
Document Number: MD00622
Revision 01.21

December 15, 2011

MIPS32® 1004K™ CPU Family Software
User’s Manual

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCI, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

aLt{онϯ мллпYϰ /t¦ CŀƳƛƭȅ {ƻŦǘǿŀǊŜ ¦ǎŜǊΩǎ aŀƴǳŀƭΣ wŜǾƛǎƛƻƴ лмΦнм

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 3

Table of Contents

Chapter 1: Introduction to the MIPS32® 1004K™ CPU Family.. 25
1.1: 1004K™ CPU Features... 26
1.2: 1004K™ CPU Block Diagram.. 29

1.2.1: Logic Blocks ... 30
1.2.1.1: Execution Unit .. 31
1.2.1.2: Multiply/Divide Unit (MDU) ... 31
1.2.1.3: System Control Coprocessor (CP0) ... 31
1.2.1.4: Memory Management Unit (MMU) ... 32
1.2.1.5: Fetch Unit ... 32
1.2.1.6: Thread Schedule Unit (TSU) .. 33
1.2.1.7: Instruction Cache.. 33
1.2.1.8: Load/Store Unit... 33
1.2.1.9: Data Cache... 34
1.2.1.10: Bus Interface Unit (BIU).. 34
1.2.1.11: Power Management ... 34
1.2.1.12: MIPS16e™ Application Specific Extension .. 34
1.2.1.13: EJTAG Debug .. 35
1.2.1.14: CorExtend® User Defined Instructions... 35

Chapter 2: Pipeline of the 1004K™ CPU... 37
2.1: Pipeline Stages.. 37

2.1.1: IF Stage: Instruction Fetch First ... 38
2.1.2: IS - Instruction Fetch Second... 39
2.1.3: IR - Instruction Recode (MIPS16e only)... 39
2.1.4: IK - Instruction Kill (MIPS16e only) .. 39
2.1.5: IT - Instruction Fetch Third ... 39
2.1.6: RF - Register File Access .. 39
2.1.7: AG - Address Generation... 39
2.1.8: EX - Execute/Memory Access.. 39
2.1.9: MS - Memory Access Second.. 40
2.1.10: ER- Exception Resolution .. 40
2.1.11: WB - Writeback .. 40

2.2: Instruction Fetch .. 40
2.2.1: Branch History Table.. 45

2.2.1.1: Branch Target Calculation .. 45
2.2.2: Return Prediction Stack ... 46
2.2.3: ITLB.. 46
2.2.4: Cache Miss Timing... 47
2.2.5: MIPS16e™... 47

2.3: Load Store Unit.. 48
2.3.1: DTLB.. 49
2.3.2: Data Cache Access.. 50
2.3.3: Outstanding misses.. 51
2.3.4: Uncached Accesses... 51

2.4: MDU Pipeline... 51
2.4.1: High-Performance MDU... 52
2.4.2: DSP ASE Instruction Latencies.. 54

4 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

2.4.3: High-performance MDU Pipeline Stages ... 56
2.4.4: High-performance MDU Divide Operations.. 57
2.4.5: Low-Area MDU... 58

2.5: Skewed ALU.. 58
2.6: Interlock Handling.. 59
2.7: Instruction Interlocks.. 60
2.8: Hazards ... 61

2.8.1: Types of Hazards ... 62
2.8.1.1: Execution Hazards ... 62
2.8.1.2: Instruction Hazards... 63

2.8.2: Instruction Listing ... 64
2.8.2.1: Instruction Encoding ... 64

2.8.3: Eliminating Hazards ... 65
2.9: Instruction Rollback And Its Implications ... 65

Chapter 3: Floating-Point Unit of the 1004Kf™ CPU ... 67
3.1: Features Overview .. 67

3.1.1: IEEE Standard 754 .. 68
3.2: Enabling the Floating-Point Coprocessor .. 68
3.3: Data Formats... 69

3.3.1: Floating-Point Formats... 69
3.3.1.1: Normalized and Denormalized Numbers.. 71
3.3.1.2: Reserved Operand Values—Infinity and NaN .. 71
3.3.1.3: Infinity and Beyond ... 71
3.3.1.4: Signalling Non-Number (SNaN) ... 71
3.3.1.5: Quiet Non-Number (QNaN) .. 72

3.3.2: Fixed-Point Formats... 72
3.4: Floating-Point General Registers .. 73

3.4.1: FPRs and Formatted Operand Layout ... 73
3.4.2: Formats of Values Used in FP Registers ... 73
3.4.3: Binary Data Transfers (32-Bit and 64-Bit) .. 75

3.5: Floating-Point Control Registers.. 76
3.5.1: Floating-Point Implementation Register (FIR, CP1 Control Register 0)... 77
3.5.2: Floating-Point Condition Codes Register (FCCR, CP1 Control Register 25)................................... 79
3.5.3: Floating-Point Exceptions Register (FEXR, CP1 Control Register 26) .. 79
3.5.4: Floating-Point Enables Register (FENR, CP1 Control Register 28) .. 80
3.5.5: Floating-Point Control and Status Register (FCSR, CP1 Control Register 31)................................ 81
3.5.6: Operation of the FS/FO/FN Bits ... 83

3.5.6.1: Flush To Zero Bit .. 84
3.5.6.2: Flush Override Bit ... 84
3.5.6.3: Flush to Nearest ... 85
3.5.6.4: Recommended FS/FO/FN Settings.. 85

3.5.7: FCSR Cause Bit Update Flow.. 86
3.5.7.1: Exceptions Triggered by CTC1 .. 86
3.5.7.2: Generic Flow .. 86
3.5.7.3: Multiply-Add Flow ... 86
3.5.7.4: Cause Update Flow for Input Operands ... 87
3.5.7.5: Cause Update Flow for Unimplemented Operations .. 87

3.6: Instruction Overview .. 87
3.6.1: Data Transfer Instructions.. 87

3.6.1.1: Data Alignment in Loads, Stores, and Moves .. 88
3.6.1.2: Addressing Used in Data Transfer Instructions .. 88

3.6.2: Arithmetic Instructions.. 89

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 5

3.6.3: Conversion Instructions.. 90
3.6.4: Formatted Operand-Value Move Instructions .. 91
3.6.5: Conditional Branch Instructions ... 91
3.6.6: Miscellaneous Instructions ... 92

3.7: Exceptions ... 92
3.7.1: Precise Exception Mode .. 93
3.7.2: Exception Conditions ... 93

3.7.2.1: Invalid Operation Exception.. 94
3.7.2.2: Division By Zero Exception... 95
3.7.2.3: Underflow Exception... 95
3.7.2.4: Overflow Exception... 95
3.7.2.5: Inexact Exception ... 95
3.7.2.6: Unimplemented Operation Exception... 95

3.8: Pipeline and Performance ... 96
3.8.1: Pipeline Overview .. 96

3.8.1.1: FR Stage - Decode, Register Read, and Unpack... 96
3.8.1.2: M1 Stage - Multiply Tree .. 97
3.8.1.3: M2 Stage - Multiply Complete .. 97
3.8.1.4: A1 Stage - Addition First Step .. 97
3.8.1.5: A2 Stage - Addition Second and Final Step ... 97
3.8.1.6: FP Stage - Result Pack .. 97
3.8.1.7: FW Stage - Register Write.. 97

3.8.2: Bypassing... 97
3.8.3: Repeat Rate and Latency .. 98

Chapter 4: The MIPS® DSP Application-Specific Extension .. 99
4.1: Additional Register State for the DSP ASE ... 99

4.1.1: Additional HI-LO Registers... 99
4.1.2: DSP Control Register... 99

4.2: Software Detection of the DSP ASE.. 101

Chapter 5: Memory Management of the 1004K™ CPU.. 103
5.1: Introduction.. 103
5.2: Modes of Operation ... 105

5.2.1: Virtual Memory Segments.. 105
5.2.1.1: Unmapped Segments... 106
5.2.1.2: Mapped Segments ... 107

5.2.2: User Mode.. 107
5.2.3: Supervisor Mode.. 108
5.2.4: Kernel Mode... 110

5.2.4.1: Kernel Mode, User Space (kuseg) ... 112
5.2.4.2: Kernel Mode, Kernel Space 0 (kseg0).. 112
5.2.4.3: Kernel Mode, Kernel Space 1 (kseg1).. 112
5.2.4.4: Kernel Mode, Kernel/Supervisor Space 2 (ksseg/kseg2) ... 113
5.2.4.5: Kernel Mode, Kernel Space 3 (kseg3).. 113

5.2.5: Debug Mode... 113
5.2.5.1: Conditions and Behavior for Access to drseg, EJTAG Registers ... 114
5.2.5.2: Conditions and Behavior for Access to dmseg, EJTAG Memory ... 114

5.3: Translation Lookaside Buffer... 115
5.3.1: Joint TLB.. 115
5.3.2: Instruction TLB... 117
5.3.3: Data TLB.. 118

5.4: Virtual-to-Physical Address Translation... 118

6 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

5.4.1: Hits, Misses, and Multiple Matches.. 120
5.4.2: Memory Space... 121

5.4.2.1: Page Sizes ... 121
5.4.2.2: Replacement Algorithm .. 121

5.4.3: TLB Instructions ... 122
5.4.4: Shared TLB mode.. 123

5.5: Fixed Mapping MMU ... 123
5.6: System Control Coprocessor... 126

Chapter 6: Exceptions and Interrupts in the 1004K™ CPU .. 127
6.1: Exception Conditions... 127
6.2: Exception Priority... 128
6.3: Interrupts ... 129

6.3.1: Interrupt Modes .. 130
6.3.1.1: Interrupt Compatibility Mode... 131
6.3.1.2: Vectored Interrupt Mode... 133
6.3.1.3: External Interrupt Controller Mode ... 135

6.3.2: Generation of Exception Vector Offsets for Vectored Interrupts .. 138
6.3.3: Global Interrupt Controller.. 139

6.4: GPR Shadow Registers... 139
6.5: Exception Vector Locations ... 140
6.6: General Exception Processing .. 143
6.7: Debug Exception Processing .. 146
6.8: Exceptions ... 147

6.8.1: Reset Exception ... 147
6.8.2: Debug Single Step Exception .. 148
6.8.3: Debug Interrupt Exception ... 149
6.8.4: Non-Maskable Interrupt (NMI) Exception... 149
6.8.5: Interrupt Exception ... 150
6.8.6: Debug Instruction Break Exception.. 150
6.8.7: Watch Exception — Instruction Fetch or Data Access... 150
6.8.8: Address Error Exception — Instruction Fetch/Data Access... 151
6.8.9: TLB Refill Exception — Instruction Fetch or Data Access ... 152
6.8.10: TLB Invalid Exception — Instruction Fetch or Data Access... 152
6.8.11: Cache Error Exception ... 153
6.8.12: Bus Error Exception — Instruction Fetch or Data Access.. 154
6.8.13: Debug Software Breakpoint Exception .. 154
6.8.14: Execution Exception — System Call.. 155
6.8.15: Execution Exception — Breakpoint.. 155
6.8.16: Execution Exception — Reserved Instruction .. 155
6.8.17: Execution Exception — Coprocessor Unusable .. 156
6.8.18: Execution Exception — CorExtend block Unusable .. 156
6.8.19: Execution Exception — DSP ASE State Disabled ... 156
6.8.20: Execution Exception — Floating Point Exception .. 157
6.8.21: Execution Exception — Integer Overflow... 157
6.8.22: Execution Exception — Trap.. 157
6.8.23: Execution Exception — C2E.. 158
6.8.24: Execution Exception — IS1.. 158
6.8.25: Execution Exceptions — MT_ov, MT_under, MT_invalid, MT_yield_sched 158
6.8.26: Thread Exceptions — MT_gs, MT_gss.. 159
6.8.27: Debug Data Break Exception... 159
6.8.28: TLB Modified Exception — Data Access ... 160

6.9: Exception Handling and Servicing Flowcharts .. 160

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 7

Chapter 7: CP0 Registers of the 1004K™ CPU .. 167
7.1: CP0 Register Summary... 167
7.2: CP0 Register Descriptions .. 170

7.2.1: Index Register (CP0 Register 0, Select 0) ... 170
7.2.2: MVPControl Register (CP0 Register 0, Select 1)... 171
7.2.3: MVPConf0-1 Registers (CP0 Register 0, Select 2-3) .. 173
7.2.4: Random Register (CP0 Register 1, Select 0) .. 174
7.2.5: VPEControl Register (CP0 Register 1, Select 1) ... 175
7.2.6: VPEConf0 Register(CP0 Register 1, Select 2) .. 176
7.2.7: VPEConf1 Register(CP0 Register 1, Select 3) .. 178
7.2.8: YQMask Register (CP0 Register 1, Select 4) .. 178
7.2.9: VPESchedule Register (CP0 Register 1, Select 5).. 179
7.2.10: VPEScheFBack Register (CP0 Register 1, Select 6) .. 179
7.2.11: VPEOpt Register (CP0 Register 1, Select 7) ... 179
7.2.12: EntryLo0 and EntryLo1 Registers (CP0 Registers 2 and 3, Select 0).. 180
7.2.13: TCStatus Register (CP0 Register 2, Select 1) ... 182
7.2.14: TCBind Register (CP0 Register 2, Select 2) .. 184
7.2.15: TCRestart Register (CP0 Register 2, Select 3).. 184

7.2.15.1: Special Handling of TCRestart Register in Processors Implementing MIPS16e™ ASE.... 185
7.2.16: TCHalt Register (CP0 Register 2, Select 4)... 185
7.2.17: TCContext Register (CP0 Register 2, Select 5)... 186
7.2.18: TCSchedule Register (CP0 Register 2, Select 6) .. 186
7.2.19: TCScheFBack Register (CP0 Register 2, Select 7)... 186
7.2.20: TCOpt Register (CP0 Register 3, Select 7) ... 186
7.2.21: Context Register (CP0 Register 4, Select 0).. 187
7.2.22: UserLocal Register (CP0 Register 4, Select 2).. 188
7.2.23: PageMask Register (CP0 Register 5, Select 0) ... 188
7.2.24: Wired Register (CP0 Register 6, Select 0)... 189
7.2.25: SRSConf0 (CP0 Register 6, Select 1) ... 190
7.2.26: SRSConf1-4 (CP0 Register 6, Select 2-5) ... 191
7.2.27: HWREna Register (CP0 Register 7, Select 0) ... 191
7.2.28: BadVAddr Register (CP0 Register 8, Select 0).. 192
7.2.29: Count Register (CP0 Register 9, Select 0) .. 193
7.2.30: EntryHi Register (CP0 Register 10, Select 0) .. 193
7.2.31: Compare Register (CP0 Register 11, Select 0) ... 194
7.2.32: Status Register (CP0 Register 12, Select 0).. 195

7.2.32.1: Operating Modes .. 195
7.2.32.2: Coprocessor Accessibility... 196

7.2.33: IntCtl Register (CP0 Register 12, Select 1).. 200
7.2.34: SRSCtl Register (CP0 Register 12, Select 2) .. 202
7.2.35: SRSMap Register (CP0 Register 12, Select 3).. 204
7.2.36: Cause Register (CP0 Register 13, Select 0).. 205
7.2.37: Exception Program Counter (CP0 Register 14, Select 0) .. 209
7.2.38: Processor Identification (CP0 Register 15, Select 0) ... 210
7.2.39: EBase Register (CP0 Register 15, Select 1) ... 211
7.2.40: CDMMBase Register (CP0 Register 15, Select 2)... 212
7.2.41: CMGCR Base Register (CP0 Register 15, Select 3) ... 213
7.2.42: Config Register (CP0 Register 16, Select 0).. 214
7.2.43: Config1 Register (CP0 Register 16, Select 1).. 216
7.2.44: Config2 Register (CP0 Register 16, Select 2).. 219
7.2.45: Config3 Register (CP0 Register 16, Select 3).. 221
7.2.46: Config7 Register (CP0 Register 16, Select 7).. 222
7.2.47: LLAddr Register (CP0 Register 17, Select 0) .. 225

8 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

7.2.48: WatchLo Register (CP0 Register 18, Select 0-3)... 225
7.2.49: WatchHi Register (CP0 Register 19, Select 0-3) ... 226
7.2.50: Debug Register (CP0 Register 23, Select 0) ... 227
7.2.51: Trace Control Register (CP0 Register 23, Select 1) .. 231
7.2.52: Trace Control2 Register (CP0 Register 23, Select 2) .. 232
7.2.53: User Trace Data1 Register (CP0 Register 23, Select 3) and User Trace Data2 Register (CP0
Register 24, Select 3)... 234
7.2.54: TraceIBPC Register (CP0 Register 23, Select 4) .. 235
7.2.55: TraceDBPC Register (CP0 Register 23, Select 5)... 236
7.2.56: Debug Exception Program Counter Register (CP0 Register 24, Select 0) 237
7.2.57: Trace Control3 Register (CP0 Register 24, Select 2) .. 238
7.2.58: Performance Counter Register (CP0 Register 25, select 0-3) ... 239
7.2.59: ErrCtl Register (CP0 Register 26, Select 0)... 250
7.2.60: CacheErr Register (CP0 Register 27, Select 0)... 252
7.2.61: ITagLo Register (CP0 Register 28, Select 0)... 257
7.2.62: DTagLo Register (CP0 Register 28, Select 2 .. 258
7.2.63: L23TagLo Register (CP0 Register 28, Select 4).. 260
7.2.64: IDataLo Register (CP0 Register 28, Select 1) ... 260
7.2.65: DDataLo Register (CP0 Register 28, Select 3).. 260
7.2.66: L23DataLo Register (CP0 Register 28, Select 5) .. 261
7.2.67: IDataHi Register (CP0 Register 29, Select 1) .. 261
7.2.68: L23DataHi Register (CP0 Register 29, Select 5) ... 262
7.2.69: ErrorEPC (CP0 Register 30, Select 0) ... 262
7.2.70: DeSave Register (CP0 Register 31, Select 0) ... 263

Chapter 8: Hardware and Software Initialization of the 1004K™ CPU... 265
8.1: Hardware-Initialized Processor State .. 265

8.1.1: Coprocessor 0 State .. 265
8.1.2: TLB Initialization... 267
8.1.3: Bus State Machines ... 267
8.1.4: Static Configuration Inputs ... 267
8.1.5: Fetch Address .. 267

8.2: Software Initialized Processor State.. 267
8.2.1: Register File ... 267
8.2.2: TLB... 267
8.2.3: Caches... 267
8.2.4: Coprocessor 0 State .. 268
8.2.5: Multi-threading Initialization.. 268
8.2.6: Multi-CPU Initialization ... 268

Chapter 9: Caches .. 269
9.1: Instruction Cache... 269

9.1.1: I-Cache Virtual Aliasing.. 270
9.1.2: Precode Bits... 270
9.1.3: Parity .. 270

9.2: Data Cache.. 270
9.2.1: D-Cache Virtual Aliasing .. 271
9.2.2: Parity .. 272
9.2.3: Coherence State Encoding .. 272

9.3: Write Back Buffer... 272
9.3.1: Uncached Accelerated Stores.. 273

9.4: Cache Protocols .. 274
9.4.1: Cache Organization ... 274

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 9

9.4.2: Cacheability Attributes ... 274
9.4.3: Replacement Policy ... 275
9.4.4: Line Locking ... 276

9.5: CACHE Instruction .. 277
9.6: Software Cache Testing .. 277

9.6.1: I-Cache and Primary D-cache Tag Arrays ... 277
9.6.2: Duplicate D-cache Tag Array ... 278
9.6.3: I-Cache Data Array .. 278
9.6.4: I-Cache WS Array .. 278
9.6.5: D-Cache Data Array... 278
9.6.6: D-cache WS Array ... 278

9.7: Memory Coherence Issues.. 279

Chapter 10: Power Management in the 1004K™ CPU... 281
10.1: Register-Controlled Power Management .. 281
10.2: Instruction-Controlled Power Management ... 282

10.2.1: CPUWait IE/IXMT Ignore ... 282

Chapter 11: EJTAG Debug Support in the 1004K™ CPU.. 285
11.1: Debug Control Register ... 286

11.1.1: DebugVectorAddr Register .. 290
11.2: Hardware Breakpoints ... 291

11.2.1: Features of Instruction Breakpoint ... 291
11.2.2: Features of Data Breakpoint .. 291
11.2.3: Instruction Breakpoint Registers Overview .. 292
11.2.4: Data Breakpoint Registers Overview ... 292
11.2.5: Conditions for Matching Breakpoints ... 293

11.2.5.1: Conditions for Matching Instruction Breakpoints .. 293
11.2.5.2: Conditions for Matching Data Breakpoints ... 293

11.2.6: Debug Exceptions from Breakpoints.. 294
11.2.6.1: Debug Exception by Instruction Breakpoint.. 294
11.2.6.2: Debug Exception by Data Breakpoint... 295

11.2.7: Breakpoint used as Triggerpoint .. 296
11.2.8: Instruction Breakpoint Registers .. 297

11.2.8.1: Instruction Breakpoint Status (IBS) Register .. 297
11.2.8.2: Instruction Breakpoint Address n (IBAn) Register .. 298
11.2.8.3: Instruction Breakpoint Address Mask n (IBMn) Register .. 298
11.2.8.4: Instruction Breakpoint ASID n (IBASIDn) Register ... 299
11.2.8.5: Instruction Breakpoint Control n (IBCn) Register ... 299

11.2.9: Data Breakpoint Registers ... 300
11.2.9.1: Data Breakpoint Status (DBS) Register ... 301
11.2.9.2: Data Breakpoint Address n (DBAn) Register ... 302
11.2.9.3: Data Breakpoint Address Mask n (DBMn) Register ... 302
11.2.9.4: Data Breakpoint ASID n (DBASIDn) Register .. 302
11.2.9.5: Data Breakpoint Control n (DBCn) Register ... 303
11.2.9.6: Data Breakpoint Value n (DBVn) Register ... 305
11.2.9.7: Data Breakpoint Value High n (DBVHn) Register .. 305

11.3: Test Access Port (TAP) ... 305
11.3.1: EJTAG Internal and External Interfaces... 306
11.3.2: Test Access Port Operation ... 306

11.3.2.1: Test-Logic-Reset State... 308
11.3.2.2: Run-Test/Idle State... 308
11.3.2.3: Select_DR_Scan State... 308

10 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

11.3.2.4: Select_IR_Scan State .. 308
11.3.2.5: Capture_DR State .. 308
11.3.2.6: Shift_DR State.. 308
11.3.2.7: Exit1_DR State ... 308
11.3.2.8: Pause_DR State... 308
11.3.2.9: Exit2_DR State ... 309
11.3.2.10: Update_DR State ... 309
11.3.2.11: Capture_IR State.. 309
11.3.2.12: Shift_IR State ... 309
11.3.2.13: Exit1_IR State... 309
11.3.2.14: Pause_IR State .. 309
11.3.2.15: Exit2_IR State... 309
11.3.2.16: Update_IR State ... 310

11.3.3: Test Access Port (TAP) Instructions .. 310
11.3.3.1: BYPASS Instruction.. 310
11.3.3.2: IDCODE Instruction .. 311
11.3.3.3: IMPCODE Instruction ... 311
11.3.3.4: ADDRESS Instruction... 311
11.3.3.5: DATA Instruction .. 311
11.3.3.6: CONTROL Instruction .. 311
11.3.3.7: ALL Instruction.. 311
11.3.3.8: EJTAGBOOT Instruction .. 311
11.3.3.9: NORMALBOOT Instruction .. 312
11.3.3.10: FASTDATA Instruction ... 312
11.3.3.11: TCBCONTROLA Instruction... 312
11.3.3.12: TCBCONTROLB Instruction... 312
11.3.3.13: TCBCONTROLC Instruction... 312
11.3.3.14: TCBDATA Instruction ... 312
11.3.3.15: PCSAMPLE Instruction .. 313
11.3.3.16: TCBCONTROLD Instruction... 313
11.3.3.17: TCBCONTROLE Instruction... 313
11.3.3.18: FDC Instruction... 313

11.4: EJTAG TAP Registers... 313
11.4.1: Instruction Register .. 313
11.4.2: Data Registers Overview ... 313

11.4.2.1: Bypass Register ... 314
11.4.2.2: Device Identification (ID) Register .. 314
11.4.2.3: Implementation Register... 314
11.4.2.4: EJTAG Control Register ... 315

11.4.3: Processor Access Address Register.. 321
11.4.3.1: Processor Access Data Register .. 321

11.4.4: Fastdata Register (TAP Instruction FASTDATA) ... 321
11.5: TAP Processor Accesses .. 323

11.5.1: Fetch/Load and Store From/To the EJTAG Probe Through dmseg... 323
11.6: PC Sampling.. 325

11.6.1: PC Sampling in Wait State... 325
11.7: Fast Debug Channel.. 325

11.7.1: Common Device Memory Map... 326
11.7.2: Fast Debug Channel Interrupt.. 326
11.7.3: 1004K™CPU FDC Buffers... 327
11.7.4: Sleep mode.. 328
11.7.5: FDC TAP Register ... 328
11.7.6: Fast Debug Channel Registers .. 329

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 11

11.7.6.1: FDC Access Control and Status (FDACSR) Register (Offset 0x0)..................................... 329
11.7.6.2: FDC Configuration (FDCFG) Register (Offset 0x8) .. 330
11.7.6.3: FDC Status (FDSTAT) Register (Offset 0x10) ... 331
11.7.6.4: FDC Receive (FDRX) Register (Offset 0x18) ... 332
11.7.6.5: FDC Transmit n (FDTXn) Registers (Offset 0x20 + 0x8*n) .. 332

11.8: MIPS® Trace ... 333
11.8.1: Processor Modes ... 334
11.8.2: Software Versus Hardware Control.. 334
11.8.3: Trace Information ... 334
11.8.4: Load/Store Address and Data Trace Information... 335
11.8.5: Programmable Processor Trace Mode Options... 336
11.8.6: Programmable Trace Information Options ... 336

11.8.6.1: User Data Trace ... 336
11.8.7: Enable Trace to Probe On-chip Memory.. 336
11.8.8: TCB Trigger.. 337
11.8.9: Cycle-by-Cycle Information .. 337
11.8.10: Instruction and Data Cache Miss Tracing .. 337
11.8.11: Coherence Manager Trace Correlation.. 338
11.8.12: Performance Counter Tracing.. 338
11.8.13: Filtered Data Trace Mode .. 339
11.8.14: PC tracing off ... 339
11.8.15: TMOAS Handling ... 340
11.8.16: Controling Trace in a Multi-CPU CPS.. 342
11.8.17: Memory-mapped Access to PDtrace Controls and On-Chip Trace Buffer................................. 343
11.8.18: Trace Message Format .. 345
11.8.19: Trace Word Format .. 345

11.9: PDtrace™ Registers (Software Control).. 346
11.10: Trace Control Block (TCB) Registers (Hardware Control)... 346

11.10.1: TCBCONTROLA Register.. 347
11.10.2: TCBCONTROLB Register.. 350
11.10.3: TCBDATA Register .. 354
11.10.4: TCBCONTROLC Register ... 355
11.10.5: TCBCONTROLD Register ... 356
11.10.6: TCBCONTROLE Register.. 357
11.10.7: TCBCONFIG Register (Reg 0)... 358
11.10.8: TCBTW Register (Reg 4) ... 360
11.10.9: TCBRDP Register (Reg 5) ... 360
11.10.10: TCBWRP Register (Reg 6) .. 361
11.10.11: TCBSTP Register (Reg 7).. 361
11.10.12: TCBTRIGx Register (Reg 16-23) ... 362
11.10.13: Register Reset State .. 364

11.11: Enabling MIPS Trace... 365
11.11.1: Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints .. 365
11.11.2: Turning On PDtrace™ Trace ... 365
11.11.3: Turning Off PDtrace™ Trace .. 367
11.11.4: TCB Trace Enabling... 368
11.11.5: Tracing a Reset Exception ... 368

11.12: TCB Trigger Logic ... 368
11.12.1: Trigger Units Overview... 368
11.12.2: Trigger Source Unit .. 369
11.12.3: Trigger Control Units .. 370
11.12.4: Trigger Action Unit ... 370
11.12.5: Simultaneous Triggers ... 370

12 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

11.12.5.1: Prioritized Trigger Actions .. 370
11.12.5.2: OR’ed Trigger Actions .. 371

11.13: MIPS Trace Cycle-by-Cycle Behavior ... 371
11.13.1: FIFO Logic in PDtrace and TCB Modules.. 371
11.13.2: Handling of FIFO Overflow in the PDtrace Module .. 371
11.13.3: Handling of FIFO Overflow in the TCB... 372

11.13.3.1: Probe Width and Clock-ratio Settings... 372
11.13.4: Adding Cycle Accurate Information to the Trace.. 373

11.14: TCB On-Chip Trace Memory... 373
11.14.1: On-Chip Trace Memory Size.. 373
11.14.2: Trace-From Mode .. 373
11.14.3: Trace-To Mode... 373

Chapter 12: Inter-Thread Communication Unit of the 1004K™ CPU ... 375
12.1: Features Overview .. 375
12.2: ITC Storage ... 375
12.3: ITC Views .. 376

12.3.1: Bypass View... 377
12.3.2: Control View... 377
12.3.3: Empty/Full Synchronized View... 377
12.3.4: Empty/Full Try View ... 377
12.3.5: P/V Synchronized View.. 377
12.3.6: P/V Try View .. 378
12.3.7: Reserved Views ... 378

12.4: ITC Address Space ... 378

Chapter 13: Policy Manager in the 1004K™ CPU .. 381
13.1: Thread Scheduling Unit ... 381
13.2: Policy Managers .. 382

13.2.1: Basic Round-Robin Policy Manager .. 382
13.2.2: Weighted Round-Robin Policy Manager (WRR) .. 382
13.2.3: Enhanced Weighted Round-Robin Policy Manager (WRR2)... 383

13.2.3.1: Throttle Functionality and Operation .. 383
13.2.4: TCSchedule Register ... 383
13.2.5: TCScheFBack Register.. 385

13.2.5.1: VPESchedule Register ... 385
13.2.6: VPEScheFBack Register ... 385
13.2.7: Group Rotation Schedule... 386

Chapter 14: Instruction Set Overview... 389
14.1: CPU Instruction Formats ... 389
14.2: Load and Store Instructions... 390

14.2.1: Scheduling a Load Delay Slot .. 390
14.2.2: Defining Access Types... 390

14.3: Computational Instructions .. 391
14.3.1: Cycle Timing for Multiply and Divide Instructions... 392

14.4: Jump and Branch Instructions ... 392
14.4.1: Overview of Jump Instructions ... 392
14.4.2: Overview of Branch Instructions .. 392

14.5: Control Instructions.. 393
14.6: Coprocessor Instructions... 393

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 13

Chapter 15: 1004K™ Processor CPU Instructions .. 395
15.1: Understanding the Instruction Descriptions... 395
15.2: 1004K™ Opcode Map ... 395
15.3: Floating Point Unit Instruction Format Encodings ... 402
15.4: MIPS32® Instruction Set for the 1004K™ CPU .. 403

CACHE.. 424
LL .. 430
PAUSE .. 431
PREF... 433
SC ... 436
SYNC .. 438
WAIT ... 442

Chapter 16: MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set 443
16.1: Instruction Bit Encoding... 443
16.2: Instruction Listing... 446

Appendix A: References .. 449

Appendix B: Revision History ... 451

14 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

List of Figures

Figure 1.1: 1004K™ CPU Block Diagram .. 30
Figure 1.2: Address Translation During a Cache Access .. 32
Figure 2.1: 1004K™ CPU Pipeline Stages .. 38
Figure 2.2: IFU Block Diagram ... 42
Figure 2.3: Timing of 32-bit Mode Sequential Fetches .. 43
Figure 2.4: Timing of 32-bit Mode Branch Taken Path .. 43
Figure 2.5: Fetch Timing of 32-bit Mode Branch Mispredict ... 44
Figure 2.6: Execution Timing of 32-bit Mode Branch Mispredict (Single TC) ... 44
Figure 2.7: Execution Timing of 32-bit Mode Branch Mispredict (Multiple TCs) ... 45
Figure 2.8: Timing of an ITLB Miss .. 47
Figure 2.9: Timing of a Cache Miss ... 47
Figure 2.10: LSU Pipeline .. 49
Figure 2.11: DTLB Miss Timing .. 50
Figure 2.12: Cache Miss Timing .. 51
Figure 2.13: Multiply Pipeline ... 56
Figure 2.14: Multiply With Dependency From ALU .. 56
Figure 2.15: Multiply With Dependency From Load Hit .. 56
Figure 2.16: Multiply With Dependency From Load Miss ... 57
Figure 2.17: subtractMUL Bypassing Result to Integer Instructions .. 57
Figure 2.18: MDU Pipeline Flow During a 8-bit Divide (DIV) Operation ... 58
Figure 2.19: MDU Pipeline Flow During a 16-bit Divide (DIV) Operation ... 58
Figure 2.20: MDU Pipeline Flow During a 24-bit Divide (DIV) Operation ... 58
Figure 2.21: MDU Pipeline Flow During a 32-bit Divide (DIV) Operation ... 58
Figure 2.22: Load Data Bypass ... 59
Figure 2.23: ALU Data Bypass .. 59
Figure 3.1: FPU Block Diagram ... 68
Figure 3.2: Single-Precision Floating-Point Format (S) .. 70
Figure 3.3: Double-Precision Floating-Point Format (D) .. 70
Figure 3.4: Word Fixed-Point Format (W) .. 72
Figure 3.5: Longword Fixed-Point Format (L) .. 73
Figure 3.6: Single Floating-Point or Word Fixed-Point Operand in an FPR ... 73
Figure 3.7: Double Floating-Point or Longword Fixed-Point Operand in an FPR .. 73
Figure 3.8: Effect of FPU Operations on the Format of Values Held in FPRs ... 75
Figure 3.9: FPU Word Load and Move-to Operations .. 76
Figure 3.10: FPU Doubleword Load and Move-to Operations ... 76
Figure 3.11: FIR Format ... 78
Figure 3.12: FCCR Format ... 79
Figure 3.13: FEXR Format ... 79
Figure 3.14: FENR Format ... 80
Figure 3.15: FCSR Format ... 81
Figure 3.16: FS/FO/FN Bits Influence on Multiply and Addition Results .. 84
Figure 3.17: Flushing to Nearest when Rounding Mode is Round to Nearest ... 85
Figure 3.18: FPU Pipeline .. 96
Figure 3.19: Arithmetic Pipeline Bypass Paths .. 98
Figure 4.1: MIPS32® DSP ASE Control Register (DSPControl) Format ... 99
Figure 5.1: Address Translation During a Cache Access with TLB MMU .. 104
Figure 5.2: Address Translation During a Cache Access with FM MMU ... 104

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 15

Figure 5.3: 1004K™ CPU Virtual Memory Map .. 106
Figure 5.4: User Mode Virtual Address Space ... 107
Figure 5.5: Supervisor Mode Virtual Address Space ... 109
Figure 5.6: Kernel Mode Virtual Address Space .. 111
Figure 5.7: Debug Mode Virtual Address Space .. 113
Figure 5.8: JTLB Entry (Tag and Data) .. 115
Figure 5.9: Overview of a Virtual-to-Physical Address Translation .. 119
Figure 5.10: 32-bit Virtual Address Translation .. 120
Figure 5.11: TLB Address Translation Flow in the 1004K™ CPU .. 122
Figure 5.12: FM Memory Map (ERL=0) in the 1004K™ CPU ... 125
Figure 5.13: FM Memory Map (ERL=1) in the 1004K™ CPU ... 126
Figure 6.1: Interrupt Generation for Vectored Interrupt Mode .. 134
Figure 6.2: Interrupt Generation for External Interrupt Controller Interrupt Mode .. 137
Figure 6.3: General Exception Handler (HW) .. 161
Figure 6.4: General Exception Servicing Guidelines (SW) .. 162
Figure 6.5: TLB Miss Exception Handler (HW) .. 163
Figure 6.6: TLB Exception Servicing Guidelines (SW) ... 164
Figure 6.7: Reset and NMI Exception Handling and Servicing Guidelines .. 165
Figure 7.1: Index Register Format ... 171
Figure 7.2: MVPControl Register Format .. 171
Figure 7.3: MVPConf0 Register Format ... 173
Figure 7.4: MVPConf1 Register Format ... 174
Figure 7.5: Random Register Format ... 175
Figure 7.6: VPEControl Register Format .. 175
Figure 7.7: VPEConf0 Register Format ... 176
Figure 7.8: VPEConf1 Register Format ... 178
Figure 7.9: YQMask Register Format .. 179
Figure 7.10: VPEOpt Register Format ... 179
Figure 7.11: EntryLo0, EntryLo1 Register Format ... 181
Figure 7.12: TCStatus Register Format ... 182
Figure 7.13: TCBind Register Format .. 184
Figure 7.14: TCRestart Register Format .. 184
Figure 7.15: TCHalt Register Format ... 185
Figure 7.16: TCContext Register Format .. 186
Figure 7.17: TCOpt Register Format .. 187
Figure 7.18: Context Register Format .. 187
Figure 7.19: UserLocal Register Format .. 188
Figure 7.20: PageMask Register Format ... 189
Figure 7.21: Wired and Random Entries in the TLB ... 190
Figure 7.22: Wired Register Format ... 190
Figure 7.23: SRSConf0 Register Format ... 190
Figure 7.24: HWREna Register Format ... 191
Figure 7.25: BadVAddr Register Format .. 193
Figure 7.26: Count Register Format ... 193
Figure 7.27: EntryHi Register Format .. 194
Figure 7.28: Compare Register Format ... 195
Figure 7.29: Status Register Format .. 196
Figure 7.30: IntCtl Register Format .. 201
Figure 7.31: SRSCtl Register Format ... 202
Figure 7.32: SRSMap Register Format ... 205
Figure 7.33: Cause Register Format ... 205
Figure 7.34: EPC Register Format ... 210
Figure 7.35: PRId Register Format .. 210

16 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Figure 7.36: EBase Register Format .. 211
Figure 7.37: CDMMBase Register .. 212
Figure 7.38: CMGCRBase Register.. 213
Figure 7.39: Config Register Format — Select 0 ... 214
Figure 7.40: Config1 Register Format .. 216
Figure 7.41: Config2 Register Format .. 219
Figure 7.42: Config3 Register Format .. 221
Figure 7.43: Config7 Register Format .. 223
Figure 7.44: LLAddr Register Format ... 225
Figure 7.45: WatchLo Register Format .. 225
Figure 7.46: WatchHi Register Format ... 226
Figure 7.47: Debug Register Format .. 227
Figure 7.48: TraceControl Register Format ... 231
Figure 7.49: TraceControl2 Register Format ... 233
Figure 7.50: User Trace Data1/User Trace Data2 Register Format .. 235
Figure 7.51: TraceIBPC Register Format ... 235
Figure 7.52: TraceDBPC Register Format ... 236
Figure 7.53: DEPC Register Format .. 238
Figure 7.54: TraceControl3 Register Format ... 238
Figure 7.55: Performance Counter Control Register .. 240
Figure 7.56: Performance Counter Count Register .. 249
Figure 7.57: ErrCtl Register ... 250
Figure 7.58: CacheErr Register (Primary Caches) ... 252
Figure 7.59: CacheErr Register (Secondary Cache) .. 255
Figure 7.60: ITagLo Register Format (ErrCtlWST=0, ErrCtlSPR=0).. 257
Figure 7.61: ITagLo Register Format (ErrCtlWST=1, ErrCtlSPR=0).. 257
Figure 7.62: ITagLo Register Format (ErrCtlWST=0, ErrCtlSPR=1) .. 257
Figure 7.63: DTagLo Register Format (ErrCtlWST=0, ErrCtlSPR=0) .. 258
Figure 7.64: DTagLo Register Format (ErrCtlWST=1, ErrCtlSPR=0) .. 258
Figure 7.65: DTagLo Register Format (ErrCtlWST=0, ErrCtlSPR=1) .. 258
Figure 7.66: IDataLo Register Format .. 260
Figure 7.67: DDataLo Register Format .. 261
Figure 7.68: L23DataLo Register Format ... 261
Figure 7.69: IDataHi Register Format .. 262
Figure 7.70: L23DataHi Register Format ... 262
Figure 7.71: ErrorEPC Register Format ... 263
Figure 7.72: DeSave Register Format ... 263
Figure 9.1: Instruction Cache Organization .. 270
Figure 9.2: Data Cache Organization ... 271
Figure 11.1: DCR Register Format ... 286
Figure 11.2: DebugVectorAddr Register Format .. 290
Figure 11.3: IBS Register Format .. 297
Figure 11.4: IBAn Register Format .. 298
Figure 11.5: IBMn Register Format .. 298
Figure 11.6: IBASIDn Register Format .. 299
Figure 11.7: IBCn Register Format .. 300
Figure 11.8: DBS Register Format ... 301
Figure 11.9: DBAn Register Format ... 302
Figure 11.10: DBMn Register Format .. 302
Figure 11.11: DBASIDn Register Format ... 303
Figure 11.12: DBCn Register Format ... 303
Figure 11.13: DBVn Register Format ... 305
Figure 11.14: DBVHn Register Format .. 305

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 17

Figure 11.15: TAP Controller State Diagram .. 307
Figure 11.16: Concatenation of the EJTAG Address, Data and Control Registers... 311
Figure 11.17: TDI to TDO Path When in Shift-DR State and FASTDATA Instruction is Selected 312
Figure 11.18: Device Identification Register Format .. 314
Figure 11.19: Implementation Register Format .. 315
Figure 11.20: EJTAG Control Register Format .. 316
Figure 11.21: Endian Formats for the PAD Register... 321
Figure 11.22: Fastdata Register Format .. 322
Figure 11.23: TAP Register PCsample Format... 325
Figure 11.24: Fast Debug Channel Buffer Organization... 327
Figure 11.25: FDC TAP Register Format.. 328
Figure 11.26: FDC Access Control and Status Register... 329
Figure 11.27: FDC Configuration Register.. 330
Figure 11.28: FDC Status Register ... 331
Figure 11.29: FDC Receive Register .. 332
Figure 11.30: FDC Transmit Register ... 332
Figure 11.31: MIPS® Trace Modules in the 1004K™ CPU ... 333
Figure 11.32: A TMOAS Trace Record... 341
Figure 11.33: PD Trace Architecture... 343
Figure 11.34: TCBCONTROLA Register Format ... 347
Figure 11.35: TCBCONTROLB Register Format ... 350
Figure 11.36: TCBDATA Register Format ... 354
Figure 11.37: TCBCONTROLC Register Format ... 355
Figure 11.38: TCBCONTROLD Register Format ... 356
Figure 11.39: TCBCONTROLE Register Format ... 358
Figure 11.40: TCBCONFIG Register Format ... 359
Figure 11.41: TCBTW Register Format ... 360
Figure 11.42: TCBRDP Register Format ... 361
Figure 11.43: TCBWRP Register Format ... 361
Figure 11.44: TCBSTP Register Format .. 362
Figure 11.45: TCBTRIGx Register Format ... 362
Figure 11.46: TCB Trigger Processing Overview.. 369
Figure 13.1: TSU Block Diagram .. 381
Figure 13.2: TCSchedule Register (CP0 Register2, Select 6) ... 383
Figure 13.3: TCScheFBack Register (CP0 Register2, Select 7) .. 385
Figure 13.4: VPESchedule Register (CP0 Register1, Select 5) Register ... 385
Figure 13.5: VPEScheFBack Register (CP0 Register1, Select 6) ... 386
Figure 14.1: Instruction Formats ... 390
Figure 15.1: Usage of Address Fields to Select Index and Way... 424

18 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

List of Tables

Table 2.1: Recode bandwidth ... 48
Table 2.2: MDU Comparison... 52
Table 2.3: High-performance MDU Stalls ... 53
Table 2.4: Multiply Repeat Rates.. 53
Table 2.5: DSP Instruction Delays .. 54
Table 2.6: Multiply Repeat Rates.. 55
Table 2.7: Delays for Interesting Sequences with DSPControl Dependency.. 56
Table 2.8: Pipeline Interlocks.. 60
Table 2.9: Instruction Interlocks .. 61
Table 2.10: Execution Hazards... 62
Table 2.11: Instruction Hazards .. 63
Table 2.12: Hazard Instruction Listing .. 64
Table 3.1: Parameters of Floating-Point Data Types.. 69
Table 3.2: Value of Single or Double Floating-Point Data Type Encoding.. 70
Table 3.3: Value Supplied When a New Quiet NaN is Created .. 72
Table 3.4: Coprocessor 1 Register Summary... 77
Table 3.5: Read/Write Properties.. 77
Table 3.6: FIR Bit Field Descriptions... 78
Table 3.7: FCCR Bit Field Descriptions .. 79
Table 3.8: FEXR Bit Field Descriptions... 80
Table 3.9: FENR Bit Field Descriptions... 80
Table 3.10: FCSR Bit Field Descriptions... 81
Table 3.11: Cause, Enables, and Flags Definitions .. 82
Table 3.12: Rounding Mode Definitions.. 83
Table 3.13: Zero Flushing for Tiny Results ... 84
Table 3.14: Handling of Denormalized Operand Values and Tiny Results Based on FS Bit Setting...................... 84
Table 3.15: Handling of Tiny Intermediate Result Based on the FO and FS Bit Settings 84
Table 3.16: Handling of Tiny Final Result Based on FN and FS Bit Settings ... 85
Table 3.17: Recommended FS/FO/FN Settings ... 85
Table 3.18: FPU Data Transfer Instructions.. 88
Table 3.19: FPU Loads and Stores... 88
Table 3.20: FPU Move To and From Instructions ... 88
Table 3.21: FPU IEEE Arithmetic Operations ... 89
Table 3.22: FPU-Approximate Arithmetic Operations... 89
Table 3.23: FPU Multiply-Accumulate Arithmetic Operations ... 90
Table 3.24: FPU Conversion Operations Using the FCSR Rounding Mode... 90
Table 3.25: FPU Conversion Operations Using a Directed Rounding Mode .. 90
Table 3.26: FPU Formatted Operand Move Instruction .. 91
Table 3.27: FPU Conditional Move on True/False Instructions... 91
Table 3.28: FPU Conditional Move on Zero/Non-Zero Instructions .. 91
Table 3.29: FPU Conditional Branch Instructions ... 92
Table 3.30: Deprecated FPU Conditional Branch Likely Instructions ... 92
Table 3.31: CPU Conditional Move on FPU True/False Instructions .. 92
Table 3.32: Result for Exceptions Not Trapped .. 94
Table 3.33: 1004Kf CPU FPU Latency and Repeat Rate ... 98
Table 4.1: MIPS® DSP ASE Control Register (DSPControl) Field Descriptions .. 99
Table 4.2: The Instructions that Set the ouflag bits in DSPControl ... 100

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 19

Table 5.1: User Mode Segments .. 108
Table 5.2: Supervisor Mode Segments... 110
Table 5.3: Kernel Mode Segments ... 112
Table 5.4: Physical Address and Cache Attributes for dseg, dmseg, and drseg Address Spaces 114
Table 5.5: Accesses to drseg Address Range.. 114
Table 5.6: Accesses to dmseg Address Range .. 114
Table 5.7: TLB Tag Entry Fields ... 116
Table 5.8: TLB Data Entry Fields.. 116
Table 5.9: TLB Instructions ... 122
Table 5.10: Cache Coherency Attributes .. 123
Table 5.11: Cacheability of Segments with Fixed Mapping Translation.. 124
Table 6.1: Priority of Exceptions ... 128
Table 6.2: Interrupt Modes.. 130
Table 6.3: Relative Interrupt Priority for Vectored Interrupt Mode... 133
Table 6.4: Exception Vector Offsets for Vectored Interrupts... 138
Table 6.5: Exception Vector Base Addresses when SI_UseExceptionBase equals 0.. 141
Table 6.6: Exception Vector Base Addresses when SI_UseExceptionBase equals 1... 141
Table 6.8: Exception Vectors .. 142
Table 6.7: Exception Vector Offsets ... 142
Table 6.9: Value Stored in EPC, ErrorEPC, or DEPC on an Exception.. 144
Table 6.10: Debug Exception Vector Addresses .. 147
Table 6.11: Register States an Interrupt Exception .. 150
Table 6.12: Register States on a Watch Exception... 151
Table 6.13: CP0 Register States on an Address Exception Error... 152
Table 6.14: CP0 Register States on a TLB Refill Exception ... 152
Table 6.15: CP0 Register States on a TLB Invalid Exception... 153
Table 6.16: CP0 Register States on a Cache Error Exception ... 154
Table 6.17: Register States on a Coprocessor Unusable Exception .. 156
Table 6.18: Register States on a Floating Point Exception... 157
Table 6.19: Thread exception codes in VPEControl[EXCPT] ... 159
Table 6.20: Register States on a TLB Modified Exception.. 160
Table 7.1: CP0 Registers .. 167
Table 7.2: CP0 Register Field Types .. 170
Table 7.3: Index Register Field Descriptions .. 171
Table 7.4: MVPControl Register Field Descriptions.. 171
Table 7.5: MVPConf0 Register Field Descriptions.. 173
Table 7.6: MVPConf1 Register Field Descriptions.. 174
Table 7.7: Random Register Field Descriptions.. 175
Table 7.8: VPEControl Register Field Descriptions .. 175
Table 7.9: VPEConf0 Register Field Descriptions .. 177
Table 7.10: VPEConf1 Register Field Descriptions .. 178
Table 7.11: YQMask Register Field Descriptions ... 179
Table 7.12: VPEOpt Register Field Descriptions .. 180
Table 7.13: EntryLo0, EntryLo1 Register Field Descriptions .. 181
Table 7.14: Cache Coherency Attributes .. 181
Table 7.15: TCStatus Register Field Descriptions .. 182
Table 7.16: TCBind Register Field Descriptions ... 184
Table 7.18: TCHalt Register Field Descriptions .. 185
Table 7.17: TCRestart Register Field Descriptions... 185
Table 7.19: TCOpt Register Field Descriptions... 187
Table 7.21: UserLocal Register Field Descriptions ... 188
Table 7.20: Context Register Field Descriptions... 188
Table 7.22: PageMask Register Field Descriptions .. 189

20 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Table 7.23: Values for the Mask Field of the PageMask Register .. 189
Table 7.24: Wired Register Field Descriptions.. 190
Table 7.26: HWREna Register Field Descriptions .. 191
Table 7.25: SRSConf0 Register Field Descriptions .. 191
Table 7.27: RDHWR Register Numbers ... 192
Table 7.28: BadVAddr Register Field Description... 193
Table 7.29: Count Register Field Description ... 193
Table 7.30: EntryHi Register Field Descriptions ... 194
Table 7.31: Compare Register Field Description .. 195
Table 7.32: Status Register Field Descriptions... 196
Table 7.33: IntCtl Register Field Descriptions... 201
Table 7.34: SRSCtl Register Field Descriptions ... 203
Table 7.35: Sources for new SRSCtlCSS on an Exception or Interrupt ... 204
Table 7.36: SRSMap Register Field Descriptions... 205
Table 7.37: Cause Register Field Descriptions... 206
Table 7.38: Cause Register ExcCode Field .. 208
Table 7.39: EPC Register Field Description.. 210
Table 7.40: PRId Register Field Descriptions ... 210
Table 7.42: CDMMBase Register Field Descriptions.. 212
Table 7.41: EBase Register Field Descriptions... 212
Table 7.43: CMGCRBase Register Field Descriptions ... 213
Table 7.44: Config Register Field Descriptions... 214
Table 7.45: Cache Coherency Attributes .. 216
Table 7.46: Config1 Register Field Descriptions... 216
Table 7.47: Config2 Register Field Descriptions... 219
Table 7.48: Config3 Register Field Descriptions... 221
Table 7.49: Config7 Register Field Descriptions... 223
Table 7.50: LLAddr Register Field Descriptions.. 225
Table 7.52: WatchHi Register Field Descriptions.. 226
Table 7.51: WatchLo Register Field Descriptions... 226
Table 7.53: Debug Register Field Descriptions... 228
Table 7.54: TraceControl Register Field Descriptions .. 231
Table 7.55: TraceControl2 Register Field Descriptions .. 233
Table 7.56: UserTraceData1/UserTraceData2 Register Field Descriptions ... 235
Table 7.57: TraceIBPC Register Field Descriptions.. 235
Table 7.58: TraceDBPC Register Field Descriptions .. 236
Table 7.59: BreakPoint Control Modes: IBPC and DBPC... 237
Table 7.60: DEPC Register Formats... 238
Table 7.61: TraceControl3 Register Field Descriptions .. 238
Table 7.62: Performance Counter Register Selects.. 239
Table 7.63: Performance Counter Control Register Field Descriptions .. 240
Table 7.64: Performance Counter Count Register Field Descriptions .. 241
Table 7.65: Event Descriptions ... 243
Table 7.66: Performance Counter Count Register Field Descriptions .. 249
Table 7.67: CACHE Test Mode Control .. 250
Table 7.68: ErrCtl Register Field Descriptions .. 251
Table 7.69: CacheErr Register Field Descriptions (Primary Caches) ... 253
Table 7.70: CacheErr Register Field Descriptions (Secondary Cache) .. 255
Table 7.71: ITagLo Register Field Descriptions.. 257
Table 7.72: DTagLo Register Field Descriptions .. 258
Table 7.73: IDataLo Register Field Description .. 260
Table 7.74: DDataLo Register Field Description... 261
Table 7.75: L23DataLo Register Field Description ... 261

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 21

Table 7.76: IDataHi Register Field Description... 262
Table 7.77: L23DataHi Register Field Description.. 262
Table 7.78: ErrorEPC Register Field Description.. 263
Table 7.79: DeSave Register Field Description .. 264
Table 9.1: Coherent State Encoding... 272
Table 9.2: Way Selection Encoding, 4 Ways .. 277
Table 11.1: DCR Register Field Descriptions ... 286
Table 11.2: Debug Exception Vectors .. 290
Table 11.3: DebugVectorAddr Register Field Descriptions... 291
Table 11.4: Overview of Status Register for Instruction Breakpoints.. 292
Table 11.5: Overview of Registers for Each Instruction Breakpoint.. 292
Table 11.6: Overview of Status Register for Data Breakpoints... 292
Table 11.7: Overview of Registers for Each Data Breakpoint... 292
Table 11.8: Rules for Update of BS Bits on Data Breakpoint Exceptions... 295
Table 11.9: Addresses for Instruction Breakpoint Registers ... 297
Table 11.10: IBS Register Field Descriptions ... 297
Table 11.11: IBAn Register Field Descriptions ... 298
Table 11.13: IBASIDn Register Field Descriptions ... 299
Table 11.12: IBMn Register Field Descriptions... 299
Table 11.14: IBCn Register Field Descriptions ... 300
Table 11.15: Addresses for Data Breakpoint Registers .. 300
Table 11.16: DBS Register Field Descriptions.. 301
Table 11.17: DBAn Register Field Descriptions.. 302
Table 11.18: DBMn Register Field Descriptions ... 302
Table 11.19: DBASIDn Register Field Descriptions.. 303
Table 11.20: DBCn Register Field Descriptions.. 303
Table 11.21: DBVn Register Field Descriptions.. 305
Table 11.22: DBVHn Register Field Descriptions ... 305
Table 11.23: EJTAG Interface Pins .. 306
Table 11.24: Implemented EJTAG Instructions .. 310
Table 11.25: Device Identification Register... 314
Table 11.26: Implementation Register Descriptions ... 315
Table 11.27: EJTAG Control Register Descriptions.. 316
Table 11.28: Fastdata Register Field Description... 322
Table 11.29: Operation of the FASTDATA Access... 323
Table 11.30: FDC TAP Register Field Descriptions.. 328
Table 11.31: FDC Register Mapping... 329
Table 11.32: FDC Access Control and Status Register Field Descriptions .. 330
Table 11.34: FDC Status Register Field Descriptions... 331
Table 11.33: FDC Configuration Register Field Descriptions ... 331
Table 11.35: FDC Receive Register Field Descriptions.. 332
Table 11.37: FDTXn Address Decode .. 333
Table 11.36: FDC Transmit Register Field Descriptions... 333
Table 11.38: TMOAS Trace Record Field Descriptions ... 341
Table 11.39: Mapping TCB Registers in drseg .. 344
Table 11.40: A List of Coprocessor 0 Trace Registers ... 346
Table 11.41: TCB EJTAG Registers ... 346
Table 11.43: TCBCONTROLA Register Field Descriptions .. 347
Table 11.42: Registers Selected by TCBCONTROLBREG .. 347
Table 11.44: TCBCONTROLB Register Field Descriptions .. 350
Table 11.45: Clock Ratio encoding of the CR field ... 354
Table 11.46: TCBDATA Register Field Descriptions .. 354
Table 11.47: TCBCONTROLC Register Field Descriptions.. 355

22 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Table 11.49: Port Control Values.. 357
Table 11.48: TCBCONTROLD Register Field Descriptions.. 357
Table 11.50: TCBCONTROLE Register Field Descriptions .. 358
Table 11.51: TCBCONFIG Register Field Descriptions .. 359
Table 11.52: TCBTW Register Field Descriptions .. 360
Table 11.53: TCBRDP Register Field Descriptions .. 361
Table 11.54: TCBWRP Register Field Descriptions.. 361
Table 11.55: TCBSTP Register Field Descriptions ... 362
Table 11.56: TCBTRIGx Register Field Descriptions.. 362
Table 12.1: ITC Storage Cell Tag Format ... 376
Table 12.2: ITC View Addresses .. 376
Table 12.3: ITC AddressMap0 Register Format ... 378
Table 12.4: ITCAddressMap1 Register Format .. 378
Table 12.5: AddressMap0 Register Field Descriptions ... 378
Table 12.6: AddressMap1 Register Field Descriptions ... 379
Table 13.1: TCSchedule Register Field Descriptions ... 384
Table 13.2: TCScheFBack Register Field Descriptions .. 385
Table 13.3: VPESchedule Register Field Descriptions... 385
Table 13.4: VPEScheFBack Register Field Descriptions.. 386
Table 13.5: Rotation of Group Priority Levels ... 386
Table 13.6: Priority Level Rotation (3TCs in group1, 1 TC in group0) .. 387
Table 14.1: Byte Access Within a Doubleword ... 391
Table 15.1: Symbols Used in the Instruction Encoding Tables... 395
Table 15.2: MIPS32 Encoding of the Opcode Field .. 396
Table 15.3: MIPS32 SPECIAL Opcode Encoding of Function Field ... 396
Table 15.4: MIPS32 REGIMM Encoding of rt Field... 396
Table 15.5: MIPS32 SPECIAL2 Encoding of Function Field... 397
Table 15.6: MIPS32 Special3 Encoding of Function Field for Release 2 of the Architecture 397
Table 15.7: MIPS32 MOVCI Encoding of tf Bit ... 397
Table 15.8: MIPS32 SRL Encoding of Shift/Rotate .. 397
Table 15.9: MIPS32 SRLV Encoding of Shift/Rotate .. 397
Table 15.10: MIPS32 BSHFLEncoding of sa Field ... 398
Table 15.11: MIPS32® ADDU.QB Encoding of the op Field .. 398
Table 15.12: MIPS32® CMPU.EQ.QB Encoding of the op Field.. 398
Table 15.13: MIPS32® ABSQ_S.PH Encoding of the op Field .. 399
Table 15.14: MIPS32® SHLL.QB Encoding of the op Field.. 399
Table 15.15: MIPS32® LX Encoding of the op Field .. 399
Table 15.16: MIPS32® DPAQ.W.PH Encoding of the op Field .. 399
Table 15.17: MIPS32® EXTR.W Encoding of the op Field... 400
Table 15.18: MIPS32 COP0 Encoding of rs Field... 400
Table 15.19: MIPS32COP0 Encoding of Function Field When rs=CO ... 400
Table 15.20: MIPS32 COP1 Encoding of rs Field... 400
Table 15.21: MIPS32 COP1 Encoding of Function Field When rs=S ... 401
Table 15.22: MIPS32 COP1 Encoding of Function Field When rs=D... 401
Table 15.23: MIPS32 COP1 Encoding of Function Field When rs=W or L... 401
Table 15.24: MIPS32 COP1 Encoding of tf Bit When rs=S or D, Function=MOVCF.. 402
Table 15.25: MIPS64 COP1X Encoding of Function Field.. 402
Table 15.26: MIPS32 COP2 Encoding of rs Field... 402
Table 15.27: Floating Point Unit Instruction Format Encodings.. 402
Table 15.28: 1004K™ CPU Instruction Set .. 403
Table 15.29: List of instructions in the MIPS32® DSP ASE in the Arithmetic sub-class 412
Table 15.30: List of instructions in the MIPS32® DSP ASE in the GPR-Based Shift sub-class 414
Table 15.31: List of instructions in the MIPS32® DSP ASE in the Multiply sub-class .. 415

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 23

Table 15.32: List of instructions in the MIPS32® DSP ASE in the Bit/ Manipulation sub-class............................ 418
Table 15.33: List of instructions in the MIPS32® DSP ASE in the Compare-Pick sub-class................................ 419
Table 15.34: List of instructions in the MIPS32® DSP ASE in the Accumulator and DSPControl Access sub-class.
420
Table 15.35: List of instructions in the MIPS32™ DSP ASE in the Indexed-Load sub-class................................ 422
Table 15.36: List of instructions in the MIPS32® DSP ASE in the Branch sub-class ... 423
Table 15.37: Usage of Effective Address.. 424
Table 15.38: Encoding of Bits[17:16] of CACHE Instruction... 425
Table 15.39: Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST,SPR] Cleared............................... 425
Table 15-1: Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST] Set. ErrCtl[SPR] Cleared 428
Table 15.40: Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[SPR] Set, ErrCtl[WST] Cleared 429
Table 15.41: Values of hint Field for PREF Instruction ... 433
Table 15.42: Encodings of the Bits[10:6] of the SYNC instruction; the SType Field... 440
Table 16.1: Symbols Used in the Instruction Encoding Tables... 443
Table 16.2: MIPS16e Encoding of the Opcode Field .. 444
Table 16.3: MIPS16e JAL(X) Encoding of the x Field... 444
Table 16.4: MIPS16e SHIFT Encoding of the f Field .. 444
Table 16.5: MIPS16e RRI-A Encoding of the f Field... 444
Table 16.6: MIPS16e I8 Encoding of the funct Field... 444
Table 16.7: MIPS16e RRR Encoding of the f Field... 445
Table 16.8: MIPS16e RR Encoding of the Funct Field ... 445
Table 16.9: MIPS16e I8 Encoding of the s Field when funct=SVRS .. 445
Table 16.10: MIPS16e RR Encoding of the ry Field when funct=J(AL)R(C)... 445
Table 16.11: MIPS16e RR Encoding of the ry Field when funct=CNVT ... 445
Table 16.12: MIPS16e Load and Store Instructions ... 446
Table 16.13: MIPS16e Save and Restore Instructions ... 446
Table 16.14: MIPS16e ALU Immediate Instructions ... 446
Table 16.15: MIPS16e Arithmetic Two or Three Operand Register Instructions .. 446
Table 16.16: MIPS16e Special Instructions .. 447
Table 16.17: MIPS16e Multiply and Divide Instructions.. 447
Table 16.18: MIPS16e Jump and Branch Instructions.. 447
Table 16.19: MIPS16e Shift Instructions... 448

24 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Chapter 1

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 25

Introduction to the MIPS32® 1004K™ CPU Family

The 1004K™ CPU from MIPS Technologies is a high-performance, low-power, 32-bit MIPS® RISC CPU family
intended for custom system-on-silicon applications. The CPU is designed for semiconductor manufacturing compa-
nies, ASIC developers, and system OEMs who want to rapidly integrate their own custom logic and peripherals with
a high-performance RISC processor. A 1004K CPU is fully synthesizable to allow maximum flexibility; it is highly
portable across processes and can easily be integrated into full system-on-silicon designs. This allows developers to
focus their attention on end-user specific characteristics of their product.

The 1004K CPU is ideally positioned to support new products for emerging segments of the digital consumer, net-
work, systems, and information management markets, enabling new tailored solutions for embedded applications.

The 1004K family has two members: the MIPS32® 1004Kc™ CPU and the MIPS32 1004Kf™ CPU.

• The 1004Kc is a 32-bit RISC CPU for high performance applications.

• The 1004Kf CPU adds an IEEE-754 compliant floating point unit.

The term 1004K CPU, as used in this document, generally refers to all CPUs in the 1004K family. When referring to
characteristics unique to an individual family member, the specific CPU type is identified.

On a 1004K CPU, instruction and data caches are configurable as 8, 16, 32, or 64 KB in size. Each cache is organized
as 4-way set associative. The data cache features non-blocking load misses. On a cache miss, the processor can con-
tinue executing instructions until a dependent instruction is reached. Both caches are virtually indexed and physically
tagged. Virtual indexing allows the cache to be indexed in the same clock in which the address is generated rather
than waiting for the virtual-to-physical address translation in the TLB. The data cache utilizes a standard MESI proto-
col for support of memory coherence in a multi-CPU 1004K Coherent Processing System (CPS).

The CPU implements the MIPS32 Release 2 Instruction Set Architecture (ISA) and the MIPS16e™ Application Spe-
cific Extension (ASE) for code compression. The CPU also implements the MIPS MT Application Specific Exten-
sion, which defines the architectural state and new instructions that allow multithreading on a MIPS CPU.

A distinguishing characteristic of the 1004K family is the inclusion of the MIPS DSP Application Specific Extension
(ASE). The MIPS DSP ASE provides support for a number of powerful data processing operations. It includes
instructions for executing fractional arithmetic (Q15/Q31) and for saturating arithmetic. Additionally, for smaller
data sizes, SIMD operations are supported, allowing 2x16b or 4x8b operations to occur simultaneously. Another fea-
ture of the ASE is the inclusion of additional HI/LO accumulator registers to improve the parallelization of indepen-
dent accumulation routines.

The Multiply-Divide Unit (MDU) is fully pipelined and supports a maximum issue rate of one 32x32 multiply
(MUL/MULT/MULTU), multiply-add (MADD/MADDU), or multiply-subtract (MSUB/MSUBU) operation per
clock.

The basic Enhanced JTAG (EJTAG) features provide run control with stop, single stepping, and re-start, and with
software breakpoints through the SDBBP instruction. Support for connection to an external EJTAG probe through the

 Introduction to the MIPS32® 1004K™ CPU Family

26 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Test Access Port (TAP) and the Fast Debug Channel mechanism for efficient data transfer are also included. Instruc-
tion and data virtual address hardware breakpoints as well as the MIPS Trace mechanism can be optionally included.

The bus interface implements the Open Core Protocol (OCP) [14], with 64-bit read and write data buses, and includes
an additional intervention port for implementing cache coherency in a multi-CPU 1004K Coherent Processing Sys-
tem. The bus interface operates at the same frequency as the CPU itself.

The rest of this chapter provides an overview of the MIPS32 1004K CPU and consists of the following sections:

• Section 1.1 “1004K™ CPU Features”

• Section 1.2 “1004K™ CPU Block Diagram”

1.1 1004K™ CPU Features

• 8-9-stage pipeline

• 32-bit Address Paths

• 64-bit Data Paths to Caches

• MIPS32 Enhanced Architecture (Release 2) Features

• Standardized Instruction Set Architecture

• Vectored interrupts and support for an external interrupt controller

• Programmable exception vector base

• Atomic interrupt enable/disable

• GPR shadow sets

• Bit field manipulation instructions

• MIPS DSP ASE

• Fractional data types (Q15, Q31)

• Saturating arithmetic

• SIMD instructions operate on 2x16b or 4x8b simultaneously

• 3 additional pairs of accumulator registers

• MIPS16e Application Specific Extension

• 16 bit encodings of 32-bit instructions to improve code density

• Special PC-relative instructions for efficient loading of addresses and constants

• Data type conversion instructions (ZEB, SEB, ZEH, SEH)

1.1 1004K™ CPU Features

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 27

• Compact jumps (JRC, JALRC)

• Stack frame set-up and tear down “macro” instructions (SAVE and RESTORE)

• MIPS MT Application Specific Extension (ASE)

• Support for 1 or 2 Virtual Processing Elements (VPEs)

• One Thread Context (TC) per VPE

• Multi-core Inter-Thread Communication (ITC) memory for efficient communication & data transfer.

• Programmable L1 Cache Sizes

• Individually configurable instruction and data caches

• Sizes of 8, 16, 32, or 64 KB

• 4-Way set associative

• Up to 9 non-blocking loads

• Data cache supports coherent and non-coherent Write-back with write-allocation

• 256-bit (32-byte) cache line size, doubleword sectored - suitable for standard single-port SRAM

• Cache line locking support

• Non-blocking prefetches

• Duplicate tag array in D-cache allows coherence requests to access the cache in parallel with normal
load/store traffic

• Data and Instruction ScratchPad RAMs

• Separate RAMs for Instruction and Data

• Addressable up to 1MB

• 64-bit OCP interfaces for external access

• Standard Memory Management Unit

• 16/32/64 dual-entry MIPS32-style JTLB per VPE with variable page sizes

• JTLBs are sharable under software control

• 4-5 entry instruction TLB

• 8-entry data TLB

• OCP Bus Interface Unit (BIU)

 Introduction to the MIPS32® 1004K™ CPU Family

28 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

• 32b address and 64b data

• Supports bursts of 4x64b

• 8 entry write buffer - handles eviction data, intervention response, uncached, and uncached accelerated store
data

• Simple Byte enable mode allows easier bridging to other bus standards

• Extensions for management of front side L2 cache

• Intervention port supports memory coherency for use in a 1004K Coherent Processing System

• CorExtend® User Defined Instruction capability

• Optional support for the CorExtend feature allows users to define and add instructions to the CPU (as a
build-time option)

• Single- or multi-cycle instructions

• Source operations from register, immediate field, or local state

• Destination to a register or local state

• Interface to multiply-divide unit, allowing sharing of accumulation registers

• Multiply-Divide Unit

• Maximum issue rate of one 32x32 multiply per clock

• Early-in divide control. Minimum 11, maximum 34 clock latency on divide

• Floating Point Unit (1004Kf only)

• IEEE-754 compliant floating point unit

• Compliant to MIPS 64b FPU standards

• Supports single and double precision datatypes

• Coprocessor2 Interface

• 64-bit interface to user designed coprocessor

• Power Control

• No minimum frequency

• Power-down mode

• Support for software-controlled clock divider

• Support for extensive use of fine-grain clock gating

1.2 1004K™ CPU Block Diagram

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 29

• EJTAG Debug Support

• Start, stop, and single stepping control

• Software breakpoints via the SDBBP instruction

• Optional hardware breakpoints on virtual addresses; 0, 2, or 4 instruction and 0,1, or 2 data breakpoints per
VPE

• Test Access Port (TAP) facilitates high speed download of application code

• Fast Debug Channel with configurable FIFO depth for efficient data transfer to and from probe

• Optional MIPS Trace hardware to enable real-time tracing of executed code

1.2 1004K™ CPU Block Diagram

The 1004K CPU contains a number of blocks, as shown in the block diagram in Figure 1.1. The major blocks are as
follows:

• Execution Unit (ALU)

• Multiply-Divide Unit (MDU)

• System Control Coprocessor (CP0)

• Memory Management Unit (MMU)

• Floating Point Unit (FPU) - only in 1004Kf

• Cache Controller

• Bus Interface Unit (BIU)

• Power Management

• MIPS16e support

• Instruction Cache (I-cache)

• Data Cache (D-cache)

• Enhanced JTAG (EJTAG) Controller

• CorExtend® User Defined Instructions (UDI)

Figure 1.1 shows a block diagram of a 1004K CPU.

 Introduction to the MIPS32® 1004K™ CPU Family

30 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Figure 1.1 1004K™ CPU Block Diagram

1.2.1 Logic Blocks

The following subsections describe the various logic blocks of the 1004K CPU.

BIU
8 entry merging

write buffer, 6-10
outstanding reads

Non blocking
Load/Store Unit

4-8 outstanding misses

 Execution Unit
(RF per TC, ALU,

Shift, etc)
MMU (per VPE)

16-64 entry JTLB

D-cache
8-64KB

4 way set associative

TAP

EJTAG

I-cache
8-64KB

4 way set associative

 EJTAG
Off-Chip Debug

I/F

O
C

P
In

te
rfa

ce
O

n-
C

hi
p

Bu
s(

es
)

Fetch Unit

Scratchpad RAM

TC Dispatch
Unit

MDU

 Power
Mgmt

FPU

System Coprocessor

CorExtend

CP2

MT control
blocks

Inter-Thread
Communication

Unit

Scratchpad RAM

Trace

1.2 1004K™ CPU Block Diagram

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 31

1.2.1.1 Execution Unit

The CPU execution unit implements a load-store architecture with single-cycle Arithmetic Logic Unit (ALU) opera-
tions (logical, shift, add, subtract) and an autonomous multiply-divide unit. Each TC on the CPU contains thirty-two
32-bit general-purpose registers (GPRs) used for scalar integer operations and address calculation. The register file
consists of two read ports and one write port and is fully bypassed to minimize operation latency in the pipeline.

 The execution unit includes:

• 32-bit adder used for calculating the data address

• Logic for branch determination and branch target address calculation

• Bypass multiplexers used to avoid stalls when executing instruction streams where data-producing instructions
are followed closely by consumers of their results

• Zero/One detect unit for implementing the CLZ and CLO instructions

• ALU for performing bitwise logical operations

• Shifter and Store aligner

• Floating Point Unit Interface

• Coprocessor2 Interface

The execution unit also includes the following DSP ASE operations for various data types:

• two-cycle add, sub, absolute, shift, compare

• two-cycle compare, byte manipulation, precision control

1.2.1.2 Multiply/Divide Unit (MDU)

The Multiply/Divide unit performs multiply and divide operations.The MDU consists of a pipelined 32x32 multi-
plier, result-accumulation registers (HI and LO), multiply and divide state machines, and all multiplexers and control
logic required to perform these functions. This pipelined MDU supports execution of a multiply or multiply-accumu-
late operation every clock cycle. Unlike some previous CPUs, there is no dependence between operand size and issue
rate for multiplies. Divide operations are implemented with a simple 1 bit per clock iterative algorithm and require 35
clock cycles in worst case to complete. Early-in to the algorithm detects sign extension of the dividend, if it is actual
size is 24, 16 or 8 bit. the divider will skip 7, 15 or 23 of the 32 iterations.

The MDU accumulators are accessible from the CorExtend block. Many CorExtend instruction types can make use
of the HI/LO accumulation registers.

The MDU also implements various shift instructions operating on the HI/LO register and multiply instructions as
defined in the DSP ASE. It supports all the data types required for this purpose and includes three extra HI/LO regis-
ters as defined by the ASE.

1.2.1.3 System Control Coprocessor (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, cache protocols, the
exception control system, the processor’s diagnostics capability, operating mode selection (kernel vs. user mode), and

 Introduction to the MIPS32® 1004K™ CPU Family

32 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

the enabling/disabling of interrupts. Configuration information such as cache size, set associativity, and presence of
build-time options are available by accessing the CP0 registers. Refer to Chapter 7, “CP0 Registers of the 1004K™
CPU” on page 167 for more information on the CP0 registers. Refer to Chapter 11, “EJTAG Debug Support in the
1004K™ CPU” on page 285 for more information on EJTAG debug registers. Most of CP0 is replicated per VPE. A
small amount of state is replicated per TC, and some is shared between the VPEs.

1.2.1.4 Memory Management Unit (MMU)

The 1004K CPU contains an MMU per VPE that interfaces between the execution unit and the cache controllers,
shown in Figure 1.2. Although the 1004K CPU implements a 32-bit architecture, the Memory Management Unit
(MMU) is modeled after the MMU originally found in the 64-bit R4000 family, as defined by the MIPS32 architec-
ture.

On the 1004K CPU, by default each MMU is based on a Translation Lookaside Buffer (TLB). The TLB consists of
three or four translation buffers: a configurable 16/32/64 dual-entry fully associative Joint TLB (JTLB) per VPE, a
4-5 entry fully associative Instruction TLB (ITLB) and a 8-entry fully associative data TLB (DTLB). The ITLB and
DTLB, also referred to as the micro TLBs, are managed by the hardware and are not software visible. The micro
TLBs contain subsets of the JTLB. When translating addresses, the corresponding micro TLB (I or D) is accessed
first. If there is not a matching entry, the JTLB is used to translate the address and refill the micro TLB. If the entry is
not found in the JTLB, then an exception is taken.

Figure 1.2 shows how the address translation mechanism interacts with cache accesses.

Figure 1.2 Address Translation During a Cache Access

1.2.1.5 Fetch Unit

The fetch unit is responsible for providing instructions to the execution unit for all TCs. The fetch unit includes:

• Control logic for the instruction cache

• MIPS16e instruction recoder

I-cache

D-cache

Comparator

Comparator

Instruction
Hit/Miss

Data Hit/Miss

Virtual Address

Virtual Address

ITLB

JTLB

DTLB

Instruction
Address

Calculator

Data Address
Calculator

Entry

EntryIVA

DVA

1.2 1004K™ CPU Block Diagram

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 33

• Dynamic branch prediction

• 512-entry bimodal branch history table for predicting conditional branches

• 4-entry return prediction stack for predicting return addresses

• 6 or 8 entry instruction buffer per TC to decouple the fetch and execution pipelines

• Interface to Instruction ScratchPad RAM

When executing instructions from multiple TCs, a portion of the IBF is used as a skid buffer. Instructions are held in
the IBF after being sent to the execution unit. This allows stalled instructions to be flushed from the execution pipe-
line without needing to be refetched. This feature is disabled when the IBF is configured with only 6 entries.

1.2.1.6 Thread Schedule Unit (TSU)

This unit is responsible for dispatching instructions from different Thread Contexts (TCs). An external policy man-
ager assigns priorities for each TC. The TSU determines which TCs are runnable and selects the highest priority one
available. If multiple are available, a round-robin mechanism will select between them fairly.

The policy manager is a customer configurable block. Simple round-robin or fixed priority policies can be imple-
mented by tying off signals on the interface. A reference policy manager is also included that implements a weighted
round-robin algorithm for long-term distribution of execution bandwidth.

When the CPU is configured with a single TC, there is no selection needed. In these configurations, the IT pipeline
stage where TC selection is normally done can be bypassed, reducing the pipeline length from 9 to 8 stages.

1.2.1.7 Instruction Cache

The instruction cache is an on-chip memory array of up to 64 KB. The cache is virtually indexed and physically
tagged, allowing the virtual-to-physical address translation to occur in parallel with the cache access rather than hav-
ing to wait for the physical address translation. The tag holds 20 or 21 bits of the physical address, a valid bit, a lock
bit, and optionally a parity bit. There is a separate 6b array which holds data for all 4 ways to be used in the Least
Recently Used (LRU) replacement scheme. Some precode information is included in the instruction cache data array.
An additional 6b per pair of 32b instructions is used to enable quick detection of branches and jumps in the fetch unit.
If parity is implemented, a single bit covers the 6b precode and 8b cover the 64b data.

The CPU supports instruction cache locking. Cache locking allows critical code to be locked into the cache on a
“per-line” basis, enabling the system designer to maximize the efficiency of the system cache. Cache locking is
always available on all instruction cache entries. Entries can be marked as locked or unlocked (by setting or clearing
the lock bit) on a per-entry basis using the CACHE instruction.

The LRU array must be bit-writable. The tag and data arrays only need to be word-writable.

1.2.1.8 Load/Store Unit

The Load/Store Unit is responsible for data loads and stores. It includes:

• Data cache control logic

• 4-8 line fill/store buffer

• ScratchPad RAM interface

 Introduction to the MIPS32® 1004K™ CPU Family

34 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

1.2.1.9 Data Cache

The data cache is an on-chip memory array of up to 64 KB. The cache is virtually indexed and physically tagged,
allowing the virtual-to-physical address translation to occur in parallel with the cache access. The tag holds 20 or 21
bits of the physical address, a valid bit, a lock bit, and optionally a parity bit. A separate array holds the LRU bits
(6b), dirty bits (4b), and optionally, dirty parity bits (4b) for all 4 ways. A duplicate tag array contains the same infor-
mation as the primary tag array and is used to filter intervention traffic so that only those interventions that hit in the
cache are processed by the main execution pipeline. The data array is optionally parity protected with 1b per 8b of
data.

In addition to instruction cache locking, all CPUs also support a data cache locking mechanism identical to the
instruction cache, with critical data segments to be locked into the cache on a “per-line” basis. The locked contents
cannot be selected for replacement on a cache miss, but can be updated on a store hit.

Cache locking is always available on all data cache entries. Entries can be marked as locked or unlocked on a
per-entry basis using the CACHE instruction.

The physical data cache memory must be byte writable to support sub-word store operations. The LRU/dirty bit array
must be bit-writable.

1.2.1.10 Bus Interface Unit (BIU)

The Bus Interface Unit (BIU) controls the external interface signals. Additionally, it contains the implementation of a
collapsing write buffer. This buffer is used to stage intervention response data as well as to gather multiple writes
together from dirty line evictions and uncached accelerated stores. The write buffer consists of 8 32B entries.

1.2.1.11 Power Management

The CPU offers a number of power management features, including low-power design, active power management,
and power-down modes of operation. The CPU is a static design that supports slowing or stopping the clocks to
reduce power.

In the 1004K Coherent Processing System, the Cluster Power Controller(CPC) can take advantage of this capability
to shut down the clocks to an idle CPU. Additionally, if the implementation supports it, the CPC can also gate off the
power to a CPU for further power savings.

A register-controlled power management mode in the CPU provides three bits in the CP0 Status register for software
control of the power management function and allows interrupts to be serviced even when the CPU is in power-down
mode.

Additionally, the clock going to most flops in the design will be stopped when the CPU detects that all TCs are idle or
blocked enabling a low power sleep state.

Refer to Chapter 10, “Power Management in the 1004K™ CPU” on page 281 for more information on power man-
agement.

1.2.1.12 MIPS16e™ Application Specific Extension

The 1004K CPU includes support for the MIPS16e ASE. This ASE improves code density through the use of 16-bit
encodings of MIPS32 instructions plus some MIPS16e-specific instructions. PC relative loads allow quick access to
constants. Save/Restore macro instructions provide for single instruction stack frame setup/teardown for efficient sub-
routine entry/exit. Sign- and zero-extend instructions improve handling of 8bit and 16bit datatypes.

1.2 1004K™ CPU Block Diagram

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 35

A decompressor converts the MIPS16e 16-bit instructions fetched from the instruction cache or external interface
back into 32-bit instructions for execution by the CPU.

Refer to the MIPS32® Architecture For Programmers, Volume IV-a: The MIPS16e™ Application-Specific Extension
to the MIPS32® Architecture [4] and to Chapter 4, “The MIPS® DSP Application-Specific Extension” on page 99
for more information on the features of the MIPS16e ASE.

1.2.1.13 EJTAG Debug

All CPUs provide basic EJTAG support with debug mode, run control, single step, and software breakpoint instruc-
tion (SDBBP) as part of the CPU. These features allow for the basic software debug of user and kernel code. A TAP
controller is also included for each VPE, enabling communication with an external EJTAG probe through a dedicated
port. This provides the possibility for debugging without debug code in the application, and for download of applica-
tion code to the system.The TAP controller also includes the Fast Data Channel mechanism which includes a pair of
configurable FIFOs for sending data between the CPU and the probe. The FIFOs and the ability to generate an inter-
rupt based on data/space availablity enable data transfer with very low overhead to the software executing on the
CPU.

An optional EJTAG feature is hardware breakpoints. A 1004K CPU may have up to four instruction breakpoints and
two data breakpoints per VPE, or no breakpoints. The hardware instruction breakpoints can be configured to generate
a debug exception when an instruction is executed anywhere in the virtual address space. Bit mask and Address Space
Identifier (ASID) values may apply in the address compare. These breakpoints are not limited to code in RAM like
the software instruction breakpoint (SDBBP). The data breakpoints can be configured to generate a debug exception
on a data transaction. The data transaction may be qualified with both virtual address, data value, size and load/store
transaction type. Bit mask and ASID values may apply in the address compare, and byte mask may apply in the value
compare.

Another optional debug feature is support for MIPS Trace that enables real-time tracing capability. Trace information
is sent out of the CPU and is interleaved with trace data from the Coherence Manager and other CPUs. The trace of
program flow is highly flexible and can include the instruction program counter as well as data addresses and data
values. The trace features can provide a powerful software debugging mechanism.

Refer to the EJTAG™ Specification [15] and to Chapter 11, “EJTAG Debug Support in the 1004K™ CPU” on
page 285 for more information on the EJTAG features.

1.2.1.14 CorExtend® User Defined Instructions

This optional module contains support for CorExtend user defined instructions. These instructions must be defined at
build-time for the 1004K CPU. This feature makes 16 instructions in the opcode map available for customer usage,
and each instruction can have single or multi-cycle latency. A CorExtend instruction can operate on any one or two
general-purpose registers or immediate data contained within the instruction, and can write the result of each instruc-
tion back to a general purpose register or a local register. Implementation details for CorExtend can be found in the
CorExtend® Instruction Integrator's Guide for MIPS32® Cores [12].

Refer to Section Table 15.5 “MIPS32 SPECIAL2 Encoding of Function Field” for a specification of the opcode map
available for user defined instructions.

 Introduction to the MIPS32® 1004K™ CPU Family

36 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Chapter 2

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 37

Pipeline of the 1004K™ CPU

The 1004K CPU implements a 8-9-stage pipeline. The pipeline allows the processor to achieve high frequency while
minimizing device complexity, reducing both cost and power consumption. This chapter contains the following sec-
tions:

• Section 2.1 “Pipeline Stages”

• Section 2.2 “Instruction Fetch”

• Section 2.3 “Load Store Unit”

• Section 2.4 “MDU Pipeline”

• Section 2.5 “Skewed ALU”

• Section 2.6 “Interlock Handling”

• Section 2.7 “Instruction Interlocks”

• Section 2.8 “Hazards”

• Section 2.9 “Instruction Rollback And Its Implications”

2.1 Pipeline Stages

The pipeline consists of eight or nine stages:

• IF - Instruction fetch First

• IS - Instruction fetch Second

• IR - Instruction recode (MIPS16e only)

• IK - Instruction kill (MIPS16e only)

• IT - Instruction fetch Third

• RF - Register File

• AG - Address Generation

• EX - EXecute

• MS - Memory Second

 Pipeline of the 1004K™ CPU

38 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

• ER - Exception Resolution

• WB - WriteBack

Two additional stages are conditionally added to the fetch pipeline after the IS stage when executing MIPS16e code.
The IR and IK stages are generally bypassed while executing 32-bit code. The IT stage is included for TC selection.
In a single TC configuration, this stage is bypassed, yielding eight pipeline stages rather than nine.

A 1004K CPU implements a bypass mechanism that allows the result of an operation to be sent directly to the
instruction that needs it without having to write the result to the register and then read it back.

Figure 2.1 shows the basic pipeline organization. The various parts of the pipeline are described in more detail in this
chapter.

Figure 2.1 1004K™ CPU Pipeline Stages

2.1.1 IF Stage: Instruction Fetch First

• I-cache tag/data arrays accessed

• Branch History Table accessed

• ITLB address translation performed

• EJTAG break/watch compares done

IF IS IR/IK/IT RF AG EX MS ER

IFU ALU LSU

I-cache Array
Access, ITLB

Lookup

32b mode branch
predict, Hit detect,

way select,

MIPS16e recode
and branch

predict,instn buffer
& thread selection

for dispatch

Register File
Access, instn

decode

Data
Address

Generation

Execution and
branch resolution

Instruction
completion,
exception

processing, write
setup

D-cache Array
Access, DTLB

Lookup

hit detection, way
select, load align

Register File Write

WB

2.1 Pipeline Stages

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 39

2.1.2 IS - Instruction Fetch Second

• Detect I-cache hit

• Way select

• MIPS32 Branch prediction

2.1.3 IR - Instruction Recode (MIPS16e only)

• MIPS16 recode

• MIPS16 branch prediction

• Stage is bypassed when executing MIPS32 code

2.1.4 IK - Instruction Kill (MIPS16e only)

• Kill MIPS16 instructions (due to branches as an example)

• Stage is bypassed when executing MIPS32 code

2.1.5 IT - Instruction Fetch Third

• Stage is bypassed on single TC configurations when executing MIPS32 code and the instruction buffer is empty

• Instruction Buffer

• Branch target calculation

• Thread selection for dispatch based on policy manager

2.1.6 RF - Register File Access

• Register File access

• Instruction decoding/dispatch logic

• Bypass muxes

2.1.7 AG - Address Generation

• D-cache Address Generation

• Bypass muxes

2.1.8 EX - Execute/Memory Access

• Skewed ALU

• DTLB

 Pipeline of the 1004K™ CPU

40 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

• Start DCache access

• Branch Resolution

2.1.9 MS - Memory Access Second

• Complete DCache access

• DCache hit detection

• Way select mux

• Load align

2.1.10 ER- Exception Resolution

• Instruction completion

• Register file write setup

• Exception processing

2.1.11 WB - Writeback

• Register file writeback occurs on rising edge of this cycle

2.2 Instruction Fetch

The IFU is responsible for supplying instructions to the execution units and handling the results of all control transfer
instructions (branches, jumps, etc.). The IFU operation encompasses five pipe stages: IF (Instruction fetch First), IS
(Instruction fetch Second), IR (Instruction Recode), IK (Instruction Kill) and IT (Instruction fetch Third). The
instruction cache tags and data are accessed in IF, and the hit determination and the first part of the 32-bit mode target
calculation is done in IS. The IR and IK stage handle MIPS16e recoding. The remainder of the 32-bit mode target cal-
culation as well as instruction buffering to the ALUis done in the IT stage. This instruction buffering decouples the
IFU from the rest of the pipeline, allowing fetches to proceed even if the processor execution is stalled for some rea-
son. The fetch pipeline and cache bandwidth is 64 bits, supplying up to two instructions per cycle in MIPS32 mode,
which allows the IFU to get ahead of the ALU and shields the execution pipeline from some IFU miss penalties.

On the very front of the pipe, before the IF stage there is a mux to select the TC that will start a fetch. Potentially in
every cycle a different TC can be fetched assuming that there is more than one TC that is fetchable. Based on the
choice of the TC, its predicted program counter value is chosen as the next instruction fetch address.

In addition, the instruction buffers are replicated per TC so that each TC can continue to fetch as and when it gets an
opportunity to be fetched and stores its instructions in its instruction buffer for dispatch. For example, when one of
the TCs has an instruction cache miss, the other threads can keep fetching as long as the they hit in the cache. When
there are two outstanding cache misses, a TC with a third miss would be blocked from being fetched but TCs that hit
in the instruction cache could continue being fetched.

