offset is added to the contents of GPR base to form an effective address (Effdddr). EffAddr is the
address of the most-significant of 4 consecutive bytes forming a word () in memory starting at an arbitrary byte

boundary.

A part of W, the most-significant 1 to 4 bytes, is in the aligned word containing Eff4ddr. The same number of the
most-significant (left) bytes from the word in GPR 77 are stored into these bytes of .

The following figure illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4
consecutive bytes in 2..5 form an unaligned word starting at location 2. A part of /7, 2 bytes, is located in the aligned
word containing the most-significant byte at 2. First. SWL stores the most-significant 2 bytes of the low word from
the source register into these 2 bytes in memory. Next, the complementary SWR stores the remainder of the unaligned

word.

Figure 5.14 Unaligned Word Store Using SWL and SWR

Word at byte 2 in memory, big-endian byte order; each memory byte contains its own address

— significance —

2|3|4|5

GPR 24

most
(o]
o]

EIFI4|5

[o]"

E|FIGIH

least
6 I 7 I 8 | | Memory: Initial contents
HEEE
6 | - |After executing SWL $24,2($0)
6 I |ThenafterSWR $24,5(%0)

The bytes stored from the source register to memory depend on both the offset of the effective address within an
aligned word—that is, the low 2 bits of the address (v4ddr; _g)—and the current byte-ordering mode of the processor

(big- or little-endian). The following figure shows the bytes stored for every combination of offset and byte ordering.

MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

466

Store Word Left SWL

Figure 5.15 Bytes Stored by an SWL Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 <«big-endian 64-bit register
(IOTE[T] ewewsno [S[e]e[o]e[F]e]n]
3 2 1 0 «littleendian most — significance — least
most least 32-hit register | E | F | G | H |
— significance —

Memory contents after instruction (shaded is unchanged)

Big-endian Little-endian
byte ordering VvAddry o byte ordering
E F G H 0 i ik | E
i | E F G 1 i i 1TE F
i i | E F 2 i | E F G
i i k | E 3 E F G H

Restrictions:

None

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
PAAAr < pAddrpgrze-1. .2 || (PAddr; , xor ReverseEndian?)
If BigEndianMem = 0 then
pAddr ¢« pAddrpsizp-1..z || 0°
endif
byte ¢« vAddr,; , xor BigEndianCPU?
dataword « 02478*Pvte || GPRIrtl31. 24-g+byte
StoreMemory (CCA, byte, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch

467 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Word Left EVA SWLE

31 26 25 21 20 16 15 12 1 9 8 0
POOL32C ST-EVA SWLE
011000 “ base 1010 000 .
6 5 5 4 3 9
Format: SWLE rt, offset (base) microMIPS

Purpose: Store Word Left EVA

To store the most-significant part of a word to an unaligned user mode virtual address while operating in kernel mode.

Description: memory[GPR[base] + offset] ¢« GPR[rt]

The 9-bit signed offsef is added to the contents of GPR base to form an effective address (Effdddr). EffAddr is the
address of the most-significant of 4 consecutive bytes forming a word () in memory starting at an arbitrary byte
boundary.

A part of W, the most-significant 1 to 4 bytes, is in the aligned word containing Eff4ddr. The same number of the
most-significant (left) bytes from the word in GPR 77 are stored into these bytes of .

The following figure illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4
consecutive bytes in 2..5 form an unaligned word starting at location 2. A part of /¥, 2 bytes, is located in the aligned
word containing the most-significant byte at 2. First, SWLE stores the most-significant 2 bytes of the low word from
the source register into these 2 bytes in memory. Next, the complementary SWRE stores the remainder of the
unaligned word.

Figure 5.16 Unaligned Word Store Using SWLE and SWRE

Word at byte 2 in memory, big-endian byte order; each memory byte contains its own address
most — significance — least

I 0 I 1| 2 I 3 I 4 | 5] 6 | 7 I 8 | | Memory: Initial contents

ETF o]

01 1T E]F]4] 5] 6| .. |After executing SWLE $24,2($0)
["1

| 0 | 1] E | F | G | H 6 | |ThenafterSWRE $24,5(%0)

The bytes stored from the source register to memory depend on both the offset of the effective address within an
aligned word—that is, the low 2 bits of the address (v4ddr; _g)—and the current byte-ordering mode of the processor

(big- or little-endian). The following figure shows the bytes stored for every combination of offset and byte ordering.

The SWLE instruction functions in exactly the same fashion as the SWL instruction, except that address translation is
performed using the user mode virtual address space mapping in the TLB when accessing an address within a mem-
ory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes
are also accessible. Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5gy,4 field being set to one.

MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04 468

Store Word Left EVA SWLE

Figure 5.17 Bytes Stored by an SWLE Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 <«big-endian 64-bit register
(IOTE[T] ewewsno [S[e]e[o]e[F]e]n]
3 2 1 0 «littleendian most — significance — least
most least 32-hit register | E | F | G | H |
— significance —

Memory contents after instruction (shaded is unchanged)

Big-endian Little-endian
byte ordering VvAddry o byte ordering
E F G H 0 i ik | E
i | E F G 1 i i 1TE F
i i | E F 2 i | E F G
i i k | E 3 E F G H

Restrictions:

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
pAddr < pAddrpgrzp-1 2 || (PAddr; , xor ReverseEndian?)
If BigEndianMem = 0 then
pAddr « pAddrpgizpi..2 || 0
endif
byte « vAddr,; o xor BigEndianCPU?
dataword « 024°8%bvte || GPRITtl31, 24-g*byte
StoreMemory (CCA, byte, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch, Reserved Instruction, Coprocessor Unus-
able

469 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 470

Store Word Right SWR

31 26 25 21 20 16 15 12 1 0
POOL32C ot base SWR offset
011000 1001
6 5 5 5 12
Format: SWR rt, offset (base) microMIPS

Purpose: Store Word Right

To store the least-significant part of a word to an unaligned memory address

Description: memory[GPR[base] + offset] ¢« GPR[rt]

The 12-bit signed offset is added to the contents of GPR base to form an effective address (Effdddr). EffAddr is the
address of the least-significant of 4 consecutive bytes forming a word (#) in memory starting at an arbitrary byte
boundary.

A part of W, the least-significant 1 to 4 bytes, is in the aligned word containing Eff4ddr. The same number of the
least-significant (right) bytes from the word in GPR 77 are stored into these bytes of W.

The following figure illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4
consecutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes, is contained in the
aligned word containing the least-significant byte at 5. First, SWR stores the least-significant 2 bytes of the low word
from the source register into these 2 bytes in memory. Next, the complementary SWL stores the remainder of the
unaligned word.

Figure 5.18 Unaligned Word Store Using SWR and SWL

Word at byte 2 in memory, big-endian byte order, each mem byte contains its address
least — significance — least

I 0 I 1] 2 I 3 I 4 I 56 I 7 I 8 I | Memory: Initial contents

TP [T

I 0 I 1|2|3fG|[H]|®6 I |AfterexecutingSWR $24,5(%0)
I 0 I 1[E|FfG|[H] 6 I |ThenafterSWL $24,2(%0)

The bytes stored from the source register to memory depend on both the offset of the effective address within an
aligned word—that is, the low 2 bits of the address (v4ddr; _g)—and the current byte-ordering mode of the processor

(big- or little-endian). The following figure shows the bytes stored for every combination of offset and byte-ordering.

471 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Word Right

Figure 5.19 Bytes Stored by SWR Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 «big-endian 64-bit register
|i|j|k|| offset (vAddry, o) |A|B|C|D|E|F|G|H|
3 2 1 0 «littleeendian most — significance — least
most least 32-bit register | E | F | G | H |
— significance —
Memory contents after instruction (shaded is unchanged)
Big-endian Little-endian
byte ordering VvAddry o byte ordering
H | i k1 0 E F G H
G H | k| 1 F G H | I
F G H | I 2 G H | k1
E F G H 3 H | i ko
Restrictions:
None
Operation:

vAddr ¢« sign_extend(offset)

+ GPR[base]

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
PAAAr « pAddrpgrze-1. .2 || (pAddr; , xor ReverseEndian?)
If BigEndianMem = 0 then

pAddr ¢« pAddrpsizp-1..z || 0°
endif
byte ¢« vAddr,; , xor BigEndianCPU?
dataword « GPR[rtlsi_gipyte || o8 byte

StoreMemory (CCA, WORD-byte, dataword, pAddr,

Exceptions:

vAddr, DATA)

TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ |

nstruction Set, Revision 5.04

SWR

472

473 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Store Word Right EVA SWRE

31 26 25 21 20 16 15 12 1 9 8 0
POOL32C ST-EVA SWRE
011000 “ base 1010 001 .
6 5 5 4 3 9
Format: SWRE rt, offset (base) microMIPS

Purpose: Store Word Right EVA

To store the least-significant part of a word to an unaligned user mode virtual address while operating in kernel mode.

Description: memory[GPR[base] + offset] ¢« GPR[rt]

The 9-bit signed offsef is added to the contents of GPR base to form an effective address (Effdddr). EffAddr is the
address of the least-significant of 4 consecutive bytes forming a word (#) in memory starting at an arbitrary byte
boundary.

A part of W, the least-significant 1 to 4 bytes, is in the aligned word containing Eff4ddr. The same number of the
least-significant (right) bytes from the word in GPR 77 are stored into these bytes of W.

The following figure illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4
consecutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes, is contained in the
aligned word containing the least-significant byte at 5. First, SWRE stores the least-significant 2 bytes of the low
word from the source register into these 2 bytes in memory. Next, the complementary SWLE stores the remainder of
the unaligned word.

Figure 5.20 Unaligned Word Store Using SWRE and SWLE

Word at byte 2 in memory, big-endian byte order, each mem byte contains its address
least — significance — least

I 0 I 1] 2 I 3 I 4 I 56 I 7 I 8 I | Memory: Initial contents

TP [T

I 0 I 1|2|3fG|[H]|®6 I |AfterexecutingSWRE $24,5(%0)
I 0 I 1| E|FJG|H]E® I |ThenafterSWLE $24,2(%$0)

The bytes stored from the source register to memory depend on both the offset of the effective address within an
aligned word—that is, the low 2 bits of the address (v4ddr; _g)—and the current byte-ordering mode of the processor

(big- or little-endian). The following figure shows the bytes stored for every combination of offset and byte-ordering.

