MIIFPS

MIPS® Architecture for Programmers
Volume lI-B: microMIPS64™ Instruction
Set

Document Number: MD00594
Revision 6.05
December 15, 2016

Public. This publication contains proprietary information which is subject to change without notice and is supplied ‘as is’, without any warranty of any kind.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

Contents

Chapter 1: About ThiS BOOKcccocciiiinnnnnnnnnnnnnnnnnnnnnnnnnnsennnnennennnnnnr e rnr s e s s e s e nerannneennenssensanses 15
1.1: TYpPOGraphiCal CONVENTIONScciiiiie ettt e ettt e et e e e e e e e e e e bbbt b s e et e e e e e e e e e s e ssnbbesaeeaaaaaaaaaaans 16
O o | = 1o I PRSP PRPPPRR 16

g = o) (o B = PP PRPPPRR 16

R O 0o U 1T G I PP PRPPPRR 16

1.2: UNPREDICTABLE and UNDEFINEDcoiiuitiaiiiaaiiiie ettt ettt e st e e snsee s snaea e s e e e nnees 16
1.2.1: UNPREDICTABLE ...ttt ettt ettt ekt ekt e e sa e e emb e e e bt e e e beesntbeaesneeeas 16

1.2.2: UNDEFINED ..ottt ittt ettt ettt ekttt e ket e ekt e e e ab e e e e bkt e e e mbe e e embbe e e ebbe e enbeeannbeaesnneeas 17

L2.3: UNSTABLE ...ttt ettt ottt ekttt e ekt e ek bt e oo a bt e e eh b e e e e a kb e e em bt e e e ebe e e eneeeanbeeesnneeas 17

1.3: Special Symbols in PSeudocode NOTAIONcoiiiiiiiiiiiiii e 17
1.4: Notation for Register Field ACCESSIDIIILYcuviiiiiiiii e 20
IR o g \Y (o1 (=N T (o) g F= 11T o PP 22

(0 0 T=1 o1 (=Y g0 1411 o o 18 ' 4T) o [23
P I B = = LU 1 AN 1Y o T L= PP 23

B S T 1V 2= 1 T = =11 o PSR 24
2.3: ComplianCe aNd SUDSEIIINGciiuriiiiee ittt e e et e e e sbb e e e e ab e e e e e e 24
P2 S S Y AN Y/ T To [T o PP 24
2.5: Branch and JUMP OFfSELSceiiiiiiiiiee ittt et e e et e e e s bt e e en bt e e e s anbbeeeae e e 25
2.6: Coprocessor UNUSADIE BENAVIOTuuiiiiiiiiiiii ettt e e e e 25
2.7: Release 6 Of the MIPS AFChILECIUIEceeieieiiiiii et e e e e e e e e e e et eeeaeaeaeaaean 26
Chapter 3: Guide to the INStruction Set......... . er s 33
3.1: Understanding the INSruCtion FIEIASocoeiiiiiiiiiieee et e e e e e e e s st e e e e e aaaeanean 33
3.1 L INSLIUCHON FIEIAS ...ttt ettt e e e e e 35

3.1.2: Instruction Descriptive Name and MNEMONIC..........uuuiiiiiiiiiiee e ee e e e e e e e e s reeaeeaeeeannas 35

T R o1 4 Fo L B =T o PSP PUPRT TR PUPRN 35

0 I S 1o o Y= =1 o SRR 36

00 T 1= T] o) €T T o TN 1= o USSP 36

3.1.6: RESINCHONS FIEI. ...ttt e e e s 37

3.1.7: Availability and Compatibility FIEIASccooiiiiiieee e e 37

0 I @ o= = U1 o] o T =1 [1SS PPPPPRPRPPORS 38

TN e T e =T o1 o] ES 1= o USRS PPPPPPURRIRS 38

3.1.10: Programming Notes and Implementation Notes Fields............cccoovivviiiiiiiiiiii e, 38

3.2: Operation Section Notation and FUNCLONSuiiiiiiiiie e a e e e e e 39
3.2.1: Instruction EXECULION OFUEINGciiiiiieiiiiieiee e e e e e e e ettt e e s a e e e e e e aeaaaaaeaeaaeeaeananes 39

3.2.2: PSEUAOCOUE FUNCHIONS.eiiiuttieee ittt ettt ekt e e st e e st e e s nn e e e s e e e s 39

3.3: Op and Function Subfield NOTATION..........oi i e e e e e e e e e e e e e e as 51
3.4 FPU INSITUCTIONS ...ttt etttk ettt e ekttt e e a ittt e e e ea ket e e e e ek b bttt e e er e e e e e e sbn e e e e e annnneeeene 51
Chapter 4: INStruction FOrMAtScccccciiiiiisiiinennnnnnnnnnnnnsnnssnnnnennnnesnennenenn e rnnr s s s ns s e s e rn s s nnsenneaneeesaneas 53
4.1: Instruction Stream Organization and ENGIANNESSooiiiiiiiiiiiiiiiiiee e ee e 56
Chapter 5: microMIPS INStruction Set e e 59
I K =T O (= To o] o PP PP PPPPPPPPPPPPRP 59
5.1.1: Frequent MIPS64 INSIUCHIONS.uiiiieiiiiit ettt ettt ettt e e e e nibaeaee s 59

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 3

5.1.2: Frequent MIPS64 INSIrUCLION SEQUENCESccovvvviiiiiiiieiiiiiiee e s e e e e e e e eeaeaeeeeeeeeeaesestssaa e aeaaaaeaanaees 62

5.1.3: Instruction-Specific Register Specifiers and Immediate Field Encodingscccocvveiieiiiiiieeeeeen, 63
5.2: 16-Dit INSIrUCLHION REQISIET SBLuuiiiiiiiiiiiie s e e e e e e e e e e e e e et e e e e e e e e e e eeeereaerearanaaann s 64
R A 12 =1 0= 1= To [0 Y2 PRSP 66

5.3.1: NEW 32-DIt INSITUCTIONSceeiieeiee ettt e e e e e e e ettt e e e e e e e e e e s abbeeneeeaaeaaeeaaaas 66
5.4: Instructions SPecific t0 MICTOMIPSuuuiiiii i e e e e e e e e e e e e e e et e e e e taeeeeseseaeeaarananas 68

ADDIURILSP ..ottt ettt e ettt e e oottt e e e ekttt e e e et bttt e e e aRt bt e e e e e aR b bt e e e e e aR bt et e e e abeee e e nbateeeeanbnteeeeann 69
ADDIURZ.....ceee ettt ettt ettt e e e ettt e e e ek bt e e e e R bt e e e e aRE bt e e e e Rttt e e e e e R Eee e e e ettt eeeeaanbateee e e nbnteeeean 70
F] 16 151 PSP PRP PRSP 72
F] 16 1] PP PRP PRSP 74
F] 16 K TSP PPPPPPPPRP 76
| 1 PP PPP PRSP 77
ANDILG ...ttt ettt ettt e ettt e e et e e e ettt e e e e et b et e e e e aR R bt e e e e R bttt e e e o R be e e e e e an b bt e e e R beeeeeeaanbateeee e nreeeeeeans 78
2 T3 PSPPSR 79
2] =10 74 @31 X PSSO PRPPP 80
2N O 1 T PRSPPI 81
2] A N 1 T PSSO PPRPR 82
B {31 I RSSO PRP PRSP 83
JRCADDIUSP ...ttt e e oottt e e e ekt e e e e es bttt e e e e ekt bt e e e e et be e e e e e an bbb e e e e e anbbeeeannbaeeeeeannbeeeeeean 85
B |31 TSSO PRP PRSP 87
= O PSPPSR 88
0 SO PERPR 90
0SSOSR 92
[L PSPPSR 94
0 PSSO PERTP 95
I PSSO PERPR 96
I PSPPSR 97
I PSSO PPRSPR 98
I PRSPPI 100
I = PSR PPRR 102
L N S P ittt e e et ——— e e e oA Rt et e e e e R h bt e e e e e R h b et e e e e b ae e e e e an s e e e et ateeeeaanbaeeeenanrrees 103
YL@ A 4t PRSP PRR 104
YL@ A 4 PO PPRR 105
NN L I PRSPPSO 107
(0 31 PP UTPPRPRTPPPPRR 108
]S 3 L T PO UUPPRPPPPPPPRN 109
Y] 2] = = PSS PURRRSPPPPRPN 110
LT 1Y PRSP PR PPPPRPRN 111
LT = PO UUPPRPPPPPPPRN 113
I ORI 114
] USSP 115
ST I USRS 116
5] OSSP PPPRRRRR 118
I PSPPI 119
ST] PSPPSR 120
SWVIMILB . ..ttt ettt ettt e e e oo e oottt ettt e e e e e e e e e e e aaE e ettt e ettt eeeeeeeaee e R nE et be ettt eeeeaaeannnenbenreeeeaaaeeeaeeas 121
S SO PPRRRTT 123
S N P et oo oottt — e et e eee e e e e e e e e aaEEa et ettt eeeeeeeeeaae e a Rt et bt e eeeeeeeaa e ntanbenteeeeaaaeaeeeans 125
DO] 31 USRI 126
5.5: ReCOded MIPS INSITUCHIONScoiiiiiiiiiiit e e e et e e e e et e e e e e e e e e e e aeeeeeeeeeeaesesstbeeeesesessseaaaannas 127
F Y 2 FS T 0| SO OO TP PP PP PPPRPR 128
I | SO 129
] 11 1| PSPPSR 130

MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05

ADDIUPC ...ttt ettt ettt e e e e e e e e e e e e e e e e e e et ettt et e et aeaeaeeaiaiaaaaaaaaaaaaaaeaaararaie 132
ADDU ...ttt ee e e e e eeeeeeeeeeeeee et et ——————— e aeaeeiaaaaieiaaaaeaaaeaeaeteerrrrins 133
ALIGN DALIGN ...etiitititieees ettt et ee e e e e e ae et bbb bbb eseseseeeeasaaaaaeeaeaaseeserenes 134
ALUIPC ..ttt ettt ettt et e e e e e e e e e e e e e e et e et et e ettt e e e e aaaaaaeaaaaaaaaaeaeaeteeaarria 136
Y N U PRTRTPRRRPRNE 137
e N U PRTRPRRRPRN 138
AUL DAUL DAHI DAT et ee ettt ettt e e e e e e e e e e e e e e e et et e ettt e s e s e aeeaeeeeeeaeaeaaeeaaeaseeeeeenes 139
AUIPC ...ttt ettt e e e e e e e e e e e e e e e e ee e et ettt et — et anaaaaaaaaaaaaeaeaeteerarrin 141
BALLC ...ttt ettt e e e e e e e e e ee et e ettt — . bbb e aeeeaeeeeeaeaetteaeeaetetrat i ———————— 142
BCLEQZC BCLNEZC.......cco oottt ettt e e e e e e e e e e e ettt et e e e e e e e e e e e e e e s eababbeseeeeeeeeeesnansabrrsresneeeas 143
BC2EQZC BC2NEZC.......ccc oottt ettt ettt et e e e e e e e e e e ettt e e e e e e e e e e e e e s aeababbeseeeeeeeeeesannsasbrsreaeeeeas 145
B{LE,GE,GT,LT,EQ,NEJZALCootitiiiiiie ettt sttt ettt e e e ettt e e s et e e e s e bt e e s e stbe e e e e enbeeeeanneaeas 147
5ol 0] [0 > OO P PP PSR UPPPUPTRN 149
B ettt e e e e e eeeeeeeeeeeeee et e—————— .t e eieaeeeaeaeaeieaaaeaeaeteeeat i ———————— 152
BREAK ..oetittttiie ettt ettt e e e e e e e e e e e et e ettt — et eaeaeaeeaeeaeaetetteeaeaettaet— i ————— 153
BITSWAP DBITSWARP ..ottt et e e e ettt e e e et e e e e e e e e e e eeeeeeeeaeesaatabessseaerrabaranes 154
BOWEC BNVC ..ttt et e e e e e e e e e e e e e e ettt e e e e s e e e e e e e e e eeeeeeeeaeaeeeaeeeessesererrabaranen 156
(7Y 01 = | 158
(07 YO | 164
(O I I {11 A 170
(O = T A 1o o | 171
(O 1 172
(O O 174
(O N SN { o | 175
(O 1 177
O 2 178
(01171 = olo] a o [181 1] OO UPPRPTR 179
(10] = 184
CRC32B, CRC32H, CRC32W, CREC3B2D ...uuttututiiieieieieieee ettt s s s e e a e e e e e e e e e e e e e e e e e aeaeaeab e b b s 186
CRC32CB, CRC32CH, CRC32CW, CREC3B2CDo i ittt ettt e e e e e 189
O 11 192
O 1O 195
LAY I B N {1 0| 196
(@AY I T o | 197
LAY TR {111 S 198
LAY I 1Y% 2 1 199
DADD ...ttt ettt e e e e e e e eeeeeeee e e et ———————————————— e eseaeaeaeeaeeaeaetttaeaaetetetta——————————————— 200
DADDIU. .ttt ettt et e e et — e eaeaeaeeeeeaeaetttteaaeaeretta i —————— 201
DADDU . ..ttt e e e e e e e ettt ——————— e eaeaeaeeeeeaeaettateeaetetataa i —————— 202
5 1O IO LSRR 203
5 1 O PSRRI 204
] ST 205
D] = PSP 206
D] I\ SO 208
D] 1O PO 210
5 T 212
DIN S sttt ettt ettt et e et e e e eeeeeeeeeeeeeeet et et ————— . ———————— e aeaeaeeeaeaeaeaeaaeeaeaeeretre i —————— 213
DINSIM sttt ettt ettt ettt e e e e e e e e e e e ee e e e e et et ettt e et eeeeaeaeaeeeeetaaaeaaeaeteaear i ————— 215
DINSU oottt ceee ettt ettt e e e et e e e e e e e e e e e e e e e e e et ettt ettt eeeeaeaeaeeeaetaaaeaaeaeteaear i ————— 217
]V 1 2| U USURT USSR 219
DIV MOD DIVU MODU DDIV DMOD DDIVU DMODUccoiiiiiiiiieccieeeeeeeeete e e e e e e e e e e vvavananns 220
DIMIFC0 ..ttt ettt et ettt et e e e e e e e e e e e e e e e e e e et ettt et e et b h e eeaeaeaeaeaeeetetaeeaeaetettaa i ————— 224

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 5

DIMIEC 2 et e e e e e e e e 226
DIMTICO ettt ettt e e e e et e e e e e e e e e e e a e 227
DIMITC et e e e e e e e e e e e e e et e e e e e e e e e e e 228
DM C 2 et r e et e e e e e e e e e e e e 229
DIROTR ettt e e e e st e et e e e e e e e e e e e e e e 230
RO T R .ot e e e e e e et e e e e e e 231
DROTRY ittt e e e e e et e e et e e e e e e e e 232
ST =] PP PPPTPP 233
DSHD ettt e e e e e e e e e e e n e 234
D] PP TR PPPPP 235
D PP TP PPPPPTPP 236
[TP PR PTPPPTPP 237
DS R A et e et e e e e e e e e e e e e 238
DS R A e e e e e e e e e e s 239
DSRAV e e e e e e e e e e e 240
] PP PP TR PPPPP 241
DSR2 e et e e e e e e e e e e e e 242
DSRLY ettt e e e e et e e e e 243
DISUB ettt e e e e e e et e e e e e e et e e e a e 244
DSUBU ..ottt e et et e e e e et e e e e e n e 245
DV P oo et e e e e et e e et e e e e e n e 246
= o = ST TP PR PPPTPP 249
PP PO PP PR PPPTPP 250
B R E T e et e et e e e e e et e e e e e e e 251
ERETINC e ettt e e oo e e e et e e e e e e e e e n e 252
B P et e e e e e e e e 254
) PP PPPTPP 256
O L@ 0 {1 1| TP PP OTPPPPP TP 258
FLOOR WV IML. .ottt e 4ot e 4okttt e 4 e e et e e e n et e en bt e e e e b e e e e nnne s 259
(€711 Y PO PP P PP TPP TP PPPPPTTRTTTN 260
(€71 A PP PP TP PP PP PP PPPRTTPTRRT 262
1N S PP TP PR PPPPPP 265
JALRC et e e et a e e e e e 267
JALRC . HB ..ottt et e e e e e 269
JIA L C e et e e e e e e e e e e e et e s e e e e s 272
O 1P TP TP PP PPPPTPTPPPRPR 274
PP PP OO PR T TP T PP PPPTPP 276
B E et oo oo s e et e et e e e e e e e e et e e e e e e a e 277
LB e et oo oo ettt e e e e e e e et e et e e e e e e a e 278
LB et e e oottt e et e e et r e et e e e e e e e e 279
5 PP PP TP PR PP PPPTPP 280
3 O TP TP P PP PPTPP 281
5 O OO PP T PP P TR PPPPP 282
D O TP PP T TP PR PPTPP 283
] PO PP P TP PPPTPP 284
L E et e e oot e e oot e e et e et e e e e e e n e 285
[o O TP PP PPPTPP 286
LHU E Lttt oo oot e oottt e et e e e e e ettt e e e e e e e e 287
PP PP PP PR PP PPPPPP 288
D TP OO PP PP TP TP PPPPPP 290
PP PPPTPP 291
3PP PPTPP 294

MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05

LV P E e e e a e e e e 298
LS A DL S A e e e e e e e e e e 300
L PP PP PR PPPTPP 301
Y PP TP PPPTPP 302
Yt PP PR PPPPPTPP 303
YT P PR PPPTPP 304
L E e et e e e e e e e e e e e e e 305
L M P C e e e e e e e e e 306
LWUPC ettt e e e e e e e s e e bbb e et e et e e e e e e n e e e e e e n e 307
L VU et e et e et e e e et e e e a e 308
MADDF.TME MSUBF.FME ...ttt e s e e e e et e e e e e s er s 309
MAX.fmt MIN.TmMt MAXATME MINATMT. .o 311
VIGO0, ettt e oo e e e et e et e e e e e e e e et e e e e e e e n e 315
Y O PP TR PPTPT 316
Y PP PPPPPP 317
IMIFHCO et e e e e e e s e et e e e e e e e e e s e e e e e e n e 318
IMIFHC L ettt e e e e e oo ettt e et e e e e e s e e e e e e e e e e 320
IMIFHCZ ettt e e oo e ettt e et e e e e e e e et e e e e 321
MOV TIMIE ettt o4 4kttt e 44t e 4okttt e 4o et e e et e e e e e 322
Y I O PP PPTPP 323
Y I PP TP PP PR PPPTPP 324
Y PP TP PO TRPPPPPP 325
IMITHCO ettt e e e e e e s e ettt e et e e e e e e s e b e e e e e e e e e e e e s e bbb e eeeees 326
Y I [TP PR PPPPPTPP 328
IMITHCZ ettt e e e e e e s e e e et e et e e e e e e s s e e e e e et e e e e e e e 329
MUL MUH MULU MUHU DMUL DMUH DMULU DMUHU ... 330
Y1 L o o TP PP TPPPPPPO 333
N = 0 {11 PO PP TP PPPPPO 334
N[O PP PP PTPPPTPP 335
N[O PP TP PR PTPPPTPP 336
L0 PO PP TP PP PPPTTPTPPTTP 337
L0] PP PP TP PP PPPP TP 338
P AUSE . e e e e e e e e e 339
P R et e et e e e e e et e e e e e e e 341
PREFE ..o et e e e e e et e e e e e 345
RDHWR ..ottt oottt e e oot e e e e ettt e e e e e e e e e e b e e e e e e e e 349
RDPGPR ...ttt ettt e e e e e e e e e e e 352
Ly = O | 111 ST PP OTPPPPR PP 353
N 0 PO T T OTPPPPPPI 354
R O T R ettt oo e e oo et e et e e e e e et e e e e e e a e 356
RO TRV ettt ettt et e e oot oo e et et e e e e e e e e e e e et e e e e e 357
ROUND .LFIME -ttt ekt e 44kt e 4okttt e e et e e e a b et e es et e e e et e e e e nbne s 358
ROUND . W.TIME. ¢ttt o4kt e 44kttt e 4okttt e 4 ek et e e e e bbbt e e ebn et e e e e nbb e e e e e e nrne s 359
RSO I 10| T PO OTPPPP TP 360
] TP TP PP PP TP TPPPPRTPTRTPN 361
S oot e et oo e e e e o ettt e et e e ettt e e e e e e e e e neeean 362
] OO PP PP PP PPPPTPPTPTPN 363
S e e e e e e et e e e e et e e e e e e e e e e 367
1] O I OO P PP PPPT TR 370
S D e e a e e e 373
SO N P e e e et a e e e e 376
SO M P E L e et a e e 380

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 7

SDBBP ...ttt ettt ettt ettt ettt ettt ettt e et e ettt e st 384
SDC L oottt ettt et et e ettt ettt e ettt ee et e e 385
SDC2 ettt ettt ettt ettt ettt ettt ee e 386
SEB ettt ettt ettt et ettt ettt ettt eeeee et et 387
SEH ettt ettt ettt ettt ettt ettt ettt ee et 388
SE L Mottt e e s et et s et ee e e s e e et e et ee et e et ee e et et et e e ee st et ee e 390
SELEQZ SELNEZ ...t eeee s e e e e et e s e s s e eseee e e s e eseeeseestes e e s eeee e seeeeeseeereeees 391
SELEQZ.AME SELNEQZ.AME ..ot eeeeeeeeseeesees e esees s eseee s eseeesees e ssses e seesseeseeeseeseesseeseeeeeseeeseeees 393
SH oottt ettt ettt ettt ettt ettt e et e et e et sttt ettt 395
SHE ettt ettt ettt ettt ettt ettt e ettt e st e et ee e 396
SIGRIE vt e et e e e et s et e et e st e e et e e ettt e et e et e et es et e et e et 397
SLL oottt ettt ettt ettt et ettt et et e et e ettt e et e e 398
SLLV ettt ettt ettt ettt e et e et e et et et ee e ee et e et e et et 399
ST ettt ettt ettt e ettt ettt ettt e e ettt e ettt e et e et 400
STl et e et e et e et s ettt e e et e et s et e et e et e st e e et et ee e r e eees 401
SLTIU oottt e et e st e e e et e s e e e et e st e et e et ee et ee et s et e et s e et 402
SLTU oottt e et e et e et e e et e s e e e ettt e et e e et e et e s e et e e ee e 403
SQRTAME vt e e e e e et e e eee e s eseeee e e e e s e e e s esees e eseee e ee e s e s eeseesteseees e s ees e esees s 404
SRA ettt ettt e ettt e et e et e ettt 405
SRAV .ottt ettt ettt ettt ettt et e e s e et er et ee e eees 406
SRL oottt ettt ettt ettt e et e sttt e e e 407
SRLY ettt ettt ettt ettt et e e et s et e et ee et e e eees 408
SSNOP .ottt e et e et e et ettt e ettt e et e et et e ettt r et 409
SUB ..ottt ettt ettt ettt et e et e st e et e e 410
SUBLIMIE ..o eee st eeeee s e s e s e s s e e e eseeeseeseee s ee e s e s e e s e s ee e eseee s es et es e seestesees et eeseesees e eeeereees 411
SUBU oottt e e et s et e e s et ee e et ee e e e et e et ee ettt e s et ee e s ettt 412
SW ettt ettt e ettt ettt e et e et s et e et e et e s 413
SWE ettt e ettt ettt e ettt e ettt et s et e e r et ee e 414
SWCL oot e et e e et e ettt et e et e ettt et et ee e e et et 415
SWC2 oottt e sttt ettt ettt e ettt er e ettt 416
SYNC oottt e ettt et e et e ettt e et e ee e et e e et e e et e e e eees 417
SYNCH oot e et e e et e et e et e et ee e e s e s ee e e e s s et e e ee et e e et s s e e e et 422
SYSCALL vttt e e e ee et e et e e st e e ee et ettt ee ettt et e et e s e ee et e e 425
L1 =10 TP OO 426
TG oottt ettt ettt ettt ettt ettt e et et et 427
TGEU oot e e e e e ettt ettt e e ettt ettt et ee e e e et et r e 428
TLBINV oottt ee e e e e e e ee e e ee e e e e e e e e e s e e e e e e ee e e e ee s e st e e e s e e s e et ee e e et ee e e e e e er e s e 430
TLBINVF oottt eeeeee et e e e e e s et e e e e e e e e e e e et ee e e s eeeee s e et e e e st e s e et e e ee s ee e eee e s s ee s e ee e 433
TLBP oottt e ettt e e et e ettt et et et e ettt et e et e e e et e et et r et eer e 435
TLBR corveeee oot e e e e e e et eeeee e eee e e ee e e et e e et e e e ee e e et e et e ettt e et ee et ee e e et et et ee e er e 436
TLBWI oot eeee e ee e e e ee e e e et e e e e e e e s e e e e e ee s e st ee et et e et e et e et er e e 438
TLBWR .ot eee et e e eseee e eeeee e eseeeeses e s e et e e e e e e ee e e e ee e e e ee e e st e e e st e s et e et ee e e et e et er e s en e 440
T T oot e et e et e e et e e e et e e e e et e ettt e et e et e ettt e et ettt e et e et e et n et 442
TLTU oottt ee e e e e e e e e e e e e ee e e e e s e e e e e e e e e e e e et et e e et e et e s e et et et et r et r et eeee 443
TNE et et e et e e et e e e et e e oo e e ettt e et ettt e e et e e et e e ettt e s et ee s et ee e et er e s er e 444
TRUNC. LMttt ettt eeeeeeee et s e s e e eeee s eeeee s ee e s ees s eeee s e eseeeseeseee s eseesees e eseeseeeseeeees e esene 445
TRUNC.MFTIE c1vo oottt eeeee e eee e e e e e e e eee e eeeee s e s ee s e s e eseeeee s e et e s ee s es e s es e seeeneeesesees e rsnene 446
WVAIT oottt et e e et e e e ee e ettt ee et e et eeeee e e e s et e et et ettt e et ettt et 447
WRPGPR ..ottt et ettt eeeee e e et e e et e et e e et e e e e e e e et e s et e et ee s e e et en e s ee oo 449
WVSBH. oottt et e e eeeee e e e e e ee e e et e e e e e e e e et e e ee e et e et e et ee et ee e ee e et 450
XOR oottt e e e e e e et e s et ee et e ettt e et e e e ettt ettt et e et e et ee et 451
XORI oot e e e e e e et e et et s e ee et e e e e e e et e s e et e s e et e e s e et e e s et e et eee et 452

MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05

(04 0 T=1 o3 (=T g I A 0.7 o Yoo Yo [0 1 F- T o TSP P PSSP 453

I g |V =V o] G @ o oo o =1 ST EPTPPR 453
g |V T To G @] o oo o =1 SO RUTRTR 455
11.3: Floating Point Unit Instruction Format ENCOAINGSuueiiiiiiiiiiiai e 465
Chapter 12: Compatibilitycccciioiiieece e e e e e e e e e e e reeseeseeeaan 469
12.1: Assembly-Level CompPatiDility..........coouiiiiii e 469
12.2: ABI COMPALIDIITY ...ttt e et e e et bt e e e e eh b e e s s bb et e e e s anbaeeeeenanes 470
12.3: Branch and JUMP OFfSELScciiiiiiiiiiiiiii ettt e ettt e e e bt e e e st e e e e e abe e e e e s anbaeeeeenaaes 471
12,4 REIOCALION TYPES ..ttttieiiitiiie e ettt e ettt e e ettt e e e a bt e e e oo a b et e e a4 oa kbt e e e e ook bt et e e e e ah kbt e e e e e e bt ee e ekt et e e e s anbnneeeenanes 471
12.5: Boot-up Code shared between microMIPS64 and MIPS64oocuiiiiiiiiiiiieiiiee e 471
12.6: CoproCesSOr UNUSADIE BENAVIONeiiiiiiiiiiiie sttt e et e e e e e e e s e 472
12.7: Other Issues Affecting Software and Compatibility ... 472
7N o] 01T g e [QO 5L=1 =] =Y o Ve == 473
PN oY oT=Yo Lo [@ B 3 3=3V7 T3 Lo o N o 1= o] oY P 475

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 9

10

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

List of Figures

Figure 3.1: Example of INStruction DESCIIPLIONccoiei i e e e e e e e e e e e e e e e eeeeas 34
Figure 3.2: Example of INSIrUCHION FIEIAS.......ccoi oo e e e e e e eeeaas 35
Figure 3.3: Example of Instruction Descriptive Name and MNeMONICcccoooiiiiiiiiiiiiiieeeee e 35
Figure 3.4: Example of INSIrUCHION FOIMMAL........cccoii i e e e e e e e e e e e e e e e e eeeeas 35
Figure 3.5: Example oOf INSIrUCHION PUIMPOSEcoooo it e e e e e e e e e e e a e e e e e e e aeeaas 36
Figure 3.6: Example of INStruction DESCIIPLIONcccooiiiiiiie e e e e e e e e e e e e e e e e eeeaas 36
Figure 3.7: Example of INStruction RESIIHCHONScccoiiiiiiie e e e e e e e e e e e e e 37
Figure 3.8: Example of INStruction OPEFatioNccoiiiiiiiiieiie s e e e e e e e e e e e eeeeas 38
Figure 3.9: Example of INStruCtion EXCEPLIONcccceiiiiiie s e e e e e e e e e e e e e eeeas 38
Figure 3.10: Example of Instruction Programming NOEScoiiiiiiiiiiiiiiiiiiis s 39
Figure 3.11: COP_LW PSeUAOCOUE FUNCHIONuuitiiii i eeeeas 39
Figure 3.12: COP_LD PSeudOCOTE FUNCHION.......uuuuiiiiie e i e e e eee et et e e e e e eaeeeeas 40
Figure 3.13: COP_SW PSeuUdOCOTE FUNCLIONuuuiiiiiiiiiiiie e s e s eeeeas 40
Figure 3.14: COP_SD PSeUAOCOUE FUNCLIONuutiiiiiiiiiiaiiiiiiittt ettt ettt e e e e e e e e e et eeareeaaaaeeeaaas 40
Figure 3.15: CoprocessorOperation PSEUAOCOAE FUNCHONuuuiiiiiiiiiiae it e e e e e e e 41
Figure 3.16: MisalignedSupport PSEUdOCOdE FUNCHIONc..uuiiiiiiiiiii et e e e 41
Figure 3.17: AddressTranslation PSEUdOCOde FUNCHONcooiiiiiiiiiiiiieeee et 42
Figure 3.18: LoadMemory PSeUdOCOdE FUNCHONoiiiiiiiiiiiii ettt e e e e e e e e e e e e 42
Figure 3.19: StoreMemory PSEUAOCOAE FUNCHIONuiiiiiiiaiiiiiiitiie ettt e e et e e e e e e e e e as 43
Figure 3.20: Prefetch PSeUdOCOAE FUNCLION..........uu ittt eeaaae e e as 43
Figure 3.21: SyncOperation PSeudoCode FUNCHIONooiiiiiiiiiiiiiie ittt e et r e e e e e e e e e e e 44
Figure 3.22: ValueFPR PSeUAOCOTE FUNCLION.........iiiiiiiiiii ittt e e e e e et e e e e e e e e e e e e annes 44
Figure 3.23: StoreFPR PSeUAOCOTE FUNCLIONuiiiiiiiiiiii ittt e e et e e e e e e e e e e e anaes 45
Figure 3.24: CheckFPEXxception PSeUdocOde FUNCLIONooiiiiiiiiiiiiiiiie e e e 46
Figure 3.25: FPConditionCode PSeudoCOde FUNCHION.........iiiiiiiiiiiiitie ettt e e e e e 46
Figure 3.26: SetFPConditionCode PSeudoCode FUNCHONcoouiiiiiiiiiiiiie et e e e e e e e e e 47
Figure 3.27: sign_extend PSeudoCode FUNCLIONSoiii ittt e e e e e et aeeeaaaaaaea s a7
Figure 3.28: memory_address PSeudoCode FUNCLIONooiiii i e e 48
Figure 3.29: Instruction Fetch Implicit memory_addreSs WIapPiNgccuee e 49
Figure 3.30: AddressTranslation implicit memory_address Wrapping..... ... iiiiiieiie e eea e 49
Figure 3.31: SignalException PSeudOCOde FUNCHONooiiiiiiiiiiiiiiiie et e e e e e e e e e e e e 49
Figure 3.32: SignalDebugBreakpointException Pseudocode FUNCLIONccc.uviiiiiiiiiiiaiiiiiieeee e 49
Figure 3.33: SignalDebugModeBreakpointException Pseudocode FUNCHON............euiiiiiiiiiiiiiiiiiiiiieieeece e 50
Figure 3.34: NullifyCurrentinstruction PSeUdoCOde FUNCHIONuuuiiiiiiiiaaiiiiiiiie e e e 50
Figure 3.35: NotWordValue PSeudoCode FUNCLON...........e it e e e e e e e e e 50
Figure 3.36: POlyMult PSEUAOCOTE FUNCHIONuuiiiiiiiiiieae ettt e et e e e e e e e et eeeaaaaeeaeeas 50
Figure 4.1: 16-Bit INSIIUCHION FOIMMALS.......uuiiiiiiieeaiie ittt e ettt e e e e e e e e e s e e abbbb et e e e e e e e s aannnnanbeeeeeaeaaaaaeas 54
Figure 4.2: 32-Bit INSIIUCTION FOMMALSeeiiiiiiiiie ittt e e ettt e e e et e e e e nnnes 55
Figure 4.3: Immediate Fields within 32-Bit INSrUCHIONS...........uiiiiiiiiiie e 55
Figure 5.1: ALIGN OPEration (B2-D0t)uiieieii it e e e e e e e e et et e e as 135
Figure 5.2: DALIGN 0OPEration (B4-Dit)iie et e s e s e e e e e e e e e e e e e ee e e e e e s e e e et an e e e e eaeeas 135
Figure 5.3: Usage of Address Fields to Select INndeX and Wayuuuiiiiiiiiiiie e 158
Figure 5.4: Usage of Address Fields to Select INndeX and Wauuuiiiiiiiiiieiee e 164
Figure 5.5: Operation of the DEXT INSTIUCHIONoiiiiiiiieiei e e e e e et e e e e e e s 206
Figure 5.6: Operation of the DEXTM INSTIUCLIONooiiiiiiiiiiiiiice s e e e e e e et e e e e a e e s 208
Figure 5.7: Operation of the DEXTU INSIIUCLIONcoiiiiiiiiiiiiie e s s e e e e e e et et e e e a e e as 210
Figure 5.8: Operation Of the DINS INSITUCTIONuuuuiiiiii i e e e e e e e e e e e e e e a e e e s 213
MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 11

Figure 5.9: Operation of the DINSM INSTIUCLIONoiiiiiiiiiiiiirees e e e et e e e e e eeas 215

Figure 5.10: Operation of the DINSU INSIFUCHIONcciiiiii e e e e e e e e e e e e e e e e e e e 217
Figure 5.11: Operation of the EXT INSIIUCHIONcoooiiiiiii st a e e 256
Figure 5.12: Operation Of the INS INSLIUCLIONc.ooiiiiiii e eeas 265
Figure 11.1: Sample Bit ENCOING TADIEuuuiiii et e e e e et e e e e e e e e as 453

12 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

List of Tables

Table 1.1: Symbols Used in Instruction Operation StatemMeNntS...........ccoooiiiiiiiiiiiiiiiiree s e e e e e 17
Table 1.2: Read/Write Register Field NOTALIONccoiiiiiiiii s e e e e e e e e e e e e e e e e e e e 20
Table 2.1: Instructions Added iN REIEASE Buueiiiiiiiiiieei et e e e e e e e e e e e e e ianes 26
Table 2.2: Instructions Recoded iN REICASE Bccuiiiiiiiiiiii et e e e e e e aenees 28
Table 2.3: Instructions REMOVEM IN REICASE Bueiiiiiiiiiiiiiiii et e e e e e e e e s aaanaees 29
Table 3.1: AccessLength Specifications for LOAAS/STOIESuuuuuuiiiii i e e e e e e e e e e e e aeaanans 43
Table 4.1: MICrOMIPS OPCOUE FOIMALS........uuiiiiiiiiiiiisie e e e e e et ettt s e s e e e e e e e e eeeaeeeeeeesaaeteeeaeseennenennnnnans 56
Table 5.1: 16-Bit Re-encoding of Frequent MIPS64 INSIIUCLIONSiiiiiiiie e e e e 60
Table 5.2: 16-Bit Re-encoding of Frequent MIPS64 INStruction SEQUENCES............uvuivriiiiiieieieieeeeeeeeeee e 62
Table 5.3: Instruction-Specific Register Specifiers and Immediate Field Values............cccoceeeeiiiiiiiieeeiiiiiiceeiis 63
Table 5.4: 16-Bit Instruction General-Purpose Registers - $2-$7, $16, BL7voeiiiiiiiiiieiiieiie e 64
Table 5.5: SB16, SH16, SW16 Source Registers - $0, $2-$7, $L7cocovviiiiiiiiiiiii 65
Table 5.6: 16-Bit Instruction Implicit General-PurpoSe REQISLErScooiiiiiiiiiiiiiiieee et 66
Table 5.7: 16-Bit Instruction Special-PurpoSe REQISIEIS.uuiiiiiiiiiiie e 66
Table 5.8: 32-bit Instructions introduced wWithin MICTOMIPSuiiiiiiii e 66
Table 5.9: Encoded and Decoded Values of the Immediate Field................oueeiiiiiiiiie e 70
Table 5-1: Encoded and Decoded Values of Signed Immediate Field ... 72
Table 5.10: Encoded and Decoded Values of Immediate Field................uueiiiiiiiiiiiii e 74
Table 5-2: Encoded and Decoded Values of Immediate Field.............ooooiiiiiiiiiiiiie e 78
Table 5.11: Offset Field ENcCoding RANGE -1, 0..04ottt e e e e e e e st e e e e e e e e s e annnnees 88
Table 5.12: LI16 -1, 0..126 Immediate Field ENCOdiNG RANGE........cuiiiiiiiiiiiiiiiieece e 95
Table 5.13: Encoded and Decoded Values of the ENnc_Dest Fieldooovvviiiiiiiiiiiiiii e 105
Table 5.14: Encoded and Decoded Values of the Enc_rs and ENc_rt Fieldsccvviiiiiiiiiiiiie e, 105
Table 5.15: Shift AMOUNt FIEld ENCOUING uuteiiiiieeiie ittt e e e e e e e et e e e e e e aeaaeaaeaaaannenees 115
Table 5.16: Shift AMOUNt FIEld ENCOUINGuuteiiiiiaaai ittt e e e e e e et e e e e e e eaaaeeaeaaaannenees 116
Table 5.17: Usage Of EffECtIVE AQUIESS i e e e e e e e e e e e a e e e e e e e e e e e nannennes 158
Table 5.18: Encoding of Bits[17:16] Of CACHE INSIIUCLIONciiiiiiiiiiiiiiiei et 159
Table 5.19: Encoding of Bits [20:18] of the CACHE INSIIUCLIONc.oooiiiiiiiiiieiee e 160
Table 5.20: Usage Of EffECtIVE AQUIESS it e e e e e e e e e b e e e e e e e e e e e e nnnnnenes 164
Table 5.21: Encoding of Bits[22:21] of CACHEE INSIIUCLIONcooiiiiiiiiiiiiie et 165
Table 5.22: Encoding of Bits [20:18] of the CACHEE INSLIUCLIONuuiiiiiiiiiiiiaaee et 166
Table 5.1: Types oOf GloDal TLB INVAIHALIESceiiiiiaaiiii ittt e e e e e e e e e bae e e e e e e e e e nnneeees 262
Table 7.24: Special Cases for FP MAX, MIN, MAXA, MINAo et e e 313
Table 8.25: Values of hint Field for PREF INSIIUCLIONuuiiiiiiiiiii i e 341
Table 8.26: Values of hint Field for PREFE INSIIUCHION..........uuiiiiiiiieiii et 346
Table 8.27: RDHWR RegISter NUMDEISu ittt e e e e e e e e e e e st ee e e e e e e e e annnnnes 349
Table 10.28: Encodings of the Bits[10:6] of the SYNC instruction; the SType Field..........ccccoeiieiiiiiiniiiiiiiiiiiee, 419
Table 11.1: Symbols Used in the Instruction ENcoding TabIes............oooiriiiiiiiiiiici i 454
Table 11.2: microMIPS64 Encoding of Major Opcode Fieldooooiiiiiiiiiiiiccee i 455
Table 11.3: Legend for Minor OPCOAE TaDIESooiiiiiiiiiiii it e e e e e e e e e e e aeaereranaanaaas 456
Table 11.4: POOL32A Encoding of Minor Opcode Field ..o 456
Table 11.5: POOL32P Encoding of Minor EXtension Fieldooooviiiiiiiiiiiciecee e 457
Table 11.6: POOL32Axf Encoding of Minor Opcode Extension Field................oouiiiiiiiiiiiiie e 457
Table 11.7: POOL32F Encoding of Minor Opcode Fieldcoooiiiiiiiiieee e 459
Table 11.8: POOL32Fxf Encoding of Minor Opcode Extension Field..............coooiiiiciicicces e 459
Table 11.9: POOL32B Encoding of Minor Opcode Field ... 460
Table 11.10: POOL32C Encoding of Minor Opcode FIeldcooiiiiiiiiiiieesirie e e e 460

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 13

Table 11.11:
Table 11.12:
Table 11.13:
Table 11.14:
Table 11.15:
Table 11.16:
Table 11.17:
Table 11.18:
Table 11.19:
Table 11.20:
Table 11.21:
Table 11.22:
Table 11.23:
Table 11.24:
Table 11.25:
Table 11.26:

14

LD-EVA Encoding of Minor Opcode Fi€ld............uuuiiiiiiiiii e e e e e e 461
ST-EVA Encoding of Minor Opcode Field............ooriiiiiiiicie e e e ae e 461
POOL32I Encoding of Minor Opcode Field...........coooiiiiiiiieeee e 461
POOL32S Encoding of Minor Opcode FIeldiiiiiiiiiic e 462
POOL32Sxf Encoding of Minor Opcode Extension Field.............ccccooiiiiiiiiiiiceee e 463
POOL16A Encoding of Minor Opcode FIeldoiiiiiiiiiice s 463
POOL16B Encoding of Minor Opcode FIeldoiiiiiiiiiice e 464
POOL16C Encoding of Minor Opcode FIeldcoooiiiiiiiiiiie e 464
POOL16D Encoding of Minor Opcode FIeldcoooiiiiiiiiic e 464
POOL16E Encoding of Minor Opcode FIelduiiiiiieiie e e e e e 465
PCREL Encoding of MinOr OPCOde FIeld.........c.oooiiiiiiiiiiiiiie et 465
Floating Point Unit Format ENcodings - S, D, PS....ccooiiiii e e e 465
Floating Point Unit Format Encodings - S, D 1-Dit ..., 465
Floating Point Unit Instruction Format Encodings - S, D 2-DitS..........uuiiiiiiiiiiiiiiiieeeeceeeeeeee 466
Floating Point Unit Format ENCOdINGS - S, W, L...uuuiiiiiiiiiiiieee et 466
Floating Point Unit Format ENcodings - D, W, Luuuiiiiiiiiiia e 466

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

Chapter 1

About This Book

The MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set comes as part of a multi-
volume set.

* Volume I-A describes conventions used throughout the document set, and provides an introduction to the
MIPS64® Architecture

* Volume I-B describes conventions used throughout the document set, and provides an introduction to the micro-
MIPS™ Architecture

* Volume II-A provides detailed descriptions of each instruction in the MIPS64® instruction set
* Volume II-B provides detailed descriptions of each instruction in the microMIPS64™ instruction set

* Volume III describes the MIPS64® and microMIPS64™ Privileged Resource Architecture which defines and
governs the behavior of the privileged resources included in a MIPS® processor implementation

* Volume IV-a describes the MIPS16e™ Application-Specific Extension to the MIPS64® Architecture. Beginning
with Release 3 of the Architecture, microMIPS is the preferred solution for smaller code size. Release 6 removes
MIPS16e: MIPS16e cannot be implemented with Release 6.

* Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS64® Architecture and
microMIPS64™. With Release 5 of the Architecture, MDMX is deprecated. MDMX and MSA can not be imple-

mented at the same time. Release 6 removes MDMX: MDMX cannot be implemented with Release 6.

* Volume I'V-c describes the MIPS-3D® Application-Specific Extension to the MIPS® Architecture. Release 6
removes MIPS-3D: MIPS-3D cannot be implemented with Release 6.

* Volume IV-d describes the SmartMIPS®Application-Specific Extension to the MIPS32® Architecture and the
microMIPS32™ Architecture and is not applicable to the MIPS64® document set nor the microMIPS64™ docu-
ment set. Release 6 removes SmartMIPS: SmartMIPS cannot be implemented with Release 6, neither MIPS32
Release 6 nor MIPS64 Release 6.

* Volume IV-e describes the MIPS® DSP Module to the MIPS® Architecture.

* Volume IV-f describes the MIPS® MT Module to the MIPS® Architecture

* Volume IV-h describes the MIPS® MCU Application-Specific Extension to the MIPS® Architecture

¢ Volume IV-i describes the MIPS® Virtualization Module to the MIPS® Architecture

* Volume I'V-j describes the MIPS® SIMD Architecture Module to the MIPS® Architecture

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 15

About This Book

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fonts in this book.
1.1.1 Italic Text

* is used for emphasis

» is used for bits, fields, and registers that are important from a software perspective (for instance, address bits
used by software, and programmable fields and registers), and various floating point instruction formats, such as
Sand D

» is used for the memory access types, such as cached and uncached
1.1.2 Bold Text

» represents a term that is being defined

» isused for bits and fields that are important from a hardware perspective (for instance, register bits, which are
not programmable but accessible only to hardware)

» isused for ranges of numbers; the range is indicated by an ellipsis. For instance, 5..1 indicates numbers
5 through 1

* isused to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the pro-
cessor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions in
a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register). Unpriv-
ileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and unprivileged
software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction,
or as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause a result to be generated or not. If a result is gener-
ated, it is UNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

* Implementations of operations generating UNPREDICTABLE results must not depend on any data source
(memory or internal state) which is inaccessible in the current processor mode

16 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

1.3 Special Symbols in Pseudocode Notation

* UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
is inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process

* UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:
* UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which

there is no exit other than powering down the processor). The assertion of any of the reset signals must restore
the processor to an operational state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDICTABLE values, software may depend on the fact that a sampling of an UNSTABLE value results in a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABLE values have one implementation restriction:

* Implementations of operations generating UNSTABLE results must not depend on any data source (memory or
internal state) which is inaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described using a high-level language pseudocode resem-
bling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning

<« Assignment

= Tests for equality and inequality

I Bit string concatenation

xY A y-bit string formed by Yy copies of the single-bit value X

b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the
binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the default base is 10.

Obn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).

Oxn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 17

About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning
Xy 2 Selection of bits y through z of bit string X. Little-endian bit notation (rightmost bit is 0) is used. If'y is less
than z, this expression is an empty (zero length) bit string.
x.bit[y] Bity of bitstring X. Alternative to the traditional MIPS notation x,.
x.bits[y..z] Selection of bits y through z of bit string X. Alternative to the traditional MIPS notation x,, .
x.byte[y] Byte y of bitstring X. Equivalent to the traditional MIPS notation Xg«y+7 gy
x.bytes[y..z] Selection of bytes y through z of bit string X. Alternative to the traditional MIPS notation Xg«y.7 g,
x halfword[y] Similar extraction of particular bitfields (used in e.g., MSA packed SIMD vectors).
x.word][i]
x.doubleword][i]
x.bit31, x.byte0, etc. | Examples of abbreviated form of x.bit[y], etc. notation, when y is a constant.
x fieldy Selection of a named subfield of bitstring X, typically a register or instruction encoding.
More formally described as “Field y of register x”.
For example, FIR.D = “the D bit of the Coprocessor 1 Floating-point Implementation Register (FIR)”.
+, - 2’s complement or floating point arithmetic: addition, subtraction
*, 00 2’s complement or floating point multiplication (both used for either)
div 2’s complement integer division
mod 2’s complement modulo
/ Floating point division
< 2’s complement less-than comparison
> 2’s complement greater-than comparison
< 2’s complement less-than or equal comparison
> 2’s complement greater-than or equal comparison
nor Bitwise logical NOR
Xor Bitwise logical XOR
and Bitwise logical AND
or Bitwise logical OR
not Bitwise inversion
&& Logical (non-Bitwise) AND
<< Logical Shift left (shift in zeros at right-hand-side)
>> Logical Shift right (shift in zeros at left-hand-side)
GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers
GPR[x] CPU general-purpose register X. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR[x] is a short-hand notation for SGPR[SRSCtl-gg, X].
SGPR[s.x] In Release 2 of the Architecture and subsequent releases, multiple copies of the CPU general-purpose regis-
ters may be implemented. SGPR([Ss,X] refers to GPR set S, register X.
FPR[X] Floating Point operand register X
FCC[CC] Floating Point condition code CC. FCC[0] has the same value as COC[1].
Release 6 removes the floating point condition codes.
FPR[X] Floating Point (Coprocessor unit 1), general register X

18

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

1.3 Special Symbols in Pseudocode Notation

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol

Meaning

CPR[z,x,s]

Coprocessor unit z, general register X, select S

CP2CPR[x]

Coprocessor unit 2, general register X

CCR[z,X]

Coprocessor unit z, control register X

CP2CCR[x]

Coprocessor unit 2, control register X

coc[z]

Coprocessor unit Z condition signal

Xlat[x]

Translation of the MIPS16e GPR number X into the corresponding 32-bit GPR number

BigEndianMem

Endian mode as configured at chip reset (0 — Little-Endian, 1 — Big-Endian). Specifies the endianness of
the memory interface (see LoadMemory and StoreMemory pseudocode function descriptions) and the endi-
anness of Kernel and Supervisor mode execution.

BigEndianCPU

The endianness for load and store instructions (0 — Little-Endian, 1 — Big-Endian). In User mode, this
endianness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be com-
puted as (BigEndianMem XOR ReverseEndian).

ReverseEndian

Signal to reverse the endianness of load and store instructions. This feature is available in User mode only,
and is implemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRgg and User mode).

LLbit

Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when a linked load occurs and is tested by the conditional store. It is cleared, during other CPU operation,
when a store to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

I+n:
I-n:

This occurs as a prefix to Operation description lines and functions as a label. It indicates the instruction
time during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a
time label of |. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections
labeled with the instruction time, relative to the current instruction I, in which the effect of that pseudocode
appears to occur. For example, an instruction may have a result that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in a section labeled 1+1.

The effect of pseudocode statements for the current instruction labeled I+1 appears to occur “at the same
time” as the effect of pseudocode statements labeled | for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statements for
different instructions that occur “at the same time,” there is no defined order. Programs must not depend on a
particular order of evaluation between such sections.

PC

The Program Counter value. During the instruction time of an instruction, this is the address of the instruc-
tion word. The address of the instruction that occurs during the next instruction time is determined by assign-
ing a value to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.

In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the restart
address into a GPR on a jump-and-link or branch-and-link instruction, or into a Coprocessor 0 register on an
exception. Release 6 adds PC-relative address computation and load instructions. The PC value contains a
full 64-bit address, all of which are significant during a memory reference.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

19

About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol

Meaning

ISA Mode

In processors that implement the MIPS16e Application Specific Extension or the microMIPS base architec-
tures, the ISA Mode is a single-bit register that determines in which mode the processor is executing, as fol-
lows:

Encoding Meaning

0 The processor is executing 32-bit MIPS instructions

1 The processor is executing MIIPS16e or microMIPS
instructions

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Mode into a GPR on a jump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS

The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 phys-

JPABITS _ 536

ical address bits were implemented, the size of the physical address space would be bytes.

SEGBITS

The number of virtual address bits implemented in a segment of the address space is represented by the sym-

bol SEGBITS. As such, if 40 virtual address bits are implemented in a segment, the size of the segment is

2SEGBITS — 240 bytes.

FP32RegistersMode

Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). It is optional if the FPU has
32 64-bit FPRs in which 64-bit data types are stored in any FPR.

microMIPS64 implementations have a compatibility mode in which the processor references the FPRs as if it
were a microMIPS32 implementation. In such a case FP32RegisterMode is computed from the FR bit in the
Status register. If this bit is a 0, the processor operates as if it had 32, 32-bit FPRs. If this bit is a 1, the proces-
sor operates with 32 64-bit FPRs.

The value of FP32RegistersMode is computed from the FR bit in the Status register.

InstructionInBranchDe-
laySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch
or jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the value is
false if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which
is not executed in the delay slot of a branch or jump.

SignalException(excep-
tion, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
parameter as an exception-specific argument). Control does not return from this pseudocode function—the
exception is signaled at the point of the call.

1.4 Notation for Register Field Accessibility

20

In this document, the read/write properties of register fields use the notations shown in Table 1.1.

Table 1.2 Read/Write Register Field Notation

Read/Write
Notation Hardware Interpretation Software Interpretation
R/W A field in which all bits are readable and writable by software and, potentially, by hardware.

Hardware updates of this field are visible by software read. Software updates of this field are visible by
hardware read.

If the Reset State of this field is “Undefined”, either software or hardware must initialize the value before
the first read will return a predictable value. This should not be confused with the formal definition of
UNDEFINED behavior.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

1.4 Notation for Register Field Accessibility

Table 1.2 Read/Write Register Field Notation (Continued)

Read/Write
Notation Hardware Interpretation Software Interpretation

R A field which is either static or is updated only by | A field to which the value written by software is
hardware. ignored by hardware. Software may write any value
If the Reset State of this field is either “0”’, “Pre- | to this field without affecting hardware behavior.
set”, or “Externally Set”, hardware initializes this | Software reads of this field return the last value
field to zero or to the appropriate state, respectively, | updated by hardware.
on powerup. The term “Preset” is used to suggest | If the Reset State of this field is “Undefined”, soft-
that the processor establishes the appropriate state, | ware reads of this field result in an UNPREDICT-
whereas the term “Externally Set” is used to sug- | ABLE value except after a hardware update done
gest that the state is established via an external under the conditions specified in the description of
source (e.g., personality pins or initialization bit the field.
stream). These terms are suggestions only, and are
not intended to act as a requirement on the imple-
mentation.
If the Reset State of this field is “Undefined”’, hard-
ware updates this field only under those conditions
specified in the description of the field.

RO RO = reserved, read as zero, ignore writes by soft- | Architectural Compatibility: RO fields are reserved,

ware. and may be used for not-yet-defined purposes in
future revisions of the architecture.

Hardware ignores software writes to an RO field.
Neither the occurrence of such writes, nor the val- | When writing an RO field, current software should
ues written, affects hardware behavior. only write either all Os, or, preferably, write back the
same value that was read from the field.

Hardware always returns 0 to software reads of RO

fields. Current software should not assume that the value
read from RO fields is zero, because this may not be

The Reset State of an RO field must always be 0. true on future hardware.

If software performs an mtc0 instruction which Future revisions of the architecture may redefine an

writes a non-zero value to an RO field, the write to | RO field, but must do so in such a way that software
the RO field will be ignored, but permitted writes to | which is unaware of the new definition and either
other fields in the register will not be affected. writes zeros or writes back the value it has read from
the field will continue to work correctly.

Writing back the same value that was read is guaran-
teed to have no unexpected effects on current or
future hardware behavior. (Except for non-atomicity
of such read-writes.)

Writing zeros to an RO field may not be preferred
because in the future this may interfere with the oper-
ation of other software which has been updated for
the new field definition.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 21

About This Book

Table 1.2 Read/Write Register Field Notation (Continued)

Read/Write
Notation Hardware Interpretation Software Interpretation
0 Release 6
Release 6 legacy “0” behaves like RO - read as zero, nonzero writes ignored.
Legacy “0” should not be defined for any new control register fields; RO should be used instead.
HW returns 0 when read. Only zero should be written, or, value read from reg-
HW ignores writes. ister.
pre-Release 6
pre-Release 6 legacy “0” - read as zero, nonzero writes UNDEFINED
A field which hardware does not update, and for A field to which the value written by software must
which hardware can assume a zero value. be zero. Software writes of non-zero values to this
field may result in UNDEFINED behavior of the
hardware. Software reads of this field return zero as
long as all previous software writes are zero.
If the Reset State of this field is “Undefined”, soft-
ware must write this field with zero before it is guar-
anteed to read as zero.
R/WO Like R/W, except that writes of non-zero to a R/WO field are ignored.

E.g. Status. NMI

Hardware may set or clear an R/WO bit. Software can only clear an R/WO0 bit.

Hardware ignores software writes of nonzero to an | Software writes 0 to an R/WO field to clear the field.
R/WO field. Neither the occurrence of such writes,
nor the values written, affects hardware behavior. | Software writes nonzero to an R/WO0 bit in order to
guarantee that the bit is not affected by the write.
Software writes of 0 to an R/WO0 field may have an
effect.

Hardware may return 0 or nonzero to software
reads of an R/WO bit.

If software performs an mtc0 instruction which
writes a non-zero value to an R/WO0 field, the write
to the R/WO field will be ignored, but permitted
writes to other fields in the register will not be
affected.

1.5 For More Information

MIPS processor manuals and additional information about MIPS products can be found at http://www.mips.com.

22 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

Chapter 2

Introduction

In today’s market, the lowest price, performance, or both must be satisfied, especially for deeply-embedded applica-
tions such as microcontroller applications. Moreover, customers require efficient solutions that can be turned into
products quickly. To meet this need, the MIPS® instruction set has been optimized and re-encoded into a new vari-
able-length scheme. This solution is called microMIPS™.

microMIPS minimizes the resulting code footprint of applications and reduces the cost of memory, which is particu-
larly high for embedded memory. Simultaneously, the high performance of MIPS cores is maintained. Using this
technology, the customer can generate best results without spending time to profile its application. The smaller code
footprint typically leads to reduced power consumption per executed task because of the smaller number of memory
accesses.

microMIPS is the preferred replacement for the existing MIPS16e™ ASE. MIPS16e could only be used for user
mode programs which did not use floating-point nor any of the Application Specific Extensions (ASEs). microMIPS
does not have these limitations — it can be used for kernel mode code as well as user mode programs. It can be used

for programs which use floating-point. It can be used with the available ASEs.

microMIPS is also an alternative to the MIPS64® instruction encoding and can be implemented in parallel or stand-
alone. The microMIPS equivalent of MIPS32 is microMIPS32™ and the microMIPS equivalent of MIPS64 is
microMIPS64™,

Overview of changes vs. existing MIPS64 ISA:

e 16-bit and 32-bit opcodes

* Optimized opcode/operand field definitions based on statistics
* Removal of branch likely instructions, emulation by assembler

* Fine-tuned register allocation algorithm in the compiler for lowest code size

2.1 Default ISA Mode

The instruction sets which are available within an implementation are reported by the Config3,gp register field (bits
15:14). Configlcp (bit 2) is not used for microMIPS64.

For implementations that support both microMIPS64 and MIPS64, the selected ISA mode following reset is deter-
mined by the setting of the Config3|gp register field., which is a read-only field set by a hardware signal external to the

processor core.

For implementations that support both microMIPS64 and MIPS64, the selected ISA mode upon handling an excep-
tion is determined by the setting of the Config3;saonexc register field (bit 16). The Config3|saonexc register field is

writeable by software and has a reset value that is set by a hardware signal external to the processor core. This register

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 23

Introduction

field allows privileged software to change the ISA mode to be used for subsequent exceptions. This capability is for
all exception types whose vectors are offsets of the EBASE register.

For implementations that support both microMIPS64 and MIPS64, the selected ISA mode when handling a debug
exception is determined by the setting of the ISAonDebug register field in the EJTAG TAP Control register. This reg-
ister field is writeable by EJTAG probe software and has a reset value that is set by a hardware signal external to the
processor core.

For CPU cores supporting the MT ASE and multiple VPEs, the ISA mode for exceptions can be selected on a per-
VPE basis.

2.2 Software Detection

Software can determine if microMIPS64 ISA is implemented by checking the state of the ISA (Instruction Set Archi-
tecture) field in the Config3 CPO register. Configlcp (bit 2) is not used for microMIPS64.

Software can determine if the MIPS64 ISA is implemented by checking the state of the ISA (Instruction Set Architec-
ture) register field in the Config3 CPO register.

Software can determine which ISA is used when handling an exception by checking the state of the ISAOnEXxc (ISA
on Exception) field in the Config3 CPO register.

Debug Probe Software can determine which ISA is used when handling a debug exception by checking the state of
the ISAONnDebug field in the EJTAG TAP Control register.

2.3 Compliance and Subsetting

This document does not change the instruction subsets as defined by the other MIPS architecture reference manuals,
including the subsets defined by the various ASEs.

2.4 ISA Mode Switch

24

The MIPS Release 3 architecture defines an ISA mode for each processor. An ISA mode value of 0 indicates MIPS64
instruction decoding. In processors implementing microMIPS64, an ISA mode value of 1 selects microMIPS64
instruction decoding.

The ISA mode is not directly visible to user mode software. Upon an exception, the ISA mode of the faulting/inter-
rupted instruction is recorded in the least-significant address bit within the appropriate return address register - either
EPC or ErrorEPC or DebugEPC, depending on the exception type.

For the rest of this section, the following definitions are used:

Jump-and-Link-Register instructions: For the MIPS64 ISA, this means the JALR and JALR.HB instructions. For the
microMIPS64 ISA, this means the JALRC, JALRC.HB, JIALC, and JALRC16 instructions.

Jump-Register instructions: For the MIPS64 ISA, this means the JR and JR.HB instructions. For the microMIPS64
ISA, this means the instructions JRC, JRC.HB, JIC, JRC16, and JRCADDIUSP instructions.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

2.5 Branch and Jump Offsets

Mode switching between MIPS64 and microMIPS64 is enabled by the Jump-and-Link-Register and Jump-Register
instructions, as described below.

* The Jump-and-Link-Register and Jump-Register instructions interpret bit 0 of the source registers as the target
ISA mode (0=MIPS64, 1=microMIPS64) and therefore set the ISA Mode bit according to the contents of bit 0 of
the source register. For the actual jump operation, the PC is loaded with the value of the source register with bit 0
set to 0. The Jump-and-Link-Register instructions save the ISA mode into bit 0 of the destination register.

* When exceptions or interrupts occur and the processor writes to EPC, DEPC, or ErrorEPC, the ISA Mode bit is
saved into bit 0 of these registers. Then the ISA Mode bit is set according to the Config3,5ponexc register field.
On return from an exception, the processor loads the ISA Mode bit based on the value from either EPC, DEPC,
or ErrorEPC.

If only one ISA mode exists (either MIPS64 or microMIPS64) then this mode switch mechanism does not exist, but
the ISA Mode bit is still maintained and has a fixed value (0=MIPS64, 1=microMIPS64). This is to maintain code
compatibility between devices which implement both ISA modes and devices which implement only one ISA mode.
Jump-Register and Jump-and-Link-Register instructions cause an Address exception on the target instruction fetch
when bit 0 of the source register is different from the fixed ISA mode. Exception handlers must use the instruction set
binary format supported by the processor. The Jump-and-Link-Register instructions must still save the fixed ISA
mode into bit 0 of the destination register.

2.5 Branch and Jump Offsets

In the MIPS64 architecture, because instructions are always 32 bits in size, the jump and branch target addresses are
word (32-bit) aligned. Jump/branch offset fields are shifted left by two bits to create a word-aligned effective address.

In the microMIPS64 architecture, because instructions can be either 16 or 32 bits in size, the jump and branch target
addresses are halfword (16-bit) aligned. Branch/jump offset fields are shifted left by only one bit to create halfword-
aligned effective addresses.

To maintain the existing MIPS64 ABIs, link unit/object file entry points are restricted to 32-bit word alignments. In
the future, a microMIPS64-only ABI can be created to remove this restriction.

2.6 Coprocessor Unusable Behavior

If an instruction associated with a non-implemented coprocessor is executed, it is implementation specific whether a
processor executing in microMIPS64 mode raises an RI exception or a coprocessor unusable exception. This behav-
ior is different from the MIPS64 behavior in which coprocessor unusable exception is signalled for such cases.

If the microMIPS64 implementation chooses to use RI exception in such cases, the microMIPS64 RI exception han-

dler must check for coprocessor instructions being executed while the associated coprocessor is implemented but has
been disabled (Statuscyy set to zero).

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 25

Introduction

2.7 Release 6 of the MIPS Architecture

Table 2.1 Instructions Added in Release 6

Instruction Instruction’s Purpose Replaces
ADDIUPC Add Immediate to PC (unsigned - non-trapping) New
ALIGN Concatenate two GPRs, and extract a contiguous subset at a byte New
position (32-bit)
DALIGN Concatenate two GPRs, and extract a contiguous subset at a byte New
position (64-bit)
ALUIPC Aligned Add Upper Immediate to PC New
AUI Add Upper Immediate New
DAUI Doubleword Add Upper Immediate New
DAHI Doubleword Add Higher Immediate New
DATI Doubleword Add Top Immediate New
AUIPC Add Upper Immediate to PC New
BCIEQZC Branch if Coprocessor 1 (FPU) Register Bit 0 is Equal to Zero BCIF
BCINEZC Branch if Coprocessor 1 (FPR) Register Bit 0 is Not Equal to Zero BCIT
BC2EQZC Branch if Coprocessor 2 Condition Register is Equal to Zero BC2F
BC2NEZC Branch if Coprocessor 2 Condition Register is Not Equal to Zero BC2T
BLEZALC Compact branch-and-link if GPR rt is less than or equal to zero New
BGEZALC Compact branch-and-link if GPR rt is greater than or equal to zero Compact version
BGTZALC Compact branch-and-link if GPR rt is greater than zero New
BLTZALC Compact branch-and-link if GPR rt is less than to zero Compact version
BEQZALC Compact branch-and-link if GPR rt is equal to zero New
BNEZALC Compact branch-and-link if GPR rt is not equal to zero New
BEQC Equal register-register compare and branch with 16-bit offset New
BNEC Not-Equal register-register compare and branch with 16-bit offset New
BLTC Signed register-register compare and branch with 16-bit offset:67 New
BGEC Signed register-register compare and branch with 16-bit offset: New
BLTUC Unsigned register-register compare and branch with 16-bit offset: New
BGEUC Unsigned register-register compare and branch with 16-bit offset: New
BGTC Assembly idioms with reversed operands for signed/unsigned com- New
pare-and-branch
BLEC Assembly idioms with reversed operands for signed/unsigned com- New
pare-and-branch
BGTUC Assembly idioms with reversed operands for signed/unsigned com- New
pare-and-branch
BLEUC Assembly idioms with reversed operands for signed/unsigned com- New
pare-and-branch
BLTZC Signed Compare register to Zero and branch with 16-bit offset Compact version

26 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

2.7 Release 6 of the MIPS Architecture

Table 2.1 Instructions Added in Release 6 (Continued)

Instruction Instruction’s Purpose Replaces
BLEZC Signed Compare register to Zero and branch with 16-bit offset Compact version
BGEZC Signed Compare register to Zero and branch with 16-bit offset Compact version
BGTZC Signed Compare register to Zero and branch with 16-bit offset Compact version
BEQZC Equal Compare register to Zero and branch with 21-bit offset Compact version with 21-bit offset
BNEZC Not-equal Compare register to Zero and branch with 21-bit offset Compact version with 21-bit offset
BC/BC16 Branch, Compact (16) B/B16
BALC Branch and Link, Compact BAL
BITSWAP Swaps (reverses) bits in each byte New
DBITSWAP Swaps (reverses) bits in each byte New
BOVC Branch on Overflow, Compact; Branch on No Overflow, Compact New
BNVC Branch on Overflow, Compact; Branch on No Overflow, Compact New
CRC32B/CRC32H/ Generate CRC with reversed polynomial 0OXEDB88320 New
CRC32W/CRC32D
CRC32CB/CRC32CH/ Generate CRC with reversed polynomial 0x82F63B78 New
CRC32CW/CRC32CD
CLASS fmt Scalar Floating-Point Class Mask New
CMP.condn fmt Floating Point Compare setting Mask C.condn fmt
DIV Divide Words Signed DIV
DVP Disable Virtual Processor New
EVP Enable Virtual Processor New
MOD Modulo Words Signed DIV
DIVU Divide Words Signed DIVU
MODU Modulo Words Signed DIVU
DDIV Divide Doublewords Signed DDIV
DMOD Modulo Doublewords Signed DDIV
DDIVU Divide Doublewords Signed DDIVU
DMODU Modulo Doublewords Signed DDIVU
GINVI Global Invalidate Instruction Cache New
GINVT Global Invalidate TLB New
JALRCI16 Jump and Link Register Compact (16-bit instr size) JALRI16
JIALC Jump Indexed and Link, Compact New
JIC Jump Indexed, Compact New
JRCADDIUSP Jump Register, Adjust Stack Pointer (16-bit) JRADDIUSP
LDPC Load Doubleword PC-relative New
LSA Load Scaled Address New
DLSA Doubleword Load Scaled Address New
LWPC Load Word PC-relative New
LWUPC Load Word Unsigned PC-relative New

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

27

Introduction

Table 2.1 Instructions Added in Release 6 (Continued)

Instruction Instruction’s Purpose Replaces
MADDF.fmt Floating Point Fused Multiply Add MADD.fmt
MSUBF.fmt Floating Point Fused Multiply Subtract MSUB fmt
MAX fmt Scalar Floating-Point Maximum New
MAXA. fmt Scalar Floating-Point Argument with Maximum Absolute Value New
MIN.fmt Scalar Floating-Point Minimum New
MINA.fmt Scalar Floating-Point Argument with Minimum Absolute Value New
MUL Multiply Words Signed, Low Word MULT
MUH Multiply Words Signed, High Word MULT
MULU Multiply Words Signed, Low Word MULTU
MUHU Multiply Words Signed, High Word MULTU
DMUL Multiply Doublewords Signed, Low Doubleword DMULT
DMUH Multiply Doublewords Signed, High Doubleword DMULT
DMULU Multiply Doublewords Signed, Low Doubleword DMULTU
DMUHU Multiply Doublewords Signed, High Doubleword DMULTU
RINT fmt Floating-Point Round to Integral New
SEL.fmt Select floating point values with FPR condition MOVF fmt, MOVT fmt
SELEQZ Select integer GPR value or zero MOVZ, MOVN
SELNEZ Select integer GPR value or zero MOVZ, MOVN
SELEQZ fmt Select floating point value or zero with FPR condition MOVZ fmt, MOVN.fmt
SELNEZ fmt Select floating point value or zero with FPR condition MOVZ fmt, MOVN.fimt
Table 2.2 Instructions Recoded in Release 6
Instruction Purpose
AND16 To do a bitwise logical AND
BEQZC Branch on Equal to Zero, Compact
BNEZC Branch on Not Equal to Zero, Compact
BREAK16 Breakpoint
JRC16 Jump Register, Compact (16-bit)
LUI To load a constant into the upper half of a word
LWMI16 Load Word Multiple (16-bit)
MOVEP Move a Pair of Registers
NOT16 Invert (16-bit instr size)
OR16 Or (16-bit instr size)
SDBBP16 Software Debug Breakpoint (16-bit instr size)
28 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

2.7 Release 6 of the MIPS Architecture

Table 2.2 Instructions Recoded in Release 6 (Continued)

Instruction Purpose
SWM16 Store Word Multiple (16-bit)
SYNCI Synchronize Caches to Make Instruction Writes Effective
XOR16 Exclusive OR (16-bit instr size)
Table 2.3 Instructions Removed in Release 6
Instruction Purpose Replaced by
ABS.PS Floating Point Absolute Value, Paired Single —
ADD.PS Floating Point Add, Paired Single —
ADDI Add Immediate Word —
ALNV.PS Floating Point Align Variable, Paired Single —
B Unconditional Branch BC
B16 Unconditional Branch (16-bit instr size) BCl16
BAL Branch and Link BALC
BCIF Branch on FP False BCIEQZC
BCIT Branch on FP True BCINEZC
BC2F Branch on COP2 False BC2EQZC
BC2T Branch on COP2 True BC2NEZC
BEQ Branch on Equal BEQC
BGEZ Branch on Greater Than or Equal to Zero BGEZC
BEQZ16 Branch on Equal to Zero (16-bit instr size) BEQZC16
BGEZAL Branch on Greater Than or Equal to Zero and Link BGEZALC
BGEZALS Branch on Greater Than or Equal to Zero and Link, Short Delay-Slot —
BGTZ Branch on Greater Than Zero BGTZC
BLEZ Branch on Less Than or Equal to Zero BLEZC
BLTZ Branch on Less Than Zero BLTZC
BLTZAL Branch on Less Than Zero and Link BLTZALC
BLTZALS Branch on Less Than Zero and Link, Short Delay-Slot BLTZALC.
BNE Branch on Not Equal BNEC
BNEZ16 Branch on Not Equal to Zero (16-bit instr size) BNEZC16.
C.cond fmt Floating Point Compare CMP.condn.fmt

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

29

Introduction

Table 2.3 Instructions Removed in Release 6 (Continued)

Instruction Purpose Replaced by
CVT.PS.S Floating Point Convert Pair to Paired Single —
CVT.S.PL Floating Point Convert Pair Lower to Single Floating Point —
CVT.S.PU Floating Point Convert Pair Upper to Single Floating Point —
DADDI Doubleword Add Immediate —
DDIV Doubleword Divide —
DDIVU Doubleword Divide Unsigned —
DIV Divide Word —
DIVU Divide Unsigned Word —
DMULT Doubleword Multiply —
DMULTU Doubleword Multiply Unsigned —
JALC Jump and Link Compact —
JALR16 Jump and Link Register (16-bit instr size) JALRCI16
JALRS Jump and Link Register, Short Delay Slot JALRC
JALRS.HB Jump and Link Register with Hazard Barrier, Short Delay-Slot —
JALRS16 Jump and Link Register, Short Delay-Slot (16-bit instr size) JALRCI16
JALS Jump and Link, Short Delay Slot —
JALX Jump and Link Exchange (microMIPS Format) —

IC Jump Register, Compact —
JR Jump Register JALRC
JR.HB Jump Register with Hazard Barrier JALRC.HB
JRC Jump Register, Compact (16) —
JR16 Jump Register (16-bit instr size) JRC16
JRADDIUSP Jump Register, Adjust Stack Pointer JRCADDIUSP
LDL Load Doubleword Left —
LDR Load Doubleword Right —
LDXC1 Load Doubleword Indexed to Floating Point —
LUXC1 Load Doubleword Indexed Unaligned to Floating Point —
LWL Load Word Left —
LWLE Load Word Left EVA —
LWR Load Word Right —
LWRE Load Word Right EVA —

30 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05

Table 2.3 Instructions Removed in Release 6 (Continued)

2.7 Release 6 of the MIPS Architecture

Instruction Purpose Replaced by
LWXC1 Load Word Indexed to Floating Point —
LWXS Load Word Indexed, Scaled —
MADD Multiply and Add Word to Hi, Lo —
MADD.fmt Floating Point Multiply Add MADDF fmt
MADDU Multiply and Add Unsigned Word to Hi,Lo —
MFHI16 Move From HI Register (16-bit instr size) —
MFLO16 Move From LO Register —
MFHI Move From HI Register —
MFLO Move From LO Register —
MOV.PS Floating Point Move —
MOVEF.fmt Floating Point Move Conditional on Floating Point False SEL.fmt
MOVN Move Conditional on Not Zero SELNEZ, SELEQZ
MOVN.fmt Floating Point Move Conditional on Not Zero SELNEZ fmt
MOVT Move Conditional on Floating Point True —
MOVT fmt Floating Point Move Conditional on Floating Point True SEL.fmt
MOVZ Move Conditional on Zero SELNEZ, SELEQZ
MOVZ.fmt Floating Point Move Conditional on Zero SELEZQZ fmt
MSUB Multiply and Subtract Word to Hi, Lo —
MSUB.fmt Floating Point Multiply Subtract MSUBEF.fmt
MSUBU Multiply and Subtract Word to Hi,Lo —
MTHI Move to HI Register —
MTLO Move to LO Register —
MUL Multiply Word to GPR —
MUL.PS Floating Point Multiply, Paired Single —
MULT Multiply Word MUL, MULH
MULTU Multiply Unsigned Word MULU, MUHU
NEG.PS Floating Point Negate, Paired Single —
NMADD fmt Floating Point Negative Multiply Add NMADDF.fmt
NMSUB fmt Floating Point Negative Multiply Subtract NMSUBF fmt
PLL.PS Pair Lower Lower, Paired Single —
PLU.PS Pair Lower Upper, Paired Single —

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

31

Introduction

Table 2.3 Instructions Removed in Release 6 (Continued)

Instruction Purpose Replaced by
PREFX Prefetch Indexed —
PUL.PS Pair Upper Lower, Paired Single —
PUU.PS Pair Upper Upper, Paired Single —

SDL Store Doubleword Left —
SDR Store Doubleword Right —
SDXC1 Store Doubleword Indexed from Floating Point —
SUB.PS Floating Point Subtract —
SUXC1 Store Doubleword Indexed Unaligned from Floating Point —
SWL Store Word Left —
SWLE Store Word Left EVA —
SWR Store Word Right —
SWXCl1 Store Word Indexed from Floating Point —
TEQI Trap if Equal Immediate —
TGEI Trap if Greater or Equal Immediate —
TGEIU Trap if Greater or Equal Immediate Unsigned —
TLTI Trap if Less Than Immediate —
TLTIU Trap if Less Than Immediate Unsigned —
TNEI Trap if Not Equal Immediate —
32 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

Chapter 3

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphabetical

order in the tables at the beginning of the next chapter.
3.1 Understanding the Instruction Fields

Figure 3.1 shows an example instruction. Following the figure are descriptions of the fields listed below:
* “Instruction Fields” on page 35

* “Instruction Descriptive Name and Mnemonic” on page 35

* “Format Field” on page 35

* “Purpose Field” on page 36

* “Description Field” on page 36

* “Restrictions Field” on page 37

* “Operation Field” on page 38

* “Exceptions Field” on page 38

* “Programming Notes and Implementation Notes Fields” on page 38

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

33

Guide to the Instruction Set

Figure 3.1 Example of Instruction Description

Instruction Mnemonic and —= Example Instruction Name EXAMPLE
Descriptive Name
EXAMPLE

31 26 25 21 20 16 15 1 10 6 5 0
Instruction Encoding
Constant and Variable ——1 SPECIAL 0 rt rd 0 EXAMPLE
Field Names and Values 000000 00000 000000
Architecture Level at 6 S 5 5 5 6
which Instruction Was
Defined/Redefined
Assembler Format(s) for ———» Format: EXAMPLE fd,rs,rt MIPS32
Each Definition

Short Description ———— = Purpose: Example Instruction Name
To execute an EXAMPLE op.