In the IT stage of the pipe, a dispatch scheduler unit chooses amongst all the TCs with an instruction available in its
instruction buffer for dispatch.

2.2 Instruction Fetch

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 41

The instruction buffer in the IT stage of the pipe also doubles as a skid buffer. In the event of a cache miss on a load
followed by a dependency on the load data, the dependent instruction as well as any subsequent instructions for that
TC that might have been issued from the IT stage are flushed back to the instruction buffer. This is done to avoid
stalling the whole pipe so that the other TCs can continue with their operations. However, by flushing these instruc-
tions to the instruction buffer instead of causing a refetch from the cache, when the dependency for this TC is
resolved, this TC can start issuing immediately instead of waiting for a full fetch from the caches. This feature is dis-
abled when the 6 entry instruction buffer configuration is selected.

Figure 2.2 shows the general datapath of the IFU along with major structures. In order to avoid complexity, the figure
below does not include the TC selection mux for fetching (at front of pipe) or the TC selection mux in the policy
manager in the IT stage.

 Pipeline of the 1004K™ CPU

42 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Figure 2.2 IFU Block Diagram

The following diagrams illustrate the timing of various IFU operations when executing a single thread. The simplest
of these is the sequential fetch path, in which the next fetch PC is incremented by 8 bytes in parallel with the cache
lookup. If each fetch hits in the cache, the IFU can provide two instructions per cycle and will quickly fill up the
instruction buffer, after which it will stall based on a buffer full signal. However, if there are other TCs that do not
have their instruction buffer full, the IFU will continue to fetch those TCs, avoiding a stall in the IFU.

IF IS IT

I-cache Tag

I-cache Data

Fill buffers

ITLB

compare

BHT Target calc.

PA

ba
nk

 h
it

71b data x5

M16
recode

R
PS

ALUre
di

re
ct

M16 target calc.
to mux

M16 target

new PC

Watch/EJTAG
new PC exception

to ITLB etc.

Precode

BIU

to fill buffer

new fetch PC

index/low PC

$ data

precode

new PC

+2/4/8
sequential

resume PC

inst.,
EPC,
exc.,
pred.

exc. tag

fill buf

fil
l d

at
a

Inst.
Buffer

EPC

Early
decode

BIU

RPS
Buffer

RPS

ALU

JR $31
target

WS Array
index

hit/miss

way

to fill buffer

fill/cacheop

2.2 Instruction Fetch

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 43

Figure 2.3 Timing of 32-bit Mode Sequential Fetches

Another common situation is a control transfer instruction (branch/jump). The calculation of the target for 32-bit
mode instructions starts in the IS stage, but does not complete until the IT stage. For a predicted taken path this means
that if the delay slot of that branch is in the same fetch bundle, there will be a 2 cycle bubble since the sequential
fetches will not be used. If the delay slot is in the next fetch bundle, there will be a 1 cycle bubble.

Figure 2.4 Timing of 32-bit Mode Branch Taken Path

For conditional branches, the control transfer is most likely speculative, based upon the branch history table. The res-
olution of this branch by the ALU will be calculated in the EX stage and will be used by the IFU in the MS stage,
resulting in a several-cycle fetch bubble. The following figure illustrates one possibility assuming the instruction
buffer is empty and the delay slot is in the next fetch bundle.

PC+8

PC+8

. . .

. . .

Two inst/cycle

IF IS IT

IF IS IT

IF IS IT

IF IS IT

IF IS IT

IF IS IT

. . .

PC+8

target

predicted taken
IF IS IT

IF IS IT

IF

IF

branch

delay slot
. . .

killed

. . . IF IS IT

IF IS IT

IF

IF

PC+8
killed

 Pipeline of the 1004K™ CPU

44 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Figure 2.5 Fetch Timing of 32-bit Mode Branch Mispredict

The delay slot lessen the impact of a mispredict on the execution pipeline, though. Assuming no stalls, the ALU sees
a five-cycle bubble.This figure shows the 9 stage pipeline when the core is configured with multiple TCs. The bypass
of the IT stage in a single TC configuration would reduce the bubble to four cycles. The following two figures show
the two situations.

Figure 2.6 Execution Timing of 32-bit Mode Branch Mispredict (Single TC)

AG

EX

RF

IT

PC+8

 .

killed

redirect

predicted taken (wrong)

. . .

RF

IF IS IT

IF IS IT

IF IS IT

AG

RF

. . .

IF IS

IF IS IT

. . .
branch

delay slot

IF IS IT

IF IS IT

target
killed

IS IT

IT RF

IT

MS

. . .

redirect

branch (mispredicted)

. . .

delay slot

(bubble)

(bubble)

. . .

IF IS

IF IS IT

RF AG EX MS ER

RF AG EX MS ER

. . .

. . .

. . . WB

WB

(bubble)

(bubble)

IT bypassedRF

2.2 Instruction Fetch

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 45

Figure 2.7 Execution Timing of 32-bit Mode Branch Mispredict (Multiple TCs)

2.2.1 Branch History Table

A branch history table (BHT) will be accessed in parallel with the cache in the IF stage. This table is a 512-entry
bimodal predictor. The table is indexed with bits 11:3 of the VA and each entry contains a two bit saturating counter
that indicates whether a branch is taken or not. The indexing is down to bit 3 because in 32b code there can only be
one branch every 64b because of the branch delay slot. In MIPS16e code, the smaller instructions and lack of delay
slots means that up to 4 branches can exist within a 64b fetch bundle and will share the same BHT entry. However, in
typical code, the branch density is lower than in 32b code and keeping the same 64b indexing maintains reasonable
prediction accuracy. It is also important to note that the on the 1004K CPU, all the TCs use the same BHT.

Unlike some previous MIPS processors, the 1004K CPU uses the BHT to predict branch likely instructions. Architec-
turally, these are specified to only be used when a branch is taken > 95% of the time. However, the default settings of
many compilers use these even when that is not the case. The delay slot characteristics (the delay slot is only executed
if the branch is taken) allow a useful instruction to be placed in the delay slot instead of a NOP. When used in this
fashion, dynamic prediction is much more accurate than statically predicting a branch likely as taken.

Unconditional branches (BEQ r0, r0 and BGEZAL r0) are detected by the precode logic and will be statically pre-
dicted taken, bypassing the BHT.

The ALU verifies the correctness of the prediction when the branch reaches the EX stage. In the case of a mispredict,
the instructions on the mispredicted path will be killed and the fetch will be redirected to the correct instruction.
When executing from a single TC, this will cause a 4-5 cycle bubble in the pipeline.

2.2.1.1 Branch Target Calculation

Branch target calculation is done in the IT stage. This alleviates a critical timing path in the IFU and removes the need
for replicating the branch target logic on all 4 ways of the cache. In the case of a jump or a branch that is predicted
taken, subsequent fetches from that TC will be killed (after the fetch of the delay slot). This added cycle is generally
covered by the instruction buffer. If only a single TC is fetching and executing, a string of taken branches will slowly
drain the instruction buffer as only two instructions are fetched every three cycles. The BogoMIPS calculation in most
Linux distrbutions uses a very tight loop like this and will end up underreporting the capabilities of the CPU.

. . . branch (mispredicted)

. . .

delay slot

(bubble)

(bubble)

. . .

IF IS

IF IS IT

RF AG EX MS ER

RF AG EX MS ER

. . .

. . .

. . . WB

WB

(bubble)

(bubble)

redirect

(bubble)

IT

 Pipeline of the 1004K™ CPU

46 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

2.2.2 Return Prediction Stack

The return prediction stack (RPS) is a simple stack to hold return addresses. Every time a JAL, JALR ra, or BGEZAL
is seen, the link address is pushed onto the stack. When a JR ra is executed, a link address is popped off of the stack.
If calling convention is maintained and the stack doesn’t overflow, this will have very high prediction accuracy. The
RPS contains 4 entries.

The ALU will verify the correctness of the prediction in the EX stage. If the prediction was wrong, the fetch will be
redirected in the MS stage and there will be a 4-5 cycle bubble from the misprediction.

JR that don’t use ra are not predicted. The IFU will stall that TC until the ALU reads the register file. The timing on
this will be the same as for a return mispredict.

On the 1004K CPU, there is one RPS shared between all the TCs. However, only one TC can use it at any point in
time. A TC begins to utilize the RPS when it is the only TC that is runnable (i.e., when the 1004K CPU enters sin-
gle-threaded mode).

2.2.3 ITLB

The IFU relies on a small subset of TLB entries stored locally in a four-entry ITLB to translate the PC into a physical
address for tag comparison. The ITLB stores mappings for 4KB or 1MB pages or sub-pages (i.e. if the JTLB page is
64KB, only the 4KB sub-page containing the desired virtual address will be mapped into the ITLB). The ITLB access
occurs in parallel with the primary cache lookup. If there is a miss in the ITLB, the BIU must look up the entry in the
main JTLB.

On the 1004K CPU, to avoid multiple misses from many TCs thrashing the ITLB, there is a per-TC ITLB entry. Thus,
a TC has access to one dedicated per-TC ITLB entry in addition to the three other common ITLB entries. When one
of the 3 common ITLB entries is replaced (using an LRU algorithm), each of the per-TC entries will be checked to
see if that translation had been used more recently than the per-TC entry. If it has, the evicted translation will replace
the previous private translation.

A miss in the ITLB will be detected in the IF stage, and the IFU will kill that fetch. The virtual address and the miss
indication will be sent to the BIU during IF, allowing the JTLB to start a lookup in the next cycle. The latency of the
JTLB lookup can be impacted by several factors. The JTLB can be busy processing a DTLB miss or a TLB operation,
delaying the start of the JTLB lookup. Also, the JTLB access time depends on how it is implemented. An
SRAM-based PFN array will take an extra cycle over a flop-based version, yielding a 3 cycle latency instead of 2.
The fetch will be restarted when the JTLB indicates that data is going to be returned. When there are multiple TCs
running, after an ITLB miss request is dispatched to the JTLB, other TCs can keep fetching behind this ITLB miss. If
another TC has an ITLB miss, then that TC will only restart fetching once the first ITLB miss has been serviced by
the JTLB. In other words, at any point in time there can be only one outstanding ITLB miss but the ITLB miss is
non-blocking for other TCs.

The cache coherence attributes can be reduced to one bit (uncached/cached) for the instruction cache. An ITLB entry
will also record the associated JTLB entry, so that for a JTLB write, the ITLB can invalidate its copy if present.

2.2 Instruction Fetch

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 47

Figure 2.8 Timing of an ITLB Miss

2.2.4 Cache Miss Timing

A miss in the instruction cache will be detected in the IS stage. The IFU will allocate one of the entries in the fill
buffer and send the translated physical address and the miss indication to the BIU during the next cycle. The IFU will
then enter an idle state and, assuming no redirect event, will replay the IF stage once the data returns from the BIU.
Prior to writing into the cache, the IFU precodes the instructions with some additional information about
branches/jumps that help speed up fetch unit processing of those instructions. Precoding the instructions and the write
into the fill buffer will happen in the cycle the BIU returns the data, and in the following IF stage the data can be
bypassed from the fill buffer. Thus, the IFU portion of the cache miss penalty is normally 4 cycles. The total miss
penalty could range from a minimum of 10-12 cycles for an L2 hit to 50 or more for an access to main memory.

In the case of the 1004K CPU with multiple TCs running, a cache miss is non-blocking. Up to three outstanding
cache misses (two on bus and one pending) are supported and it is possible for other TCs to keep fetching as long as
they are hitting out of the instruction cache even with three pending cache misses.

Figure 2.9 Timing of a Cache Miss

2.2.5 MIPS16e™

The IFU is responsible for recoding MIPS16e instructions. Before the MIPS16e instruction is sent to the ALU, it is
recoded into a 32b instruction. Some additional state is used for the MIPS16e instructions that does not have a direct
counterpart in the MIPS32 instruction set (such as PC-relative loads and adds). This recoding step is handled in an
additional pipeline stage that is only active when executing MIPS16e code.

In each cycle, the recode logic processes 32b of the instruction stream and puts 1-2 instructions in the fetch buffer.
Many instructions can be generated two at a time, but there are two exceptions: JAL(X) and EXTENDED instruc-

IF IS* IF IF* IS

ITLB lookup -
miss detected

Fetch
completes with

translated
address

PTE read - 1 or 2 cycles
depending on JTLB

implementation

Fetch killed
JTLB lookup

begins

ITLB Miss Handling
2-3 cycle stall.

IF IF IS

IF IF IS

. . .

PA
cache fill data

to BIU from BIU

N-cycle wait

pre

code

(critical portion)

. . .

. . .
IS

IS

miss
signalled

 Pipeline of the 1004K™ CPU

48 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

tions are 32b. When the JAL(X) is in the 32b fetch window, it will be recoded in one cycle. If the JAL(X) starts in the
middle of a fetch window, the first instruction will be recoded in the first cycle, and the fetch window will be shifted
so the JAL(X) can be recoded in the second cycle. EXTENDs are handled the same way—the EXTEND and the
instruction it is extending are only recoded when they are in the fetch window together. Since a single fetch of 64bits
can result in up to 4 MIPS16e instructions, in MIPS16e mode, the processor fetches every other cycle. On the 1004K
CPU, it is possible for these empty fetch cycles to be consumed by any other TC running in MIPS32 mode and thus
keep the fetch pipe busy.

2.3 Load Store Unit

The Load Store Unit (LSU) is responsible for loads and stores. This primarily includes the data cache control logic.

Table 2.1 Recode bandwidth

First 16b Second 16b 32b Instns generated

16b instruction 16b instruction 2

Extend 16 instruction 1

16b instruction Extend/JAL(X) 1

JAL(X) 1

 Pipeline of the 1004K™ CPU

50 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Figure 2.11 DTLB Miss Timing

The DTLB will only store mappings either for 4K or 1M pages or subpages of a larger JTLB entry. A DTLB entry
will also record the associated JTLB entry, so that for a JTLB write, the DTLB can invalidate its copy if present. The
DTLB uses a pseudo-LRU replacement algorithm.

2.3.2 Data Cache Access

The data cache access is done during the EX stage. The tag and data arrays are accessed and the values are saved in
flops for use in the MS stage. In parallel with the array lookup (in EX), the physical address is used to do an early tag
compare on entries in the Fill Store Buffer (FSB) and Store Buffer (SB).

The SB is a single entry buffer that is used to stage store data into the other structures. It is fully bypass-able, allowing
a load immediately after a store to the same address to execute without stalls. From the SB, the store data will move
into the FSB if the store hits in the cache or it is an allocating miss. The store data is then written into the cache oppor-
tunistically.

During the MS stage, the data cache tags are compared to the physical address to determine whether a reference hit in
the cache or not. If there is a hit, the way select (WS) array will be written to mark the most recently used way, and
load data will be bypassed back to the ALU. On a cache miss, an FSB entry is allocated to hold the fill data as it
returns from the BIU. The WS array is read and the replacement way is determined. If the line selected for replace-
ment is dirty, an eviction will begin and the dirty data will be written back to memory. A load miss will also allocate
an entry in the Load Queue (LDQ). This buffer is used to hold the aligned load data while it is being staged back into
the ALU.

Once a line is scheduled for eviction, subsequent accesses can still hit in the evicted line as follows:

• An evicted clean line remains in the data cache until the new line replaces it. Loads can hit the evicted line as
usual. However, stores will miss and force the evicted line to be re-allocated after the new line has been allo-
cated. The allocation of the new line happens after all data is received from the main memory bus, but can be
delayed since the refill happens opportunistically when the cache port is unused by the pipeline.

• An evicted dirty line remains in the data cache only until the line is written into the Write-Back Buffer
(WBB). While it is in the cache, the behavior is the same as described above for clean lines. NOTE: The data
movement from the cache into the WBB is also opportunistic and can be delayed until the pipeline is not
accessing the cache.

The CPU portion of a load miss is shown in Figure 2.12. It takes one cycle to get from the LSU through the BIU and
out onto the OCP bus. It takes at least 1 cycle for the data to be returned. Then 2 more cycles are required to get the
data back to the ALU.

AG EX* EX* EX* EX

DTLB lookup -
miss detected

LSU p ipe
restarts with
translated
address

PTE read - 1 or 2 cycles
depending on JTLB

implementation

Pipe Stalls
Address sent to

JTLB for
lookup

DTLB Miss Handling
2-3 cycle lsu pipe stall.

 Pipeline of the 1004K™ CPU

52 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

plan to utilize multiply or divide operations very often, the low-area MDU can be used. The following table summa-
rizes the differences between the two options.

Since the Low-Cost multiplier does not include DSP-ASE or UDI support, it is only available in systems configured
without UDI support and without DSP-ASE hardware.

The following subsections describe the multiplier options in more detail.

2.4.1 High-Performance MDU

The high-performance MDU consists of a 32x32 booth recoded multiplier array, separate carry-lookahead adders for
multiply and divide, result/accumulation registers (HI and LO), multiply and divide state machines, and all necessary
multiplexers and control logic.

Due to the multiplier array, the high-performance MDU supports execution of a multiply operation every clock cycle.
Divide operations are implemented with a simple 1 bit per clock iterative algorithm with an early in detection of sign
extension on the dividend (rs). An attempt to issue a subsequent MDU instruction which would access the HI or LO
register before the divide completes causes a delay in starting the subsequent MDU instruction. Some concurrency is
enabled by the separate adders for the multiply and divide data paths. The MDU instruction may start executing once
the divide is ensured of writing to the HI and LO registers before the MDU instruction will access them. A MUL
instruction, which does not access the HI or LO register, may start executing anytime relative to a previous divide
instruction.

Table 2.2 MDU Comparison

Feature
High-Performance

MDU
Low-Cost

MDU

Fully MIPS32 Compliant Yes Yes

DSP-ASE Support Yes No

CorExtend/UDI Support Yes No

Approximate Size 90KGates 10KGates

Multiplier Implementation
32x32 Booth
recoded array

Iterative

Early-In Divide Algorithm Yes No

Multiply/MAC Throughput 1 per cycle 1 every 32 cycles

Multiply Latency 1 cycle 32 cycles

Divide Latency 9, 17, 25, or 331 cycles

1. The early-in divide algorithm shortens the divide depending on the size of the divi-
dend

33 cycles

Config.MDU 0 1

2.4 MDU Pipeline

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 53

Table 2.3 lists the number of stall cycles incurred between two dependent instructions. A stall of 0 clock cycles means
that the first and second instructions can be issued back to back in the code without the MDU causing any stalls in the
ALU pipeline.

Table 2.4 lists the throughput rate for sequences of muliply instructions. The repeat rate of 1 for
MULT/MULTU/MADD/MADDU/MSUB/MSUBU to MADD/MADDU/MSUB/MSUBU are achieved by feeding
the result of the M3MDU stage for the first instruction back into the M3MDU stage for the second instruction.

Table 2.3 High-performance MDU Stalls

Size of Operand

1st Instruction[1]

Instruction Sequence
Stall

Clocks1st Instruction 2nd Instruction

32 bit MULT/MULTU,
MADD/MADDU, or

MSUB/MSUBU

MADD/MADDU,
MSUB/MSUBU, or MFHI/MFLO

0

32 bit MUL Integer operation[1] 4

8 bit DIVU MFHI/MFLO 7

16 bit DIVU MFHI/MFLO 15

24 bit DIVU MFHI/MFLO 23

32 bit DIVU MFHI/MFLO 31

8 bit DIV MFHI/MFLO 9[2]

16 bit DIV MFHI/MFLO 17[2]

24 bit DIV MFHI/MFLO 25[2]

32 bit DIV MFHI/MFLO 33[2]

any MFHI/MFLO Integer operation[1] 4

any MTHI/MTLO MADD/MADDU,
MSUB/MSUBU

1

any MTHI/MTLO MFHI/MFLO 0

[1] Integer Operation refers to any integer instruction that uses the result of a previous MDU operation.
[2] If both operands are positive, then the two Sign Adjust stages are bypassed. Delay is then the same as

for DIVU.

Table 2.4 Multiply Repeat Rates

Instruction Sequence
Repeat

Rate1st Instruction 2nd Instruction

MULT/MULTU,
MADD/MADDU,
MSUB/MSUBU

MADD/MADDU,
MSUB/MSUBU

1

MUL MUL (no data dependency) 1-3[1,2]

[1] There is no data dependency between first and second MUL. Otherwise, the
repeat rate is the same as for MUL to integer operations in Figure 2.3

[2] MULs can be issued at the maximum rate of 3 every 5 cycles. Three can be
issued back to back, but a fourth one would stall.

 Pipeline of the 1004K™ CPU

54 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

2.4.2 DSP ASE Instruction Latencies

Some cores may include support for DSP-ASE. Logic for these instructions is primarily located in the ALU and
MDU blocks. Any DSP instructions accessing the accumulators or performing multiplication are implemented in the
MDU. All others are implemented in the ALU. In addition to the “normal” MIPS32 HI/LO accumulator, the DSP
ASE introduces three additional HI/LO accumulator pairs.

The latency and repeat rate for the BPOSGE32 instruction is similar to those for a MIPS32 conditional branch
instruction. However, unlike a MIPS32 conditional branch instruction, BPOSGE32 is dependent on DSPControl.Pos
and not a GPR. The LHX and LWX instructions are treated as non-blocking loads by the CPU; they have dependen-
cies on the index and base registers. The delay and repeat rates for other DSP instructions are shown in the following
tables. The ‘delay’ in Table 2.5 is in terms of pipeline clocks and refers to the number of cycles the pipeline must stall
the second instruction to wait for the result of the first instruction. A delay of zero means that the first and second
instructions can be issued back to back without stalling the pipeline. A delay of one means that if issued back to back,
the pipeline will stall for one cycle.

Table 2.5 DSP Instruction Delays

Dependency on1

Instruction Sequence
Delay

Clocks1st Instruction 2nd Instruction

GPR MUL*, EXT*, MFHI, MFLO
(multiplies or HI/LO reads that

write to a GPR)

Instruction with GPR input 4

GPR Other (ALU) DSP instruction
with GPR result

Instruction with GPR input 1

HI/LO DPAQ*, DPSQ*, MULSAQ*,
MAQ*, MADD*, MSUB*,

MULT*, MTHI, MTLO, MTTR,
SHILO*, MTHLIP

(HI/LO writes)

MFHI, MFLO, MFTR
(HI/LO reads)

0

HI/LO *_SA
(MAC’s that saturates after accu-

mulate)

 DPAQ*, DPSQ*, MULSAQ*,
MAQ*, MADD*, MSUB*

(MAC’s)

1

HI/LO DPAQ_S.*, DPSQ_S.*, MUL-
SAQ*, MAQ_S.*, MADD*,

MSUB*
(MAC’s that do not saturate after

accumulate)

DPAQ*, DPSQ*, MULSAQ*,
MAQ*, MADD*, MSUB*

(MAC’s)

0

HI/LO MTHI, MTLO, MTTR, SHILO*,
MTHLIP

(HI/LO writes that are not multi-
plies)

DPAQ*, DPSQ*, MULSAQ*,
MAQ*, MADD*, MSUB*

(MAC’s)

1

HI/LO DPAQ*, DPSQ*, MULSAQ*,
MAQ*, MADD*, MSUB*,

MULT*, MTHI, MTLO, MTTR,
EXT*, SHILO*, MTHLIP

(HI/LO writes)

EXT*, SHILO*
(HI/LO shifts)

3

HI/LO DPAQ*, DPSQ*, MULSAQ*,
MAQ*, MADD*, MSUB*,

MULT*, MTHI, MTLO, MTTR,
SHILO*, MTHLIP

(HI/LO writes)

MTHLIP 3

2.4 MDU Pipeline

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 55

The delays shown in table Table 2.5 with a dependency on a HI/LO accumulator pair assume that the dependent
instruction sequence is operating on the same accumulator pair. This is the worst case situation. The delay clock value
can be reduced when the second instruction operates on a different accumulator. For example, consider the following
sequence:

MULT (writing to accumulator 0)
MADD (writing to accumulator 1)
MSUB (writing to accumulator 2)
EXTR (reading from accumulator n)

If the EXTR instruction is reading accumulator 2 (n=2), then a delay of 3 cycles would apply between the MSUB and
EXTR operation, as directly indicated in Table 2.5. If the EXTR reads accumulator 1, then a delay of 2 cycles would
apply between the MADD and EXTR, since there’s already one unrelated instruction in between the dependent ones.
If the EXTR reads accumulator 0, then a delay of 1 would apply between the MULT and EXTR. Finally, if the EXTR
instruction is reading accumulator 3, then no delay would be incurred in the sequence.

Table 2.6 shows the repeat rates for interesting sequences of instructions which perform multiplication. The repeat
rate is the number of cycles the second instruction can be issued after the first instruction. A repeat rate of 1 indicates
that the second instruction can be issued immediately after the first instruction with no delay cycle in between. For
the first row, the repeat rate is for the case where there is no GPR dependency between the first and the second
instruction.

Dependencies on the DSPControl register are handled in hardware. “Hot” values for most fields in this register are
kept in EX/MS staging registers so the next instruction to execute will be able to use the most recent value as its
input. The ouflag field is an exception because some of the ouflag bits are updated later than EX. For example, the
DPAQ_SA instruction will update some ouflag bits when it completes at the end of the A stage in the MDU pipeline.
However, a subsequent RDDSP* instruction needs to examine the ouflag value in EX. To handle this, additional logic
has been added to ensure that the RDDSP* instruction is stalled until there are no DSP instruction in the MDU pipe-
line which may modify an ouflag bit.

1. For dependencies on a HI/LO accumulator, the delay clocks shown assume that the 1st and 2nd instruc-
tion are operating on the same accumulator.

Table 2.6 Multiply Repeat Rates

1st Instruction 2nd Instruction Repeat Rate

MUL, MULQ*, MULE* MUL, MULQ*, MULE* 1

DPAQ_S.*, DPSQ_S.*,
MULSAQ*, MAQ_S.*,

MADD*, MSUB*, MULT

DPAQ*, DPSQ*, MUL-
SAQ*, MAQ*, MADD*,

MSUB*

1

_SA DPAQ, DPSQ*, MUL-
SAQ*, MAQ*, MADD*,

MSUB*

2

 Pipeline of the 1004K™ CPU

56 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Table 2.7 shows the delays for interesting sequences of instructions in which there is a dependency on the
DSPControl register. The delays given assume that there is no data dependency other than that on the DSPControl reg-
ister between the first and second instruction.

2.4.3 High-performance MDU Pipeline Stages

The multiply operation begins in BMDU stage, which would be the EX stage in the integer pipeline. The booth recod-
ing function occurs at this time. The multiply calculation requires three clocks and occurs in the M1MDU, M2MDU,
and M3MDU stages. The carry-lookahead-add (CLA) function occurs at the end of the M3MDU stage. In the AMDU

stage, the result is selected from the multiply data path, HI register, and LO register to be returned to the ALU for the
MFHI, MFLO, and MUL instructions. If the MDU instruction is not one of these, the result is selected to be written
into the HI/LO registers instead. The result is ready to be read from the HI/LO registers in the WMDU stage.

The following figures illustrate a multiply (accumulate) instruction and the interaction with the main integer pipeline.
These figures are applicable to MUL, MULT, MULTU, MADD, MADDU, MSUB, and MSUBU instructions

Figure 2.13 Multiply Pipeline

Figure 2.14 Multiply With Dependency From ALU

Figure 2.15 Multiply With Dependency From Load Hit

Table 2.7 Delays for Interesting Sequences with DSPControl Dependency

1st Instruction 2nd Instruction Delay Clocks

ADDSC ADDWC 0

CMP* PICK* 0

WRDSP* INSV* 0

RF BMDU M1MDU M2MDU AMDU WMDUAG

(EX)

M3MDU

Result bypassRF EXAG

RF BMDU M1MDU M2MDU AMDU WMDUAG M3MDU

RF BMDU M1MDU M2MDU AMDU WMDUAG

RF EXAG MS

EX*

Result bypass

M3MDU

* - MUL enters EX stage but stalls because data is not ready

2.4 MDU Pipeline

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 57

Figure 2.16 Multiply With Dependency From Load Miss

The following figure shows the results of the GPR targeted MUL instruction being bypassed to a later instruction.
Independent instructions can execute while the multiply is happening. If a dependent instruction is found, it will stall
until the result is available. When the MUL completes, it will arbitrate for access to the write port of the register file.
If the integer pipe is busy with other instructions, the MDU pipeline will stall until the result can be written.

If the MUL target is being used as the base address for a load or store instruction, it needs to be bypassed by the AG
stage, so one extra cycle will be required.

Figure 2.17 subtractMUL Bypassing Result to Integer Instructions

2.4.4 High-performance MDU Divide Operations

Divide operations are implemented using a simple non-restoring division algorithm. This algorithm works only for
positive operands, hence the first cycle of the MMDU stage is used to negate the rs operand (RS Adjust) if needed. Note
that this cycle is spent even if the adjustment is not necessary. In cycle 2, the first add/subtract iteration is executed. In
cycle 3 an early-in detection is performed. The adjusted rs operand is detected to be zero extended on the upper most
8, 16 or 24 bits. If this is the case the following 7, 15 or 23 cycles of the add/subtract iterations are skipped. During
the next maximum 31 cycles (4-34), the remaining iterative add/subtract loop is executed.

The remainder adjust (Rem Adjust) cycle is required if the remainder was negative. Note that this cycle is spent even
if the remainder was positive. A sign adjust is performed on the quotient and/or remainder if necessary. The sign
adjust stages are skipped if both operands are positive.

RF BMDU M1MDU M2MDU AMDU WMDUAG

RF EXAG MS

EX

...ER*

EX ..

ER

Result bypass

M3MDU

RF BMDU M1MDU M2MDU AMDUAG

RF AG EX* MS ER

Result bypassM3MDU

WB

RF AG EX MS* ER WB

RF AG EX MS ER WB

RF AG EX MS ER WB

RF AG EX MS ER WB

RF AG EX MS ER WB

MUL

Earliest dependent ALU instn

Earliest dependent load/store base address

 Pipeline of the 1004K™ CPU

58 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Figure 2.18, Figure 2.19, Figure 2.20 and Figure 2.21 show the worst case latencies for 8, 16, 24 and 32 bit divide
operations, respectively. The worst case repeat rate is either 14, 22, 30 or 38 cycles (two less if the sign adjust stage is
skipped).

Figure 2.18 MDU Pipeline Flow During a 8-bit Divide (DIV) Operation

Figure 2.19 MDU Pipeline Flow During a 16-bit Divide (DIV) Operation

Figure 2.20 MDU Pipeline Flow During a 24-bit Divide (DIV) Operation

Figure 2.21 MDU Pipeline Flow During a 32-bit Divide (DIV) Operation

2.4.5 Low-Area MDU

The low-area MDU implements a simple iterative algorithm for both multiply and divide operations. performance
optimizations are not done in order to keep the area and complexity as small as possible.

2.5 Skewed ALU

The 1004K CPU has a skewed ALU. This is referring to the fact that the ALU is located in the EX stage instead of the
AG stage. This allows the load to use delay to be two cycles, the same as it was in the shorter 4KE pipeline. Software
optimized for that pipeline can run without incurring additional stalls. Of course, this does not come for free - an

RS Adjust

IDLE Stage ERLY Stage DIV Stages RMD Stage

Add/subtractEarly In

Clock 1 3 4-10 11

SGN Stage

12

Rem Adjust

DIV1 Stage

Add/Subtract

2

Sign Adjust 1

SGN2 Stage

13

Sign Adjust 2

IDLE Stage

14

Result Ready

RS Adjust

IDLE Stage ERLY Stage DIV Stages RMD Stage

Add/subtractEarly In

Clock 1 3 4-18 19

SGN Stage

20

Rem Adjust

DIV1 Stage

Add/Subtract

2

Sign Adjust 1

SGN2 Stage

21

Sign Adjust 2

IDLE Stage

22

Result Ready

RS Adjust

IDLE Stage ERLY Stage DIV Stages RMD Stage

Add/subtractEarly In

Clock 1 3 4-26 27

SGN Stage

28

Rem Adjust

DIV1 Stage

Add/Subtract

2

Sign Adjust 1

SGN2 Stage

29

Sign Adjust 2

IDLE Stage

30

Result Ready

RS Adjust

IDLE Stage ERLY Stage DIV Stages RMD Stage

Add/subtractEarly In

Clock 1 3 4-34 35

SGN Stage

36

Rem Adjust

DIV1 Stage

Add/Subtract

2

Sign Adjust 1

SGN2 Stage

37

Sign Adjust 2

IDLE Stage

38

Result Ready

2.6 Interlock Handling

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 59

ALU instruction generating the base address for a load or store will have an additional cycle stall. Independent of the
ALU location, pointer chasing loads (loads generating the base address for following loads) will see the full 3 cycles
of cache access time.

This is shown in Figure 2.22. The earliest an ALU consumer of load data can issue is two cycles after the load. The
earliest a load/store consumer can issue is three cycles after the load.

The bypass of data from the ALU is shown in Figure 2.23. For back to back ALU instructions, the result is bypassed
from the EX stage to the AG stage. For an ALU bypassing to the base address register of a load or store, the bypass-
ing is from the EX stage to the RF stage and the load cannot issue until two cycles after the ALU instruction. Note
that the data register for a store is not used in the AG stage and a dependency there will look like the ALU to ALU
bypass.

Figure 2.22 Load Data Bypass

Figure 2.23 ALU Data Bypass

2.6 Interlock Handling

Smooth pipeline flow is interrupted when cache misses occur or when data dependencies are detected. Interruptions
handled entirely in hardware, such as cache misses, are referred to as interlocks. At each cycle, interlock conditions
are checked for all active instructions.

One Cycle One Cycle One Cycle One Cycle One Cycle One Cycle

RF AG EX MS ER

RF AG EX MS ER

RF AG EX MS

Load Instruction

ALU Consumer of Load Data Instruction

Data bypass from MS to AG/RF

RF AG EXLoad/Store Consumer of Load Data Instruction

One Cycle One Cycle One Cycle One Cycle One Cycle One Cycle

RF AG EX MS ER

RF AG EX MS ER

RF AG EX MS

ALU Instruction

ALU Consumer of ALU Data

Data bypass from EX to AG/RF

Load/Store Consumer of ALU Data

 Pipeline of the 1004K™ CPU

60 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Table 2.8 lists the types of pipeline interlocks for the 1004K processor CPU.

In the 1004K, some interlocks stall the pipeline and block all TCs until the interlock condition is satisfied. In other
cases, the instruction that is waiting for an interlock event is rolled back to allow other TCs to make progress. Table
2.8 identifies the interlocks that can be rolled back.

2.7 Instruction Interlocks

Most instructions can be issued at a rate of one per clock cycle. In order to adhere to the sequential programming
model, the issue of an instruction must sometimes be delayed. This to ensure that the result of a prior instruction is

Table 2.8 Pipeline Interlocks

Interlock Type Sources
Rollback
Condition Slip Stage

GPR dependency - load/store address Dest. register for any instruction in previ-
ous cycle

Dependency caused
by a long latency

load

AG

Dest. register for loads/MFCx/MDU instns
in previous 2 cycles

MDU busy Previous MDU operation not completed MFHI/LO follow-
ing a DIV

AG

GPR dependency Dest. register for loads/MFCx/MDU instns
in previous cycle

Dependency caused
by a long latency

load

EX

LDQ full Load in pipe while Load Queue is full None

Blocking load bubble Blocking load immediately following
another blocking load

None

SYNC, I-Cache Previous I-Cache not completed I-Cache inst. while
previous I-Cache

not completed

Destination GPR dependency Outstanding GPR write to same register Dependency caused
by a long latency

load

MS

WBB full Store/CACHE instn in pipe while Write-
back Buffer is full

None

SPRAM busy SPRAM load/store in pipe while SPRAM
is busy

None

FSB flush SYNC/CACHE/load/store instn requires
Fill Store Buffer to be flushed

None

DTLB miss Load/Store address miss in microTLB None

CACHE CACHE instn needs to re-access data cache None

L2 CACHE Previous L2 CACHE not completed None

Blocking load miss Load misses with non-blocking loads dis-
abled

None ER

2.8 Hazards

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 61

available. Table 2.9 details the instruction interactions that prevent an instruction from advancing in the processor
pipeline.

2.8 Hazards

In general, the 1004K CPU ensures that instructions are executed following a fully sequential program model. Each
instruction in the program sees the results of the previous instruction. There are some deviations to this model. These
deviations are referred to as hazards.

Prior to Release 2 of the MIPS32® Architecture, hazards (primarily CP0 hazards) were relegated to implementa-
tion-dependent cycle-based solutions, primarily based on the SSNOP instruction. This has been an insufficient and
error-prone practice that must be addressed with a firm compact between hardware and software. As such, new
instructions have been added to Release 2 of the architecture which act as explicit barriers that eliminate hazards. To
the extent that it was possible to do so, the new instructions have been added in such a way that they are back-
ward-compatible with existing MIPS processors.

However, on the 1004K CPU there are a number of inter-TC hazards that cannot be resolved even by using the hazard
barrier instructions. As such on the 1004K CPU the TCs have no relation to each other and software has to enforce
that relation to avoid these hazards.

Table 2.9 Instruction Interlocks

Instruction Interlocks

First Instruction Second Instruction
Issue Delay (in
Clock Cycles) Slip Stage

LB/LBU/LH/LHU/LL/LW/L
WL/LWR

ALU Consumer of load data 1 EX stage

Load/Store consumer for base
address register

2 AG stage

MFC0 ALU consumer of destination
register

2 EX stage

Load/store consumer for base
address

3 AG stage

MULTx/MADDx/MSUBx MFLO/MFHI 0

MUL/MFHI/MFLO ALU Consumer of target data 4 EX stage

Load/Store consumer of target
data for base address

5 AG stage

MULTx/MADDx/MSUBx MULT/MUL/MADD/MSUB
MTHI/MTLO/DIV

0 EX stage

DIV MUL/MULTx/MADDx/
MSUBx/MTHI/MTLO/
MFHI/MFLO/DIV

See Figure 2.3 EX stage

DSP related instructions ALU consumer or other DSP
instruction

See Table 2.5 EX stage

DSP instruction updating
DSPControl.ouflag

RDDSP/WRDSP See 2.4.2 EX stage

TLBWR/TLBWI Load/Store/PREF/CACHE/
COP0 op

2 EX stage

TLBR 1 EX stage

 Pipeline of the 1004K™ CPU

62 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

2.8.1 Types of Hazards

With one exception, all hazards were eliminated in Release 1 of the Architecture for unprivileged software. The
exception occurs when unprivileged software writes a new instruction sequence and then wishes to jump to it. Such
an operation remained a hazard, and is addressed by the capabilities of Release 2.

In privileged software, there are two different types of hazards: execution hazards and instruction hazards. Both are
defined below.

2.8.1.1 Execution Hazards

Execution hazards are those created by the execution of one instruction, and seen by the execution of another instruc-
tion. These hazards should be resolved by executing an EHB instruction or an instruction hazard barrier (JR.HB,
JALR.HB, or ERET) between the two instructions. Table 2.10 lists execution hazards.

Table 2.10 Execution Hazards

Producer → Consumer Hazard On
Spacing

(Instructions)

TLBWR, TLBWI → TLBP, TLBR TLB entry 2

Load/store using new TLB entry TLB entry 3

MTC0 → Load/store affected by new state WatchHi
WatchLo

2

MTC0 → MFC0 any cp0 register 2

MTC0 → EI/DI Status 2

MTC0 → RDHWR $3 Count 2

MTC0 → ERET EPC
DEPC

ErrorEPC

2

MTC0 → ERET Status 2

EI, DI → Interrupted instruction StatusIE 2

MTC0 → Interrupted instruction Status 2

MTC0 → User-defined instruction (only for Pro core) StatusERL StatusEXL 4

MTC0 → Interrupted Instruction CauseIP 2

TLBR → MFC0 EntryHi,
EntryLo0,

EntryLo1, Page-
Mask

2

TLBP → MFC0 Index 2

MTC0 → TLBR
TLBWI
TLBWR

EntryHi 2

MTC0 → TLBP
Load/store affected by new state

EntryHiASID 2

MTC0 → TLBWI
TLBWR

EntryLo0
EntryLo1

2

MTC0 → TLBWI
TLBWR

Index 2

2.8 Hazards

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 63

2.8.1.2 Instruction Hazards

Instruction hazards are those created by the execution of one instruction, and seen by the instruction fetch of another
instruction. Table 2.11 lists instruction hazards. Because the fetch unit is decoupled from the execution unit, these
hazards are rather large. The use of a hazard barrier instruction is highly recommended for reliable clearing of
instruction hazards.

MTC0 → RDPGPR
WRPGPR

SRSCtlPSS 1

MTC0 → CACHE DDataLo,
DTagLo

1

MTC0 → Instruction not seeing a Timer Interrupt Compare update
that clears Timer

Interrupt

41

MTC0 → Load/Store affected by new state EntryHiASID 3

MTC0 → Load/Store affected by new state StatusERL 3

MTC0 → Load/Store affected by new state DebugLSNM 3

MTC0 → Coprocessor instruction affected by new state StatusCU 4

MTC0 → Coprocessor instruction affected by new state StatusFR 4

MTCO → DSP instruction affected by new state StatusMX 4

MTCO → CorExtend instruction affected by new state StatusCEE 3

MTC0 → MFTR / MTTR VpeControlTargTC 4

MTC0 → Instruction affected by change Any other CP0
register

2

CACHE → MFC0, generally cacheop results being consumed by
MFC0 instruction.

Cache related
CP0 registers

2

1. This is the minimum value. Actual value is system-dependent since it is a function of the sequential logic between the
SI_TimerInt output and the external logic which feeds SI_TimerInt back into one of the SI_Int inputs, or a function of the
method for handling SI_TimerInt in an external interrupt controller.

Table 2.11 Instruction Hazards

Producer → Consumer Hazard On
Spacing

(Instructions)

TLBWR, TLBWI → Instruction fetch using new TLB entry TLB entry 10

MTC0 → Instruction fetch seeing the new value including:
1 change to ERL followed by an instruction fetch from

the useg segment and
2 change to ERL or EXL followed by a Watch excep-

tion

Status 10

MTC0 → Instruction fetch seeing the new value EntryHiASID 10

MTC0 → Instruction fetch seeing the new value WatchHi
WatchLo

10

Table 2.10 Execution Hazards

Producer → Consumer Hazard On
Spacing

(Instructions)

 Pipeline of the 1004K™ CPU

64 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

2.8.2 Instruction Listing

Table 2.12 lists the instructions designed to eliminate hazards. See the document titled MIPS32® Architecture for
Programmers Volume II: The MIPS32 Instruction Set (MD00084) for a more detailed description of these instruc-
tions.

2.8.2.1 Instruction Encoding

The EHB instruction is encoded using a variant of the NOP/SSNOP encoding. This encoding was chosen for compat-
ibility with the Release 1 SSNOP instruction, such that existing software may be modified to be compatible with both
Release 1 and Release 2 implementations. See the EHB instruction description for additional information.

The JALR.HB and JR.HB instructions are encoding using bit 10 of the hint field of the JALR and JR instructions.
These encodings were chosen for compatibility with existing MIPS implementations, including many which pre-date
the MIPS32 architecture. Because a pipeline flush clears hazards on most early implementations, the JALR.HB or
JR.HB instructions can be included in existing software for backward and forward compatibility. See the JALR.HB
and JR.HB instructions for additional information.

The SYNCI instruction is encoded using a new encoding of the REGIMM opcode. This encoding was chosen
because it causes a Reserved Instruction exception on all Release 1 implementations. As such, kernel software run-
ning on processors that don’t implement Release 2 can emulate the function using the CACHE instruction. SYNCI
must be used in conjunction with an instruction hazard barrier to ensure that the updated value is seen.

SYNCI offset(base)
SYNC
JR.HB
NOP

Instruction stream
write via CACHE

→ Instruction fetch seeing the new instruction stream Cache entries 10

Instruction stream
write via store

→ Instruction fetch seeing the new instruction stream Cache entries System-depen-

dent1

1. This value depends on how long it takes for the store value to propagate through the system.

Table 2.12 Hazard Instruction Listing

Mnemonic Function

EHB Clear execution hazard

ERET Clears both execution and instruction hazards

JALR.HB Clears both execution and instruction hazards

JR.HB Clears both execution and instruction hazards

SYNCI Synchronize caches after instruction stream write

Table 2.11 Instruction Hazards

Producer → Consumer Hazard On
Spacing

(Instructions)

2.9 Instruction Rollback And Its Implications

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 65

2.8.3 Eliminating Hazards

The Spacing column shown in Table 2.10 and Table 2.11 indicates the number of unrelated instructions (such as
NOPs or SSNOPs) that, prior to the capabilities of Release 2, would need to be placed between the producer and con-
sumer of the hazard in order to ensure that the effects of the first instruction are seen by the second instruction. Entries
in the table that are listed as 0 are traditional MIPS hazards which are not hazards on the 1004K CPU.

With the hazard elimination instructions available in Release 2, the preferred method to eliminate hazards is to place
one of the instructions listed in Table 2.12 between the producer and consumer of the hazard. Execution hazards can
be removed by using the EHB, JALR.HB, or JR.HB instructions. Instruction hazards can be removed by using the
JALR.HB or JR.HB instructions, in conjunction with the SYNCI instruction.

2.9 Instruction Rollback And Its Implications

As described earlier (and listed out in Table 2.8), the 1004K CPU has the capability to rollback certain instructions
when a TC is stalled so as to unstall the shared pipeline and allow other TCs to make forward progress. Flushing back
a dependent instruction on a load miss is a good example of this. Another example is a I-side cacheop being rolled
back if the fetch unit is already processing another cacheop.

However, instruction rollbacks associated with dependency stalls on shared resources (like cacheops) can have some
interesting side effects. As an example, if two TCs are executing cacheops (lets say TC0 and TC2) and a TC in the
middle (TC1) is executing other instructions and hitting out of the cache, in a pathological case, it is possible that
TC0’s cahceops will keep getting rolled back and TC2’s cacheops will complete. However, the processor is not dead-
locked or livelocked and is making forward progress on other TCs. In such situations, it is possible to see temporary
starvation of a TC.

 Pipeline of the 1004K™ CPU

66 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Chapter 3

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 67

Floating-Point Unit of the 1004Kf™ CPU

This chapter describes the MIPS64® Floating-Point Unit (FPU) included in the 1004Kf CPU. This chapter contains
the following sections:

• Section 3.1 “Features Overview”

• Section 3.2 “Enabling the Floating-Point Coprocessor”

• Section 3.3 “Data Formats”

• Section 3.4 “Floating-Point General Registers”

• Section 3.5 “Floating-Point Control Registers”

• Section 3.6 “Instruction Overview”

• Section 3.7 “Exceptions”

• Section 3.8 “Pipeline and Performance”

3.1 Features Overview

The FPU is provided via Coprocessor 1. Together with its dedicated system software, the FPU fully complies with the
ANSI/IEEE Standard 754-1985, IEEE Standard for Binary Floating-Point Arithmetic. The MIPS architecture sup-
ports the recommendations of IEEE Standard 754, and the coprocessor implements a precise exception model. The
key features of the FPU are listed below:

• Full 64-bit operation is implemented in both the register file and functional units.

• A 32-bit Floating-Point Control Register controls the operation of the FPU, and monitors condition codes and
exception conditions.

• Full multithreaded support is included. Each TC will contain a full 32-entry floating point register file plus the
FCSR control register.

• Like the main CPU, Coprocessor 1 is programmed and operated using a Load/Store instruction set. The CPU
communicates with Coprocessor 1 using a dedicated coprocessor interface. The FPU functions as an autonomous
unit. The hardware is completely interlocked such that, when writing software, the programmer does not have to
worry about inserting delay slots after loads and between dependent instructions.

• Additional arithmetic operations not specified by IEEE Standard 754 (for example, reciprocal and reciprocal
square root) are specified by the MIPS architecture and are implemented by the FPU. In order to achieve low
latency counts, these instructions satisfy more relaxed precision requirements.

 Floating-Point Unit of the 1004Kf™ CPU

68 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

• The MIPS architecture further specifies compound multiply-add instructions. These instructions meet the IEEE
accuracy specification where the result is numerically identical to an equivalent computation using multiply, add,
subtract, or negate instructions.

Figure 3.1 depicts a block diagram of the FPU.

Figure 3.1 FPU Block Diagram

The MIPS architecture is designed such that a combination of hardware and software can be used to implement the
architecture. The 1004K CPU FPU can operate on numbers within a specific range (in general, the IEEE normalized
numbers), but it relies on a software handler to operate on numbers not handled by the FPU hardware (in general, the
IEEE denormalized numbers). Supported number ranges for different instructions are described later in this chapter.
A fast Flush To Zero mode is provided to optimize performance for cases where IEEE denormalized operands and
results are not supported by hardware. The fast Flush to Zero mode is enabled through the CP1 FCSR register; use of
this mode is recommended for best performance.

3.1.1 IEEE Standard 754

The IEEE Standard 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, is referred to in this chapter as
“IEEE Standard 754”. IEEE Standard 754 defines the following:

• Floating-point data types

• The basic arithmetic, comparison, and conversion operations

• A computational model

IEEE Standard 754 does not define specific processing resources nor does it define an instruction set.

For more information about this standard, see the IEEE web page at http://stdsbbs.ieee.org/.

3.2 Enabling the Floating-Point Coprocessor

The FPU can be configured at build time to have a single thread context or to be fully multithreaded. When multi-
threaded, each TC has its own separate FPU regfile context.

Processor
Core

Coprocessor
Interface

Control

Register File

Bypass

Add

Div/Sqrt Mul
Load/
Store

3.3 Data Formats

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 69

NOTE: If the single-threaded FPU is used, it may only be used by one TC at any given time by setting the TCU1 bit
in the TCStatus register of that TC. It is the operating system’s responsibility to make sure that only one TC owns the
FPU as described above. Any attempt to execute a floating-point instruction by a TC that does not own the Float-
ing-Point Coprocessor, causes a Coprocessor Unusable exception.

3.3 Data Formats

The FPU provides both floating-point and fixed-point data types, which are described below:

• The single- and double-precision floating-point data types are those specified by IEEE Standard 754.

• The fixed-point types are signed integers provided by the MIPS architecture.

3.3.1 Floating-Point Formats

The FPU provides the following two floating-point formats:

• a 32-bit single-precision floating point (type S, shown in Figure 3.2)

• a 64-bit double-precision floating point (type D, shown in Figure 3.3)

The floating-point data types represent numeric values as well as the following special entities:

• Two infinities, +∞ and -∞

• Signaling non-numbers (SNaNs)

• Quiet non-numbers (QNaNs)

• Numbers of the form: (-1)s 2E b0.b1 b2..bp-1, where:

• s = 0 or 1

• E = any integer between E_min and E_max, inclusive

• bi = 0 or 1 (the high bit, b0, is to the left of the binary point)

• p is the signed-magnitude precision

The single and double floating-point data types are composed of three fields—sign, exponent, fraction—whose sizes
are listed in Table 3.1.

Table 3.1 Parameters of Floating-Point Data Types

Parameter Single Double

Bits of mantissa precision, p 24 53

Maximum exponent, E_max +127 +1023

Minimum exponent, E_min -126 -1022

Exponent bias +127 +1023

Bits in exponent field, e 8 11

 Floating-Point Unit of the 1004Kf™ CPU

70 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Layouts of these three fields are shown in Figure 3.2 and Figure 3.3 below. The fields are:

• 1-bit sign, s

• Biased exponent, e = E + bias

• Binary fraction, f=.b1 b2..bp-1 (the b0 bit is hidden; it is not recorded)

Figure 3.2 Single-Precision Floating-Point Format (S)

Figure 3.3 Double-Precision Floating-Point Format (D)

Values are encoded in the specified format using the unbiased exponent, fraction, and sign values listed in Table 3.2.
The high-order bit of the Fraction field, identified as b1, is also important for NaNs.

Representation of b0 integer bit hidden hidden

Bits in fraction field, f 23 52

Total format width in bits 32 64

Magnitude of largest representable number 3.4028234664e+38 1.7976931349e+308

Magnitude of smallest normalized representable number 1.1754943508e-38 2.2250738585e-308

31 30 23 22 0

S Exponent Fraction

1 8 23

63 62 52 51 0

S Exponent Fraction

1 11 52

Table 3.2 Value of Single or Double Floating-Point Data Type Encoding

Unbiased
E f s b1 Value V Type of Value

Typical Single

Bit Pattern1
Typical Double

Bit Pattern1

E_max + 1 ≠ 0 1 SNaN Signaling NaN 0x7fffffff 0x7fffffff ffffffff

0 QNaN Quiet NaN 0x7fbfffff 0x7ff7ffff ffffffff

E_max +1 0 1 - ∞ Minus infinity 0xff800000 0xfff00000 00000000

0 + ∞ Plus infinity 0x7f800000 0x7ff00000 00000000

E_max
 to

E_min

1 - (2E)(1.f) Negative normalized num-
ber

0x80800000
 through
0xff7fffff

0x80100000 00000000
 through
0xffefffff ffffffff

0 + (2E)(1.f) Positive normalized number 0x00800000
 through
0x7f7fffff

0x00100000 00000000
 through
0x7fefffff ffffffff

Table 3.1 Parameters of Floating-Point Data Types (Continued)

Parameter Single Double

3.3 Data Formats

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 71

3.3.1.1 Normalized and Denormalized Numbers

For single and double data types, each representable nonzero numerical value has just one encoding; numbers are
kept in normalized form. The high-order bit of the p-bit mantissa, which lies to the left of the binary point, is “hid-
den,” and not recorded in the Fraction field. The encoding rules permit the value of this bit to be determined by look-
ing at the value of the exponent. When the unbiased exponent is in the range E_min to E_max, inclusive, the number
is normalized and the hidden bit must be 1. If the numeric value cannot be normalized because the exponent would be
less than E_min, then the representation is denormalized, the encoded number has an exponent of E_min – 1, and the
hidden bit has the value 0. Plus and minus zero are special cases that are not regarded as denormalized values.

3.3.1.2 Reserved Operand Values—Infinity and NaN

A floating-point operation can signal IEEE exception conditions, such as those caused by uninitialized variables, vio-
lations of mathematical rules, or results that cannot be represented. If a program does not trap IEEE exception condi-
tions, a computation that encounters any of these conditions proceeds without trapping but generates a result
indicating that an exceptional condition arose during the computation. To permit this case, each floating-point format
defines representations (listed in Table 3.2) for plus infinity (+∞), minus infinity (-∞), quiet non-numbers (QNaN),
and signaling non-numbers (SNaN).

3.3.1.3 Infinity and Beyond

Infinity represents a number with magnitude too large to be represented in the given format; it represents a magnitude
overflow during a computation. A correctly signed ∞ is generated as the default result in division by zero operations
and some cases of overflow as described in Section 3.7.2 “Exception Conditions”.

Once created as a default result, ∞ can become an operand in a subsequent operation. The infinities are interpreted
such that -∞ < (every finite number) < +∞. Arithmetic with ∞ is the limiting case of real arithmetic with operands of
arbitrarily large magnitude, when such limits exist. In these cases, arithmetic on ∞ is regarded as exact, and exception
conditions do not arise. The out-of-range indication represented by ∞ is propagated through subsequent computa-
tions. For some cases, there is no meaningful limiting case in real arithmetic for operands of ∞. These cases raise the
Invalid Operation exception condition as described in Section 3.7.2.1 “Invalid Operation Exception”.

3.3.1.4 Signalling Non-Number (SNaN)

SNaN operands cause an Invalid Operation exception for arithmetic operations. SNaNs are useful values to put in
uninitialized variables. An SNaN is never produced as a result value.

E_min -1 ≠ 0 1 - (2E_min)(0.f) Negative denormalized
number

0x807fffff 0x800fffff ffffffff

0 + (2E_min)(0.f) Positive denormalized num-
ber

0x007fffff 0x000fffff ffffffff

E_min -1 0 1 - 0 Negative zero 0x80000000 0x80000000 00000000

0 + 0 positive zero 0x00000000 0x00000000 00000000

1. The “Typical” nature of the bit patterns for the NaN and denormalized values reflects the fact that the sign might have either
value (NaN) and that the fraction field might have any non-zero value (both). As such, the bit patterns shown are one value in
a class of potential values that represent these special values.

Table 3.2 Value of Single or Double Floating-Point Data Type Encoding (Continued)

Unbiased
E f s b1 Value V Type of Value

Typical Single

Bit Pattern1
Typical Double

Bit Pattern1

 Floating-Point Unit of the 1004Kf™ CPU

72 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

IEEE Standard 754 states that “Whether copying a signaling NaN without a change of format signals the Invalid
Operation exception is the implementor’s option.” The MIPS architecture makes the formatted operand move instruc-
tions (MOVfmt, MOVT.fmt, MOVF.fmt, MOVN fmt, MOVZ.fmt) non-arithmetic; they do not signal IEEE 754
exceptions.

3.3.1.5 Quiet Non-Number (QNaN)

QNaNs provide retrospective diagnostic information inherited from invalid or unavailable data and results. Propaga-
tion of the diagnostic information requires information contained in a QNaN to be preserved through arithmetic oper-
ations and floating-point format conversions.

QNaN operands do not cause arithmetic operations to signal an exception. When a floating-point result is to be deliv-
ered, a QNaN operand causes an arithmetic operation to supply a QNaN result. When possible, this QNaN result is

one1 of the operand QNaN values. QNaNs do have effects similar to SNaNs on operations that do not deliver a float-
ing-point result—specifically, comparisons. (For more information, see the detailed description of the floating-point
compare instruction, C.cond.fmt.).

When certain invalid operations not involving QNaN operands are performed but do not trap (because the trap is not
enabled), a new QNaN value is created. Table 3.3 shows the QNaN value generated when no input operand QNaN
value can be copied. The values listed for the fixed-point formats are the values supplied to satisfy IEEE Standard 754
when a QNaN or infinite floating-point value is converted to fixed point. There is no other feature of the architecture
that detects or makes use of these “integer QNaN” values.

3.3.2 Fixed-Point Formats

The FPU provides two fixed-point data types:

• a 32-bit Word fixed point (type W), shown in Figure 3.4

• a 64-bit Longword fixed point (type L), shown in Figure 3.5

The fixed-point values are held in 2’s complement format, which is used for signed integers in the CPU. Unsigned
fixed-point data types are not provided by the architecture; application software can synthesize computations for
unsigned integers from the existing instructions and data types.

Figure 3.4 Word Fixed-Point Format (W)

1. In case of one or more QNaN operands, a QNaN is propagated from one of the operands according to the following priority:
1: fs, 2: ft, 3: fr.

Table 3.3 Value Supplied When a New Quiet NaN is Created

Format New QNaN value

Single floating point 0x7fbf ffff

Double floating point 0x7ff7 ffff ffff ffff

Word fixed point 0x7fff ffff

Longword fixed point 0x7fff ffff ffff ffff

31 0

Integer

32

3.4 Floating-Point General Registers

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 73

Figure 3.5 Longword Fixed-Point Format (L)

3.4 Floating-Point General Registers

This section describes the organization and use of the Floating-Point general Registers (FPRs). The FPU is a 64b
FPU, but a 32b register mode for backwards compatibility is also supported. The FR bit in the CP0 Status register
determines which mode is selected:

• When the FR bit is a 1, the FPU is in FR64 mode and the 64b register model is used, which defines 32 64-bit reg-
isters with all formats supported in a register.

• When the FR bit is a 0, the FPU is in FR32 mode and the 32b register model is used, which defines 32 32-bit reg-
isters with D-format values stored in even-odd pairs of registers; thus the register file can also be viewed as hav-
ing 16 64-bit registers. When configured this way, there are several restrictions for double operation:

– Any double operations which specify an odd register as a source or destination will cause a
ReservedInstruction exception

– MTHC1/MFHC1 instructions which access an odd FPU register will signal a Reserved Instruction exception.

3.4.1 FPRs and Formatted Operand Layout

FPU instructions that operate on formatted operand values specify the Floating-Point Register (FPR) that holds the
value. Operands that are only 32 bits wide (W and S formats) use only half the space in an FPR.

Figure 3.6 and Figure 3.7 show the FPR organization and the way that operand data is stored in them.

Figure 3.6 Single Floating-Point or Word Fixed-Point Operand in an FPR

Figure 3.7 Double Floating-Point or Longword Fixed-Point Operand in an FPR

3.4.2 Formats of Values Used in FP Registers

Unlike the CPU, the FPU neither interprets the binary encoding of source operands nor produces a binary encoding of
results for every operation. The value held in a floating-point operand register (FPR) has a format, or type, and it can
be used only by instructions that operate on that format. The format of a value is either uninterpreted, unknown, or
one of the valid numeric formats: single or double floating point, and word or long fixed point.

The value in an FPR is always set when a value is written to the register as follows:

• When a data transfer instruction writes binary data into an FPR (a load), the FPR receives a binary value that is
uninterpreted.

63 0

Integer

64

63 32 31 0

Reg 0 Undefined/Unused Data Word

63 0

Reg 0 Data Doubleword/Longword

 Floating-Point Unit of the 1004Kf™ CPU

74 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

• A computational or FP register move instruction that produces a result of type fmt puts a value of type fmt into
the result register.

When an FPR with an uninterpreted value is used as a source operand by an instruction that requires a value of for-
mat fmt, the binary contents are interpreted as an encoded value in format fmt, and the value in the FPR changes to a
value of format fmt. The binary contents cannot be reinterpreted in a different format.

If an FPR contains a value of format fmt, a computational instruction must not use the FPR as a source operand of a
different format. If this case occurs, the value in the register becomes unknown, and the result of the instruction is also
a value that is unknown. Using an FPR containing an unknown value as a source operand produces a result that has an
unknown value.

The format of the value in the FPR is unchanged when it is read by a data transfer instruction (a store). A data transfer
instruction produces a binary encoding of the value contained in the FPR. If the value in the FPR is unknown, the
encoded binary value produced by the operation is not defined.

The state diagram in Figure 3.8 illustrates the manner in which the formatted value in an FPR is set and changed.

3.5 Floating-Point Control Registers

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 77

CP1 control registers are summarized in Table 3.4 and are described individually in the following subsections of this
chapter. Each register’s description includes the read/write properties and the reset state of each field.

Table 3.5 defines the notation used for the read/write properties of the register bit fields.

3.5.1 Floating-Point Implementation Register (FIR, CP1 Control Register 0)

The Floating-Point Implementation Register (FIR) is a 32-bit read-only register that contains information identifying
the capabilities of the FPU, the Floating-Point processor identification, and the revision level of the FPU. Figure 3.11
shows the format of the FIR; Table 3.6 describes the FIR bit fields.

Table 3.4 Coprocessor 1 Register Summary

Register Number Register Name Function

0 FIR Floating-Point Implementation register. Contains information that identifies the
FPU.

25 FCCR Floating-Point Condition Codes register.

26 FEXR Floating-Point Exceptions register.

28 FENR Floating-Point Enables register.

31 FCSR Floating-Point Control and Status register.

Table 3.5 Read/Write Properties

Read/Write
Notation Hardware Interpretation Software Interpretation

R/W All bits in this field are readable and writable by software and potentially by hardware.
Hardware updates of this field are visible by software reads. Software updates of this field are visible by
hardware reads.
If the reset state of this field is “Undefined,” either software or hardware must initialize the value before the
first read returns a predictable value. This definition should not be confused with the formal definition of
UNDEFINED behavior.

R This field is either static or is updated only by hard-
ware.
If the Reset State of this field is either “0” or “Pre-
set”, hardware initializes this field to zero or to the
appropriate state, respectively, on powerup.
If the Reset State of this field is “Undefined”, hard-
ware updates this field only under those conditions
specified in the description of the field.

A field to which the value written by software is
ignored by hardware. Software may write any value
to this field without affecting hardware behavior.
Software reads of this field return the last value
updated by hardware.
If the Reset State of this field is “Undefined,” soft-
ware reads of this field result in an UNPREDICT-
ABLE value except after a hardware update done
under the conditions specified in the description of
the field.

0 Hardware does not update this field. Hardware can
assume a zero value.

The value software writes to this field must be zero.
Software writes of non-zero values to this field might
result in UNDEFINED behavior of the hardware.
Software reads of this field return zero as long as all
previous software writes are zero.
If the Reset State of this field is “Undefined,” soft-
ware must write this field with zero before it is guar-
anteed to read as zero.

 Floating-Point Unit of the 1004Kf™ CPU

78 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Figure 3.11 FIR Format
31 25 24 23 22 21 20 19 18 17 16 15 8 7 0

0 FC 0 F64 L W 3D PS D S ProcessorID Revision

Table 3.6 FIR Bit Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

FC 24 Indicates that full convert ranges are implemented:
0: Full convert ranges not implemented
1: Full convert ranges implemented
This bit is always 1 to indicate that full convert ranges are
implemented. This means that all numbers can be con-
verted to another type by the FPU (If FS bit in FCSR is not
set Unimplemented Operation exception can still happen
on denormal operands though).

R 1

F64 22 Indicates that this is a 64-bit FPU:
0: Not a 64-bit FPU
1: A 64-bit FPU.
This bit is always 1 to indicate that this is a 64-bit FPU.

R 1

L 21 Indicates that the long fixed point (L) data type and
instructions are implemented:
0: Long type not implemented
1: Long implemented
This bit is always 1 to indicate that long fixed point data
types are implemented.

R 1

W 20 Indicates that the word fixed point (W) data type and
instructions are implemented:
0: Word type not implemented
1: Word implemented
This bit is always 1 to indicate that word fixed point data
types are implemented.

R 1

3D 19 Indicates that the MIPS-3D ASE is implemented:
0: MIPS-3D not implemented
1: MIPS-3D implemented
This bit is always 0 to indicate that MIPS-3D is not imple-
mented.

R 0

PS 18 Indicates that the paired-single (PS) floating-point data
type and instructions are implemented:
0: PS floating-point not implemented
1: PS floating-point implemented
This bit is always 0 to indicate that paired-single float-
ing-point data types are not implemented.

R 0

D 17 Indicates that the double-precision (D) floating-point data
type and instructions are implemented:
0: D floating-point not implemented
1: D floating-point implemented
This bit is always 1 to indicate that double-precision float-
ing-point data types are implemented.

R 1

3.5 Floating-Point Control Registers

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 79

3.5.2 Floating-Point Condition Codes Register (FCCR, CP1 Control Register 25)

The Floating-Point Condition Codes Register (FCCR) is an alternative way to read and write the floating-point condi-
tion code values that also appear in the FCSR. Unlike the FCSR, all eight FCC bits are contiguous in the FCCR.
Figure 3.12 shows the format of the FCCR; Table 3.7 describes the FCCR bit fields.

Figure 3.12 FCCR Format

3.5.3 Floating-Point Exceptions Register (FEXR, CP1 Control Register 26)

The Floating-Point Exceptions Register (FEXR) is an alternative way to read and write the Cause and Flags fields that
also appear in the FCSR. Figure 3.13 shows the format of the FEXR; Table 3.8 describes the FEXR bit fields.

Figure 3.13 FEXR Format

S 16 Indicates that the single-precision (S) floating-point data
type and instructions are implemented:
0: S floating-point not implemented
1: S floating-point implemented
This bit is always 1 to indicate that single-precision float-
ing-point data types are implemented.

R 1

Processor ID 15:8 This value matches the corresponding field of the CP0
PRId register.

R 0x99

Revision 7:0 Specifies the revision number of the FPU. This field
allows software to distinguish between one revision and
another of the same floating-point processor type.

R 0

0 31:25, 23 These bits must be written as zeros; they return zeros on
reads.

0 0

31 8 7 0

0 FCC

Table 3.7 FCCR Bit Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

FCC 7:0 Floating-point condition code. Refer to the description of
this field in Section 3.5.5 “Floating-Point Control and
Status Register (FCSR, CP1 Control Register 31)”.

R/W Undefined

0 31:8 These bits must be written as zeros; they return zeros on
reads.

0 0

31 18 17 16 15 14 13 12 11 7 6 5 4 3 2 1 0

0 Cause 0 Flags 0

Table 3.6 FIR Bit Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

 Floating-Point Unit of the 1004Kf™ CPU

80 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

3.5.4 Floating-Point Enables Register (FENR, CP1 Control Register 28)

The Floating-Point Enables Register (FENR) is an alternative way to read and write the Enables, FS, and RM fields
that also appear in the FCSR. Figure 3.14 shows the format of the FENR; Table 3.9 describes the FENR bit fields.

Figure 3.14 FENR Format

E V Z O U I V Z O U I

Table 3.8 FEXR Bit Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Cause 17:12 Cause bits. Refer to the description of this field in Section
3.5.5, "Floating-Point Control and Status Register (FCSR,
CP1 Control Register 31)".

R/W Undefined

Flags 6:2 Flag bits. Refer to the description of this field in Section
3.5.5 “Floating-Point Control and Status Register (FCSR,
CP1 Control Register 31)”.

R/W Undefined

0 31:18, 11:7,
1:0

These bits must be written as zeros; they return zeros on
reads.

0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Enables 0 FS RM

V Z O U I

Table 3.9 FENR Bit Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Enables 11:7 Enable bits. Refer to the description of this field in Section
3.5.5 “Floating-Point Control and Status Register (FCSR,
CP1 Control Register 31)”.

R/W Undefined

FS 2 Flush to Zero bit. Refer to the description of this field in
Section 3.5.5, "Floating-Point Control and Status Register
(FCSR, CP1 Control Register 31)".

R/W Undefined

RM 1:0 Rounding mode. Refer to the description of this field in
Section 3.5.5, "Floating-Point Control and Status Register
(FCSR, CP1 Control Register 31)".

R/W Undefined

0 31:12, 6:3 These bits must be written as zeros; they return zeros on
reads.

0 0

31 18 17 16 15 14 13 12 11 7 6 5 4 3 2 1 0

3.5 Floating-Point Control Registers

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 81

3.5.5 Floating-Point Control and Status Register (FCSR, CP1 Control Register 31)

The 32-bit Floating-Point Control and Status Register (FCSR) controls the operation of the FPU and shows the fol-
lowing status information:

• selects the default rounding mode for FPU arithmetic operations

• selectively enables traps of FPU exception conditions

• controls some denormalized number handling options

• reports any IEEE exceptions that arose during the most recently executed instruction

• reports any IEEE exceptions that cumulatively arose in completed instructions

• indicates the condition code result of FP compare instructions

Access to the FCSR is not privileged; it can be read or written by any program that has access to the FPU (via the
coprocessor enables in the Status register). Figure 3.15 shows the format of the FCSR; Table 3.10 describes the FCSR
bit fields.

Figure 3.15 FCSR Format
31 25 24 23 22 21 20 18 17 12 11 7 6 2 1 0

FCC FS FCC FO FN 0 Cause Enables Flags RM

7 6 5 4 3 2 1 0 E V Z O U I V Z O U I V Z O U I

Table 3.10 FCSR Bit Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit

FCC 31:25, 23 Floating-point condition codes. These bits record the
result of floating-point compares and are tested for float-
ing-point conditional branches and conditional moves.
The FCC bit to use is specified in the compare, branch, or
conditional move instruction. For backward compatibility
with previous MIPS ISAs, the FCC bits are separated into
two non-contiguous fields.

R/W Undefined

FS 24 Flush to Zero (FS). Refer to Section 3.5.6 “Operation of
the FS/FO/FN Bits” for more details on this bit.

R/W Undefined

FO 22 Flush Override (FO). Refer to Section 3.5.6 “Operation of
the FS/FO/FN Bits” for more details on this bit.

R/W Undefined

FN 21 Flush to Nearest (FN). Refer to Section 3.5.6 “Operation
of the FS/FO/FN Bits” for more details on this bit.

R/W Undefined

 Floating-Point Unit of the 1004Kf™ CPU

82 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Cause 17:12 Cause bits. These bits indicate the exception conditions
that arise during execution of an FPU arithmetic instruc-
tion. A bit is set to 1 when the corresponding exception
condition arises during the execution of an instruction;
otherwise, it is cleared to 0. By reading the registers, the
exception condition caused by the preceding FPU arith-
metic instruction can be determined.
Refer to Table 3.11 for the meaning of each cause bit.

R/W Undefined

Enables 11:7 Enable bits. These bits control whether or not a trap is
taken when an IEEE exception condition occurs for any of
the five conditions. The trap occurs when both an enable
bit and its corresponding cause bit are set either during an
FPU arithmetic operation or by moving a value to the
FCSR or one of its alternative representations. Note that
Cause bit E (CauseE) has no corresponding enable bit; the
MIPS architecture defines non-IEEE Unimplemented
Operation exceptions as always enabled.
Refer to Table 3.11 for the meaning of each enable bit.

R/W Undefined

Flags 6:2 Flag bits. This field shows any exception conditions that
have occurred for completed instructions since the flag
was last reset by software.
When an FPU arithmetic operation raises an IEEE excep-
tion condition that does not result in a Floating-Point
Exception (the enable bit was off), the corresponding
bit(s) in the Flags field are set, while the others remain
unchanged. Arithmetic operations that result in a Float-
ing-Point Exception (the enable bit was on) do not update
the Flags field.
Hardware never resets this field; software must explicitly
reset this field.
Refer to Table 3.11 for the meaning of each flag bit.

R/W Undefined

RM 1:0 Rounding mode. This field indicates the rounding mode
used for most floating-point operations (some operations
use a specific rounding mode).
Refer to Table 3.12 for the encoding of this field.

R/W Undefined

0 20:18 These bits must be written as zeros; they return zeros on
reads.

0 0

Table 3.11 Cause, Enables, and Flags Definitions

Bit Name Bit Meaning

E Unimplemented Operation (this bit exists only in the Cause field).

V Invalid Operations

Z Divide by Zero

O Overflow

U Underflow

Table 3.10 FCSR Bit Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit

3.5 Floating-Point Control Registers

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 83

3.5.6 Operation of the FS/FO/FN Bits

The FS, FO, and FN bits in the CP1 FCSR register control handling of denormalized operands and tiny results (i.e.

nonzero result between ±2E_min), whereby the FPU can handle these cases right away instead of relying on the much
slower software handler. The trade-off is a loss of IEEE compliance and accuracy (except for use of the FO bit),
because a minimal normalized or zero result is provided by the FPU instead of the more accurate denormalized result
that a software handler would give. The benefit is a significantly improved performance and precision.

Use of the FS, FO, and FN bits affects handling of denormalized floating-point numbers and tiny results for the
instructions listed below:

Instructions not listed above do not cause Unimplemented Operation exceptions on denormalized numbers in oper-
ands or results.

Figure 3.16 depicts how the FS, FO, and FN bits control handling of denormalized numbers. For instructions that are
not multiply or add types (such as DIV), only the FS and FN bits apply.

I Inexact

Table 3.12 Rounding Mode Definitions

RM Field
Encoding Meaning

0 RN - Round to Nearest
Rounds the result to the nearest representable value. When two representable values are equally
near, the result is rounded to the value whose least significant bit is zero (even).

1 RZ - Round Toward Zero
Rounds the result to the value closest to but not greater in magnitude than the result.

2 RP - Round Towards Plus Infinity
Rounds the result to the value closest to but not less than the result.

3 RM - Round Towards Minus Infinity
Rounds the result to the value closest to but not greater than the result.

FS and FN bit: ADD, CEIL, CVT, DIV, FLOOR, MADD, MSUB, MUL, NMADD, NMSUB, RECIP, ROUND,

RSQRT, SQRT, TRUNC, SUB, ABS, C.cond, and NEG1

1. For ABS, C.cond, and NEG, denormal input operands or tiny results doe not result in Unimplemented exceptions when
FS = 0. Flushing to zero nonetheless is implemented when FS = 1 such that these operations return the same result as an
equivalent sequence of arithmetic FPU operations.

FO bit: MADD, MSUB, NMADD, and NMSUB

Table 3.11 Cause, Enables, and Flags Definitions (Continued)

Bit Name Bit Meaning

 Floating-Point Unit of the 1004Kf™ CPU

84 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Figure 3.16 FS/FO/FN Bits Influence on Multiply and Addition Results

3.5.6.1 Flush To Zero Bit

When the Flush To Zero (FS) bit is set, denormal input operands are flushed to zero. Tiny results are flushed to either
zero or the applied format’s smallest normalized number (MinNorm) depending on the rounding mode settings. Table
3.13 lists the flushing behavior for tiny results..

The flushing of results is based on an intermediate result computed by rounding the mantissa using an unbounded
exponent range; that is, tiny numbers are not normalized into the supported exponent range by shifting in leading
zeros prior to rounding.

Handling of denormalized operand values and tiny results depends on the FS bit setting as shown in Table 3.14.

3.5.6.2 Flush Override Bit

When the Flush Override (FO) bit is set, a tiny intermediate result of any multiply-add type instruction is not flushed
according to the FS bit. The intermediate result is maintained in an internal normalized format to improve accuracy.
FO only applies to the intermediate result of a multiply-add type instruction.

Handling of tiny intermediate results depends on the FO and FS bits as shown in Table 3.15.

Table 3.13 Zero Flushing for Tiny Results

Rounding Mode Negative Tiny Result Positive Tiny Result

RN (RM=0) -0 +0

RZ(RM=1) -0 +0

RP (RM=2) -0 +MinNorm

RM (RM=3) -MinNorm +0

Table 3.14 Handling of Denormalized Operand Values and Tiny Results Based on FS Bit Setting

FS Bit Handling of Denormalized Operand Values

0 An Unimplemented Operation exception is taken.

1 Instead of causing an Unimplemented Operation exception, operands are flushed to zero, and tiny
results are forced to zero or MinNorm.

Table 3.15 Handling of Tiny Intermediate Result Based on the FO and FS Bit Settings

FO Bit FS Bit Handling of Tiny Result Values

0 0 An Unimplemented Operation exception is taken.

Operand values
FS applies

AdditionMultiply

Intermediate Multiply-Add result
FS/FO applies

Final result
FS/FN applies

3.5 Floating-Point Control Registers

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 85

3.5.6.3 Flush to Nearest

When the Flush to Nearest (FN) bit is set and the rounding mode is Round to Nearest (RN), a tiny final result is
flushed to zero or MinNorm. If a tiny number is strictly below MinNorm/2, the result is flushed to zero; otherwise, it
is flushed to MinNorm (see Figure 3.17). The flushed result has the same sign as the result prior to flushing. Note that
the FN bit takes precedence over the FS bit.

Figure 3.17 Flushing to Nearest when Rounding Mode is Round to Nearest

For all rounding modes other than Round to Nearest (RN), setting the FN bit causes final results to be flushed to zero
or MinNorm as if the FS bit was set.

Handling of tiny final results depends on the FN and FS bits as shown in Table 3.16.

3.5.6.4 Recommended FS/FO/FN Settings

Table 3.17 summarizes the recommended FS/FO/FN settings.

0 1 The intermediate result is forced to the value that would have been delivered for an
untrapped underflow (see Table 3.32) instead of causing an Unimplemented Operation
exception.

1 Don’t care The intermediate result is kept in an internal format, which can be perceived as having
the usual mantissa precision but with unlimited exponent precision and without forcing
to a specific value or taking an exception.

Table 3.16 Handling of Tiny Final Result Based on FN and FS Bit Settings

FN Bit FS Bit Handling of Tiny Result Values

0 0 An Unimplemented Operation exception is taken.

0 1 Final result is forced to the value that would have been delivered for an untrapped under-
flow (see Table 3.32) rather than causing an Unimplemented Operation exception.

1 Don’t care Final result is rounded to either zero or 2E_min (MinNorm), whichever is closest when in
Round to Nearest (RN) rounding mode. For other rounding modes, a final result is given
as if FS was set to 1.

Table 3.17 Recommended FS/FO/FN Settings

FS Bit FO Bit FN Bit Remarks

0 0 0 IEEE-compliant mode. Low performance on denormal operands and tiny results.

Table 3.15 Handling of Tiny Intermediate Result Based on the FO and FS Bit Settings

FO Bit FS Bit Handling of Tiny Result Values

MinNorm/2-MinNorm/2

-MinNorm MinNorm0

 Floating-Point Unit of the 1004Kf™ CPU

86 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

3.5.7 FCSR Cause Bit Update Flow

3.5.7.1 Exceptions Triggered by CTC1

Regardless of the targeted control register, the CTC1 instruction causes the Enables and Cause fields of the FCSR to
be inspected in order to determine if an exception is to be thrown.

3.5.7.2 Generic Flow

Computations are performed in two steps:

1. Compute rounded mantissa with unbound exponent range.

2. Flush to default result if the result from Step #1 above is overflow or tiny (no flushing happens on denorms for
instructions supporting denorm results, such as MOV).

The Cause field is updated after each of these two steps. Any enabled exceptions detected in these two steps cause a
trap, and no further updates to the Cause field are done by subsequent steps.

Step #1 can set cause bits I, U, O, Z, V, and E. E has priority over V; V has priority over Z; and Z has priority over U
and O. Thus when E, V, or Z is set in Step #1, no other cause bits can be set. However, note that I and V both can be
set if a denormal operand was flushed (FS = 1). I, U, and O can be set alone or in pairs (IU or IO). U and O never can
be set simultaneously in Step #1. U and O are set if the computed unbounded exponent is outside the exponent range
supported by the normalized IEEE format.

Step #2 can set I if a default result is generated.

3.5.7.3 Multiply-Add Flow

For multiply-add type instructions, the computation is extended with two more steps:

1. Compute rounded mantissa with unbound exponent range for the multiply.

2. Flush to default result if the result from Step #1 is overflow or tiny (no flushing happens on tiny results if
FO = 1).

3. Compute rounded mantissa with unbounded exponent range for the add.

4. Flush to default result if the result from Step #3 is overflow or tiny.

The Cause field is updated after each of these four steps. Any enabled exceptions detected in these four steps cause a
trap, and no further updates to the Cause field are done by subsequent steps.

1 0 0 Regular embedded applications. High performance on denormal operands and
tiny results.

1 1 1 Highest accuracy and performance configuration.1

1. Note that in this mode, MADD might return a different result other than the equivalent MUL and ADD operation
sequence.

Table 3.17 Recommended FS/FO/FN Settings

FS Bit FO Bit FN Bit Remarks

3.6 Instruction Overview

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 87

Step #1 and Step #3 can set a cause bit as described for Step #1 in Section 3.5.7.2 “Generic Flow”.

Step #2 and Step #4 can set I if a default result is generated.

Although U and O can never both be set in Step #1 or Step #3, both U and O might be set after the multiply-add has
executed in Step #3 because U might be set in Step #1 and O might be set in Step #3.

3.5.7.4 Cause Update Flow for Input Operands

Denormal input operands to Step #1 or Step #3 always set Cause bit I when FS = 1. For example, SNaN+DeNorm set
I (and V) provided that Step #3 was reached (in case of a multiply-add type instruction).

Conditions directly related to the input operand (for example, I/E set due to DeNorm, V set due to SNaN and QNaN
propagation) are detected in the step where the operand is logically used. For example, for multiply-add type instruc-
tions, exceptional conditions caused by the input operand fr are detected in Step #3.

3.5.7.5 Cause Update Flow for Unimplemented Operations

Note that Cause bit E is special; it clears any Cause updates done in previous steps. For example, if Step #3 caused E
to be set, any I, U, or O Cause update done in Step #1 or Step #2 is cleared. Only E is set in the Cause field when an
Unimplemented Operation trap is taken.

3.6 Instruction Overview

The functional groups into which the FPU instructions are divided are described in the following subsections:

• Section 3.6.1 “Data Transfer Instructions”

• Section 3.6.2 “Arithmetic Instructions”

• Section 3.6.3 “Conversion Instructions”

• Section 3.6.4 “Formatted Operand-Value Move Instructions”

• Section 3.6.5 “Conditional Branch Instructions”

• Section 3.6.6 “Miscellaneous Instructions”

The instructions are described in detail in Chapter 15, “1004K™ Processor CPU Instructions” on page 395, including
descriptions of supported formats (fmt).

3.6.1 Data Transfer Instructions

The FPU has two separate register sets: coprocessor general registers (FPRs) and coprocessor control registers
(FCRs). The FPU has a load/store architecture; all computations are done on data held in coprocessor general regis-
ters. The control registers are used to control FPU operation. Data is transferred between registers and the rest of the
system with dedicated load, store, and move instructions. The transferred data is treated as unformatted binary data;
no format conversions are performed, and therefore no IEEE floating-point exceptions can occur.

 Floating-Point Unit of the 1004Kf™ CPU

88 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Table 3.18 lists the supported transfer operations.

3.6.1.1 Data Alignment in Loads, Stores, and Moves

All coprocessor loads and stores operate on naturally aligned data items. An attempt to load or store to an address that
is not naturally aligned for the data item causes an Address Error exception. Regardless of byte ordering (the endian-
ness), the address of a word or doubleword is the smallest byte address in the object. For a big-endian machine, this is
the most-significant byte; for a little-endian machine, this is the least-significant byte.

3.6.1.2 Addressing Used in Data Transfer Instructions

The FPU has loads and stores using the same register+offset addressing as that used by the CPU. Moreover, for the
FPU only, there are load and store instructions using register+register addressing.

Tables 3.19 through 3.20 list the FPU data transfer instructions.

Table 3.18 FPU Data Transfer Instructions

Transfer Direction Data Transferred

FPU general register ↔ Memory Word/doubleword load/store

FPU general register ↔ CPU general register Word move

FPU control register ↔ CPU general register Word move

Table 3.19 FPU Loads and Stores

Mnemonic Instruction Addressing Mode

LDC1 Load Doubleword to Floating Point Register+offset

LWC1 Load Word to Floating Point Register+offset

SDC1 Store Doubleword from Floating Point Register+offset

SWC1 Store Word from Floating Point Register+offset

LDXC1 Load Doubleword Indexed to Floating Point Register+Register

LUXC1 Load Doubleword Indexed Unaligned to Floating Point Register+Register

LWXC1 Load Word Indexed to Floating Point Register+Register

SDXC1 Store Doubleword Indexed from Floating Point Register+Register

SUXC1 Store Doubleword Indexed Unaligned from Floating Point Register+Register

SWXC1 Store Word Indexed from Floating Point Register+Register

Table 3.20 FPU Move To and From Instructions

Mnemonic Instruction

CFC1 Move Control Word From Floating Point

CTC1 Move Control Word To Floating Point

MFC1 Move Word From Floating Point

MFHC1 Move Word From High Half of Floating Point

MTC1 Move Word To Floating Point

3.6 Instruction Overview

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 89

3.6.2 Arithmetic Instructions

Arithmetic instructions operate on formatted data values. The results of most floating-point arithmetic operations
meet IEEE Standard 754 for accuracy—a result is identical to an infinite-precision result that has been rounded to the
specified format using the current rounding mode. The rounded result differs from the exact result by less than one
Unit in the Least-significant Place (ULP).

In general, the arithmetic instructions take an Umimplemented Operation exception for denormalized numbers,
except for the ABS, C, and NEG instructions, which can handle denormalized numbers. The FS, FO, and FN bits in
the CP1 FCSR register can override this behavior as described in Section 3.5.6 “Operation of the FS/FO/FN Bits”.

Table 3.21 lists the FPU IEEE compliant arithmetic operations.

The two low latency operations, Reciprocal Approximation (RECIP) and Reciprocal Square Root Approximation
(RSQRT), might be less accurate than the IEEE specification:

• The result of RECIP differs from the exact reciprocal by no more than one ULP.

• The result of RSQRT differs from the exact reciprocal square root by no more than two ULPs.

Table 3.22 lists the FPU-approximate arithmetic operations.

Four compound-operation instructions perform variations of multiply-accumulate operations; that is, multiply two
operands, accumulate the result to a third operand, and produce a result. These instructions are listed in Table 3.23.
The product is rounded according to the current rounding mode prior to the accumulation. This model meets the IEEE

MTHC1 Move Word to High Half of Floating Point

Table 3.21 FPU IEEE Arithmetic Operations

Mnemonic Instruction

ABS.fmt Floating-Point Absolute Value

ADD.fmt Floating-Point Add

C.cond.fmt Floating-Point Compare

DIVfmt Floating-Point Divide

MUL fmt Floating-Point Multiply

NEG fmt Floating-Point Negate

SQRT fmt Floating-Point Square Root

SUB.fmt Floating-Point Subtract

Table 3.22 FPU-Approximate Arithmetic Operations

Mnemonic Instruction

RECIP fmt Floating-Point Reciprocal Approximation

RSQRT fmt Floating-Point Reciprocal Square Root Approximation

Table 3.20 FPU Move To and From Instructions

Mnemonic Instruction

 Floating-Point Unit of the 1004Kf™ CPU

90 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

accuracy specification; the result is numerically identical to an equivalent computation using multiply, add, subtract,
or negate instructions.

3.6.3 Conversion Instructions

These instructions perform conversions between floating-point and fixed-point data types. Each instruction converts
values from a number of operand formats to a particular result format. Some conversion instructions use the rounding
mode specified in the Floating Control/Status register (FCSR), while others specify the rounding mode directly.

In general, the conversion instructions only take an Umimplemented Operation exception for denormalized numbers.
The FS and FN bits in the CP1 FCSR register can override this behavior as described in Section 3.5.6 “Operation of
the FS/FO/FN Bits”.

Table 3.24 and Table 3.25 list the FPU conversion instructions according to their rounding mode.

Table 3.23 FPU Multiply-Accumulate Arithmetic Operations

Mnemonic Instruction

MADD.fmt Floating-Point Multiply Add

MSUB.fmt Floating-Point Multiply Subtract

NMADD fmt Floating-Point Negative Multiply Add

NMSUB fmt Floating-Point Negative Multiply Subtract

Table 3.24 FPU Conversion Operations Using the FCSR Rounding Mode

Mnemonic Instruction

CVT.D fmt Floating-Point Convert to Double Floating Point

CVT.L fmt Floating-Point Convert to Long Fixed Point

CVT.S fmt Floating-Point Convert to Single Floating Point

CVT.W.fmt Floating-Point Convert to Word Fixed Point

Table 3.25 FPU Conversion Operations Using a Directed Rounding Mode

Mnemonic Instruction

CEIL.L fmt Floating-Point Ceiling to Long Fixed Point

CEIL.W fmt Floating-Point Ceiling to Word Fixed Point

FLOOR.L.fmt Floating-Point Floor to Long Fixed Point

FLOOR.W.fmt Floating-Point Floor to Word Fixed Point

ROUND.L.fmt Floating-Point Round to Long Fixed Point

ROUND.W fmt Floating-Point Round to Word Fixed Point

TRUNC.L fmt Floating-Point Truncate to Long Fixed Point

TRUNC.W fmt Floating-Point Truncate to Word Fixed Point

3.6 Instruction Overview

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 91

3.6.4 Formatted Operand-Value Move Instructions

These instructions move formatted operand values among FPU general registers. A particular operand type must be
moved by the instruction that handles that type. There are three kinds of move instructions:

• Unconditional move

• Conditional move that tests an FPU true/false condition code

• Conditional move that tests a CPU general-purpose register against zero

Conditional move instructions operate in a way that might be unexpected. They always force the value in the destina-
tion register to become a value of the format specified in the instruction. If the destination register does not contain an
operand of the specified format before the conditional move is executed, the contents become undefined. (For more
information, see the individual descriptions of the conditional move instructions in the MIPS32 Architecture Refer-
ence Manual, Volume II [2].)