The LWE instruction functions in exactly the same fashion as the LW instruction, except that address translation is
performed using the user mode virtual address space mapping in the TLB when accessing an address within a mem-
ory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes
are also accessible. Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5gy,4 field being set to one.

MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04 474

Store Word Right EVA

Figure 5.21 Bytes Stored by SWRE Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 «big-endian 64-bit register
|i|j|k|| offset (vAddr; o) |A|B|C|D|E|F|G|H|
3 2 1 0 «littleeendian most — significance — least
most least 32-bit register | E | F | G | H |
— significance —
Memory contents after instruction (shaded is unchanged)
Big-endian Little-endian
byte ordering VvAddry o byte ordering
H | i k1 0 E F G H
G H | k| 1 F G H | I
F G H | I 2 G H | k1
E F G H 3 H | i ko
Restrictions:

SWRE

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured

using UUSK, MUSK or MUSUK access mode.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
(vAddr, DATA, STORE)

(pAddr, CCA) ¢« AddressTranslation

pPAddr < pAddrpgrze-1. 2 || (PAAdr; , xor ReverseEndian?)
If BigEndianMem = 0 then

pAddr « pAddrpgizpi..2 || 0
endif

byte « vAddr, o xor BigEndianCPU?

dataword < GPRITtls gepyre || 087P¥EC

StoreMemory (CCA, WORD-byte, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch, Coprocessor Unusable

475 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 476

Store Word Indexed from Floating Point SWXC1
31 26 25 21 20 16 15 11 10 9 8 0
POOL 32F . SWXC1
010101 index base fd 0 010001000
6 5 5 5 2 9
Format: swxcl fd, index(base) microM I PS
microMIPS

Purpose: Store Word Indexed from Floating Point

To store aword from an FPR to memory (GPR+GPR addressing)

Description: memory[GPR[base] + GPR[index]] ¢« FPRI[£d]

The low 32-bit word from FPR fd is stored in memory at the location specified by the aligned effective address. The
contents of GPR index and GPR base are added to form the effective address.

Restrictions:

An Address Error exception occursif EffectiveAddress, g 0 (not word-aligned).

Compatibility and Availability:

SWXC1: Required in all versions of MIPS64 since MIPS64rl. Not available in MIPS32rl. Required by MIPS32r2
and subsequent versions of MIPS32. When required, required whenever FPU is present, whether a 32-bit or 64-bit

FPU, whether in 32-bit or 64-bit FP Register Mode (FIRgg4=0 or 1, FR=0o0r 1,)

Operation:

vAddr ¢« GPR[base] + GPR[index]
if vAddr; , # 0° then

SignalException (AddressError)
endif

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)

dataword ¢« ValueFPR(fd, UNINTERPRETED_WORD)

StoreMemory (CCA, WORD, dataword, pAddr, vAddr,

Exceptions:

DATA)

TLB Refill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

477 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 478

479

SYNC

31 26 25 16 15 6 5 0
POOL32A 0 e SYNC POOL 32AXf
000000 0000000000 P 0110101101 111100
6 5 5 10 6
Format: SYNC (stype = 0 implied) microM I PS
SYNC stype microMIPS

Purpose: To order loads and stores for shared memory.

Description:

These types of ordering guarantees are available through the SY NC instruction:

» Completion Barriers

* Ordering Barriers

Smple Description for Completion Barrier:

The barrier affects only uncached and cached coherent loads and stores.

The specified memory instructions (loads or stores or both) that occur before the SYNC instruction must be
completed before the specified memory instructions after the SYNC are allowed to start.

L oads are completed when the destination register is written. Stores are completed when the stored value is
visible to every other processor in the system.

Detailed Description for Completion Barrier:

Every synchronizable specified memory instruction (loads or stores or both) that occurs in the instruction
stream before the SYNC instruction must be already globally performed before any synchronizable speci-
fied memory instructions that occur after the SYNC are alowed to be performed, with respect to any other
processor or coherent 1/0 module.

The barrier does not guarantee the order in which instruction fetches are performed.

A stype value of zero will always be defined such that it performs the most complete set of synchronization
operations that are defined. This means stype zero always does a completion barrier that affects both loads
and stores preceding the SYNC instruction and both |oads and stores that are subsequent to the SYNC
instruction. Non-zero values of stype may be defined by the architecture or specific implementations to per-
form synchronization behaviors that are less compl ete than that of stype zero. If an implementation does not
use one of these non-zero values to define a different synchronization behavior, then that non-zero val ue of
stype must act the same as stype zero completion barrier. This allows software written for an implementa-
tion with alighter-weight barrier to work on another implementation which only implements the stype zero
completion barrier.

A completion barrier is required, potentially in conjunction with SSNOP (in Release 1 of the Architecture)
or EHB (in Release 2 of the Architecture), to guarantee that memory reference results are visible across
operating mode changes. For example, acompletion barrier is required on someimplementations on entry to
and exit from Debug Mode to guarantee that memory effects are handled correctly.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

SYNC

SYNC behavior when the stype field is zero:

» A completion barrier that affects preceding loads and stores and subsegquent |oads and stores.

Smple Description for Ordering Barrier:
» Thebarrier affects only uncached and cached coherent loads and stores.

» The specified memory instructions (loads or stores or both) that occur before the SYNC instruction must
always be ordered before the specified memory instructions after the SYNC.

* Memory instructions which are ordered before other memory instructions are processed by the load/store
datapath first before the other memory instructions.

Detailed Description for Ordering Barrier:

» Every synchronizable specified memory instruction (loads or stores or both) that occurs in the instruction
stream before the SYNC instruction must reach a stage in the |oad/store datapath after which no instruction
re-ordering is possible before any synchronizable specified memory instruction which occurs after the
SYNC instruction in the instruction stream reaches the same stage in the load/store datapath.

» If any memory instruction before the SY NC instruction in program order, generates a memory request to the
external memory and any memory instruction after the SYNC instruction in program order also generates a
memory request to external memory, the memory request belonging to the older instruction must be globally
performed before the time the memory request belonging to the younger instruction is globally performed.

» Thebarrier does not guarantee the order in which instruction fetches are performed.

As compared to the completion barrier, the ordering barrier is a lighter-weight operation as it does not require the
specified instructions before the SYNC to be already completed. Instead it only requires that those specified instruc-
tions which are subsequent to the SYNC in the instruction stream are never re-ordered for processing ahead of the
specified instructions which are before the SYNC in the instruction stream. This potentially reduces how many cycles
the barrier instruction must stall before it completes.

The Acquire and Release barrier types are used to minimize the memory orderings that must be maintained and still
have software synchronization work.

Implementations that do not use any of the non-zero values of stype to define different barriers, such as ordering bar-
riers, must make those stype values act the same as stype zero.

For the purposes of this description, the CACHE, PREF and PREFX instructions are treated as |oads and stores. That

is, these instructions and the memory transactions sourced by these instructions obey the ordering and completion
rules of the SYNC instruction.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 480

SYNC

Table 5.28 lists the available completion barrier and ordering barriers behaviors that can be specified using the stype

481

field..
Table 5.28 Encodings of the Bits[10:6] of the SYNC instruction; the SType Field
Younger
Olderinstructions instructions Olderinstructions
which must reach | which must reach which must be
the load/store the load/store globally
ordering point ordering point performed when
before the SYNC only after the the SYNC
instruction SYNC instruction instruction
Code Name completes. completes. completes Compliance
0x0 SYNC Loads, Stores Loads, Stores Loads, Stores Required
or
SYNCO
0x4 SYNC_WMB Stores Stores Optional
or
SYNC4
0x10 SYNC_MB Loads, Stores Loads, Stores Optional
or
SYNC 16
0x11| SYNC_ACQUIRE Loads Loads, Stores Optional
or
SYNC 17
0x12| SYNC_RELEASE Loads, Stores Stores Optional
or
SYNC 18
0x13 SYNC_RMB Loads Loads Optional
or
SYNC 19
0x1-0x3, 0x5-0xF Implementation-Spe-
cific and Vendor
Specific Sync Types
0x14 - Ox1F RESERVED Reserved for MIPS
Technologies for
future extension of
the architecture.
Terms:

Synchronizable: A load or store instruction is synchronizable if the load or store occurs to a physical location in
shared memory using a virtual location with a memory access type of either uncached or cached coherent. Shared
memory is memory that can be accessed by more than one processor or by a coherent 1/0 system module.

Performed load: A load instruction is performed when the value returned by the load has been determined. The result
of aload on processor A has been determined with respect to processor or coherent I/0O module B when a subsequent
store to the location by B cannot affect the value returned by the load. The store by B must use the same memory
access type as the load.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

SYNC

Performed store: A store instruction is performed when the store is observable. A store on processor A is observable
with respect to processor or coherent 1/0 module B when a subsequent load of the location by B returns the value
written by the store. The load by B must use the same memory access type as the store.

Globally performed load: A load instruction is globally performed when it is performed with respect to all processors
and coherent 1/0 modules capable of storing to the [ocation.

Globally performed store: A store instruction is globally performed when it is globally observable. It is globally
observable when it is observable by all processors and I/O modules capable of |oading from the location.

Coherent 1/0 module: A coherent 1/0 module is an Input/Output system component that performs coherent Direct
Memory Access (DMA). It reads and writes memory independently as though it were a processor doing loads and
storesto locations with a memory access type of cached coherent.

Load/Store Datapath: The portion of the processor which handles the load/store data requests coming from the pro-
cessor pipeline and processes those requests within the cache and memory system hierarchy.

Restrictions:

The effect of SYNC on the global order of loads and stores for memory access types other than uncached and cached
coherent is UNPREDICTABLE.

Operation:

SyncOperation (stype)

Exceptions:

None

Programming Notes:

A processor executing load and store instructions observes the order in which loads and stores using the same mem-
ory access type occur in the instruction stream; thisis known as program order.

A parallel program has multiple instruction streams that can execute simultaneously on different processors. In mul-
tiprocessor (MP) systems, the order in which the effects of loads and stores are observed by other processors—the
global order of the loads and store—determines the actions necessary to reliably share datain parallel programs.

When al processors observe the effects of loads and storesin program order, the system is strongly ordered. On such
systems, parallel programs can reliably share data without explicit actionsin the programs. For such a system, SYNC
has the same effect as a NOP. Executing SY NC on such a system is not necessary, but neither isit an error.