Symbolic Descripton —————» Description: GPR[rd] «— GPR[r]s exampleop GPR[rt]

Full Description of —————————pm Lhis section describes the operation of the instruction in text, tables, and illustrations. It
Instruction Operation includes information that would be difficult to encode in the Operation section.

Restrictions on Instruction —® Restrictions:

and Operands
This section lists any restrictions for the instruction. This can include values of the instruc-
tion encoding fields such as register specifiers, operand values, operand formats, address
alignment, instruction scheduling hazards, and type of memory access for addressed loca-
tions.

High Level Language —— > QOperation:
Description of the

Instruction Operation /* This section describes the operation of an instruction in */
/* a high level pseudo language. It is precise in ways that */
/* the Description section is not, but is also missing */
/* information that is hard to express in pseudocode. */

temp <— GPR[rs] exampleop GPR[rt]
GPR[rd] «— sign extend(temp;, ()

Exceptions that the Instruction——m~ Exceptions:

Can Cause
A list of exceptions taken by the instruction.

Notes for Programmers—® Programming Notes:

Information useful to programmers, but not necessary to describe the operation of the
instruction.

Notes for Implementers——» Implementation Notes:

Like Programming Notes, except for processor implementors.

34 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ |nstruction Set, Revision 6.05

3.1 Understanding the Instruction Fields

3.1.1 Instruction Fields

Fields encoding the instruction word are shown in register form at the top of the instruction description. The follow-
ing rules are followed:

* The values of constant fields and the opcode names are listed in uppercase (SPECIAL and ADD in Figure 3.2).
Constant values in a field are shown in binary below the symbolic or hexadecimal value.

* All variable fields are listed with the lowercase names used in the instruction description (rs, rt, and rd in Figure
3.2).

» Fields that contain zeros but are not named are unused fields that are required to be zero (bits 10:6 in Figure 3.2).
If such fields are set to non-zero values, the operation of the processor is UNPREDICTABLE.

Figure 3.2 Example of Instruction Fields

31 26 25 21 20 16 15 1 10 6 5 0
SPECIAL 4 0 ADD
000000 s rt r 00000 100000
6 5 5 5 5 6

3.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as shown in Figure
3.3.

Figure 3.3 Example of Instruction Descriptive Name and Mnemonic

Add Word ADD

3.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defined are
given in the Format field. If the instruction definition was later extended, the architecture levels at which it was
extended and the assembler formats for the extended definition are shown in their order of extension (for an example,
see C.cond fmt). The MIPS architecture levels are inclusive; higher architecture levels include all instructions in pre-
vious levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the
extended architecture.

Figure 3.4 Example of Instruction Format

Format: ADD fd,rs,rt MIPS32

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the lowercase names of the appropriate fields.

The architectural level at which the instruction was first defined, for example “MIPS32” is shown at the right side of
the page. Instructions introduced at different times by different ISA family members, are indicated by markings such

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 35

Guide to the Instruction Set

as “MIPS64, MIPS32 Release 2”. Instructions removed by particular architecture release are indicated in the Avail-
ability section.

There can be more than one assembler format for each architecture level. Floating point operations on formatted data
show an assembly format with the actual assembler mnemonic for each valid value of the fmt field. For example, the
ADD fmt instruction lists both ADD.S and ADD.D.

The assembler format lines sometimes include parenthetical comments to help explain variations in the formats (once
again, see C.cond.fmt). These comments are not a part of the assembler format.

The term decoded_immediate is used if the immediate field is encoded within the binary format but the assembler for-
mat uses the decoded value. The term left_shifted_offset is used if the offset field is encoded within the binary format
but the assembler format uses value after the appropriate amount of left shifting.

3.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

Figure 3.5 Example of Instruction Purpose

Purpose: Add Word

To add 32-bit integers. If an overflow occurs, then trap.

3.1.5 Description Field

If a one-line symbolic description of the instruction is feasible, it appears immediately to the right of the Description
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operation.

Figure 3.6 Example of Instruction Description

Description: GPR[rd] « GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to produce a 32-bit
result.

o Ifthe addition results in 32-bit 2’s complement arithmetic overflow, the destination
register is not modified and an Integer Overflow exception occurs.

» Ifthe addition does not overflow, the 32-bit result is signed-extended and placed into
GPR rd.

36

The body of the section is a description of the operation of the instruction in text, tables, and figures. This description
complements the high-level language description in the Operation section.

This section uses acronyms for register descriptions. “GPR rt” is CPU general-purpose register specified by the
instruction field rt. “FPR fs” is the floating point operand register specified by the instruction field fs. “CP1 register
fd” is the coprocessor 1 general register specified by the instruction field fd. “FCSR” is the floating point Control /
Status register.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

3.1 Understanding the Instruction Fields

3.1.6 Restrictions Field

The Restrictions field documents any possible restrictions that may affect the instruction. Most restrictions fall into
one of the following six categories:

» Valid values for instruction fields (for example, see floating point ADD.fmt)
* ALIGNMENT requirements for memory addresses (for example, see LW)

e Valid values of operands (for example, see ALNV.PS)

* Valid operand formats (for example, see floating point ADD.fint)

* Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline hazards
for which some processors do not have hardware interlocks (for example, see MUL).

* Valid memory access types (for example, see LL/SC)

Figure 3.7 Example of Instruction Restrictions

Restrictions:

If either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits ¢3_31 equal),
then the result of the operation is UNPREDICTABLE.

3.1.7 Availability and Compatibility Fields

The Availability and Compatibility sections are not provided for all instructions. These sections list considerations
relevant to whether and how an implementation may implement some instructions, when software may use such
instructions, and how software can determine if an instruction or feature is present. Such considerations include:

* Some instructions are not present on all architecture releases. Sometimes the implementation is required to
signal a Reserved Instruction exception, but sometimes executing such an instruction encoding is architec-
turally defined to give UNPREDICTABLE results.

* Some instructions are available for implementations of a particular architecture release, but may be provided
only if an optional feature is implemented. Control register bits typically allow software to determine if the
feature is present.

* Some instructions may not behave the same way on all implementations. Typically this involves behavior
that was UNPREDICTABLE in some implementations, but which is made architectural and guaranteed con-
sistent so that software can rely on it in subsequent architecture releases.

* Some instructions are prohibited for certain architecture releases and/or optional feature combinations.

* Some instructions may be removed for certain architecture releases. Implementations may then be required

to signal a Reserved Instruction exception for the removed instruction encoding; but sometimes the instruc-
tion encoding is reused for other instructions.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 37

Guide to the Instruction Set

All of these considerations may apply to the same instruction. If such considerations applicable to an instruction are
simple, the architecture level in which an instruction was defined or redefined in the Format field, and/or the Restric-
tions section, may be sufficient; but if the set of such considerations applicable to an instruction is complicated, the
Availability and Compatibility sections may be provided.

3.1.8 Operation Field

The Operation field describes the operation of the instruction as pseudocode in a high-level language notation resem-
bling Pascal. This formal description complements the Description section; it is not complete in itself because many
of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Figure 3.8 Example of Instruction Operation

Operation:

if NotWordValue (GPR[rs]) or NotWordvValue (GPR[rt]) then
UNPREDICTABLE
endif
temp « (GPR[rsli;||GPRIrsls;) + (GPR[rtlsi||GPRIrtlsz; o)
if temp;, # temp;; then
SignalException (IntegerOverflow)
else
GPR[rd] <« sign_extend(temps;)
endif

See 3.2 “Operation Section Notation and Functions” on page 39 for more information on the formal notation used
here.

3.1.9 Exceptions Field

The Exceptions field lists the exceptions that can be caused by Operation of the instruction. It omits exceptions that
can be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be caused by asyn-
chronous external events such as an Interrupt. Although a Bus Error exception may be caused by the operation of a
load or store instruction, this section does not list Bus Error for load and store instructions because the relationship
between load and store instructions and external error indications, like Bus Error, are dependent upon the implemen-
tation.

Figure 3.9 Example of Instruction Exception

Exceptions:

Integer Overflow

An instruction may cause implementation-dependent exceptions that are not present in the Exceptions section.
3.1.10 Programming Notes and Implementation Notes Fields

The Notes sections contain material that is useful for programmers and implementors, respectively, but that is not
necessary to describe the instruction and does not belong in the description sections.

38 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

3.2 Operation Section Notation and Functions

Figure 3.10 Example of Instruction Programming Notes
Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

3.2 Operation Section Notation and Functions

In an instruction description, the Operation section uses a high-level language notation to describe the operation per-
formed by each instruction. Special symbols used in the pseudocode are described in the previous chapter. Specific
pseudocode functions are described below.

This section presents information about the following topics:

* “Instruction Execution Ordering” on page 39

* “Pseudocode Functions” on page 39

3.2.1 Instruction Execution Ordering

Each of the high-level language statements in the Operations section are executed sequentially (except as constrained
by conditional and loop constructs).

3.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudocode more
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and
include the following:

* “Coprocessor General Register Access Functions” on page 39
e “Memory Operation Functions” on page 41
* “Floating Point Functions” on page 44
* “Miscellaneous Functions” on page 49
3.2.2.1 Coprocessor General Register Access Functions
Defined coprocessors, except for CP0, have instructions to exchange words and doublewords between coprocessor
general registers and the rest of the system. What a coprocessor does with a word or doubleword supplied to it and

how a coprocessor supplies a word or doubleword is defined by the coprocessor itself. This behavior is abstracted
into the functions described in this section.

3.2.2.1.1 COP_LW

The COP_LW function defines the action taken by coprocessor z when supplied with a word from memory during a
load word operation. The action is coprocessor-specific. The typical action would be to store the contents of mem-
word in coprocessor general register It.

Figure 3.11 COP_LW Pseudocode Function

COP_LW (z, rt, memword)

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 39

Guide to the Instruction Set

z: The coprocessor unit number
rt: Coprocessor general register specifier
memword: A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */
endfunction COP_LW
3.2.21.2 COP_LD

The COP_LD function defines the action taken by coprocessor z when supplied with a doubleword from memory
during a load doubleword operation. The action is coprocessor-specific. The typical action would be to store the con-

tents of memdouble in coprocessor general register rt.
Figure 3.12 COP_LD Pseudocode Function

COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memdouble: 64-bit doubleword value supplied to the coprocessor.
/* Coprocessor-dependent action */

endfunction COP_LD

3.2.2.1.3 COP_SW

The COP_SW function defines the action taken by coprocessor z to supply a word of data during a store word opera-
tion. The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in

coprocessor general register rt.
Figure 3.13 COP_SW Pseudocode Function
dataword <« COP_SW (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
dataword: 32-bit word wvalue
/* Coprocessor-dependent action */
endfunction COP_SW

3.2.2.1.4 COP_SD

The COP_SD function defines the action taken by coprocessor Z to supply a doubleword of data during a store dou-
bleword operation. The action is coprocessor-specific. The typical action would be to supply the contents of the low-

order doubleword in coprocessor general register rt.
Figure 3.14 COP_SD Pseudocode Function
datadouble <« COP_SD (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier

datadouble: 64-bit doubleword value

/* Coprocessor-dependent action */

40 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

3.2 Operation Section Notation and Functions

endfunction COP_SD

3.2.2.1.5 CoprocessorOperation
The CoprocessorOperation function performs the specified Coprocessor operation.

Figure 3.15 CoprocessorOperation Pseudocode Function

CoprocessorOperation (z, cop fun)

/* zZ: Coprocessor unit number */
/* cop fun: Coprocessor function from function field of instruction */

/* Transmit the cop fun value to coprocessor z */
endfunction CoprocessorOperation

3.2.2.2 Memory Operation Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the smallest byte
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for a little-endian
ordering this is the least-significant byte.

In the Operation pseudocode for load and store operations, the following functions summarize the handling of virtual
addresses and the access of physical memory. The size of the data item to be loaded or stored is passed in the Access-
Length field. The valid constant names and values are shown in Table 3.1. The bytes within the addressed unit of
memory (word for 32-bit processors or doubleword for 64-bit processors) that are used can be determined directly
from the AccessLength and the two or three low-order bits of the address.

3.2.2.2.1 Misaligned Support

MIPS processors originally required all memory accesses to be naturally aligned. MSA (the MIPS SIMD Architec-
ture) supported misaligned memory accesses for its 128 bit packed SIMD vector loads and stores, from its introduc-
tion in MIPS Release 5. Release 6 requires systems to provide support for misaligned memory accesses for all
ordinary memory reference instructions: the system must provide a mechanism to complete a misaligned memory ref-
erence for this instruction, ranging from full execution in hardware to trap-and-emulate.

The pseudocode function MisalignedSupport encapsulates the version number check to determine if misalignment is
supported for an ordinary memory access.

Figure 3.16 MisalignedSupport Pseudocode Function
predicate <« MisalignedSupport ()

return Config.AR > 2 // Architecture Revision 2 corresponds to MIPS Release 6.
end function

See Appendix B, “Misaligned Memory Accesses” on page 511 for a more detailed discussion of misalignment,
including pseudocode functions for the actual misaligned memory access.

3.2.2.2.2 AddressTranslation

The AddressTranslation function translates a virtual address to a physical address and its cacheability and coherency
attribute, describing the mechanism used to resolve the memory reference.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 41

Guide to the Instruction Set

Given the virtual address vAddr, and whether the reference is to Instructions or Data (lorD), find the corresponding
physical address (pAddr) and the cacheability and coherency attribute (CCA) used to resolve the reference. If the vir-
tual address is in one of the unmapped address spaces, the physical address and CCA are determined directly by the
virtual address. If the virtual address is in one of the mapped address spaces then the TLB or fixed mapping MMU
determines the physical address and access type; if the required translation is not present in the TLB or the desired
access is not permitted, the function fails and an exception is taken.

Figure 3.17 AddressTranslation Pseudocode Function
(pAddr, CCA) <« AddressTranslation (vAddr, IorD, LorS)

/* pAddr: physical address */
/* CCA: Cacheability&Coherency Attribute,the method used to access caches*/
/* and memory and resolve the reference */

/* vAddr: virtual address */
/* IorD: 1Indicates whether access is for INSTRUCTION or DATA */
/* LorS: Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

3.2.2.2.3 LoadMemory
The LoadMemory function loads a value from memory.

This action uses cache and main memory as specified in both the Cacheability and Coherency Attribute (CCA) and
the access (lorD) to find the contents of AccessLength memory bytes, starting at physical location pAddr. The data is
returned in a fixed-width naturally aligned memory element (MemElem). The low-order 2 (or 3) bits of the address
and the AccessLength indicate which of the bytes within MemElem need to be passed to the processor. If the memory
access type of the reference is uncached, only the referenced bytes are read from memory and marked as valid within
the memory element. If the access type is cached but the data is not present in cache, an implementation-specific size
and alignment block of memory is read and loaded into the cache to satisfy a load reference. At a minimum, this
block is the entire memory element.

Figure 3.18 LoadMemory Pseudocode Function
MemElem <« LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a natural alignment. The */

/* width is the same size as the CPU general-purpose register, */
/* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */

/* respectively. */

/* CCA: Cacheability&CoherencyAttribute=method used to access caches */
/* and memory and resolve the reference */

/* AccessLength: Length, in bytes, of access */

/* pAddr: physical address */
/* vAddr: virtual address */
/* IorD: Indicates whether access is for Instructions or Data */

endfunction LoadMemory

42 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

3.2 Operation Section Notation and Functions

3.2.2.2.4 StoreMemory
The StoreMemory function stores a value to memory.

The specified data is stored into the physical location pAddr using the memory hierarchy (data caches and main mem-
ory) as specified by the Cacheability and Coherency Attribute (CCA). The MemElem contains the data for an aligned,
fixed-width memory element (a word for 32-bit processors, a doubleword for 64-bit processors), though only the
bytes that are actually stored to memory need be valid. The low-order two (or three) bits of pAddr and the AccessLen-
gth field indicate which of the bytes within the MemElem data should be stored; only these bytes in memory will
actually be changed.

Figure 3.19 StoreMemory Pseudocode Function

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */

/* AccessLength: Length, in bytes, of access */

/* MemElem: Data in the width and alignment of a memory element. */

/* The width is the same size as the CPU general */

/* purpose register, either 4 or 8 bytes, */

/* aligned on a 4- or 8-byte boundary. For a */

/* partial-memory-element store, only the bytes that will be*/
/* stored must be valid.x/

/* pAddr: physical address */

/* VvAddr: virtual address */

endfunction StoreMemory

3.2.2.2.5 Prefetch
The Prefetch function prefetches data from memory.

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may
increase performance but must not change the meaning of the program or alter architecturally visible state.

Figure 3.20 Prefetch Pseudocode Function
Prefetch (CCA, pAddr, vAddr, DATA, hint)
/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */
/* pAddr: physical address */
/* vAddr: virtual address */
/* DATA: 1Indicates that access is for DATA */
/* hint: hint that indicates the possible use of the data */

endfunction Prefetch

Table 3.1 lists the data access lengths and their labels for loads and stores.

Table 3.1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning

DOUBLEWORD 7 8 bytes (64 bits)

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 43

Guide to the Instruction Set

Table 3.1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning

SEPTIBYTE 6 7 bytes (56 bits)
SEXTIBYTE 5 6 bytes (48 bits)
QUINTIBYTE 4 5 bytes (40 bits)
3
2

WORD 4 bytes (32 bits)
TRIPLEBYTE 3 bytes (24 bits)
HALFWORD 1 2 bytes (16 bits)
BYTE 0 1 byte (8 bits)

3.2.2.2.6 SyncOperation
The SyncOperation function orders loads and stores to synchronize shared memory.

This action makes the effects of the synchronizable loads and stores indicated by Stype occur in the same order for all
processors.

Figure 3.21 SyncOperation Pseudocode Function
SyncOperation (stype)
/* stype: Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

3.2.2.3 Floating Point Functions

The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are inter-
preted to form a formatted value. If an FPR contains a value in some format, rather than unformatted contents from a
load (uninterpreted), it is valid to interpret the value in that format (but not to interpret it in a different format).

3.2.2.3.1 ValueFPR
The ValueFPR function returns a formatted value from the floating point registers.
Figure 3.22 ValueFPR Pseudocode Function
value <« ValueFPR (fpr, fmt)

/* value: The formattted value from the FPR */

/* fpr: The FPR number */

/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */

/* OB, QH, */

/* UNINTERPRETED WORD, */

/* UNINTERPRETED_DOUBLEWORD */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in SWC1l and SDC1 */

44 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

3.2 Operation Section Notation and Functions

case fmt of
S, W, UNINTERPRETED WORD:
valueFPR < UNPREDICTABLE’? || FPR[fprls;

D, UNINTERPRETED DOUBLEWORD:

if

(FP32RegistersMode = 0)
if (fpry # 0) then
valueFPR <« UNPREDICTABLE
else
valueFPR <« FPR[fpr+ll;; , || FPRIfprls; o
endif

else

valueFPR « FPR[fpr]

endif

L, OB,

if

QH:
(FP32RegistersMode = 0) then
valueFPR <« UNPREDICTABLE

else

valueFPR « FPR[fpr]

endif

DEFAULT:
valueFPR <« UNPREDICTABLE

endcase
endfunction ValueFPR

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored into CP1
registers by a computational or move operation. This binary representation is visible to store or move-from instruc-
tions. Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a

different format.

3.2.2.3.2 StoreFPR

StoreFPR

/*
/*
/*
/*
/*
/*
/*

/*
/*

fpr:
fmt:

value:

Figure 3.23 StoreFPR Pseudocode Function

(fpr, fmt, value)

The FPR number */

The format of the data, one of: */

S, D, W, L, Ps, */

OB, QH, */

UNINTERPRETED WORD, */

UNINTERPRETED DOUBLEWORD */

The formattted value to be stored into the FPR */

The UNINTERPRETED values are used to indicate that the datatype */
is not known as, for example, in LWC1 and LDC1l */

case fmt of
S, W, UNINTERPRETED WORD:
FPR [fpr] <« UNPREDICTABLE>? || value;;

D, UNINTERPRETED DOUBLEWORD:

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 45

Guide to the Instruction Set

if (FP32RegistersMode = 0)
if (fpry # 0) then
UNPREDICTABLE
else
FPR[fpr] < UNPREDICTABLE>? | value,;.
FPR [fpr+1] < UNPREDICTABLE’? | valueg,
endif
else
FPR[fpr] <« value
endif

..32

L, OB, QH:
if (FP32RegistersMode = 0) then
UNPREDICTABLE
else
FPR[fpr] <« value
endif

endcase

endfunction StoreFPR

3.2.2.3.3 CheckFPException

The pseudocode shown below checks for an enabled floating point exception and conditionally signals the exception.

Figure 3.24 CheckFPException Pseudocode Function

CheckFPException ()

/* A floating point exception is signaled if the E bit of the Cause field is a 1 */
/* (Unimplemented Operations have no enable) or if any bit in the Cause field */
/* and the corresponding bit in the Enable field are both 1 */

if ((FCSRyy = 1) or
((FCSRy¢. 15 and FCSRyq; 5) # 0))) then
SignalException (FloatingPointException)
endif

endfunction CheckFPException

3.2.2.3.4 FPConditionCode
The FPConditionCode function returns the value of a specific floating point condition code.
Figure 3.25 FPConditionCode Pseudocode Function
tf «-FPConditionCode (cc)

/* tf: The value of the specified condition code */

/* cc: The Condition code number in the range 0..7 */

if cc = 0 then

FPConditionCode < FCSR,;

else
FPConditionCode < FCSRy4.cc

46 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

3.2 Operation Section Notation and Functions

endif
endfunction FPConditionCode

3.2.2.3.5 SetFPConditionCode

The SetFPConditionCode function writes a new value to a specific floating point condition code.

Figure 3.26 SetFPConditionCode Pseudocode Function

SetFPConditionCode (cc, tf)
if cc = 0 then

FCSR « FCSRyq o4 || tf || FCSR,y o
else
FCSR < FCSR31 ss5icc || tf || FCSRa3icc. .0

endif

endfunction SetFPConditionCode

3.2.2.4 Pseudocode Functions Related to Sign and Zero Extension
3.2.2.4.1 Sign extension and zero extension in pseudocode

Much pseudocode uses a generic function sign extend without specifying from what bit position the extension is
done, when the intention is obvious. E.g. sign extend (immediatel6) orsign extend (disp9).

However, sometimes it is necessary to specify the bit position. For example, sign _extend (temp;; o) orthe

more complicated (offset,) CPREEN-(16+2) || offget || 02

The explicit notation sign extend.nbits(val) orsign extend(val,nbits) is suggested as a simpli-
fication. They say to sign extend as if an nbits-sized signed integer. The width to be sign extended to is usually appar-
ent by context, and is usually GPRLEN, 32 or 64 bits. The previous examples then become.

sign_extend (tempsq)

= sign extend.32 (temp)

and
(of fset) CFRLEN-(1642) 1| offget || 02
= sign extend.1l6 (offset)<<2

Note that sign_extend.N(value) extends from bit position N-1, if the bits are numbered 0..N-1 as is typical.

The explicit notations sign extend.nbits(val) or sign extend(val,nbits) is used as a simplifica-
tion. These notations say to sign extend as if an nbits-sized signed integer. The width to be sign extended to is usually
apparent by context, and is usually GPRLEN, 32 or 64 bits.

Figure 3.27 sign_extend Pseudocode Functions
sign extend.nbits(val) = sign_extend(val,nbits) /* syntactic equivalents */

function sign extend(val,nbits)
return (valnbits_l)GPRLEN—nblts ||
end function

valnbits—l ..0

The earlier examples can be expressed as

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 47

Guide to the Instruction Set

48

(offsets) CFRUEN-(1642) || offget || 02
= sign extend.1l6 (offset) << 2)

and
sign extend(temp;; ¢)
= sign extend.32(temp)

Similarly for zero extension, although zero extension is less common than sign extension in the MIPS ISA.

Floating point may use notations such as zero_extend. fmt corresponding to the format of the FPU instruction.
E.g. zero_extend.S and zero_extend.D are equivalent to zero_extend.32 and zero_extend. 64.

Existing pseudocode may use any of these, or other, notations.

3.2.2.4.2 memory_address

The pseudocode function memory address performs mode-dependent address space wrapping for compatibility
between MIPS32 and MIPS64. 1t is applied to all memory references. It may be specified explicitly in some places,
particularly for new memory reference instructions, but it is also declared to apply implicitly to all memory refer-
ences as defined below. In addition, certain instructions that are used to calculate effective memory addresses but
which are not themselves memory accesses specify memory_address explicitly in their pseudocode.

Figure 3.28 memory_address Pseudocode Function
function memory address (ea)
if User mode and Status.UX = 0 then return sign extend.32(ea)
/* Preliminary proposal to wrap privileged mode addresses */
if Supervisormode and Status.SX = 0 then return sign extend.32(ea)
if Kernel mode and Status.KX = 0 then return sign extend.32(ea)
/* if Hardware Page Table Walking, then wrap in same way as Kernel/VZ Root */
return ea
end function

On a 32-bit CPU, memory address returns its 32-bit effective address argument unaffected.

On a 64-bit processor, memory address optionally truncates a 32-bit address by sign extension, It discards car-
ries that may have propagated from the lower 32-bits to the upper 32-bits that would cause minor differences between

MIPS32 and MIPS64 execution.It is used in certain modes' on a MIPS64 CPU where strict compatibility with

MIPS32 is required. This behavior was and continues to be described in a section of Volume III of the MIPS ARM?-
However, the behavior was not formally described in pseudocode functions prior to Release 6.

In addition to the use of memory address for all memory references (including load and store instructions, LL/
SC), Release 6 extends this behavior to control transfers (branch and call instructions), and to the PC-relative address
calculation instructions (ADDIUPC, AUIPC, ALUIPC). In newer instructions the function is explicit in the pseudo-
code.

Implicit address space wrapping for all instruction fetches is described by the following pseudocode fragment which
should be considered part of instruction fetch:

Ju—

Currently, if in User/Supervisor/Kernel mode and Status.UX/SX/KX=0.
E.g. see section named “Special Behavior for Data References in User Mode with Statusy;x=0”, in the MIPS(r)

Architecture Reference Manual Volume III, the MIPS64(R) and microMIPS64(tm) Privileged Resource Archi-
tecture, e.g. in section 4.11 of revision 5.03, or section 4.9 of revision 1.00.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

3.2 Operation Section Notation and Functions

Figure 3.29 Instruction Fetch Implicit memory_address Wrapping
PC < memory address(PC)
(instruction data, length) < instruction fetch(PC)
/* decode and execute instruction */

Implicit address space wrapping for all data memory accesses is described by the following pseudocode, which is
inserted at the top of the AddressTranslation pseudocode function:

Figure 3.30 AddressTranslation implicit memory_address Wrapping
(pAddr, CCA) <« AddressTranslation (vAddr, IorD, LorS)
vAddr < memory address (vAddr)

In addition to its use in instruction pseudocode,

3.2.2.5 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

3.2.2.5.1 SignalException
The SignalException function signals an exception condition.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 3.31 SignalException Pseudocode Function
SignalException (Exception, argument)

/* Exception: The exception condition that exists. */
/* argument : A exception-dependent argument, if any */

endfunction SignalException

3.2.2.5.2 SignalDebugBreakpointException

The SignalDebugBreakpointException function signals a condition that causes entry into Debug Mode from non-
Debug Mode.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 3.32 SignalDebugBreakpointException Pseudocode Function
SignalDebugBreakpointException ()
endfunction SignalDebugBreakpointException

3.2.2.5.3 SignalDebugModeBreakpointException

The SignalDebugModeBreakpointException function signals a condition that causes entry into Debug Mode from
Debug Mode (i.e., an exception generated while already running in Debug Mode).

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 49

Guide to the Instruction Set

Figure 3.33 SignalDebugModeBreakpointException Pseudocode Function
SignalDebugModeBreakpointException ()
endfunction SignalDebugModeBreakpointException
3.2.2.5.4 NullifyCurrentinstruction
The NullifyCurrentInstruction function nullifies the current instruction.

The instruction is aborted, inhibiting not only the functional effect of the instruction, but also inhibiting all exceptions
detected during fetch, decode, or execution of the instruction in question. For branch-likely instructions, nullification
kills the instruction in the delay slot of the branch likely instruction.

Figure 3.34 NullifyCurrentinstruction PseudoCode Function
NullifyCurrentInstruction ()
endfunction NullifyCurrentInstruction
3.2.2.5.5 NotWordValue

The NotWordValue function returns a boolean value that determines whether the 64-bit value contains a valid word
(32-bit) value. Such a value has bits 63..32 equal to bit 31.

Figure 3.35 NotWordValue Pseudocode Function

result < NotWordValue (value)

/* result: True if the value is not a correct sign-extended word value; */
/* False otherwise */
/* value: A 64-bit register value to be checked */

NotWordvValue < valuegs 5, # (valuesq)>?

endfunction NotWordvValue
3.2.2.5.6 PolyMult
The PolyMult function multiplies two binary polynomial coefficients.
Figure 3.36 PolyMult Pseudocode Function

PolyMult (x, y)

temp « O
for i in 0 .. 31
if x; = 1 then
temp « temp xor (y(s1-i)..0 || 0%
endif
endfor

PolyMult <« temp

endfunction PolyMult

50 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

3.3 Op and Function Subfield Notation

3.3 Op and Function Subfield Notation

In some instructions, the instruction subfields op and function can have constant 5- or 6-bit values. When reference is
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction,
op=COP1 and function=ADD. In other cases, a single field has both fixed and variable subfields, so the name con-
tains both upper- and lowercase characters.

3.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfields in an instruction format (such as fs, ft, imme-
diate, and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown in upper-
case.

For the sake of clarity, an alias is sometimes used for a variable subfield in the formats of specific instructions. For
example, rs=base in the format for load and store instructions. Such an alias is always lowercase since it refers to a

variable subfield.

Bit encodings for mnemonics are given in Volume I, in the chapters describing the CPU, FPU, MDMX, and MIPS16¢e
instructions.

See “Op and Function Subfield Notation” on page 51 for a description of the op and function subfields.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 51

Guide to the Instruction Set

52 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

Chapter 4

Instruction Formats

This chapter defines the formats of microMIPS instructions. The microMIPS variable-length encoding comprises 16-
bit and 32-bit wide instructions. The 6-bit major opcode is left-aligned within the instruction encoding. Instructions
can have 0 to 4 register fields. For 32-bit instructions, the register field width is 5 bits, while for most 16-bit instruc-
tions, the register field width is 3 bits, utilizing instruction-specific register encoding. All 5-bit register fields are
located at a constant position within the instruction encoding.

The immediate field is right-aligned in the following instructions:
* some 16-bit instructions with 3-bit register fields
* 32-bit instructions with 16-bit or 26-bit immediate field

The name ‘immediate field’ as used here includes the address offset field for branches and load/store instructions as
well as the jump target field.

Other instruction-specific fields are typically located between the immediate and minor opcode fields. Instructions
that have multiple “other” fields are listed in alphabetical order according to the name of the field, with the first name
of the order located at the lower bit position. An empty bit field that is not explicitly shown in the instruction format

is located next to the minor opcode field.

Figure 4.1 and Figure 4.2 show the 16-bit and 32-bit instruction formats.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 53

Instruction Formats

Figure 4.1 16-Bit Instruction Formats

15 10 9 0
S3R0O ‘ Major Opcode ‘ Minor Opc/Imm ‘
15 10 9 7 6 0
S3R1I7 ‘ Major Opcode ‘ rsl/d ‘ Minor Opc/lmm ‘
15 10 9 6 5 3 2 0
S3R2I10 ‘ Major Opcode ‘ Minor Opc | rs2/d ‘ rsl ‘
15 10 9 7 6 4 3 1 0
S3R2I3 ‘ Major Opcode ‘ rs2/d ‘ rsl ‘ Imm | M ‘
15 10 9 7 6 4 3 0
S3R214 ‘ Major Opcode ‘ rs2/d ‘ rsl ‘ Minor Opc/Imm ‘
15 10 9 7 6 4 3 1 0
S3R3I0 ‘ Major Opcode ‘ rd ‘ rs2 ‘ rsl | M ‘
15 10 9 5 4 0
S5R1I10 ‘ Major Opcode ‘ Minor opc ‘ rsl/d ‘
15 10 9 5 4 0
S5R1I5 ‘ Major Opcode ‘ rd ‘ Minor Opc/Imm ‘

15 10 9 5 4 0

S5R210 ‘ Major Opcode ‘ rd ‘ rsl ‘

54 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

RO

R1

R2

R3

R4

ROI26

ROI16

R1116

R2116

R1112 ‘

R2112 ‘

Figure 4.2 32-Bit Instruction Formats

31 26 25 0
Major Opcode ‘ Immediate/Minor Opcode/Other ‘
31 26 25 21 20 16 15 0
Major Opcode ‘ Imm/Other ‘ rs/fs/base ‘ Immediate/Minor Opcode/Other ‘
31 26 25 21 20 16 15 0
Major Opcode ‘ rt/ft/index ‘ rs/fs/base ‘ Immediate/Minor Opcode/Other ‘
31 26 25 21 20 16 15 11 10 0
Major Opcode ‘ rt/ft/index ‘ rs/fs/base ‘ rd/fd ‘ Immediate/Minor Opcode/Other ‘
31 26 25 21 20 16 15 11 10 0
Major Opcode ‘ rt/ft ‘ rsifs ‘ rd/fd ‘ rr/fr Minor Opcode/Other ‘

32-bit instruction formats with 26-bit immediate fields:

Figure 4.3 Immediate Fields within 32-Bit Instructions

31 26 25 0
Major Opcode ‘ Immediate ‘

31 26 25 16 15 0
Major Opcode ‘ Minor Opcode/Other Immediate ‘

32-bit instruction formats with 16-bit immediate fields:

31 26 25 21 20 16 15 0
Major Opcode ‘ Minor Opcode/Other ‘ rsifs ‘ Immediate ‘

31 26 25 21 20 16 15 0
Major Opcode ‘ rt/ft ‘ rsifs ‘ Immediate ‘

32-bit instruction formats with 12-bit immediate fields:

31 26 25 21 20 16 15 12 11 0
Major Opcode ‘ Other ‘ rsifs ‘ Minor Opcode ‘ Immediate ‘

31 26 25 21 20 16 15 12 11 0
Major Opcode ‘ rt/ft ‘ rsifs ‘ Minor Opcode ‘ Immediate ’
MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 55

Instruction Formats

The instruction size can be completely derived from the major opcode. For 32-bit instructions, the major opcode also
defines the position of the minor opcode field and whether or not the immediate field is right-aligned.

Instructions formats are named according to the number of the register fields and the size of the immediate field. The
names have the structure R<x>I<y>. For example, an instruction based on the format R2I16 has 2 register fields and

a 16-bit immediate field.

Table 4.1 shows all formats. The 16-bit formats refer to either 3-bit or 5-bit register fields. To visualize this, a 16-bit
format name starts with the prefix S3 or S5 respectively.

Table 4.1 microMIPS Opcode Formats

32-bit
Instruction
Formats
(additional
32-bit Instruction format(s) for 16-bit
Formats (existing new Instruction
instructions) instructions) Formats

ROIO R2I12 S3R0I0
ROI8 S3ROI10
ROI16 S3R117
ROI26 S3R210
R1I0 S3R2I3
R112 S3R214
R117 S3R311
R1I8 S5R110
R1I10 S5R114
R1I16 S5R210
R210

R2I12

R2I3

R214

R2I5

R2110

R2I16

R3I0

R3I3

R410

4.1 Instruction Stream Organization and Endianness

16-bit instructions are placed within the 32-bit (or 64-bit) memory element according to system endianness.

56 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

4.1 Instruction Stream Organization and Endianness

* On a 32-bit processor in big-endian mode, the first instruction is read from bits 31..16, and the second instruction
is read from bits 15..0.

* On a 32-bit processor in little-endian mode, the first instruction is read from bits 15..0, and the second instruction
is read from bits 31..16.

The above rule also applies to the halfwords of 32-bit instructions. This means that a 32-bit instruction is not treated
as a word data type; instead, the halfwords are treated in the same way as individual 16-bit instructions. The halfword
containing the major opcode is always the first in the sequence.

Example:
SRL rl, rl, 7 binary opcode fields: 000000 00001 00001 00111 00001 000O0OO
hex representation: 0021 3840
Address: 3 2 1 0
Little Endian: Data: 38 40 00 21
Address: 0o 1 2 3
Big Endian: Data: 00 21 38 40

Instructions are placed in memory such that they are in-order with respect to the address.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 57

Instruction Formats

58

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

Chapter 5

microMIPS Instruction Set

This chapter lists all microMIPS encoded instructions, sorted into 16-bit and 32-bit categories.
In the 16-bit category:

* Frequent MIPS64 instructions and macros, re-encoded as 16-bit. Register and immediate fields are reduced in
size by using encodings of frequently occurring values.

In the 32-bit category:

* All MIPS64 instructions, including all application-specific extensions except MIPS16e, re-encoded:
MIPS64, MDMX ASE, MIPS-3D ASE, MIPS DSP ASE, MIPS MT ASE, and SmartMIPS ASE.

* Opcode space for user-defined instructions (UDIs).

* New instructions designed primarily to reduce code size.

To differentiate between 16-bit and 32-bit encoded instructions, the instruction mnemonic can be optionally extended
with the suffix “16” or “32” respectively. This suffix is placed at the end of the instruction before the first *.” if there
is one. For example:

ADD16, ADD32, ADD32.PS, DADDIU32

If these suffixes are omitted, the assembler automatically chooses the smallest instruction size.

For each instruction, the tables in this chapter provide all necessary information about the bit fields. The formats of
the instructions are defined in Chapter 4, “Instruction Formats” on page 53. Together with the major and minor
opcode encodings, which can be derived from the tables in Chapter 7, “Opcode Map” on page 409, the complete
instruction encoding is provided.

Most register fields have a width of 5 bits. 5-bit register fields use linear encoding (r0="00000, r1="00001", etc.). For
16-bit instructions, whose register field size is variable, the register field width is explicitly stated in the instruction
table (Table 5.1 and Table 5.2), and the individual register and immediate encodings are shown in Table 5.3. The

‘other fields’ are defined by the respective column, with the order of these fields in the instruction encoding defined
by the order in the tables.

5.1 16-Bit Category

5.1.1 Frequent MIPS64 Instructions

These are frequent MIPS64 instructions with reduced register and immediate fields containing frequently used regis-
ters and immediate values.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 59

microMIPS Instruction Set
MOVE is a very frequent instruction. It therefore supports full 5-bit unrestricted register fields for maximum effi-
ciency. In fact, MOVE used to be a simplified macro of an existing MIPS64 instruction.

There are 2 variants of the LW and SW instructions. One variant implicitly uses the SP register to allow for a larger
offset field. The value in the offset field is shifted left by 2 before it is added to the base address.

There are four variants of the ADDIU instruction:

1. A variant with one 5-bit register specifier that allows any GPR to be the source and destination register

2. A variant that uses the stack pointer as the implicit source and destination register

3. A variant that has separate 3-bit source and destination register specifiers

4. A variant that has the stack pointer as the implicit source register and one 3-bit destination register specifier
A 16-bit NOP instruction is needed because of the new 16-bit instruction alignment and the need in specific cases to

align instructions on a 32-bit boundary. It can save code size as well. NOP is not shown in the table because it is real-
ized as a macro (as is NEGU).

NOP16 = MOVElé r0, rO

NEGUl6 rt, rs = SUBUl6 rt, r0, rs

Because microMIPS instructions are 16-bit aligned, the 16-bit branch instructions support 16-bit aligned branch tar-
get addresses. The offset field is left shifted by 1 before it is added to the PC.

The breakpoint instructions, BREAK and SDBBP, include a 16-bit variant that allows a breakpoint to be inserted at
any instruction address without overwriting more than a single instruction.

The instructions in the following tables are pre-Release 6 instructions. Refer to Section 2.7 “Release 6 of the MIPS
Architecture” to understand which instructions have been removed in Release 6.

Table 5.1 16-Bit Re-encoding of Frequent MIPS64 Instructions

Register | Total
Major Number of | Immediate Field Size of | Empty 0 Minor
Opcode Register Field Size Width Other | FieldSize | Opcode
Instruction Name Fields (bit) (bit) Fields (bit) Size (bit) Comment
ADDIUS5 POOL16D Sbit:1 4 5 0 1 Add Immediate
Unsigned Word Same
Register
ADDIUSP POOL16D 0 9 0 0 1 Add Immediate
Unsigned Word to
Stack Pointer
ADDIUR2 POOLI6E 2 3 3 0 1 Add Immediate
Unsigned Word
Two Registers
ADDIURISP | POOLI6E 1 6 3 0 1 Add Immediate
Unsigned Word
One Registers and
Stack Pointer
ADDUI16 POOL16A 3 0 3 0 1 Add Unsigned Word

60 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

5.1 16-Bit Category

Table 5.1 16-Bit Re-encoding of Frequent MIPS64 Instructions (Continued)

Register | Total
Major Number of | Immediate Field Size of | Empty 0 Minor
Opcode Register | Field Size Width Other |FieldSize | Opcode
Instruction Name Fields (bit) (bit) Fields (bit) Size (bit) Comment
AND16 POOL16C 2 0 3 0 4 AND
ANDI16 ANDI16 2 4 3 0 0 AND Immediate
B16 B16 0 10 0 0 Branch
BREAK16 POOL16C 0 0 4 0 6 Cause Breakpoint
Exception
JALRI16 POOL16C 1 0 5 0 5 Jump and Link
Register, 32-bit delay-
slot
JALRS16 POOL16C 1 0 5 0 5 Jump and Link
Register, 16-bit delay-
slot
JR16 POOL16C 1 0 5 0 5 Jump Register
LBU16 LBU16 2 4 3 0 0 Load Byte Unsigned
LHU16 LHU16 2 4 3 0 0 Load Halfword
LI16 LI16 1 7 3 0 0 Load Immediate
LWI16 LWI16 2 4 3 0 0 Load Word
LWGP LWGP16 1 7 3 0 0 Load Word GP
LWSP LWSP16 5bit:1 5 5 0 0 Load Word SP
MFHI16 POOL16C 1 0 5 0 5 Move from
HI Register
MFLO16 POOL16C 1 0 5 0 5 Move from
LO Register
MOVEI16 MOVEI16 2 0 5 0 0 Move
NOT16 POOL16C 2 0 3 0 4 NOT
OR16 POOL16C 2 0 3 0 4 OR
SB16 SB16 2 4 3 0 0 Store Byte
SDBBP16 POOL16C 0 0 4 0 6 Cause Debug
Breakpoint Exception
SH16 SH16 2 4 3 0 0 Store Halfword
SLL16 POOL16B 2 3 3 0 1 Shift Word Left
Logical
SRL16 POOL16B 2 3 3 0 1 Shift Word Right
Logical
SUBU16 POOL16A 3 0 3 0 1 Sub Unsigned
SW16 SW16 2 4 3 0 0 Store Word
SWSP SWSP16 5bit:1 5 5 0 0 Store Word SP
XORI16 POOL16C 2 0 3 0 4 XOR

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

61

microMIPS Instruction Set

5.1.2 Frequent MIPS64 Instruction Sequences

These 16-bit instructions are equivalent to frequently-used short sequences of MIPS64 instructions. The instruction-
specific register and immediate value selection are shown in Table 5.3.

Table 5.2 16-Bit Re-encoding of Frequent MIPS64 Instruction Sequences

Register | Total
Major Number of | Immediate Field Sizeof | Empty 0 Minor
Opcode Register Field Size Width Other | FieldSize | Opcode
Instruction Name Fields (bit) (bit) Fields (bit) Size (bit) Comment
BEQZ16 BEQZ16 1 7 3 0 0 Branch on Equal Zero
BNEZ16 BNEZ16 1 7 3 0 0 Branch on
Not Equal Zero
JRADDIUSP | POOL16C 0 5 5 Jump Register;
ADDIU SP
JRC POOL16C 1 0 5 0 5 Jump Register Com-
pact
LWM16 POOL16C 0 4 2 0 4 Load Word Multiple
MOVEP POOL16C 3 (encoded) 0 3(encoded) 0 1 Move Register Pair
SWMI6 POOL16C 0 4 2 0 4 Store Word Multiple
62 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

5.1 16-Bit Category

5.1.3 Instruction-Specific Register Specifiers and Immediate Field Encodings

Table 5.3 Instruction-Specific Register Specifiers and Immediate Field Values

Number
of Immediate Register 1 Register 2 Register 3
Register | Field Size Decoded Decoded Decoded Immediate Field Decoded
Instruction Fields (bit) Value Value Value Value
ADDIUSS Shit:1 4 rd: 5 bit field -8..0..7
ADDIUSP 0 9 (-258..-3,2..257) << 2
ADDIUR?2 2 3 rsl:2-7,16, 17 rd:2-7,16, 17 -1,1,4,8,12, 16, 20, 24
ADDIURISP 1 6 rd:2-7,16, 17 (0..63) <<2
ADDU16 3 0 rsl:2-7,16, 17 rs2:2-7,16, 17 rd:2-7,16, 17
AND16 2 0 rsl:2-7,16, 17 rd:2-7,16, 17
ANDI16 2 4 rs1:2-7,16, 17 rd:2-7,16, 17 1,2,3,4,7,8,15, 16,31, 32,63,
64, 128, 255, 32768, 65535
B16 0 10 (-512.511) << 1
BEQZ16 1 7 1s1:2-7,16, 17 (-64..63) << 1
BNEZ16 1 7 rs1:2-7,16, 17 (-64..63) << 1
BREAKI16 0 4 0..15
JALR16 Sbit:1 0 rs1:5 bit field
JALRSI16 Sbit:1 0 rs1:5 bit field
JRADDIUSP 0 5 (0.31)<<2
JR16 Sbit:1 0 rs1:5 bit field
JRC Sbit:1 0 rsl:5 bit field
LBU16 2 4 rb:2-7,16,17 rd:2-7,16, 17 -1,0..14
LHU16 2 4 rb:2-7,16,17 rd:2-7,16, 17 (0..15)<<1
LI16 1 7 rd:2-7,16, 17 -1,0..126
LW16 2 4 rb:2-7,16,17 rd:2-7,16, 17 (0..15)<<2
LWM16 2bit list:1 4 (0..15)<<2
LWGP 1 7 rd:2-7,16,17 (-64..63)<<2
LWSP Sbit:1 5 rd:5-bit field (0..31)<<2
MFHI16 Sbit:1 0 rd:5-bit field
MFLO16 Shit:1 0 rd:5-bit field
MOVEI16 Sbit:2 0 rd:5-bit field rs1:5-bit field
MOVEP 3 0 rd, re: t:0,2,7,16-20 1s:0,2,7,16-20
(5,6),(5,7):(6,7),
(4,21),(4,22),(4,
5),(4,6),(4,7)
NOT16 2 0 rsl:2-7,16, 17 rd:2-7,16, 17
OR16 2 0 rs1:2-7,16,17 | 1d:2-7,16, 17
SB16 2 4 rb:2-7,16,17 rsl:0,2-7, 17 0..15

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 63

microMIPS Instruction Set

Table 5.3 Instruction-Specific Register Specifiers and Immediate Field Values (Continued)

Number
of Immediate Register 1 Register 2 Register 3
Register | Field Size Decoded Decoded Decoded Immediate Field Decoded
Instruction Fields (bit) Value Value Value Value
SDBBP16 0 0 0..15
SH16 2 4 5:2-7,16,17 rs1:0, 2-7, 17 0.15)<<1
SLL16 2 3 rsl:2-7,16, 17 rd:2-7,16, 17 1..8 (see encoding tables)
SRL16 2 3 rsl:2-7,16, 17 rd:2-7,16, 17 1..8 (see encoding tables)
SUBU16 3 0 rsl:2-7,16, 17 rs2:2-7,16, 17 rd:2-7,16, 17
SW16 2 4 b:2-7,16,17 rs1:0,2-7, 17 (0..15) <<2
SWSP 5bit:1 5 rsl: 5 bit field (0.31)<<2
SWM16 2 bit list:1 4 (0..15)<<2
XOR16 2 0 rs1:2-7,16, 17 rd:2-7,16, 17

5.2 16-bit Instruction Register Set

Many of the 16-bit instructions use 3-bit register specifiers in their binary encodings. The register set used for most of
these 3-bit register specifiers is listed in Table 5.5. The register set used for SB16, SH16, SW16 source register is
listed in Table 5.5. These register sets are a true subset of the register set available in 32-bit mode; the 3-bit register
specifiers can directly access 8 of the 32 registers available in 32-bit mode (which uses 5-bit register specifiers).

In addition, specific instructions in the 16-bit instruction set implicitly reference the stack pointer register (sp), global
pointer register (gp), the return address register (ra), the integer multiplier/divider output registers (HI/LO) and the
program counter (PC). Of these, Table 5.6 lists Sp, gp and ra. Table 5.7 lists the microMIPS special-purpose registers,
including PC, HI and LO.

The microMIPS also contains some 16-bit instructions that use 5-bit register specifiers. Such 16-bit instructions pro-
vide access to all 32 general-purpose registers.

Table 5.4 16-Bit Instruction General-Purpose Registers - $2-$7, $16, $17

16-Bit 32-Bit MIPS | symbolic Name
Register Register (From
Encoding’ Encoding? ArchDefs.h) Description
0 16 sO General-purpose register
1 17 sl General-purpose register
2 2 v0 General-purpose register
3 3 vl General-purpose register
4 4 a0 General-purpose register
5 5 al General-purpose register
6 6 a2 General-purpose register

64 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

5.2 16-bit Instruction Register Set

Table 5.4 16-Bit Instruction General-Purpose Registers - $2-$7, $16, $17 (Continued)

Register Register (From
Encoding1 Encoding2 ArchDefs.h) Description
7 7 a3 General-purpose register

1. “0-7” correspond to the register’s 16-bit binary encoding and show how that encoding
relates to the MIPS registers. “0-7” never refer to the registers, except within the binary
microMIPS instructions. From the assembler, only the MIPS names ($16, $17, $2, etc.) or
the symbolic names (s0, s1, v0, etc.) refer to the registers. For example, to access register
number 17 in the register file, the programmer references $17 or s1, even though the micro-
MIPS binary encoding for this register is 001.

2. General registers not shown in the above table are not accessible through the 16-bit instruc-
tion using 3-bit register specifiers. The Move instruction can access all 32 general-purpose

registers.

Table 5.5 SB16, SH16, SW16 Source Registers - $0, $2-$7, $17

16-Bit 32-Bit MIPS | symbolic Name
Register Register (From
Encoding1 Encoding2 ArchDefs.h) Description

0 0 Zero Hard-wired Zero

1 17 sl General-purpose register
2 2 v0 General-purpose register
3 3 vl General-purpose register
4 4 a0 General-purpose register
5 5 al General-purpose register
6 6 a2 General-purpose register
7 7 a3 General-purpose register

1. “0-7” correspond to the register’s 16-bit binary encoding and show how that encoding
relates to the MIPS registers. “0-7” never refer to the registers, except within the binary
microMIPS instructions. From the assembler, only the MIPS names ($16, $17, $2, etc.) or
the symbolic names (s0, s1, v0, etc.) refer to the registers. For example, to access register
number 17 in the register file, the programmer references $17 or s1, even though the micro-
MIPS binary encoding for this register is 001.

2. General registers not shown in the above table are not accessible through the 16-bit instruc-
tions using 3-bit register specifier. The Move instruction can access all 32 general-purpose
registers.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 65

microMIPS Instruction Set

Table 5.6 16-Bit Instruction Implicit General-Purpose Registers

16-Bit 32-Bit MIPS | Symbolic Name

Register Register (From

Encoding Encoding ArchDefs.h) Description
Implicit 28 ep Global pointer register
Implicit 29 sp Stack pointer register
Implicit 31 ra Return address register

Table 5.7 16-Bit Instruction Special-Purpose Registers

Symbolic Name Purpose
PC Program counter. The PC-relative ADDIU can access this
register as an operand.
HI Contains high-order word of multiply or divide result.
LO Contains low-order word of multiply or divide result.

5.3 32-Bit Category

The instructions in the following tables are pre-Release 6 instructions. Refer to Section 2.7 “Release 6 of the MIPS
Architecture” to understand which instructions have been removed in Release 6.

5.3.1 New 32-bit instructions

The following table lists the 32-bit instructions introduced in the microMIPS ISA. Only instructions introduced prior
to Release 6 are included in this table. JALRS, JALRS.HB, JALS, and JALX have been removed in Release 6.

Table 5.8 32-bit Instructions introduced within microMIPS

Register | Total
Major Number of | Immediate Field Sizeof | Empty 0 Minor
Opcode Register Field Size Width Other |FieldSize | Opcode
Instruction Name Fields (bit) (bit) Fields (bit) Size (bit) Comment
ADDIUPC ADDIUPC 1 23 3 0 0 ADDIU PC-Relative
BEQZC POOL32I 2:5 bit 16 5 0 Branch on
Equal to Zero, No
Delay Slot
BNEZC POOL321 2:5 bit 16 5 0 Branch on
Not Equal to Zero, No
Delay Slot
JALRS POOL32A 2:5 bit 0 5 16 Jump and Link Regis-
ter, Short Delay Slot
66 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

5.3 32-Bit Category

Table 5.8 32-bit Instructions introduced within microMIPS (Continued)

Register | Total
Major Number of | Immediate Field Size of | Empty 0 Minor
Opcode Register Field Size Width Other |FieldSize | Opcode
Instruction Name Fields (bit) (bit) Fields (bit) Size (bit) Comment
JALRS.HB POOL32A 2:5 bit 0 5 16 Jump and Link Regis-
ter with Hazard Bar-
rier, Short Delay Slot
JALS JALS32 0 26 0 Jump and Link, Short
Delay Slot
JALX JALX 26 5 0 5 Jump and Link
Exchange
LDM POOL32B 1:5bit 12 5 0 4 Load DoubleWord
Multiple
LDP POOL32B 2:5 bit 12 0 4 Load DoubleWord Pair
LWP POOL32B 2:5 bit 12 5 0 4 Load Word Pair
LWXS POOL32A 3:5 bit 0 5 0 1 10 Load Word Indexed,
Scale
LWM32 POOL32B 1:5bit 12 5 0 4 Load Word Multiple
SDM POOL32B 1:5bit 12 5 0 4 Store DoubleWord
Multiple
SDP POOL32B 2:5 bit 12 0 4 Load DoubleWord Pair
SWP POOL32B 2:5 bit 12 0 4 Load Word Pair
SWM32 POOL32B 1:5bits 12 5 0 4 Store Word Multiple

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

67

Chapter 5

5.4 Instructions Specific to microMIPS

This section describes instructions unique to microMIPS.

Only instructions supported in Release 6 are provided. Section 2.7, "Release 6 of the MIPS Architecture," lists
instructions that have been added, removed and recoded in Release 6.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

68

ADDIUR1SP Add Immediate Unsigned Word One Register (16-bit instr size)

15 10 9 7 6 1o
POOLI16E .
011011 rd Immediate 1
6 3 6 1
Format: ADDIUR1SP rd, decoded immediate value microMIPS

Purpose: Add Immediate Unsigned Word One Register (16-bit instr size)

To add a constant to a 32-bit integer.

Description: GPR [rd] <« GPR[29] + zero_extend(immediate << 2)

The 6-bit immediate field is first shifted left by two bits and then zero-extended. This amount is added to the 32-bit
value in GPR 29 and the 32-bit arithmetic result is sign-extended and placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordvValue (GPR[rs]) then
UNPREDICTABLE
endif
temp < GPR[29] + zero extend (immediate || 0%)
GPR[rd] <« sign_extend(temp;; g)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 69

ADDIUR2

70

Add Immediate Unsigned Word Two Registers (16-bit instr size)

15 10 9 7 6 4 3 1 0

POOLI16E rd s Encoded 0
011011 Immediate

6 3 3 3 1

Format: ADDIUR2 rd, rsl, decoded immediate value microMIPS

Purpose: Add Immediate Unsigned Word Two Registers (16-bit instr size)

To add a constant to a 32-bit integer.

Description: GPR [rd] <« GPR[rs] + sign_extend(decoded immediate)
The encoded immediate field is decoded to obtain the actual immediate value.

The decoded immediate value is sign-extended and then added to the 32-bit value in GPR rs, and the 32-bit arithmetic
result is sign-extended and placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Table 5.9 Encoded and Decoded Values of the Immediate Field

Encoded Encoded Decoded Decoded
Value of Value of Value of Value of
Instrs_ Instr_4 Immediate Immediate
(Decimal) (Hex) (Decimal) (Hex)
0 0x0 1 0x0001
1 0x1 4 0x0004
2 0x2 8 0x0008
3 0x3 12 0x000¢c
4 0x4 16 0x0010
5 0x5 20 0x0014
6 0x6 24 0x0018
7 0x7 -1 Ox ffff

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordvValue (GPR[rs]) then
UNPREDICTABLE
endif
temp <~ GPR[rs] + sign extend(decoded immediate)
GPR[rd] <« sign_extend(temp;3;)

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 71

ADDIUS5 Add Immediate Unsigned Word 5-Bit Register Select (16-bit instr size)

15 10 9 5 4 10
POOL16D _

010011 rd Immediate | 0

6 5 . :

Format: ADDIUS5 rd, decoded immediate value microMIPS

Purpose: Add Immediate Unsigned Word 5-Bit Register Select (16-bit instr size)

To add a constant to a 32-bit integer

Description: GPR [rd] <« GPR[rd] + sign extend (immediate)

The 4-bit immediate field is sign-extended and then added to the 32-bit value in GPR rd. The 32-bit arithmetic result
is sign-extended and placed into GPR rd.

The 5-bit register select allows this 16-bit instruction to use any of the 32 GPRs as the destination register.

No Integer Overflow exception occurs under any circumstances.

Table 5-1 Encoded and Decoded Values of Signed Immediate Field

72

Encoded Encoded Decoded Decoded
Value of Value of Value of Value of
Instry_4 Instry,_4 Immediate Immediate
(Decimal) (Hex) (Decimal) (Hex)
0 0x0 0 0x0000
1 0x1 1 0x0001
2 0x2 2 0x0002
3 0x3 3 0x0003
4 0x4 4 0x0004
5 0x5 5 0x0005
6 0x6 6 0x0006
7 0x7 7 0x0007
8 0x8 -8 0xfff8
9 0x9 -7 0xfff9
10 Oxa -6 Oxfffa
11 0xb -5 0xfffb
12 Oxc -4 Oxfffc
13 Oxd -3 Oxftffd
14 Oxe -2 Oxfffe
15 Oxf -1 Ox ffff

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

ADDIUS5 Add Immediate Unsigned Word 5-Bit Register Select (16-bit instr size)

Restrictions:

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordValue (GPR[rs]) then
UNPREDICTABLE

endif

temp «-GPR[rd] + sign_ extend(immediate)

GPR[rd] <« sign_extend(temps;)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 73

74

ADDIUSP

15

Add Immediate Unsigned Word to Stack Pointer(16-bit instr size)

10 9

POOL16D
010011

Encoded
Immediate

Format:

6

ADDIUSP decoded immediate value

9

Purpose: Add Immediate Unsigned Word to Stack Pointer(16-bit instr size)

To add a constant to the stack pointer.

Description: GPR[29] « GPR[29] + sign extend(decoded immediate << 2)

The encoded immediate field is decoded to obtain the actual immediate value.

microMIPS

The actual immediate value is first shifted left by two bits and then sign-extended. This amount is added to the 32-bit
value in GPR 29, and the 32-bit arithmetic result is sign-extended and placed into GPR 29.

No Integer Overflow exception occurs under any circumstances.

Table 5.10 Encoded and Decoded Values of Immediate Field

Encoded Value of Encoded Value of Decoded Value of Decoded Value of
Instrg_4 Instrg_4 Immediate Immediate

(Decimal) (Hex) (Decimal) (Hex)
0 0x0 256 0x0100

1 0x1 257 0x0101

2 0x2 2 0x0002

3 0x3 3 0x0003

254 Oxfe 254 0x00fe
255 Oxff 255 0x00ff
256 0x100 -256 0xff00
257 0x101 -255 0xffo1
508 Ox1fc -4 Oxfffc

509 Ox1fd -3 Oxfftd

510 Ox1fe -258 Oxfefe

511 Ox11f 257 Oxfeff

Restrictions:

If GPR 29 does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is

UNPREDICTABLE.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

ADDIUSP Add Immediate Unsigned Word to Stack Pointer(16-bit instr size)

Operation:

if NotWordvalue (GPR[rs]) then
UNPREDICTABLE
endif
temp < GPR[29] + sign extend(decoded immediate || 0?)
GPR[29] <« sign extend(temp;;)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 75

ADDU16 Add Unsigned Word (16-bit instr size)

15 10 9 7 6 4 3 1 0
POOL16A
000001 s rt rd 0
6 3 3 3 1
Format: abpuié rd, rs, rt microMIPS

Purpose: Add Unsigned Word (16-bit instr size)
To add 32-bit integers

Description: GPR[rd] « GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs, and the 32-bit arithmetic result is sign-
extended and placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

If either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

if NotWordvValue (GPR[rs]) or NotWordValue (GPR[rt]) then
UNPREDICTABLE

endif

temp <« GPR[rs] + GPR[rt]

GPR[rd] < sign_extend(temps; _g)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

76 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

AND16

POOL16C " s ANDI6
010001 0001
6 4

Format: AND16 rt, rs

Purpose: And (16-bit instr size)
To do a bitwise logical AND

Description: GPR[rt] « GPR[rs] AND GPR[rt]

And (16-bit instr size)

microMIPS

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical AND operation. The result is

placed into GPR rt.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Availability and Compatibility:
This instruction has been recoded for Release 6.

Operation:

GPR[rt] « GPR[rs] and GPR[rt]

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

7

ANDI16

And Immediate (16-bit instr size)

15 10 9 7 6 4 3
ANDI16 Encoded
rd s .
001011 Immediate
6 3 3 4

Format: aANDI16 rd,

Purpose: And Immediate (16-bit instr size)

To do a bitwise logical AND with a constant

Description: GPR [rd] <« GPR[rs] AND zero extend(decoded immediate)

rs, decoded immediate value

The encoded immediate field is decoded to obtain the actual immediate value

microMIPS

The decoded immediate is zero-extended to the left and combined with the contents of GPR rs in a bitwise logical
AND operation. The result is placed into GPR rd.

Table 5-2 Encoded and Decoded Values of Immediate Field

Encoded Value of Encoded Value of Decoded Value of Decoded Value of
Instr;_o (Decimal) Instr;_o (Hex) Immediate (Decimal) Immediate (Hex)

0 0x0 128 0x80

1 0x1 1 0x1

2 0x2 2 0x2

3 0x3 3 0x3

4 0x4 4 0x4

5 0x5 7 0x7

6 0x6 8 0x8

7 0x7 15 Oxf

8 0x8 16 0x10

9 0x9 31 Ox1f

10 Oxa 32 0x20

11 0xb 63 0x3f

12 Oxc 64 0x40

13 0xd 255 0xff

14 Oxe 32768 0x8000

15 0xf 65535 Oxffff

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

GPR[rd] <« GPR[rs]

Exceptions:

None

and zero_extend(decoded immediate)

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

78

BC16 Unconditional Branch Compact (16-bit instr size)

15 10 9 0
BCl16
110011 offset
6 10
Format: BC16 offset microMIPS Release 6

Purpose: Unconditional Branch Compact (16-bit instr size)

To do an unconditional branch

Description: branch

A 11-bit signed offset (the 10-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself) to form a PC-relative effective target address.

Compact branches do not have delay slots. The instruction after the branch is NOT executed when the branch is
taken.

Restrictions:

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.

Operation:

target offset < sign extend(offset || 0%)
PC « PC + 2 + target offset

Exceptions:

None

Programming Notes:

With the 11-bit signed instruction offset, the branch range is + 1 Kbytes. Use jump (JRC16 or JIC) or 32-bit branch
instructions to branch to addresses outside this range.

79 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

BEQZC16 Branch on Equal to Zero Compact (16-bit instr size)

15 10 9 7 6 0
BEQZC16 offset
100011 s
6 3 7
Format: BEQZC16 rs, offset microMIPS Release 6

Purpose: Branch on Equal to Zero Compact (16-bit instr size)

To compare a GPR to zero then do a PC-relative conditional branch

Description: i1£ GPR[rs] = 0 then branch

A 8-bit signed offset (the 7-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself) to form a PC-relative effective target address.

If the contents of GPR rs equals zero, branch to the effective target address.

Compact branches do not have delay slots. The instruction after the branch is NOT executed if the branch is taken.

Restrictions:
The 3-bit register field can only specify GPRs $2-$7, $16, $17.

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions

do not apply in Release 6.
Operation:
target offset <« sign extend(offset || 0)
condition <« (GPR[rs] == 0)

if condition then
PC < PC + target offset
endif

Exceptions:

None

Programming Notes:

With the 8-bit signed instruction offset, the conditional branch range is + 64 Bytes. Use 32-bit branch, jump (JRC16
or JIC) instructions to branch to addresses outside this range.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 80

BNEZC16 Branch on Not Equal to Zero Compact (16-bit instr size)

15 10 9 7 6 0
BNEZC16 offset
101011 s
6 3 7
Format: BNEzC1l6 rs, offset microMIPS Release 6

Purpose: Branch on Not Equal to Zero Compact (16-bit instr size)

To compare a GPR to zero then do a PC-relative conditional branch

Description: if GPR[rs] != 0 then branch

A 8-bit signed offset (the 7-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), to form a PC-relative effective target address.

If the contents of GPR rs does not equal zero, branch to the effective target address.

Compact branches do not have delay slots. The instruction after the branch is NOT executed if the branch is taken.

Restrictions:
The 3-bit register field can only specify GPRs $2-$7, $16, $17.

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions

do not apply in Release 6.
Operation:
target offset <« sign extend(offset || 0)
condition <« (GPR[rs] != 0)

if condition then
PC <« PC + target offset
endif

Exceptions:

None

Programming Notes:

With the 8-bit signed instruction offset, the conditional branch range is + 64 Bytes. Use 32-bit branch, jump (JRC16
or JIC) instructions to branch to addresses outside this range.

81 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

BREAK16

15 10
POOL16C code BREAK16
010001 011011
6 4 6

Format: BREAK16

Purpose: Breakpoint

To cause a Breakpoint exception

Description:

Breakpoint

microMIPS

A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handler. The
code field is available for use as software parameters, but is retrieved by the exception handler only by loading the

contents of the memory word containing the instruction.

Restrictions:

None

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

SignalException (Breakpoint)

Exceptions:

Breakpoint

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

82

JALRC16 Jump and Link Register Compact (16-bit instr size)

83

15 10 9 5 4 0
POOL16C s JALRCI16
010001 01011
6 5 5
Format: JALRC16 rs microMIPS Release 6

Purpose: Jump and Link Register Compact (16-bit instr size)

To execute a procedure call to an instruction address in a register

Description: GPR[31] <« return addr, PC <« GPR[rs]

For processors that do not implement the MIPS64 ISA:

* Jump to the effective target address in GPR rs. Bit 0 of GPR rs is interpreted as the target ISA Mode: if this bit
is 0, signal an Address Error exception when the target instruction is fetched because this target ISA Mode is not
supported. Otherwise, set bit 0 of the target address to zero, and fetch the instruction.

For processors that do implement the MIPS64 I1SA:

* Jump to the effective target address in GPR rs. Set the ISA Mode bit to the value in GPR rs bit 0. Set bit 0 of the
target address to zero. If the target ISA Mode bit is 0 and the target address is not 4-byte aligned, an Address
Error exception will occur when the target instruction is fetched.

Place the return address link in GPR r31. The return link is the address of the first instruction following the branch,
where execution continues after a procedure call.

Compact jumps do not have delay slots. The instruction after the jump is NOT executed when the jump is executed.

Restrictions:

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS64 and if the ISAMode bit of the target is MIPS64 (bit 0 of GPR rs is 0) and
address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruc-
tion.

For processors that do not implement MIPS64 ISA, if the intended target ISAMode is MIPS64 (bit 0 of GPR rs is
zero), an Address Error exception occurs when the jump target is fetched as an instruction.

Any instruction, including a branch or jump, may immediately follow a branch or jump; that is, delay slot restrictions
do not apply in Release 6.

Operation:

temp <« GPR[rs]
GPR[31] « PC + 2
if Config3;gy = 1 then
PC <« temp
else
PC « tempgppren-1..1 || 0
ISAMode <« temp,
endif

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 84

JRCADDIUSP Jump Register Compact, Adjust Stack Pointer (16-bit)

85

15 10 9 5 4 0
POOL16C immediate JRCADDIUSP
010001 10011
6 5 5
Format: JRCADDIUSP decoded immediate microMIPS Release 6

Purpose: Jump Register Compact, Adjust Stack Pointer (16-bit)

To execute a branch to an instruction address in a register and adjust stack pointer

Description: PC < GPR[ral; SP < SP + zero_extend(Immediate << 2)

For processors that do not implement the MIPS64 1SA:

* Jump to the effective target address in GPR rs. Bit 0 of GPR rs is interpreted as the target ISA Mode: if this bit
is 0, signal an Address Error exception when the target instruction is fetched because this target ISA Mode is not
supported. Otherwise, set bit 0 of the target address to zero, and fetch the instruction.

For processors that do implement the MIPS64 ISA:

* Jump to the effective target address in GPR rs. Set the ISA Mode bit to the value in GPR rs bit 0. Set bit 0 of the
target address to zero. If the target ISA Mode bit is 0 and the target address is not 4-byte aligned, an Address
Error exception will occur when the target instruction is fetched.

The 5-bit immediate field is first shifted left by two bits and then zero-extended. This amount is then added to the 32-
bit value of GPR 29 and the 32-bit arithmetic result is sign-extended and placed into GPR 29. No Integer Overflow
exception occurs under any circumstances for the update of GPR 29.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Compact jumps do not have delay slots. The instruction after the jump is NOT executed when the jump is executed.

Restrictions:

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS64 and the ISAMode bit of the target address is MIPS64 (bit 0 of GPR rs is 0)
and address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an
instruction.

For processors that do not implement MIPS64 ISA, if the intended target ISAMode is MIPS64 (bit 0 of GPR rs is
zero), an Address Error exception occurs when the jump target is fetched as an instruction.

If GPR 29 does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.
Operation:

PC < GPRI[31lgprren-1..1 || ©
if (Config3igy > 1)
ISAMode < GPR[31],

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

endif
if NotWordvValue (GPR[29]) then
UNPREDICTABLE
endif
temp <« GPR[29] + zero extend(immediate || 02)

GPR[29] <« sign_extend(temps;; g)

Exceptions:

None.

Programming Notes:

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 86

JRC16 Jump Register Compact (16-bit instr size)

87

15 10 9 5 4 0
POOL16C s JRC16
010001 00011
6 5 5
Format: JRrCi6 rs microMIPS

Purpose: Jump Register Compact (16-bit instr size)

To execute a branch to an instruction address in a register

Description: PC « GPR[rs]

For processors that do not implement the MIPS64 ISA:

* Jump to the effective target address in GPR rs. Bit 0 of GPR rs is interpreted as the target ISA Mode: if this bit
is 0, signal an Address Error exception when the target instruction is fetched because this target ISA Mode is not
supported. Otherwise, set bit 0 of the target address to zero, and fetch the instruction.

For processors that do implement the MIPS64 I1SA:

* Jump to the effective target address in GPR rs. Set the ISA Mode bit to the value in GPR rs bit 0. Set bit 0 of the
target address to zero. If the target ISA Mode bit is 0 and the target address is not 4-byte aligned, an Address
Error exception will occur when the target instruction is fetched.

Compact jumps do not have delay slots. The instruction after the jump is NOT executed when the jump is executed.
Restrictions:

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS64 and the ISAMode bit of the target address is MIPS64 (bit 0 of GPR rs is 0)
and address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an
instruction.