Table 3.26 through Table 3.28 list the formatted operand-value move instructions.

3.6.5 Conditional Branch Instructions

The FPU has PC-relative conditional branch instructions that test condition codes set by FPU compare instructions
(C.cond fmt).

All branches have an architectural delay of one instruction. When a branch is taken, the instruction immediately fol-
lowing the branch instruction is said to be in the branch delay slot; it is executed before the branch to the target
instruction takes place. Conditional branches come in two versions, depending upon how they handle an instruction
in the delay slot when the branch is not taken and execution falls through:

• Branch instructions execute the instruction in the delay slot.

Table 3.26 FPU Formatted Operand Move Instruction

Mnemonic Instruction

MOV.fmt Floating-Point Move

Table 3.27 FPU Conditional Move on True/False Instructions

Mnemonic Instruction

MOVF fmt Floating-Point Move Conditional on FP False

MOVT.fmt Floating-Point Move Conditional on FP True

Table 3.28 FPU Conditional Move on Zero/Non-Zero Instructions

Mnemonic Instruction

MOVN fmt Floating-Point Move Conditional on Nonzero

MOVZ fmt Floating-Point Move Conditional on Zero

 Floating-Point Unit of the 1004Kf™ CPU

92 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

• Branch likely instructions do not execute the instruction in the delay slot if the branch is not taken (they are said
to nullify the instruction in the delay slot).

Although the Branch Likely instructions are included, software is strongly encouraged to avoid the use of
the Branch Likely instructions, as they will be removed from a future revision of the MIPS Architecture.

The MIPS64 architecture defines eight condition codes for use in compare and branch instructions. For backward
compatibility with previous revisions of the ISA, condition code bit 0 and condition code bits 1 through 7 are in dis-
continuous fields in the FCSR.

Table 3.29 lists the conditional branch (branch and branch likely) FPU instructions; Table 3.30 lists the deprecated
conditional branch likely instructions.

3.6.6 Miscellaneous Instructions

The MIPS32 architecture defines various miscellaneous instructions that conditionally move one CPU general regis-
ter to another, based on an FPU condition code.

Table 3.31 lists these conditional move instructions.

3.7 Exceptions

FPU exceptions are implemented in the MIPS FPU architecture with the Cause, Enables, and Flags fields of the
FCSR. The flag bits implement IEEE exception status flags, and the cause and enable bits control exception trapping.
Each field has a bit for each of the five IEEE exception conditions. The Cause field has an additional exception bit,
Unimplemented Operation, used to trap for software emulation assistance. If an exception type is enabled through the
Enables field of the FCSR, then the FPU is operating in precise exception mode for this type of exception.

Table 3.29 FPU Conditional Branch Instructions

Mnemonic Instruction

BC1F Branch on FP False

BC1T Branch on FP True

Table 3.30 Deprecated FPU Conditional Branch Likely Instructions

Mnemonic Instruction

BC1FL Branch on FP False Likely

BC1TL Branch on FP True Likely

Table 3.31 CPU Conditional Move on FPU True/False Instructions

Mnemonic Instruction

MOVN Move Conditional on FP False

MOVZ Move Conditional on FP True

3.7 Exceptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 93

3.7.1 Precise Exception Mode

In precise exception mode, a trap occurs before the instruction that causes the trap or any following instruction can
complete and write its results. If desired, the software trap handler can resume execution of the interrupted instruction
stream after handling the exception.

The Cause field reports per-bit instruction exception conditions. The cause bits are written during each floating-point
arithmetic operation to show any exception conditions that arise during the operation. A cause bit is set to 1 if its cor-
responding exception condition arises; otherwise, it is cleared to 0.

A floating-point trap is generated any time both a cause bit and its corresponding enable bit are set. This case occurs
either during the execution of a floating-point operation or when moving a value into the FCSR. There is no enable
bit for Unimplemented Operations; this exception always generates a trap.

In a trap handler, exception conditions that arise during any trapped floating-point operations are reported in the
Cause field. Before returning from a floating-point interrupt or exception, or before setting cause bits with a move to
the FCSR, software first must clear the enabled cause bits by executing a move to the FCSR to prevent the trap from
being erroneously retaken.

If a floating-point operation sets only non-enabled cause bits, no trap occurs and the default result defined by IEEE
Standard 754 is stored (see Table 3.32). When a floating-point operation does not trap, the program can monitor the
exception conditions by reading the Cause field.

The Flags field is a cumulative report of IEEE exception conditions that arise as instructions complete; instructions
that trap do not update the flag bits. The flag bits are set to 1 if the corresponding IEEE exception is raised, otherwise
the bits are unchanged. There is no flag bit for the MIPS Unimplemented Operation exception. The flag bits are never
cleared as a side effect of floating-point operations, but they can be set or cleared by moving a new value into the
FCSR.

3.7.2 Exception Conditions

The subsections below describe the following five exception conditions defined by IEEE Standard 754:

• Section 3.7.2.1 “Invalid Operation Exception”

• Section 3.7.2.2 “Division By Zero Exception”

• Section 3.7.2.3 “Underflow Exception”

• Section 3.7.2.4 “Overflow Exception”

• Section 3.7.2.5 “Inexact Exception”

Section 3.7.2.6 “Unimplemented Operation Exception” also describes a MIPS-specific exception condition, Unim-
plemented Operation Exception, that is used to signal a need for software emulation of an instruction. Normally an
IEEE arithmetic operation can cause only one exception condition; the only case in which two exceptions can occur
at the same time are Inexact With Overflow and Inexact With Underflow.

At the program’s direction, an IEEE exception condition can either cause a trap or not cause a trap. IEEE Standard
754 specifies the result to be delivered in case no trap is taken. The FPU supplies these results whenever the excep-

 Floating-Point Unit of the 1004Kf™ CPU

94 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

tion condition does not result in a trap. The default action taken depends on the type of exception condition and, in the
case of the Overflow and Underflow, the current rounding mode. Table 3.32 summarizes the default results.

3.7.2.1 Invalid Operation Exception

An Invalid Operation exception is signaled when one or both of the operands are invalid for the operation to be per-
formed. When the exception condition occurs without a precise trap, the result is a quiet NaN.

The following operations are invalid:

• One or both operands are a signaling NaN (except for the non-arithmetic MOVfmt, MOVT fmt, MOVF.fmt,
MOVN.fmt, and MOVZ.fmt instructions).

• Addition or subtraction: magnitude subtraction of infinities, such as (+∞) + (−∞) or (−∞) − (−∞).

• Multiplication: 0 × ∞, with any signs.

• Division: 0/0 or ∞/∞, with any signs.

• Square root: An operand of less than 0 (-0 is a valid operand value).

• Conversion of a floating-point number to a fixed-point format when either an overflow or an operand value of
infinity or NaN precludes a faithful representation in that format.

• Some comparison operations in which one or both of the operands is a QNaN value.

Table 3.32 Result for Exceptions Not Trapped

Bit Description Default Action

V Invalid Operation Supplies a quiet NaN.

Z Divide by zero Supplies a properly signed infinity.

U Underflow Depends on the rounding mode as shown below:
0 (RN) and 1 (RZ): Supplies a zero with the sign of the exact result.

2 (RP): For positive underflow values, supplies 2E_min (MinNorm). For negative underflow
values, supplies a positive zero.
3 (RM): For positive underflow values, supplies a negative zero. For negative underflow val-

ues, supplies a negative 2E_min (MinNorm).
Note that this behavior is only valid if the FCSR FN bit is cleared.

I Inexact Supplies a rounded result. If caused by an overflow without the overflow trap enabled, sup-
plies the overflowed result. If caused by an underflow without the underflow trap enabled,
supplies the underflowed result.

O Overflow Depends on the rounding mode, as shown below:
0 (RN): Supplies an infinity with the sign of the exact result.
1 (RZ): Supplies the format’s largest finite number with the sign of the exact result.
2 (RP): For positive overflow values, supplies positive infinity. For negative overflow values,
supplies the format’s most negative finite number.
3 (RM): For positive overflow values, supplies the format’s largest finite number. For nega-
tive overflow values, supplies minus infinity.

3.7 Exceptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 95

3.7.2.2 Division By Zero Exception

The divide operation signals a Division By Zero exception if the divisor is zero and the dividend is a finite nonzero
number. When no precise trap occurs, the result is a correctly signed infinity. Divisions (0/0 and ∞/0) do not cause the
Division By Zero exception. The result of (0/0) is an Invalid Operation exception. The result of (∞/0) is a correctly
signed infinity.

3.7.2.3 Underflow Exception

Two related events contribute to underflow:

• Tininess: The creation of a tiny, nonzero result between ±2E_min which, because it is tiny, might cause some
other exception later such as overflow on division. IEEE Standard 754 allows choices in detecting tininess
events. The MIPS architecture specifies that tininess be detected after rounding, when a nonzero result computed

as though the exponent range were unbounded would lie strictly between ±2E_min.

• Loss of accuracy: The extraordinary loss of accuracy occurs during the approximation of such tiny numbers by
denormalized numbers. IEEE Standard 754 allows choices in detecting loss of accuracy events. The MIPS archi-
tecture specifies that loss of accuracy be detected as inexact result, when the delivered result differs from what
would have been computed if both the exponent range and precision were unbounded.

The way that an underflow is signaled depends on whether or not underflow traps are enabled:

• When an underflow trap is not enabled, underflow is signaled only when both tininess and loss of accuracy have

been detected. The delivered result might be zero, denormalized, or ±2E_min.

• When an underflow trap is enabled (through the FCSR Enables field), underflow is signaled when tininess is
detected regardless of loss of accuracy.

3.7.2.4 Overflow Exception

An Overflow exception is signaled when the magnitude of a rounded floating-point result (if the exponent range is
unbounded) is larger than the destination format’s largest finite number.

When no precise trap occurs, the result is determined by the rounding mode and the sign of the intermediate result.

3.7.2.5 Inexact Exception

An Inexact exception is signaled when one of the following occurs:

• The rounded result of an operation is not exact.

• The rounded result of an operation overflows without an overflow trap.

• When a denormal operand is flushed to zero.

3.7.2.6 Unimplemented Operation Exception

The Unimplemented Operation exception is a MIPS-defined exception that provides software emulation support.
This exception is not IEEE-compliant.

 Floating-Point Unit of the 1004Kf™ CPU

96 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

The MIPS architecture is designed so that a combination of hardware and software can implement the architecture.
Operations not fully supported in hardware cause an Unimplemented Operation exception, allowing software to per-
form the operation.

There is no enable bit for this condition; it always causes a trap (but the condition is effectively masked for all opera-
tions when FS=1). After the appropriate emulation or other operation is done in a software exception handler, the
original instruction stream can be continued.

An Unimplemented Operation exception is taken in the following situations:

• when denormalized operands or tiny results are encountered for instructions not supporting denormal numbers
and where such are not handed by the FS/FO/FN bits.

3.8 Pipeline and Performance

This section describes the structure and operation of the FPU pipeline.

3.8.1 Pipeline Overview

The FPU has a seven stage pipeline to which the integer pipeline dispatches instructions. The FPU pipeline runs in
parallel with the 1004K integer pipeline. The FPU can be built to run at either the same frequency as the integer core
or at one-half the frequency of the integer core.

The FPU pipe is optimized for single-precision instructions, such that the basic multiply, ADD/SUB, and
MADD/MSUB instructions can be performed with single-cycle throughput and low latency. Executing double-preci-
sion multiply and MADD/MSUB instructions requires a second pass through the M1 stage to generate all 64 bits of
the product. Executing long latency instructions, such as DIV and RSQRT, extends the M1 stage. Figure 3.18 shows
the FPU pipeline.

Figure 3.18 FPU Pipeline

3.8.1.1 FR Stage - Decode, Register Read, and Unpack

The FR stage has the following functionality:

• The dispatched instruction is decoded for register accesses.

1004K integer pipeline

FPU instruction in general

FPU double multiplication (for example, MUL, MADD)

FPU long instructions (for example, DIV, RSQRT)

Dispatch

FR M1 M2 A1 A2 FP

FR M1 M1 M2 A1 A2

FW

FWFP

FR M1 M1 M2 A1 A2 FWFP

Second
Pass

Multiple cycles

RF AG EX MS ER WB

3.8 Pipeline and Performance

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 97

• Data is read from the register file.

• The operands are unpacked into an internal format.

3.8.1.2 M1 Stage - Multiply Tree

The M1 stage has the following functionality:

• A single-cycle multiply array is provided for single-precision data format multiplication, and two cycles are pro-
vided for double-precision data format multiplication.

• The long instructions, such as divide and square root, iterate for several cycles in this stage.

• Sum of exponents is calculated.

3.8.1.3 M2 Stage - Multiply Complete

The M2 stage has the following functionality:

• Multiplication is complete when the carry-save encoded product is compressed into binary.

• Rounding is performed.

• Exponent difference for addition path is calculated.

3.8.1.4 A1 Stage - Addition First Step

This stage performs the first step of the addition.

3.8.1.5 A2 Stage - Addition Second and Final Step

This stage performs the second and final step of the addition.

3.8.1.6 FP Stage - Result Pack

The FP stage has the following functionality:

• The result coming from the datapath is packed into IEEE 754 Standard format for the FPR register file.

• Overflow and underflow exceptional conditions are resolved.

3.8.1.7 FW Stage - Register Write

The result is written to the FPR register file.

3.8.2 Bypassing

The FPU pipeline implements extensive bypassing, as shown in Figure 3.19. Results do not need to be written into the
register file and read back before they can be used, but can be forwarded directly to an instruction already in the pipe.
Some bypassing is disabled when operating in 32-bit register file mode, the FP bit in the CP0 Status register is 0, due
to the paired even-odd 32-bit registers that provide 64-bit registers.

 Floating-Point Unit of the 1004Kf™ CPU

98 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Figure 3.19 Arithmetic Pipeline Bypass Paths

3.8.3 Repeat Rate and Latency

Table 3.33 shows the repeat rate and latency for the FPU instructions. Note that cycles related to floating point opera-
tions are listed in terms of FPU clocks.

Table 3.33 1004Kf CPU FPU Latency and Repeat Rate

Opcode1

1. Format: S = Single, D = Double, W = Word, L = Longword.

Latency
(cycles)

Repeat Rate
(cycles)

ABS.[S,D], NEG.[S,D], ADD.[S,D], SUB.[S,D], MUL.S, MADD.S,
MSUB.S, NMADD.S, NMSUB.S

4 1

MUL.D, MADD.D, MSUB.D, NMADD.D, NMSUB.D 5 2

RECIP.S 13 10

RECIP.D 25 21

RSQRT.S 17 14

RSQRT.D 35 31

DIV.S, SQRT.S 17 14

DIV.D, SQRT.D 32 29

C.cond.[S,D] to MOVF fmt and MOVT fmt instruction / MOVT, MOVN,
BC1 instruction

1 / 2 1

CVT.D.S, CVT.[S,D].[W,L] 4 1

CVT.S.D 6 1

CVT.[W,L].[S,D],
CEIL.[W,L].[S,D], FLOOR.[W,L].[S,D], ROUND.[W,L].[S,D],
TRUNC.[W,L].[S,D]

5 1

MOV.[S,D], MOVF.[S,D], MOVN.[S,D], MOVT.[S,D], MOVZ.[S,D] 4 1

LWC1, LDC1, LDXC1, LUXC1, LWXC1 3 1

MTC1, MFC1 2 1

FR M1 M2 A1 A2 FP FW

A2 bypass

FP bypass

FW bypass

Chapter 4

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 99

The MIPS® DSP Application-Specific Extension

The CPU may include support for the DSP ASE to accelerate a wide range of signal processing applications. Refer to
Volume IV-e of the MIPS32® Architecture Reference Manual [5] for a general description of the DSP ASE as well
as detailed instruction descriptions. More detailed programming information is contained in the DSP chapter of the
Programmers Guide.

4.1 Additional Register State for the DSP ASE

The DSP ASE adds four additional registers, three accumulator registers and a control register, per TC in the 1004K
line of processors. These registers require the operating system to recognize the presence of the DSP ASE and to
include these additional registers in the context save and restore operation.

4.1.1 Additional HI-LO Registers

Three additional HI-LO registers, which together with the existing one would comprise a total of four accumulator
registers. Many common DSP computations are accumulate functions, for example, the filter operation, convolution,
etc. The HI-LO accumulator in the MIPS architecture would be the destination for such instructions. The instructions
that target the accumulators use 2 bits to specify the destination accumulator, with the zero value referring to the orig-
inal accumulator.

4.1.2 DSP Control Register

A control register DSPControl used to hold extra state bits needed for efficient support of the DSP instructions. Figure
4.1 illustrates the bits in this register. Table 4.1 describes the use of the various bits and the instructions that refer the
fields. Table 4.2 lists the instructions that affect the ouflag field.

Figure 4.1 MIPS32® DSP ASE Control Register (DSPControl) Format

Table 4.1 MIPS® DSP ASE Control Register (DSPControl) Field Descriptions

Fields

Description
Read /
Write

Reset
State

Complian
ceName Bits

0 31:28 Not used in the MIPS32 architecture, but these are
reserved bits since they are used in the MIPS64 architec-
ture. Must be written as zero; returns zero on read.

0 0 Required

scount

31 06

ouflag

7

0

121516

ccond pos

24 23 13

c

14

0
2728 5

0EFI

 The MIPS® DSP Application-Specific Extension

100 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

The bits of the overflow flag ouflag field in the DSPControl register are set by a number of instructions. These bits are
sticky and can be reset only by an explicit write to these bits in the register (using the WRDSP instruction). The table
shows which bits can be set by which instructions and under what conditions.

ccond 27:24 Condition code bits set after a compare instruction. This
instruction will set the right-most bits as required by the
number of elements in the vector compare. The bits not
set by the instruction remain unchanged.

R/W 0 Required

ouflag 23:16 This field is written by hardware when certain instruc-
tions overflow or underflow and may have been satu-
rated if the saturate flag was turned on. See Table 4.2 for
a full list of which bits are set by what instructions.

R/W 0 Required

EFI 14 Extract Fail Indicator. This bit is set to 1 when an EXTP,
EXTPV, EXTPDP, or EXTPDP fails. These instructions
fail when there are insufficient bits to extract, that is, the
value of pos in DSPControl is less than the value of size
specified in the instruction. This bit is not sticky, that is,
each invocation of one of those four instructions will
reset the bit depending on whether or not the instruction
failed.

R/W 0 Required

c 13 Carry bit set and used by a special add instruction used
to implement a 64-bit add across two GPRs. Instruction
ADDSC sets the bit and instruction ADDWC uses this
bit.

R/W 0 Required

scount 12:7 This field is for use by the INSV instruction. The value
of this field is used to specify the size of the bit field to
be inserted.

R/W 0 Required

pos 5:0 This field is used by the variable insert instructions
INSV to specify the insert position.
It is also used to indicate the extract position for the
EXTP, EXTPV, EXTPDP, and EXTPDPV instructions.
The decrement pos (DP) variants of these instructions on
completion will have decremented the value of pos (by
the size amount).
The MTHLIP instruction will increment the pos value by
32 after copying the value of LO to HI.

R/W 0 Required

0 15:13 Must be written as zero; returns zero on read. 0 0 Reserved

Table 4.2 The Instructions that Set the ouflag bits in DSPControl

Bit Number Which Instruction Sets This Bit

16 When the destination is accumulator (HI-LO pair) zero, and an operation overflow or underflow occurs,
then this bit is set. Such instructions are: DPAQ_S, DPSQ_S, MULSAQ_S, MAQ_S.

17 Instructions as above, when the destination is accumulator (HI-LO pair) one.

Table 4.1 MIPS® DSP ASE Control Register (DSPControl) Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State

Complian
ceName Bits

4.2 Software Detection of the DSP ASE

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 101

4.2 Software Detection of the DSP ASE

In the Config3 CP0 register, bit 10 (DSPP), “DSP Present” is a static bit used to indicate the presence of the MIPS
DSP ASE in the 1004K CPU, as shown in Section 7.2.45 “Config3 Register (CP0 Register 16, Select 3)”. Software
may query the DSPP bit to check whether this processor has implemented the MIPS DSP ASE. The DSPP bit is a 1
on the 1004K CPU, since the DSP logic is always present.

Another bit, “DSP ASE Enable” bit 24 (MX) in the CP0 Status register, is a read/write bit used to enable access to the
extra instructions defined by the DSP ASE as well as the MTLO/HI, MFLO/HI that access accumulators ac1, ac2,
and ac3. The Status register is described in Section 7.2.32 “Status Register (CP0 Register 12, Select 0)”. Executing a
DSP ASE instruction or the flavor of Move instruction described above with this bit set to zero causes a DSP State
Disabled Exception. This uses exception code 26 in the CP0 Cause register. This allows the OS to do lazy con-
text-switching. Table 7.38 shows the Cause Register exception code fields.

18 Instructions as above, when the destination is accumulator (HI-LO pair) two.

19 Instructions as above, when the destination is accumulator (HI-LO pair) three.

20 Instructions that on a overflow/underflow will set this bit are: ADDQ, ADDQ_S, SUBQ, SUBQ_S,
ADDU, ADDU_S, SUBU, SUBU_S, ABSQ, ABSQ_S, and ADDWC.

21 Instructions that on a overflow/underflow will set this bit are: MULQ_RS, MULEQ_S, and MULEU_S.

22 Instructions that on a overflow/underflow will set this bit are: SHLL, SHLLV, SHLL_S, SHLLV_S,
PRECRQU_S. PRECRQ_RS.

23 Instructions that on a overflow/underflow will set this bit are: EXTR, EXTL, and variants.

Table 4.2 The Instructions that Set the ouflag bits in DSPControl

Bit Number Which Instruction Sets This Bit

 The MIPS® DSP Application-Specific Extension

102 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Chapter 5

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 103

Memory Management of the 1004K™ CPU

The 1004K CPU includes a Memory Management Unit (MMU) that interfaces between the execution unit and the
cache controller. The CPU contains either a Translation Lookaside Buffer (TLB) or a simpler Fixed Mapping (FM)
style MMU, specified as a build-time option when the CPU is implemented.

This chapter contains the following sections:

• Section 5.1 “Introduction”

• Section 5.2 “Modes of Operation”

• Section 5.3 “Translation Lookaside Buffer”

• Section 5.4 “Virtual-to-Physical Address Translation”

• Section 5.5 “Fixed Mapping MMU”

• Section 5.6 “System Control Coprocessor”

5.1 Introduction

The MMU in a 1004K CPU will translate any virtual address to a physical address before a request is sent to the
cache controllers for tag comparison or to the bus interface unit for an external memory reference. This translation is
a very useful feature for operating systems when trying to manage physical memory to accommodate multiple tasks
active in the same memory, possibly on the same virtual address but of course in different locations in physical mem-
ory. Other features handled by the MMU are protection of memory areas and defining the cache protocol.

Each VPE in the CPU features its own MMU. By default, the MMU is TLB based and each VPE will have a 16/32/64
dual-entry fully associative Joint TLB (JTLB). Optionally one or both of the VPEs can have a simple MMU that
translates addresses through a Fixed Mapping (FM) mechanism. When at least one of the VPEs uses a TLB based
MMU, two micro TLB arrays will also be instantiated to cache the latest translations in a smaller and faster array. The
instruction micro TLB (ITLB) has 3 shared entries, plus one private entry per TC. The data micro TLB (DTLB)
always contains 8 entries. When an address is translated, the appropriate micro TLB (ITLB or DTLB) is accessed
first. If the translation is not found in the micro TLB, the JTLB is accessed. If there is a miss in the JTLB, an excep-
tion is taken.

Figure 5.1 shows how the memory management unit interacts with cache accesses with a TLB, while Figure 5.2
shows the equivalent for the FM MMU.

 Memory Management of the 1004K™ CPU

104 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Figure 5.1 Address Translation During a Cache Access with TLB MMU

Figure 5.2 Address Translation During a Cache Access with FM MMU

Instruction Virtual
Address
(IVA)

Data
Virtual Address
(DVA)

JTLB

ITLB

Instruction
Cache
RAM

DTLB

Data Cache
RAM

IVA Entry

Entry

Data
Physical Address
(DPA)

Instruction
Physical Address
(IPA)

Tag (IPA)

Tag (DPA)

Comparator

Comparator

Data Hit/Miss

Instruction
Hit/Miss

DVA

Instruction Virtual
Address
(IVA)

Data
Virtual Address
(DVA)

FM MMU

Instruction
Cache
RAM

Data Cache
RAM

Data
Physical Address
(DPA)

Instruction
Physical Address
(IPA)

Tag (IPA)

Tag (DPA)

Comparator

Comparator

Data Hit/Miss

Instruction
Hit/Miss

FM MMU

5.2 Modes of Operation

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 105

5.2 Modes of Operation

A 1004K CPU supports four modes of operation:

• User mode

• Supervisor mode (only w/ TLB)

• Kernel mode

• Debug mode

User mode is most often used for application programs. Supervisor mode has an intermediate privilege level with
access to an additional region of memory and is only supported with the TLB-based MMU. Kernel mode is typically
used for handling exceptions and privileged operating system functions, including CP0 management and I/O device
accesses. Debug mode is used for software debugging and most likely occurs within a software development tool.

The address translation performed by the MMU depends on the mode in which the processor is operating.

5.2.1 Virtual Memory Segments

The Virtual memory segments are different depending on the mode of operation. Figure 5.3 shows the segmentation

for the 4 GByte (232 bytes) virtual memory space addressed by a 32-bit virtual address, for the four modes of opera-
tion.

The CPU enters Kernel mode both at reset and when an exception is recognized. While in Kernel mode, software has
access to the entire address space, as well as all CP0 registers. User mode accesses are limited to a subset of the vir-
tual address space (0x0000_0000 to 0x7FFF_FFFF) and can be inhibited from accessing CP0 functions. In User
mode, virtual addresses 0x8000_0000 to 0xFFFF_FFFF are invalid and cause an exception if accessed. Supervisor
mode adds access to sseg (0xC000_0000 to 0xDFFF_FFFF). kseg0, kseg1, and kseg3 will still cause exceptions if
they are accessed.

Debug mode is entered on a debug exception. While in Debug mode, the debug software has access to the same
address space and CP0 registers as for Kernel mode. In addition, while in Debug mode the CPU has access to the
debug segment dseg. This area overlays part of the kernel segment kseg3. dseg access in Debug mode can be turned
on or off, allowing full access to the entire kseg3 in Debug mode, if so desired.

 Memory Management of the 1004K™ CPU

106 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Figure 5.3 1004K™ CPU Virtual Memory Map

Each of the segments shown in Figure 5.3 are either mapped or unmapped. The following two sub-sections explain
the distinction. Then sections Section 5.2.2 “User Mode”, Section 5.2.4 “Kernel Mode”, and Section 5.2.5 “Debug
Mode” specify which segments are actually mapped and unmapped.

5.2.1.1 Unmapped Segments

An unmapped segment does not use the TLB or the FM to translate from virtual-to-physical addresses. Especially
after reset, it is important to have unmapped memory segments, because the TLB is not yet programmed to perform
the translation.

Unmapped segments have a fixed simple translation from virtual to physical address. This is much like the transla-
tions the FM provides for the CPU, but we will still make the distinction.

Except for kseg0, unmapped segments are always uncached. The cacheability of kseg0 is set in the K0 field of the
CP0 register Config (see Section 7.2.42 “Config Register (CP0 Register 16, Select 0)”).

useg kuseg kuseg

kseg0

kseg1

ksseg/kseg2

kseg3

ksseg/kseg2

kseg1

kseg0

kseg3

kseg3

dseg

User Mode Kernel Mode Debug ModeVirtual Address

0x7FFF_FFFF

0x8000_0000

0x9FFF_FFFF

0xBFFF_FFFF

0xDFFF_FFFF

0xFF1F_FFFF

0xFF3F_FFFF

0xFFFF_FFFF

0xA000_0000

0xC000_0000

0xE000_0000

0xFF20_0000

0xFF40_0000

0x0000_0000

suseg

sseg

Supervisor Mode

 Memory Management of the 1004K™ CPU

108 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Table 5.1 lists the characteristics of the User mode segment.

All valid user mode virtual addresses have their most significant bit cleared to 0, indicating that user mode can only
access the lower half of the virtual memory map. Any attempt to reference an address with the most significant bit set
while in user mode causes an address error exception.

The system maps all references to useg through the TLB or FM. For cores with a TLB, the virtual address is extended
with the contents of the 8-bit ASID field to form a unique virtual address before translation. Also bit settings within
the TLB entry for the page determine the cacheability of a reference. For FM MMU cores, the cacheability is set via
the KU field of the CP0 Config register.

5.2.3 Supervisor Mode

In supervisor mode, two virtual address spaces are available. A 2 GByte (231 bytes) uniform virtual address space
called the user segment (useg) as well as the 512MB (ksseg) are available. Figure 5.5 shows the location of supervisor
mode virtual address space.

Table 5.1 User Mode Segments

Address Bit
Value

Status Register

Segment
Name Address Range Segment Size

Bit Value

EXL ERL KSU

32-bit
A(31) = 0

0 0 2#10 useg 0x0000_0000 -->
0x7FFF_FFFF

2 GByte

(231 bytes)

5.2 Modes of Operation

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 109

Figure 5.5 Supervisor Mode Virtual Address Space

The user segment starts at address 0x0000_0000 and ends at address 0x7FFF_FFFF. The supervisor segment begins
at 0xC000_0000 and ends at 0xDFFF_FFFF. Accesses to all other addresses cause an address error exception.

The processor operates in Supervisor mode when the Status register contains the following bit values:

• KSU = 2#01

• EXL = 0

• ERL = 0

In addition to the above values, the DM bit in the Debug register must be 0.

Address Error

Address Error

Supervisor virtual address space
Mapped, 512MB

Address Error

suseg

kseg0

kseg1

sseg

kseg3

Mapped, 2048MB

0x0000_0000

0x8000_0000

0xA000_0000

0xC000_0000

0xE000_0000

0x7FFF_FFFF

0x9FFF_FFFF

0xBFFF_FFFF

0xDFFF_FFFF

0xFFFF_FFFF

 Memory Management of the 1004K™ CPU

110 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Table 5.1 lists the characteristics of the Supervisor mode segments.

The system maps all references to useg and ksseg through the TLB or FM. For cores with a TLB, the virtual address
is extended with the contents of the 8-bit ASID field to form a unique virtual address before translation. Also bit set-
tings within the TLB entry for the page determine the cacheability of a reference. For FM MMU cores, the cacheabil-
ity of useg and ksseg is set via the KU and K23 fields of the CP0 Config register respectively.

5.2.4 Kernel Mode

The processor operates in Kernel mode when the DM bit in the Debug register is 0 and the Status register contains one
or more of the following values:

• KSU = 2#00

• ERL = 1

• EXL = 1

When a non-debug exception is detected, EXL or ERL will be set and the processor will enter Kernel mode. At the end
of the exception handler routine, an Exception Return (ERET) instruction is generally executed. The ERET instruc-
tion jumps to the Exception PC, clears ERL, and clears EXL if ERL=0. This may return the processor to User mode.

Kernel mode virtual address space is divided into regions differentiated by the high-order bits of the virtual address,
as shown in Figure 5.6. Also, Table 5.3 lists the characteristics of the Kernel mode segments.

Table 5.2 Supervisor Mode Segments

Address Bit
Value

Status Register

Segment
Name Address Range Segment Size

Bit Value

EXL ERL KSU

32-bit
A(31) = 0

0 0 2#01 suseg 0x0000_0000 -->
0x7FFF_FFFF

2 GByte

(231 bytes)

32-bit
A(31:29) = 1102

0 0 2#01 sseg 0xC000_0000 ->
0xDFFF_FFFF

512MB

(229 bytes)

5.2 Modes of Operation

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 111

Figure 5.6 Kernel Mode Virtual Address Space

Kernel virtual address space
Unmapped, 512MB

Kernel virtual address space
Unmapped, Uncached, 512MB

Kernel virtual address space
Mapped, 512MB

Kernel virtual address space
Mapped, 512MB

kuseg

kseg0

kseg1

ksseg/kseg2

kseg3

Mapped, 2048MB

0x0000_0000

0x8000_0000

0xA000_0000

0xC000_0000

0xE000_0000

0x7FFF_FFFF

0x9FFF_FFFF

0xBFFF_FFFF

0xDFFF_FFFF

0xFFFF_FFFF

 Memory Management of the 1004K™ CPU

112 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

5.2.4.1 Kernel Mode, User Space (kuseg)

In Kernel mode, when the most-significant bit of the virtual address (A31) is cleared, the 32-bit kuseg virtual address

space is selected and covers the full 231 bytes (2 GBytes) of the current user address space mapped to addresses
0x0000_0000 - 0x7FFF_FFFF. For cores with TLBs, the virtual address is extended with the contents of the 8-bit
ASID field to form a unique virtual address.

When ERL = 1 in the Status register, the user address region becomes a 231-byte unmapped and uncached address
space. While in this setting, the kuseg virtual address maps directly to the same physical address, and does not include
the ASID field.

5.2.4.2 Kernel Mode, Kernel Space 0 (kseg0)

In Kernel mode, when the most-significant three bits of the virtual address are 1002, 32-bit kseg0 virtual address

space is selected; it is the 229-byte (512-MByte) kernel virtual space located at addresses 0x8000_0000 -
0x9FFF_FFFF. References to kseg0 are unmapped; the physical address selected is defined by subtracting
0x8000_0000 from the virtual address. The K0 field of the Config register controls cacheability.

5.2.4.3 Kernel Mode, Kernel Space 1 (kseg1)

In Kernel mode, when the most-significant three bits of the 32-bit virtual address are 1012, 32-bit kseg1 virtual

address space is selected. kseg1 is the 229-byte (512-MByte) kernel virtual space located at addresses 0xA000_0000 -
0xBFFF_FFFF. References to kseg1 are unmapped; the physical address selected is defined by subtracting
0xA000_0000 from the virtual address. Caches are disabled for accesses to these addresses, and physical memory (or
memory-mapped I/O device registers) are accessed directly.

Table 5.3 Kernel Mode Segments

Address Bit
Values

Status Register Is One
of These Values

Segment
Name Address Range Segment SizeKSU EXL ERL

A(31) = 0 (KSU = 002

or
EXL = 1

or
ERL = 1)

and
DM = 0

kuseg 0x0000_0000
through

0x7FFF_FFFF

2 GBytes (231 bytes)

A(31:29) = 1002 kseg0 0x8000_0000
through

0x9FFF_FFFF

512 MBytes (229

bytes)

A(31:29) = 1012 kseg1 0xA000_0000
through

0xBFFF_FFFF

512 MBytes (229

bytes)

A(31:29) = 1102 ksseg/kseg2 0xC000_0000
through

0xDFFF_FFFF

512 MBytes (229

bytes)

A(31:29) = 1112 kseg3 0xE000_0000
through

0xFFFF_FFFF

512 MBytes (229

bytes)

 Memory Management of the 1004K™ CPU

114 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

The unmapped kseg0 and kseg1 segments from kernel mode address space are available from debug mode, which
allows the debug handler to be executed from uncached and unmapped memory.

5.2.5.1 Conditions and Behavior for Access to drseg, EJTAG Registers

The behavior of access to the drseg address range at 0xFF30_0000 to 0xFF3F_FFFF is determined as shown in Table
5.5

Debug software is expected to read the debug control register (DCR) to determine which other memory mapped reg-
isters exist in drseg. The value returned in response to a read of any unimplemented memory mapped register is
unpredictable, and writes are ignored to any unimplemented register in the drseg. Refer to Chapter 11, “EJTAG
Debug Support in the 1004K™ CPU” on page 285 for more information on the DCR.

The allowed access size is limited for the drseg. Only word size transactions are allowed. Operation of the processor
is undefined for other transaction sizes.

5.2.5.2 Conditions and Behavior for Access to dmseg, EJTAG Memory

The behavior of access to the dmseg address range at 0xFF20_0000 to 0xFF2F_FFFF is determined by the table
shown in Table 5.6.

Table 5.4 Physical Address and Cache Attributes for dseg, dmseg, and drseg Address Spaces

Segment
Name

Sub-Segment
Name Virtual Address

Generates Physical
Address

Cache
Attribute

dseg dmseg 0xFF20_0000
through

0xFF2F_FFFF

dmseg maps to addresses
0x0_0000 - 0xF_FFFF in EJTAG

probe memory space.

drseg maps to the breakpoint reg-
isters 0x0_0000 - 0xF_FFFF

Uncached

drseg 0xFF30_0000
through

0xFF3F_FFFF

Table 5.5 Accesses to drseg Address Range

Transaction
LSNM bit in Debug

Register Access

Load / Store 1 Kernel mode address space (kseg3)

Fetch Don’t care drseg, see comments below

Load / Store 0

Table 5.6 Accesses to dmseg Address Range

Transaction
ProbEn bit in
DCR Register

LSNM bit in
Debug Register Access

Load / Store Don’t care 1 Kernel mode address space (kseg3)

Fetch 1 Don’t care dmseg

Load / Store 1 0

Fetch 0 Don’t care See comments below

Load / Store 0 0

 Memory Management of the 1004K™ CPU

116 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Table 5.7 and Table 5.8 explain each of the fields in a JTLB entry.

Table 5.7 TLB Tag Entry Fields

Field Name Description

PageMask[28:13] Page Mask Value. The Page Mask defines the page size by masking the appropriate
VPN2 bits from being involved in a comparison. It is also used to determine which
address bit is used to make the even-odd page (PFN0-PFN1) determination. See the table
below.

The PageMask column above shows all the legal values for PageMask. Because each
pair of bits can only have the same value, the physical entry in the JTLB will only save a
compressed version of the PageMask using only 8 bits. This is however transparent to
software, which will always work with a 16 bit field

VPN2[31:13] Virtual Page Number divided by 2. This field contains the upper bits of the virtual page
number. Because it represents a pair of TLB pages, it is divided by 2. Bits 31:29 are
always included in the TLB lookup comparison. Bits 28:13 are included depending on
the page size, defined by PageMask

G Global Bit. When set, indicates that this entry is global to all processes and/or threads
and thus disables inclusion of the ASID in the comparison.

ASID[7:0] Address Space Identifier. Identifies which process or thread this TLB entry is associated
with.

Table 5.8 TLB Data Entry Fields

Field Name Description

PFN0[31:12],
PFN1[31:12]

Physical Frame Number. Defines the upper bits of the physical address.

PageMask Page Size Even/Odd Bank Select Bit

00_0000_0000_0000_00 4KB VAddr[12]

00_0000_0000_0000_11 16KB VAddr[14]

00_0000_0000_0011_11 64KB VAddr[16]

00_0000_0000_1111_11 256KB VAddr[18]

00_0000_0011_1111_11 1MB VAddr[20]

00_0000_1111_1111_11 4MB VAddr[22]

00_0011_1111_1111_11 16MB VAddr[24]

00_1111_1111_1111_11 64MB VAddr[26]

11_1111_1111_1111_11 256MB VAddr[28]

5.3 Translation Lookaside Buffer

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 117

In order to fill an entry in the JTLB, software executes a TLBWI or TLBWR instruction (See Section 5.4.3 “TLB
Instructions”). Prior to invoking one of these instructions, several CP0 registers must be updated with the information
to be written to a TLB entry:

• PageMask is set in the CP0 PageMask register.

• VPN2, and ASID are set in the CP0 EntryHi register.

• PFN0, C0, D0, V0, and G bits are set in the CP0 EntryLo0 register.

• PFN1, C1, D1, V1, and G bits are set in the CP0 EntryLo1 register.

Note that the global bit “G” is part of both EntryLo0 and EntryLo1. The resulting “G” bit in the JTLB entry is the log-
ical AND between the two fields in EntryLo0 and EntryLo1. Please refer to Chapter 7, “CP0 Registers of the 1004K™
CPU” on page 167 for further details.

The address space identifier (ASID) helps to reduce the frequency of TLB flushing on a context switch. The existence
of the ASID allows multiple processes to exist in both the TLB and instruction caches. The ASID value is stored in
the EntryHi register and is compared to the ASID value of each entry.

5.3.2 Instruction TLB

The ITLB is a small fully associative TLB dedicated to perform translations for the instruction stream. The ITLB
only maps 4-Kbyte pages/sub-pages or 1-Mbyte pages/sub-pages.

C0[2:0],
C1[2:0]

Cacheability. Contains an encoded value of the cacheability attributes and determines
whether the page should be placed in the cache or not. The field is encoded as follows:

D0,
D1

“Dirty” or Write-enable Bit. Indicates that the page has been written and/or is writable. If
this bit is set, stores to the page are permitted. If the bit is cleared, stores to the page
cause a TLB Modified exception.

V0,
V1

Valid Bit. Indicates that the TLB entry and, thus, the virtual page mapping are valid. If
this bit is set, accesses to the page are permitted. If the bit is cleared, accesses to the page
cause a TLB Invalid exception.

Table 5.8 TLB Data Entry Fields (Continued)

Field Name Description

C[2:0] Name Coherency Attribute

0 WT Reserved

1 - Reserved

2 UC Uncached

3 WB Cacheable, noncoherent, write-back, write allocate

4 CWBE Cacheable, write-back, write-allocate, coherent, read
misses request Exclusive

5 CWB Cacheable, write-back, write-allocate, coherent, read
misses request Shared

6 - Reserved

7 UCA Uncached Accelerated

 Memory Management of the 1004K™ CPU

118 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

The ITLB is managed by hardware and is transparent to software. If a fetch address cannot be translated by the ITLB,
the JTLB is accessed trying to translate it in the following clock cycles. If successful, the translation information is
copied into the ITLB and bypassed to the tag comparators. This results in an ITLB miss penalty of at least 2 cycles.
Depending on the JTLB implementation or if it is busy with other operations, it may take additional cycles.

The ITLB array consists of 3 shared entries and 1 private entry per TC. On an ITLB miss, the new translation will be
loaded into the least recently used of the 3 shared ITLB entries. For each TC, if the displaced translation was more
recently used than its private entry, the displaced translation will be written into the private entry.

5.3.3 Data TLB

The DTLB is a small 8-entry, fully associative TLB which provides a faster translation for Load/Store addresses than
is possible with the JTLB. The DTLB only maps 4-Kbyte pages/sub-pages or 1-Mbyte pages/sub-pages.

Like the ITLB, the DTLB is managed by hardware and is transparent to software. For simultaneous ITLB and DTLB
misses, the DTLB has priority and will access the JTLB first.

5.4 Virtual-to-Physical Address Translation

Converting a virtual address to a physical address begins by comparing the virtual address from the processor with
the virtual addresses in the TLB. There is a match when the VPN of the address is the same as the VPN field of the
entry, and either:

• The Global (G) bit of both the even and odd pages of the TLB entry are set, or

• The ASID field of the virtual address is the same as the ASID field of the TLB entry

This match is referred to as a TLB hit. If there is no match, a TLB miss exception is taken by the processor and soft-
ware is allowed to refill the TLB from a page table of virtual/physical addresses in memory.

Figure 5.9 shows the logical translation of a virtual address into a physical address.

In this figure the virtual address is extended with an 8-bit ASID, which reduces the frequency of TLB flushing during
a context switch. This 8-bit ASID contains the number assigned to that process and is stored in the CP0 EntryHi regis-
ter.

5.4 Virtual-to-Physical Address Translation

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 121

5.4.2 Memory Space

To assist in controlling both the amount of mapped space and the replacement characteristics of various memory
regions, the 1004K CPU provides two mechanisms.

5.4.2.1 Page Sizes

First, the page size can be configured, on a per entry basis, to map different page sizes ranging from 4 KByte to 256
MByte, in multiples of 4. The CP0 PageMask register is loaded with the desired page size, which is then entered into
the TLB when a new entry is written. Thus, operating systems can provide special-purpose maps. For example, a typ-
ical frame buffer can be memory mapped with only one TLB entry.

The 1004K CPU implements the following page sizes:

4K, 16K, 64K, 256K, 1M, 4M, 16M, 64M, 256M.

Software may determine which page sizes are supported by writing all ones to the CP0 PageMask register, then read-
ing the value back. For additional information, see Section 7.2.23 “PageMask Register (CP0 Register 5, Select 0)”.

5.4.2.2 Replacement Algorithm

The second mechanism controls the replacement algorithm when a TLB miss occurs. To select a TLB entry to be
written with a new mapping, the 1004K CPU provides a random replacement algorithm. However, the processor also
provides a mechanism whereby a programmable number of mappings can be locked into the TLB via the CP0 Wired
register, thus avoiding random replacement. Please refer to Section 7.2.24 “Wired Register (CP0 Register 6, Select
0)” for further details.

5.5 Fixed Mapping MMU

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 123

5.4.4 Shared TLB mode

When a TLB-based MMU is implemented on both VPEs, it is possible to combine the two arrays into a single array
that will be used by both VPEs. This is done by setting MVPControlSTLB to 1 - this bit should only be changed by code
executing in an unmapped address region and only when there are no valid TLB entries.

• Both VPEs share the same address space (including ASID and VA - VPE # is not part of the TLB tag)

• Software is expected to keep the Wired register the same for the two VPEs and the value should allow at least 2
entries for random selection if TLBWR is going to be used.

• Hardware constrains TLBWR from overwriting the entry pointed at by the Index register of the opposite VPE (if
the P bit is cleared).

• This is needed to avoid interfering TLB maintenance code running on opposite VPE.

• The is done by stalling the TLBWR until Random does not match Index

• IndexP is writable to allow software to “park” the Index register when it is done operating on the TLB, allowing
all TLB entries to be used by a TLBWR

• Note that the maximum TLB size allowed by the architecture is 64 dual entries. Sharing 2x64 entry JTLBs would
result in half of the entries being ignored.

• Multiple TCs could potentially miss on the same address at nearly the same time and process the miss. The hard-
ware will squash the second TLB write to avoid multiple matches. TLBWx to VA/ASID already in JTLB will be
dropped. (Note that this can also happen to two TCs in one VPE even without sharing)

5.5 Fixed Mapping MMU

The 1004K CPU optionally implements a simple Fixed Mapping (FM) memory management unit that is smaller than
the a full translation lookaside buffer (TLB) and more easily synthesized. Like a TLB, the FM performs vir-
tual-to-physical address translation and provides attributes for the different memory segments. Those memory seg-
ments which are unmapped in a TLB implementation (kseg0 and kseg1) are translated identically by the FM MMU.

The FM also determines the cacheability of each segment. These attributes are controlled via bits in the Config regis-
ter. Table 5.10 shows the encoding for the K23 (bits 30:28), KU (bits 27:25) and K0 (bits 2:0) of the Config register.

TLBWI Translation Lookaside Buffer Write Index

TLBWR Translation Lookaside Buffer Write Random

Table 5.10 Cache Coherency Attributes

Config Register
Fields K23, KU, and

K0 Name Cache Coherency Attribute

0 - Reserved

1 - Reserved

Table 5.9 TLB Instructions (Continued)

Op Code Description of Instruction

 Memory Management of the 1004K™ CPU

124 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

With the FM MMU, no translation exceptions can be taken, although address errors are still possible.

The FM performs a simple translation to map from virtual addresses to physical addresses. This mapping is shown in
Figure 5.12. When ERL=1, useg and kuseg become unmapped and uncached just like they do if there is a TLB. The
ERL mapping is shown in Figure 5.13.

The ERL bit is usually never asserted by software. It is asserted by hardware after a Reset, NMI, or Cache Error. See
Section 6.8 “Exceptions” for further information on exceptions.

2 UC Uncached

3 WB Cacheable, noncoherent, write-back, write allocate

4 CWBE Cacheable, write-back, write-allocate, coherent, read misses request Exclusive

5 CWB Cacheable, write-back, write-allocate, coherent, read misses request Shared

6 - Reserved

7 UCA Uncached Accelerated

Table 5.11 Cacheability of Segments with Fixed Mapping Translation

Segment
Virtual Address

Range Cacheability

useg/kuseg 0x0000_0000-
0x7FFF_FFFF

Controlled by the KU field (bits 27:25) of the Config register. Refer
to Table 5.10 for the encoding.

kseg0 0x8000_0000-
0x9FFF_FFFF

Controlled by the K0 field (bits 2:0) of the Config register. See
Table 5.10 for the encoding.

kseg1 0xA000_0000-
0xBFFF_FFFF

Always uncacheable

kseg2 0xC000_0000-
0xDFFF_FFFF

Controlled by the K23 field (bits 30:28) of the Config register.
Refer to Table 5.10 for the encoding.

kseg3 0xE000_0000-
0xFFFF_FFFF

Controlled by K23 field (bits 30:28) of the Config register. Refer to
Table 5.10 for the encoding.

Table 5.10 Cache Coherency Attributes (Continued)

Config Register
Fields K23, KU, and

K0 Name Cache Coherency Attribute

Chapter 6

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 127

Exceptions and Interrupts in the 1004K™ CPU

Programs executing on the 1004K CPU receive exceptions from a number of sources, including translation lookaside
buffer (TLB) misses, arithmetic overflows, I/O interrupts, and system calls. When one of these exceptions is detected,
the normal sequence of instruction execution is suspended and the TC enters kernel mode.

In kernel mode interrupts are disabled and a software exception processor (also called a handler), located at a speci-
fici address, is executed. The handler saves the context of the TC, including the contents of the program counter, the
current operating mode, and the status of the interrupts (enabled or disabled). This context is saved so it can be
restored when the exception has been serviced.

When an exception occurs, the Exception Program Counter (EPC) register is loaded with a location where execution
can restart after the exception has been serviced. Most exceptions are precise, which mean that EPC can be used to
identify the instruction that caused the exception. For precise exceptions the restart location in the EPC register is the
address of the instruction that caused the exception or, if the instruction was executing in a branch delay slot, the
address of the branch instruction immediately preceding the delay slot. To distinguish between the two, software
must read the BD bit in the CP0 Cause register. Bus error exceptions and CP2 exceptions may be imprecise. For
imprecise exceptions the instruction that caused the exception can not be identified.

This chapter contains the following sections:

• Section 6.1 “Exception Conditions”

• Section 6.2 “Exception Priority”

• Section 6.3 “Interrupts”

• Section 6.4 “GPR Shadow Registers”

• Section 6.5 “Exception Vector Locations”

• Section 6.6 “General Exception Processing”

• Section 6.7 “Debug Exception Processing”

• Section 6.8 “Exceptions”

• Section 6.9 “Exception Handling and Servicing Flowcharts”

6.1 Exception Conditions

When an exception condition occurs, the relevant instruction and all those that follow it in the pipeline are cancelled.
Accordingly, any stall conditions and any later exception conditions that may have referenced this instruction are
inhibited; there is no benefit in servicing stalls for a cancelled instruction.

 Exceptions and Interrupts in the 1004K™ CPU

128 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

When an exception condition is detected on an instruction fetch, the CPU aborts that instruction and all instructions
that follow. When this instruction reaches the WB stage, the exception flag causes it to write various CP0 registers
with the exception state, change the current program counter (PC) to the appropriate exception vector address, and
clear the exception bits of earlier pipeline stages.

For most exception types this implementation allows all preceding instructions to complete execution and prevents all
subsequent instructions from completing. Thus, the value in the EPC (ErrorEPC for errors, or DEPC for debug excep-
tions) is sufficient to restart execution. It also ensures that exceptions are taken in the order of execution; an instruc-
tion taking an exception may itself be killed by an instruction further down the pipeline that takes an exception in a
later cycle.

A number of exceptions can be taken imprecisely - that is, they are taken after the instruction that caused them has
completed and potentially after following instructions have completed.

6.2 Exception Priority

Table 6.1 lists all possible exceptions, and the relative priority of each, highest to lowest. Several of these exceptions
can happen simultaneously, in that event the exception with the highest priority is the one taken.

Table 6.1 Priority of Exceptions

Exception Description

Reset Assertion of SI_Reset signal.

DSS EJTAG Debug Single Step.

DINT EJTAG Debug Interrupt. Caused by the assertion of the external EJ_DINT input, or by
setting the EjtagBrk bit in the ECR register.

DDBLImpr/DDBSImpr Debug Data Break Load/Store Imprecise

NMI Asserting edge of SI_NMI signal.

Interrupt Assertion of unmasked hardware or software interrupt signal.

Deferred Watch Deferred Watch (unmasked by K|DM->!(K|DM) transition).

DIB EJTAG debug hardware instruction break matched.

WATCH A reference to an address in one of the watch registers (fetch).

AdEL Fetch address alignment error.
Fetch reference to protected address.

TLBL Fetch TLB miss
Fetch TLB hit to page with V=0

ICache Error Parity error on ICache access

IBE Instruction fetch bus error.

DBp EJTAG Breakpoint (execution of SDBBP instruction).

Sys Execution of SYSCALL instruction.

Bp Execution of BREAK instruction.

CpU Execution of a coprocessor instruction for a coprocessor that is not enabled.

CEU Execution of a CorExtend instruction modifying local state when CorExtend is not
enabled.

DSPDis DSP ASE State Disabled

RI Execution of a Reserved Instruction.

6.3 Interrupts

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 129

6.3 Interrupts

Older 32-bit cores available from MIPS that implemented Release 1 of the Architecture included support for two soft-
ware interrupts, six hardware interrupts, and a special-purpose timer interrupt. The timer interrupt was provided
external to the CPU and typically combined with hardware interrupt 5 in an system-dependent manner. Interrupts
were handled either through the general exception vector (offset 16#180) or the special interrupt vector (16#200),
based on the value of CauseIV. Software was required to prioritize interrupts as a function of the CauseIP bits in the
interrupt handler prologue.

FPE Floating Point exception

C2E Coprocessor2 Exception

IS1 Implementation specific Coprocessor2 exception

Ov Execution of an arithmetic instruction that overflowed.

Tr Execution of a trap (when trap condition is true).

MT_ov A Thread Overflow condition, where a TC allocation request cannot be satisfied.

MT_under A Thread Underflow condition, where the termination and deallocation of a thread
leaves no dynamically allocatable TCs activated on a VPE.

MT_invalid An Invalid Qualifier condition, where a YIELD instruction specifies an invalid condition
for resuming execution.

MT_yield_sched A YIELD Scheduler exception condition, where a valid YIELD instruction could have
caused a rescheduling of a TC, and the YIELD intercept bit is set.

DDBL / DDBS EJTAG Data Address Break (address only)

WATCH A reference to an address in one of the watch registers (data).

AdEL Load address alignment error.
Load reference to protected address.

AdES Store address alignment error.
Store to protected address.

TLBL Load TLB miss.
Load TLB hit to page with V=0

TLBS Store TLB miss.
Store TLB hit to page with V=0

TLB Mod Store to TLB page with D=0.

DCache Error Cache parity error - imprecise

L2 Cache Error L2 Cache ECC error - imprecise

DBE Load or store bus error - imprecise

MT_GSS A Gating Storage Scheduler exception, where a Gating Storage load or store would have
blocked and caused a rescheduling of a TC, and the GS intercept bit is set.

MT_GS A Gating Storage exception condition, where implementation-dependent logic associ-
ated with gating or inter-thread communication (ITC) storage requires software interven-
tion.

Table 6.1 Priority of Exceptions (Continued)

Exception Description

 Exceptions and Interrupts in the 1004K™ CPU

130 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Release 2 of the Architecture, implemented by the 1004K CPU, adds an upward-compatible extension to the Release
1 interrupt architecture that supports vectored interrupts. In addition, Release 2 adds a new interrupt mode that sup-
ports the use of an external interrupt controller by changing the interrupt architecture.

Additionally, internal performance counters were added to the 1004K CPU. These counters can be set up to count
various events within the CPU. When the MSB of the counter gets set, it can trigger a performance counter interrupt.
This is handled like the timer interrupt - it is an output of the CPU and can be brought back into the CPU’s interrupt
pins in a system dependent manner.

The Fast Debug Channel feature in EJTAG provides a low overhead means for sending data between CPU software
and the EJTAG probe. It includes a pair of FIFOs for transmit and receive data. Software can define FIFO thresholds
for generating an interrupt. The fast debug channel interrupt is also routed similarly to the timer and performance
counter interrupts. The interrupt status is made available on an output pin and can be brought back into the CPU’s
interrupt pins.

6.3.1 Interrupt Modes

The 1004K CPU includes support for three interrupt modes, as defined by Release 2 of the Architecture:

• Interrupt compatibility mode, which acts identically to that in an implementation of Release 1 of the Architec-
ture.

• Vectored Interrupt (VI) mode, which adds the ability to prioritize and vector interrupts to a handler dedicated to
that interrupt, and to assign a GPR shadow set for use during interrupt processing. The presence of this mode is
denoted by the VInt bit in the Config3 register. This mode is architecturally optional; but it is always present on
the 1004K CPU, so the VInt bit will always read as a 1 for the 1004K CPU.

• External Interrupt Controller (EIC) mode, which redefines the way in which interrupts are handled to provide full
support for an external interrupt controller handling prioritization and vectoring of interrupts. This presence of
this mode denoted by the VEIC bit in the Config3 register. Again, this mode is architecturally optional. On the
1004K CPU, the VEIC bit is set externally by the static input, SI_EICPresent, to allow system logic to indicate
the presence of an external interrupt controller.

The reset state of the processor is to interrupt compatibility mode such that a processor supporting Release 2 of the
Architecture, like the 1004K CPU, is fully compatible with implementations of Release 1 of the Architecture.

Table 6.2 shows the current interrupt mode of the processor as a function of the coprocessor 0 register fields that can
affect the mode.

Table 6.2 Interrupt Modes

S
ta

tu
s B

E
V

C
au

se
IV

In
tC

tl
V

S

C
o

n
fi

g
3 V

IN
T

C
o

n
fi

g
3 V

E
IC

Interrupt Mode

1 x x x x Compatibility

x 0 x x x Compatibility

x x =0 x x Compatibility

0 1 ≠0 1 0 Vectored Interrupt

0 1 ≠0 x 1 External Interrupt Controller

6.3 Interrupts

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 131

6.3.1.1 Interrupt Compatibility Mode

This is the default interrupt mode for the processor and is entered when a Reset exception occurs. In this mode, inter-
rupts are non-vectored and dispatched though exception vector offset 16#180 (if CauseIV = 0) or vector offset
16#200 (if CauseIV = 1). This mode is in effect if any of the following conditions are true:

• CauseIV = 0

• StatusBEV = 1

• IntCtlVS = 0, which would be the case if vectored interrupts are not implemented, or have been disabled.

A typical software handler for interrupt compatibility mode might look as follows:

/*
 * Assumptions:
 * - CauseIV = 1 (if it were zero, the interrupt exception would have to
 * be isolated from the general exception vector before getting
 * here)
 * - GPRs k0 and k1 are available (no shadow register switches invoked in
 * compatibility mode)
 * - The software priority is IP7..IP0 (HW5..HW0, SW1..SW0)
 *
 * Location: Offset 0x200 from exception base
 */

IVexception:
mfc0 k0, C0_Cause /* Read Cause register for IP bits */
mfc0 k1, C0_Status /* and Status register for IM bits */
andi k0, k0, M_CauseIM /* Keep only IP bits from Cause */
and k0, k0, k1 /* and mask with IM bits */
beq k0, zero, Dismiss /* no bits set - spurious interrupt */
clz k0, k0 /* Find first bit set, IP7..IP0; k0 = 16..23 */
xori k0, k0, 0x17 /* 16..23 => 7..0 */
sll k0, k0, VS /* Shift to emulate software IntCtlVS */
la k1, VectorBase /* Get base of 8 interrupt vectors */
addu k0, k0, k1 /* Compute target from base and offset */
jr k0 /* Jump to specific exception routine */
nop

/*
 * Each interrupt processing routine processes a specific interrupt, analogous
 * to those reached in VI or EIC interrupt mode. Since each processing routine

0 1 ≠0 0 0 Can’t happen - IntCtlVS can not be non-zero if neither

Vectored Interrupt nor External Interrupt Controller mode
is implemented.

“x” denotes don’t care

Table 6.2 Interrupt Modes

S
ta

tu
s B

E
V

C
au

se
IV

In
tC

tl
V

S

C
o

n
fi

g
3 V

IN
T

C
o

n
fi

g
3 V

E
IC

Interrupt Mode

 Exceptions and Interrupts in the 1004K™ CPU

132 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

 * is dedicated to a particular interrupt line, it has the context to know
 * which line was asserted. Each processing routine may need to look further
 * to determine the actual source of the interrupt if multiple interrupt requests
 * are ORed together on a single IP line. Once that task is performed, the
 * interrupt may be processed in one of two ways:
 *
 * - Completely at interrupt level (e.g., a simply UART interrupt). The
 * SimpleInterrupt routine below is an example of this type.
 * - By saving sufficient state and re-enabling other interrupts. In this
 * case the software model determines which interrupts are disabled during
 * the processing of this interrupt. Typically, this is either the single
 * StatusIM bit that corresponds to the interrupt being processed, or some
 * collection of other StatusIM bits so that “lower” priority interrupts are
 * also disabled. The NestedInterrupt routine below is an example of this type.
 */

SimpleInterrupt:
/*
 * Process the device interrupt here and clear the interupt request
 * at the device. In order to do this, some registers may need to be
 * saved and restored. The coprocessor 0 state is such that an ERET
 * will simple return to the interrupted code.
 */

eret /* Return to interrupted code */

NestedException:
/*
 * Nested exceptions typically require saving the EPC and Status registers,
 * any GPRs that may be modified by the nested exception routine, disabling
 * the appropriate IM bits in Status to prevent an interrupt loop, putting
 * the processor in kernel mode, and re-enabling interrupts. The sample code
 * below can not cover all nuances of this processing and is intended only
 * to demonstrate the concepts.
 */

/* Save GPRs here, and setup software context */
mfc0 k0, C0_EPC /* Get restart address */
sw k0, EPCSave /* Save in memory */
mfc0 k0, C0_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
li k1, ~IMbitsToClear /* Get Im bits to clear for this interrupt */

/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */

and k0, k0, k1 /* Clear bits in copy of Status */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify mask, switch to kernel mode, */

/* re-enable interrupts */

/*
 * Process interrupt here, including clearing device interrupt.
 * In some environments this may be done with a thread running in
 * kernel or user mode. Such an environment is well beyond the scope of
 * this example.
 */

/*

6.3 Interrupts

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 133

 * To complete interrupt processing, the saved values must be restored
 * and the original interrupted code restarted.
 */

di /* Disable interrupts - may not be required */
lw k0, StatusSave /* Get saved Status (including EXL set) */
lw k1, EPCSave /* and EPC */
mtc0 k0, C0_Status /* Restore the original value */
mtc0 k1, C0_EPC /* and EPC */
/* Restore GPRs and software state */
eret /* Dismiss the interrupt */

6.3.1.2 Vectored Interrupt Mode

Vectored Interrupt mode builds on the interrupt compatibility mode by adding a priority encoder to prioritize pending
interrupts and to generate a vector with which each interrupt can be directed to a dedicated handler routine. This
mode also allows each interrupt to be mapped to a GPR shadow set for use by the interrupt handler. Vectored Inter-
rupt mode is in effect if all of the following conditions are true:

• Config3VInt = 1

• Config3VEIC = 0

• IntCtlVS ≠ 0

• CauseIV = 1

• StatusBEV = 0

In VI interrupt mode, the six hardware interrupts are interpreted as individual hardware interrupt requests. The timer,
performance counter, and fast debug channel interrupts are combined in a system-dependent way (external to the
CPU) with the hardware interrupts (the interrupt with which they are combined is indicated by the
IntCtlIPTI/IPCI/IPFDCI fields) to provide the appropriate relative priority of the those interrupts with that of the hardware
interrupts. The processor interrupt logic ANDs each of the CauseIP bits with the corresponding StatusIM bits. If any
of these values is 1, and if interrupts are enabled (StatusIE = 1, StatusEXL = 0, and StatusERL = 0), an interrupt is sig-
naled and a priority encoder scans the values in the order shown in Table 6.3.

Table 6.3 Relative Interrupt Priority for Vectored Interrupt Mode

Relative
Priority

Interrupt
Type

Interrupt
Source

Interrupt
Request

Calculated From

Vector Number
Generated by

Priority Encoder

Highest Priority Hardware HW5 IP7 and IM7 7

HW4 IP6 and IM6 6

HW3 IP5 and IM5 5

HW2 IP4 and IM4 4

HW1 IP3 and IM3 3

HW0 IP2 and IM2 2

Software SW1 IP1 and IM1 1

Lowest Priority SW0 IP0 and IM0 0

6.3 Interrupts

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 135

mfc0 k0, C0_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
mfc0 k0, C0_SRSCtl /* Save SRSCtl if changing shadow sets */
sw k0, SRSCtlSave
li k1, ~IMbitsToClear /* Get Im bits to clear for this interrupt */

/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */

and k0, k0, k1 /* Clear bits in copy of Status */
/* If switching shadow sets, write new value to SRSCtlPSS here */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify mask, switch to kernel mode, */

/* re-enable interrupts */
/*
 * If switching shadow sets, clear only KSU above, write target
 * address to EPC, and do execute an eret to clear EXL, switch
 * shadow sets, and jump to routine
 */

/* Process interrupt here, including clearing device interrupt */

/*
 * To complete interrupt processing, the saved values must be restored
 * and the original interrupted code restarted.
 */

di /* Disable interrupts - may not be required */
lw k0, StatusSave /* Get saved Status (including EXL set) */
lw k1, EPCSave /* and EPC */
mtc0 k0, C0_Status /* Restore the original value */
lw k0, SRSCtlSave /* Get saved SRSCtl */
mtc0 k1, C0_EPC /* and EPC */
mtc0 k0, C0_SRSCtl /* Restore shadow sets */
ehb /* Clear hazard */
eret /* Dismiss the interrupt */

6.3.1.3 External Interrupt Controller Mode

External Interrupt Controller Mode redefines the way that the processor interrupt logic is configured to provide sup-
port for an external interrupt controller. The interrupt controller is responsible for prioritizing all interrupts, including
hardware, software, timer, fast debug channel, and performance counter interrupts, and directly supplying to the pro-
cessor the vector number of the highest priority interrupt. EIC interrupt mode is in effect if all of the following condi-
tions are true:

• Config3VEIC = 1

• IntCtlVS ≠ 0

• CauseIV = 1

• StatusBEV = 0

In EIC interrupt mode, the processor sends the state of the software interrupt requests (CauseIP1..IP0) and the timer,
performance counter, and fast debug channel interrupt requests (CauseTI/PCI/FDCI) to the external interrupt controller,

 Exceptions and Interrupts in the 1004K™ CPU

136 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

where it prioritizes these interrupts in a system-dependent way with other hardware interrupts. The interrupt control-
ler can be a hard-wired logic block, or it can be configurable based on control and status registers. This allows the
interrupt controller to be more specific or more general as a function of the system environment and needs.

The external interrupt controller prioritizes its interrupt requests and produces the vector number of the highest prior-
ity interrupt to be serviced. The vector number, called the Requested Interrupt Priority Level (RIPL), is a 6-bit
encoded value in the range 0..63, inclusive. A value of 0 indicates that no interrupt requests are pending. The values
1..63 represent the lowest (1) to highest (63) RIPL for the interrupt to be serviced. The interrupt controller passes this
value on the 6 hardware interrupt line, which are treated as an encoded value in EIC interrupt mode.

StatusIPL (which overlays StatusIM7..IM2) is interpreted as the Interrupt Priority Level (IPL) at which the processor is
currently operating (with a value of zero indicating that no interrupt is currently being serviced). When the interrupt
controller requests service for an interrupt, the processor compares RIPL with StatusIPL to determine if the requested
interrupt has higher priority than the current IPL. If RIPL is strictly greater than StatusIPL, and interrupts are enabled
(StatusIE = 1, StatusEXL = 0, and StatusERL = 0) an interrupt request is signaled to the pipeline. When the processor
starts the interrupt exception, it loads RIPL into CauseRIPL (which overlays CauseIP7..IP2) and signals the external
interrupt controller to notify it that the request is being serviced. The interrupt exception uses the value of CauseRIPL

as the vector number. Because CauseRIPL is only loaded by the processor when an interrupt exception is signaled, it
is available to software during interrupt processing.

In EIC interrupt mode, the external interrupt controller is also responsible for supplying the GPR shadow set number
to use when servicing the interrupt. As such, the SRSMap register is not used in this mode, and the mapping of the
vectored interrupt to a GPR shadow set is done by programming (or designing) the interrupt controller to provide the
correct GPR shadow set number when an interrupt is requested. When the processor loads an interrupt request into
CauseRIPL, it also loads the GPR shadow set number into SRSCtlEICSS, which is copied to SRSCtlCSS when the inter-
rupt is serviced.

The operation of EIC interrupt mode is shown pictorially in Figure 6.2.

 Exceptions and Interrupts in the 1004K™ CPU

138 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

mfc0 k1, C0_SRSCtl /* Save SRSCtl if changing shadow sets */
sw k1, SRSCtlSave
/* If switching shadow sets, write new value to SRSCtlPSS here */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify IPL, switch to kernel mode, */

/* re-enable interrupts */
/*
 * If switching shadow sets, clear only KSU above, write target
 * address to EPC, and do execute an eret to clear EXL, switch
 * shadow sets, and jump to routine
 */

/* Process interrupt here, including clearing device interrupt */

/*
 * The interrupt completion code is identical to that shown for VI mode above.
 */

6.3.2 Generation of Exception Vector Offsets for Vectored Interrupts

For vectored interrupts (in either VI or EIC interrupt mode), a vector number is produced by the interrupt control
logic. This number is combined with IntCtlVS to create the interrupt offset, which is added to 16#200 to create the
exception vector offset. For VI interrupt mode, the vector number is in the range 0..7, inclusive. For EIC interrupt
mode, the vector number is in the range 1..63, inclusive (0 being the encoding for “no interrupt”). The IntCtlVS field
specifies the spacing between vector locations. If this value is zero (the default reset state), the vector spacing is zero
and the processor reverts to Interrupt Compatibility Mode. A non-zero value enables vectored interrupts, and Table
6.4 shows the exception vector offset for a representative subset of the vector numbers and values of the IntCtlVS

field.

Table 6.4 Exception Vector Offsets for Vectored Interrupts

Vector Number

Value of IntCtlVS Field

2#00001 2#00010 2#00100 2#01000 2#10000

0 16#0200 16#0200 16#0200 16#0200 16#0200

1 16#0220 16#0240 16#0280 16#0300 16#0400

2 16#0240 16#0280 16#0300 16#0400 16#0600

3 16#0260 16#02C0 16#0380 16#0500 16#0800

4 16#0280 16#0300 16#0400 16#0600 16#0A00

5 16#02A0 16#0340 16#0480 16#0700 16#0C00

6 16#02C0 16#0380 16#0500 16#0800 16#0E00

7 16#02E0 16#03C0 16#0580 16#0900 16#1000

•
•
•

61 16#09A0 16#1140 16#2080 16#3F00 16#7C00

62 16#09C0 16#1180 16#2100 16#4000 16#7E00

63 16#09E0 16#11C0 16#2180 16#4100 16#8000

6.4 GPR Shadow Registers

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 139

The general equation for the exception vector offset for a vectored interrupt is:

vectorOffset ← 16#200 + (vectorNumber × (IntCtlVS || 2#00000))

6.3.3 Global Interrupt Controller

An optional feature of the 1004K Coherent Processing System is a global interrupt controller (GIC). This block han-
dles the routing and masking of VPE-local interrupts, such as the timer, performance counter, and fast debug channel
interrupts, Inter-processor interrupts, and external interrupts. This block can be configured to support various num-
bers of external interrupts and to support any of the CPU interrupt modes.

An interactive GIC programming GUI is available to simplify the setup of desired event routing through the GIC. The
tool outputs a C-language function covering all required programming registers of the GIC.

More details about the GIC can be found in the MIPS32 1004K Coherent Processing System User’s Manual
(MD00597)

6.4 GPR Shadow Registers

Release 2 of the Architecture optionally removes the need to save and restore GPRs on entry to high priority inter-
rupts or exceptions, and to provide specified processor modes with the same capability. This is done by introducing
multiple copies of the GPRs, called shadow sets, and allowing privileged software to associate a shadow set with
entry to kernel mode via an interrupt vector or exception. The normal GPRs are logically considered shadow set zero.

The 1004K CPU does not provide any dedicated shadow sets. However, it is possible to use the register file of an
unused Thread Context as a shadow set. This is controlled by the SRSConf0 register (refer to Section
7.2.25 “SRSConf0 (CP0 Register 6, Select 1)”).

Shadow sets are new copies of the GPRs that can be substituted for the normal GPRs on entry to kernel mode via an
interrupt or exception. Once a shadow set is bound to a kernel mode entry condition, reference to GPRs work exactly
as one would expect, but they are redirected to registers that are dedicated to that condition. Privileged software may
need to reference all GPRs in the register file, even specific shadow registers that are not visible in the current mode.
The RDPGPR and WRPGPR instructions are used for this purpose. The CSS field of the SRSCtl register provides the
number of the current shadow register set, and the PSS field of the SRSCtl register provides the number of the previ-
ous shadow register set (that which was current before the last exception or interrupt occurred).

If the processor is operating in VI interrupt mode, binding of a vectored interrupt to a shadow set is done by writing to
the SRSMap register. If the processor is operating in EIC interrupt mode, the binding of the interrupt to a specific
shadow set is provided by the external interrupt controller, and is configured in an implementation-dependent way.
Binding of an exception or non-vectored interrupt to a shadow set is done by writing to the ESS field of the SRSCtl
register. When an exception or interrupt occurs, the value of SRSCtlCSS is copied to SRSCtlPSS, and SRSCtlCSS is set
to the value taken from the appropriate source. On an ERET, the value of SRSCtlPSS is copied back into SRSCtlCSS to
restore the shadow set of the mode to which control returns. More precisely, the rules for updating the fields in the
SRSCtl register on an interrupt or exception are as follows:

1. No field in the SRSCtl register is updated if any of the following conditions is true. In this case, steps 2 and 3 are
skipped.

• The exception is one that sets StatusERL: Reset or NMI.

• The exception causes entry into EJTAG Debug Mode

 Exceptions and Interrupts in the 1004K™ CPU

140 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

• StatusBEV = 1

• StatusEXL = 1

2. SRSCtlCSS is copied to SRSCtlPSS

3. SRSCtlCSS is updated from one of the following sources:

• The appropriate field of the SRSMap register, based on IPL, if the exception is an interrupt, CauseIV = 1,
Config3VEIC = 0, and Config3VInt = 1. These are the conditions for a vectored interrupt.

• The EICSS field of the SRSCtl register if the exception is an interrupt, CauseIV = 1, and Config3VEIC = 1.
These are the conditions for a vectored EIC interrupt.

• The ESS field of the SRSCtl register in any other case. This is the condition for a non-interrupt exception, or
a non-vectored interrupt.

Similarly, the rules for updating the fields in the SRSCtl register at the end of an exception or interrupt are as follows:

1. No field in the SRSCtl register is updated if any of the following conditions is true. In this case, step 2 is skipped.

• A DERET is executed

• An ERET is executed with StatusERL = 1

2. SRSCtlPSS is copied to SRSCtlCSS

These rules have the effect of preserving the SRSCtl register in any case of a nested exception or one which occurs
before the processor has been fully initialized (StatusBEV = 1).

Privileged software may switch the current shadow set by writing a new value into SRSCtlPSS, loading EPC with a
target address, and doing an ERET.

6.5 Exception Vector Locations

The Reset, Soft Reset, NMI and EJTAG Debug exceptions are vectored to a specific location as shown in Table 6.5
and Table 6.6. Addresses for all other exceptions are a combination of a vector offset and a vector base address. In
Release 1 of the architecture, the vector base address was fixed. In Release 2 of the architecture, software is allowed
to specify the vector base address via the EBase register for exceptions that occur when StatusBEV equals 0. Another
degree of flexibility in the selection of the vector base address, for use when StatusBEV equals 1, is provided via a set
of input pins, SI_UseExceptionBase and SI_ExceptionBase[29:12]. Table 6.5 gives the vector base address when
SI_UseExceptionBase equals 0, as a function of the exception and whether the BEV bit is set in the Status register.
Table 6.6 gives the vector base addresses when SI_UseExceptionBase equals 1. As can be seen in Table 6.6, when
SI_UseExceptionBase equals 1, the exception vectors for cases where StatusBEV equals 0 are not affected.

In the 1004K Coherent Processing System, SI_UseExceptionBase is tied to 1 and the SI_ExceptionBase input is pro-
grammable via Global Configuration Register settings. The default value of the control register matches the CPU
behavior if SI_UseExceptionBase had been set to 0. Refer to the 1004K Coherent Processing System User’s Manual
[8] for more details.

6.5 Exception Vector Locations

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 141

Table 6.7 gives the offsets from the vector base address as a function of the exception. Note that the IV bit in the
Cause register causes Interrupts to use a dedicated exception vector offset, rather than the general exception vector.
Table 6.4 gives the offset from the base address in the case where StatusBEV = 0 and CauseIV = 1. Table 6.8 com-
bines these two tables into one that contains all possible vector addresses as a function of the state that can affect the
vector selection. To avoid complexity in the table, it is assumed that IntCtlVS is 0.

Table 6.6 Exception Vector Base Addresses when SI_UseExceptionBase equals 1

Table 6.5 Exception Vector Base Addresses when SI_UseExceptionBase equals 0

Exception

StatusBEV

0 1

Reset, NMI 16#BFC0.0000

EJTAG Debug with
ECRProbEn = 1

16#FF20.0200

EJTAG Debug with
ECRProbEn = 0 and

DCRRdVec= 1

 DebugVectorAddr[31:0]

EJTAG Debug with
ECRProbEn = 0 and

DCRRdVec = 0

16#BFC0.0480

Cache Error EBase31 30 || 1 ||
EBase28 12 || 16#000

Note that EBase31 30 have the fixed

value 2#10

16#BFC0.0300

Other EBase31 12 || 16#000
Note that EBase31 30 have the fixed

value 2#10

16#BFC0.0200

‘||’ denotes bit string concatenation

Exception

StatusBEV

0 1

Reset, NMI 2#10 || SI_ExceptionBase[29:12] || 16#000

EJTAG Debug with
ECRProbEn = 1

16#FF20.0200

EJTAG Debug with
ECRProbEn = 0 and

DCRRdVec=1

 DebugVectorAddr[31:0]
Note that DebugVectorAddr[31:30] have the fixed value 2#10
Bit [29] is forced to 2#1 for a cache error in debug mode

EJTAG Debug with
ECRProbEn = 0 and

DCRRdVec = 0

 2#10 ||SI_ExceptionBase[29:12] || 16#480
Bit [29] is forced to 2#1 for a cache error in debug mode

 Exceptions and Interrupts in the 1004K™ CPU

142 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Cache Error EBase31 30 || 1 ||
EBase28 12 || 16#000

Note that EBase31 30 have the fixed

value 2#10

2#101 || SI_ExceptionBase[28:12] || 16#300

Other EBase31 12 || 16#000
Note that EBase31 30 have the fixed

value 2#10

2#10 || SI_ExceptionBase[29:12] || 16#200

‘||’ denotes bit string concatenation

Table 6.7 Exception Vector Offsets

Exception Vector Offset

TLB Refill, EXL = 0 16#000

General Exception 16#180

Interrupt, CauseIV = 1 16#200 (this is the base of the vectored inter-
rupt table when StatusBEV = 0)

Reset, NMI None (Uses Reset Base Address)

Table 6.8 Exception Vectors

Exception S
I_

U
se

E
xc

ep
ti

o
n

B
as

e

S
ta

tu
s B

E
V

S
ta

tu
s E

X
L

C
au

se
IV

E
JT

A
G

 P
ro

b
E

n

D
C

R
 R

d
V

ec

Vector

Assumes that IntCtlVS = 0

Reset, NMI 0 x x x x x 16#BFC0.0000

Reset, NMI 1 x x x x x 2#10 || SI_ExceptionBase[29:12] || 16#000

EJTAG
Debug (Cache
Error in
Debug Mode)

0 x x x 0 1 2#101 || DebugVectorAddr[28:7] || 16#00

EJTAG
Debug (other)

0 x x x 0 1 2#10 || DebugVectorAddr[29:7] || 16#00

EJTAG
Debug (all)

0 x x x 0 0 16#BFC0.0480

EJTAG
Debug (Cache
Error in
Debug Mode))

1 x x x 0 0 2#101 || SI_ExceptionBase[28:12] || 16#480

EJTAG
Debug (other)

1 x x x 0 0 2#10 || SI_ExceptionBase[29:12] || 16#480

Exception

StatusBEV

0 1

6.6 General Exception Processing

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 143

6.6 General Exception Processing

With the exception of Reset, NMI, cache error, and EJTAG Debug exceptions, which have their own special process-
ing as described below, exceptions have the same basic processing flow:

• If the EXL bit in the Status register is zero, the EPC register is loaded with the PC at which execution will be
restarted and the BD bit is set appropriately in the Cause register (see Table 7.38). The value loaded into the EPC
register is dependent on whether the processor implements the MIPS16 ASE, and whether the instruction is in
the delay slot of a branch or jump which has delay slots. Table 6.9 shows the value stored in each of the CP0 PC
registers, including EPC. For implementations of Release 2 of the Architecture if StatusBEV = 0, the CSS field in
the SRSCtl register is copied to the PSS field, and the CSS value is loaded from the appropriate source.

EJTAG
Debug (all)

x x x x 1 x 16#FF20.0200

TLB Refill x 0 1 x x x 16#EBase[31:12] || 16#180

TLB Refill 0 1 0 x x x 16#BFC0.0200

TLB Refill 1 1 0 x x x 2#10 || SI_ExceptionBase[29:12] || 16#200

TLB Refill 0 1 1 x x x 16#BFC0.0380

TLB Refill 1 1 1 x x x 2#10 || SI_ExceptionBase[29:12] || 16#380

Cache Error x 0 x x x x 16#EBase[31:30] || 2#1 || EBase[28:12] || 16#100

Cache Error 0 1 x x x x 16#BFC0.0300

Cache Error 1 1 x x x x 2#101 || SI_ExceptionBase[28:12] || 16#300

Interrupt x 0 0 0 x x 16#EBase[31:12] || 16#180

Interrupt x 0 0 1 x x 16#EBase[31:12] || 16#200

Interrupt 0 1 0 0 x x 16#BFC0.0380

Interrupt 1 1 0 0 x x 2#10 || SI_ExceptionBase[29:12] || 16#380

Interrupt 0 1 0 1 x x 16#BFC0.0400

Interrupt 1 1 0 1 x x 2#10 || SI_ExceptionBase[29:12] || 16#400

All others x 0 x x x x 16#EBase[31:12] || 16#180

All others 0 1 x x x x 16#BFC0.0380

All others 1 1 x x x x 2#10 || SI_ExceptionBase[29:12] || 16#380

‘x’ denotes don’t care, ‘||’ denotes bit string concatenation

Table 6.8 Exception Vectors (Continued)

Exception S
I_

U
se

E
xc

ep
ti

o
n

B
as

e

S
ta

tu
s B

E
V

S
ta

tu
s E

X
L

C
au

se
IV

E
JT

A
G

 P
ro

b
E

n

D
C

R
 R

d
V

ec

Vector

Assumes that IntCtlVS = 0

 Exceptions and Interrupts in the 1004K™ CPU

144 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

If the EXL bit in the Status register is set, the EPC register is not loaded and the BD bit is not changed in the
Cause register. For implementations of Release 2 of the Architecture, the SRSCtl register is not changed.

• The CE, and ExcCode fields of the Cause registers are loaded with the values appropriate to the exception. The
CE field is loaded, but not defined, for any exception type other than a coprocessor unusable exception.

• The EXL bit is set in the Status register.

• The processor is started at the exception vector.

The value loaded into EPC represents the restart address for the exception and need not be modified by exception
handler software in the normal case. Software need not look at the BD bit in the Cause register unless it wishes to
identify the address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. This is noted in the descrip-
tion of each exception type below.

Operation:

/* If StatusEXL is 1, all exceptions go through the general exception vector */
/* and neither EPC nor CauseBD nor SRSCtl are modified */
if StatusEXL = 1 then

vectorOffset ← 16#180
else

/* For implementations that include the MIPS16e ASE, calculate potential */
/* PC adjustment for exceptions in the delay slot */
if Config1CA = 0 then

restartPC ← PC
branchAdjust ← 4 /* Possible adjustment for delay slot */

else
restartPC ← PC31..1 || ISAMode
if (ISAMode = 0) or ExtendedMIPS16Instruction

branchAdjust ← 4 /* Possible adjustment for 32-bit MIPS delay slot */
else

branchAdjust ← 2 /* Possible adjustment for MIPS16 delay slot */
endif

endif
if InstructionInBranchDelaySlot then

EPC ← restartPC - branchAdjust/* PC of branch/jump */
CauseBD ← 1

else
EPC ← restartPC /* PC of instruction */
CauseBD ← 0

Table 6.9 Value Stored in EPC, ErrorEPC, or DEPC on an Exception

MIPS16
Implemented?

In Branch/Jump
Delay Slot? Value stored in EPC/ErrorEPC/DEPC

No No Address of the instruction

No Yes Address of the branch or jump instruction (PC-4)

Yes No Upper 31 bits of the address of the instruction, combined
with the ISA Mode bit

Yes Yes Upper 31 bits of the branch or jump instruction (PC-2 in
the MIPS16 ISA Mode and PC-4 in the 32-bit ISA Mode),
combined with the ISA Mode bit

6.6 General Exception Processing

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 145

endif

/* Compute vector offsets as a function of the type of exception */
NewShadowSet ← SRSCtlESS /* Assume exception, Release 2 only */
if ExceptionType = TLBRefill then

vectorOffset ← 16#000
elseif (ExceptionType = Interrupt) then

if (CauseIV = 0) then
vectorOffset ← 16#180

else
if (StatusBEV = 1) or (IntCtlVS = 0) then

vectorOffset ← 16#200
else

if Config3VEIC = 1 then
VecNum ← CauseRIPL
NewShadowSet ← SRSCtlEICSS

else
VecNum ← VIntPriorityEncoder()
NewShadowSet ← SRSMapIPL×4+3..IPL×4

endif
vectorOffset ← 16#200 + (VecNum × (IntCtlVS || 2#00000))

endif /* if (StatusBEV = 1) or (IntCtlVS = 0) then */
endif /* if (CauseIV = 0) then */

endif /* elseif (ExceptionType = Interrupt) then */

/* Update the shadow set information for an implementation of */
/* Release 2 of the architecture */
if ((ArchitectureRevision ≥ 2) and (SRSCtlHSS > 0) and (StatusBEV = 0) and

(StatusERL = 0)) then
SRSCtlPSS ← SRSCtlCSS
SRSCtlCSS ← NewShadowSet

endif
endif /* if StatusEXL = 1 then */

CauseCE ← FaultingCoprocessorNumber
CauseExcCode ← ExceptionType
StatusEXL ← 1

if Config1CA = 1 then
ISAMode ← 0

endif

/* Calculate the vector base address */
if StatusBEV = 1 then

vectorBase ← 16#BFC0.0200
else

if ArchitectureRevision ≥ 2 then
/* The fixed value of EBase31..30 forces the base to be in kseg0 or kseg1 */
vectorBase ← EBase31..12 || 16#000

else
vectorBase ← 16#8000.0000

endif
endif

/* Exception PC is the sum of vectorBase and vectorOffset */
PC ← vectorBase31..30 || (vectorBase29..0 + vectorOffset29..0)

/* No carry between bits 29 and 30 */

 Exceptions and Interrupts in the 1004K™ CPU

146 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

6.7 Debug Exception Processing

All debug exceptions have the same basic processing flow:

• The DEPC register is loaded with the program counter (PC) value at which execution will be restarted and the
DBD bit is set appropriately in the Debug register. The value loaded into the DEPC register is the current PC if
the instruction is not in the delay slot of a branch, or the PC-4 of the branch if the instruction is in the delay slot
of a branch.

• The DSS, DBp, DDBL, DDBS, DIB and DINT bits (D* bits at [5:0]) in the Debug register are updated appropri-
ately depending on the debug exception type.

• Halt and Doze bits in the Debug register are updated appropriately.

• DM bit in the Debug register is set to 1.

• The processor is started at the debug exception vector.

The value loaded into DEPC represents the restart address for the debug exception and need not be modified by the
debug exception handler software in the usual case. Debug software need not look at the DBD bit in the Debug regis-
ter unless it wishes to identify the address of the instruction that actually caused the debug exception.

A unique debug exception is indicated through the DSS, DBp, DDBL, DDBS, DIB and DINT bits (D* bits at [5:0])
in the Debug register.

No other CP0 registers or fields are changed due to the debug exception, thus no additional state is saved.

Operation:

if InstructionInBranchDelaySlot then
DEPC ← PC-4
DebugDBD ← 1

else
DEPC ← PC
DebugDBD ← 0

endif
DebugD* bits at at [5:0] ← DebugExceptionType
DebugHalt ← HaltStatusAtDebugException
DebugDoze ← DozeStatusAtDebugException
DebugDM ← 1
if EJTAGControlRegisterProbTrap = 1 then

PC ← 0xFF20_0200
else

if DebugControlRegisterRDVec = 1 then
if CacheErr then

PC ← 2#101 || DebugVectorAddr28..7 || 2#0000000
else

PC ← 2#10 || DebugVectorAddr29..7 || 2#0000000
else

PC ← 0xBFC0_0480
endif

6.8 Exceptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 147

The same debug exception vector location is used for all debug exceptions. The location is determined by the Prob-
Trap bit in the EJTAG Control register (ECR) and the RDVec bit in the Debug Control Register (DCR), as shown in
Table 6.10.

6.8 Exceptions

The following subsections describe each of the exceptions listed in the same sequence as shown in Table 6.1.