If amultiprocessor system is not strongly ordered, the effects of load and store instructions executed by one processor
may be observed out of program order by other processors. On such systems, parallel programs must take explicit
actions to reliably share data. At critical points in the program, the effects of loads and stores from an instruction
stream must occur in the same order for all processors. SYNC separates the loads and stores executed on the proces-
sor into two groups, and the effect of all loads and stores in one group is seen by all processors before the effect of
any load or storein the subsequent group. In effect, SYNC causes the system to be strongly ordered for the executing
processor at the instant that the SYNC is executed.

Many MIPS-based multiprocessor systems are strongly ordered or have a mode in which they operate as strongly
ordered for at |east one memory access type. The MIPS architecture also permits implementation of MP systems that
are not strongly ordered; SYNC enables the reliable use of shared memory on such systems. A parallel program that
does not use SYNC generally does not operate on a system that is not strongly ordered. However, a program that does
use SYNC works on both types of systems. (System-specific documentation describes the actions needed to reliably
share datain parallel programs for that system.)

The behavior of aload or store using one memory access type is UNPREDICTABLE if aload or store was previ-

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 482

483

SYNC

ously made to the same physical location using a different memory access type. The presence of a SYNC between the
references does not ater this behavior.

SYNC affects the order in which the effects of load and store instructions appear to all processors; it does not gener-
ally affect the physical memory-system ordering or synchronization issues that arise in system programming. The
effect of SYNC on implementation-specific aspects of the cached memory system, such as writeback buffers, is not
defined.

Processor A (writer)
Conditions at entry:
The value 0 has been stored in FLAG and that value is observable by B

SW R1, DATA # change shared DATA value

LI R2, 1

SYNC # Perform DATA store before performing FLAG store
SwW R2, FLAG # say that the shared DATA value is valid

Processor B (reader)

LI R2, 1
1: Lw R1, FLAG # Get FLAG
BNE R2, R1, 1B# if it says that DATA is not valid, poll again
NOP
SYNC # FLAG value checked before doing DATA read
LW R1, DATA # Read (valid) shared DATA value

The code fragments above shows how SYNC can be used to coordinate the use of shared data between separate writer
and reader instruction streams in amultiprocessor environment. The FLAG location is used by the instruction streams
to determine whether the shared data item DATA is valid. The SYNC executed by processor A forces the store of
DATA to be performed globally before the store to FLAG is performed. The SY NC executed by processor B ensures
that DATA is not read until after the FLAG value indicates that the shared datais valid.

Software written to use a SYNC instruction with a non-zero stype value, expecting one type of barrier behavior,
should only be run on hardware that actually implements the expected barrier behavior for that non-zero stype value
or on hardware which implements a superset of the behavior expected by the software for that stype value. If the hard-
ware does not perform the barrier behavior expected by the software, the system may fail.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 484

Synchronize Caches to Make Instruction Writes Effective SYNCI

485

31 26 25 21 20 16 15 0
POOL 321 SYNCI
010000 10000 base offset
6 5 5 16
Format: SYNCI offset (base) microM I PS

Purpose: Synchronize Caches to Make Instruction Writes Effective

To synchronize all caches to make instruction writes effective.

Description:

Thisinstruction is used after a new instruction stream is written to make the new instructions effective relative to an
instruction fetch, when used in conjunction with the SYNC and JALR.HB, JR.HB, or ERET instructions, as
described below. Unlike the CACHE instruction, the SYNCI instruction is available in all operating modes in an
implementation of Release 2 of the architecture.

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective address. The
effective address is used to address the cache line in all caches which may need to be synchronized with the write of
the new instructions. The operation occurs only on the cache line which may contain the effective address. One
SYNCI instruction isrequired for every cache line that was written. See the Programming Notes below.

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur as a byproduct of thisinstruc-
tion. Thisinstruction never causes TLB Modified exceptions nor TLB Refill exceptions with a cause code of TLBS.
Thisinstruction never causes Execute-Inhibit nor Read-Inhibit exceptions.

A Cache Error exception may occur as abyproduct of thisinstruction. For example, if awriteback operation detects a
cache or bus error during the processing of the operation, that error isreported viaa Cache Error exception. Similarly,
aBus Error Exception may occur if abus operation invoked by thisinstruction is terminated in an error.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It isimplementation dependent whether a data watch is triggered by a SYNCI instruction whose address matches the
Watch register address match conditions.In multiprocessor implementations where instruction caches are not coher-
ently maintained by hardware, the SYNCI instruction may optionally affect all coherent icaches within the system. If
the effective address uses a coherent Cacheability and Coherency Attribute (CCA), then the operation may be global-
ized, meaning it is broadcast to all of the coherent instruction caches within the system. If the effective address does
not use one of the coherent CCAs, there is no broadcast of the SYNCI operation. If multiple levels of caches are to be
affected by one SYNCI instruction, all of the affected cache levels must be processed in the same manner - either all
affected cache levels use the globalized behavior or all affected cache levels use the non-globalized behavior.

In multiprocessor implementations where instruction caches are coherently maintained by hardware, the SYNCI
instruction should behave as a NOP instruction.
Restrictions:

The operation of the processor is UNPREDICTABLE if the effective address references any instruction cache line
that contains instructions to be executed between the SYNCI and the subsequent JALR.HB, JR.HB, or ERET instruc-
tion reguired to clear the instruction hazard.

The SYNCI instruction has no effect on cache lines that were previously locked with the CACHE instruction. If cor-
rect software operation depends on the state of alocked line, the CACHE instruction must be used to synchronize the
caches.

The SYNCI instruction acts on the current processor at a minimum. It is implementation specific whether it affects

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Synchronize Caches to Make Instruction Writes Effective SYNCI

the caches on other processors in a multiprocessor system, except as required to perform the operation on the current
processor (as might be the case if multiple processors share an L2 or L3 cache).

Full visibility of the new instruction stream requires execution of a subsequent SYNC instruction, followed by a
JALR.HB, JR.HB, DERET, or ERET instruction. The operation of the processor is UNPREDICTABLE if this
seguence is not followed.

Operation:

vaddr ¢« GPR[base] + sign_extend(offset)
SynchronizeCacheLines (vaddr) /* Operate on all caches */

Exceptions:

Reserved Instruction Exception (Release 1 implementations only)
TLB Refill Exception

TLB Invalid Exception

Address Error Exception

Cache Error Exception

Bus Error Exception

Programming Notes:

When the instruction stream is written, the SYNCI instruction should be used in conjunction with other instructions
to make the newly-written instructions effective. The following example shows a routine which can be called after the
new instruction stream is written to make those changes effective. Note that the SYNCI instruction could be replaced
with the corresponding sequence of CACHE instructions (when access to Coprocessor 0 is available), and that the
JR.HB instruction could be replaced with JALR.HB, ERET, or DERET instructions, as appropriate. A SYNC instruc-
tion is required between the final SYNCI instruction in the loop and the instruction that clears instruction hazards.

/*

* This routine makes changes to the instruction stream effective to the
* hardware. It should be called after the instruction stream is written.
* On return, the new instructions are effective.

* Inputs:
* a0 = Start address of new instruction stream
* al = Size, in bytes, of new instruction stream
*/
beqg al, zero, 20f /* If size==0, */
nop /* branch around */
addu al, a0, al /* Calculate end address + 1 */
rdhwr vO0, HW_SYNCI_Step /* Get step size for SYNCI from new */
/* Release 2 instruction */
beg v0, zero, 20f /* If no caches require synchronization, */
nop /* branch around */
10: synci 0(a0) /* Synchronize all caches around address */
addu a0, a0, vO /* Add step size in delay slot */
sltu vl, a0, al /* Compare current with end address */
bne vl, zero, 10b /* Branch if more to do */
nop /* branch around */
sync /* Clear memory hazards */
20: jr.hb ra /* Return, clearing instruction hazards */
nop

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

486

487 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

System Call SYSCALL

31 26 25 16 15 6 5 0
POOL32A code SYSCALL POOL 32AXf
000000 1000101101 111100
6 10 10 6
Format: SysScaALL microM | PS

Purpose: System Call
To cause a System Call exception

Description:

A system call exception occurs, immediately and unconditionally transferring control to the exception handler.

The code field is available for use as software parameters, but is retrieved by the exception handler only by loading
the contents of the memory word containing the instruction.

Restrictions:

None

Operation:

SignalException (SystemCall)

Exceptions:
System Call

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 488

Trap if Equal TEQ
31 26 25 21 20 16 15 12 11 0
POOL32A r rs code TEQ POOL 32A Xf
000000 000000 111100
6 5 5 4 6 6
Format: TEQ rs, rt microM I PS

489

Purpose: Trap if Equal

To compare GPRs and do a conditiona trap

Description: if GPR[rs]

GPR[rt] then Trap

Compare the contents of GPR rsand GPR rt as signed integers; if GPR rsis equal to GPR rt, then take a Trap excep-

tion.

The contents of the code field are ignored by hardware and may be used to encode information for system software.

To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] = GPR[rt]

then

SignalException (Trap)

endif

Exceptions:

Trap

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Trap if Equal Immediate TEQI

31 26 25 21 20 16 15 o
POOL 32I TEQI _ .
010000 01110 rs immediate
6 5 5 16
Format: TEQI rs, immediate microM1PS

Purpose: Trap if Equal Immediate
To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] = immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rsis equal to immediate,
then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] = sign_extend(immediate) then
SignalException (Trap)
endif

Exceptions:

Trap

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 490

Trap if Greater or Equal TGE
31 26 25 21 20 16 15 12 11 0
POOL32A it s code TGE POOL 32A X f
000000 001000 111100
6 5 5 4 6 6
Format: TGE rs, rt microMIPS

491

Purpose: Trap if Greater or Equal

To compare GPRs and do a conditiona trap

Description: if GPR[rs] 2 GPR[rt] then Trap

Compare the contents of GPR rsand GPR rt as signed integers; if GPR rsis greater than or equal to GPR rt, then take
a Trap exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.

To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs]

2 GPR[rt]

then

SignalException (Trap)

endif

Exceptions:

Trap

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Trap if Greater or Equal Immediate TGEI
31 26 25 21 20 16 15 0
POOL 32I TGEI .)
010000 01001 s immegiiate
6 5 5 16
Format: TGEI rs, immediate microMIPS

Purpose: Trap if Greater or Equal Immediate
To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs]

> immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rsis greater than or equal

to immediate, then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] 2 sign_extend(immediate)

SignalException (Trap)

endif

Exceptions:

Trap

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

then

492

Trap if Greater or Equal Immediate Unsigned TGEIU

493

31 26 25 21 20 16 15 0
POOL32I TGEIU . '
010000 01011 rs immediate
6 5 5 16
Format: TGEIU rs, immediate microM I PS

Purpose: Trap if Greater or Equal Immediate Unsigned
To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] 2 immediate then Trap

Compare the contents of GPR rs and the 16-bit sign-extended immediate as unsigned integers; if GPR rs is greater
than or equal to immediate, then take a Trap exception.