For processors that do not implement MIPS64 ISA, if the intended target ISAMode is MIPS64 (bit 0 of GPR rs is
zero), an Address Error exception occurs when the jump target is fetched as an instruction.

Any instruction, including a branch or jump, may immediately follow a branch or jump; that is, delay slot restrictions
do not apply in Release 6.

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

temp <« GPR[rs]
if Config3;gy = 1 then
PC <« temp
else
PC « tempgppren-1..1 || 0
ISAMode <« temp,
endif

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

LBU16 Load Byte Unsigned (16-bit instr size)

15 10 9 7 6 4 3 0
LBUl6 ot base encoded
000010 offset
6 3 3 4
Format: LBUl16 rt, decoded offset (base) microMIPS

Purpose: Load Byte Unsigned (16-bit instr size)

To load a byte from memory as an unsigned value

Description: GPR[rt] <« memory[GPR[base] + decoded offset]

The encoded offset field is decoded to get the actual offset value. This decoded value is added to the contents of base
register to create the effective address. Table 5.11 shows the encoded and decode values of the offset field.

Table 5.11 Offset Field Encoding Range -1, 0..14

Encoded Input | Decoded Value
(Hex) (Decimal)
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
a 10
b 11
c 12
d 13
e 14
f -1

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, zero-extended,
and placed in GPR rt. The 4-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:
The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

decoded offset <« Decode (encoded offset)

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 88

VAddr <« sign_ extend(decoded offset) + GPR[base]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
pAddr <« pAddrpgrze.1 3 || (pAddr, , xor ReverseEndian?)
memdoubleword <« LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte <« vAddr, , xor BigEndianCPU?

GPR[rt] <« zero_extend (memdoubleword;, gspyte. .s*byte)

Exceptions:
TLB Refill, TLB Invalid, Address Error, Watch

89 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05

LDM

Load Doubleword Multiple

31 26 25 21 20 16 15 12 1
POOL32B . LDM
001000 reglist base 0111 offset
6 5 5 4 12
Format: 1DM {sregs, } {ra}, offset (base) microMIPS

Purpose: Load Doubleword Multiple

To load a sequence of consecutive doublewords from memory

Description: {GPR[16], {GPR[17], {GPR[18], {GPR[19], {GPR[20], {GPR[21], {GPR[22], {GPR[23],

{GPR[301}}}}}}}}H{GPRI31]} «
memory [GPR [base] +offset], ..., memory [GPR [base] +offset+8* (fn (reglist))]

The contents of consecutive 64-bit words at the memory location specified by the naturally aligned effective address
are fetched, sign-extended to the GPR register length if necessary, and placed in the GPRs defined by reglist. The
12-hit signed offset is added to the contents of GPR base to form the effective address.

The following table shows the encoding of the reglist field.

reglist Encoding
(Binary) List of Registers Loaded
00001 GPR[16]
00010 GPR[16], GPR[17]
00011 GPR[16], GPR[17], GPR[18]
00100 GPR[16], GPR[17], GPR[18], GPR[19]
00101 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20]
00110 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21]
00111 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22]
01000 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23]
01001 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[30]
10000 GPR[31]
10001 GPR[16], GPR[31]
10010 GPR[16], GPR[17], GPR[31]
10011 GPR[16], GPR[17], GPR[18], GPR[31]
10100 GPR[16], GPR[17], GPR[18], GPR[19], GPR[31]
10101 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[31]
10110 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[31]
10111 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[31]
11000 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[31]
11001 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[30], GPR[31]
All other combinations Reserved

The register numbers and the effective addresses are correlated using the order listed in the table, starting with the
left-most register on the list and ending with the right-most register on the list. The effective address is incremented

MIPS® Architecture for Programmers Volume [I-B: microMIPS64™ Instruction Set, Revision 6.05

90

LDM

Load Doubleword Multiple

for each subsequent register on the list.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

The behavior of the instruction is UNDEFINED, if base isincluded in reglist. Reason for thisisto allow restartabil-
ity of the operation if an interrupt or exception has aborted the operation in the middle.

Pre-Release 6: The effective address must be naturally aligned. If any of the 3 least-significant bits of the addressis
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

if (Are64bitOperationsEnabled() then
vAddr <« sign extend(offset) + GPR[base]
for i«0 to fn(reglist)
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
memdoubleword < LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR [gpr (reglist,i)] <« memdoubleword
vAddr <« vAddr + 8
endfor
else
SignalException (ReservedInstruction)
endif

function fn(list)
fn <« number of entries in list - 1
endfunction

Exceptions:

TLB R€fill, TLB Invalid, Bus Error, Address Error, Reserved Instruction, Watch

Programming Notes:

This instruction executes for a variable number of cycles and performs a variable number of loads from memory. A
full restart of the sequence of operations will be performed on return from any exception taken during execution.

MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05

LDP Load Doubleword Pair

31 26 25 21 20 16 15 12 11 0
POOL32B LDP
001000 rd base 0100 offset
6 5 5 4 12
Format: 1LDP rd, offset (base) microMIPS

Purpose: Load Doubleword Pair
To load two consecutive doublewords from memory

Description: GPR[rd], GPR[rd+1l] <« memory [GPR[base] + offset]

The contents of the two consecutive 64-bit words at the memory location specified by the aligned effective address
are fetched and placed in GPR rd and (rd+1). The 12-bit signed offset is added to the contents of GPR base to form
the effective address.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:
The behavior of theinstructionsis UNDEFINED if rd equals $31.

The behavior of the instruction isUNDEFINED, if base and rd are the same. Reason for thisis to alow restartability
of the operation if an interrupt or exception has aborted the operation in the middle.

Pre-Release 6: The effective address must be naturally aligned. If any of the 3 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

if (Are64bitOperationsEnabled() then
vAddr <« sign extend(offset) + GPR[base]
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)<«
memdoubleword <« LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)«
GPR[rd] <« memdoubleword
vAddr <« sign extend(offset) + GPR[base] + 8
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD) <«
memdoubleword <« LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)«
GPR [rd+1] < memdoubleword)

else
SignalException (ReservedInstruction)

endif

Exceptions:

TLB R€fill, TLB Invalid, Bus Error, Address Error, Reserved Instruction, Watch

Programming Notes:

This instruction may execute for a variable number of cycles and performs two loads from memory. A full restart of
the sequence of operations will be performed on return from any exception taken during execution.

MIPS® Architecture for Programmers Volume [I-B: microMIPS64™ Instruction Set, Revision 6.05 92

93

MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05

LHU16 Load Halfword Unsigned (16-bit instr size)

15 10 9 7 6 4 3 0
LHUI6
001010 rt base offset
6 3 3 4
Format: LHUl6 rt, left shifted offset (base) microMIPS

Purpose: Load Halfword Unsigned (16-bit instr size)

To load a halfword from memory as an unsigned value

Description: GPR[rt] <« memory [GPR[base] + (offset x2)]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
zero-extended, and placed in GPR rt. The 4-bit unsigned offset is left shifted by one bit and then added to the contents
of GPR base to form the effective address.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Pre-Release 6: The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero,
an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:
vAddr <« zero_extend(offset || 0) + GPR[base]
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
PAddr < pAddrpgrge.i 3 || (pAddr, , xor (ReverseEndian?® || 0))
memdoubleword <« LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte < vAddr, , xor (BigEndianCPU? || 0)

GPR[rt] <« zero_extend (memdoubleword;s,g«pyte..g*byte)

Exceptions:
TLB Refill, TLB Invalid, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 94

LI16

95

Load Immediate Word (16-bit instr size)

15 10 9 7 6 0
LI16 rd Encoded
111011 Immediate
6 3 7
Format: 1LI16 rd, decoded immediate microMIPS

Purpose: Load Immediate Word (16-bit instr size)

To load a 6-bit constant into a register.

Description: GPR[rd] « decoded immediate

The 7-bit encoded Immediate field is decoded to obtain the actual immediate value. Table 5.12 shows the encoded
values of the Immeidiate field and the actual immediate values.

Table 5.12 LI16 -1, 0..126 Immediate Field Encoding Range

Encoded Input | Decoded Value
(Hex) (Decimal)
0 0
1 1
2 2
3 3
Te 126
7f -1

The actual decoded immediate value is sign-extended and placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:
The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

decoded_ immediate <« Decode (encoded immediate)
temp <« sign extend(decoded immediate)
GPR[rd] < tempg; o

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

LWP Load Word Pair
31 26 25 21 20 16 15 12 11 0
POOL32B LWP
001000 rd base 0001 offset
6 5 5 4 12
Format: LWP rd, offset (base) microMIPS

Purpose: Load Word Pair

To load two consecutive words from memory

Description: GPR[rd], GPR[rd+l] <« memory [GPR[base] + offset]

The contents of the two consecutive 32-bit words at the memory location specified by the 32-bit aligned effective
address are fetched, sign-extended to the GPR register length if necessary, and placed in GPR rd and (rd+1). The
12-bit signed offset is added to the contents of GPR base to form the effective address.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

The behavior of the instructions is UNPREDICTABLE if rd equals r31.

The behavior of the instruction is UNPREDICTABLE, if base and rd are the same. Reason for this is to allow
restartability of the operation if an interrupt or exception has aborted the operation in the middle.

Pre-Release 6: The effective address must be 32-bit aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr <« sign_extend(offset) + GPR[base]
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)

pAddr < pAddrpgrze.1. 3 || (pAddr, , xor (ReverseEndian || 02))
memdoubleword <« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte « vAddr, , xor (BigEndianCPU || 02)

GPR[rd] <« sign_extend (memdoublewords,g«pyte..a*byte)

vAddr <« sign_extend(offset) + GPR[base] + 4
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)

pAddr < pAddrpgrzz.1. 3 || (pAddr, , xor (ReverseEndian || 02))
memdoubleword <« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte « vAddr, , xor (BigEndianCPU || 02)

GPR[rd+1]« sign_extend (memdoublewords;,gspyte. .a*byte)

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 96

LW16

97

Load Word (16-bit instr size)
15 10 9 7 6 4 3 0
LW16
011010 rt base offset
6 3 3 4
Format: 1wile rt, left shifted offset (base) microMIPS

Purpose: Load Word (16-bit instr size)

To load a word from memory as a signed value

Description: GPR[rt] <« memory [GPR[base] + (offset x4)]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 4-bit unsigned offset is left shifted by two
bits and then is added to the contents of GPR base to form the effective address.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Pre-Release 6: The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr < zero extend(offset|| 0%) + GPR[base]
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)

PAddr < pAddrpgrge.1 3 || (pPAddr, , xor (ReverseEndian || 02))
memdoubleword <« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte <« vAddr, , xor (BigEndianCPU || 0?)

GPR[rt] <« sign_extend (memdoubleword;;,g«pyte..g*byte)

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

LWM32

Load Word Multiple

31 26 25 21 20 16 15 2 1u 0
POOL32B . LWM32
001000 reglist base 0101 offset
6 5 5 a4 12
Format: 1wM32 {srelé6, } {ra}, offset (base) microMIPS

Purpose: Load Word Multiple

To load a sequence of consecutive words from memory

Description: {Gpr[16],{GPR[17],{GPRI[18],{GPR[19], {GPR[20], {GPR[21],{GPR[22], {GPR[23],
{GPR[301}}}}}}}}}{GPR[31]} «

memory [GPR [base] +offset], ..

. ,memory [GPR [base] +offset+4* (fn(reglist))]

The contents of consecutive 32-bit words at the memory location specified by the 32-bit aligned effective address are
fetched, sign-extended to the GPR register length if necessary, and placed in the GPRs defined by reglist. The 12-bit
signed offset is added to the contents of GPR base to form the effective address.

The following table shows the encoding of the reglist field.

reglist Encoding
(binary) List of Registers Loaded
00001 GPR[16]
00010 GPR[16], GPR[17]
00011 GPR[16], GPR[17], GPR[18]
00100 GPR[16], GPR[17], GPR[18], GPR[19]
00101 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20]
00110 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21]
00111 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22]
01000 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23]
01001 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[30]
10000 GPR[31]
10001 GPR[16], GPR[31]
10010 GPR[16], GPR[17], GPR[31]
10011 GPR[16], GPR[17], GPR[18], GPR[31]
10100 GPR[16], GPR[17], GPR[18], GPR[19], GPR[31]
10101 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[31]
10110 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[31]
10111 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[31]
11000 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[31]
11001 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[30], GPR[31]
All other combinations Reserved

The register numbers and the effective addresses are correlated using the order listed in the table, starting with the

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 98

LWM32 Load Word Multiple

99

left-most register on the list and ending with the right-most register on the list. The effective address is incremented
for each subsequent register on the list.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

The behavior of the instruction is UNPREDICTABLE, if base is included in reglist. Reason for this is to allow
restartability of the operation if an interrupt or exception has aborted the operation in the middle.

Pre-Release 6: The effective address must be 32-bit aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr <« sign extend(offset) + GPR[base]
for i«0 to fn(reglist)
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)

PAddr < pAddrpgrge.1 3 || (pAddr, , xor (ReverseEndian || 02))
memdoubleword <« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte <« vAddr, , xor (BigEndianCPU || 0%)

GPR[gpr (reglist,i)] < sign extend(memdoublewords,,g«pyte..s*byte)
vAddr <« vAddr + 4
endfor

function fn(list)
fn < (number of entries in list) - 1

endfunction

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

LWM16 Load Word Multiple (16-bit)

POOL16C reolist offset LWMI16
010001 & 0010
6 2 4 4
Format: rwMle so0, {s1, {s2, {s3,}}} ra, left shifted offset (sp) microMIPS

Purpose: Load Word Multiple (16-bit)

To load a sequence of consecutive words from memory
Description: Gpr[16], {GPR[17], {GPR[18], {GPRI[19],}}} GPRI31] «
memory [GPR[29] + (0ffset<<2)], ..., memory [GPR[19] + (offset<<2)+4* (fn(reglist))]

The contents of consecutive 32-bit words at the memory location specified by the 32-bit aligned effective address are
fetched, sign-extended to the GPR register length if necessary, and placed in the GPRs defined by reglist. The 4-bit
unsigned offset is first left shifted by two bits and then added to the contents of GPR sp to form the effective address.

The following table shows the encoding of the reglist field.

reglist Encoding
(binary) List of Registers Loaded
00 GPR[16], GPR[31]
01 GPR[16], GPR[17], GPR[31]
10 GPR[16], GPR[17], GPR[18], GPR[31]
11 GPR[16], GPR[17], GPR[18], GPR[19], GPR[31]

The register numbers and the effective addresses are correlated using the order listed in the table, starting with the
left-most register on the list and ending with the right-most register on the list. The effective address is incremented
for each subsequent register on the list.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.
Restrictions:

The effective address must be 32-bit aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

vAddr < zero extend (offset]||0%) + GPRI[spl]
if vAddr,; , # 0% then
SignalException (AddressError)
endif
for i« 0 to fn(reglist)
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)

pAddr < pAddrpgrge.1. 3 || (pAddr, , xor (ReverseEndian || 02))
memdoubleword <« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte <« vAddr, , xor (BigEndianCPU || 02)

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 100

GPR[gpr(reglist,i)] < sign_extend (memdoublewords; g«pyte..s*byte)
vAddr <« vAddr + 4
endfor

function fn(list)
fn < number of entries in list - 1

endfunction

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

101 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05

LWGP Load Word from Global Pointer (16-bit instr size)

15 10 9 7 6 0
LWGP16
011001 rt offset
6 3 7
Format: Lwap
LWle rt, left shifted offset (gp) microMIPS

Purpose: Load Word from Global Pointer (16-bit instr size)

To load a word from memory as a signed value

Description: GPR[rt] <« memory[GPR[28] + (offset x4)]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 7-bit signed offset is left shifted by two
bits and then added to the contents of GPR 28 to form the effective address.

Restrictions:
The 3-bit register field can only specify GPRs $2-$7, $16, $17.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Operation:

vAddr < sign extend(offset|| 0%) + GPR[28]
if vAddr,; , # 0% then
SignalException (AddressError)
endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
pAddr < pAddrpgrzz.1. 3 || (pAddr, , xor (ReverseEndian || 02))
memdoubleword <« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte « vAddr, , xor (BigEndianCPU || 02)
GPR[rt] <« sign_extend (memdoublewords;,g«pyte..a*byte)

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 102

LWSP Load Word from Stack Pointer (16-bit instr size)

103

15 10 9 5 4 0
LWSP16
010010 rt offset
6 5 5
Format: Lwsp
LWle rt, left shifted offset (sp) microMIPS

Purpose: Load Word from Stack Pointer (16-bit instr size)

To load a word from memory as a signed value

Description: GPR[rt] <« memory[GPR[29] + (offset x4)]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 5-bit signed offset is left shifted by two
bits, zero-extended and then is added to the contents of GPR 29 to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Operation:

vAddr <« zero extend(offset|| 02) + GPR[29]
if vAddr, , # 0% then
SignalException (AddressError)
endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
pAddr < pAddrpgrze.1. 3 || (pAddr, , xor (ReverseEndian || 02))
memdoubleword <« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte « vAddr, , xor (BigEndianCPU || 02)
GPR[rt] <« sign_extend(memdoublewords;,g«pyte..a*byte)

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

15 10 9
MOVEI16 d s
000011
6 5 5

Format: MOVE1l6 rd, rs

Purpose: Move Register (16-bit instr size)
To copy one GPR to another GPR.

Description: GPR[rd] « GPR[rs]

The contents of GPR rs are placed into GPR rd.

Restrictions:

None

Operation:
GPR[rd] <« GPR[rs]

Exceptions:

None

MIPS® Architecture for Programmers Volume [I-B: microMIPS64™ Instruction Set, Revision 6.05

microMIPS

104

MOVEP

Move a Pair of Registers

15 10 9 7 6 4 3 2
POOL16C enc dest enc rt enc rs 1 enc r1s
010001 - - - -
6 3 3 1 1 2
Format: MOVEP rd, re, rs, rt

Purpose: Move a Pair of Registers

To copy two GPRs to another two GPRs.

Description: GPR[rd] <« GPR[rs]; GPR[re] <« GPR[rt];

The contents of GPR rs are placed into GPR rd. The contents of GPR rt are placed into GPR re.

The register numbers rd and re are determined by the encoded enc_dest field:

105

Table 5.13 Encoded and Decoded Values of the Enc_Dest Field

Encoded Value | Encoded Value | Decoded Value | Decoded Value
of Instrg 7 of Instrg 7 of rd of re
(Decimal) (Hex) (Decimal) (Decimal)

0 0x0 5 6
1 0x1 5 7
2 0x2 6 7
3 0x3 4 21
4 0x4 4 22
5 0x5 4 5
6 0x6 4 6
7 0x7 4 7

Table 5.14 Encoded and Decoded Values of the Enc_rs and Enc_rt Fields

The register numbers rs and rt are determined by the encoded enc_rs and enc_rt fields:

Decoded Value
Encoded Value | Encoded Value of rt
of Instrg_4 (or | of Instrg_4 (or (or rs) Symbolic Name
Instrs) Instr 1) (From
(Decimal) (Hex) (Decimal) ArchDefs.h)
0 0x0 0 Zero
1 0x1 17 sl
2 0x2 2 v0
3 0x3 3 vl
4 0x4 16 s0
5 0x5 18 s2
6 0x6 19 s3
7 0x7 20 s4

microMIPS

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

The destination register pair field, enc_dest, can only specify the register pairs defined in Table 5.13.
The source register fields enc_rs and enc_rt can only specify GPRs 0,2-3,16-20.

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

GPR[rd] <« GPRI[rs]; GPR[re] <« GPR[rt]

Exceptions:

None

MIPS® Architecture for Programmers Volume [I-B: microMIPS64™ Instruction Set, Revision 6.05 106

NOT16 Invert (16-bit instr size)

Release 6
POOL16C " s NOT16
010001 0000
6 3 3 4
Format: NOT16 rt, rs microMIPS

Purpose: Invert (16-bit instr size)

To do a bitwise logical inversion.

Description: GPR[rt] <« GPR[rs] XOR Oxffffffffffffffff

Invert the contents of GPR rs in a bitwise fashion and place the result into GPR rt.

Restrictions:
The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:
GPR[rt] <« GPR[rs] xor Oxffffffffffffffff

Exceptions:

None

107 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

OR16

s

OR16
1001

POOL16C "
010001
6 3

Format: OR16 rt, rs

Purpose: Or (16-bit instr size)
To do a bitwise logical OR

Description: GPR[rt] « GPR[rs] or GPR[rt]

Or (16-bit instr size)

microMIPS32

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical OR operation. The result is

placed into GPR rt.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Availability and Compatibility:
This instruction has been recoded for Release 6.

Operation:

GPR[rt] <« GPR[rs] or GPR[rt]

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

108

SB16 Store Byte (16-bit instr size)

15 10 9 7 6 4 3 0
SB16
100010 rt base offset
6 3 3 4
Format: sSBi1e6 rt, offset (base) microMIPS

Purpose: Store Byte (16-bit instr size)

To store a byte to memory

Description: memory [GPR [base] + offset] <« GPR[rt]

The least-significant 8-bit byte of GPR rt is stored in memory at the location specified by the effective address. The
4-bit unsigned offset is added to the contents of GPR base to form the effective address.

Restrictions:
The 3-bit base register field can only specify GPRs $2-$7, $16, $17.
The 3-bit rt register field can only specify GPRs $0, $2-$7, $17.

Operation:

vAddr <« zero_extend(offset) + GPR[base]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)
pAddr <« pAddrpgrgg.1..3 || (pAddr, , xor ReverseEndian?)
bytesel <« vAddr, , xor BigEndianCPU?
datadoubleword <« GPRI[rtlg;_gspytesel..o ||
StoreMemory (CCA, BYTE, datadoubleword, pAddr, vAddr, DATA)

0 8*bytesel

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch

109 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

SDBBP16 Software Debug Breakpoint (16-bit instr size)

15 10 9 6 5 0
POOL16C code SDBBP16
010001 111011
6 4 6
Format: SDBBP16 code EJTAG+microMIPS

Purpose: Software Debug Breakpoint (16-bit instr size)

To cause a debug breakpoint exception

Description:

This instruction causes a debug exception, passing control to the debug exception handler. If the processor is execut-
ing in Debug Mode when the SDBBP instruction is executed, the exception is a Debug Mode Exception, which sets
the Debugpgy.code field to the value 0x9 (Bp). The code field can be used for passing information to the debug

exception handler, and is retrieved by the debug exception handler only by loading the contents of the memory word
containing the instruction, using the DEPC register. The CODE field is not used in any way by the hardware.

Restrictions:

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

and Config5.SBRI = 0If Debugpy = 0 then
SignalDebugBreakpointException ()
else
SignalDebugModeBreakpointException ()
endif

Exceptions:

Debug Breakpoint Exception
Debug Mode Breakpoint Exception

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 110

SDM Store Doubleword Multiple

31 26 25 21 20 16 15 12 11 0
POOL32B . SDM
001000 reglist base 1111 offset
6 5 5 4 12
Format: sSDM {sregs, } {ra}, offset (base) microMIPS

Purpose: Store Doubleword Multiple
To store a sequence of consecutive doublewords to memory
Description: memory [GPR [base] +offset], ..., memory [GPR [base] +offset+4* (fn(reglist))] <«

{GpPr[16], {GPR[17],{GPR[18],{GPR[19],{GPR[20], {GPR[21], {GPR[22], {GPR[23],
{GPRI301}}}}}}}}}{GPRI21]}

The contents of the 64-bit doublewords of the GPRs defined by reglist are stored in memory at the location specified
by the aligned effective address. The 12-bit signed offset is added to the contents of GPR base to form the effective
address.

The following table shows the encoding of the reglist field.

reglist Encoding
(binary) List of Registers Stored
00001 GPR[16]
00010 GPR[16], GPR[17]
00011 GPR[16], GPR[17], GPR[18]
00100 GPR[16], GPR[17], GPR[18], GPR[19]
00101 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20]
00110 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21]
00111 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22]
01000 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23]
01001 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[30]
10000 GPR[31]
10001 GPR[16], GPR[31]
10010 GPR[16], GPR[17], GPR[31]
10011 GPR[16], GPR[17], GPR[18], GPR[31]
10100 GPR[16], GPR[17], GPR[18], GPR[19], GPR[31]
10101 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[31]
10110 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[31]
10111 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[31]
11000 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[31]
11001 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[30], GPR[31]
All other combinations Reserved

111

The register numbers and the effective addresses are correlated using the order listed in the table, starting with the
left-most register on the list and ending with the right-most register on the list. The effective address is incremented

MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05

SDM

Store Doubleword Multiple

for each subsequent register on the list.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

Pre-Release 6: The effective address must be naturally aligned. If any of the 3 least-significant bits of the addressis
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

if Areé64bitOperationsEnabled() then
vAddr <« sign extend(offset) + GPR[base]
for i«0 to fn(reglist)
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)
datadoubleword < GPR[gpr(reglist,i)]
StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)
vAddr <« vAddr + 8
endfor
else
SignalException (ReservedInstruction)
endif

function fn(list)
fn < number of entries in list - 1
endfunction

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction, Watch

Programming Notes:

This instruction executes for a variable number of cycles and performs a variable number of storesto memory. A full
restart of the sequence of operations will be performed on return from any exception taken during execution.

MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05 112

SDP

113

Store Doubleword Pair

31 26 25 21 20 16 15 12 11 0
POOL32B SDP
001000 rd base 1100 offset
6 5 5 4 12
Format: SDP rd, offset (base) microMIPS

Purpose: Store Doubleword Pair

To store two consecutive doublewords to memory

Description: memory [GPR[base] + offset] <« GPR[rd], GPR[rd+1]

The contents of the 64-bit doublewords of GPR rd and GPR rd+1 are stored in memory at the location specified by
the aligned effective address. The 12-bit signed offset is added to the contents of GPR base to form the effective
address.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:
The behavior of theinstructionsis UNDEFINED if rd equals $31.

Pre-Release 6: The effective address must be naturally aligned. If any of the 3 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

if Are64bitOperationsEnabled() then
vAddr <« sign_extend(offset) + GPR[base]
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)<«<«
datadoubleword <« GPR[rd]
StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)
vAddr <« sign extend(offset) + GPR[base] + 8
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE) <<«
datadoubleword <« GPR[rd+1]

StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)
else

SignalException (ReservedInstruction)
endif

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction, Watch

Programming Notes:

Thisinstruction may execute for avariable number of cycles and may perform avariable number of storesto memory.
A full restart of the sequence of operations will be performed on return from any exception taken during execution.

MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05

SH16 Store Halfword (16-bit instr size)

15 10 9 7 6 4 3 0
SH16
It
101010 base offset
6 3 3 4
Format: sH16 rt, left shifted offset (base) microMIPS

Purpose: Store Halfword (16-bit instr size)

To store a halfword to memory

Description: memory [GPR [base] + (offset x2)] <« GPR[rt]

The least-significant 16-bit halfword of register rt is stored in memory at the location specified by the aligned effec-
tive address. The 4-bit unsigned offset is left shifted by one bit and then added to the contents of GPR base to form
the effective address.

Restrictions:
The 3-bit base register field can only specify GPRs $2-$7, $16, $17.
The 3-bit rt register field can only specify GPRs $0, $2-$7, $17.

Pre-Release 6: The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero,
an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr <« zero_extend(offset|| 0) + GPR[base]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)

pAddr <« pAddrpgrze.1. 3 || (pAddr, , xor (ReverseEndian? || 0))
bytesel <« vAddr, o xor (BigEndianCPU? || 0)

datadoubleword < GPRI[rt]g¢;_gspyresel..o || o8rbytesel

StoreMemory (CCA, HALFWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 114

SLL16

115

Shift Word Left Logical (16-bit instr size)

15 10 9 7 6 4 3 1 0
POOL16B encoded

001001 rd i a |°

6 3 3 3 1

Format: sSLL16 rd, rt, decoded sa

Purpose: Shift Word Left Logical (16-bit instr size)
To left-shift a word by a fixed number of bits

Description: GPR[rd] <« GPR[rt] << decoded sa

microMIPS

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting zeros into the emptied bits; the word
result is sign-extended and placed in GPR rd. The bit-shift amount is specified by decoding the encoded_sa field.

Table 5.15 lists the encoded values of the encoded_sa field and the actual bit shift amount values.

Table 5.15 Shift Amount Field Encoding

Encoded Input | Decoded Value
(Hex) (Decimal)
0 8
1 1
2 2
3 3
4 4
5 5
6 6
7 7

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

decoded_sa <« DECODE (encoded_sa)
s <« decoded_sa

temp « GPRI[rt] 31.4)..0 || OF
GPR[rd] <« sign_ extend (temp)

Exceptions:

None

Programming Notes:

Unlike nearly all other word operations, the SLL input operand does not have to be a properly sign-extended word
value to produce a valid sign-extended 32-bit result. The result word is always sign-extended into a 64-bit destination

register; this instruction with a zero shift amount truncates a 64-bit value to 32 bits and sign-extends it.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

SRL16

Shift Word Right Logical (16-bit instr size)

15 10 9 7 6 4 3 10
POOL16B encoded
001001 d " sa |t
6 3 3 3 1
Format: SRL16 rd, rt, decoded sa
Purpose: Shift Word Right Logical (16-bit instr size)
To execute a logical right-shift of a word by a fixed number of bits
Description: GPR[rd] <« GPR[rt] >> decoded sa (logical)

microMIPS

The contents of the low-order 32-bit word of GPR rt are shifted right, inserting zeros into the emptied bits; the word
result is sign-extended and placed in GPR rd. The bit-shift amount is specified by . by decoding the encoded_sa field.

Table 5.16 lists the encoded values of the encoded_sa field and the actual bit shift amount values.

Table 5.16 Shift Amount Field Encoding

Encoded Input | Decoded Value
(Hex) (Decimal)
0 8
1 1
2 2
3 3
4 4
5 5
6 6
7 7

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.
On 64-bit processors, if GPR rt does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the

operation is UNPREDICTABLE.

Operation:

if NotWordvalue (GPR[rt]) then
UNPREDICTABLE

endif

decoded_sa <« DECODE (encoded_sa)

s <« decoded_sa

temp « 0° || GPRI[rtls; ¢

GPR[rd] <« sign_ extend (temp)

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

116

117 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05

SUBU16 Subtract Unsigned Word (16-bit instr size)

15 10 9 7 6 1 0
POOL16A
000001 s rt rd 1
6 3 3 3 1
Format: suBU16 rd, rs, rt microMIPS

Purpose: Subtract Unsigned Word (16-bit instr size)
To subtract 32-bit integers

Description: GPR[rd] <« GPR[rs] — GPR[rt]

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rs and the 32-bit arithmetic result is sign-
extended and placed into GPR rd.

No integer overflow exception occurs under any circumstances.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

On 64-bit processors, if either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 63..31 equal), then
the result of the operation is UNPREDICTABLE.

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

if NotWordvValue (GPR[rs]) or NotWordValue (GPR[rt]) then
UNPREDICTABLE

endif

temp <« GPR[rs] — GPRI[rt]

GPR[rd] <« sign extend (temp)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 118

SW16

119

Store Word (16-bit instr size)
15 10 9 7 6 4 3 0
SW16
111010 rt base offset
6 3 3 4
Format: swie rt, left shifted offset (base) microMIPS

Purpose: Store Word (16-bit instr size)

To store a word to memory

Description: memory [GPR [base] + (offset x4)] <« GPR[rt]

The least-significant 32-bit word of GPR rt is stored in memory at the location specified by the aligned effective
address. The 4-bit unsigned offset is left-shifted by two bits and then added to the contents of GPR base to form the
effective address.

Restrictions:

The 3-bit base register field can only specify GPRs $2-$7, $16, $17.

The 3-bit rt register field can only specify GPRs $0, $2-$7, $17.

Pre-Release 6: The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:
vAddr < zero extend(offset || 0%) + GPR[basel
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)
pAddr <« pAddrpgrze.1. 3 || (pAddr, , xor (ReverseEndian || 0?))
bytesel <« vAddr, , xor (BigEndianCPU || 02?)

datadoubleword <« GPR[rt] 63-8+bytesel. .0 || g8*bytesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

SWSP Store Word to Stack Pointer (16-bit instr size)

15 10 9 5 4 0
SWSP16
110010 rt offset
6 5 5
Format: swsp rt, left shifted offset (base) microMIPS

Purpose: Store Word to Stack Pointer (16-bit instr size)

To store a word to memory

Description: memory [GPR[29] + (offset x4)] <« GPR[rt]

The least-significant 32-bit word of GPR rt is stored in memory at the location specified by the aligned effective
address. The 5-bit signed offset is left shifted by two bits, zero-extended and then is added to the contents of GPR 29
to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Operation:

vAddr <« zero extend (offset] | 0%) + GPR[29]
if vAddr; , # 02 then
SignalException (AddressError)

endif

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)

pAddr <« pAddrpgrze.1. 3 || (pAddr, , xor (ReverseEndian || 0?))
bytesel <« vAddr, , xor (BigEndianCPU || 02?)

datadoubleword <« GPR[rt] 63-8+bytesel. .0 || g8*bytesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 120

SWM16

121

Store Word Multiple (16-bit)

POOL16C realist offset SWMI16
010001 & 1010
6 2 4 4
Format: swMmie so0, {s1, {s2, {s3,}}} ra, left shifted offset (sp) microMIPS
Purpose: Store Word Multiple (16-bit)
To store a sequence of consecutive words to memory
Description: memory [GPR[29]1], ..., memory [GPR [29] + (of fset<<2) +4* (2+fn (reglist))] <«

GPR[16], {GPR[17], {GPRI[18],

{GPR[19],}}} GPRI[31]

The least-significant 32-bit words of the GPRs defined by reglist are stored in memory at the location specified by the
aligned effective address. The 4-bit unsigned offset is added to the contents of GPR sp to form the effective address.

The following table shows the encoding of the reglist field.

reglist Encoding
(binary) List of Registers Stored
00 GPR[16], GPR[31]
01 GPR[16], GPR[17], GPR[31]
10 GPR[16], GPR[17], GPR[18], GPR[31]
11 GPR[16], GPR[17], GPR[18], GPR[19], GPR[31]

The register numbers and the effective addresses are correlated using the order listed in the table, starting with the
left-most register on the list and ending with the right-most register on the list. The effective address is incremented
for each subsequent register on the list.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this

instruction.

Restrictions:

The effective address must be 32-bit aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

vAddr < zero extend (offset]||0%) + GPRI[spl]
if vAddr,; , # 0% then
SignalException (AddressError)

endif

for i« 0 to fn(reglist)

(pAddr, CCA) <« AddressTranslation

pAddr <« pAddrpsizg1..3 ||
bytesel « vAddr, , xor (BigEndianCPU || 0?)

datadoubleword < GPRI[gpr(reglist,i)]gs_gspytesel..

(vAddr, DATA, STORE)
(pAddr, , xor (ReverseEndian || 02))

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr,

0 || OS*bytesel
DATA)

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

vAddr <« vAddr + 4
endfor

function fn(list)

fn < number of entries in list - 1
endfunction

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture for Programmers Volume [I-B: microMIPS64™ Instruction Set, Revision 6.05 122

SWM32

Store Word Multiple

31 26 25 21 20 16 15 12 11
POOL32B . SWM
001000 reglist base 1101 offset
6 5 5 4 12
Format: swM32 {sregs, } {ra}, offset (base) microMIPS

Purpose: Store Word Multiple

To store a sequence of consecutive words to memory

Description: memory [GPR [base] +offset], . .

{GPr[16], {GPR[17],{GPR([18],{GPR[19],{GPR[20], {GPR[21], {GPR[22], {GPR[23],
{GPR[301}}}}}}}}}{GPRI31]}

The least-significant 32-bit words of the GPRs defined by reglist are stored in memory at the location specified by the
aligned effective address. The 12-bit signed offset is added to the contents of GPR base to form the effective address.

The following table shows the encoding of the reglist field.

. ,memory [GPR [base] +offset+4* (fn(reglist))] <«

reglist Encoding
(binary) List of Registers Loaded
00001 GPR[16]
00010 GPR[16], GPR[17]
00011 GPR[16], GPR[17], GPR[18]
00100 GPR[16], GPR[17], GPR[18], GPR[19]
00101 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20]
00110 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21]
00111 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22]
01000 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23]
01001 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[30]
10000 GPR[31]
10001 GPR[16], GPR[31]
10010 GPR[16], GPR[17], GPR[31]
10011 GPR[16], GPR[17], GPR[18], GPR[31]
10100 GPR[16], GPR[17], GPR[18], GPR[19], GPR[31]
10101 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[31]
10110 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[31]
10111 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[31]
11000 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[31]
11001 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[30], GPR[31]
All other combinations Reserved

123

The register numbers and the effective addresses are correlated using the order listed in the table, starting with the
left-most register on the list and ending with the right-most register on the list. The effective address is incremented

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

SWM32 Store Word Multiple

for each subsequent register on the list.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

Pre-Release 6: The effective address must be 32-bit aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr <« sign extend(offset) + GPR[base]
for i«0 to fn(reglist)
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)

pAddr < pAddrpgrze.1. .3 || (pAddr, , xor (ReverseEndian || 07))
bytesel <« vAddr, , xor (BigEndianCPU || 0?)
datadoubleword <« GPRIgpr(reglist,i)]¢s_gepytesel..o || o8 bytesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)
vAddr <« VvAddr + 4
endfor

function fn(list)

fn <« (number of entries in list) - 1
endfunction

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 124

SWP Store Word Pair

31 26 25 21 20 16 15 12 11 0
POOL32B SWP
ffset
001000 rsl base 1001 offse
6 5 5 4 12
Format: sSwp rsi1, offset (base) microMIPS

Purpose: Store Word Pair

To store two consecutive words to memory

Description: memory [GPR [base] + offset] <« GPR[rsl], GPR[rsl+1]

The least-significant 32-bit words of GPR rsl and GPR rsl+1 are stored in memory at the location specified by the
aligned effective address. The 12-bit signed offset is added to the contents of GPR base to form the effective address.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:
The behavior of the instructions is UNDEFINED if rd equals $31.

Pre-Release 6: The effective address must be 32-bit aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr <« sign extend(offset) + GPR[base]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)

pAddr <« pAddrpgrze.1. 3 || (pAddr, , xor (ReverseEndian || 0?))
bytesel <« vAddr, , xor (BigEndianCPU || 0%?)

datadoubleword < GPR[rsl]gs_gspytesel..o || o8 bytesel
StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

vAddr <« sign_extend(offset) + GPR[base] + 4

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)

pAddr < pAddrpgrze.1. 3 || (pAddr, , xor (ReverseEndian || 02))
bytesel <« vAddr, , xor (BigEndianCPU || 02)

datadoubleword < GPR[rsl+1]ss_gspytesel..o || g8*bytesel
StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

125 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

XOR16

Exclusive OR (16-bit instr size)

s

XOR16
1000

POOL16C "
010001
6 3

Format: XOR16 rt, rs

Purpose: Exclusive OR (16-bit instr size)

To do a bitwise logical Exclusive OR

Description: GPR[rt] « GPR[rs] XOR GPR[rt]

microMIPS

Combine the contents of GPR rs and GPR rt in a bitwise logical Exclusive OR operation and place the result into

GPR 1t.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Availability and Compatibility:
This instruction has been recoded for Release 6.

Operation:

GPR[rt] <« GPR[rs] xor GPR[rt]

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

126

5.5 Recoded MIPS Instructions

This section describes recoded 32-bit instructions from MIPS32 and MIPS64 instruction sets specifically for use as
part of the microMIPS instruction set.

Only instructions supported in Release 6 are provided. Section 2.7, "Release 6 of the MIPS Architecture," lists
instructions that have been added, removed and recoded in Release 6.

127 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

ABS.fmt Floating Point Absolute Value

31 26 25 21 20 16 15 14 13 12 6 5 0
POOL32F ABS POOL32FXf
010101 fi fs 0| fmt 0001101 111011
6 5 5 1 2 7 6

Format: ABS.fmt
ABS.S ft, fs microMIPS
ABS.D ft, fs microMIPS

Purpose: Floating Point Absolute Value

Description: FPR[ft] < abs(FPR[fs])
The absolute value of the value in FPR fs is placed in FPR ft. The operand and result are values in format fmt.
The Cause bits are ORed into the Flag bits if no exception is taken.

If FIR{as2008=0 or FCSRags2008=0 then this operation is arithmetic. For this case, any NaN operand signals invalid
operation.

If FCSRpgso00g=1 then this operation is non-arithmetic. For this case, both regular floating point numbers and NAN
values are treated alike, only the sign bit is affected by this instruction. No IEEE exception can be generated for this

case.
Restrictions:

The fields fs and ft must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Availability and Compatibility:
ABS.PS has been removed in Release 6.

Operation:

StoreFPR (ft, fmt, AbsoluteValue (ValueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 128

ADD Add Word
31 26 25 21 20 16 15 1 10 9 0
POOL32A " c d 0 ADD
000000 s 0100010000
6 5 5 5 1 10

Format: abD rd, rs, rt

Purpose: Add Word

To add 32-bit integers. If an overflow occurs, then trap.

Description: GPR[rd] < GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to produce a 32-bit result.

microMIPS

» If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is not modified and

an Integer Overflow exception occurs.

+ If the addition does not overflow, the 32-bit result is signed-extended and placed into GPR rd.

Restrictions:

If either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 43 _3; equal), then the result of the oper-

ation is UNPREDICTABLE.

Operation:

if NotWordvValue (GPR[rs]) or NotWordValue (GPR[rt]) then
UNPREDICTABLE
endif
temp <« (GPR[rsl;;||GPR[rsls; o) + (GPR[rtls;||GPRIrtls; o)
if temp;, # temp;; then
SignalException (IntegerOverflow)
else
GPR[rd] <« sign_ extend(temps;)
endif

Exceptions:

Integer Overflow

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

129

ADD.fmt Floating Point Add

31 26 25 21 20 16 15 11 10 9 8 7 0
POOL32F ADD
010101 fi fs fd 0| fmt 00110000
6 5 5 5 1 2 3

Format: ADD.fmt
ADD.S fd, fs, ft microMIPS
ADD.D fd, fs, ft microMIPS
Purpose: Floating Point Add

To add floating point values.

Description: FPR[£d] « FPR[fs] + FPR[ft]

The value in FPR ft is added to the value in FPR fs. The result is calculated to infinite precision, rounded by using to
the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.

The Cause bits are ORed into the Flag bits if no exception is taken.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is
UNPREDICTABLE.

The operands must be values in format fmt. If the fields are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

Availability and Compatibility:
ADD.PS has been removed in Release 6.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) +¢, ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Inexact, Overflow, Underflow

130 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

ADDIU Add Immediate Unsigned Word

31 26 25 21 20 16 15 0
ADDIU32 . .
001100 rt s immediate
6 5 5 16
Format: ADDIU rt, rs, immediate microMIPS

Purpose: Add Immediate Unsigned Word

To add a constant to a 32-bit integer.

Description: GPR[rt] ¢ GPR[rs] + immediate

The 16-bit signed immediate is added to the 32-bit value in GPR rs and the 32-bit arithmetic result is sign-extended
and placed into GPR rt.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordValue (GPR[rs]) then
UNPREDICTABLE

endif

temp ¢ GPR[rs] + sign extend(immediate)

GPR[rt] ¢ sign extend(temps; 4)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 131

ADDIUPC Add Immediate to PC (unsigned - non-trapping)

31 26 25 21 20 19 18 0
PCREL " ADDIUPC immediate
011110 00
6 5 2 19
Format: ADDIUPC rt,immediate microMIPS32 Release 6

Purpose: Add Immediate to PC (unsigned - non-trapping)

Description: GPR[rt] <« (PC & ~0x3 + sign _extend(immediate << 2))

This instruction performs a PC-relative address calculation. The 19-bit immediate is shifted left by 2 bits, sign-
extended, and added to the address of the ADDIUPC instruction. The result is placed in GPR rt.

This instruction is both a 32-bit and a 64-bit instruction. The 64-bit result is sign-extended by the same rules that gov-
ern sign-extension of virtual addresses in the MIPS64 Architecture, as described by the function effective address()
in the Privileged Resource Architecture.

Restrictions:

None
Availability and Compatibility:
This instruction is introduced by and required as of Release 6.

Operation:

GPR[rst] « (PC & ~0x3 + sign extend(immediate << 2))

Exceptions:

None

Programming Notes:

The term “unsigned” in this instruction mnemonic is a misnomer. “Unsigned” here means “non-trapping”. It does not
trap on a signed 32-bit overflow. ADDIUPC corresponds to unsigned ADDIU, which does not trap on overflow, as
opposed to ADDI, which does trap on overflow.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 132

ADDU Add Unsigned Word

133

31 26 25 21 20 16 15 11 10 0
POOL32A o ’ 0 ADDU
000000 s : 0101010000
6 5 5 5 1 10
Format: ADDU rd, rs, rt microMIPS

Purpose: Add Unsigned Word
To add 32-bit integers.

Description: GPR[rd] < GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs and the 32-bit arithmetic result is sign-
extended and placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

If either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

Operation:

if NotWordvValue (GPR[rs]) or NotWordValue (GPR[rt]) then
UNPREDICTABLE

endif

temp ¢ GPR[rs] + GPR[rt]

GPR[rd] ¢ sign extend(temps; ¢)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

ALIGN DALIGN Concatenate two GPRs, and extract a contiguous subset at a byte position

31 26 25 21 20 16 15 11 10 9 8 6 5 0
POOL32A ALIGN
000000 n rs rd bp 000 011111
6 5 5 5 2 3 6
31 26 25 21 20 16 15 11 10 9 8 6 5 0
POOL32S DALIGN
010110 n s rd bp 00 011100
6 5 5 5 3 2 6

Format: ALIGN DALIGN
ALIGN rd,rs,rt,bp microMIPS32 Release 6
DALIGN rd,rs,rt,bp microMIPS64 Release 6

Purpose: Concatenate two GPRs, and extract a contiguous subset at a byte position

Description: GPR[rd] <« (GPR[rt] << (8*bp)) or (GPR[rs] >> (GPRLEN-8*bp))

The input registers GPR rt and GPR rs are concatenated, and a register width contiguous subset is extracted, which is
specified by the byte pointer bp.

The ALIGN instruction operates on 32-bit words, and has a 2-bit byte position field bp.
The DALIGN instruction operates on 64-bit doublewords, and has a 3-bit byte position field bp.

e ALIGN: The rightmost 32-bit word in GPR rt is left shifted as a 32-bit value by bp byte positions. The rightmost
32-bit word in register rs is right shifted as a 32-bit value by (4-bp) byte positions. These shifts are logical
shifts, zero-filling. The shifted values are then or-ed together to create a 32-bit result that is sign-extended to 64-
bits and written to destination GPR rd.

* DALIGN: The 64-bit doubleword in GPR rt is left shifted as a 64 bit value by bp byte positions. The 64-bit
word in register rs is right shifted as a 64-bit value by (8-bp) byte positions. These shifts are logical shifts,
zero-filling. The shifted values are then or-ed together to create a 64-bit result and written to destination GPR
rd.

Restrictions:

Executing ALIGN and DALIGN with shift count bp=0 acts like a register to register move operation, and is redun-
dant, and therefore discouraged. Software should not generate ALIGN or DALIGN with shift count bp=0.

DALIGN: A Reserved Instruction exception is signaled if access to 64-bit operations is not enabled.

Availability and Compatibility:
The ALIGN instruction is introduced by and required as of Release 6.
The DALIGN instruction is introduced by and required as of Release 6.

Programming Notes:

Release 6 ALIGN instruction corresponds to the pre-Release 6 DSP Module BALIGN instruction, except that
BALIGN with shift counts of 0 and 2 are specified as being UNPREDICTABLE, whereas ALIGN (and DALIGN)
defines all bp values, discouraging only bp=0.

Graphically,

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 134

ALIGN DALIGN Concatenate two GPRs, and extract a contiguous subset at a byte position
Figure 5.1 ALIGN operation (32-bit)

GPR[rt] GPR[rs]

1T]
sE=HINNE

——
bp ~ 4 T4bp
—GPR[rd]

Figure 5.2 DALIGN operation (64-bit)

_ GPR]rt]
bp > 8
—GPR[rd]
Operation:
ALIGN:

tmp_rt hi < unsigned word(GPR[rt]) << (8*bp)
tmp _rs lo < unsigned word(GPR[rs]) >> (8%*(4-bp))
tmp <~ tmp rt hi or tmp_rt lo

ALIGN on a 32-bit CPU:
GPR [rd] < tmp
ALIGN on a 64-bit CPU:
GPR[rd] <« sign extend.32(tmp)

DALIGN:
if not Areé4bitOperationsEnabled()
then SignalException(ReservedInstruction) endif
tmp_rt hi < unsigned doubleword(GPR[rt]) << (8*bp)
tmp_rs lo < unsigned doubleword(GPR[rs]) >> (8*(8-bp))
tmp <~ tmp rt hi or tmp_rt lo
GPR [rd] <« tmp
/* end of instruction */

Exceptions:
ALIGN: None
DALIGN: Reserved Instruction

135 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ |nstruction Set, Revision 6.05

ALUIPC Aligned Add Upper Immediate to PC
31 26 25 21 20 16 15 0
PCREL t ALUIPC immediate
011110 r 11111
6 5 5 16

Format: ALUIPC rt,immediate

Purpose: Aligned Add Upper Immediate to PC

microMIPS32 Release 6

Description: GPR [rt] < ~0xOFFFF & (PC + sign_extend(immediate << 16))

This instruction performs a PC-relative address calculation. The 16-bit immediate is shifted left by 16 bits, sign-
extended, and added to the address of the ALUIPC instruction. The low 16 bits of the result are cleared, that is the

result is aligned on a 64K boundary. The result is placed in GPR rt.

This instruction is both a 32-bit and a 64-bit instruction. The 64-bit result is sign-extended by the same rules that gov-
ern sign-extension of virtual addresses in the MIPS64 Architecture, as described by the function effective address()

in the Privileged Resource Architecture.

Restrictions:

None

Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Operation:

GPR[rt] <« ~OxOFFFF &

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

(PC + sign_extend(immediate << 16))

136

31 26 25 21 20 16 15 11 10 9 0
POOL32A o i 0 AND
000000 s : 1001010000
6 5 5 5 1 10
Format: AND rd, rs, rt microMIPS

Purpose: and
To do a bitwise logical AND.

Description: GPR[rd] < GPR[rs] and GPR[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical AND operation. The result is
placed into GPR rd.

Restrictions:

None

Operation:
GPR[rd] <« GPR[rs] and GPR|[rt]

Exceptions:

None

137 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05

31 26 25 21 20 16 15
ANDI32 . .
110100 rt s immediate
6 5 5 16
Format: ANDI rt, rs, immediate

Purpose: and immediate

To do a bitwise logical AND with a constant

Description: GPR[rt] ¢ GPR[rs] and zero extend(immediate)

microMIPS

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR r1s in a bitwise logical AND
operation. The result is placed into GPR rt.

Restrictions:

None

Operation:
GPR [rt]

Exceptions:

None

MIPS® Architecture for Programmers Volume [I-B: microMIPS64™ Instruction Set, Revision 6.05

€< GPR[rs] and zero_extend(immediate)

138

AUI DAUI DAHI DATI

Add Immediate to Upper Bits

31 26 25 21 20 16 15

AUI ¢ S immediate
000100 ' '

DAUI i i
00 it s immediate
POOL32I DAHI s immediate
010000 10001
POOL32I DATI - immediat
010000 10000) o

5 s 3 16

Format: AUI DAUI DAHI DATI

AUI rt, rs immediate

DAUI rt,

DAHI rs,

DATI rs,

rs immediate

rs immediate

rs immediate

Purpose: Add Immediate to Upper Bits

AUI: Add Upper Immediate

DAUI: Doubleword Add Upper Immediate

DAHI: Doubleword Add Higher Immediate

DATI: Doubleword Add Top Immediate

Description:

AUT:
DAUTI:
DAHI :
DATI:

GPR [rt]
GPR [rt]
GPR [rs]
GPR [rs]

sign extend.32(GPR[rs]

<_

< GPR[rs]
< GPR[rs]
< GPR[rs]

+ sign extend(immediate << 16)
+ sign extend(immediate << 32)
+ sign extend(immediate << 48)

microMIPS32 Release 6

microMIPS64 Release 6

microMIPS64 Release 6

microMIPS64 Release 6

+ sign extend(immediate << 16))

AUI: The 16 bit immediate is shifted left 16 bits, sign-extended, and added to the register rs, storing the result in rt.
AUI is a 32-bit compatible instruction, so on a 64-bit CPU the result is sign extended as if a 32-bits signed address.

DAHI: The 16 bit immediate is shifted left 32 bits, sign-extended, and added to the register rs, overwriting rs with

the result.

DATTI: The 16 bit immediate is shifted left 48bits, sign-extended, and added to the register rs, overwriting rs with

the result.

DAUI: The 16-bit immediate is shifted left 16 bits, sign-extended, and added to the register rs; the results are stored

inrt.

In Release 6, LUI is an assembly idiom for AUI with rs=0.

Restrictions:

DAUI: rs cannot be r0, the zero register. The encoding may be used for other instructions or must signal a Reserved

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

139

AUI DAUI DAHI DATI

Instruction exception.

DAUI, DAHI, DATTI: Reserved Instruction exception if 64-bit instructions are not enabled.

Availability and Compatibility:

Add Immediate to Upper Bits

AUI is introduced by and required as of Release 6.

DAUI is introduced by and required as of MIPS64 Release 6.
DAHI is introduced by and required as of MIPS64 Release 6.
DATI is introduced by and required as of MIPS64 Release 6.

Operation:

AUI: GPRI[rt]
DAUI: GPRI[rt]
DAHI: GPRI[rs]
DATI: GPRI[rs]

Exceptions:
AUI: None.

<«—
<«—
<«
<«

sign extend.32(GPR[rs]
GPR[rs] + sign extend(immediate << 16)
GPR[rs] + sign extend(immediate << 32)
GPR[rs] + sign_ extend(immediate << 48)

DAUI, DAHI, DATI: Reserved Instruction

Programming Notes:

AUI (and DAUI, DAHI and DATI on MIPS64 Release 6) can be used to synthesize large constants in situations
where it is not convenient to load a large constant from memory. To simplify hardware that may recognize sequences
of instructions as generating large constants, AUI/DAUI/DAHI/DATI should be used in a stylized manner.

To create an integer:
LUI rd, imm low (rtmp)

ORI rd, rd,

imm_ upper

DAHI rd, imm_high
DATI rd, imm_ top

+ sign extend(immediate << 16)

)

To create a large offset for a memory access whose address is of the form rbase+large offset:
AUI rtmp, rbase, imm upper

DAHI rtmp,
DATI rtmp,

imm _high
imm_ top

LW rd, (rtmp)imm low

To create a large constant operand for an instruction of the form rd:=rs+large immediate

orrd:=rs-large immediate:

32-bits:
AUI rtmp,
ADDIU rd,

64-bits:
AUI rtmp,
DAHI rtmp,
DATI rtmp,
DADDUTI rd,

MIPS® Architecture for Programmers Volume 11-B:

rs, imm_upper
rtmp, imm low

rs, imm upper
imm high

imm_ top

rtmp, imm_low

microMIPS64™ Instruction Set, Revision 6.05

140

AUIPC Add Upper Immediate to PC

31 26 25 21 20 16 15 0
PCREL t AUIPC immediate
011110 r 11110
6 5 5 16
Format: AUIPC rt, immediate microMIPS32 Release 6

Purpose: Add Upper Immediate to PC

Description: GPR[rt] « (PC + sign extend(immediate << 16))

This instruction performs a PC-relative address calculation. The 16-bit immediate is shifted left by 16 bits, sign-
extended, and added to the address of the AUIPC instruction. The result is placed in GPR rt.

In a MIPS64 implementation, the 32-bit result is sign extended from bit 31 to bit 63.

This instruction is both a 32-bit and a 64-bit instruction. The 64-bit result is sign-extended by the same rules that gov-
ern sign-extension of virtual address in the MIPS64 Architecture, as described by the function effective _address() in
the Privileged Resource Architecture.

Restrictions:

None

Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Operation:

GPR[rt] <« (PC + sign extend(immediate << 16))

Exceptions:

None

141 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

BALC

31 26 25

Branch and Link, Compact

BALC
101101

offset

6

Format: BALC offset
Purpose: Branch and Link, Compact
To do an unconditional PC-relative procedure call.

Description: procedure _call (no delay slot)

26

microMIPS32 Release 6

Place the return address link in GPR 31. The return link is the address of the instruction immediately following the
branch, where execution continues after a procedure call. (Because compact branches have no delay slots, see below.)

A 27-bit signed offset (the 26-bit offset field shifted left 1 bits) is added to the address of the instruction following the

branch (not the branch itself), to form a PC-relative effective target address.

Compact branches do not have delay slots. The instruction after the branch is NOT executed when the branch is

taken.

Restrictions:

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions

do not apply in Release 6.

Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Exceptions:

None

Operation:

target offset <« sign extend(offset || 0!)

GPR[31] <« PC+4
PC < PC+4 + sign extend(target_ offset)

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 142

BC1EQZC BC1NEZC Branch if Coprocessor 1 (FPU) Register Bit 0 Equal/Not Equal to Zero

31 26 25 21 20 16 15 0
POOL32I BCIEQZC
010001 01000 fi offset
POOL32I BCINEZC
010001 01001 fi offset
6 5 5 16

Format: BC1EQZC BCINEZC
BClEQZC ft, offset microMIPS32 Release 6
BCINEZC ft, offset microMIPS32 Release 6
Purpose: Branch if Coprocessor 1 (FPU) Register Bit 0 Equal/Not Equal to Zero
BCI1EQZC: Branch if Coprocessor 1 (FPU) Register Bit 0 is Equal to Zero

BCINEZC: Branch if Coprocessor 1 (FPR) Register Bit 0 is Not Equal to Zero

Description:

BC1EQZC: if FPR[ft] & 1 = 0 then branch
BC1NEZC: if FPR[ft] & 1 # 0 then branch

The condition is evaluated on FPU register ft.

* For BC1EQZC, the condition is true if and only if bit 0 of the FPU register ft is zero.

» For BCINEZC, the condition is true if and only if bit 0 of the FPU register ft is non-zero.

If the condition is false, the branch is not taken, and execution continues with the next instruction.

A 17-bit signed offset (the 16-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), to form a PC-relative effective target address.

Compact branches do not have delay slots. The instruction after the branch is NOT executed if the branch is taken.

Restrictions:
If access to Coprocessor 1 is not enabled, a Coprocessor Unusable Exception is signaled.

Because these instructions BCIEQZC and BCINEZC do not depend on a particular floating point data type, they
operate whenever Coprocessor 1 is enabled.

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.

Availability and Compatibility:

These instructions are introduced by and required as of Release 6.

Exceptions:

Coprocessor Unusable!

Operation:

tmp <« ValueFPR(ft, UNINTERPRETED_ WORD)

1. InRelease 6, BCIEQZC and BCINEZC are required, if the FPU is implemented. They must not signal a Reserved Instruc-
tion exception. They can signal a Coprocessor Unusable Exception.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 143

BC1EQZC BC1NEZC Branch if Coprocessor 1 (FPU) Register Bit 0 Equal/Not Equal to Zero

144

BC1lEQZC: cond « tmp & 1 = 0

BCINEZC: cond <« tmp & 1 # 0

if cond then
target PC <« (PC+4 + sign extend(offset << 1)
PC <« target PC

Programming Notes:

Release 6: These instructions, BCIEQZC and BCINEZC, replace the pre-Release 6 instructions BC1F and BCIT.
These Release 6 FPU branches depend on bit 0 of the scalar FPU register.

Note: BCIEQZC and BCINEZC do not have a format or data type width. The same instructions are used for
branches based on conditions involving any format, including 32-bit S (single precision) and W (word) format, and
64-bit D (double precision) and L (longword) format, as well as 128-bit MSA. The FPU scalar comparison instruc-
tions CMP.condn fmt produce an all ones or all zeros truth mask of their format width with the upper bits (where
applicable) UNPREDICTABLE. BC1EQZ and BCINEZ consume only bit 0 of the CMP.condn.fmt output value, and
therefore operate correctly independent of fmt.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

BC2EQZC BC2NEZC Branch if Coprocessor 2 Condition (Register) Equal/Not Equal to Zero

31 26 25 21 20 16 15 0
BC2EQZC
POOL32I 01010 ct offset
BC2NEZC
POOL32I 01011 ct offset
6 5 5 16
Format: BC2EQZC BC2NEZC
BC2EQZC ct, offset microMIPS32 Release 6
BC2NEZC ct, offset microMIPS32 Release 6

Purpose: Branch if Coprocessor 2 Condition (Register) Equal/Not Equal to Zero
BC2EQZC: Branch if Coprocessor 2 Condition (Register) is Equal to Zero
BC2NEZC: Branch if Coprocessor 2 Condition (Register) is Not Equal to Zero

Description:

BC2EQZC: if COP2Condition[ct] = 0 then branch
BC2NEZC: if COP2Condition[ct] # 0 then branch

The 5-bit field ct specifies a coprocessor 2 condition.
* For BC2EQZC if the coprocessor 2 condition is true the branch is taken.
* For BC2NEZC if the coprocessor 2 condition is false the branch is taken.

A 17-bit signed offset (the 16-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), to form a PC-relative effective target address.

Compact branches do not have delay slots. The instruction after the branch is NOT executed if the branch is taken.

Restrictions:

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is signaled.
Availability and Compatibility:
These instructions are introduced by and required as of Release 6.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Operation:

tmpcond <« Coprocessor2Condition(ct)
if BC2EQZC then

tmpcond <« not (tmpcond)

endif

if tmpcond then

PC < PC+4 + sign extend(immediate << 1))
endif

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 145

BC2EQZC BC2NEZC Branch if Coprocessor 2 Condition (Register) Equal/Not Equal to Zero

Implementation Notes:

As of Release 6 these instructions, BC2EQZC and BC2NEZC, replace the pre-Release 6 instructions BC2F and
BC2T, which had a 3-bit condition code field (as well as nullify and true/false bits). Release 6 makes all 5 bits of the
ct condition code available to the coprocessor designer as a condition specifier.

A customer defined coprocessor instruction set can implement any sort of condition it wants. For example, it could
implement up to 32 single-bit flags, specified by the 5-bit field ct. It could also implement conditions encoded as
values in a coprocessor register (such as testing the least significant bit of a coprocessor register) as done by Release
6 instructions BC1EQZ/BCINEZ.

146 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

B{LE,GE,GT,LT,EQ,NE}ZALC Compact Zero-Compare and Branch-and-Link Instructions

31 26 25 21 20 16 15 0
POP60 BLEZALC
10000 offset
1 1t % 00000 00000
BGEZALC
POP60 rs = rt # 00000
110000 offset
rt s
POPT70 BGTZALC
111000 offset
rt % 00000 00000
BLTZALC
POP70 1s = rt # 00000
111000 offset
rt s
BEQZALC
POP35 Is <t
011101 offset
rt = 00000 00000
BNEZALC
POP37 s <rt
011111 offset
rt = 00000 00000
6 5 5 16

Format: B{LE,GE,GT,LT, EQ, NE}ZALC

BLEZALC rt, offset microMIPS32 Release 6
BGEZALC rt, offset microMIPS32 Release 6
BGTZALC rt, offset microMIPS32 Release 6
BLTZALC rt, offset microMIPS32 Release 6
BEQZALC rt, offset microMIPS32 Release 6
BNEZALC rt, offset microMIPS32 Release 6

Purpose: Compact Zero-Compare and Branch-and-Link Instructions
BLEZALC: Compact branch-and-link if GPR rt is less than or equal to zero
BGEZALC: Compact branch-and-link if GPR rt is greater than or equal to zero
BGTZALC: Compact branch-and-link if GPR rt is greater than zero
BLTZALC: Compact branch-and-link if GPR rt is less than to zero
BEQZALC: Compact branch-and-link if GPR rt is equal to zero

BNEZALC: Compact branch-and-link if GPR rt is not equal to zero

Description: if condition(GPR[rt]) then procedure call branch
The condition is evaluated. If the condition is true, the branch is taken.

Places the return address link in GPR 31. The return link is the address of the instruction immediately following the
branch, where execution continues after a procedure call.

The return address link is unconditionally updated.

A 17-bit signed offset (the 16-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), to form a PC-relative effective target address.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 147

B{LE,GE,GT,LT,EQ,NE}ZALC Compact Zero-Compare and Branch-and-Link Instructions

148

BLEZALC: the condition is true if and only if GPR rt is less than or equal to zero.
BGEZALC: the condition is true if and only if GPR rt is greater than or equal to zero.
BLTZALC: the condition is true if and only if GPR rt is less than zero.

BGTZALC: the condition is true if and only if GPR rt is greater than zero.
BEQZALC: the condition is true if and only if GPR rt is equal to zero.

BNEZALC: the condition is true if and only if GPR rt is not equal to zero.

Compact branches do not have delay slots. The instruction after a compact branch is only executed if the branch is not
taken.

Restrictions:

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.

Availability and Compatibility:

These instructions are introduced by and required as of Release 6.

Exceptions:

None

Operation:
GPR[31] <« PC+4
target offset <« sign extend(offset || 0!)
BLTZALC: cond <« GPR[rt] < O
BLEZALC: cond « GPR[rt] < 0
BGEZALC: cond « GPR[rt] = 0
BGTZALC: cond <« GPR[rt] > 0
BEQZALC: cond <« GPR[rt] = 0
BNEZALC: cond <« GPR[rt] # 0

if cond then
PC <« (PC+4+ sign extend(target offset))
endif

Programming Notes:

Software that performs incomplete instruction decode may incorrectly decode these new instructions, because of their
very tight encoding. For example, a disassembler might look only at the primary opcode field, instruction bits 31-26,
to decode BLEZL without checking that the “rt” field is zero. Such software violated the pre-Release 6 architecture
specification.

With the 16-bit offset shifted left 2 bits and sign extended, the conditional branch range is + 128 KBytes. Other
instructions such as pre-Release 6 JAL and JALR, or Release 6 JIALC and BALC have larger ranges. In particular,
BALC, with a 26-bit offset shifted by 2 bits, has a 28-bit range, = 128 MBytes. Code sequences using AUIPC, DAHI,
DATI, and JIALC allow still greater PC-relative range.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

B<cond>C

Compact Compare-and-Branch Instructions

31 26 25 21 20 16 15 o
POP75 BLEZC
111101 offset
rt = 00000 00000
POP75 BGEZC rs=r1t
111101 offset
rt # 00000 rs # 00000
POP75 BGEC (BLEC) rs # rt
111101 offset
rt # 00000 rs = 00000
POP65 BGTZC
10101 offset
! rt = 00000 00000
POP65 BLTZCrs=rt
10101 offset
! rt # 00000 rs # 00000
POP65 BLTC (BGTC) rs # 1t
10101 offset
! rt # 00000 rs # 00000
POP60 BGEUC (BLEUC) 1s # rt
10000 offset
! rt # 00000 rs # 00000
POP70 BLTUC (BGTUC) rs # 1t
111000 offset
rt # 00000 rs # 00000
POP35 BEQC rs <rt
011101 offset
! rt # 00000 rs # 00000
POP37 BNEC rs <rt
011111 offset
1 rt # 00000 rs = 00000
° ° 5 16
31 26 25 21 20 .
100000
IS
101000 s offse
IS
° ° 21
Format: Becond>C rs, rt, offset microMIPS32 Release 6

Purpose: Compact Compare-and-Branch Instructions

Format Details:

Equal/Not-Equal register-register compare and branch with 16-bit offset:
rt, offset
rt, offset

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

BEQC rs,
BNEC rs,

microMIPS32 Release 6
microMIPS32 Release 6

149

B<cond>C

150

Signed register-register compare and branch with 16-bit offset:
BLTC rs, rt, offset
BGEC rs, rt, offset

Unsigned register-register compare and branch with 16-bit offset:
BLTUC rs, rt, offset
BGEUC rs, rt, offset

Assembly idioms with reversed operands for signed/unsigned compare-and-branch:
BGTC rt, rs, offset
BLEC rt, rs, offset
BGTUC rt, rs, offset
BLEUC rt, rs, offset

Signed Compare register to Zero and branch with 16-bit offset:
BLTZC rt, offset
BLEZC rt, rs, offset
BGEZC rt, offset
BGTZC rt, rs, offset

Equal/Not-equal Compare register to Zero and branch with 21-bit offset:
BEQZC rt, rs, offset
BNEZC rt, rs, offset
Description: if condition (GPR[rs] and/or GPR[rt]) then compact branch

The condition is evaluated. If the condition is true, the branch is taken.

Compact Compare-and-Branch Instructions

microMIPS32 Release 6
microMIPS32 Release 6

microMIPS32 Release 6
microMIPS32 Release 6

Assembly Idiom
Assembly Idiom
Assembly Idiom
Assembly Idiom

microMIPS32 Release 6
microMIPS32 Release 6
microMIPS32 Release 6
microMIPS32 Release 6

microMIPS32 Release 6
microMIPS32 Release 6

An 18/23-bit signed offset (the 16/21-bit offset field shifted left 2 bits) is added to the address of the instruction fol-

lowing the branch (not the branch itself), to form a PC-relative effective target address.

The offset is 16 bits for most compact branches, including BLTC, BLEC, BGEC, BGTC, BNEQC, BNEC, BLTUC,
BLEUC, BGEUC, BGTC, BLTZC, BLEZC, BGEZC, BGTZC. The offsetis 21 bits for BEQZC and BNEZC.

Compact branches have no delay slot: the instruction after the branch is NOT executed if the branch is taken.

The conditions are as follows:

Equal/Not-equal register-register compare-and-branch with 16-bit offset:
BEQC: Compact branch if GPRs are equal
BNEC: Compact branch if GPRs are not equal

Signed register-register compare and branch with 16-bit offset:
BLTC: Compact branch if GPR rs is less than GPR rt
BGEC: Compact branch if GPR rs is greater than or equal to GPR rt

Unsigned register-register compare and branch with 16-bit offset:
BLTUC: Compact branch if GPR rs is less than GPR rt, unsigned
BGEUC: Compact branch if GPR rs is greater than or equal to GPR rt, unsigned

Assembly Idioms with Operands Reversed:

BLEC: Compact branch if GPR rt is less than or equal to GPR rs (alias for BGEC)

BGTC: Compact branch if GPR rt is greater than GPR rs (alias for BLTC)

BLEUC: Compact branch if GPR rt is less than or equal to GPR rt, unsigned (alias for BGEUC)
BGTUC: Compact branch if GPR rt is greater than GPR rs, unsigned (alias for BLTUC)

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

B<cond>C Compact Compare-and-Branch Instructions

Compare register to zero and branch with 16-bit offset:
BLTZC: Compact branch if GPR rt is less than zero
BLEZC: Compact branch if GPR rt is less than or equal to zero
BGEZC: Compact branch if GPR rt is greater than or equal to zero
BGTZC: Compact branch if GPR rt is greater than zero

Compare register to zero and branch with 21-bit offset:
BEQZC: Compact branch if GPR rs is equal to zero
BNEZC: Compact branch if GPR rs is not equal to zero

Restrictions:

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.

Availability and Compatibility:

These instructions are introduced by and required as of Release 6.

Exceptions:

None

Operation:

target offset <« sign extend(offset || 0!)

/* Register-register compare and branch, 16 bit offset: */
/* Equal / Not-Equal */

BEQC: cond <« GPR[rs] = GPR[rt]

BNEC: cond <« GPR[rs] # GPR[rt]

/* Signed */

BLTC: cond <« GPR[rs] < GPR[rt]

BGEC: cond <« GPR[rs] = GPR[rt]

/* Unsigned: */

BLTUC: cond <« unsigned(GPR[rs]) < unsigned (GPR[rt])
BGEUC: cond <« unsigned(GPR[rs]) > unsigned(GPR[rt])

/* Compare register to zero, small offset: */
BLTZC: cond <« GPR[rt] < O
BLEZC: cond <« GPR[rt] £ 0
BGEZC: cond <« GPR[rt] = 0
BGTZC: cond <« GPR[rt] > 0
/* Compare register to zero, large offset: */
BEQZC: cond <« GPR[rs] = 0
BNEZC: cond <« GPR[rs] # 0

if cond then
PC <« (PC+4+ sign extend(offset))
end 1f

Programming Notes:

Legacy software that performs incomplete instruction decode may incorrectly decode these new instructions, because
of their very tight encoding. For example, a disassembler that looks only at the primary opcode field (instruction bits
31-26) to decode BLEZL without checking that the “rt” field is zero violates the pre-Release 6 architecture specifica-
tion. Complete instruction decode allows reuse of pre-Release 6 BLEZL opcode for Release 6 conditional branches.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 151

BC Branch, Compact
31 26 25 0
BC
100101 offset
6 26
Format: BC offset microMIPS32 Release 6
Purpose: Branch, Compact
Description: PC «- PC+4 + sign_extend(offset << 1)
A 27-bit signed offset (the 26-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), to form a PC-relative effective target address.
Compact branches have no delay slot: the instruction after the branch is NOT executed when the branch is taken.
Restrictions:
Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.
Availability and Compatibility:
This instruction is introduced by and required as of Release 6.
Exceptions:
None
Operation:
target offset <« sign extend(offset || 0!)
PC < (PC+4 + sign_extend(target offset))
152 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

BREAK Breakpoint
31 26 25 0
POOL32A q BREAK32
000000 code 000111
6 20 6
Format: BREAK microMIPS

Purpose: Breakpoint

To cause a Breakpoint exception

Description:

A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handler. The
code field is available for use as software parameters, but is retrieved by the exception handler only by loading the

contents of the memory word containing the instruction.

Restrictions:

None

Operation:

SignalException (Breakpoint)

Exceptions:

Breakpoint

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

153

BITSWAP DBITSWAP

Swaps (reverses) bits in each byte

31 26 25 21 20 16 15 12 11
POOL32A " d 0 BITSWAP POOL32Axf
000000 : 0000 101100 111100
6 5 5 4 6 6
31 26 25 21 20 16 15 12 11
POOL32S " d 0 DBITSWAP POOL32Sxf
010110 0000 101100 111100
6 5 5 4 6 6
Format: BITSWAP DBITSWAP
BITSWAP rd,rt microMIPS32 Release 6
DBITSWAP rd,rt microMIPS64 Release 6
Purpose: Swaps (reverses) bits in each byte
Description: GPR [rd] .byte (1) <« reverse bits_in byte (GPR[rt] .byte(i)), for all
bytes 1

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

Each byte in input GPR rt is moved to the same byte position in output GPR rd, with bits in each byte reversed.

BITSWAP is a 32-bit instruction. BITSWAP operates on all 4 bytes of a 32-bit GPR on a 32-bit CPU. On a 64-bit
CPU, BITSWAP operates on the low 4 bytes, sign extending to 64-bits.

DBITSWAP operates on all § bytes of a 64-bit GPR on a 64-bit CPU.

Restrictions:
BITSWAP: None.

Availability and Compatibility:
The BITSWAP instruction is introduced by and required as of Release 6.
The DBITSWAP instruction is introduced by and required as of Release 6.