6.8.1 Reset Exception

A reset exception occurs when the SI_Reset signal is asserted to the processor. This exception is not maskable. When
a Reset exception occurs, the processor performs a full reset initialization, including aborting state machines, estab-
lishing critical state, and generally placing the processor in a state in which it can execute instructions from uncached,
unmapped address space. On a Reset exception, the state of the processor is not defined, with the following excep-
tions:

• The Random register is initialized to the number of TLB entries - 1.

• The Wired register is initialized to zero.

• The Config register is initialized with its boot state.

• The RP, BEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.

• The I, R, and W fields of the WatchLo register are initialized to 0.

• The ErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instruc-
tion in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC. Note that this value may or
may not be predictable.

• PC is loaded with 0xBFC0_0000.

Cause Register ExcCode Value:

None

Additional State Saved:

None

Entry Vector Used:

Reset (0xBFC0_0000)

Table 6.10 Debug Exception Vector Addresses

ProbTrap bit in
ECR Register

RDVec bit in
DCR Register Debug Exception Vector Address

0 0 0xBFC0_0480

0 1 2#00 || DebugVectorAddr29 7 || 2#0000000 or

2#101 || DebugVectorAddr28 7 || 2#0000000 (Cache Error)

1 x 0xFF20_0200 in dmseg

 Exceptions and Interrupts in the 1004K™ CPU

148 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Operation:

Random ← TLBEntries - 1
Wired ← 0
Config ← ConfigurationState
StatusRP ← 0
StatusBEV ← 1
StatusTS ← 0
StatusSR ← 0
StatusNMI ← 0
StatusERL ← 1
WatchLoI ← 0
WatchLoR ← 0
WatchLoW ← 0
if InstructionInBranchDelaySlot then

ErrorEPC ← PC - 4
else

ErrorEPC ← PC
endif
PC ← 0xBFC0_0000

6.8.2 Debug Single Step Exception

A debug single step exception occurs after the TC has executed one/two instructions in non-debug mode, when
returning to non-debug mode after debug mode. One instruction is allowed to execute when returning to an instruc-
tion without a delay slot, otherwise two instructions are allowed to execute since the jump/branch and the instruction
in the delay slot are executed as one step. Debug single step exceptions are enabled by the SSt bit in the Debug regis-
ter, and are always disabled for the first one/two instructions after a DERET.

The DEPC register points to the instruction on which the debug single step exception occurred, which is also the next
instruction to single step or execute when returning from debug mode. So the DEPC will not point to the instruction
which has just been single stepped, but rather the following instruction. The DBD bit in the Debug register is never
set for a debug single step exception, since the jump/branch and the instruction in the delay slot is executed in one
step.

Exceptions occurring on the instruction(s) executed with debug single step exception enabled are taken even though
debug single step was enabled. For a normal exception (other than reset), a debug single step exception is then taken
on the first instruction in the normal exception handler. Debug exceptions are unaffected by single step mode, e.g.
returning to a SDBBP instruction with debug single step exceptions enabled causes a debug software breakpoint
exception, and the DEPC will point to the SDBBP instruction. However, returning to an instruction (not jump/branch)
just before the SDBBP instruction, causes a debug single step exception with the DEPC pointing to the SDBBP
instruction.

To ensure proper functionality of single step, the debug single step exception has priority over all other exceptions,
except reset and soft reset.

Debug Register Debug Status Bit Set

DSS

Additional State Saved

None

Entry Vector Used

Debug exception vector

6.8 Exceptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 149

6.8.3 Debug Interrupt Exception

A debug interrupt exception is either caused by the EjtagBrk bit in the EJTAG Control register (controlled through the
TAP), or caused by the debug interrupt request signal to the VPE.

The debug interrupt exception is an asynchronous debug exception which is taken as soon as possible, but with no
specific relation to the executed instructions. The DEPC register is set to the instruction where execution should con-
tinue after the debug handler is through. The DBD bit is set based on whether the interrupted instruction was execut-
ing in the delay slot of a branch.

Debug Register Debug Status Bit Set

DINT

Additional State Saved

None

Entry Vector Used

Debug exception vector

6.8.4 Non-Maskable Interrupt (NMI) Exception

A non maskable interrupt exception occurs when the SI_NMI signal is asserted to the processor. SI_NMI is an edge
sensitive signal - only one NMI exception will be taken each time it is asserted. An NMI exception occurs only at
instruction boundaries, so it does not cause any reset or other hardware initialization. The state of the cache, memory,
and other processor states are consistent and all registers are preserved, with the following exceptions:

• The BEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.

• The ErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instruc-
tion in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC.

• PC is loaded with 0xBFC0_0000.

Cause Register ExcCode Value:

None

Additional State Saved:

None

Entry Vector Used:

Reset (0xBFC0_0000)

Operation:

StatusBEV ← 1
StatusTS ← 0
StatusSR ← 0
StatusNMI ← 1
StatusERL ← 1
if InstructionInBranchDelaySlot then

ErrorEPC ← PC - 4
else

 Exceptions and Interrupts in the 1004K™ CPU

150 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

ErrorEPC ← PC
endif
PC ← 0xBFC0_0000

6.8.5 Interrupt Exception

The interrupt exception occurs when one or more of the six hardware or two software interrupt requests is enabled by
the Status register and the interrupt input is asserted. See Section 6.3 “Interrupts” for more details about the process-
ing of interrupts.

Register ExcCode Value:

Int

Additional State Saved:

Entry Vector Used:

See Section 6.3.2 “Generation of Exception Vector Offsets for Vectored Interrupts” for the entry vector used,
depending on the interrupt mode the processor is operating in.

6.8.6 Debug Instruction Break Exception

A debug instruction break exception occurs when an instruction hardware breakpoint matches an executed instruc-
tion. The DEPC register and DBD bit in the Debug register indicate the instruction that caused the instruction hard-
ware breakpoint to match. This exception can only occur if instruction hardware breakpoints are implemented.

Debug Register Debug Status Bit Set:

DIB

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

6.8.7 Watch Exception — Instruction Fetch or Data Access

The Watch facility provides a software debugging vehicle by initiating a watch exception when an instruction or data
reference matches the address information stored in the WatchHi and WatchLo registers. A Watch exception is taken
immediately if the EXL and ERL bits of the Status register are both zero and the DM bit of the Debug is also zero. If
any of those bits is a one at the time that a watch exception would normally be taken, then the WP bit in the Cause
register is set, and the exception is deferred until all three bits are zero. Software may use the WP bit in the Cause reg-
ister to determine if the EPC register points at the instruction that caused the watch exception, or if the exception
actually occurred while in kernel mode.

The Watch exception can occur on either an instruction fetch or a data access. Watch exceptions that occur on an
instruction fetch have a higher priority than watch exceptions that occur on a data access.

Table 6.11 Register States an Interrupt Exception

Register State Value

CauseIP indicates the interrupts that are pending.

6.8 Exceptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 151

Register ExcCode Value:

WATCH

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

6.8.8 Address Error Exception — Instruction Fetch/Data Access

An address error exception occurs on an instruction or data access when an attempt is made to execute one of the fol-
lowing:

• Fetch an instruction, load a word, or store a word that is not aligned on a word boundary

• Load or store a halfword that is not aligned on a halfword boundary

• Reference the kernel address space from user mode

Note that in the case of an instruction fetch that is not aligned on a word boundary, PC is updated before the condition
is detected. Therefore, both EPC and BadVAddr point to the unaligned instruction address. In the case of a data access
the exception is taken if either an unaligned address or an address that was inaccessible in the current processor mode
was referenced by a load or store instruction.

Cause Register ExcCode Value:

ADEL: Reference was a load or an instruction fetch

ADES: Reference was a store

Table 6.12 Register States on a Watch Exception

Register State Value

CauseWP Indicates that the watch exception was deferred until after
StatusEXL, StatusERL, and DebugDM were zero. This bit

directly causes a watch exception, so software must clear
this bit as part of the exception handler to prevent a watch
exception loop at the end of the current handler execution.

WatchHiI,R,W Set for the watch channel that matched, and indicates
which type of match there was.

 Exceptions and Interrupts in the 1004K™ CPU

152 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

6.8.9 TLB Refill Exception — Instruction Fetch or Data Access

During an instruction fetch or data access, a TLB refill exception occurs when no TLB entry matches a reference to a
mapped address space and the EXL bit is 0 in the Status register. Note that this is distinct from the case in which an
entry matches but has the valid bit off. In that case, a TLB Invalid exception occurs.

Cause Register ExcCode Value:

TLBL: Reference was a load or an instruction fetch

TLBS: Reference was a store

Additional State Saved:

Entry Vector Used:

TLB refill vector (offset 0x000) if StatusEXL = 0 at the time of exception;

general exception vector (offset 0x180) if StatusEXL = 1 at the time of exception

6.8.10 TLB Invalid Exception — Instruction Fetch or Data Access

During an instruction fetch or data access, a TLB invalid exception occurs in one of the following cases:

• No TLB entry matches a reference to a mapped address space; and the EXL bit is 1 in the Status register.

Table 6.13 CP0 Register States on an Address Exception Error

Register State Value

BadVAddr failing address

ContextVPN2 UNPREDICTABLE

EntryHiVPN2 UNPREDICTABLE

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

Table 6.14 CP0 Register States on a TLB Refill Exception

Register State Value

BadVAddr failing address.

Context The BadVPN2 field contains VA31:13 of the failing

address.

EntryHi The VPN2 field contains VA31:13 of the failing address;

the ASID field contains the ASID of the reference that
missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

6.8 Exceptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 153

• A TLB entry matches a reference to a mapped address space, but the matched entry has the valid bit off.

Cause Register ExcCode Value:

TLBL: Reference was a load or an instruction fetch

TLBS: Reference was a store

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

6.8.11 Cache Error Exception

A cache error exception occurs when an instruction or data reference detects a cache tag or data error. This exception
is not maskable. To avoid disturbing the error in the cache array the exception vector is to an unmapped, uncached
address.

Instruction cache parity errors are precise and will only be taken if the core is going to execute the instruction that
saw the parity error on a read of the instruction cache. If multiple instruction cache errors are detected prior to the
exception being taken, the CacheErr register contents will capture the information for the most recent error, which
may not correlate to the instruction indicated by ErrorEPC. Error handling code should use the CacheErr contents to
process the exception. Upon returning to the instruction indicated by ErrorEPC, that error would be seen again.

For data cache parity errors, this exception can be imprecise and the ErrorEPC may not point to the instruction that
saw the error

In the 1004K, the cache memory may be shared between multiple VPEs on a virtual multiprocessor. In the event of a
cache parity or other data integrity error, all VPEs sharing the cache may be affected, and all must take a Cache Error
exception. It is the responsibility of software to coordinate any diagnostics or re-initialization of the shared cache,
communicating by means other than cached storage. (Note: because instruction cache parity errors are precise they
can be isolated to a single affected VPE)

Additionally, because the caches on the cores within the 1004K Coherent Processing System are coherent, cache
errors detected on other cores could indicate data corruption for a process on this CPU. An error on another CPU will
still cause a Cache Error exception with the CacheErrEE indicating that the error occured on another processor.

L2 cache errors are considered to be imprecise. An L2 cache error on a data load operation can potentially corrupt the
target GPR.

Table 6.15 CP0 Register States on a TLB Invalid Exception

Register State Value

BadVAddr failing address

Context The BadVPN2 field contains VA31:13 of the failing

address.

EntryHi The VPN2 field contains VA31:13 of the failing address;

the ASID field contains the ASID of the reference that
missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

 Exceptions and Interrupts in the 1004K™ CPU

154 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Cause Register ExcCode Value

N/A

Additional State Saved

Entry Vector Used

Cache error vector (offset 16#100)

6.8.12 Bus Error Exception — Instruction Fetch or Data Access

A bus error exception occurs when an instruction or data access makes a bus request (due to a cache miss or an
uncacheable reference) and that request terminates in an error. The bus error exception can occur on either an instruc-
tion fetch or a data read. Bus error exceptions cannot be generated on data writes. Bus error exceptions that occur on
an instruction fetch have a higher priority than bus error exceptions that occur on a data access.

Bus Error exceptions on instruction fetch (IBE) are precise. Bus errors on data load operations (DBE) are considered
to be imprecise. These errors are taken when the ERR code is returned on the OC_SResp input. Bus errors on data
load operations can potentially corrupt the target GPR.

In the 1004K, a DBE is delivered to the VPE where the operation was issued. A DBE exception may thus be taken by
a TC other than the one which issued the failing operation. A per-TC TBE bit is defined to allow exception handlers
to determine which TC(s) were associated with the failed bus transaction. If a DBE results from an operation that was
combined across VPEs, a DBE exception must be delivered to all VPEs affected. Where the origin of the failure can-
not be determined, all VPEs in a processor must take a DBE exception.

Cause Register ExcCode Value:

IBE: Error on an instruction reference

DBE: Error on a data reference

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

6.8.13 Debug Software Breakpoint Exception

A debug software breakpoint exception occurs when an SDBBP instruction is executed. The DEPC register and DBD
bit in the Debug register will indicate the SDBBP instruction that caused the debug exception.

Debug Register Debug Status Bit Set:

DBp

Table 6.16 CP0 Register States on a Cache Error Exception

Register State Value

CacheErr Error state

ErrorEPC Restart PC

6.8 Exceptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 155

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

6.8.14 Execution Exception — System Call

The system call exception is one of the execution exceptions. All of these exceptions have the same priority. A sys-
tem call exception occurs when a SYSCALL instruction is executed.

Cause Register ExcCode Value:

Sys

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

6.8.15 Execution Exception — Breakpoint

The breakpoint exception is one of the execution exceptions. All of these exceptions have the same priority. A break-
point exception occurs when a BREAK instruction is executed.

Cause Register ExcCode Value:

Bp

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

6.8.16 Execution Exception — Reserved Instruction

The reserved instruction exception is one of the execution exceptions. All of these exceptions have the same priority.
A reserved instruction exception occurs when a reserved or undefined major opcode or function field is executed.
This includes Coprocessor 2 instructions which are decoded reserved in the Coprocessor 2.

Cause Register ExcCode Value:

RI

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

 Exceptions and Interrupts in the 1004K™ CPU

156 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

6.8.17 Execution Exception — Coprocessor Unusable

The coprocessor unusable exception is one of the execution exceptions. All of these exceptions have the same prior-
ity. A coprocessor unusable exception occurs when an attempt is made to execute a coprocessor instruction for one of
the following:

• a corresponding coprocessor unit that has not been marked usable by setting its CU bit in the Status register

• CP0 instructions, when the unit has not been marked usable, and the processor is executing in user mode

Cause Register ExcCode Value:

CpU

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

6.8.18 Execution Exception — CorExtend block Unusable

The CorExtend block unusable exception is one of the execution exceptions. All of these exceptions have the same
priority. A CEU exception occurs when an attempt is made to execute a CorExtend instruction when the CEE bit in
the Status register is not set. It is dependent on the implementation of the CorExtend block, but this exception should
be taken on any CorExtend instruction that modifies local state within the CorExtend block and can optionally be
taken on other CorExtend instructions.

Cause Register ExcCode Value:

CEU

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

6.8.19 Execution Exception — DSP ASE State Disabled

The DSP ASE State Disabled exception an execution exception. It occurs when an attempt is made to execute a DSP
ASE instruction when the MX bit in the Status register is not set. This allows an OS to do “lazy” context switching.

Cause Register ExcCode Value:

DSPDis

Additional State Saved:

None

Table 6.17 Register States on a Coprocessor Unusable Exception

Register State Value

CauseCE unit number of the coprocessor being referenced

6.8 Exceptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 157

Entry Vector Used:

General exception vector (offset 0x180)

6.8.20 Execution Exception — Floating Point Exception

A floating point exception is initiated by the floating point coprocessor.

Cause Register ExcCode Value:

FPE

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

6.8.21 Execution Exception — Integer Overflow

The integer overflow exception is one of the execution exceptions. All of these exceptions have the same priority. An
integer overflow exception occurs when selected integer instructions result in a 2’s complement overflow.

Cause Register ExcCode Value:

Ov

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

6.8.22 Execution Exception — Trap

The trap exception is one of the execution exceptions. All of these exceptions have the same priority. A trap excep-
tion occurs when a trap instruction results in a TRUE value.

Cause Register ExcCode Value:

Tr

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

Table 6.18 Register States on a Floating Point Exception

Register State Value

FCSR Indicates the cause of the floating point exception

 Exceptions and Interrupts in the 1004K™ CPU

158 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

6.8.23 Execution Exception — C2E

A C2E exception is signalled from the optional coprocessor2 block on a coprocessor instruction.

Cause Register ExcCode Value:

C2E

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

6.8.24 Execution Exception — IS1

An IS1 exception is signalled from the optional coprocessor2 block on a coprocessor instruction.

Cause Register ExcCode Value:

IS1

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

6.8.25 Execution Exceptions — MT_ov, MT_under, MT_invalid, MT_yield_sched

• MT_ov - A Thread Overflow condition on a FORK, where a TC allocation request cannot be satisfied.

• MT_under - A Thread Underflow condition on a YIELD, where the termination and deallocation of a thread
leaves no dynamically allocatable TCs activated on a VPE.

• MT_invalid - An Invalid qualifier condition, where a YIELD instruction specifies an invalid condition for
resuming execution.

• MT_yield_sched - A YIELD scheduler exception, where a valid YIELD instruction could have caused a
rescheduling of a TC, and the YIELD Intercept bit is set. This happens when a YIELD is executed with a yield
qualifier of -1, 0, or any positive value when VPEControlYSI=1 and TCStatusDT=1. Lower priority than
MT_under or MT_Invalid - if one of those conditions is met by YIELD, that exception will be taken instead.

Cause Register ExcCode Value:

Thread.

Additional State Saved:

There is a sub-cause filed in VPEControl[EXCPT], which indicates the type of Thread exception. Table 6.19 shows

6.8 Exceptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 159

the different Thread Exception Codes.

Entry Vector Used:

General exception vector (offset 0x180)

6.8.26 Thread Exceptions — MT_gs, MT_gss

• MT_gs - A Gating Storage exception condition, where implementation dependent logic associated with gating or
inter-thread communication (ITC) storage requires software intervention.

• MT_gss - A Gating Storage Scheduler exception, where a Gating Storage load or store would have blocked and
caused a rescheduling of a TC, and the GS Intercept bit is set.

Cause Register ExcCode Value:

Thread.

Additional State Saved:

There is a sub-cause filed in VPEControl[EXCPT], which indicates the type of Thread exception. Table 6.19 shows
the different Thread Exception Codes.

Entry Vector Used:

General exception vector (offset 0x180)

6.8.27 Debug Data Break Exception

A debug data break exception occurs when a data hardware breakpoint matches the load/store transaction of an exe-
cuted load/store instruction. The DEPC register and DBD bit in the Debug register will indicate the load/store instruc-
tion that caused the data hardware breakpoint to match. The load/store instruction that caused the debug exception
has not completed e.g. not updated the register file, and the instruction can be re-executed after returning from the
debug handler.

Debug Register Debug Status Bit Set:

DDBL for a load instruction or DDBS for a store instruction

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

Table 6.19 Thread exception codes in VPEControl[EXCPT]

Value Exception

0 MT_ov

1 MT_under

2 MT_invalid

3 MT_gs

4 MT_yield_sched

5 MT_gss

 Exceptions and Interrupts in the 1004K™ CPU

160 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

6.8.28 TLB Modified Exception — Data Access

During a data access, a TLB modified exception occurs on a store reference to a mapped address if the following con-
dition is true:

• The matching TLB entry is valid, but not dirty.

Cause Register ExcCode Value:

Mod

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

6.9 Exception Handling and Servicing Flowcharts

The remainder of this chapter contains flowcharts for the following exceptions and guidelines for their handlers:

• General exceptions and their exception handler

• TLB miss exception and their exception handler

• Reset and NMI exceptions, and a guideline to their handler.

• Debug exceptions

Generally speaking, the exceptions are handled by hardware; the exceptions are then serviced by software. Note that
unexpected debug exceptions to the debug exception vector at 0xBFC0_0200 may be viewed as a reserved instruction
since uncontrolled execution of an SDBBP instruction caused the exception. The DERET instruction must be used at
return from the debug exception handler, in order to leave debug mode and return to non-debug mode. The DERET
instruction returns to the address in the DEPC register.

Table 6.20 Register States on a TLB Modified Exception

Register State Value

BadVAddr failing address

Context The BadVPN2 field contains VA31:13 of the failing

address.

EntryHi The VPN2 field contains VA31:13 of the failing address;

the ASID field contains the ASID of the reference that
missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

6.9 Exception Handling and Servicing Flowcharts

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 161

Figure 6.3 General Exception Handler (HW)

To General Exception Servicing Guidelines

=1 (bootstrap)=0 (normal)
Status.BEV

Comments

PC ← 0x8000_0000 + 180
(unmapped, cached)

PC ← 0xBFC0_0200 + 180
(unmapped, uncached)

EXL ← 1

EPC ← (PC - 4)
Cause.BD ← 1

EPC ← PC
Cause.BD ← 0

Instr. in Br.Dly.
Slot?

Yes

Processor forced to Kernel Mode
&interrupt disabled

=0

=1
Check if exception within another

exception EXL

EnHi and Context are set only for TLB- Invalid,
Modified, & Refill exceptions. BadVA is set only
for TLB- Invalid, Modified, Refill- and VCED/I
exceptions. Note: not set if it is a Bus Error

EntryHi ← VPN2, ASID
Context ← VPN2

Set Cause EXCCode,CE
BadVA ← VA

Exceptions other than Reset, NMI, or first-level TLB missNote: Interrupts can be masked by IE or
IMs and Watch is masked if EXL = 1

No

 Exceptions and Interrupts in the 1004K™ CPU

162 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Figure 6.4 General Exception Servicing Guidelines (SW)

ERET

MTC0 -
EPC,STATUS

EXL = 1

Service Code

* ERET is not allowed in the branch delay slot of another Jump
Instruction
* Processor does not execute the instruction which is in the ERET’s
branch delay slot
* PC ← EPC; EXL ← 0
* LLbit ← 0

Check Cause value & Jump to appropriate
Service Code

* After EXL=0, all exceptions allowed. (except
interrupt if masked by IE)

(Optional - only to enable Interrupts while keeping Kernel Mode)

MTC0 -
Set Status bits:

UM ← 0, EXL ←0, IE←1

MFC0 -
Context, EPC, Status, Cause

* Unmapped vector so TLBMod, TLBInv, or TLB Refill exceptions
not possible
* EXL=1 so Watch, Interrupt exceptions disabled
* OS/System to avoid all other exceptions
* Only Reset, Soft Reset, NMI exceptions possible.

Comments

6.9 Exception Handling and Servicing Flowcharts

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 163

Figure 6.5 TLB Miss Exception Handler (HW)

To TLB Exception Servicing Guidelines

Vec. Off. = 0x180

EPC ← (PC - 4)
Cause.BD ← 1

EPC ← PC
Cause.BD ← 0

Vec. Off. = 0x000

EXL ← 1

Points to General Exception

Processor forced to Kernel Mode
&interrupt disabled

=0

=1 (bootstrap)=0 (normal)

PC ← 0x8000_0000 + Vec.Off.(unmapped.
cached)

PC ← 0xBFC0_0200 + Vec.Off.(unmapped.
uncached)

Status.BEV

Check if exception within another
exception=1=1

=0

EXL EXL

EntryHi ← VPN2, ASID
Context ← VPN2

Set Cause EXCCode,CE
BadVA ← VA

Instr. in Br.Dly.
Slot?

NoYes

 Exceptions and Interrupts in the 1004K™ CPU

164 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Figure 6.6 TLB Exception Servicing Guidelines (SW)

Comments

ERET

Service Code

MFC0 -CONTEXT

* Unmapped vector so TLBMod, TLBInv, or TLB Refill exceptions
not possible
* EXL=1 so Watch, Interrupt exceptions disabled
* OS/System to avoid all other exceptions
* Only Reset, Soft Reset, NMI exceptions possible.

* Load the mapping of the virtual address in Context Reg. Move
it to EntryLo and write into the TLB
* There could be a TLB miss again during the mapping of the data
or instruction address. The processor will jump to the general
exception vector since the EXL is 1. (Option to complete the first
level refill in the general exception handler or ERET to the original
instruction and take the exception again)

* ERET is not allowed in the branch delay slot of another Jump
Instruction
* Processor does not execute the instruction which is in the ERET’s
branch delay slot
* PC ← EPC; EXL ← 0
* LLbit ← 0

6.9 Exception Handling and Servicing Flowcharts

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 165

Figure 6.7 Reset and NMI Exception Handling and Servicing Guidelines

Status:
BEV ← 1
TS ← 0
SR ← 0
NMI ← 1
ERL ← 1

(Optional)

Reset Service Code

NMI Service Code

ERET

=0

=1

PC ← 0xBFC0_0000

ErrorEPC ← PC

Random ← TLBENTRIES - 1
Wired ← 0
Config ← Reset state
Status:

RP ← 0
BEV ← 1
TS ← 0
SR ← 0
NMI ← 0
ERL ← 1

WatchLo:
I, R,W ← 0

Reset Exception

NMI Exception
R

es
et

, S
of

t R
es

et
 &

 N
M

I E
xc

ep
tio

n
H

an
dl

in
g

(H
W

)
R

es
et

, S
of

t R
es

et
 &

 N
M

I S
er

vi
ci

ng
G

ui
de

lin
es

 (S
W

)

 Exceptions and Interrupts in the 1004K™ CPU

166 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Chapter 7

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 167

CP0 Registers of the 1004K™ CPU

The System Control Coprocessor (CP0) provides the register interface to the 1004K CPU and supports memory man-
agement, address translation, exception handling, and other privileged operations. Each CP0 register has a unique
number that identifies it; this number is referred to as the register number. For instance, the PageMask register is reg-
ister number 5. All registers also have a select number from 0-7, if none is specified, it is 0. After updating a CP0 reg-
ister there is a hazard period of zero or more instructions from the update instruction (MTC0) and until the effect of
the update has taken place in the CPU.

This chapter contains the following sections:

• Section 7.1 “CP0 Register Summary”

• Section 7.2 “CP0 Register Descriptions”

7.1 CP0 Register Summary

Table 7.1 lists the CP0 registers in numerical order and gives a brief description. Additionally, the table shows
whether the register is implemented once per processor, once per VPE, or once per TC. The individual registers are
described throughout this chapter.

Table 7.1 CP0 Registers

Register

Function

Per

Number Select Name VPE TC Proc

0 0 Index1 Index into the TLB array. This register is reserved if the TLB is not
implemented.

X

0 1 MVPControl Processor-wide multithreading control. X

0 2-3 MVPConf0-1 Processor’s multithreading resources X

1 0 Random1 Randomly generated index into the TLB array. This register is
reserved if the TLB is not implemented.

X

1 1 VPEControl VPE control and status X

1 2-3 VPEConf0-1 Initializable per-VPE resource lists X

1 4 YQMask Defines valid inputs for yield instruction X

1 5 VPESchedule Per-VPE thread policy hints X

1 6 VPEScheFBack Per-VPE information from policy manager X

1 7 VPEOpt Per-VPE cache-way inhibition X

2 0 EntryLo01 Low-order portion of the TLB entry for even-numbered virtual
pages. This register is reserved if the TLB is not implemented.

2 1 TCStatus Status and control for each TC X

2 2 TCBind VPE affiliation and own TC number of this TC X

 CP0 Registers of the 1004K™ CPU

168 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

2 3 TCRestart Where this TC will next fetch code from X

2 4 TCHalt Set 1 to freeze the TC for inspection/modification X

2 5 TCContext Read/write scratch register for OS to maintain thread ID X

2 6 TCSchedule Per-TC thread scheduling hints X

2 7 TCScheFBack Per-TC information from policy manager X

3 0 EntryLo11 Low-order portion of the TLB entry for odd-numbered virtual pages.
This register is reserved if the TLB is not implemented.

X

3 7 TCOpt Per-TC cache-way inhibition X

4 0 Context2 Pointer to page table entry in memory. This register is reserved if the
TLB is not implemented.

X

4 2 UserLocal User information that can be written by privileged software and read
via RDHWR register 29

X

5 0 PageMask PageMask controls the variable page sizes in TLB entries. This reg-
ister is reserved if the TLB is not implemented.

X

6 0 Wired1 Controls the number of fixed (“wired”) TLB entries. This register is
reserved if the TLB is not implemented.

X

6 1-5 SRSConf0-4 Write these to use TCs as shadow registers X

7 0 HWREna Enables access via the RDHWR instruction to selected hardware
registers in non-privileged mode.

X

8 0 BadVAddr2 Reports the address for the most recent address-related exception. X

9 0 Count2 Processor cycle count. X

10 0 EntryHi1 High-order portion of the TLB entry. This register is reserved if the
TLB is not implemented.

X X3

11 0 Compare2 Timer interrupt control. X

12 0 Status2 Processor status and control. X X4

12 1 IntCtl2 Setup for interrupt vector and interrupt priority features. X

12 2 SRSCtl2 Shadow register set selectors X

12 3 SRSMap2 In vectored interrupt mode, determines which shadow set is used for
each interrupt source.

X

13 0 Cause2 Cause of last exception. X

14 0 EPC2 Program counter at last exception. X

15 0 PRId Processor identification and revision. X

15 1 EBase Exception base address. X

15 2 CDMMBase Common Device Memory Map Base Address X

15 3 CMGCRBase Global Configuration Register Base Address X

16 0 Config Configuration register. X

16 1-2 Config1-2 Configuration for MMU, caches etc. X

Table 7.1 CP0 Registers (Continued)

Register

Function

Per

Number Select Name VPE TC Proc

7.1 CP0 Register Summary

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 169

16 3 Config3 Interrupt and ASE capabilities X

16 7 Config7 1004K family-specific configuration register. X

17 0 LLAddr Address associated with last LL instruction of a “load-linked/store-
conditional” instruction pair.

X

18 0-1 WatchLo0-12 Low-order watchpoint address associated with instruction watch-
points.

X

18 2-3 WatchLo2-32 Low-order watchpoint address associated with data watchpoints. X

19 0-1 WatchHi0-12 High-order watchpoint address used for instruction watchpoints. X

19 2-3 WatchHi2-32 High-order watchpoint address used for data watchpoints. X

23 0 Debug5 EJTAG Debug register. X

23 1 TraceControl5 EJTAG Trace Control register X

23 2 TraceControl25 EJTAG Trace Control2 register X

23 3 UserTraceData15 EJTAG User Trace Data1 register X

23 4 TraceIBPC5 EJTAG Trace Instruction breakpoint control register X

23 5 TraceDBPC5 EJTAG Trace Debug breakpoint control register X

24 0 DEPC5 Restart address from last EJTAG debug exception. X

24 2 TraceControl35 EJTAG Trace Control3 register X

24 3 UserTraceData25 EJTAG User Trace Data2 register X

25 0 PerfCtl0 Performance counter 0 control. X

25 1 PerfCnt0 Performance counter 0. X

25 2 PerfCtl1 Performance counter 1 control. X

25 3 PerfCnt1 Performance counter 1. X

26 0 ErrCtl Software test enable of way-select and Data RAM arrays for I-Cache
and D-Cache.

X

27 0 CacheErr Records information about cache parity errors X

28 0 ITagLo Cache tag read/write interface for I-cache. X

28 1 IDataLo Low-order data read/write interface for I-cache. X

28 2 DTagLo Cache tag read/write interface for D-cache. X

28 3 DDataLo Low-order data read/write interface for D-cache. X

28 4 L23TagLo Cache tag read/write interface for L2-cache. X

28 5 L23DataLo Low-order data read/write interface for L2-cache. X

29 1 IDataHi High-order data read/write interface for I-cache. X

29 5 L23DataHi High-order data read/write interface for L2-cache. X

30 0 ErrorEPC2 Program counter at last error. X

31 0 DeSAVE5 Debug handler scratchpad register. X

Table 7.1 CP0 Registers (Continued)

Register

Function

Per

Number Select Name VPE TC Proc

 CP0 Registers of the 1004K™ CPU

170 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

7.2 CP0 Register Descriptions

The CP0 registers provide the interface between the ISA and the architecture. Each register is discussed below, with
the registers presented in numerical order, first by register number, then by select field number.

For each register described below, field descriptions include the read/write properties of the field, and the reset state
of the field. For single bit fields, the name is truncated to a single character which is then shown outside brackets in
the Fields|Name column; for example, (TLB)S for the TLB Sharable bit in the MVPConf0 register. For the read/write
properties of the field, the following notation is used:

7.2.1 Index Register (CP0 Register 0, Select 0)

The Index register is a 32-bit read/write register that contains the index used to access the TLB for TLBP, TLBR, and
TLBWI instructions. The width of the index field is implementation-dependent as a function of the number of TLB
entries that are implemented. The minimum value for TLB-based MMUs is Ceiling(Log2(TLBEntries)).

1. Registers used in memory management.
2. Registers used in exception processing.
3. ASID per-TC. See Section 7.2.30 “EntryHi Register (CP0 Register 10, Select 0)”.
4. KSU,FR, and CU0-3 per-TC. See Section 7.2.32 “Status Register (CP0 Register 12, Select 0)”.
5. Registers used in debug.

Table 7.2 CP0 Register Field Types

Notation Hardware Interpretation Software Interpretation

R/W A field in which all bits are readable and writable by software and, potentially, by hardware.
Hardware updates of this field are visible by software reads. Software updates of this field are visible by hardware
reads.
If the reset state of this field is “Undefined,” either software or hardware must initialize the value before the first
read will return a predictable value. This should not be confused with the formal definition of UNDEFINED
behavior.

R A field that is either static or is updated only by hard-
ware.
If the Reset State of this field is either “0” or “Preset”,
hardware initializes this field to zero or to the appropri-
ate state, respectively, on powerup.
If the Reset State of this field is “Undefined”, hardware
updates this field only under those conditions specified
in the description of the field.

A field to which the value written by software is
ignored by hardware. Software may write any value to
this field without affecting hardware behavior. Software
reads of this field return the last value updated by hard-
ware.
If the Reset State of this field is “Undefined,” software
reads of this field result in an UNPREDICTABLE
value except after a hardware update done under the
conditions specified in the description of the field.

W A field that can be written by software but which can not be read by software.
Software reads of this field will return an UNDEFINED value.

0 A field that hardware does not update, and for which
hardware can assume a zero value.

A field to which the value written by software must be
zero. Software writes of non-zero values to this field
may result in UNDEFINED behavior of the hardware.
Software reads of this field return zero as long as all
previous software writes are zero.
If the Reset State of this field is “Undefined,” software
must write this field with zero before it is guaranteed to
read as zero.

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 171

The operation of the processor is UNDEFINED if a value greater than or equal to the number of TLB entries is writ-
ten to the Index register.

This register is only valid with the TLB. It is reserved if the FM is implemented.

Figure 7.1 Index Register Format

7.2.2 MVPControl Register (CP0 Register 0, Select 1)

The MVPControl register is instantiated per-processor, and provides an interface for global control and configuration
of a multi-VPE MIPS MT 1004k.

Figure 7.2 shows the format of the MVPControl register; Table 7.4 describes the MVPControl register fields.

Figure 7.2 MVPControl Register Format

31 30 6 5 0

P 0 Index

Table 7.3 Index Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

P 31 Probe Failure. Set to 1by hardware when the previous TLBProbe
(TLBP) instruction failed to find a match in the TLB.
Software can set to 1 to avoid locking up an entry when the TLB is
shared. If 0, TLBWR on the other VPE will skip the selected Index
value to allow refills on the other VPE to occur at the same time as
TLB maintenance on this one.

R/W Undefined

0 30:6 Must be written as zeros; returns zeros on reads. 0 0

Index 5:0 Index to the TLB entry affected by the TLBRead and TLBWrite
instructions.
For 16 or 32 entry TLBs, behavior is undefined if index points to a
non-existent entry.

R/W Undefined

31 4 3 2 1 0

0 CPA STLB VPC EVP

Table 7.4 MVPControl Register Field Descriptions

Fields

Description

Read/Write
Reset
StateName Bits MVP=0 MVP=1

CPA 3 Cache Partitioning Active. If set, the IWX and DWX fields
of the VPEOpt register control the allocation of cache
lines as described in section 7.2.11. If clear, IWX and
DWX are ignored.

R R/W 0

 CP0 Registers of the 1004K™ CPU

172 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

So long as the EVP bit is zero, no thread scheduling will be performed by the processor. On a processor reset, only the
reset thread, TC 0, will execute. If EVP is cleared by software, only the thread which issued the DVPE or MTC0
instruction which cleared the bit will issue further instructions. All other TCs of the processor are suspended.

The effect of clearing EVP in software may not be instantaneous. An instruction hazard barrier, e.g. JR.HB, is
required to guarantee that all other VPEs have been quiesced.

The STLB bit affects only VPEs using a TLB MMU. The operation of VPEs using FMT MMUs is unaffected.

For MIPS32-compatible software operation, all MMU_Size fields must indicate the size of the shared TLB when
STLB is set. This may either be done automatically by hardware, or, on processors implementing configurable

STLB 2 Share TLBs. Modifiable only if the VPC bit was set prior
to the write to the register of a new value. When set, the
full complement of TLBs of a processor is shared by all
VPEs on the processor having access to the TLB, regard-
less of the programming of the Config1MMU_Size register

fields.
When STLB is set:
• The virtual address and ASID spaces are unified across

all VPEs sharing the TLB.
• The TLB logic must ensure that a TLBWR instruction

can never write to a TLB entry which corresponds to the
valid Index register value of any VPE sharing the TLB.

• TLBWRs may have UNPREDICTABLE results if
there are fewer total unwired TLB entries than there are
operational VPEs sharing the TLB.

• TLBWRs may have UNPREDICTABLE results if the
Wired register values are not identical across all VPEs
sharing the TLB.

When not in use for TLB maintenance, software should
leave the Index register set to an invalid value, with the P
bit set, for all VPEs having TLB access.

R if VPC = 0,
R/W if VPC = 1

0

VPC 1 Indicates that Processor is in a VPE Configuration State.
When VPC is set, some normally “Preset” configuration
register fields become writable, to allow for dynamic con-
figuration of processor resources .
Writable by software only if the VPEConf0MVP bit is set

for the VPE issuing the modifying instruction.
Processor behavior is UNDEFINED if VPC and EVP are
both in a set state at the same time.

R R/W 0

EVP 0 Enable Virtual Processors. Modifiable only if the
VPEConf0MVP bit is set for the VPE issuing the modify-

ing instruction. Set by EVPE instruction and cleared by
DVPE instruction. If set, all activated (see section 7.2.6)
VPEs on a processor fetch and execute independently. If
cleared, only a single instruction stream on a single VPE
can run.

R R/W 0

0 31:4 Must be written as zero; return zero on read. 0 0

Table 7.4 MVPControl Register Field Descriptions (Continued)

Fields

Description

Read/Write
Reset
StateName Bits MVP=0 MVP=1

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 173

MMU_Size, by software rewriting the MMU_Size fields of the Config1 registers of the affected VPEs to the correct
value while the processor has the VPC bit set. When STLB is set, the restriction that the sum of Config1 MMU_Size
fields not exceed the total number of configurable TLB entry pairs as indicated by the PTLBE field of the MVPConf0
register no longer applies. If TLB entries are not otherwise dynamically configurable, i.e. PTLBE is zero, hardware
must automatically maintain the correct MMU_Size values according to the value of STLB.

Programming Notes

The TLB should always be flushed of valid entries between any setting or clearing of STLB and the first subsequent
TLB-mapped memory reference.

7.2.3 MVPConf0-1 Registers (CP0 Register 0, Select 2-3)

The MVPConf0-1 registers provide read-only multithreading-specific configuration information.

Figure 7.3 MVPConf0 Register Format
31 30 29 28 27 26 25 16 15 14 13 10 9 8 7 0

M 0 TLBS GS PCP 0 PTLBE TCA 0 PVPE 0 PTC

Table 7.5 MVPConf0 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

M 31 This bit reads 1 if the MVPConf1 register is present, otherwise it
reads 0.

R 1

TLBS 29 TLB Sharable: Indicates that TLB sharing amongst all VPEs is pos-
sible. TLB sharing is enabled by the STLB bit of the MVPControl
register.

R 1 if both VPEs
have TLB

GS 28 Gating Storage Present. Indicates that the processor is configured to
support gating storage operations. Externally set on reset based on
the state of the IT_num_entries InterThread input. If
IT_num_entries is greater than zero, this bit is set to 1.

R Preset

PCP 27 Programmable Cache Partitioning: If set, indicates that the alloca-
tion behavior of the “ways” of the primary instruction and data
caches can be controlled via the VPEOpt register’s IWX and DWX
fields.

R 1 if multiple
VPEs

PTLBE 25:16 Total processor complement of allocatable TLB entry pairs. TLB
configuration is fixed, so PTLBE is zero.

R 0

TCA 15 TCs Allocatable: If set, TCs may be assigned to VPEs by writing the
CurVPE field of the TCBind register of each TC while the VPC bit
of MVPControl is set.

R 1

PVPE 13:10 Total processor complement of VPE contexts - 1. This field reflects
the number of VPEs present after subtracting the value of the static
input SI_DisableVPE.

R Preset: 0 or 1

PTC 7:0 Total processor complement of TCs - 1. This field reflects the num-
ber of TCs present after subtracting the value of the static input
SI_DisableTCs.

R Preset: 0 to 8

0 30, 26, 14,
9:8

Must be written as zeros; returns zeros on reads. 0 0

 CP0 Registers of the 1004K™ CPU

174 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Figure 7.4 MVPConf1 Register Format

7.2.4 Random Register (CP0 Register 1, Select 0)

The Random register is a read-only register whose value is used to index the TLB during a TLBWR instruction. The
width of the Random field is calculated in the same manner as that described for the Index register above.

The value of the register varies between an upper and lower bound as follow:

• A lower bound is set by the number of TLB entries reserved for exclusive use by the operating system (the con-
tents of the Wired register). The entry indexed by the Wired register is the first entry available to be written by a
TLB Write Random operation.

• An upper bound is set by the total number of TLB entries minus 1.

The Random register is decremented by one almost every clock, wrapping after the value in the Wired register is
reached. To enhance the level of randomness and reduce the possibility of a live lock condition, an LFSR register is
used which prevents the decrement pseudo-randomly.

31 30 29 28 27 20 19 18 17 10 9 8 7 0

C1M C1F 0 PCX 0 PCP2 0 PCP1

Table 7.6 MVPConf1 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

C1M 31 If set, floating point unit (co-processor 1) implements the MDMX™
extension to the instruction set.

R Preset

C1F 30 If set, floating point unit (co-processor 1) implements 64-bit instruc-
tions

R Preset

PCX 27:20 Number of register set contexts available for CorExtend. This field
is Preset to 0 for any of the following cases:
• In non-Pro-series CPUs
• In Pro-series CPUs configured without UDI support
• Whenever the UDI_present input is deasserted
• Whenever the UDI_context_present input is deasserted, indicat-

ing that the CorExtend module has no state associated with it.
If none of the above are true, then if UDI_mt_context_per_tc is
asserted, this field will be set to the number of TCs available in the
CPU, otherwise it will be set to 1.

R Preset

PCP2 17:10 Number of register set contexts available for co-processor 2. This
field represents the value on the CP2_maxtc[3:0] input.

R Preset

PCP1 7:0 Number of integrated and allocatable FPU contexts.
• If no FPU is present, this will be 0.
• If a single-threaded FPU is present, this will be 1
• If the multi-threaded FPU is present, then this will be 0 because

the FPU contexts are not allocatable.

R Preset

0 29:28,
19:18, 9:8

Must be written as zeros; returns zeros on reads. 0 0

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 175

The processor initializes the Random register to the upper bound on a Reset exception and when the Wired register is
written.

This register is only valid with the TLB. It is reserved if the FM is implemented.

Figure 7.5 Random Register Format

7.2.5 VPEControl Register (CP0 Register 1, Select 1)

The VPEControl register is instantiated per VPE as part of the system coprocessor.

Figure 7.6 shows the format of the VPEControl register; Table 7.8 describes the VPEControl register fields.

Figure 7.6 VPEControl Register Format

31 6 5 0

0 Random

Table 7.7 Random Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

0 31:6 Must be written as zero; returns zero on reads. 0 0

Random 5:0 TLB Random Index R TLB Entries - 1

31 22 21 20 19 18 16 15 14 8 7 0

0 YSI GSI 0 EXCPT TE 0 TargTC

Table 7.8 VPEControl Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

YSI 21 YIELD Scheduler Intercept. If set, and the TCStatus DT
bit is also set, valid YIELD instructions that could other-
wise cause a rescheduling cause a Thread exception with a
YIELD Scheduler Exception sub-code (see below).

R/W 0

GSI 20 Gating Storage Scheduler Intercept. If set, and the
TCStatus DT bit is also set, Gating Storage load and store
operations that would otherwise block the issuing TC
cause a Thread exception with a GS Scheduler Exception
sub-code (see below).

R/W 0

 CP0 Registers of the 1004K™ CPU

176 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

So long as the TE bit is zero, no thread scheduling will be performed by the VPE. On a processor reset, only the reset
thread, TC 0, will execute. If TE is cleared by software, only the thread which issued the DMT or MTC0 instruction
which cleared the bit will issue further instructions. All other TCs of the VPE are suspended.

The effect of clearing TE in software may not be instantaneous. An instruction hazard barrier, e.g. JR.HB, is required
to guarantee that all other threads have been quiesced.

7.2.6 VPEConf0 Register(CP0 Register 1, Select 2)

The VPEConf0 register is instantiated per VPE. It indicates the activation state and privilege level of the VPE. All
fields in the VPEConf0 register are read-only in normal execution, but the MVP and VPA fields are writable while
the MVP bit is set for the VPE performing the modification.

Figure 7.7 shows the format of the VPEConf0 register; Table 7.9 describes the VPEConf0 register fields.

Figure 7.7 VPEConf0 Register Format

EXCPT 18:16 Exception sub-code
of most recently dis-
patched Thread
exception

Value Meaning R Undefined

0 Thread Underflow

1 Thread Overflow

2 Invalid YIELD Qualifier

3 Gating Storage Exception

4 YIELD Scheduler Excep-
tion

5 GS Scheduler Exception

6-7 Reserved

TE 15 Threads Enabled. Set by EMT instruction, cleared by
DMT instruction. If set, multiple TCs may be simulta-
neously active. If cleared, only one thread may execute on
the VPE.

R/W 0

TargTC 7:0 TC number to be used on MTTR and MFTR instructions. R/W Undefined

0 31:22,
19,14:8

Must be written as zero; return zero on read. 0 0

31 30 29 28 21 20 19 18 17 16 15 2 1 0

M 0 XTC 0 TCS SCS DCS ICS 0 MVP VPA

Table 7.8 VPEControl Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 177

The XTC field is set by hardware on an exception setting EXL or ERL of the Status register, or on an MTC0 or DMT
instruction clearing the TE bit of VPEControl. It may be set by software if and only if both MVP of the writing VPE
is set and VPA of the written VPE is clear, which implies a cross-VPE MTTR operation. It is read by hardware when
VPA is set, and if the initial state of the VPE is such that only one activated TC may issue, i.e. if EXL or ERL are set,
or TE is clear, the TC designated by the XTC field will be the TC selected for exclusive execution on the VPE. This
allows initialization of one VPE by another, such that the initialized VPE can begin execution in an exception or sin-
gle-threaded state, and the full context save/restore of one VPE by another, even if the target VPE is in an exception
or single-threaded state.

Table 7.9 VPEConf0 Register Field Descriptions

Fields

Description

Read/Write
Reset
StateName Bits MVP=0 MVP=1

M 31 This bit is reserved to indicate that a VPEConf1 register
is present. If the VPEConf1 register is not implemented,
this bit should read as a 0. If the VPEConf1 register is
implemented, this bit should read as a 1.

R Preset

XTC 28:21 Exclusive TC. Set by hardware when execution is
restricted within a VPE to a single TC, due to EXL/ERL
being set in the Status register, or TE being cleared in the
VPEControl register, this field contains the TC number of
the TC eligible to run. Read by hardware when the VPA
bit is written set by software. For cross-VPE initialization,
XTC is writable by MTTR if the issuing VPE has MVP set
and the target VPE has VPA clear.

R R/W (if
VPA not
set for
target)

0 for VPE 0,
Undefined

for all others

TCS 19 Tertiary Cache Shared. Indicates that the tertiary cache
described in the Config2 register is shared with at least
one other VPE.

R Preset

SCS 18 Secondary Cache Shared. Indicates that the secondary
cache described in the Config2 register is shared with at
least one other VPE.

R Preset

DCS 17 Data Cache Shared. Indicates that the primary data cache
described in the Config1 register is shared with at least
one other VPE.

R Preset

ICS 16 Instruction Cache Shared. Indicates that the primary
instruction cache described in the Config1 register is
shared with at least one other VPE.

R Preset

MVP 1 Master Virtual Processor. If set, the VPE can access the
registers of other VPEs of the same processor, using
MTTR/MFTR, and can modify the contents of the
MVPControl and VPEConf0 registers, thus acquiring the
capability to manipulate and configure other VPEs sharing
the same processor.

R R/W 1 for VPE 0,
0 for all oth-

ers

VPA 0 Virtual Processor Activated. If set, the VPE will schedule
threads and execute instructions so long as the EVP bit of
the MVPControl register enables multi-VPE execution.

R R/W 1 for VPE 0,
0 for all oth-

ers

0 30:29, 20,
15:2

Reserved. Reads as zero, must be written as zero. R 0

 CP0 Registers of the 1004K™ CPU

178 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

7.2.7 VPEConf1 Register(CP0 Register 1, Select 3)

The VPEConf1 register is instantiated per VPE. It indicates the coprocessor and UDI resources available to the VPE.
All fields in the VPEConf1 register are read-only in normal operation, but is writable while the MVPControl VPC
bit is set. See section 7.2.2.

If software sets MVPControlVPC and intends to unbind an FPU, CP2, or CorExtend context from a VPE, care must be
taken to ensure that enable field (StatusCU1, StatusCU2, and StatusCEE, respectively) are properly cleared before
changing VPEConf1.

VPEConf1NCP1 can only be set if MVPControlPCP1 is non-zero. Furthermore, in a dual-VPE configuration, when
software sets VPEConf1NCP1 on one VPE, hardware will automatically clear it on the other VPE, thus preventing the
same context from being bound to both VPEs. Hardware does not do this for VPEConf1NCP2 or VPEConf1NCX, so
software must take care to set these fields properly on the other VPE.

Figure 7.8 shows the format of the VPEConf1 register; Table 7.10 describes the VPEConf1 register fields.

Figure 7.8 VPEConf1 Register Format

7.2.8 YQMask Register (CP0 Register 1, Select 4)

The YQMask register is instantiated per-VPE. The 1004K 1004k only supports 16 mask bits.

31 28 27 20 19 18 17 10 9 8 7 0

0 NCX 0 NCP2 0 NCP1

Table 7.10 VPEConf1 Register Field Descriptions

Fields

Description

Read/Write

Reset StateName Bits VPC=0 VPC=1

NCX 27:20 Number of CorExtend UDI state instantiations available,
for UDI blocks with persistent state. The reset value of
this field is controlled via the SI_VpeCX input.

R R/W Preset

NCP2 17:10 Number of Coprocessor 2 contexts available. The reset
value of this field is controlled via the SI_VpeCP2 input.

R R/W Preset

NCP1 7:0 Number of Coprocessor 1 contexts available.
• If no FPU is present, this will be 0.
• It the multithreaded FPU is present, this will match the

number of TCs bound to the VPE. It is not writable
even when VPC is enabled.

• If the single-threaded FPU is present, it is writable
when VPC is enabled. In dual-VPE systems, when soft-
ware sets this field for one VPE, hardware will clear
NCP1 for the other VPE. The reset value of this field is
controlled via the SI_VpeCP1 input.

R R/W Preset

0 31:28,
19:18, 9:8

Reserved. Reads as zero, must be written as zero. R 0

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 179

Figure 7.9 YQMask Register Format

7.2.9 VPESchedule Register (CP0 Register 1, Select 5)

The VPESchedule is a per-VPE value whose interpretation is scheduler implementation-dependent. For example, it
could encode a description of the overall requested issue bandwidth for the associated VPE, or it could encode a pri-
ority level.

A VPESchedule register value of zero is the default, and should result in a well-behaved default scheduling of the
associated VPE.

7.2.10 VPEScheFBack Register (CP0 Register 1, Select 6)

The Scheduler Feedback is a per-VPE feedback value from scheduler hardware to software. The interpretation is
scheduler implementation-dependent. For example, it might encode the total number of instructions retired in the
instruction streams on the associated VPE since the last time the value was cleared by software.

7.2.11 VPEOpt Register (CP0 Register 1, Select 7)

The optional VPEOpt register is instantiated per-VPE. If way exclusion is enabled via the MVPControlCPA bit, the
fields in this register will control which ways should be excluded from the replacement scheme for this VPE.

The Prefetch instruction with a hint of “Streamed” will always allocate in way0 regardless of VPEOpt. Similarly,
PREF/Retained will never allocate in way0 even if VPEOpt restricts all other ways.

NOTE: As described in Section 2.3.2 “Data Cache Access”, if a way is scheduled for eviction and a store hits to it,
that way will be reallocated. This re-allocation will always be to the original way the line was in even if this way is
restricted by VPEOpt.

Figure 7.10 VPEOpt Register Format

31 16 15 0

0 Mask

Table 7.11 YQMask Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

0 31:16 Must be written as zero; return zero on read. 0 0

Mask 15:0 Bit vector which determines which values may be used as external
state qualifiers by YIELD instructions.

R/W 0

31 12 11 8 7 4 3 0

0 IWX 0 DWX

 CP0 Registers of the 1004K™ CPU

180 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

7.2.12 EntryLo0 and EntryLo1 Registers (CP0 Registers 2 and 3, Select 0)

The pair of EntryLo registers act as the interface between the TLB and the TLBR, TLBWI, and TLBWR instructions.
For a TLB-based MMU, EntryLo0 holds the entries for even pages and EntryLo1 holds the entries for odd pages. The
contents of the EntryLo0 and EntryLo1 registers are undefined after an address error, TLB invalid, TLB modified, or
TLB refill exception. These registers are only valid when the TLB-based memory management unit is present. They
are reserved if the FM-style MMU is present.

Table 7.12 VPEOpt Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

0 31:12, 7:4 Must be written as zero; return zero on read. R 0

IWX3
..

IWX0

11:8 Instruction cache way exclusion mask. If programmable cache allo-
cation is enabled via the CPA bit in the MVPControl register, a VPE
can exclude an arbitrary subset of the ways of the primary instruc-
tion cache from allocation by the cache controller on behalf of the
VPE

NOTE: Software is required to make at least one way available for
replacement at all times. See Chapter 9, “Line Locking” on page 276
for a detailed description of this restriction.

R/W 0

DWX3
..

DWX0

3:0 Data cache way exclusion mask. If programmable cache allocation
is enabled via the CPA bit in the MVPControl register, a VPE can
exclude an arbitrary subset of the ways of the primary data cache
from allocation by the cache controller on behalf of the VPE

NOTE: Software is required to make at least one way available for
replacement at all times. See Section 9.4.4 “Line Locking” for a
detailed description of this restriction.

R/W 0

Bit Name Meaning

11 IWX3 If set, I-cache way 3 will not be allocated
for the VPE

10 IWX2 If set, I-cache way 2 will not be allocated
for the VPE

9 IWX1 If set, I-cache way 1 will not be allocated
for the VPE

8 IWX0 If set, I-cache way 0 will not be allocated
for the VPE

Bit Name Meaning

3 DWX3 If set, D-cache way 3 will not be allocated
for the VPE

2 DWX2 If set, D-cache way 2 will not be allocated
for the VPE

1 DWX1 If set, D-cache way 1 will not be allocated
for the VPE

0 DWX0 If set, D-cache way 0 will not be allocated
for the VPE

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 181

Figure 7.11 EntryLo0, EntryLo1 Register Format

Table 7.14 lists the encoding of the C field of the EntryLo0 and EntryLo1 registers and the K0 field of the Config reg-
ister.

31 30 29 26 25 6 5 3 2 1 0

R 0 PFN C D V G

Table 7.13 EntryLo0, EntryLo1 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

R 31:30 Reserved. Should be ignored on writes; returns zero on reads. R 0

0 29:26 These 4 bits are normally part of the PFN, however, since the
1004k supports only 32 bits of physical address, the PFN is
only 20 bits wide; therefore, bits 29:26 of this register must be
written with zeros.

R 0

PFN 25:6 Page Frame Number: Contributes to the definition of the high-
order bits of the physical address. The PFN field corresponds to
bits 31..12 of the physical address.

R/W Undefined

C 5:3 Coherency attribute of the page. See Table 7.14. R/W Undefined

D 2 “Dirty” or write-enable bit: Indicates that the page has been
written, and/or is writable. If this bit is a one, then stores to the
page are permitted. If this bit is a zero, then stores to the page
cause a TLB Modified exception.

R/W Undefined

V 1 Valid bit: Indicates that the TLB entry, and thus the virtual
page mapping are valid. If this bit is a one, then accesses to the
page are permitted. If this bit is a zero, then accesses to the page
cause a TLB Invalid exception

R/W Undefined

G 0 Global bit: On a TLB write, the logical AND of the G bits in
both the EntryLo0 and EntryLo1 registers become the G bit in
the TLB entry. If the TLB entry G bit is a one, then the ASID
comparisons are ignored during TLB matches. On a read from
a TLB entry, the G bits of both EntryLo0 and EntryLo1 reflect
the state of the TLB G bit.

R/W Undefined

Table 7.14 Cache Coherency Attributes

C[5:3] Value Name Cache Coherency Attribute

0 - Reserved

1 - Reserved

2 UC Uncached

3 WB Cacheable, noncoherent, write-back, write allocate

4 CWBE Cacheable, write-back, write-allocate, coherent, read misses request Exclusive

5 CWB Cacheable, write-back, write-allocate, coherent, read misses request Shared

6 - Reserved

7 UCA Uncached Accelerated

 CP0 Registers of the 1004K™ CPU

182 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

7.2.13 TCStatus Register (CP0 Register 2, Select 1)

The TCStatus register is instantiated per TC as part of the system coprocessor.

Figure 7.12 shows the format of the TCStatus register; Table 7.15 describes the TCStatus register fields.

Figure 7.12 TCStatus Register Format
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 0

TCU3..TCU0 TMX TFR 0 RNST 0 TDS DT 0 TCEE 0 DA 0 A TKSU IXMT 0 TASID

Table 7.15 TCStatus Register Field Descriptions

Fields

Description
Read /
Write

Reset
State Fork StateName Bits

TCU
(TCU3..
TCU0)

31:28 Controls access of a TC to coprocessors 3,2,1, and 0
respectively. Status bits CU3..CU0 are identical to
TCStatus bits TCU3..TCU0 of the thread referencing
that Status with an MFC0 operation. The modification
of either must be visible in both.
• When no FPU is present, TCU1 is read-only and

hardwired to 0
• When a single-threaded FPU is present, hardware

enforced the rule that only 1 TC can have TCU1 set
at a time. Attempts to set TCU1 on a second TC will
be ignored.

• When a multi-threaded FPU is present, there are no
restrictions - TCU1 can be set or cleared by software
for any TC.

R/W Undefined Unchanged
by FORK

TMX 27 DSP ASE Enable. If DSP ASE hardware is present, this
field is read/write. If DSP ASE hardware is not present,
this field is read-only. Controls access of a TC to
extended media processing state, such as MDMX and
DSP ASE accumulators. Status bit MX is identical to
TCStatus bit TMX of the thread referencing that
Status with an MFC0 operation. The modification of
either must be visible in both.

Config
Option

0 Unchanged
by FORK

TFR 26 This bit is used to control the floating point register
mode for 64-bit floating point units.
Status bit FR is identical to TCStatus bit TFR of the
thread referencing that Status with an MFC0 operation.
The modification of either must be visible in both.

R/W 0 Unchanged
by FORK

RNST 24:23 Run State of TC. Indi-
cates the Running vs.
Blocked state of the TC
and the reason for block-
age. Value is stable only
if TC is Halted and exam-
ined by another TC using
an MFTR operation.

Value Meaning R 0 0

0 Running

1 Blocked on
WAIT

2 Blocked on
YIELD

3 Blocked on Gat-
ing Storage

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 183

The (T)CUx, (T)MX, and (T)KSU fields of the TCStatus and Status registers always display the correct state. That
is, if the field is written via TCStatus, the new value may be read via Status, and vice-versa. Similarly, the (T)ASID
field of the TCStatus and EntryHi always display the same current value for the TC.

TDS 21 Thread stopped in branch Delay Slot. If a TC is Halted
such that the next instruction to issue would be an
instruction in a branch delay slot, the TCRestart regis-
ter will contain the address of the branch instruction,
and the TDS bit will be set. Otherwise TDS is cleared on
a Halt, or on a software write to the TCRestart register.

R 0 0

DT 20 Dirty TC. This bit is set by hardware whenever an
instruction is retired using the associated TC, and on
successful dispatch of the TC via a FORK instruction.
The setting of DT by the retirement of instructions is
inhibited if the instructions are issued with the EXL or
ERL bits of Status set, or with the processor in Debug
mode.

R/W 0 1

TCEE 17 Defined as per the Status register CEE field. This is the
per-TC Core Extend Enable value. The Status CEE is
identical to the TCStatus TCEE of the thread referenc-
ing Status with an MFC0 operation. The modification
of either must be visible in both.

R/W 0 Unchanged
by FORK

DA 15 Dynamic Allocation enable. If set, TC may be allo-
cated/deallocated/scheduled by the FORK and YIELD
instructions.

R/W 0 FORK allo-
cate only
possible if

DA = 1

A 13 Thread Activated. Set automatically when a FORK
instruction allocates the TC, and cleared automatically
when a YIELD $0 instruction deallocates it.

R/W 1 for TC
0, 0 for all

others.

1

TKSU 12:11 Defined as per the Status register KSU field. This is the
per-TC Kernel/Supervisor/User state. The Status KSU
field is identical to the TCStatus TKSU field of the
thread referencing Status. The modification of either
must be visible in both.

R/W Undefined Copied from
forking
thread

IXMT 10 Interrupt Exempt. If set, the associated TC will not be
used to handle Interrupt exceptions. Debug Interrupt
exceptions are not affected.

R/W 0 Unchanged
by FORK

TASID 7:0 Defined as per the EntryHi register ASID field. This is
the per-TC ASID value. The EntryHi ASID is identical
to the TCStatus TASID of the thread referencing
EntryHi with an MFC0 operation. The modification of
either must be visible in both.
This field is only relevant for the TLB based MMU and
will be readonly 0 with a Fixed Mapping MMU.

R/W Undefined Copied from
forking
thread

0 26:25, 22,
14, 9:8

Must be written as zero; return zero on read. 0 0 0

Table 7.15 TCStatus Register Field Descriptions

Fields

Description
Read /
Write

Reset
State Fork StateName Bits

 CP0 Registers of the 1004K™ CPU

184 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

7.2.14 TCBind Register (CP0 Register 2, Select 2)

The TCBind register is instantiated per-TC as part of the system co-processor. It defines the VPE affiliation and iden-
tification number of this TC.

Figure 7.13 TCBind Register Format

7.2.15 TCRestart Register (CP0 Register 2, Select 3)

When a TC is in a Halted state, a read of the TCRestart register returns the instruction address at which the TC will
start execution when it is restarted. The TCRestart register can be written while the associated TC is in a Halted state
to change the address at which the TC will restart.

Reading the TCRestart register of a non-Halted TC will return the UNSTABLE address of some instruction that the
TC was executing in the past, but which may no longer be valid. Writing the TCRestart register of a non-Halted TC
will result in an UNDEFINED TC state.

In the case of branch and jump instructions with architectural delay slots, the restart address will advance beyond the
address of the branch or jump instruction only after the instruction in the delay slot has been retired. If halted between
the execution of a branch and the associated delay slot instruction, the branch delay slot is indicated by the TDS bit of
the TCStatus register (see Section 7.2.13 “TCStatus Register (CP0 Register 2, Select 1)”).

Software writes to the TCRestart register cause the TDS bit of the TCStatus register to be cleared. If a software
write of the TCRestart register of a TC intervenes between the execution of an LL instruction and an SC instruction
on the target TC, the SC operation must fail.

Figure 7.14 shows the format of the TCRestart register. Table 7.17 describes the TCRestart register fields.

Figure 7.14 TCRestart Register Format

31 29 28 21 20 18 17 16 4 3 0

0 CurTC 0 TBE 0 CurVPE

Table 7.16 TCBind Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

0 31:29,
20:18,
16:4

Must be written as zeros; returns zeros on reads. 0 0

CurTC 28:21 Returns the ID number of this TC. R Preset

TBE 17 Thread Bus Error: A load instruction from this TC caused an error. R/W 0

CurVPE 3:0 The ID number of the VPE affiliation of this TC. Externally set on
reset based on SI_Vpe0MaxTC. In a two VPE system, all TCs
between 0 and SI_Vpe0MaxTC inclusive are bound to VPE0 on
reset and remaining ones are bound to VPE1. Writable when
MVPControlVPC is set

R External

31 0

Restart Address

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 185

7.2.15.1 Special Handling of TCRestart Register in Processors Implementing MIPS16e™ ASE

In processors that implement the MIPS16e™ ASE, the TCRestart register requires special handling.

When the processor writes the TCRestart register, it combines the address at which the TC will resume execution
with the value of the ISAMode register:

TCRestart ← resumePC31..1 || ISAMode0

“resumePC” is the address at which the TC will resume execution, as described above.

When the processor reads the TCRestart register, it distributes the bits to the PC and ISAMode registers:

PC ← TCRestart31..1 || 0
ISAMode ← TCRestart0

Software reads of the TCRestart register simply return to a GPR the last value written with no interpretation. Soft-
ware writes to the TCRestart register store a new value which is interpreted by the processor as described above.

7.2.16 TCHalt Register (CP0 Register 2, Select 4)

The TCHalt register is instantiated per TC as part of the system coprocessor.

Figure 7.15 shows the format of the TCHalt register; Table 7.18 describes the TCHalt register fields.

Figure 7.15 TCHalt Register Format

Writing a one to the Halted bit of an activated TC causes the associated thread to cease fetching instructions and to
set its Restart Address in the TCRestart register (see section 7.2.15) to the address of the next instruction to be
issued. If the instruction stream associated with the TC is blocked waiting on a response from Gating Storage (see
Chapter 12, “Inter-Thread Communication Unit of the 1004K™ CPU” on page 375), the load or store is aborted, and
the TC resolves to a state where the TCRestart register and TDS field of the TCStatus register (see section 7.2.13)

Table 7.17 TCRestart Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Restart
Address

31..0 Address at which execution of the TC is restarted. R/W Undefined Required

31 1 0

0 H

Table 7.18 TCHalt Register Field Descriptions

Fields

Description
Read /
Write Reset State ComplianceName Bits

H 0 Thread Halted. When set, the associated thread has been
halted and cannot be allocated, activated, or scheduled.

R/W 0 for TC 0,
1 for all others

Required

0 31:1 Must be written as zero; return zero on read. 0 0 Reserved

 CP0 Registers of the 1004K™ CPU

186 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

reflect a restart at the blocked load or store. Similarly, if the TC is blocked on a WAIT or YIELD instruction, that
instruction is cancelled and the state will reflect a restart at the WAIT or YIELD. If the TC was blocked at the time it
is Halted, the RNST field of TCStatus indicates the blocked state, and the reason for blocking, even if that reason was
an operation aborted by the Halt. Writing a zero to the Halted bit of an activated TC allows the associated thread of
execution to be scheduled, fetching and executing as indicated by TCRestart. A one in the Halted bit (TCHaltH) of a
TC prevents that TC from being allocated and activated by a FORK instruction.

The effect of writing a one to the Halted bit of a TC may not be instantaneous. An instruction hazard barrier, e.g.
JR.HB, is required to guarantee that the target thread has been fully halted.

7.2.17 TCContext Register (CP0 Register 2, Select 5)

TCContext is purely a software read/write register, usable by the operating system as a pointer to thread-specific
storage, e.g. a thread context save area.

Figure 7.16 shows the format of the TCContext register.

Figure 7.16 TCContext Register Format

7.2.18 TCSchedule Register (CP0 Register 2, Select 6)

The Scheduler Hint is a per-TC value whose interpretation is scheduler implementation-dependent. For example, it
could encode a description of the requested issue bandwidth for the associated thread, as in the VPESchedule regis-
ter, or it could encode a priority level.

A TCSchedule register value of zero is the default, and should result in a well-behaved default scheduling of the
associated thread.

The VPESchedule register and the TCSchedule register create a hierarchy of issue bandwidth allocation. The set
of VPESchedule registers assigns bandwidth to VPEs as a proportion of the total available on a processor or 1004k,
while the TCSchedule register can only assign bandwidth to threads as a function of that which is available to the
VPE containing the thread.

7.2.19 TCScheFBack Register (CP0 Register 2, Select 7)

The Scheduler Feedback is a per-TC feedback value from scheduler hardware to software, whose interpretation is
scheduler implementation-dependent. For example, it might encode the number of instructions retired in the instruc-
tion stream corresponding to the TC since the last time the value was cleared by software.

7.2.20 TCOpt Register (CP0 Register 3, Select 7)

The TCOpt register is instantiated per-TC. If way exclusion is enabled via the MVPControlCPA bit, the fields in this
register will control which ways should be excluded from the replacement scheme for this TC. See also Section
7.2.11, "VPEOpt Register (CP0 Register 1, Select 7)."

The Prefetch instruction with a hint of “Streamed” will always allocate in way0 regardless of TCOpt. Similarly,
PREF/Retained will never allocate in way0 even if TCOpt restricts all other ways.

31 0

Thread Context Value

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 187

NOTE: As described in Section 2.3.2 “Data Cache Access”, if a way is scheduled for eviction and a store hits to it,
that way will be reallocated. This re-allocation will always be to the original way the line was in even if this way is
restricted by TCOpt.

Figure 7.17 TCOpt Register Format

7.2.21 Context Register (CP0 Register 4, Select 0)

The Context register is a read/write register containing a pointer to an entry in the page table entry (PTE) array. This
array is an operating system data structure that stores virtual-to-physical translations. During a TLB miss, the operat-
ing system loads the TLB with the missing translation from the PTE array. The Context register duplicates some of
the information provided in the BadVAddr register but is organized in such a way that the operating system can
directly reference an 8-byte page table entry (PTE) in memory.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits VA31:13 of the virtual address to be written
into the BadVPN2 field of the Context register. The PTEBase field is written and used by the operating system.

The BadVPN2 field of the Context register is not defined after an address error exception.

Figure 7.18 Context Register Format

31 12 11 8 7 4 3 0

0 DWX

Table 7.19 TCOpt Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

0 31:4 Must be written as zero; return zero on read. R 0

DWX3
..

DWX0

3:0 Data cache way exclusion mask. If programmable cache allocation
is enabled via the CPA bit in the MVPControl register, this field
excludes ways of the primary data cache from allocation by the
cache controller for any given TC.

NOTE: Software is required to make at least one way available for
replacement at all times. See Section 9.4.4 “Line Locking” for a
detailed description of this restriction.

R/W 0

31 23 22 4 3 0

PTEBase BadVPN2 0

Bit Name Meaning

3 DWX3 If set, D-cache way 3 will not be allocated
for the TC

2 DWX2 If set, D-cache way 2 will not be allocated
for the TC

1 DWX1 If set, D-cache way 1 will not be allocated
for the TC

0 DWX0 If set, D-cache way 0 will not be allocated
for the TC

 CP0 Registers of the 1004K™ CPU

188 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

7.2.22 UserLocal Register (CP0 Register 4, Select 2)

The UserLocal register is a read-write register that is not interpreted by the hardware and conditionally readable via
the RDHWR instruction.

The presence of the UserLocal register is indicated by Config3ULRI=1

In the 1004K 1004k, the UserLocal register is instantiated per-TC. On a successful FORK instruction, the UserLocal
value of the FORKing TC is automatically copied to the newly activated TC.

Figure 7.19 shows the format of the UserLocal register; Table 7.21 describes the UserLocal register fields.

Figure 7.19 UserLocal Register Format

Programming Notes

Privileged software may write this register with arbitrary information and make it accessible to unprivileged software
via register 29 (ULR) of the RDHWR instruction. To do so, bit 29 of the HWREna register must be set to a 1 to enable
unprivileged access to the register. In some operating environments, the UserLocal register contains a pointer to a
thread-specific storage block that is obtained via the RDHWR register.

7.2.23 PageMask Register (CP0 Register 5, Select 0)

The PageMask register is a read/write register used for reading from and writing to the TLB. It holds a comparison
mask that sets the variable page size for each TLB entry, as shown in Table 7.23.

This register is only valid with the TLB. It is reserved if the FM is implemented.

Table 7.20 Context Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

PTEBase 31:23 This field is for use by the operating system and is normally written
with a value that allows the operating system to use the Context
Register as a pointer into the current PTE array in memory.

R/W Undefined

BadVPN2 22:4 This field is written by hardware on a TLB miss. It contains bits
VA31:13 of the virtual address that missed.

R Undefined

0 3:0 Must be written as zero; returns zero on reads. 0 0

31 0

UserLocal

Table 7.21 UserLocal Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

UserLocal 31:0 This field contains software information that is not interpreted by
hardware.

R/W Undefined

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 189

Figure 7.20 PageMask Register Format

Software may determine which page sizes are supported by writing all ones to the PageMask register, then reading
the value back. If a pair of bits reads back as ones, the processor implements that page size. The operation of the pro-
cessor is UNDEFINED if software loads the Mask field with a value other than one of those listed in Table 7.23,
even if the hardware returns a different value on read. Hardware may depend on this requirement in implementing
hardware structures.

7.2.24 Wired Register (CP0 Register 6, Select 0)

The Wired register is a read/write register that specifies the boundary between the wired and random entries in the
TLB as shown in Figure 7.21. The width of the Wired field is calculated in the same manner as that described for the
Index register above. Wired entries are fixed, non-replaceable entries that are not overwritten by a TLBWR instruc-
tion. Wired entries can be overwritten by a TLBWI instruction.

The Wired register is reset to zero by a Reset exception. Writing the Wired register causes the Random register to
reset to its upper bound.

31 29 28 13 12 0

0 Mask 0

Table 7.22 PageMask Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

0 31:29,
12:0

Ignored on write; returns zero on read. R 0

Mask 28:13 The Mask field is a bit mask in which a “1” bit indicates that the cor-
responding bit of the virtual address should not participate in the
TLB match.

R/W Undefined

Table 7.23 Values for the Mask Field of the PageMask Register

Page Size

Bit

28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13

4 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

64 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

256 KBytes 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

1 MByte 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

4 MByte 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

16 MByte 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

64 MByte 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

256 MByte 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 CP0 Registers of the 1004K™ CPU

190 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

The operation of the processor is undefined if a value greater than or equal to the number of TLB entries is written to
the Wired register.

This register is only valid with a TLB. It is reserved when the FM is implemented.

Figure 7.21 Wired and Random Entries in the TLB

Figure 7.22 Wired Register Format

7.2.25 SRSConf0 (CP0 Register 6, Select 1)

The SRSConf0 register is instantiated per-VPE. It indicates the binding of TCs or other GPR resources to Shadow
Register Sets 1 through 3.

When SRSConf0 is written, SRSCtlHSS is automatically updated by hardware to indicate the highest numbered valid
SRS. Software should ensure that the new HSS value is not less than the current value of the SRSCtlCSS or SRSCtlPSS

Figure 7.23 SRSConf0 Register Format

31 6 5 0

0 Wired

Table 7.24 Wired Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

0 31:6 Must be written as zero; returns zero on reads. 0 0

Wired 5:0 TLB wired boundary.
For 16 and 32 entry TLBs, behavior is undefined if value is set to a
value larger than last TLB entry.

R/W 0

31 30 29 20 19 10 9 0

M 0 SRS3 SRS2 SRS1

R
an

do
m

W
ire

d

Entry 0

Entry 10

Entry n-1

Wired Register 10

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 191

7.2.26 SRSConf1-4 (CP0 Register 6, Select 2-5)

Not implemented on the 1004K 1004k.

7.2.27 HWREna Register (CP0 Register 7, Select 0)

The HWREna register contains a bit mask that determines which hardware registers are accessible via the RDHWR
instruction when that instruction is executed in a mode in which coprocessor 0 is not enabled.

Figure 7.24 shows the format of the HWREna Register; Table 7.26 describes the HWREna register fields.

Figure 7.24 HWREna Register Format

Table 7.25 SRSConf0 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

M 31 Continuation indication. Since there is no SRSConf1 in the 1004K
1004k, it will read zero.

R/W 0

0 30 Must be written with zero; returns zero on read 0 0

SRS3-1 29:20,
19:10,

9:0

Indicates the GPR set to be used for corresponding shadow set num-
ber (1-3). Shadow set 0 refers to the register set normally associated
with the current TC.
Note if a particular SRS is instantiated, all other lower order SRSs
must also be instantiated.
If set to 0x3ff indicates this SRS is not supported.
If set to 0x3fe indicates this SRS is not assigned (invalid).

R/W 0x3fe or 0x3ff

31 30 29 0

0 Mask

Table 7.26 HWREna Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

0 31..30 Reserved 0 0

Mask 29..0 Each bit in this field enables access by the RDHWR instruction to a
particular hardware register (which may not be an actual register). If
bit ‘n’ in this field is a 1, access is enabled to hardware register ‘n’.
If bit ‘n’ of this field is a 0, access is disabled.
Table 7.27 lists the RDHWR registers, and register number ‘n’ cor-
responds to bit ‘n’ in this field.

R/W 0

 CP0 Registers of the 1004K™ CPU

192 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Using the HWREna register, privileged software may select which of the hardware registers are accessible via the
RDHWR instruction. In doing so, a register may be virtualized at the cost of handling a Reserved Instruction Excep-
tion, interpreting the instruction, and returning the virtualized value. For example, if it is not desirable to provide
direct access to the Count register, access to that register may be individually disabled and the return value can be vir-
tualized by the operating system.

Software may determine which registers are implemented by writing all ones to the HWREna register, then reading
the value back. If a bit reads back as a one, the processor implements that hardware register.

7.2.28 BadVAddr Register (CP0 Register 8, Select 0)

The BadVAddr register is a read-only register that captures the most recent virtual address that caused one of the fol-
lowing exceptions:

• Address error (AdEL or AdES)

Table 7.27 RDHWR Register Numbers

Register
Number Mnemonic Description

0 CPUNum This register provides read access to the coprocessor 0 EBaseCPUNum field.

1 SYNCI_Step Address step size to be used with the SYNCI instruction. See that instruction’s
description for the use of this value. In the typical implementation, this value should
be zero if there are no caches in the system which must be synchronized (either
because there are no caches, or because the instruction cache tracks writes to the data
cache). In other cases, the return value should be the smallest line size of the caches
that must be synchronized.
For the 1004K 1004k, the SYNCI_Step value is 32 since the line size is 32 bytes.

2 CC High-resolution cycle counter. This register provides read access to the coprocessor 0
Count Register.

3 CCRes Resolution of the CC register. This value denotes the number of cycles between
update of the register. For example:

In the 1004K 1004k, the CCRes value is 2 to indicate that the CC register increments
every second core cycle.

4-28
These registers numbers are reserved for future architecture use. Access results in a
Reserved Instruction Exception.

29 ULR User Local Register. This register provides read access to the coprocessor 0
UserLocal register. In some operating environments, the UserLocal register is a
pointer to a thread-specific storage block.

30-31
These register numbers are reserved for future implementation-dependent use. Access
results in a Reserved Instruction Exception.

CCRes Value Meaning

1 CC register increments every cycle

2 CC register increments every second cycle

3 CC register increments every third cycle

etc.

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 193

• TLB Refill

• TLB Invalid

• TLB Modified

The BadVAddr register does not capture address information for cache or bus errors, since they are not addressing
errors.

Figure 7.25 BadVAddr Register Format

7.2.29 Count Register (CP0 Register 9, Select 0)

The Count register acts as a timer, incrementing at a constant rate, whether or not an instruction is executed, retired,
or any forward progress is made through the pipeline. If enabled, the counter increments every other clock. Setting
the DC bit in the Cause register to 0 enables counting.

The Count register can be written for functional or diagnostic purposes, including at reset or to synchronize proces-
sors.

By writing the CountDM bit in the Debug register, it is possible to control whether the Count register continues incre-
menting while the processor is in debug mode.

Figure 7.26 Count Register Format

7.2.30 EntryHi Register (CP0 Register 10, Select 0)

The EntryHi register contains the virtual address match information used for TLB read, write, and access operations.

31 0

BadVAddr

Table 7.28 BadVAddr Register Field Description

Fields

Description
Read /
Write Reset StateName Bits

Bad-
VAddr

31:0 Bad virtual address. R Undefined

31 0

Count

Table 7.29 Count Register Field Description

Fields

Description
Read /
Write Reset StateName Bits

Count 31:0 Interval counter. R/W Undefined

 CP0 Registers of the 1004K™ CPU

194 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits VA31..13 of the virtual address to be written
into the VPN2 field of the EntryHi register. A TLBR instruction writes the EntryHi register with the corresponding
fields from the selected TLB entry. The ASID field is written by software with the current address space identifier
value and is used during the TLB comparison process to determine TLB match.

Because the ASID field is overwritten by a TLBR instruction, software must save and restore the value of ASID
around use of the TLBR. This is especially important in TLB Invalid and TLB Modified exceptions, and in other
memory management software.

The VPN2 field of the EntryHi register is not defined after an address error exception and this field may be modified
by hardware during the address error exception sequence. Software writes of the EntryHi register (via MTC0) do not
cause the implicit write of address-related fields in the BadVAddr, Context registers.

This register is only valid with the TLB. It is reserved if the FM is implemented.

Figure 7.27 EntryHi Register Format

7.2.31 Compare Register (CP0 Register 11, Select 0)

The Compare register acts in conjunction with the Count register to implement a timer and timer interrupt function.
The timer interrupt is an output of the CPUs. The Compare register maintains a stable value and does not change on
its own.

When the value of the Count register equals the value of the Compare register, the SI_TimerInt pin is asserted. This
pin will remain asserted until the Compare register is written. The SI_TimerInt pin can be fed back into the CPU on
one of the interrupt pins to generate an interrupt. Traditionally, this has been done by multiplexing it with hardware
interrupt 5 to set interrupt bit IP(7) in the Cause register.

For diagnostic purposes, the Compare register is a read/write register. In normal use, however, the Compare register
is write-only. Writing a value to the Compare register, as a side effect, clears the timer interrupt.

31 13 12 8 7 0

VPN2 0 ASID

Table 7.30 EntryHi Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

VPN2 31..13 VA31 13 of the virtual address (virtual page number / 2). This field is

written by hardware on a TLB exception or on a TLB read, and is
written by software before a TLB write.

R/W Undefined

0 12..8 Must be written as zero; returns zero on read. 0 0

ASID 7..0 Address space identifier. This field is written by hardware on a TLB
read and by software to establish the current ASID value for TLB
write and against which TLB references match each entry’s TLB
ASID field.
This field is per-TC field visible in TCStatusTASID.

R/W Undefined

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 195

Figure 7.28 Compare Register Format

7.2.32 Status Register (CP0 Register 12, Select 0)

The Status register is a read/write register that contains the operating mode, interrupt enabling, and the diagnostic
states of the processor. Fields of this register combine to create operating modes for the processor. Refer to Section
5.2 “Modes of Operation” for a discussion of operating modes, and Section 6.3 “Interrupts” for a discussion of inter-
rupt modes.

Interrupt Enable: Interrupts are enabled when all of the following conditions are true:

• IE = 1

• EXL = 0

• ERL = 0

• DM = 0

If these conditions are met, then the settings of the IM and IE bits enable the interrupts.

7.2.32.1 Operating Modes

Debug Mode

The processor is operating in Debug Mode if the DM bit in the CP0 Debug register is a one. If the processor is running
in Debug Mode, it has full access to all resources that are available to Kernel Mode operation.

Kernel Mode

The processor is operating in Kernel Mode when the DM bit in the Debug register is a zero and any of the following
three conditions is true:

• The KSU field in the CP0 Status register contains 2#00

• The EXL bit in the Status register is one

• The ERL bit in the Status register is one

The processor enters Kernel Mode at power-up, or as the result of an interrupt, exception, or error. The processor
leaves Kernel Mode and enters User Mode or Supervisor Mode when all of the previous three conditions are false,
usually as the result of an ERET instruction.

31 0

Compare

Table 7.31 Compare Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

Compare 31:0 Interval count compare value. R/W Undefined

 CP0 Registers of the 1004K™ CPU

196 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Supervisor Mode

The processor is operating in Supervisor Mode when all of the following conditions are true:

• The DM bit in the Debug register is a zero

• The KSU field in the Status register contains 2#01

• The EXL and ERL bits in the Status register are both zero

Supervisor mode is not supported with the Fixed Mapping MMU.

User Mode

The processor is operating in User Mode when all of the following conditions are true:

• The DM bit in the Debug register is a zero

• The KSU field in the Status register contains 2#10

• The EXL and ERL bits in the Status register are both zero

7.2.32.2 Coprocessor Accessibility

The Status register CU bits control coprocessor accessibility. If any coprocessor is unusable, then an instruction that
accesses it generates an exception.

Figure 7.29 Status Register Format
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 10 9 8 7 6 5 4 3 2 1 0

CU3..CU0 RP FR RE MX R BEV TS SR NMI 0 CEE R IM7..IM2 IM1..IM0 R KSU ERL EXL IE

IPL

Table 7.32 Status Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

CU3 31 Reserved. This is a per-VPE view of the TCStatusTCU3 per-TC

field.

R 0

CU2 30 Controls access to Coprocessor 2

This bit can only be written when a coprocessor 2 unit is present.
This bit cannot be written and will read as 0 if coprocessor 2 unit is
not present.
This is a per-VPE view of the TCStatusTCU2 per-TC field.

R/W Undefined

Encoding Meaning

0 Access not allowed

1 Access allowed

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 197

CU1 29 Controls access to Coprocessor 1

This bit can only be written when the Floating Point Unit is present.
If no FPU is present, this bit cannot be written and will read as 0.
This is a per-VPE view of the TCStatusTCU1 per-TC field.

R/W Undefined

CU0 28 Controls access to coprocessor 0

Coprocessor 0 is always usable when the processor is running in ker-
nel mode, independent of the state of the CU0 bit.
This is a per-VPE view of the TCStatusTCU0 per-TC field.

R/W Undefined

RP 27 Enables reduced power mode. The state of the RP bit is available on
the external 1004k interface as the SI_RP signal.

R/W 0

FR 26 This bit is used to control the floating point register mode for 64-bit
floating point units:

This bit must be ignored on write and read as zero under the follow-
ing conditions
• No floating point unit is implemented
• 64-bit floating point unit is not implemented
This is a per-VPE view of the TCStatusTFR per-TC field.

R/W 0

RE 25 Used to enable reverse-endian memory references while the proces-
sor is running in user mode
Not supported

R 0

MX 24 DSP ASE Enable. If DSP ASE hardware is present, this field is read/
write. If DSP ASE hardware is not present, this field is read-only.
Enables access to DSP ASE resources. An attempt to execute any
DSP ASE instruction before when this bit is 0 will cause a DSP
State Disabled exceptionThis is a per-VPE view of the
TCStatusTMX per-TC field.

Config
Option

0

R 23 Reserved. This field is ignored on write and read as 0. R 0

Table 7.32 Status Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 Access not allowed

1 Access allowed

Encoding Meaning

0 Access not allowed

1 Access allowed

Encoding Meaning

0 Floating point registers can contain any 32-bit
datatype. 64-bit datatypes are stored in even-odd
pairs of registers

1 Floating point registers can contain any datatype

 CP0 Registers of the 1004K™ CPU

198 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

BEV 22 Controls the location of exception vectors: R/W 1

TS 21 TLB shutdown. With the MIPS MT ASE, multiple writes are not an
error condition and the conflicting TLB write instruction is silently
dropped without a machine check exception. This bit will always be
0

R 0

SR 20 Indicates that the entry through the reset exception vector was due to
a Soft Reset. Soft Reset is not supported on this processor and this
bit is not writeable and will always read as 0

R 0

NMI 19 Indicates that the entry through the reset exception vector was due to
an NMI:

Software can only write a 0 to this bit to clear it and cannot force a
0-1 transition.

R/W0 1 for NMI; 0 oth-
erwise

0 18 Must be written as zero; returns zero on read. 0 0

CEE 17 CorExtend Enable: This bit is sent to the CorExtend block to be used
to enable the CorExtend block. The usage of this signal by a CorEx-
tend block is implementation dependent.
This bit is reserved if CorExtend is not present.
This is a per-VPE view of the TCStatusTCEE per-TC field.

R/W Undefined

R 16 Reserved. Ignored on write and read as zero. R 0

IM7..IM2 15..10 Interrupt Mask: Controls the enabling of each of the hardware inter-
rupts. Refer to Section 6.3 “Interrupts” for a complete discussion of
enabled interrupts.
An interrupt is taken if interrupts are enabled and the corresponding
bits are set in both the Interrupt Mask field of the Status register and
the Interrupt Pending field of the Cause register and the IE bit is set
in the Status register.

In implementations of Release 2 of the Architecture in which EIC
interrupt mode is enabled (Config3VEIC = 1), these bits take on a

different meaning and are interpreted as the IPL field, described
below.

R/W Undefined

Table 7.32 Status Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 Normal

1 Bootstrap

Encoding Meaning

0 Not NMI (Reset)

1 NMI

Encoding Meaning

0 Interrupt request disabled

1 Interrupt request enabled

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 199

IPL 15..10 Interrupt Priority Level: In implementations of Release 2 of the
Architecture in which EIC interrupt mode is enabled (Config3VEIC
= 1), this field is the encoded (0..63) value of the current IPL. An
interrupt will be signaled only if the requested IPL is higher than this
value.
If EIC interrupt mode is not enabled (Config3VEIC = 0), these bits

take on a different meaning and are interpreted as the IM7..IM2 bits,
described above.

R/W Undefined

IM1..IM0 9..8 Interrupt Mask: Controls the enabling of each of the software inter-
rupts. Refer to Section 6.3 “Interrupts” for a complete discussion of
enabled interrupts.

In implementations of Release 2 of the Architecture in which EIC
interrupt mode is enabled (Config3VEIC = 1), these bits are writable,

but have no effect on the interrupt system.

R/W Undefined

R 7..5 Reserved. This field is ignored on write and read as 0. R 0

KSU 4..3 This field denotes the base operating mode of the processor. See
Section 5.2 “Modes of Operation” for a full discussion of operating
modes. The encoding of this field is:

Note that the processor can also be in kernel mode if ERL or EXL is
set, regardless of the state of the KSU field.
This is a per-VPE view of the TCStatusTKSU per-TC field.