Because the 16-bit immediate is sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range.

Restrictions:

None

Operation:

if (0 || GPRI[rs]) 2 (0 || sign_extend(immediate)) then
SignalException (Trap)
endif

Exceptions:

Trap

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Trap if Greater or Equal Unsigned TGEU

31 26 25 21 20 16 15 12 11 6 5 0
POOL 32A t s code TGEU POOL 32A X f
000000 010000 111100
6 5 5 4 6 6
Format: TGEU rs, rt microM | PS

Purpose: Trap if Greater or Equal Unsigned
To compare GPRs and do a conditiona trap

Description: if GPR[rs] 2 GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as unsigned integers; if GPR rsis greater than or equal to GPR rt, then
take a Trap exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if (0 || GPR[rs]) = (0 || GPR[rt]) then
SignalException (Trap)
endif

Exceptions:

Trap

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 494

495 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Probe TLB for Matching Entry TLBP

31 26 25 16 15 6 5 0
POOL32A 0 TLBP POOL 32AXf
000000 0000000000 0000001101 111100
6 10 10 6
Format: TLBP microM I PS

Purpose: Probe TLB for Matching Entry
To find amatching entry in the TLB.

Description:

The Index register is loaded with the address of the TLB entry whose contents match the contents of the EntryHi reg-
ister. If no TLB entry matches, the high-order bit of the Index register is set. In Release 1 of the Architecture, it is
implementation dependent whether multiple TLB matches are detected on a TLBP. However, implementations are
strongly encouraged to report multiple TLB matches only on a TLB write. In Release 2 of the Architecture, multiple
TLB matches may only be reported on a TLB write. In Release 3 of the Architecture, multiple TLB matches may be
reported on either TLB write or TLB probe.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

Index < 1 || UNPREDICTABLE’!
for i in 0...TLBEntries-1
if ((TLB[ilypyy and not (TLB[ilyaek)) =
(EntryHiypyy and not (TLB[ilyuex))) and
((TLB[i]lg = 1) or (TLB[i]agrp = EntryHipgip))then
Index « i
endif
endfor

Exceptions:
Coprocessor Unusable
Machine Check

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 496

497 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Read Indexed TLB Entry TLBR

31 26 25 16 15 6 5 0
POOL32A 0 TLBR POOL 32AXf
000000 0000000000 0001001101 111100
6 10 10 6
Format: TLBR microM I PS

Purpose: Read Indexed TLB Entry
To read an entry from the TLB.

Description:

The EntryHi, EntryLo0, EntryLo1, and PageMask registers are loaded with the contents of the TLB entry pointed
to by the Index register. In Release 1 of the Architecture, it is implementation dependent whether multiple TLB
matches are detected on a TLBR. However, implementations are strongly encouraged to report multiple TLB matches
only on a TLB write. In Release 2 of the Architecture, multiple TLB matches may only be reported on a TLB write.
In Release 3 of the Architecture, multiple TLB matches may be detected on a TLBR.

In an implementation supporting TLB entry invalidation (Config4,g = 2 or Config4,g = 3), reading an invalidated
TLB entry causes 0 to be written to EntryHi, EntryLoO, EntryLol registers and the PageMasky,as register field.

Note that the value written to the EntryHi, EntryLoO, and EntryLol registers may be different from that originally
written to the TLB viathese registersin that:

» Thevaluereturned in the VPN2 field of the EntryHi register may havethose bits set to zero corresponding to the
one bitsin the Mask field of the TLB entry (the least-significant bit of VPN2 corresponds to the |east-significant
bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed after aTLB
entry iswritten and then read.

» Thevaluereturned in the PEN field of the EntryLoO and EntryLo1l registers may have those bits set to zero cor-
responding to the one bitsin the Mask field of the TLB entry (the least significant bit of PFN corresponds to the
least significant bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed
after aTLB entry iswritten and then read.

* Thevaluereturned in the G bit in both the EntryLoO and EntryLo1 registers comes from the single G hit in the
TLB entry. Recall that this bit was set from the logical AND of the two G bitsin EntryLoO and EntryLol when
the TLB was written.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equa to the number of TLB
entriesin the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

1 ¢« Index
if 1 > (TLBEntries - 1) then
UNDEFINED
endif
if ((Config4;g = 2 or Configd;p = 3) and TLB[i]VPNZ?invalid = 1) then
Pagemasky,g, ¢ 0
EntryHi <« O
EntryLol « 0

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 498

EntryLoO <« 0
EntryHiggmyw ¢ 1

else
PageMasky,gx ¢ TLB[ilyagk
EntryHi «
(TLB[ilypyy and not TLB[ilu.sx) || # Masking implem dependent
0° || TLBLilasip
EntryLol « 02 ||
(TLB[i]ppy; and not TLB[ila.ex) || # Masking mplem dependent
TLB[ile; || TLBI[ilpy || TLBI[ilyy || TLBI[ilg
EntryLo0 « 072 ||
(TLB[ilppyg and not TLB[ilu.sx) || # Masking mplem dependent
TLB[ileo || TLBIilpg || TLBIilye || TLBIilg
endif
Exceptions:

Coprocessor Unusable
Machine Check

499 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Write Indexed TLB Entry

TLBWI

31 26 25 16 15
POOL32A TLBWI POOL 32Axf
000000 0000000000 0010001101 111100
6 10 10 6
Format: TLBWI microM I PS

Purpose: Write Indexed TLB Entry

To writeor invalidate a TLB entry indexed by the Index register.

Description:

If Configd g < 2 or EntryHigny=0:

The TLB entry pointed to by the Index register iswritten from the contents of the EntryHi, EntryLo0O, EntryLo1,

and PageMask registers. It isimplementation dependent whether multiple TLB matches are detected on a

TLBWI. In such an instance, a Machine Check Exception issignaled. In Release 2 of the Architecture, multiple
TLB matches may only be reported on a TLB write. The information written to the TLB entry may be different
from that in the EntryHi, EntryLoO, and EntryLol registers, in that:

e Thevaluewritten to the VPN2 field of the TLB entry may have those bits set to zero corresponding to the
one hitsin the Mask field of the PageMask register (the least significant bit of VPN2 corresponds to the
least significant bit of the Mask field). It isimplementation dependent whether these bits are preserved or
zeroed during a TLB write.

e Thevauewritten to the PFNO and PFNL fields of the TLB entry may have those bits set to zero correspond-
ing to the one bits in the Mask field of PageMask register (the least significant bit of PFN corresponds to
the least significant bit of the Mask field). It isimplementation dependent whether these bits are preserved or
zeroed during a TLB write.

» Thesingle G bitinthe TLB entry is set from the logical AND of the G bitsin the EntryLoO and EntryLol
registers.

If Configd e > 1 and EntryHigya=1:

The TLB entry pointed to by the Index register hasits VPN2 field marked asinvalid. This causes the entry to be

ignored on TLB matches for memory accesses. No Machine Check is generated.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

1 ¢« Index

if (Configd;yp = 2 or Configd(z = 3)

TLB[1] VPN2_invalid « 0

if

(EntryHIgyryv=1) then

TLB[1ilypn2 invalia < 1
break

endif

endif

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

then

500

TLB[i]yask ¢ PageMasky,qx

TLB[ilypyy ¢ EntryHiypy, and not PageMasky.q, # Implementation dependent
TLB[i]agrp ¢ EntryHigrp

TLB[i]lg ¢ EntryLolg and EntryLoOg

TLB[ilppy; ¢ EntryLolppy and not PageMasky,.x # Implementation dependent
TLB[i]q; ¢ EntryLolg

TLB[i]p; ¢« EntryLolp

TLB[i]y; ¢ EntryLoly

TLB[ilppyo ¢ EntryLoOppy and not PageMasky,qx # Implementation dependent
TLB[ilcp ¢ EntryLoOg

TLB[ilpy ¢ EntryLoOp

TLB[ilyo ¢ EntryLoOy

Exceptions:
Coprocessor Unusable
Machine Check

501 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Write Random TLB Entry

TLBWR

31 26 25 16 15
POOL32A TLBWR POOL 32Axf
000000 0000000000 0011001101 111100
6 10 10 6
Format: TLBWR microM I PS

Purpose: Write Random TLB Entry

To write a TLB entry indexed by the Random register.

Description:

The TLB entry pointed to by the Random register iswritten from the contents of the EntryHi, EntryLoO, EntryLo1,
and PageMask registers. It is implementation dependent whether multiple TLB matches are detected on a TLBWR.
In such an instance, a Machine Check Exception is signaled. In Release 2 of the Architecture, multiple TLB matches
may only be reported on a TLB write. The information written to the TLB entry may be different from that in the
EntryHi, EntryLoO, and EntryLo1 registers, in that:

The value written to the VPN2 field of the TLB entry may have those bits set to zero corresponding to the one
bitsin the Mask field of the PageMask register (the least significant bit of VPN2 corresponds to the least signif-
icant bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed during a
TLB write.

The value written to the PFNO and PFN1 fields of the TLB entry may have those bits set to zero corresponding to
the one bitsin the Mask field of PageMask register (the least significant bit of PFN corresponds to the least sig-
nificant bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed during a
TLB write.

Thesingle G bitinthe TLB entry is set from the logical AND of the G bitsin the EntryLoO and EntryLol regis-
ters.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

i « Random
if (Config4;zp = 2 or Configd;y = 3) then
TLB[i]VPNZ_invalid « 0
endif
TLB[1]yask ¢ PageMaskygck
TLB[ilypyy ¢ EntryHiypy, and not PageMasky,s, # Implementation dependent
TLB[i]agrp ¢ EntryHingrp
TLB[i]lg ¢ EntryLolg and EntryLoOg
TLB[i]ppy1 ¢ EntryLolppy and not PageMasky,qr # Implementation dependent
TLB[i]q; ¢ EntryLolg
TLB([i]p; ¢« EntryLolp
TLB[i]y; ¢ EntryLoly
TLB[ilpryo ¢ EntryLoOppy and not PageMasky,.x # Implementation dependent
TLB[ilcp ¢ EntryLoO¢
TLB[i]lpy ¢ EntryLoOp
TLB([i]lyo ¢ EntryLoOy

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 502

Exceptions:
Coprocessor Unusable
Machine Check

503 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Trap if Less Than TLT
31 26 25 21 20 16 15 12 11 0
POOL 32A it rs code TLT POOL 32AXf
000000 100000 111100
6 5 5 4 6 6
Format: TLT rs, rt microM I PS

Purpose: Trapif Less Than
To compare GPRs and do a conditiona trap

Description: if GPR[rs] < GPR[rt] then Trap

Compare the contents of GPR rsand GPR rt as signed integers; if GPR rsislessthan GPR rt, then take a Trap excep-

tion.