Operation:

BITSWAP:
for i in 0 to 3 do /* for all bytes in 32-bit GPR width */
tmp.byte (1) <« reverse bits in byte(GPR[rt] .byte(i))
endfor
GPR[rd] <« sign extend.32(tmp)

DBITSWAP:
for i in 0 to 7 do /* for all bytes in 64-bit GPR width */
tmp.byte (1) <« reverse bits in byte(GPR[rt] .byte(i))
endfor
GPR[rd] <« tmp

where
function reverse bits in byte (inbyte)
outbyte, « inbyte,
outbyte, < inbyte;
outbyteg « inbyte,
outbyte, <« inbyte,
outbyte; « inbyte,

154

BITSWAP DBITSWAP Swaps (reverses) bits in each byte

outbyte, « inbyteg
outbyte; <« inbyte,
outbyte, « inbyte,
return outbyte
end function
Exceptions:
BITSWAP: None

DBITSWAP: Reserved Instruction.

Programming Notes:

The Release 6 BITSWAP instruction corresponds to the DSP Module BITREV instruction, except that the latter bit-
reverses the least-significant 16-bit halfword of the input register, zero extending the rest, while BITSWAP operates
on 32-bits.

155 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

BOVC BNVC Branch on Overflow, Compact; Branch on No Overflow, Compact

156

31 26 25 21 20 16 15 0
POP35 BOVC rs >=rt
011101 offset
1t s
POP37 BNVC rs>=rt
011111 offset
rt s
6 5 5 16

Format: BovC BNVC
BOVC rt,rs, offset microMIPS32 Release 6
BNVC rt,rs, offset microMIPS32 Release 6
Purpose: Branch on Overflow, Compact; Branch on No Overflow, Compact
BOVC: Detect overflow for add (signed 32 bits) and branch if overflow.

BNVC: Detect overflow for add (signed 32 bits) and branch if no overflow.

Description: branch if/if-not NotWordvValue (GPR[rs]+GPR[rt])

* BOVC performs a signed 32-bit addition of rs and rt. BOVC discards the sum, but detects signed 32-bit inte-
ger overflow of the sum (and the inputs, in MIPS64), and branches if such overflow is detected.

* BNVC performs a signed 32-bit addition of rs and rt. BNVC discards the sum, but detects signed 32-bit inte-
ger overflow of the sum (and the inputs, in MIPS64), and branches if such overflow is not detected.

A 17-bit signed offset (the 16-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), to form a PC-relative effective target address.

On 64-bit processors, BOVC and BNVC detect signed 32-bit overflow on the input registers as well as the output.
This checking is performed even if 64-bit operations are not enabled.

The special case with rt=0 (for example, GPR[0]) is allowed. On MIPS64, this checks that the input value of rs is a
well-formed signed 32-bit integer: BOVC rs,r0,offset branches if rs is not a 32-bit integer, and BNVC rs, r0 offset
branches if rs is a 32-bit integer.

The special case of rs=0 and rt=0 is allowed. BOVC never branches, while BNVC always branches.

Compact branches do not have delay slots. The instruction after the branch is NOT executed if the branch is taken.

Restrictions:

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.

Availability and Compatibility:

These instructions are introduced by and required as of Release 6.

Operation:
input overflow <« NotWordValue (GPR[rs]) or NotWordValue (GPR[rt])
templ <« sign extend.32(GPR[rsl;; o)
temp2 <« sign extend.32(GPR[rtl;; o)

tempd <« templ + temp2 // wider than 32-bit precision
sum_overflow <« (tempd;, # tempds,)

BOVC: cond <« sum overflow or input overflow
BNVC: cond <« not(sum overflow or input overflow)

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

if cond then
PC < (PC+4 + sign_extend(offset << 1))
endif

Exceptions:

None

MIPS® Architecture for Programmers Volume [I-B: microMIPS64™ Instruction Set, Revision 6.05 157

CACHE Perform Cache Operation

158

31 26 25 21 20 16 15 12 1" 9 8 0
POOL32B o base CACHE 0 offset
001000 P 0110 000
6 5 5 4 3 9
Format: CACHE op, offset (base) microMIPS

Purpose: Perform Cache Operation

To perform the cache operation specified by op.

Description:

The 9-bit offset is sign-extended and added to the contents of the base register to form an effective address. The effec-
tive address is used in one of the following ways based on the operation to be performed and the type of cache as
described in the following table.

Table 5.17 Usage of Effective Address

Operation Type of
Requires an Cache Usage of Effective Address

Address Virtual The effective address is used to address the cache. An address translation may or
may not be performed on the effective address (with the possibility that a TLB
Refill or TLB Invalid exception might occur)

Address Physical The effective address is translated by the MMU to a physical address. The physical
address is then used to address the cache

Index N/A The effective address is translated by the MMU to a physical address. It is imple-

mentation dependent whether the effective address or the translated physical
address is used to index the cache. As such, an unmapped address (such as within
kseg0) should always be used for cache operations that require an index. See the
Programming Notes section below.

Assuming that the total cache size in bytes is CS, the associativity is A, and the
number of bytes per tag is BPT, the following calculations give the fields of the
address which specify the way and the index:

OffsetBit < Log2 (BPT)

IndexBit ¢« Log2(CS / A)

WayBit ¢« IndexBit + Ceiling(Log2 (A))
Way ¢ Addryaypit-1..IndexBit

' Index < Addripgeypit-1..offsetBit
For a direct-mapped cache, the Way calculation is ignored and the Index value fully

specifies the cache tag. This is shown symbolically in the figure below.

Figure 5.3 Usage of Address Fields to Select Index and Way
WayBit OffsetBit

[[[:

Unused Way Index Byte Index

IndexBit

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For index

MIPS® Architecture for Programmers Volume II-B: microMIPS64™ |nstruction Set, Revision 6.05

CACHE Perform Cache Operation

operations (where the address is used to index the cache but need not match the cache tag), software must use
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions nor TLB
Refill exceptions with a cause code of TLBS. This instruction never causes Execute-Inhibit nor Read-Inhibit excep-
tions.

The effective address may be an arbitrarily-aligned by address. The CACHE instruction never causes an Address
Error Exception due to an non-aligned address.

As aresult, a Cache Error exception may occur because of some operations performed by this instruction. For exam-
ple, if a Writeback operation detects a cache or bus error during the processing of the operation, that error is reported
via a Cache Error exception. Also, a Bus Error Exception may occur if a bus operation invoked by this instruction is
terminated in an error. However, cache error exceptions must not be triggered by an Index Load Tag or Index Store
tag operation, as these operations are used for initialization and diagnostic purposes.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It is implementation dependent whether a data watch is triggered by a cache instruction whose address matches the
Watch register address match conditions.

The CACHE instruction and the memory transactions which are sourced by the CACHE instruction, such as cache
refill or cache writeback, obey the ordering and completion rules of the SYNC instruction.

Bits [22:21] of the instruction specify the cache on which to perform the operation, as follows:

Table 5.18 Encoding of Bits[17:16] of CACHE Instruction

Code Name Cache
0b00 I Primary Instruction

0b01 D Primary Data or Unified Primary

0b10 T Tertiary

Obl11 S Secondary

Bits [25:23] of the instruction specify the operation to perform. To provide software with a consistent base of cache
operations, certain encodings must be supported on all processors. The remaining encodings are recommended

When implementing multiple level of caches and where the hardware maintains the smaller cache as a proper subset
of a larger cache (every address which is resident in the smaller cache is also resident in the larger cache; also known
as the inclusion property). It is recommended that the CACHE instructions which operate on the larger, outer-level
cache; must first operate on the smaller, inner-level cache. For example, a Hit Writeback Invalidate operation tar-
geting the Secondary cache, must first operate on the primary data cache first. If the CACHE instruction implementa-
tion does not follow this policy then any software which flushes the caches must mimic this behavior. That is, the
software sequences must first operate on the inner cache then operate on the outer cache. The software must place a
SYNC instruction after the CACHE instruction whenever there are possible writebacks from the inner cache to
ensure that the writeback data is resident in the outer cache before operating on the outer cache. If neither the CACHE
instruction implementation nor the software cache flush sequence follow this policy, then the inclusion property of
the caches can be broken, which might be a condition that the cache management hardware cannot properly deal with.

When implementing multiple level of caches without the inclusion property, the use of a SYNC instruction after the
CACHE instruction is still needed whenever writeback data has to be resident in the next level of memory hierarchy.

For multiprocessor implementations that maintain coherent caches, some of the Hit type of CACHE instruction oper-
ations may optionally affect all coherent caches within the implementation. If the effective address uses a coherent

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 159

CACHE Perform Cache Operation

Cache Coherency Attribute (CCA), then the operation is globalized, meaning it is broadcast to all of the coherent
caches within the system. If the effective address does not use one of the coherent CCAs, there is no broadcast of the
operation. If multiple levels of caches are to be affected by one CACHE instruction, all of the affected cache levels
must be processed in the same manner - either all affected cache levels use the globalized behavior or all affected
cache levels use the non-globalized behavior.

Table 5.19 Encoding of Bits [20:18] of the CACHE Instruction

Code

Effective
Address
Operand Compliance
Caches Name Type Operation Implemented

0b000

I Index Invalidate Index Set the state of the cache block at the specified Required
index to invalid.

This required encoding may be used by software
to invalidate the entire instruction cache by step-
ping through all valid indices.

D Index Writeback Index For a write-back cache: If the state of the cache Required
Invalidate / Index block at the specified index is valid and dirty,

Invalidate write the block back to the memory address
specified by the cache tag. After that operation
is completed, set the state of the cache block to
invalid. If the block is valid but not dirty, set the
state of the block to invalid.

S, T Index Writeback Index
Invalidate / Index
Invalidate

Required if S, T cache
is implemented

For a write-through cache: Set the state of the
cache block at the specified index to invalid.
This required encoding may be used by software
to invalidate the entire data cache by stepping
through all valid indices. The Index Store Tag
must be used to initialize the cache at power up.

0b001

All Index Load Tag Index Read the tag for the cache block at the specified Recommended
index into the TagLo and TagHi Coprocessor 0
registers. If the DatalLo and DataHi registers
are implemented, also read the data correspond-
ing to the byte index into the Datal.o and
DataHi registers. This operation must not cause
a Cache Error Exception.

The granularity and alignment of the data read
into the DatalLo and DataHi registers is imple-
mentation-dependent, but is typically the result
of an aligned access to the cache, ignoring the
appropriate low-order bits of the byte index.

160

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

CACHE Perform Cache Operation
Table 5.19 Encoding of Bits [20:18] of the CACHE Instruction (Continued)
Effective
Address
Operand Compliance
Code Caches Name Type Operation Implemented
0b010 All Index Store Tag Index Write the tag for the cache block at the specified Required
index from the TagLo and TagHi Coprocessor 0
registers. This operation must not cause a Cache
Error Exception.
This required encoding may be used by software
to initialize the entire instruction or data caches
by stepping through all valid indices. Doing so
requires that the TagLo and TagHi registers
associated with the cache be initialized first.
0b011 All Implementation Unspecified | Available for implementation-dependent opera- Optional
Dependent tion.
0b100 I,D Hit Invalidate Address If the cache block contains the specified Required (Instruction
address, set the state of the cache block to Cache Encoding
invalid. Only), Recom-
This required encoding may be used by software | mended otherwise
to invalidate a range of addresses from the
S, T Hit Invalidate Address | mstruction cache by stepping through the Optional, if
address range by the line size of the cache. Hit_Invalidate D is
. . . . implemented, the S
In multiprocessor implementations with coher- .
. . and T variants are rec-
ent caches, the operation may optionally be
s ommended.
broadcast to all coherent caches within the sys-
tem.
0b101 I Fill Address Fill the cache from the specified address. Recommended
D Hit Writeback Inval- Address For a write-back cache: If the cache block con- Required
idate / Hit Invalidate tains the specified address and it is valid and
dirty, write the contents back to memory. After
S, T Hit Writeback Inval- Address that operation 18 comp leted, set the §tate ,Of the Required if S, T cache
. . . cache block to invalid. If the block is valid but ..
idate / Hit Invalidate is implemented

not dirty, set the state of the block to invalid.
For a write-through cache: If the cache block
contains the specified address, set the state of
the cache block to invalid.

This required encoding may be used by software
to invalidate a range of addresses from the data
cache by stepping through the address range by
the line size of the cache.

In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

161

CACHE

Perform Cache Operation

Table 5.19 Encoding of Bits [20:18] of the CACHE Instruction (Continued)

Code

Caches

Name

Effective
Address
Operand

Type

Operation

Compliance
Implemented

0b110

Hit Writeback

Address

S, T

Hit Writeback

Address

If the cache block contains the specified address
and it is valid and dirty, write the contents back
to memory. After the operation is completed,
leave the state of the line valid, but clear the
dirty state. For a write-through cache, this oper-
ation may be treated as a nop.

In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.

Recommended

Optional, if
Hit Writeback D is
implemented, the S
and T variants are rec-
ommended.

Obl111

LD

>

Fetch and Lock

Address

If the cache does not contain the specified
address, fill it from memory, performing a write-
back if required. Set the state to valid and
locked.

If the cache already contains the specified
address, set the state to locked. In set-associative
or fully-associative caches, the way selected on
a fill from memory is implementation depen-
dent.

The lock state may be cleared by executing an
Index Invalidate, Index Writeback Invalidate,
Hit Invalidate, or Hit Writeback Invalidate oper-
ation to the locked line, or via an Index Store
Tag operation to the line that clears the lock bit.
Clearing the lock state via Index Store Tag is
dependent on the implementation-dependent
cache tag and cache line organization, and that
Index and Index Writeback Invalidate opera-
tions are dependent on cache line organization.
Only Hit and Hit Writeback Invalidate opera-
tions are generally portable across implementa-
tions.

It is implementation dependent whether a locked
line is displaced as the result of an external
invalidate or intervention that hits on the locked
line. Software must not depend on the locked
line remaining in the cache if an external invali-
date or intervention would invalidate the line if
it were not locked.

It is implementation dependent whether a Fetch
and Lock operation affects more than one line.
For example, more than one line around the ref-
erenced address may be fetched and locked. It is
recommended that only the single line contain-
ing the referenced address be affected.

Recommended

162

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

CACHE Perform Cache Operation

Restrictions:

The operation of this instruction is UNDEFINED for any operation/cache combination that is not implemented. In
Release 6, the instruction in this case should perform no operation.

The operation of this instruction is UNDEFINED if the operation requires an address, and that address is uncache-
able. In Release 6, the instruction in this case should perform no operation.

The operation of the instruction is UNPREDICTABLE if the cache line that contains the CACHE instruction is the
target of an invalidate or a writeback invalidate.

If this instruction is used to lock all ways of a cache at a specific cache index, the behavior of that cache to subsequent
cache misses to that cache index is UNDEFINED.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Any use of this instruction that can cause cacheline writebacks should be followed by a subsequent SYNC instruction
to avoid hazards where the writeback data is not yet visible at the next level of the memory hierarchy.

This instruction does not produce an exception for a misaligned memory address, since it has no memory access size.

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

vAddr ¢ GPR[base] + sign_extend(offset)
(pAddr, uncached) ¢ AddressTranslation(vAddr, DataReadReference)
CacheOp (op, vAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception
Coprocessor Unusable Exception
Address Error Exception

Cache Error Exception

Bus Error Exception

Programming Notes:

Release 6 architecture implements a 9-bit offset, whereas all release levels lower than Release 6 implement a 16-bit
offset.

For cache operations that require an index, it is implementation dependent whether the effective address or the trans-
lated physical address is used as the cache index. Therefore, the index value should always be converted to an
unmapped address (such as an kseg0 address - by ORing the index with 0x80000000 before being used by the cache
instruction). For example, the following code sequence performs a data cache Index Store Tag operation using the

index passed in GPR a0:
1i al, 0x80000000 /* Base of kseg0 segment */
or a0, a0, al /* Convert index to kseg0 address */
cache DCIndexStTag, 0(al) /* Perform the index store tag operation */

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 163

CACHEE Perform Cache Operation EVA

164

31 26 25 21 20 16 15 12 1 9 8 0
POOL32C ST-EVA | CACHEE
011000 P base 1010 011 .
6 5 5 4 3 9
Format: CACHEE op, offset (base) microMIPS

Purpose: Perform Cache Operation EVA

To perform the cache operation specified by op using a user mode virtual address while in kernel mode.

Description:

The 9-bit offset is sign-extended and added to the contents of the base register to form an effective address. The effec-
tive address is used in one of the following ways based on the operation to be performed and the type of cache as
described in the following table.

Table 5.20 Usage of Effective Address

Operation Type of
Requires an Cache Usage of Effective Address

Address Virtual The effective address is used to address the cache. An address translation may or
may not be performed on the effective address (with the possibility that a TLB
Refill or TLB Invalid exception might occur)

Address Physical The effective address is translated by the MMU to a physical address. The physical
address is then used to address the cache

Index N/A The effective address is translated by the MMU to a physical address. It is imple-

mentation dependent whether the effective address or the translated physical
address is used to index the cache. As such, a kseg0 address should always be used
for cache operations that require an index. See the Programming Notes section
below.

Assuming that the total cache size in bytes is CS, the associativity is A, and the
number of bytes per tag is BPT, the following calculations give the fields of the
address which specify the way and the index:

OffsetBit < Log2 (BPT)

IndexBit ¢« Log2(CS / A)

WayBit ¢« IndexBit + Ceiling(Log2 (A))
Way ¢ Addryaypit-1..IndexBit

' Index < Addripgeypit-1..offsetBit
For a direct-mapped cache, the Way calculation is ignored and the Index value fully

specifies the cache tag. This is shown symbolically in the figure below.

Figure 5.4 Usage of Address Fields to Select Index and Way
WayBit OffsetBit

[[[:

Unused Way Index Byte Index

IndexBit

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For index

MIPS® Architecture for Programmers Volume II-B: microMIPS64™ |nstruction Set, Revision 6.05

CACHEE Perform Cache Operation EVA

operations (where the address is used to index the cache but need not match the cache tag) software should use
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions nor TLB
Refill exceptions with a cause code of TLBS. This instruction never causes Execute-Inhibit nor Read-Inhibit excep-
tions.

The effective address may be an arbitrarily-aligned by address. The CACHEE instruction never causes an Address
Error Exception due to an non-aligned address.

A Cache Error exception may occur as a by-product of some operations performed by this instruction. For example, if
a Writeback operation detects a cache or bus error during the processing of the operation, that error is reported via a
Cache Error exception. Similarly, a Bus Error Exception may occur if a bus operation invoked by this instruction is
terminated in an error. However, cache error exceptions must not be triggered by an Index Load Tag or Index Store
tag operation, as these operations are used for initialization and diagnostic purposes.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It is implementation dependent whether a data watch is triggered by a cache instruction whose address matches the
Watch register address match conditions.

The CACHEE instruction and the memory transactions which are sourced by the CACHEE instruction, such as cache
refill or cache writeback, obey the ordering and completion rules of the SYNC instruction.

Bits [22:21] of the instruction specify the cache on which to perform the operation, as follows:

Table 5.21 Encoding of Bits[22:21] of CACHEE Instruction

Code Name Cache
0b00 I Primary Instruction

0b01 D Primary Data or Unified Primary

0b10 T Tertiary

Obl11 S Secondary

Bits [25:23] of the instruction specify the operation to perform. To provide software with a consistent base of cache
operations, certain encodings must be supported on all processors. The remaining encodings are recommended

When implementing multiple level of caches and where the hardware maintains the smaller cache as a proper subset
of a larger cache, it is recommended that the CACHEE instructions must first operate on the smaller, inner-level
cache. For example, a Hit Writeback Invalidate operation targeting the Secondary cache, must first operate on the
primary data cache first. If the CACHEE instruction implementation does not follow this policy then any software
which flushes the caches must mimic this behavior. That is, the software sequences must first operate on the inner
cache then operate on the outer cache. The software must place a SYNC instruction after the CACHEE instruction
whenever there are possible writebacks from the inner cache to ensure that the writeback data is resident in the outer
cache before operating on the outer cache. If neither the CACHEE instruction implementation nor the software cache
flush sequence follow this policy, then the inclusion property of the caches can be broken, which might be a condition
that the cache management hardware cannot properly deal with.

When implementing multiple level of caches without the inclusion property, you must use SYNC instruction after the
CACHEE instruction whenever writeback data has to be resident in the next level of memory hierarchy.

For multiprocessor implementations that maintain coherent caches, some of the Hit type of CACHEE instruction
operations may optionally affect all coherent caches within the implementation. If the effective address uses a coher-
ent Cache Coherency Attribute (CCA), then the operation is globalized, meaning it is broadcast to all of the coherent

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 165

CACHEE

Perform Cache Operation EVA

caches within the system. If the effective address does not use one of the coherent CCAs, there is no broadcast of the
operation. If multiple levels of caches are to be affected by one CACHEE instruction, all of the affected cache levels
must be processed in the same manner — either all affected cache levels use the globalized behavior or all affected
cache levels use the non-globalized behavior.

The CACHEE instruction functions the same as the CACHE instruction, except that address translation is performed
using the user mode virtual address space mapping in the TLB when accessing an address within a memory segment
configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also acces-
sible . Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5gy field being set to 1.

Table 5.22 Encoding of Bits [20:18] of the CACHEE Instruction

Code

Caches

Effective
Address
Operand Compliance
Name Type Operation Implemented

0b000

I

Index Invalidate Index Set the state of the cache block at the specified Required
index to invalid.

This required encoding may be used by software
to invalidate the entire instruction cache by step-
ping through all valid indices.

Index Writeback Index For a write-back cache: If the state of the cache Required

Invalidate / Index block at the specified index is valid and dirty,
Invalidate write the block back to the memory address

specified by the cache tag. After that operation

S, T

is completed, set the state of the cache block to
invalid. If the block is valid but not dirty, set the
state of the block to invalid.

Index Writeback Index
Invalidate / Index
Invalidate

Required if S, T cache
is implemented

For a write-through cache: Set the state of the
cache block at the specified index to invalid.
This required encoding may be used by software
to invalidate the entire data cache by stepping
through all valid indices. Note that Index Store
Tag should be used to initialize the cache at
power up.

0b001

All

Index Load Tag Index Read the tag for the cache block at the specified Recommended
index into the TagLo and TagHi Coprocessor 0
registers. If the DataLo and DataHi registers
are implemented, also read the data correspond-
ing to the byte index into the DatalLo and
DataHi registers. This operation must not cause
a Cache Error Exception.

The granularity and alignment of the data read
into the DatalLo and DataHi registers is imple-
mentation-dependent, but is typically the result
of an aligned access to the cache, ignoring the
appropriate low-order bits of the byte index.

166

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

CACHEE

Perform Cache Operation EVA

Table 5.22 Encoding of Bits [20:18] of the CACHEE Instruction (Continued)

Effective
Address
Operand Compliance
Code Caches Name Type Operation Implemented
0b010 All Index Store Tag Index Write the tag for the cache block at the specified Required
index from the TagLo and TagHi Coprocessor 0
registers. This operation must not cause a Cache
Error Exception.
This required encoding may be used by software
to initialize the entire instruction or data caches
by stepping through all valid indices. Doing so
requires that the TagLo and TagHi registers
associated with the cache be initialized first.
0b011 All Implementation Unspecified | Available for implementation-dependent opera- Optional
Dependent tion.
0b100 I,D Hit Invalidate Address If the cache block contains the specified Required (Instruction
address, set the state of the cache block to Cache Encoding
invalid. Only), Recom-
This required encoding may be used by software | mended otherwise
to invalidate a range of addresses from the
S, T Hit Invalidate Address | mstruction cache by stepping through the Optional, if
address range by the line size of the cache. Hit_Invalidate D is
. . . . implemented, the S
In multiprocessor implementations with coher- .
. . and T variants are rec-
ent caches, the operation may optionally be
s ommended.
broadcast to all coherent caches within the sys-
tem.
0b101 I Fill Address Fill the cache from the specified address. Recommended
D Hit Writeback Inval- Address For a write-back cache: If the cache block con- Required
idate / Hit Invalidate tains the specified address and it is valid and
dirty, write the contents back to memory. After
S, T Hit Writeback Inval- Address that operation 18 comp leted, set the §tate ,Of the Required if S, T cache
. . . cache block to invalid. If the block is valid but ..
idate / Hit Invalidate is implemented

not dirty, set the state of the block to invalid.

For a write-through cache: If the cache block
contains the specified address, set the state of
the cache block to invalid.

This required encoding may be used by software
to invalidate a range of addresses from the data
cache by stepping through the address range by
the line size of the cache.

In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

167

CACHEE

Perform Cache Operation EVA

Table 5.22 Encoding of Bits [20:18] of the CACHEE Instruction (Continued)

Code

Caches

Name

Effective
Address
Operand

Type

Operation

Compliance
Implemented

0b110

Hit Writeback

Address

S, T

Hit Writeback

Address

If the cache block contains the specified address
and it is valid and dirty, write the contents back
to memory. After the operation is completed,
leave the state of the line valid, but clear the
dirty state. For a write-through cache, this oper-
ation may be treated as a nop.

In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.

Recommended

Optional, if
Hit Writeback D is
implemented, the S
and T variants are rec-
ommended.

Obl111

LD

>

Fetch and Lock

Address

If the cache does not contain the specified
address, fill it from memory, performing a write-
back if required. Set the state to valid and
locked.

If the cache already contains the specified
address, set the state to locked. In set-associative
or fully-associative caches, the way selected on
a fill from memory is implementation depen-
dent.

The lock state may be cleared by executing an
Index Invalidate, Index Writeback Invalidate,
Hit Invalidate, or Hit Writeback Invalidate oper-
ation to the locked line, or via an Index Store
Tag operation to the line that clears the lock bit.
Clearing the lock state via Index Store Tag is
dependent on the implementation-dependent
cache tag and cache line organization, and that
Index and Index Writeback Invalidate opera-
tions are dependent on cache line organization.
Only Hit and Hit Writeback Invalidate opera-
tions are generally portable across implementa-
tions.

It is implementation dependent whether a locked
line is displaced as the result of an external
invalidate or intervention that hits on the locked
line. Software must not depend on the locked
line remaining in the cache if an external invali-
date or intervention would invalidate the line if
it were not locked.

It is implementation dependent whether a Fetch
and Lock operation affects more than one line.
For example, more than one line around the ref-
erenced address may be fetched and locked. It is
recommended that only the single line contain-
ing the referenced address be affected.

Recommended

168

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

CACHEE Perform Cache Operation EVA

Restrictions:

The operation of this instruction is UNDEFINED for any operation/cache combination that is not implemented. In
Release 6, the instruction in this case should perform no operation.

The operation of this instruction is UNDEFINED if the operation requires an address, and that address is uncache-
able. In Release 6, the instruction in this case should perform no operation.

The operation of the instruction is UNPREDICTABLE if the cache line that contains the CACHEE instruction is the
target of an invalidate or a writeback invalidate.

If this instruction is used to lock all ways of a cache at a specific cache index, the behavior of that cache to subsequent
cache misses to that cache index is UNDEFINED.

Any use of this instruction that can cause cacheline writebacks should be followed by a subsequent SYNC instruction
to avoid hazards where the writeback data is not yet visible at the next level of the memory hierarchy.

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

This instruction does not produce an exception for a misaligned memory address, since it has no memory access size.

Operation:

vAddr ¢ GPR[base] + sign extend(offset)
(pAddr, uncached) ¢ AddressTranslation(vAddr, DataReadReference)
CacheOp (op, vAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception

Coprocessor Unusable Exception

Reserved Instruction

Address Error Exception

Cache Error Exception

Bus Error Exception

Programming Notes:

For cache operations that require an index, it is implementation dependent whether the effective address or the trans-
lated physical address is used as the cache index. Therefore, the index value should always be converted to a kseg0
address by ORing the index with 0x80000000 before being used by the cache instruction. For example, the following
code sequence performs a data cache Index Store Tag operation using the index passed in GPR a0:

1i al, 0x80000000 /* Base of kseg0 segment */
or a0, a0, al /* Convert index to kseg0 address */
cache DCIndexStTag, 0(al) /* Perform the index store tag operation */

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 169

CEIL.L.fmt Fixed Point Ceiling Convert to Long Fixed Point

31 26 25 22 21 20 16 15 14 13 6 5 0
POOL32F ft f 0 | fmt CEIL.L POOL32FXf
010101 s 01001100 111011
6 5 5 1 1 3 6

Format: CEIL.L.fmt
CEIL.L.S ft, fs MIPS64, microMIPS
CEIL.L.D ft, fs MIPS64, microMIPS

Purpose: Fixed Point Ceiling Convert to Long Fixed Point

To convert an FP value to 64-bit fixed point, rounding up.

Description: FPR[ft] ¢« convert and round (FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounding toward +oo
(rounding mode 2). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range 263 t0 263-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is
taken immediately. Otherwise, a default result is written to ft. On cores with FCSRyan2008=0, the default result is

293_1. On cores with F CSRyaN2008=1, the default result is:
e 0 when the input value is NaN
« 291 when the input value is +00 or rounds to a number larger than 2631

« 2551 when the input value is —00 or rounds to a number smaller than 2631

Restrictions:

The fields fs and ft must specify valid FPRs: fs for type fmt and fd for long fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (ft, L, ConvertFmt (ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

170 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

CEIL.W.fmt Floating Point Ceiling Convert to Word Fixed Point

31 26 25 22 21 20 16 15 14 13 6 5 0
POOL32F ft f 0 fm CEIL.W POOL32FXf
010101 s t 01101100 111011

6 5 5 1 1 3 6

Format: CEIL.W.fmt
CEIL.W.S ft, fs microMIPS
CEIL.W.D ft, fs microMIPS
Purpose: Floating Point Ceiling Convert to Word Fixed Point

To convert an FP value to 32-bit fixed point, rounding up

Description: FPR[ft] < convert and round (FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format and rounding toward -+
(rounding mode 2). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range 230 231-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is
taken immediately. Otherwise, a default result is written to ft. On cores with FCSRyan2008=0, the default result is

2311, On cores with FCSRy ano00s=1, the default result is:

* 0 when the input value is NaN

« 231 when the input value is +00 or rounds to a number larger than 231

« 2311 when the input value is —00 or rounds to a number smaller than 23

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for word fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR (ft, W, ConvertFmt (ValueFPR(fsg, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 171

CFC1 Move Control Word From Floating Point
31 26 25 21 20 16 15 14 13 6 5 0
POOL32F it " 00 CFC1 POOL32FXf
010101 s 01000000 111011
6 5 5 2 P 6
Format: crc1i rt, fs microMIPS

172

Purpose: Move Control Word From Floating Point

To copy a word from an FPU control register to a GPR.

Description: GPR[rt] <« FP_Control [fs]
Copy the 32-bit word from FP (coprocessor 1) control register fs into GPR rt, sign-extending it to 64 bits.

The definition of this instruction has been extended in Release 5 to support user mode read and write of Statusgg
under the control of Config5yp. This optional feature is meant to facilitate transition from FR=0 to FR=1 float-

ing-point register modes in order to obsolete FR=0 mode in a future architecture release. User code may set and clear
Statusgy without kernel intervention, providing kernel explicitly provides permission.

This UFR facility is not supported in Release 6 because Release 6 only allows FR=1 mode. Accessing the UFR and
UNER registers causes a Reserved Instruction exception in Release 6 because FIRpp is always 0.

The definition of this instruction has been extended in Release 6 to allow user code to read and modify the
Config5pgy bit. Such modification is allowed when this bit is present (as indicated by FIR;zrp) and user mode
modification of the bit is enabled by the kernel (as indicated by Config5zg). Setting Config5gpzto 1 causes all
floating point instructions which are not compatible with FR=1 mode to take an Reserved Instruction exception. This
makes it possible to run pre-Release 6 FR=0 floating point code on a Release 6 core which only supports FR=1 mode,
provided the kernel has been set up to trap and emulate FR=0 behavior for these instructions. These instructions
include floating-point arithmetic instructions that read/write single-precision registers, LWC1, SWC1, MTC1, and
MEFCI instructions.

The FRE facility uses COP1 register aliases FRE and NFRE to access Config5pgpg.

Restrictions:

There are a few control registers defined for the floating point unit. Prior to Release 6, the result is UNPREDICT-
ABLE if fs specifies a register that does not exist. In Release 6 and later, a Reserved Instruction exception occurs if fs
specifies a register that does not exist.

The result is UNPREDICTABLE if fs specifies the UNFR or NFRE write-only control. Release 6 and later imple-
mentations are required to produce a Reserved Instruction exception; software must assume it is UNPREDICT-
ABLE.

Operation:

if fs = 0 then
temp ¢ FIR
elseif fs = 1 then /* read UFR (CP1l Register 1) */

if FIRypgp then
if not Config5ypg then SignalException (ReservedInstruction) endif
temp < Statusgy

else
if Configpy > 2 SignalException(ReservedInstruction) /* Release 6 traps */
endif
temp ¢ UNPREDICTABLE

endif

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

CFC1 Move Control Word From Floating Point

elseif fs = 4 then /* read fs=4 UNFR not supported for reading - UFR suffices */
if Config,g>2 SignalException(ReservedInstruction) /* Release 6 traps */

endif
temp €< UNPREDICTABLE
elseif fs=5 then /* user read of FRE, if permitted */
if Configpg<2 then temp ¢ UNPREDICTABLE
else

if not Config5ypg then SignalException(ReservedInstruction)

temp « 0°! || Config5pgg

endif
elseif fs = 25 then /* FCCR */

temp < 02* || FCSRy; .5 || FCSR,,
elseif fs = 26 then /* FEXR */

temp &« 0'* || FCSRy; 1 || 0° || FCSRg , || 07
elseif fs = 28 then /* FENR */

temp « 0?° || FCSRy; , || 0% || FCSRy || FCSRy,
elseif fs = 31 then /* FCSR */

temp ¢ FCSR
else

if Config2,; = 2 SignalException(ReservedInstruction)

/*Release 6 traps; includes NFRE*/

endif

temp ¢ UNPREDICTABLE
endif

if Config2,; < 2 then
GPR[rt] ¢ sign_extend(temp)

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Historical Information:

For the MIPS 1, II and III architectures, the contents of GPR rt are UNPREDICTABLE for the instruction immedi-

ately following CFC1.

MIPS V and MIPS32 introduced the three control registers that access portions of FCSR. These registers were not

available in MIPS I, II, III, or IV.

MIPS32 Release 5 introduced the UFR and UNFR register aliases that allow user level access to Statusgg. Release 6

removes them.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

173

CFC2 Move Control Word From Coprocessor 2
31 26 25 21 20 16 15
POOL32A it fonol CFC2 POOL32AXf
000000 P 1100110100 111100
6 5 5 10 6
Format: crc2 rt, Impl microMIPS

The syntax shown above is an example using CFC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Control Word From Coprocessor 2

To copy a word from a Coprocessor 2 control register to a GPR

Description: GPR[rt] < CP2CCR[Impl]

Copy the 32-bit word from the Coprocessor 2 control register denoted by the Impl field, sign-extending it to 64 bits.
The interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the

architecture.

Restrictions:

The result is UNPREDICTABLE if Impl specifies a register that does not exist.

Operation:

temp ¢ CP2CCR [Impl]
GPR[rt] ¢ sign extend(temp)

Exceptions:

Coprocessor Unusable, Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

174

CLASS.fmt Scalar Floating-Point Class Mask

175

31 26 25 21 20 16 15 11 10 6 5 0
POOL32F CLASS
010101 fs fd 00000 fmt 001100000
6 5 5 5 2 9

Format: cCLASS.fmt

CLASS fd, fs, fmt microMIPS32 Release 6
CLASS.S fd4,fs microMIPS32 Release 6
CLASS.D fd4,fs microMIPS32 Release 6

Purpose: Scalar Floating-Point Class Mask

Scalar floating-point class shown as a bit mask for Zero, Negative, Infinite, Subnormal, Quiet NaN, or Signaling
NaN.

Description: FPR[fd] ¢ class (FPR[fs])

Stores in fd a bit mask reflecting the floating-point class of the floating point scalar value fs.

The mask has 10 bits as follows. Bits 0 and 1 indicate NaN values: signaling NaN (bit 0) and quiet NaN (bit 1). Bits
2, 3, 4, 5 classify negative values: infinity (bit 2), normal (bit 3), subnormal (bit 4), and zero (bit 5). Bits 6, 7, 8, 9
classify positive values: infinity (bit 6), normal (bit 7), subnormal (bit 8), and zero (bit 9).

This instruction corresponds to the class operation of the IEEE Standard for Floating-Point Arithmetic 754™.2008.
This scalar FPU instruction also corresponds to the vector FCLASS.df instruction of MSA.

The input values and generated bit masks are not affected by the flush-subnormal-to-zero mode FCSR.FS.

The input operand is a scalar value in floating-point data format fmt. Bits beyond the width of fmt are ignored. The
result is a 10-bit bitmask as described above, zero extended to fmt-width bits. Coprocessor register bits beyond fmt-
width bits are UNPREDICTABLE (e.g., for CLASS.S bits 32-63 are UNPREDICTABLE on a 64-bit FPU, while bits
32-128 bits are UNPREDICTABLE if the processor supports MSA).

Restrictions:

No data-dependent exceptions are possible.

Availability and Compatibility:
This instruction is introduced by and required as of Release 6.

CLASS.fmt is defined only for formats S and D. Other formats must produce a Reserved Instruction exception
(unless used for a different instruction).

Operation:

if not IsCoprocessorEnabled (1)

then SignalException (CoprocessorUnusable, 1) endif
if not IsFloatingPointImplemented (fmt))

then SignalException (ReservedInstruction) endif

fin < ValueFPR (fs, fmt)
masktmp <« ClassFP(fin, fmt)
StoreFPR (fd, fmt, ftmp)
/* end of instruction */

function ClassFP(tt, ts, n)

/* Implementation defined class operation. */
endfunction ClassFP

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

Exceptions:

Coprocessor Unusable, Reserved Instruction
Floating Point Exceptions:

Unimplemented Operation

MIPS® Architecture for Programmers Volume [I-B: microMIPS64™ Instruction Set, Revision 6.05 176

CLO

177

Count Leading Ones in Word

31 26 25 21 20 16 15 6 5 0
POOL32A " c CLO POOL32AXS
000000 s 0100101100 111100
6 5 5 10 6
Format: cLo rt, rs microMIPS

Purpose: Count Leading Ones in Word

To count the number of leading ones in a word.

Description: GPR[rt] ¢ count leading ones GPR[rs]

Bits 31..0 of GPR rs are scanned from most significant to least significant bit. The number of leading ones is counted
and the result is written to GPR rt. If all of bits 31..0 were set in GPR rs, the result written to GPR rt is 32.

Restrictions:

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the results of the operation are
UNPREDICTABLE.

Operation:

if NotWordValue (GPR[rs]) then
UNPREDICTABLE
endif
temp € 32
for i in 31 .. 0
if GPR[rs]l; = 0 then
temp ¢« 31 - i
break
endif
endfor
GPR[rt] <« temp

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

CLz Count Leading Zeros in Word
31 26 25 21 20 16 15 11 10 6 5
POOL32A " . CLZ POOL32AXf
000000 s 0101101100 111100
6 5 5 10 6
Format: cLz rt, rs microMIPS

Purpose: Count Leading Zeros in Word

Count the number of leading zeros in a word.

Description: GPR[rt] ¢ count leading zeros GPR[rs]

Bits 31..0 of GPR rs are scanned from most significant to least significant bit. The number of leading zeros is counted
and the result is written to GPR rt. If no bits were set in GPR rs, the result written to GPR rt is 32.

Restrictions:

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the results of the operation are

UNPREDICTABLE.

Operation:

if NotWordValue (GPR[rs]) then
UNPREDICTABLE
endif
temp € 32
for i in 31 .. 0
if GPR[rs]; = 1 then
temp ¢« 31 - i
break
endif
endfor
GPR[rt] <« temp

Exceptions:

None

Programming Notes:
Release 6 sets the ‘rt’ field to a value of 00000.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

178

CMP.condn.fmt Floating Point Compare Setting Mask

179

31 26 25 21 20 16 15 11 10 6 5 4 0
POOL32F CMP.condn.S
010101 fi fs fd condn 000101
POOL32F CMP.condn.D
010101 fi fs fd condn 010101
6 5 5 5 5 6

Format: CMP.condn.fmt
CMP.condn.S fd, fs, ft microMIPS32 Release 6
CMP.condn.D fd, fs, ft microMIPS32 Release 6

Purpose: Floating Point Compare Setting Mask

To compare FP values and record the result as a format-width mask of all Os or all 1s in a floating point register

Description: FPR[fd] ¢« FPR[fs] compare cond FPR[ft]
The value in FPR fs is compared to the value in FPR ft.
The comparison is exact and neither overflows nor underflows.

If the comparison specified by the condn field of the instruction is true for the operand values, the result is true; other-
wise, the result is false. If no exception is taken, the result is written into FPR fd; true is all 1s and false is all Os,
repeated the operand width of fmt. All other bits beyond the operand width fmt are UNPREDICTABLE. For example,
a 32-bit single precision comparison writes a mask of 32 Os or 1s into bits 0 to 31 of FPR fd. It makes bits 32 to 63
UNPREDICTABLE if a 64-bit FPU without MSA is present. It makes bits 32 to 127 UNPREDICTABLE if MSA is
present.

The values are in format fmt. These instructions, however, do not use an fmt field to determine the data type.

The condn field of the instruction specifies the nature of the comparison: equals, less than, and so on, unordered or
ordered, signalling or quiet, as specified in Table 5.23 “Comparing CMP.condn.fmt, IEEE 754-2008, C.cond.fmt,
and MSA FP compares” on page 181.

Release 6: The condn field bits have specific purposes: cond,, and cond, 4 specify the nature of the comparison
(equals, less than, and so on); condy specifies whether the comparison is ordered or unordered, that is false or true if
any operand is a NaN; conds indicates whether the instruction should signal an exception on QNaN inputs. However,
in the future the MIPS ISA may be extended in ways that do not preserve these meanings.

All encodings of the condn field that are not specified (for example, items shaded in Table 5.23) are reserved in
Release 6 and produce a Reserved Instruction exception.

If one of the values is an SNaN, or if a signalling comparison is specified and at least one of the values is a QNaN, an
Invalid Operation condition is raised and the Invalid Operation flag is set in the FCSR. If the Invalid Operation
Enable bit is set in the FCSR, no result is written and an Invalid Operation exception is taken immediately. Otherwise,
the mask result is written into FPR fd.

There are four mutually exclusive ordering relations for comparing floating point values; one relation is always true
and the others are false. The familiar relations are greater than, less than, and equal. In addition, the IEEE floating
point standard defines the relation unordered, which is true when at least one operand value is NaN; NaN compares
unordered with everything, including itself. Comparisons ignore the sign of zero, so +0 equals -0.

The comparison condition is a logical predicate, or equation, of the ordering relations such as less than or equal,
equal, not less than, or unordered or equal. Compare distinguishes among the 16 comparison predicates. The Bool-
ean result of the instruction is obtained by substituting the Boolean value of each ordering relation for the two FP val-
ues in the equation. For example: If the equal relation is true, then all four example predicates above yield a true
result. If the unordered relation is true then only the final predicate, unordered or equal, yields a true result.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

CMP.condn.fmt Floating Point Compare Setting Mask

The predicates implemented are described in Table 5.23 “Comparing CMP.condn.fmt, IEEE 754-2008, C.cond.fmt,
and MSA FP compares” on page 181. Not all of the 16 IEEE predicates are implemented directly by hardware. For
the directed comparisons (LT, LE, GT, GE) the missing predicates can be obtained by reversing the FPR register
operands ft and fs. For example, the hardware implements the “Ordered Less Than” predicate LT(fs, ft); reversing the
operands LT(ft,fs) produces the dual predicate “Unordered or Greater Than or Equal” UGE(fs,ft). Table 5.23 shows
these mappings. Reversing inputs is ineffective for the symmetric predicates such as EQ; Release 6 implements these
negative predicates directly, so that all mask values can be generated in a single instruction.

Table 5.23 compares CMP.condn fmt to (1) the MIPS32 Pre-Release 6 C.cond fmt instructions, and (2) the (MSA)
MIPS SIMD Architecture packed vector floating point comparison instructions. CMP.condn fmt provides exactly the
same comparisons for FPU scalar values that MSA provides for packed vectors, with similar mnemonics.
CMP.condn fmt provides a superset of the MIPS32 Release 5 C.cond fmt comparisons.

In addition, Table 5.23 shows the corresponding IEEE 754-2008 comparison operations.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 180

81

G0'9 UOISIADY 189S UONINISU| wi9SINOIOIW :g-]] SWNJOA Siawwelboid 1o} 81ndalydly @SdIN

Table 5.23 Comparing CMP.condn.fmt, IEEE 754-2008, C.cond.fmt, and MSA FP compares

Shaded entries in the table are unimplemented, and reserved.

Instruction Encodings

CMP.condn. fmt:
C.cond. fmt:
MSA:

MSA: minor opcode mmmmmm Bits 5...0 = 26 - 011010

010001 fffff ttttt sssss ddddd Occccc
010001 fffff ttttt sssss CCCOO0 lleccecc
011110 oooof ttttt sssss ddddd mmmmmm

MSA: minor opcode mmmmmm Bits 5

...0=28-011100

2 MSA: operation CMP: condn Bit 5.4 =00 C: only applicable CMP: condn Bit5..4 =01 C: not applicable
I S |ooo0 Bits 25...22 R .
g2 C: cond Predicates Negated Predicates
Og Bits 3..0
oJi® ccccl\(;lp__ its 3.. Relation E E Relation E E
g : condn)= < |at d <« |t
2 lbceccee - Bits 3..((65 (%) =5 Long names IEEE og @ =5 Long names IEEE
= >|< ? c = O < >|< ? g = O c
[e] Q [e] o
O O O O
0 0000 F|F F F FCAF | AF False T|T TL T AT True
Always False Always True
compareQuietUnordered compareQuietOrdered
1 0001 FIF|F|T|] UN | FCUN | UN | Unordered ? T|T|T|F|OR|FCoR| OR | Ordered <=>
isUnordered NOT(isUnordered)
compareQuietEqual compareQuietNotEqual
2 0010 FIF|T|F| EQ | FcEQ | EQ | Equa & T|T|F|TNEQIFCUNE| UNE | Not Equal e NOTD),
= Ordered
? % 3 0011 F|F T] UEQ | FCUEQ |UEQ| Unordered or Equa| T|T F|OGL] FCNE | NE Greater Than
5 E or Less Than
c
213 . Unordered or _
52| 4 1 FITIFIF| ot | FouT | LT compareQuietless T/F|T|T|UGE UGE CUIETEO MEINE 1552
HE 0100 o C Ordered LessThan | "S™F UG Greater Than [- _"\ o7 ist ess)
°|s or Equal
(2]
3 Unordered or Less compareQuietL essUnor- Ordered compareQuiet-
5 0101 FIT T] ULT FCULT | ULT dered T|F FJOGE OGE Greater Than GreatrEqual
Than ?2<, NOT(isGreaterEqual) or Equal isGreaterEqual
) compareQuietGreaterun-
6 o110 JF 7|7 F| oe | FoLe | Le | Ordered Lessthanor _CS?L“;@‘EQ;'Q‘L%EW T/F|F|T|uaT] ueT | Unordered or e
Equal i qu Greater Than | o NOT(isL essEqual)
7 om1 |fr7/7/7| ue | Foue |uLe|UnorderedorLess f comparequieoGreater |7 ¢ | ¢ fogr] ot | Ordered compareQuietGreater
Than or Equal 7<=, NOT (isGrezter) Greater Than | isGreater

JWy Upuod dIND

yse Buiyag asedwo) Juiod Buneojy

281

G0'9 UOISIADY 189S UONINISU| wi9SINOIOIW :g-]] SWNJOA Siawwelboid 1o} 81ndalydly @SdIN

Table 5.23 Comparing CMP.condn.fmt, IEEE 754-2008, C.cond.fmt, and MSA FP compares (Continued)

Shaded entries in the table are unimplemented, and reserved.

Instruction Encodings

CMP.condn. fmt :
C.cond. fmt:
MSA:

MSA: minor opcode mmmmmm Bits 5...0 =26 - 011010

010001 fffff ttttt sssss ddddd Occccc
010001 fffff ttttt sssss CCCOO0 lleccecec
011110 ooocof ttttt sssss ddddd mmmmmm

MSA: minor opcode mmmmmm Bits 5...0 = 28 - 011100

e MSA: operation CMP: condn Bit 5.4 =00 C: only applicable CMP: condn Bit5..4 =01 C: not applicable
© ¢ | oooo Bits 25...22 . .
g2 C: cond Predicates Negated Predicates
og Bits 3..0 i
o g [eece - PSSO polation E E Relation g E
S CMP: condn < < o= 9 < o=
z lccecce - Bits 3..4 oS (%) s5 Long names IEEE o5 v s5 Long names IEEE
= > | < ? c = O < > (< ? q = O ¢
Q Q 9 Q
O O O} O
Signalling False Signalling True
8 1000 FIF|F|F| sF FSAF | sAF| Signalling T|T|T|T|ST saT | Signalling
Always False Always True
Greater Than or
Not Greater Than or Less Than or Equal
9 1001 F|F T] NGLE | FSUN |SUN Less Than or Equal T|T F|GLE] FSOR| SOR Signalling
Signalling Unordered
9 9 Ordered
Sonalling Equal Signalling Not Equal
gnalling Equ Signalling Unor- onalli
10 1010 |IF|F|T|F| SE FSEQ |seEQ| Ordered Signallin ignalli T|T|F|T|SNE|FSUNE| SUNE compareSignalling-
Q Q Q g g compareSignalling Equal dered or Not NotEqual
Equal
Equal
Greater Than or
Not Greater Than or Less Than
sl |11 1011 [FFlTiT| neL | Fsuea fued o ST 7/7/F FlaL] Fsne | sne | Signaling
2 Signalling Unordered
= Ordered
g or Equal
5 Not Equal
Z
e Not Less Than
Q LessThan) Sianallingl. Signalling compareSignallingNot-
12 1100 FITIFIF] T FSLT | sLT | Ordered Signalling iompafe gnalingLess It |F |1 |T|NLT SUGE | Unordered or Less
Less Than Greater Than or NOT(<)
Equal
Not Greater Than or Equal | compareSignalling- Signalling Ordered | compareSignalling-
13 1101 FIT T] NGE FSULT |suLT| Unordered or Less LessUnordered T|F F| GE SOGE Greater Than or GreaterEqual
Than NOT(>=) Equal >= >
Less Than or.Equal) compareSignalling- NOtEL?Tth 2 compareSignalling-
14 1110 FIT|T|F| LE FSLE | SLE | Ordered Signalling LessEqual T|F|F|TINLE SUGT | _ EAu GreaterUnordered
_ Signalling Unordered -
Less Than or Equal | <= < or Greater Than | NOT(<9)
Not Greater Than
Signalling Unordered | compareSignalling- Greater Than compareSignalling-
15 1111 FIT T] NGT | FSULE |SULE] L Th NotGreater T|F F]IGT SOGT | Signalling Ordered Greater
orLess Than or NOT(>) Greater Than >
Equal

JWy Upuod dIND

yse Buiyag asedwo) Juiod Buneojy

CMP.condn.fmt

183

Restrictions:

Operation:

Floating Point Compare Setting Mask

if SNaN(ValueFPR(fs, fmt)) or SNaN(ValueFPR(ft, fmt)) or
QONaN (ValueFPR (fs, fmt)) or QNaN(ValueFPR (ft, fmt))

then

less < false
equal ¢« false
unordered € true

if (SNaN(ValueFPR (fs,fmt)) or SNaN (ValueFPR(ft,fmt))) or
(cond; and (QNaN (ValueFPR(fs,fmt)) or QNaN(ValueFPR(ft,fmt)))) then
SignalException (InvalidOperation)
endif
else

less ¢« ValueFPR(fs, fmt) <g, ValueFPR(ft, fmt)
equal ¢ ValueFPR(fs, fmt) =¢, ValueFPR(ft, fmt)
unordered ¢ false

endif

condition ¢ cond, xor (

(cond, and less)
or (cond; and equal)
or (condy and unordered))

StoreFPR (fd, fmt, ExtendBit.fmt (condition))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

COP2 Coprocessor Operation to Coprocessor 2
31 26 25 3 2
POOL32A " COP2
000000 cotun 010
6 23 3

Format: cop2 func

Purpose: Coprocessor Operation to Coprocessor 2

To perform an operation to Coprocessor 2.

Description: CoprocessorOperation (2, cofun)

microMIPS

An implementation-dependent operation is performed to Coprocessor 2, with the cofun value passed as an argument.
The operation may specify and reference internal coprocessor registers, and may change the state of the coprocessor
conditions, but does not modify state within the processor. Details of coprocessor operation and internal state are
described in the documentation for each Coprocessor 2 implementation.

Restrictions:

Operation:

CoprocessorOperation (2, cofun)

Exceptions:

Coprocessor Unusable, Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

184

185 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05

CRC32B, CRC32H, CRC32W, CRC32D Generate CRC with reversed polynomial 0xXEDB88320

31 26 25 21 20 16 15 14 13 10 9 0
POOL32A
000000 rt rs sz 0000 0000110000
6 5 5 2 4 10

Format: CRC32B, CRC32H, CRC32W, CRC32D

CRC32B rt, rs, rt microMIPS32 Release 6
CRC32H rt, rs, rt microMIPS32 Release 6
CRC32W rt, rs, rt microMIPS32 Release 6
CRC32D rt, rs, rt microMIPS64 Release 6

Purpose: Generate CRC with reversed polynomial 0xEDB88320

Description: GPR [rt] « CRC32(GRP[rs], GPR[rt])

CRC32B/H/W/D generates a 32-bit Cyclic Redundancy Check (CRC) value based on the reversed polynomial
0xEDB88320. The new 32-bit CRC value is generated with a cumulative 32-bit CRC value input as GPR[rt] and a
byte or half-word or word or double-word message right-justified in GPR[rs]. The message size is encoded in field sz
of the instruction.

The generated value overwrites the input CRC value in GPR]rt], after sign extension, as the original value is consid-
ered redundant once the cumulative CRC value is re-generated with the additional message. More importantly,
source-destroying definition of the CRC instruction allows the instruction to be included in a loop without having to
move the destination to the source for the next iteration of the instruction.

The CRC32B/H/W/D instruction does not pad the input message. It is software’s responsibility to ensure the input
message, whether byte, half-word, word or double-word is fully-defined, otherwise the result is UNPREDICTABLE
and thus unusable.

The reversed polynomial is a 33-bit polynomial of degree 32. Since the coefficient of most significance is always 1, it
is dropped from the 32-bit binary number, as per standard representation. The order of the remaining coefficients
increases from right to left in the binary representation.

Since the CRC is processed more than a bit at a time, the order of bits in the data elements of size byte, half-word,
word or double-word is important. The specification assumes support for an “Isb-first” (little-endian) standard, and
thus coefficients of polynomial terms that represent the message must be ordered from right to left in order of dec-
creasing significance.

The specification of the CRC instruction assumes the following in regards to a message of arbitrary length whose 32-
bit CRC value is to be generated. The message itself is a polynomial represented by binary coefficients of each term
of the polynomial.

» The message is a sequence of bytes or half-words or words or double-words as per use case. The appropriate
instruction is chosen.

» For each message element of size byte/half-word/word/double-word, the least-significant bit corresponds to the
most significant coefficient, and significance decreases from right to left.

* Message elements themselves must be processed in order of decreasing significance, with reference to coeffi-
cients of the terms of the polynomial the message represents.

» The polynomial isthus reversed to match the order of coefficients for the message of arbitrary length.
» Theresultant CRC is also a polynomial whose coefficients are arranged in decreasing significance from right to

left.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 186

CRC32B, CRC32H, CRC32W, CRC32D Generate CRC with reversed polynomial 0xXEDB88320

The typical use of CRC is to generate a checksum to accompany a message that is transmitted electronically in order
to detect transmission errors at the receiving end. If the message is considered to be a polynomial, the coefficient of
the most-significant term is transmitted first followed by remaining bits in order of decreasing significance, followed
by the 32-bit CRC. The specification for these CRC instruction is thus most appropriate for standards that transmit
least significant bit of data first (little-endian), such as IEEE 802 Ethernet. The least-significant bit of data conve-
niently maps to the coefficient of the most-significant term of the message polynomial.

Restrictions:

No data-dependent exceptions are possible.

Operation:

if (CO”figsCch = 0) then
SignalException (ReservedInstruction)
endif

if (sz = 0b00) then
temp <« CRC32(GPR[rt], GPR[rs], 1, OXEDB88320)
else if (sz = 0b01l) then
temp <« CRC32 (GPR[rt], GPR[rs], 2, OxXEDB88320)
else if (sz = 0b1l0) then
temp <« CRC32(GPR[rt], GPR[rs], 4, OxXEDB88320)
else if (sz = 0bll) then
if (Are64BitOperationsEnabled()) then
temp <« CRC32(GPR[rt], GPR[rs], 8, OXEDB88320)
else
SignalException (ReservedInstruction)
endif
endif
GPR [rt] <« sign_extend(temp)

// Bit oriented definition of CRC32 function
function CRC32 (value, message, numbytes, poly)
value - right-justified current 32-bit CRC value
message - right-justified byte/half-word/word/double-word message
numbytes - size of message in bytes: byte/half-word/word/double-word
poly - 32-bit reversed polynomial

value <« (value and Oxffffffff) xor {(64- (numbytes*8))’'b0,message}
for (i=0; i<numbytes*8; i++)
if (value and 0dl) then // check most significant coefficient
value « (value >> 1) xor poly
else
value « (value >> 1)
endif
endfor
return value
endfunction

Exceptions:

Reserved Instruction Exception

Restriction:

These instructions are implemented in Release 6 only if CPO ConFTig5cgcp is set to 1.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 187

CRC32B, CRC32H, CRC32W, CRC32D Generate CRC with reversed polynomial 0xXEDB88320

Programing Notes:

When calculating CRC, it is recommended that the initial value of GPR[rt] be all ones, when the CRC instruction is
the first in the sequence to be referenced. This allows the CRC to differentiate between actual leading zeroes in the
message element, and zeros added by transmission errors. The initial all one’s value makes no difference to the CRC
calculation as long as both sender and receiver use the same assumption on the initial value, to generate and check
respectively.

If the order of bits in bytes assumes most-significant bit first, then Release 6 BITSWAP can be used to reverse the
order of bits in order to operate with these instructions. However BITSWAP would only apply to byte messages.

CRC32B/H/W/D instructions are interchangeable: a series of low-order CRC instructions can be reduced to a series
of high-order CRC32H operations, to increase throughput of the overall CRC generation process. The process of
doing this will add trailing zeroes to the message for which CRC is being generated, since the data element is now
larger, however, this will not change the CRC value that is generated. It is the original message that must be transmit-
ted along with the CRC, without the trailing zeroes.

In pseudo-assembly, the following sequence of byte CRC operations may be used to generate a cumulative CRC
value. (Pseudo-assembly is used to clearly indicate terms which need to be modified for interchangeability.)

1i $3, OxXFFFF_FFFF // initialize CRC value
la $4, memaddr // assume word-aligned for convenience

for (i=0; i < byte cnt; i++)

1b $2, 0(3%4) // read message bytes

crc32b $3, $2, $3

add s$4, s$4, 1 // increment byte memory address by 1
endfor

This is equivalent to the sequence of word CRC operations. The simple example assumes some multiple of 4 bytes
are processed.

for (i=0; i < byte cnt/4; i++)

lw $2, 0($4) // read message words

crc32w $3, $2, $3

add s4, sS4, 4 // increment word memory address by 4
endfor

The throughput is thus increased by a multiple of 4 as only a quarter of the byte oriented operations occur.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 188

CRC32CB, CRC32CH, CRC32CW, CRC32CD Generate CRC with reversed polynomial 0x82F63B78

31 26 25 21 20 16 15 14 13 10 9 0
POOL32A
000000 rt rs sz 0000 0000111000
6 5 5 2 4 10

Format: CRC32CB, CRC32CH, CRC32CW, CRC32CD

CRC32CB rt, rs, rt microMIPS32 Release 6
CRC32CH rt, rs, rt microMIPS32 Release 6
CRC32CW rt, rs, rt microMIPS32 Release 6
CRC32CD rt, rs, rt microMIPS64 Release 6

Purpose: Generate CRC with reversed polynomial 0x82F63B78

Description: GPR[rt] « CRC32C(GRP[rs], GPR[rt])

CRC32CB/H/W/D generates a 32-bit Cyclic Redundancy Check (CRC) value based on the reversed polynomial
0x82F63B78 (Castagnoli). The new 32-bit CRC value is generated with a cumulative 32-bit CRC value input as
GPR[rt] and a byte or half-word or word or double-word message right-justified in GPR[rs]. The message size is
encoded in field sz of the instruction.

The generated value overwrites the input CRC value in GPR]rt], after sign extension, as the original value is consid-
ered redundant once the cumulative CRC value is re-generated with the additional message. More importantly,
source-destroying definition of the CRC instruction allows the instruction to be included in a loop without having to
move the destination to the source for the next iteration of the instruction.

The CRC32CB/H/W/D instruction does not pad the input message. It is software’s responsibility to ensure the input
message, whether byte, half-word, word or double-word is fully-defined, otherwise the result is UNPREDICTABLE
and thus unusable.

The reversed polynomial is a 33-bit polynomial of degree 32. Since the coefficient of most significance is always 1, it
is dropped from the 32-bit binary number, as per standard representation. The order of the remaining coefficients
increases from right to left in the binary representation.

Since the CRC is processed more than a bit at a time, the order of bits in the data elements of size byte, half-word,
word or double-word is important. The specification assumes support for an “Isb-first” (little-endian) standard, and
thus coefficients of polynomial terms that represent the message must be ordered from right to left in order of dec-
creasing significance.

The specification of the CRC instruction assumes the following in regards to a message of arbitrary length whose 32-
bit CRC value is to be generated. The message itself is a polynomial represented by binary coefficients of each term
of the polynomial.

* The message is a sequence of bytes or half-words or words or double-words as per use case. The appropriate
instruction is chosen.

» For each message element of size byte/half-word/word/double-word, the least-significant bit corresponds to the
most significant coefficient, and significance decreases from right to left.

* Message elements themselves must be processed in order of decreasing significance, with reference to coeffi-
cients of the terms of the polynomial the message represents.

» The polynomial isthus reversed to match the order of coefficients for the message of arbitrary length.
» Theresultant CRC is also a polynomial whose coefficients are arranged in decreasing significance from right to

left.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 189

CRC32CB, CRC32CH, CRC32CW, CRC32CD Generate CRC with reversed polynomial 0x82F63B78

The typical use of CRC is to generate a checksum to accompany a message that is transmitted electronically in order
to detect transmission errors at the receiving end. If the message is considered to be a polynomial, the coefficient of
the most-significant term is transmitted first followed by remaining bits in order of decreasing significance, followed
by the 32-bit CRC. The specification for these CRC instruction is thus most appropriate for standards that transmit
least significant bit of data first (little-endian), such as IEEE 802 Ethernet. The least-significant bit of data conve-
niently maps to the coefficient of the most-significant term of the message polynomial.

Restrictions:

No data-dependent exceptions are possible.

Operation:

if (CO”figsCch = 0) then
SignalException (ReservedInstruction)
endif

if (sz = 0b00) then
temp <« CRC32(GPR[rt], GPR[rs], 1, Ox82F63B78)
else if (sz = 0b01l) then
temp <« CRC32(GPR[rt], GPR[rs], 2, Ox82F63B78)
else if (sz = 0b1l0) then
temp < CRC32(GPR[rt], GPR[rs], 4, Ox82F63B78)
else if (sz = 0bll) then
if (Are64BitOperationsEnabled()) then
temp <« CRC32(GPR[rt], GPR[rs], 8, Ox82F63B78)
else
SignalException (ReservedInstruction)
endif
endif
GPR [rt] <« sign_extend(temp)

// Bit oriented definition of CRC32 function
function CRC32 (value, message, numbytes, poly)
value - right-justified current 32-bit CRC value
message - right-justified byte/half-word/word/double-word message
numbytes - size of message in bytes: byte/half-word/word/double-word
poly - 32-bit reversed polynomial

value <« (value and Oxffffffff) xor {(64- (numbytes*8))’'b0,message}
for (i=0; i<numbytes*8; i++)
if (value and 0dl) then // check most significant coefficient
value « (value >> 1) xor poly
else
value « (value >> 1)
endif
endfor
return value
endfunction

Exceptions:

Reserved Instruction Exception

Restriction:

These instructions are implemented in Release 6 only if CPO ConFTig5cgcp is set to 1.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 190

CRC32CB, CRC32CH, CRC32CW, CRC32CD Generate CRC with reversed polynomial 0x82F63B78

Programing Notes:

When calculating CRC, it is recommended that the initial value of GPR[rt] be all ones, when the CRC instruction is
the first in the sequence to be referenced. This allows the CRC to differentiate between actual leading zeroes in the
message element, and zeros added by transmission errors. The initial all one’s value makes no difference to the CRC
calculation as long as both sender and receiver use the same assumption on the initial value, to generate and check
respectively.

If the order of bits in bytes assumes most-significant bit first, then Release 6 BITSWAP can be used to reverse the
order of bits in order to operate with these instructions. However BITSWAP would only apply to byte messages.

CRC32CB/H/W/D instructions are interchangeable: a series of low-order CRC instructions can be reduced to a series
of high-order CRC32CH operations, to increase throughput of the overall CRC generation process. The process of
doing this will add trailing zeroes to the message for which CRC is being generated, since the data element is now
larger, however, this will not change the CRC value that is generated. It is the original message that must be transmit-
ted along with the CRC, without the trailing zeroes.

In pseudo-assembly, the following sequence of byte CRC operations may be used to generate a cumulative CRC
value. (Pseudo-assembly is used to clearly indicate terms which need to be modified for interchangeability.)

1i $3, OxXFFFF_FFFF // initialize CRC value
la $4, memaddr // assume word-aligned for convenience

for (i=0; i < byte cnt; i++)

1b $2, 0(3%4) // read message bytes

crc32cb $3, $2, $3

add s$4, s$4, 1 // increment byte memory address by 1
endfor

This is equivalent to the sequence of word CRC operations. The simple example assumes some multiple of 4 bytes
are processed.

for (i=0; i < byte cnt/4; i++)

lw $2, 0($4) // read message words

crc32cw $3, $2, $3

add $4, 34, 4 // increment word memory address by 4
endfor

The throughput is thus increased by a multiple of 4 as only a quarter of the byte oriented operations occur.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 191

CTC1 Move Control Word to Floating Point

31 26 25 21 20 16 15 14 13 6 5 0
POOL32F ot f 00 CTC1 POOL32FXf
010101 s 01100000 111011
6 5 5 2 8 6
Format: cTc1i rt, fs microMIPS

Purpose: Move Control Word to Floating Point

To copy a word from a GPR to an FPU control register.

Description: FP_Control [fs] < GPR[rt]
Copy the low word from GPR rt into the FP (coprocessor 1) control register indicated by fs.

Writing to the floating point Control/Status register, the FCSR, causes the appropriate exception if any Cause bit
and its corresponding Enable bit are both set. The register is written before the exception occurs. Writing to FEXR to
set a cause bit whose enable bit is already set, or writing to FENR to set an enable bit whose cause bit is already set
causes the appropriate exception. The register is written before the exception occurs and the EPC register contains
the address of the CTC1 instruction.

The definition of this instruction has been extended in Release 5 to support user mode read and write of Statusgg

under the control of Config5yyg. This optional feature is meant to facilitate transition from FR=0 to FR=1 float-

ing-point register modes in order to obsolete FR=0 mode in a future architecture release. User code may set and clear
Statusgy without kernel intervention, providing kernel explicitly provides permission.

This UFR facility is not supported in Release 6 since Release 6 only allows FR=1 mode. Accessing the UFR and
UNEFR registers causes a Reserved Instruction exception in Release 6 since FIRzgp 1S always 0.

The definition of this instruction has been extended in Release 6 to allow user code to read and modify the
Config5pgy bit. Such modification is allowed when this bit is present (as indicated by FIR;prp) and user mode
modification of the bit is enabled by the kernel (as indicated by Config5zg). Setting Config5 gz to 1 causes all
floating point instructions which are not compatible with FR=1 mode to take an Reserved Instruction exception. This
makes it possible to run pre-Release 6 FR=0 floating point code on a Release 6 core which only supports FR=1 mode,
provided the kernel has been set up to trap and emulate FR=0 behavior for these instructions. These instructions
include floating-point arithmetic instructions that read/write single-precision registers, LWC1, SWCI, MTCl1, and
MFCI instructions.

The FRE facility uses COP1 register aliases FRE and NFRE to access Config5ppg.

Restrictions:

There are a few control registers defined for the floating point unit. Prior to Release 6, the result is UNPREDICT-
ABLE if fs specifies a register that does not exist. In Release 6 and later, a Reserved Instruction exception occurs if fs
specifies a register that does not exist.

Furthermore, the result is UNPREDICTABLE if fd specifies the UFR, UNFR, FRE and NFRE aliases, with fs any-
thing other than 00000, GPR[0]. Release 6 implementations and later are required to produce a Reserved Instruction
exception; software must assume it is UNPREDICTABLE.

Operation:

temp ¢ GPR[rtls; o
if (fs = 1 or fs = 4) then
/* clear UFR or UNFR(CP1l Register 1)*/
if Configp >2 SignalException (ReservedInstruction) /* Release 6 traps */ endif

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 192

CTC1 Move Control Word to Floating Point

if not Config5ypg then SignalException (ReservedInstruction) endif
if not (rt = 0 and FIRypgp) then UNPREDICTABLE /*end of instruction*/ endif
if fs = 1 then Statusgg ¢ 0
elseif fs = 4 then Statusgg < 1
else /* cannot happen */
elseif fs=5 then /* user write of 1 to FRE, if permitted */
if Configagz<2 then UNPREDICTABLE
else
if rt # 0 then SignalException (ReservedInstruction) endif
if not Config5ypg then SignalException(ReservedInstruction) endif
Config5ypg < O
endif
elseif fs=6 then /* user write of 0 to FRE, if permitted (NFRE alias) */
if ConfigARS2 then UNPREDICTABLE
else
if rt # 0 then SignalException(ReservedInstruction) endif
if not Config5ypg then SignalException(ReservedInstruction) endif
Configbypg ¢ 1
endif
elseif fs = 25 then /* FCCR */
if tempy; g # 0°* then
UNPREDICTABLE
else
FCSR ¢« temp, , || FCSR,, || temp, || FCSR,y
endif
elseif fs = 26 then /* FEXR */
if tempsy 153 # 0 or temp;; ; # 0 or temp, , # Othen
UNPREDICTABLE
else
FCSR € FCSR3;. 15 || tempy; 15 || FCSRyp. 7 ||
tempg , || FCSRy.
endif
elseif fs = 28 then /* FENR */
if temps; ,, # 0 or tempg 3 # O then

UNPREDICTABLE

else
FCSR ¢ FCSRyq 55 || temp, || FCSRy3 15 || tempyi. 4
|| FCSRg. 5 || tempy o

endif

elseif fs = 31 then /* FCSR */
if (FCSRppy field is not implemented) and(temp,, .4 # 0) then
UNPREDICTABLE
elseif (FCSRpg,; field is implemented) and temp,, 15 # 0 then
UNPREDICTABLE
else
FCSR €« temp
endif
else
if Config2,z > 2 SignalException(ReservedInstruction) /* Release 6 traps */
endif
UNPREDICTABLE
endif
CheckFPException ()

Exceptions:

Coprocessor Unusable, Reserved Instruction

193 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

CTC1 Move Control Word to Floating Point

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Division-by-zero, Inexact, Overflow, Underflow

Historical Information:

For the MIPS I, II and III architectures, the contents of floating point control register fs are UNPREDICTABLE for
the instruction immediately following CTC1.

MIPS V and MIPS32 introduced the three control registers that access portions of FCSR. These registers were not
available in MIPS 1, II, III, or I'V.

MIPS32 Release 5 introduced the UFR and UNFR register aliases that allow user level access to Statusgg.

MIPS32 Release 6 introduced the FRE and NFRE register aliases that allow user to cause traps for FR=0 mode emu-
lation.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 194

CTC2 Move Control Word to Coprocessor 2
31 26 25 21 20 16 15 6 5 0
POOL32A it fonol CTC2 POOL32AXf
000000 P 1101110100 111100
6 5 5 10 6
Format: cTc2 rt, Impl microMIPS

195

The syntax shown above is an example using CTC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Control Word to Coprocessor 2

To copy a word from a GPR to a Coprocessor 2 control register.

Description: CP2CCR[Impl] < GPR[rt]

Copy the low word from GPR rt into the Coprocessor 2 control register denoted by the Impl field. The interpretation
of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the architecture.
Restrictions:

The result is UNPREDICTABLE if rd specifies a register that does not exist.

Operation:

temp ¢ GPR[rtl;;
CP2CCR [Impl] < temp

Exceptions:

Coprocessor Unusable, Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

CVT.D.fmt Floating Point Convert to Double Floating Point
31 26 25 21 20 16 15 14 13 12
POOL32F i f 0! fmt CVTD POOL32FXf
010101 s 1001101 111011
6 5 5 1 2 7 6
Format: cvT.D.fmt
CVT.D.S ft, fs microMIPS
CVT.D.W ft, fs microMIPS
CVT.D.L ft, fs MIPS64, microMIPS

Purpose: Floating Point Convert to Double Floating Point

To convert an FP or fixed point value to double FP.

Description: FPR[ft] ¢« convert and round (FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in double floating point format and rounded according to
the current rounding mode in FCSR. The result is placed in FPR ft. If fmt is S or W, then the operation is always exact.

Restrictions:

The fields fs and ft must specify valid FPRs, fs for type fmt and ft for double floating point. If the fields are not valid,
the result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

For CVT.D.L, the result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit

FPU register model.

Operation:
StoreFPR (ft,

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

D, ConvertFmt (ValueFPR (fg,

Invalid Operation, Unimplemented Operation, Inexact

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

fmt) ,

D))

196

CVT.L.fmt Floating Point Convert to Long Fixed Point

31 26 25 21 20 16 15 14 13 6 5 0
POOL32F fi f 0 | fnt CVTL POOL32FXf
010101 S 00000100 111011
6 5 5 1 1 8 6

Format: cvT.L.fmt
CVT.L.S ft, fs MIPS64, microMIPS
CVT.L.D ft, fs MIPS64, microMIPS
Purpose: Floating Point Convert to Long Fixed Point

To convert an FP value to a 64-bit fixed point.

Description: FPR[ft] < convert and round (FPR[fs])

Convert the value in format fmt in FPR fs to long fixed point format and round according to the current rounding
mode in FCSR. The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range 293 t0 293-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is
taken immediately. Otherwise, a default result is written to ft. On cores with FCSRyan2008=0, the default result is

253_1. On cores with FCSRy ano00s=1, the default result is:
* 0 when the input value is NaN
« 291 when the input value is +00 or rounds to a number larger than 2631

« 2951 when the input value is —00 or rounds to a number smaller than 291

Restrictions:

The fields fs and ft must specify valid FPRs, fs for type fmt and fd for long fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (ft, L, ConvertFmt (ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact,

197 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

CVT.S.fmt Floating Point Convert to Single Floating Point

31 26 25 21 20 16 15 14 13 12 6 5 0
POOL32F i f 0! fmt CVTS POOL32FXf
010101 s 1101101 111011

6 5 5 1 2 7 6

Format: cvT.s.fmt

CVT.S.D ft, fs microMIPS
CVT.S.W ft, fs microMIPS
CVT.S.L ft, fs MIPS64, microMIPS

Purpose: Floating Point Convert to Single Floating Point

To convert an FP or fixed point value to single FP.