R/W Undefined

Table 7.32 Status Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 Interrupt request disabled

1 Interrupt request enabled

Encoding Meaning

00 Base mode is Kernel Mode

01 Base mode is Supervisor Mode

10 Base mode is User Mode

11 Reserved

 CP0 Registers of the 1004K™ CPU

200 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

7.2.33 IntCtl Register (CP0 Register 12, Select 1)

The IntCtl register controls the expanded interrupt capability added in Release 2 of the Architecture, including vec-
tored interrupts and support for an external interrupt controller. This register does not exist in implementations of
Release 1 of the Architecture.

ERL 2 Error Level; Set by the processor when a Reset, Soft Reset, NMI or
Cache Error exception are taken.

When ERL is set:
• The processor is running in kernel mode
• Interrupts are disabled
• The ERET instruction will use the return address held in

ErrorEPC instead of EPC

• The lower 229 bytes of kuseg are treated as an unmapped and
uncached region. See Chapter 5, “Memory Management of the
1004K™ CPU” on page 103. This allows main memory to be
accessed in the presence of cache errors. The operation of the pro-
cessor is UNDEFINED if the ERL bit is set while the processor is
executing instructions from kuseg.

R/W 1

EXL 1 Exception Level; Set by the processor when any exception other
than Reset, Soft Reset, or NMI exceptions is taken.

When EXL is set:
• The processor is running in Kernel Mode
• Interrupts are disabled.
• TLB Refill exceptions use the general exception vector instead of

the TLB Refill vector.
• EPC, CauseBD and SRSCtl (implementations of Release 2 of

the Architecture only) will not be updated if another exception is
taken

R/W Undefined

IE 0 Interrupt Enable: Acts as the master enable for software and hard-
ware interrupts:

In Release 2 of the Architecture, this bit may be modified separately
via the DI and EI instructions.

R/W Undefined

Table 7.32 Status Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 Normal level

1 Error level

Encoding Meaning

0 Normal level

1 Exception level

Encoding Meaning

0 Interrupts are disabled

1 Interrupts are enabled

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 201

Figure 7.30 IntCtl Register Format
31 29 28 26 25 23 22 10 9 5 4 0

IPTI IPPCI IPFDCI 0 VS 0

Table 7.33 IntCtl Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

IPTI 31:29 For Interrupt Compatibility and Vectored Interrupt modes, this field
specifies the IP number to which the Timer Interrupt request is
merged, and allows software to determine whether to consider
CauseTI for a potential interrupt.

The value of this bit is set by the static input, SI_IPTI[2:0]. This
allows external logic to communicate the specific SI_Int hardware
interrupt pin to which the SI_TimerInt signal is attached.
The value of this field is not meaningful if External Interrupt Con-
troller Mode is enabled. The external interrupt controller is expected
to provide this information for that interrupt mode.

R Externally Set

IPPCI 28:26 For Interrupt Compatibility and Vectored Interrupt modes, this field
specifies the IP number to which the Performance Counter Interrupt
request is merged, and allows software to determine whether to con-
sider CausePCI for a potential interrupt.

The value of this bit is set by the static input, SI_IPPCI[2:0]. This
allows external logic to communicate the specific SI_Int hardware
interrupt pin to which the SI_PCInt signal is attached.
The value of this field is not meaningful if External Interrupt Con-
troller Mode is enabled. The external interrupt controller is expected
to provide this information for that interrupt mode.

R Externally Set

Encoding IP bit Hardware Interrupt Source

2 2 HW0

3 3 HW1

4 4 HW2

5 5 HW3

6 6 HW4

7 7 HW5

Encoding IP bit Hardware Interrupt Source

2 2 HW0

3 3 HW1

4 4 HW2

5 5 HW3

6 6 HW4

7 7 HW5

 CP0 Registers of the 1004K™ CPU

202 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

7.2.34 SRSCtl Register (CP0 Register 12, Select 2)

The SRSCtl register controls the operation of GPR shadow sets in the processor.

Figure 7.31 SRSCtl Register Format

IPFDCI 25:23 For Interrupt Compatibility and Vectored Interrupt modes, this field
specifies the IP number to which the Fast Debug Channel Interrupt
request is merged, and allows software to determine whether to con-
sider CauseFDCI for a potential interrupt.

The value of this bit is set by the static input, SI_IPFDCI[2:0]. This
allows external logic to communicate the specific SI_Int hardware
interrupt pin to which the SI_FDCInt signal is attached.
The value of this field is not meaningful if External Interrupt Con-
troller Mode is enabled. The external interrupt controller is expected
to provide this information for that interrupt mode.

R Externally Set

VS 9:5 Vector Spacing. If vectored interrupts are implemented (as denoted
by Config3VInt or Config3VEIC), this field specifies the spacing

between vectored interrupts.

All other values are reserved. The operation of the processor is
UNDEFINED if a reserved value is written to this field.

R/W 0

0 22:10, 4:0 Must be written as zero; returns zero on read. 0 0

31 30 29 26 25 22 21 18 17 16 15 12 11 10 9 6 5 4 3 0

0 HSS 0 EICSS 0 ESS 0 PSS 0 CSS

Table 7.33 IntCtl Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Encoding IP bit Hardware Interrupt Source

2 2 HW0

3 3 HW1

4 4 HW2

5 5 HW3

6 6 HW4

7 7 HW5

Encoding
Spacing Between

Vectors (hex)
Spacing Between
Vectors (decimal)

16#00 16#000 0

16#01 16#020 32

16#02 16#040 64

16#04 16#080 128

16#08 16#100 256

16#10 16#200 512

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 203

Table 7.34 SRSCtl Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

HSS 29:26 Highest Shadow Set. This field contains the highest shadow set
number that is implemented by this processor. A value of zero in this
field indicates that only the normal GPRs are implemented.
Possible values of this field for the 1004K processor are:

The value in this field also represents the highest value that can be
written to the ESS, EICSS, PSS, and CSS fields of this register, or
to any of the fields of the SRSMap register. The operation of the
processor is UNDEFINED if a value larger than the one in this field
is written to any of these other fields. This field is automatically
updated when SRSConf0 is written.

R Preset

EICSS 21:18 EIC interrupt mode shadow set. If Config3VEIC is 1 (EIC interrupt

mode is enabled), this field is loaded from the external interrupt con-
troller for each interrupt request and is used in place of the SRSMap
register to select the current shadow set for the interrupt.
See Section 6.3.1.3 “External Interrupt Controller Mode” for a dis-
cussion of EIC interrupt mode. If Config3VEIC is 0, this field returns

zero on read.

R Undefined

ESS 15:12 Exception Shadow Set. This field specifies the shadow set to use on
entry to Kernel Mode caused by any exception other than a vectored
interrupt.
The operation of the processor is UNDEFINED if software writes a
value into this field that is greater than the value in the HSS field.

R/W 0

PSS 9:6 Previous Shadow Set. If GPR shadow registers are implemented,
and with the exclusions noted in the next paragraph, this field is cop-
ied from the CSS field when an exception or interrupt occurs. An
ERET instruction copies this value back into the CSS field if
StatusBEV = 0.

This field is not updated on any exception which sets StatusERL to 1

(i.e., Reset, Soft Reset, NMI, cache error), an entry into EJTAG
Debug mode, or any exception or interrupt that occurs with
StatusEXL = 1, or StatusBEV = 1. This field is not updated on an

exception that occurs while StatusERL = 1.

The operation of the processor is UNDEFINED if software writes a
value into this field that is greater than the value in the HSS field.

R/W 0

Encoding Meaning

0 One shadow set (normal GPR set) is present.

1 Two shadow sets are present.

2 Three shadow sets are present.

3 Four shadow sets are present.

3-15 Reserved

 CP0 Registers of the 1004K™ CPU

204 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

7.2.35 SRSMap Register (CP0 Register 12, Select 3)

The SRSMap register contains 8 4-bit fields that provide the mapping from an vector number to the shadow set num-
ber to use when servicing such an interrupt. The values from this register are not used for a non-interrupt exception,
or a non-vectored interrupt (CauseIV = 0 or IntCtlVS = 0). In such cases, the shadow set number comes from
SRSCtlESS.

If SRSCtlHSS is zero, the results of a software read or write of this register are UNPREDICTABLE.

The operation of the processor is UNDEFINED if a value is written to any field in this register that is greater than the
value of SRSCtlHSS.

CSS 3:0 Current Shadow Set. If GPR shadow registers are implemented, this
field is the number of the current GPR set. With the exclusions noted
in the next paragraph, this field is updated with a new value on any
interrupt or exception, and restored from the PSS field on an ERET.
Table 7.35 describes the various sources from which the CSS field is
updated on an exception or interrupt.
This field is not updated on any exception which sets StatusERL to
1 (i.e., Reset, Soft Reset, NMI, cache error), an entry into EJTAG
Debug mode, or any exception or interrupt that occurs with
StatusEXL = 1, or StatusBEV = 1. Neither is it updated on an ERET

with StatusERL = 1 or StatusBEV = 1. This field is not updated on

an exception that occurs while StatusERL = 1.

The value of CSS can be changed directly by software only by writ-
ing the PSS field and executing an ERET instruction.

R 0

0 31:30,
25:22,
17:16,

11:10, 5:4

Must be written as zeros; returns zero on read. 0 0

Table 7.35 Sources for new SRSCtlCSS on an Exception or Interrupt

Exception Type Condition SRSCtlCSS Source Comment

Exception All SRSCtlESS

Non-Vectored Interrupt CauseIV = 0 SRSCtlESS Treat as exception

Vectored Interrupt CauseIV = 1 and

Config3VEIC = 0 and

Config3VInt = 1

SRSMapVECTNUM Source is internal map regis-
ter.
(for VECTNUM see Table 6.4)

Vectored EIC Interrupt CauseIV = 1 and

Config3VEIC = 1

SRSCtlEICSS Source is external interrupt
controller.

Table 7.34 SRSCtl Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 205

The SRSMap register contains the shadow register set numbers for vector numbers 7..0. The same shadow set num-
ber can be established for multiple interrupt vectors, creating a many-to-one mapping from a vector to a single
shadow register set number.

Figure 7.32 SRSMap Register Format

7.2.36 Cause Register (CP0 Register 13, Select 0)

The Cause register primarily describes the cause of the most recent exception. In addition, fields also control soft-
ware interrupt requests and the vector through which interrupts are dispatched. With the exception of the IP1..0, DC,
IV, and WP fields, all fields in the Cause register are read-only. Release 2 of the Architecture added optional support
for an External Interrupt Controller (EIC) interrupt mode, in which IP7..2 are interpreted as the Requested Interrupt
Priority Level (RIPL).

Figure 7.33 Cause Register Format

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

SSV7 SSV6 SSV5 SSV4 SSV3 SSV2 SSV1 SSV0

Table 7.36 SRSMap Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

SSV7 31..28 Shadow register set number for Vector Number 7 R/W 0

SSV6 27..24 Shadow register set number for Vector Number 6 R/W 0

SSV5 23..20 Shadow register set number for Vector Number 5 R/W 0

SSV4 19..16 Shadow register set number for Vector Number 4 R/W 0

SSV3 15..12 Shadow register set number for Vector Number 3 R/W 0

SSV2 11..8 Shadow register set number for Vector Number 2 R/W 0

SSV1 7..4 Shadow register set number for Vector Number 1 R/W 0

SSV0 3..0 Shadow register set number for Vector Number 0 R/W 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 8 7 6 2 1 0

BD TI CE DC PCI 0 IV WP FDCI IP7..IP2 IP1..IP0 0 Exc Code 0

RIPL

 CP0 Registers of the 1004K™ CPU

206 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Table 7.37 Cause Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

BD 31 Indicates whether the last exception taken occurred in a branch delay
slot:

The processor updates BD only if StatusEXL was zero when the

exception occurred.

R Undefined

TI 30 Timer Interrupt. This bit denotes whether a timer interrupt is pend-
ing (analogous to the IP bits for other interrupt types):

The state of the TI bit is available on the external CPU interface as
the SI_TimerInt signal.

R Undefined

CE 29:28 Coprocessor unit number referenced when a Coprocessor Unusable
exception is taken. This field is loaded by hardware on every excep-
tion, but is UNPREDICTABLE for all exceptions except for
Coprocessor Unusable.

R Undefined

DC 27 Disable Count register. In some power-sensitive applications, the
Count register is not used and is the source of meaningful power
dissipation. This bit allows the Count register to be stopped in such
situations.

R/W 0

PCI 26 Performance Counter Interrupt: This bit denotes whether a perfor-
mance counter interrupt is pending (analogous to the IP bits for
other interrupt types):

The state of the PCI bit is available on the external CPU interface as
the SI_PCInt signal.

R Undefined

IV 23 Indicates whether an interrupt exception uses the general exception
vector or a special interrupt vector:

If the CauseIV is 1 and StatusBEV is 0, the special interrupt vector

represents the base of the vectored interrupt table.

R/W Undefined

Encoding Meaning

0 Not in delay slot

1 In delay slot

Encoding Meaning

0 No timer interrupt is pending

1 Timer interrupt is pending

Encoding Meaning

0 Enable counting of Count register

1 Disable counting of Count register

Encoding Meaning

0 No performance counter interrupt is pending

1 Performance counter interrupt is pending

Encoding Meaning

0 Use the general exception vector (16#180)

1 Use the special interrupt vector (16#200)

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 207

WP 22 Indicates that a watch exception was deferred because StatusEXL or

StatusERL were a one at the time the watch exception was detected.

This bit both indicates that the watch exception was deferred, and
causes the exception to be initiated once StatusEXL and StatusERL
are both zero. As such, software must clear this bit as part of the
watch exception handler to prevent a watch exception loop.
Software should not write a 1 to this bit when its value is a 0, thereby
causing a 0-to-1 transition. If such a transition is caused by software,
it is UNPREDICTABLE whether hardware ignores the write,
accepts the write with no side effects, or accepts the write and ini-
tiates a watch exception once StatusEXL and StatusERL are both

zero.

R/W Undefined

FDCI 21 Fast Debug Channel Interrupt: This bit denotes whether an FDC
interrupt is pending (analogous to the IP bits for other interrupt
types):

The state of the FDCI bit is available on the external CPU interface
as the SI_FDCInt signal.

R Undefined

IP7..IP2 15:10 Indicates an interrupt is pending:

If EIC interrupt mode is not enabled (Config3VEIC = 0), timer inter-

rupts are combined in a system-dependent way with any hardware
interrupt. If EIC interrupt mode is enabled (Config3VEIC = 1), these

bits take on a different meaning and are interpreted as the RIPL
field, described below.
See Section 6.3 “Interrupts” for a general description of interrupt
processing.

R Undefined

RIPL 15:10 Requested Interrupt Priority Level: If EIC interrupt mode is enabled
(Config3VEIC = 1), this field is the encoded (0..63) value of the

requested interrupt. A value of zero indicates that no interrupt is
requested.
If EIC interrupt mode is not enabled (Config3VEIC = 0), these bits

take on a different meaning and are interpreted as the IP7..IP2 bits,
described above.

R Undefined

Table 7.37 Cause Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 No FDC interrupt is pending

1 FDC interrupt is pending

Bit Name Meaning

15 IP7 Hardware interrupt 5

14 IP6 Hardware interrupt 4

13 IP5 Hardware interrupt 3

12 IP4 Hardware interrupt 2

11 IP3 Hardware interrupt 1

10 IP2 Hardware interrupt 0

 CP0 Registers of the 1004K™ CPU

208 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

IP1..IP0 9:8 Controls the request for software interrupts:

These bits are exported to an external interrupt controller for prioriti-
zation in EIC interrupt mode with other interrupt sources. The state
of these bits is available on the external CPU interface as the
SI_SWInt[1:0] bus.

R/W Undefined

ExcCode 6:2 Exception code - see Table 7.38 R Undefined

0 25:24,
20:16, 7,

1:0

Must be written as zero; returns zero on read. 0 0

Table 7.38 Cause Register ExcCode Field

Exception Code Value

Mnemonic DescriptionDecimal Hexadecimal

0 16#00 Int Interrupt

1 16#01 Mod TLB modification exception

2 16#02 TLBL TLB exception (load or instruction fetch)

3 16#03 TLBS TLB exception (store)

4 16#04 AdEL Address error exception (load or instruction fetch)

5 16#05 AdES Address error exception (store)

6 16#06 IBE Bus error exception (instruction fetch)

7 16#07 DBE Bus error exception (data reference: load or store)

8 16#08 Sys Syscall exception

9 16#09 Bp Breakpoint exception. If an SDBBP instruction is executed while the pro-
cessor is running in EJTAG Debug Mode, this value is written to the
DebugDExcCode field to denote an SDBBP in Debug Mode.

10 16#0a RI Reserved instruction exception

11 16#0b CpU Coprocessor Unusable exception

12 16#0c Ov Arithmetic Overflow exception

13 16#0d Tr Trap exception

14 16#0e - Reserved

15 16#0f FPE Floating point exception

16 16#10 IS1 Coprocessor 2 implementation specific exception

17 16#11 CEU CorExtend Unusable

Table 7.37 Cause Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Bit Name Meaning

9 IP1 Request software interrupt 1

8 IP0 Request software interrupt 0

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 209

7.2.37 Exception Program Counter (CP0 Register 14, Select 0)

The Exception Program Counter (EPC) is a read/write register that contains the address at which processing resumes
after an exception has been serviced. All bits of the EPC register are significant and must be writable.

For synchronous (precise) exceptions, the EPC contains one of the following:

• The virtual address of the instruction that was the direct cause of the exception

• The virtual address of the immediately preceding branch or jump instruction, when the exception causing
instruction is in a branch delay slot and the Branch Delay bit in the Cause register is set.

On new exceptions, the processor does not write to the EPC register when the EXL bit in the Status register is set,
however, the register can still be written via the MTC0 instruction.

In processors that implement the MIPS16 ASE, a read of the EPC register (via MFC0) returns the following value in
the destination GPR:

GPR[rt] ← ExceptionPC31..1 || ISAMode0

That is, the upper 31 bits of the exception PC are combined with the lower bit of the ISAMode field of DEPC7 and
written to the GPR.

Similarly, a write to the EPC register (via MTC0) takes the value from the GPR and distributes that value to the
exception PC and the ISAMode field, as follows

ExceptionPC ← GPR[rt]31..1 || 0
ISAMode ← 2#0 || GPR[rt]0

18 16#12 C2E Precise Coprocessor 2 exception

19-22 16#13-16#16 - Reserved

23 16#17 WATCH Reference to WatchHi/WatchLo address

24 16#18 MCheck Machine check - will not happen on 1004K CPU

25 16#19 Thread Thread exception. VPEControlEXCPT specifies the type of the thread

exception.

26 16#1a DSPDis DSP ASE State Disabled exception

27-29 16#1b-16#1d - Reserved

30 16#1e CacheErr Cache error. In normal mode, a cache error exception has a dedicated
vector and the Cause register is not updated. If a cache error occurs while
in Debug Mode, this code is written to the DebugDExcCode field to indi-

cate that re-entry to Debug Mode was caused by a cache error.

31 16#1f - Reserved

Table 7.38 Cause Register ExcCode Field (Continued)

Exception Code Value

Mnemonic DescriptionDecimal Hexadecimal

 CP0 Registers of the 1004K™ CPU

210 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the exception PC, and the lower bit of the
exception PC is cleared. The upper bit of the ISAMode field is cleared and the lower bit is loaded from the lower bit of
the GPR.

Figure 7.34 EPC Register Format

7.2.38 Processor Identification (CP0 Register 15, Select 0)

The Processor Identification (PRId) register is a 32 bit read-only register that contains information identifying the
manufacturer, manufacturer options, processor identification, and revision level of the processor.

Figure 7.35 PRId Register Format

31 0

EPC

Table 7.39 EPC Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

EPC 31:0 Exception Program Counter. R/W Undefined

31 24 23 16 15 8 7 0

CompanyOption Company ID Processor ID Revision

Table 7.40 PRId Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

Company
Option

31:24 Implementation specific values R Preset

Company
ID

23:16 Identifies the company that designed or manufactured the processor.
In the 1004K this field contains a value of 1 to indicate MIPS Tech-
nologies, Inc.

R 1

Processor
ID

15:8 Identifies the type of processor. This field allows software to distin-
guish between the various types of MIPS Technologies processors.

R 0x99

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 211

7.2.39 EBase Register (CP0 Register 15, Select 1)

The EBase register is a read/write register containing the base address of the exception vectors used when StatusBEV
equals 0, and a read-only CPU number value that may be used by software to distinguish different virtual or physical
processors in a multi-processor system.

The EBase register provides the ability for software to identify the specific processor within a multi-processor sys-
tem, and allows the exception vectors for each processor to be different, especially in systems composed of heteroge-
neous processors. Bits 31:12 of the EBase register are concatenated with zeros to form the base of the exception
vectors when StatusBEV is 0. The exception vector base address comes from the fixed defaults (see Section
6.5 “Exception Vector Locations”) when StatusBEV is 1, or for any EJTAG Debug exception. The reset state of bits
31:12 of the EBase register initialize the exception base register to 16#8000.0000, providing backward compati-
bility with Release 1 implementations.

Bits 31:30 of the EBase Register are fixed with the value 2#10 to force the exception base address to be in the kseg0
or kseg1 unmapped virtual address segments. Bit 29 of exception base address will be forced to 1 on Cache Error
exceptions so the exception handler will be executed from the uncached kseg1 segment.

If the value of the exception base register is to be changed, this must be done with StatusBEV equal 1. The operation
of the processor is UNDEFINED if the Exception Base field is written with a different value when StatusBEV is 0.

Combining bits 31:12 with the Exception Base field allows the base address of the exception vectors to be placed at
any 4KBbyte page boundary.

Figure 7.36 EBase Register Format

Revision 7:0 Specifies the revision number of the processor. This field allows
software to distinguish between one revision and another of the
same processor type.
This field is broken up into the following three subfields:

R Preset

31 30 29 12 11 10 9 0

1 0 Exception Base 0 CPUNum

Table 7.40 PRId Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Bit(s) Name Meaning

7:5 Major
Revision

This number is increased on major revisions
of the processor 1004k

4:2 Minor
Revision

This number is increased on each incremen-
tal revision of the processor and reset on
each new major revision

1:0 Patch
Level

If a patch is made to modify an older revi-
sion of the processor, this field will be
incremented

 CP0 Registers of the 1004K™ CPU

212 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

7.2.40 CDMMBase Register (CP0 Register 15, Select 2)

The physical base address for the Common Device Memory Map facility is defined by this register. This register only
exists if Config3CDMM is set to one.

For devices that implement the MIPS MT ASE, access to this register is controlled by the VPEConf0MVP register
field. If the MVP bit is cleared, a read to this register returns all zeros and a write to this register is ignored.

Figure 7.37 has the format of the CDMMBase register, and Table 7.42 describes the register fields.

Figure 7.37 CDMMBase Register

Table 7.41 EBase Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

1 31 This bit is ignored on write and returns one on read. R 1

Exception
Base

29:12 In conjunction with bits 31..30, this field specifies the base address
of the exception vectors when StatusBEV is zero.

R/W 0

CPUNum 9:0 This field contains an identifier that will be unique among the VPEs
and CPUs in a multi-processor system. This can be used by software
to distinguish where it is running. The value in this field is set by the
SI_CPUNum[9:0] static input pins to the CPU.
In a two VPE system, the lowest bit of SI_CPUNum is ignored and
CPUNum[0] is reset to 0 for VPE0 and to 1 for VPE1.

R Externally Set

0 30, 11:10 Must be written as zero; returns zero on read. 0 0

31 11 10 9 8 0

CDMM_UPPER_ADDR EN CI CDMMSize

Table 7.42 CDMMBase Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

CDMM_UP
PER_ADDR

31:29 These bits correspond to unimplemented physical address
bits. Writes are ignored, returns 0 on read

R 0

CDMM_UP
PER_ADDR

28:11 Bits 31:15 of the base physical address of the memory
mapped registers.

R/W Undefined

EN 10 Enables the CDMM region.
If this bit is cleared, memory requests to this address
region go to regular system memory. If this bit is set,
memory requests to this region go to the CDMM logic

R/W 0

Encoding Meaning

0 CDMM Region is disabled.

1 CDMM Region is enabled.

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 213

7.2.41 CMGCR Base Register (CP0 Register 15, Select 3)

The 36-bit physical base address for the memory-mapped Coherency Manager Global Configuration Register space
is defined by this register. This register only exists if Config3CMGCR is set to one.

Figure 7.38 has the format of the CMGCRBase register, and Table 7.43 describes the register fields.

Figure 7.38 CMGCRBase Register

CI 9 If set to 1, this indicates that the first 64-byte Device Reg-
ister Block of the CDMM is reserved for additional regis-
ters which manage CDMM region behavior and are not IO
device registers.

This feature is not implemented and this field will read as
0

R 0

CDMMSize 8:0 This field represents the number of 64-byte Device Regis-
ter Blocks are instantiated in the core.

R 0x2

31 11 10 0

CMGCR_BASE_ADDR 0

Table 7.43 CMGCRBase Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

CMGCR_
BASE_ADDR

31:11 Bits 35:15 of the base physical address of the memory-
mapped Coherency Manager GCR registers.

This register field reflects the value of the GCR_BASE
field within the memory-mapped Coherency Manager
GCR Base Register.

The number of implemented physical address bits is
implementation-specific. For the unimplemented address
bits - writes are ignored, returns zero on read.

R Preset

Table 7.42 CDMMBase Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
StateName Bits

Encoding Meaning

0 1 DRB

1 2 DRBs

2 3 DRBs

... ...

511 512 DRBs

 CP0 Registers of the 1004K™ CPU

214 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

7.2.42 Config Register (CP0 Register 16, Select 0)

The Config register specifies various configuration and capabilities information. Most of the fields in the Config reg-
ister are initialized by hardware during the Reset exception process, or are constant. The K0, KU, and K23 fields must
be initialized by software in the Reset exception handler, if the reset value is not desired.

Figure 7.39 Config Register Format — Select 0

0 10:0 Must be written as zero; returns zero on read R 0

31 30 28 27 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 7 6 3 2 0

M K23 KU ISP DSP UDI SB MDU WC MM 0 BM BE AT AR MT 0 K0

Table 7.44 Config Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

M 31 This bit is hardwired to ‘1’ to indicate the presence of the Config1
register.

R 1

K23 30:28 This field controls the cacheability of the kseg2 and kseg3 address
segments in FM implementations.
Refer to Table 7.45 for the field encoding.

FM: R/W
TLB: R

FM: 010
TLB: 000

KU 27:25 This field controls the cacheability of the kuseg and useg address
segments in FM implementations.
Refer to Table 7.45 for the field encoding.

FM: R/W
TLB: R

FM: 010
TLB: 000

ISP 24 I-side ScratchPad RAM present R Preset

DSP 23 D-side ScratchPad RAM present R Preset

UDI 22 This bit indicates that CorExtend User Defined Instructions have
been implemented.

This bit is automatically updated by hardware when VPEconf0NCX
is written.

R Preset

SB 21 Indicates whether SimpleBE bus mode is enabled. Set via
SI_SimpleBE input pin.

R Externally Set

Table 7.43 CMGCRBase Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
StateName Bits

Encoding Description

0 No User Defined Instructions are implemented

1 User Defined Instructions are implemented

Encoding Description

0 No reserved byte enables on OCP interface

1 Only simple byte enables allowed on OCP interface

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 215

MDU 20 MDU Implementation. R Preset

WC 19 Reserved Diagnostic Bit.
Should normally be written as 0. Refer to Cache Configuration
Application Note [16] for details on usage.

R/W 0

MM 18 This bit indicates whether write-through merging is enabled in the
32-byte collapsing write buffer.
Write-through caching is not supported on 1004K CPU, so this bit is
not relevant
This bit is implemented per-processor and not per-VPE as are other
writable fields of this register.

R/W 1

BM 16 Burst order. Set via SI_SBlock input pin
The 1004K CPU only support Sequential burst order.

R 0

BE 15 Indicates the endian mode in which the processor is running. Set via
SI_Endian input pin.

R Externally Set

AT 14:13 Architecture type implemented by the processor. This field is always
00 to indicate the MIPS32 architecture.

R 00

AR 12:10 Architecture revision level. This field is always 001 to indicate
MIPS32 Release 2.

R 001

MT 9:7 MMU Type: R Preset

K0 2:0 Kseg0 coherency algorithm. Refer to Table 7.45 for the field encod-
ing.

R/W 010

Table 7.44 Config Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Description

0 High-performance MDU

1 Low-cost MDU

Encoding Description

0 Sequential

1 SubBlock

Encoding Description

0 Little endian

1 Big endian

Encoding Description

0 Release 1

1 Release 2

2:7 Reserved

Encoding Description

1 Standard TLB

3 Fixed Mapping

0, 2, 4:7 Reserved

 CP0 Registers of the 1004K™ CPU

216 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

7.2.43 Config1 Register (CP0 Register 16, Select 1)

The Config1 register is an adjunct to the Config register and encodes additional information about capabilities present
on the CPU. All fields in the Config1 register are read-only.

The instruction and data cache configuration parameters include encodings for the number of sets per way, the line
size, and the associativity. The total cache size for a cache is therefore:

Associativity * Line Size * Sets Per Way

If the line size is zero, no cache is implemented. This is only relevant for the Instruction Cache, as the Data Cache is
required.

Figure 7.40 Config1 Register Format

0 17, 6:3 Must be written as zeros; returns zeros on reads. 0 0

Table 7.45 Cache Coherency Attributes

K0(2:0) Value Name Cache Coherency Attribute

0 - Reserved

1 - Reserved

2 UC Uncached

3 WB Cacheable, noncoherent, write-back, write allocate

4 CWBE Cacheable, write-back, write-allocate, coherent, read misses request Exclusive

5 CWB Cacheable, write-back, write-allocate, coherent, read misses request Shared

6 - Reserved

7 UCA Uncached Accelerated

31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 5 4 3 2 1 0

M MMU Size IS IL IA DS DL DA C2 MD PC WR CA EP FP

Table 7.46 Config1 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

M 31 This bit is hardwired to ‘1’ to indicate the presence of the Config2
register.

R 1

MMU
Size

30:25 This field contains the number of entries in the TLB minus one. The
field is read as 0 decimal if the TLB is not implemented

R Preset

Table 7.44 Config Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 217

IS 24:22 This field contains the number of instruction cache sets per way. The
corresponding total instruction cache size is shown as well.

R Preset

IL 21:19 This field contains the instruction cache line size The cache line size
is fixed at 32 bytes when the I-Cache is present. A value of 0 indi-
cates no ICache.

R Preset

IA 18:16 This field contains the level of instruction cache associativity. R Preset

DS 15:13 This field contains the number of data cache sets per way. The corre-
sponding total data cache size is shown as well.

R Preset

Table 7.46 Config1 Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Value Sets

Size
Direct

Mapped
Size

4-way

0x0 64 2KB 8KB

0x1 128 4KB 16KB

0x2 256 8KB 32KB

0x3 512 16KB 64KB

0x4:0x6 Reserved

0x7 32 1KB 4KB

Encoding Description

0x0 No ICache present

0x1:0x3 Reserved

0x4 32 bytes

0x5:0x7 Reserved

Encoding Description

0x0 Direct-Mapped

0x3 4-way

0x1-0x2, 0x4:0x7 Reserved

Value Sets

Size
Direct

Mapped
Size

4-way

0x0 64 2KB 8KB

0x1 128 4KB 16KB

0x2 256 8KB 32KB

0x3 512 16KB 64KB

0x4:0x6 Reserved

0x7 32 1KB 4KB

 CP0 Registers of the 1004K™ CPU

218 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

DL 12:10 This field contains the data cache line size. The cache line size is
fixed at 32 bytes when a D-cache is present. This field reads 0 when
a D-cache is not present.

R Preset

DA 9:7 This field contains the type of set associativity for the data cache
The associativity is fixed at 4-way.

R Preset

C2 6 Coprocessor 2 present.

This bit is automatically updated by hardware when
VPEConf1NCP2 is written.

R Preset

MD 5 MDMX implemented. R 0

PC 4 Performance Counter registers implemented. R Preset

WR 3 Watch registers implemented. R Preset

CA 2 Code compression (MIPS16) implemented. R Preset

EP 1 EJTAG present: This bit is always set to indicate that the CPU
implements EJTAG.

R 1

Table 7.46 Config1 Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Description

0x0 No DCache present

0x1:0x3 Reserved

0x4 32 bytes

0x5:0x7 Reserved

Encoding Description

0x0 Direct-Mapped

0x3 4-way

0x1-0x2, 0x4:0x7 Reserved

Encoding Description

0 Coprocessor2 not present

1 Coprocessor2 present

Encoding Description

0 No Performance counters are present

1 One or more performance counters are present

Encoding Description

0 No Watch registers are present

1 One or more Watch registers are present

Encoding Description

0 No MIPS16 present

1 MIPS16 is implemented

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 219

7.2.44 Config2 Register (CP0 Register 16, Select 2)

The Config2 register is an adjunct to the Config register and is reserved to encode additional capabilities information.
Config2 is allocated for showing the configuration of level 2/3 caches. L2 values reflect the configuration information
input from the L2 module. L3 fields are reset to 0 because L3 caches are not supported by the 1004K CPU. All fields
in the Config2 register are read-only.

Figure 7.41 Config2 Register Format

FP 0 FPU implemented.
• When no FPU is present, this will be 0
• When the multithreaded FPU is present, this will be 1
• When the single-threaded FPU is present, hardware automatically

updates this field when VPEConf1NCP1 is written.

R Preset

31 30 28 27 24 23 20 19 16 15 13 12 11 8 7 4 3 0

M TU TS TL TA SU L2B SS SL SA

Table 7.47 Config2 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

M 31 This bit is hardwired to ‘1’ to indicate the presence of the Config3
register.

R 1

TU 30:28 Implementation specific tertiary cache control. Tertiary cache not
supported

R 0

TS 27:24 Tertiary cache sets per way. Tertiary cache not supported R 0

TL 23:20 Tertiary cache line size. Tertiary cache not supported R 0

TA 19:16 Tertiary cache associativity. Tertiary cache not supported R 0

SU 15:13 Reserved R 0

L2B 12 L2 Bypass/L2_Bypassed. In systems which include an L2 cache,
writing a 1 to this bit, will set the L2_Bypass output. Setting the
L2_Bypass output directs the L2 cache to go into bypass mode. L2
responds by asserting its L2_Bypassed output pin. The value of
L2_Bypassed is returned when L2B is read. Since this involves a
communication between CPU and L2, reading this bit will reflect
the new value with some implementation- and clock ratio- depen-
dent delay.

In configurations without L2 support, writes to this bit are ignored
and reads return 0.

R/W 0

Table 7.46 Config1 Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

 CP0 Registers of the 1004K™ CPU

220 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

SS 11:8 Secondary cache sets per way R Preset

SL 7:4 Secondary cache line size R Preset

SA 3:0 Secondary cache associativity R Preset

Table 7.47 Config2 Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Description

0 64

1 128

2 256

3 512

4 1024

5 2048

6 4096

7 8192

8-15 Reserved

Encoding Description

0 No cache present

1 4

2 8

3 16

4 32

5 64

6 128

7 256

8-15 Reserved

Encoding Description

0 Direct mapped

1 2

2 3

3 4

4 5

5 6

6 7

7 8

8-15 Reserved

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 221

7.2.45 Config3 Register (CP0 Register 16, Select 3)

The Config3 register encodes additional capabilities of the 1004K CPU. All fields in the Config3 register are read-
only.

Figure 7.42 Config3 Register Format
31 30 29 28 14 13 12 11 10 9 7 6 5 4 3 2 1 0

M 0 CMGCR 0 ULRI 0 DSPP 0 VEIC VInt SP CDMM MT SM TL

Table 7.48 Config3 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

M 31 This bit is reserved to indicate if a Config4 register is present. R 0

CMCGR 29 Reads 1 to indicate that the Coherence Manager has a Global Con-
figuration Register Space and the CMGCRBase cop0 register is
implemented.

R 1

ULRI 13 User Local Register Implemented: Indicates whether the Cop0
UserLocal register is present.

R Preset

DSPP 10 DSP Present. Indicates whether support for the DSP ASE is imple-
mented.

R Preset

VEIC 6 Support for an external interrupt controller is implemented.

The value of this bit is set by the static input, SI_EICPresent. This
allows external logic to communicate whether an external interrupt
controller is attached to the processor or not.

R Externally Set

VInt 5 Vectored interrupts implemented. This bit indicates whether vec-
tored interrupts are implemented.

On the 1004K CPU, this bit is always a 1 since vectored interrupts
are implemented.

R 1

Encoding Description

0 UserLocal not implemented

1 UserLocal is implemented

Encoding Description

0 DSP ASE is not implemented

1 DSP ASE is implemented

Encoding Description

0 Support for EIC interrupt mode is not implemented

1 Support for EIC interrupt mode is implemented

Encoding Description

0 Vector interrupts are not implemented

1 Vectored interrupts are implemented

 CP0 Registers of the 1004K™ CPU

222 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

7.2.46 Config7 Register (CP0 Register 16, Select 7)

The Config7 register contains implementation specific configuration information. A number of these bits are write-
able to disable certain performance enhancing features within the CPU.

SP 4 Small (1KByte) page support is implemented, and the PageGrain
register exists. This bit will always be 0 since small pages are not
supported.

R 0

CDMM 3 This bit indicates if the Common Device Memory Map feature is
implemented and if the CDMMBase register is present. This bit will
always read as 1

R 1

MT 2 This bit indicates if the MIPS MT (multi-threading) ASE imple-
mented.

R 1

SM 1 This bit indicates whether the SmartMIPS™ ASE is implemented.
Since SmartMIPS is not present on the 1004K CPU, this bit will
always be 0.

R 0

TL 0 Trace Logic implemented. This bit indicates whether MIPS trace
support is implemented.

R Preset

0 29:11, 9:7 Must be written as zeros; returns zeros on read 0 0

Table 7.48 Config3 Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Encoding Description

0 Small page support is not implemented

1 Small page support is implemented

Encoding Description

0 CDMM is not implemented

1 CDMM is implemented

Encoding Description

0 MIPS MT ASE is not implemented

1 MIPS MT ASE is implemented

Encoding Description

0 SmartMIPS ASE is not implemented

1 SmartMIPS ASE is implemented

Encoding Description

0 Trace logic is not implemented

1 Trace logic is implemented

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 223

Figure 7.43 Config7 Register Format
31 30 20 19 18 17 16 15 10 9 8 7 6 5 4 3 2 1 0

WII 0 NCWB PCT HCI FPR AR 0 IAR IVA ES BTLM CPOOO NBLSU ULB BP RPS BHT SL

Table 7.49 Config7 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

WII 31 Wait IE/IXMT Ignore: Indicates that this processor will allow an
interrupt to unblock a WAIT instruction even if IE or IXMT is pre-
venting the interrupt from being taken.
This avoids problems using the WAIT instruction for ‘bottom half’
interrupt servicing.

R 1

0 30:20,
15:11

These bits are unused and should be written as 0. R 0

NCWB 20 Non-Coherent Writeback. When set, HitWB cacheops to a non-
coherent address are written using a non-coherent CCA.

R/W 0

PCT 19 Performance Counters per TC: This bit indicates to software that the
perfcounter registers are instantiated per TC rather than per proces-
sor.
This bit is implemented per-processor.

R 1

HCI 18 Hardware Cache Initialization: Indicates that a cache does not
require initialization by software. This bit is implemented per-pro-
cessor.
This bit will most likely only be set on simulation-only cache mod-
els and not on real hardware.

R Based on HW
present

FPR 17 Floating Point Ratio: Indicates clock ratio between integer CPU and
floating point unit on 1004Kf CPUs. Reads as 0 on 1004Kc CPUs.

This bit is implemented per-processor.

R Based on HW
present

AR 16 Alias removed: This bit indicates that the data cache is organized to
avoid virtual aliasing problems. This bit is only set if the data cache
config and MMU type would normally cause aliasing - i.e., only for
the 32KB and larger data cache and TLB-based MMU.
This bit is implemented per-processor.

R Based on HW
present

IAR 10 Instruction Alias Removed: Indicates that this processor has hard-
ware support to remove instruction cache alias. This hardware is
only present when the CPU is configured with a TLB and cache
sizes 32KB and larger. The hardware is disabled via the IVA bit.
This bit is implemented per-VPE

R Based on HW
present

IVA 9 Instruction Virtual Aliasing fix disable: Setting this bit will disable
the HW alias removal on the I-Cache. If this bit is cleared, CACHE
Hit Invalidate and SYNCI instructions will look up all possible
aliased locations and invalidate the given cache line in all of them.
This bit is Read-only if IAR=0
This bit is implemented per-VPE

R/W
or
R

0

Encoding Description

0 FP clock frequency is the same as the integer clock

1 FP clock frequency is one-half the integer clock

 CP0 Registers of the 1004K™ CPU

224 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

ES 8 Externalize Sync: If this bit is set, and if the downstream device is
capable of accepting SYNC’s (indicated via the pin SI_SyncTxEn),
the SYNC instruction will cause a SYNC specific transaction to go
out on the external bus. If this bit is cleared or if SI_SyncTxEn is
deasserted, no transaction will go out, but all SYNC handling inter-
nal to the CPU will still be performed. When this bit is read, the
value returned depends on the state of the SI_SyncTxEn pin. If
SI_SyncTxEn is 0, a value of 0 is returned. If SI_SyncTxEn is 1,
the value returned is the last value that was written to this bit. Refer
to SYNC instruction description for more information.
This bit is implemented per-processor.

R 1

BTLM 7 Block TC on Load Miss: Setting this bit will cause a TC to be sus-
pended once a load miss has been detected, rather than waiting for a
dependent instruction to try to access the load data. This can
increase pipeline utilization and provide fairer allocation of miss
resources, but does limit the parallel servicing of cache misses from
a single TC.
This bit is implemented per-processor.

R/W 0

CPOOO 6 Out-of-order data return on the Coprocessor interfaces: Writing 1 to
this bit disables the out-of-order data return for the FPU and COP2.

R/W 0

NBLSU 5 Non-Blocking LSU: Writing 1 to this field will lock the LSU and
ALU pipelines together. This forces LSU pipeline stalls to also stall
the ALU pipeline.
This bit is implemented per-processor.

R/W 0

ULB 4 Uncached Loads Blocking: Writing 1 to this field will make all
uncached loads blocking.
This bit is implemented per-processor.

R/W 0

BP 3 Branch Prediction: Writing 1 to this field will disable all speculative
branch prediction. The fetch unit will wait for a branch to be
resolved before fetching the target or fall-through path.
This bit is implemented per-VPE.

R/W 0

RPS 2 Return Prediction Stack: In configurations with dynamic branch pre-
diction logic, writing 1 to this field will disable the use of the Return
Prediction Stack. Returns (JR ra) will stall instruction fetch until the
destination is calculated.

In configurations without dynamic branch prediction logic, this field
is read-only and preset to 1.
This bit is implemented per-VPE.

Config
Option

Preset

BHT 1 Branch History Table: In configurations with dynamic branch pre-
diction logic, writing 1 to this field will disable the dynamic branch
prediction. Branches will be statically predicted taken.

In configurations without dynamic branch prediction logic, this field
is read-only and preset to 1.
This bit is implemented per-VPE.

Config
Option

Preset

SL 0 Scheduled Loads: Writing 1 to this field will make load misses
blocking.
This bit is implemented per-processor.

R/W 0

Table 7.49 Config7 Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 225

7.2.47 LLAddr Register (CP0 Register 17, Select 0)

The LLAddr register is instantiated per-TC. It stores the physical address (to the enclosing 32-byte block) of the target
location of any LL/SC sequence. This register is readable purely for diagnostic reasons.

This register is used by the hardware to properly handle LL/SC sequences by monitoring if the memory location has
potentially been written between the LL and SC instructions. Stores on this CPU are checked against all the LLAddr of
all TCs and the internal LL bit of a TC will be cleared if a match is found. Similarly, an external intervention indicat-
ing that another CPU is performing a coherent write to the line will be compared to the LLAddr registers and clear the
LL bit.

Figure 7.44 LLAddr Register Format

7.2.48 WatchLo Register (CP0 Register 18, Select 0-3)

The WatchLo and WatchHi registers together provide the interface to a watchpoint debug facility that initiates a watch
exception if an instruction or data access matches the address specified in the registers. As such, they duplicate some
functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are both zero in the
Status register. If either bit is a one, the WP bit is set in the Cause register, and the watch exception is deferred until
both the EXL and ERL bits are zero.

There are optionally 4 sets of Watch register pairs (WatchLo, WatchHi). Two of them (select 0, 1) are associated with
instruction addresses only. Thus, only the I bit is writeable, and the R and W bits are tied to 0. The other two (select 2,
3) are associated with data addresses and can only be used for R or W watchpoints. Software can determine whether
any watch registers are present by checking the Config1WR bit.

The WatchLo register specifies the base virtual address and the type of reference (instruction fetch, load, store) to
match.

Figure 7.45 WatchLo Register Format

31 5 4 0

LLAddr 0

Table 7.50 LLAddr Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

LLAddr 31:5 Bits [31:5] of address used by last LL instruction R Undefined

0 4:0 Reads as 0 R 0

31 3 2 1 0

VAddr I R W

 CP0 Registers of the 1004K™ CPU

226 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

7.2.49 WatchHi Register (CP0 Register 19, Select 0-3)

The WatchLo and WatchHi registers together provide the interface to a watchpoint debug facility that initiates a watch
exception if an instruction or data access matches the address specified in the registers. As such, they duplicate some
functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are zero in the
Status register. If either bit is a one, then the WP bit is set in the Cause register, and the watch exception is deferred
until both the EXL and ERL bits are zero.

The WatchHi register contains information that qualifies the virtual address specified in the WatchLo register: an
ASID, a Global (G) bit, and an optional address mask. If the G bit is 1, then any virtual address reference that matches
the specified address will cause a watch exception. If the G bit is a 0, only those virtual address references for which
the ASID value in the WatchHi register matches the ASID value in the EntryHi register cause a watch exception. The
optional mask field provides address masking to qualify the address specified in WatchLo.

There are optionally 4 sets of Watch register pairs (WatchLo, WatchHi). Two of them (select 0, 1) are associated with
instruction addresses only. Thus, only the I bit is meaningful, and the R and W bits are tied to 0. The other two (select
2, 3) are associated with data addresses and can only be used for R or W watchpoints. Software can determine
whether any watch registers are present by checking the Config1WR bit.

Figure 7.46 WatchHi Register Format

Table 7.51 WatchLo Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

VAddr 31:3 This field specifies the virtual address to match. Note that this is a
doubleword address, since bits [2:0] are used to control the type of
match.

R/W Undefined

I 2 If this bit is set, watch exceptions are enabled for instruction fetches
that match the address.

R/W 0

R 1 If this bit is set, watch exceptions are enabled for loads that match
the address.

R/W 0

W 0 If this bit is set, watch exceptions are enabled for stores that match
the address.

R/W 0

31 30 29 24 23 16 15 12 11 3 2 0

M G 0 ASID 0 Mask I R W

Table 7.52 WatchHi Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

M 31 Indicates the presence of additional Watch registers. R Preset

G 30 If this bit is one, any address that matches that specified in the
WatchLo register causes a watch exception. If this bit is zero, the
ASID field of the WatchHi register must match the ASID field of the
EntryHi register to cause a watch exception.

R/W Undefined

ASID 23:16 ASID value which is required to match that in the EntryHi register if
the G bit is zero in the WatchHi register.

R/W Undefined

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 227

7.2.50 Debug Register (CP0 Register 23, Select 0)

The Debug register is used to control the debug exception and provide information about the cause of the debug
exception and when re-entering at the debug exception vector due to a normal exception in debug mode. The read
only information bits are updated every time the debug exception is taken or when a normal exception is taken when
already in debug mode.

Only the DM bit and the EJTAGver field are valid when read from non-debug mode; the values of all other bits and
fields are UNPREDICTABLE. Operation of the processor is UNDEFINED if the Debug register is written from
non-debug mode.

Some of the bits and fields are only updated on debug exceptions and/or exceptions in debug mode, as shown below:

• DSS, DBp, DDBL, DDBS, DIB, DINT are updated on both debug exceptions and on exceptions in debug modes

• DExcCode is updated on exceptions in debug mode, and is undefined after a debug exception

• Halt and Doze are updated on a debug exception, and are undefined after an exception in debug mode

• DBD is updated on both debug and on exceptions in debug modes

All bits and fields are undefined when read from normal mode, except those explicitly described to be defined, e.g.
EJTAGver and DM.

Figure 7.47 Debug Register Format

Mask 11:3 Bit mask that qualifies the address in the WatchLo register. Any bit
in this field that is a set inhibits the corresponding address bit from
participating in the address match.

R/W Undefined

I 2 This bit is set by hardware when an instruction fetch condition
matches the values in this watch register pair. When set, the bit
remains set until cleared by software, which is accomplished by
writing a 1 to the bit.

W1C Undefined

R 1 This bit is set by hardware when a load condition matches the values
in this watch register pair. When set, the bit remains set until cleared
by software, which is accomplished by writing a 1 to the bit.

W1C Undefined

W 0 This bit is set by hardware when a store condition matches the val-
ues in this watch register pair. When set, the bit remains set until
cleared by software, which is accomplished by writing a 1 to the bit.

W1C Undefined

0 29:24,
15:12

Must be written as zero; returns zero on read. 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19

DBD DM NoDCR LSNM Doze Halt CountDM IBusEP MCheckP CacheEP DBusEP IEXI DDBSImpr

18 17 15 14 10 9 8 7 6 5 4 3 2 1 0

DDBLImpr EJTAGver DExcCode NoSSt SSt Offline R DINT DIB DDBS DDBL DBp DSS

Table 7.52 WatchHi Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

 CP0 Registers of the 1004K™ CPU

228 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Table 7.53 Debug Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

DBD 31 Indicates whether the last debug exception or exception in debug
mode, occurred in a branch delay slot:

R Undefined

DM 30 Indicates that the processor is operating in debug mode: R 0

NoDCR 29 Indicates whether the dseg memory segment is present: R 0

LSNM 28 Controls access of load/store between dseg and main memory: R/W 0

Doze 27 Indicates that the processor was in any kind of low power mode
when a debug exception occurred:

R Undefined

Halt 26 Indicates that the internal system bus clock was stopped when the
debug exception occurred:

R Undefined

CountDM 25 Indicates the Count register behavior in debug mode. R/W 1

Encoding Description

0 Not in delay slot

1 In delay slot

Encoding Description

0 Processor is operating in non-debug mode

1 Processor is operating in debug mode

Encoding Description

0 dseg is present

1 No dseg present

Encoding Description

0 Load/stores in dseg address range goes to dseg

1 Load/stores in dseg address range goes to main
memory

Encoding Description

0 Processor not in low power mode when debug
exception occurred

1 Processor in low power mode when debug excep-
tion occurred

Encoding Description

0 Internal system bus clock running

1 Internal system bus clock stopped

Encoding Description

0 Count register stopped in debug mode

1 Count register is running in debug mode

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 229

IBusEP 24 Imprecise instruction fetch Bus Error exception Pending: All
instruction bus errors are precise on the 1004K CPU so this bit will
always read as 0.
Set when an instruction fetch bus error event occurs or if a 1 is writ-
ten to the bit by software. Cleared when a Bus Error exception on
instruction fetch is taken by the processor, and by reset. If IBusEP is
set when IEXI is cleared, a Bus Error exception on instruction fetch
is taken by the processor, and IBusEP is cleared.

R 0

MCheckP 23 Indicates that an imprecise Machine Check exception is pending.
Machine check exceptions are not supported on 1004K CPU, so this
bit is read only and tied to 0.

R 0

CacheEP 22 Indicates that an imprecise Cache Error is pending. R/W1 0

DBusEP 21 Data access Bus Error exception Pending: Set when an data bus
error event occurs or if a 1 is written to the bit by software. Cleared
when a Data Bus Error exception is taken by the processor, and by
reset. If DBusEP is set when IEXI is cleared, a Data Bus Error
exception is taken by the processor, and DBusEP is cleared.

R/W1 0

IEXI 20 Imprecise Error eXception Inhibit: Controls exceptions taken due to
imprecise error indications. Set when the processor takes a debug
exception or exception in debug mode. Cleared by execution of the
DERET instruction; otherwise modifiable by debug mode software.
When IEXI is set, the imprecise error exception from a bus error on
an instruction fetch or data access, cache error, or machine check is
inhibited and deferred until the bit is cleared.

R/W 0

DDBSImpr 19 Indicates that an imprecise Debug Data Break Store exception was
taken.

R 0

DDBLImpr 18 Indicates that an imprecise Debug Data Break Load exception was
taken.

R 0

EJTAGver 17:15 EJTAG version. R 101

DExcCode 14:10 Indicates the cause of the latest exception in debug mode. See Table
7.38 for a list of values.
Value is undefined after a debug exception.

R Undefined

NoSST 9 Indicates whether the single-step feature controllable by the SSt bit
is available in this implementation:

R 0

SSt 8 Controls if debug single step exception is enabled: R/W 0

Table 7.53 Debug Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Description

5 Version 5.0

Encoding Description

0 Single-step feature available

1 No single-step feature available

Encoding Description

0 No debug single-step exception enabled

1 Debug single step exception enabled

 CP0 Registers of the 1004K™ CPU

230 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Offline 7 Implemented per-TC. When this bit is 1, TC is allowed to execute
only in Debug mode.

R/W 0

R 6 Reserved. Must be written as zeros; returns zeros on reads. R 0

DINT 5 Indicates that a debug interrupt exception occurred. Cleared on
exception in debug mode.

R Undefined

DIB 4 Indicates that a debug instruction break exception occurred. Cleared
on exception in debug mode.

R Undefined

DDBS 3 Indicates that a debug data break exception occurred on a store.
Cleared on exception in debug mode.

R Undefined

DDBL 2 Indicates that a debug data break exception occurred on a load.
Cleared on exception in debug mode.

R Undefined

DBp 1 Indicates that a debug software breakpoint exception occurred.
Cleared on exception in debug mode.

R Undefined

DSS 0 Indicates that a debug single-step exception occurred. Cleared on
exception in debug mode.

R Undefined

Table 7.53 Debug Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Description

0 No debug interrupt exception

1 Debug interrupt exception

Encoding Description

0 No debug interrupt exception

1 Debug interrupt exception

Encoding Description

0 No debug data exception on a store

1 Debug instruction exception on a store

Encoding Description

0 No debug data exception on a load

1 Debug instruction exception on a load

Encoding Description

0 No debug software breakpoint exception

1 Debug software breakpoint exception

Encoding Description

0 No debug single-step exception

1 Debug single-step exception

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 231

7.2.51 Trace Control Register (CP0 Register 23, Select 1)

The TraceControl register configuration is shown below.

Figure 7.48 TraceControl Register Format

31 30 29 28 27 26 25 24 23 22 21 20 13 12 5 4 3 2 1 0

TS UT 0 TB IO D E K S U ASID_M ASID G TFCR TLSM TIM On

Table 7.54 TraceControl Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

TS 31 The trace select bit is used to select between the hardware and the
software trace control bits. A value of zero selects the external hard-
ware trace block signals, and a value of one selects the trace control
bits in the TraceControl register.

R/W 0

UT 30 This bit is used to indicate the type of user-triggered trace record. A
value of zero implies a user type 1 and a value of one implies a user
type 2.
The actual triggering of a user trace record happens on a write to the
UserTraceData register. This is a 32-bit register for 32-bit proces-
sors and a 64-bit register for 64-bit processors.

R/W Undefined

0 29:28 Reserved for future use; Must be written as zero; returns zero on
read.

0 0

TB 27 Trace All Branch. When set to 1, this tells the processor to trace the
PC value for all taken branches, not just the ones whose branch tar-
get address is statically unpredictable.

R/W Undefined

IO 26 Inhibit Overflow. This signal is used to indicate to the CPU trace
logic that slow but complete tracing is desired. Hence, the CPU trac-
ing logic must not allow a FIFO overflow and discard trace data.
This is achieved by stalling the pipeline when the FIFO is nearly
full, so that no trace records are ever lost.

R/W Undefined

D 25 When set to one, this enables tracing in Debug Mode. For trace to be
enabled in Debug mode, the On bit must be one, and either the G bit
must be one, or the current process ASID must match the ASID field
in this register.
When set to zero, trace is disabled in Debug Mode, irrespective of
other bits.

R/W Undefined

E 24 When set to one, this enables tracing in Exception Mode. For trace
to be enabled in Exception mode, the On bit must be one, and either
the G bit must be one, or the current process ASID must match the
ASID field in this register.
When set to zero, trace is disabled in Exception Mode, irrespective
of other bits.

R/W Undefined

K 23 When set to one, this enables tracing in Kernel Mode. For trace to be
enabled in Kernel mode, the On bit must be one, and either the G bit
must be one, or the current process ASID must match the ASID field
in this register.
When set to zero, trace is disabled in Kernel Mode, irrespective of
other bits.

R/W Undefined

 CP0 Registers of the 1004K™ CPU

232 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

7.2.52 Trace Control2 Register (CP0 Register 23, Select 2)

The TraceControl2 register provides additional control and status information. Note that some fields in the
TraceControl2 register are read-only, but have a reset state of “Undefined”. This is because these values are loaded
from the Trace Control Block (TCB) (see Section 11.10 “Trace Control Block (TCB) Registers (Hardware
Control)”). As such, these fields in the TraceControl2 register will not have valid values until the TCB asserts these
values.

S 22 When set to one, this enables tracing in Supervisor Mode. For trace
to be enabled in Supervisor mode, the On bit must be one, and either
the G bit must be one, or the current process ASID must match the
ASID field in this register.
When set to zero, trace is disabled in Supervisor Mode, irrespective
of other bits.
If the processor does not implement Supervisor Mode, this bit is
ignored on write and returns zero on read.

R/W Undefined

U 21 When set to one, this enables tracing in User Mode. For trace to be
enabled in User mode, the On bit must be one, and either the G bit
must be one, or the current process ASID must match the ASID field
in this register.
When set to zero, trace is disabled in User Mode, irrespective of
other bits.

R/W Undefined

ASID_M 20:13 This is a mask value applied to the ASID comparison (done when
the G bit is zero). A “1” in any bit in this field inhibits the corre-
sponding ASID bit from participating in the match. As such, a value
of zero in this field compares all bits of ASID. Note that the ability
to mask the ASID value is not available in the hardware signal bit; it
is only available via the software control register.
If the processor does not implement the standard TLB-based MMU,
this field is ignored on write and returns zero on read.

R/W Undefined

ASID 12:5 The ASID field to match when the G bit is zero. When the G bit is
one, this field is ignored.
If the processor does not implement the standard TLB-based MMU,
this field is ignored on write and returns zero on read.

R/W Undefined

G 4 When set, this implies that tracing is to be enabled for all processes,
provided that other enabling functions (like U, S, etc.,) are also true.
If the processor does not implement the standard TLB-based MMU,
this field is ignored on write and returns 1 on read. This causes all
match equations to work correctly in the absence of an ASID.

R/W Undefined

TFCR 3 When asserted, used to trace function call and return instructions
with full PC values.

R/W Undefined

TLSM 2 When asserted, used to trace data cache load and store misses with
full PC values, and potentially the data address and value as well.

R/W Undefined

TIM 1 When asserted, used to trace instruction miss with full PC values. R/W Undefined

On 0 This is the master trace enable switch in software control. When
zero, tracing is always disabled. When set to one, tracing is enabled
whenever the other enabling functions are also true.

R/W 0

Table 7.54 TraceControl Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 233

This register is only implemented if the MIPS Trace capability is present.

Figure 7.49 TraceControl2 Register Format
31 30 29 28 21 20 19 12 11 7 6 5 4 3 2

0 CPUIdV CPUId TCV TCNum Mode ValidModes TBI TBU SyP

Table 7.55 TraceControl2 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

0 31:30 Reserved for future use; Must be written as zero; returns zero on
read.

0 0

CPUIdV 29 When set, this bit specifies the VPE defined in CPUId must be
traced. Otherwise, instructions from all VPEs are traced when other
conditions for tracing are valid. This bit is ignored if TCV is
asserted.

R/W Undefined

CPUId 28:21 This field specifies the number of the VPE to trace when CPUIdV is
set.

R/W Undefined

TCV 20 When set, the TCNum field specifies the number of the TC that
must be traced. Otherwise, instructions from all TCs are traced when
other conditions for tracing are valid.

R/W Undefined

TCNum 19:12 Specifies the TC to trace when TCV is set. The right-most bits only
are used.

R/W Undefined

Mode 11:7 These 5 bits provide the same trace mode functions as the
PDI_TraceMode[4:0] signal, and is described here again.
When tracing is turned on, this signal specifies what information is
to be traced by the CPU. It uses 5 bits, where each bit turns on trac-
ing of a specific tracing mode when that bit value is a 1. If the corre-
sponding bit is 0, then the Trace Value shown in column two is not
traced by the processor.
The table shows what trace value is turned on:

R/W Undefined

Valid-
Modes

6:5 This field specifies the subset of tracing that is supported by the pro-
cessor.

R Preset

Bit Trace the Following

7 PC

8 Load address

9 Store address

10 Load data

11 Store data

Encoding Meaning

00 PC tracing only

01 PC and load and store address tracing only

10 PC, load and store address, and load and store data

11 Reserved

 CP0 Registers of the 1004K™ CPU

234 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

7.2.53 User Trace Data1 Register (CP0 Register 23, Select 3) and User Trace Data2
Register (CP0 Register 24, Select 3)

A software write to any bits in the UserTraceData1 or UserTraceData2 registers will trigger a trace record to be writ-
ten indicating a type 1 or type 2 user format respectively. The trace output data is UNPREDICTABLE if these regis-
ters are written in consecutive cycles.

TBI 4 This bit indicates how many trace buffers are implemented by the
TCB, as follows:

This bit is loaded from the PDI_TBImpl signal when the
PDI_SyncOffEn signal is asserted.

R Undefined

TBU 3 This bit denotes to which trace buffer the trace is currently being
written and is used to select the appropriate interpretation of the
TraceControl2SyP field.

This bit is loaded from the PDI_OffChipTB signal when the
PDI_SyncOffEn signal is asserted.

R Undefined

SyP 2:0 The period (in cycles) to which the internal synchronization counter
is reset when tracing is started, or when the synchronization counter
has overflowed.

This field is loaded from the PDI_SyncPeriod signal when the
PDI_SyncOffEn signal is asserted.

R Undefined

Table 7.55 TraceControl2 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 Only one trace buffer is implemented, and the TBU
bit of this register indicates which trace buffer is
implemented

1 Both on-chip and off-chip trace buffers are imple-
mented by the TCB and the TBU bit of this register
indicates to which trace buffer the traces is cur-
rently written.

Encoding Meaning

0 Trace data is being sent to an on-chip trace buffer

1 Trace Data is being sent to an off-chip trace buffer

SyP Sync Period

000 25

001 26

010 27

011 28

100 29

101 210

110 211

111 212

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 235

This register is only implemented if the MIPS Trace capability is present.

Figure 7.50 User Trace Data1/User Trace Data2 Register Format

7.2.54 TraceIBPC Register (CP0 Register 23, Select 4)

The TraceIBPC register is used to control start and stop of tracing using an EJTAG Instruction Hardware breakpoint.
The Instruction Hardware breakpoint would then be set as a trigger source and optionally also as a Debug exception
breakpoint.

This register is only implemented if both Hardware breakpoints and the MIPS Trace capability are present.

Figure 7.51 TraceIBPC Register Format

31 0

Data

Table 7.56 UserTraceData1/UserTraceData2 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Data 31:0 Software readable/writable data. When written, this triggers a user
format trace record out of the PDtrace interface that transmits the
Data field to trace memory.

R/W 0

31 30 29 28 27 12 11 9 8 6 5 3 2 0

0 PCT IE 0 IBPC3 IBPC2 IBPC1 IBPC0

Table 7.57 TraceIBPC Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

0 31:30,
27:12

Reserved for future implementation. R 0/1

PCT 29 Used to specify whether a performance counter trigger signal is gen-
erated when an EJTAG instruction breakpoint match occurs:

R/W 0

IE 28 Used to specify whether the trigger signal from EJTAG instruction
breakpoint should trigger tracing functions or not:

R/W 0

Encoding Meaning

0 Disables performance counter trigger signal from
instruction breakpoints

1 Enables performance trigger signals from instruc-
tion breakpoints

Encoding Meaning

0 Disables trigger signals from instruction break-
points

1 Enables trigger signals from instruction break-
points

 CP0 Registers of the 1004K™ CPU

236 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

7.2.55 TraceDBPC Register (CP0 Register 23, Select 5)

The TraceDBPC register is used to control start and stop of tracing using an EJTAG Data Hardware breakpoint. The
Data Hardware breakpoint would then be set as a trigger source and optionally also as a Debug exception breakpoint.

This register is only implemented if both Hardware breakpoints and the MIPS Trace capability are present.

Figure 7.52 TraceDBPC Register Format

IBPCn 3n+2:3n The three bits are decoded to enable different tracing modes. Table
7.59 shows the possible interpretations. Each set of 3 bits represents
the encoding for the instruction breakpoint n in the EJTAG imple-
mentation, if it exists. If the breakpoint does not exist, then the bits
are reserved, read as zero, and writes are ignored.

R/W 0

31 30 29 28 27 6 5 3 2 0

0 PCT DE 0 DBPC1 DBPC0

Table 7.58 TraceDBPC Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

0 31:30,
27:6

Reserved for future implementation R 0/1

PCT 29 Used to specify whether a performance counter trigger signal is gen-
erated when an EJTAG data breakpoint match occurs:

R/W 0

DE 28 Used to specify whether the trigger signal from EJTAG data break-
point should trigger tracing functions or not:

R/W 0

DBPCn 3n+2:3n The three bits are decoded to enable different tracing modes. Table
7.59 shows the possible interpretations. Each set of 3 bits represents
the encoding for the data breakpoint n in the EJTAG implementa-
tion, if it exists. If the breakpoint does not exist then the bits are
reserved, read as zero and writes are ignored.

R/W 0

Table 7.57 TraceIBPC Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 Disables performance counter trigger signal from
data breakpoints

1 Enables performance trigger signals from data
breakpoints

Encoding Meaning

0 Disables trigger signals from data breakpoints

1 Enables trigger signals from data breakpoints

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 237

7.2.56 Debug Exception Program Counter Register (CP0 Register 24, Select 0)

The Debug Exception Program Counter (DEPC) register is a read/write register that contains the address at which
processing resumes after a debug exception or debug mode exception has been serviced.

For synchronous (precise) debug and debug mode exceptions, the DEPC contains either:

• The virtual address of the instruction that was the direct cause of the debug exception, or

• The virtual address of the immediately preceding branch or jump instruction, when the debug exception causing
instruction is in a branch delay slot, and the Debug Branch Delay (DBD) bit in the Debug register is set.

For asynchronous debug exceptions (debug interrupt), the DEPC contains the virtual address of the instruction where
execution should resume after the debug handler code is executed.

In processors that implement the MIPS16 ASE, a read of the DEPC register (via MFC0) returns the following value
in the destination GPR:

GPR[rt] ← DebugExceptionPC31..1 || ISAMode0

That is, the upper 31 bits of the debug exception PC are combined with the lower bit of the ISAMode field and written
to the GPR.

Table 7.59 BreakPoint Control Modes: IBPC and DBPC

Value Trigger Action Description

000 Unconditional Trace Stop Unconditionally stop tracing if tracing was turned on. If tracing is
already off, then there is no effect.

001 Unconditional Trace Start Unconditionally start tracing if tracing was turned off. If tracing is
already turned on, then there is no effect.

010 Not used Reserved for future implementations

011 Uncoditional Trace Start (CPU
and CM)

Unconditionally start tracing in both CPU and coherence manager if
tracing was turned off. If tracing is already turned on, then there is no
effect.

100 Identical to trigger condition
000, and in addition, dump the
full performance counter values
into the trace stream

If tracing is currently on, dump the full values of all the implemented
performance counters into the trace stream, and turn tracing off. If trac-
ing is already off, then there is no effect.

101 Identical to trigger condition
001, and in addition, also dump
the full performance counter val-
ues into the trace stream

Unconditionally start tracing if tracing was turned off. If tracing is
already turned on, then there is no effect. In both cases, dump the full
values of all the implemented performance counters into the trace
stream.

110 Not used Reserved for future implementations

111 Unconditional Trace Start (CPU
and CM), and in addition, dump
the full performance counter val-
ues into the trace stream

Unconditionally start tracing in both CPU and coherence manager if
tracing was turned off. If tracing is already turned on, then there is no
effect. Dump the full values of all the implemented performance
counters into the trace stream.

 CP0 Registers of the 1004K™ CPU

238 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Similarly, a write to the DEPC register (via MTC0) takes the value from the GPR and distributes that value to the
debug exception PC and the ISA Mode field, as follows

DebugExceptionPC ← GPR[rt]31..1 || 0
ISAMode ← 2#0 || GPR[rt]0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the debug exception PC, and the lower bit of
the debug exception PC is cleared. The upper bit of the ISAMode field is cleared and the lower bit is loaded from the
lower bit of the GPR.

Figure 7.53 DEPC Register Format

7.2.57 Trace Control3 Register (CP0 Register 24, Select 2)

The TraceControl3 register provides additional control and status information. Note that some fields in the
TraceControl3 register are read-only, but have a reset state of “Undefined”. This is because these values are loaded
from the Trace Control Block (TCB) (see Section 11.10 “Trace Control Block (TCB) Registers (Hardware
Control)”). As such, these fields in the TraceControl3 register will not have valid values until the TCB asserts these
values.

This register is only implemented if the MIPS Trace capability is present.

Figure 7.54 TraceControl3 Register Format

31 0

DEPC

Table 7.60 DEPC Register Formats

Fields

Description
Read /
Write ResetName Bit(s)

DEPC 31:0 The DEPC register is updated with the virtual address of the instruc-
tion that caused the debug exception. If the instruction is in the
branch delay slot, then the virtual address of the immediately pre-
ceding branch or jump instruction is placed in this register.
Execution of the DERET instruction causes a jump to the address in
the DEPC.

 R/W Undefined

31 14 13 12 11 10 9 8 7 3 2 1 0

0 PeCOvf PeCFCR PeCBP PeCSync PeCE PeC 0 TrIDLE TRPAD FDT

Table 7.61 TraceControl3 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

0 31:14, 7:3 Reserved for future implementation. R 0

PeCOvf 13 Trace performance counters when one of the performance counters
overflows its count value. Enabled when set to 1.

R/W 0

PeCFCR 12 Trace performance counters on function call/return or on an excep-
tion handler entry. Enabled when set to 1.

R/W 0

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 239

7.2.58 Performance Counter Register (CP0 Register 25, select 0-3)

If the processor is configured without performance counter logic, then reading these registers return -1 and writing
them has no effect. If the processor is configured with performanc ecounters, then there are two performance counters
and two associated control registers per TC, which are mapped to CP0 register 25. The select field of the MTC0/
MFC0 instructions are used to select the specific register accessed by the instruction, as shown in Table 7.62.

Each counter is a 32-bit read/write register and is incremented by one each time the countable event, specified in its
associated control register, occurs. Each counter can independently count one type of event at a time.

Bit 31 of each of the counters are AND’ed with an interrupt enable bit, IE, of their respective control register to deter-
mine if a performance counter interrupt should be signalled. The performance counter interrupt is implemented per

PeCBP 11 Trace performance counters on hardware breakpoint match trigger.
Enabled when set to 1.

R/W 0

PeCSync 10 Trace performance counters on synchronization counter expiration.
Enabled when set to 1.

R/W 0

PeCE 9 Performance counter tracing enable. If performance counter logic is
present, this field is read/write. If not present, this field is read-only.
When set to 0, the tracing out of performance counter values as
specified is disabled. To enable, this bit must be set to 1. This bit is
used under software control. When trace is controlled by an external
probe, this enabling is done via TraceControl3PeCE.

Config
Option

0

PeC 8 Specifies whether or not Performance Control Tracing is imple-
mented. This is an optional feature that may be omitted by imple-
mentation choice. Implemented when set to 1.

R Preset

TrIDLE 2 Trace Unit Idle. This bit indicates if the trace hardware is currently
idle (not processing any data). This can be useful when switching
control of trace from hardware to software and vice versa. The bit is
read-only and updated by the trace hardware.

R 0

TRPAD 1 Trace RAM Access Disable. Disables program software access to
the on-chip trace RAM using load/store instructions. This bit is
loaded from TCBCONTROLBTRPAD .

R/W 0

FDT 0 Filtered Data Trace Mode Enable. When the bit is 0, this mode is
disabled. When set to 1, this mode is enabled.

R/W 0

Table 7.62 Performance Counter Register Selects

Select[2:0] Register

0 Register 0 Control

1 Register 0 Count

2 Register 1 Control

3 Register 1 Count

Table 7.61 TraceControl3 Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

 CP0 Registers of the 1004K™ CPU

240 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

VPE and signalled via the SI_PCI and SI_PCI_1 outputs. The interrupt will be sent to the last VPE to write to the con-
trol register. This signal is combined with one of the SI_Int pins to signal an interrupt to the CPU. Counting is not
affected by the interrupt indication. This interrupt is deasserted when the above conditions are no longer met - bit 31
of the counter is no longer zero because a value written by software or the count wrapped to zero, or if the IE bit of
the control register was cleared.

NOTE: the performance counter registers are connected to a clock that is stopped when the processor is in sleep mode
(if the top level clock gater is present). Most events would not be active during that time, but others would be, notably
the cycle count. This behavior should be considered when analyzing measurements taken on a system. Further, note
that FPGA implementations of the core would generally not have the clock gater present and thus would have differ-
ent behavior than a typical ASIC implementation.

For a more detailed description of performance counter events, refer to Programming the 34K Core Family[11].

Figure 7.55 Performance Counter Control Register
31 30 29 22 21 20 19 16 15 14 12 11 5 4 3 2 1 0

M 0 TCID MT_EN VPEID PCTD 0 Event IE U S K EXL

Table 7.63 Performance Counter Control Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

M 31 If this bit is one, another pair of Performance Control and Counter
registers is implemented at a MTC0 or MFC0 select field value of
‘n+2’ and ‘n+3’.

R Preset

TCID 29:22 Specifies which TC events should be counted for if per-TC counting
is enabled.

R/W Undefined

MT_EN 21:20 Specifies which events should be counted: R/W Undefined

VPEID 19:16 Specifies which VPE events should be counter for if per-VPE count-
ing is enabled.

R/W Undefined

PCTD 15 Performance Counter Trace Disable. Setting this bit will prevent the
tracing of data from this performance counter when performance
count trace mode in PDtrace is enabled

R/W 0

Event 11:5 Counter event enabled for this counter. Possible events are listed in
Table 7.64.

R/W Undefined

IE 4 Counter Interrupt Enable. This bit masks bit 31 of the associated
count register from the interrupt exception request output.

R/W 0

U 3 Count in User Mode. When this bit is set, the specified event is
counted in User Mode.

R/W Undefined

S 2 Count in Supervisor Mode. When this bit is set, the specified event
is counted in Supervisor Mode.

R/W Undefined

Encoding Meaning

00 Count events from all TCs & VPEs

01 Count events from all TCs of the VPE specified in
VPEID

10 Count events from the TC specified in TCID

11 Reserved

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 241

Table 7.64 describes the events countable with the two performance counters. The mode column indicates whether
the event counting is influenced by the mode bits (U,S,K,EXL) The type field indicates whether the event can be per-
TC (T), per-VPE (V), or per-Processor (P). TC countable events can also be counted in VPE or Processor modes, and
VPE countable events can also be counted in Processor mode. While the counters are implemented per-TC, they are
not restricted to counting events for that TC - events from the other VPE or other TCs can be counted. The operation
of a counter is UNPREDICTABLE for events which are specified as Reserved.

K 1 Count in Kernel Mode. When this bit is set, count the event in Ker-
nel Mode when EXL and ERL both are 0.

R/W Undefined

EXL 0 Count when EXL. When this bit is set, count the event when EXL =
1 and ERL = 0.

R/W Undefined

0 30, 14:12 Must be written as zeroes; returns zeroes when read. 0 0

Table 7.64 Performance Counter Count Register Field Descriptions

Event Num Counter 0 Mode Type Counter 1 Mode Type

0 Cycles No P Cycles No P

1 Instructions completed Yes T Instructions completed Yes T

2 branch instructions Yes T Branch mispredictions Yes T

3 JR r31 (return) instructions Yes T JR r31 mispredictions Yes T

4 JR (not r31) instructions Yes T JR r31 not predicted Yes T

5 ITLB accesses Yes T ITLB misses Yes T

6 DTLB accesses Yes T DTLB misses Yes T

7 JTLB instruction accesses Yes T JTLB instruction misses Yes T

8 JTLB data accesses Yes T JTLB data misses Yes T

9 Instruction Cache accesses Yes T Instruction cache misses Yes T

10 Data cache accesses Yes T Data cache writebacks Yes T

11 Data cache misses Yes T Data cache misses Yes T

12 Reserved Reserved

13 Store Misses Yes T Load Misses Yes T

14 integer instructions completed Yes T FPU instructions completed Yes T

15 loads completed Yes T stores completed Yes T

16 J/JAL completed Yes T MIPS16 instructions completed Yes T

17 no-ops completed Yes T integer multiply/divide completed Yes T

Table 7.63 Performance Counter Control Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bits

 CP0 Registers of the 1004K™ CPU

242 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

18 Stall cycles No P replay traps (other than uTLB) Yes T

19 SC instructions completed Yes T SC instructions failed Yes T

20 Prefetch instructions completed Yes T Prefetch instructions completed with
cache hit

Yes T

21 L2 cache writebacks No P L2 cache accesses No P

22 L2 cache misses No P L2 cache single bit errors corrected No P

23 Exceptions taken Yes T Single Threaded Mode Yes T

24 cache fixup Yes T Refetches Yes T

25 IFU stall cycles No P ALU stall cycles No P

26 DSP Instructions Completed Yes T ALU-DSP Saturations Done Yes T

27 Reserved MDU-DSP Saturations Done Yes T

28 Impl. specific PM event Yes T Impl. specific Cp2 event Yes T

29 Impl. specific ISPRAM event Yes T Impl. specific DSPRAM event Yes T

30 Impl. specific CorExtend event Yes T Reserved

31 Impl. specific XYM event Yes T Impl. specific ITC event Yes T

32 ITC Loads Yes T ITC Stores Yes T

33 Uncached Loads Yes T Uncached Stores Yes T

34 FORK Instructions completed Yes T YIELD instruction completed Yes T

35 CP2 Arithmetic Instns Completed Yes T CP2 To/From Instns completed Yes T

36 Intervention stall main pipe No P Intervention response stalled on miss No P

37 I$ Miss stall cycles Yes T D$ miss stall cycles Yes T

38 Reserved

39 D$ miss cycles No P L2 miss cycles No P

40 Uncached stall cycles Yes T ITC stall cycles Yes T

41 MDU stall cycles Yes T FPU stall cycles Yes T

42 CP2 stall cycles Yes T CorExtend stall cycles Yes T

43 ISPRAM stall cycles Yes T DSPRAM stall cycles Yes T

44 CACHE Instn stall cycles No P Long stall cycles Yes T

45 Load to Use stall cycles Yes T ALU to AGEN stalls cycles Yes T

46 Other interlock stall cycles Yes T Branch mispredict stall cycles No P

47 Relax bubbles Yes V Reserved

48 IFU FB full refetches Yes T FB entry allocated No P

Table 7.64 Performance Counter Count Register Field Descriptions

Event Num Counter 0 Mode Type Counter 1 Mode Type

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 243

49 EJTAG Instruction Triggerpoints Yes T EJTAG Data Triggerpoints Yes T

50 FSB < 1/4 full No P FSB 1/4-1/2 full No P

51 FSB > 1/2 full No P FSB full pipeline stall cycles No P

52 LDQ < 1/4 full No P LDQ 1/4-1/2 full No P

53 LDQ > 1/2 full No P LDQ full pipeline stall cycles No P

54 WBB < 1/4 full No P WBB 1/4-1/2 full No P

55 WBB > 1/2 full No P WBB full pipeline stall cycles No P

56 Intervention Hits No P All Interventions No P

57 All Invalidates No P Invalidate Hits No P

58 Evictions No P Writebacks No P

59 ST_Inval No P ST_Exclusive No P

60 ST_Store_to_S Yes T ST_Downgrade No P

61 Request Latency to Self Intervention Yes P Request Count for SI Latency Yes P

62 Request Latency to Read Response P Request Count for Resp. Latency P

63 Reserved

64 SI_PCEvent[0] - System specific event
0

No P SI_PCEvent[1] - System specific
event 1

No P

65 SI_PCEvent[2] - System specific event
2

No P SI_PCEvent[3] - System specific
event 3

No P

66 SI_PCEvent[4] - System specific event
4

No P SI_PCEvent[5] - System specific
event 5

No P

67 SI_PCEvent[6] - System specific event
6

No P SI_PCEvent[7] - System specific
event 7

No P

68-127 Reserved

Table 7.65 Event Descriptions

Event Name Counter
Event

Number Description

Cycles 0/1 0 Total number of cycles.
The performance counters are clocked by the top-level gated clock. If
the CPU is built with that clock gater present, none of the counters
will increment while the clock is stopped - eg. due to a WAIT instruc-
tion.

Instruction Completion: The following events indicate completion of various types of instructions

Instructions 0/1 1 Total number of instructions completed.

Branch instns 0 2 Counts all branch instructions that completed.

Table 7.64 Performance Counter Count Register Field Descriptions

Event Num Counter 0 Mode Type Counter 1 Mode Type

 CP0 Registers of the 1004K™ CPU

244 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

JR R31 (return) instns 0 3 Counts all JR R31 instructions that completed.

JR (not R31) 0 4 Counts all JR $xx (not $31) and JALR instructions (indirect jumps).

Integer instns 0 14 Non-floating point, non-Coprocessor 2 instructions.

FPU instns 1 14 Floating point instructions.

Loads 0 15 Includes both integer and coprocessor loads.

Stores 1 15 Includes both integer and coprocessor stores.

J/JAL 0 16 Direct Jump (And Link) instruction.

MIPS16e 1 16 All MIPS16e instruction.

no-ops 0 17 This includes all instructions that normally write to a GPR, but where
the destination register was set to r0.

Integer Multiply/Divide 1 17 Counts all Integer Multiply/Divide instructions (MULxx, DIVx,
MADDx, MSUBx).

SC 0 19 Counts conditional stores regardless of whether they succeeded.

PREF 0 20 Note that this only counts PREFs that are actually attempted. PREFs
to uncached addresses or ones with translation errors are not counted

DSP instns 0 26 Counts DSP ASE instructions.

ITC Loads 0 32 Counts loads issued to ITC. This includes loads that are rolled back
due to the parent TC getting halted or taking an exception.

ITC Stores 1 32 Counts stores issued to ITC. This includes stores that are rolled back
due to the parent TC getting halted or taking an exception.

Uncached Loads 0 33 Include both Uncached and Uncached Accelerated CCAs.

Uncached Stores 1 33

FORK instns 0 34 MT ASE Fork instruction.

YIELD instns 1 34 MT ASE YIELD instruction.

Cp2 Arithmetic instns 0 35 Counts Coprocessor 2 register-to-register instructions.

Cp2 To/From instns 1 35 Includes move to/from, control to/from, and cop2 loads and stores.

Instruction execution events

Branch mispredicts 1 2 Counts all branch instructions which completed, but were mispre-
dicted.

JR r31 mispredicts 1 3 Counts all JR $31 instructions which completed, used the RPS for a
prediction, but were mispredicted.

JR r31 not-predicted 1 4 RPS will be dynamically associated with only one TC,\; returns on
other TCs will not be predicted.

ITLB accesses 0 5 Counts ITLB accesses that are due to fetches showing up in IF stage of
the pipe and do not use fixed mapping or are not in unmapped space.
If an address is fetched twice down the pipe (as in the case of a cache
miss), that instruction will count 2 ITLB accesses. Also, since each
fetch gets us 2 instructions, there is one access marked per double
word.

Table 7.65 Event Descriptions (Continued)

Event Name Counter
Event

Number Description

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 245

ITLB misses 1 5 Counts all misses in ITLB except ones that are on the back of another
miss. We cannot process back to back misses and thus those are
ignored for this purpose. Also ignored if there is some form of address
error.

DTLB accesses 0 6 Counts DTLB access including those in unmapped address spaces.

DTLB misses 1 6 Counts DTLB misses. Back to back misses that result in only one
DTLB entry getting refilled are counted as a single miss.

 JTLB instruction accesses 0 7 Instruction JTLB accesses are counted exactly the same as ITLB
misses.

JTLB instruction misses 1 7 Counts instruction JTLB accesses that result in no match or a match
on an invalid translation.

JTLB data accesses 0 8 Data JTLB accesses.

JTLB data misses 1 8 Counts data JTLB accesses that result in no match or a match on an
invalid translation.

I$ accesses 0 9 Counts every time the instruction cache is accessed. All replays,
wasted fetches etc. are counted. For example, following a branch,
even the prediction is taken, the fall through access is counted.

I$ misses 1 9 Counts all instruction cache misses that result in a bus request.

D$ accesses 0 10 Counts cached loads and stores.

D$ writebacks 1 10 Counts cache lines written back to memory due to replacement or
cacheops.

D$ misses 0/1 11 Counts loads and stores that miss in the cache

Load Misses 0 13 Counts number of cacheable loads that miss in the cache.

Store Misses 1 13 Counts number of cacheable stores that miss in the cache. Includes
stores that hit on a Shared line

SC instructons failed 1 19 SC instruction that did not update memory
Note: While this event and the SC instruction count event can be con-
figured to count in specific operating modes, the timing of the events
is much different and the observed operating mode could change
between them, causing some inaccuracy in the measured ratio.

PREF completed with cache hit 1 20 Counts PREF instructions that hit in the cache

L2 Cache Writebacks 0 21 Counts cache lines written back to memory due to replacement or
cacheops

L2 Cache Accesses 1 21 Number of accesses to L2 Cache

L2 Cache Misses 0 22 Number of accesses that missed in the L2 cache

L2 Cache Single Bit Errors Corrected 1 22 Single bit errors in L2 Cache that were detected and corrected

Exceptions Taken 0 23 Any type of exception taken

ALU-DSP Saturations Done 1 26 Number of times a DSP instruction caused an ALU accumulator to
saturate

MDU-DSP Saturations Done 1 27 Number of times a DSP instruction caused an MDU accumulator to
saturate

Table 7.65 Event Descriptions (Continued)

Event Name Counter
Event

Number Description

 CP0 Registers of the 1004K™ CPU

246 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

EJTAG instruction triggers 0 49 Number of times an EJTAG Instruction Trigger Point condition
matched

EJTAG data triggers 1 49 Number of times an EJTAG Data Trigger Point condition matched

Pipeline Fun

Replays 1 18 Counts all replayed instructions. When a long stall condition is
detected, instructions are flushed back to the instruction buffer to
allow other TCs to advance. The flushed instructions must then be
replayed. Count includes instructions that have been replayed multiple
times.

Single Threaded mode 1 23 Counts all cycles where one and only one TC is eligible for scheduling
instructions. Other TCs can be ineligible based on architectural (cop0)
state as well as dynamically detected conditions (long stall, blocked
ITC access, WAIT executed, etc)
When counted per-TC or per-VPE, it will count cycles when the spec-
ified TC(s) are the one and only TC eligible for scheduling.

Refetches 1 24 Counts the number of replayed instructions that are sent back to IFU
to be refetched. If a replay condition is detected, but the instruction is
no longer in the instruction buffer, the IFU will need to refetch it.

Cache fixup 0 24 Counts cycles where the LSU is in fixup and cannot accept a new
instruction from the ALU. Fixups are replays within the LSU that
occur when an instruction needs to re-access the cache or the DTLB.
If this event is enabled per TC, the counter will increment if the
replayed instruction belongs to the selected TC regardless of which
TC caused the replay.

General Stalls

IFU stall cycles 0 25 Counts the number of cycles where the fetch unit is not providing a
valid instruction to the ALU.

ALU stall cycles 1 25 Counts the number of cycles where the ALU pipeline cannot advance.

Stall cycles 0 18 Counts the total number of cycles where no instructions are issued by
IFU to ALU (the RF stage does not advance). This includes both of
the previous two events. This is different than the sum of them though
because cycles when both stalls are active will only be counted once.

Long stall cycles 1 44 This measures stall cycles due to ‘long stall’ conditions. These are
stalls that would be flushed out of the execution pipeline if other TCs
were runnable.

Specific stalls - these events will count the number of cycles lost due to this. This will include bubbles introduced by replays within the
pipe. If multiple stall sources are active simultaneously, the counters for each of the active events will be incremented.

Intervention processing stall cycles 0 36 Cycles where the main pipeline is stalled because of intervention pro-
cessing for cache coherence

SYNC stall cycles 0 38 Cycles where the main pipeline is stalled waiting for a SYNC to com-
plete

FSB index conflict stall cycles 1 38 Cycles where the main pipeline is stalled because of an index conflict
in the Fill Store Buffer.

I$ miss stall cycles 0 37 Cycles when IFU stalls because an I$ miss caused a TC not to have
any runnable instructions. Ignores the stalls due to ITLB misses as
well as the 4 cycles following a redirect.

Table 7.65 Event Descriptions (Continued)

Event Name Counter
Event

Number Description

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 247

D$ miss stall cycles 1 37 Counts all cycles where integer pipeline waits on Load return data due
to a D-cache miss. The LSU can signal a “long stall” on D-cache
misses, in which case the waiting TC might be rescheduled so other
TCs can execute instructions till the data returns.

D$ miss cycles 0 39 D$ miss is outstanding, but not necessarily stalling the pipeline. The
difference between this and D$ miss stall cycles can show the gain
from non-blocking cache misses.

L2 miss cycles 1 39 L2 miss is outstanding, but not necessarily stalling the pipeline.

Uncached stall cycles 0 40 Cycles where the processor is stalled on an uncached fetch, load, or
store.

ITC Load/Store stall cycles 1 40 Counts all cycles where a TC is waiting on a ITC load or store to com-
plete and there are no other TCs that can execute.

MDU stall cycles 0 41 Counts all cycles where integer pipeline waits on MDU return data.
MDU block can signal a “long stall”, in which case the waiting TC
might be rescheduled so other TCs can execute instructions till the
data returns.