The contents of the code field are ignored by hardware and may be used to encode information for system software.

To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] < GPR[rt]

then

SignalException (Trap)

endif

Exceptions:

Trap

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

504

Trap if Less Than Immediate TLTI
31 26 25 21 20 16 15 0
POOL 32I TLTI . .
010000 01000 rs immediate
6 5 5 16
Format: TLTI rs, immediate microM I PS

505

Purpose: Trap if Less Than Immediate
To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] < immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rsislessthan immediate,
then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] < sign_extend(immediate)

SignalException (Trap)

endif

Exceptions:

Trap

then

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Trap if Less Than Immediate Unsigned TLTIU

31 26 25 21 20 16 15 0
POOL 32l TLTIU -
010000 01010 rs immediate
6 5 5 16
Format: TLTIU rs, immediate microM I PS

Purpose: Trap if Less Than Immediate Unsigned
To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] < immediate then Trap

Compare the contents of GPR rs and the 16-bit sign-extended immediate as unsigned integers; if GPR rsis less than
immediate, then take a Trap exception.

Because the 16-bit immediate is sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range.

Restrictions:

None

Operation:

if (0 || GPRIrs]) < (0 || sign_extend(immediate)) then
SignalException (Trap)
endif

Exceptions:

Trap

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 506

Trap if Less Than Unsigned TLTU
31 26 25 21 20 16 15 12 11 0
POOL32A it rs code TLTU POOL 32A X f
000000 101000 111100
6 5 5 4 6 6
Format: TLTU rs, rt microM | PS

507

Purpose: Trapif Less Than Unsigned
To compare GPRs and do a conditiona trap

Description: if GPR[rs] < GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as unsigned integers; if GPR rs is less than GPR rt, then take a Trap

exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.

To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || GPR[rt]) then

SignalException (Trap)

endif

Exceptions:

Trap

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Trap if Not Equal TNE
31 26 25 21 20 16 15 12 11 0
POOL32A it rs code TNE POOL 32AXf
000000 110000 111100
6 5 5 4 6 6
Format: TNE rs, rt microM I PS

Purpose: Trapif Not Equal
To compare GPRs and do a conditiona trap

Description: if GPR[rs] # GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as signed integers; if GPR rsis not equal to GPR rt, then take a Trap

exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.

To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] # GPR[rt]

then

SignalException (Trap)

endif

Exceptions:

Trap

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

508

Trap if Not Equal Immediate TNEI
31 26 25 21 20 16 15 0
POOL 32 TNEI . !
010000 01100 rs immediate
6 5 5 16
Format: TNEI rs, immediate microM | PS

509

Purpose: Trap if Not Equal Immediate
To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] # immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rsis not equal to imme-
diate, then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] # sign_extend(immediate)

SignalException (Trap)

endif

Exceptions:

Trap

then

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Floating Point Truncate to Long Fixed Point TRUNC.L.fmt

31 26 25 22 21 20 16 15 14 13 6 5 0
POOL 32F ft s o limt TRUNC.L POOL 32FXf
010101 10001100 111011
6 5 5 1 1 8 6

Format: TRUNC.L.fmt
TRUNC.L.S ft, fs microMIPS
TRUNC.L.D ft, fs microMIPS
Purpose: Floating Point Truncate to Long Fixed Point

To convert an FP value to 64-bit fixed point, rounding toward zero

Description: FPR[ft] « convert_and_round (FPR[fs])

Thevauein FPR fs, in format fmt, is converted to avalue in 64-bit long fixed point format and rounded toward zero
(rounding mode 1). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range -2%° to 2%3-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to ft and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 26%-1, is written to ft.

Restrictions:

Thefields fs and ft must specify valid FPRs; fsfor type fmt and fd for long fixed point; if they are not valid, the result
isUNPREDICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(ft, L, ConvertFmt (ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Inexact

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 510

511 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Floating Point Truncate to Word Fixed Point

TRUNC.W.fmt

31 26 25 22 21 20 16 15 14 13
POOL32F fit fs 0 fm TRUNC.W POOL 32FXf
010101 t 10101100 111011
6 5 5 1 1 8 6
Format: TRUNC.W.fmt
TRUNC.W.S ft, fs microMIPS
TRUNC.W.D ft, fs microMIPS

Purpose: Floating Point Truncate to Word Fixed Point

To convert an FP value to 32-bit fixed point, rounding toward zero

Description: FPR[ft] « convert_and_round (FPR[fs])

The value in FPR fs, in format fnt, is converted to a value in 32-bit word fixed point format using rounding toward
zero (rounding mode 1). Theresult is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range -23! to 231-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to ft and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 231-1, is written to ft.

Restrictions:

Thefields fsand ft must specify valid FPRs; fsfor type fmt and fd for word fixed point; if they are not valid, the result

isUNPREDICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(ft, W, ConvertFmt (ValueFPR (fs,

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Invalid Operation, Unimplemented Operation

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

fmt) ,

fmt, wW))

512

513 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Enter Standby Mode WAIT

31 26 25 16 15 6 5 0
POOL 32A I molementation dependent cod WAIT POOL 32AXf
000000 plementation-dependent code 1001001101 111100
6 10 10 6
Format: waIT microM I PS

Purpose: Enter Standby Mode
Wait for Event

Description:

The WAIT instruction performs an implementation-dependent operation, usualy involving a lower power mode.
Software may use the code bits of the instruction to communicate additional information to the processor, and the
processor may use this information as control for the lower power mode. A value of zero for code bits is the default
and must be valid in al implementations.

The WAIT instruction is typically implemented by stalling the pipeline at the completion of the instruction and enter-
ing a lower power mode. The pipeline is restarted when an external event, such as an interrupt or external request
occurs, and execution continues with the instruction following the WAIT instruction. It is implementati on-dependent
whether the pipeline restarts when a non-enabled interrupt is requested. In this case, software must poll for the cause
of the restart. The assertion of any reset or NMI must restart the pipeline and the corresponding exception must be
taken.

If the pipeline restarts as the result of an enabled interrupt, that interrupt is taken between the WAIT instruction and
the following instruction (EPC for the interrupt points at the instruction following the WAIT instruction).
Restrictions:

The operation of the processor is UNDEFINED if a WAIT instruction is placed in the delay slot of a branch or a
jump.

If access to Coprocessor O is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

I: Enter implementation dependent lower power mode
I+l:/* Potential interrupt taken here */

Exceptions:

Coprocessor Unusable Exception

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 514

515 MIPS® Architecture for Programmers Volume 1I-B: The microMIPS32™ Instruction Set, Revision 5.04

Write to GPR in Previous Shadow Set

WRPGPR

31 26 25 21 20 16 15
POOL32A r rs WRPGPR POOL 32AXf
000000 1111000101 111100
6 5 5 10 6
Format: WRPGPR rt, rs microM I PS

Purpose: Writeto GPR in Previous Shadow Set

To move the contents of a current GPR to a GPR in the previous shadow set.

Description: SGPR[SRSCtlpgg, rt] « GPR[rs]

The contents of the current GPR rsis moved to the shadow GPR register specified by SRSCtlpgs (signifying the pre-

vious shadow set number) and rt (specifying the register number within that set).

Restrictions:

In implementations prior to Release 2 of the Architecture, this instruction resulted in a Reserved Instruction Excep-

tion.

Operation:

SGPR[SRSCt1pgg,

Exceptions:

Coprocessor Unusable

Reserved Instruction

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

rt] < GPR[rs]

516

Word Swap Bytes Within Halfwords WSBH

31 26 25 21 20 16 15 6 5 0
POOL32A r rs WSBH POOL 32A Xf
000000 0111101100 111100
6 5 5 10 6
Format: WwWsSBH rt, rs microM | PS

Purpose: Word Swap Bytes Within Halfwords
To swap the bytes within each halfword of GPR rs and store the value into GPR rt.

Description: GPR[rt] « SwapBytesWithinHalfwords (GPR[rs])
Within each halfword of GPR rsthe bytes are swapped, and stored in GPR rt.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

GPR[rt] «GPRIrly3 16 || GPRIrlsy o4 || GPRITI; o || GPRIrlis g

Exceptions:

Reserved Instruction

Programming Notes:

The WSBH instruction can be used to convert halfword and word data of one endianness to another endianness. The
endianness of aword value can be converted using the following sequence:

1w t0, 0(al) /* Read word value */
wsbh t0, tO0 /* Convert endiannes of the halfwords */
rotr t0, t0, 16 /* Swap the halfwords within the words */

Combined with SEH and SRA, two contiguous halfwords can be loaded from memory, have their endianness con-
verted, and be sign-extended into two word values in four instructions. For example:

1w t0, 0(al) /* Read two contiguous halfwords */

wsbh t0, tO0 /* Convert endiannes of the halfwords */

seh tl, tO /* tl1l = lower halfword sign-extended to word */

sra t0, t0, 16 /* t0 = upper halfword sign-extended to word */
Zero-extended words can be created by changing the SEH and SRA instructions to ANDI and SRL instructions,
respectively.

517 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 518

Exclusive OR XOR
31 26 25 21 20 16 15 11 10 0
POOL32A it rs d 0 XOR
000000 1100010000
6 5 5 5 1 10
Format: XOR rd, rs, rt microM | PS

519

Purpose: Exclusive OR

To do abitwise logical Exclusive OR

Description: GPR[rd] ¢« GPR[rs] XOR GPR[rt]

Combine the contents of GPR rs and GPR rt in a bitwise logical Exclusive OR operation and place the result into

GPRrd.