Description: FPR[ft] ¢« convert and round (FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in single floating point format and rounded according to the
current rounding mode in FCSR. The result is placed in FPR ft.

Restrictions:

The fields fs and ft must specify valid FPRs—fs for type fmt and fd for single floating point. If the fields are not valid,
the result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

For CVT.S.L, the result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit
FPU register model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on
a 32-bit FPU.

Operation:

StoreFPR (ft, S, ConvertFmt (ValueFPR(fs, fmt), fmt, S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow, Underflow

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 198

CVT.W.fmt Floating Point Convert to Word Fixed Point

199

31 26 25 21 20 16 15 14 13 6 5 0
POOL32F ft f 0 | fint CVT.W POOL32FXf
010101 S 00100100 111011

6 5 5 1 1 8 6

Format: cvT.w.fmt
CVT.W.S ft, fs microMIPS
CVT.W.D ft, fs microMIPS

Purpose: Floating Point Convert to Word Fixed Point
To convert an FP value to 32-bit fixed point.

Description: FPR[ft] < convert and round (FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format and rounded according to
the current rounding mode in FCSR. The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range 230 231-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is
taken immediately. Otherwise, a default result is written to ft. On cores with FCSRyan2008=0, the default result is

253_1. On cores with FCSRy ano00s=1, the default result is:

* 0 when the input value is NaN

« 291 when the input value is +00 or rounds to a number larger than 2631

« 2951 when the input value is —00 or rounds to a number smaller than 291

Restrictions:

The fields fs and ft must specify valid FPRs: fs for type fmt and ft for word fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR (ft, W, ConvertFmt (ValueFPR(fsg, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

DADD Doubleword Add

31 26 25 21 20 16 15 11 10 9 8 0
POOL32S f s d 0 DADD
010110 100010000
6 5 5 5 2 9
Format: DADD rd, rs, rt microMIPS64

Purpose: Doubleword Add
To add 64-hit integers. If overflow occurs, then trap.

Description: GPR[rd] ¢ GPR[rs] + GPR[rt]

The 64-bit doubleword value in GPR rt is added to the 64-bit value in GPR rs to produce a 64-bit result. If the addi-
tion results in 64-bit 2's complement arithmetic overflow, then the destination register is not modified and an Integer
Overflow exception occurs. If it does not overflow, the 64-bit result is placed into GPR rd.

Restrictions:

Operation:

temp ¢« (GPR[rs]gs||GPRI[rs]) + (GPR[rtlgs;||GPR[rt])
if (tempg, # tempg;) then
SignalException (IntegerOverflow)
else
GPR[rd] € tempgs. .o
endif
Exceptions:

Integer Overflow, Reserved Instruction

Programming Notes:

DADDU performs the same arithmetic operation but does not trap on overflow.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 200

DADDIU Doubleword Add Immediate Unsigned

201

31 26 25 21 20 16 15 0
DADDIU . .
010111 rt rs immediate
6 5 5 16
Format: DADDIU rt, rs, immediate microMIPS64

Purpose: Doubleword Add Immediate Unsigned
To add a constant to a 64-bit integer

Description: GPR[rt] ¢ GPR[rs] + sign_extend(immediate)

The 16-bit signed immediate is added to the 64-bit value in GPR rs and the 64-bit arithmetic result is placed into
GPRt.

No Integer Overflow exception occurs under any circumstances.
Restrictions:

Operation:

GPR[rt] ¢ GPR[rs] + sign extend(immediate)

Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

DADDU Doubleword Add Unsigned

31 26 25 21 20 16 15 11 10 9 8 0
POOL32S " rs rd 0 DADDU
010110 101010000
6 5 5 5 2 9
Format: DADDU rd, rs, rt microMIPS64

Purpose: Doubleword Add Unsigned
To add 64-hit integers

Description: GPR[rd] ¢ GPR[rs] + GPR[rt]

The 64-bit doubleword value in GPR rt is added to the 64-bit value in GPR rs and the 64-bit arithmetic result is
placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.
Restrictions:

Operation:

GPR[rd] < GPR[rs] + GPR[rt]

Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 202

DCLO

203

Count Leading Ones in Doubleword

31 26 25 21 20 16 15 0
POOL32S t s DCLO POOL 32SXf
010110 0100101100 111100
6 5 5 10 6
Format: DCLO rd, rs microMIPS64

Purpose: Count Leading Onesin Doubleword

To count the number of leading onesin a doubleword

Description: GPR[rd] < count_leading_ones GPR[rs]

The 64-bit word in GPR rs is scanned from most-significant to least-significant bit. The number of leading ones is
counted and the result is written to GPR rd. If all 64 bits were set in GPR rs, the result written to GPR rd is 64.

Restrictions:

To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR number in both the
rt and rd fields of the instruction. The operation of the instruction is UNPREDICTABLE if the rt and rd fields of the
instruction contain different values Release 6's new instruction encoding does not contain an field; Release 6 imple-

mentations are required to signal a Reserved Instruction exception if the field is nonzero.

Operation:

temp ¢ 64
for i in 63.. 0

if GPR[rs]; = 0 then

temp €« 63 - i

break
endif
endfor
GPR [rd] < temp

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

DCLZ

Count Leading Zeros in Doubleword

31 26 25 21 20 16 15 6 5 0
POOL32S rt rs DCLZ POOL 325X f
010110 0101101100 111100
6 5 5 10 6
Format: DCLZ rd, rs microMIPS64

Purpose: Count Leading Zerosin Doubleword

To count the number of leading zerosin a doubleword

Description: GPR[rd] < count_leading zeros GPR[rs]

The 64-bit word in GPR rs is scanned from most significant to least significant bit. The number of leading zerosis
counted and the result is written to GPR rd. If no bits were set in GPR rs, the result written to GPR rd is 64.

Restrictions:

To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR number in both the
rt and rd fields of the instruction. The operation of the instruction is UNPREDICTABLE if the rt and rd fields of the

instruction contain different values.

Operation:

temp « 64
for i in 63.. 0
if GPR[rs]; = 1 then
temp ¢« 63 - i
break
endif
endfor
GPR [rd] <« temp

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 204

DERET Debug Exception Return

205

31 26 25 16 15 6 5 0
POOL32A 0 DERET POOL32AXS
000000 0000000000 1110001101 111100
6 10 10 6
Format: DERET EJTAG microMIPS

Purpose: Debug Exception Return

To Return from a debug exception.

Description:

DERET clears execution and instruction hazards, returns from Debug Mode and resumes non-debug execution at the
instruction whose address is contained in the DEPC register. DERET does not execute the next instruction (i.e. it has
no delay slot).

Restrictions:
A DERET placed between an LL and SC instruction does not cause the SC to fail.

If the DEPC register with the return address for the DERET was modified by an MTCO or a DMTCO instruction, a
CPO0 hazard exists that must be removed via software insertion of the appropriate number of SSNOP instructions (for
implementations of Release 1 of the Architecture) or by an EHB, or other execution hazard clearing instruction (for
implementations of Release 2 of the Architecture).

DERET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the DERET returns.

This instruction is legal only if the processor is executing in Debug Mode.

Pre-Release 6: The operation of the processor is UNDEFINED if a DERET is executed in the delay slot of a branch
or jump instruction. In Release 6, in the absence of delay/forbidden slots, this restriction does not apply.

Operation:

Debugpy <« 0

Debugipxr < 0

if IsMIPSlé6Implemented() | (Config3;gy > 0) then
PC < DEPCg3. .1 || O
ISAMode <« DEPCj

else
PC « DEPC

endif

ClearHazards ()

Exceptions:

Coprocessor Unusable, Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

DEXT Doubleword Extract Bit Field

31 26 25 21 20 16 15 1 10 6 5 0
POOL32S DEXT
010110 . s msbd 1sb 101100
6 5 5 5 5 5
Format: DEXT rt, rs, pos, size microMIPS64

Purpose: Doubleword Extract Bit Field
To extract a bit field from GPR rs and store it right-justified into GPR 7.

Description: GPR[rt] ¢ ExtractField(GPR[rs], msbd, 1lsb)

The bit field starting at bit pos and extending for size bits is extracted from GPR rs and stored zero-extended and
right-justified in GPR 7. The assembly language arguments pos and size are converted by the assembler to the
instruction fields msbd (the most significant bit of the destination field in GPR r7), in instruction bits 15..11, and /sb
(least significant bit of the source field in GPR rs), in instruction bits 10..6, as follows:

msbd ¢« size-1
1sb ¢« pos
msb ¢« lsb+msbd

For this instruction, the values of pos and size must satisfy all of the following relations:
0 £ pos < 32
<

0 size < 32
0 pos+size < 63

A

Figure 3-3 shows the symbolic operation of the instruction.

Figure 5.5 Operation of the DEXT Instruction
pos+size pos+size-1 pos pos-1

63 Isb+msbd+1 Isb+msbd Isb Isb-1 0
GPRrs IJKL MNOP—_| QRST
Initial 32-(pos+size) size
Value 32-(Isb+msbd+1) msbd+1

size size-1

63 msbd+1 msbd 0
GPR s 0 MNOP
Final 32-size size
Value 32-(msbd+1) msbd+1

Three instructions are required to access any legal bit field within the doubleword, as a function of the msb (as
derived from msbd and Isb) and Isb of the field (which implies restrictions on pos and size), as follows:

msbd Isb msb pos size Instruction Comment

0<msbd<32 0<Ishb<32 0<msb<63 0<pos<32 1<size<32 DEXT The field is 32 bits or less and starts in the
right-most word of the doubleword

0<msbd<32 32<Isb<64 32<msb<64 32<pos<64 1<size<32 DEXTU The fieldis 32 bits or less and starts in the
left-most word of the doubleword

32<msbd< 0<Isb<32 32<msb<64 0<pos<32 32<size<64 DEXTM The field is larger than 32 bits and starts in
64 the right-most word of the doubleword

MIPS® Architecture for Programmers Volume [I-B: microMIPS64™ Instruction Set, Revision 6.05 206

DEXT

207

Doubleword Extract Bit Field

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction exception.

Because of the limits on the values of msbd and Isb, there is no UNPREDICTABLE case for this instruction.

Operation:

GPR[rt] « 0% MWL) || GPRIrs]ygparish. .1sb

Exceptions:

Reserved Instruction

Programming Notes

The assembler will accept any value of pos and size that satisfies the relationship 0 < pos+size < 64 and emit DEXT,
DEXTM, or DEXTU as appropriate to the values. Programmers should always specify the DEXT mnemonic and let
the assembler select the instruction to use.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

DEXTM Doubleword Extract Bit Field Middle

31 26 25 21 20 16 15 1 10 6 5 0
POOL32S ot bd 1b DEXTM
010110 ® me g 100100
6 5 5 5 5 5
Format: DEXTM rt, rs, pos, size microMIPS

Purpose: Doubleword Extract Bit Field Middle
To extract a bit field from GPR rs and store it right-justified into GPR 7.

Description: GPR[rt] ¢ ExtractField(GPR[rs], msbd, 1lsb)

The bit field starting at bit pos and extending for size bits is extracted from GPR rs and stored zero-extended and
right-justified in GPR 7. The assembly language arguments pos and size are converted by the assembler to the
instruction fields msbdminus32 (the most significant bit of the destination field in GPR rt, minus 32), in instruction
bits 15..11, and /sb (least significant bit of the source field in GPR rs), in instruction bits 10..6, as follows:

msbdminus32 ¢« size-1-32
1sb ¢« pos

msbd ¢« msbdminus32 + 32
msb ¢« lsb+msbd

For this instruction, the values of pos and size must satisfy all of the following relations:

0 £ pos < 32
32 < size < 64
32 < pos+size < 64

Figure 3-4 shows the symbolic operation of the instruction.

Figure 5.6 Operation of the DEXTM Instruction
pos+size pos+size-1 pos pos-1

63 Isb+msbd+1 Isb+msbd Isb Isb-1 0
GPRrs IJKL MNOP\\ QRST
Initial 32-(pos+size) size
Value 32-(Isb+msbd+1) msbd+1

size size-1

63 msbd+1 msbd 0
GPR s 0 MNOP
Final 32-size size
Value 32-(msbd+1) msbd+1

Three instructions are required to access any legal bit field within the doubleword, as a function of the msb (as
derived from msbd and Isb) and Isb of the field (which implies restrictions on pos and size), as follows:

msbd Isb msb pos size Instruction Comment

0<msbd<32 0<Ishb<32 0<msb<63 0<pos<32 1<size<32 DEXT The field is 32 bits or less and starts in the
right-most word of the doubleword

0<msbd<32 32<Isb<64 32<msb<64 32<pos<64 1<size<32 DEXTU The field is 32 bits or less and starts in the
left-most word of the doubleword

MIPS® Architecture for Programmers Volume [I-B: microMIPS64™ Instruction Set, Revision 6.05 208

DEXTM Doubleword Extract Bit Field Middle

msbd Isb msb pos size Instruction Comment

32<mshd< 0<lIsb<32 32<msh<64 0<pos<32 32<size<64 DEXTM The field is larger than 32 bits and starts in

209

64 the right-most word of the doubleword

Restrictions:
In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction exception.

The operation is UNPREDICTABLE if (Isb + mshd + 1) > 64.

Operation:

msbd < msbdminus32 + 32

if ((lsb + msbd + 1) > 64) then
UNPREDICTABLE

endif

GPR[rt] <« O63_(med+1) ” GPR[rS]msbd+lsb..pos

Exceptions:

Reserved Instruction

Programming Notes

The assembler will accept any value of pos and size that satisfies the relationship 0 < pos+size < 64 and emit DEXT,
DEXTM, or DEXTU as appropriate to the values. Programmers should always specify the DEXT mnemonic and let
the assembler select the instruction to use.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

DEXTU Doubleword Extract Bit Field Upper

31 26 25 21 20 16 15 11 10 6 5 0
POOL32S DEXTU
010110 : s msbd 1sb 010100
6 5 5 5 5 5
Format: DEXTU rt, rs, pos, size microMIPS64

Purpose: Doubleword Extract Bit Field Upper
To extract a bit field from GPR 7 and store it right-justified into GPR 77.

Description: GPR[rt] ¢ ExtractField(GPR[rs], msbd, 1sb)

The bit field starting at bit pos and extending for size bits is extracted from GPR rs and stored zero-extended and
right-justified in GPR 77. The assembly language arguments pos and size are converted by the assembler to the
instruction fields msbd (the most significant bit of the destination field in GPR rt), in instruction bits 15..11, and
Isbminus32 (least significant bit of the source field in GPR rs, minus32), in instruction bits 10..6, as follows:

msbd ¢« size-1
lsbminus32 < pos-32
1sb ¢« 1lsbminus32 + 32
msb ¢« lsb+msbd

For this instruction, the values of pos and size must satisfy all of the following relations:

32 < pos < 64
0 < size < 32
32 < pos+size < 64

Figure 3-5 shows the symbolic operation of the instruction.

Figure 5.7 Operation of the DEXTU Instruction
pos+size pos+size-1 pos pos-1

63 Isb+msbd+1 Isb+msbd Isb Isb-1 0
GPR s IJKL MNOP—_| QRST
Initial 32-(pos+size) size
Value 32-(Isb+msbd+1) msbd+1

size size-1

63 msbd+1 msbd 0
GPR s 0 MNOP
Final 32-size size
Value 32-(msbd+1) msbd+1

Three instructions are required to access any legal bit field within the doubleword, as a function of the msb (as derived
from msbd and Isb) and /sb of the field (which implies restrictions on pos and size), as follows:

mshd Isb msb pos size Instruction Comment

0<msbd<32 0<Ishb<32 0<msb<63 0<pos<32 1<size<32 DEXT The field is 32 bits or less and starts in the
right-most word of the doubleword

0<msbd<32 32<Isb<64 32<msb<64 32<pos<64 1<size<32 DEXTU The field is 32 bits or less and starts in the
left-most word of the doubleword

MIPS® Architecture for Programmers Volume [I-B: microMIPS64™ Instruction Set, Revision 6.05 210

DEXTU Doubleword Extract Bit Field Upper

211

msbd Isb msb pos size Instruction Comment
32<mshd< 0<Ish<32 32<msb<64 0<pos<32 32<size<64 DEXTM Thefieldislarger than 32 bitsand startsin
64 the right-most word of the doubleword
Restrictions:

In implementations prior to Release 2 of the architecture, thisinstruction resulted in a Reserved Instruction exception.
The operation is UNPREDICTABLE if (Isb + mshd + 1) > 64.

Operation:

lsb < lsbminus32 + 32
if ((lsb + msbd + 1) > 64) then

UNPREDICTABLE
endif
GPR[rt] < 063_ (msbd+1) | | GPR [rs] msbd+1lsb. .pos
Exceptions:

Reserved Instruction

Programming Notes

The assembler will accept any value of pos and size that satisfies the relationship 0 < postsize < 64 and emit DEXT,
DEXTM, or DEXTU as appropriate to the values. Programmers should always specify the DEXT mnemonic and let
the assembler select the instruction to use.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

DI Disable Interrupts

31 26 25 21 20 16 15 6 5 0
POOL32A 0 DI POOL32AXS
000000 00000 s 0100011101 111100
6 5 5 10 6
Format: b1 microMIPS
DI rs microMIPS

Purpose: Disable Interrupts

To return the previous value of the Status register and disable interrupts. If DI is specified without an argument, GPR
r0 is implied, which discards the previous value of the Status register.

Description: GPR[rs] < Status; Statusyg ¢« 0

The current value of the Status register is sign-extended and loaded into general register rs. The Interrupt Enable (IE)
bit in the Status register is then cleared.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction exception.

Operation:

data ¢ Status
GPR[rs] €« sign extend(data)
Statusig < O

Exceptions:
Coprocessor Unusable
Reserved Instruction (Release 1 implementations)

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading Status into a GPR,
clearing the IE bit, and writing the result back to Status. Unlike the multiple instruction sequence, however, the DI
instruction cannot be aborted in the middle by an interrupt or exception.

This instruction creates an execution hazard between the change to the Status register and the point where the change
to the interrupt enable takes effect. This hazard is cleared by the EHB, JALR.HB, JR.HB, or ERET instructions. Soft-
ware must not assume that a fixed latency will clear the execution hazard.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 212

DINS Doubleword Insert Bit Field

31 26 25 21 20 16 15 11 10 6 5 0
POOL32S DINS
010110 t s msbd s 001100
6 5 5 5 5 5
Format: DINS rt, rs, pos, size microMIPS64

Purpose: Doubleword Insert Bit Field
To merge aright-justified bit field from GPR rs into a specified position in GPR rt.

Description: GPR[rt] ¢ InsertField(GPR[rt], GPRI[rs], msb, lsb)

The right-most size bits from GPR rs are merged into the value from GPR rt starting at bit position pos. Theresult is
placed back in GPR rt. The assembly language arguments pos and size are converted by the assembler to the instruc-
tion fields msb (the most significant bit of the field), in instruction bits 15..11, and Isb (least significant bit of the
field), ininstruction bits 10..6, as follows:

msb € pos+size-1
lsb ¢ pos
For thisinstruction, the values of pos and size must satisfy all of the following relations:
0 < pos < 32
<

0 size < 32
0 < pos+size < 32

Figure 3-6 shows the symbolic operation of the instruction.

Figure 5.8 Operation of the DINS Instruction

Three instructions are required to access any legal bit field within the doubleword, as a function of the msb and Isb of
thefield (which implies restrictions on pos and size), as follows:

msb Isb pos size Instruction Comment
0<msh<32 0<Ish<32 0<pos<32 1<size<32 DINS Thefield is entirely contained in the
right-most word of the doubleword
32<msh<64 0<Isbh<32 0<pos<32 2<size<64 DINSM Thefield straddles the words of the
doubleword
32<msh<64 32<Ish<64 32<pos<64 1<size<32 DINSU Thefield is entirely contained in the

|eft-most word of the doubleword

Restrictions:
In implementations prior to Release 2 of the architecture, thisinstruction resulted in a Reserved Instruction exception.
The operation is UNPREDICTABLE if Isb > msh.

Operation:

if (1sb > msb) then
UNPREDICTABLE
endif
GPR[rt] <« GPR[]:t:|63..msb+l | | GPR[]:S]msb—lsb..O | | GPR[rt]lsb—l..O

213 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

Exceptions:

Reserved Instruction

Programming Notes

The assembler will accept any value of pos and size that satisfies the relationship 0 < pos+size < 64 and emit DINS,
DINSM, or DINSU as appropriate to the values. Programmers should always specify the DINS mnemonic and let the
assembler select the instruction to use.

MIPS® Architecture for Programmers Volume [I-B: microMIPS64™ Instruction Set, Revision 6.05 214

DINSM Doubleword Insert Bit Field Middle

31 26 25 21 20 16 15 11 10 6 5 0
POOL32S DINSM
010110 . s msbd 1sb 000100
6 5 5 5 5 5
Format: DINSM rt, rs, pos, size microMIPS64

Purpose: Doubleword Insert Bit Field Middle
To merge a right-justified bit field from GPR rs into a specified position in GPR 7.

Description: GPR[rt] ¢ InsertField(GPR[rt], GPR[rs], msb, lsb)

The right-most size bits from GPR s are inserted into the value from GPR 77 starting at bit position pos. The result is
placed back in GPR 7. The assembly language arguments pos and size are converted by the assembler to the instruc-
tion fields msbminus32 (the most significant bit of the field, minus 32), in instruction bits 15..11, and /sb (least signif-
icant bit of the field). in instruction bits 10..6. as follows:

msbminus32 ¢« pos+size-1-32
1sb ¢« pos
msb ¢« msbminus32 + 32

For this instruction, the values of pos and size must satisfy all of the following relations:
pos < 32

size < 64

2 < pos+size < 64

0 <
2 <
3

Figure 3-7 shows the symbolic operation of the instruction.

Figure 5.9 Operation of the DINSM Instruction

size size-1
63 msb-Isb+1 msb-Isb 0
GPRrs ABCD / EFGH
32-size size
32-(msb-Isb+1) msb-Isb+1
pos+size pos+size-1 pos pos-1
63 msb+1 msb Isb Isb-1 0
UKL MNOP / / QRST
GPR rt 32-(pos+size) size pos
Initial Value 32-(msb+1) msb-Isb+1 Isb
pos+size pos+size-1 pos-1
63 msb+1 msb 0
KL EFGH QRST
GPR rtFinal 32-(pos+size) size pos
Value 32-(msb+1) msb-Isb+1 Isb

Three instructions are required to access any legal bit field within the doubleword, as a function of the msb and /sb of
the field (which implies restrictions on pos and size), as follows:

215 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ |nstruction Set, Revision 6.05

DINSM Doubleword Insert Bit Field Middle

msb Isb pos size Instruction Comment
0<msh<32 0<Ish<32 0<pos<32 1<size<32 DINS Thefield is entirely contained in the
right-most word of the doubleword
32<msh<64 0<Isbh<32 0<pos<32 2<size<64 DINSM Thefield straddles the words of the
doubleword
32<msh<64 32<Ish<64 32<pos<64 1<size<32 DINSU Thefield is entirely contained in the

|eft-most word of the doubleword

Restrictions:
In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction exception.

Because of the instruction format, Isb can never be greater than msb, so there is no UNPREDICATABLE case for
thisinstruction.

Operation:

msb < msbminus32 + 32

GPR[rt] ¢« GPR[rt] 63..msb+1 | | GPR[rs]msb—lsb..o | | GPRI:rt]lsb—l..o
Exceptions:

Reserved Instruction

Programming Notes

The assembler will accept any value of pos and size that satisfies the relationship 0 < pos+size < 64 and emit DINS,
DINSM, or DINSU as appropriate to the values. Programmers should always specify the DINS mnemonic and let the
assembler select the instruction to use.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 216

DINSU Doubleword Insert Bit Field Upper

31 26 25 21 20 16 15 10 9 6 5 0
POOL32S DINSU
010110 . s msbd 1sb 110100
6 5 5 5 5 5
Format: DINSU rt, rs, pos, size microMIPS64

Purpose: Doubleword Insert Bit Field Upper
To merge a right-justified bit field from GPR rs into a specified position in GPR 7.

Description: GPR[rt] ¢ InsertField(GPR[rt], GPR[rs], msb, lsb)

The right-most size bits from GPR s are inserted into the value from GPR 77 starting at bit position pos. The result is
placed back in GPR 7. The assembly language arguments pos and size are converted by the assembler to the instruc-
tion fields msbminus32 (the most significant bit of the field, minus 32), in instruction bits 15..11, and /sbminus32
(least significant bit of the field, minus 32), in instruction bits 10..6, as follows:

msbminus32 <« pos+size-1-32
1lsbminus32 <« pos-32

msb <« msbminus32 + 32

1sb « 1lsbminus32 + 32

For this instruction, the values of pos and size must satisfy all of the following relations:

32 < pos < 64
1 < size £ 32
32 < pos+size < 64

Figure 3-8 shows the symbolic operation of the instruction.

Figure 5.10 Operation of the DINSU Instruction

size size-1
63 msb-Isb+1 msb-Isb 0
GPRrs ABCD / EFGH
32-size size
32-(msb-Isb+1) msb-Isb+1
pos+size pos+size-1 pos pos-1
63 msb+1 msb Isb Isb-1 0
KL MNOP / QRST
GPR rt 32-(pos+size) size pos
Initial Value 32-(msb+1) msb-Isb+1 Isb
pos+size pos+size-1 pos-1
63 msb+1 msb 0
UKL EFGH QRST
GPR rtFinal 32-(pos+size) size pos
Value 32-(msb+1) msb-Isb+1 Isb

Three instructions are required to access any legal bit field within the doubleword, as a function of the msb and /sb of
the field (which implies restrictions on pos and size), as follows:

217 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ |nstruction Set, Revision 6.05

DINSU Doubleword Insert Bit Field Upper

msb Isb pos size Instruction Comment
0<msh<32 0<Ish<32 0<pos<32 1<size<32 DINS Thefield is entirely contained in the
right-most word of the doubleword
32<msh<64 0<Isbh<32 0<pos<32 2<size<64 DINSM Thefield straddles the words of the
doubleword
32<msh<64 32<Ish<64 32<pos<64 1<size<32 DINSU Thefield is entirely contained in the

|eft-most word of the doubleword

Restrictions:
In implementations pre-Release 2 of the architecture, the instruction resulted in a Reserved Instruction exception.

The operation is UNPREDICTABLE if Isb > msh.

Operation:

lsb < lsbminus32 + 32
msb < msbminus32 + 32
if (1lsb > msb) then
UNPREDICTABLE
endif
GPR[rt] < GPR[rt] 63..msb+1 || GPR[IS]me,le“O || GPR[rt]lsbfl..O

Exceptions:

Reserved Instruction

Programming Notes

The assembler accepts any value of pos and size that satisfies the relationship 0 < pos+size < 64 and emit DINS,
DINSM, or DINSU as appropriate to the values. Programmers should always specify the DINS mnemonic and let the
assembler select the instruction to use.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 218

DIV.fmt Floating Point Divide

31 26 25 21 20 16 15 11 10 9 8 7 5 0
POOL32F DIV
010101 fi fs fd 0| fmt 11110000
6 5 5 5 1 2 3

Format: DIV.fmt
DIV.S fd, fs, ft microMIPS
DIV.D fd, fs, ft microMIPS
Purpose: Floating Point Divide

To divide FP values.

Description: FPR[fd] « FPR[fs] / FPR[ft]

The value in FPR fs is divided by the value in FPR ft. The result is calculated to infinite precision, rounded according
to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.
Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is
UNPREDICABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

Operation:
StoreFPR (fd, fmt, ValueFPR(fs, fmt) / ValueFPR (ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Invalid Operation, Unimplemented Operation, Division-by-zero, Overflow, Underflow

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 219

DIV MOD DIVU MODU DDIV DMOD DDIVU DMODU Divide Integers (with result to GPR)

31 26 25 21 20 16 15 11 10 9 0

POOL32A DIV

000000 it s rd 0 0100011000
POOL32A rt . » 0 MOD

000000 0101011000
POOL32A u) » 0 DIVU

000000 s 0110011000
POOL32A N . i 0 MODU

000000 s 0111011000

6 5 5 5 1 10
31 26 25 21 20 16 15 11 10 9 8 0

POOL32S DDIV

010110 rt s rd 00 100011000
POOL32S DMOD

010110 n s rd 00 101011000
POOL32S DDIVU

010110 n s rd 00 110011000
POOL32S t ’ 00 DMODU

010110 r s : 111011000

6 5 5 5 2 9

Format: DIV MOD DIVU MODU DDIV DMOD DDIVU DMODU

DIV rd,rs,rt microMIPS32 Release 6
MOD rd,rs,rt microMIPS32 Release 6
DIVU rd,rs,rt microMIPS32 Release 6
MODU rd,rs,rt microMIPS32 Release 6
DDIV rd,rs,rt microMIPS64 Release 6
DMOD rd,rs,rt microMIPS64 Release 6
DDIVU rd,rs,rt microMIPS64 Release 6
DMODU rd,rs,rt microMIPS64 Release 6

Purpose: Divide Integers (with result to GPR)

DIV: Divide Words Signed

MOD: Modulo Words Signed

DIVU: Divide Words Unsigned

MODU: Modulo Words Unsigned

DDIV: Divide Doublewords Signed
DMOD: Modulo Doublewords Signed
DDIVU: Divide Doublewords Unsigned
DMODU: Modulo Doublewords Unsigned

Description:

DIV: GPR [rd]
MOD: GPR [rd]
DIVU: GPRI[rd]
MODU: GPR[rd]

divide.signed(GPR[rs], GPR[rt])
modulo.signed(GPR[rs], GPR[rt])
divide.unsigned(GPR[rs], GPR[rt])
modulo.unsigned(GPR[rs], GPR[rt])

sign extend.32
sign_ extend.32
sign_ extend.32
sign extend.32

(
(
(
(

Tt

220 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

DIV MOD DIVU MODU DDIV DMOD DDIVU DMODU DIV: Divide Words Signed MOD: Modulo Words

DDIV: GPR[rd] <« divide.signed(GPR[rs], GPR[rt]
DMOD: GPR[rd] <« modulo.signed(GPR[rs], GPR[rt]
DDIVU: GPR[rd] <« divide.unsigned(GPR[rsg], GPR[rt
DMODU: GPR[rd] <« modulo.unsigned(GPR[rsg], GPR[rt

)
)

The Release 6 divide and modulo instructions divide the operands in GPR rs and GPR rt, and place the quotient or
remainder in GPR rd.

For each of the div/mod operator pairs DIV/M OD, DIVU/MODU, DDIV/DMOD, DDIVU/DMODU the results sat-
isfy the equation (A div B)*B + (A mod B) = A, where (A mod B) has same sign as the dividend A, and
abs (A mod B) < abs(B). This equation uniquely defines the results.

NOTE: if the divisor B=0, this equation cannot be satisfied, and the result is UNPREDICTABLE. This is commonly
called “truncated division”.

)
)
]
]

DIV performs a signed 32-bit integer division, and places the 32-bit quotient result in the destination register.

MOD performs a signed 32-bit integer division, and places the 32-bit remainder result in the destination register. The
remainder result has the same sign as the dividend.

DIVU performs an unsigned 32-bit integer division, and places the 32-bit quotient result in the destination register.

MODU performs an unsigned 32-bit integer division, and places the 32-bit remainder result in the destination regis-
ter.

DDIV performs a signed 64-bit integer division, and places the 64-bit quotient result in the destination register.

DMOD performs a signed 64-bit integer division, and places the 64-bit remainder result in the destination register.
The remainder result has the same sign as the dividend.

DDIVU performs an unsigned 64-bit integer division, and places the 64-bit quotient result in the destination register.
DMODU performs an unsigned 64-bit integer division, and places the 64-bit remainder result in the destination regis-
ter.

Restrictions:

If the divisor in GPR rt is zero, the result value is UNPREDICTABLE.

On a 64-bit CPU, the 32-bit signed divide (DIV) and modulo (MOD) instructions are UNPREDICTABLE if inputs
are not signed extended 32-bit integers.

Special provision is made for the inputs to unsigned 32-bit divide and modulo on a 64-bit CPU. Since many 32-bit
instructions sign extend 32 bits to 64 even for unsigned computation, properly sign extended numbers must be
accepted as input, and truncated to 32 bits, clearing bits 32-63. However, it is also desirable to accept zero extended
32-bit integers, with bits 32-63 all 0.

On a 64-bit CPU, DIVU and MODU are UNPREDICTABLE if their inputs are not zero or sign extended 32-bit inte-
gers.

On a 64-bit CPU, the 32-bit divide and modulo instructions, both signed and unsigned, sign extend the result as if it is
a 32-bit signed integer.

DDIV, DMOD, DDIVU, DMODU: Reserved Instruction exception if 64-bit instructions are not enabled.

Availability and Compatibility:
These instructions are introduced by and required as of Release 6.

Release 6 divide instructions have the same opcode mnemonic as the pre-Release 6 divide instructions (DIV, DIVU,
DDIV, DDIVU). The instruction encodings are different, as are the instruction semantics: the Release 6 instruction
produces only the quotient, whereas the pre-Release 6 instruction produces quotient and remainder in HI/LO registers
respectively, and separate modulo instructions are required to obtain the remainder.

The assembly syntax distinguishes the Release 6 from the pre-Release 6 divide instructions. For example, Release 6

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 221

DIV MOD DIVU MODU DDIV DMOD DDIVU DMODU DIV: Divide Words Signed MOD: Modulo Words

222

“DIV rd,rs, rt” specifies 3 register operands, versus pre-Release 6 “DIV rs, rt”, which has only two register
arguments, with the HI/LO registers implied. Some assemblers accept the pseudo-instruction syntax
“DIV rd,rs,rt” and expand it to do “DIV rs,rt;MFHI rd”. Phrases such as “DIV with GPR output” and
“DIV with HI/LO output” may be used when disambiguation is necessary.

Pre-Release 6 divide instructions that produce quotient and remainder in the HI/LO registers produce a Reserved
Instruction exception on Release 6. In the future, the instruction encoding may be reused for other instructions.

Programming Notes:

Because the divide and modulo instructions are defined to not trap if dividing by zero, it is safe to emit code that
checks for zero-divide after the divide or modulo instruction.

Operation

DDIV, DMOD, DDIVU, DMODU:

if not Are64bitOperationsEnabled then SignalException (ReservedInstruction) endif
if NotWordvValue (GPR[rs]) then UNPREDICTABLE endif
if NotWordValue (GPR[rt]) then UNPREDICTABLE endif

/* recommended implementation: ignore bits 32-63 for DIV, MOD, DIVU, MODU */

DIV, MOD:
sl <« signed word(GPR[rs])
s2 <« signed word(GPR[rt])
DIVU, MODU:
sl <« unsigned word(GPR[rs])
s2 <« unsigned word(GPR[rt])
DDIV, DMOD:
sl <« signed doubleword (GPR[rs])
s2 <« signed doubleword (GPR[rt])
DDIVU, DMODU:
sl < unsigned doubleword (GPR[rs])
s2 <« unsigned doubleword (GPR[rt])

DIV, DIVU, DDIV, DDIVU:
quotient <« sl div s2
MOD, MODU, DMOD, DMODU:
remainder <« sl mod s2

DIV: GPR [rd] <« sign extend.32(quotient)
MOD: GPR[rd] <« sign extend.32(remainder)
DIVU: GPR[rd] <« sign extend.32(quotient)
MODU: GPR[rd] <« sign extend.32(remainder)
DDIV: GPR[rd] <« quotient

DMOD: GPR[rd] « remainder

DDIVU: GPR[rd] <« quotient

DMODU: GPR[rd] < remainder

/* end of instruction */
where

function zero or sign extended.32(val)
if valuegy 3, = (value31)32 then return true
if valuegsy 35 = (0)32 then return true
return false

end function

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

Exceptions:
DIV, MOD, DIVU, MODU: No arithmetic exceptions occur. Division by zero produces an UNPREDICTABLE

result.
DDIV, DMOD, DDIVU, DMODU: Reserved Instruction.

MIPS® Architecture for Programmers Volume [I-B: microMIPS64™ Instruction Set, Revision 6.05 223

DMFCO0 Doubleword Move from Coprocessor 0

31 26 25 21 20 16 15 14 12 11 10 6 5 0
POOL32S f s 00 « DMFCO POOL 325xf
010110 00011 111100
6 5 5 2 3 5 6
Format: DMFCO rt, rs microMIPS64
DMFCO rt, rs, sel microMIPS64

Purpose: Doubleword Move from Coprocessor 0
To move the contents of a coprocessor O register to ageneral purpose register (GPR).

Description: GPR[rt] < CPR[0,rs,sell

The contents of the coprocessor O register are loaded into GPR rt. Note that not al coprocessor O registers support the
sel field. In those instances, the sel field must be zero.

Restrictions:

The results are UNDEFINED if coprocessor 0 does not contain a register as specified by rs and sel, or if the copro-
cessor O register specified by rd and sel is a 32-bit register.

Operation:

// ‘Width’ returns width (32/64) of data returned by CPR

if ((Width(CPR[O0,rs,sell) = 32) and (Configpz>=2)) then
dataword < CPR[O0,rs,sell]
GPR[rt] <« { %0000 0000 || dataword}

elseif ((Width(CPRI[O,rs,sel]) = 32) and (Configpg<2)) then
UNDEFINED

else

datadoubleword < CPR[0,rs,sel]
GPR[rt] <« datadoubleword
endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

224 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

DMFC1

Doubleword Move from Floating Point

31 26 25 21 20 16 15 14 13
POOL32F f fs 0 DMFC1 POOL 32Fxf
010101 00 10010000 111011
6 5 5 2 8 6
Format: DMFC1 rt,fs microMIPS64

Purpose: Doubleword Move from Floating Point

To move a doubleword from an FPR to a GPR.

Description: GPR[rt] ¢ FPR[fs]
The contents of FPR fs are loaded into GPR rt..

Restrictions:

Operation:

datadoubleword < ValueFPR(fs, UNINTERPRETED DOUBLEWORD)

GPR[rt] ¢ datadoubleword

Exceptions:

Coprocessor Unusable, Reserved Instruction

Historical Information:

For MIPS I11, the contents of GPR rt are undefined for the instruction immediately following DMFC1.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

225

DMFC2

226

Doubleword Move from Coprocessor 2

31 26 25 21 20 16 15 0
POOL32A . - DMFC2 POOL 32Axf
000000 P 0110110100 111100
6 5 5 10 6
Format: DMFC2 rt, rd microMIPS64
DMFC2, rt, rd, sel microMIPS64

The syntax shown above is an example using DMFCL1 as amodel. The specific syntax isimplementation dependent.

Purpose: Doubleword Move from Coprocessor 2
To move a doubleword from a coprocessor 2 register to a GPR.

Description: GPR[rt] ¢« CP2CPR[Impl]

The contents of the coprocessor 2 register denoted by the Impl field is loaded into GPR rt. The interpretation of the
Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

The results are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist, or if the coproces-
sor 2 register specified by rd and sel is a 32-bit register.

Operation:

datadoubleword ¢ CP2CPR[Impl]
GPR[rt] < datadoubleword

Exceptions:

Coprocessor Unusable, Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

DMTCO

Doubleword Move to Coprocessor 0

31 26 25 21 20 16 15 14 12 11 10
POOL32S f s 0 « DMTCO POOL 325xf
010110 00 01011 111100
6 5 5 2 3 5 6
Format: DMTCO rt, rs microMIPS64
DMTCO rt, rs, sel microMIPS64

Purpose: Doubleword Move to Coprocessor O

To move a doubleword from a GPR to a coprocessor O register.

Description: CPR[0,rs,sel] < GPR[rt]

The contents of GPR rt are loaded into the coprocessor 0 register specified in the rd and sel fields. Not all coprocessor

0 registers support the sel field. In those instances, the sel field must be zero.

Restrictions:

The results are UNDEFINED if coprocessor 0O does not contain a register as specified by rs and sel, or if the copro-
cessor O register specified by rd and sel is a 32-bit register.

Operation:

// ‘Width’ returns width (32/64)
if ((Width(CPR[O0,rs,sell)
dataword <- GPR[rt]s;.q

CPR[0,rs,sel] <- dataword
elseif ((Width(CPRI[O,rs,sell)

UNDEFINED
else

datadoubleword <-
CPR[0,rs,sel] <- datadoubleword

endif

Exceptions:

GPR [rt]

32)

Coprocessor Unusable, Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

32)

)

of data returned by CPR.

and (Configpp>=2) then

and (Configpgp<2)) then

227

DMTC1

228

Doubleword Move to Floating Point

31 26 25 21 20 16 15 14 13 0
POOL32F f fs 0 DMTC1 POOL 32Fxf
010101 00 10110000 111011
6 5 5 2 8 6
Format: DMTC1 rt, fs microMIPS64

Purpose: Doubleword Move to Floating Point

To copy adoubleword from a GPR to an FPR.

Description: FPR[fs] < GPR[rt]

The doubleword contents of GPR rt are placed into FPR fs.

Restrictions:

Operation:

datadoubleword < GPR[rtl]

StoreFPR (fs, UNINTERPRETED DOUBLEWORD, datadoubleword)

Exceptions:

Coprocessor Unusable, Reserved Instruction

Historical Information:

For MIPS 11, the contents of FPR fs are undefined for the instruction immediately following DMTCL.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

DMTC2

Doubleword Move to Coprocessor 2

31 26 25 21 20 16 15 0
POOL32A it Imol DMTC2 POOL 32Axf
000000 P 0111110100 000011
6 5 5 10 6
Format: DMTC2 rt, Impl microMIPS64
DMTC2 rt, Impl, sel microMIPS64

The syntax shown above is an example using DMTC1 asamodel. The specific syntax isimplementation dependent.

Purpose: Doubleword Move to Coprocessor 2
To move a doubleword from a GPR to a coprocessor 2 register.

Description: CP2CPR[Impl] ¢ GPR[rt]

The contents GPR rt are loaded into the coprocessor 2 register denoted by the Impl field. The interpretation of the
Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

The results are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist, or if the coproces-
sor 2 register specified by rd and sel is a 32-bit register.

Operation:

datadoubleword < GPR[rt]

CP2CPR [Impl] ¢« datadoubleword

Exceptions:

Coprocessor Unusable, Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

229

DROTR Doubleword Rotate Right

230

31 26 25 21 20 16 15 11 10 9 8 0
POOL32S 0 DROTR
rt rs sa
010110 00 011000000
6 5 5 5 2 9
Format: DROTR rt, rs, sa microMIPS64

Purpose: Doubleword Rotate Right
To execute alogical right-rotate of a doubleword by a fixed amount—o0 to 31 bits.

Description: GPR[rt] ¢ GPR[rs] x (right) sa

The doubleword contents of GPR rs are rotated right; the result is placed in GPR rt. The bit-rotate amount in the
range 0 to 31 is specified by sa.

Restrictions:
Operation:

s <0 || sa

GPR [rt] < GPRI[rslg.1. o || GPRIrsles o
Exceptions:

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

DROTR32

Doubleword Rotate Right Plus 32

31 26 25 21 20 16 15 1110 9 8 0
POOL32S it rs saminus32 0 DROTR32
010110 011001000
6 5 5 5 2 9

Format: DROTR32 rt, rs, sa

Purpose: Doubleword Rotate Right Plus 32
To execute alogical right-rotate of a doubleword by a fixed amount—32 to 63 bits

Description: GPR[rt] ¢ GPR[rs] x (right)

(saminus32+32)

microMIPS64

The 64-bit doubleword contents of GPR rs are rotated right; the result is placed in GPR rt. The bit-rotate amount in

the range 32 to 63 is specified by saminus32+32.

Restrictions:
Operation:
s <1 || sa /* 32+saminus32 */
GPR[rt] < GPRI[rslg.1. o || GPRIrtles o
Exceptions:

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

231

DROTRV

232

31

26 25

21 20

16 15

Doubleword Rotate Right Variable

POOL32S
010110

rt

rs

rd

DROTRV
011010000

6

5

Format: DROTRV rd, rt, rs

Purpose: Doubleword Rotate Right Variable

To execute alogical right-rotate of a doubleword by a variable number of bits

Description: GPR[rd] < GPR[rt] x (right) GPRI[rs]

The 64-bit doubleword contents of GPR rt are rotated right; the result is placed in GPR rd. The bit-rotate amount in
the range O to 63 is specified by the low-order 6 bitsin GPR rs.

Restrictions:

Operation:

S

GPR [rd]

Exceptions:

€« GPR[rsls
< GPRI[rtlgo; o

Reserved Instruction

|| GPRIrtles o

9

microMIPS64

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

DSBH Doubleword Swap Bytes Within Halfwords

31 26 25 21 20 16 15 6 5 0
POOL32S f s DSBH POOL 325xf
010110 0111101100 111100
6 5 5 10 6
Format: DSBH rt, rs microMIPS64

Purpose: Doubleword Swap Bytes Within Halfwords
To swap the bytes within each halfword of GPR rs and store the value into GPR rt.

Description: GPR[rt] < SwapBytesWithinHalfwords (GPR[rs])

Within each halfword of GPR rs the bytes are swapped and stored in GPR rt.

Restrictions:

In implementations Release 1 of the architecture, thisinstruction resulted in a Reserved Instruction exception.

Operation:
GPR[rt] < GPRIslss 4g || GPRIslgs. 56 || GPRISl3g. 32 || GPRISlgy. 40 ||
GPRI[sl,3. .16 || GPRISI3y 24 || GPRIsl; o || GPRIslis. g
Exceptions:

Reserved Instruction

Programming Notes:

The DSBH and DSHD instructions can be used to convert doubleword data of one endianness to the other endianness.

For example:
14 t0, 0(al) /* Read doubleword value */
dsbh tO0, tO /* Convert endiannes of the halfwords */
dshd tO0, toO /* Swap the halfwords within the doublewords */

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 233

DSHD Doubleword Swap Halfwords Within Doublewords

234

31 26 25 21 20 16 15 6 5 0
POOL32S f s DSHD POOL 325X f
010110 1111101100 111100
6 5 5 10 6
Format: DSHD rt, rs microMIPS64

Purpose: Doubleword Swap Halfwords Within Doublewords
To swap the halfwords of GPR rs and store the value into GPR rt.

Description: GPR[rt] ¢ SwapHalfwordsWithinDoublewords (GPR[rs])

The halfwords of GPR rs are swapped and stored in GPR rt.

Restrictions:

In implementations of Release 1 of the architecture, this instruction resulted in a Reserved Instruction exception.

Operation:

>GPR[rt] <« GPRIrsl;s o || GPRIrsls; 16 || GPRIrsl,; 35 || GPRIrsles ag

Exceptions:

Reserved Instruction

Programming Notes:

The DSBH and DSHD instructions can be used to convert doubleword data of one endianness to the other endianness.
For example:

14 to, 0(al) /* Read doubleword value */
dsbh tO0, tO /* Convert endiannes of the halfwords */
dshd t0, to /* Swap the halfwords within the doublewords */

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

DSLL

31 26 25

21 20

16 15

Doubleword Shift Left Logical

POOL32S
010110

rt

rs

DSRL
000000000

6

Format: DSLL rt, rs, sa

Purpose: Doubleword Shift Left Logical

5

To execute aleft-shift of a doubleword by afixed amount—oO0 to 31 bits

Description: GPR[rt] <« GPR[rs] << sa

9

microMIPS64

The 64-bit doubleword contents of GPR rs are shifted left, inserting zeros into the emptied bits; the result is placed in

GPR rt. The bit-shift amount in the range 0 to 31 is specified by sa.

Restrictions:

Operation:

s <0 || sa
GPR[rt] ¢ GPRIrs] (43_g).

Exceptions:

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

o] 0®

235

DSLL32 Doubleword Shift Left Logical Plus 32

236

31 26 25 21 20 16 15 11 10 9 8 0
POOL32S 0 DSLL32
rt rs sa
010110 00 000001000
6 5 5 5 2 9
Format: DSLL32 rt, rs, sa microMIPS64

Purpose: Doubleword Shift Left Logical Plus 32
To execute aleft-shift of a doubleword by a fixed anount—32 to 63 bits

Description: GPR[rt] <« GPR[rs] << (sa+32)

The 64-bit doubleword contents of GPR rs are shifted left, inserting zeros into the emptied bits; the result is placed in
GPR rt. The bit-shift amount in the range 0 to 31 is specified by sa.

Restrictions:
Operation:
s <1 || sa /* 32+sa */
GPR[rt] < GPRIrs] (53.¢)..0 || 0°
Exceptions:

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

DSLLV

31

26 25

21 20

16 15

Doubleword Shift Left Logical Variable

POOL32S
010110

rt

rs

rd

DSLLV
000010000

6

Format: DSLLV rd, rt, rs

Purpose: Doubleword Shift Left Logical Variable
To execute aleft-shift of a doubleword by a variable number of bits.

5

Description: GPR[rd] ¢ GPR[rt] << GPRI[rs]

9

microMIPS64

The 64-bit doubleword contents of GPR rt are shifted left, inserting zeros into the emptied bits; the result is placed in
GPR rd. The bit-shift amount in the range 0 to 63 is specified by the low-order 6 bitsin GPR rs.

Restrictions:

Operation:

S

GPR [rd]

Exceptions:

€« GPR[rsls

< GPR [rt] (63-8) ..

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

| o®

237

DSRA Doubleword Shift Right Arithmetic

238

31 26 25 21 20 16 15 11 10 9 8 0
POOL32S f s @ 0 DSRA
010110 00 010000000
6 5 5 5 2 9
Format: DSRA rt, rs, sa microMIPS64

Purpose: Doubleword Shift Right Arithmetic
To execute an arithmetic right-shift of a doubleword by a fixed amount—O0 to 31 hits.

Description: GPR[rt] < GPR[rs] >> sa (arithmetic)

The 64-bit doubleword contents of GPR rs are shifted right, duplicating the sign bit (63) into the emptied bits; the
result is placed in GPR rt. The bit-shift amount in the range 0 to 31 is specified by sa.

Restrictions:
Operation:

s <0 || sa

GPR[rt] < (GPRI[rslgs)® || GPRIrsles. o
Exceptions:

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

DSRA32

31 26 25 21 20 16 15 11 10
POOL32S f s DSRA32
010110 010000100
6 5 5 9
Format: DSRA32 rt, rs, sa

Purpose: Doubleword Shift Right Arithmetic Plus 32

To execute an arithmetic right-shift of a doubleword by a fixed amount—32 to 63 bits

Description: GPR[rt] < GPR[rs] >> (sa+32)

(arithmetic)

Doubleword Shift Right Arithmetic Plus 32

microMIPS64

The doubleword contents of GPR rs are shifted right, duplicating the sign bit (63) into the emptied bits; the result is

placed in GPR rt. The bit-shift amount in the range 32 to 63 is specified by sa+32.

Restrictions:

Operation:

S

GPR[rt]

Exceptions:

<1 || sa

/* 32+sa */

< (GPRIrslgs)® || GPRIrslgs. ¢

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

239

DSRAV

240

Doubleword Shift Right Arithmetic Variable

31 26 25 21 20 16 15 11 10
POOL32S f s d DSRAV
010110 010010000
6 5 5 5 9
Format: DSRAV rd, rt, rs

Purpose: Doubleword Shift Right Arithmetic Variable

To execute an arithmetic right-shift of a doubleword by a variable number of bits.

Description: GPR[rd] ¢ GPR[rt] >> GPRI[rs]

The doubleword contents of GPR rt are shifted right, duplicating the sign bit (63) into the emptied bits; the result is
placed in GPR rd. The bit-shift amount in the range 0 to 63 is specified by the low-order 6 bitsin GPR rs.

Restrictions:

Operation:

S

GPR [rd]

Exceptions:

€« GPR[rsls
< (GPRI[rtlgs)® || GPRIrtles. o

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

(arithmetic)

microMIPS64

DSRL Doubleword Shift Right Logical

31 26 25 21 20 16 15 11 10 9 8 0
POOL32S d f @ 0 DSRL
010110 00 001000000
6 5 5 5 2 9
Format: DSRL rt, rs, sa microMIPS64

Purpose: Doubleword Shift Right Logical
To execute alogical right-shift of adoubleword by a fixed amount—O0 to 31 bits.

Description: GPR[rt] < GPR[rs] >> sa (logical)

The doubleword contents of GPR rs are shifted right, inserting zeros into the emptied bits; the result is placed in
GPR rt. The bit-shift amount in the range 0 to 31 is specified by sa.

Restrictions:
Operation:

s <0 || sa

GPR[rt] « 0° || GPRIrslgs, ¢
Exceptions:

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 241

DSRL32 Doubleword Shift Right Logical Plus 32

31 26 25 21 20 16 15 11 10 9 8 0
POOL32S f s aminus32 0 DSRL32
010110 00 001001000
6 5 5 5 2 9
Format: DSRL32 rt, rs, sa microMIPS64

Purpose: Doubleword Shift Right Logical Plus 32
To execute alogical right-shift of a doubleword by afixed amount—32 to 63 bits

Description: GPR[rt] <« GPR[rs] >> (saminus32+32) (logical)

The 64-bit doubleword contents of GPR rs are shifted right, inserting zeros into the emptied bits; the result is placed
in GPR rt. The bit-shift amount in the range 32 to 63 is specified by saminus32+32.

Restrictions:

Operation:
s <1 || sa /* 32+saminus32 */
GPR[rt] < 0° || GPRIrsle;. o

Exceptions:

Reserved Instruction

242 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

DSRLV

31

26 25

21 20

16 15

Doubleword Shift Right Logical Variable

POOL32S
010110

rt

rs

rd

DSRLV
001010000

6

Format: DSRLV rd, rt, rs

5

Purpose: Doubleword Shift Right Logical Variable

To execute alogical right-shift of adoubleword by a variable number of bits

Description: GPR[rd] ¢ GPR[rt] >> GPRI[rs]

(logical)

9

microMIPS64

The 64-bit doubleword contents of GPR rt are shifted right, inserting zeros into the emptied bits; the result is placed
in GPR rd. The bit-shift amount in the range 0 to 63 is specified by the low-order 6 bitsin GPR rs.

Restrictions:

Operation:

S

GPR [rd]

Exceptions:

€« GPR[rsls
|| GPRIrtlgs o

« 0%

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

243

DSUB Doubleword Subtract

244

31 26 25 21 20 16 15 11 10 9 8 0
POOL32S f s d 0 DSUB
010110 110010000
6 5 5 5 2 9
Format: DSUB rd, rs, rt microMIPS64

Purpose: Doubleword Subtract
To subtract 64-bit integers; trap on overflow

Description: GPR[rd] ¢ GPR[rs] - GPR[rt]

The 64-bit doubleword value in GPR rt is subtracted from the 64-bit value in GPR rs to produce a 64-bit result. If the
subtraction results in 64-bit 2's complement arithmetic overflow, then the destination register is not modified and an
Integer Overflow exception occurs. If it does not overflow, the 64-bit result is placed into GPR rd.

Restrictions:

Operation:

temp ¢« (GPR[rs]gs||GPR[rs]) - (GPR[rtlgs;||GPR[rt])
if (tempg, # tempgs) then
SignalException (IntegerOverflow)
else
GPR[rd] € tempgs.
endif
Exceptions:

Integer Overflow, Reserved Instruction

Programming Notes:

DSUBU performs the same arithmetic operation but does not trap on overflow.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

DSUBU Doubleword Subtract Unsigned

31 26 25 21 20 16 15 11 10 9 8 0
POOL32S f s d 0 DSUBU
010110 00 111010000
6 5 5 5 2 9
Format: DSUBU rd, rs, rt microMIPS64

Purpose: Doubleword Subtract Unsigned
To subtract 64-bit integers

Description: GPR[rd] ¢ GPR[rs] - GPR[rt]

The 64-bit doubleword value in GPR rt is subtracted from the 64-bit value in GPR rs and the 64-bit arithmetic result
isplaced into GPR rd.

No Integer Overflow exception occurs under any circumstances.
Restrictions:

Operation: 64-bit processors

GPR[rd] < GPR[rs] - GPRI[rt]

Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 245

DVP Disable Virtual Processor

31 26 25 21 20 16 15 6 5 0
POOL32A " 0 DVP POOL32AXf
000000 00000 0001100101 111100
6 5 5 10 6
Format: DvP rt microMIPS Release 6

Purpose: Disable Virtual Processor

To disable all virtual processors in a physical core other than the virtual processor that issued the instruction.

Description: GPR [rt] ¢ VPControl ; VPControlprg ¢ 1

Disabling a virtual processor means that instruction fetch is terminated, and all outstanding instructions for the
affected virtual processor(s) must be complete before the DVP itself is allowed to retire. Any outstanding events such
as hardware instruction or data prefetch, or page-table walks must also be terminated.

The DVP instruction has implicit SYNC(stype=0) semantics but with respect to the other virtual processors in the
physical core.

After all other virtual processors have been disabled, VPControlp ;s is set. Prior to modification and if rt is non-
zero, sign-extended VPControl is written to GPR[rt].If DVP is specified without rt, then rt must be 0.

DVP may also take effect on a virtual processor that has executed a WAIT or a PAUSE instruction. If a virtual proces-
sor has executed a WAIT instruction, then it cannot resume execution on an interrupt until an EVP has been executed.
If the EVP is executed before the interrupt arrives, then the virtual processor resumes in a state as if the DVP had not
been executed, that is, it waits for the interrupt.

If a virtual processor has executed a PAUSE instruction, then it cannot resume execution until an EVP has been exe-
cuted, even if LLbit is cleared. If an EVP is executed before the LLbit is cleared, then the virtual processor resumes in
a state as if the DVP has not been executed, that is, it waits for the LLDbit to clear.

The execution of a DVP must be followed by the execution of an EVP. The execution of an EVP causes execution to
resume immediately—where applicable—on all other virtual processors, as if the DVP had not been executed. The
execution is completely restorable after the EVP. If an event occurs in between the DVP and EVP that renders state of
the virtual processor UNPREDICTABLE (such as power-gating), then the effect of EVP is UNPREDICTABLE.

DVP may only take effect if VPControlp;s=0. Otherwise it is treated as a NOP instruction.

If a virtual processor is disabled due to a DVP, then interrupts are also disabled for the virtual processor, that is, logi-
cally Status;z=0. Statusy for the target virtual processors though is not cleared though as software cannot
access state on the virtual processors that have been disabled. Similarly, deferred exceptions will not cause a disabled
virtual processor to be re-enabled for execution, at least until execution is re-enabled by the EVP instruction. The vir-
tual processor that executes the DVP, however, continues to be interruptible.

In an implementation, the ability of a virtual processor to execute instructions may also be under control external to
the physical core which contains the virtual processor. If disabled by DVP, a virtual processor must not resume fetch
in response to the assertion of this external signal to enable fetch. Conversely, if fetch is disabled by such external
control, then execution of EVP will not cause fetch to resume at a target virtual processor for which the control is
deasserted.

This instruction never executes speculatively. It must be the oldest unretired instruction to take effect.

This instruction is only available in Release 6 implementations. For implementations that do not support multi-
threading (ConTig5,,p=0), this instruction must be treated as a NOP instruction.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 246

DVP Disable Virtual Processor

In implementations prior to Release 6 of the architecture, this instruction resulted in a Reserved Instruction exception.

Operation:

The pseudo-code below assumes that the DVP is executed by virtual processor 0, while the target virtual processor is
numbered ‘n’, where n is each of all remaining virtual processors.

if (VPControlprg = 0)

// Pseudo-code in italics provides recommended action wrt other VPs
disable fetch(vpPn) {

if PAUSE (VPn) retires prior or at disable event

then VPn execution is not resumed if LLbit is cleared prior to EVP

}

disable interrupt (VPn) f{
if WAIT(VPn) retires prior or at disable event
then interrupts are ignored by VPn until EVP

}

// DVPO not retired until instructions for VPn completed
while (VPn outstanding instruction)

DVPO unretired
endwhile

endif

data ¢ VPControl
GPR[rt] ¢ sign extend(data)
VPControlprg < 1

Exceptions:

Coprocessor Unusable
Reserved Instruction (pre-Release 6 implementations)

Programming Notes:

DVP may disable execution in the target virtual processor regardless of the operating mode - kernel, supervisor, user.
Kernel software may also be in a critical region, or in a high-priority interrupt handler when the disable occurs. Since
the instruction is itself privileged, such events are considered acceptable.

Before executing an EVP in a DVP/EVP pair, software should first read vPControlpg, returned by DVP, to deter-
mine whether the virtual processors are already disabled. If so, the DVP/EVP sequence should be abandoned. This
step allows software to safely nest DVP/EVP pairs.

Privileged software may use DVP/EVP to disable virtual processors on a core, such as for the purpose of doing a
cache flush without interference from other processes in a system with multiple virtual processors or physical cores.

DVP (and EVP) may be used in other cases such as for power-savings or changing state that is applicable to all virtual
processors in a core, such as virtual processor scheduling priority, as described below:

11 t0 0(a0)

dvp // disable all other virtual processors
pause // wait for LLbit to clear

evp // enable all othe virtual processors

247 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

11 t0 0(a0)

dvp // disable all other virtual processors
<change core-wide state>

evp // enable all othe virtual processors

MIPS® Architecture for Programmers Volume [I-B: microMIPS64™ Instruction Set, Revision 6.05 248

EHB Execution Hazard Barrier
31 26 25 21 20 16 15 11 10 6 5 0
POOL32A 0 0 3 0 g&%ﬁ)
000000 00000 00000 00011 00000
6 5 5 5 5 6
Format: EHB microMIPS

249

Purpose: Execution Hazard Barrier

To stop instruction execution until all execution hazards have been cleared.

Description:
EHB is used to denote execution hazard barrier. The actual instruction is interpreted by the hardware as SLL 10, r0, 3.

This instruction alters the instruction issue behavior on a pipelined processor by stopping execution until all execu-
tion hazards have been cleared. Other than those that might be created as a consequence of setting Statuscyyq, there

are no execution hazards visible to an unprivileged program running in User Mode. All execution hazards created by
previous instructions are cleared for instructions executed immediately following the EHB. The EHB instruction does
not clear instruction hazards—such hazards are cleared by the JALR.HB, JR.HB, and ERET instructions.
Restrictions:

None

Operation:

ClearExecutionHazards ()

Exceptions:

None

Programming Notes:

In Release 2 implementations, this instruction resolves all execution hazards. On a superscalar processor, EHB alters
the instruction issue behavior in a manner identical to SSNOP. For backward compatibility with Release 1 implemen-
tations, the last of a sequence of SSNOPs can be replaced by an EHB. In Release 1 implementations, the EHB will be
treated as an SSNOP, thereby preserving the semantics of the sequence. In Release 2 implementations, replacing the
final SSNOP with an EHB should have no performance effect because a properly sized sequence of SSNOPs will
have already cleared the hazard. As EHB becomes the standard in MIPS implementations, the previous SSNOPs can
be removed, leaving only the EHB.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

El Enable Interrupts

31 26 25 21 20 16 15 6 5 0
POOL32A 0 EI POOL32AXS
000000 00000 s 0101011101 111100
6 5 5 10 6
Format: EI microMIPS
EI rs microMIPS

Purpose: Enable Interrupts

To return the previous value of the Status register and enable interrupts. If EI is specified without an argument, GPR
r0 is implied, which discards the previous value of the Status register.

Description: GPR[rt] < Status; Statusyg ¢« 1

The current value of the Status register is sign-extended and loaded into general register rt. The Interrupt Enable (IE)
bit in the Status register is then set.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction exception.

Operation:

data ¢ Status
GPR[rs] €« sign extend(data)
Statusg < 1

Exceptions:
Coprocessor Unusable
Reserved Instruction (Release 1 implementations)

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading Status into a GPR, set-
ting the |IE bit, and writing the result back to Status. Unlike the multiple instruction sequence, however, the EI
instruction cannot be aborted in the middle by an interrupt or exception.

This instruction creates an execution hazard between the change to the Status register and the point where the change
to the interrupt enable takes effect. This hazard is cleared by the EHB, JALR.HB, JR.HB, or ERET instructions. Soft-
ware must not assume that a fixed latency will clear the execution hazard.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 250

ERET Exception Return

31 26 25 16 15 6 5 0
POOL32A 0 ERET POOL32AXS
000000 0000000000 1111001101 111100
6 10 10 6
Format: ERET microMIPS

Purpose: Exception Return

To return from interrupt, exception, or error trap.

Description:

ERET clears execution and instruction hazards, conditionally restores SRSCtlcgg from SRSCitlpgg in a Release 2

implementation, and returns to the interrupted instruction at the completion of interrupt, exception, or error process-
ing. ERET does not execute the next instruction (that is, it has no delay slot).

Restrictions:

Pre-Release 6: The operation of the processor is UNDEFINED if an ERET is executed in the delay slot of a branch
or jump instruction. In Release 6, in the absence of delay/forbidden slots, this restriction does not apply.

An ERET placed between an LL and SC instruction will always cause the SC to fail.

ERET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the ERET returns.

In a Release 2 implementation, ERET does not restore SRSCtlqgg from SRSCllpgg if Statusggy = 1, or if Statusgg,.
= | because any exception that sets Statusgg to 1 (Reset, Soft Reset, NMI, or cache error) does not save SRSCltlcgg
in SRSCtlpgs. If software sets Statusgg to 1, it must be aware of the operation of an ERET that may be subse-
quently executed.

Operation:

if Statusgg;, = 1 then
temp ¢ ErrorEPC
Statusgg;, < 0
else
temp ¢ EPC
Statusgy, < 0
if (ArchitectureRevision() = 2) and (SRSCtlygg > 0) and (Statusggy = 0) then
SRSCtlegg € SRSCtlpgg
endif
endif
if IsMIPSl6Implemented() | (Config3igy > 0) then
PC « tempgz 1 || O
ISAMode < temp,
else
PC <« temp
endif
LLbit ¢« 0
ClearHazards ()

Exceptions:
Coprocessor Unusable Exception

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 251

ERETNC Exception Return No Clear

31 26 25 16 15 6 5 0
POOL32A 0 1 ERET POOL32AXS
000000 000000000 1111001101 111100
6 9 1 10 6
Format: ERETNC microMIPS Release 5

Purpose: Exception Return No Clear

To return from interrupt, exception, or error trap without clearing the LLbit.

Description:

ERETNC clears execution and instruction hazards, conditionally restores SRSCtlcgg from SRSCtlpgg when imple-

mented, and returns to the interrupted instruction at the completion of interrupt, exception, or error processing.
ERETNC does not execute the next instruction (i.e., it has no delay slot).

ERETNC is identical to ERET except that an ERETNC will not clear the LLbit that is set by execution of an LL
instruction, and thus when placed between an LL and SC sequence, will never cause the SC to fail.

An ERET must continue to be used by default in interrupt and exception processing handlers. The handler may have
accessed a synchronizable block of memory common to code that is atomically accessing the memory, and where the
code caused the exception or was interrupted. Similarly, a process context-swap must also continue to use an ERET in
order to avoid a possible false success on execution of SC in the restored context.

Multiprocessor systems with non-coherent cores (i.e., without hardware coherence snooping) should also continue to
use ERET, because it is the responsibility of software to maintain data coherence in the system.

An ERETNC is useful in cases where interrupt/exception handlers and kernel code involved in a process context-
swap can guarantee no interference in accessing synchronizable memory across different contexts. ERETNC can also
be used in an OS-level debugger to single-step through code for debug purposes, avoiding the false clearing of the
LLbit and thus failure of an LL and SC sequence in single-stepped code.

Software can detect the presence of ERETNC by reading Config5, | g .

Restrictions:

ERETNC implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes. (For Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream.) The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction in the PC to which the ERETNC returns.

Operation:

if Statusgg; = 1 then
temp ¢ ErrorEPC
Statusgg, < 0
else
temp ¢ EPC
Statusgy;, < 0
if (ArchitectureRevision() > 2) and (SRSCtlygg > 0) and (Statusggy = 0) then
SRSCtlegg ¢ SRSCtlpgg

endif

endif

if IsMIPSlé6Implemented () | (Config3;gy > 0) then
PC ¢ tempgy ; |[O
ISAMode < temp,

else

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 252

PC <« temp
endif
ClearHazards ()

Exceptions:
Coprocessor Unusable Exception

MIPS® Architecture for Programmers Volume [I-B: microMIPS64™ Instruction Set, Revision 6.05 253

EVP Enable Virtual Processor

31 26 25 21 20 16 15 6 5 0
POOL32A " 0 EVP POOL32AXf
000000 00000 0011100101 111100
6 5 5 10 6
Format: EVP rt microMIPS Release 6

Purpose: Enable Virtual Processor

To enable all virtual processors in a physical core other than the virtual processor that issued the instruction.

Description: GPR [rt] ¢ VPControl ; VPControlprg ¢« 0
Enabling a virtual processor means that instruction fetch is resumed.

After all other virtual processors have been enabled, VPControlp g is cleared. Prior to modification, if rt is non-
zero, sign-extended VPControl is written to GPR[rt].If EVP is specified without rt, then rt must be 0.

See the DVP instruction to understand the application of EVP in the context of WAIT/PAUSE/external-control
(“DVP” on page 246).

The execution of a DVP must be followed by the execution of an EVP. The execution of an EVP causes execution to
resume immediately, where applicable, on all other virtual processors, as if the DVP had not been executed, that is,
execution is completely restorable after the EVP. On the other hand, if an event occurs in between the DVP and EVP
that renders state of the virtual processor UNPREDICTABLE (such as power-gating), then the effect of EVP is
UNPREDICTABLE.

EVP may only take effect if VPControl ;;s~1. Otherwise it is treated as a NOP

This instruction never executes speculatively. It must be the oldest unretired instruction to take effect.

This instruction is only available in Release 6 implementations. For implementations that do not support multi-
threading (Config5,p=0), this instruction must be treated as a NOP instruction.

Restrictions:
If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations prior to Release 6 of the architecture, this instruction resulted in a Reserved Instruction exception.

Operation:

The pseudo-code below assumes that the EVP is executed by virtual processor 0, while the target virtual processor is
numbered ‘n’, where n is each of all remaining virtual processors.

if (VPControlprg = 1)

// Pseudo-code in italics provides recommended action wrt other VPs
enable fetch(VPn) {

if PAUSE (VPn) retires prior or at disable event

then VPn execution is not resumed if LLbit is cleared prior to EVP
}
enable interrupt (VPn) {

if WAIT(VPn) retires prior or at disable event

then interrupts are ignored by VPn until EVP

endif

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 254

EVP Enable Virtual Processor

data ¢« VPControl
GPR[rt] €« sign extend(data)
VPControlprg < O

Exceptions:

Coprocessor Unusable
Reserved Instruction (pre-Release 6 implementations)

Programming Notes:

Before executing an EVP in a DVP/EVP pair, software should first read vPControlpg, returned by DVP, to deter-
mine whether the virtual processors are already disabled. If so, the DVP/EVP sequence should be abandoned. This
step allows software to safely nest DVP/EVP pairs.

Privileged software may use DVP/EVP to disable virtual processors on a core, such as for the purpose of doing a
cache flush without interference from other processes in a system with multiple virtual processors or physical cores.

DVP (and EVP) may be used in other cases such as for power-savings or changing state that is applicable to all virtual
processors in a core, such as virtual processor scheduling priority, as described below:

11 t0 0(a0)

dvp // disable all other virtual processors
pause // wait for LLbit to clear

evp // enable all othe virtual processors
11 t0 0(a0)

dvp // disable all other virtual processors
<change core-wide state>

evp // enable all othe virtual processors

255 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

EXT

Extract Bit Field
31 26 25 21 20 16 15 1 10 6 5 0
POOL32A ot < msbd Isb EXT
000000 ! (size-1) (pos) 101100
6 5 5 5 5 6
Format: EXT rt, rs, pos, size microMIPS

Purpose: Extract Bit Field
To extract a bit field from GPR rs and store it right-justified into GPR 7.

Description: GPR[rt] ¢ ExtractField(GPR[rs], msbd, lsb)

The bit field starting at bit pos and extending for size bits is extracted from GPR rs and stored zero-extended and
right-justified in GPR 7. The assembly language arguments pos and size are converted by the assembler to the
instruction fields msbd (the most significant bit of the destination field in GPR 77), in instruction bits 15..11, and /sb
(least significant bit of the source field in GPR rs), in instruction bits 10..6, as follows:

msbd € size-1
1sb ¢« pos
The values of pos and size must satisfy all of the following relations:
0 £ pos < 32
<

0 size < 32
0 pos+size < 32

A

Figure 3-9 shows the symbolic operation of the instruction.

Figure 5.11 Operation of the EXT Instruction

pos+size pos+size-1 pos pos-1
31 Isb+msbd+1 Isb+msbd Isb Isb-1 0
DKL MNOP ™| QRST
GPRTS 32-(pos+size) size
Initial Value 32-(Isb+msbd+1) msbd+1
size size-1
31 msbd+1 msbd 0
0 MNOP
GPRtFinal 32-size size
Value 32-(msbd+1) msbd+1
Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction exception.
The operation is UNPREDICTABLE if /sb+msbd > 31.

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if ((1sb + msbd) > 31) or (NotWordValue (GPR[rs])) then
UNPREDICTABLE

MIPS® Architecture for Programmers Volume [I-B: microMIPS64™ Instruction Set, Revision 6.05 256

endif
temp < sign_extend(032'
GPR[rt] €« temp

(msbd+1)
MRS | GPRI[rs] pepas1sp. . 18b)

Exceptions:

Reserved Instruction

257 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05

FLOOR.L.fmt Floating Point Floor Convert to Long Fixed Point

31 26 25 22 21 20 16 15 14 13 6 5 0
POOL32F fi f 0 | fmt FLOOR.L POOL32FXf
010101 s 00001100 111011

6 5 5 1 1 3 6

Format: FLOOR.L.fmt
FLOOR.L.S ft, fs MIPS64, microMIPS
FLOOR.L.D ft, fs MIPS64, microMIPS

Purpose: Floating Point Floor Convert to Long Fixed Point

To convert an FP value to 64-bit fixed point, rounding down

Description: FPR[ft] < convert and round (FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded toward >
(rounding mode 3). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range 263 t0 263_1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is
taken immediately. Otherwise, a default result is written to ft. On cores with FCSRyan2008=0, the default result is

253_1. On cores with FCSRy ano00s=1, the default result is:
* 0 when the input value is NaN

« 291 when the input value is +00 or rounds to a number larger than 2631

« 2951 when the input value is —00 or rounds to a number smaller than 291

Restrictions:

The fields fs and ft must specify valid FPRs: fs for type fmt and ft for long fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (ft, L, ConvertFmt (ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 258

FLOOR.W.fmt Floating Point Floor Convert to Word Fixed Point

259

31 26 25 22 21 20 16 15 14 13 6 5 0
POOL32F ft f 0 | fint FLOOR.W POOL32FXf
010101 S 00101100 111011

6 5 5 1 1 8 6

Format: FLOOR.W.fmt
FLOOR.W.S ft, fs microMIPS
FLOOR.W.D ft, fs microMIPS

Purpose: Floating Point Floor Convert to Word Fixed Point

To convert an FP value to 32-bit fixed point, rounding down

Description: FPR[ft] < convert and round (FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format and rounded toward —>
(rounding mode 3). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range 230 231-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is
taken immediately. Otherwise, a default result is written to ft. On cores with FCSRyan2008=0, the default result is

2311, On cores with FCSRy ano00s=1, the default result is:

* 0 when the input value is NaN

« 231 when the input value is +00 or rounds to a number larger than 231

« 2311 when the input value is —00 or rounds to a number smaller than 23

Restrictions:

The fields fs and ft must specify valid FPRs: fs for type fmt and ft for word fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR (ft, W, ConvertFmt (ValueFPR(fsg, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

GINVI Global Invalidate Instruction Cache

31 26 25 21 20 16 15 13 12 11 10 6 5 0
POOL32A GINVI POOL32AXS
000000 00000 rs 011 00 00101 111100
6 5 5 3 2 5 6
Format: GINVI rs microMIPS Release 6

Purpose: Global Invalidate Instruction Cache

In a multi-processor system, fully invalidate all remote primary instruction-caches, or a specified single cache. The
local primary instruction cacheis also fully invalidated in the case where al the remote caches are to be invalidated.
Description: Invalidate All Primary Instruction_Caches (null or rs)

Fully invalidate all remote primary instruction caches, or a specified single cache, whether local or remote. The local
primary instruction cacheis aso fully invalidated in the case where al remote caches are to be invalidated.