FPU stall cycles 1 41 Counts all cycles where integer pipeline waits on FPU return data.
FPU block can signal a “long stall”, in which case the waiting TC
might be rescheduled so other TCs can execute instructions till the
data returns.

Cp2 stall cycles 0 42 Counts all cycles where integer pipeline waits on CP2 return data.
CP2 block can signal a “long stall”, in which case the waiting TC
might be rescheduled so other TCs can execute instructions till the
data returns.

CorExtend stall cycles 1 42 Counts all cycles where integer pipeline waits on CorExtend return
data. CorExtend block can signal a “long stall”, in which case TC
might be rescheduled so other TCs can execute instructions till the
data returns.

ISPRAM stall cycles 0 43 Count all pipeline bubbles that are a result of multicycle ISPRAM
access. Pipeline bubbles are defined as all cycles that IFU doesn’t
present an instruction to ALU. The four cycles after a redirect are not
counted.

DSPRAM stall cycles 1 43 Counts stall cycles created by an instruction waiting for access to
DSPRAM.

CACHE instn stall cycles 0 44 Counts all cycles where pipeline is stalled due to CACHE instructions.
Includes cycles where CACHE instructions themselves are stalled in
the ALU, and cycles where CACHE instructions cause subsequent
instructions to be stalled.

Load to Use stall cycles 0 45 Counts all cycles where integer pipeline waits on Load return data.
LSU block can signal a “long stall”, in which case the waiting TC
might be rescheduled so other TCs can execute instructions till the
data returns.

ALU to AGEN stall cycles 1 45 Counts stall cycles due to skewed ALU where the bypass to the
address generation takes an extra cycle.

Other interlocks stall cycles 0 46 Counts all cycles where integer pipeline waits on return data from
MFC0, RDHWR, MFTR instructions.

Table 7.65 Event Descriptions (Continued)

Event Name Counter
Event

Number Description

 CP0 Registers of the 1004K™ CPU

248 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Branch mispredict stalls cycles 1 46 This counts the number of cycles from a mispredicted branch until the
next non-delay slot instruction executes. Count is not very meaningful
when executing from multiple TCs.

Relax stall cycles 0 47 Number of cycles that a low power op is ‘executed’ as requested by
Policy Manager.

FSB full pipeline stall cycles 1 51 Cycles where the pipeline is stalled because the Fill-Store Buffer in
LSU is full.

LDQ full pipeline stall cycles 1 53 Cycles where the pipeline is stalled because the Load Data Queue in
the LSU is full.

Write Back Buffer full stall cycles 1 55 Cycles where the pipeline is stalled because the WriteBack Buffer in
the BIU is full.

Coherence Events - these are events related to cache coherence

Intervention response pending 1 36 Cycles where an intervention response is delayed because it is waiting
for return data from an earlier miss

All Interventions 1 56 These events count external intervention requests and the number of
them that hit in the cache. This does not include self-interventions or
interventions directed only to the Instruction Cache. It includes all
intervention types.

Intervention Hits 0 56

All Invalidates 0 57 These events count external interventions of types that will leave a
cache line in the invalid state. These do not include self-interventions
or intervention directed to the Instruction Cache.

Invalidate Hits 1 57

Evictions 0 58 The core writes back a dirty line to memory as a result of cache
replacement or a non-coherent cache operation.

Writebacks 1 58 The core writes back a dirty line to memory as a result of cache
replacement or a non-coherent cache operation, self or external mem-
ory operation.

ST_Inval 0 59 Counts the number of transitions into the I state from any other state.

ST_Exclusive 1 59 Counts the number of transitions into the E state from I or S states.

ST_Store_to_S 0 60 Counts the number of transitions from S to M due to a store hitting on
a shared line

ST_Downgrade 1 60 Counts transitions to S state from M or E.

Latency Events - These events provide a statistical sampling of latencies within the system. One particular FSB entry is monitored. The
latency event increments each cycle from the time a request is generated until the self-intervention or response is seen. The count events are
incremented once for each request that we are counting the latency for.

Request Latency to Self Intervention 0 61 Measures latency from miss detection to self intervention. Only
counts for coherent requests.

Request Count for SI Latency 1 61 Counts number of coherent requests used for above latency counter

Request Latency to Read Response 0 62 Measures latency from miss detection until critical dword of response
is returned, Only counts for cacheable reads.

Request Count for RR Latency 1 62 Counts number of cacheable read requests used for previous latency
counter.

Implementation specific events - Modules that can be replaced by the customer will have an event signal associated with them.

Table 7.65 Event Descriptions (Continued)

Event Name Counter
Event

Number Description

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 249

The performance counter resets to a low-power state, in which none of the counters will start counting events until
software has enabled event counting, using an MTC0 instruction to the Performance Counter Control Registers.

Figure 7.56 Performance Counter Count Register

Policy Manager 0 28

Implementation-specific.

Cp2 1 28

ISPRAM 0 29

DSPRAM 1 29

XYM 0 31

ITC 1 31

CorExtend 0 30

SI_PCEvent[7:0] 0/1 64-67

Buffer usage events - These count the number of cycles that buffers within the CPU spend at various levels of fullness.
These events cannot be qualified by TC or VPE number

Fill Store Buffer < 1/4 full 0 50 Buffer Occupancy:
The following table shows what values fall into each of the bins for
the different buffer sizes that can be chosen.Fill Store Buffer 1/4 to 1/2 full 1 50

Fill Store Buffer > 1/2 full 0 51

Load Data Queue < 1/4 full 0 52

Load Data Queue 1/4 to 1/2 full 1 52

Load Data Queue > 1/2 full 0 53

Write Back Buffer < 1/4 full 0 54

Write Back Buffer 1/4 to 1/2 full 1 54

Write Back Buffer > 1/2 full 0 55

IFU Fill buffer allocated 1 48 Number of cycles where at least one of the IFU fill buffers is allocated
(miss pending)

Refetches due to all IFU Fill Buff-
ers allocated

0 48 Counts the number of times an instruction cache miss was detected,
but both fill buffers were already allocated.

31 0

Counter

Table 7.66 Performance Counter Count Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Counter 31:0 Counter R/W Undefined

Table 7.65 Event Descriptions (Continued)

Event Name Counter
Event

Number Description

State 4 Entry Buffer 8/9 Entry Buffer

< 1/4 0 0-1

1/4-1/2 1-2 2-4

> 1/2 3+ 5+

 CP0 Registers of the 1004K™ CPU

250 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

7.2.59 ErrCtl Register (CP0 Register 26, Select 0)

The ErrCtl register controls parity protection of data and instruction caches and provides for software testing of the
way-selection and scratchpad RAMs.

Parity protection can be enabled or disabled using the PE bit. When parity is enabled and the PO bit is deasserted, the
CACHE Index Store Tag and Index Store Data operations will internally generate parity to be written into the RAM
arrays. However, when the PO bit is asserted, tag array parity is written using the P bit of the TagLo register and data
array parity is written using the PI/PD bits of ErrCtl.

ECC protection for the secondary cache is controlled by a combination of PE and the L2P bits.

A CACHE Index Load Tag operation to the instruction cache will update the PCI field with the instruction precode
bits from the data array and the PI field with the parity bits from the data array if parity is supported. A CACHE Index
Load Tag operation to the data cache will cause the PD bits to be updated with the byte parity for the selected word of
the data array if parity is implemented. If parity is disabled or not implemented, the contents of the PI and PD fields
after a CACHE Index Load Tag operation will be 0.

The PCO field can be used for testing the precode bits of the instruction cache data array. When the PCO bit is
cleared, the CACHE Index Store Data instruction will internally generate the precode bits to be written into the
instruction cache data array. However, when the PCO bit is set, the CACHE Index Store Data instruction will write
the value in the PCI field to the precode bits in the data array. Setting an illegal value in the precode bits will cause
unpredictable behavior. This mechanism should only be used for software testing of the cache arrays. Furthermore,
the cache should be flushed after testing.

The WST, SPR, and ITC bits are used to enable CACHE instruction access to different arrays. On previous CPUs,
these bits have been defined as orthogonal - only one of them should be set at any time. On the 1004K CPU, these bits
are treated as a three-bit field to allow access to additional arrays. The different test modes are listed in Table 7.67.
Refer also to “CACHE” on page 424 for additional details on CACHE operation in each of the modes.

Table 7.67 CACHE Test Mode Control

Figure 7.57 ErrCtl Register

WST SPR ITC Description

0 0 0 Normal mode

0 1 0 SPRAM Access - Index Ld/St Tag instructios will access SPRAM tag val-
ues

1 0 0 Way Select Test - Index Ld/St Tag instructions access Way Select RAM

1 1 0 Duplicate Tag Array - Index Ld/St Tag instructions will read and write
only the duplicate cache tag array

0 0 1 ITC Access - Index Ld/St Tag instructions will access ITC tag values

Others Reserved for future use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 13 12 4 3 0

PE PO WST SPR PCO ITC LBE WABE L2P 0 SE FE PCI PI PD

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 251

Table 7.68 ErrCtl Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

PE 31 Parity Enable. This bit enables or disables the cache parity protec-
tion for both the instruction cache and the data cache.

This field is only write-able if the cache parity option was imple-
mented when the CPU was built. If cache parity is not supported,
this field is always read as 0. Software can test for cache parity sup-
port by attempting to write a 1 to this field, then read back the value.

R or R/W 0

PO 30 Parity Overwrite. If set, the PI/PD fields of this register overwrites
calculated parity for the data array. In addition, the P field of the
TagLo register overwrites calculated parity for the tag array. This
bit only has significance during CACHE Index Store Tag and
CACHE Index Store Data operations.

R/W 0

WST,SPR
,ITC

29,28,26 As described above and in Table 7.67, these bits enable CACHE
instruction access to different arrays.

R/W 0,0,0

PCO 27 Precode override. If set, the contents of the PCI field overwrite the
calculated precode bits when data is written to the instruction cache
for CACHE IndexStoreData operations.

R/W 0

ITC 26 InterThread Communication. If set, Index Load Tag and Index Store
Tag CACHE instructions operate on the ITC tag.
CACHE instruction behavior is undefined if this bit is set at the
same time as WST or SPR.

R/W 0

LBE 25 Bit indicating that the most recent Data Bus Error was involved a
load instruction. A Per-TC BE bit will indicate which TCs were
impacted.

R Undefined

WABE 24 Bit indicating that the most recent Data Bus Error was due to a write
allocate and that store data was lost. There is no indication of which
TC(s) the store request came from.
It is possible for both LBE and WABE to be set if the bus error was
on a line being used for both loads and stores.

R Undefined

Encoding Meaning

0 Parity disabled

1 Parity enabled

Encoding Meaning

0 Use calculated parity

1 Override calculated parity

Encoding Meaning

0 Use calculated precode

1 Override calculated precode

 CP0 Registers of the 1004K™ CPU

252 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

7.2.60 CacheErr Register (CP0 Register 27, Select 0)

The CacheErr register provides an interface with the cache error-detection logic. When a Cache Error exception is
signaled, the fields of this register are set accordingly. The format of the CacheErr register is different for Primary
caches and the Secondary Cache. The EC bit ([30]) indicates the format to be used for decoding the contents of the
CacheErr register.

Figure 7.58 CacheErr Register (Primary Caches)

L2P 23 L2 ECC Enable. This bit can be set only if the L2 is ECC-capable.
This bit in conjunction with the PE bit enables or disables the ECC
protection for the L2 cache:

R/W 0

0 22:21 Must be written as zeroes; returns zeroes when read. 0 0

SE 20 Indicates that a second cache error was detected before the first error
was processed. This is an unrecoverable error. This bit is set when a
cache error is detected while the FE bit is set. This bit is cleared on
reset or when a cache error is detected with FE cleared.

R 0

FE 19 Indicates that this is the first cache error and therefore potentially
recoverable. Error handling software should clear this bit when the
error has been processed. This bit is cleared on reset. Refer to SE bit
description for implications of this bit.

R/W 0

PCI 18:13 Instruction precode bits read from or written to the instruction cache
data RAM.

R/W Undefined

PI 12:4 Parity bit read from or written to instruction cache data RAM. R/W Undefined

PD 3:0 Parity bits read from or written to data cache data RAM. PD[0] is
even parity for the least-significant byte of the requested data.

R/W Undefined

31 30 29 28 27 26 25 24 23 22 21 20 19 0

ER EC ED ET ES EE EB EF SP EW Way Index

Table 7.68 ErrCtl Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

PE L2P L2 check

1 0 1

1 1 0

0 0 0

0 1 1

Bits Meaning

12 Even parity bit for the pre-code bits

11:4 Per-byte even parity bits for the 64b of data

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 253

Table 7.69 CacheErr Register Field Descriptions (Primary Caches)

Fields

Description
Read /
Write Reset StateName Bits

ER 31 Error Reference. Indicates the type of reference that encountered an
error.

R Undefined

EC 30 Indicates the cache level at which the error was detected: R Undefined

ED 29 Error Data. Indicates a data RAM error for Instruction cache. R Undefined

ET 28 Error Tag. Indicates a tag RAM error for Instruction cache. R Undefined

ED:ET 29:28 For D-Cache, these bits encode the array in which an error was
detected.

R Undefined

ES 27 Error source. Indicates whether error was caused by internal proces-
sor or external snoop request.

R Undefined

EE 26 Error external: Indicates that a parity error was seen on a coherent
L1 cache in another CPU.

R 0

Encoding Meaning

0 Instruction

1 Data

Encoding Meaning

0 Primary

1 Non-primary

Encoding Meaning

0 No data RAM error detected

1 Data RAM error detected

Encoding Meaning

0 No tag RAM error detected

1 Tag RAM error detected

Encoding Meaning

00 No tag or data RAM error detected

01 Primary tag RAM error

10 Data RAM error

11 Duplicate tag RAM error

Encoding Meaning

0 Error on internal request

1 Error on external request

 CP0 Registers of the 1004K™ CPU

254 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

EB 25 Error Both. Indicates that a cache error occurred in multiple instruc-
tion or data cache arrays.

In the case of multiple errors, the Tag ram error has the highest pri-
ority, followed by the Data ram error, followed by the Way Select
ram. Only the highest priority error information is recorded in the
CacheErr register.

R Undefined

EF 24 Error Fatal. Indicates that a fatal cache error has occurred.
There are a few situations where software will not be able to get all
information about a cache error from the CacheErr register. These
situations are fatal because software cannot determine which mem-
ory locations have been affected by the error. To enable software to
detect these cases, the EF bit (bit 24) has been added to the
CacheErr register.
The following 7 cases are indicated as fatal cache errors by the EF
bit:
1 Dirty parity error in dirty victim (dirty bit cleared)
2 Tag parity error in dirty victim
3 Data parity error in dirty victim
4 WB store miss and EW error at the requested index
5 Dual/Triple errors from different transactions, e.g. scheduled

and non-scheduled load.
6 Multiple data cache errors detected before the first instruction

of the cache error handler is issued.
7 Simultaneous errors in multiple of L1 Data Cache primary tag,

duplicate tag, and data arrays.
In addition to the above, simultaneous instruction and data cache
errors as indicated by CacheErrEB will cause information about the

data cache error to be unavailable. However, that situation is not
indicated by CacheErrEF.

R Undefined

SP 23 Scratchpad. Indicates Scratchpad RAM parity error. R 0

EW 22 Error Way. Indicates a parity error on the dirty bits that are stored in
the way selection RAM array..

R Undefined

Way 21:20 Way. Specifies the cache way in which the error was detected. It is
not valid if a Tag RAM error is detected (ET=1) or Scratchpad RAM
error is detected (SP=1).

R Undefined

Table 7.69 CacheErr Register Field Descriptions (Primary Caches) (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 No additional data cache error

1 Additional data cache error

Encoding Meaning

0 No Scratchpad RAM error detected

1 Scratchpad RAM error detected

Encoding Meaning

0 No way selection RAM error detected

1 Way selection RAM error detected

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 255

Figure 7.59 CacheErr Register (Secondary Cache)

Index 19:0 Index. Specifies the cache or Scratchpad RAM index of the double
word in which the error was detected. The way of the faulty cache is
written by hardware in the Way field. Software must combine the
Way and Index read in this register with cache configuration infor-
mation in the Config1 register in order to obtain an index which can
be used in an indexed CACHE instruction to access the faulty cache
data or tag. Note that Index is aligned as a byte index, so it does not
need to be shifted by software before it is used in an indexed
CACHE instruction. Index bits [4:3] are undefined upon tag RAM
errors, and Index bits above the MSB actually used for cache index-
ing will also be undefined.
Bits [19:16] are only used used for errors in the Scratchpad RAM.

R Undefined

31 30 29 28 27 26 25 24 23 22 21 19 18 0

EC ED ET EM EF EW Way Index

Table 7.70 CacheErr Register Field Descriptions (Secondary Cache)

Fields

Description
Read /
Write Reset StateName Bits

Reserved 31 Reserved R Undefined

EC 30 Indicates the cache level at which the error was detected: R Undefined

ED 29 Error Data. Indicates a data RAM error. R Undefined

ET 28 Error Tag. Indicates a tag RAM error. R Undefined

Reserved 27 Reserved R Undefined

Reserved 26 Reserved R Undefined

Table 7.69 CacheErr Register Field Descriptions (Primary Caches) (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 Primary

1 Non-primary

Encoding Meaning

0 No data RAM error detected

1 Data RAM error detected

Encoding Meaning

0 No tag RAM error detected

1 Tag RAM error detected

 CP0 Registers of the 1004K™ CPU

256 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

EM 25 Error Multi. Indicates that a cache error occurred in multiple L2
arrays.

In the case of multiple errors, the Tag ram error has the highest pri-
ority, followed by the Data ram error, followed by the Way Select
ram. Only the highest priority error information is recorded in the
CacheErr register.

R Undefined

EF 24 Error Fatal. Indicates that a fatal cache error has occurred.
There are a few situations where software will not be able to get all
information about a cache error from the CacheErr register. These
situations are fatal because software cannot determine which mem-
ory locations have been affected by the error. To enable software to
detect these cases, the EF bit (bit 24) has been added to the
CacheErr register.

This bit is set when a second L2 error occurs before taking the
exception for the first L2 error.

R Undefined

Reserved 23 Reserved R Undefined

EW 22 Error Way. Indicates a way-selection RAM error. R Undefined

Way 21:19 Way. Specifies the cache way in which the error was detected. It is
not valid if a Tag RAM error is detected (ET=1) or Scratchpad RAM
error is detected (SP=1).

R Undefined

Index 18:0 Index. Specifies the cache index of the double word in which the
error was detected. The way of the faulty cache is written by hard-
ware in the Way field. Software must combine the Way and Index
read in this register with cache configuration information in the
Config2 register in order to obtain an index which can be used in an
indexed CACHE instruction to access the faulty cache data or tag.
Note that Index is aligned as a byte index, so it does not need to be
shifted by software before it is used in an indexed CACHE instruc-
tion. Index bits [4:3] are undefined upon tag RAM errors and Index
bits above the MSB actually used for cache indexing will also be
undefined.

R Undefined

Table 7.70 CacheErr Register Field Descriptions (Secondary Cache) (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 No multi error

1 Multi error

Encoding Meaning

0 No way-selection RAM error detected

1 Way-selection RAM error detected

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 257

7.2.61 ITagLo Register (CP0 Register 28, Select 0)

The ITagLo register acts as the interface to the instruction cache tag array. The Index Store Tag and Index Load Tag
operations of the CACHE instruction use the ITagLo register as the source of tag information. Note that the 1004K
CPU does not implement the ITagHi register.

When the WST bit of the ErrCtl register is asserted, this register becomes the interface to the way-selection RAM. In
this mode, the fields are redefined to give appropriate access the contents of the WS array instead of the Tag array.
Refer to Figure 9.2 for the layout of the way-selection RAM.

This register can be optionally configured to be a read-only register that reads as 0 to save area in the core.

Figure 7.60 ITagLo Register Format (ErrCtlWST=0, ErrCtlSPR=0)

Figure 7.61 ITagLo Register Format (ErrCtlWST=1, ErrCtlSPR=0)

Figure 7.62 ITagLo Register Format (ErrCtlWST=0, ErrCtlSPR=1)

31 11 10 9 8 7 6 5 4 1 0

PTagLo U R V R L R P

31 24 23 20 19 15 10 9 8 7 5 4 1 0

Unused WSLRU R Unused R U

tag 31 20 19 12 11 8 7 6 0

0 BasePA 0 E 0

1 0 Size 0

Table 7.71 ITagLo Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

Unused/U various Not used in certain modes of operation. R/W Undefined

PTagLo 31:11 This field contains the physical address of the cache line. Bit 31 cor-
responds to bit 31 of the PA and bit 11 corresponds to bit 11 of the
PA.
Bit 11 is only used when 8KB caches are implemented. For other
cache sizes, this bit will not exist in the tag and will be written as a 0
on IndexLoadTag operations.

R/W Undefined

R 9:8, 6, 4:1 Must be written as zero; returns zero on read. 0 0

V 7 This field indicates whether the cache line is valid. R/W Undefined

L 5 Specifies the lock bit for the cache tag. When this bit is set, and the
valid bit is set, the corresponding cache line will not be replaced by
the cache replacement algorithm.

R/W Undefined

P 0 Parity. Specifies the parity bit for the cache tag. This bit is updated
with tag array parity on CACHE Index Load Tag operations and
used as tag array parity on Index Store Tag operations when the PO
bit of the ErrCtl register is set.

R/W Undefined

WSLRU 15:10 LRU bits. This field contains the value read from the WS array after
a CACHE Index Load WS operation. It is used to store into the WS
array during CACHE Index Store WS operations.

R/W Undefined

 CP0 Registers of the 1004K™ CPU

258 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

7.2.62 DTagLo Register (CP0 Register 28, Select 2

The DTagLo register acts as the interface to the data cache tag array. The Index Store Tag and Index Load Tag opera-
tions of the CACHE instruction use the DTagLo register as the source of tag information. Note that the 1004K CPU
does not implement the DTagHi register.

When the WST bit of the ErrCtl register is asserted, this register becomes the interface to the way-selection RAM. In
this mode, the fields are redefined to give appropriate access the contents of the WS array instead of the Tag array.
Refer to Figure 9.2 for the layout of the way-selection RAM.

This register can be optionally configured to be a read-only register that reads as 0 to save area in the core.

Figure 7.63 DTagLo Register Format (ErrCtlWST=0, ErrCtlSPR=0)

Figure 7.64 DTagLo Register Format (ErrCtlWST=1, ErrCtlSPR=0)

Figure 7.65 DTagLo Register Format (ErrCtlWST=0, ErrCtlSPR=1)

BasePA 31:12 When reading pseudo-tag 0 of a scratchpad RAM, this field will
contain bits [31:12] of the base address of the scratchpad region

R/W Undefined

E 7 When reading pseudo-tag 0 of a scratchpad RAM, this bit will indi-
cate whether the scratchpad is enabled

R/W Undefined

Size 19:12 When reading pseudo-tag 1 of a scratchpad RAM, this field indi-
cates the size of the scratchpad array. This field is the number of
4KB sections it contains. (Combined with the 0’s in 11:0, the regis-
ter will contain the number of bytes in the scratchpad region.)

R/W Undefined

31 11 10 9 8 7 6 5 4 3 2 1 0

PTagLo U R V D L R U P

31 24 23 20 19 15 10 9 8 7 5 4 3 2 1 0

Unused WSDP WSD WSLRU R Unused R U

tag 31 20 19 12 11 8 7 6 2 1 0

0 BasePA 0 E 0 U 0

1 0 Size 0 U 0

Table 7.72 DTagLo Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

Unused/U various Not used in certain modes of operation. R/W Undefined

Table 7.71 ITagLo Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 259

In addition to the three uses of the DTagLo register specified above, there is a fourth application where DTagLo is
used to access the pseudo-tags (control registers) of the ITC block. This is done by executing the Index Store Tag or
Index Load Tag operation of the CACHE instruction with the ErrCtlITC set to 1 (and ErrCtlSPR/ErrCtlWST set to 0).

PTagLo 31:11 This field contains the physical address of the cache line. Bit 31 cor-
responds to bit 31 of the PA and bit 11 corresponds to bit 11 of the
PA.
Bit 11 is only used when 8KB caches are implemented. For other
cache sizes, this bit will not exist in the tag and will be written as a 0
on IndexLoadTag operations.

R/W Undefined

R 9:8, 4:1 Must be written as zero; returns zero on read. 0 0

V 7 This field indicates whether the cache line is valid. R/W Undefined

D 6 This field indicates whether the cache line is dirty. It will only be set
if bit 7 (valid) is also set. For L1 I-cache, this field must be written
as zero and returns zero on read.

R/W Undefined

L 5 Specifies the lock bit for the cache tag. When this bit is set, and the
valid bit is set, the corresponding cache line will not be replaced by
the cache replacement algorithm.

R/W Undefined

P 0 Parity. Specifies the parity bit for the cache tag. This bit is updated
with tag array parity on CACHE Index Load Tag operations and
used as tag array parity on Index Store Tag operations when the PO
bit of the ErrCtl register is set.
This parity does not cover the dirty bit; the dirty bit has a separate
parity bit placed in the way selection RAM.

R/W Undefined

WSDP 23:20 Dirty Parity (Optional). This field contains the value read from the
WS array during a CACHE Index Load WS operation.
If the PO field of the ErrCtl register is asserted, then this field is
used to store the dirty parity bits during a CACHE Index Store WS
operation.

R/W Undefined

WSD 19:16 Dirty bits. This field contains the value read from the WS array after
a CACHE Index Load WS operation. It is used to store into the WS
array during CACHE Index Store WS operations.

R/W Undefined

WSLRU 15:10 LRU bits. This field contains the value read from the WS array after
a CACHE Index Load WS operation. It is used to store into the WS
array during CACHE Index Store WS operations.

R/W Undefined

BasePA 31:12 When reading pseudo-tag 0 of a scratchpad RAM, this field will
contain bits [31:12] of the base address of the scratchpad region

R/W Undefined

E 7 When reading pseudo-tag 0 of a scratchpad RAM, this bit will indi-
cate whether the scratchpad is enabled

R/W Undefined

Size 19:12 When reading pseudo-tag 1 of a scratchpad RAM, this field indi-
cates the size of the scratchpad array. This field is the number of
4KB sections it contains. (Combined with the 0’s in 11:0, the regis-
ter will contain the number of bytes in the scratchpad region.)

R/W Undefined

Table 7.72 DTagLo Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

 CP0 Registers of the 1004K™ CPU

260 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

7.2.63 L23TagLo Register (CP0 Register 28, Select 4)

The L23TagLo register acts as the interface to the L2 or L3 cache tag array. The Index Store Tag and Index Load Tag
operations of the CACHE instruction use the L23TagLo register as the source of tag information. Note that the 1004K
CPU does not implement the L23TagHi register.

The definition of this register is dependent on the L2/L3 implementation. The CPU implements this as a general 32b
R/W register.

The core can be configured without L2/L3 cache support. In this case, this register will be a read-only register that
reads as 0.

7.2.64 IDataLo Register (CP0 Register 28, Select 1)

The IDataLo register is a register that acts as the interface to the instruction cache data array and is intended for diag-
nostic operations only. The Index Load Tag operation of the CACHE instruction reads the corresponding data values
into the IDataLo register. If the WST bit in the ErrCtl register is set, then the contents of IDataLo can be written to the
cache data array by doing an Index Store Data CACHE instruction. If the SPR bit in the ErrCtl register is set, then the
contents of IDataLo can be written to the scratchpad RAM data array by doing an Index Store Data CACHE instruc-
tion.

This register can be optionally configured to be a read-only register that reads as 0 to save area in the core.

Figure 7.66 IDataLo Register Format

7.2.65 DDataLo Register (CP0 Register 28, Select 3)

The DDataLo register is a register that acts as the interface to the data cache data array and is intended for diagnostic
operations only. The Index Load Tag operation of the CACHE instruction reads the corresponding data values into
the DDataLo register. If the WST bit in the ErrCtl register is set, then the contents of DDataLo can be written to the
cache data array by doing an Index Store Data CACHE instruction. If the SPR bit in the ErrCtl register is set, then the
contents of DDataLo can be written to the scratchpad RAM data array by doing an Index Store Data CACHE instruc-
tion.

This register can be optionally configured to be a read-only register that reads as 0 to save area in the core.

31 0

DATA

Table 7.73 IDataLo Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

DATA 31:0 Low-order data read from the cache data array. R/W Undefined

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 261

Figure 7.67 DDataLo Register Format

7.2.66 L23DataLo Register (CP0 Register 28, Select 5)

The L23DataLo register is a register that acts as the interface to the L2 or L3 cache data array and is intended for diag-
nostic operations only. The Index Load Tag operation of the CACHE instruction reads the corresponding data values
into the L23DataLo register. If the WST bit in the ErrCtl register is set, then the contents of L23DataLo can be written
to the cache data array by doing an Index Store Data CACHE instruction. If the SPR bit in the ErrCtl register is set,
then the contents of L23DataLo can be written to the scratchpad RAM data array by doing an Index Store Data
CACHE instruction.

The core can be configured without L2/L3 cache support. In this case, this register will be a read-only register that
reads as 0.

Figure 7.68 L23DataLo Register Format

7.2.67 IDataHi Register (CP0 Register 29, Select 1)

The IDataHi register is a register that acts as the interface to the cache data array and is intended for diagnostic opera-
tions only. The Index Load Tag operation of the CACHE instruction reads the corresponding data values into the
IDataHi register. If the WST bit in the ErrCtl register is set, then the contents of IDataHi can be written to the cache
data array by doing an Index Store Data CACHE instruction. If the SPR bit in the ErrCtl register is set, then the con-
tents of IDataHi can be written to the scratchpad RAM data array by doing an Index Store Data CACHE instruction.

The interface to the I-cache only operates on pairs of instructions - the high instruction will be written into the IDataHi
register. Note that IDataHi and IDataLo reflect the memory ordering of the instructions. Depending on the endianness
of the system, Instruction0 belongs in either IDataHi (BigEndian) or IDataLo (LittleEndian) and vice versa for
Instruction1.

31 0

DATA

Table 7.74 DDataLo Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

DATA 31:0 Low-order data read from the cache data array. R/W Undefined

31 0

DATA

Table 7.75 L23DataLo Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

DATA 31:0 Low-order data read from the cache data array. R/W Undefined

 CP0 Registers of the 1004K™ CPU

262 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

This register can be optionally configured to be a read-only register that reads as 0 to save area in the core.

Figure 7.69 IDataHi Register Format

7.2.68 L23DataHi Register (CP0 Register 29, Select 5)

The L23DataHi register is a register that acts as the interface to the cache data array and is intended for diagnostic
operations only. The Index Load Tag operation of the CACHE instruction reads the corresponding data values into
the L23DataHi register. If the WST bit in the ErrCtl register is set, then the contents of L23DataHi can be written to the
cache data array by doing an Index Store Data CACHE instruction.

The core can be configured without L2/L3 cache support. In this case, this register will be a read-only register that
reads as 0.

Figure 7.70 L23DataHi Register Format

7.2.69 ErrorEPC (CP0 Register 30, Select 0)

The ErrorEPC register is a read/write register, similar to the EPC register, except that ErrorEPC is used on error
exceptions. All bits of the ErrorEPC register are significant and must be writable. It is also used to store the program
counter on Reset, Soft Reset, and nonmaskable interrupt (NMI) exceptions.

The ErrorEPC register contains the virtual address at which instruction processing can resume after servicing an error.
This address can be:

• The virtual address of the instruction that caused the exception, or

• the virtual address of the immediately preceding branch or jump instruction when the error causing instruction is
in a branch delay slot.

31 0

DATA

Table 7.76 IDataHi Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

DATA 31:0 High-order data read from the cache data array. R/W Undefined

31 0

DATA

Table 7.77 L23DataHi Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

DATA 31:0 High-order data read from the cache data array. R/W Undefined

7.2 CP0 Register Descriptions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 263

On a reset exception, VPE0’s ErrorEPC contains the virtual address at which TC0 would have resumed processing
after servicing the error. This, in conjunction with TCRestart registers of other TCs, can provide valuable debug
information about the state of the various TCs when the error occurred.

Unlike the EPC register, there is no corresponding branch delay slot indication for the ErrorEPC register.

In processors that implement the MIPS16 ASE, a read of the ErrorEPC register (via MFC0) returns the following
value in the destination GPR:

GPR[rt] ← ErrorExceptionPC31..1 || ISAMode0

That is, the upper 31 bits of the error exception PC are combined with the lower bit of the ISAMode field and written
to the GPR.

Similarly, a write to the ErrorEPC register (via MTC0) takes the value from the GPR and distributes that value to the
error exception PC and the ISAMode field, as follows

ErrprExceptionPC ← GPR[rt]31..1 || 0
ISAMode ← 2#0 || GPR[rt]0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the error exception PC, and the lower bit of the
error exception PC is cleared. The upper bit of the ISAMode field is cleared and the lower bit is loaded from the lower
bit of the GPR.

Figure 7.71 ErrorEPC Register Format

7.2.70 DeSave Register (CP0 Register 31, Select 0)

The Debug Exception Save (DeSave) register is a read/write register that functions as a simple memory location. This
register is used by the debug exception handler to save one of the GPRs, which is then used to save the rest of the con-
text to a pre-determined memory area (such as in the EJTAG Probe). This register allows the safe debugging of
exception handlers and other types of code where the existence of a valid stack for context saving cannot be assumed.

Figure 7.72 DeSave Register Format

31 0

ErrorEPC

Table 7.78 ErrorEPC Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

ErrorEPC 31:0 Error Exception Program Counter. R/W Undefined

31 0

DESAVE

 CP0 Registers of the 1004K™ CPU

264 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Table 7.79 DeSave Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

DESAVE 31:0 Debug exception save contents. R/W Undefined

Chapter 8

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 265

Hardware and Software Initialization of the 1004K™ CPU

A 1004K CPU contains only a minimal amount of hardware initialization and relies on software to fully initialize the
device.

This chapter contains the following sections:

• Section 8.1 “Hardware-Initialized Processor State”

• Section 8.2 “Software Initialized Processor State”

8.1 Hardware-Initialized Processor State

A 1004K CPU, like most other MIPS processors, is not fully initialized by hardware reset. Only a minimal subset of
the processor state is cleared. This is enough to bring the CPU up while running in unmapped and uncached code
space. All other processor state can then be initialized by software. Unlike previous MIPS processors, there is no dis-
tinction between cold and warm resets (or hard and soft resets). SI_Reset is used for both power-up reset and soft
reset.

8.1.1 Coprocessor 0 State

Much of the hardware initialization occurs in Coprocessor 0.

• MVPControlCPA - cleared to 0 on Reset

• MVPControlSTLB - cleared to 0 on Reset

• MVPControlVPC - cleared to 0 on Reset

• MVPControlEVP - cleared to 0 on Reset

• Random - cleared to maximum value on Reset (TLB MMU only)

• VPEControlYSI - cleared to 0 on Reset

• VPEControlGSI - cleared to 0 on Reset

• VPEControlTE - cleared to 0 on Reset

• VPEConf0XTC - cleared to 0 on Reset

• VPEConf0MVP - set to 1 for VPE0, cleared to 0 for other VPEs on Reset

• VPEConf0VPA - set to 1 for VPE0, cleared to 0 for other VPEs on Reset

 Hardware and Software Initialization of the 1004K™ CPU

266 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

• YQMaskMask - cleared to 0 on Reset

• TCStatusTMX - cleared to 0 on Reset

• TCStatusDT - cleared to 0 on Reset

• TCStatusDA - cleared to 0 on Reset

• TCStatusA - set to 1 for TC0, cleared to 0 for all other TCs on Reset

• TCStatusIXMT - cleared to 0 on Reset

• TCBindTBE - cleared to 0 on Reset

• Wired - cleared to 0 on Reset (TLB MMU only)

• StatusBEV - set to 1 on Reset

• StatusTS - cleared to 0 on Reset

• StatusNMI - cleared to 0 on Reset

• StatusERL - set to 1 on Reset

• StatusRP - cleared to 0 on Reset

• CDMMBaseEN - cleared to 0 on Reset

• WatchLoI,R,W - cleared to 0 on Reset

• Config fields related to static inputs - set to input value by Reset

• ConfigK0 - set to 010 (uncached) on Reset

• ConfigKU - set to 010 (uncached) on Reset (FM MMU only)

• ConfigK23 - set to 010 (uncached) on Reset (FM MMU only)

• DebugDM - cleared to 0 on Reset (unless EJTAGBOOT option is used to boot into DebugMode, see Chapter 11,
“EJTAG Debug Support in the 1004K™ CPU” on page 285 for details)

• DebugLSNM - cleared to 0 on Reset

• DebugIBusEP - cleared to 0 on Reset

• DebugDBusEP - cleared to 0 on Reset

• DebugIEXI - cleared to 0 on Reset

• DebugSSt - cleared to 0 on Reset

8.2 Software Initialized Processor State

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 267

• FastDebugChannel - FIFOs are cleared to empty on Reset

8.1.2 TLB Initialization

Each TLB entry has a “hidden” state bit, which is set by Reset and is cleared when the TLB entry is written. This bit
disables matches and prevents “TLB Shutdown” conditions from being generated by the power-up values in the TLB
array (when two or more TLB entries match on a single address). This bit is not visible to software.

8.1.3 Bus State Machines

When a Reset exception is taken, all pending bus transactions are aborted, and the state machines in the bus interface
unit are reset.

8.1.4 Static Configuration Inputs

All static configuration inputs (for example, defining the bus mode and cache size) should only be changed during
Reset.

8.1.5 Fetch Address

By default, the fetch is directed to VA 0xBFC00000 (PA 0x1FC00000) upon Reset. This address is in kseg1,which is
unmapped and uncached, so that the TLB and caches do not require hardware initialization.

This initial fetch address can be overridden via CPU inputs. See Section 6.5 “Exception Vector Locations” for addi-
tional details.

If EJTAGBOOT is active (see Section 11.3.3.8 “EJTAGBOOT Instruction”), the processor will begin fetching
instructions directly from the EJTAG probe rather than from memory.

8.2 Software Initialized Processor State

Software is required to initialize the following parts of the device.

8.2.1 Register File

The register file powers up in an unknown state with the exception of r0 which is always 0. Initializing the rest of the
register file is not required for proper operation. Good code will generally not read a register before writing to it, but
the boot code can initialize the register file for added safety.

8.2.2 TLB

Because of the hidden bit indicating initialization, the CPU does not initialize the TLB upon Reset. This is an imple-
mentation specific feature of the 1004K CPU and cannot be relied upon if writing generic code for MIPS32/64 pro-
cessors.

8.2.3 Caches

The cache tag and data arrays power up to an unknown state and are not affected by reset. Every tag in the cache
arrays should be initialized to an invalid state using the CACHE instruction (typically the Index Invalidate function).

 Hardware and Software Initialization of the 1004K™ CPU

268 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

This can be a long process, especially since the instruction cache initialization needs to be run in an uncached address
region.

8.2.4 Coprocessor 0 State

Miscellaneous COP0 states need to be initialized prior to leaving the boot code. There are various exceptions which
are blocked by ERL=1 or EXL=1 and which are not cleared by Reset. These can be cleared to avoid taking spurious
exceptions when leaving the boot code.

• Cause: WP (Watch Pending), SW0/1 (Software Interrupts) should be cleared.

• Config: K0 (kseg0 Coherency Algorithm) should be set to the desired Cache Coherency Algorithm (CCA) prior
to accessing kseg0.

• Config: (FM MMU only) KU and K23 should be set to the desired CCA for USeg/KUSeg and kseg2/3 respec-
tively prior to accessing those regions.

• Count: Should be set to a known value if Timer Interrupts are used.

• Compare: Should be set to a known value if Timer Interrupts are used. The write to compare will also clear any
pending Timer Interrupts (and thus, Count should be set before Compare, to avoid any unexpected interrupts).

• Status: Desired state of the device should be set.

• Other COP0 state: Other registers should be written before they are read. Some registers are not explicitly write-
able, and are only updated as a by-product of instruction execution or a taken exception. Uninitialized bits should
be masked off after reading these registers.

8.2.5 Multi-threading Initialization

In order to start multi-threading on a 1004K CPU, some additional initialization steps are required. Refer to Chapter
4, “Initializing the 1004K™ 1004k - Multi-Threaded bootstrap issues” in Programming the MIPS32® 1004K™
Coherent Procesing System Family [11].

8.2.6 Multi-CPU Initialization

When the 1004K Coherent Processing System is reset, only one CPU will initially be enabled. Additional steps are
required to start the other CPUs in the cluster and to enable cache coherence between them. Refer to the 1004K
Coherent Processing System User’s Manual [8] for more details.

Chapter 9

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 269

Caches

The CPU has separate instruction and data caches which allows instruction and data references to proceed simulta-
neously. This chapter describes the caches. It contains the following sections:

• Section 9.1 “Instruction Cache”

• Section 9.2 “Data Cache”

• Section 9.3 “Write Back Buffer”

• Section 9.4 “Cache Protocols”

• Section 9.5 “CACHE Instruction”

• Section 9.6 “Software Cache Testing”

• Section 9.7 “Memory Coherence Issues”

9.1 Instruction Cache

Here are the key characteristics of the instruction cache:

• No-cache option. The I-cache can be removed.

• Configurable Size: 1KB, 2KB, 4KB, 8KB, or 16KB per way.

• Configurable Associativity: Direct-mapped or 4-way set associative

• LRU Replacement on set-associative configurations

• Line locking support on set-associative configurations

• Optional Parity support

• 32B line size

• Per-VPE replacement restrictions (only available on MT cores). See the VPEOpt CP0 register.

Figure 9.1 shows the format of an entry in the three arrays comprising the instruction cache: tag, data, and way-select.

 Caches

270 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Figure 9.1 Instruction Cache Organization

9.1.1 I-Cache Virtual Aliasing

The instruction cache is virtually indexed and physically tagged. The lower bits of the virtual address are used to
access the cache arrays and the physical address is used in the tags. Because the way size can be larger than the mini-
mum TLB page size, there is a potential for virtual aliasing. This means that one physical address can exist in multi-
ple indices within the cache if it is accessed with different virtual addresses.

This reduces the cache efficiency somewhat, but is generally not a problem unless the instruction stream is being
written to. When instructions are written, software must ensure that the store data is written out to memory and the
old data is invalidated in the instruction cache (via the CACHE or SYNCI instruction). For this to work correctly, the
address must be invalidated from each of the possible alias locations. The 1004K processor includes a feature to sim-
plify this task and automatically invalidate the physical address from all of the alias locations. The presence of this
feature and the enable for it are located in the Config7 register. Config7IAR =1 indicates that aliases are possible (cache
> 16KB and TLB-based MMU) and this feature is present. This feature is enabled by default, but Config7IVA can be
set to 1 to disable it. Looking up the other alias locations does slow down the invalidate slightly, so software can dis-
able it when aliases are known not to be present, for example, when using an OS with 16KB TLB pages,

9.1.2 Precode Bits

In order for the fetch unit to quickly detect branches and jumps when executing code, the instruction cache array con-
tains some additional precode bits. These bits indicate the type and location of branch or jump instructions within a
64b fetch bundle. These precode bits are not used when executing MIPS16e code.

9.1.3 Parity

Parity protection of the instruction cache arrays can optionally be included. The data array has a 9 parity bits - one for
the 6 precode bits and one for each byte of the 64b data. The tag array has a single parity bit for each tag. The LRU
array does not have any parity.

9.2 Data Cache

Here are the key characteristics of the instruction cache:

• No-cache option. The D-cache can be removed. NOTE: This option is not available on the 1004K CPU.

• Configurable Size: 1KB, 2KB, 4KB, 8KB, or 16KB per way.

Tag (per way):

Data (per way):

Way-Select:

1 1 1 20/21/22

Parity Valid Lock PA[31:12/11/10]

9 6 64 9 6 64 9 6 64 9 6 64

Parity Precode dword3 Parity Precode dword2 Parity Precode dword1 Parity Precode dword0

6

LRU

9.2 Data Cache

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 271

• Configurable Associativity: Direct-mapped or 4-way set associative

• LRU Replacement on set-associative configurations

• Line locking support on set-associative configurations

• Optional Parity support

• 32B line size

• Per-VPE & per-TC replacement restrictions (only available on MT cores). See the VPEOpt and TCOpt CP0 reg-
isters.

The data cache is similar to the instruction cache, with a few key differences:

• The data cache does not contain any precode information.

• To handle store bytes, the data array is byte accessible and the optional data parity is 1 bit per byte.

• The way-select array for the data cache also holds the dirty bits (and optional dirty parity bits) for each cache
line, in addition to the LRU information.

• Virtual aliases must be handled differently

• 0 KByte data cache size is not supported in the 1004K CPU.

• Per-TC replacement restrictions are available on the D-Cache. (only available on MT cores)

Figure 9.2 shows the format of an entry in the three arrays comprising the data cache: tag, data, and way-select.

Figure 9.2 Data Cache Organization

9.2.1 D-Cache Virtual Aliasing

The 1004K must be configured with hardware anti-aliasing support for the data cache when the cache size (32KB or
64KB) and MMU type (TLB) make it subject to aliases. With this hardware, the data cache is effectively physically
indexed and tagged.

Tag (per way):

Data (per way):

Way-Select:

1 1 1 20/21/22

Parity Valid Lock PA[31:12/11]

1 8 9x30 1 8

Parity Data31 ... Parity Data0

6 1 1 1 1 1 1 1 1

LRU Parity Dirty3 Parity Dirty2 Parity Dirty1 Parity Dirty0

 Caches

272 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

9.2.2 Parity

Parity protection of the data cache arrays can optionally be included. The data array requires a parity bit for each byte,
to correspond to the minimum write quantum for a store. The tag array has a single parity bit for each tag. The
way-select array has separate parity bits to cover each dirty bit, but the LRU bits are not covered by parity.

9.2.3 Coherence State Encoding

The coherent state of the cache line is encoded using the Valid and Lock bits from the tag array and the Dirty bits
from the way-select array as follows:

9.3 Write Back Buffer

The BIU includes a Write Back Buffer (WBB) that holds writes going to memory. This includes evictions from the
data cache, as well as uncached stores, and uncached accelerated stores. The WBB consists of 8 entries, each of
which is capable of holding 32B of data. The WBB also holds L2 CACHE instructions that are to be sent out on the
bus.

The WBB will attempt to gather uncached accelerated (UCA)stores to allow full line burst writes. UCA behavior is
described in Section 9.3.1 “Uncached Accelerated Stores”.

WBB entries are ‘flushed’ under a variety of conditions. When a buffer is flushed, the write command is queued in
the BIU and the WBB entry will not accept any more activity until the data has been written to the bus and the buffer
is freed up. UCA flush conditions are described in the next section. Flush conditions for other types are shown here:

• Uncached (non-accelerated) stores flush immediately

• L2 CACHE instruction commands are also flushed immediately

• Entries for D$ evictions are flushed when all 4 dwords (32B) of data have been gathered

When coherence is enabled, the CPU is the ‘owner’ of a cache line until the self-intervention for the writeback
request has been seen. The WBB entry cannot be deallocated until that point so that the CPU can respond with the
data if another CPU requests it. The WBB is also used for staging data responses to interventions. To avoid deadlock,
one WBB entry must be reserved for this purpose.

Table 9.1 Coherent State Encoding

Valid Lock Dirty Coherent State

0 0 x INVALID

0 1 0 SHARED

0 1 1 Reserved

1 0 0 EXCLUSIVE

1 0 1 MODIFIED

1 1 0 LOCKED/Clean1

1. Locked lines are not coherent

1 1 1 LOCKED/Dirty1

9.3 Write Back Buffer

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 273

9.3.1 Uncached Accelerated Stores

Uncached Accelerated gathering is supported for word and double word stores only.

Gathering of uncached accelerated stores will start on cache-line aligned addresses, i.e. 32 byte aligned addresses.
Uncached accelerated word or double word stores that do not meet that condition will be treated like regular
uncached stores.

An uncached accelerated store to the start of a new line will reserve a write-back buffer entry for gathering. Subse-
quent uncached accelerated word or double word stores to the same cache line will write sequentially into this buffer,
independent of the word address associated with these stores. This specifically means that the word address of subse-
quent stores is not preserved. This is done to support two specific usage models:

• Write Sequential: Software is going to write all words of a line in order. The HW will match this write order and
stores will go to the matching address.

• Write Identical: Software repeatedly writes to the cache-line aligned address. The HW will spread this out across
the line buffer and eventually write out the data in the same order. Use in this mode would typically involve a
matching memory mapped device that treated all writes to a cache line address the same. This could be used for
efficient burst writes to a FIFO.

Because the hardware does not preserve the word address for stores within the same cache line, Uncached Acceler-
ated should not be used if software writes the data out of order or randomly as the data will be reordered. For exam-
ple, software writing dwords A,B,C,D to offsets 0x0, 0x18, 0x8, 0x10 could result in memory containing: 0x0 - A,
0x8 - B, 0x10 - C, 0x18 - D.

An uncached accelerated buffer is written to memory (flushed) if:

1. The last word in the entry being gathered is written. (Implicit flush)

2. A PREF Nudge which matches the address associated with the gather buffer (Explicit flush).

3. A SYNC instruction is executed. (Explicit flush)

4. Bits <31:5> of the address of a Load instruction match the address associated with the gather buffer. (Implicit
flush)

5. Uncached Accelerated store to a different 32B line (Implicit flush)

6. An exception occurs. (Implicit flush)

When an uncached accelerated buffer is flushed, the address sent out on the system interface is the address associated
with the gather buffer.

Caveats:

• Uncached Accelerated stores are not ordered with respect to uncached accesses. Any uncached stores and any
uncached loads to unrelated addresses that occur between uncached accelerated stores that are part of a gather
sequence may occur out of order.

• The only constraint imposed on the gathering is that doubleword stores are only allowed to write to double word
aligned locations in the buffer. For example if uncached accelerated gathering starts with a Store Word (SW), it
may not immediately be followed by a Store Double (SDC1).

 Caches

274 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

• Uncached accelerated stores of the following types are not intended to be used by software and may generate
unpredictable results:

1. Sub-word (byte, halfword, tri-byte) Stores

2. Unaligned Stores

3. Store conditionals

• In order for software to be able to run functionally correct on implementations without uncached accelerated
stores, software should always generate accesses starting on a cache-line aligned address, proceed to generate
correctly incremented sequential addresses and observe the restrictions for uncached accelerated stores.

9.4 Cache Protocols

This section describes cache organization, attributes, and cache-line replacement for the instruction and data caches.

9.4.1 Cache Organization

The instruction and data caches each consist of three arrays: tag, data and way-select. The caches are virtually
indexed, since a virtual address is used to select the appropriate line within each of the three arrays. The caches are
physically tagged, as the tag array contains a physical, not virtual, address.

The tag and data arrays hold up to 4 ways of information per set, corresponding to the 4-way set associativity of the
cache. The way-select array holds information to choose the way to be filled, as well as dirty bits in the case of the
data cache.

Figure 9.1 (instruction cache) and Figure 9.2 (data cache) show the format of each line in the tag, data and way-select
arrays.

A tag entry consists of the upper 20 or 21 or 22 bits of the physical address (bits [31:12/11/10]), one valid bit for the
line, and a lock bit. (Direct-mapped caches do not require the lock bit) A data entry contains the four 64-bit double-
words in the line, for a total of 32 bytes. All four words in the line are present or not in the data array together, hence
the single valid bit stored with the tag. Once a valid line is resident in the cache, byte, halfword, triple-byte or full
word stores can update all or a portion of the words in that line. The tag and data entries are repeated for each of the 4
lines in the set for 4-way configurations.

A way-select entry holds bits choosing the way to be replaced according to a Least Recently Used (LRU) algorithm.
The LRU information applies to all the ways and there is one way-select entry for all the ways in the set. (LRU is not
needed for direct-mapped configurations) The array with way-select entries for the data cache also holds dirty bits for
the lines. One dirty bit is required per line, as shown in Figure 9.2. The instruction cache only supports reads, hence
only LRU entries are stored in the instruction way-select array.

9.4.2 Cacheability Attributes

A 1004K CPU supports the following cacheability attributes:

• UC - Uncached: Addresses in a memory area indicated as uncached are not read from the cache. Stores to such
addresses are written directly to main memory, without changing cache contents.

9.4 Cache Protocols

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 275

• WB - Non-coherent Write-back with write allocation: Loads and instruction fetches first search the cache, read-
ing main memory only if the desired data does not reside in the cache. On data store operations, the cache is first
searched to see if the target address is cache resident. If it is resident, the cache contents are updated, but main
memory is not written. If the cache lookup misses on a store, main memory is read to bring the line into the cache
and merge it with the new store data. Hence, the allocation policy on a cache miss is read- or write-allocate. Data
stores will update the appropriate dirty bit in the way-select array to indicate that the line contains modified data.
When a line with dirty data is displaced from the cache, it is written back to memory.

• UCA - Uncached Accelerated: Uncached stores are gathered together for more efficient bus utilization. See
Section 9.3.1 “Uncached Accelerated Stores” for more details

• CWB - Coherent Write-back with write allocation, exclusive on write: Use coherent data. Load misses will bring
the data into the cache in a shared state. Multiple caches can contain data in the shared state. Stores will bring
data into the cache in an exclusive state - no other caches can contain that same line. If a store hits on a shared
line in the cache, the line will be invalidated and brought back into the cache in an exclusive state.

• CWBE - Coherent Write-back with write allocation, exclusive: Similar to the above, but load misses will bring
data into the cache in an exclusive state rather than shared. This can be used if data is not shared and will eventu-
ally be written. This can reduce bus traffic because the line does not have to be refetched in an exclusive state
when a store is done. However, for data that is shared, this would increase bus traffic. Note: synchronization
variables used in LL/SC are normally shared. The core will override this CCA and make LL misses request a
shared read instead of exclusive. This is do so that starting the synchronization does not break the LL/SC
sequence on another core. Other loads do not do this, so software should avoid accessing synchronization loca-
tions (which includes the enter cache line) with regular loads in a looping or polling access. Doing so could
repeatedly break LL/SC sequences on another core and cause a livelock situation. This does not occur with the
CWB CCA.

Some segments of memory employ a fixed caching policy; for example kseg1 is always uncacheable. Other segments
of memory allow the caching policy to be selected by software. Generally, the cache policy for these programmable
regions is defined by a cacheability attribute field associated with that region of memory. See Chapter 5, “Memory
Management of the 1004K™ CPU” on page 103 for further details.

9.4.3 Replacement Policy

The replacement policy refers to how a way is chosen to hold an incoming cache line on a miss which will result in a
cache fill. The replacement policy is least recently used (LRU), but excluding any locked ways. The LRU bit(s) in the
way-select array encode the order in which ways on that line have been accessed.

On a cache miss, the lock and LRU bits for the tag and way-select entries of the selected line may be used to deter-
mine the way which will be chosen.

The LRU field in the way select array is updated as follows:

• On a cache hit, the associated way is updated to be the most recently used. The order of the other ways relative to
each another is unchanged.

• On a cache refill, the filled way is updated to be the most recently used.

• On CACHE instructions, the update of the LRU bits depends on the type of operation to be performed:

• Index (Writeback) Invalidate: Least-recently used.

• Index Load Tag: No update.

 Caches

276 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

• Index Store Tag, WST=0: Most-recently used if valid bit is set in TagLo CP0 register. Least-recently used
if valid bit is cleared in TagLo CP0 register.

• Index Store Tag, WST=1: Update the field with the contents of the TagLo CP0 register (refer to Table 9.2
for the valid values of this field).

• Index Store Data: No update.

• Hit Invalidate: Least-recently used if a hit is generated, otherwise unchanged.

• Fill: Most-recently used.

• Hit (Writeback) Invalidate: Least-recently used if a hit is generated, otherwise unchanged.

• Hit Writeback: No update.

• Fetch and Lock: For instruction cache, no update. For data cache, most-recently used.

If all ways are valid, then any locked ways will be excluded from consideration for replacement. For the unlocked
ways, the LRU bits are used to identify the way which has been used least recently, and that way is selected for
replacement.

If the way selected for replacement has its dirty bit asserted in the way-select array, then that 32-byte line will be writ-
ten back to memory before the new fill can occur.

9.4.4 Line Locking

When configured with 4-way set associativity, line locking is supported in both caches. A line can be locked by either
Fetch and Lock or Index Store Tag CACHE instructions. Furthermore, a particular way can be excluded from being
selected for replacement when a given TC or a given VPE gets a cache miss (See Chapter 7, “VPEOpt Register (CP0
Register 1, Select 7)” on page 179 and Chapter 7, “VPEOpt Register (CP0 Register 1, Select 7)” on page 179).

Locking lines in the caches is somewhat counter to the idea of coherence. If a line is locked into a particular cache, it
is expected that any processes utilizing that data will be locked to that processor and coherence is not needed. Based
on this usage model, locking coherent lines into the cache is not recommended. If it is done, the CPUs use the follow-
ing rules:

• SYNCI instructions are user-mode instructions. Since locking is a kernel mode feature (requires the CACHE
instruction), SYNCI is not allowed to unlock cache lines. This applies to both local and globalized SYNCI
instructions.

• Locking overrides coherence. Intervention requests from other CPUs and I/O devices that match on a locked line
are treated as misses.

• Self-intervention requests for globalized CACHE instructions are allowed to affect a locked line. This is done
primarily for handling lock and unlock requests for kseg0 addresses when kseg0 is being treated coherently.

• The CPU does not support the locking/exclusion of all 4 ways of either cache at a particular index. At least one
way must be both unlocked and available for replacement according to VPEOptIWX/DWX. If all 4 ways of the
cache at a given index are locked/excluded, subsequent cache misses at that cache index will displace one of the
locked/excluded lines.

9.5 CACHE Instruction

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 277

9.5 CACHE Instruction

Both caches support the CACHE instructions that allow users to manipulate the contents of the Data and Tag arrays,
including the locking of individual cache lines. These instructions are described in detail in Chapter 15, “1004K™
Processor CPU Instructions” on page 395.

The CACHE Index Load Tag and Index Store Tag instructions can be used to read and write the WS- RAM by setting
the WST bit in the ErrCtl register. (The ErrCtl register is described in Section 7.2.59 “ErrCtl Register (CP0 Register
26, Select 0)”.) Similarly, the SPR bit in the ErrCtl register will cause Index Load Tag and Index Store Tag instruc-
tions to access the pseudo-tags associated with the scratchpad RAM array. Finally, the ITC bit in the ErrCtl register
will cause Index Load Tag and Index Store Tag instructions to access the pseudo-tags associated with the ITC block.
Note that when the WST, ITC, and SPR bits are zero, the CACHE index instructions access the cache Tag array.

Not all values of the WS field are valid for defining the order in which the ways are selected. This is only an issue,
however, if the WS-RAM is written after the initialization (invalidation) of the Tag array. Valid WS field encodings
for way selection order is shown in Table 9.2.

9.6 Software Cache Testing

Typically, the cache RAM arrays will be tested using BIST. It is, however, possible for software running on the pro-
cessor to test all of the arrays. Of course, testing of the I-cache arrays should be done from an uncacheable space with
interrupts disabled in order to maintain the cache contents. There are multiple methods for testing these arrays in soft-
ware, only one is presented here.

9.6.1 I-Cache and Primary D-cache Tag Arrays

These arrays can be tested via the Index Load Tag and Index Store Tag varieties of the CACHE instruction. Index
Store Tag will write the contents of the TagLo register into the selected tag entry. Index Load Tag will read the
selected tag entry into the TagLo.

Table 9.2 Way Selection Encoding, 4 Ways

Selection Order1

1. The order is indicated by listing the least-recently used way to the left and the
most-recently used way to the right, etc.

WS[5:0] Selection Order WS[5:0]

0123 000000 2013 100010

0132 000001 2031 110010

0213 000010 2103 100110

0231 010010 2130 101110

0312 010001 2301 111010

0321 010011 2310 111110

1023 000100 3012 011001

1032 000101 3021 011011

1203 100100 3102 011101

1230 101100 3120 111101

1302 001101 3201 111011

1320 101101 3210 111111

 Caches

278 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

If parity is implemented, the parity bits can be tested as a normal bit by setting the PO bit in the ErrCtl register. This
will override the parity calculation and write P bit in TagLo as the parity value.

9.6.2 Duplicate D-cache Tag Array

This array can be tested Index Load Tag and Index Store Tag varieties of the CACHE instruction. In order to access
the duplicate tags, the WST and SPR bits of ErrCtl should both be set. Index Store Tag will write the contents of the
TagLo register into the selected tag entry. Index Load Tag will read the selected tag entry into the TagLo. In normal
mode, with WST and SPR cleared, IndexStoreTags will write into both the primary and duplicate tags, while Index-
LoadTags will read the primary tag.

If parity is implemented, the parity bit can be tested as a normal bit by setting the PO bit in the ErrCtl register. This
will override the parity calculation and write P bit in TagLo as the parity value.

9.6.3 I-Cache Data Array

This array can be tested using the Index Store Data and Index Load Tag varieties of the CACHE instruction. The
Index Store Data variety is enabled by setting the WST bit in the ErrCtl register.

The precode bits in the array can be tested by setting the PCO bit in the ErrCtl register. This will write the PCI field in
the ErrCtl register instead of calculating the precode bits on a write.

The parity bits in the array can be tested by setting the PO bit in the ErrCtl register. This will use the PI field in ErrCtl
instead of calculating the parity on a write.

The rest of the data bits are read/written to/from the DataLo and DataHi registers.

9.6.4 I-Cache WS Array

The testing of this array is done with via Index Load Tag and Index Store Tag CACHE instructions. By setting the
WST bit in the ErrCtl register, these operations will read and write the WS array instead of the tag array.

9.6.5 D-Cache Data Array

This array can be tested using the Index Store Tag CACHE, SW, and LW instructions. First, use Index Store Tag to
set the initial state of the tags to valid with a known physical address (PA). Write the array using SW instructions to
the PAs that are resident in the cache. The value can then be read using LW instructions and compared to the
expected data.

The parity bits can be implicitly tested using this mechanism. The parity bits can be explicitly tested by setting the PO
bit in ErrCtl and using Index Store Data and Index Load Tag CACHE operations. The parity bits (one bit per byte) are
read/written to/from the PD field in ErrCtl. Unlike the I-cache, the DataHi register is not used and only 32b of data is
read/written per operation.

9.6.6 D-cache WS Array

The dirty bits in this array will be tested when the data tag is tested. The LRU bits can be tested using the same mech-
anism as the I-cache WS array.

9.7 Memory Coherence Issues

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 279

9.7 Memory Coherence Issues

The 1004K CPU supports cache coherency in a multi-CPU 1004K Coherent Processing System using Cache Coher-
ence Attributes (CCAs) specified on a per cache-line basis and an Intervention Port containing coherent requests by
all CPUs in the system. Each 1004K monitors its Intervention Port and updates the state of its cache lines (valid, lock,
and dirty tag bits) accordingly.

The L1 data caches utilize a standard MESI protocol. Each cache line will be in one of the following four states:

• Invalid: The line is not present in this cache.

• Shared: This cache has a read-only copy of the line. The line may be present in other L1 data caches, also in a
Shared state. The line will have the same value as it does in the L2 cache or memory.

• Exclusive: This cache has a copy of the line with the right to modify. The line is not present in other L1 data
caches. The line is still clean - consistent with the value in L2 cache or memory.

• Modified: This cache has a dirty copy of the line. The line is not present in other L1 data caches. This is the only
up-to-date copy of the data in the system (the value in the L2 cache or memory is stale).

The SYNC instruction may also be useful to software enforcing memory coherence, as it flushes the CPU’s write
buffers.

For more information on cache coherency in a 1004K Coherent Processing System, refer to MIPS32® 1004K™
Coherent Processor System User’s Manual [8].

 Caches

280 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Chapter 10

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 281

Power Management in the 1004K™ CPU

A 1004K CPU offers a number of power management features, including low-power design, active power manage-
ment and power-down modes of operation. The CPU is a static design that supports changing the clock frequency or
even stopping the clocks to manage power. The WAIT instruction suspends execution until an interrupt is detected
and can put the CPU into a low power mode.

The CPU provides two basic mechanisms for system level low-power support discussed in the following sections.

• Section 10.1 “Register-Controlled Power Management”

• Section 10.2 “Instruction-Controlled Power Management”

10.1 Register-Controlled Power Management

The RP bit in the CP0 Status register enables a standard software mechanism for placing the system into a low power
state. The state of the RP bit is available externally via the SI_RP output signal. Three additional pins, SI_EXL,
SI_ERL, and EJ_DebugM support the power management function by allowing the user to change the power state if
an exception or error occurs while the CPU is in a low power state. This interface is replicated for VPE1 and consists
of the SI_RP_1, SI_EXL_1, SI_ERL_1, and EJ_DebugM_1 signals. The function of the VPE1 interface is the same as
the VPE0 interface described below.

Setting the RP bit of the CP0 Status register causes the CPU to assert the SI_RP signal. The external agent can then
decide whether to reduce the clock frequency and place the CPU into power down mode.

If an interrupt is taken while the device is in power down mode, that interrupt may need to be serviced depending on
the needs of the application. The interrupt causes an exception which in turn causes the EXL bit to be set. The setting
of the EXL bit causes the assertion of the SI_EXL signal on the external bus, indicating to the external agent that an
interrupt has occurred. At this time the external agent can choose to either speed up the clocks and service the inter-
rupt or let it be serviced at the lower clock speed.

The setting of the ERL bit causes the assertion of the SI_ERL signal on the external bus, indicating to the external
agent that an error has occurred. At this time the external agent can choose to either speed up the clocks and service
the error or let it be serviced at the lower clock speed.

Similarly, the EJ_DebugM signal indicates that the processor is in debug mode. Debug mode is entered when the pro-
cessor takes a debug exception. If fast handling of this is desired, the external agent can speed up the clocks.

The CPU provides four power down signals that are part of the system interface. Three of the pins change state as the
corresponding bits in the CP0 Status register are set or cleared. The fourth pin indicates that the processor is in debug
mode:

• The SI_RP signal represents the state of the RP bit (27) in the CP0 Status register.

• The SI_EXL signal represents the state of the EXL bit (1) in the CP0 Status register.

 Power Management in the 1004K™ CPU

282 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

• The SI_ERL signal represents the state of the ERL bit (2) in the CP0 Status register.

• The EJ_DebugM signal indicates that the processor has entered debug mode.

10.2 Instruction-Controlled Power Management

On a single threaded CPU, the execution of the WAIT instruction brings the CPU into a low power state where the
internal clocks can be stopped and the pipeline frozen. On a multi-threaded CPU, we want to continue executing
instructions on other Thread Contexts. The low power, sleep mode is only entered when all TCs are idle. TCs are con-
sidered idle in the following circumstances

• a WAIT instruction has been executed and there is not an interrupt on that VPE

• a YIELD instruction has been executed and the yield qualifier has not been met

• an ITC access is blocked

• TC is not runnable due to coprocessor0 state

When all of the Thread Contexts on the processor are in any of the above idle conditions, the CPU will be brought
into a low power state. The primary clock is stopped. The internal timer and some of the input pins (SI_Int[_1][5:0],
SI_NMI[_1], SI_Reset, and EJ_DINT[_1]) continue to run. The clock is not shut down until all bus and coprocessor
transactions have completed.

If coherence is enabled, the CPU may still receive interventions from other CPUs while it is asleep. The CPU will
quickly wake up, service the intervention, and then go back to sleep.

10.2.1 CPUWait IE/IXMT Ignore

A feature is included in the core that simplifies the task of using the WAIT instruction in the idle loop of an OS. The
WAIT instruction is typically in block of code where the OS first checks to see if there is any pending work and if
there is not, it will execute the WAIT as shown below.

if (!pending)
{

wait();
}

There is a tricky race condition present in this code. If an interrupt arrives between the pending check and the WAIT
instruction, the service routine will return and execute the WAIT and go to sleep. However, the interrupt may have
been enabling some pending work to be done in the ‘bottom-half’ processing. If the core goes back to sleep, this
pending work will not be done until the next interrupt arrives.

The OS can check to see if the interrupt was signalled in this window and adjust the EPC value to before the pending
check, but this involves a fair amount of work. The Wait IE/IXMT Ignore feature enables a simpler solution for the
race condition. With this feature, a WAIT condition will be terminated by an active interrupt signal, even if that sig-
nal is prevented from causing an interrupt by StatusIE being clear or TCStatusIXMT being set. This allows interrupts to
be disabled in this section of code while still allowing the WAIT to complete.

An example of the assembly code for making use of this feature follows:

LEAF(r4k_wait)

10.2 Instruction-Controlled Power Management

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 283

.set push

.set noreorder
di t4 # Clear Status.IE and preserve old value in t4
LONG_L t0, ti_flags($28) # Get flag bits
andi t0, _TIF_NEED_RESCHED # Isolate reschedule flag
bnez t0, 1f # branch around wait if pending work
nop
wait
1: mtc0t4, C0_Status # restore status register
.set pop
jr ra
nop
END(r4k_wait)

Note that this sequence would not be safe to execute on a core without this feature. In that case, a normal interrupt
will generally not wake up the core if StatusIE=0. The Config7WII bit indicates whether this feature is present on the
core.

 Power Management in the 1004K™ CPU

284 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Chapter 11

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 285

EJTAG Debug Support in the 1004K™ CPU

The EJTAG debug logic in the 1004K CPU is compliant with EJTAG Specification 5.0 and includes:

1. Standard CPU debug features

2. Optional hardware breakpoints

3. Standard Test Access Port (TAP) for a dedicated connection to a debug host

4. Optional MIPS Trace capability for program counter/data address/data value trace to On-chip memory or to
Trace probe

This chapter contains the following sections:

• Section 11.1 “Debug Control Register”

• Section 11.2 “Hardware Breakpoints”

• Section 11.3 “Test Access Port (TAP)”

• Section 11.4 “EJTAG TAP Registers”

• Section 11.5 “TAP Processor Accesses”

• Section 11.6 “PC Sampling”

• Section 11.7 “Fast Debug Channel”

• Section 11.8 “MIPS® Trace”

• Section 11.9 “PDtrace™ Registers (Software Control)”

• Section 11.10 “Trace Control Block (TCB) Registers (Hardware Control)”

• Section 11.11 “Enabling MIPS Trace”

• Section 11.12 “TCB Trigger Logic”

• Section 11.13 “MIPS Trace Cycle-by-Cycle Behavior”

• Section 11.14 “TCB On-Chip Trace Memory”

 EJTAG Debug Support in the 1004K™ CPU

286 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

11.1 Debug Control Register

The Debug Control Register (DCR) register controls and provides information about debug issues and is always pro-
vided with the 1004K CPU. The register is memory-mapped in drseg at offset 0x0.

The DataBrk and InstBrk bits indicate if hardware breakpoints are included in the implementation, and debug soft-
ware is expected to read hardware breakpoint registers for additional information.

Hardware and software interrupts are maskable for non-debug mode with the INTE bit, which works in addition to
the other mechanisms for interrupt masking and enabling. NMI is maskable in non-debug mode with the NMIE bit,
and a pending NMI is indicated through the NMIP bit.

The SRE bit allows implementation dependent masking of some sources for reset. The 1004K CPU does not distin-
guish between soft and hard reset, but typically only soft reset sources in the system would be maskable and hard
sources such as the reset switch would not be. The soft reset masking should only be applied to a soft reset source if
that source can be efficiently masked in the system, thus resulting in no reset at all. If that is not possible, then that
soft reset source should not be masked, since a partial soft reset may cause the system to fail or hang. There is no
automatic indication of whether the SRE is effective, so the user must consult system documentation.

The PE bit reflects the ProbEn bit from the EJTAG Control register (ECR), whereby the probe can indicate to the
debug software that the probe will service dmseg accesses. The reset value in the table below takes effect on any CPU
reset.

Figure 11.1 DCR Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 ENM 0 PCIM
PCno
ASID

DASQ DASe DAS 0
FDC
Impl

Data
Brk

Inst
Brk

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IVM DVM 0
RD
Vec

CBT PCS PCR PCSe IntE NMIE
NMI
pend

SRstE
Prob
En

Table 11.1 DCR Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

ENM 29 Endianess in which the processor is running in kernel
and Debug Mode:

R Preset

Encoding Meaning

0 Little endian

1 Big endian

11.1 Debug Control Register

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 287

PCIM 26 Configure PC Sampling to capture all executed
addresses or only those that miss the instruction cache
This feature is not supported and this bit will read as 0..

R 0

PCnoASID 25 Controls whether the PCSAMPLE scan chain includes
or omits the ASID field
ASID is always included so this bit will read as 0.

R 0

DASQ 24 Qualifies Data Address Sampling using a data break-
point.
Data address sampling is not supported so this bit will
read as 0

R 0

DASe 23 Enables Data Address Sampling
Data address sampling is not supported so this bit will
read as 0

R 0

DAS 22 Indicates if the Data Address Sampling feature is imple-
mented.
Data address sampling is not supported so this bit will
read as 0.

R 0

FDCImpl 18 Indicates if the fast debug channel is implemented R 1

Table 11.1 DCR Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
StateName Bits

Encoding Meaning

0 All PC’s captured

1 Capture only PC’s that miss the cache.

Encoding Meaning

0 ASID included in PCSAMPLE scan

1 ASID omitted from PCSAMPLE scan

Encoding Meaning

0 All data addresses are sampled

1 Sample matches of data breakpoint 0

Encoding Meaning

0 Data Address sampling disabled.

1 Data Address sampling enabled.

Encoding Meaning

0 No DA Sampling implemented

1 DA Sampling implemented

Encoding Meaning

0 No fast debug channel implemented

1 Fast debug channel implemented

 EJTAG Debug Support in the 1004K™ CPU

288 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

DataBrk 17 Indicates if data hardware breakpoint is implemented: R Preset

InstBrk 16 Indicates if instruction hardware breakpoint is imple-
mented:

R Preset

IVM 15 Indicates if inverted data value match on data hardware
breakpoints is implemented:

R 0

DVM 14 Indicates if a data value store on a data value breakpoint
match is implemented:

R 0

RDVec 11 Enables relocation of the debug exception vector. The
value in the DebugVectorAddr register is used for
EJTAG exceptions when ProbTrap=0,and RDVec=1.

R/W 0

CBT 10 Indicates if complex breakpoint block is implemented: R 0

Table 11.1 DCR Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
StateName Bits

Encoding Meaning

0 No data hardware breakpoint imple-
mented

1 Data hardware breakpoint imple-
mented

Encoding Meaning

0 No instruction hardware breakpoint
implemented

1 Instruction hardware breakpoint
implemented

Encoding Meaning

0 No inverted data value match on data
hardware breakpoints implemented

1 Inverted data value match on data
hardware breakpoints implemented

Encoding Meaning

0 No data value store on a data value
breakpoint match implemented

1 Data value store on a data value break-
point match implemented

Encoding Meaning

0 No complex breakpoint block imple-
mented

1 Complex breakpoint block imple-
mented

11.1 Debug Control Register

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 289

PCS 9 Indicates if the PC Sampling feature is implemented. R 1

PCR 8:6 PC Sampling rate. Values 0 to 7 map to values 25 to 212

cycles, respectively. That is, a PC sample is written out
every 32, 64, 128, 256, 512, 1024, 2048, or 4096 cycles
respectively. The external probe or software is allowed
to set this value to the desired sample rate.

R/W 7

PCSe 5 If the PC sampling feature is implemented, then indi-
cates whether PC sampling is initiated or not. That is, a
value of 0 indicates that PC sampling is not enabled and
when the bit value is 1, then PC sampling is enabled and
the counters are operational.

R/W 0

IntE 4 Hardware and software interrupt enable for Non-Debug
Mode, in conjunction with other disable mechanisms:

R/W 1

NMIE 3 Non-Maskable Interrupt (NMI) enable for Non-Debug
Mode:

R/W 1

NMIpend 2 Indication for pending NMI: R 0

SRstE 1 Controls soft reset enable: R/W 1

Table 11.1 DCR Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
StateName Bits

Encoding Meaning

0 No PC Sampling implemented

1 PC Sampling implemented

Encoding Meaning

0 Interrupt disabled

1 Interrupt enabled depending on other
enabling mechanisms

Encoding Meaning

0 NMI disabled

1 NMI enabled

Encoding Meaning

0 No NMI pending

1 NMI pending

Encoding Meaning

0 Soft reset masked for soft reset sources
dependent on implementation

1 Soft reset is fully enabled

 EJTAG Debug Support in the 1004K™ CPU

290 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

11.1.1 DebugVectorAddr Register

This register allows an alternate debug exception vector address to be specified, which can enable placing a debug
monitor program into RAM for much faster execution than the default ROM address. This register is memory
mapped at an offset of 0x00020 within the DRSEG memory segment.

Figure 11.2 shows the register format and Table 11.3 describes the fields in this register.

Bits 31 and 30 and fixed at 0b10, restricting the exception vector to be in kseg0 or kseg1. For the case of a cache par-
ity error in debug mode, bit 29 will also be forced to one to place the exception vector in kseg1 to avoid cacheable
accesses. Table 11.2 shows the different exception vector locations that are possible.

Figure 11.2 DebugVectorAddr Register Format

ProbEn 0 Indicates value of the ProbEn value in the ECR register:

Bit is read-only (R) and reads as zero if not imple-
mented.

R Same value
as ProbEn

in ECR

0 MSB:30,
28:27,
21:19,
13:12

Must be written as zeros; return zeros on reads. 0 0

Table 11.2 Debug Exception Vectors

ECRProbTrap DCRRdVec SI_UseExceptionBase Cache Error? Debug Exception Vector

1 x x x 16#ff200200

0 1 x 0 DebugVectorAddr31 0

0 1 x 1 2#101 || DebugVectorAddr28 0

0 0 1 0 2#10 || SI_ExceptionBase29 12 || 16#480

0 0 1 1 2#101 || SI_ExceptionBase28 12 || 16#480

0 0 0 x 16#bfc00480

31 30 29 7 6 1 0

1 0 DebugVectorOffset 0 ISA

Table 11.1 DCR Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
StateName Bits

Encoding Meaning

0 No access should occur to the dmseg
segment

1 Probe services accesses to the dmseg
segment

11.2 Hardware Breakpoints

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 291

11.2 Hardware Breakpoints

Hardware breakpoints provide for the comparison by hardware of executed instructions and data load/store transac-
tions. It is possible to set instruction breakpoints on addresses even in ROM area. Data breakpoints can be set to cause
a debug exception on a specific data transaction. Instruction and data hardware breakpoints are alike for many
aspects, and are thus described in parallel in the following. The term hardware is not applied to breakpoint, unless
required to distinguish it from software breakpoint.

There are two types of simple hardware breakpoints implemented in the 1004K CPU; Instruction breakpoints and
Data breakpoints.

A CPU may be configured with the following breakpoint options:

• Zero, two, or four instruction breakpoints

• Zero, one, or two data breakpoints

11.2.1 Features of Instruction Breakpoint

Instruction breaks occur on instruction fetch operations and the break is set on the virtual address used by the instruc-
tion fetch unit. Instruction breaks can also be made on the ASID value used by the TLB-based MMU. Finally, a mask
can be applied to the virtual address to set breakpoints on a range of instructions.

Instruction breakpoints compare the virtual address of the executed instructions (PC) and the ASID with the registers
for each instruction breakpoint including masking of address and ASID. When an instruction breakpoint matches, a
trigger is generated and a debug exception is optionally signalled. An internal bit in the instruction breakpoint regis-
ters is set to indicate that the match occurred.

11.2.2 Features of Data Breakpoint

Data breakpoints occur on load/store transactions. Breakpoints are set on virtual address and ASID values, similar to
the Instruction breakpoint. Data breakpoints can be set on a load, a store or both. Data breakpoints can also be set
based on the value of the load/store operation. Finally, masks can be applied to both the virtual address and the
load/store value.

Data breakpoints compare the transaction type (TYPE), which may be load or store, the virtual address of the transac-
tion (ADDR), the ASID, accessed bytes (BYTELANE) and data value (DATA), with the registers for each data

Table 11.3 DebugVectorAddr Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

1 31 Ignored on write; returns one on read. R 1

0 31 Ignored on write; returns zero on read. R 0

DebugVec
torOffset

29:7 Programmable Debug Exception Vector Offset R/W 0x7f8009
(corresponds to

0xbfc00480)

0 6:1 Ignored on write, returns zero on read. R 0

ISA 0 ISA mode to be used for debug exception handler.
Only used on cores implementing microMIPS.

R 0

 EJTAG Debug Support in the 1004K™ CPU

292 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

breakpoint including masking or qualification on the transaction properties. When a data breakpoint matches, a trig-
ger is generated and a debug exception is optionally signalled. An internal bit in the data breakpoint registers is set to
indicate that the match occurred.

11.2.3 Instruction Breakpoint Registers Overview

The register with implementation indication and status for instruction breakpoints in general is shown in Table 11.4.

Up to four instruction breakpoints are available and are numbered 0 to 3 for registers and breakpoints, and the number
is indicated by n. The registers for each breakpoint are shown in Table 11.5.

11.2.4 Data Breakpoint Registers Overview

The register with implementation indication and status for data breakpoints in general is shown in Table 11.6.

Up to two data breakpoints are available and are numbered 0 and 1 for registers and breakpoints, and the number is
indicated by n. The registers for each breakpoint are shown in Table 11.7.

Table 11.4 Overview of Status Register for Instruction Breakpoints

Register Mnemonic Register Name and Description

IBS Instruction Breakpoint Status

Table 11.5 Overview of Registers for Each Instruction Breakpoint

Register Mnemonic Register Name and Description

IBAn Instruction Breakpoint Address n

IBMn Instruction Breakpoint Address Mask n

IBASIDn Instruction Breakpoint ASID n

IBCn Instruction Breakpoint Control n

Table 11.6 Overview of Status Register for Data Breakpoints

Register Mnemonic Register Name and Description

DBS Data Breakpoint Status

Table 11.7 Overview of Registers for Each Data Breakpoint

Register Mnemonic Register Name and Description

DBAn Data Breakpoint Address n

DBMn Data Breakpoint Address Mask n

DBASIDn Data Breakpoint ASID n

DBCn Data Breakpoint Control n

DBVn Data Breakpoint Value n

11.2 Hardware Breakpoints

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 293

11.2.5 Conditions for Matching Breakpoints

A number of conditions must be fulfilled in order for a breakpoint to match on an executed instruction or a data trans-
action, as described in this section. Breakpoints only match for instructions executed in non-debug mode, never on
instructions executed in debug mode.

The match of an enabled breakpoint always generates a trigger indication and can also generate a debug exception.
The BE and/or TE bits in the IBCn or DBCn registers are used to enable the breakpoints.

Debug software should not configure breakpoints to compare on an ASID value unless a TLB is present in the imple-
mentation.

11.2.5.1 Conditions for Matching Instruction Breakpoints

When an instruction breakpoint is enabled, that breakpoint is evaluated for the address of every executed instruction
in non-debug mode, including execution of instructions at an address causing an address error on an instruction fetch.
The breakpoint is not evaluated on instructions from a speculative fetch or execution, nor for addresses which are
unaligned with an executed instruction.

A breakpoint match depends on the virtual address of the executed instruction (PC), which can be masked at the bit
level, The match can also include an optional compare of the ASID and TC values. The registers for each instruction
breakpoint contain the values and mask used in the compare, and the equation that determines the match is shown
below in C-like notation.

IB_match =
(! IBCnTCuse || (TC == IBCTC)) &&
(! IBCnASIDuse || (ASID == IBASIDnASID)) &&
(<all 1’s> == (IBMnIBM | ~ (PC ^ IBAnIBA) &&
((IBMnISAM | ~(ISAMode ^ IBAnISA))))

The match indication for instruction breakpoints is always precise, i.e., indicated on the instruction causing the
IB_match to be true.

11.2.5.2 Conditions for Matching Data Breakpoints

When a data breakpoint is enabled, that breakpoint is evaluated for every data transaction due to a load/store instruc-
tion executed in non-debug mode, including coprocessor loads/stores and transactions causing an address error on
data access. The breakpoint is not evaluated due to a PREF instruction or other transactions which are not part of
explicit load/store transactions in the execution flow, nor for addresses which are not the explicit load/store source or
destination address.

A breakpoint match depends on the transaction type (TYPE) as load or store, the address, and optionally the data
value of a transaction. Match also includes an optional compare of the TC value. The registers for each data break-
point contain the values and mask used in the compare, and the equation that determines the match is shown below in
C-like notation.

The overall match equation is the DB_match.

DB_match =
(!DBCnTCuse ||(TC == DBCnTC)) &&
(((TYPE == load) && ! DBCnNoLB) ||
((TYPE == store) && ! DBCnNoSB)) &&

DB_addr_match && (DB_no_value_compare || DB_value_match)

 EJTAG Debug Support in the 1004K™ CPU

294 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

The match on the address part, DB_addr_match, depends on the virtual address of the transaction (ADDR), the
ASID value, and the accessed bytes (BYTELANE) where BYTELANE[0] is 1 only if the byte at bits [7:0] on the bus is
accessed, and BYTELANE[1] is 1 only if the byte at bits [15:8] is accessed, etc. The DB_addr_match is shown
below.

DB_addr_match =
(! DBCnASIDuse || (ASID == DBASIDnASID)) &&
(<all 1’s> == (DBMnDBM | ~ (ADDR ^ DBAnDBA))) &&
(<all 0’s> != (~ BAI & BYTELANE))

The size of DBCnBAI and BYTELANE is 8 bits. They are 8 bits to allow for data value matching on doubleword float-
ing point loads and stores. For non-doubleword loads and stores, only the lower 4 bits will be used.

Data value compare is included in the match condition for the data breakpoint depending on the bytes (BYTELANE as
described above) accessed by the transaction, and the contents of breakpoint registers. The
DB_no_value_compare is shown below.

DB_no_value_compare =
(<all 1’s> == (DBCnBLM | DBCnBAI | ~ BYTELANE))

The size of DBCnBLM, DBCnBAI and BYTELANE is 8 bits.

In case a data value compare is required, DB_no_value_compare is false, then the data value from the data bus
(DATA) is compared and masked with the registers for the data breakpoint. The endianess is not considered in these
match equations for value, as the compare uses the data bus value directly, thus debug software is responsible for
setup of the breakpoint corresponding with endianess.

DB_value_match =
((DATA[7:0] == DBVnDBV[7:0]) || !BYTELANE[0] || DBCnBLM[0] || DBCnBAI[0]) &&
((DATA[15:8] == DBVnDBV[15:8]) || !BYTELANE[1] || DBCnBLM[1] || DBCnBAI[1]) &&
((DATA[23:16] == DBVnDBV[23:16]) || !BYTELANE[2] || DBCnBLM[2] || DBCnBAI[2])&&
((DATA[31:24] == DBVnDBV[31:24]) || !BYTELANE[3] || DBCnBLM[3] || DBCnBAI[3])&&
((DATA[39:32] == DBVnDBV[39:32]) || !BYTELANE[4] || DBCnBLM[4] || DBCnBAI[4])&&
((DATA[47:40] == DBVnDBV[47:40]) || !BYTELANE[5] || DBCnBLM[5] || DBCnBAI[5])&&
((DATA[55:48] == DBVnDBV[55:48]) || !BYTELANE[6] || DBCnBLM[6] || DBCnBAI[6])&&
((DATA[63:56] == DBVnDBV[63:56]) || !BYTELANE[7] || DBCnBLM[7] || DBCnBAI[7]))

The match for a data breakpoint without value compare is always precise, since the match expression is fully evalu-
ated at the time the load/store instruction is executed. A true DB_match can thereby be indicated on the very same
instruction causing the DB_match to be true. The match for data breakpoints with value compare is always impre-
cise.

11.2.6 Debug Exceptions from Breakpoints

Instruction and data breakpoints may be set up to generate a debug exception when the match condition is true, as
described below.

11.2.6.1 Debug Exception by Instruction Breakpoint

If the breakpoint is enabled by the BE bit in the IBCn register, then a debug instruction break exception occurs if the
IB_match equation is true. The corresponding BS[n] bit in the IBS register is set when the breakpoint generates the
debug exception.

11.2 Hardware Breakpoints

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 295

The debug instruction break exception is always precise, so the DEPC register and the DBD bit in the Debug register
point to the instruction that caused the IB_match equation to be true.

The instruction receiving the debug exception does not update any registers due to the instruction, nor does any load
or store by that instruction occur. Thus a debug exception from a data breakpoint cannot occur for instructions receiv-
ing a debug instruction break exception.

The debug handler usually returns to the instruction causing the debug instruction break exception, whereby the
instruction is executed. Debug software is responsible for disabling the breakpoint when returning to the instruction;
otherwise the debug instruction break exception reoccurs.

11.2.6.2 Debug Exception by Data Breakpoint

If the breakpoint is enabled by BE bit in the DBCn register, then a debug exception occurs when the DB_match con-
dition is true. The corresponding BS[n] bit in the DBS register is set when the breakpoint generates the debug excep-
tion. A matching data breakpoint generates either a precise or imprecise debug exception.

Debug Data Break Load/Store Exception as a Precise Debug Exception

A precise debug data break exception occurs when a data breakpoint without value compare indicates a match. In this
case the DEPC register and DBD bit in the Debug register points to the instruction that caused the DB_match equa-
tion to be true.

The instruction causing the debug data break exception does not update any registers due to the instruction, and the
following applies to the load or store transaction causing the debug exception:

• A store transaction is not allowed to complete the store to the memory system.

• A load transaction with no data value compare, i.e. where the DB_no_value_compare is true for the match,
is not allowed to complete the load.

The result of this is that the load or store instruction causing the debug data break exception appears as not executed.

If both data breakpoints without and with data value compare would match the same transaction and generate a debug
exception, then the rules shown in Table 11.8 apply with respect to updating the BS[n] bits.

Table 11.8 Rules for Update of BS Bits on Data Breakpoint Exceptions

Instruction

Breakpoints that Match
Update of BS Bits for Matching Data

Breakpoints

Without Value
Compare With Value Compare

Without Value
Compare With Value Compare

Load/Store One or more None BS bits set for all (No matching break-
points)

Load One or more One or more BS bits set for all Unchanged BS bits since
load of data value does

not occur so match of the
breakpoint cannot be

determined

Load None One or more (No matching break-
points)

BS bits set for all

Store One or more One or more BS bits set for all BS bits set for all

 EJTAG Debug Support in the 1004K™ CPU

296 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Any BS[n] bit set prior to the match and debug exception are kept set, since BS[n] bits are only cleared by debug soft-
ware.

The debug handler usually returns to the instruction causing the debug data break exception, whereby the instruction
is re-executed. Debug software is responsible for disabling breakpoints when returning to the instruction, otherwise
the debug data break exception will reoccur.