Restrictions:

None

Operation:

GPR[rd]

Exceptions:

None

< GPR[rs] xor GPR[rt]

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Exclusive OR Immediate XORI

31 26 25 21 20 16 15 0
XORI32 .)
011100 rt rs immediate
6 5 5 16
Format: XORI rt, rs, immediate microM I PS

Purpose: Exclusive OR Immediate
To do a bitwise logical Exclusive OR with a constant

Description: GPR[rt] ¢« GPR[rs] XOR immediate

Combine the contents of GPR rs and the 16-bit zero-extended immediate in a bitwise logical Exclusive OR operation
and place the result into GPR rt.

Restrictions:

None

Operation:

GPR[rt] ¢« GPR[rs] xor zero_extend(immediate)

Exceptions:

None

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 520

Chapter 6

Opcode Map

This chapter definesthe bit-level encoding of all microMIPS32 instructions, using a series of opcode tables. The basic
format of thetablesis shown in Figure 6.1. The topmost row contains the high-order opcode bits (in the example table
shown here, bits 31..29), and the left-most column of the table lists the next most-significant bits of the opcode field
(bits 28..26). Decimal and binary values are shown for both rows and columns.

Aninstruction’s encoding is the value at the intersection of arow and column. For example, the opcode value for the
instruction EX1 is 33 (decimal) or 011011 (binary). Similarly, the opcode value for EX2 is 64 (decimal), or 110100

(binary).
Figure 6.1 Sample Bit Encoding Table
31 26 25 21 20 16 15 0
opcode rs rt immediate
i
6 5 5 16
D — . .
Binary encoding of
| opcode (31..29)
/ Decimal encoding of
* opcode (31..29)
opcode MSB..MSB-2 \
0 1 2 3 4 5 6 7
y
MSB-3..
.MSB-5 000 001 010 011 100 101 110 111
0 | 000
1| oo1
2 | o10
3| o11 EX1
] 4 | 100
5| 101
6 | 110 EX2
7| 111

Decimal encoding of

=

Binary encoding of

opcode (28..26)

6.1 Major Opcodes

opcode (28..26)

Table 6.2 defines the major opcode for each instruction. The symbols used in the table are described in Table 6.1.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 521

Every major opcode hame starting with “POOL” requires a minor opcode, as defined in Section 6.2 “Minor

6.1 Major Opcodes

Opcodes’. All other major opcodes refer to a particular instruction.

In the opcode tables, MSB denotes either bit 15 or 31, depending on instruction size.

Table 6.1 Symbols Used in the Instruction Encoding Tables

Symbol

Meaning

Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction must cause a Reserved Instruction Exception.

(Alsoitalic field name.) Operation or field codes marked with this symbol denotes afield class.
The instruction word must be further decoded by examining additional tables that show values
for another instruction field.

Operation or field codes marked with this symbol represent avalid encoding for a higher-order
MIPS ISA level or anew revision of the Architecture. Executing such an instruction must cause
a Reserved Instruction Exception.

Operation or field codes marked with this symbol represent instructions which were only legal if
64-hit operations were enabled on implementations of Release 1 of the Architecture. In Release 2
of the architecture, operation or field codes marked with this symbol represent instructionswhich
arelegal if 64-bit floating point operations are enabled. In other cases, executing such an instruc-
tion must cause a Reserved Instruction Exception (non-coprocessor encodings or coprocessor
instruction encodings for a coprocessor to which access is allowed) or a Coprocessor Unusable
Exception (coprocessor instruction encodings for a coprocessor to which accessis not allowed).

Instructions formerly marked V in some earlier versions of manuals, corrected and marked A in
revision 5.03. Legal on MIPS64r1 but not MIPS32r1; in release 2 and above, legal in both
MIPS64 and MIPS32, in particular even when running in “32-bit FPU Register File mode”,
FR=0, aswell as FR=1.

Operation or field codes marked with this symbol are available to licensed MIPS partners. To
avoid multiple conflicting instruction definitions, MIPS Technologies will assist the partner in
selecting appropriate encodings if requested by the partner. The partner is not required to consult
with MIPS Technol ogies when one of these encodingsis used. If no instruction is encoded with
this value, executing such an instruction must cause a Reserved Instruction Exception
(SPECIAL2 encodings or coprocessor instruction encodings for a coprocessor to which accessis
allowed) or a Coprocessor Unusable Exception (coprocessor instruction encodings for a copro-
cessor to which access is not allowed).

Field codes marked with this symbol represent an EJTAG support instruction and implementa-
tion of this encoding is optional for each implementation. If the encoding is not implemented,
executing such an instruction must cause a Reserved Instruction Exception. If the encoding is
implemented, it must match the instruction encoding as shown in the table.

Operation or field codes marked with this symbol are reserved for MIPS Application-Specific
Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved
Instruction Exception.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

522

Opcode Map

6.2

523

Table 6.2 microMIPS32 Encoding of Major Opcode Field

’Tjor MSB..MSB-2

0 1 2 3 4 5 6 7
MSB-3..
MSB-5 000 001 010 011 100 101 110 111
0 | 000 | POOL32A S | POOL32B& | POOL32I5 | POOL32C & * * * *
1| 001 | POOL16AS | POOL16B S | POOL16CS | LWGP16 POOL16F * * *
2 | 010 LBU16 LHU16 LWSP16 LW16 SB16 SH16 SWSP16 SW16
3| o011 | movEls ANDIL6 | POOL16D 5 | POOLIGES | BEQZ16 BNEZ16 B16 Li16
4 | 100 | ADDI32 ADDIU32 ORI32 XORI32 SLTI32 SLTIU32 ANDI32 JALX32
5 | 101 LBU32 LHU32 POOL32F 5 | JALS32 BEQ32 BNE32 132 JAL32
6 | 110 SB32 SH32 B ADDIUPC SWC132 SDC132 SW32
7 | 11 LB32 LH32 B * LWC132 LDC132 Lw32

Examples:

1. The 32-hit instruction LW32 is assigned to the major opcode LW32 with the encoding “111111".

2. The16-bit instruction SUBU16 is assigned to the major opcode POOL 16A with the encoding 000001,

Minor Opcodes

While major opcodes have afixed length of 6 bits, minor opcodes are variable in length. The minor opcodes are
defined by opcode tables of one, two, or three dimensions, depending on the size of the opcode. Minor opcodes less
than four bits are represented in a one-dimensional table (see Table 6.13), from four to six bitsin atwo-dimensional
table (shown in Figure 6.1 and Table 6.9), and from 7 to 10 bitsin athree-dimensional table (Table 6.4). In athree-
dimensional table, the two-dimensional table is expanded to include a column on the right side that encodes the extra
bits. In the case of minor opcodes requiring multiple table cells, the instruction name appearsin al cells, but the addi-
tional entries have ablack background to indicate that this opcode is blocked (see Table 6.4 and the legend shown in
Table 6.3).

Example:
SRL rl1l, rl, 7 binary opcode fields: 000000 00001 00001 00111 00001 0OOOOO
interpretation: POOL32A rl rl 7 SRL
hex representation: 0021 3840

All minor opcode fields are right-aligned except those in 16-bit instructions and in 32-bit instructions with a 16-bit
immediate field. These |eft-aligned fields are defined in a bit-reverse order, which iswhy, in order to accommodate
the variable length of the field to the right, a given row and column in POOL 321 represents bit 20..22 and 23..25
instead of bit 22..20 and 25..23.

If table entries are marked grey, then not all available bits of the instruction have been used for the encoding, leaving
afield of empty bits. The empty bits are shown in the instruction tables in Chapter 5, “microMIPS Re-encoded
Instructions” on page 51.

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Table 6.4 POOL32A Encoding of Minor Opcode Field

Table 6.3 Legend for Minor Opcode Tables

Symbol Meaning
OPCODE Occupied by Opcode
OPCODE Space Utilized by another Opcode

6.2 Minor Opcodes

Minor bit 5..3
0 1 2 3 4 5 6 7
bit 2..0 000 001 010 011 100 101 110 111
bit 9..6
0 | ooo SLL32 * SLLV MOVN * * * * 0000 | O
0 | ooo SRL32 * SRLV MOVZ * * * * 0001 | 1
0 | ooo SRA * SRAV * * * * * 0010 | 2
0 | ooo ROTR * ROTRV * * * * * 0011 | 3
0 | ooo * * ADD LWXS * * * * 0100 | 4
0 | ooo * * ADDU32 * * * * * 0101 | 5
0 | ooo * * SUB * * * * * 0110 | 6
0 | ooo * * SUBU32 * * * * * 0111 | 7
0 | ooo * * MUL * * * * * 1000 | 8
0 | ooo * * AND * * * * * 1001 | 9
0 | ooo * * OR32 * * * * * 1010 | a
0 | ooo * * NOR * * * * * 1011 | b
0 | ooo * * XOR32 * * * * * 1100 | ¢
0 | ooo * * SLT * * * * * 1101 | d
0 | ooo * * SLTU * * * * * 1110 | e
0 | ooo * * * * * * * * 1111 | f
| 1 | 001 | SPECIAL2 6 | SPECIAL2 | SPECIAL2 6 | SPECIAL2 | SPECIAL2 | SPECIAL2 6 | SPECIAL2 6 | SPECIAL2 0 |
*
2	010	COP2 6	COP2 0	COP2 6	COP2 6	COP2 0	COP20	COP2 6	COP2 6
3	011	uDI 6	uDI 6	uDI @	uDI 6	uDI 6	uDI 6	uDI 6	uDI @
4	100	*	INS	*	*	*	EXT	*	POOL32Axf6
5	101	€	€	£	I3	I3	£	€	I3
Flw] e T									
7] 11	ereaksz	*	*	-	e	:	-]]		
Not Shown
SLL r0, r0, r0 = NOP
SLL r0, 10, 1 = SSNOP
SLL 10, 10, 3= EHB
SLL,r0, r0, 5=PAUSE
MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 524