If rsfield of the opcodeis O, then all caches are to be invalidated. ‘rs' should be specified as 0 in the assembly syntax
for this case. If rsfield of the opcode is not O, then a single cache that is specified by an implementation dependent
number of lower bits of GPRJ[rg] is invalidated, which may be the local cache itself.

Software based invalidation of the primary instruction cache is required in a system if coherency of the cache is not
maintained in hardware. While typically limited to the primary cache, the scope of the invalidation within a processor
is however implementation dependent - it should apply to al instruction caches within the cache hierarchy that
required software coherence maintenance.

Inlegacy systems, it is software's responsibility to keep the instruction cache state consistent through SY NCI instruc-
tions. Thisinstruction provides a method for bulk invalidating the instruction cachesin lieu of SYNCI.

Theinstruction’s action is considered complete when the both the local and remote cache invalidations are complete,
that is, the datain the cache is no longer available to the related instruction stream. Whether these invalidations are
complete can only be determined by the completion of a SYNC (stype=0x14) that follows the invalidate instruc-
tion(s). With the completion of the SYNC operation, all global invalidations preceding the SYNC in the program are
considered globally visible.

Whether the SYNC(stype=0x14) or the global invalidate itself cause synchronization of the instruction stream to new
state/context is implementation dependent.

A processor may send a global invalidate instruction remotely only when any preceding global invalidate for the pro-
gram has reached a global ordering point.

The GINVI has no instruction or execution hazard barrier semanticsin itself.

If theimplementation allows a cache line to be locked, i.e., not replaceable during afill, GINVI will not invalidate the
line. A cache line can be locked through the optional CACHE “Fetch and Lock” instruction.

See Programming Notes for programming constraints.

Restrictions:
If an implementation does not support the instruction, a Reserved | nstruction exception is caused.
If access to Coprocessor 0 is hot enabled, a Coprocessor Unusable Exception is signaled.

In asingle processor SOC, this instruction acts on the local instruction cache only.

Operation:

Local:
if (Configb5gp#2'blx)

MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05 260

Copyright © 2016 MIPS Technologies Inc. All rights reserved.

GINVI

261

Global Invalidate Instruction Cache

SignalException (ReservedInstruction) // if not implemented
break
endif
if IsCoprocessorEnabled(0) then
// Fully invalidate local instruction cache, if selected.
// Send invalidation message to other cores, if required.
else
SignalException (CoprocessorUnusable, 0)
endif

Remote:
// Fully invalidate remote instruction cache.

Exceptions:

Reserved Instruction, Coprocessor Unusable

Programming Notes:
For the local processor, the instruction stream is synchronized by an instruction hazard barrier such as JR.HB.

The instruction stream in the remote processor is synchronized with respect to the execution of GINVI once the
SYNC operation following GINVI completes.

The following sequence is recommended for use of GINVI.

ginvi /* fully-invalidate all caches*/
sync 0x14 /* Enforce completion - all instruction streams synchronized. */
jr.hb ra /* Clear instruction hazards*/

Implementation Notes:

None.

MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05

Copyright © 2016 MIPS Technologies Inc. All rights reserved.

GINVT Global Invalidate TLB

31 26 25 21 20 16 15 13 12 11 10 9 8 6 5 0
POOL32A GINVT POOL32AXf
000000 00000 s 0L 17y | pe | 101 111100
6 5 5 3 2 2 3 6
Format: GINVT rs, type microMIPS Release 6

Purpose: Global Invalidate TLB
In amulti-processor system, invalidate translations of remote TLBs and local TLB.

Description: Invalidate TLB(GPR[rs], MemoryMaplD)

Invalidate a TLB in multiple ways - entire TLB, by Virtual Address and MemoryMapID, by MemoryMaplID or Vir-
tual Address. The Virtual Address is obtained from GPR[rs]. The MemoryMapID is derived from CPO
MemoryMaplID. The virtual address is associated with a specific Memory Map identified by MemoryMapID.

The virtual address within GPR[rg] is aligned to twice the size of the minimum page size of 4KB i.e,, it is equivalent
to EntryHiypyy: bit 13 of the virtual address is aligned to bit 13 of GPR([rg]. If the virtual address is not required,
such as in the case of invalidate All or by MemoryMaplD, then ‘rs' should be specified as 0 in the assembly syntax
but is otherwise ignored.

The MemoryMaplD is areplacement for EntryHi 55;p. The MemoryMapl D is an implementation-dependent num-
ber of bits that must be larger than the existing EntryHi zgyp (10-bitsincluding EntryHizgypx). The purpose of

alarger tag isto be able to uniquely identify processesin the system. A 16-bit MemoryMapl D for example will iden-
tify 64K Memory Maps, while the current 8-bit ASID only identifies 256, and is thus subject to frequent recycling.
An implementation with MemoryMapl D is designed to be backward compatible with software that uses EntryHi 5_

s1p- See CPOMemoryMapID.
Table 5.1 specifies the different types of invalidates supported as a function of the “type” field of the instruction.

Table 5.1 Types of Global TLB Invalidates

Encoding of
“type” field Definition
00 Invalidate entire TLB
01 Invalidate by VA (MemoryMaplD is globalized)
10 Invalidate by MemoryMapl D
11 Invalidate by VA and MemoryMaplD.

With reference to Table 5.1, if the Global bitin a TLB entry is set, then MemoryMaplD comparison isignored by the
operation.

Theinstruction is considered complete when the local and remote invalidations are compl ete. Whether these invalida
tions are complete can only be determined by the completion of a SYNC (stype=0x14) that follows the invalidate
instruction(s). With the completion of the SYNC operation, all invalidations of this type preceding the SYNC in the
program are considered globally visible.

Whether the SYNC(stype=0x14) or the global invalidate itself cause synchronization of the instruction stream to new
state/context is implementation dependent.

A GINVT based invalidation is complete, whether local or remote, when the following has occurred: the TLB is
invalidated of matching entries, and al instructions in the instruction stream after the point of completion can only
access the new context.

MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05 262

Copyright © 2016 MIPS Technologies Inc. All rights reserved.

GINVT Global Invalidate TLB

263

A processor may send aglobal invalidate instruction remotely only when any preceding global invalidate for the pro-
gram has reached a global ordering point.

GINVT has no instruction or execution hazard barrier ssmanticsin itself.

A GINVT operation that is specified to invalidate all entries will only invalidate non-wired entries. Other GINVT
operations will invalidate wired entries on a match.

Restrictions:

If an implementation does not support the instruction, or use of MemoryMapID is disabled, then a Reserved Instruc-
tion exception is caused.

If access to Coprocessor O is not enabled, a Coprocessor Unusable exception is signaled.
In asingle processor SOC, thisinstruction acts on the local TLB only.

Operation:

Local:
if (Configbgr#2'b1l) then
SignalException (ReservedInstruction, O0)
break
endif
if IsCoprocessorEnabled(0) then
if (Config5y; = 1)
// generate control from instruction encoding.

invAll <« (ginvt[type] = 0Db00)
invVA <« (ginvt [type] = 0bO01)
invMMid <« (ginvt[type] = 0bl0)
invVAMMid <« (ginvt[type] = 0bl1l)

// generate data; how data is driven when unsupported is imp-dep.
// Format of GPR[rs] equals CP0 EntryHi.

InvMsQypys < GPRITs]ypnomsb. .13 // VPN2msb is imp-dep in MIPS64
InvMsgg < GPR[rslgs.46o // R same as CPO EntryLo.R
InvMsgyuig < MemoryMaplD // imp-dep # of bits

// Broadcast invalidation message to other cores.
InvalidateTLB (InvMsgypyy, InVMsgy, InvMsgyyig, invAll, invVAMMid, invMMid, invVA)
else // if not implemented, MMid disabled
SignalException (ReservedInstruction)
endif
else
SignalException (CoprocessorUnusable, 0)
endif

Remote:
// Repeat in all remote TLBs
InvalidateTLB (InvMsgypy,, InvMsgy, InvMsgyyig, invAll, invVAMMid, invMMid, invVA)

function InvalidateTLB (InvMsQypyy, INVMsgy, INVMsgyyiq, invAll, invVAMMid, invMMid, invVA)
// "Mask" is equivalent to CP0O PageMask.
// "@" is equivalent to the Global bit in CP0O EntryLoO/1.
// "R" is equivalent to the R bit in CP0 EntryHi.
for i in 0..TLBEntries-1
// Wired entries are excluded.

VAMatch <« (((TLB[ilypys, and not TLB[i]ysgx) = (INvMsgypy, and not
TLB[i]lyask)) and (TLB[i]lg = InvMsgg))
MMidMatch <« (TLB[ilywig = InvMsQumig)

if ((invAll and (i>CPo.Wired.Wired)) or // do not invalidate Wired

MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05

Copyright © 2016 MIPS Technologies Inc. All rights reserved.

GINVT Global Invalidate TLB

(VAMatch and ((TLB[ilg = 1) or MMidMatch) and invVAMMid) or
(VAMatch and invVA) or
(MMidMatch and (TLB[i]g# 1) and invMMid)) then
TLB[1i]lgy va1ig < O // where HW Valid is the entry valid bit
endif B
endfor
endfunction

Exceptions:

Reserved Instruction, Coprocessor Unusable

Programming Notes:

Since CPO MemoryMaplD sources the value of MemoryMapl D of the currently running process, the kernel must save/
restore MemoryMapID appropriately before it modifiesit for the invalidation operation. Between the save and restore,
it must utilize unmapped addresses.

An MTCO that modifies MemoryMapID must be followed by an EHB to make this value visible to a subsequent
GINVT. Where multiple GINVTs are used prior to a single SYNC (stype=0x14), each may use a different value of
MemoryMapID.

For the local processor, the instruction stream is synchronized to the new trandglation context (where applicable) by an
instruction hazard barrier such as JR.HB.

The instruction stream in the remote processor is synchronized with respect to the execution of GINVT once the
SYNC operation completes.

The following sequence is recommended for use of GINVT.

mtcO0 0, CO_PWCtl /* disable Page Walker,where applicable;implementation-dependent*/

ehb /* Clear execution hazards to prevent speculative walks*/
ginvt rl, type /* Invalidate TLB(s) */

sync 0x14 /* Enforce completion */

jr.hb ra /* Clear instruction hazards */

Whether the hardware page table walker, if implemented, needs to be disabled as shown above, isimplementation
dependent. It is recommended that hardware take the steps to locally disable the hardware page table walker to main-
tain TLB consistency, asit would for remote TLBs.

Software must take into account a system that may have potentially varying widths of MemoryMapID . While not rec-
ommended, different processors may have different implemented or programmed widths. Further, the interface
between processors may support yet another width. If thisisthe case, then software responsible for global invalidates
should be run on the processor with maximum width. Software must zero-fill any bits that are unused by a target.
Software should also be able to rely on the implementation zero-filling bits where widths increase across any inter-
face.

If an intermediate interface between source and target truncates the width of MemoryMapID, then software could
address this limitation through various means: It could restrict the use of MemoryMapID to the interface width, it
could program MemoryMaplD with the expectation that over-invalidation may occur, or it should default to legacy
means of invalidating the caches to prevent unreliable system behavior.

MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05 264

Copyright © 2016 MIPS Technologies Inc. All rights reserved.

INS Insert Bit Field
31 26 25 21 20 16 15 1 10 6 5 0
POOL32A ot < msbd Isb INS
000000 ! (pos+size-1) (pos) 001100
6 5 5 5 5 6
Format: INS rt, rs, pos, size microMIPS
Purpose: Insert Bit Field
To merge a right-justified bit field from GPR rs into a specified field in GPR 77.
Description: GPR[rt] ¢ InsertField(GPR[rt], GPR[rs], msb, 1lsb)
The right-most size bits from GPR s are merged into the value from GPR 77 starting at bit position pos. The result is
placed back in GPR 7. The assembly language arguments pos and size are converted by the assembler to the instruc-
tion fields msb (the most significant bit of the field), in instruction bits 15..11, and /sb (least significant bit of the
field), in instruction bits 10..6, as follows:
msb ¢« pos+size-1
1sb ¢« pos
The values of pos and size must satisfy all of the following relations:
0 £ pos < 32
0 < size < 32
0 < pos+size < 32
Figure 3-10 shows the symbolic operation of the instruction.
Figure 5.12 Operation of the INS Instruction
size size-1
31 msb-Isb+1 msb-Isb 0
GPRTs ABCD / EFGH
32-size size
32-(msb-Isb+1) msb-isb+1
post+size postsize-1 pos pos-1
31 msb+1 msb Isb Isb-1 0
/UKL MNOP / / QRST
GPR 1t 32-(pos+size) size pos
Initial Value 32-(msb+1) msb-Isb+1 Isb
pos+size pos+size-1 pos pos-1
31 msb+1 msb Isb Isb-1 0
UKL EFGH QRST
GPRtFinal 32-(pos+size) size pos
Value 32-(msb+1) msb-isb+1 Isb
Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction exception.

265

MIPS® Architecture for Programmers Volume II-B: microMIPS64™ |nstruction Set, Revision 6.05

The operation is UNPREDICTABLE if Isb > msb.

If either GPR rs or GPR rt does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the oper-
ation is UNPREDICTABLE.

Operation:
if (1sb > msb) or (NotWordvValue (GPR[rs])) or (NotWordValue (GPR[rt]))) then
UNPREDICTABLE
endif
GPR[rt] <« sign extend(GPRITrtls;. mep«1 || GPRITSIpep 1ep..0 || GPRITEIign 1. o)
Exceptions:

Reserved Instruction

MIPS® Architecture for Programmers Volume [I-B: microMIPS64™ Instruction Set, Revision 6.05 266

JALRC Jump and Link Register Compact

267

31 26 25 21 20 16 15 6 5 0
POOL32A " c JALRC POOL32AXf
000000 s 0000111100 111100
6 5 5 10 6
Format: JALRC rs (rt = 31 implied) microMIPS Release 6
JALRC rt, rs microMIPS Release 6

Purpose: Jump and Link Register Compact

To execute a procedure call to an instruction address in a register

Description: GPR[rt] ¢ return addr, PC ¢ GPRI[rs]

Place the return address link in GPR rt. The return link is the address of the first instruction following the branch,
where execution continues after a procedure call.

For processors that do not implement the MIPS64 ISA:

* Jump to the effective target address in GPR rs. Bit 0 of GPR rs is interpreted as the target ISA Mode: if this bit
is 0, signal an Address Error exception when the target instruction is fetched because this target ISA Mode is not
supported. Otherwise, set bit 0 of the target address to zero, and fetch the instruction.

For processors that do implement the MIPS64 ISA:

« Jump to the effective target address in GPR rs. Set the ISA Mode bit to the value in GPR rs bit 0. Set bit 0 of the
target address to zero. If the target ISA Mode bit is 0 and the target address is not 4-byte aligned, an Address
Error exception will occur when the target instruction is fetched.

Compact jumps do not have delay slots. The instruction after the jump is NOT executed when the jump is executed.

Restrictions:

Restrictions Related to Multiple Instruction Sets: This instruction can change the active instruction set, if more than
one instruction set is implemented.

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS and if the ISAMode bit of the target is MIPS (bit 0 of GPR rs is 0) and
address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruc-
tion.

For processors that do not implement MIPS ISA, if the intended target ISAMode is MIPS (bit 0 of GPR rs is zero), an
Address Error exception occurs when the jump target is fetched as an instruction.

Any instruction, including a branch or jump, may immediately follow a branch or jump; that is, delay slot restrictions
do not apply in Release 6.

Availability and Compatibility:

Release 6 maps JR and JR.HB to JALRC and JALRC.HB with rt = 0:

Release 6 assemblers should accept the JR and JR.HB mnemonics, mapping them to the Release 6 instruction encod-
ings.

Operation:

temp ¢ GPR([rs]

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

GPR[rt] < PC + 4
if (Config3;gy = 1) then

PC <« temp
else
PC < tempgprren-1..1 || O
ISAMode ¢ temp,
endif
Exceptions:
None

Programming Notes:

This jump-and-link register instruction can select a register for the return link; other link instructions use GPR 31.
The default register for GPR rd, if omitted in the assembly language instruction, is GPR 31.

MIPS® Architecture for Programmers Volume [I-B: microMIPS64™ Instruction Set, Revision 6.05 268

JALRC.HB Jump and Link Register Compact with Hazard Barrier

269

31 26 25 21 20 16 15 6 5 0
POOL32A " c JALRC.HB POOL32AXf
000000 s 0001111100 111100
6 5 5 10 6
Format: JALRC.HB rs (rt = 31 implied) microMIPS Release 6
JALRC.HB rt, rs microMIPS Release 6

Purpose: Jump and Link Register Compact with Hazard Barrier

To execute a procedure call to an instruction address in a register and clear all execution and instruction hazards

Description: GPR([rt] ¢ return addr, PC ¢« GPR[rs], clear execution and instruction hazards

Place the return address link in GPR rt. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

For processors that do not implement the MIPS64 1SA:

* Jump to the effective target address in GPR rs. Bit 0 of GPR rs is interpreted as the target ISA Mode: if this bit
is 0, signal an Address Error exception when the target instruction is fetched because this target ISA Mode is not
supported. Otherwise, set bit 0 of the target address to zero, and fetch the instruction.

For processors that do implement the MIPS64 ISA:

* Jump to the effective target address in GPR rs. Set the ISA Mode bit to the value in GPR rs bit 0. Set bit 0 of the
target address to zero. If the target ISA Mode bit is 0 and the target address is not 4-byte aligned, an Address
Error exception will occur when the target instruction is fetched.

JALRC.HB implements a software barrier that resolves all execution and instruction hazards created by Coprocessor
0 state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolv-
ing instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the JALRC.HB instruction jumps. An equivalent
barrier is also implemented by the ERET instruction, but that instruction is only available if access to Coprocessor 0
is enabled, whereas JALRC.HB is legal in all operating modes.

This instruction clears both execution and instruction hazards. Refer to the EHB instruction description for the
method of clearing execution hazards alone.

Compact jumps do not have delay slots. The instruction after the jump is NOT executed when the jump is executed.

Restrictions:

After modifying an instruction stream mapping or writing to the instruction stream, execution of those instructions
has UNPREDICTABLE behavior until the instruction hazard has been cleared with JALRC.HB, JALRSC.HB,
JR.HB, ERET, or DERET. Further, the operation is UNPREDICTABLE if the mapping of the current instruction
stream is modified.

Restrictions Related to Multiple Instruction Sets: This instruction can change the active instruction set, if more than
one instruction set is implemented.

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS and if the ISAMode bit of the target address is MIPS (bit 0 of GPR rs is 0)
and address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an
instruction.

For processors that do not implement MIPS ISA, if the intended target ISAMode is MIPS (bit 0 of GPR rs is zero), an

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

JALRC.HB Jump and Link Register Compact with Hazard Barrier

Address Error exception occurs when the jump target is fetched as an instruction.

Any instruction, including a branch or jump, may immediately follow a branch or jump; that is, delay slot restrictions
do not apply in Release 6.

Availability and Compatibility:
Release 6 maps JR and JR.HB to JALRC and JALRC.HB with rt=0:

Release 6 assemblers should accept the JR and JR.HB mnemonics, mapping them to the Release 6 instruction encod-
ings.

Operation:

temp € GPR[rs]
GPR[rt] <« PC + 4
if (Config3igy = 1) then
PC <« temp
else

PC < tempgprren-1..1 || O
ISAMode < temp,

endif

ClearHazards ()

Exceptions:

None

Programming Notes:

This branch-and-link instruction can select a register for the return link; other link instructions use GPR 31. The
default register for GPR rt, if omitted in the assembly language instruction, is GPR 31.

Release 6 JR.HB rs is implemented as JALRC.HB rO0, rs. For example, as JALRC . HB with the destination set
to the zero register, r0.

This instruction implements the final step in clearing execution and instruction hazards before execution continues. A
hazard is created when a Coprocessor 0 or TLB write affects execution or the mapping of the instruction stream, or
after a write to the instruction stream. When such a situation exists, software must explicitly indicate to hardware that
the hazard should be cleared. Execution hazards alone can be cleared with the EHB instruction. Instruction hazards
can only be cleared with a JR.HB, JALRC.HB, or ERET instruction. These instructions cause hardware to clear the
hazard before the instruction at the target of the jump is fetched. Note that because these instructions are encoded as
jumps, the process of clearing an instruction hazard can often be included as part of a call (JALR) or return (JR)
sequence, by simply replacing the original instructions with the HB equivalent.

Example: Clearing hazards due to an ASID change

/*
* Code used to modify ASID and call a routine with the new
* mapping established.
*
* a0 = New ASID to establish
* al = Address of the routine to call
*/
mfcOo v0, CO_EntryHi /* Read current ASID */
11 vl, ~M_EntryHiASID /* Get negative mask for field */
and v0, v0, vl /* Clear out current ASID value */
or v0, vO0, a0 /* OR in new ASID value */
mtcO v0, CO_EntryHi /* Rewrite EntryHi with new ASID */
jalrc.hb al /* Call routine, clearing the hazard */

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 270

271 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05

JIALC Jump Indexed and Link, Compact

31 26 25 21 20 16 15 0
POP50 JALC
101000 00000 it offset
6 5 5 16
Format: JIALC rt, offset microMIPS32 Release 6

Purpose: Jump Indexed and Link, Compact

Description: GPR[31] « PC+4, PC <« (GPR[rt] + sign extend(offset))

The jump target is formed by sign extending the offset field of the instruction and adding it to the contents of GPR
rt.

The offset is NOT shifted, that is, each bit of the offset is added to the corresponding bit of the GPR.

Places the return address link in GPR 31. The return link is the address of the following instruction, where execution
continues after a procedure call returns. Compact jumps do not have delay slots. The instruction after the jump is
NOT executed when the jump is executed.

For processors that do not implement the MIPS64 ISA:

* Jump to the effective target address in GPR rs. Bit 0 of GPR rs is interpreted as the target ISA Mode: if this bit
is 0, signal an Address Error exception when the target instruction is fetched because this target ISA Mode is not
supported. Otherwise, set bit 0 of the target address to zero, and fetch the instruction.

For processors that do implement the MIPS64 ISA:

* Jump to the effective target address in GPR rs. Set the ISA Mode bit to the value in GPR rs bit 0. Set bit 0 of the
target address to zero. If the target ISA Mode bit is 0 and the target address is not 4-byte aligned, an Address
Error exception will occur when the target instruction is fetched.

Compact jumps do not have delay slots. The instruction after the jump is NOT executed when the jump is executed.

Restrictions:

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors that implement MIPS and if the ISAMode bit of the target is MIPS (bit 0 of GPR rs is 0) and address
bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruction.

For processors that do not implement MIPS ISA, if the intended target ISAMode is MIPS (bit 0 of GPR rs is zero), an
Address Error exception occurs when the jump target is fetched as an instruction.

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.
Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Exceptions:

None

Operation:

temp <« GPR[rt] + sign extend(offset)
GPR[31] « PC + 4
if (Config3igy = 1) then

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 272

PC <« temp

else
PC « (tempgprren-1..1 || 0)
ISAMode <« tempg

endif

Programming Notes:

JIALC does NOT shift the offset before adding it the register. This can be used to eliminate tags in the least signifi-
cant bits that would otherwise produce misalignment. It also allows JIALC to be used as a substitute for the JALX
instruction, removed in Release 6, where the lower bits of the target PC, formed by the addition of GPR[rt] and the
unshifted offset, specify the target ISAmode.

273 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05

JIC Jump Indexed, Compact

31 26 25 21 20 16 15 0
POP40 it
100000 00000 it offset
6 5 5 16
Format: JIC rt, offset microMIPS32 Release 6

Purpose: Jump Indexed, Compact

Description: PC « (GPR[rt] + sign extend(offset))

The branch target is formed by sign extending the offset field of the instruction and adding it to the contents of GPR
rt.

The offset is NOT shifted, that is, each bit of the offset is added to the corresponding bit of the GPR.
For processors that do not implement the MIPS64 1SA:

* Jump to the effective target address in GPR rs. Bit 0 of GPR rs is interpreted as the target ISA Mode: if this bit
is 0, signal an Address Error exception when the target instruction is fetched because this target ISA Mode is not
supported. Otherwise, set bit 0 of the target address to zero, and fetch the instruction.

For processors that do implement the MIPS64 I1SA:

* Jump to the effective target address in GPR rs. Set the ISA Mode bit to the value in GPR rs bit 0. Set bit 0 of the
target address to zero. If the target ISA Mode bit is 0 and the target address is not 4-byte aligned, an Address
Error exception will occur when the target instruction is fetched.

Compact jumps do not have a delay slot. The instruction after the jump is NOT executed when the jump is executed.

Restrictions:

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors that implement MIPS64 and if the ISAMode bit of the target is MIPS64 (bit 0 of GPR rs is 0) and
address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruc-
tion.

For processors that do not implement MIPS64 ISA, if the intended target ISAMode is MIPS64 (bit 0 of GPR rs is
zero), an Address Error exception occurs when the jump target is fetched as an instruction.

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.
Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Exceptions:

None

Operation:

temp <« GPR[rt] + sign_extend(offset)
if (Config3igy = 1) then
PC <« temp
else
PC « (tempgppren-1..1 || 0)

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 274

ISAMode <« temp,
endif

Programming Notes:

JIC does NOT shift the offset before adding it the register. This can be used to eliminate tags in the least significant
bits that would otherwise produce misalignment. It also allows JIALC to be used as a substitute for the JALX instruc-
tion, removed in Release 6, where the lower bits of the target PC, formed by the addition of GPR[rt] and the unshifted
offset, specify the target ISAmode.

275 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05

LB

31

26 25

21 20

16 15

Load Byte

LB32
000111

rt

base

offset

6

Format: 1B rt,

Purpose: Load Byte

5

offset (base)

To load a byte from memory as a signed value.

Description: GPR[rt] ¢ memory [GPR[base] + offset]

16

microMIPS

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, sign-extended,
and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

None

Operation:

vAddr ¢ sign extend(offset)
< AddressTranslation (vAddr,
(pAddr, , xor ReverseEndian®)

(pAddr,

CCA)

pPAddr < pAddrpgrgp-1..3 ||

memdoubleword ¢ LoadMemory

+ GPR [base]

(CCA, BYTE, pAddr,

byte ¢« vAddr, , xor BigEndianCPU?

GPR[rt] < sign_extend (memdoubleword;, g«pyte. . g+byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

DATA, LOAD)

DATA)

276

LBE Load Byte EVA
31 26 25 21 20 16 15 12 11 9 8 0
POOL32C LD-EVA LBE
011000 it base 0110 100 offset
6 5 5 2 3 9
Format: LBE rt, offset (base) microMIPS

277

Purpose: Load Byte EVA

To load a byte as a signed value from user mode virtual address space when executing in kernel mode.

Description: GPR[rt] ¢ memory [GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, sign-extended,
and placed in GPR rt. The 9-bit signed offset is added to the contents of GPR base to form the effective address.

The LBE instruction functions the same as the LB instruction, except that address translation is performed using the
user mode virtual address space mapping in the TLB when accessing an address within a memory segment config-
ured to use the MUSUK access mode and executing in kernel mode. Memory segments using UUSK or MUSK
access modes are also accessible. Refer to Volume III, Enhanced Virtual Addressing section for additional informa-
tion.

Implementation of this instruction is specified by the Config5g, field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and accessing an address within a segment configured using
UUSK, MUSK or MUSUK access mode.

Operation:

vAddr ¢ sign_extend(offset) + GPR[base]

(pAddr, CCA) < AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢ pAddrpgrze.1 3 || (pAddr, , xor ReverseEndian®)
memdoubleword ¢ LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ¢ vAddr, , xor BigEndianCPU?

GPR[rt] ¢ sign_extend (memdoublewordy,gspyte..s*byte)

Exceptions:
TLB Refill, TLB Invalid

Bus Error, Address Error, Watch, Reserved Instruction, Coprocessor Unusable

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

LBU

31

26 25

21 20

16 15

Load Byte Unsigned

LBU32
000101

rt

base

offset

6

Format: L1LBU rt,

Purpose: Load Byte Unsigned

5

offset (base)

To load a byte from memory as an unsigned value

Description: GPR[rt] ¢ memory [GPR[base] + offset]

16

microMIPS

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, zero-extended,
and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

None

Operation:

vAddr ¢ sign extend(offset)
< AddressTranslation (vAddr,
(pAddr, , xor ReverseEndian®)

(pAddr,

CCA)

pPAddr < pAddrpgrgp-1..3 ||

memdoubleword ¢ LoadMemory

+ GPR [base]

(CCA, BYTE, pAddr,

byte ¢« vAddr, , xor BigEndianCPU?

GPR[rt] <« zero_extend(memdoubleword7+8*byte__g*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

DATA, LOAD)

DATA)

278

LBUE Load Byte Unsigned EVA
31 26 25 21 20 16 15 12 11 9 8 0
POOL32C LD-EVA LBUE
011000 nt base 0110 000 offset
6 5 5 4 3 9
Format: LBUE rt, offset (base) microMIPS

279

Purpose: Load Byte Unsigned EVA

To load a byte as an unsigned value from user mode virtual address space when executing in kernel mode.

Description: GPR[rt] ¢ memory [GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, zero-extended,
and placed in GPR rt. The 9-bit signed offset is added to the contents of GPR base to form the effective address.

The LBUE instruction functions the same as the LBU instruction, except that address translation is performed using
the user mode virtual address space mapping in the TLB when accessing an address within a memory segment con-
figured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5g, field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and accessing an address within a segment configured using
UUSK, MUSK or MUSUK access mode.

Operation:

vAddr ¢ sign_extend(offset) + GPR[base]

(pAddr, CCA) < AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢ pAddrpgrze.1 3 || (pAddr, , xor ReverseEndian®)
memdoubleword ¢ LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ¢ vAddr, , xor BigEndianCPU?

GPR[rt] ¢ zero_extend (memdoublewordy,gspyte. .s*byte)

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch, Reserved Instruction, Coprocessor Unusable

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

LD

31 26 25

21 20

16 15

Load Doubleword

LD32
110111

rt

base

offset

6

5

Format: 1D rt, offset (base)

Purpose: Load Doubleword

To load a doubleword from memory

Description: GPR[rt] ¢ memory[GPR[base] + offset]

16

microMIPS64

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

Pre-Release 6: The effective address must be naturally-aligned. If any of the 3 least-significant bits of the addressis
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-

tion dependent.

Operation:

vAddr ¢ sign extend(offset)

(pAddr, cCcCA)

memdoubleword ¢ LoadMemory

GPR[rt] < memdoubleword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Reserved | nstruction, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

+ GPR [base]

< AddressTranslation (vAddr,

DATA, LOAD)

(CCA, DOUBLEWORD, pAddr, vAddr,

DATA)

280

LDC1 Load Doubleword to Floating Point
31 26 25 21 20 16 15 0
LDC132
101111 ft base offset
6 5 5 16
Format: LDC1 ft, offset (base) microMIPS

281

Purpose: Load Doubleword to Floating Point

To load a doubleword from memory to an FPR.

Description: FPR[ft] ¢ memory [GPR[base] + offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in FPR ft. The 16-bit signed offset is added to the contents of GPR base to form the effective address.
Restrictions:

Pre-Release 6: An Address Error exception occurs if EffectiveAddress, ¢ # 0 (not doubleword-aligned).

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memdoubleword ¢ LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
StoreFPR (ft, UNINTERPRETED DOUBLEWORD, memdoubleword)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

LDC2 Load Doubleword to Coprocessor 2

31 26 25 21 20 16 15 12 11 10 0
POOL32B LDC2 0
001000 rt base 0010 0 offset
6 5 5 4 1 11
Format: 1DC2 rt, offset (base) microMIPS

Purpose: Load Doubleword to Coprocessor 2

To load a doubleword from memory to a Coprocessor 2 register.

Description: CPR[2,rt,0] ¢« memory[GPR[base] + offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in Coprocessor 2 register rt. The 9-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

Restrictions:

Pre-Release 6: An Address Error exception occurs if EffectiveAddress, ¢ # 0 (not doubleword-aligned).

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memdoubleword ¢ LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
CPR[2,rt,0] < memdoubleword

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, Address Error, Watch

Programming Notes:
There is no Load Linked Word Unsigned operation corresponding to Load Word Unsigned.

Release 6 implements a 9-bit offset, whereas all release levels lower than Release 6 implement a 16-bit offset.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 282

LDPC Load Doubleword PC-relative

31 26 25 21 20 18 17 0
PCREL LDPC
011110 t 110 offset
6 5 3 18
Format: LDPC rt, offset microMIPS64 Release 6

Purpose: Load Doubleword PC-relative

To load a doubleword from memory, using a PC-relative address.

Description: GPR[rt] « memory[(PC&~0x7) + sign_extend(offset << 3)]

The bit offset is shifted left by 3 bits, sign-extended, and added to the address of the aligned doubleword containing
the LDPC instruction.

The contents of the 64-bit doubleword at the memory location specified by the effective address are fetched, and
placed in GPR rt.
Restrictions:

LDPC is naturally aligned, by specification.

Availability and Compatibility:
Thisinstruction is introduced by and required as of Release 6.

Operation

vAddr <« ((PC&~0x7)+ sign extend(offset))
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
memdoubleword <« LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[rt] <« memdoubleword

Exceptions:

TLB Refill, TLB Invalid, TLB Read Inhibit, Bus Error, Address Error, Watch, Reserved Instruction

Programming Note
The Release 6 PC-relative loads (LWPC, LWUPC, LDPC) are considered data references.

For the purposes of watchpoints (provided by the CPO WatchHi and WatchLo registers) and EJTAG breakpoints, the
PC-relative referenceis considered to be a data reference, rather than an instruction reference. That is, the watchpoint
or breakpoint istriggered only if enabled for data references.

283 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

LH Load Halfword

31 26 25 21 20 16 15 0
LH32
001111 t base offset
6 5 5 16
Format: LH rt, offset (base) microMIPS

Purpose: Load Halfword

To load a halfword from memory as a signed value

Description: GPR[rt] ¢ memory [GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
sign-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

Restrictions:

Pre-Release 6: The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero,
an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

pAddr ¢ pAddrpgrge.1 .3 || (pAddr, , xor (ReverseEndian? || 0))
memdoubleword ¢ LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte &« vAddr, , xor (BigEndianCPU, || 0)

GPR[rt] ¢« sign_extend (memdoubleword;s,g«pyte..s*byte)

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 284

LHE Load Halfword EVA

31 26 25 21 20 16 15 12 11 9 8 0
POOL32C LD-EVA LHE
011000 it base 0110 101 offset
6 5 5 4 3 9
Format: LHE rt, offset (base) microMIPS

Purpose: Load Halfword EVA

To load a halfword as a signed value from user mode virtual address space when executing in kernel mode.

Description: GPR[rt] ¢ memory [GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
sign-extended, and placed in GPR rt. The 9-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

The LHE instruction functions the same as the LH instruction, except that address translation is performed using the
user mode virtual address space mapping in the TLB when accessing an address within a memory segment config-
ured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5g field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and accessing an address within a segment configured using
UUSK, MUSK or MUSUK access mode.

Pre-Release 6: The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero,
an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

pAddr ¢ pAddrpgrge.1. .3 || (PAddr, , xor (ReverseEndian? || 0))
memdoubleword ¢ LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ¢« vAddr, , xor (BigEndianCPU, || 0)

GPR[rt] ¢« sign_extend (memdoubleword;s,g«pyte..s*byte)

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error

Watch, Reserved Instruction, Coprocessor Unusable

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 285

LHU Load Halfword Unsigned

31 26 25 21 20 16 15 0
LHU32
001101 rt base offset
6 5 5 16
Format: LHU rt, offset (base) microMIPS

Purpose: Load Halfword Unsigned

To load a halfword from memory as an unsigned value

Description: GPR[rt] ¢ memory [GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
zero-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

Restrictions:

Pre-Release 6: The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero,
an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

pAddr ¢ pAddrpgrge.1 .3 || (pAddr, , xor (ReverseEndian? || 0))
memdoubleword ¢ LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte € vAddr, , xor (BigEndianCPU? || 0)

GPR[rt] ¢ zero_extend(memdoubleword;s,gspyte..s*byte)

Exceptions:
TLB Refill, TLB Invalid, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 286

LHUE Load Halfword Unsigned EVA

31 26 25 21 20 16 15 12 11 9 8 0
POOL32C LD-EVA | LHUE
011000 it base 0110 001 offset
6 5 5 2 3 9
Format: LHUE rt, offset (base) microMIPS

Purpose: Load Halfword Unsigned EVA

To load a halfword as an unsigned value from user mode virtual address space when executing in kernel mode.

Description: GPR[rt] ¢ memory [GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
zero-extended, and placed in GPR rt. The 9-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

The LHUE instruction functions the same as the LHU instruction, except that address translation is performed using
the user mode virtual address space mapping in the TLB when accessing an address within a memory segment con-
figured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5g,, field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and accessing an address within a segment configured using
UUSK, MUSK or MUSUK access mode.

Pre-Release 6: The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero,
an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

pAddr ¢ pAddrpgrge.1. .3 || (PAddr, , xor (ReverseEndian? || 0))
memdoubleword ¢ LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte € vAddr, , xor (BigEndianCPU? || 0)

GPR[rt] < zero_extend(memdoubleword;s,gspyte..g*byte)

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch, Reserved Instruction, Coprocessor Unusable

287 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

LL Load Linked Word

31 26 25 21 20 16 15 12 11 9 8 0
POOL32C LL32 0
011000 it base 0011 000 offset
6 5 5 5 3 9
Format: LL rt, offset (base) microMIPS

Purpose: Load Linked Word

To load a word from memory for an atomic read-modify-write

Description: GPR[rt] ¢ memory [GPR[base] + offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length, and written into GPR rt. The 9-bit signed offset is added to the contents of
GPR base to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LL is executed it starts an active RMW sequence replacing any other sequence that was active. The RMW
sequence is completed by a subsequent SC instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.

Executing LL on one processor does not cause an action that, by itself, causes an SC for the same block to fail on
another processor.

An execution of LL does not have to be followed by execution of SC; a program is free to abandon the RMW
sequence without attempting a write.
Restrictions:

The addressed location must be synchronizable by all processors and I/O devices sharing the location; if it is not, the
result is UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective address is non-
zero, an Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Availability and Compatibility:

This instruction has been reallocated an opcode in Release 6.

Availability and Compatibility

This instruction has been recoded for Release 6.

Operation:

vAddr ¢ sign_extend(offset) + GPR[base]
if vAddr; , # 02 then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢ pAddrpgrge.1 .3 || (PAddr, , xor (ReverseEndian || 02))
memdoubleword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte € vAddr, , xor (BigEndianCPU || 0?)

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 288

GPR[rt] ¢ sign_extend (memdoublewords; g«pyte..s*byte)
LLbit « 1

Exceptions:
TLB Refill, TLB Invalid, Address Error, Watch

Programming Notes:
There is no Load Linked Word Unsigned operation corresponding to Load Word Unsigned.

Release 6 implements a 9-bit offset, whereas all release levels lower than Release 6 implement a 16-bit offset.

MIPS® Architecture for Programmers Volume [I-B: microMIPS64™ Instruction Set, Revision 6.05 289

LLD Load Linked Doubleword

31 26 25 21 20 16 15 12 11 0
POOL 32C LLD
011000 rt base 0111 offset
6 5 5 4 12
Format: LLD rt, offset (base) microMIPS64

Purpose: Load Linked Doubleword
To load a doubleword from memory for an atomic read-modify-write

Description: GPR[rt] < memory[GPR[base] + offset]

The LLD and SCD instructions provide primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed into GPR rt. The signed offset is added to the contents of GPR base to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LLD is executed it starts the active RMW sequence and replaces any other sequence that was active. The
RMW sequence is completed by a subsequent SCD instruction that either completes the RMW sequence atomically
and succeeds, or does not complete and fails.

Executing LLD on one processor does not cause an action that, by itself, would cause an SCD for the same block to
fail on another processor.

An execution of LLD does not have to be followed by execution of SCD; a program is free to abandon the RMW
sequence without attempting a write.

Restrictions:

The addressed location must be synchronizable by all processors and 1/0O devices sharing the location; if it is not, the
result in UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SCD instruction for the formal definition.

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the effective address is non-
zero, an Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Operation:

vAddr ¢ sign_extend(offset) + GPR[base]
if vAddr, , # 0° then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memdoubleword ¢ LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[rt] < memdoubleword
LLbit < 1

Exceptions:
TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 290

LLE Load Linked Word EVA
31 26 25 21 20 16 15 12 11 9 8 0
POOL32C LD-EVA LLE
011000 it base 0110 110 offset
6 5 5 4 3 9
Format: LLE rt, offset (base) microMIPS

291

Purpose: Load Linked Word EVA

To load a word from a user mode virtual address when executing in kernel mode for an atomic read-modify-write

Description: GPR[rt] ¢ memory [GPR[base] + offset]

The LLE and SCE instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations using user mode virtual addresses while executing in kernel mode.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length, and written into GPR rt. The 9-bit signed offset is added to the contents of
GPR base to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LLE is executed it starts an active RMW sequence replacing any other sequence that was active. The RMW
sequence is completed by a subsequent SCE instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.

Executing LLE on one processor does not cause an action that, by itself, causes an SCE for the same block to fail on
another processor.

An execution of LLE does not have to be followed by execution of SCE; a program is free to abandon the RMW
sequence without attempting a write.

The LLE instruction functions the same as the LL instruction, except that address translation is performed using the
user mode virtual address space mapping in the TLB when accessing an address within a memory segment config-
ured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Segmentation Control for additional information.

Implementation of this instruction is specified by the Config5g field being set to one.

Restrictions:

The addressed location must be synchronizable by all processors and I/O devices sharing the location; if it is not, the
result is UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SCE instruction for the formal definition.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective address is non-
zero, an Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Operation:

vAddr ¢ sign_extend(offset) + GPR[base]
if vAddr; , # 02 then
SignalException (AddressError)

endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢ pAddrpgrge.1 .3 || (PAddr, , xor (ReverseEndian || 02))

memdoubleword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

byte ¢ vAddr, , xor (BigEndianCPU || 02)
GPR[rt] ¢ sign_extend(memdoubleword;;,gspyte..g*byte)
LLbit « 1

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Watch, Coprocessor Unusable

Programming Notes:
There is no Load Linked Word Unsigned operation corresponding to Load Word Unsigned.

MIPS® Architecture for Programmers Volume [I-B: microMIPS64™ Instruction Set, Revision 6.05 292

293 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05

LLDP Load Linked DoubleWord Paired

31 26 25 21 20 16 15 12 11 9 8 4 3 0
POOL32C o b LLDP 0 ” 0
011000 ase 0101 000 0000
6 5 5 4 3 5 4
Format: LLDP rt, rd, (base) microMIPS64 Release 6

Purpose: Load Linked DoubleWord Paired
To load two double-words from memory for an atomic read-modify-write, writing a double-word each to two regis-

ters.

Description: GPR[rd] ¢ memory [GPR[basell;,; 44, GPR[rt] ¢ memory[GPR[basellq;. o

The LLDP and SCDP instructions provide primitives to implement a paired double-word atomic read-modify-write
(RMW) operation at a synchronizable memory location.

The paired double-word at the memory location specified by the quad-word aligned effective address is read in a sin-
gle atomic memory operation. The least significant double-word is written into GPR rt. The most significant double-
word is written into GPR rd.

A paired double-word read or write occurs as a pair of double-word reads or writes that is quad-word atomic.
The instruction has no offset. The effective address is equal to the contents of GPR base.
rd is intentionally positioned in a non-standard bit-range.

The execution of LLDP begins a RMW sequence on the current processor. There can be only one active RMW
sequence per processor. When an LLDP is executed it starts an active RMW sequence replacing any other sequence
that was active. The RMW sequence is completed by a subsequent SCDP instruction that either completes the RMW
sequence atomically and succeeds, or does not and fails.

Successful execution of the LLDP results in setting LLbit and writing CPO LLAddr, where LLbit is the least-signifi-
cant bit of LLAddr. LLAddr contains the data-type aligned address of the operation, in this case a quad-word
aligned address.

Executing LLDP on one processor does not cause an action that, by itself, causes a store conditional instruction type
for the same block to fail on another processor.

An execution of LLDP does not have to be followed by execution of SCDP; a program is free to abandon the RMW
sequence without attempting a write.
Restrictions:

The addressed location must be synchronizable by all processors and I/O devices sharing the location; if it is not, the
result is UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition.

The architecture optionally allows support for Load-Linked and Store-Conditional instruction types in a cacheless
processor. Support for cacheless operation is implementation dependent. In this case, LLAddY is optional.

Providing misaligned support is not a requirement for this instruction.

Availability and Compatibility
This instruction is introduced by Release 6. It is only present if ConT i g5y\p=0.

Operation:

vAddr < GPR [base]

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 294

LLDP

295

Load Linked DoubleWord Paired

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
// PAIREDDOUBLEWORD: two double-word data-type that is quad-word atomic
memguadword ¢ LoadMemory (CCA, PAIREDDOUBLEWORD, pAddr, vAddr, DATA)
GPR[rt] < memquadwordgs
GPR[rd] < memguadword;,; ¢4
LLAddr ¢« pAddr // quad-word aligned i.e., pAddr; , are 0, or not supported.
LLbit « 1
Exceptions:

TLB Refill, TLB Invalid, Reserved Instruction, Address Error, Watch

Programming Notes:

An LLDP instruction for which the two destination registers are the same but non-zero is UNPREDICTABLE. An
LLDP with two zero destination registers followed by a SCDP can be used to accomplish a quad-word atomic write.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

LLWP Load Linked Word Paired

31 26 25 21 20 16 15 12 11 9 8 4 3 0
POOL32C o b LLWP 0 ” 0
011000 ase 0001 000 0000
6 5 5 4 3 5 4
Format: LLWP rt, rd, (base) microMIPS Release 6

Purpose: Load Linked Word Paired

To load two words from memory for an atomic read-modify-write, writing a word each to two registers.

Description: GPR[rd] ¢ memory [GPR[basellsy 35, GPRI[rt] € memory[GPR[basells;. o

The LLWP and SCWP instructions provide primitives to implement a paired word atomic read-modify-write (RMW)
operation at a synchronizable memory location.

The 64-bit paired word, as a concatenation of two words, at the memory location specified by the double-word
aligned effective address is read. The least significant word, sign-extended to the GPR register length, is written into
GPR rt,and the most significant word, sign-extended to the GPR register length, is written into GPR rd.

A paired word read or write occurs as a pair of word reads or writes that is double-word atomic.
The instruction has no offset. The effective address is equal to the contents of GPR base.
rd is intentionally positioned in a non-standard bit-range.

The execution of LLWP begins a RMW sequence on the current processor. There can be only one active RMW
sequence per processor. When an LLWP is executed it starts an active RMW sequence replacing any other sequence
that was active. The RMW sequence is completed by a subsequent SCWP instruction that either completes the RMW
sequence atomically and succeeds, or does not and fails.

Successful execution of the LLWP results in setting LLbit and writing CPO LLAddr, where LLbit is the least-signif-
icant bit of LLAddr. LLAddr contains the data-type aligned address of the operation, in this case a double-word.

Executing LLWP on one processor does not cause an action that, by itself, causes a store conditional instruction type
for the same block to fail on another processor.

An execution of LLWP does not have to be followed by execution of SCWP; a program is free to abandon the RMW
sequence without attempting a write.
Restrictions:

The addressed location must be synchronizable by all processors and I/O devices sharing the location; if it is not, the
result is UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition.

The architecture optionally allows support for Load-Linked and Store-Conditional instruction types in a cacheless
processor. Support for cacheless operation is implementation dependent. In this case, LLAddr is optional.

Providing misaligned support is not a requirement for this instruction.
Availability and Compatibility
This instruction is introduced by Release 6. It is only present if ConTig5yyp=0.

Operation:

vAddr < GPR [base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 296

LLWP

297

Load Linked Word Paired

// PAIREDWORD: two word data-type that is double-word atomic
memdoubleword ¢ LoadMemory (CCA, PAIREDWORD, pAddr, vAddr, DATA)
GPR[rt] ¢ sign_extend (memdoubleword;;)
GPR[rd] ¢ sign_extend (memdoublewordgs 35)
LLAddr ¢« pAddr // double-word aligned i.e., pAddr, , are 0, or not supported.
LLbit « 1
Exceptions:

TLB Refill, TLB Invalid, Reserved Instruction, Address Error, Watch

Programming Notes:

An LLWP instruction for which the two destination registers are the same but non-zero is UNPREDICTABLE. An
LLWP with two zero destination registers followed by a SCWP can be used to accomplish a double-word atomic

write.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

LLWPE Load Linked Word Paired EVA

31 26 25 21 20 16 15 12 11 9 8 4 3 0
POOL32C y b LD-EVA | LLWPE » 0
011000 ase 0110 010 0000
6 5 5 4 3 5 4
Format: LLWPE rt, rd, (base) microMIPS Release 6

Purpose: Load Linked Word Paired EVA

To load two words from memory for an atomic read-modify-write, writing a word each to two registers. The load
occurs in kernel mode from user virtual address space.

Description: GPR[rd] ¢ memory[GPR[basellq; 35, GPRI[rt] ¢ memory[GPR[basells;

The LLWPE and SCWPE instructions provide primitives to implement a paired word atomic read-modify-write
(RMW) operation at a synchronizable memory location.

The 64-bit paired word at the memory location specified by the double-word aligned effective address is read. The
least significant word, sign-extended to the GPR register length, is written into GPR rt. The most significant word,
sign-extended to the GPR register length, is written into GPR rd.

A paired word read or write occurs as a pair of word reads or writes that is double-word atomic.
The instruction has no offset. The effective address is equal to the contents of GPR base.
rd is intentionally positioned in a non-standard bit-range.

The execution of LLWPE begins a RMW sequence on the current processor. There can be only one active RMW
sequence per processor. When an LLWPE is executed it starts an active RMW sequence replacing any other sequence
that was active. The RMW sequence is completed by a subsequent SCWPE instruction that either completes the
RMW sequence atomically and succeeds, or does not and fails.

Successful execution of the LLWPE results in setting LLbit and writing CPO LLAddr, where LLbit is the least-sig-
nificant bit of LLAddr. LLAddr contains the data-type aligned address of the operation, in this case a double-word
aligned address.

The LLWPE instruction functions the same as the LLWP instruction, except that address translation is performed
using the user mode virtual address space mapping in the TLB when accessing an address within a memory segment
configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also acces-
sible. Refer to Volume III, Segmentation Control for additional information.

Executing LLWPE on one processor does not cause an action that, by itself, causes a store conditional instruction
type for the same block to fail on another processor.

An execution of LLWPE does not have to be followed by execution of SCWPE; a program is free to abandon the
RMW sequence without attempting a write.
Restrictions:

The addressed location must be synchronizable by all processors and I/O devices sharing the location; if it is not, the
result is UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition.

The architecture optionally allows support for Load-Linked and Store-Conditional instruction types in a cacheless
processor. Support for cacheless operation is implementation dependent. In this case, LLAddr is optional.

Providing misaligned support is not a requirement for this instruction.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 298

LLWPE Load Linked Word Paired EVA

299

Availability and Compatibility
This instruction is introduced by Release 6. It is only present if ConTig5yyp=0 and ConTig5gys=1.

Operation:

vAddr ¢ GPR[base]

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

// PAIREDWORD: two word data-type that is double-word atomic

memdoubleword ¢ LoadMemory (CCA, PAIREDWORD, pAddr, vAddr, DATA)

GPR[rt] ¢ sign_extend(memdoubleword,;)

GPR[rd] ¢ sign extend(memdoublewordg; 35)

LLAddr ¢« pAddr // double-word aligned i.e., pAddr, , are 0, or not supported.

LLbit « 1

Exceptions:
TLB Refill, TLB Invalid, Reserved Instruction, Address Error, Watch, Coprocessor Unusable.

Programming Notes:

An LLWPE instruction for which the two destination registers are the same but non-zero is UNPREDICTABLE. An
LLWPE with two zero destination registers followed by a SCWPE can be used to accomplish a double-word atomic

write.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

LSA DLSA Load Scaled Address, Doubleword Load Scaled Address

31 26 25 21 20 16 15 11 10 9 8 6 5 0
POOL32A LSA
000000 it rs rd sa 000 001111
POOL32S DLSA
010110 it s rd sa 100 000100
6 5 5 5 2 3 6

Format: LsA DLSA
LSA rt, rs, rd, sa microMIPS32 Release 6
DLSA rt, rs,rd, sa microMIPS64 Release 6

Purpose: Load Scaled Address, Doubleword Load Scaled Address

Description:
LSA: GPR[rd] < sign extend.32((GPR[rs] << (sa+l)) + GPR[rt])
DLSA: GPR[rd] <« (GPR[rs] << (sa+l)) + GPRI[rtl]

LSA adds two values derived from registers rs and rt, with a scaling shift on rs. The scaling shift is formed by
adding 1 to the 2-bit sa field, which is interpreted as unsigned. The scaling left shift varies from 1 to 5, corresponding
to multiplicative scaling values of x2, x4, x8, x16, bytes, or 16, 32, 64, or 128 bits.

LSA is a MIPS32 compatible instruction, sign extending its result from bit 31 to bit 63.
DLSA is a MIPS64 compatible instruction, performing the scaled index calculation fully 64-bits wide.

Restrictions:
LSA: None

DLSA: Reserved Instruction exception if 64-bit instructions are not enabled.

Availability and Compatibility:
LSA instruction is introduced by and required as of Release 6.

DLSA instruction is introduced by and required as of Release 6.

Operation
LSA: GPR[rd] <« sign _extend.32(GPR[rs] << (sa+l) + GPR[rt])
DLSA: GPR[rd] <« GPR[rs] << (sa+l) + GPR[rt]

Exceptions:
LSA: None
DLSA: Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 300

LUI Load Upper Immediate

31 26 25 21 20 16 15 0
AUl . .
000100 t 00000 immediate
6 5 5 16
Format: LUI rt, immediate microMIPS, Assembly Idiom Release 6

Purpose: Load Upper Immediate

To load a constant into the upper half of a word

Description: GPR[rt] ¢« sign extend (immediate || 0%°)

The 16-bit immediate is shifted left 16 bits and concatenated with 16 bits of low-order zeros. The 32-bit result is sign-
extended and placed into GPR rt.

Restrictions:

None.

Availability and Compatibility

This instruction has been recoded for Release 6.

Operation:

GPR[rt] ¢ sign_extend (immediate || 0'%)

Exceptions:

None

Programming Notes:
In Release 6, LUI is an assembly idiom of AUI with rs=0.

301 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

LW

31 26 25

21 20

16 15

Load Word

LW32
111111

rt

base

offset

6

Format: 1w rt,

Purpose: Load Word

5

offset (base)

To load a word from memory as a signed value

Description: GPR[rt] ¢ memory [GPR[base] + offset]

16

microMIPS

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 16-bit signed offset is added to the con-
tents of GPR base to form the effective address.

Restrictions:

Pre-Release 6: The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-

tion dependent.

Operation:

vAddr ¢ sign extend(offset)
¢« AddressTranslation (vAddr,
(pAddr, , xor (ReverseEndian || 02))

(pAddr, cCcCAa)

pAddr < pAddrpgrze-1..3 ||

memdoubleword ¢ LoadMemory (CCA, WORD, pAddr,
byte € vAddr, , xor (BigEndianCPU || 0?)
GPR[rt] ¢« sign_extend (memdoublewords,,g«pyte..s*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

+ GPR [base]

DATA, LOAD)

DATA)

302

LWC1 Load Word to Floating Point

31 26 25 21 20 16 15 0
LWC132
100111 ft base offset
6 5 5 16
Format: 1wci ft, offset (base) microMIPS

Purpose: Load Word to Floating Point

To load a word from memory to an FPR

Description: FPR[ft] ¢ memory [GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of FPR ft. If FPRs are 64 bits wide, bits 63..32 of FPR ft become UNPREDICTABLE. The
16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

Pre-Release 6: An Address Error exception occurs if EffectiveAddress; # 0 (not word-aligned).

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

pAddr ¢ pAddrpgrze.1. .3 || (PAddr, o xor (ReverseEndian || 07))
memdoubleword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
bytesel ¢ vAddr, , xor (BigEndianCPU || 02)

StoreFPR(ft, UNINTERPRETED WORD, memdoublewords;;,gspytesel..s*bytesel)

Exceptions:
TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

303 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

LWC2 Load Word to Coprocessor 2

31 26 25 21 20 16 15 12 11 0
POOL32B LWC2 0
001000 t base 0000 0 offset
6 5 5 4 1 11
Format: 1wc2 rt, offset (base) microMIPS

Purpose: Load Word to Coprocessor 2

To load a word from memory to a COP2 register.

Description: CPR[2,rt,0] €« memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of COP2 (Coprocessor 2) general register rt. The signed offset is added to the contents of
GPR base to form the effective address.

Restrictions:

Pre-Release 6: An Address Error exception occurs if +EffectiveAddress; o # 0 (not word-aligned).

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Availability and Compatibility

This instruction has been recoded for Release 6.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]
(pAddr, CCA) ¢ AddressTranslation (vAddr, DATA, LOAD)

pAddr ¢ pAddrpgrze.1. .3 || (PAddr, , xor (ReverseEndian || 02))
memdoubleword ¢ LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
bytesel ¢ vAddr, , xor (BigEndianCPU || 0?)

CPR[2,rt,0] ¢ sign extend(memdoublewordsq,gspytesel..s*bytesel)

Exceptions:
TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

Programming Notes:

Release 6 implements an 11-bit offset, whereas all release levels lower than Release 6 implement a 16-bit offset.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 304

LWE Load Word EVA

31 26 25 21 20 16 15 12 11 9 8 0
POOL32C LD-EVA LWE
011000 it base 0110 11 offset
6 5 5 4 3 9
Format: LWE rt, offset (base) microMIPS

Purpose: Load Word EVA

To load a word from user mode virtual address space when executing in kernel mode.

Description: GPR[rt] ¢ memory [GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 9-bit signed offset is added to the contents
of GPR base to form the effective address.

The LWE instruction functions the same as the LW instruction, except that address translation is performed using the
user mode virtual address space mapping in the TLB when accessing an address within a memory segment config-
ured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5g field being set to one.
Restrictions:

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

Pre-Release 6: The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

pAddr ¢ pAddrpgrze.1. .3 || (PAddr, , xor (ReverseEndian || 02))
memdoubleword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte € vAddr, , xor (BigEndianCPU || 0?)

GPR[rt] ¢ sign_extend (memdoublewords;,g«pyte..s*byte)

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch, Reserved Instruction, Coprocessor Unusable

305 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

LWPC Load Word PC-relative

31 26 25 21 20 19 18 0
PCREL LWPC
011110 n 01 offset
6 5 2 19
Format: LwPC rt, offset microMIPS32 Release 6

Purpose: Load Word PC-relative

To load a word from memory as a signed value, using a PC-relative address.

Description: GPR [rt] <« memory[PC & ~0x3 + sign extend(offset << 2)]

The offset is shifted left by 2 bits, sign-extended, and added to the address of the LWPC instruction.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt.

Restrictions:

LWPC is naturally aligned, by specification.

Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Operation

vAddr <« (PC & ~0x3 + sign_extend(offset)<<2)
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
memword < LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] <« sign extend(memword)

Exceptions:

TLB Refill, TLB Invalid, TLB Read Inhibit, Bus Error, Address Error, Watch

Programming Note
The Release 6 PC-relative loads (LWPC, LWUPC, LDPC) are considered data references.

For the purposes of watchpoints (provided by the CPO WatchHi and WatchLo registers) and EJTAG breakpoints, the
PC-relative reference is considered to be a data reference rather than an instruction reference. That is, the watchpoint
or breakpoint is triggered only if enabled for data references.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 306

LWUPC Load Word Unsigned PC-relative

31 26 25 21 20 19 18 0
PCREL LWUPC
011110 "t 10 offset
6 5 2 19
Format: LWUPC rt, offset microMIPS64 Release 6

Purpose: Load Word Unsigned PC-relative

To load aword from memory as an unsigned value, using a PC-relative address.

Description: GPR[rt] <« memory[PC + sign extend(offset << 2)]

The 19-bit offset is shifted left by 2 bits, sign-extended, and added to the address of the LWUPC instruction.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, zero-
extended to the GPR register length if necessary, and placed in GPR rt.

Restrictions:

LWUPC is naturally aligned, by specification.

Availability and Compatibility:
Thisinstruction is introduced by and required as of M1PS64 Release 6.

Operation

vAddr <« (PC + sign extend(offset)<< 2)

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
memword < LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] <« zero_ extend(memword)

Exceptions:
TLB Refill, TLB Invalid, TLB Read Inhibit, Bus Error, Address Error, Watch

Programming Note
The Release 6 PC-relative loads (LWPC, LWUPC, LDPC) are considered data references.

For the purposes of watchpoints (provided by the CPO WatchHi and WatchLo registers) and EJTAG breakpoints, the
PC-relative reference is considered to be a data reference rather than an instruction reference. That is, the watchpoint
or breakpoint istriggered only if enabled for data references.

307 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

LWuU Load Word Unsigned
31 26 25 21 20 16 15 12 11 0
POOL32C LWU
011000 t base 1110 offset
6 5 5 4 12
Format: LWU rt, offset (base) microMIPS64

Purpose: Load Word Unsigned

To load a word from memory as an unsigned value.

Description: GPR[rt] < memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, zero-
extended, and placed in GPR rt. The 12-bit signed offset is added to the contents of GPR base to form the effective

address.

Restrictions:

Pre-Release 6: The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseoducode is not completely adapted for Release 6 misalignment support because the handling is imple-

mentation dependent.

Operation:
vAddr ¢ sign extend(offset) + GPR[base]
(pAddr, CCA) < AddressTranslation (vAddr, DATA, LOAD)
pAddr & pAddrpgrze.1 .3 || (PAddr, , xor (ReverseEndian || 02))
memdoubleword ¢ LoadMemory (CCA, WORD, pAddr, vAddr,
byte ¢« vAddr, , xor (BigEndianCPU || 0?)

GPR[rt] <« 032 | memdoublewordsy g«pyte. . 8*byte

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Reserved Instruction, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 308

MADDF.fmt MSUBF.fmt Floating Point Fused Multiply Add, Floating Point Fused Multiply Subtract

31 26 25 21 20 16 15 11 10 9 8 0
POOL32F MADDF
010101 fi fs fd fmt 110111000
POOL32F MSUBF
010101 ft fs fd fimt 111111000
6 5 5 5 2 9

Format: MADDF.fmt MSUBF.fmt

MADDF.S fd, fs, ft microMIPS32 Release 6
MADDF.D fd, fs, ft microMIPS32 Release 6
MSUBF.S fd, fs, ft microMIPS32 Release 6
MSUBF.D fd, fs, ft microMIPS32 Release 6

Purpose: Floating Point Fused Multiply Add, Floating Point Fused Multiply Subtract
MADDF.fmt: To perform a fused multiply-add of FP values.
MSUBEF.fmt: To perform a fused multiply-subtract of FP values.

Description:
MADDF.fmt: FPR[fd] <« FPR[fd] + (FPR[fs] x FPR[ft])
MSUBF.fmt: FPR[fd] <« FPR[fd] - (FPR[fs] xFPR[ft])

The value in FPR fs is multiplied by the value in FPR ft to produce an intermediate product. The intermediate product
is calculated to infinite precision. The product is added to the value in FPR fd. The result sum is calculated to infinite
precision, rounded according to the current rounding mode in FCSR, and placed into FPR fd. The operands and result
are values in format fmt.

(For MSUBF fmt, the product is subtracted from the value in FPR fd.)

Cause bits are ORed into the Flag bits if no exception is taken.

Restrictions:

None

Availability and Compatibility:
MADDF.fmt and MSUBF.fmt are required in Release 6.
MADDF.fmt and MSUBF.fmt are not available in architectures pre-Release 6.

The fused multiply add instructions, MADDF.fmt and MSUBF fmt, replace pre-Release 6 instructions such as
MADD fmt, MSUB.fmt, NMADD.fmt, and NMSUB.fmt. The replaced instructions were unfused multiply-add, with
an intermediate rounding.

Release 6 MSUBF fmt, £d«fd-£fsxft, corresponds more closely to pre-Release 6 NMADD fmt, £d«fr-fsxft,
than to pre-Release 6 MSUB.fmt, fd«fsxft-fr.

FPU scalar MADDF fmt corresponds to MSA vector MADD.df.
FPU scalar MSUBF fmt corresponds to MSA vector MSUB.df.

Operation:

if not IsCoprocessorEnabled (1)

then SignalException (CoprocessorUnusable, 1) endif
if not IsFloatingPointImplemented (fmt))

then SignalException (ReservedInstruction) endif

309 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

MADDF.fmt MSUBF.fmt Floating Point Fused Multiply Add, Floating Point Fused Multiply Subtract

vfr <« ValueFPR (fr, fmt)
vfs « ValueFPR(fs, fmt)
vEid <« ValueFPR(fd, fmt)
MADDF.fmt: vinf <« vfd +, (vis *, vit)
MADDF.fmt: vinf « vid -, (vfs *, vft)
StoreFPR (fd, fmt, wvinf)

Special Considerations:

The fused multiply-add computation is performed in infinite precision, and signals Inexact, Overflow, or Underflow
if and only if the final result differs from the infinite precision result in the appropriate manner.

Like most FPU computational instructions, if the flush-subnormals-to-zero mode, FCSR.FS=1, then subnormals are
flushed before beginning the fused-multiply-add computation, and Inexact may be signaled.

L.e. Inexact may be signaled both by input flushing and/or by the fused-multiply-add: the conditions or ORed.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 310

MAX.fmt MIN.fmt MAXA.fmt MINA.fmt

311

Scalar Floating-Point Max/Min/maxNumMag/minNumMag

31 26 25 21 20 16 15 11 10 9 0
POOL32F MAX
010101 fi fs fd fmt 000001011
6 5 5 5 2 9
31 26 25 21 20 16 15 11 10 9 0
POOL32F MAXA
010101 fi fs fd fimt 000101011
6 5 5 5 2 9
31 26 25 21 20 16 15 11 10 9 0
POOL32F MIN
010101 fi fs fd fimt 000000011
6 5 5 5 2 9
31 26 25 21 20 16 15 11 10 9 0
POOL32F MINA
010101 fi fs fd fimt 000100011
6 5 5 5 2 9

Format: MAX.fmt MIN.fmt
MAX.S fd,fs, ft
MAX.D fd, fs, ft
MAXA.S fd, fs, ft
MAXA.D fd, fs, ft
MIN.S fd,fs, ft
MIN.D fd,fs, ft
MINA.S fd,fs, ft
MINA.D fd, fs, ft

MAXA.fmt MINA.fmt

Purpose: Scalar Floating-Point Max/Min/maxNumMag/minNumMag

Scalar Floating-Point Maximum

Scalar Floating-Point Minimum
Scalar Floating-Point argument with Maximum Absolute Value

Scalar Floating-Point argument with Minimum Absolute Value

Description:

MAX. fmt:
MIN. fmt:

FPR [fd] <~ maxNum (FPR [fs] ,FPR[ft])
FPR [fd] <~ minNum (FPR [fs] ,FPR[ft])

MAXA.fmt: FPR[fd]<« maxNumMag (FPR[fs],FPR[ft])
MINA. fmt: FPR[fd] <~ minNumMag (FPR [fs] ,FPR[ft])

MAX.fmt writes the maximum value of the inputs £s and £t to the destination £d.

MIN.fmt writes the minimum value of the inputs £s and £t to the destination £d.

microMIPS32 Release 6
microMIPS32 Release 6
microMIPS32 Release 6
microMIPS32 Release 6
microMIPS32 Release 6
microMIPS32 Release 6
microMIPS32 Release 6
microMIPS32 Release 6

MAXA fmt takes input arguments £s and £t and writes the argument with the maximum absolute value to the desti-

nation f£d.

MINA fmt takes input arguments £s and £t and writes the argument with the minimum absolute value to the desti-

nation £d.

The instructions MAX.fmt/MIN fmt/MAXA fmt/MINA.fmt correspond to the IEEE 754-2008 operations maxNum/

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

MAX.fmt MIN.fmt MAXA.fmt MINA.fmt Scalar Floating-Point Max/Min/maxNumMag/minNumMag

minNum/maxNumMag/minNumMag.
* MAX.fmt corresponds to the IEEE 754-2008 operation maxNum.
* MIN.fmt corresponds to the IEEE 754-2008 operation minNum.
* MAXA fmt corresponds to the IEEE 754-2008 operation maxNumMag.

* MINA fmt corresponds to the IEEE 754-2008 operation minNumMag.
Numbers are preferred to NaNs: if one input is a NaN, but not both, the value of the numeric input is returned. If both
are NaNs, the NaN in fs is returned.!

The scalar FPU instructions MAX fmt/MIN.fmt/MAXA fmt/MINA fmt correspond to the MSA instructions
FMAX.df/FMIN.df/FMAXA.df/FMINA.df.

¢ Scalar FPU instruction MAX fmt corresponds to the MSA vector instruction FMAX.df.

* Scalar FPU instruction MIN fmt corresponds to the MSA vector instruction FMIN.df.

¢ Scalar FPU instruction MAXA.fmt corresponds to the MSA vector instruction FMAX A.df.
¢ Scalar FPU instruction MINA.fmt corresponds to the MSA vector instruction FMIN_A.df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754 ™.
2008. See also the section “Special Cases”, below.

Availability and Compatibility:

These instructions are introduced by and required as of Release 6.

Operation:

if not IsCoprocessorEnabled (1)

then SignalException (CoprocessorUnusable, 1) endif
if not IsFloatingPointImplemented (fmt)

then SignalException (ReservedInstruction) endif

vl < ValueFPR(fg, fmt)
v2 <« ValueFPR(ft, fmt)

if SNaN(vl) or SNaN(v2) then
then SignalException (InvalidOperand) endif

if NaN(vl) and NaN(v2)then
ftmp «v1
elseif NaN(vl) then
ftmp <« v2
elseif NaN(v2) then
ftmp « vl
else
case instruction of

1. IEEE standard 754-2008 allows either input to be chosen if both inputs are NaNs. Release 6 specifies that the first input must
be propagated.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 312

MAX.fmt MIN.fmt MAXA.fmt MINA.fmt Scalar Floating-Point Max/Min/maxNumMag/minNumMag

313

FMAX . fmt: ftmp <« MaxFP.fmt (ValueFPR (fs, fmt) ,ValueFPR(ft, fmt))
FMIN. fmt: ftmp <« MinFP.fmt (ValueFPR (fs, fmt) ,ValueFPR(ft, fmt))
FMAXA . fmt: ftmp <« MaxAbsoluteFP.fmt (ValueFPR (fs, fmt), ValueFPR(ft, fmt))
FMINA.fmt: ftmp <« MinAbsoluteFP.fmt (ValueFPR (fs,fmt),ValueFPR(ft, fmt))
end case

endif

StoreFPR (fd, fmt, ftmp)
/* end of instruction */

function MaxFP(tt, ts, n)
/* Returns the largest argument. */
endfunction MaxFP

function MinFP(tt, ts, n)
/* Returns the smallest argument. */
endfunction MaxFP

function MaxAbsoluteFP(tt, ts, n)
/* Returns the argument with largest absolute value.
For equal absolute values, returns the largest argument.*/
endfunction MaxAbsoluteFP

function MinAbsoluteFP(tt, ts, n)
/* Returns the argument with smallest absolute value.
For equal absolute values, returns the smallest argument.*/
endfunction MinAbsoluteFP

function NaN(tt, ts, n)
/* Returns true if the value is a NaN */
return SNaN (value) or QNaN (value)
endfunction MinAbsoluteFP

Table 7.24 Special Cases for FP MAX, MIN, MAXA, MINA

Operand Release 6 Instructions
Other
fs ft MAX MIN MAXA MINA
-0.0 0.0 0.0 -0.0 0.0 -0.0
0.0 -0.0
QNaN # # # # #
QNaN
QNaN1 QNaN2 Release 6 QNanl QNaNl1 QNaN1 QNaN1
IEEE Arbitrary choice. Not allowed to clear sign bit.
754 2008

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

MAX.fmt MIN.fmt MAXA.fmt MINA.fmt Scalar Floating-Point Max/Min/maxNumMag/minNumMag

Table 7.24 Special Cases for FP MAX, MIN, MAXA, MINA

Operand Release 6 Instructions
Other
fs ft MAX MIN MAXA MINA
Either or both operands Invalid Signal Invalid Operation Exception.
SNaN Operation | Destination not written.
exception
enabled
... disabled | Treat as if the SNaN were a QNaN (do not quieten the result).

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 314

MFCO Move from Coprocessor 0

31 26 25 21 20 16 15 14 13 11 10 6 5 0
POOL32A y 00 wl MFCO POOL32AXf
000000 s 00011 111100
6 5 5 3 5 6
Format: MFCo rt, rs microMIPS
MFCO rt, rs, sel microMIPS

Purpose: Move from Coprocessor 0

To move the contents of a coprocessor 0 register to a general register.

Description: GPR[rt] ¢ CPR[O,rs,sel]

The contents of the coprocessor 0 register specified by the combination of rs and sel are sign-extended and loaded
into general register rt. Not all coprocessor 0 registers support the sel field. In those instances, the sel field must be
Zero.

When the coprocessor 0 register specified is the EntryLoO or the EntryLol register, the RI/XI fields are moved to
bits 31:30 of the destination register. This feature supports MIPS32 backward compatibility on a MIPS64 system.
Restrictions:

Pre-Release 6: The results are UNDEFINED if coprocessor 0 does not contain a register as specified by rs and sel.