Debug Data Break Load/Store Exception as a Imprecise Debug Exception

An Debug Data Break Load/Store Imprecise exception occurs when a data breakpoint indicates an imprecise match.
Imprecise matches are generated when data value compare is used. In this case, the DEPC register and DBD bit in the
Debug register point to an instruction later in the execution flow rather than at the load/store instruction that caused
the DB_match equation to be true.

The load/store instruction causing the Debug Data Break Load/Store Imprecise exception always updates the destina-
tion register and completes the access to the external memory system. Therefore this load/store instruction is not
re-executed on return from the debug handler, because the DEPC register and DBD bit do not point to that instruction.

Several imprecise data breakpoints can be pending at a given time, if the bus system supports multiple outstanding
data accesses. The breakpoints are evaluated as the accesses finalize, and a Debug Data Break Load/Store Imprecise
exception is generated only for the first one that matches. Both the first and succeeding matches cause corresponding
BS bits and DDBLImpr/DDBSImpr to be set, but no debug exception is generated for succeeding matches, because the
processor is already in Debug Mode. Similarly, if a debug exception had already occurred at the time of the first
match (for example, due to a precise debug exception), then all matches cause the corresponding BS bits and
DDBLImpr/DDBSImpr to be set, but no debug exception is generated because the processor is already in Debug Mode.

The SYNC instruction, followed by appropriate spacing must be executed before the BS bits and
DDBLImpr/DDBSImpr bits are accessed for read or write. This delay ensures that these bits are fully updated.

Any BS bit set prior to the match and debug exception remains set, because only debug software can clear the BS bits.

11.2.7 Breakpoint used as Triggerpoint

When an enabled instruction or data breakpoint matches, the corresponding bit in the IBS.BS or DBS.BS field is set.
These fields are externalized on the SI_Ibs and SI_Dbs core outputs, respectively. These outputs are intended to be
used to trigger external devices such as logic analyzers. Furthermore, breakpoint matches can also be used to start or
stop PDtrace. See Section 11.11 “Enabling MIPS Trace” for details.

If the breakpoints are to be used only as trigger events, the signalling of the debug exception can be suppressed by
clearing the IBCn/DBCn.BE field and setting the IBCn/DBCn.TE field.

Store None One or more (No matching break-
points)

BS bits set for all

Table 11.8 Rules for Update of BS Bits on Data Breakpoint Exceptions

Instruction

Breakpoints that Match
Update of BS Bits for Matching Data

Breakpoints

Without Value
Compare With Value Compare

Without Value
Compare With Value Compare

11.2 Hardware Breakpoints

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 297

11.2.8 Instruction Breakpoint Registers

The registers for instruction breakpoints are described below. These registers have implementation information and
are used to set up the instruction breakpoints. All registers are in drseg with addresses as shown in Table 11.9.

An example of some of the registers; IBA0 is at offset 0x1100 and IBC2 is at offset 0x1318.

11.2.8.1 Instruction Breakpoint Status (IBS) Register

Compliance Level: Implemented only if instruction breakpoints are implemented.

The Instruction Breakpoint Status (IBS) register holds implementation and status information about the instruction
breakpoints.

The ASID applies to all the instruction breakpoints.

Figure 11.3 IBS Register Format

Table 11.9 Addresses for Instruction Breakpoint Registers

Offset in drseg
Register

Mnemonic Register Name and Description

0x1000 IBS Instruction Breakpoint Status

0x1100 + n * 0x100 IBAn Instruction Breakpoint Address n

0x1108 + n * 0x100 IBMn Instruction Breakpoint Address Mask n

0x1110 + n * 0x100 IBASIDn Instruction Breakpoint ASID n

0x1118 + n * 0x100 IBCn Instruction Breakpoint Control n

n is breakpoint number in range 0 to 3

31 30 29 28 27 24 23 4 3 0

Res ASIDsup Res BCN Res BS

Table 11.10 IBS Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

Res 31 Must be written as zero; returns zero on read. R 0

ASIDsup 30 Hardware and software interrupt enable for Non-Debug Mode, in
conjunction with other disable mechanisms:

R Fixed MMU - 0
TLB - 1

Res 29:28 Must be written as zero; returns zero on read. R 0

BCN 27:24 Number of instruction breakpoints implemented. R 2 or 4

Res 23:4 Must be written as zero; returns zero on read. R 0

Encoding Meaning

0 ASID compare not supported

1 ASID compare supported (IBASIDn
register implemented)

 EJTAG Debug Support in the 1004K™ CPU

298 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

11.2.8.2 Instruction Breakpoint Address n (IBAn) Register

Compliance Level: Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Address n (IBAn) register has the address used in the condition for instruction breakpoint
n.

Figure 11.4 IBAn Register Format

11.2.8.3 Instruction Breakpoint Address Mask n (IBMn) Register

Compliance Level: Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Address Mask n (IBMn) register has the mask for the address compare used in the condi-
tion for instruction breakpoint n.

Figure 11.5 IBMn Register Format

BS 3:0 Break status for breakpoint n is at BS[n], with n from 0 to 3. The bit
is set to 1 when the corresponding breakpoint is enabled and the con-
dition has matched. If only two instruction breakpoints are imple-
mented, bits 2 and 3 must be written as zero and will return zero on
read.

R/W Undefined

31 1 0

IBA ISA

Table 11.11 IBAn Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

IBA 31:1 Instruction breakpoint address for condition. R/W Undefined

ISA 0 Instruction breakpoint ISA mode for condition R/W Undefined

31 1 0

IBM ISAM

Table 11.10 IBS Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

11.2 Hardware Breakpoints

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 299

11.2.8.4 Instruction Breakpoint ASID n (IBASIDn) Register

Compliance Level: Implemented only for implemented instruction breakpoints.

For processors with a TLB based MMU, this register is used to define an ASID value to be used in the match expres-
sion. For cores with a FM MMU, this register is reserved and reads as 0.

Figure 11.6 IBASIDn Register Format

11.2.8.5 Instruction Breakpoint Control n (IBCn) Register

Compliance Level: Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Control n (IBCn) register controls the setup of instruction breakpoint n.

Table 11.12 IBMn Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

IBM 31:1 Instruction breakpoint address mask for condition: R/W Undefined

ISAM 0 Instruction breakpoint ISA mode mask for condition:
condition:

0: ISA mode considered for match condition
1: ISA mode masked

R/W Undefined

31 8 7 0

Res ASID

Table 11.13 IBASIDn Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

Res 31:8 Must be written as zero; returns zero on read. R 0

ASID 7:0 Instruction breakpoint ASID value for a compare. R/W Undefined

Encoding Meaning

0 Corresponding address bit not masked

1 Corresponding address bit masked

Encoding Meaning

0 Corresponding address bit not masked

1 Corresponding address bit masked

 EJTAG Debug Support in the 1004K™ CPU

300 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Figure 11.7 IBCn Register Format

11.2.9 Data Breakpoint Registers

The registers for data breakpoints are described below. These registers have implementation information and are used
the setup the data breakpoints. All registers are in drseg, and the addresses are shown in Table 11.15.

31 24 23 22 21 3 2 1 0

TC ASIDuse TC use Res TE Res BE

Table 11.14 IBCn Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

TC 31:24 The value of TC (thread context) to match in the comparison to
determine if the instruction break is to be taken. TC value is ignored
if TCuse is set to 0.

R/W Undefined

ASIDuse 23 Use ASID value in compare for instruction breakpoint n: R/W Undefined

TCuse 22 Use TC value in comparison for instruction breakpoint: n: R/W Undefined

Res 21:3 Must be written as zero; returns zero on read. R 0

TE 2 Trigger-only Enable. This field is ignored when BE is set. When BE
is cleared and TE is set, instruction breakpoint n is enabled, but will
not signal a debug exception.

R/W 0

Res 1 Must be written as zero; returns zero on read. R 0

BE 0 Breakpoint Enable. When set, instruction breakpoint n is enabled
and will signal a debug exception when its condition matches.

R/W 0

Table 11.15 Addresses for Data Breakpoint Registers

Offset in drseg
Register

Mnemonic Register Name and Description

0x2000 DBS Data Breakpoint Status

0x2100 + 0x100 * n DBAn Data Breakpoint Address n

0x2108 + 0x100 * n DBMn Data Breakpoint Address Mask n

0x2110 + 0x100 * n DBASIDn Data Breakpoint ASID n

0x2118 + 0x100 * n DBCn Data Breakpoint Control n

n is breakpoint number as 0 or 1

Encoding Meaning

0 Don’t use ASID value in compare

1 Use ASID value in compare

Encoding Meaning

0 Do not use value in compare

1 Use TC value in compare

11.2 Hardware Breakpoints

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 301

An example of some of the registers; DBM0 is at offset 0x2108 and DBV1 is at offset 0x2220.

11.2.9.1 Data Breakpoint Status (DBS) Register

Compliance Level: Implemented if data breakpoints are implemented.

The Data Breakpoint Status (DBS) register holds implementation and status information about the data breakpoints.

The ASIDsup field indicates whether ASID compares are supported.

Figure 11.8 DBS Register Format

0x2120 + 0x100 * n DBVn Data Breakpoint Value n

0x2124 + 0x100*n DBVHn Data Breakpoint Value High n

31 30 29 28 27 24 23 2 1 0

Res ASIDsup Res BCN Res BS

Table 11.16 DBS Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

Res 31 Must be written as zero; returns zero on read. R 0

ASID 30 Indicates that ASID compares are supported in data breakpoints.
n:

0: Not supported
1: Supported

R TLB MMU - 1
FM MMU - 0

Res 29:28 Must be written as zero; returns zero on read. R 0

BCN 27:24 Number of data breakpoints implemented. R 1 or 2

Res 23:2 Must be written as zero; returns zero on read. R 0

BS 1:0 Break status for breakpoint n is at BS[n], with n from 0 to 1. The bit
is set to 1 when the condition for the corresponding breakpoint has
matched and the condition has matched. If only one data breakpoint
is implemented, bit 1 must be written as 0 and will return 0 on reads.

R/W0 Undefined

Table 11.15 Addresses for Data Breakpoint Registers

Offset in drseg
Register

Mnemonic Register Name and Description

n is breakpoint number as 0 or 1

Encoding Meaning

0 Don’t use ASID value in compare

1 Use ASID value in compare

 EJTAG Debug Support in the 1004K™ CPU

302 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

11.2.9.2 Data Breakpoint Address n (DBAn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Address n (DBAn) register has the address used in the condition for data breakpoint n.

Figure 11.9 DBAn Register Format

11.2.9.3 Data Breakpoint Address Mask n (DBMn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Address Mask n (DBMn) register has the mask for the address compare used in the condition for
data breakpoint n.

Figure 11.10 DBMn Register Format

11.2.9.4 Data Breakpoint ASID n (DBASIDn) Register

Compliance Level: Implemented only for implemented data breakpoints.

31 0

DBA

Table 11.17 DBAn Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

DBA 31:0 Data breakpoint address for condition. R/W Undefined

31 0

DBM

Table 11.18 DBMn Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

DBM 31:0 Data breakpoint address mask for condition:
n:

0: Corresponding address bit not masked
1: Corresponding address bit masked

R/W Undefined

Encoding Meaning

0 Don’t use ASID value in compare

1 Use ASID value in compare

11.2 Hardware Breakpoints

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 303

For processors with a TLB based MMU, this register is used to define an ASID value to be used in the match expres-
sion. For cores with the FM MMU, this register is reserved and reads as 0.

Figure 11.11 DBASIDn Register Format

11.2.9.5 Data Breakpoint Control n (DBCn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Control n (DBCn) register controls the setup of data breakpoint n.

Figure 11.12 DBCn Register Format

31 8 7 0

Res ASID

Table 11.19 DBASIDn Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

Res 31:8 Must be written as zero; returns zero on read. R 0

ASID 7:0 Data breakpoint ASID value for compares. R/W Undefined

31 24 23 22 21 14 13 12 11 4 3 2 1 0

TC ASIDuse TC use BAI NoSB NoLB BLM Res TE Res BE

Table 11.20 DBCn Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

TC 31:24 The value of TC to match in the comparison to determine if data
break is to be taken. TC value is ignored if TCuse is set to 0

R/W Undefined

ASIDuse 23 Use ASID value in compare for data breakpoint n: R/W Undefined

TCuse 22 Use TC value in comparison for data breakpoint n: R/W Undefined

Encoding Meaning

0 Don’t use ASID value in compare

1 Use ASID value in compare

Encoding Meaning

0 Do not use TC value in compare

1 Use TC value in compare

 EJTAG Debug Support in the 1004K™ CPU

304 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

BAI 21:14 Byte access ignore controls ignore of access to a specific byte.
BAI[0] ignores access to byte at bits [7:0] of the data bus, BAI[1]
ignores access to byte at bits [15:8], etc.:

R/W Undefined

NoSB 13 Controls if condition for data breakpoint is fulfilled on a store trans-
action:

R/W Undefined

NoLB 12 Controls if condition for data breakpoint is fulfilled on a load trans-
action:

R/W Undefined

BLM 11:4 Byte lane mask for value compare on data breakpoint. BLM[0]
masks byte at bits [7:0] of the data bus, BLM[1] masks byte at bits
[15:8], etc.:

R/W Undefined

Res 3 Must be written as zero; returns zero on reads. R 0

TE 2 Trigger-only Enable. This field is ignored when BE is set. When BE
is cleared and TE is set, data breakpoint n is enabled, but will not
signal a debug exception.

R/W 0

Res 1 Must be written as zero; returns zero on reads. R 0

BE 0 Breakpoint Enable. When set, data breakpoint n is enabled and will
signal a debug exception when its condition matches.

R/W 0

Table 11.20 DBCn Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 Condition depends on access to corre-
sponding byte

1 Access for corresponding byte is
ignored

Encoding Meaning

0 Condition may be fulfilled on store
transaction

1 Condition is never fulfilled on store
transaction

Encoding Meaning

0 Condition may be fulfilled on load
transaction

1 Condition is never fulfilled on load
transaction

Encoding Meaning

0 Compare corresponding byte lane

1 Mask corresponding byte lane

11.3 Test Access Port (TAP)

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 305

11.2.9.6 Data Breakpoint Value n (DBVn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Value n (DBVn) register has the value used in the condition for data breakpoint n.

Figure 11.13 DBVn Register Format

11.2.9.7 Data Breakpoint Value High n (DBVHn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Value High n (DBVHn) register has the value used in the condition for data breakpoint n.

Figure 11.14 DBVHn Register Format

11.3 Test Access Port (TAP)

The following main features are supported by the TAP module:

• 5-pin industry standard JTAG Test Access Port (TCK, TMS, TDI, TDO, TRST_N) interface which is compatible
with IEEE Std. 1149.1.

• Target chip and EJTAG feature identification available through the Test Access Port (TAP) controller.

31 0

DBV

Table 11.21 DBVn Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

DBV 31:0 Data breakpoint value for condition. R/W Undefined

31 0

DBVH

Table 11.22 DBVHn Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

DBVH 31:0 Data breakpoint value high for condition. This register provides the
high order bits [63:32] for data value on double-word floating point
loads and stores.

R/W Undefined

 EJTAG Debug Support in the 1004K™ CPU

306 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

• The processor can access external memory on the EJTAG Probe serially through the EJTAG pins. This is
achieved through Processor Access (PA), and is used to eliminate the use of the system memory for debug rou-
tines.

• Support for both ROM based debugger and debugging both through TAP.

11.3.1 EJTAG Internal and External Interfaces

The external interface of the EJTAG module consists of the 5 signals defined by the IEEE standard.

11.3.2 Test Access Port Operation

The TAP controller is controlled by the Test Clock (TCK) and Test Mode Select (TMS) inputs. These two inputs
determine whether an the Instruction register scan or data register scan is performed. The TAP consists of a small
controller, driven by the TCK input, which responds to the TMS input as shown in the state diagram in Figure 11.15.
The TAP uses both clock edges of TCK. TMS and TDI are sampled on the rising edge of TCK, while TDO changes on
the falling edge of TCK.

At power-up the TAP is forced into the Test-Logic-Reset by low value on TRST_N. The TAP instruction register is
thereby reset to IDCODE. No other parts of the EJTAG hardware are reset through the Test-Logic-Reset state.

Table 11.23 EJTAG Interface Pins

Pin Type Description

TCK I Test Clock Input
Input clock used to shift data into or out of the Instruction or data registers. The TCK clock is
independent of the processor clock, so the EJTAG probe can drive TCK independently of the
processor clock frequency.
The CPU signal for this is called EJ_TCK

TMS I Test Mode Select Input
The TMS input signal is decoded by the TAP controller to control test operation. TMS is
sampled on the rising edge of TCK.
The CPU signal for this is called EJ_TMS

TDI I Test Data Input
Serial input data (TDI) is shifted into the Instruction register or data registers on the rising
edge of the TCK clock, depending on the TAP controller state.
The CPU signal for this is called EJ_TDI

TDO O Test Data Output
Serial output data is shifted from the Instruction or data register to the TDO pin on the falling
edge of the TCK clock. When no data is shifted out, the TDO is 3-stated.
The CPU signal for this is called EJ_TDO with output enable controlled by EJ_TDOzstate.

TRST_N I Test Reset Input (Optional pin)
The TRST_N pin is an active-low signal for asynchronous reset of the TAP controller and
instruction in the TAP module, independent of the processor logic. The processor is not reset
by the assertion of TRST_N.
The CPU signal for this is called EJ_TRST_N
This signal is optional, but power-on reset must apply a low pulse on this signal at power-on
and then leave it high, in case the signal is not available as a pin on the chip. If available on
the chip, then it must be low on the board when the EJTAG debug features are unused by the
probe.

11.3 Test Access Port (TAP)

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 307

When test access is required, a protocol is applied via the TMS and TCK inputs, causing the TAP to exit the
Test-Logic-Reset state and move through the appropriate states. From the Run-Test/Idle state, an Instruction register
scan or a data register scan can be issued to transition the TAP through the appropriate states shown in Figure 11.15.

The states of the data and instruction register scan blocks are mirror images of each other adding symmetry to the pro-
tocol sequences. The first action that occurs when either block is entered is a capture operation. For the data registers,
the Capture-DR state is used to capture (or parallel load) the data into the selected serial data path. In the Instruction
register, the Capture-IR state is used to capture status information into the Instruction register.

From the Capture states, the TAP transitions to either the Shift or Exit1 states. Normally the Shift state follows the
Capture state so that test data or status information can be shifted out for inspection and new data shifted in. Follow-
ing the Shift state, the TAP either returns to the Run-Test/Idle state via the Exit1 and Update states or enters the Pause
state via Exit1. The reason for entering the Pause state is to temporarily suspend the shifting of data through either the
Data or Instruction Register while a required operation, such as refilling a host memory buffer, is performed. From
the Pause state shifting can resume by re-entering the Shift state via the Exit2 state or terminate by entering the
Run-Test/Idle state via the Exit2 and Update states.

Upon entering the data or Instruction register scan blocks, shadow latches in the selected scan path are forced to hold
their present state during the Capture and Shift operations. The data being shifted into the selected scan path is not
output through the shadow latch until the TAP enters the Update-DR or Update-IR state. The Update state causes the
shadow latches to update (or parallel load) with the new data that has been shifted into the selected scan path.

Figure 11.15 TAP Controller State Diagram

Shift_IR

Select_IR_Scan

Capture_IR

Exit1_IR

Pause_IR

Exit2_IR

Update_IR

1

0

0

0

0

0

0

1

1

1

1

1

1

1

0

Shift_DR

Select_DR_Scan

Capture_DR

Exit1_DR

Pause_DR

Exit2_DR

Update_DR

0

0

0

0

0

0

1

1

1

1

1

1

1

0

Test-Logic-Reset

Run-Test/Idle

0

1

0

 EJTAG Debug Support in the 1004K™ CPU

308 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

11.3.2.1 Test-Logic-Reset State

In the Test-Logic-Reset state the boundary scan test logic is disabled. The test logic enters the Test-Logic-Reset state
when the TMS input is held HIGH for at least five rising edges of TCK. The BYPASS instruction is forced into the
instruction register output latches during this state. The controller remains in the Test-Logic-Reset state as long as
TMS is HIGH.

11.3.2.2 Run-Test/Idle State

The controller enters the Run-Test/Idle state between scan operations. The controller remains in this state as long as
TMS is held LOW. The instruction register and all test data registers retain their previous state. The instruction cannot
change when the TAP controller is in this state.

When TMS is sampled HIGH on the rising edge of TCK, the controller transitions to the Select_DR state.

11.3.2.3 Select_DR_Scan State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, then the controller transitions to the Capture_DR state.
A HIGH on TMS causes the controller to transition to the Select_IR state. The instruction cannot change while the
TAP controller is in this state.

11.3.2.4 Select_IR_Scan State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW on the rising edge of TCK, the controller transitions to the Capture_IR state. A
HIGH on TMS causes the controller to transition to the Test-Reset-Logic state. The instruction cannot change while
the TAP controller is in this state.

11.3.2.5 Capture_DR State

In this state the boundary scan register captures the value of the register addressed by the Instruction register, and the
value is then shifted out in the Shift_DR. If TMS is sampled LOW at the rising edge of TCK, the controller transitions
to the Shift_DR state. A HIGH on TMS causes the controller to transition to the Exit1_DR state. The instruction can-
not change while the TAP controller is in this state.

11.3.2.6 Shift_DR State

In this state the test data register connected between TDI and TDO as a result of the current instruction shifts data one
stage toward its serial output on the rising edge of TCK. If TMS is sampled LOW on the rising edge of TCK, the con-
troller remains in the Shift_DR state. A HIGH on TMS causes the controller to transition to the Exit1_DR state. The
instruction cannot change while the TAP controller is in this state.

11.3.2.7 Exit1_DR State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Pause_DR state. A
HIGH on TMS causes the controller to transition to the Update_DR state which terminates the scanning process. The
instruction cannot change while the TAP controller is in this state.

11.3.2.8 Pause_DR State

The Pause_DR state allows the controller to temporarily halt the shifting of data through the test data register in the
serial path between TDI and TDO. All test data registers selected by the current instruction retain their previous state.

11.3 Test Access Port (TAP)

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 309

If TMS is sampled LOW on the rising edge of TCK, the controller remains in the Pause_DR state. A HIGH on TMS
causes the controller to transition to the Exit2_DR state. The instruction cannot change while the TAP controller is in
this state.

11.3.2.9 Exit2_DR State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Shift_DR state to allow
another serial shift of data. A HIGH on TMS causes the controller to transition to the Update_DR state which termi-
nates the scanning process. The instruction cannot change while the TAP controller is in this state.

11.3.2.10 Update_DR State

When the TAP controller is in this state the value shifted in during the Shift_DR state takes effect on the rising edge
of the TCK for the register indicated by the Instruction register.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Run-Test/Idle state. A HIGH on
TMS causes the controller to transition to the Select_DR_Scan state. The instruction cannot change while the TAP
controller is in this state and all shift register stages in the test data registers selected by the current instruction retain
their previous state.

11.3.2.11 Capture_IR State

In this state the shift register contained in the Instruction register loads a fixed pattern (000012) on the rising edge of
TCK. The data registers selected by the current instruction retain their previous state.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Shift_IR state. A HIGH on TMS
causes the controller to transition to the Exit1_IR state. The instruction cannot change while the TAP controller is in
this state.

11.3.2.12 Shift_IR State

In this state the instruction register is connected between TDI and TDO and shifts data one stage toward its serial out-
put on the rising edge of TCK. If TMS is sampled LOW at the rising edge of TCK, the controller remains in the
Shift_IR state. A HIGH on TMS causes the controller to transition to the Exit1_IR state.

11.3.2.13 Exit1_IR State

This is a temporary controller state in which all registers retain their previous state. If TMS is sampled LOW at the ris-
ing edge of TCK, the controller transitions to the Pause_IR state. A HIGH on TMS causes the controller to transition
to the Update_IR state which terminates the scanning process. The instruction cannot change while the TAP control-
ler is in this state and the instruction register retains its previous state.

11.3.2.14 Pause_IR State

The Pause_IR state allows the controller to temporarily halt the shifting of data through the instruction register in the
serial path between TDI and TDO. If TMS is sampled LOW at the rising edge of TCK, the controller remains in the
Pause_IR state. A HIGH on TMS causes the controller to transition to the Exit2_IR state. The instruction cannot
change while the TAP controller is in this state.

11.3.2.15 Exit2_IR State

This is a temporary controller state in which the instruction register retains its previous state. If TMS is sampled LOW
at the rising edge of TCK, then the controller transitions to the Shift_IR state to allow another serial shift of data. A

 EJTAG Debug Support in the 1004K™ CPU

310 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

HIGH on TMS causes the controller to transition to the Update_IR state which terminates the scanning process. The
instruction cannot change while the TAP controller is in this state.

11.3.2.16 Update_IR State

The instruction shifted into the instruction register takes effect on the rising edge of TCK.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Run-Test/Idle state. A HIGH on
TMS causes the controller to transition to the Select_DR_Scan state.

11.3.3 Test Access Port (TAP) Instructions

The TAP Instruction register allows instructions to be serially input into the device when TAP controller is in the
Shift-IR state. Instructions are decoded and define the serial test data register path that is used to shift data between
TDI and TDO during data register scanning.

The Instruction register is a 5-bit register. In the current EJTAG implementation only some instructions have been
decoded; the unused instructions default to the BYPASS instruction.

11.3.3.1 BYPASS Instruction

The required BYPASS instruction allows the processor to remain in a functional mode and selects the Bypass register
to be connected between TDI and TDO. The BYPASS instruction allows serial data to be transferred through the pro-
cessor from TDI to TDO without affecting its operation. The bit code of this instruction is defined to be all ones by the
IEEE 1149.1 standard. Any unused instruction is defaulted to the BYPASS instruction.

Table 11.24 Implemented EJTAG Instructions

Value Instruction Function

0x01 IDCODE Select Chip Identification data register

0x03 IMPCODE Select Implementation register

0x08 ADDRESS Select Address register

0x09 DATA Select Data register

0x0A CONTROL Select EJTAG Control register

0x0B ALL Select the Address, Data and EJTAG Control registers

0x0C EJTAGBOOT Set EjtagBrk, ProbEn and ProbTrap to 1 as reset value

0x0D NORMALBOOT Set EjtagBrk, ProbEn and ProbTrap to 0 as reset value

0x0E FASTDATA Selects the Data and Fastdata registers

0x10 TCBCONTROLA Selects the TCBTCONTROLA register in the Trace Control Block

0x11 TCBCONTROLB Selects the TCBTCONTROLB register in the Trace Control Block

0x12 TCBDATA Selects the TCBDATA register in the Trace Control Block

0x13 TCBCONTROLC Selects the TCBTCONTROLC register in the Trace Control Block

0x14 PCSAMPLE Selects the PCSAMPLE register

0x15 TCBCONTROLD Selects the TCBTCONTROLD register in the Trace Control Block

0x16 TCBCONTROLE Selects the TCBTCONTROLE register in the Trace Control Block

0x17 FDC Select Fast Debug Channel

0x1F BYPASS Bypass mode

11.3 Test Access Port (TAP)

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 311

11.3.3.2 IDCODE Instruction

The IDCODE instruction allows the processor to remain in its functional mode and selects the Device Identification
(ID) register to be connected between TDI and TDO. The Device ID register is a 32-bit shift register containing infor-
mation regarding the IC manufacturer, device type, and version code. Accessing the Identification Register does not
interfere with the operation of the processor. Also, access to the Identification Register is immediately available, via a
TAP data scan operation, after power-up when the TAP has been reset with on-chip power-on or through the optional
TRST_N pin.

11.3.3.3 IMPCODE Instruction

This instruction selects the Implementation register for output, which is always 32 bits.

11.3.3.4 ADDRESS Instruction

This instruction is used to select the Address register to be connected between TDI and TDO. The EJTAG Probe shifts
32 bits through the TDI pin into the Address register and shifts out the captured address via the TDO pin.

11.3.3.5 DATA Instruction

This instruction is used to select the Data register to be connected between TDI and TDO. The EJTAG Probe shifts 32
bits of TDI data into the Data register and shifts out the captured data via the TDO pin.

11.3.3.6 CONTROL Instruction

This instruction is used to select the EJTAG Control register to be connected between TDI and TDO. The EJTAG
Probe shifts 32 bits of TDI data into the EJTAG Control register and shifts out the EJTAG Control register bits via
TDO.

11.3.3.7 ALL Instruction

This instruction is used to select the concatenation of the Address and Data register, and the EJTAG Control regis-
ter(ECR) between TDI and TDO. It can be used in particular to minimize the overhead in switching the instruction in
the instruction register. The first bit shifted out is bit 0 of the ECR.

Figure 11.16 Concatenation of the EJTAG Address, Data and Control Registers

11.3.3.8 EJTAGBOOT Instruction

EJTAGBOOT provides a means to enter debug mode just after a reset, without fetching or executing any instructions
from the normal memory area. This can be used for download of code to a system which has no code in ROM.

When the EJTAGBOOT instruction is given and the Update-IR state is left, the EJTAGBOOT indication will become
active. When EJTAGBOOT is active, a core reset will set the ProbTrap, ProbEn and EjtagBrk bits in the EJTAG
Control register to 1. This will cause a debug exception that is serviced by the probe immediately after reset is deas-
serted.

Address 0

Data 0

EJTAG Control 0 TDO

TDI

 EJTAG Debug Support in the 1004K™ CPU

312 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

This EJTAGBOOT indication is effective until a NORMALBOOT instruction is given, TRST_N is asserted or a ris-
ing edge of TCK occurs when the TAP controller is in Test-Logic-Reset state.

Each VPE has its own TAP controller and thus EJTAGBOOT can be set independently per VPE. Even though VPE1
is not activated at core reset, EJTAGBOOT on VPE1 will still cause a debug exception immediately after reset.

The Bypass register is selected when the EJTAGBOOT instruction is given.

11.3.3.9 NORMALBOOT Instruction

When the NORMALBOOT instruction is given and the Update-IR state is left, then the EJTAGBOOT indication will
be cleared. When NORMALBOOT is active (EJTAGBOOT is not active), a core reset will set the ProbTrap, ProbEn
and EjtagBrk bits in the EJTAG Control register to 0.

The Bypass register is selected when the NORMALBOOT instruction is given.

11.3.3.10 FASTDATA Instruction

This selects the Data and the Fastdata registers at once, as shown in Figure 11.17.

Figure 11.17 TDI to TDO Path When in Shift-DR State and FASTDATA Instruction is Selected

11.3.3.11 TCBCONTROLA Instruction

This instruction is used to select the TCBCONTROLA register to be connected between TDI and TDO. This register
is only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the
Bypass register.

11.3.3.12 TCBCONTROLB Instruction

This instruction is used to select the TCBCONTROLB register to be connected between TDI and TDO. This register is
only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the
Bypass register.

11.3.3.13 TCBCONTROLC Instruction

This instruction is used to select the TCBCONTROLC register to be connected between TDI and TDO. This register is
only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the
Bypass register.

11.3.3.14 TCBDATA Instruction

This instruction is used to select the TCBDATA register to be connected between TDI and TDO. This register is only
implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the Bypass
register. It should be noted that the TCBDATA register is only an access register to other TCB registers. The width of
the TCBDATA register is dependent on the specific TCB register.

TDI Data TDOFastdata0

11.4 EJTAG TAP Registers

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 313

11.3.3.15 PCSAMPLE Instruction

This instruction is used to select the PCSAMPLE register to be connected between TDI and TDO. This register is
always implemented.

11.3.3.16 TCBCONTROLD Instruction

This instruction is used to select the TCBCONTROLD register to be connected between TDI and TDO. This register
is only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the
Bypass register.

11.3.3.17 TCBCONTROLE Instruction

This instruction is used to select the TCBCONTROLE register to be connected between TDI and TDO. This register is
only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the
Bypass register.

11.3.3.18 FDC Instruction

This instruction is used to select the Fast Debug Channel register to be connected between TDI and TDO. This register
is always implemented

11.4 EJTAG TAP Registers

The EJTAG TAP Module has one Instruction register and a number of data registers, all accessible through the TAP:

11.4.1 Instruction Register

The Instruction register is accessed when the TAP receives an Instruction register scan protocol. During an Instruc-
tion register scan operation the TAP controller selects the output of the Instruction register to drive the TDO pin. The
shift register consists of a series of bits arranged to form a single scan path between TDI and TDO. During an Instruc-
tion register scan operations, the TAP controls the register to capture status information and shift data from TDI to
TDO. Both the capture and shift operations occur on the rising edge of TCK. However, the data shifted out from the
TDO occurs on the falling edge of TCK. In the Test-Logic-Reset and Capture-IR state, the instruction shift register is
set to 000012, as for the IDCODE instruction. This forces the device into the functional mode and selects the Device
ID register. The Instruction register is 5 bits wide. The instruction shifted in takes effect for the following data regis-
ter scan operation. A list of the implemented instructions are listed in Table 11.24.

11.4.2 Data Registers Overview

The EJTAG uses several data registers that are arranged in parallel from the primary TDI input to the primary TDO
output. The Instruction register supplies the address that allows one of the data registers to be accessed during a data
register scan operation. During a data register scan operation, the addressed scan register receives TAP control sig-
nals to capture the register and shift data from TDI to TDO. During a data register scan operation, the TAP selects the
output of the data register to drive the TDO pin. The register is updated in the Update-DR state with respect to the
write bits.

This description applies in general to the following data registers:

• Bypass Register

• Device Identification Register

 EJTAG Debug Support in the 1004K™ CPU

314 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

• Implementation Register

• EJTAG Control Register (ECR)

• Processor Access Address Register

• Processor Access Data Register

• FastData Register

11.4.2.1 Bypass Register

The Bypass register consists of a single scan register bit. When selected, the Bypass register provides a single bit scan
path between TDI and TDO. The Bypass register allows abbreviating the scan path through devices that are not
involved in the test. The Bypass register is selected when the Instruction register is loaded with a pattern of all ones to
satisfy the IEEE 1149.1 Bypass instruction requirement.

11.4.2.2 Device Identification (ID) Register

The Device Identification register is defined by IEEE 1149.1, to identify the device's manufacturer, part number, revi-
sion, and other device-specific information. Table 11.25 shows the bit assignments defined for the read-only Device
Identification Register, and inputs to the CPU determine the value of these bits. These bits can be scanned out of the
ID register after being selected. The register is selected when the Instruction register is loaded with the IDCODE
instruction.

Figure 11.18 Device Identification Register Format

11.4.2.3 Implementation Register

This 32-bit read-only register is used to identify the features of the EJTAG implementation. Some of the reset values
are set by inputs to the CPU. The register is selected when the Instruction register is loaded with the IMPCODE
instruction.

31 28 27 12 11 1 0

Version PartNumber ManufID R

Table 11.25 Device Identification Register

Fields

Description
Read /
Write Reset StateName Bit(s)

Version 31:28 Version (4 bits)
This field identifies the version number of the processor
derivative.

 R EJ_Version[3:0]

PartNumber 27:12 Part Number (16 bits)
This field identifies the part number of the processor
derivative.

 R EJ_PartNumber[15:0]

ManufID 11:1 Manufacturer Identity (11 bits)
Accordingly to IEEE 1149.1-1990, the manufacturer iden-
tity code shall be a compressed form of the JEDEC Publi-
cations 106-A.

 R EJ_ManufID[10:0]

R 0 reserved R 1

11.4 EJTAG TAP Registers

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 315

Figure 11.19 Implementation Register Format

11.4.2.4 EJTAG Control Register

This 32-bit register controls the various operations of the TAP modules. This register is selected by shifting in the
CONTROL instruction. Bits in the EJTAG Control register can be set/cleared by shifting in data; status is read by
shifting out the contents of this register. This EJTAG Control register can only be accessed by the TAP interface.

31 29 28 25 24 23 21 20 17 16 15 14 13 0

EJTAGver reserved DINTsup ASIDsize reserved MIPS16 0 NoDMA reserved

Table 11.26 Implementation Register Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

EJTAGver 31:29 EJTAG Version.
3: Version 3.1

R 3

reserved 28:25 reserved R 0

DINTsup 24 DINT Signal Supported from Probe
This bit indicates if the DINT signal from the probe is supported:

0: DINT signal from the probe is not supported
1: Probe can use DINT signal to make debug interrupt.

R EJ_DINTsup

ASIDsize 23:21 Size of ASID field in implementation:

0: No ASID in implementation
2: 8-bit ASID
1,3: Reserved

R TLB MMU- 2
FM MMU- 0

reserved 20:17 reserved R 0

MIPS16 16 Indicates whether MIPS16 is implemented:

0: No MIPS16 support
1: MIPS16 implemented

R 1

reserved 15 reserved R 0

NoDMA 14 No EJTAG DMA Support R 1

reserved 13:0 reserved R 0

Encoding Meaning

0 Compare corresponding byte lane

1 Mask corresponding byte lane

Encoding Meaning

0 Compare corresponding byte lane

1 Mask corresponding byte lane

Encoding Meaning

0 Compare corresponding byte lane

1 Mask corresponding byte lane

 EJTAG Debug Support in the 1004K™ CPU

316 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

The EJTAG Control register is not updated in the Update-DR state unless the Reset occurred (Rocc) bit 31, is either 0
or written to 0. This is in order to ensure prober handling of processor accesses.

The value used for reset indicated in the table below takes effect on CPU resets, but not on TAP controller resets by
e.g. TRST_N. TCK clock is not required when the CPU reset occurs, but the bits are still updated to the reset value
when the TCK applies. The first 5 TCK clocks after CPU resets may result in reset of the bits, due to synchronization
between clock domains.

Figure 11.20 EJTAG Control Register Format
31 30 29 28 24 23 22 21 20 19 18 17 16 15 14 13 12 11 4 3 2 0

Rocc Psz Res
VPED

Doze Halt PerRst PRnW PrAcc Res PrRst ProbEn ProbTrap Res EjtagBrk Res DM Res

Table 11.27 EJTAG Control Register Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

Rocc 31 Reset Occurred
The bit indicates if a CPU reset has occurred:

The Rocc bit will remain set to 1 as long as reset is applied.
This bit must be cleared by the probe to acknowledge that the inci-
dent was detected.
The EJTAG Control register is not updated in the Update-DR state
unless Rocc is 0 or written to 0, in order to ensure proper handling of
processor access following reset.

R/W 1

Encoding Meaning

0 No reset occurred since bit last cleared

1 Reset occurred since bit last cleared

11.4 EJTAG TAP Registers

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 317

Psz[1:0] 30:29 Processor Access Transfer Size
These bits are used in combination with the lower two address bits
of the Address register to determine the size of a processor access
transaction. The bits are only valid when processor access is pend-
ing.

Note: LE=little endian, BE=big endian, the byte# refers to the byte
number in a 32-bit register, where byte 3 = bits 31:24; byte 2 = bits
23:16; byte 1 = bits 15:8; byte 0=bits 7:0, independently of the endi-
aness.

R Undefined

Res 28:24 reserved R 0

VPED 23 VPE Disable state
EJTAG state is not valid if this bit is set:

R 1

Doze 22 Doze state
The Doze bit indicates any type of low-power mode. The value is
sampled in the Capture-DR state of the TAP controller:

Doze includes the Reduced Power (RP) and WAIT power-reduction
modes.

R 0

Table 11.27 EJTAG Control Register Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

PAA[1:0] Psz[1:0] Transfer Size

00 00 Byte (LE, byte 0; BE, byte 3)

01 00 Byte (LE, byte 1; BE, byte 2)

10 00 Byte (LE, byte 2; BE, byte 1)

11 00 Byte (LE, byte 3; BE, byte 0)

00 01 Halfword (LE, bytes 1:0; BE, bytes 3:2)

10 01 Halfword (LE, bytes 3:2; BE, bytes 1:0)

00 10 Word (LE, BE; bytes 3, 2, 1, 0)

00 11 Triple (LE, bytes 2, 1, 0; BE, bytes 3,
2,1)

01 11 Triple (LE, bytes 3, 2, 1; BE, bytes 2, 1,
0)

All others Reserved

Encoding Meaning

0 VPE is currently enabled

1 VPE is currently disabled

Encoding Meaning

0 CPU not in low power mode

1 CPU is in low power mode

 EJTAG Debug Support in the 1004K™ CPU

318 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Halt 21 Halt state
The Halt bit indicates if the internal system bus clock is running or
stopped. The value is sampled in the Capture-DR state of the TAP
controller:

R 0

PerRst 20 Peripheral Reset
When the bit is set to 1, it is only guaranteed that the peripheral reset
has occurred in the system when the read value of this bit is also 1.
This is to ensure that the setting from the TCK clock domain takes
effect in the CPU clock domain and in peripherals.
When the bit is written to 0, it must also be read as 0 before it is
guaranteed that the indication is also cleared in the CPU clock
domain.
This bit controls the EJ_PerRst signal on the CPU.

R/W 0

PRnW 19 Processor Access Read and Write
This bit indicates if the pending processor access is for a read or
write transaction, and the bit is only valid while PrAcc is set:

R Undefined

PrAcc 18 Processor Access (PA)
Read value of this bit indicates if a Processor Access (PA) to the
EJTAG memory is pending:

The probe’s software must clear this bit to 0 to indicate the end of
the PA. A write of 1 is ignored.
A pending Processor Access is cleared when Rocc is set, but
another PA may occur just after the reset if a debug exception
occurs.
Finishing a Processor Access is not accepted while the Rocc bit is
set. This is to avoid a Processor Access occurring after the reset is
finished because of an indication of a Processor Access that
occurred before the reset.
The FASTDATA access can clear this bit.

R/W0 0

Res 17 reserved R 0

Table 11.27 EJTAG Control Register Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Meaning

0 Internal system clock is running

1 Internal system clock is stopped

Encoding Meaning

0 Read transaction

1 Write transaction

Encoding Meaning

0 No pending processor access

1 Pending processor access

11.4 EJTAG TAP Registers

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 319

PrRst 16 Processor Reset (Implementation dependent behavior)
When the bit is set to 1, then it is only guaranteed that this setting
has taken effect in the system when the read value of this bit is also
1. This is to ensure that the setting from the TCK clock domain gets
effect in the CPU clock domain, and in peripherals.
When the bit is written to 0, then the bit must also be read as 0
before it is guaranteed that the indication is cleared in the CPU clock
domain also.
This bit controls the EJ_PrRst signal. If the signal is used in the
system, then it must be ensured that both the processor and all
devices required for a reset are properly reset. Otherwise the system
may fail or hang. The bit resets itself, since the EJTAG Control reg-
ister is reset by a reset.

R/W 0

ProbEn 15 Probe Enable
This bit indicates to the CPU if the EJTAG memory is handled by
the probe so processor accesses are answered:

It is an error by the software controlling the probe if it sets the Prob-
Trap bit to 1, but resets the ProbEn to 0. The operation of the pro-
cessor is UNDEFINED in this case.
The ProbEn bit is reflected as a read-only bit in the ProbEn bit, bit 0,
in the Debug Control Register (DCR).
The read value indicates the effective value in the DCR, due to syn-
chronization issues between TCK and CPU clock domains; how-
ever, it is ensured that change of the ProbEn prior to setting the
EjtagBrk bit will have effect for the debug handler executed due to
the debug exception.
The reset value of the bit depends on whether the EJTAGBOOT
indication is given or not:
No EJTAGBOOT indication given: 0
EJTAGBOOT indication given: 1

R/W 0 or 1
from

EJTAGBOOT

Table 11.27 EJTAG Control Register Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Meaning

0 Probe does not handle EJTAG mem-
ory transactions

1 Probe does handle EJTAG memory
transactions

 EJTAG Debug Support in the 1004K™ CPU

320 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

ProbTrap 14 Probe Trap
This bit controls the location of the debug exception vector:

Valid setting of the ProbTrap bit depends on the setting of the
ProbEn bit, see comment under ProbEn bit.
The ProbTrap should not be set to 1 unless the ProbEn bit is also set
to 1 to indicate that the EJTAG memory may be accessed.
The read value indicates the effective value to the CPU, due to syn-
chronization issues between TCK and CPU clock domains; how-
ever, it is ensured that change of the ProbTrap bit prior to setting the
EjtagBrk bit will have effect for the EjtagBrk.
The reset value of the bit depends on whether the EJTAGBOOT
indication is given or not:

R/W 0 or 1
from

EJTAGBOOT

Res 13 reserved R 0

EjtagBrk 12 EJTAG Break
Setting this bit to 1 causes a debug exception to the processor, unless
the CPU was in debug mode or another debug exception occurred.
When the debug exception occurs, the processor CPU clock is
restarted if the CPU was in low power mode. This bit is cleared by
hardware when the debug exception is taken.

The reset value of the bit depends on whether the EJTAGBOOT
indication is given or not:

R/W 0 or 1
from

EJTAGBOOT

Res 11:4 reserved R 0

DM 3 Debug Mode
This bit indicates the debug or non-debug mode:

The bit is sampled in the Capture-DR state of the TAP controller.

R 0

Res 2:0 Reserved R 0

Table 11.27 EJTAG Control Register Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Meaning

0 In normal memory 0xBFC0.0480

1 In EJTAG memory at 0xFF20.0200 in
dmseg

Encoding Meaning

0 No EJTAGBOOT indication given

1 EJTAGBOOT indication given

Encoding Meaning

0 No EJTAGBOOT indication given

1 EJTAGBOOT indication given

Encoding Meaning

0 Processor is in non-debug mode

1 Processor is in debug mode

11.4 EJTAG TAP Registers

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 321

11.4.3 Processor Access Address Register

The Processor Access Address (PAA) register is used to provide the address of the processor access in the dmseg, and
the register is only valid when a processor access is pending. The length of the Address register is 32 bits, and this
register is selected by shifting in the ADDRESS instruction.

11.4.3.1 Processor Access Data Register

The Processor Access Data (PAD) register is used to provide data value to and from a processor access. The length of
the Data register is 32 bits, and this register is selected by shifting in the DATA instruction.

The register has the written value for a processor access write due to a CPU store to the dmseg, and the output from
this register is only valid when a processor access write is pending. The register is used to provide the data value for a
processor access read due to a CPU load or fetch from the dmseg, and the register should only be updated with a new
value when a processor access write is pending.

The PAD register is 32 bits wide. Data alignment is not used for this register, so the value in the PAD register matches
data on the internal bus. The undefined bytes for a PA write are undefined, and for a PAD read 0 (zero) must be
shifted in for the unused bytes.

The organization of bytes in the PAD register depends on the endianess of the CPU, as shown in Figure 11.21. The
endian mode for debug/kernel mode is determined by the state of the SI_Endian input at power-up.

Figure 11.21 Endian Formats for the PAD Register

The size of the transaction and thus the number of bytes available/required for the PAD register is determined by the
Psz field in the ECR.

11.4.4 Fastdata Register (TAP Instruction FASTDATA)

The width of the Fastdata register is 1 bit. During a Fastdata access, the Fastdata register is written and read, i.e., a bit
is shifted in and a bit is shifted out. During a Fastdata access, the Fastdata register value shifted in specifies whether
the Fastdata access should be completed or not. The value shifted out is a flag that indicates whether the Fastdata
access was successful or not (if completion was requested).

A[n:0]=7 6 5 4

012A[n:0]=3

A[n:0]=4 5 6 7

321A[n:0]=0

0781516232431

0781516232431

LSB
bit

MSB

LSB
bit

MSB

A[n:2]=1

A[n:2]=0

A[n:2]=1

A[n:2]=0

Most significant byte is at lowest address.
Word is addressed by byte address of most significant byte.

BIG-ENDIAN

LITTLE-ENDIAN

Least significant byte is at lowest address.
Word is addressed by byte address of least significant byte.

 EJTAG Debug Support in the 1004K™ CPU

322 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Figure 11.22 Fastdata Register Format

The FASTDATA access is used for efficient block transfers between dmseg (on the probe) and target memory (on the
processor). An “upload” is defined as a sequence of processor loads from target memory and stores to dmseg. A
“download” is a sequence of processor loads from dmseg and stores to target memory. The “Fastdata area” specifies
the legal range of dmseg addresses (0xFF20.0000 - 0xFF20.000F) that can be used for uploads and downloads. The
Data + Fastdata registers (selected with the FASTDATA instruction) allow efficient completion of pending Fastdata
area accesses.

During Fastdata uploads and downloads, the processor will stall on accesses to the Fastdata area. The PrAcc (proces-
sor access pending bit) will be 1 indicating the probe is required to complete the access. Both upload and download
accesses are attempted by shifting in a zero SPrAcc value (to request access completion) and shifting out SPrAcc to
see if the attempt will be successful (i.e., there was an access pending and a legal Fastdata area address was used).
Downloads will also shift in the data to be used to satisfy the load from dmseg’s Fastdata area, while uploads will
shift out the data being stored to dmseg’s Fastdata area.

As noted above, two conditions must be true for the Fastdata access to succeed. These are:

• PrAcc must be 1, i.e., there must be a pending processor access.

• The Fastdata operation must use a valid Fastdata area address in dmseg (0xFF20.0000 to 0xFF20.000F).

0

SPrAcc

Table 11.28 Fastdata Register Field Description

Fields

Description
Read /
Write

Power-up
StateName Bits

SPrAcc 0 Shifting in a zero value requests completion of the Fastdata access.
The PrAcc bit in the EJTAG Control register is overwritten with
zero when the access succeeds. (The access succeeds if PrAcc is
one and the operation address is in the legal dmseg Fastdata area.)
When successful, a one is shifted out. Shifting out a zero indicates
a Fastdata access failure.
Shifting in a one does not complete the Fastdata access and the
PrAcc bit is unchanged. Shifting out a one indicates that the access
would have been successful if allowed to complete and a zero indi-
cates the access would not have successfully completed.

R/W Undefined

11.5 TAP Processor Accesses

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 323

Table 11.29 shows the values of the PrAcc and SPrAcc bits and the results of a Fastdata access. .

There is no restriction on the contents of the Data register. It is expected that the transfer size is negotiated between
the download/upload transfer code and the probe software. Note that the most efficient transfer size is a 32-bit word.

The Rocc bit of the Control register is not used for the FASTDATA operation.

11.5 TAP Processor Accesses

The TAP modules support handling of fetches, loads and stores from the CPU through the dmseg segment, whereby
the TAP module can operate like a slave unit connected to the on-chip bus. The CPU can then execute code taken
from the EJTAG Probe and it can access data (via a load or store) which is located on the EJTAG Probe. This occurs
in a serial way through the EJTAG interface: the CPU can thus execute instructions e.g. debug monitor code, without
occupying the memory.

Accessing the dmseg segment (EJTAG memory) can only occur when the processor accesses an address in the range
from 0xFF20.0000 to 0xFF2F.FFFF, the ProbEn bit is set, and the processor is in debug mode (DM=1). In addition
the LSNM bit in the CP0 Debug register controls transactions to/from the dmseg.

When a debug exception is taken, while the ProbTrap bit is set, the processor will start fetching instructions from
address 0xFF20.0200.

A pending processor access can only finish if the probe writes 0 to PrAcc or by a reset.

11.5.1 Fetch/Load and Store From/To the EJTAG Probe Through dmseg

1. The internal hardware latches the requested address into the PA Address register (in case of the Debug excep-
tion: 0xFF20.0200).

2. The internal hardware sets the following bits in the EJTAG Control register:
PrAcc = 1 (selects Processor Access operation)

Table 11.29 Operation of the FASTDATA Access

Probe
Operation

Address
Match
Check

PrAcc in
the Control

Register

LSB
(SPrAcc)
Shifted In

Action in
the Data
Register

PrAcc
Changes to

Lsb Shifted
Out

Data
Shifted Out

Download
using FAST-
DATA

Fails x x none unchanged 0 invalid

Passes 1 1 none unchanged 1 invalid

1 0 write data 0 (SPrAcc) 1 valid (previ-
ous) data

0 x none unchanged 0 invalid

Upload using
FASTDATA

Fails x x none unchanged 0 invalid

Passes 1 1 none unchanged 1 invalid

1 0 read data 0 (SPrAcc) 1 valid data

0 x none unchanged 0 invalid

 EJTAG Debug Support in the 1004K™ CPU

324 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

PRnW = 0 (selects processor read operation)
Psz[1:0] = value depending on the transfer size

3. The EJTAG Probe selects the EJTAG Control register, shifts out this control register’s data and tests the PrAcc
status bit (Processor Access): when the PrAcc bit is found 1, it means that the requested address is available and
can be shifted out.

4. The EJTAG Probe checks the PRnW bit to determine the required access.

5. The EJTAG Probe selects the PA Address register and shifts out the requested address.

6. The EJTAG Probe selects the PA Data register and shifts in the instruction corresponding to this address.

7. The EJTAG Probe selects the EJTAG Control register and shifts a PrAcc = 0 bit into this register to indicate to
the processor that the instruction is available.

8. The instruction becomes available in the instruction register and the processor starts executing.

9. The processor increments the program counter and outputs an instruction read request for the next instruction.
This starts the whole sequence again.

Using the same protocol, the processor can also execute a load instruction to access the EJTAG Probe’s memory. For
this to happen, the processor must execute a load instruction (e.g. a LW, LH, LB) with the target address in the appro-
priate range.

Almost the same protocol is used to execute a store instruction to the EJTAG Probe’s memory through dmseg. The
store address must be in the range: 0xFF20.0000 to 0xFF2F.FFFF, the ProbEn bit must be set and the processor has to
be in debug mode (DM=1). The sequence of actions is found below:

1. The internal hardware latches the requested address into the PA Address register

2. The internal hardware latches the data to be written into the PA Data register.

3. The internal hardware sets the following bits in the EJTAG Control register:
PrAcc = 1 (selects Processor Access operation)
PRnW = 1 (selects processor write operation)
Psz[1:0] = value depending on the transfer size

4. The EJTAG Probe selects the EJTAG Control register, shifts out this control register’s data and tests the PrAcc
status bit (Processor Access): when the PrAcc bit is found 1, it means that the requested address is available and
can be shifted out.

5. The EJTAG Probe checks the PRnW bit to determine the required access.

6. The EJTAG Probe selects the PA Address register and shifts out the requested address.

7. The EJTAG Probe selects the PA Data register and shifts out the data to be written.

8. The EJTAG Probe selects the EJTAG Control register and shifts a PrAcc = 0 bit into this register to indicate to
the processor that the write access is finished.

9. The EJTAG Probe writes the data to the requested address in its memory.

11.6 PC Sampling

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 325

10. The processor detects that PrAcc bit = 0, which means that it is ready to handle a new access.

The above examples imply that no reset occurs during the operations, and that Rocc is cleared.

11.6 PC Sampling

The PC sampling feature enables sampling of the PC value periodically. This information can be used for statistical
profiling of the program akin to gprof. This information is also very useful for detecting hot-spots in the code. PC
sampling cannot be turned on or off, that is, the PC value is continually sampled.

The presence or absence of the PC Sampling feature is available in the Debug Control register as bit 9(PCS).The sam-
pled PC values are written into a TAP register. The old value in the TAP register is overwritten by a new value even
if this register has not be read out by the debug probe. The sample rate is specified in a manner similar to the PDtrace
synchronization period, with three bits. These bits in the Debug Control register are 8:6 and called PCSR (PC Sample

Rate). These three bits take the value 25 to 212 similar to SyncPeriod. Note that the processor samples PC even when
it is asleep, that is, in a WAIT state. This permits an analysis of the amount of time spent by a processor in WAIT
state which may be used for example to revert to a low power mode during the non-execution phase of a real-time
application.

The sampled values includes a new data bit, the PC, the ASID of the sampled PC as well as the Thread Context ID if
the processor implements the MIPS MT ASE. Figure shows the format of the sampled values in the TAP register
PCsample. The new data bit is used by the probe to determine if the PCsample register data just read out is new or
already been read and must be discarded.

Figure 11.23 TAP Register PCsample Format

The sampled PC value is the PC of the graduating instruction in the current cycle. If the processor is stalled when the
PC sample counter overflows, then the sampled PC is the PC of the next graduating instruction. The processor contin-
ues to sample the PC value even when it is in Debug mode.

11.6.1 PC Sampling in Wait State

When the processor is in a WAIT state to save power for example, an external agent might want to know how long it
stays in the WAIT state. But counting cycles to update the PC sample value is a waste of power. Hence, when in a
WAIT state, the processor must simply switch the New bit to 1 every time it is set to 0 by the probe hardware. Hence,
the external agent or probe reading the PC value will detect a WAIT instruction for as long as the processor remains
in the WAIT state. When the processor leaves the WAIT state, then counting is resumed as before.

11.7 Fast Debug Channel

The Fast Debug Channel (FDC) mechanism provides an efficient means to transfer data between the CPU and an
external device using the EJTAG TAP pins. The external device would typically be an EJTAG probe and that is the
term used here, but it could be something else. FDC utilizes two First In First Out (FIFO) structures to buffer data
between theCPU and probe. The probe uses the FDC TAP instruction to access these FIFOs, while the CPU itself
accesses them using memory accesses. To transfer data out of the CPU, the CPU writes one or more pieces of data to
the transmit FIFO. At this time, the CPU can resume doing other work. An external probe would examine the status
of the transmit FIFO periodically. If there is data to be read, the probe starts to receive data from the FIFO, one entry

48 41 40 33 32 1 0

TC (for MIPS MT
processors only)

ASID PC New

 EJTAG Debug Support in the 1004K™ CPU

326 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

at a time. When all data from the FIFO has been drained, the probe goes back to waiting for more data. The CPU can
either choose to be informed of the empty transmit FIFO via an interrupt, or it can choose to periodically check the
status. Receiving data works in a similar manner - the probe writes to the receive FIFO. At that time, the CPU is either
interrupted, or finds out via polling a status bit. The CPU can then do load accesses to the receive FIFO and receive
data being sent to it by the probe. The TAP transfer is bidirectional - a single shift can be pulling transmit data and
putting receive data at the same time.

The primary advantage of FDC over normal processor accesses or fastdata accesses is that it does not require the CPU
to be blocked when the probe is reading or writing to the data transfer FIFOs. This significantly reduces the CPU
overhead and makes the data transfer far less intrusive to the code executing on the CPU.

Refer to the EJTAG Specification [15] for the general details on FDC. The remainder of this section describes imple-
mentation specific behavior and register values.

The FDC memory mapped registers are located in the common device memory map (CDMM) region. FDC has a
device ID of 0xFD.

11.7.1 Common Device Memory Map

Software on the CPU accesses FDC through memory mapped registers. These memory mapped registers are located
within the Common Device Memory Map (CDMM). The CDMM is a region of physical address space that is
reserved for mapping IO device configuration registers within a MIPS processor. The base address and enabling of
this region is controlled by the CDMMBase CP0 register, see Section 7.2.40 “CDMMBase Register (CP0 Register
15, Select 2)”.

Refer to Volume III of the Architecture Reference Manuals [3] for full details on CDMM.

11.7.2 Fast Debug Channel Interrupt

The FDC block can generate an interrupt to inform software of incoming data being available or space being avail-
able in the outgoing FIFO. This interrupt is handled similarly to the timer or performance counter interrupts. The
CauseFDCI bit indicates that the interrupt is pending. The interrupt is also sent to the core outputs SI_FDCI[_1] where
it is combined with one of the SI_Int pins. For non-EIC mode, the SI_IPFDCI input indicates which interrupt pin is has
been combined with and this information is reflected in the IntCtlIPFDCI field. Note that this interrupt is a regular inter-
rupt and not a debug interrupt.

The FDC Configuration Register (see Section 11.7.6.2 “FDC Configuration (FDCFG) Register (Offset 0x8)”)
includes fields for enabling and setting the threshold for generating each interrupt. Receive and transmit interrupt
thresholds are specified independently, but they are ORed together to form a single interrupt per VPE.

The following interrupt thresholds are supported:

• Interrupts Disabled: No interrupt will be generated and software must poll the status registers to determine if
incoming data is available or if there is space for outgoing data.

• Minimum CPU Overhead: This setting minimizes the CPU overhead by not generating an interrupt until the
receive FIFO (RxFIFO) is completely full or the transmit FIFO (TxFIFO) is completely empty.

• Minimum latency: To have the CPU take data as soon as it is available, the receive interrupt can be fired when-
ever the RxFIFO is not empty. There is a complimentary TxFIFO not full setting although that may not be quite
as useful.

11.7 Fast Debug Channel

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 327

• Maximum bandwidth: When configured for minimum CPU overhead, bandwidth between the probe and CPU
can be wasted if the CPU does not service the interrupt before the next transfer occurs. To reduce the chances of
this happening, the interrupt threshold can be set to almost full or almost empty to generate an interrupt earlier.
This setting causes receive interrupts to be generated when there are 0 or 1 unused RxFIFO entries. Transmit
interrupts are generated when there are 0 or 1 used TxFIFO entries (see note in following section about this con-
dition)

11.7.3 1004K™CPU FDC Buffers

Figure 11.24 shows the general organization of the transmit and receive buffers on the 1004K CPU.

Figure 11.24 Fast Debug Channel Buffer Organization

One particular thing to note is the asynchronous crossings between the EJ_TCK and SI_ClkIn clock domains. This
crossing is handled with a handshaked interface that safely transfers data between the domains. Two data registers are
included in this interface, one in the source domain and one in the destination domain. The control logic actively
manages these registers so that they can be used as FIFO entries. The fact that one FIFO entry is in the EJ_TCK clock
domain is normally transparent, but it can create some unexpected behavior:

Chan Data

Addr
Decode

Store Data to FDTXnStore Address Load from FDSTAT Load from FDRX

SI_ClkIn

EJ_TCK

Chan DataStatus

Capture-DR Update-DR

EJ_TDOEJ_TDI

Control
Logic

TxFIFO RxFIFO

Shift Register

Chan Data

Chan Data Chan Data

Chan Data

Chan Data

 EJTAG Debug Support in the 1004K™ CPU

328 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

• TxFIFO availability: Data is first written into the SI_Clk FIFO entries, then it will move into the EJ_TCK FIFO
entry. But, it takes several EJ_TCK cycles to complete the handshake and move the data. EJ_TCK is generally
much slower than SI_ClkIn and may even be stopped (although that would be uncommon when this feature is in
use). This can result in there not being space for new data, even though there are only N-1 data values queued up.
To prevent the loss of data, the FDSTATTxF bit is set when all of the SI_ClkIn FIFO entries are full. Software writ-
ing to the FIFO should always check the FDSTATTxF bit prior to attempting a write and should not make any
assumptions about being able to arbitrarily use all entries. ie. software seeing the FDSTATFxE bit set should not
assume that it can write FDCFGTxCnt data words without checking for full.

• TxFIFO Almost Empty Interrupt: As transmit data moves from SI_ClkIn to EJ_TCK, both of the flops will tem-
porarily look full. This makes it difficult to determine when just 1 FIFO entry is in use. To enable a simpler con-
dition, the almost empty TxInterrupt condition is set when all of the SI_ClkIn FIFO entries are empty. When this
condition is met, there will be 0 or 1 valid entries. However, the interrupt will not be asserted when there is only
one valid entry if it is an SI_ClkIn entry

• The RxFIFO has similar characteristics but these are even less visible to software since SI_ClkIn must be running
to access the FDC registers.

11.7.4 Sleep mode

FDC data transfers do not prevent the core from entering sleep mode and will proceed normally in sleep mode. The
FDC block monitors the TAP interface signals with a free-running clock. When new receive data is available or trans-
mit data can be sent, the gated clock will be enabled for a few cycles to transfer the data and then allowed to stop
again. If FDC interrupts are enabled, transferring data may cause an interrupt to be generated which can wake the
core up.

11.7.5 FDC TAP Register

The FDC TAP instruction performs a 38 bit bidirectional transfer of the FDC TAP register. The register format is
shown in Figure 11.25 and the fields are described in Figure 11.30

Figure 11.25 FDC TAP Register Format

37 36 35 32 31 0

In
Probe Data

Accept
Data In
Valid

ChannelID Data

Out
Receive

Buffer Full
Data Out

Valid

Table 11.30 FDC TAP Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

Probe Data
Accept

37 Indicates to core that the probe is accepting the data that
was scanned out.

W Undefined

Data In
Valid

36 Indicates to core that the probe is sending new data to the
receive FIFO.

W Undefined

11.7 Fast Debug Channel

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 329

11.7.6 Fast Debug Channel Registers

This section describes the Fast Debug Channel registers. CPU access to FDC is via loads and stores to the FDC
device in the Common Device Memory Map (CDMM) region. These registers provide access control, configuration
and status information, as well as access to the transmit and receive FIFOs. The registers and their respective offsets
are shown in Table 11.31

11.7.6.1 FDC Access Control and Status (FDACSR) Register (Offset 0x0)

This is the general CDMM Access Control and Status register which defines the device type and size and controls
user and supervisor access to the remaining FDC registers. The Access Control and Status register itself is only acces-
sible in kernel mode. Figure 11.26 has the format of an Access Control and Status register (shown as a 64-bit regis-
ter), and Table 11.32 describes the register fields.

Figure 11.26 FDC Access Control and Status Register

Receive
Buffer Full

37 Indicates to probe that the receive buffer is full and the
core will not accept the data being scanned in. Analagous
to ProbeDataAccept, but opposite polarity

R 0x0

Data Out
Valid

36 Indicates to probe that the core is sending new data from
the transmit FIFO

R 0

ChannelID 35:32 Channel number associated with the data being scanned in
or out. This field can be used to indicate the type of data
that is being sent and allow independent communication
channels

Scanning in a value with ChannelID=0xd and Data In
Valid = 0 will generate a receive interrupt. This can be
used when the probe has completed sending data to the
core.

R/W Undefined

Data 31:0 Data value being scanned in or out R/W Undefined

Table 11.31 FDC Register Mapping

Offset in CDMM
device block

Register
Mnemonic Register Name and Description

0x0 FDACSR FDC Access Control and Status Register

0x8 FDCFG FDC Configuration Register

0x10 FDSTAT FDC Status Register

0x18 FDRX FDC Receive Register

0x20 + 0x8* n FDTXn FDC Transmit Register n (0 ≤ n ≤ 15)

63 32 31 24 23 22 21 16 15 12 11 4 3 2 1 0

0 DevID 0 DevSize DevRev 0 Uw Ur Sw Sr

Table 11.30 FDC TAP Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

 EJTAG Debug Support in the 1004K™ CPU

330 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

11.7.6.2 FDC Configuration (FDCFG) Register (Offset 0x8)

The FDC configuration register holds information about the current configuration of the Fast Debug Channel mecha-
nism. Figure 11.27 has the format of the FDC Configuration register, and Table 11.33 describes the register fields.

Figure 11.27 FDC Configuration Register

Table 11.32 FDC Access Control and Status Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

DevType 31:24 This field specifies the type of device. R 0xfd

DevSize 21:16 This field specifies the number of extra 64-byte blocks
allocated to this device. The value 0x2 indicates that this
device uses 2 extra, or 3 total blocks.

R 0x2

DevRev 15:12 This field specifies the revision number of the device. The
value 0x0 indicates that this is the initial version of FDC

R 0x0

Uw 3 This bit indicates if user-mode write access to this device
is enabled. A value of 1 indicates that access is enabled. A
value of 0 indicates that access is disabled. An attempt to
write to the device while in user mode with access dis-
abled is ignored.

R/W 0

Ur 2 This bit indicates if user-mode read access to this device is
enabled. A value of 1 indicates that access is enabled. A
value of 0 indicates that access is disabled. An attempt to
read from the device while in user mode with access dis-
abled will return 0 and not change any state.

R/W 0

Sw 1 This bit indicates if supervisor-mode write access to this
device is enabled. A value of 1 indicates that access is
enabled. A value of 0 indicates that access is disabled. An
attempt to write to the device while in supervisor mode
with access disabled is ignored.

R/W 0

Sr 0 This bit indicates if supervisor-mode read access to this
device is enabled. A value of 1 indicates that access is
enabled. A value of 0 indicates that access is disabled. An
attempt to read from the device while in supervisor mode
with access disabled will return 0 and not change any
state..

R/W 0

0 11:4 Reserved for future use. Ignored on write; returns zero on
read.

R 0

31 20 19 18 17 16 15 8 7 0

0 Tx_IntThresh Rx_IntThresh TxFIFOSize RxFIFOSize

11.7 Fast Debug Channel

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 331

11.7.6.3 FDC Status (FDSTAT) Register (Offset 0x10)

The FDC Status register holds up to date state information for the FDC mechanism. Figure 11.28 has the format of
the FDC Status register, and Table 11.34 describes the register fields.

Figure 11.28 FDC Status Register

Table 11.33 FDC Configuration Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

0 31:20 Reserved for future use. Read as zeros, must be written as
zeros.

R 0

TxIntThresh 19:18 Controls whether transmit interrupts are enabled and the
state of the TxFIFO needed to generate an interrupt.

R/W 0

RxIntThresh 17:16 Controls whether receive interrupts are enabled and the
state of the RxFIFO needed to generate an interrupt.

R/W 0

TxFIFOSize 15:8 This field holds the total number of entries in the transmit
FIFO.

R Preset

RxFIFOSize 7:0 This field holds the total number of entries in the receive
FIFO.

R Preset

31 24 23 16 15 8 7 4 3 2 1 0

Tx_Count Rx_Count 0 RxChan RxE RxF TxE TxF

Table 11.34 FDC Status Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

Tx_Count 31:24 This optional field is not implemented and will read as 0 R 0

Rx_Count 23:16 This optional field is not implemented and will read as 0 R 0

0 15:8 Reserved for future use. Must be written as zeros and read
as zeros.

R 0

Encoding Meaning

0 Transmit Interrupt Disabled

1 Empty

2 Not Full

3 Almost Empty - zero or one entry in
use*(see 11.7.2 for specifics)

Encoding Meaning

0 Receive Interrupt Disabled

1 Full

2 Not empty

3 Almost Full - zero or one entry free

 EJTAG Debug Support in the 1004K™ CPU

332 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

11.7.6.4 FDC Receive (FDRX) Register (Offset 0x18)

This register exposes the top entry in the receive FIFO. A read from this register returns the top item in the FIFO and
removes it from the FIFO itself. The result of a write to this register is UNDEFINED. The result of a read when the
FIFO is empty is also UNDEFINED so software must check the FDSTATRxE flag prior to reading. Figure 11.29 has
the format of the FDC Receive register, and Table 11.35 describes the register fields.

Figure 11.29 FDC Receive Register

11.7.6.5 FDC Transmit n (FDTXn) Registers (Offset 0x20 + 0x8*n)

These sixteen registers all access the bottom entry in the transmit FIFO. The different addresses are used to generate
a 4b channel identifier that is attached to the data value. This allows software to track different event types without
needing to reserve a portion of the 32b data as a tag. A write to one of these registers results in a write to the transmit
FIFO of the data value and channel ID corresponding to the register being written. Reads from these registers are
UNDEFINED. Attempting to write to the transmit FIFO if it is full has UNDEFINED results. Hence, the software
running on the core must check the FDSTATTxF flag to ensure that there is space for the write. Figure 11.30 has the
format of the FDC Transmit register, and Table 11.36 describes the register fields.

Figure 11.30 FDC Transmit Register

RxChan 7:4 This field indicates the channel number used by the top
item in the receive FIFO. This field is only valid if RxE=0.

R Undefined

RxE 3 If RxE is set, the receive FIFO is empty. If RxE is not set,
the FIFO is not empty.

R 1

RxF 2 If RxF is set, the receive FIFO is full. If RxF is not set, the
FIFO is not full.

R 0

TxE 1 If TxE is set, the transmit FIFO is empty. If TxE is not set,
the FIFO is not empty.

R 1

TxF 0 If TxF is set, the transmit FIFO is full. If TxF is not set, the
FIFO is not full.

R 0

31 0

RxData

Table 11.35 FDC Receive Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

RxData 31:0 This register holds the top entry in the receive FIFO R Undefined

31 0

TxData

Table 11.34 FDC Status Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
StateName Bits

 EJTAG Debug Support in the 1004K™ CPU

334 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

To some extent, the two modules both provide similar trace control features, but the access to these features is quite
different. The PDtrace controls can only be reached through access to CP0 registers. In general, the PDtrace control
registers select what information is captured for tracing.The TCB controls can be reached through EJTAG TAP
access or through load/store access to registers mapped in drseg space. The TCB registers control what is traced
through the PDtrace™ Interface.

Before describing the MIPS Trace implemented in the 1004K CPU, some common terminology and basic features
are explained. The remaining sections of this chapter will then provide a more thorough explanation.

11.8.1 Processor Modes

Tracing can be enabled or disabled based on various processor modes. This section precisely describes these modes.
The terminology is then used elsewhere in the document.

DebugMode ← (DebugDM = 1)
ExceptionMode ← (not DebugMode) and ((StatusEXL = 1) or (StatusERL = 1))
KernelMode ← (not (DebugMode or ExceptionMode)) and (StatusKSU = 2#00)
SupervisorMode ← (not (DebugMode or ExceptionMode)) and (StatusKSU = 2#01)
UserMode ← (not (DebugMode or ExceptionMode)) and (StatusKSU = 2#10)

11.8.2 Software Versus Hardware Control

In some of the specifications and in this text, the terms “software control” and “hardware control” are used to refer to
the method for how trace is controlled. Software control is when the CP0 register TraceControl is used to select the
modes to trace, etc. Hardware control is when the EJTAG register TCBCONTROLA in the TCB, via the PDtrace inter-
face, is used to select the trace modes. The TraceControlTS bit determines whether software or hardware control is
active. Even in Software control mode, Trace logic will need TCK to toggle atleast once before it is turned on. It is
assumed that EJTAG probe will be connected while using Trace and probe reset sequence would toggle TCK. In
order to extract Trace data out of TCB, TCBCONTROLB.En should be set to 1 even in “software control” mode.

11.8.3 Trace Information

The main object of trace is to show the exact program flow from a specific program execution or just a small window
of the execution. In MIPS Trace this is done by providing the minimal cycle-by-cycle information necessary on the
PDtrace™ interface for trace regeneration software to reproduce the trace. The following is a summary of the type of
information traced:

• Only instructions which complete at the end of the pipeline are traced, and indicated with a completion-flag.
The PC is implicitly pointing to the next instruction.

• Load instructions are indicated with a load-flag.

• Store instructions are indicated with a store-flag1.

• Taken branches are indicated with a branch-taken-flag on the target instruction.

• New PC information for a branch is only traced if the branch target is unpredictable from the static program
image.

1. A SC (Store Conditional) instruction is not flagged as a store instruction if the load-locked bit prevented the actual store.

11.8 MIPS® Trace

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 335

• When branch targets are unpredictable, only the delta value from current PC is traced, if it is dynamically
determined to reduce the number of bits necessary to indicate the new PC. Otherwise the full PC value is
traced.

• When a completing instruction is executed in a different processor mode from the previous one, the new
processor mode is traced.

• The first instruction is always traced as a branch target, with processor mode and full PC.

• Periodic synchronization instructions are identified with a sync-flag, and traced with the processor mode and
full PC.

All the instruction flags above are combined into one 3-bit value, to minimize the bit information to trace. The possi-
ble processor modes are explained in Section 11.8.1 “Processor Modes”.

The target address is statically predictable for all branch and all jump-immediate instructions. If the branch is taken,
then the branch-taken-flag will indicate this. All jump-register instructions and ERET/DERET are instructions which
have an unpredictable target address. These will have full/delta PC values included in the trace information. Also
treated as unpredictable are PC changes which occur due to exceptions, such as an interrupt, reset, etc.

Trace regeneration software is required to know the static program image in memory, in order to reproduce the
dynamic flow with the above information. But this is usually not a problem. Only the virtual value of the PC is used.
Physical memory location will typically differ.

It is possible to turn on PC delta/full information for all branches, but this should not normally be necessary. As a
safety check for trace regeneration software, a periodic synchronization with a full PC is sent. The period of this syn-
chronization is cycle based and programmable.

11.8.4 Load/Store Address and Data Trace Information

In addition to PC flow, it is possible to get information on the load/store addresses, as well as the data read/written.
When enabled, the following information is optionally added to the trace.

• When load-address tracing is on, the full load address of the first load instruction is traced (indicated by the
load-flag). For subsequent loads, a dynamically-determined delta to the previous load address is traced to
compress the information which must be sent.

• When store-address tracing is on, the full store address of the first store instruction is traced (indicated by the
store-flag). For subsequent stores, a dynamically-determined delta to the previous store address is traced.

• When load-data tracing is on, the full load data read by each load instruction is traced (indicated by the
load-flag). Only actual read bytes are traced.

• When store-data tracing is on, the full store data written by each store instruction is traced (indicated by the
store-flag). Only written bytes are traced.

After each synchronization instruction, the first load address and the first store address following this are both traced
with the full address if load/store address tracing is enabled.

 EJTAG Debug Support in the 1004K™ CPU

336 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

11.8.5 Programmable Processor Trace Mode Options

To enable tracing, a global Trace On signal must be set. When trace is on, it is possible to enable tracing in any com-
bination of the processor modes described in Section 11.8.1 “Processor Modes”. In addition to this, trace can be
turned on globally for all process, or only for specific processes by tracing only specific masked values of the ASID
found in EntryHiASID.

Additionally, an EJTAG Simple Break trigger point can override the processor mode and ASID selection and turn
them all on. Another trigger point can disable this override again.

11.8.6 Programmable Trace Information Options

The processor mode changes are always traced:

• On the first instruction.

• On any synchronization instruction.

• When the mode changes and either the previous or the current processor mode is selected for trace.

The amount of extra information traced is programmable to include:

• PC information only.

• PC and cross product of load/store address/data

• Performance counter values, if the optional performance counter trace is enabled and the specific events as
defined in Section 11.8.12 “Performance Counter Tracing” occur.

If the full internal state of the processor is known prior to trace start, PC and load data are the only information
needed to recreate all register values on an instruction by instruction basis.

11.8.6.1 User Data Trace

Two special CP0 registers, UserTraceData1 and UserTraceData2, can generate a data trace. When either of these reg-
isters is written, and the global Trace On is set, then the 32-bit data written is put in the trace as special User Data
information. Since writing these registers is performed via an MTC0 operation, only one register is updated in any
given cycle. Thus in the same cycle, only one of the UserTraceData registers is traced. However in back to back
cycles, the tracing of the two registers can alternate, and is handled correctly.

Remark: The User Data is sent even if the processor is operating in an un-traced processor mode.

11.8.7 Enable Trace to Probe On-chip Memory

When trace is On, based on the options listed in Section 11.8.5 “Programmable Processor Trace Mode Options”, the
trace information is continuously sent on the PDtrace™ interface to the TCB. The TCB must, however, be enabled to
transmit the trace information to the Trace probe or to on-chip trace memory, by having the TCBCONTROLBEN bit
set. It is possible to enable and disable the TCB in a number of ways:

• Set/clear the TCBCONTROLBEN bit via an EJTAG TAP operation.

11.8 MIPS® Trace

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 337

• Initialize a TCB trigger to set/clear the TCBCONTROLBEN bit.

• Use the drseg mapping of TCBCONTROLB to clear TCBCONTROLBEN via a store to drseg space. See
Section 11.8.17 “Memory-mapped Access to PDtrace Controls and On-Chip Trace Buffer” for special
access rules.

11.8.8 TCB Trigger

The TCB can optionally include 0 to 8 triggers. A TCB trigger can be programmed to fire from any combination of:

• Probe Trigger Input to the TCB.

• Chip-level Trigger Input to the TCB.

• Processor entry into DebugMode.

When a trigger fires it can be programmed to have any combination of actions:

• Create Probe Trigger Output from TCB.

• Create Chip-level Trigger Output from TCB.

• Set, clear, or start countdown to clear the TCBCONTROLBEN bit (start/end/about trigger).

• Put an information byte into the trace stream.That is a TF6 is inserted into the trace stream.

11.8.9 Cycle-by-Cycle Information

All of the trace information listed in Section 11.8.3 “Trace Information” and Section 11.8.4 “Load/Store Address
and Data Trace Information”, will be collected from the PDtrace™ interface by the TCB. The trace will then be com-
pressed and aligned to fit in 64 bit trace words, with no loss of information. It is possible to exclude/include the exact
cycle-by-cycle relationship between each instruction. If excluded, the number of bits required in the trace information
from the TCB is reduced, and each trace word will only contain information from completing instructions.

11.8.10 Instruction and Data Cache Miss Tracing

It is possible to embed information about Instruction and/or Data cache misses into the trace. There are limitations in
the CPU’s ability to track this and put useful information into the trace.

For the instruction cache miss indicator

• The instruction cache miss indicator is based on whether the instruction is pulled from the cache or the fill buffer.
On a cache miss, the fetch is restarted when the data comes back from the BIU and the instructions will come
from the Fill Buffer. The miss flag is only set for the first fetch that hits out of the FB to avoid marking every
fetch from the line a miss. However, two instructions can be fetched per cycle and both will be marked as a miss.
If branching to the middle of a dword though, only 1 miss will be seen.

• The IFU can prefetch down a speculative path which might not be immediately executed. These speculative
fetches are filled into the cache. Subsequently, when the code accesses the same address, it is possible that the
instruction will hit in the cache even if that instruction was being executed for the very first time.

 EJTAG Debug Support in the 1004K™ CPU

338 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

• The fetch unit is highly independent from the execution unit on the 1004K CPU, so the fetch sequence can be
very different from the execution sequence. This compounds the above limitations of the way the cache miss is
tracked and makes the data somewhat unpredictable.

For the data cache miss indicator:

• The data cache indication was previously a bit in the TF4 trace record that was included with the load or store
data. This bit still exists, but the CM trace correlation described in Section 11.8.11 “Coherence Manager Trace
Correlation”provides a more accurate indication.

11.8.11 Coherence Manager Trace Correlation

In the 1004K Coherent Processing System, trace information is provided from each of the CPUs as well as the Coher-
ence Manager. In order to correlate transactions from the CM to the instruction stream, an identifier is used in both
the CPU and CM traces.

In the CPU trace, each instruction completion record (TF2, TF3, TF4) includes 1-4 bits with information about it:

• 0 -> indicates that this is not considered a load/store type instruction

• 10 -> indicates that this is a load/store type that hit in the cache

• 11<CosID> -> indicates that this is a load/store type that missed in the cache and generated a request with the
two bit tag <CosID>

The CM trace includes the core ID and CosID for each request. The CosID changes relatively slowly - it is generally
incremented after PCSync in the CPU or if an overflow is detected in the CM. Typically several requests in a row will
use the same CosID value, and the intermediate correlation is enabled by the requests appearing in the same order in
the CM and CPU traces. Because of this, and the fact that the CosID is traced as a part of the instruction completion
record, correlating instructions to CM transactions is possible only when PC tracing is enabled for all TCs executing
on the CPU.

11.8.12 Performance Counter Tracing

The optional feature of dumping performance counter values through the trace stream provides the ability to correlate
performance counter events to the specific instruction execution path. TraceControl3PeC indicates if this optional fea-
ture is implemented. Furthermore the feature is enabled via TraceControl3PeCE / TCBCONTROLEPeCE. When a trig-
gering event occurs, all counters except those specifically disabled are tracedControl over which particular counters
should not be traced is specified by bit PCTD in each Performance Counter Control Register. If set to zero (default
setting), tracing is enabled for this performance counter, and if set to one, tracing is disabled. In the case where more
than one event occurs in the same cycle, the performance counter values are traced only once for that cycle.

The four events which can trigger a trace of performance counters and the corresponding control registers are listed
bellow.

1. Synchronization counter expiration will trigger tracing of the performance counter values. This is controlled by
TraceControl3PeCSync / TCBCONTROLEPeCSync.

2. Hardware trace breakpoint will trigger tracing of the performance counter values. This is contingent on several
control bit settings. The TE bit in the breakpoint control register should be set. This allows a trigger signal to be
sent to the Trace Unit. When set, TraceControl3PeCBP / TCBCONTROLEPeCBP act as the enable for performance
counter tracing. Additionally the generation of a performance counter trigger is controlled by setting active both

11.8 MIPS® Trace

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 339

TraceIBPCPCT and TraceIBPCIE, and, or setting active hi both TraceDBPCPCT and TraceDBPCIE . Furthermore,
the BreakPointControl field for the specific hardware breakpoint in TraceIBPC or TraceDBPC must be encoded
as 3’b100 or 3’b101 to allow performance counter values into the trace stream.

3. Function call, function return or exception occurrence will trigger tracing of the performance counter values.This
is controlled by TraceControl3PeCFCR / TCBCONTROLEPeCFCR.

4. An overflow of an active performance counter will trigger tracing of the performance counter values. This is con-
trolled by TraceControl3PeCOvf / TCBCONTROLEPeCOvf.

The performance counter data will always be traced in a Trace Format 3 (TF3) with the PCV bit set to one. If the
traced data is not performance counter data, and performance counter tracing is enabled, then the PCV bit will be
zero.

The 1004K CPU does not include the optional cycle counter in its performance coutner trace.

11.8.13 Filtered Data Trace Mode

This mode is used to support tracing of events in an application code on a Linux system. This type of instrumented
code tracing is primarily used for performance analysis although it can also be used for event logging and debug. Fil-
tered data tracing mode provides a mechanism to do low overhead event tracing from user application code since the
UserTraceData registers require a kernel call from user mode.

In this mode, data load and store addresses are compared to the hardware data breakpoint address, if the addresses
match, the data value associated with that match along with the address are traced out.

This mode works even when data address and/or value tracing is turned on. However, the general usage model is
when both PC and Data trace are turned off since it may not always be possible to identify data that was traced due to
a match vs. the regular data stream. This mode is used to shadow one or more static (fixed-address) variables. When
there is a store to the variable, the store value is captured into the trace. Since there are generally two or more data
triggers/watchpoints, the trace will need to uniquely identify the shadowed variable by also tracing out the associated
address.

Filtered Data Trace mode is controlled by TraceControl2FDT / TCBCONTROLBFDT.

11.8.14 PC tracing off

In order to decrease the amount of data traced, instruction completion and PC tracing can be disabled by clearing the
TraceControl2Mode.PC / TCBCONTROLCMode.PC. bit. Turning PC tracing off also allows for a number of special trac-
ing modes which are contingent on the setting of other mode bits.

1. PC tracing off, TLSM=1 (TraceControlTLSM / TCBCONTROLATLSM), Address tracing=0, Data tracing=0. For
data cache misses, full PC, full address, and the associated instruction completions are traced. Instruction com-
pletions not associated with a data cache miss are not traced.

2. PC tracing off, TLSM=1, Address tracing=0, Data tracing=1. For data cache misses, full PC, full address, data,
and the associated instruction completions are traced. Instruction completions not associated with a data cache
miss are not traced.

3. PC tracing off, TLSM=1, Address tracing=1, Data tracing=0. For data cache misses, full address is traced. No
instruction completions are traced.

 EJTAG Debug Support in the 1004K™ CPU

340 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

4. PC tracing off, TLSM=1, Address tracing=1, Data tracing=1: For data cache misses, full address and data are
traced. No instruction completions are traced.

5. PC tracing off, TIM=1 (TraceControlTIM / TCBCONTROLATIM), or TFCR=1 (TraceControlTFCR /
TCBCONTROLATFCR): If an instruction cache miss or function call/return occurs, then the full PC is traced along
with the corresponding instruction completion information.

6. PC tracing off, TLSM=0, TIM=0, TFCR=0. All trace messages related to instruction completions are disabled.
Full addrss/data tracing can be enabled. TF6 with no-trace counts can still be generated if Cycle Accurate mode
is enabled. TF2 should never be generated.

In addition, PC-sync messages are globally disabled. The reconstruction software would need a PC-sync in the case
of TLSM=1 if the PCs traced out were delta PCs. However, given that the full PC is traced, there is no need for the
PC-Sync message.

With PC tracing disabled, there is a significant decrease in the instruction completion information that is traced. Only
if the PC must be traced out is the corresponding instruction completion also traced, else the instruction completion is
dropped.

11.8.15 TMOAS Handling

The MIPS PDtrace™ Specification requires a TMOAS transaction to be inserted into the trace stream. TMOAS
transactions are used to record processor mode change, start or end of the tracing activity, overflow of the internal
buffers in the PDtrace unit, or periodical synchronization. The following is a summary of the cases where a TMOAS
transaction is generated:

• Start of Tracing, When tracing is first started, or when it is re-started after a break, some basic information is
needed first to allow external software to identify the trace start point in the static program image, and make
some reasonable conclusions about the processor mode at the start of tracing. At the start of the tracing, a
TMOAS record is sent out the same time as the first completed instruction. This trace record type shows the pro-
cessor mode and the ASID value of the currently executing processor. This record is followed by a trace of the
full PC value for the first instruction traced.

• Trace Synchronization, The synchronization tracing function is triggered when the internal synchronization
counter overflows based on the synchronization period bits as set in the (TraceControl2SyP/TCBCONTROLASyP).
Similar to the start of tracing, when the synchronization period is reached, a TMOAS record is first sent, fol-
lowed by a full PC value. Note that the TMOAS associated with synchronization is sent only when the IPC
instruction has been identified, to prevent other TType records between the TMOAS and the full PC trace for the
synchronization.

• Trace Overflow and Restart. The trace unit’s internal FIFO or buffers are used to hold address and data values
waiting to be compressed, formatted, and traced out of the processor. It is possible to have a program sequence
that overflows one or more of these FIFOs. In the situation that the FIFO overflows, the core is essentially losing
trace data and hence the output gets illogical and no longer is a true representation of the program execution
sequence. In this situation, 1004K core will abandon tracing in the current cycle, discard all entries in the FIFO,
and restart tracing from the next completed instruction in the following cycle. In this situation, a TMOAS record
is first sent after the overflow.

• Tracing During Processor Mode Changes. During normal execution, the processor will change its operation
mode frequently. For example, when executing user-level code, an interrupt may cause the processor to jump to
kernel mode to service the interrupt. When the interrupt has been serviced, the processor will switch back to user
mode. A mode change is indicated in the tracing logic by tracing out a TMOAS for TType. In the situation that

11.8 MIPS® Trace

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 341

the mode change affects tracing, for example, the tracing system has been set up to trace only in user mode and
not in kernel mode, then the interrupt service routine should not be traced. Upon jumping to kernel mode, the
core tracing logic will add a TMOAS as the last record. When jumping from a non-tracing mode to a tracing
mode, the first record output is TMOAS to indicate the mode change. This is followed by a full PC value of the
first instruction in the tracing mode. This will enable the external trace reconstruction software to re-synchronize
itself and track program execution in the desired mode.