Opcode Map

Table 6.5 POOL32Axf Encoding of Minor Opcode Extension Field

ym bit 11. 9

bit 8.6 0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

| 0 | 000 | TEQ | TGE | TGEU | * | TLT | TLTU | TNE *

| 1 | 001 | I3 | 3 | * | € | 3 | € | * €

| 2 | 010 | € | € | € | € | € | € | € €

ST we [wo [~ [

bit15..12
4 | 100 € € * * * * * JALR/JR | 0000 | 0
4 | 100 € I3 * * * * * JALRHB | o001 | 1
4 | 100 3 * * * * SEB * * 0010 | 2
4 | 100 € * * * * SEH * * 0011 | 3
4 | 100 3 * * * * cLo MFC2 JALRS 0100 | 4
4 | 100 € * * * * cLz MTC2 JALRS.HB | 0101 | 5
4 | 100 3 * * * * RDHWR B * 0110 | 6
4 | 100 € I3 * * * WSBH B * 0111 | 7
4 | 100 * * * * MULT MFHC2 * 1000 | 8
4 | 100 € I3 * * * MULTU MTHC2 * 1001 | 9
4 | 100 * * * * DIV * * 1010 | a
4 | 100 € I3 * * * DIVU * * 1011 | b
4 | 100 * * * * * MADD CFC2 * 1100 | ¢
4 | 100 € £ * * * MADDU cTC2 * 1101 | d
4 | 100 * * * * * MSUB * * 1110 | e
4 | 100 € * * * * MSUBU * * 1111 | f
bit15..12

5 | 101 * TLBP 3 * * * MFHI32 * 0000 | 0
5 | 101 * TLBR € * * * MFLO32 * 0001 | 1
5 | 101 * TLBWI 3 * * * MTHI * 0010 | 2
5 | 101 * TLBWR € * * * MTLO * 0011 | 3
5 | 101 * * * DI * * * * 0100 | 4
5 | 101 * * * El * * * * 0101 | 5
5 | 101 * * * * * SYNC * * 0110 | 6
5 | 101 * * * * * * * * 0111 | 7
5 | 101 * * * * * SYSCALL * * 1000 | 8

525

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

6.2 Minor Opcodes

Table 6.5 POOL32Axf Encoding of Minor Opcode Extension Field (Continued)

5 | 101 * WAIT * * * * * * 1001 | 9
5 | 101 * * * * * * * * 1010 | a
5 | 101 * * * * * * * * 1011 | b
5 | 101 * * * * * * * * 1100 | ¢
5 | 101 * € * * * SDBBP * * 1101 | d
5 | 101 | RDPGPR DERET * * * * * * 1110 | e
5 | 101 | WRPGPR ERET * * * * * * 1111 | f
| 6 | 110 | € € * * e | * . | . |
| 7 | 111 | € £ € * * | * * | * |
Not Shown: JR =JALR rO
Table 6.6 POOL32F Encoding of Minor Opcode Field
Minor bit 5..3
0 1 2 3 4 5 6 7
bit 2. 0 000 001 010 011 100 101 110 111
bit 8..6
0 | 000 * * * € MOVFEfmt * ADD.fmt MOVN.fmt | 000 | O
o | 0oo * LWXC1 A * € MOVT.fmt * SUB.fmt MOvVZ.fmt | 001 | 1
o | ooo PLL.PSV SWXC1 A * € * * MUL.fmt * 010 | 2
o | ooo PLUPSV LDXC1 A * € * * DIV.fmt * 011 | 3
o | ooo PULPSV SDXC1 A * * * ADD.fmt VoK@ 100 | 4
0 | 000 PUU.PSV LuxciV * * * SUB.fmt MOVZ.fmt 101 |5
0| ooo | cvipPssV suxciV * * PREFX * MUL.fmt 110 | 6
0 | 0oo * * * * * * DIV.fmt 11 |7
1	001	MADD.S A	MADD.D A	MADD.PS V	ALNV.PS V	MSUB.S A	MSUB.D A	MSUB.PS V	*
2	010	NMADD.S A	NMADD.D A	NMADD.PS V	*	NMSUB.S A	NMSUB.D A	NMSUB.PSV	*
3	011	* * * *	*	* *	POOL32Fxf6				
4	100	* * * €	*	* *	C.cond.fmt				
5	011	* * * *	*	* *	*				
6	100	* * * *	*	* *	*				
7	100	* * * *	*	* *	*				
MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 526

Opcode Map

Table 6.7 POOL32Fxf Encoding of Minor Opcode Extension Field

ym bit10..8
0 1 2 3 4 5 6 7
bit 7..6 000 001 010 011 100 101 110 111
bit
13.11
o| oo * CVT.LimtV | RSQRT.fmt A | FLOOR.L.fmt V * * * € 000 | O
0| oo * CVT.W.fmt SQRT.fmt FLOOR.W.fmt * * * € oo1 |1
0| 00 CFC1 * RECIPfmtA | CEILLfmtV * * * « 010 | 2
0| oo CcTC1 * * CEIL.W.fmt * * * * 011 | 3
0| 00 MFC1 CVISPLV * TRUNC.L.fmt V B * * 100 | 4
0| oo MTC1 CVT.S.PUV * TRUNC.W.fmt B * * * 101 | 5
0| oo MFHC1 V * * ROUND.L.fmt V * * * 110 | 6
0| oo MTHC1 V * * ROUND.W.fmt * * * * 11 | 7
bit
12..11
1| o1 MOV.fmt MOVF * ABS.fmt * * * € 00 |0
1] o1 * MOVT * NEG.fmt * * * * 01 |1
1] 01 * * * CVT.D.fmt * * * € 10 |2
1] o1 * * * CVT.S.fmt * * * * 1 |3
2fof - r - r - r - - - [- [- |
efeyr - r - r - r - - -~ - 7 - |

Table 6.8 POOL32B Encoding of Minor Opcode Field

’W bit 15

0 1
bit 14.12 0 1
o | ooo LwC2 swc2
1 | oo1 LWP SWP
2 | 010 B B
3| o011 € €
4 | 100 B B
5 | 101 LWM32 SWM32
6 | 110 | CACHE *
7 | 111 B B

527 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Table 6.9 POOL32C Encoding of Minor Opcode Field

’W bit 15

0 1
bit 14..12 0 1
0 | 000 LWL SWL
1 001 LWR SWR
2 010 PREF ST-EVA §
3 | o11 LL sc
4 | 100 B B
5 | 101 B B
6 110 LD-EVA § B
7 | 111 B B

Table 6.10 LD-EVA Encoding of Minor Opcode Field

bit 11..9

0 [000 LBUE
1| o001 LHUE
2 | 010 LWLE
3 | 011 LWRE
4 | 100 LBE

5 [101 LHE

6 | 110 LLE

7| 111 LWE

Table 6.11 ST-EVA Encoding of Minor Opcode Field

Minor

bit 11..9

0 | 000 SWLE
1| o001 SWRE
2 | 010 PREFE
3 | 011 CACHEE
4 | 100 SBE

5] 101 SHE

6 | 110 SCE

7] 111 SWE

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

6.2 Minor Opcodes

528

Opcode Map

529

Table 6.12 POOL 32l Encoding of Minor Opcode Field

Minor bit 22..21
0 1 2 3
bit 25..23 00 01 10 11
0	000	BLTZ	BLTZAL	BGEZ	BGEZAL
1	001	BLEZ	BNEZC	BGTZ	BEQZC
2	010	TLTI	TGEI	TLTIU	TGEIU
3	011	TNEI	LUI	TEQI	*
4	100	SYNCI	BLTZALS		BGEZALS
5	101	BC2F	BC2T	*	*
B I
bit16
7 111 BC1F BC1T * * 0
7| 111 £ I3 € £ 1

Table 6.13 POOL16A Encoding of Minor Opcode Field

Table 6.14 POOL16B Encoding of Minor Opcode Field

bit 0

0

ADDU16

1

SUBU16

Minor

bit 0

0

SLL16

1

SRL16

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Table 6.15 POOL16C Encoding of Minor Opcode Field

6.2 Minor Opcodes

[Minor | bit6.4
0 1 2 3 4 5 6 7
bit9..7 000 001 010 011 100 101 110 111
[0]ooo | nNoTie NOT16 NOT16 NOT16 XOR16 XOR16 XOR16
[1]oo1]| AnD16 AND16 AND16 AND16 OR16 OR16 OR16
[2[ow0]| Lwmie LWM16 LWM16 LWM16 SWM16 SWM16 SWM16
[3]o | Jris JR16 JRC JRC JALR16 JALRS16
8 T [s .
[Flo[omemas [~ [+ [- [swewe] - []
I G N I N S N
111 v * > x >

| . |

Table 6.16 POOL16D Encoding of Minor Opcode Field

Minor

bit 0

0 ADDIUSS

1 ADDIUSP

Table 6.17 POOL16E Encoding of Minor Opcode Field

bit 0

ADDIUR2

ADDIUR1SP

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

530

Opcode Map

Table 6.18 POOL16F Encoding of Minor Opcode Field

bit 0

0 MOVEP
l *

6.3 Floating Point Unit Instruction Format Encodings

Instruction format encodings for the floating point unit are presented in this section.

If theinstruction allows Single, Double and Pair-Single formats, the following encoding is used:

531

Table 6.19 Floating Point Unit Format Encodings - S, D, PS

fmt field
Decimal Hex Mnemonic Name Bit Width Data Type
0 0 S Single 32 Floating
Paint
1 1 D Double 64 Floating
Point
2 2 PS Paired Sin- 2x 32 Floating
gle Point
3 3 Reserved for future use by the architecture.

If theinstruction only allows Single and Double formats, the following encoding is used:

Table 6.20 Floating Point Unit Format Encodings - S, D 1-bit

fmt field
Decimal Hex Mnemonic Name Bit Width Data Type
0 0 S Single 32 Floating
Point
1 1 D Double 64 Floating
Point

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

6.3 Floating Point Unit Instruction Format Encodings

Table 6.21 Floating Point Unit Instruction Format Encodings - S, D 2-bits

fmt field
Decimal Hex Mnemonic Name Bit Width Data Type
0 0 S Single 32 Floating
Paint
1 1 D Double 64 Floating
Paint
2,3 2,3 Reserved for future use by the architecture.

If theinstruction allows Single, Word and Long formats, the following encoding is used:

Table 6.22 Floating Point Unit Format Encodings - S, W, L

fmt field
Decimal Hex Mnemonic Name Bit Width Data Type
0 0 S Single 32 Floating
Point
1 1 W Word 32 Integer
2 2 L Long 64 Integer
3 3 Reserved for future use by the architecture.

If the instruction allows Double, Word and L ong formats, the following encoding is used:.

Table 6.23 Floating Point Unit Format Encodings - D, W, L

fmt field
Decimal Hex Mnemonic Name Bit Width Data Type
0 0 D Double 64 Floating
Point
1 1 W Word 32 Integer
2 2 L Long 64 Integer
3 3 Reserved for future use by the architecture.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

532

Chapter 7

Compatibility

This chapter covers various aspects of compatibility. microMIPS32 is the preferred replacement for the existing
MIPS16e ASE and uses the same mode-switch mechanism. Although microMIPS includes amost all MIPS32
instructions and therefore does not require the original MIPS32 encodings, initially it will be implemented together
with MIPS32-encoded instruction execution.