Release 6: Reading a reserved register or a register that is not implemented for the current core configuration returns

0.
Operation:
reg = rs
if IsCoprocessorRegisterImplemented (0, reg, sel) then
data ¢« CPR[0, reg, sell
if (reg,sel = EntryLol or reg,sel = EntryLoO) then
GPR[rtlye. o € datazg o
GPR[rt];; ¢ datags
GPR([rtl;, < datag,
GPR[rtlgss 35, € sign extend(datags)
else
GPR[rt] ¢ sign_extend(data)
endif
else
if ArchitectureRevision() > 6 then
GPR[rt] < 0
else
UNDEFINED
endif
endif
Exceptions:

Coprocessor Unusable, Reserved Instruction

315 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

MFCA1 Move Word From Floating Point

31 26 25 21 20 16 15 14 13 6 5 0
POOL32F ot f 00 MFCl1 POOL32FXf
010101 s 10000000 111011
6 5 5 2 8 6
Format: MFC1 rt, fs microMIPS

Purpose: Move Word From Floating Point

To copy a word from an FPU (CP1) general register to a GPR.

Description: GPR[rt] ¢ FPR[fs]

The contents of FPR fs are sign-extended and loaded into general register rt.
Restrictions:

Operation:

data ¢« ValueFPR(fs, UNINTERPRETED WORD),; g
GPR[rt] €« sign extend(data)

Exceptions:

Coprocessor Unusable, Reserved Instruction

Historical Information:

For MIPS I, MIPS 11, and MIPS III the contents of GPR rt are UNPREDICTABLE for the instruction immediately
following MFC1.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 316

MFC2 Move Word From Coprocessor 2
31 26 25 21 20 16 15 6 5 0
POOL32A it fonol MFC2 POOL32AXf
000000 P 0100110100 111100
6 5 5 10 6
Format: MFC2 rt, Impl microMIPS

317

The syntax shown above is an example using MFC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Word From Coprocessor 2

To copy a word from a COP2 general register to a GPR.

Description: GPR[rt] <« CP2CPR[Impl]

The contents of the coprocessor 2 register denoted by the Impl field are sign-extended and placed into general register
rt. The interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the
architecture.

Restrictions:

The results are UNPREDICTABLE if the Impl field specifies a coprocessor 2 register that does not exist.

Operation:

data < CP2CPR[Impll;;
GPR[rt] ¢ sign extend(data)

Exceptions:

Coprocessor Unusable

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

MFHCO Move from High Coprocessor 0

31 26 25 21 20 16 15 14 13 11 10 6 5 0
POOL32A ” s 00 sel MFHCO POOL32P
000000 00011 110100
6 5 5 3 5 6
Format: MFHCO rt, rs microMIPS Release 5
MFHCO rt, rs, sel microMIPS Release 5

Purpose: Move from High Coprocessor 0

To move the contents of the upper 32 bits of a Coprocessor 0 register, extended by 32-bits, to a general register.

Description: GPR[rt] < CPRI[O,rs,sel] [63:32]

The contents of the Coprocessor 0 register specified by the combination of rs and sel are sign-extended and loaded
into general register rt. Not all Coprocessor 0 registers support the sel field, and in those instances, the sel field must
be zero.

When the Coprocessor 0 register specified is the EntryLoO or the EntryLol register, MFHCO must undo the effects of
MTHCO, that is, bits 31:30 of the register must be returned as bits 1:0 of the GPR, and bits 32 and those of greater sig-
nificance must be left-shifted by two and written to bits 31:2 of the GPR. This is because the RI and XI bits are repo-
sitioned on the write from GPR to EntryLo0O or the EntryLol.

Restrictions:

Pre-Release 6: The results are UNDEFINED if Coprocessor 0 does not contain a register as specified by rs and sel,
or the register exists but is not extended by 32-bits, or the register is extended for XPA, but XPA is not supported or
enabled.

Release 6: Reading the high part of a register that is reserved, not implemented for the current core configuration, or
that is not extended beyond 32 bits returns 0.

Availability and Compatibility:
This feature supports MIPS32 backward-compatibility on MIPS64 implementations.

Operation:

PABITS is the total number of physical address bits implemented. PABITS is defined in the descriptions of EntryLoO
and EntryLo1.

if Config5yyy = 0 then SignalException(ReservedInstruction) endif
reg < rs
if IsCoprocessorRegisterImplemented (0, reg, sel) and
IsCoprocessorRegisterExtended (0, reg, sel) then
data ¢« CPR[0, reg, sell
if (reg,sel = EntrylLol or reg,sel = EntryLoO) then
if (Config3;py = 1 and PageGraing.p, = 1) then // PABITS > 36
GPR[rtlsz; o ¢« datag, 39
GPR[rtle; 3, ¢« (datag;)>? // sign-extend

else
GPR[rt] « O
endif
else
GPR[rt] ¢ sign extend(datags 35)
endif

else
if ArchitectureRevision() > 6 then

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 318

GPR[rt] « O
else
UNDEFINED
endif
endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

319 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05

MFHC1 Move Word From High Half of Floating Point Register
31 26 25 21 20 16 15 14 13
POOL32F it " 00 MFHC1 POOL32FXf
010101 s 1100000 111011
6 5 5 2 P 6
Format: MFHC1 rt, fs microMIPS

Purpose: Move Word From High Half of Floating Point Register

To copy a word from the high half of an FPU (CP1) general register to a GPR.

Description: GPR[rt] ¢« sign extend (FPR[fslg;. 35)

The contents of the high word of FPR fs are sign-extended and loaded into general register rt. This instruction is pri-
marily intended to support 64-bit floating point units on a 32-bit CPU, but the semantics of the instruction are defined

for all cases.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction exception.

The results are UNPREDICTABLE if Statusgg = 0 and fs is odd.

Operation:

data ¢« ValueFPR(fs, UNINTERPRETED DOUBLEWORD) .5 s,

GPR[rt] €« sign extend(data)

Exceptions:

Coprocessor Unusable, Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

320

MFHC2 Move Word From High Half of Coprocessor 2 Register

321

31 26 25 21 20 16 15 6 5 0
POOL32A " Imol MFHC2 POOL32AXf
000000 P 1000110100 111100
6 5 5 10 6
Format: MFHC2 rt, Impl microMIPS

The syntax shown above is an example using MFHC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Word From High Half of Coprocessor 2 Register
To copy a word from the high half of a COP2 general register to a GPR.

Description: GPR[rt] ¢« sign extend (CP2CPR[Impllg; s5)

The contents of the high word of the coprocessor 2 register denoted by the Impl field are sign-extended and placed
into GPR rt. The interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not speci-
fied by the architecture.

Restrictions:

The results are UNPREDICTABLE if the Impl field specifies a coprocessor 2 register that does not exist, or if that
register is not 64 bits wide.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction exception.

Operation:

data < CP2CPR[Impllgs. 33
GPR[rt] ¢ sign extend(data)

Exceptions:

Coprocessor Unusable, Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

MOV.fmt Floating Point Move

31 26 25 21 20 16 15 14 13 12 6 5 0
POOL32F i f 0! fmt MOV POOL32FXf
010101 s 0000001 111011

6 5 5 1 2 7 6

Format: MOV.fmt
MOV.S ft, fs microMIPS
MOV.D ft, fs microMIPS
Purpose: Floating Point Move

To move an FP value between FPRs.

Description: FPR[ft] < FPR[fs]

The value in FPR fs is placed into FPR ft. The source and destination are values in format fmt. In paired-single format,
both the halves of the pair are copied to ft.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and ft must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Availability and Compatibility:
MOV.PS has been removed in Release 6.

Operation:

StoreFPR (ft, fmt, ValueFPR(fs, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 322

MTCO Move to Coprocessor 0
31 26 25 21 20 16 15 14 13 11 10 6 5 0
POOL32A " s 00 sel MTCO POOL32AXf
000000 01011 111100
6 5 5 2 3 5 6
Format: wMTCOo rt, rs microMIPS
MTCO rt, rs, sel microMIPS

Purpose: Move to Coprocessor 0

To move the contents of a general register to a coprocessor 0 register.

Description: CPR[0, rs, sel]l < GPRI[rt]

The contents of general register rt are loaded into the coprocessor 0 register specified by the combination of rs and
sel. Not all coprocessor 0 registers support the sel field. In those instances, the sel field must be set to zero.

When the CP0 destination register specified is the EntryLoO or the EntryLo1 register, bits 31:30 appear
in the RI/XT fields of the destination register. This feature supports MIPS32 backward compatibility on a MIPS64

implementation.

Restrictions:

Pre-Release 6: The results are UNDEFINED if coprocessor 0 does not contain a register as specified by rs and sel.

Release 6: Writes to a register that is reserved or not defined for the current core configuration are ignored.

Operation:

data < GPR[rt]
reg €< rs
if IsCoprocessorRegisterImplemented (0, reg, sel)
if (reg,sel = EntryLol or EntryLoO) then
CPR[0,reg,sel]l g o € datasg g
CPR[0,reg,sell4s; ¢« datas;
CPR[0,reg,sellq, ¢« dataj,
CPR[0,reg,sellqy,30 < 032
elseif (Width(CPR[O,reg,sel]) = 64) then
CPR[0,reg,sel] < data
else
CPR[0,reg,sel] <« data;; o
endif
else
if ArchitectureRevision() > 6 then

then

// nop (no exceptions, coprocessor state not modified)

else
UNDEFINED
endif
endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

323 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

MTCA1 Move Word to Floating Point

31 26 25 21 20 16 15 14 13 6 5 0
POOL32F ot f 00 MTCI1 POOL32FXf
010101 s 10100000 111011
6 5 5 2 8 6
Format: MTC1 rt, fs microMIPS

Purpose: Move Word to Floating Point
To copy a word from a GPR to an FPU (CP1) general register.

Description: FPR[fs] < GPR[rt]

The low word in GPR rt is placed into the low word of FPR fs. If FPRs are 64 bits wide, bits 63..32 of FPR fs become
UNPREDICTABLE.

Restrictions:

Operation:

data < GPR[rtl;; ¢
StoreFPR (fs, UNINTERPRETED WORD, data)

Exceptions:

Coprocessor Unusable

Historical Information:

For MIPS I, MIPS II, and MIPS III the value of FPR fs is UNPREDICTABLE for the instruction immediately fol-
lowing MTCI1.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 324

MTC2

325

Move Word to Coprocessor 2

31 26 25 21 20 16 15 6 5 0
POOL32A " Imol MTC2 POOL32AXf
000000 P 0101110100 111100
6 5 5 10 6
Format: MTC2 rt, Impl microMIPS

The syntax shown above is an example using MTC1 as a model. The specific syntax is implementation-dependent.

Purpose: Move Word to Coprocessor 2

To copy a word from a GPR to a COP2 general register.

Description: CP2CPRI[Impl] < GPR[rt]

The low word in GPR rt is placed into the low word of a Coprocessor 2 general register denoted by the Impl field. If
Coprocessor 2 general registers are 64 bits wide; bits 63..32 of the register denoted by the Impl field become
UNPREDICTABLE. The interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is
not specified by the architecture.

Restrictions:

The results are UNPREDICTABLE if the Impl field specifies a Coprocessor 2 register that does not exist.

Operation:

data < GPR[rtl;; o
CP2CPR [Impl] < data

Exceptions:

Coprocessor Unusable, Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

MTHCO Move to High Coprocessor 0

31 26 25 21 20 16 15 14 13 1 10 6 5 0
POOL32A " s 00 sel MTHCO POOL32P
000000 01011 110100
6 5 5 2 3 5 6
Format: MTHCO rt, rs microMIPS Release 5
MTHCO rt, rs, sel microMIPS Release 5

Purpose: Move to High Coprocessor 0
To copy a word from a GPR to the upper 32 bits of a CP0O general register that has been extended by 32 bits.

Description: CPrR[0, rs, sell [63:32] < GPR[rt]

The contents of general register rt are loaded into the Coprocessor 0 register specified by the combination of rs and
sel. Not all Coprocessor 0 registers support the sel field; the sel field must be set to zero.

When the Coprocessor 0 destination register specified is the EntryLoO or EntryLol register, bits 1:0 of the GPR appear
at bits 31:30 of EntryLoO or EntryLol. This is to compensate for Rl and XI, which were shifted to bits 63:62 by MTCO
to EntryLoO or EntryLol. If RI/XI are not supported, the shift must still occur, but an MFHCO instruction returns 0Os for
these two fields. The GPR is right-shifted by two to vacate the lower two bits, and two Os are shifted in from the left.
The result is written to the upper 32 bits of MIPS64 EntryLoO or EntryLol, excluding RI/XI, which were placed in bits
63:62, that is, the write must appear atomic, as if both MTC0O and MTHCO occurred together.

This feature supports MIPS32 backward compatibility of MIPS64 systems.

Restrictions:

Pre-Release 6: The results are UNDEFINED if Coprocessor 0 does not contain a register as specified by rs and sel,
or if the register exists but is not extended by 32 bits, or the register is extended for XPA, but XPA is not supported or
enabled.

Release 6: A write to the high part of a register that is reserved, not implemented for the current core, or that is not
extended beyond 32 bits is ignored.

In a 64-bit processor, the MTHCO instruction writes only the lower 32 bits of register rt into the upper 32 bits of the
Coprocessor register specified by rd and sel if the register is extended as defined by IsCoprocessorRegisterEx-
tended(). The registers extended by Release 5 are those required for the XPA feature. Release 6 extends WatchHi to
support MemoryMapID. These registers are identical to the same registers in the MIPS64 Architecture, other than
EntryLoO and EntryLol.

Operation:

if Configbyyy = 0 then SignalException(ReservedInstruction) endif
data ¢« GPR[rt]
reg < rs
if IsCoprocessorRegisterImplemented (0, reg, sel) and
IsCoprocessorRegisterExtended (0, reg, sel) then
if (reg,sel = EntrylLol or reg,sel = EntryLoO) then
if (Config3;py = 1 and PageGraingpps = 1) then // PABITS > 36
CPR[0,reg,selly; 39 ¢ data;
CPR[0,reg,sells .35, € dataz; , and ((1<<(PABITS-36))-1)
CPR[0,reg,sell ;.¢ ¢« 07
else
CPR[0, reg, sell[g3.32) ¢ datas; o
endif
else
if ArchitectureRevision() > 6 then

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 326

// nop (no exceptions, coprocessor state not modified)
else
UNDEFINED
endif
endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

327 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05

MTHC1 Move Word to High Half of Floating Point Register

31 26 25 21 20 16 15 14 13 6 5 0
POOL32F ot f 00 MTHCI1 POOL32FXf
010101 s 11100000 111011
6 5 5 2 8 6
Format: MTHC1 rt, fs microMIPS

Purpose: Move Word to High Half of Floating Point Register
To copy a word from a GPR to the high half of an FPU (CP1) general register.

Description: FPR[fsl¢; 3, ¢ GPRIrtls;.

The low word in GPR rt is placed into the high word of FPR fs. This instruction is primarily intended to support 64-
bit floating point units on a 32-bit CPU, but the semantics of the instruction are defined for all cases.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction exception.

The results are UNPREDICTABLE if Statusgg = 0 and fs is odd.

Operation:

newdata € GPR[rtlszq o
olddata < ValueFPR(fs, UNINTERPRETED DOUBLEWORD);;
StoreFPR (fs, UNINTERPRETED DOUBLEWORD, newdata || olddata)

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes

When paired with MTC1 to write a value to a 64-bit FPR, the MTC1 must be executed first, followed by the MTHCI.
This is because of the semantic definition of MTC1, which is not aware that software is using an MTHC1 instruction
to complete the operation, and sets the upper half of the 64-bit FPR to an UNPREDICTABLE value.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 328

MTHC2 Move Word to High Half of Coprocessor 2 Register

329

31 26 25 21 20 16 15 6 5 0
POOL32A " Imol MTHC2 POOL32AXf
000000 P 1001110100 111100
6 5 5 10 6
Format: MTHC2 rt, Impl microMIPS

The syntax shown above is an example using MTHC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Word to High Half of Coprocessor 2 Register
To copy a word from a GPR to the high half of a COP2 general register.

Description: CP2CPR[Impllg¢sy 3, ¢ GPRIrtls;

The low word in GPR rt is placed into the high word of coprocessor 2 general register denoted by the Impl field. The
interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the archi-
tecture.

Restrictions:

The results are UNPREDICTABLE if the Impl field specifies a coprocessor 2 register that does not exist, or if that
register is not 64 bits wide.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction exception.

Operation:

data < GPR[rtl;; o
CP2CPR[Impl] ¢ data || CPR[2,rd,sell;; o

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes

When paired with MTC2 to write a value to a 64-bit CPR, the MTC2 must be executed first, followed by the
MTHC?2. This is because of the semantic definition of MTC2, which is not aware that software is using an MTHC2
instruction to complete the operation, and sets the upper half of the 64-bit CPR to an UNPREDICTABLE value.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

MUL MUH MULU MUHU DMUL DMUH DMULU DMUH

U

Multiply Integers (with result to GPR)

31 26 25 21 20 16 15 11 10 9 0
POOL32A rt . y 0 MUL
000000 0000011000
POOL32A rt N » 0 MUH
000000 0001011000
POOL32A u) » 0 MULU
000000 S 0010011000
POOL32A N . rd 0 MUHU
000000 s 0011011000
6 5 5 5 1 10
31 26 25 21 20 16 15 11 10 9 8 0
POOL32S DMUL
010110 rt s rd 00 000011000
POOL32S DMUH
010110 n s rd 00 001011000
POOL32S t ’ 00 DMULU
010110 r s : 010011000
POOL32S t ’ 00 DMUHU
010110 r s : 011011000
6 5 5 5 2 9
Format: MUL MUH MULU MUHU DMUL DMUH DMULU DMUHU

MUL rd,rs,rt
MUH rd,rs,rt
MULU rd,rs,rt
MUHU rd,rs,rt
DMUL rd,rs,rt
DMUH rd,rs,rt
DMULU rd, rs,rt
DMUHU rd,rs,rt

Purpose: Multiply Integers (with result to GPR)

MUL: Multiply Words Signed, Low Word
MUH: Multiply Words Signed, High Word
MULU: Multiply Words Unsigned, Low Word
MUHU: Multiply Words Unsigned, High Word

DMUL: Multiply Doublewords Signed, Low Doubleword
DMUH: Multiply Doublewords Signed, High Doubleword
DMULU: Multiply Doublewords Unsigned, Low Doubleword
DMUHU: Multiply Doublewords Unsigned, High Doubleword

Description:

MUL : GPR[rd] <« sign extend.32(lo word(multiply.signed(GPR[rs] x
MUH : GPR [rd] <« sign extend.32(hi word(multiply.signed(GPR[rs] x
MULU: GPR[rd] <« sign extend.32(lo word(multiply.unsigned(GPR[rs]
MUHU: GPR[rd] <« sign extend.32(hi word(multiply.unsigned(GPR[rs]
DMUL: GPR[rd] <« lo doubleword(multiply.signed(GPR[rs] x GPR[rt])
DMUH: GPR[rd] <« hi doubleword(multiply.signed(GPR[rs] x GPR[rt])

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

microMIPS32 Release 6
microMIPS32 Release 6
microMIPS32 Release 6
microMIPS32 Release 6
microMIPS64 Release 6
microMIPS64 Release 6
microMIPS64 Release 6
microMIPS64 Release 6

GPRI[rt])))
GPRI[rt])))
XxGPR[rt])))
x GPR[rt])))
)
)

330

MUL MUH MULU MUHU DMUL DMUH DMULU DMUHU Multiply Integers (with result to GPR)

331

DMULU: GPR[rd] <« lo doubleword(multiply.unsigned(GPR[rs] x GPR[rt]))
DMUHU: GPR[rd] <« hi_doubleword(multiply.unsigned(GPR[rs] xGPR[rt]))

The Release 6 multiply instructions multiply the operands in GPR[rs] and GPR[rd], and place the specified high or
low part of the result, of the same width, in GPR[rd].

MUL performs a signed 32-bit integer multiplication, and places the low 32 bits of the result in the destination regis-
ter.

MUH performs a signed 32-bit integer multiplication, and places the high 32 bits of the result in the destination regis-
ter.

MULU performs an unsigned 32-bit integer multiplication, and places the low 32 bits of the result in the destination
register.

MUHU performs an unsigned 32-bit integer multiplication, and places the high 32 bits of the result in the destination
register.

DMUL performs a signed 64-bit integer multiplication, and places the low 64 bits of the result in the destination reg-
ister.

DMUH performs a signed 64-bit integer multiplication, and places the high 64 bits of the result in the destination reg-
ister.

DMULU performs an unsigned 64-bit integer multiplication, and places the low 64 bits of the result in the destination
register.

DMUHU performs an unsigned 64-bit integer multiplication, and places the high 64 bits of the result in the destina-
tion register.

Restrictions:

On a 64-bit CPU, MUH is UNPREDICTABLE if its inputs are not signed extended 32-bit integers.

MUL behaves correctly even if its inputs are not sign extended 32-bit integers. Bits 32-63 of its inputs do not affect
the result.

On a 64-bit CPU, MUHU is UNPREDICTABLE if its inputs are not zero or sign extended 32-bit integers.

MULU behaves correctly even if its inputs are not zero or sign extended 32-bit integers. Bits 32-63 of its inputs do
not affect the result.

On a 64-bit CPU, the 32-bit multiplications, both signed and unsigned, sign extend the result as if it is a 32-bit signed
integer.

DMUL DMUH DMULU DMUHU: Reserved Instruction exception if 64-bit instructions are not enabled.

Availability and Compatibility:

These instructions are introduced by and required as of Release 6.

Programming Notes:

The low half of the integer multiplication result is identical for signed and unsigned. Nevertheless, there are distinct
instructions MUL MULU DMUL DMULU. Implementations may choose to optimize a multiply that produces the
low half followed by a multiply that produces the upper half. Programmers are recommended to use matching lower
and upper half multiplications.

The Release 6 MUL instruction has the same opcode mnemonic as the pre-Release 6 MUL instruction. The semantics
of these instructions are almost identical: both produce the low 32-bits of the 32x32=64 product; but the pre-Release
6 MUL is unpredictable if its inputs are not properly sign extended 32-bit values on a 64 bit machine, and is defined
to render the HI and LO registers unpredictable, whereas the Release 6 version ignores bits 32-63 of the input, and
there are no HI/LO registers in Release 6 to be affected.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

MUL MUH MULU MUHU DMUL DMUH DMULU DMUHU

Operation:

MUH :
MUH :
MUHU :
MUHU :

if NotWordvValue (GPR[rs])

if NotWordValue (GPR[rt])
if NotWordvValue (GPR[rs])
if NotWordvValue (GPR[rt])

Multiply Integers (with result to GPR)

then UNPREDICTABLE endif
then UNPREDICTABLE endif
then UNPREDICTABLE endif
then UNPREDICTABLE endif

/* recommended implementation: ignore bits 32-63 for MUL, MUH, MULU, MUHU */

MUL, MUH:
sl <« signed word(GPR[rs])
s2 <« signed word(GPR([rt])
MULU, MUHU:
sl <« unsigned word(GPR[rs])
s2 <« unsigned word(GPR[rt])
DMUL, DMUH:
sl <« signed doubleword (GPR[rs])
s2 <« signed doubleword (GPR[rt])
DMULU, DMUHU:
sl < unsigned doubleword (GPR[rs])
s2 <« unsigned doubleword (GPR[rt])

product <« sl xs2

MUL: GPR[rd] <« sign extend.32(lo_ word(
MUH : GPR [rd] <« sign extend.32(hi word(
MULU: GPR[rd] <« sign extend.32(lo word(
MUHU: GPR[rd] <« sign extend.32(hi word(
DMUL: GPR[rd] <« lo_doubleword(product)
DMUH: GPR[rd] <« hi doubleword(product)
DMULU: GPR[rd] <« lo_doubleword(product)
DMUHU: GPR[rd] <« hi doubleword(product)
Exceptions:

MUL MUH MULU MUHU: None
DMUL DMUH DMULU DMUHU: Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

/* product is twice the width of sources */

product
product
product
product

—_ — — —
—_ — — —

332

MUL.fmt Floating Point Multiply

333

31 26 25 21 20 16 15 11 10 9 8 7 0
POOL32F MUL
010101 fi fs fd 0| fmt 10110000
6 5 5 5 1 2 3

Format: MUL.fmt
MUL.S fd, fs, ft microMIPS
MUL.D f£d, fs, ft microMIPS
Purpose: Floating Point Multiply

To multiply FP values.

Description: FPR[fd] « FPR[fs] x FPR[ft]

The value in FPR fs is multiplied by the value in FPR ft. The result is calculated to infinite precision, rounded accord-
ing to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.
Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is
UNPREDICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

Availability and Compatibility:
MUL.PS has been removed in Release 6.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) oog, ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

NEG.fmt Floating Point Negate
31 26 25 21 20 16 15 14 13 12 5
POOL32F NEG POOL32FXf
010101 fi fs 0| fmt 0101101 111011
6 5 5 1 2 7 6

Format: NEG.fmt
NEG.S ft, fs
NEG.D ft, fs

Purpose: Floating Point Negate

To negate an FP value.

Description: FPR[ft] ¢ -FPR[fs]

microMIPS
microMIPS

The value in FPR fs is negated and placed into FPR ft. The value is negated by changing the sign bit value. The oper-

and and result are values in format fmt.

If FIRa52008=0 or FCSR ygs200g=0 then this operation is arithmetic. For this case, any NaN operand signals invalid

operation.

If FCSRARs200s=1 then this operation is non-arithmetic. For this case, both regular floating point numbers and NAN

values are treated alike, only the sign bit is affected by this instruction. No IEEE 754 exception can be generated for

this case.

Restrictions:

The fields fs and ft must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is UNPRE-
DICTABLE. The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value

of the operand FPR becomes UNPREDICTABLE.
Availability and Compatibility:
NEG.PS has been removed in Release 6.

Operation:

StoreFPR (ft, fmt, Negate (ValueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

334

NOP No Operation
31 26 25 21 20 16 15 11 10 5 0
POOL32A 0 0 0 0 SLL
000000 00000 00000 00000 00000 000000
6 5 5 5 5 6
Format: wnop Assembly Idiom microMIPS

335

Purpose: No Operation

To perform no operation.

Description:

NOP is the assembly idiom used to denote no operation. The actual instruction is interpreted by the hardware as SLL
r0, 10, 0.

Restrictions:

None

Operations:

None

Exceptions:

None

Programming Notes:

The zero instruction word, which represents SLL, 10, 10, 0, is the preferred NOP for software to use and to pad out
alignment sequences.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

31 26 25 21 20 16 15 11 10 9 0
POOL32A o i 0 NOR
000000 s : 1011010000
6 5 5 5 1 10
Format: NOR rd, rs, rt microMIPS

Purpose: Not Or

To do a bitwise logical NOT OR.

Description: GPR[rd] < GPR[rs] nor GPR[rt]
The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical NOR operation. The result is

placed into GPR rd.

Restrictions:

None

Operation:

GPR[rd] <« GPR[rs] nor GPR|[rt]

Exceptions:

None

MIPS® Architecture for Programmers Volume [I-B: microMIPS64™ Instruction Set, Revision 6.05

336

31 26 25 21 20 16 15 11 10 9 0
POOL32A OR
000000 it s rd 0 1010010000
6 5 5 5 1 10
Format: OR rd, rs, rt microMIPS
Purpose: Or

To do a bitwise logical OR.

Description: GPR[rd] <« GPR[rs] or GPRI[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical OR operation. The result is
placed into GPR rd.

Restrictions:

None

Operations:
GPR[rd] < GPR[rs] or GPR[rt]

Exceptions:

None

337 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05

31 26 25 21 20 16 15
ORI32 . .
010100 rt rs immediate
6 5 5 16
Format: ORI rt, immediate

Purpose: Or Immediate
To do a bitwise logical OR with a constant.

Description: GPR[rt] ¢ GPR[rs] or immediate

microMIPS

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR rs in a bitwise logical OR

operation. The result is placed into GPR rt.

Restrictions:

None

Operations:
GPR [rt]

Exceptions:

None

MIPS® Architecture for Programmers Volume [I-B: microMIPS64™ Instruction Set, Revision 6.05

€< GPR[rs] or zero_extend(immediate)

338

PAUSE Wait for the LLBit to clear.

339

31 26 25 6 5 0
POOL32A 0 0 5 0 SLL
000000 00000 00000 00101 00000 000000
6 5 5 5 5 6
Format: PAUSE microMIPS

Purpose: Wait for the LLBIt to clear.

Description:

Locks implemented using the LL/SC (or LLD/SCD) instructions are a common method of synchronization between
threads of control. A lock implementation does a load-linked instruction and checks the value returned to determine
whether the software lock is set. If it is, the code branches back to retry the load-linked instruction, implementing an
active busy-wait sequence. The PAUSE instruction is intended to be placed into the busy-wait sequence to block the
instruction stream until such time as the load-linked instruction has a chance to succeed in obtaining the software
lock.

The PAUSE instruction is implementation-dependent, but it usually involves descheduling the instruction stream
until the LLBiIt is zero.

* Inasingle-threaded processor, this may be implemented as a short-term WAIT operation which resumes at the
next instruction when the LLBit is zero or on some other external event such as an interrupt.

* On a multi-threaded processor, this may be implemented as a short term YIELD operation which resumes at the
next instruction when the LLBit is zero.

In either case, it is assumed that the instruction stream which gives up the software lock does so via a write to the lock
variable, which causes the processor to clear the LLBit as seen by this thread of execution.

The encoding of the instruction is such that it is backward compatible with all previous implementations of the archi-
tecture. The PAUSE instruction can therefore be placed into existing lock sequences and treated as a NOP by the pro-
cessor, even if the processor does not implement the PAUSE instruction.

Restrictions:

Pre-Release 6: The operation of the processor is UNPREDICTABLE if a PAUSE instruction is executed placed in
the delay slot of a branch or jump instruction. This restriction does not apply in Release 6.

Operations:

if LLBit # 0 then
EPC <« PC + 4 /* Resume at the following instruction */
DeschedulelInstructionStream()

endif

Exceptions:
None

Programming Notes:

The PAUSE instruction is intended to be inserted into the instruction stream after an LL instruction has set the LLBit
and found the software lock set. The program may wait forever if a PAUSE instruction is executed and there is no
possibility that the LLBit will ever be cleared.

An example use of the PAUSE instruction is shown below:

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

acquire lock:
11 t0, 0(a0)
bnezc t0, acquire lock retry:

addiu tO, tO0, 1

sc t0, 0(a0)

bnezc t0, 10f

sync
acquire lock retry:

pause

bc acquire_lock

10:
Critical region code
release_ lock:

sync
sw zero, 0(a0)

/*
/*

Read software lock, set hardware lock */
Branch if software lock is taken; */
Release 6 branch */

Set the software lock */

Try to store the software lock */

Branch if lock acquired successfully */

Wait for LLBIT to clear before retry */
and retry the operation; Release 6 branch */

Release software lock, clearing LLBIT */
for any PAUSEd waiters */

MIPS® Architecture for Programmers Volume [I-B: microMIPS64™ Instruction Set, Revision 6.05 340

PREF Prefetch
31 26 25 21 20 16 15 12 11 9 8 0
POOL32C . PREF 0
011000 hint base 0010 000 offset
6 5 5 5 3 9
Format: PREF hint,offset (base) microMIPS

341

Purpose: Prefetch

To move data between memory and cache.

Description: prefetch memory (GPR[base] + offset)

PREF adds the signed offset to the contents of GPR base to form an effective byte address. The hint field supplies
information about the way that the data is expected to be used.

PREF enables the processor to take some action, typically causing data to be moved to or from the cache, to improve
program performance. The action taken for a specific PREF instruction is both system and context dependent. Any
action, including doing nothing, is permitted as long as it does not change architecturally visible state or alter the
meaning of a program. Implementations are expected either to do nothing, or to take an action that increases the per-
formance of the program. The PrepareForStore function is unique in that it may modify the architecturally visible
state.

PREF does not cause addressing-related exceptions, including TLB exceptions. If the address specified would cause
an addressing exception, the exception condition is ignored and no data movement occurs.However even if no data is
moved, some action that is not architecturally visible, such as writeback of a dirty cache line, can take place.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREF instruction.

PREF neither generates a memory operation nor modifies the state of a cache line for a location with an uncached
memory access type, whether this type is specified by the address segment (e.g., ksegl), the programmed cacheability
and coherency attribute of a segment (e.g., the use of the KO, KU, or K23 fields in the Config register), or the per-
page cacheability and coherency attribute provided by the TLB.

If PREF results in a memory operation, the memory access type and cacheability&coherency attribute used for the
operation are determined by the memory access type and cacheability&coherency attribute of the effective address,
just as it would be if the memory operation had been caused by a load or store to the effective address.

For a cached location, the expected and useful action for the processor is to prefetch a block of data that includes the
effective address. The size of the block and the level of the memory hierarchy it is fetched into are implementation
specific.

In coherent multiprocessor implementations, if the effective address uses a coherent Cacheability and Coherency
Attribute (CCA), then the instruction causes a coherent memory transaction to occur. This means a prefetch issued on
one processor can cause data to be evicted from the cache in another processor.

The PREF instruction and the memory transactions which are sourced by the PREF instruction, such as cache refill or
cache writeback, obey the ordering and completion rules of the SYNC instruction.

Table 8.25 Values of hint Field for PREF Instruction

Value Name Data Use and Desired Prefetch Action

0 load Use: Prefetched data is expected to be read (not modified).
Action: Fetch data as if for a load.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

Prefetch

PREF
Table 8.25 Values of hint Field for PREF Instruction (Continued)
Value Name Data Use and Desired Prefetch Action
1 store Use: Prefetched data is expected to be stored or modified.
Action: Fetch data as if for a store.
2 L1 LRU hint Pre-Release 6: Reserved for Architecture.
Release 6: Implementation dependent. This hint code marks the line as LRU in
the L1 cache and thus preferred for next eviction. Implementations can choose
to writeback and/or invalidate as long as no architectural state is modified.
3 Reserved for Implementation | Pre-Release 6: Reserved for Architecture.
Release 6: Available for implementation-dependent use.
4 load_streamed Use: Prefetched data is expected to be read (not modified) but not reused
extensively; it “streams” through cache.
Action: Fetch data as if for a load and place it in the cache so that it does not
displace data prefetched as “retained.”
5 store_streamed Use: Prefetched data is expected to be stored or modified but not reused exten-
sively; it “streams” through cache.
Action: Fetch data as if for a store and place it in the cache so that it does not
displace data prefetched as “retained.”
6 load retained Use: Prefetched data is expected to be read (not modified) and reused exten-
sively; it should be “retained” in the cache.
Action: Fetch data as if for a load and place it in the cache so that it is not dis-
placed by data prefetched as “streamed.”
7 store retained Use: Prefetched data is expected to be stored or modified and reused exten-
sively; it should be “retained” in the cache.
Action: Fetch data as if for a store and place it in the cache so that it is not dis-
placed by data prefetched as “streamed.”
8-15 L2 operation Pre-Release 6: Reserved for Architecture.
Release 6: In the Release 6 architecture, hint codes 8 - 15 are treated the same
as hint codes 0 - 7 respectively, but operate on the L2 cache.
16-23 | L3 operation Pre-Release 6: Reserved for Architecture.
Release 6: In the Release 6 architecture, hint codes 16 - 23 are treated the same
as hint codes 0 - 7 respectively, but operate on the L3 cache.
24 Reserved for Architecture Pre-Release 6: Unassigned by the Architecture - available for implementation-
dependent use.
Release 6: This hint code is not implemented in the Release 6 architecture and
generates a Reserved Instruction exception (RI).
25 writeback_invalidate (also Pre-Release 6:
known as “nudge”) Use—Data is no longer expected to be used.
Reserved for Architecture in | Action—For a writeback cache, schedule a writeback of any dirty data. At the
Release 6 completion of the writeback, mark the state of any cache lines written back as
invalid. If the cache line is not dirty, it is implementation dependent whether
the state of the cache line is marked invalid or left unchanged. If the cache line
is locked, no action is taken.
Release 6: This hint code is not implemented in the Release 6 architecture and
generates a Reserved Instruction exception (RI).

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

342

PREF Prefetch
Table 8.25 Values of hint Field for PREF Instruction (Continued)
Value Name Data Use and Desired Prefetch Action
26-29 | Reserved for Architecture Pre-Release 6: Unassigned by the Architecture—available for implementa-

343

tion-dependent use.
Release 6: These hints are not implemented in the Release 6 architecture and
generate a Reserved Instruction exception (RI).

30 PrepareForStore Pre-Release 6:
Reserved for Architecture in | Use—Prepare the cache for writing an entire line, without the overhead
Release 6 involved in filling the line from memory.

Action—If the reference hits in the cache, no action is taken. If the reference
misses in the cache, a line is selected for replacement, any valid and dirty vic-
tim is written back to memory, the entire line is filled with zero data, and the
state of the line is marked as valid and dirty.

Programming Note: Because the cache line is filled with zero data on a cache
miss, software must not assume that this action, in and of itself, can be used as
a fast bzero-type function.

Release 6: This hint is not implemented in the Release 6 architecture and gen-
erates a Reserved Instruction exception (RI).

31 Reserved for Architecture Pre-Release 6: Unassigned by the Architecture—available for implementa-
tion-dependent use.

Release 6: This hint is not implemented in the Release 6 architecture and gen-
erates a Reserved Instruction exception (RI).

Restrictions:
None

This instruction does not produce an exception for a misaligned memory address, since it has no memory access size.

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:
vAddr ¢ GPR[base] + sign extend(offset)
(pAddr, CCA) < AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Bus Error, Cache Error

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

In the Release 6 architecture, hint codes 2:3, 10:11, 18:19 behave as a NOP if not implemented. Hint codes 24:31 are
not implemented (treated as reserved) and always signal a Reserved Instruction exception (RI).

As shown in the instruction drawing above, Release 6 implements a 9-bit offset, whereas all release levels lower than
Release 6 of the MIPS architecture implement a 16-bit offset.

Prefetch cannot move data to or from a mapped location unless the translation for that location is present in the TLB.
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so prefetch
may not be effective for such locations.

Prefetch does not cause addressing exceptions. A prefetch may be used using an address pointer before the validity of

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

PREF Prefetch

the pointer is determined without worrying about an addressing exception.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREF instruction. Typically, this only occurs in systems which have high-
reliability requirements.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

Hint field encodings whose function is described as “streamed” or “retained” convey usage intent from software to
hardware. Software should not assume that hardware will always prefetch data in an optimal way. If data is to be truly
retained, software should use the Cache instruction to lock data into the cache.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 344

PREFE Prefetch EVA

31 26 25 21 20 16 15 12 11 9 8 0
POOL32C hint ba ST-EVA p%}foF E offset
011000 s¢ 1010
6 5 5 4 3 9
Format: PREFE hint,offset (base) microMIPS

Purpose: Prefetch EVA

To move data between user mode virtual address space memory and cache while operating in kernel mode.

Description: prefetch memory (GPR[base] + offset)

PREFE adds the 9-bit signed offset to the contents of GPR base to form an effective byte address. The hint field sup-
plies information about the way that the data is expected to be used.

PREFE enables the processor to take some action, causing data to be moved to or from the cache, to improve program
performance. The action taken for a specific PREFE instruction is both system and context dependent. Any action,
including doing nothing, is permitted as long as it does not change architecturally visible state or alter the meaning of
a program. Implementations are expected either to do nothing, or to take an action that increases the performance of
the program. The PrepareForStore function is unique in that it may modify the architecturally visible state.

PREFE does not cause addressing-related exceptions, including TLB exceptions. If the address specified would cause
an addressing exception, the exception condition is ignored and no data movement occurs.However even if no data is
moved, some action that is not architecturally visible, such as writeback of a dirty cache line, can take place.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREFE instruction.

PREFE neither generates a memory operation nor modifies the state of a cache line for a location with an uncached
memory access type, whether this type is specified by the address segment (for example, ksegl), the programmed
cacheability and coherency attribute of a segment (for example, the use of the KO, KU, or K23 fields in the Config
register), or the per-page cacheability and coherency attribute provided by the TLB.

If PREFE results in a memory operation, the memory access type and cacheability & coherency attribute used for the
operation are determined by the memory access type and cacheability & coherency attribute of the effective address,
just as it would be if the memory operation had been caused by a load or store to the effective address.

For a cached location, the expected and useful action for the processor is to prefetch a block of data that includes the
effective address. The size of the block and the level of the memory hierarchy it is fetched into are implementation
specific.

In coherent multiprocessor implementations, if the effective address uses a coherent Cacheability and Coherency
Attribute (CCA), then the instruction causes a coherent memory transaction to occur. This means a prefetch issued on
one processor can cause data to be evicted from the cache in another processor.

The PREFE instruction and the memory transactions which are sourced by the PREFE instruction, such as cache
refill or cache writeback, obey the ordering and completion rules of the SYNC instruction.

The PREFE instruction functions in exactly the same fashion as the PREF instruction, except that address translation
is performed using the user mode virtual address space mapping in the TLB when accessing an address within a
memory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access
modes are also accessible. Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5gy, field being set to one.

345 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

PREFE

Prefetch EVA

Table 8.26 Values of hint Field for PREFE Instruction

Value

Name

Data Use and Desired Prefetch Action

load

Use: Prefetched data is expected to be read (not modified).
Action: Fetch data as if for a load.

store

Use: Prefetched data is expected to be stored or modified.
Action: Fetch data as if for a store.

L1 LRU hint

Pre-Release 6: Reserved for Architecture.

Release 6: Implementation dependent. This hint code marks the line as LRU in
the L1 cache and thus preferred for next eviction. Implementations can choose
to writeback and/or invalidate as long as no architectural state is modified.

Reserved for Implementation

Pre-Release 6: Reserved for Architecture.
Release 6: Available for implementation-dependent use.

load_streamed

Use: Prefetched data is expected to be read (not modified) but not reused
extensively; it “streams” through cache.

Action: Fetch data as if for a load and place it in the cache so that it does not
displace data prefetched as “retained.”

store_streamed

Use: Prefetched data is expected to be stored or modified but not reused exten-
sively; it “streams” through cache.

Action: Fetch data as if for a store and place it in the cache so that it does not
displace data prefetched as “retained.”

load retained

Use: Prefetched data is expected to be read (not modified) and reused exten-
sively; it should be “retained” in the cache.

Action: Fetch data as if for a load and place it in the cache so that it is not dis-
placed by data prefetched as “streamed.”

store retained

Use: Prefetched data is expected to be stored or modified and reused exten-
sively; it should be “retained” in the cache.

Action: Fetch data as if for a store and place it in the cache so that it is not dis-
placed by data prefetched as “streamed.”

8-15

L2 operation

Pre-Release 6: Reserved for Architecture.
Release 6: Hint codes 8 - 15 are treated the same as hint codes 0 - 7 respec-
tively, but operate on the L2 cache.

16-23

L3 operation

Pre-Release 6: Reserved for Architecture.
Release 6: Hint codes 16 - 23 are treated the same as hint codes 0 - 7 respec-
tively, but operate on the L3 cache.

24

Reserved for Architecture

Pre-Release 6: Unassigned by the Architecture - available for implementation-
dependent use.

Release 6: This hint code is not implemented in the Release 6 architecture and
generates a Reserved Instruction exception (RI).

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

346

PREFE Prefetch EVA

347

Table 8.26 Values of hint Field for PREFE Instruction (Continued)

Value Name Data Use and Desired Prefetch Action
25 writeback_invalidate (also Pre-Release 6:
known as “nudge”) Use—Data is no longer expected to be used.
Reserved for Architecture in | Action—For a writeback cache, schedule a writeback of any dirty data. At the
Release 6 completion of the writeback, mark the state of any cache lines written back as

invalid. If the cache line is not dirty, it is implementation dependent whether
the state of the cache line is marked invalid or left unchanged. If the cache line
is locked, no action is taken.

Release 6: This hint code is not implemented in the Release 6 architecture and
generates a Reserved Instruction exception (RI).

26-29 |Reserved for Architecture Pre-Release 6: Unassigned by the Architecture - available for implementation-
dependent use.

Release 6: These hint codes are not implemented in the Release 6 architecture
and generate a Reserved Instruction exception (RI).

30 PrepareForStore Pre-Release 6:
Reserved for Architecture in | Use—Prepare the cache for writing an entire line, without the overhead
Release 6 involved in filling the line from memory.

Action—If the reference hits in the cache, no action is taken. If the reference
misses in the cache, a line is selected for replacement, any valid and dirty vic-
tim is written back to memory, the entire line is filled with zero data, and the
state of the line is marked as valid and dirty.

Programming Note: Because the cache line is filled with zero data on a cache
miss, software must not assume that this action, in and of itself, can be used as
a fast bzero-type function.

Release 6: This hint code is not implemented in the Release 6 architecture and
generates a Reserved Instruction exception (RI).

31 Reserved for Architecture Pre-Release 6: Unassigned by the Architecture - available for implementation-
dependent use.

Release 6: This hint code is not implemented in the Release 6 architecture and
generates a Reserved Instruction exception (RI).

Restrictions:

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

This instruction does not produce an exception for a misaligned memory address, since it has no memory access size.

Operation:

vAddr ¢ GGPR[base] + sign extend(offset)
(pAddr, CCA) ¢ AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:
Bus Error, Cache Error, Address Error, Reserved Instruction, Coprocessor Usable

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

In the Release 6 architecture, hint codes 0:23 behave as a NOP and never signal a Reserved Instruction exception
(RI). Hint codes 24:31 are not implemented (treated as reserved) and always signal a Reserved Instruction exception
(RI).

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

PREFE Prefetch EVA

Prefetch cannot move data to or from a mapped location unless the translation for that location is present in the TLB.
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so prefetch
may not be effective for such locations.

Prefetch does not cause addressing exceptions. A prefetch may be used using an address pointer before the validity of
the pointer is determined without worrying about an addressing exception.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREFE instruction. Typically, this only occurs in systems which have high-
reliability requirements.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

Hint field encodings whose function is described as “streamed” or “retained” convey usage intent from software to
hardware. Software should not assume that hardware will always prefetch data in an optimal way. If data is to be truly
retained, software should use the Cache instruction to lock data into the cache.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 348

RDHWR Read Hardware Register
31 26 25 21 20 16 15 14 13 11 10 9 8 0
POOL32A 0 0 RDHWR
rt s sel
000000 00 0 0111000000
6 5 5 2 3 1 10
Format: RDHWR rt,rs,sel microMIPS

349

Purpose: Read Hardware Register

To move the contents of a hardware register to a general purpose register (GPR) if that operation is enabled by privi-

leged software.

The purpose of this instruction is to give user mode access to specific information that is otherwise only visible in

kernel mode.

In Release 6, a sel field has been added to allow a register with multiple instances to be read selectively. Specifically
it is used for PerfCtr.

Description: GPR[rt] ¢« HWR[rs]; GPR[rt] ¢« HWR[rs, sell

If access is allowed to the specified hardware register, the contents of the register specified by rs (optionally sel in
Release 6) is sign-extended and loaded into general register rt. Access control for each register is selected by the bits
in the coprocessor 0 HWREna register.

The available hardware registers, and the encoding of the rs field for each, are shown in Table 8.27.

Table 8.27 RDHWR Register Numbers

Register
Number
(rs Value)

Mnemonic

Description

CPUNum

Number of the CPU on which the program is currently running. This register pro-
vides read access to the coprocessor 0 EBasecpnym field.

SYNCI_Step

Address step size to be used with the SYNCI instruction, or zero if no caches need
be synchronized. See that instruction’s description for the use of this value.

CcC

High-resolution cycle counter. This register provides read access to the coprocessor
0 Count Register.

CCRes

Resolution of the CC register. This value denotes the number of cycles between
update of the register. For example:

CCRes Value Meaning

CC register increments every CPU cycle

2 CC register increments every second CPU cycle

CC register increments every third CPU cycle

etc.

PerfCtr

Performance Counter Pair. Even sel selects the Control register, while odd sel
selects the Counter register in the pair. The value of sel corresponds to the value of
sel used by MFCO to read the CPO register.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

RDHWR Read Hardware Register
Table 8.27 RDHWR Register Numbers
Register
Number
(rs Value) | Mnemonic Description
XNP Indicates support for the Release 6 Paired LL/SC family of instructions. If set to 1,

the LL/SC family of instructionsis not present, otherwise, it is present in the imple-
mentation. In absence of hardware support for double-width or extended atomics,
user software may emulate the instruction’s behavior through other means. See
Configbyyp.-

6-28

These registers numbers are reserved for future architecture use. Access results in a
Reserved Instruction Exception.

29

ULR User Local Register. This register provides read access to the coprocessor 0
UserLocal register, if it is implemented. In some operating environments, the
UserLocal register is a pointer to a thread-specific storage block.

30-31

These register numbers are reserved for implementation-dependent use. If they are
not implemented, access results in a Reserved Instruction Exception.

Restrictions:

In implementations of Release 1 of the Architecture, this instruction resulted in a Reserved Instruction Exception.

Access to the specified hardware register is enabled if Coprocessor 0 is enabled, or if the corresponding bit is set in
the HWREna register. If access is not allowed or the register is not implemented, a Reserved Instruction Exception is

signaled.

In Release 6, when the 3-bit sel is undefined for use with a specific register number, then a Reserved Instruction
Exception is signaled.

Availability and Compatibility:

This instructions has been recoded for Release 6. The instruction supports a sel field in Release 6.

Operation:
if ((rs!=4) and (sel==0))
case rs
0: temp ¢« sign extend (EBasecpyyum)
1: temp ¢ sign_extend(SYNCI_ StepSize())
2: temp ¢ sign extend (Count)
3: temp ¢« sign extend(CountResolution())
if (>=2) // #5 - Release 6
5: temp < sign extend(0x00000001 && Config5yyp) //zero-extend really
endif
29: temp ¢ sign extend if 32bit op(UserLocal)
endif
30: temp ¢ sign extend if 32bit op(Implementation-Dependent-Value)
31: temp ¢ sign extend if 32bit op(Implementation-Dependent-Value)
otherwise: SignalException (ReservedInstruction)
endcase
elseif ((rs==4) and (>=2) and (sel==defined)// #4 - Release 6
temp ¢« sign extend if 32bit op(PerfCtr[sell)
else
endif

GPR[rt] <« temp

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

350

function sign extend if 32bit_op(value)
if (width(value) = 64) and Are64BitOperationsEnabled() then
sign_extend if 32bit op < value
else
sign extend if 32bit op ¢ sign extend(value)
endif
end sign extend if 32bit op

Exceptions:

Reserved Instruction

For a register that does not require Sel, the compiler must support an assembly syntax without sel that is ‘RDHWR rt,
rs’. Another valid syntax is for sel to be 0 to map to pre-Release 6 register numbers which do not require use of sel
that is, ' RDHWR rt, rs, 0°.

351 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05

RDPGPR Read GPR from Previous Shadow Set
31 26 25 21 20 16 15
POOL32A " - RDPGPR POOL32AXf
000000 s 1110000101 111100
6 5 5 10 6
Format: RDPGPR rt, rs microMIPS

Purpose: Read GPR from Previous Shadow Set

To move the contents of a GPR from the previous shadow set to a current GPR.

Description: GPR[rt] ¢ SGPR[SRSCtlpgg, rs]

The contents of the shadow GPR register specified by SRSCltlpgg (signifying the previous shadow set number) and rs

(specifying the register number within that set) is moved to the current GPR rt.

Restrictions:

In implementations prior to Release 2 of the Architecture, this instruction resulted in a Reserved Instruction excep-

tion.

Operation:

GPR [rt]

Exceptions:
Coprocessor Unusable

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

€ SGPR[SRSCtlpgg, rs]

352

RECIP.fmt Reciprocal Approximation

353

26 25 21 20 16 15 14 13 6 5 0
POOL32F ft f 0 | fnt RECIP POOL32FXf
010101 s 01001000 111011
6 5 5 1 1 8 6

Format: RECIP.fmt
RECIP.S ft, fs microMIPS
RECIP.D ft, fs microMIPS
Purpose: Reciprocal Approximation

To approximate the reciprocal of an FP value (quickly).

Description: FPR[ft] ¢« 1.0 / FPRI[fs]

The reciprocal of the value in FPR fs is approximated and placed into FPR ft. The operand and result are values in for-
mat fmt.

The numeric accuracy of this operation is implementation dependent. It does not meet the accuracy specified by the
IEEE 754 Floating Point standard. The computed result differs from the both the exact result and the IEEE-mandated
representation of the exact result by no more than one unit in the least-significant place (ULP).

It is implementation dependent whether the result is affected by the current rounding mode in FCSR.

Restrictions:

The fields fs and ft must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.
Availability and Compatibility:

RECIP.S and RECIP.D: Required in all versions of MIPS64 since MIPS64 Release 1. Not available in MIPS32
Release 1. Required in MIPS32 Release 2 and all subsequent versions of MIPS32. When required, required whenever
FPU is present, whether a 32-bit or 64-bit FPU, whether in 32-bit or 64-bit FP Register Mode (FIRgg,=0 or 1,

Statusgr=0 or 1).

Operation:

StoreFPR(ft, fmt, 1.0 / valueFPR(fs, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Division-by-zero, Unimplemented Op, Invalid Op, Overflow, Underflow

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

RINT.fmt Floating-Point Round to Integral
31 26 25 21 20 16 15 11 10 5
POOL32F RINT
010101 fs fd 00000 fimt 000100000
6 5 5 5 2 9
Format: RINT.fmt
RINT fd, fs microMIPS32 Release 6

Purpose: Floating-Point Round to Integral

Scalar floating-point round to integral floating point value.

Description: FPR[£fd] <« round int (FPR[fs])

The scalar floating-point value in the register £s is rounded to an integral valued floating-point number in the same
format based on the rounding mode bits RM in the FPU Control and Status Register FCSR. The result is written to

fd.

The operands and results are values in floating-point data format fmt.

The RINT.fmt instruction corresponds to the roundTolntegralExact operation in the IEEE Standard for Floating-

Point Arithmetic 754T™-2008. The Inexact exception is signaled if the result does not have the same numerical value
as the input operand.

The floating point scalar instruction RINT.fmt corresponds to the MSA vector instruction FRINT.df. I.e. RINT.S cor-
responds to FRINT.W, and RINT.D corresponds to FRINT.D.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 75

2008.

Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Operation:
RINT fmt:

if not IsCoprocessorEnabled (1)
then SignalException (CoprocessorUnusable,
if not IsFloatingPointImplemented (fmt))
then SignalException (ReservedInstruction) endif

fin <« ValueFPR(fs, fmt)
ftmp «RoundIntFP (fin, fmt)

if(fin # ftmp)

StoreFPR

(fdl

fmt,

ftmp)

function RoundIntFP (tt, n)

/* Round to integer operation, using rounding mode FCSR.RM*/

endfunction RoundIntFP

Exceptions:

Coprocessor Unusable, Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

SignalFPException (InExact)

endif

4T™M_

354

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Inexact, Overflow, Underflow

355 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05

ROTR Rotate Word Right
31 26 25 21 20 16 15 11 10 6 5
POOL32A Y . 0 ROTR
000000 s sa 0011000000
6 5 5 5 1 10

Format: ROTR rt, rs,

Purpose: Rotate Word Right

To execute a logical right-rotate of a word by a fixed number of bits.

Description: GPR[rt] < GPR[rs] x(right) sa

SmartMIPS Crypto, microMIPS

The contents of the low-order 32-bit word of GPR rs are rotated right; the word result is sign-extended and placed in

GPR rt. The bit-rotate amount is specified by sa.

Restrictions:

If GPR rt does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordvValue (GPR[rt]) or
((ArchitectureRevision() < 2) and (Config3gy

UNPREDICTABLE
endif
s € sa
temp ¢« GPR[rslg; , || GPRIrsls; o
GPR[rt] €« sign extend(temp)

Exceptions:

Reserved Instruction

0))

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

356

ROTRV Rotate Word Right Variable
31 26 25 21 20 16 15 11 10 0
POOL32A " . d 0 ROTRV
000000 s 0011010000
6 5 5 5 1 10

357

Format: ROTRV rd, rt, rs

Purpose: Rotate Word Right Variable

To execute a logical right-rotate of a word by a variable number of bits.

Description: GPR[rd] < GPR[rt] x(right) GPR[rs]

SmartMIPS Crypto, microMIPS

The contents of the low-order 32-bit word of GPR rt are rotated right; the word result is sign-extended and placed in

GPR rd. The bit-rotate amount is specified by the low-order 5 bits of GPR rs.

Restrictions:

If GPR rt does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordvValue (GPR[rt]) or

((ArchitectureRevision() < 2) and (Config3gy

UNPREDICTABLE
endif
s ¢« GPR[rsl, o
temp ¢« GPR[rtlg; , || GPRIrtls; 4
GPR[rd] € sign extend(temp)

Exceptions:

Reserved Instruction

0))

then

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

ROUND.L.fmt Floating Point Round to Long Fixed Point

31 26 25 21 20 16 15 14 13 6 5 0
POOL32F ft f 0 | fmt ROUND.L POOL32FXf
010101 S 11001100 111011

6 5 5 1 1 8 6

Format: ROUND.L.fmt
ROUND.L.S ft, fs microMIPS
ROUND.L.D ft, fs microMIPS

Purpose: Floating Point Round to Long Fixed Point

To convert an FP value to 64-bit fixed point, rounding to nearest.

Description: FPR[ft] < convert and round (FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded to nearest/
even (rounding mode 0). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range 293 t0 293-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. The Invalid Operation flag is set in the FCSR.
If the Invalid Operation Enable bit is set in the FCSR, no result is written to ft and an Invalid Operation exception is
taken immediately. Otherwise, a default result is written to ft. On cores with FCSRyan2008=0, the default result is

253_1. On cores with FCSRy ano00s=1, the default result is:
* 0 when the input value is NaN

« 291 when the input value is +00 or rounds to a number larger than 2631

« 2951 when the input value is —00 or rounds to a number smaller than 291

Restrictions:

The fields fs and ft must specify valid FPRs: fs for type fmt and fd for long fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model. It is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (ft, L, ConvertFmt (ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 358

ROUND.W.fmt Floating Point Round to Word Fixed Point

359

31 26 25 22 21 20 16 15 14 13 6 5 0
POOL32F ft f 0 | fint ROUND.W POOL32FXf
010101 S 11101100 111011

6 5 5 1 1 8 6

Format: ROUND.W.fmt
ROUND.W.S ft, fs microMIPS
ROUND.W.D ft, fs microMIPS

Purpose: Floating Point Round to Word Fixed Point

To convert an FP value to 32-bit fixed point, rounding to nearest.

Description: FPR[ft] < convert and round (FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format rounding to nearest/even
(rounding mode 0). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range 230 231-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. The Invalid Operation flag is set in the FCSR.
If the Invalid Operation Enable bit is set in the FCSR, no result is written to ft and an Invalid Operation exception is
taken immediately. Otherwise, a default result is written to ft. On cores with FCSRyan2008=0, the default result is

2311, On cores with FCSRy ano00s=1, the default result is:

* 0 when the input value is NaN

« 231 when the input value is +00 or rounds to a number larger than 231

« 2311 when the input value is —00 or rounds to a number smaller than 23

Restrictions:

The fields fs and ft must specify valid FPRs: fs for type fmt and fd for word fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR (ft, W, ConvertFmt (ValueFPR(fsg, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

RSQRT.fmt Reciprocal Square Root Approximation

31 26 25 21 20 16 15 14 13 6 5 0
POOL32F RSQRT fmt POOL32FXf
010101 fi fs 0 | fmt 00001000 111011
6 5 5 1 1 8 6

Format: RSQRT.fmt
RSQRT.S ft, fs microMIPS
RSQRT.D ft, fs microMIPS
Purpose: Reciprocal Square Root Approximation

To approximate the reciprocal of the square root of an FP value (quickly).

Description: FPR[ft] < 1.0 / sqgrt (FPR[fs])

The reciprocal of the positive square root of the value in FPR fs is approximated and placed into FPR ft. The operand
and result are values in format fmt.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
IEEE 754 Floating Point standard. The computed result differs from both the exact result and the IEEE-mandated
representation of the exact result by no more than two units in the least-significant place (ULP).

The effect of the current FCSR rounding mode on the result is implementation dependent.

Restrictions:

The fields fs and ft must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.
Availability and Compatibility:

RSQRT.S and RSQRT.D: Required in all versions of MIPS64 since MIPS64 Release 1. Not available in MIPS32
Release 1. Required in MIPS32 Release 2 and all subsequent versions of MIPS32. When required, required whenever
FPU is present, whether a 32-bit or 64-bit FPU, whether in 32-bit or 64-bit FP Register Mode (FIRgg,=0 or 1,

Statusgr=0 or 1).

Operation:

StoreFPR (ft, fmt, 1.0 / SquareRoot (valueFPR (fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Division-by-zero, Unimplemented Operation, Invalid Operation, Overflow, Underflow

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 360

SB

361

Store Byte
31 26 25 21 20 16 15 0
SB32
000110 t base offset
6 5 5 16
Format: SB rt, offset (base) microMIPS

Purpose: Store Byte

To store a byte to memory.

Description: memory [GPR [base] + offset] < GPR[rt]

The least-significant 8-bit byte of GPR rt is stored in memory at the location specified by the effective address. The

16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

None

Operation:

vAddr ¢ sign extend(offset) + GPR[basel
< AddressTranslation (vAddr,
pAddr & pAddrpgrze-1 .3 || (pAddr, , xor ReverseEndian?)

(pAddr,

CCA)

bytesel ¢ vAddr, , xor BigEndianCPU?

datadoubleword ¢ GPRIrtlgs gspyresel..
StoreMemory (CCA, BYTE,

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch

datadoubleword, pAddr,

DATA, STORE)

0 || OS*bytesel

DATA)

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

SBE

31 26 25

21 20

16

15

12

11

Store Byte EVA

POOL32C
011000

It

base

ST-EVA
1010

SBE
100

offset

6

Format: SBE rt,

5

offset (base)

Purpose: Store Byte EVA

To store a byte to user mode virtual address space when executing in kernel mode.

Description: memory [GPR [base] + offset] ¢« GPR[rt]

microMIPS

The least-significant 8-bit byte of GPR rt is stored in memory at the location specified by the effective address. The

9-bit signed offset is added to the contents of GPR base to form the effective address.

The SBE instruction functions the same as the SB instruction, except that address translation is performed using the
user mode virtual address space mapping in the TLB when accessing an address within a memory segment config-
ured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.

Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5gy, field being set to 1.

Restrictions:

Only usable when access to Coprocessor0Q is enabled and when accessing an address within a segment configured

using UUSK, MUSK or MUSUK access mode.

Operation:

vAddr ¢ sign_extend(offset)
< AddressTranslation (vAddr,
pAddr ¢ pAddrpgrze-1. .3 || (pAddr, , xor ReverseEndian?)
bytesel ¢« vAddr, , xor BigEndiancCpUu?

datadoubleword ¢ GPRIrtlg; gepyresel..
(CCA, BYTE, datadoubleword, pAddr, vAddr,

(pAddr, CcCR)

StoreMemory

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch, Reserved Instruction, Coprocessor Unusable,

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

+ GPR [base]

o || OS*bytesel

DATA, STORE)

362

SC Store Conditional Word

31 26 25 21 20 16 15 12 11 9 8 0
POOL32C SC 0
011000 it base 1011 000 offset
6 5 5 5 3 9
Format: sc rt, offset (base) microMIPS

Purpose: Store Conditional Word

To store a word to memory to complete an atomic read-modify-write

Description: if atomic update then memory [GPR[base] + offset] <« GPR[rt], GPR[rt] « 1
else GPR[rt] « O

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations on syn-
chronizable memory locations. In Release 5, the behavior of SC is modified when Config5 | g=1.

Release 6 (with ConTig5 5 =1) formalizes support for uncached LL and SC sequences, whereas the pre-Release 6

LL and SC description applies to cached (coherent/non-coherent) memory types. (The description for uncached sup-
port does not modify the description for cached support and is written in a self-contained manner.)

The least-significant 32-bit word in GPR rt is conditionally stored in memory at the location specified by the aligned
effective address. The signed offset is added to the contents of GPR base to form an effective address.

The SC completes the RMW sequence begun by the preceding LL instruction executed on the processor. To complete
the RMW sequence atomically, the following occur:

* The least-significant 32-bit word of GPR rt is stored to memory at the location specified by the aligned effective
address.

* A one, indicating success, is written into GPR rt.
Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt.
If either of the following events occurs between the execution of LL and SC, the SC fails:

* A coherent store is completed by another processor or coherent I/O module into the block of synchronizable
physical memory containing the word. The size and alignment of the block is implementation-dependent, but it is
at least one word and at most the minimum page size.

* A coherent store is executed between an LL and SC sequence on the same processor to the block of synchroniz-
able physical memory containing the word (if Config5, | g=1; else whether such a store causes the SC to fail is not

predictable).
* An ERET instruction is executed. (Release 5 includes ERETNC, which will not cause the SC to fail.)

Furthermore, an SC must always compare its address against that of the LL. An SC will fail if the aligned address of
the SC does not match that of the preceding LL.

A load that executes on the processor executing the LL/SC sequence to the block of synchronizable physical memory
containing the word, will not cause the SC to fail (if Config5; | g=1; else such a load may cause the SC to fail).

If any of the events listed below occurs between the execution of LL and SC, the SC may fail where it could have suc-
ceeded, i.e., success is not predictable. Portable programs should not cause any of these events.

* A load or store executed on the processor executing the LL and SC that is not to the block of synchronizable
physical memory containing the word. (The load or store may cause a cache eviction between the LL and SC that
results in SC failure. The load or store does not necessarily have to occur between the LL and SC.)

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 363

SC Store Conditional Word

* Any prefetch that is executed on the processor executing the LL and SC sequence (due to a cache eviction
between the LL and SC).

* A non-coherent store executed between an LL and SC sequence to the block of synchronizable physical memory
containing the word.

* The instructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

CACHE operations that are local to the processor executing the LL/SC sequence will result in unpredictable behav-
iour of the SC if executed between the LL and SC, that is, they may cause the SC to fail where it could have suc-
ceeded. Non-local CACHE operations (address-type with coherent CCA) may cause an SC to fail on either the local
processor or on the remote processor in multiprocessor or multi-threaded systems. This definition of the effects of
CACHE operations is mandated if Config5, | g=1. If Config5 | g=0, then CACHE effects are implementation-depen-

dent.

The following conditions must be true or the result of the SC is not predictable—the SC may fail or succeed (if
Config5 | g=1, then either success or failure is mandated, else the result is UNPREDICTABLE):

* Execution of SC must have been preceded by execution of an LL instruction.

* An RMW sequence executed without intervening events that would cause the SC to fail must use the same
address in the LL and SC. The address is the same if the virtual address, physical address, and cacheability &
coherency attribute are identical.

Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one that
is associated with the state and logic necessary to implement the LL/SC semantics. Whether a memory location is
synchronizable depends on the processor and system configurations, and on the memory access type used for the
location:

* Uniprocessor atomicity: To provide atomic RMW on a single processor, all accesses to the location must be
made with memory access type of either cached noncoherent or cached coherent. All accesses must be to one or
the other access type, and they may not be mixed.

* MP atomicity: To provide atomic RMW among multiple processors, all accesses to the location must be made
with a memory access type of cached coherent.

* 1/O System: To provide atomic RMW with a coherent I/O system, all accesses to the location must be made with
a memory access type of cached coherent. If the I/O system does not use coherent memory operations, then
atomic RMW cannot be provided with respect to the I/O reads and writes.

Release 6 (with ConTig5 g =1) formally defines support for uncached LL and SC with the following constraints.

* Both LL and SC must be uncached, and the address must be defined as synchronizable in the system. If the
address is non-synchronizable, then this may result in UNPREDICTABLE behavior. The recommended response
is that the sub-system report a Bus Error to the processor.

* The use of uncached LL and SC is applicable to any address within the supported address range of the system, or
any system configuration, as long as the system implements means to monitor the sequence.

* The SC that ends the sequence may fail locally, but never succeed locally within the processor. When it does not
fail locally, the SC must be issued to a “monitor” which is responsible for monitoring the address. This monitor
makes the final determination as to whether the SC fails or not, and communicates this to the processor that initi-
ated the sequence.

It is implementation dependent as to what form the monitor takes. It is however differentiated from cached LL
and SC which rely on a coherence protocol to make the determination as to whether the sequence succeeds.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 364

SC Store Conditional Word

* Same processor uncached (but not cached) stores will cause the sequence to fail if the store address matches that
of the sequence. A cached store to the same address will cause UNPREDICTABLE behavior.

* Remote cached coherent stores to the same address will cause UNPREDICTABLE behavior.

* Remote cached non-coherent or uncached stores may cause the sequence to fail if they address the external mon-
itor and the monitor makes this determination.

As emphasized above, it is not recommended that software mix memory access types during LL and SC sequences.
That is all memory accesses must be of the same type, otherwise this may result in UNPREDICTABLE behavior.

Conditions that cause UNPREDICTABLE behavior for legacy cached LL and SC sequences may also cause such
behavior for uncached sequences.

A PAUSE instruction is no-op’d when it is preceded by an uncached LL.

The semantics of an uncached LL/SC atomic operation applies to any uncached CCA including UCA (UnCached
Accelerated). An implementation that supports UCA must guarantee that SC does not participate in store gathering
and that it ends any gathering initiated by stores preceding the SC in program order when the SC address coincides
with a gathering address.

Restrictions:

The addressed location must have a memory access type of cached noncoherent or cached coherent; if it does not, the
result is UNPREDICTABLE. Release 6 (with ConFig5y g =1) extends support to uncached types.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Availability and Compatibility

This instruction has been recoded for Release 6.

Operation:

vAddr <« sign extend(offset) + GPR[base]
if vAddr; , # 02 then
SignalException (AddressError)

endif

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)

pPAddr < pAddrpgrge.1. .3 || (pAddr, o xor (ReverseEndian || 02))
bytesel <« vAddr, , xor (BigEndianCPU || 0%?)

datadoubleword <« GPR[rt] 63-8+bytesel. .0 || g8*bytesel

if LLbit then
StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)
endif
GPR[rt] « 0°® || LLbit
LLbit « 0 // if Config5;;z=1, SC always clears LLbit regardless of address match.
Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

LL and SC are used to atomically update memory locations, as shown below.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 365

SC Store Conditional Word

Ll:
LL T1l, (T0) # load counter
ADDI T2, T1l, 1 # increment
scC T2, (T0) # try to store, checking for atomicity

BEQC T2, 0, L1 # if not atomic (0), try again

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided. Some examples of
these are arithmetic operations that trap, system calls, and floating point operations that trap or require software emu-
lation assistance.

LL and SC function on a single processor for cached noncoherent memory so that parallel programs can be run on
uniprocessor systems that do not support cached coherent memory access types.

As shown in the instruction drawing above, Release 6 implements a 9-bit offset, whereas all release levels lower than
Release 6 of the MIPS architecture implement a 16-bit offset.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 366

SCE

367

31

Store Conditional Word EVA

26 25 21 20 16 15 12 11 9 8 0

POOL32C ST-EVA SCE
011000 it base 1010 110 offset

6 5 5 4 3 9

Format: SCE rt, offset (base) microMIPS

Purpose: Store Conditional Word EVA

To store a word to user mode virtual memory while operating in kernel mode to complete an atomic read-modify-
write.

Description: if atomic_update then memory [GPR[base] + offset] « GPR[rt], GPR[rt] « 1 else
GPR[rt] <« 0

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for syn-
chronizable memory locations.

Release 6 (with Config5 g =1) formalizes support for uncached LLE and SCE sequences. (The description for
uncached support does not modify the description for cached support and is written in a self-contained manner.)

The least-significant 32-bit word in GPR rt is conditionally stored in memory at the location specified by the aligned
effective address. The 9-bit signed offset is added to the contents of GPR base to form an effective address.

The SCE completes the RMW sequence begun by the preceding LLE instruction executed on the processor. To com-
plete the RMW sequence atomically, the following occurs:

* The least-significant 32-bit word of GPR rt is stored to memory at the location specified by the aligned effective
address.

* A 1, indicating success, is written into GPR rt.
Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt.
If either of the following events occurs between the execution of LL and SC, the SC fails:

* A coherent store is completed by another processor or coherent I/O module into the block of synchronizable
physical memory containing the word. The size and alignment of the block is implementation dependent, but it is
at least one word and at most the minimum page size.

« An ERET instruction is executed.

If either of the following events occurs between the execution of LLE and SCE, the SCE may succeed or it may fail;
the success or failure is not predictable. Portable programs should not cause one of these events.

* A memory access instruction (load, store, or prefetch) is executed on the processor executing the LLE/SCE.

* The instructions executed starting with the LLE and ending with the SCE do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

The following conditions must be true or the result of the SCE is UNPREDICTABLE:
» Execution of SCE must have been preceded by execution of an LLE instruction.

* An RMW sequence executed without intervening events that would cause the SCE to fail must use the same
address in the LLE and SCE. The address is the same if the virtual address, physical address, and cacheability &
coherency attribute are identical.

Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one that
is associated with the state and logic necessary to implement the LLE/SCE semantics. Whether a memory location is
synchronizable depends on the processor and system configurations, and on the memory access type used for the

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

SCE Store Conditional Word EVA

location:

» Uniprocessor atomicity: To provide atomic RMW on a single processor, all accesses to the location must be
made with memory access type of either cached non coherent or cached coherent. All accesses must be to one or
the other access type, and they may not be mixed.

* MP atomicity: To provide atomic RMW among multiple processors, all accesses to the location must be made
with a memory access type of cached coherent.

* 1/0O System: To provide atomic RMW with a coherent I/O system, all accesses to the location must be made with
a memory access type of cached coherent. If the I/O system does not use coherent memory operations, then
atomic RMW cannot be provided with respect to the I/O reads and writes.

The SCE instruction functions the same as the SC instruction, except that address translation is performed using the
user mode virtual address space mapping in the TLB when accessing an address within a memory segment config-
ured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5gy, field being set to 1.

The definition for SCE is extended for uncached memory types in a manner identical to SC. The extension is defined
in the SC instruction description.

Restrictions:

The addressed location must have a memory access type of cached non coherent or cached coherent; if it does not,
the result is UNPREDICTABLE. Release 6 (with ConTig5y g =1) extends support to uncached types.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Operation:

vAddr ¢ sign_extend(offset) + GPR[base]
if vAddr; , # 07 then
SignalException (AddressError)

endif

(pAddr, CCA) ¢ AddressTranslation (vAddr, DATA, STORE)

pAddr € pAddrpgrze-1. .3 || (PAddr, , xor (ReverseEndian || 02))
bytesel ¢« vAddr, , xor (BigEndianCPU || 0?)

datadoubleword ¢ GPRI[rtlg;_gspytesel..o || p8*bytesel

if LLbit then

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)
endif
GPR[rt] <« 0° || LLbit

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch, Reserved Instruction, Coprocessor Unusable

Programming Notes:

LLE and SCE are used to atomically update memory locations, as shown below.

Ll:

LLE T1l, (TO0) # load counter

ADDI T2, T1l, 1 # increment

SCE T2, (T0) # try to store, checking for atomicity
BEQC T2, 0, L1 # if not atomic (0), try again

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 368

369

Exceptions between the LLE and SCE cause SCE to fail, so persistent exceptions must be avoided. Examples are
arithmetic operations that trap, system calls, and floating point operations that trap or require software emulation
assistance.

LLE and SCE function on a single processor for cached non coherent memory so that parallel programs can be run on
uniprocessor systems that do not support cached coherent memory access types.

MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05

SCD Store Conditional Doubleword

31 26 25 21 20 16 15 12 11 9 8 6 5 0
POOL 32C scD 0
011000 rt base 1111 000 offset
6 5 5 4 3 9
Format: SCD rt, offset (base) microMIPS

Purpose: Store Conditiona Doubleword

To store a doubleword to memory to compl ete an atomic read-modify-write.

Description: 1f atomic_update then memory [GPR[base] + offset] ¢« GPR[rt], GPR[rt] < 1 else
GPR[rt] « 0

The LLD and SCD instructions provide primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.

Release 6 (with Config5y g =1) formalizes support for uncached LLD and SCD sequences, whereas the pre-

Release 6 LLD and SCD description applies to cached (coherent/non-coherent) memory types. (The description for
uncached support does not modify the description for cached support and is written in a self-contained manner.)

The 64-bit doubleword in GPR rt is conditionally stored in memory at the location specified by the aligned effective
address. The signed offset is added to the contents of GPR base to form an effective address.

The SCD completes the RMW sequence begun by the preceding LLD instruction executed on the processor. If SCD
completes the RMW sequence atomically, the following occurs:
* The 64-bit doubleword of GPR rt is stored into memory at the location specified by the aligned effective address.

* A1, indicates success, iswritten into GPR rt.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt.

If either of the following events occurs between the execution of LLD and SCD, the SCD fails:

» A coherent store is completed by another processor or coherent 1/0 module into the block of synchronizable
physical memory containing the doubleword. The size and alignment of the block is implementation dependent,
but it is at least one doubleword and at most the minimum page size.

* An ERET instruction is executed.

If either of the following events occurs between the execution of LLD and SCD, the SCD may succeed or it may fail;

the success or failure is not predictable. Portable programs should not cause the following events:

e A memory accessinstruction (load, store, or prefetch) is executed on the processor executing the LLD/SCD.

* Theinstructions executed starting with the LLD and ending with the SCD do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

The following two conditions must be true or the result of the SCD is UNPREDICTABLE:

* Execution of the SCD must be preceded by execution of an LLD instruction.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 370

SCD Store Conditional Doubleword

* An RMW sequence executed without intervening events that would cause the SCD to fail must use the same
addressinthe LLD and SCD. The address is the same if the virtual address, physica address, and cache-coher-
ence algorithm are identical.

Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one that
is associated with the state and logic necessary to implement the LL/SC semantics. Whether a memory location is
synchronizable depends on the processor and system configurations, and on the memory access type used for the
location:

* Uniprocessor atomicity: To provide atomic RMW on a single processor, all accesses to the location must be
made with memory access type of either cached non coherent or cached coherent. All accesses must be to one or
the other access type, and they may not be mixed.

* MP atomicity: To provide atomic RMW among multiple processors, al accesses to the location must be made
with amemory access type of cached coherent.

» 1/O System: To provide atomic RMW with acoherent 1/0 system, all accesses to the location must be made with
amemory access type of cached coherent. If the 1/O system does not use coherent memory operations, then
atomic RMW cannot be provided with respect to the 1/O reads and writes.

Release 6 (with ConTig5y g =1) formally defines support for uncached LLD and SCD with the following con-
straints.
* Both LLD and SCD must be uncached, and the address must be defined as synchronizable in the system. If the

address is non-synchronizable, then this may result in UNPREDICTABLE behavior. The recommended response
is that the sub-system report a Bus Error to the processor.

* The use of uncached LLD and SCD is applicable to any address within the supported address range of the sys-
tem, or any system configuration, as long as the system implements means to monitor the sequence.

* The SCD that ends the sequence may fail locally, but never succeed locally within the processor. When it does
not fail locally, the SCD must be issued to a “monitor” which is responsible for monitoring the address. This
monitor makes the final determination as to whether the SCD fails or not, and communicates this to the processor
that initiated the sequence.

It is implementation dependent as to what form the monitor takes. It is however differentiated from cached LLD
and SCD which rely on a coherence protocol to make the determination as to whether the sequence succeeds.

* Same processor uncached (but not cached) stores will cause the sequence to fail if the store address matches that
of the sequence. A cached store to the same address will cause UNPREDICTABLE behavior.

* Remote cached coherent stores to the same address will cause UNPREDICTABLE behavior.
* Remote cached non-coherent or uncached stores may cause the sequence to fail if they address the external mon-

itor and the monitor makes this determination.

As emphasized above, it is not recommended that software mix memory access types during LLD and SCD
sequences. That is all memory accesses must be of the same type, otherwise this may result in UNPREDICTABLE
behavior.

Conditions that cause UNPREDICTABLE behavior for legacy cached LLD and SCD sequences may also cause such
behavior for uncached sequences.

A PAUSE instruction is no-op’d when it is preceded by an uncached LLD.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 371

SCD Store Conditional Doubleword

The semantics of an uncached LLD/SCD atomic operation applies to any uncached CCA including UCA (UnCached
Accelerated). An implementation that supports UCA must guarantee that SCD does not participate in store gathering
and that it ends any gathering initiated by stores preceding the SCD in program order when the SCD address coin-
cides with a gathering address.

Restrictions:

The addressed location must have a memory access type of cached non coherent or cached coherent; if it does not,
theresultis UNPREDICTABLE. Release 6 (with ConTig5y g =1) extends support to uncached types.

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]
if vAddr, , # 0° then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
datadoubleword < GPR[rt]
if LLbit then
StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)
endif
GPR[rt] « 0% || LLbit

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction, Watch

Programming Notes:

LLD and SCD are used to atomically update memory locations, as shown below.

Ll:
LLD T1l, (TO0) # load counter
ADDI T2, T1l, 1 # increment
SCD T2, (TO) # try to store,
checking for atomicity
BEQC T2, 0, L1 # if not atomic (0), try again

Exceptions between the LLD and SCD cause SCD to fail, so persistent exceptions must be avoided. Examples are
arithmetic operations that trap, system calls, and floating point operations that trap or require software emulation
assistance.

LLD and SCD function on a single processor for cached non coherent memory so that parallel programs can be run
on uniprocessor systems that do not support cached coherent memory access types.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 372

SCDP Store Conditional DoubleWord Paired

31 26 25 21 20 16 15 12 11 9 8 4 3 0
POOL32C y b SCDP 0 ” 0
011000 ase 1101 000 0000
6 5 5 4 3 5 4
Format: scop rt, rd, (base) microMIPS64 Release 6

Purpose: Store Conditional DoubleWord Paired

Conditionally store a paired double-word to memory to complete an atomic read-modify-write

Description: if atomic update then memory [GPR[basel]<« {GPR[rd],GPR[rt]}, GPR[rt] <« 1
else GPR[rt] « O

The LLDP and SCDP instructions provide primitives to implement a paired double-word atomic read-modify-write
(RMW) operation at a synchronizable memory location.

Release 6 (with Config5y g =1) formalizes support for uncached LLDP and SCDP sequences. (The description for
uncached support does not modify the description for cached support and is written in a self-contained manner.)

A paired double-word is conditionally written to memory in a single atomic memory operation. GPR rd is the most-
significant double-word and GPR rt is the least-significant double-word of the quad-word in memory. The write
occurs to a quad-word aligned effective address from GPR base.

A paired double-word read or write occurs as a pair of double-word reads or writes that is quad-word atomic.
The instruction has no offset. The effective address is equal to the contents of GPR base.
rd is intentionally positioned in a non-standard bit-range.

The SCDP completes the RMW sequence begun by the preceding LLDP instruction executed on the processor. To
complete the RMW sequence atomically, the following occur:

* The paired double-word formed from the concatenation of GPRs rd and rt is stored to memory at the location
specified by the quad-word aligned effective address.

* A one, indicating success, is written into GPR rt.
Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt.

Though legal programming requires LLDP to start the atomic read-modify-write sequence and SCDP to end the same
sequence, whether the SCDP completes is only dependent on the state of LLbit and LLAddF, which are set by a pre-
ceding load-linked instruction of any type. Software must assume that pairing load-linked and store-conditional
instructions in an inconsistent manner causes UNPREDICTABLE behavior.

The SCDP must always compare its quad-word aligned address against that of the preceding LLDP. The SCDP will
fail if the address does not match that of the preceding LLDP.

Events that occur between the execution of load-linked and store-conditional instruction types that must cause the
sequence to fail are given in the legacy SCD instruction definition, except the block of synchronizable memory is a
quadword, not doubleword.

Additional events that occur between the execution of load-linked and store-conditional instruction types that may
cause success of the sequence to be UNPREDICTABLE are defined in the SCD instruction definition.

A load that executes on the processor executing the LLDP/SCDP sequence to the block of synchronizable physical
memory containing the paired double-word, will not cause the SCDP to fail.

Effect of CACHE operations, both local and remote, on a paired double-word atomic operation are defined in the SC
instruction definition.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 373

SCDP Store Conditional DoubleWord Paired

Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one that
is associated with the state and logic necessary to implement the LL/SC semantics. Whether a memory location is
synchronizable depends on the processor and system configurations, and on the memory access type used for the
location. Requirements for Uniprocessor, MP and I/O atomicity are given in the SC definition.

The definition for SCDP is extended for uncached memory types in a manner identical to SC. The extension is
defined in the SC instruction description.

Restrictions:

Load-Linked and Store-Conditional instruction types require that the addressed location must have a memory access
type of cached noncoherent or cached coherent, that is the processor must have a cache. If it does not, the result is
UNPREDICTABLE. Release 6 (with ConTig5 g =1) extends support to uncached types.

The architecture optionally allows support for Load-Linked and Store-Conditional instruction types in a cacheless
processor. Support for cacheless operation is implementation dependent. In this case, LLAddr is optional.

Providing misaligned support is not a requirement for this instruction.

Availability and Compatibility

This instruction is introduced by Release 6. It is only present if ConFig5yyp=0.

Operation:

vAddr <« GPR[base]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)

dataquadword <« {GPR[rd],GPRI[rt]}

if (LLbit && (pAddr == LLAddr))then // quadword aligned monitor
// PAIREDDOUBLEWORD: two double-word data-type that is quad-word atomic
StoreMemory (CCA, PAIREDDOUBLEWORD, dataquadword, pAddr, vAddr, DATA)
GPRI[rt] « 0° || 1'b1

else
GPR[rt] « 0°%*

endif

LLbit « 0

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Reserved Instruction, Address Error, Watch

Programming Notes:

LLDP and SCDP are used to atomically update memory locations, as shown below.

Ll:
LLDP T2, T3, (TO)# load T2 and T3
BOVC T2, 1, U32# check whether least-significant double-word may overflow
ADDI T2, T2, 1 # increment lower - only
SCDP T2, T3, (T0) # store T2 and T3
BEQC T2, 0, L1 # if not atomic (0), try again

U32:
ADDI T2, T2, 1 # increment lower
ADDI T3, T3, 1 # increment upper
SCDP T2, T3, (TO0)
BEQC T2, 0, L1 # if not atomic (0), try again

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 374

SCDP Store Conditional DoubleWord Paired

Exceptions between the LLDP and SCDP cause SC to fail, so persistent exceptions must be avoided. Some examples
of these are arithmetic operations that trap, system calls, and floating point operations that trap or require software
emulation assistance.

LLDP and SCDP function on a single processor for cached noncoherent memory so that parallel programs can be run
on uniprocessor systems that do not support cached coherent memory access types.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 375

SCWP Store Conditional Word Paired

31 26 25 21 20 16 15 12 11 9 8 4 3 0
POOL32C y b SCWP 0 ” 0
011000 ase 1001 000 0000
6 5 5 4 3 5 4
Format: scwp rt, rd, (base) microMIPS Release 6

Purpose: Store Conditional Word Paired

Conditionally store a paired word to memory to complete an atomic read-modify-write.

Description: if atomic update then memory [GPR[basel] <« {GPR[rd],GPR[rt]}, GPR[rt] <« 1
else GPR[rt] <« O

The LLWP and SCWP instructions provide primitives to implement a paired word atomic read-modify-write (RMW)
operation at a synchronizable memory location.

Release 6 (with ConFig5y g =1) formalizes support for uncached LLWP and SCWP sequences. (The description
for uncached support does not modify the description for cached support and is written in a self-contained manner.)

A paired word is formed from the concatenation of GPR rd and GPR rt. GPR rd is the most-significant word of the
paired word, and GPR rt is the least-significant word of the paired word. The paired word is conditionally stored in
memory at the location specified by the double-word aligned effective address from GPR base.

A paired word read or write occurs as a pair of word reads or writes that is double-word atomic.
The instruction has no offset. The effective address is equal to the contents of GPR base.
rd is intentionally positioned in a non-standard bit-range.

The SCWP completes the RMW sequence begun by the preceding LLWP instruction executed on the processor. To
complete the RMW sequence atomically, the following occur:

* The paired word formed from the concatenation of GPRs rd and rt is stored to memory at the location specified
by the double-word aligned effective address.

* A one, indicating success, is written into GPR rt.
Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt.

Though legal programming requires LLWP to start the atomic read-modify-write sequence and SCWP to end the
same sequence, whether the SCWP completes is only dependent on the state of LLbit and LLAddr, which are set by
a preceding load-linked instruction of any type. Software must assume that pairing load-linked and store-conditional
instructions in an inconsistent manner causes UNPREDICTABLE behavior.

The SCWP must always compare its double-word aligned address against that of the preceding LLWP. The SCWP
will fail if the address does not match that of the preceding LLWP.

Events that occur between the execution of load-linked and store-conditional instruction types that must cause the
sequence to fail are given in the legacy SC instruction description.

Additional events that occur between the execution of load-linked and store-conditional instruction types that may
cause success of the sequence to be UNPREDICTABLE are defined in the SC instruction description.

A load that executes on the processor executing the LLWP/SCWP sequence to the block of synchronizable physical
memory containing the paired word, will not cause the SCWP to fail.

Effect of CACHE operations, both local and remote, on a paired word atomic operation are defined in the SC instruc-
tion description.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 376

SCWP Store Conditional Word Paired

Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one that
is associated with the state and logic necessary to implement the LL/SC semantics. Whether a memory location is
synchronizable depends on the processor and system configurations, and on the memory access type used for the
location. Requirements for Uniprocessor, MP and I/O atomicity are given in the SC definition.

The definition for SCWP is extended for uncached memory types in a manner identical to SC. The extension is
defined in the SC instruction description.

Restrictions:

Load-Linked and Store-Conditional instruction types require that the addressed location must have a memory access
type of cached noncoherent or cached coherent, that is the processor must have a cache. If it does not, the result is
UNPREDICTABLE. Release 6 (with ConTig5 g =1) extends support to uncached types.

The architecture optionally allows support for Load-Linked and Store-Conditional instruction types in a cacheless
processor. Support for cacheless operation is implementation dependent. In this case, LLAddr is optional.

Providing misaligned support is not a requirement for this instruction.

Availability and Compatibility
This instruction is introduced by Release 6. It is only present if ConFig5yyp=0.

Operation:

vAddr < GPR [base]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)

datadoubleword,;; o < GPR[rtl;;

datadoublewordg; 35 < GPR[rdl;;

if (LLbit && (pAddr == LLAddr))then

// PAIREDWORD: two word data-type that is double-word atomic
StoreMemory (CCA, PAIREDWORD, datadoubleword, pAddr, vAddr, DATA)
GPRI[rt] « 0° || 1'b1

else
GPR[rt] « 0°*

endif

LLbit « 0

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Reserved Instruction, Address Error, Watch

Programming Notes:

LLWP and SCWP are used to atomically update memory locations, as shown below.

Ll:
LLWP T2, T3, (TO) # load T2 and T3
BOvVC T2, 1, U32 # check whether least-significant word may overflow
ADDI T2, T2, 1 # increment lower - only
SCWp T2, T3, (T0) # store T2 and T3
#

BEQC T2, 0, L1 if not atomic (0), try again
U32:

ADDI T2, T2, 1 # increment lower

ADDI T3, T3, 1 # increment upper

SCWP T2, T3, (TO)

BEQC T2, 0, L1 # if not atomic (0), try again

377 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

Exceptions between the LLWP and SCWP cause SC to fail, so persistent exceptions must be avoided. Some examples
of these are arithmetic operations that trap, system calls, and floating point operations that trap or require software
emulation assistance.

LLWP and SCWP function on a single processor for cached noncoherent memory so that parallel programs can be
run on uniprocessor systems that do not support cached coherent memory access types.

MIPS® Architecture for Programmers Volume [I-B: microMIPS64™ Instruction Set, Revision 6.05 378

379 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05

SCWPE Store Conditional Word Paired EVA

31 26 25 21 20 16 15 12 11 9 8 4 3 0
POOL32C y b ST-EVA | SCWPE ” 0
011000 ase 1010 000 0000
6 5 5 4 3 5 4
Format: SCWPE rt, rd, (base) microMIPS Release 6

Purpose: Store Conditional Word Paired EVA

Conditionally store a paired word to memory to complete an atomic read-modify-write. The store occurs in kernel
mode to user virtual address space.

Description: if atomic update then memory [GPR[basel]<« {GPR[rd],GPR[rt]}, GPR[rt] <« 1
else GPR[rt] <« O

The LLWPE and SCWPE instructions provide primitives to implement a paired word atomic read-modify-write
(RMW) operation at a synchronizable memory location.

Release 6 (with Config5y g =1) formalizes support for uncached LLWPE and SCWPE sequences. (The description
for uncached support does not modify the description for cached support and is written in a self-contained manner.)

A paired word is formed from the concatentation of GPR rd and GPR rt. GPR rd is the most-significant word of the
double-word, and GPR rt is the least-significant word of the double-word. The paired word is conditionally stored in
memory at the location specified by the double-word aligned effective address from GPR base.

A paired word read or write occurs as a pair of word reads or writes that is double-word atomic.
The instruction has no offset. The effective address is equal to the contents of GPR base.
rd is intentionally positioned in a non-standard bit-range.

The SCWPE completes the RMW sequence begun by the preceding LLWPE instruction executed on the processor.
To complete the RMW sequence atomically, the following occur:

* The paired word formed from the concatenation of GPRs rd and rt is stored to memory at the location specified
by the double-word aligned effective address.

* A one, indicating success, is written into GPR rt.
Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt.

Though legal programming requires LLWPE to start the atomic read-modify-write sequence and SCWPE to end the
same sequence, whether the SCWPE completes is only dependent on the state of LLbit and LLAddr, which are set
by a preceding load-linked instruction of any type. Software must assume that pairing load-linked and store-condi-
tional instructions in an inconsistent manner causes UNPREDICTABLE behavior.

The SCWPE must always compare its double-word aligned address against that of the preceding LLWPE. The
SCWPE will fail if the address does not match that of the preceding LLWPE.

The SCWPE instruction functions the same as the SCWP instruction, except that address translation is performed
using the user mode virtual address space mapping in the TLB when accessing an address within a memory segment
configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also acces-
sible. Refer to Volume III, Segmentation Control for additional information.

Events that occur between the execution of load-linked and store-conditional instruction types that must cause the
sequence to fail are given in the legacy SC instruction definition..

Additional events that occur between the execution of load-linked and store-conditional instruction types that may
cause success of the sequence to be UNPREDICTABLE are defined in the SC instruction definition.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 380

SCWPE Store Conditional Word Paired EVA

A load that executes on the processor executing the LLWPE/SCWPE sequence to the block of synchronizable physi-
cal memory containing the paired word, will not cause the SCWPE to fail.

Effect of CACHE operations, both local and remote, on a paired word atomic operation are defined in the SC instruc-
tion definition.

Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one that
is associated with the state and logic necessary to implement the LL/SC semantics. Whether a memory location is
synchronizable depends on the processor and system configurations, and on the memory access type used for the
location. Requirements for Uniprocessor, MP and I/O atomicity are given in the SC definition.

The definition for SCWPE is extended for uncached memory types in a manner identical to SC. The extension is
defined in the SC instruction description.

Restrictions:

Load-Linked and Store-Conditional instruction types require that the addressed location must have a memory access
type of cached noncoherent or cached coherent, that is the processor must have a cache. If it does not, the result is
UNPREDICTABLE. Release 6 (with ConTig5 g =1) extends support to uncached types.

The architecture optionally allows support for Load-Linked and Store-Conditional instruction types in a cacheless
processor. Support for cacheless operation is implementation dependent. In this case, LLAddr is optional.

Providing misaligned support is not a requirement for this instruction.

Availability and Compatibility
This instruction is introduced by Release 6. It is only present if ConFig5yyp=0 and Config5gys=1.

Operation:

vAddr < GPR [base]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)

datadoubleword,;; o < GPR[rtl;;

datadoublewordg; 35 < GPR[rdl;;

if (LLbit && (pAddr == LLAddr))then
// PAIREDWORD: two word data-type that is double-word atomic
StoreMemory (CCA, PAIREDWORD, datadoubleword, pAddr, vAddr, DATA)
GPRI[rt] « 0° || 1'b1

else
GPR[rt] « 0°%*

endif

LLbit « 0

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Reserved Instruction, Address Error, Watch, Coprocessor Unusable.

Programming Notes:

LLWPE and SCWPE are used to atomically update memory locations, as shown below.

Ll:
LLWPE T2, T3, (TO) # load T2 and T3
BOVC T2, 1, U32 # check whether least-significant word may overflow
ADDI T2, T2, 1 # increment lower - only
SCWPE T2, T3, (T0) # store T2 and T3
BEQC T2, 0, L1 # if not atomic (0), try again

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 381

SCWPE Store Conditional Word Paired EVA

U32:
ADDI T2, T2, 1 # increment lower
ADDI T3, T3, 1 # increment upper
SCWPE T2, T3, (TO0)
BEQC T2, 0, L1 # if not atomic (0), try again

Exceptions between the LLWPE and SCWPE cause SC to fail, so persistent exceptions must be avoided. Some exam-
ples of these are arithmetic operations that trap, system calls, and floating point operations that trap or require soft-
ware emulation assistance.

LLWPE and SCWPE function on a single processor for cached noncoherent memory so that parallel programs can be
run on uniprocessor systems that do not support cached coherent memory access types.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 382

SD Store Doubleword

31 26 25 21 20 16 15 0
SD32
110110 rt base offset
6 5 5 16
Format: SD rt, offset (base) microMIPS64

Purpose: Store Doubleword
To store adoubleword to memory.

Description: memory [GPR[base] + offset] ¢ GPR[rt]

The 64-bit doubleword in GPR rt is stored in memory at the location specified by the aligned effective address. The
16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

Pre-release 6: The effective address must be naturally-aligned. If any of the 3 least-significant bits of the effective
address is non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[basel

(pAddr, CCA) ¢ AddressTranslation (vAddr, DATA, STORE)

datadoubleword < GPR[rt]

StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)
Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Reserved I nstruction, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 383

SDBBP Software Debug Breakpoint

384

31 26 25 16 15 6 5 0
POOL32A q I SDBBP POOL32AXf
000000 code - use sysca 1101101101 111100
6 10 10 6
Format: SDBBP code EJTAG microMIPS

Purpose: Software Debug Breakpoint

To cause a debug breakpoint exception

Description:

This instruction causes a debug exception, passing control to the debug exception handler. If the processor is execut-
ing in Debug Mode when the SDBBP instruction is executed, the exception is a Debug Mode Exception, which sets
the Debugpgyccode field to the value 0x9 (Bp). The code field can be used for passing information to the debug

exception handler, and is retrieved by the debug exception handler only by loading the contents of the memory word
containing the instruction, using the DEPC register. The CODE field is not used in any way by the hardware.

Restrictions:

Operation:

if Config5.SBRI=1 then /* SBRI is a MIPS Release 6 feature */
SignalException (ReservedInstruction) endif

If Debugpy = 1 then SignalDebugModeBreakpointException() endif // nested

SignalDebugBreakpointException() // normal

Exceptions:

Debug Breakpoint Exception
Debug Mode Breakpoint Exception

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

SDC1 Store Doubleword from Floating Point

31 26 25 21 20 16 15 0
SDC132
101110 ft base offset
6 5 5 16
Format: sbci ft, offset (base) microMIPS

Purpose: Store Doubleword from Floating Point

To store a doubleword from an FPR to memory.

Description: memory [GPR [base] + offset] € FPR[ft]

The 64-bit doubleword in FPR ft is stored in memory at the location specified by the aligned effective address. The
16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

Pre-Release 6: An Address Error exception occurs if EffectiveAddress, ¢ # 0 (not doubleword-aligned).

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]

(pAddr, CCA) ¢« AddressTranslation(vAddr, DATA, STORE)

datadoubleword ¢ ValueFPR(ft, UNINTERPRETED DOUBLEWORD)

StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)
Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 385

SDC2 Store Doubleword from Coprocessor 2

31 26 25 21 20 16 15 12 11 10 0
POOL32B sDC2 | 0
110110 it base 1010 0 offset
6 5 5 4 1 11
Format: spc2 rt, offset (base) microMIPS

Purpose: Store Doubleword from Coprocessor 2

To store a doubleword from a Coprocessor 2 register to memory

Description: memory [GPR [base] + offset] <« CPR[2,rt,0]

The 64-bit doubleword in Coprocessor 2 register It is stored in memory at the location specified by the aligned effec-
tive address. The 12-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

Pre-Release 6: An Address Error exception occurs if EffectiveAddress, ¢ # 0 (not doubleword-aligned).

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr <« sign extend(offset) + GPR[base]

(pAddr, CCA) <« AddressTranslation(vAddr, DATA, STORE)
datadoubleword <« CPR[2,rt, 0]

StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

As shown in the instruction drawing above, Release 6 implements an 11-bit offset, whereas all release levels lower
than Release 6 of the MIPS architecture implement a 16-bit offset.

386 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

SEB Sign-Extend Byte
31 26 25 21 20 16 15 6 5 0
POOL32A " - SEB POOL32AXf
000000 s 0010101100 111100
6 5 5 10 6
Format: SEB rt, rs microMIPS

Purpose: Sign-Extend Byte
To sign-extend the least significant byte of GPR rs and store the value into GPR rt.

Description: GPR[rt] ¢« SignExtend(GPR[rsl,)

The least significant byte from GPR rs is sign-extended and stored in GPR rt.

Restrictions:

Prior to architecture Release 2, this instruction resulted in a Reserved Instruction exception.

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordvValue (GPR[rs]) then
UNPREDICTABLE

endif

GPR[rt] < sign extend(GPRI[rsl,;)

Exceptions:

Reserved Instruction

Programming Notes:

For symmetry with the SEB and SEH instructions, you expect that there would be ZEB and ZEH instructions that
zero-extend the source operand and expect that the SEW and ZEW instructions would exist to sign- or zero-extend a
word to a doubleword. These instructions do not exist because there are functionally-equivalent instructions already
in the instruction set. The following table shows the instructions providing the equivalent functions.

Expected Instruction Function Equivalent Instruction
ZEB rX,ry Zero-Extend Byte ANDI rx,ry, OXFF
ZEH rx,ry Zero-Extend Halfword ANDI rx,ry,O0xFFFF
SEW rx,ry Sign-Extend Word SLL rx,ry,0

ZEW rx,rx! Zero-Extend Word DINSP32 rx,r0,32,32

1. The equivalent instruction uses rx for both source and destination, so the expected
instruction is limited to one register

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 387

SEH Sign-Extend Halfword
31 26 25 21 20 16 15 6 5 0
POOL32A " - SEH POOL32AXf
000000 s 0011101100 111100
6 5 5 10 6
Format: SEH rt, rs microMIPS

388

Purpose: Sign-Extend Halfword
To sign-extend the least significant halfword of GPR rs and store the value into GPR rt.

Description: GPR[rt] ¢« SignExtend(GPRIrsl s o)

The least significant halfword from GPR rs is sign-extended and stored in GPR rt.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction exception.
If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordvValue (GPR[rs]) then
UNPREDICTABLE
endif
GPR[rt] < sign extend(GPR[rsl;s o)
Exceptions:

Reserved Instruction

Programming Notes:

The SEH instruction can be used to convert two contiguous halfwords to sign-extended word values in three instruc-
tions. For example:

1w t0, 0(al) /* Read two contiguous halfwords */
seh tl, toO /* tl = lower halfword sign-extended to word */
sra to, to0, 16 /* t0 = upper halfword sign-extended to word */

Zero-extended halfwords can be created by changing the SEH and SRA instructions to ANDI and SRL instructions,
respectively.

For symmetry with the SEB and SEH instructions, you expect that there would be ZEB and ZEH instructions that
zero-extend the source operand and expect that the SEW and ZEW instructions would exist to sign- or zero-extend a
word to a doubleword. These instructions do not exist because there are functionally-equivalent instructions already
in the instruction set. The following table shows the instructions providing the equivalent functions.

Expected Instruction Function Equivalent Instruction
ZEB rx,ry Zero-Extend Byte ANDI rx,ry, OXFF
ZEH rXx,ry Zero-Extend Halfword ANDI rx,ry,O0xXFFFF
SEW rx,ry Sign-Extend Word SLL rx,ry,0
ZEW rX,TrX! Zero-Extend Word DINSP32 rx,r0,32,32

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

1. The equivalent instruction uses rx for both source and destination, so the expected
instruction is limited to one register

MIPS® Architecture for Programmers Volume [I-B: microMIPS64™ Instruction Set, Revision 6.05 389

SEL.fmt Select floating point values with FPR condition

31 26 25 21 20 16 15 11 10 6 5 0
POOL32F SEL
010101 fi fs fd fimt 010111000
6 5 5 5 2 9

Format: SEL.fmt
SEL fd, fs, ft, fmt microMIPS32 Release 6

Purpose: Select floating point values with FPR condition

Description: FPR[£fd] « FPR[fd] .bit0 ? FPR[ft] : FPR[fs]

SEL fmt is a select operation, with a condition input in FPR £d, and 2 data inputs in FPRs ft and fs.
¢ Ifthe condition is true, the value of £t is written to £d.

e Ifthe condition is false, the value of £s is written to £d.

The condition input is specified by FPR £d, and is overwritten by the result.

The condition is true only if bit 0 of the condition input FPR £d is set. Other bits are ignored.

This instruction has floating point formats S and D, but these specify only the width of the operands. SEL.S can be
used for 32-bit W data, and SEL.D can be used for 64 bit L data.

This instruction does not cause data-dependent exceptions. It does not trap on NaNs. It does not set the FPU Cause
bits.
Restrictions:

None

Availability and Compatibility:
SEL fmt is introduced by and required as of microMIPS32 Release 6.

Special Considerations:

Only formats S and D are valid. Other format values may be used to encode other instructions. Unused format encod-
ings are required to signal the Reserved Instruction exception.

Operation:

tmp <« ValueFPR (fd, U'NINTERPRETED_WORD)
cond « tmp.bito
if cond then
tmp < ValueFPR (ft, fmt)
else
tmp <« ValueFPR (fs, fmt)
endif
StoreFPR (fd, fmt, tmp)

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

None

390 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

SELEQZ SELNEZ Select integer GPR value or zero
31 26 25 21 20 16 15 11 10 6 5 0
POOL32A SELEQZ
000000 it s rd 0 0101000000
POOL32A " s wd 0 SELNEZ
000000 0110000000
6 5 5 5 1 10
Format: SELEQZ SELNEZ
SELEQZ rd,rs,rt microMIPS32 Release 6
SELNEZ rd,rs,rt microMIPS32 Release 6
Purpose: Select integer GPR value or zero
Description:
SELEQZ: GPR[rd] <« GPR[rt] ? 0 : GPR[rs]

SELNEZ: GPR[rd] <« GPR[rt] ? GPR[rs] : 0

« SELEQZ is a select operation, with a condition input in GPR rt, one explicit data input in GPR rs, and implicit
data input 0. The condition is true only if all bits in GPR rt are zero.

* SELNEZ is a select operation, with a condition input in GPR rt, one explicit data input in GPR rs, and implicit

data input 0. The condition is true only if any bit in GPR rt is nonzero

If the condition is true, the value of rs is written to rd.

If the condition is false, the zero written to rd.

This instruction operates on all GPRLEN bits of the CPU registers, that is, all 32 bits on a 32-bit CPU, and all 64 bits
on a 64-bit CPU. All GPRLEN bits of rt are tested.

Restrictions:

None

Availability and Compatibility:

These instructions are introduced by and required as of MIPS32 Release 6.

Special Considerations:

None

Operation:

SELNEZ: cond « GPR[rt] # 0
SELEQZ: cond « GPR[rt] = 0
if cond then

tmp <« GPR[rs]
else

tmp <0
endif
GPR [rd] <« tmp

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 391

SELEQZ SELNEZ Select integer GPR value or zero

Programming Note:

Release 6 removes the Pre-Release 6 instructions MOVZ and MOVN:
MOVZ: if GPR[rt] = 0 then GPR[rd] <« GPR[rs]
MOVN: if GPR[rt] # 0 then GPR[rd] <« GPR[rs]

MOVZ can be emulated using Release 6 instructions as follows:
SELEQZ at, rs, rt
SELNEZ rd, rd, rt
OR rd, rd, at

Similarly MOVN:
SELNEZ at, rs, rt
SELEQZ rd, rd, rt
OR rd, rd, at

The more general select operation requires 4 registers (1 output + 3 inputs (1 condition + 2 data)) and can be

expressed:
rD <« if rC then rA else rB

The more general select can be created using Release 6 instructions as follows:
SELNEZ at, rB, rC
SELNEZ rD, rA, xC
OR rD, D, at

392 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

SELEQZ.fmt SELNEQZ.fmt Select floating point value or zero with FPR condition.

31 26 25 21 20 16 15 11 10 6 5 0
POOL32F SELEQZ fint
010101 fi fs fd fimt 000111000
POOL32F SELNEZ fmt
010101 fi fs fd fimt 001111000
6 5 5 5 2 9

Format: SELEQZ.fmt SELNEQZ.fmt

SELEQZ.S fd,fs, ft microMIPS32 Release 6
SELEQZ.D fd, fs, ft microMIPS32 Release 6
SELNEZ.S fd, fs, ft microMIPS32 Release 6
SELNEZ.D fd, fs, ft microMIPS32 Release 6

Purpose: Select floating point value or zero with FPR condition.

Description:

SELEQZ.fmt: FPR[fd] « FPR[ft].bit0 ? 0 : FPR[fs]
SELNEZ.fmt: FPR[fd] <« FPR[ft].bit0 ? FPR[fs]: O

* SELEQZ.fmt is a select operation, with a condition input in FPR ft, one explicit data input in FPR fs, and
implicit data input 0. The condition is true only if bit 0 of FPR £t is zero.

* SELNEZ.fmt is a select operation, with a condition input in FPR ft, one explicit data input in FPR fs, and
implicit data input 0. The condition is true only if bit 0 of FPR £t is nonzero.

If the condition is true, the value of £s is written to £d.
If the condition is false, the value that has all bits zero is written to £d.

This instruction has floating point formats S and D, but these specify only the width of the operands. Format S can be
used for 32-bit W data, and format D can be used for 64 bit L data. The condition test is restricted to bit 0 of FPR ft.
Other bits are ignored.

This instruction has no execution exception behavior. It does not trap on NaNs. It does not set the FPU Cause bits.

Restrictions:

FPR £d destination register bits beyond the format width are UNPREDICTABLE. For example, if fmt is S, then £d
bits 0-31 are defined, but bits 32 and above are UNPREDICTABLE. If £mt is D, then £d bits 0-63 are defined.

Availability and Compatibility:

These instructions are introduced by and required as of MIPS32 Release 6.

Special Considerations:

Only formats S and D are valid. Other format values may be used to encode other instructions. Unused format encod-
ings are required to signal the Reserved Instruction exception.

Operation:

tmp <« ValueFPR (ft, UNINTERPRETED_WORD)
SELEQZ: cond <« tmp.bit0 = 0
SELNEZ: cond <« tmp.bit0 # 0
if cond then
tmp <« ValueFPR (fs, fmt)
else
tmp <0 /* all bits set to zero */

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 393

endif
StoreFPR(fd, fmt, tmp)

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

394 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05

SH Store Halfword

31 26 25 21 20 16 15 0
SH32
001110 t base offset
6 5 5 16
Format: SH rt, offset (base) microMIPS

Purpose: Store Halfword

To store a halfword to memory.

Description: memory [GPR [base] + offset] €« GPR[rt]

The least-significant 16-bit halfword of register rt is stored in memory at the location specified by the aligned effec-
tive address. The 16-bit signed offset is added to the contents of GPR base to form the effective address.
Restrictions:

Pre-Release 6: The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero,
an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]

(pAddr, CCA) ¢ AddressTranslation (vAddr, DATA, STORE)

pAddr € pAddrpgrze-1. .3 || (PAddr, , xor (ReverseEndian? || 0))
bytesel ¢« vAddr, , xor (BigEndianCPU? || 0)

datadoubleword ¢ GPRI[rtlg;_gspytesel..o || o8 bytesel

StoreMemory (CCA, HALFWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 395

SHE Store Halfword EVA

31 26 25 21 20 16 15 12 11 9 8 0
POOL32C ST-EVA SHE
011000 it base 1010 101 offset
6 5 5 2 3 9
Format: SHE rt, offset (base) microMIPS

Purpose: Store Halfword EVA

To store a halfword to user mode virtual address space when executing in kernel mode.

Description: memory [GPR [base] + offset] €« GPR[rt]

The least-significant 16-bit halfword of register rt is stored in memory at the location specified by the aligned effec-
tive address. The 9-bit signed offset is added to the contents of GPR base to form the effective address.

The SHE instruction functions the same as the SH instruction, except that address translation is performed using the
user mode virtual address space mapping in the TLB when accessing an address within a memory segment config-
ured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5gy field being set to 1.

Restrictions:

Only usable in kernel mode when accessing an address within a segment configured using UUSK, MUSK or
MUSUK access mode.

Pre-Release 6: The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero,
an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]

(pAddr, CCA) ¢ AddressTranslation (vAddr, DATA, STORE)

pAddr & pAddrpgrze.1 .3 || (pAddr, , xor (ReverseEndian? || 0))
bytesel ¢« vAddr, , xor (BigEndianCPU? || 0)

datadoubleword ¢ GPRIrtles_ gspytesel..o || g8rbytesel

StoreMemory (CCA, HALFWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch, Reserved Instruction, Coprocessor Unusable

396 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

SIGRIE Signal Reserved Instruction Exception

31 26 25 22 21 6 5 0
POOL32A SIGRIE
000000 0000 code 11111
6 4 16 6
Format: SIGRIE code MIPS32 Release 6

Purpose: Signal Reserved Instruction Exception

The SIGRIE instruction signals a Reserved Instruction exception.

Description: SignalException (ReservedInstruction)

The SIGRIE instruction signals a Reserved Instruction exception. Implementations should use exactly the same
mechanisms as they use for reserved instructions that are not defined by the Architecture.

The 16-bit code field is available for software use.

Restrictions:

The 16-bit code field is available for software use. The value zero is considered the default value. Software may pro-
vide extended functionality by interpreting nonzero values of the code field in a manner that is outside the scope of
this architecture specification.

Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Pre-Release 6: this instruction encoding was reserved, and required to signal a Reserved Instruction exception. There-
fore this instruction can be considered to be both backwards and forwards compatible.

Operation:

SignalException (ReservedInstruction)

Exceptions:

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 397

SLL Shift Word Left Logical
31 26 25 21 20 16 15 11 10 9 0
POOL32A y . 0 SLL32
000000 s sa 0000000000
6 5 5 5 1 10
Format: sSLL rt, rs, sa microMIPS

398

Purpose: Shift Word Left Logical
To left-shift a word by a fixed number of bits.

Description: GPR[rt] < GPR[rs] << sa

The contents of the low-order 32-bit word of GPR rs are shifted left, inserting zeros into the emptied bits. The word
result is sign-extended and placed in GPR rt. The bit-shift amount is specified by sa.

Restrictions:

None

Operation:
s € sa
temp € GPRIrs](31.5)..0 || 0°
GPR[rt] ¢ sign extend(temp)
Exceptions:

None

Programming Notes:

The SLL input operand does not have to be a properly sign-extended word value to produce a valid sign-extended
32-bit result. The result word is always sign-extended into a 64-bit destination register; this instruction with a zero
shift amount truncates a 64-bit value to 32 bits and sign-extends it.

SLL r0, 10, 0, expressed as NOP, is the assembly idiom used to denote no operation.

SLL 10, r0, 1, expressed as SSNOP, is the assembly idiom used to denote no operation that causes an issue break on
superscalar processors.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

SLLV Shift Word Left Logical Variable

31 26 25 21 20 16 15 11 10 9 0
POOL32A o q 0 SLLV
000000 s : 00000010000
6 5 5 5 1 10
Format: sLLv rd, rt, rs microMIPS

Purpose: Shift Word Left Logical Variable

To left-shift a word by a variable number of bits.

Description: GPR[rd] « GPR[rt] << GPR[rs]

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting zeros into the emptied bits. The result-
ing word is sign-extended and placed in GPR rd. The bit-shift amount is specified by the low-order 5 bits of GPR rs.
Restrictions:

None

Operation:

s ¢« GPR[rsl, o

temp ¢ GPR[rtl 3;.4). .0 || 0°

GPR[rd] € sign extend(temp)
Exceptions:

None

Programming Notes:

The input operand does not have to be a properly sign-extended word value to produce a valid sign-extended 32-bit
result. The result word is always sign-extended into a 64-bit destination register; this instruction with a zero shift
amount truncates a 64-bit value to 32 bits and sign-extends it.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 399

SLT Set on Less Than

31 26 25 21 20 16 15 11 10 0
POOL32A SLT
000000 it s rd 0 1101010000
6 5 5 5 1 10
Format: SLT rd, rs, rt microMIPS

Purpose: Set on Less Than

To record the result of a less-than comparison.

Description: GPR[rd] ¢ (GPR[rs] < GPR[rt])

Compare the contents of GPR rs and GPR rt as signed integers; record the Boolean result of the comparison in
GPR rd. If GPR rs is less than GPR rt, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if GPR[rs] < GPR[rt] then
GPR[rd] <« OQCPRLEN-1 || 7
else
GPR[rd] <« QCPRLEN
endif

Exceptions:

None

400 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

SLTI Set on Less Than Immediate
31 26 25 21 20 16 15 0
SLTI32 . .
100100 rt s immediate
6 5 5 16
Format: SLTI rt, rs, immediate microMIPS

Purpose: Set on Less Than Immediate

To record the result of a less-than comparison with a constant.

Description: GPR[rt] < (GPR[rs] < sign_extend(immediate))

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; record the Boolean result of the

comparison in GPR rt. If GPR rs is less than immediate, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if GPR[rs] < sign_ extend(immediate)

GPR [rt] P OGPRLEN-1| | 1

else

GPR[rt] <« OGPRLEN

endif

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

then

401

SLTIU Set on Less Than Immediate Unsigned

402

31 26 25 21 20 16 15 0
SLTIU32))
101100 rt s immediate
6 5 5 16
Format: SLTIU rt, rs, immediate microMIPS

Purpose: Set on Less Than Immediate Unsigned

To record the result of an unsigned less-than comparison with a constant.

Description: GPR[rt] < (GPR[rs] < sign extend (immediate))

Compare the contents of GPR rs and the sign-extended 16-bit immediate as unsigned integers; record the Boolean
result of the comparison in GPR rt. If GPR rs is less than immediate, the result is 1 (true); otherwise, it is 0 (false).

Because the 16-bit immediate is sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range.

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if (0 || GPRI[rs]) < (0 || sign extend(immediate)) then
GPR[rt] ¢ OCPRLEN-1 || j

else
GPR[rt] ¢ OQCPRLEN

endif

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

SLTU Set on Less Than Unsigned
31 26 25 21 20 16 15 11 10 0
POOL32A " - d 0 SLTU
000000 s 1110010000
6 5 5 5 1 10
Format: SLTU rd, rs, microMIPS

Purpose: Set on Less Than Unsigned

To record the result of an unsigned less-than comparison.

Description: GPR[rd] ¢ (GPR[rs] < GPR[rt])

Compare the contents of GPR rs and GPR rt as unsigned integers; record the Boolean result of the comparison in
GPR rd. If GPR rs is less than GPR rt, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if (0 || GPRIrs]) < (0 || GPR[rt]) then
GPR [rd] P OGPRLEN-I | | 1

else

GPR [rd] <« OGPRLEN

endif

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

403

SQRT.fmt Floating Point Square Root

404

31 26 25 21 20 16 15 14 13 6 5 0
POOL32F SQRT.fmnt POOL32FXf
010101 fi fs 0 | fmt 00101000 111011
6 5 5 1 1 8 6

Format: SQRT.fmt
SQRT.S ft, fs MIPS32
SQRT.D ft, fs MIPS32
Purpose: Floating Point Square Root

To compute the square root of an FP value.

Description: FPR[ft] ¢ SQRT(FPR[fs])

The square root of the value in FPR fs is calculated to infinite precision, rounded according to the current rounding
mode in FCSR, and placed into FPR ft. The operand and result are values in format fmt.

If the value in FPR fs corresponds to — 0, the result is — 0.

Restrictions:
If the value in FPR fs is less than 0, an Invalid Operation condition is raised.

The fields fs and ft must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR (ft, fmt, SquareRoot (ValueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Inexact, Unimplemented Operation

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

SRA Shift Word Right Arithmetic
31 26 25 21 20 16 15 11 10 0
POOL32A ; . 0 SRA
000000 s sa 0010000000
6 5 5 5 1 10
Format: sra rt, sa microMIPS

Purpose: Shift Word Right Arithmetic

To execute an arithmetic right-shift of a word by a fixed number of bits.

Description: GPR[rt] < GPR[rs] >> sa

(arithmetic)

The contents of the low-order 32-bit word of GPR rs are shifted right, duplicating the sign-bit (bit 31) in the emptied
bits; the word result is sign-extended and placed in GPR rt. The bit-shift amount is specified by sa.

Restrictions:

On 64-bit processors, if GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of
the operation is UNPREDICTABLE.

Operation:

if NotWordValue (GPR[rs]) then

UNPREDICTABLE

endif

s € sa
temp ¢« GPR[rsl;;)® || GPRIrsls; o
GPR[rt] ¢ sign_extend(temp)

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

405

SRAV Shift Word Right Arithmetic Variable

406

31 26 25 21 20 16 15 11 10 9 0
POOL32A o ’ 0 SRAV
000000 s : 0010010000
6 5 5 5 1 10
Format: Srav rd, rt, rs microMIPS

Purpose: Shift Word Right Arithmetic Variable

To execute an arithmetic right-shift of a word by a variable number of bits.

Description: GPR[rd] <« GPR[rt] >> GPR[rs] (arithmetic)

The contents of the low-order 32-bit word of GPR rt are shifted right, duplicating the sign-bit (bit 31) in the emptied
bits; the word result is sign-extended and placed in GPR rd. The bit-shift amount is specified by the low-order 5 bits
of GPR rs.

Restrictions:

On 64-bit processors, if GPR rt does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

Operation:
if NotWordValue (GPR[rt]) then
UNPREDICTABLE
endif
s ¢« GPR[rsl, o
temp ¢« (GPR[rtl;;)® || GPRIrtls; o

GPR[rd] ¢ sign_extend(temp)

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

SRL Shift Word Right Logical
31 26 25 21 20 16 15 11 10 0
POOL32A Y . 0 SRL32
000000 s sa 0001000000
6 5 5 5 1 10

Format: SrRL rt,

sa

Purpose: Shift Word Right Logical

To execute a logical right-shift of a word by a fixed number of bits.

Description: GPR[rt] < GPR[rs] >> sa

(logical)

microMIPS

The contents of the low-order 32-bit word of GPR rs are shifted right, inserting zeros into the emptied bits. The word

result is sign-extended and placed in GPR rt. The bit-shift amount is specified by sa.

Restrictions:

On 64-bit processors, if GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of
the operation is UNPREDICTABLE.

Operation:
if NotWordValue (GPR[rs]) then
UNPREDICTABLE
endif
s € sa
temp ¢« 0° || GPR[rsls; o
GPR[rt] ¢ sign_extend(temp)
Exceptions:
None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

407

SRLV Shift Word Right Logical Variable

31 26 25 21 20 16 15 11 10 9 0
POOL32A y q 0 SRLV
000000 s : 00010010000
6 5 5 5 1 10
Format: SRLV rd, rt, rs microMIPS

Purpose: Shift Word Right Logical Variable

To execute a logical right-shift of a word by a variable number of bits.

Description: GPR[rd] <« GPR[rt] >> GPR[rs] (logical)

The contents of the low-order 32-bit word of GPR rt are shifted right, inserting zeros into the emptied bits; the word
result is sign-extended and placed in GPR rd. The bit-shift amount is specified by the low-order 5 bits of GPR rs.
Restrictions:

On 64-bit processors, if GPR rt does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

Operation:

if NotWordValue (GPR[rt]) then
UNPREDICTABLE

endif

s ¢« GPR[rsl, o

temp ¢« 0° || GPR[rtls; o

GPR[rd] ¢ sign_extend(temp)

Exceptions:

None

408 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

SSNOP Superscalar No Operation

31 26 25 11 10 6 5 0
POOL32A 0 0 1 0 SLL32
000000 00000 00000 00001 0000 000000
6 5 5 5 5 6
Format: ssnNop microMIPS

Purpose: Superscalar No Operation

Break superscalar issue on a superscalar processor.

Description:

SSNOP is the assembly idiom used to denote superscalar no operation. The actual instruction is interpreted by the
hardware as SLL r0, r0, 1.

This instruction alters the instruction issue behavior on a superscalar processor by forcing the SSNOP instruction to
single-issue. The processor must then end the current instruction issue between the instruction previous to the SSNOP
and the SSNOP. The SSNOP then issues alone in the next issue slot.

On a single-issue processor, this instruction is a NOP that takes an issue slot.

Restrictions:

None

Availability and Compatibility

Release 6: the special no-operation instruction SSNOP is deprecated: it behaves the same as a conventional NOP. Its
special behavior with respect to instruction issue is no longer guaranteed. The EHB and JR.HB instructions are pro-
vided to clear execution and instruction hazards.

Assemblers targeting specifically Release 6 should reject the SSNOP instruction with an error.

Operation:

None

Exceptions:

None

Programming Notes:

SSNOP is intended for use primarily to allow the programmer control over CP0 hazards by converting instructions
into cycles in a superscalar processor. For example, to insert at least two cycles between an MTCO and an ERET, one
would use the following sequence:

mtcO X, Y
ssnop
ssnop
eret

The MTCO issues in cycle T. Because the SSNOP instructions must issue alone, they may issue no earlier than cycle
T+1 and cycle T+2, respectively. Finally, the ERET issues no earlier than cycle T+3. Although the instruction after an
SSNOP may issue no earlier than the cycle after the SSNOP is issued, that instruction may issue later. This is because
other implementation-dependent issue rules may apply that prevent an issue in the next cycle. Processors should not
introduce any unnecessary delay in issuing SSNOP instructions.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 409

SUB Subtract Word
31 26 25 21 20 16 15 11 10 0
POOL32A SUB
000000 it s rd 0 0110010000
6 5 5 5 1 10
Format: SUB rd, rs, rt

410

Purpose: Subtract Word

To subtract 32-bit integers. If overflow occurs, then trap.

Description: GPR[rd] ¢ GPR[rs] — GPR[rt]

microMIPS

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rs to produce a 32-bit result. If the sub-
traction results in 32-bit 2’s complement arithmetic overflow, then the destination register is not modified and an Inte-
ger Overflow exception occurs. If it does not overflow, the 32-bit result is sign-extended and placed into GPR rd.

Restrictions:

On 64-bit processors, if either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 63..31 equal), then

the result of the operation is UNPREDICTABLE.

Operation:

if NotWordvValue (GPR[rs]) or NotWordValue (GPR[rt])

UNPREDICTABLE

endif

temp ¢« (GPR[rsl;;||GPRIrsls;; o)
if temp;, # temp;; then
SignalException (IntegerOverflow)

else

GPR[rd] ¢ sign extend(temps; ¢)

endif

Exceptions:

Integer Overflow

Programming Notes:

SUBU performs the same arithmetic operation but does not trap on overflow.

(GPRI[rtlyq | |GPRIrt]sy . o)

then

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

SUB.fmt Floating Point Subtract
31 26 25 21 20 16 15 11 10 9 8 5 0
POOL32F SUB fint
010101 fi fs fd 0| fmt 01110000
6 5 5 5 1 2 3

Format: sSuUB.fmt

SUB.S fd,
SUB.D fd,

fs,
fs,

Purpose: Floating Point Subtract

To subtract FP values.

Description: FPR[fd] « FPR[fs] — FPRI[ft]

microMIPS
microMIPS

The value in FPR ft is subtracted from the value in FPR fs. The result is calculated to infinite precision, rounded
according to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in for-

mat fmt.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is

UNPREDICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the

operand FPRs becomes UNPREDICTABLE.

Availability and Compatibility:
SUB.PS has been removed in Release 6.

Operation:

StoreFPR (fd,

CPU Exceptions:

fmt,

ValueFPR (fs,

Coprocessor Unusable, Reserved Instruction

FPU Exceptions:

fmt) —fue ValueFPR (ft,

Inexact, Overflow, Underflow, Invalid Op, Unimplemented Op

fmt))

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

411

SUBU Subtract Unsigned Word

412

31 26 25 21 20 16 15 11 10 6 5 0
POOL32A " s d 0 SUBU32
000000 0111010000
6 5 5 5 1 10
Format: SUBU rd, rs, rt microMIPS

Purpose: Subtract Unsigned Word
To subtract 32-bit integers.

Description: GPR[rd] ¢ GPR[rs] — GPR[rt]

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rs and the 32-bit arithmetic result is sign-
extended and placed into GPR rd.

No integer overflow exception occurs under any circumstances.

Restrictions:

On 64-bit processors, if either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 63..31 equal), then
the result of the operation is UNPREDICTABLE.

Operation:

if NotWordvValue (GPR[rs]) or NotWordValue (GPR[rt]) then
UNPREDICTABLE

endif

temp ¢« GPR[rs] — GPR[rtl]

GPR[rd] ¢ sign extend(temp)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

SW

31 26 25

21 20

16 15

Store Word

SwW32
111110

rt

base

offset

6

Format: sw rt,

5

offset (base)

Purpose: Store Word

To store a word to memory.

Description: memory [GPR [base] + offset] €« GPR[rt]

16

microMIPS

The least-significant 32-bit word of GPR rt is stored in memory at the location specified by the aligned effective

address. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

Pre-Release 6: The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-

tion dependent.

Operation:

vAddr ¢ sign extend(offset)

(pAddr, CCA) ¢ AddressTranslation (vAddr, DATA, STORE)

pAddr € pAddrpgrze-1. .3 || (PAddr, , xor (ReverseEndian || 02))

bytesel ¢« vAddr, , xor (BigEndianCPU || 0?)

datadoubleword ¢ GPRI[rtlg;_gspytesel..o || o8 bytesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, DATA)
Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

+ GPR [base]

413

SWE Store Word EVA

31 26 25 21 20 16 15 12 11 9 8 0
POOL32C ST-EVA SWE
011000 it base 1010 11 offset
6 5 5 4 3 9
Format: SWE rt, offset (base) microMIPS

Purpose: Store Word EVA

To store a word to user mode virtual address space when executing in kernel mode.

Description: memory [GPR [base] + offset] € GPR[rt]

The least-significant 32-bit word of GPR rt is stored in memory at the location specified by the aligned effective
address. The 9-bit signed offset is added to the contents of GPR base to form the effective address.

The SWE instruction functions the same as the SW instruction, except that address translation is performed using the
user mode virtual address space mapping in the TLB when accessing an address within a memory segment config-
ured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5gy field being set to 1.

Restrictions:

Only usable in kernel mode when accessing an address within a segment configured using UUSK, MUSK or
MUSUK access mode.

Pre-Release 6: The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]

(pAddr, CCA) ¢ AddressTranslation (vAddr, DATA, STORE)

pAddr & pAddrpgrze.1 .3 || (PAddr, , xor (ReverseEndian || 02))
bytesel ¢ vAddr, , xor (BigEndianCPU || 0?)

datadoubleword ¢ GPRIrtles_ gspytesel..o || g8rbytesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch, Reserved Instruction, Coprocessor Unusable

414 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

SWCH1 Store Word from Floating Point

31 26 25 21 20 16 15 0
SWC132
100110 ft base offset
6 5 5 16
SWC1 ft, offset (base) microMIPS

Purpose: Store Word from Floating Point

To store a word from an FPR to memory.

Description: memory [GPR [base] + offset] < FPR[ft]
The low 32-bit word from FPR ft is stored in memory at the location specified by the aligned effective address. The
16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

Pre-Release 6: An Address Error exception occurs if EffectiveAddress; (# 0 (not word-aligned).

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation(vAddr, DATA, STORE)

pAddr ¢ pAddrpgrge.1. .3 || (PAddr, , xor (ReverseEndian || 02))
bytesel ¢ vAddr, , xor (BigEndianCPU || 0?)
datadoubleword ¢ ValueFPR(ft, UNINTERPRETED WORD) || o8*Pvtesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 415

SWC2 Store Word from Coprocessor 2

31 26 25 21 20 16 15 12 11 10 0
POOL32B swc2 | o
001000 it base 1000 0 offset
6 5 5 4 1 11
Format: swc2 rt, offset (base) microMIPS

Purpose: Store Word from Coprocessor 2

To store a word from a COP2 register to memory

Description: memory [GPR [base] + offset] <« CPR[2,rt,0]
The low 32-bit word from COP2 (Coprocessor 2) register It is stored in memory at the location specified by the
aligned effective address. The signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

Pre-Release 6: An Address Error exception occurs if EffectiveAddress; # 0 (not word-aligned).

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Availability and Compatibility

This instruction has been recoded for Release 6.

Operation:

vAddr <« sign extend(offset) + GPR[base]
(pAddr, CCA) <« AddressTranslation(vAddr, DATA, STORE)

pAddr < pAddrpgrze.1. .3 || (pAddr, , xor (ReverseEndian || 07))
bytesel <« vAddr, , xor (BigEndianCPU || 0?)
datadoubleword <« CPRI[2,rt,0]4;3 gspytese1..o || o8*bytesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

As shown in the instruction drawing above, Release 6 implements an 11-bit offset, whereas all release levels lower
than Release 6 of the MIPS architecture implement a 16-bit offset.

416 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

SYNC

Synchronize Shared Memory

31 26 25 16 15 6 5
POOL32A 0 stype SYNC POOL32AXf
000000 0000000000 P 0110101101 111100
6 5 5 10 6
Format: SYNC (stype = 0 implied) microMIPS
SYNC stype microMIPS

Purpose: Synchronize Shared Memory

To order loads and stores for shared memory.

Release 6 (with Config5g; =10/11) extends SYNC for Global Invalidate instructions (GINVI/GINVT).

Description:

These types of ordering guarantees are available through the SYNC instruction:

* Completion Barriers

* Ordering Barriers

Completion Barrier — Simple Description:

The barrier affects only uncached and cached coherent loads and stores.

The specified memory instructions (loads or stores or both) that occur before the SYNC instruction must be
completed before the specified memory instructions after the SYNC are allowed to start.

Loads are completed when the destination register is written. Stores are completed when the stored value is
visible to every other processor in the system.

Completion Barrier — Detailed Description:

Every synchronizable specified memory instruction (loads or stores or both) that occurs in the instruction
stream before the SYNC instruction must be already globally performed before any synchronizable speci-
fied memory instructions that occur after the SYNC are allowed to be performed, with respect to any other
processor or coherent I/O module.

The barrier does not guarantee the order in which instruction fetches are performed.

A stype value of zero will always be defined such that it performs the most complete set of synchronization
operations that are defined.This means stype zero always does a completion barrier that affects both loads
and stores preceding the SYNC instruction and both loads and stores that are subsequent to the SYNC
instruction. Non-zero values of stype may be defined by the architecture or specific implementations to per-
form synchronization behaviors that are less complete than that of stype zero. If an implementation does not
use one of these non-zero values to define a different synchronization behavior, then that non-zero value of
stype must act the same as stype zero completion barrier. This allows software written for an implementation
with a lighter-weight barrier to work on another implementation which only implements the stype zero com-
pletion barrier.

A completion barrier is required, potentially in conjunction with SSNOP (in Release 1 of the Architecture)
or EHB (in Release 2 of the Architecture), to guarantee that memory reference results are visible across
operating mode changes. For example, a completion barrier is required on some implementations on entry to
and exit from Debug Mode to guarantee that memory effects are handled correctly.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 417

SYNC Synchronize Shared Memory

418

SYNC behavior when the stype field is zero:

* A completion barrier that affects preceding loads and stores and subsequent loads and stores.

Ordering Barrier — Simple Description:
* The barrier affects only uncached and cached coherent loads and stores.

* The specified memory instructions (loads or stores or both) that occur before the SYNC instruction must
always be ordered before the specified memory instructions after the SYNC.

* Memory instructions which are ordered before other memory instructions are processed by the load/store
datapath first before the other memory instructions.

Ordering Barrier — Detailed Description:

* Every synchronizable specified memory instruction (loads or stores or both) that occurs in the instruction
stream before the SYNC instruction must reach a stage in the load/store datapath after which no instruction
re-ordering is possible before any synchronizable specified memory instruction which occurs after the
SYNC instruction in the instruction stream reaches the same stage in the load/store datapath.

» Ifany memory instruction before the SYNC instruction in program order, generates a memory request to the
external memory and any memory instruction after the SYNC instruction in program order also generates a
memory request to external memory, the memory request belonging to the older instruction must be globally
performed before the time the memory request belonging to the younger instruction is globally performed.

e The barrier does not guarantee the order in which instruction fetches are performed.

As compared to the completion barrier, the ordering barrier is a lighter-weight operation as it does not require the
specified instructions before the SYNC to be already completed. Instead it only requires that those specified instruc-
tions which are subsequent to the SYNC in the instruction stream are never re-ordered for processing ahead of the
specified instructions which are before the SYNC in the instruction stream. This potentially reduces how many cycles
the barrier instruction must stall before it completes.

The Acquire and Release barrier types are used to minimize the memory orderings that must be maintained and still
have software synchronization work.

Implementations that do not use any of the non-zero values of stype to define different barriers, such as ordering bar-
riers, must make those stype values act the same as stype zero.

For the purposes of this description, the CACHE, PREF and PREFX instructions are treated as loads and stores. That
is, these instructions and the memory transactions sourced by these instructions obey the ordering and completion
rules of the SYNC instruction.

If Global Invalidate instructions are supported in Release 6, then SYNC (stype=0x14) acts as a completion barrier to
ensure completion of any preceding GINVI or GINVT operation. This SYNC operation is globalized and only com-
pletes if all preceding GINVI or GINVT operations related to the same program have completed in the system. (Any
references to GINVT also imply GINVGT, available in a virtualized MIPS system. GINVT however will be used
exclusively.)

A system that implements the Global Invalidates also requires that the completion of this SYNC be constrained by

legacy SYNCI operations. Thus SYNC (stype=0x14) can also be used to determine whether preceding (in program
order) SYNCI operations have completed.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

SYNC

Synchronize Shared Memory

The SYNC (stype=0x14) also act as an ordering barrier as described in Table 10.28.

In the typical use cases, a single GINVI is used by itself to invalidate caches and would be followed by a SYNC

(stype=0x14).

In the case of GINVT, multiple GINVT could be used to invalidate multiple TLB mappings, and the SYNC
(stype=0x14) would be used to guaranteed completion of any number of GINVTs preceding it.

Table 10.28 lists the available completion barrier and ordering barriers behaviors that can be specified using the stype

field.

Table 10.28 Encodings of the Bits[10:6] of the SYNC instruction; the SType Field

Olderinstructions
which must reach

Younger
instructions
which must reach

Olderinstructions
which must be

the load/store the load/store globally
ordering point ordering point performed when
before the SYNC only after the the SYNC
instruction SYNC instruction instruction
Code Name completes. completes. completes Compliance
0x0 SYNC Loads, Stores Loads, Stores Loads, Stores Required
or
SYNC 0
0x4 SYNC_WMB Stores Stores Optional
or
SYNC 4
0x10 SYNC MB Loads, Stores Loads, Stores Optional
or
SYNC 16
0x11| SYNC ACQUIRE Loads Loads, Stores Optional
or
SYNC 17
0x12| SYNC _RELEASE Loads, Stores Stores Optional
or
SYNC 18
0x13 SYNC RMB Loads Loads Optional
or
SYNC 19
0x1-0x3, 0x5-0xF Implementation-Spe-
cific and Vendor Spe-
cific Sync Types
0x14 SYNC GINV Loads, Stores Loads, Stores GINVI, GINVT, Release 6 w/
SYNCI Configsg, =10/11
otherwise Reserved
0x15 - Ox1F RESERVED Reserved for MIPS

Technologies for
future extension of
the architecture.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

419

SYNC Synchronize Shared Memory

420

Terms:

Synchronizable: A load or store instruction is synchronizable if the load or store occurs to a physical location in
shared memory using a virtual location with a memory access type of either uncached or cached coherent. Shared
memory is memory that can be accessed by more than one processor or by a coherent I/O system module.

Performed load: A load instruction is performed when the value returned by the load has been determined. The result
of a load on processor A has been determined with respect to processor or coherent I/O module B when a subsequent
store to the location by B cannot affect the value returned by the load. The store by B must use the same memory
access type as the load.

Performed store: A store instruction is performed when the store is observable. A store on processor A is observable
with respect to processor or coherent I/O module B when a subsequent load of the location by B returns the value
written by the store. The load by B must use the same memory access type as the store.

Globally performed load: A load instruction is globally performed when it is performed with respect to all processors
and coherent I/O modules capable of storing to the location.

Globally performed store: A store instruction is globally performed when it is globally observable. It is globally
observable when it is observable by all processors and /0O modules capable of loading from the location.

Coherent 1/0 module: A coherent I/0O module is an Input/Output system component that performs coherent Direct
Memory Access (DMA). It reads and writes memory independently as though it were a processor doing loads and
stores to locations with a memory access type of cached coherent.

Load/Store Datapath: The portion of the processor which handles the load/store data requests coming from the pro-
cessor pipeline and processes those requests within the cache and memory system hierarchy.

Restrictions:

The effect of SYNC on the global order of loads and stores for memory access types other than uncached and cached
coherent is UNPREDICTABLE.

Operation:

SyncOperation (stype)

Exceptions:

None

Programming Notes:

A processor executing load and store instructions observes the order in which loads and stores using the same mem-
ory access type occur in the instruction stream; this is known as program order.

A parallel program has multiple instruction streams that can execute simultaneously on different processors. In mul-
tiprocessor (MP) systems, the order in which the effects of loads and stores are observed by other processors—the
global order of the loads and store—determines the actions necessary to reliably share data in parallel programs.

When all processors observe the effects of loads and stores in program order, the system is strongly ordered. On such
systems, parallel programs can reliably share data without explicit actions in the programs. For such a system, SYNC
has the same effect as a NOP. Executing SYNC on such a system is not necessary, but neither is it an error.

If a multiprocessor system is not strongly ordered, the effects of load and store instructions executed by one processor
may be observed out of program order by other processors. On such systems, parallel programs must take explicit
actions to reliably share data. At critical points in the program, the effects of loads and stores from an instruction
stream must occur in the same order for all processors. SYNC separates the loads and stores executed on the proces-
sor into two groups, and the effect of all loads and stores in one group is seen by all processors before the effect of
any load or store in the subsequent group. In effect, SYNC causes the system to be strongly ordered for the executing
processor at the instant that the SYNC is executed.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

SYNC Synchronize Shared Memory

Many MIPS-based multiprocessor systems are strongly ordered or have a mode in which they operate as strongly
ordered for at least one memory access type. The MIPS architecture also permits implementation of MP systems that
are not strongly ordered; SYNC enables the reliable use of shared memory on such systems. A parallel program that
does not use SYNC generally does not operate on a system that is not strongly ordered. However, a program that does
use SYNC works on both types of systems. (System-specific documentation describes the actions needed to reliably
share data in parallel programs for that system.)

The behavior of a load or store using one memory access type is UNPREDICTABLE if a load or store was previ-
ously made to the same physical location using a different memory access type. The presence of a SYNC between the
references does not alter this behavior.

SYNC affects the order in which the effects of load and store instructions appear to all processors; it does not gener-
ally affect the physical memory-system ordering or synchronization issues that arise in system programming. The
effect of SYNC on implementation-specific aspects of the cached memory system, such as writeback buffers, is not
defined.

Processor A (writer)
Conditions at entry:
The value 0 has been stored in FLAG and that value is observable by B

SW R1, DATA # change shared DATA value

LI R2, 1

SYNC # Perform DATA store before performing FLAG store
SW R2, FLAG # say that the shared DATA value is valid

Processor B (reader)

LI R2, 1
1: LW R1, FLAG # Get FLAG

BNE R2, R1, 1B# if it says that DATA is not valid, poll again

NOP

SYNC # FLAG value checked before doing DATA read

LW R1, DATA # Read (valid) shared DATA value

The code fragments above shows how SYNC can be used to coordinate the use of shared data between separate writer
and reader instruction streams in a multiprocessor environment. The FLAG location is used by the instruction streams
to determine whether the shared data item DATA is valid. The SYNC executed by processor A forces the store of
DATA to be performed globally before the store to FLAG is performed. The SYNC executed by processor B ensures
that DATA is not read until after the FLAG value indicates that the shared data is valid.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 421

SYNCI Synchronize Caches to Make Instruction Writes Effective

422

POOL321 SYNCI b et
010000 01100 ¢ otise
6 5 5 16
Format: SYNCI offset (base) microMIPS

Purpose: Synchronize Caches to Make Instruction Writes Effective

To synchronize all caches to make instruction writes effective.

Description:

This instruction is used after a new instruction stream is written to make the new instructions effective relative to an
instruction fetch, when used in conjunction with the SYNC and JALR.HB, JR.HB, or ERET instructions, as
described below. Unlike the CACHE instruction, the SYNCI instruction is available in all operating modes in an
implementation of Release 2 of the architecture.

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective address. The
effective address is used to address the cache line in all caches which may need to be synchronized with the write of
the new instructions. The operation occurs only on the cache line which may contain the effective address. One
SYNCT instruction is required for every cache line that was written. See the Programming Notes below.

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur as a by product of this
instruction. This instruction never causes TLB Modified exceptions nor TLB Refill exceptions with a cause code of
TLBS. This instruction never causes Execute-Inhibit nor Read-Inhibit exceptions.

A Cache Error exception may occur as a by product of this instruction. For example, if a writeback operation detects
a cache or bus error during the processing of the operation, that error is reported via a Cache Error exception. Simi-
larly, a Bus Error Exception may occur if a bus operation invoked by this instruction is terminated in an error.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It is implementation dependent whether a data watch is triggered by a SYNCI instruction whose address matches the
Watch register address match conditions.

Restrictions:

The operation of the processor is UNPREDICTABLE if the effective address references any instruction cache line
that contains instructions to be executed between the SYNCI and the subsequent JALR.HB, JR.HB, or ERET instruc-
tion required to clear the instruction hazard.

The SYNCI instruction has no effect on cache lines that were previously locked with the CACHE instruction. If cor-
rect software operation depends on the state of a locked line, the CACHE instruction must be used to synchronize the
caches.

Full visibility of the new instruction stream requires execution of a subsequent SYNC instruction, followed by a
JALR.HB, JR.HB, DERET, or ERET instruction. The operation of the processor is UNPREDICTABLE if this
sequence is not followed.

SYNCI globalization:

The SYNCI instruction acts on the current processor at a minimum. Implementations are required to affect caches
outside the current processor to perform the operation on the current processor (as might be the case if multiple pro-
cessors share an L2 or L3 cache).

In multiprocessor implementations where instruction caches are coherently maintained by hardware, the SYNCI
instruction should behave as a NOP instruction.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05

SYNCI Synchronize Caches to Make Instruction Writes Effective

In multiprocessor implementations where instruction caches are not coherently maintained by hardware, the SYNCI
instruction may optionally affect all coherent icaches within the system. If the effective address uses a coherent
Cacheability and Coherency Attribute (CCA), then the operation may be globalized, meaning it is broadcast to all of
the coherent instruction caches within the system. If the effective address does not use one of the coherent CCAs,
there is no broadcast of the SYNCI operation. If multiple levels of caches are to be affected by one SYNCI instruc-
tion, all of the affected cache levels must be processed in the same manner - either all affected cache levels use the
globalized behavior or all affected cache levels use the non-globalized behavior.

Pre-Release 6: Portable software could not rely on the optional globalization of SYNCI. Strictly portable software
without implementation specific awareness could only rely on expensive “instruction cache shootdown” using inter-
processor interrupts.

Release 6: SYNCI globalization is required. Compliant implementations must globalize SYNCI, and portable soft-
ware can rely on this behavior.
Availability and Compatibility

This instruction has been recoded for Release 6.

Operation:
vaddr ¢ GPR[base] + sign_extend(offset)
SynchronizeCacheLines (vaddr) /* Operate on all caches */
Exceptions:

Reserved Instruction exception (Release 1 implementations only)
TLB Refill Exception

TLB Invalid Exception

Address Error Exception

Cache Error Exception

Bus Error Exception

Programming Notes:

When the instruction stream is written, the SYNCI instruction should be used in conjunction with other instructions
to make the newly-written instructions effective. The following example shows a routine which can be called after the
new instruction stream is written to make those changes effective. The SYNCI instruction could be replaced with the
corresponding sequence of CACHE instructions (when access to Coprocessor 0 is available), and that the JR.HB
instruction could be replaced with JALR.HB, ERET, or DERET instructions, as appropriate. A SYNC instruction is
required between the final SYNCI instruction in the loop and the instruction that clears instruction hazards.

/*
* This routine makes changes to the instruction stream effective to the
* hardware. It should be called after the instruction stream is written.
* On return, the new instructions are effective.
*
* Inputs:
* a0 = Start address of new instruction stream
* al = Size, in bytes, of new instruction stream
*/
beq al, zero, 20f /* If size==0, */
nop /* branch around */
addu al, a0, al /* Calculate end address + 1 */

/* (daddu for 64-bit addressing) */
rdhwr vO0, HW SYNCI Step /* Get step size for SYNCI from new */
/* Release 2 instruction */

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.05 423

beqg v0, zero, 20f /* If no caches require synchronization, */
nop /* branch around */
10: synci 0(a0) /* Synchronize all caches around address */
addu a0, a0, vO /* Add step size in delay slot */
/* (daddu for 64-bit addressing) */
sltu v1, a0, al /* Compare current with end address */
bne v1l, zero, 10b /* Branch if more to do */
nop /* branch around */
sync /* Clear memory hazards */
20: jr.hb ra /* Return, clearing instruction hazards */
nop

424 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.05

SYSCALL System Call

31 26 25 16 15 6 5 0
POOL32A q SYSCALL POOL32AXF
000000 code 1000101101 111100
6 10 10 6
Format: syscaLL microMIPS

Purpose: System Call

To cause a System Call exception.

Description:
A system call exception occurs, immediately and unconditionally transferring control to the exception handler.

The code field is available for use as software parameters, but may be retrieved by the exception handler by loading
the contents of the memory word containing the instruction. Alternatively, if CPO BadlInstr is implemented, the code
field may be obtained from BadlInstr.

Restrictions:

None

Operation:

SignalException (SystemCall)

Exceptions:

System Call

MIPS® Architecture for Programmers Volume 1I-B: mic