7.1 Assembly-Level Compatibility

microM1PS32 includes a re-encoding of the MIPS32 instructions, including all ASEs and UDI space. Therefore,
microMIPS provides assembly-level compatibility. Only the following cases cause some side effects:

Re-encoded M1PS32 instructions with reduced operand fields
There are 3 classes of reduced fields:

1. Reserved or unsupported bits and encodings. This category is not a problem because utilizing a reserved or
unsupported field causes an exception, no operation, or undefined behavior, and often these cannot be
accessed by the compiler anyway. An example of this category isthe‘ fmt’ field.

2. Bit fields and ranges which are defined but typically never used. This category is usually not aproblem. The
assembl er generates an error message if a constant is outside of the re-defined range.

3. Bit fields which are used but were reduced in order to utilize the new opcode map most efficiently. The han-
dling of these casesis similar to category 2 above—compilers do not generate such scenarios, and assem-
blers generate error messages. In the latter case, the programmer hasto either fix the code or switch to the
MIPS32encoding.

Re-encoded Branch and Jump instructions

Branch instructions support 16-bit aligned branch target addresses, providing full flexibility for microMIPS.
Because the offset field size of the 32-bit encoded branch instructions is the same as the M1PS32-encoded
instructions, and because all branch target addresses of the MIPS32 encoding are 32-bit aligned, the branch range
inmicroMIPSissmaller. Thisis partially compensated by the smaller code size of microMIPS.

Jump instructions also support 16-bit aligned target addresses. This reduces the addressable target region for J,
JAL to 128 MB instead of 256 MB. For these instructions, the effective target addressisin the ‘ current’ 128 MB-
aligned region. For larger ranges, the jump register instructions (JR, JRC, and JRADDIUSP) can be used.

MI1PS32 assembly instructions manually encoded using the WORD directive
Manual encoding of MIPS32 assembly instructions can be used in assembly code as well as assembly macrosin

C functions. To differentiate between microM|PS-encoded instructions and other encoded instructions or data,
the following compiler directives have been introduced:

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 533

7.2 ABI Compatibility

.set micromips ; lnstruction stream is microMIPS

.set nomicromips ; instruction stream is MIPS32

.insn ; If in microMIPS instruction stream mode, the location associated
; with the previous label is aligned to 16-bit bits instead of
; 32-bits

; If in microMIPS instruction stream mode and if the previous
; label is loaded to a register as the target of a jump or branch,
; the ISAMode bit is set within the branch/jump register value.

The programmer must use these directives to encode instructions in microM|PS.

For example, to manually encode a microM1PS NOP:
.set micromips

labell:

.insn

.word O ; labell location - represents microMIPS NOP32 instruction
label2:

.insn

.half 0x0c00 ; label2 location - represents microMIPS NOPl6 instruction
label3:

.half 0x0c00 ; label3 location - represents data value of 3072 (decimal)

To manually encode a MIPS32 NOP:

.set nomicromips
.word 0 ; represents MIPS32 NOP instruction

For MIPS32 instruction stream mode, the “.insn” directive has no effect.

e Branch likely instructions

microMIPS does not support branch likely instructions in hardware. Assembly-level compatibility is maintained
because assembl ers replace branch likely instructions either by an instruction sequence or by aregular branch
instruction, and they perform some instruction reordering if reordering is possible.

7.2 ABI Compatibility

microMIPS is compatible with the existing ABIs 032, n32, and n64 calling conventions. However, afew new reloca
tion types need to be added to these ABIsfor microMIPS support, as some of the additional offset field sizes required
for microMIPS become visible to the linker. For example, the offset fields of Jand SW using GP are visible to the
linker, while B and SWSP are hidden within the object files.

Functions remain 32-bit aligned as in the MIPS32 encoding as well as MIPS16e. This guarantees that static and
dynamic linking processes can link microMIPS object files with MIPS32 object files.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 534

Compatibility

Programs can be composed of both microMIPS and M1PS32 modules, using either the JALX instructions (and/or JR
instructions with setting the ISAMode bit appropriately) to switch instruction set modes when calling routines com-
piled in an ISA different from that of the caller routine.

microMIPS provides flexibility for potential future ABIs.

7.3 Branch and Jump Offsets

microMIPS branch targets are half-word (16-bit) aligned to match half-word sized instructions. Please refer to
Section 3.6, "Branch and Jump Offsets."

7.4 Relocation Types

Compiler and linker toolchains need to be modified with new relocation types to support microM|PS. Reasons for
these new relocation types include:

1. Theplacement of instruction halfwordsis determined by memory endianness. MIPS32 instructions are always of
word size, so there were no halfword placement issues.

2. microMIPS has 7-bit, 10-bit and 16-bit PC-relative offsets.

3. Branch and Jump offset fields are left-shifted by 1 bit (instead of 2 bitsin MIPS32) to create effective target
addresses.

4. Some code-size optimizations can only be done at link time instead of compile time. Some new rel ocation types
are used solely within the linker to keep track of address and data information.

7.5 Boot-up Code shared between microMIPS32 and MIPS32

535

In some systems, it would be advantageous to place both microM1PS32 and M1PS32executables in the same boot
memory. In that way, a single system could be used for either instruction set.

To enable this, abinary code sequenceis required that can be run in either instruction set and change code paths
depending on the instruction set that is being used.

The following binary sequence achieves this goal:

0x1000wxyz // where w,x,y,z represent hexadecimal digits
0x00000000

For the MIPS32instruction set, this binary sequence isinterpreted as:
BEQ $0, $0, wxyz // branch to location of more MIPS32instructions
NOP

For the microMIPS instruction set, this binary sequence isinterpreted as:

ADDI32 $0, $0, wxyz // do nothing
NOP // fall through to more microMIPS instructions

MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

7.6 Coprocessor Unusable Behavior

7.6 Coprocessor Unusable Behavior

When a coprocessor instruction is executed when the associated coprocessor has not been implemented, it is allowed
for the RI exception to be signalled instead of the Coprocessor Unusable exception. Please refer to Section 3.7,
"Coprocessor Unusable Behavior."

7.7 Other Issues Affecting Software and Compatibility

microMIPS instructions can cross cache lines and page boundaries. Hardware must handle these cases so that soft-
ware need not avoid them. Since MIPS32 requires instructions to be 32-bit aligned, there is no forward compatibility
issue when transitioning to microMIPS.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 536

Appendix 8

References

This appendix lists other publications available from MIPS Technologies, some of which are referenced elsewherein
this document. They may be included in the SMIPS_HOME/$MIPS_CORE/doc areaof atypical soft or hard core
release, or in some cases may be available on the MIPS web site, http://www mips.com.

1. MIPS® Architecture For Programmers, Volume I: Introduction to the MIPS32® Architecture
MIPS document: MD0082

2. MIPS® Architecture For Programmers, Volume I1: The MIPS32® Instruction Set
MIPS document: MD0086

3. MIPS® Architecture For Programmers, Volume l11: The MIPS32® and microM1PS32™ Privileged Resource

Architecture
MIPS document: MD0090

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 537

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 538

Appendix 9

Revision History

Revision

Date

Description

1.08

November 25, 2009

Clean-up for external release.

1.09

January 7, 2010

Added shared boot-up code sequence in Compatibility
Chapter.

3.00

March 25, 2010

Changed document revision numbering to match other
Release 3 documents. Hopefully thiswill beless confus-
ing.

Moved MI1PS32/64 version of JALX to Volumell-A.

3.01

October 30, 2010

User mode instructions not alowed to product UNDE-
FINED results.

Updated copyright page.

Removed Margin Note - “ Preliminary - Subject to
Change” in some chapters.

3.02

December 6, 2010

POOL 32Sxf binary encoding was incorrect for individ-
ual instruction description pages.

3.03

December 10, 2010

microMIPS AFP versions security reclassification.

3.04

March 21, 2011

RSQRT/RECIP does not need 64-hit FPU.
MADD fmt/NMADD.fmt/MSUB fmt/NMSUB.fmt
psuedo-code was incorrect for PS format check.

3.05

April 4, 2011

The text description was incorrect for the offset sizesfor
these instructions - CACHE, LDC2, LL, LWC2, LWL,
LWR, PREF, SDC2, SWL, SWR.

CACHE & WAIT instruction descriptions were using
the wrong instruction bit numbers.

LWU was incorrectly included int the microM I PS32
version.

3.06

October 17, 2012

CVT.D fmt and CVT.S fmt were in wrong positions
within Table POOL 32Fxf.

3.07

October 26, 2012

Fix Figure 6.1 - columns & rows were transposed from
thered tables.

5.00

December 14, 2012

Some of the microMIPS instructions were not listed in
alphabetical order. Fixed. No content change.

R5 changes: DSP and MT ASEs -> Modules

NMADD fmt, NMSUB fmt - for IEEE2008 negate por-
tionisarithmetic.

501

December 16, 2012

No technical context change:
Update cover with microMIPS logo
Update copyright text.

Update pdf filname.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04

539

Revision Date Description

5.03 August 21, 2012 * Resolved inconsistencies with regards to the avail ability
of instructionsin MIPS32r2: MADD fmt family
(MADD.S, MADD.D, NMADD.S, NMADD.D,
MSUB.S, MSUB.D, NMSUB,S, NMSUB.D),
RECIPfmt family (RECIPS, RECIPD, RSQRT.S,
RSQRT.D), and indexed FP loads and stores (LWXC1,
LDXC1, SWXC1, SDXC1). Theseinstructions are
required to be availablein al FPUs. .

5.04 January 15, 2014 LLSC Related Changes

* Added ERETNC. New.

» Maodified SC handling: refined, added, and elaborated
cases where SC can fail or was UNPREDICTABLE.

XPA Related Changes

* Added MTHCO, MFHCO to access extensions. All new.

» Modified MTCO for MIPS32 to zero out the extended
bitswhich arewriteable. Thisisto support compatibility
of XPA hardware with non XPA software. In pseudo-
code, added registers that are impacted.

e MTHCO and MFHCO - Added RI conditions.

MIPS® Architecture for Programmers Volume II-B: The microMIPS32™ Instruction Set, Revision 5.04 540

Revision History

541 MIPS® Architecture for Programmers Volume I[I-B: The microMIPS32™ Instruction Set, Revision 5.04

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