Figure 11.32 and Table 11.38 are the bit field description for a TMOAS record. A TMOAS record is usually associ-
ates with an instruction, except for the case of a trace end TMOAS, where a TMOAS is sent out because the processor
enters a non-tracing mode. In this case, the TMOAS is not associated with any instruction since the processor is not
tracing, some of the field in the TMOAS record can be invalid data, for example, the ISAM field can be undertemi-
nistic. This should not present an issue for the software since this TMOAS is only used as an indication that the trace
has ended.

.

Table 11.38 TMOAS Trace Record Field Descriptions

Figure 11.32 A TMOAS Trace Record
31 30 23 22 21 20 19 16 15 14 13 12 11 10 8 7 0

0 TCid DKill V PIKill PendL SYNC EPL 0 ISAM POM ASID

Fields

DescriptionName Bits

TCid 30..23 Only required if the processor implements MT, otherwise reserved.

DKill 22 Only required if the processor implements MT, otherwise reserved.

V 21 Only required if the processor implements MT, otherwise ignored.

PIKill 20 Only required if the processor implements MT, otherwise ignored.

PendL 19:16 This field is valid only when SYNC is 1, see below. When SYNC is 1, this
field indicates the number of outstanding loads and stores at the IPC cycle. If
the number of loads/store is zero, then all data transmissions’ TDs after that
are ignored until the next load/store instruction, at which point counting is
restarted. Such TD transmissions are from store instructions which could not
complete before the IPC signal was sent.
Note that a sync happens with an InsComp value of IPC. Depending on
whether or not there is data buffered up internally waiting to be sent out, the
accompanying TMOAS may not be sent until several cycles later. In the
meantime, any data sent in between the IPC and the TMOAS record may be
ignored (at trace start or after an overflow) since this belongs to load and
store instructions that happened before the sync. Now, if there are any load
or store instructions between the IPC and the TMOAS, then the data for this
will only be seen after the TMOAS is transmitted, since they would get buff-
ered behind the TMOAS.

SYNC 15 When 0, this record was sent when the ASID, POM, or ISAM changed.
When 1, this record was sent for a synchronization event.

 EJTAG Debug Support in the 1004K™ CPU

342 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

11.8.16 Controling Trace in a Multi-CPU CPS

The 1004K Coherent Processing System CPS enables debug trace information from the 1004K CPUs and the Coher-
ence Manager to be streamed off chip or stored in on-chip RAM. As shown in Figure 11.33, each 1004K CPU pro-
duces a 64-bit debug trace stream describing its program and data flow. The CM produces a stream describing the
flow of transactions within the CM. The Trace Funnel muxes the CPU and CM trace streams into a single debug trace
stream which is either stored in an on-chip buffer or passed onto a Probe Interface Block (PIB). A PIB is the on-chip
link between the Trace Funnel and debug probe interface, and may include functionality such as time multiplexing
the 64-bit TCtrace data onto a narrower, faster probe interface.

EPL 14 When 1, the PendL field is to be interpreted as (PendL + 16). When 0, the
PendL field is interpreted by itself. This is introduced in PDtrace rev. 6.00

ISAM 12:11

POM 10:8

ASID 7:0 The ASID of the current process. If the processor does not implement the
standard TLB-based MMU, this field is always traced as a zero because the
EntryHi register, and hence the ASID, is not defined.

0 31,13 Reserved for future use

Fields

DescriptionName Bits

Value In Architecture Mode

00 MIPS32

01 MIPS64

10 MIPS16e from MIPS32 mode

11 MIPS16e from MIPS64 mode

Value Description

000 Kernel Mode (EXL = 0, ERL = 0)

001 Exception Mode (EXL = 1, ERL = 0)

010 Exception Mode (EXL = don’t care, ERL = 1)

011 Debug Mode

100 Supervisor Mode

101 User Mode

110 Reserved

111 Reserved

 EJTAG Debug Support in the 1004K™ CPU

344 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

The mapped drseg registers are shown in Table 11.39. These mappings are “active” only when an external probe is

Table 11.39 Mapping TCB Registers in drseg

Offset in drseg Register Name Description

0x3000 TCBControlA The TCBControlA register. See Section 11.10.1 “TCBCONTROLA Register” for more
details about register contents.

0x3008 TCBControlB The TCBControlB register. See Section 11.10.2 “TCBCONTROLB Register” for more
details about register contents.

0x3010 TCBControlC The TCBControlC register. See Section 11.10.4 “TCBCONTROLC Register” for more
details about register contents.

0x3018 TCBControlD The TCBControlD register. See Section 11.10.5 “TCBCONTROLD Register” for more
details about register contents.

0x3020 TCBControlE The TCBControlE register. See Section 11.10.6 “TCBCONTROLE Register” for more details
about register contents.

0x3028 TCBConfig The TCBConfig register. See Section 11.10.7 “TCBCONFIG Register (Reg 0)” for more
details about register contents.

0x3100 TCBTW Trace Word read register. This register holds the Trace Word just read from on-line trace
memory. See Section 11.10.8 “TCBTW Register (Reg 4)” for more details about register con-
tents.

0x3108 TCBRDP Trace Word Read pointer. It points to the location in the on-line trace memory where the next
Trace Word will be read. A TW read has the side-effect of post-incrementing this register
value to point to the next TW location. (A maximum value wraps the address around to the
beginning of the trace memory). See Section 11.10.9 “TCBRDP Register (Reg 5)” for more
details about register contents.

0x3110 TCBWRP Trace Word Write pointer. It points to the location in the on-line trace memory where the next
new Trace Word will be written. See Section 11.10.10 “TCBWRP Register (Reg 6)” for more
details about register contents.

0x3118 TCBSTP Trace Word Start Pointer. It points to the location of the oldest TW in the on-chip trace mem-
ory. See Section 11.10.11 “TCBSTP Register (Reg 7)” for more details about register con-
tents.

0x3120 BKUPRDP This is not a TCB register, but needed on a reset to save the TCBRDP value before that regis-
ter is reset to 0. This allows the software that comes up after a (hard or soft) reset to know the
last-known good value of TCBRDP before system crash, and potentially read the trace mem-
ory from or to the appropriate trace memory location.

0x3128 BKUPWRP This is not a TCB register, but needed on a reset to save the TCBWRP value before that regis-
ter is reset to 0. This allows the software that comes up after a (hard or soft) reset to know the
last-known good value of TCBWRP before system crash, and potentially read the trace mem-
ory from or to the appropriate trace memory location.

0x3130 BKUPSTP This is not a TCB register, but needed on a reset to save the TCBSTP value before that regis-
ter is reset to 0. This allows the software that comes up after a (hard or soft) reset to know the
last-known good value of TCBSTP before system crash, and potentially read the trace mem-
ory from or to the appropriate trace memory location.

0x3200-0x3238 TCBTrigX The TCBTrigX set of registers. The number of implemented registers is determined by the
value in TCBCONFIGTRIG. See Section 11.10.12 “TCBTRIGx Register (Reg 16-23)” for

more details about register contents.

11.8 MIPS® Trace

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 345

either not present, or not enabled (i.e., the ProbEN bit in the EJTAG Control Register or ECR is set to zero). If the
mappings are active, writes to the TCB registers via drseg are enabled (so long as these writes are otherwise permit-
ted). If the mappings are inactive, writes to the TCB registers via drseg are ignored. Note that a hardware probe could
set the ProbEN bit to zero and still access the TCBControl registers. Writing the TCB registers via the probe and
drseg simultaneously will result in unpredictable behavior. Software should not rely on reads from the TCB registers
via drseg to return reliable data when the mappings are inactive. If the mappings are active on reset (i.e., ProbEN=0),
software is responsible for initializing all control register fields, except for TCBCONTROLAOn and
TCBCONTROLBEn.Those control bits are set to zero on a core reset if the drseg mappings are active.

On-chip trace memory can be read by doing a load instruction to TCBTW. On a 32-bit core, two load instructions
must be executed to load a 64-bit trace word. These load instructions must target two different addresses. The first
must target an offset of (+4) from the TCBTW register, and the second load instruction must target the TCBTW regis-
ter. Accessing the TCBTW has the side effect of automatically incrementing the value of TCBRDP to the next trace
word. The trace memory cannot be written to via this mechanism. Software can also do direct loads and stores to
TCBRDP and TCBWRP at the beginning of the trace memory dump function. Note that writing to these registers in
the middle of the trace logic writing into this memory can result in UNPREDICTABLE results and junked values in
the trace memory.

Whether or not software has access to on-chip trace memory is controlled via one bit TCBCONTROLBTRPAD. This is
a control DISABLE bit. The bit in TCBCONTROLB is mirrored in TraceControl3. To access the on-chip memory con-
trol registers, namely the memory pointers, the TCBTW, and both of the backup pointer bits,TRPAD and ProbEN,
must be zero. To access the other registers, it is sufficient to set the ProbEN bit to zero. Regardless of the setting of
ProbEN and TRPAD, all the registers listed in Table 11.39 can be read out by software.

Tracing is stopped when the system crashes and an exception handler is invoked. The last known good values of
TCBRDP, TCBWRP, and TCBSTP are saved in the backup registers shown in the table. Software should not rely on
TCBRDP, TCBWRP, and TCBSTP holding their last known good values across a reset, and should use the backup
registers for this purpose.

11.8.18 Trace Message Format

The TCB collects trace information every cycle from the PDtrace™ interface. This information is collected into six
different Trace Formats (TF1 to TF6). One important feature is that all Trace Formats have at least one non-zero bit.

11.8.19 Trace Word Format

After the PDtrace data has been converted into Trace Formats, the trace information must be streamed to either
on-chip trace memory or to the trace probe. Each of the major Trace Formats are of different size. This complicates
how to store this information into an on-chip memory of fixed width without too much wasted space. It also compli-
cates how to transmit data through a fixed-width trace probe interface to off-chip memory. To minimize memory
overhead and or bandwidth-loss, the Trace Formats are collected into Trace Words of fixed width.

A Trace Word (TW) is defined to be 64 bits wide. An empty/invalid TW is built of all zeros. A TW which contains
one or more valid TF’s is guaranteed to have a non-zero value on one of the four least significant bits [3:0]. During
operation of the TCB, each TW is built from the TF’s generated each clock cycle. When all 64 bits are used, the TW
is full and can be sent to either on-chip trace memory or to the trace probe.

 EJTAG Debug Support in the 1004K™ CPU

346 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

11.9 PDtrace™ Registers (Software Control)

The CP0 registers associated with PDtrace are listed in Table 11.40 and described in Chapter 7, “CP0 Registers of the
1004K™ CPU” on page 167

11.10 Trace Control Block (TCB) Registers (Hardware Control)

The TCB registers used to control its operation are listed in Table 11.41 and Table 11.42. These registers are accessed
via the EJTAG TAP interface.

Table 11.40 A List of Coprocessor 0 Trace Registers

Register
Number Sel

Register
Name Reference

23 1 TraceControl Section 7.2.51 “Trace Control Register (CP0 Register 23, Select 1)”

23 2 TraceControl2 Section 7.2.52 “Trace Control2 Register (CP0 Register 23, Select 2)”

24 2 TraceControl3 Section 7.2.57 “Trace Control3 Register (CP0 Register 24, Select 2)”

23 3 UserTraceData1 Section 7.2.53 “User Trace Data1 Register (CP0 Register 23, Select 3) and
User Trace Data2 Register (CP0 Register 24, Select 3)”

24 3 UserTraceDat
a2

Section 7.2.53 “User Trace Data1 Register (CP0 Register 23, Select 3) and
User Trace Data2 Register (CP0 Register 24, Select 3)”

Table 11.41 TCB EJTAG Registers

EJTAG
Register Name Description Implemented

0x10 TCBCONTROLA Control register in the TCB mainly used for controlling the trace input
signals to the CPU on the PDtrace interface. See Section
11.10.1 “TCBCONTROLA Register”.

Yes

0x11 TCBCONTROLB Control register in the TCB that is mainly used to specify what to do with
the trace information. The REG [25:21] field in this register specifies the
number of the TCB internal register accessed by the TCBDATA register.
A list of all the registers that can be accessed by the TCBDATA register
is shown in Table 11.42. See Section 11.10.2 “TCBCONTROLB
Register”.

Yes

0x12 TCBDATA This is used to access registers specified by the REG field in the
TCBCONTROLB register. See Section 11.10.3 “TCBDATA Register”.

Yes

0x13 TCBCONTROLC Control Register in the TCB used to control and hold tracing information.
See Section 11.10.4 “TCBCONTROLC Register”.

Yes

0x15 TCBCONTROLD Control register in the TCB used to control tracing from the Coherence
Manager Section 11.10.5 “TCBCONTROLD Register”

Yes

0x16 TCBCONTROLE Control Register in the TCB used to control tracing for the performance
counter tracing feature. See Section 11.10.6 “TCBCONTROLE
Register”.

Yes

11.10 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 347

11.10.1 TCBCONTROLA Register

The TCB is responsible for asserting or de-asserting the trace input control signals on the PDtrace interface to the
CPU’s tracing logic. Most of the control is done using the TCBCONTROLA register.

The TCBCONTROLA register is written by an EJTAG TAP controller instruction, TCBCONTROLA (0x10). This
register is also mapped to offset 0x3000 in drseg. See Section 11.8.17 “Memory-mapped Access to PDtrace Controls
and On-Chip Trace Buffer” on page 343 on how this register can be accessed via drseg.

The format of the TCBCONTROLA register is shown below, and the fields are described in Table 11.43.

Figure 11.34 TCBCONTROLA Register Format

Table 11.42 Registers Selected by TCBCONTROLBREG

TCBCONTROLBREG field Name Reference Implemented

0 TCBCONFIG Section 11.10.7 “TCBCONFIG Register (Reg 0)” Yes

4 TCBTW Section 11.10.8 “TCBTW Register (Reg 4)” Yes
if on-chip memory

exists.
Otherwise No

5 TCBRDP Section 11.10.9 “TCBRDP Register (Reg 5)”

6 TCBWRP Section 11.10.10 “TCBWRP Register (Reg 6)”

7 TCBSTP Section 11.10.11 “TCBSTP Register (Reg 7)”

16-23 TCBTRIGx Section 11.10.12 “TCBTRIGx Register (Reg 16-23)” Only the number
indicated by

TCBCONFIGTRIG

are implemented.

31 30 29 26 25 24 23 22 20 19 18 17 16 15 14 13 12 5 4 3 2 1 0

SyPExt 0 VModes ADW SyP TB IO D E S K U ASID G TFCR TLSM TIM On

Table 11.43 TCBCONTROLA Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

SyPExt 31:30 These two bits used to be Implementation specific until PDtrace
spec revision 06.00 when it reverts to architecturally defined bits to
extend the SyP (sync period) field for implementations that need
higher numbers of cycles between synchronization events.
The value of SyP is extended by assuming that these two bits are
juxtaposed to the left of the three bits of SyP (SyPExt.SyP). When
only SyP was used to specify the synchronization period, the value

was 2x, where x was computed from SyP by adding 5 to the actual
value represented by the bits. A similar formula is applied to the 5
bits just obtained by the juxtaposition of SyPExt and SyP. Sync

period values greater than 231 are UNPREDICTABLE. Since the
value of 11010 represents the value of 31 (with +5), all values
greater than 11010 are UNPREDICTABLE.

Note that with these new bits, a sync period range of 25 to 231 cycles
can now be obtained.

R/W 0

0 29:26 Reserved. Must be written as zero; returns zero on read. R 0

 EJTAG Debug Support in the 1004K™ CPU

348 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

VModes 25:24 This field specifies the type of tracing that is supported by the pro-
cessor, as follows:

This field is preset to the value of PDO_ValidModes.

R 10

ADW 23 PDO_AD bus width.
0: The PDO_AD bus is 16 bits wide.
1: The PDO_AD bus is 32 bits wide.

R 1

SyP 22:20 Used to indicate the synchronization period.
The period (in cycles) between which the periodic synchronization
information is to be sent is defined as shown in the table below.

This field defines the value on the PDI_SyncPeriod signal.

R/W 000

TB 19 Trace All Branches. When set to one, this field indicates that the
CPU must trace either full or incremental PC values for all branches.
When set to zero, only the unpredictable branches are traced.
This field defines the value on the PDI_TraceAllBranch signal.

R/W Undefined

IO 18 Inhibit Overflow. This bit is used to indicate to the CPU trace logic
that slow but complete tracing is desired. Hence, the CPU tracing
logic must not allow a FIFO overflow and discard trace data. This is
achieved by stalling the pipeline when the FIFO is nearly full so that
no trace records are ever lost.
This field defines the value on the PDI_InhibitOverflow signal.

R/W Undefined

D 17 When set to one, this enables tracing in Debug mode, i.e., when the
DM bit is one in the Debug register. For trace to be enabled in
Debug mode, the On bit must be one, and either the G bit must be
one, or the current process must match the ASID field in this regis-
ter.
When set to zero, trace is disabled in Debug mode, irrespective of
other bits.
This field defines the value on the PDI_DM signal.

R/W Undefined

Table 11.43 TCBCONTROLA Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

00 PC tracing only

01 PC and Load and store address tracing only

10 PC, load and store address, and load and store data.

11 Reserved

SyP Sync Period

000 25

001 26

010 27

011 28

100 29

101 210

110 211

111 212

11.10 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 349

E 16 This controls when tracing is enabled. When set, tracing is enabled
when either of the EXL or ERL bits in the Status register is one,
provided that the On bit (bit 0) is also set, and either the G bit is set,
or the current process ASID matches the ASID field in this register.
This field defines the value on the PDI_E signal.

R/W Undefined

S 15 When set, this enables tracing when the CPU is in Supervisor mode
as defined in the MIPS32 or MIPS64 architecture specification. This
is provided the On bit (bit 0) is also set, and either the G bit is set, or
the current process ASID matches the ASID field in this register.
This field defines the value on the PDI_S signal.

R/W Undefined

K 14 When set, this enables tracing when the On bit is set and the CPU is
in Kernel mode. Unlike the usual definition of Kernel Mode, this bit
enables tracing only when the ERL and EXL bits in the Status reg-
ister are zero. This is provided the On bit (bit 0) is also set, and
either the G bit is set, or the current process ASID matches the ASID
field in this register.
This field defines the value on the PDI_K signal.

R/W Undefined

U 13 When set, this enables tracing when the CPU is in User mode as
defined in the MIPS32 or MIPS64 architecture specification. This is
provided the On bit (bit 0) is also set, and either the G bit is set, or
the current process ASID matches the ASID field in this register.
This field defines the value on the PDI_U signal.

R/W Undefined

ASID 12:5 The ASID field to match when the G bit is zero. When the G bit is
one, this field is ignored.
This field defines the value on the PDI_ASID signal.

R/W Undefined

G 4 When set, this implies that tracing is to be enabled for all processes,
provided that other enabling functions (like U, S, etc.,) are also true.
This field defines the value on the PDI_G signal.

R/W Undefined

TFCR 3 When set, this indicates to the PDtrace interface that complete infor-
mation about instruction if it can be a function call or return should
be traced, that is signal PDI_TraceFuncCR is asserted as long as
this value is set to 1. It also indicates to the TCB that the optional Fcr
bit must be traced in the appropriate trace formats

R/W Undefined

TLSM 2 When set, this indicates to the PDtrace interface that complete infor-
mation about Load and Store data cache miss should be traced, that
is signal PDI_TraceLSMiss is asserted as long as this value is set to
1. It also indicates to the TCB that the optional LSm bit must be
traced in the appropriate trace formats.

R/W Undefined

TIM 1 When set, this indicates to the PDtrace interface that complete infor-
mation about instruction cache miss should be traced, that is signal
PDI_TraceIMiss is asserted as long as this value is set to 1. It also
indicates to the TCB that the optional Im bit must be traced in the
appropriate trace formats.

R/W Undefined

Table 11.43 TCBCONTROLA Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

 EJTAG Debug Support in the 1004K™ CPU

350 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

11.10.2 TCBCONTROLB Register

The TCB includes a second control register, TCBCONTROLB (0x11). This register generally controls what to do with
the trace information received. This register is also mapped to offset 0x3008 in drseg. See Section
11.8.17 “Memory-mapped Access to PDtrace Controls and On-Chip Trace Buffer” on page 343 on how this register
can be accessed via drseg.

The format of the TCBCONTROLB register is shown below, and the fields are described in Table 11.44.

Figure 11.35 TCBCONTROLB Register Format

On 0 This is the global trace enable switch to the CPU. When zero, trac-
ing from the CPU is always disabled, unless enabled by CPU inter-
nal software override of the PDI_* input pins.
When set to one, tracing is enabled whenever the other enabling
functions are also true.
This field defines the value on the PDI_TraceOn signal.

R/W 0

31 30 28 27 26 25 21 20 19 18 17 16 15 14 13 12 11 10 8 7 6 3 2 1 0

WE 0 TWSrcWidth REG WR 0 TRPAD FDT RM TR BF TM TLSIF CR Cal TWSrcVal CA OfC EN

Table 11.44 TCBCONTROLB Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

WE 31 Write Enable.
Only when set to 1 will the other bits be written in TCBCONTROLB.
This bit will always read 0.

R 0

0 30:28 Reserved. Must be written as zero; returns zero on read. R 0

TWSrc-
Width

27:26 Used to indicate the number of bits used in the source field of the Trace Word,
this is a configuration option of the CPU that cannot be modified by software.
00 - zero source field width
01 - two bit source field width
10 - four bit source field width
11 - reserved for future use
This field can only be 10 for the 1004K CPU.

R 10

REG 25:21 Register select: This field select the registers accessible through the
TCBDATA register. Legal values are shown in Table 11.42.

R/W 0

WR 20 Write Registers: When set, the register selected by REG field is read and writ-
ten when TCBDATA is accessed. Otherwise the selected register is only read.

R/W 0

0 19 Reserved. Must be written as zero; returns zero on read. R 0

TRPAD 18 Trace RAM access disable bit, disables program software access to the
on-chip trace RAM using load/store instructions. If probe access is not pro-
vided in the implementation, then this register bit must be tied to zero value to
allow software to control access.

R/W 0

Table 11.43 TCBCONTROLA Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

11.10 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 351

FDT 17 Filtered Data Trace Mode enable bit. When the bit is 0, this mode is disabled,
reset value is disable. When set to 1, this mode is enabled. This mode is
described in Section 11.8.13 on page 339

R/W 0

RM 16 Read on-chip trace memory.
When written to 1, the read address-pointer of the on-chip memory is set to
point to the oldest memory location written since the last reset of pointers.
Subsequent access to the TCBTW register (through the TCBDATA register),
will automatically increment the read pointer (TCBRDP register) after each
read. [Note: The read pointer does not auto-increment if the WR field is one.]
When the write pointer is reached, this bit is automatically reset to 0, and the
TCBTW register will read all zeros.
Once set to 1, writing 1 again will have no effect. The bit is reset by setting the
TR bit or by reading the last Trace word in TCBTW.
This bit is reserved if on-chip memory is not implemented.
This bit will affect trace memory only if this CPU is selected to be the trace
master in the DPTrace Master Select GCR

R/W1 0

TR 15 Trace memory reset.
When written to one, the address pointers for the on-chip trace memory are
reset to zero. Also the RM bit is reset to 0.
This bit is automatically de-asserted back to 0, when the reset is completed.
This bit is reserved if on-chip memory is not implemented.
This bit will affect trace memory only if this CPU is selected to be the trace
master in the DPTrace Master Select GCR

R/W1 0

BF 14 Buffer Full indicator that the TCB uses to communicate to external software in
the situation that the on-chip trace memory is being deployed in the
trace-from and trace-to mode. (See Section 11.14 “TCB On-Chip Trace
Memory”)
This bit is cleared when writing 1 to the TR bit.
This bit is reserved if on-chip memory is not implemented.
This bit reflects the state of the buffer only if this CPU is selected to be the
trace master in the DPTrace Master Select GCR

R 0

Table 11.44 TCBCONTROLB Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

 EJTAG Debug Support in the 1004K™ CPU

352 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

TM 13:12 Trace Mode. This field determines how the trace memory is filled when using
the simple-break control in the PDtrace interface to start or stop trace.

In Trace-To mode, the on-chip trace memory is filled, continuously wrapping
around and overwriting older Trace Words, as long as there is trace data com-
ing from the CPU.
In Trace-From mode, the on-chip trace memory is filled from the point that the
core starts tracing until the on-chip trace memory is full.
In both cases, de-asserting the EN bit in this register will also stop fill to the
trace memory.
If a TCBTRIGx trigger control register is used to start/stop tracing, then this
field should be set to Trace-To mode.
This bit is reserved if on-chip memory is not implemented.
This field affects trace memory only if this CPU is selected to be the trace
master in the DPTrace Master Select GCR

R/W 0

TLSIF 11 When set, this indicates to the TCB that information about Load and Store
data cache miss, instruction cache miss, and function call are to be taken from
the PDtrace interface and trace them out in the appropriate trace formats as the
three optional bits LSm, Im, and Fcr.

R/W 0

CR 10:8 Off-chip Clock Ratio. Writing this field, sets the ratio of the CPU clock to the
off-chip trace memory interface clock. The clock-ratio encoding is shown in
Table 11.45.
Remark: As the Probe interface works in double data rate (DDR) mode, a 1:2
ratio indicates one data packet sent per CPU clock rising edge.
This bit is reserved if off-chip trace option is not implemented.
This field affects the Probe interface only if this CPU is selected to be the trace
master in the DPTrace Master Select GCR

R/W 100

Table 11.44 TCBCONTROLB Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

TM Trace Mode

00 Trace-To

01 Trace-From

10 Reserved

11 Reserved

11.10 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 353

Cal 7 Calibrate off-chip trace interface.
If set to one, the off-chip trace pins will produce the following pattern in con-
secutive trace clock cycles. If more than 4 data pins exist, the pattern is repli-
cated for each set of 4 pins. The pattern repeats from top to bottom until the
Cal bit is de-asserted.

Note: The clock source of the TCB and PIB must be running.
This bit is reserved if off-chip trace option is not implemented.
This field affects the Probe interface only if this CPU is selected to be the trace
master in the DPTrace Master Select GCR

R/W 0

TWSrcVal 6:3 These bits are used to indicate the value of the TW source field that will be
traced if TWSrcWidth indicates a source bit field width of 2 or 4 bits. Note
that if the field is 2 bits, then only bits 4:3 of this field will be used in the TW.

R Preset

CA 2 Cycle accurate trace.
When set to 1, the trace will include stall information.
When set to 0, the trace will exclude stall information, and remove bit zero
from all transmitted TF’s.
The stall information included/excluded is:
• TF6 formats with TCBcode 0001 and 0101.
• All TF1 formats.

R/W 0

OfC 1 If set to 1, trace is sent to off-chip memory using TR_DATA pins.
If set to 0, trace info is sent to on-chip memory.
This bit is read only if a single memory option exists (either off-chip or
on-chip only).
This field affects trace only if this CPU is select to be the trace master in the
DPTrace Master Select GCR

R/W Preset

Table 11.44 TCBCONTROLB Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Calibrations pattern

3 2 1 0

T
hi

s
pa

tte
rn

 is
 r

ep
lic

at
ed

 fo
r

ev
er

y
4

bi
ts

of
T

R
_D

AT
A

 p
in

s.

0 0 0 0

1 1 1 1

0 0 0 0

0 1 0 1

1 0 1 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1

 EJTAG Debug Support in the 1004K™ CPU

354 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

11.10.3 TCBDATA Register

The TCBDATA register (0x12) is used to access the registers defined by the TCBCONTROLBREG field; see Table
11.42. Regardless of which register or data entry is accessed through TCBDATA, the register is only written if the
TCBCONTROLBWR bit is set. For read-only registers, TCBCONTROLBWR is a don’t care.

The format of the TCBDATA register is shown below, and the field is described in Table 11.46. The width of
TCBDATA is 64 bits when on-chip trace words (TWs) are accessed (TCBTW access).

Figure 11.36 TCBDATA Register Format

EN 0 Enable trace.
This is the master enable for trace to be generated from the TCB. This bit can
be set or cleared, either by writing this register or from a start/stop/about trig-
ger.
When set to 1, Trace Words are generated and sent to either on-chip memory
or to the Trace Probe. The target of the trace is selected by the OfC bit.
When set to 0, trace information is ignored. A potential TF6-stop (from a stop
trigger) is generated as the last information, the TCB pipe-line is flushed, and
trace output is stopped.

R/W 0

Table 11.45 Clock Ratio encoding of the CR field

CR/CRMin/CRMax Clock Ratio

000 8:1 (Trace clock is eight times that of CPU clock)

001 4:1 (Trace clock is four times that of CPU clock)

010 2:1 (Trace clock is double that of CPU clock)

011 1:1 (Trace clock is same as CPU clock)

100 1:2 (Trace clock is one half of CPU clock)

101 1:4 (Trace clock is one fourth of CPU clock)

110 1:6 (Trace clock is one sixth of CPU clock)

111 1:8 (Trace clock is one eighth of CPU clock)

31(63) 0

Data

Table 11.46 TCBDATA Register Field Descriptions

Fields

Description Read/Write Reset StateNames Bits

Data 31:0
63:0

Register fields or data as defined by the
TCBCONTROLBREG field

Only writable if
TCBCONTROLBWR

is set

0

Table 11.44 TCBCONTROLB Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

11.10 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 355

11.10.4 TCBCONTROLC Register

The trace output from the processor on the PDtrace interface can be controlled by the trace input signals to the proces-
sor from the TCB. The TCB uses a control register, TCBCONTROLC, whose values are used to change the signal val-
ues on the PDtrace input interface. External software (i.e., debugger) can therefore manipulate the trace output by
writing to this register.

The TCBCONTROLC register is written by the EJTAG TAP controller instruction, TCBCONTROLC (0x13). This
register is also mapped to offset 0x3010 in drseg. See Section 11.8.17 “Memory-mapped Access to PDtrace Controls
and On-Chip Trace Buffer” on page 343 on how this register can be accessed via drseg.

The format of the TCBCONTROLC register is shown below, and the fields are described in Table 11.47.

Figure 11.37 TCBCONTROLC Register Format
31 30 29 28 27 23 22 21 15 14 13 12 9 8 5 4 2 1 0

Res NumDO Mode
CPUvalid

Res
CPUid TCvalid

Res
TCnum TCbits MTtraceType MTtraceTC

Table 11.47 TCBCONTROLC Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Res 31:30 Reserved for future use. Must be written as zero; returns zero on
read.

0 0

NumDO 29:28 Specifies the number of bits needed by this implementation to spec-
ify the DataOrder:
00 - Four bits

R Preset

Mode 27:23 When tracing is turned on, this signal specifies what information is
to be traced by the CPU. It uses 5 bits, where each bit turns on a trac-
ing of a specific tracing mode.

The table shows what trace value is turned on when that bit value is
a 1. If the corresponding bit is 0, then the Trace Value shown in col-
umn two is not traced by the processor.
On the 1004K CPU PC tracing is always enabled, regardless of the
value on bit 23.
This field defines the value on the PDI_TraceMode signal.

R/W 0

CPUvalid 22 This bit enables VPE based tracing. This bit is ignored if TCvalid
field is set
0: Instructions for all VPEs are traced
1: Instructions from only one VPE specified in CPUId field are
traced
This field defines the value on the PDI_CPUIdValid signal

R/W 0

Res 21:15 Reserved for future use. R/W 0

Bit # Set Trace The Following

0 PC

1 Load address

2 Store address

3 Load data

4 Store data

 EJTAG Debug Support in the 1004K™ CPU

356 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

11.10.5 TCBCONTROLD Register

The TCB includes a control register, TCBCONTROLD, whose values are used to control the tracing functions of the
Coherence Manager. External software (i.e., debugger) can therefore manipulate the trace output by writing to this
register. Each of the cores in the 1004K Coherent Processing System has this register, and a CMP GCR specifies
which CPU’s value is to be used by the CM (with the exception of the Core_CM_En field, which is considered from
each of the cores).

The TCBCONTROLD register is written by an EJTAG TAP controller instruction, TCBCONTROLD (0x14). This reg-
ister is also mapped to offset 0x3018 in drseg. See Section 11.8.17 “Memory-mapped Access to PDtrace Controls
and On-Chip Trace Buffer” on page 343 on how this register can be accessed via drseg.

The format of the TCBCONTROLD register is shown below, and the fields are described in Table 11.48.

Figure 11.38 TCBCONTROLD Register Format

CPUId 14 This bit indicates the value of the VPEid to be traced if CPUValid
field is set
0: Instructions from VPE0 are traced
1: Instructions from VPE1 are traced
This field defines the value on the PDI_CPUId signal

R/W Undefined

TCvalid 13 This bit enables TC based tracing
0: Instructions are traced based on CPUValid/CPUId settings
1: Instructions from only one TC specified in TCnum field are traced
This field defines the value on the PDI_TCNumValid

R/W 0

Res 12:9 Reserved for future use. R/W Undefined

TCnum 8:5 This field indicates the value of the TC to be traced if TCvalid is set
This field defines the value on the PDI_TCNum signal

R/W Undefined

TCbits 4:2 This value is used by the TCB to determine the number of bits
needed to represent TC value in a Trace Format(TF). Returns 3 on
reads indicating 4 bits are needed to represent 9 TC value.

R Preset

MTtrace-
Type

1 This bit indicates the type of implemented multi-threading
0: Fine grained, i.e., switch threads every cycle. If MTtraceTC field
is set then each Trace format is augmented by TC information
1: Coarse-grained, also known as block multi-threading. If
MTtraceTC field is set then TF7 is used and each TF is not aug-
mented.
Returns 0 on read indicating that processor may switch threads every
cycle if needed.

0 Preset

MTtraceT
C

0 This bit controls TC value tracing.
0: TC value is not traced
1: TC value is tracing by augmenting TCId on each Trace format

R/W Undefined

31 26 25 24 23 22 21 20 19 18 17 16 15 12 9 8 5 4 3 2 1 0

Reserved P4_Ctl P3_Ctl P2_Ctl P1_Ctl P0_Ctl Reserved TWSrcVal WB IO TLev AE C_En En

Table 11.47 TCBCONTROLC Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

11.10 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 357

11.10.6 TCBCONTROLE Register

The trace output from the processor on the PDtrace interface can be controlled by the trace input signals to the proces-
sor from the TCB. The TCB uses a control register, TCBCONTROLE, whose values are used to change the signal val-
ues on the PDtrace input interface. External software (i.e., debugger), can therefore manipulate the trace output by
writing the TCBCONTROLE register.

The TCBCONTROLE register is written by an EJTAG TAP controller instruction, TCBCONTROLE (0x16).This reg-
ister is also mapped to offset 0x3020 in drseg. See Section 11.8.17 “Memory-mapped Access to PDtrace Controls
and On-Chip Trace Buffer” on page 343 on how this register can be accessed via drseg.

Table 11.48 TCBCONTROLD Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Res 31:26,
15:12,

6

Reserved for future use. Must be written as zero; returns zero on
read.

0 0

P4_Ctl 25:24 Trace control for port 4. See Table 11.49 R/W 11

P3_Ctl 23:22 Trace control for port 3. See Table 11.49 R/W 11

P2_Ctl 21:20 Trace control for port 2. See Table 11.49 R/W 11

P1_Ctl 19:18 Trace control for port 1. See Table 11.49 R/W 11

P0_Ctl 17:16 Trace control for port 0. See Table 11.49 R/W 11

TWSrcVal 11:8 Identifier to be included in trace words that come from the CM R/W 0000

WB 7 When set, coherent writeback transactions will be traced R/W 0

IO 5 Inhibit Overflow: When set, the CM will stall rather than allowing
the trace FIFO to overflow and lose information

R/W 0

TLev 4:3 Trace Level - controls how much information is being traced
00 - Default, no timing information
01 - Include info on stall lengths and causes
1x - Reserved

R/W 00

AE 2 Address Enable. When set, addresses will be traced for all ports.
When cleared, address tracing can be individually enabled via the
Px_Ctl fields

R/W 0

CEn 1 Core_CM_Enable: The CM looks at this bit coming from each of the
cores. Allows cores other than the master to enable tracing if other
conditions are met

R/W 0

En 0 Enable: Overall enable for tracing from the CM R/W 0

Table 11.49 Port Control Values

Value Meaning

00 Tracing enabled. No address tracing

01 Tracing enabled including address tracing

10 Reserved

11 Tracing disabled

 EJTAG Debug Support in the 1004K™ CPU

358 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

The format of the TCBCONTROLE register is shown below, and the fields are described in Table 11.50.

Figure 11.39 TCBCONTROLE Register Format

11.10.7 TCBCONFIG Register (Reg 0)

The TCBCONFIG register holds information about the hardware configuration of the TCB. The format of the
TCBCONFIG register is shown below, and the fields are described in Table 11.51.

31 9 8 7 6 5 4 3 2 1 0

0 TdIDLE 0 PecOvf PeCFCR PeCBP PeCSync PeCE PeC

Table 11.50 TCBCONTROLE Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

0 31:9 Reserved for future use. Must be written as zero; returns
zero on read.

0 0

TrIDLE 8 Trace Unit Idle. This bit indicates if the trace hardware is
currently idle (not processing any data). This can be useful
when switching control of trace from hardware to software
and vice versa. The bit is read-only and updated by the
trace hardware.

R 1

0 7:6 Reserved for future use; Must be written as zero; returns
zero on read. (Hint to architect, Reserved for future expan-
sion of performance counter trace events).

0 0

PeCOvf 5 Trace performance counters when one of the performance
counters overflows its count value. Enabled when set to 1.

R/W 0

PeCFCR 4 Trace performance counters on function call/return or on
an exception handler entry. Enabled when set to 1.

R/W 0

PeCBP 3 Trace performance counters on hardware breakpoint
match trigger. Enabled when set to 1.

R/W 0

PeCSync 2 Trace performance counters on synchronization counter
expiration. Enabled when set to 1.

R/W 0

PeCE 1 Performance counter tracing enable. If performance
counter hardware is present, this field is read/write. If not
present, this field is read-only. When set to 0, the tracing
out of performance counter values as specified is disabled.
To enable, this bit must be set to 1. This bit is used under
software control. When trace is controlled by an external
probe, this enabling is done via the TCB Control register.

Config
Option

0

PeC 0 Specifies whether or not Performance Control Tracing is
implemented. This is an optional feature that may be omit-
ted by implementation choice. See Section
11.8.12 “Performance Counter Tracing” for details.

R Preset

11.10 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 359

Figure 11.40 TCBCONFIG Register Format
31 30 25 24 21 20 17 16 14 13 11 10 9 8 6 5 4 3 0

CF1 0 TRIG SZ CRMax CRMin PW PiN OnT OfT REV

Table 11.51 TCBCONFIG Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

CF1 31 This bit is set if a TCBCONFIG1 register exists. In this revision,
TCBCONFIG1 does not exist and this bit always reads zero.

R 0

0 30:25 Reserved. Must be written as zero; returns zero on read. R 0

TRIG 24:21 Number of triggers implemented. This also indicates the number of
TCBTRIGx registers that exist.

R Preset
Legal values are 0

- 8

SZ 20:17 On-chip trace memory size. This field holds the encoded size of the
on-chip trace memory.

The size in bytes is given by 2(SZ+8), implying that the minimum
size is 256 bytes and the largest is 8Mb.
This bit is reserved if on-chip memory is not implemented.

R Preset

CRMax 16:14 Off-chip Maximum Clock Ratio.
This field indicates the maximum ratio of the CPU clock to the
off-chip trace memory interface clock. The clock-ratio encoding is
shown in Table 11.45.
This bit is reserved if off-chip trace option is not implemented.

R Preset

CRMin 13:11 Off-chip Minimum Clock Ratio.
This field indicates the minimum ratio of the CPU clock to the
off-chip trace memory interface clock.The clock-ratio encoding is
shown in Table 11.45.
This bit is reserved if off-chip trace option is not implemented.

R Preset

PW 10:9 Probe Width: Number of bits available on the off-chip trace inter-
face TR_DATA pins. The number of TR_DATA pins is encoded, as
shown in the table.

This field is preset based on input signals to the TCB and the actual
capability of the TCB.
This bit is reserved if off-chip trace option is not implemented.

R Preset

PiN 8:6 Pipe number.
Indicates the number of execution pipelines.

R 0

OnT 5 When set, this bit indicates that on-chip trace memory is present.
This bit is preset based on the selected option when the TCB is
implemented.

R Preset

OfT 4 When set, this bit indicates that off-chip trace interface is present.
This bit is preset based on the selected option when the TCB is
implemented, and on the existence of a PIB module
(TC_PibPresent asserted).

R Preset

PW Number of bits used on TR_DATA

00 4 bits

01 8 bits

10 16 bits

11 reserved

 EJTAG Debug Support in the 1004K™ CPU

360 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

11.10.8 TCBTW Register (Reg 4)

The TCBTW register is used to read Trace Words from the on-chip trace memory. Accesses to the memory will be
allowed only if this register belongs to the CPU selected to be the trace master in the DPTrace Master Select GCR.
The TW read is the one pointed to by the TCBRDP register. A side effect of reading the TCBTW register is that the
TCBRDP register increments to the next TW in the on-chip trace memory. If TCBRDP is at the max size of the
on-chip trace memory, the increment wraps back to address zero.

This register is also mapped to offset 0x3100 in drseg. See Section 11.8.17 “Memory-mapped Access to PDtrace
Controls and On-Chip Trace Buffer” on page 343 on how this register can be accessed via drseg.

This register is reserved if on-chip trace memory is not implemented.

The format of the TCBTW register is shown below, and the field is described in Table 11.52.

Figure 11.41 TCBTW Register Format

11.10.9 TCBRDP Register (Reg 5)

The TCBRDP register is the address pointer to on-chip trace memory. It points to the TW read when reading the
TCBTW register. When writing the TCBCONTROLBRM bit to 1, this pointer is reset to the current value of TCBSTP.

This register is also mapped to offset 0x3108 in drseg. See Section 11.8.17 “Memory-mapped Access to PDtrace
Controls and On-Chip Trace Buffer” on page 343 on how this register can be accessed via drseg.

This register is reserved if on-chip trace memory is not implemented.

The format of the TCBRDP register is shown below, and the fields are described in Table 11.53. The value of n
depends on the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always
zero.

REV 3:0 Revision of TCB. R 2

63 0

Data

Table 11.52 TCBTW Register Field Descriptions

Fields

Description
Read /
Write Reset StateNames Bits

Data 63:0 Trace Word R/W 0

Table 11.51 TCBCONFIG Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

11.10 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 361

Figure 11.42 TCBRDP Register Format

11.10.10 TCBWRP Register (Reg 6)

The TCBWRP register is the address pointer to on-chip trace memory. It points to the location where the next new
TW for on-chip trace will be written.

This register is also mapped to offset 0x3110 in drseg. See Section 11.8.17 “Memory-mapped Access to PDtrace
Controls and On-Chip Trace Buffer” on page 343 on how this register can be accessed via drseg.

This register is reserved if on-chip trace memory is not implemented.

The format of the TCBWRP register is shown below, and the fields are described in Table 11.54. The value of n
depends on the size of the on-chip trace memory. As the address points to a 64-bit TW, the lower three bits are always
zero.

Figure 11.43 TCBWRP Register Format

11.10.11 TCBSTP Register (Reg 7)

The TCBSTP register is the start pointer register. This pointer is used to determine when all entries in the trace buffer
have been filled (when TCBWRP has the same value as TCBSTP). This pointer is reset to zero when the
TCBCONTROLBTR bit is written to 1. If a continuous trace to on-chip memory wraps around the on-chip memory,
TSBSTP will have the same value as TCBWRP.

This register is also mapped to offset 0x3118 in drseg. See Section 11.8.17 “Memory-mapped Access to PDtrace
Controls and On-Chip Trace Buffer” on page 343 on how this register can be accessed via drseg.

This register is reserved if on-chip trace memory is not implemented.

31 n+1 n 0

Address

Table 11.53 TCBRDP Register Field Descriptions

Fields

Description
Read /
Write Reset StateNames Bits

Data 31:(n+1) Reserved. Must be written zero, reads back zero. 0 0

Address n:0 Byte address of on-chip trace memory word. R/W 0

31 n+1 n 0

Address

Table 11.54 TCBWRP Register Field Descriptions

Fields

Description
Read /
Write Reset StateNames Bits

Data 31:(n+1) Reserved. Must be written zero, reads back zero. 0 0

Address n:0 Byte address of on-chip trace memory word. R/W 0

 EJTAG Debug Support in the 1004K™ CPU

362 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

The format of the TCBSTP register is shown below, and the fields are described in Table 11.55. The value of n
depends on the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always
zero.

Figure 11.44 TCBSTP Register Format

11.10.12 TCBTRIGx Register (Reg 16-23)

Up to eight Trigger Control registers are possible. Each register is named TCBTRIGx, where x is a single digit number
from 0 to 7 (TCBTRIG0 is Reg 16). The actual number of trigger registers implemented is defined in the
TCBCONFIGTRIG field. An unimplemented register will read all zeros and writes are ignored.

Each Trigger Control register controls when an associated trigger is fired, and the action to be taken when the trigger
occurs. Please also read Section 11.12 “TCB Trigger Logic”, for detailed description of trigger logic issues.

The format of the TCBTRIGx register is shown below, and the fields are described in Table 11.56.

Figure 11.45 TCBTRIGx Register Format

31 n+1 n 0

Address

Table 11.55 TCBSTP Register Field Descriptions

Fields

Description
Read /
Write Reset StateNames Bits

Data 31:(n+1) Reserved. Must be written zero, reads back zero. 0 0

Address n:0 Byte address of on-chip trace memory word. R/W 0

31 24 23 22 16 15 14 13 7 6 5 4 3 2 1 0

TCBinfo Trace 0 CHTro PDTro 0 DM CHTri PDTri Type FO TR

Table 11.56 TCBTRIGx Register Field Descriptions

Fields

Description
Read /
Write Reset StateNames Bits

TCBinfo 31:24 This field is to be used in a possible TF6 trace format when this trig-
ger fires.

R/W 0

Trace 23 When set, generate TF6 trace information when this trigger fires.
Use TCBinfo field for the TCBinfo of TF6 and use Type field for
the two MSB of the TCBtype of TF6. The two LSB of TCBtype are
00.
The write value of this bit always controls the behavior of this trig-
ger.
When this trigger fires, the read value will change to indicate if the
TF6 format was ever suppressed by a simultaneous trigger. If so, the
read value will be 0. If the write value was 0, the read value is
always 0. This special read value is valid until the TCBTRIGx regis-
ter is written.

R/W 0

0 22:16 Reserved. Must be written as zero; returns zero on read. R 0

11.10 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 363

CHTro 15 When set, generate a single cycle strobe on TC_ChipTrigOut when
this trigger fires.

R/W 0

PDTro 14 When set, generate a single cycle strobe on TC_ProbeTrigOut
when this trigger fires.

R/W 0

0 13:7 Reserved. Must be written as zero; returns zero on read. R 0

DM 6 When set, this Trigger will fire when a rising edge on the Debug
mode indication from the CPU is detected.
The write value of this bit always controls the behavior of this trig-
ger.
When this trigger fires, the read value will change to indicate if this
source was ever the cause of a trigger action (even if the action was
suppressed). If so the read value will be 1. If the write value was 0
the read value is always 0. This special read value is valid until the
TCBTRIGx register is written.

R/W 0

CHTri 5 When set, this Trigger will fire when a rising edge on
TC_ChipTrigIn is detected.
The write value of this bit always controls the behavior of this trig-
ger.
When this trigger fires, the read value will change to indicate if this
source was ever the cause of a trigger action (even if the action was
suppressed). If so the read value will be 1. If the write value was 0
the read value is always 0. This special read value is valid until the
TCBTRIGx register is written.

R/W 0

PDTri 4 When set, this Trigger will fire when a rising edge on
TC_ProbeTrigIn is detected.
The write value of this bit always controls the behavior of this trig-
ger.
When this trigger fires, the read value will change to indicate if this
source was ever the cause of a trigger action (even if the action was
suppressed). If so the read value will be 1. If the write value was 0
the read value is always 0. This special read value is valid until the
TCBTRIGx register is written.

R/W 0

Table 11.56 TCBTRIGx Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateNames Bits

 EJTAG Debug Support in the 1004K™ CPU

364 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

11.10.13 Register Reset State

Reset state for all register fields is entered when either of the following occur:

1. TAP controller enters/is in Test-Logic-Reset state.

Type 3:2 Trigger Type: The Type indicates the action to take when this trigger
fires. The table below show the Type values and the Trigger action.

The actual action is to set or clear the TCBCONTROLBEN bit. A

Start trigger will set TCBCONTROLBEN, a End trigger will clear

TCBCONTROLBEN. The About trigger will clear

TCBCONTROLBEN half way through the trace memory, from the

trigger. The size determined by the TCBCONFIGSZ field for

on-chip memory. Or from the TCBCONTROLASyP field for

off-chip trace.
If Trace is set, then a TF6 format is added to the trace words. For
Start and Info triggers this is done before any other TF’s in that same
cycle. For End and About triggers, the TF6 format is added after any
other TF’s in that same cycle.
If the TCBCONTROLBTM field is implemented it must be set to

Trace-To mode (00), for the Type field to control on-chip trace fill.
The write value of this bit always controls the behavior of this trig-
ger.
When this trigger fires, the read value will change to indicate if the
trigger action was ever suppressed. If so the read value will be 11. If
the write value was 11 the read value is always 11. This special read
value is valid until the TCBTRIGx register is written.

R/W 0

FO 1 Fire Once. When set, this trigger will not re-fire until the TR bit is
de-asserted. When de-asserted this trigger will fire each time one of
the trigger sources indicates trigger.

R/W 0

TR 0 Trigger happened. When set, this trigger fired since the TR bit was
last written 0.
This bit is used to inspect whether the trigger fired since this bit was
last written zero.
When set, all the trigger source bits (bit 4 to 13) will change their
read value to indicate if the particular bit was the source to fire this
trigger. Only enabled trigger sources can set the read value, but more
than one is possible.
Also when set the Type field and the Trace field will have read val-
ues which indicate if the trigger action was ever suppressed by a
higher priority trigger.

R/W0 0

Table 11.56 TCBTRIGx Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateNames Bits

Type Trigger action

00 Trigger Start: Trigger start-point of trace.

01 Trigger End: Trigger end-point of trace.

10 Trigger About: Trigger center-point of trace.

11 Trigger Info: No action trigger, only for trace info.

11.11 Enabling MIPS Trace

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 365

2. EJ_TRST_N input is asserted low.

11.11 Enabling MIPS Trace

As there are several ways to enable tracing, it can be quite confusing to figure out how to turn tracing on and off. This
section should help clarify the enabling of trace.

11.11.1 Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints

If hardware instruction/data simple breakpoints are implemented in the 1004K CPU, then these breakpoint can be
used as triggers to start/stop trace. When used for this, the breakpoints need not also generate a debug exception, but
are capable of only generating an internal trigger to the trace logic. This is done by only setting the TE bit and not the
BE bit in the Breakpoint Control register. Please see Section 11.2.8.5 “Instruction Breakpoint Control n (IBCn)
Register” and Section 11.2.9.5 “Data Breakpoint Control n (DBCn) Register”, for details on breakpoint control.

In connection with the breakpoints, the Trace BreakPoint Control (TraceBPC) register is used to define the trace
action when a trigger happens. When a breakpoint is enabled as a trigger (TE = 1), it can be selected to be either a
start or a stop trigger to the trace logic. Please see Section 7.2.54 “TraceIBPC Register (CP0 Register 23, Select 4)”
for detail in how to define a start/stop trigger.

11.11.2 Turning On PDtrace™ Trace

Trace enabling and disabling from software is similar to the hardware method, with the exception that the bits in the
control register are used instead of the input enable signals from the TCB. The TraceControlTS bit controls whether
hardware (via the TCB), or software (via the TraceControl register) controls tracing functionality.

Trace is turned on when the following expression evaluates true:

(
(

(TraceControlTS and TraceControlOn) or
((not TraceControlTS) and TCBCONTROLAOn)

)
and
(MatchEnable or TriggerEnable)

)

where,

MatchEnable ←
(

TraceControlTS
and

((TraceControl2TCV and (TraceControl2TCNUM equal TCIDofCompletedInst)) or
 ((not TraceControl2TCV) and TraceControl2CPUIdV and

 (TraceControl2CPUId equal VPEIDofCompletedInst)) or
 (TraceControl2TCV nor TraceControl2CPUIdV))

and
(

TraceControlG or
(((TraceControlASID xor EntryHiASID) and (not TraceControlASID_M)) = 0)

)
and
(

 EJTAG Debug Support in the 1004K™ CPU

366 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

(TraceControlU and UserMode) or
(TraceControlS and SupervisorMode) or
(TraceControlK and KernelMode) or
(TraceControlE and ExceptionMode) or
(TraceControlD and DebugMode)

)
)
or
(

(not TraceControlTS)
and

((TCBCONTROLCTCV and (TCBCONTROLCTCNUM equal TCIDofCompletedInst)) or
 ((not TCBCONTROLCTCV) and TCBCONTROLCCPUIdV and

 (TCBCONTROLCCPUId equal VPEIDofCompletedIns)) or
 (TCBCONTROLCTCV nor TCBCONTROLCCPUIdV))

and
(TCBCONTROLAG or (TCBCONTROLAASID = EntryHiASID))
and
(

(TCBCONTROLAU and UserMode) or
(TCBCONTROLAS and SupervisorMode) or
(TCBCONTROLAK and KernelMode) or
(TCBCONTROLAE and ExceptionMode) or
(TCBCONTROLADM and DebugMode)

)
)

and where,

TriggerEnable ←
(

DBCiTE and
DBSBS[i] and
TraceBPCDE and
(TraceBPCDBPOn[i] = 1)

)
or
(

IBCiTE and
IBSBS[i] and
TraceBPCIE and
(TraceBPCIBPOn[i] = 1)

)

As seen in the expression above, trace can be turned on only if the master switch TraceControlOn or
TCBCONTROLAOn is first asserted.

Once this is asserted, there are two ways to turn on tracing. The first way, the MatchEnable expression, uses the input
enable signals from the TCB or the bits in the TraceControl register. This tracing is done over general program areas.
For example, all of the user-level code for a particular process (if ASID is specified), and so on.

The second way to turn on tracing, the TriggerEnable expression, is from the processor side using the EJTAG hard-
ware breakpoint triggers. If EJTAG is implemented, and hardware breakpoints can be set, then using this method
enables finer grain tracing control. It is possible to send a trigger signal that turns on tracing at a particular instruction.
For example, it would be possible to trace a single procedure in a program by triggering on trace at the first instruc-
tion, and triggering off trace at the last instruction.

11.11 Enabling MIPS Trace

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 367

The easiest way to unconditionally turn on trace is to assert either hardware or software tracing and the corresponding
trace on signal with other enables. For example, with TraceControlTS=0, i.e., hardware controlled tracing, assert
TCBCONTROLAOn, TCBCONTROLAG, and all the other signals in the second part of expression MatchEnable. To
only trace when a particular process with a known ASID is executing, assert TCBCONTROLAOn, the correct
TCBCONTROLAASID value, and all of TCBCONTROLAU, TCBCONTROLAK, TCBCONTROLAE, and
TCBCONTROLADM. (If it is known that the particular process is a user-level process, then it would be sufficient to
only assert TCBCONTROLAU for example). When using the EJTAG hardware triggers to turn trace on and off, it is
best if TCBCONTROLAOn is asserted and all the other processor mode selection bits in TCBCONTROLA are turned
off. This would be the least confusing way to control tracing with the trigger signals. Tracing can be controlled via
software with the TraceControl register in a similar manner.

11.11.3 Turning Off PDtrace™ Trace

Trace is turned off when the following expression evaluates true:

(
(TraceControlTS and (not TraceControlOn))) or
((not TraceControlTS) and (not TCBCONTROLAOn))

)
or
(

(not MatchEnable) and
(not TriggerEnable) and
TriggerDisable

)

where,

TriggerDisable ←
(

DBCiTE and
DBSBS[i] and
TraceBPCDE and
(TraceBPCDBPOn[i] = 0)

)
or
(

IBCiTE and
IBSBS[i] and
TraceBPCIE and
(TraceBPCIBPOn[i] = 0)

)

Tracing can be unconditionally turned off by de-asserting the TraceControlOn bit or the TCBCONTROLAOn signal.
When either of these are asserted, tracing can be turned off if all of the enables are de-asserted, irrespective of the
TraceControlG bit (TCBCONTROLAG) and TraceControlASID (TCBCONTROLAASID) values. EJTAG hardware
breakpoints can be used to trigger trace off as well. Note that if simultaneous triggers are generated, and even one of
them turns on tracing, then even if all of the others attempt to trigger trace off, then tracing will still be turned on. This
condition is reflected in presence of the “(not TriggerEnable)” term in the expression above.

 EJTAG Debug Support in the 1004K™ CPU

368 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

11.11.4 TCB Trace Enabling

The TCB must be enabled in order to produce a trace on the probe or to on-chip memory, when trace information is
sent on the PDtrace interface. The main switch for this is the TCBCONTROLBEN bit. When set, the TCB will send
trace information to either on-chip trace memory or to the Trace Probe, controlled by the setting of the
TCBCONTROLBOfC bit.

The TCB can optionally include trigger logic, which can control the TCBCONTROLBEN bit. Please see Section
11.12 “TCB Trigger Logic” for details.

11.11.5 Tracing a Reset Exception

Tracing a reset exception is possible. However, the TraceControlTS bit is reset to 0 at CPU reset, so all the trace con-
trol must be from the TCB (using TCBCONTROLA and TCBCONTROLB). The PDtrace fifo and the entire TCB are
reset based on an EJTAG reset. It is thus possible to set up the trace modes, etc., using the TAP controller, and then
reset the CPU.

11.12 TCB Trigger Logic

The TCB is optionally implemented with trigger unit. If this is the case, then the TCBCONFIGTRIG field is non-zero.
This section will explain some of the issues around triggers in the TCB.

11.12.1 Trigger Units Overview

TCB trigger logic features three main parts:

1. A common Trigger Source detection unit.

2. 1 to 8 separate Trigger Control units.

3. A common Trigger Action unit.

Figure 11.46 show the functional overview of the trigger flow in the TCB.

 EJTAG Debug Support in the 1004K™ CPU

370 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

11.12.3 Trigger Control Units

Up to eight Trigger Control Units are possible. Each of them has its own Trigger Control Register (TCBTRIGx,
x={0..7}). Each of these registers controls the trigger fire mechanism for the unit. Each unit has all of the Trigger
Sources as possible trigger event and they can fire one or more of the Trigger Actions. This is all defined in the Trig-
ger Control register TCBTRIGx (see Section 11.10.12 “TCBTRIGx Register (Reg 16-23)”).

11.12.4 Trigger Action Unit

The TCB has four possible trigger actions:

1. Chip-level trigger output (TC_ChipTrigOut).

2. Probe trigger output (TR_TRIGOUT).

3. Trace information. Put a programmable byte into the trace stream from the TCB.

4. Start, End or About (delayed end) control of the TCBCONTROLBEN bit.

The basic function of the trigger actions is explained in Section 11.10.12 “TCBTRIGx Register (Reg 16-23)”. Please
also read the next Section 11.12.5 “Simultaneous Triggers”.

11.12.5 Simultaneous Triggers

Two or more triggers can fire simultaneously. The resulting behavior depends on trigger action set for each of them,
and whether they should produce a TF6 trace information output or not. There are two groups of trigger actions: Pri-
oritized and OR’ed.

11.12.5.1 Prioritized Trigger Actions

For prioritized simultaneous trigger actions, the trigger control unit which has the lowest number takes precedence
over the higher numbered units. The x in TCBTRIGx registers defines the number. The oldest trigger takes precedence
over everything.

The following trigger actions are prioritized when two or more units fire simultaneously:

• Trigger Start, End and About type triggers (TCBTRIGxType field set to 00, 01 or 10), which will assert/de-assert
the TCBCONTROLBEN bit. The About trigger is delayed and will always change TCBCONTROLBEN because it
is the oldest trigger when it de-asserts TCBCONTROLBEN. An About trigger will not start the countdown if an
even older About trigger is using the Trace Word counter.

• Triggers which produce TF6 trace information in the trace flow (Trace bit is set).

Regardless of priority, the TCBTRIGxTR bit is set when the trigger fires. This is so even if a trigger action is sup-
pressed by a higher priority trigger action. If the trigger is set to only fire once (the TCBTRIGxFO bit is set), then the
suppressed trigger action will not happen until after TCBTRIGxTR is written 0.

If a Trigger action is suppressed by a higher priority trigger, then the read value, when the TCBTRIGxTR bit is set, for
the TCBTRIGxTrace field will be 0 for suppressed TF6 trace information actions. The read value in the TCBTRIGxType

field for suppressed Start/End/About triggers will be 11. This indication of a suppressed action is sticky. If any of the

11.13 MIPS Trace Cycle-by-Cycle Behavior

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 371

two actions (Trace and Type) are ever suppressed for a multi-fire trigger (the TCBTRIGxFO bit is zero), then the read
values in Trace and/or Type are set to indicate any suppressed action.

About Trigger

The About triggers delayed de-assertion of the TCBCONTROLBEN bit is always executed, regardless of priority from
another Start trigger at the time of the TCBCONTROLBEN change. This means that if a simultaneous About trigger
action on the TCBCONTROLBEN bit (n/2 Trace Words after the trigger) and a Start trigger hit the same cycle, then the
About trigger wins, regardless of which trigger number it is. The oldest trigger takes precedence.

However, if an About trigger has started the count down from n/2, but not yet reached zero, then a new About trigger,
will NOT be executed. Only one About trigger can have the cycle counter. This second About trigger will store 11 in
the TCBTRIGxType field. But, if the TCBTRIGxTrace bit is set, a TF6 trace information will still go in the trace.

11.12.5.2 OR’ed Trigger Actions

The simple trigger actions CHTro and PDTro from each trigger unit, are effectively OR’ed together to produce the
final trigger. One or more expected trigger strobes on i.e. TC_ChipTrigOut can thus disappear. External logic should
not rely on counting of strobes, to predict a specific event, unless simultaneous triggers are known not to occur.

11.13 MIPS Trace Cycle-by-Cycle Behavior

A key reason for using trace, and not single stepping to debug a software problem, is often to get a picture of the
real-time behavior. However the trace logic itself can, when enabled, affect the exact cycle-by-cycle behavior,

11.13.1 FIFO Logic in PDtrace and TCB Modules

Both the PDtrace module and the TCB module contain a fifo. This might seem like extra overhead, but there are good
reasons for this. The vast majority of the information compression happens in the PDtrace module. Any data informa-
tion, like PC and load/store address values (delta or full), load/store data and processor mode changes, are all sent on
the same 32-bit data bus to the TCB on the internal PDtrace™ interface. When an instruction requires more than 32
bits of information to be traced properly, the PDtrace fifo will buffer the information, and send it on subsequent clock
cycles.

In the TCB, the on-chip trace memory is defined as a 64-bit wide synchronous memory running at CPU-clock speed.
In this case the fifo is not needed. For off-chip trace through the Trace Probe, the fifo comes into play, because only a
limited number of pins (4, 8 or 16) exist. Also the speed of the Trace Probe interface can be different (either faster or
slower) from that of the 1004K CPU. So for off-chip tracing, a specific TCB TW fifo is needed.

11.13.2 Handling of FIFO Overflow in the PDtrace Module

Depending on the amount of trace information selected for trace, and the frequency with which the 32-bit data inter-
face is needed, it is possible for the PDtrace fifo overflow from time to time. There are two ways to handle this case:

1. Allow the overflow to happen, and thereby lose some information from the trace data.

2. Prevent the overflow by back-stalling the CPU, until the fifo has enough empty slots to accept new trace data.

The PDtrace fifo option is controlled by either the TraceControlIO or the TCBCONTROLAIO bit, depending on the set-
ting of TraceControlTS bit.

 EJTAG Debug Support in the 1004K™ CPU

372 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

The first option is free of any cycle-by-cycle change whether trace is turned on or not. This is achieved at the cost of
potentially losing trace information. After an overflow, the fifo is completely emptied, and the next instruction is
traced as if it was the start of the trace (processor mode and full PC are traced). This guarantees that only the
un-traced fifo information is lost.

The second option guarantees that all the trace information is traced to the TCB. In some cases this is then achieved
by back-stalling the CPU pipeline, giving the PDtrace fifo time to empty enough room in the fifo to accept new trace
information from a new instruction. This option can obviously change the real-time behavior of the CPU when trac-
ing is turned on.

If PC trace information is the only thing enabled (in TraceControl2MODE or TCBCONTROLCMODE, depending on the
setting of TraceControlTS), and Trace of all branches is turned off (via TraceControlTB or TCBCONTROLATB, depend-
ing on the setting of TraceControlTS), then the fifo is unlikely to overflow very often, if at all. This is of course very
dependent on the code executed, and the frequency of exception handler jumps, but with this setting there is very little
information overhead.

11.13.3 Handling of FIFO Overflow in the TCB

The TCB also holds a fifo, used to buffer the TW’s which are sent off-chip through the Trace Probe. The data width
of the probe can be either 4, 8 or 16 pins, and the speed of these data pins can be from 16 times the CPU-clock to 1/4
of the CPU clock (the trace probe clock always runs at a double data rate multiple to the CPU-clock). See Section
11.13.3.1 “Probe Width and Clock-ratio Settings” for a description of probe width and clock-ratio options. The com-
bination between the probe width (4, 8 or 16) and the data speed, allows for data rates through the trace probe from
256 bits per CPU-clock cycle down to only 1 bit per CPU-clock cycle. The high extreme is not likely to be supported
in any implementation, but the low one might be.

The data rate is an important figure when the likelihood of a TCB fifo overflow is considered. The TCB will at maxi-
mum produce one full 64-bit TW per CPU-clock cycle. This is true for any selection of trace mode in
TraceControl2MODE or TCBCONTROLCMODE. The PDtrace module will guarantee the limited amount of data. If the
TCB data rate cannot be matched by the off-chip probe width and data speed, then the TCB fifo can possibly over-
flow. Similar to the PDtrace module FIFO, this can be handled in two ways:

1. Allow the overflow to happen, and thereby lose some information from the trace data.

2. Prevent the overflow by asserting a stall-signal back to the CPU (PDI_StallSending). This will in turn stall the
CPU pipeline.

As a practical matter, the amount of data to the TCB can be minimized by only tracing PC information and excluding
any cycle accurate information. This is explained in Section 11.13.2 “Handling of FIFO Overflow in the PDtrace
Module” and below in Section 11.13.4 “Adding Cycle Accurate Information to the Trace”. With this setting, a data
rate of 8-bits per CPU-clock cycle is usually sufficient. No guarantees can be given here, however, as heavy interrupt
activity can increase the number of unpredictable jumps considerably.

11.13.3.1 Probe Width and Clock-ratio Settings

The actual number of data pins (4, 8 or 16) is defined by the TCBCONFIGPW field. Furthermore, the frequency of the
Trace Probe can be different from the CPU-clock frequency. The trace clock (TR_CLK) is a double data rate clock.
This means that the data pins (TR_DATA) change their value on both edges of the trace clock. When the trace clock is
running at clock ratio of 1:2 (one half) of CPU clock, the data output registers are running a CPU-clock frequency.
The clock ratio is set in the TCBCONTROLBCR field. The legal range for the clock ratio is defined in
TCBCONFIGCRMax and TCBCONFIGCRMin (both values inclusive). If TCBCONTROLBCR is set to an unsupported
value, the result is UNPREDICABLE. The maximum possible value for TCBCONFIGCRMax is 8:1 (TR_CLK is run-

11.14 TCB On-Chip Trace Memory

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 373

ning 8 times faster than CPU-clock). The minimum possible value for TCBCONFIGCRMin is 1:8 (TR_CLK is running
at one eighth of the CPU-clock). See Table 11.45 for a description of the encoding of the clock ratio fields.

11.13.4 Adding Cycle Accurate Information to the Trace

Depending on the trace regeneration software, it is possible to obtain the exact cycle time relationship between each
instruction in the trace. This information is added to the trace, when the TCBCONTROLBCA bit is set. The overhead
on the trace information is a little more than one extra bit per CPU-clock cycle.

This setting only affects the TCB module and not the PDtrace module. The extra bit therefore only affects the likeli-
hood of the TCB fifo overflowing.

11.14 TCB On-Chip Trace Memory

When on-chip trace memory is available (TCBCONFIGOnT is set) the memory is typically of smaller size than if it
were external in a trace probe. The assumption is that it is of some value to trace a smaller piece of the program.

With on-chip trace memory, the TCB can work in three possible modes:

1. Trace-From mode.

2. Trace-To mode.

3. Under Trigger unit control.

Software can select this mode using the TCBCONTROLBTM field. If one or more trigger control registers
(TCBTRIGx) are implemented, and they are using Start, End or About triggers, then the trace mode in
TCBCONTROLBTM should be set to Trace-To mode.

11.14.1 On-Chip Trace Memory Size

The supported On-chip trace memory size can range from 256 byte to 8Mbytes, in powers of 2. The actual size is
shown in the TCBCONFIGSZ field.

11.14.2 Trace-From Mode

In the Trace-From mode, tracing begins when the processor enters into a processor mode/ASID value which is
defined to be traced or when an EJTAG hardware breakpoint trace trigger turns on tracing. Trace collection is
stopped when the buffer is full. The TCB then signals buffer full using TCBCONTROLBBF. When external software
polling this register finds the TCBCONTROLBBF bit set, it can then read out the internal trace memory. Saving the
trace into the internal buffer will re-commence again only when the TCBCONTROLBBF bit is reset and if the CPU is
sending valid trace data (i.e., PDO_IamTracing not equal 0).

11.14.3 Trace-To Mode

In the Trace-To mode, the TCB keeps writing into the internal trace memory, wrapping over and overwriting the old-
est information, until the processor is reaches an end of trace condition. End of trace is reached by leaving the proces-
sor mode/ASID value which is traced, or when an EJTAG hardware breakpoint trace trigger turns tracing off. At this

 EJTAG Debug Support in the 1004K™ CPU

374 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

point, the on-chip trace buffer is then dumped out in a manner similar to that described above in Section
11.14.2 “Trace-From Mode”.

Chapter 12

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 375

Inter-Thread Communication Unit of the 1004K™ CPU

This chapter describes the 1004K Inter-Thread Communication Unit (ITU) included in the 1004K CPU. This chapter
contains the following sections:

• Section 12.1 “Features Overview”

• Section 12.2 “ITC Storage”

• Section 12.3 “ITC Views”

• Section 12.4 “ITC Address Space”

12.1 Features Overview

Inter-Thread Communication (ITC) Storage is a Gating Storage mechanism designed for low-level thread synchroni-
zation. Loads and stores to and from gating storage may block until the state of the storage location corresponds to
some set of conditions required for completion. A blocked load or store can be precisely aborted if necessary, and
restarted later.

In the 1004K CPU, the ITC storage is provided by the Inter-Thread Communication Unit (ITU). This block of logic
resides outside of the CPU and connects to the CPU through the gating storage interface. SoC integrators are free to
use the MIPS-supplied reference module, or to implement their own ITU module, or to not use ITC at all. This chap-
ter describes the features of the sample ITU block supplied with the 1004K CPU. This block only supports synchroni-
zation of TCs within a single 1004K CPU.

12.2 ITC Storage

References to memory pages which map to ITC storage resolve not to main memory, but to storage locations, or cells,
with special attributes. In general, it is possible that behind each ITC storage cell there is more than one memory loca-
tion. This is useful for mapping hardware queues, stacks, and other structures. The reference ITU supports two kinds
of storage cells: four-entry FIFO queues and single-entry Semaphore cells. All ITC cells are composed of the tag and
data portions. In the single-entry cells, the data is 32 bits wide. The FIFO cells store four 32-bit data values.Although
the memory space allows for 64-bit ITC cells, only the least-significant 32-bit words are present in this implementa-
tion. All ITC cells should be accessed as 32-bit memory. Partial-word access such as LH or SB will result in unde-
fined behavior.

The tag of each ITC cell contains a number of control bits that regulate accesses to that cell. The format for the ITC
tag is shown in Figure 12.1. In addition to the E (Empty) and F (Full) fields specified by the MT ASE, the tag contains
four implementation-specific fields: T, FIFO, FIFODepth, and FIFOPtr. The FIFO and FIFODepth fields indicate
whether a cell is a FIFO and its depth. The FIFOPtr indicates how many elements are currently in a FIFO; this field

 Inter-Thread Communication Unit of the 1004K™ CPU

376 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

is always zero for single-entry cells. The FIFOPtr can be reset by writing 1 into the E field of a FIFO. Finally, the T
field indicates whether a Gating Storage exception should be signaled on an E/F or P/V view access to the cell.

The number and type of ITC cells implemented in the ITU is configurable. The possible configurations are: 0, 1, 2, 4,
8, or 16 four-entry FIFOs and 0, 1, 2, 4, 8, or 16 single-entry Semaphores. If the implementation includes both types
of cell, the FIFO cells will be grouped before the Semaphore cells. N number of FIFO cells will be located at cell
addresses 0 to N-1. M number of Semaphore cells will be located at cell addresses N to N+M-1. The actual physical
address is dependent on the base address and cell spacing. See Section 12.4 “ITC Address Space” for more informa-
tion on addressing.

12.3 ITC Views

All ITC cells can be accessed in one of 16 ways, called views, using standard load and store instructions. The view is
encoded in bits 6:3 of the memory address, such that the successive views of a cell correspond to successive
64-bit-aligned addresses. Table 12.2 shows the addresses for the various views, and the following sections describe
the effects of using each of the views. If the ITC location is of type FIFO, the behavior of some of the views changes,
and this is noted in the description of each view.

Table 12.1 ITC Storage Cell Tag Format

Fields

Description Read/Write Reset StateName Bit

FIFODepth 31:28 Log2 of the cell depth. This field is set to 0x0 for single-

entry cells, and to 0x2 for four-entry FIFO cells.

R Preset

FIFOPtr 20:18 This field indicates the number of elements in a FIFO cell,
and always reads zero for single-entry Semaphore cells.

R 0

FIFO 17 1 for FIFO cells and 0 for single-entry Semaphore cells. R Preset

T 16 Trap Bit. When set, this bit causes the processor to take a
Gating Storage Exception on PV or EF accesses.

R/W Undefined

F 1 Full Bit. This bit indicates that the cell is full R/W Undefined

E 0 Empty Bit. This bit indicates that the cell is empty. Writing
1 to this bit also reset FIFOPtr.

R/W Undefined

0 27:21,
15:2

Must be written as zeros; return zeros on read 0 0

Table 12.2 ITC View Addresses

Address[6:3] View

0x0 Bypass View

0x1 Control View

0x2 Empty/Full Synchronized View

0x3 Empty/Full Try View

0x4 P/V Synchronized View

0x5 P/V Try View

0x6-0xF Reserved Views

12.3 ITC Views

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 377

12.3.1 Bypass View

This view of the ITC location implies that a load or a store does not cause the issuing thread to block and does not
affect any of the cells state bits.The operation of SC using this view is undefined.

Accesses using Bypass view never result in Gating Storage exceptions.

A Bypass view store to a FIFO ITC location overwrites the newest FIFO entry, while a Bypass view load returns the
contents of the oldest entry.

12.3.2 Control View

This view of the ITC location can be used to manipulate the tag of the ITC cell. Loads and stores access the entire 32b
tag value. Table 12.1 shows the fields within that 32-bit tag.

Accesses using Control view never cause the issuing thread to block and never result in Gating Storage exceptions.

A Control view store to a FIFO location with the E bit set will cause the FIFO to reset its read pointer.

12.3.3 Empty/Full Synchronized View

This view of the ITC location implies that a load causes the issuing thread to block if the cell is Empty. Similarly, a
store blocks if the cell is full. Accesses using this view cause an automatic update of the Empty and Full bits to reflect
the new state of the cell. The operation of SC using this view is undefined.

If the T bit is set, then all E/F Synchronized view accesses, success or failure, cause a gated exception trap.

12.3.4 Empty/Full Try View

This view of the ITC location is similar in nature to the previous E/F Synchronized view in most respects other than
the waiting policy on an access failure. It is to be used if the issuing thread can potentially find something else to do
and does not wish to be blocked if the access fails. A load with this view returns a value of zero if the cell is Empty,
regardless of actual data contained. Otherwise the load behaves as in the E/F Synchronized case. Normal Stores to
Full locations through the E/F Try view fail silently to update the contents of the cell, rather than block the thread. SC
(Store Conditional) instructions referencing the EF Try view will indicate success or failure based on whether the ITC
store succeeds or fails.

If the T bit is set, then all E/F Try view accesses, success or failure, cause a gated exception trap.

12.3.5 P/V Synchronized View

This view of the ITC location does not modify the Empty and Full bits, both of which are assumed to be cleared as
part of the cell initialization routine. Loads with this view return the current cell data value if the value is non-zero,
and cause an atomic post-decrement of the value. If the cell value is zero, loads block until the cell takes a non-zero
value. Normal Stores cause an atomic increment of the cell value, up to a maximum of 0xffff at which point the value
saturates. Loads check the least significant 16bits of the cell for a 0x0 irrespective of load size. The operation of SC
using this view is undefined.

If the T bit is set, then all P/V Synchronized view accesses, success or failure, cause a gated exception trap.

P/V Synchronized view accesses are not allowed to FIFO ITC locations.

 Inter-Thread Communication Unit of the 1004K™ CPU

378 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

12.3.6 P/V Try View

This view of the ITC location is similar in nature to the previous P/V Synchronized view in most respects other than
the waiting policy on an access failure. It is to be used if the issuing thread can potentially find something else to do
and does not wish to be blocked if the access fails. A load with this view returns a value of zero even if the cell con-
tains a data value of 0x0. Otherwise the load behaves as in the E/F Synchronized case. Normal stores using this view
cause a saturating atomic increment of the cell value (saturating to 0xffff), as described for the P/V Synchronized
view, and cannot fail. The operation of SC using this view is undefined.

If the T bit is set, then all PV Try view accesses, success or failure, will cause a gated exception trap.

P/V Try view accesses are not allowed to FIFO ITC locations.

12.3.7 Reserved Views

These views are reserved and should not be used by software.

12.4 ITC Address Space

The ITC physical address space is defined by two, 32-bit registers: ITCAddressMap0 and ITCAddressMap1. Together

these two registers specify a 2N aligned block of uncached memory. The BaseAddress field of the ITCAddressMap0
register specifies the starting address of the ITC memory block. The AddrMask of the ITCAddressMap1 register deter-
mines the size of the memory block which can be varied from 1KB to 128KB. Within this address space, ITC cells
are spread out with a stride specified by the EntryGrain field. Tightly spaced cells save on memory space, but widely
spaced cells spread across a number of TLB pages, permitting different cells to be mapped to different processes. The
number of cells is specified by the NumEntries field. See Table 12.5 and Table 12.6 for a detailed description of the
AddressMap registers.

Table 12.3 ITC AddressMap0 Register Format

Table 12.4 ITCAddressMap1 Register Format

31 10 9 1 0

BaseAddress 0 En

31 30 20 19 17 16 10 9 3 2 0

M NumEntries 0 AddrMask 0 EntryGrain

Table 12.5 AddressMap0 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit

BaseAddress 31:10 The top [31:10] bits of the ITC Physical Memory Mapped Block R/W Undefined

En 0 ITC enable R/W 0

0 9:1 Must be written as zeros; return zeros on read 0 0

12.4 ITC Address Space

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 379

Depending on the setting of the AddrMask, NumEntries, and EntryGrain, it is possible that ITC cells do not fill up the
entire ITC address block. If for example, two cells are mapped to a 1KB area with a stride of 256B (EntryGrain equal
to 0x1), the first cell starts at offset 0x000 and the second at offset 0x100. The remaining two 256B regions starting at
offsets 0x200 and 0x300 do not map to any storage. Any access to an address that does not map to an ITC entry will
result in undefined behavior. It is also possible to set the ITC registers in a way that makes some of the cells unavail-
able.

Table 12.6 AddressMap1 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit

M 31 This bit indicates if another ITC block is defined along with
another pair of ITCAddressMap registers. On the 1004K, this
value is hardcoded to 0

R 0

NumEntries 30:20 Number of ITC cells present R Preset

AddrMask 16:10 Indicates which bits of the BaseAddress field should not partici-
pate in determining an ITC memory hit. This field effectively
defines the size of the ITC memory block. AddrMask set to zero
implies a 1KB ITC address space, and AddrMask set to 0x3f
implies a 128KB address space.

R/W Undefined

EntryGrain 2:0 Cells are spaced at intervals of 128x2EntryGrain bytes, or:
0x0 - 128B
0x1 - 256B
0x2 - 512B
0x3 - 1KB
0x4 - 2KB
0x5 - 4KB
0x6 - 8KB
0x7 - 16KB

R/W Undefined

0 19:17, 9:3 Must be written as zeros; return zeros on read 0 0

 Inter-Thread Communication Unit of the 1004K™ CPU

380 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Chapter 13

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 381

Policy Manager in the 1004K™ CPU

The 1004K CPU includes a Policy Manager (PM) that is tasked with giving longer-term hints to the Dispatch Sched-
uler so as to achieve whatever performance allocation is desired in the system. The Policy Manager will be external to
the CPU. MIPS will deliver choices of the policy managers. In addition, the customer may design their own Policy
Manager.

• Section 13.1 “Thread Scheduling Unit”

• Section 13.2 “Policy Managers”

13.1 Thread Scheduling Unit

The 1004K CPU contains a unit called the Thread Scheduling Unit (TSU), which has two submodules: an internal
Dispatch Scheduler and an external Policy Manager.

Figure 13.1 TSU Block Diagram

The Dispatch Scheduler (DS) will make cycle-by-cycle choices on which instructions to issue/dispatch. Since it is
internal to the CPU, it will not be modifiable by the customer. The DS is designed to be as simple as possible and the
system-specific complexity should be put into the policy manager so as not to burden the CPU with extra area/power
which is not needed in all configurations.

The Policy Manager Interface incorporates a 4-level priority scheme. Each TC will be assigned to one of 4 groups
and each group will have a unique priority level. Each cycle the dispatch scheduler will choose to dispatch an instruc-
tion from a TC in the highest priority group that contains any runnable TCs. If there are multiple TCs in the selected

TSU

Dispatch
Scheduler

Policy
Manager

1004K CPU

 Policy Manager in the 1004K™ CPU

382 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

group, then it will choose among them using a round-robin algorithm. For more details about the Policy Manager
Interface, please refer to the chapter titled “Policy Manager Interface” in the MIPS32 ® 1004K™ CPU Family Inte-
grator’s Guide[9].

13.2 Policy Managers

MIPS provides the following reference PM designs:

• Basic Round Robin (RR)

• Weighted Round Robin (WRR)

• Enhanced Weighted Round Robin (WRR2)

These designs support thread-scheduling capabilities that are common to many systems. For more advanced and/or
system-specific capabilities, users can also implement a custom policy manager. The following subsections describe
the operation of each of the MIPS-supplied policy managers and the CP0 registers through which they are controlled.

13.2.1 Basic Round-Robin Policy Manager

When using the basic round robin PM, all TCs are assigned to the same priority level. Since the internal Dispatch
Scheduler implements a simple round-robin among TCs in the same priority level, all TCs are statically given the
same weight and bandwidth, and will be fairly allocated amongst all runnable TCs.

This PM does not implement any thread-scheduling CP0 registers. Writes to these registers will be ignored. Reads
from these registers will return -1.

When a new TC is forked, it will begin to participate in the round robin pool. This will thus cause the older TCs to get
lower bandwidth allocations.

13.2.2 Weighted Round-Robin Policy Manager (WRR)

The main difference between the basic round-robin policy and the weighted round-robin policy manager is software
controllability. With the WRR PM, TCs are scheduled round-robin style, but bandwidth given to an individual TC
can be adjusted or “weighted” by software so that a TC can get more or less than its fair share of the processor band-
width.

The WRR PM implements the following CP0 register fields:

• TCSchedule STP and GRP fields

• VPESchedule GPO field

• TCScheFBack register.

The WRR PM does not implement the VPEScheFBack register.

The group rotation schedule will be implemented. See details in Section 13.2.7 “Group Rotation Schedule”. When a
new TC is forked, the GRP of the new TC will be set to be the same as that of its parent.

13.2 Policy Managers

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 383

13.2.3 Enhanced Weighted Round-Robin Policy Manager (WRR2)

Internal to the CPU, there are three buffer structures which are shared by all TCs:

• The Load Queue (LDQ). This structure is used for any outstanding load instruction.

• The Fill-Store Buffer (FSB). This structure is used for any in-progress D-cache refills. One FSB entry is
generally allocated for each bus transaction.

• The Writeback Buffer (WBB). This structure is used for in-progress D-cache writebacks.

When one of these buffers becomes full, it will stall the pipeline and all TCs. In order to prevent such stalls, the
Enhanced Weighted Round-Robin policy manager (WRR2) can automatically deprioritize or throttle non-critical
threads when one of these structures gets close to full.

Other than the throttling function, the WRR2 functions the same as the base WRR PM. Please refer to Section
13.2.2 “Weighted Round-Robin Policy Manager (WRR)” for information on the base functionality.

13.2.3.1 Throttle Functionality and Operation

There are two programmable throttling functions, throttle0 and throttle1. The functions are as follows:

• Each throttle can be separately enabled for each queue/buffer.

• Software can set the threshold for enabling the throttle function.

• Software can set the group and stop priority override for each throttle.

• If both throttles are activated at the same time, throttle0 takes priority. Therefore, if both throttles are armed,
throttle0 should generally be the more restrictive one.

The function for each throttle is: When an enabled queue falls below the programmed threshold, the throttle is acti-
vated and the effective group and stop priority is overridden with the values from the throttle. When the queue goes
back above the threshold, the throttle is deactivated and the group and stop priority return to the values as pro-
grammed in TCSchedule.GRP and TCSchedule.STP, respectively.

NOTE: The throttle function is armed when software sets any of the queue enable bits. The throttle is activated by
hardware dynamically without software intervention.

This function can also be used to boost priority for threads. This is especially useful for the PM_sys_avail input - a
TC which, when running, helps to decrease the usage of such a resource could be boosted when the resource gets too
full.

13.2.4 TCSchedule Register

The WRR and WRR2 policy managers implement the TCSchedule register. Figure 13.2 and Table 13.1 shows the
format of the TCSchedule register.

Figure 13.2 TCSchedule Register (CP0 Register2, Select 6)
31 24 23 22 21 20 18 17 14 13 12 11 10 8 7 4 3 2 1 0

0 T1_STP T1_GRP T1_TH T1_QE T0_STP T0_GRP T0_TH T0_QE STP 0 GRP

 Policy Manager in the 1004K™ CPU

384 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Table 13.1 TCSchedule Register Field Descriptions

Fields

Description

Read
/

Write
Reset
State

Implemented?

Name Bits WRR WRR2

0 31:24,2 Must be written as 0. Returns zero on reads. 0 0

T1_STP 23 Throttle1 Stop Priority. When throttle1 is activated and
throttle0 is not, the effective stop priority for this TC is set to
this value.

R/W Undef No Yes

T1_GRP 22:21 Throttle1 Group. When throttle1 is activated and throttle0 is
not, the effective group for this TC is set to this value.

R/W Undef No Yes

T1_TH 20:18 Throttle1 Threshold. When an enabled queue input is equal to
or less than this value, throttle0 is activated for this TC.
NOTE: Setting this value to 7 will disable the threshold check
and activate this throttle permanently if there are any enabled
queues.

R/W Undef No Yes

T1_QE 17:14 Throttle1 Queue Enable. When a bit is set in this vector, it
sensitizes throttle1 to the available resource as follows:

R/W 0 No Yes

T0_STP 13 Throttle0 Group. When throttle0 is activated, the effective
stop priority for this TC is set to this value.

R/W Undef No Yes

T0_GRP 12:11 Throttle0 Group. When throttle0 is activated, the effective
group for this TC is set to the this value.

R/W Undef No Yes

T0_TH 10:8 Throttle0 Threshold. When an enabled queue input is equal to
or less than this value, throttle0 is activated for this TC.
NOTE: Setting this value to 7 will disable the threshold check
and activate this throttle permanently if there are any enabled
queues.

R/W Undef No Yes

T0_QE 7:4 Throttle0 Queue Enable. When a bit is set in this vector, it
sensitizes throttle0 to the available resource inputs as follows:

R/W 0 No Yes

STP 3 Stop Priority. Software sets this if this TC should never issue
any instructions.

R/W 0 Yes Yes

GRP 1:0 Group of the TC. Software sets this value to the group the TC
should belong to.

R/W 0 Yes Yes

T1_QE PM Input Signal

17 PM_sys_avail[2:0]

16 PM_fsb_avail[2:0]

15 PM_ldq_avail[2:0]

14 PM_wbb_avail[2:0]

T0_QE PM Input Signal

7 PM_sys_avail[2:0]

6 PM_fsb_avail[2:0]

5 PM_ldq_avail[2:0]

4 PM_wbb_avail[2:0]

13.2 Policy Managers

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 385

13.2.5 TCScheFBack Register

The WRR and WRR2 policy managers implement the TCScheFBack register for each TC. Figure 13.3 and Table
13.2 show the format of the TCScheFBack register.

Figure 13.3 TCScheFBack Register (CP0 Register2, Select 7)

13.2.5.1 VPESchedule Register

The WRR and WRR2 policy managers implement the VPESchedule register for each VPE. Figure 13.4 and Table
13.3 shows the format of the VPESchedule register.

Figure 13.4 VPESchedule Register (CP0 Register1, Select 5) Register

13.2.6 VPEScheFBack Register

The WRR2 policy manager implements theVPEScheFBack register. Figure 13.5 and Table 13.4 show the format of
the VPEScheFBack register.

31 0

Count

Table 13.2 TCScheFBack Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

COUNT 31:0 This is a count of the number of instructions completed by
this TC. The value will saturate at 32’hffff_ffff rather than
rolling over to 0.

R/W Undefined

31 6 5 4 0

0 GPO 0

Table 13.3 VPESchedule Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

0 31:6,4:0 Must be written as 0. Returns zero on reads. 0 0

GPO 5 Group priority override. When set, the priorities of the groups
will be fixed as follows:
group3 will be priority3
group2 will be priority2
group1 will be priority1
group0 will be priority0
When cleared, the priorities of the groups will be rotated as
described in Section 13.2.7 “Group Rotation Schedule”.
NOTE: GPO is a per-processor field. There is only one GPO
register, which is accessible from both GPO fields in a
dual-VPE system.

R/W 1

 Policy Manager in the 1004K™ CPU

386 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Figure 13.5 VPEScheFBack Register (CP0 Register1, Select 6)

13.2.7 Group Rotation Schedule

When VPESchedule.GPO is cleared, the group priorities are rotated as described in this section. These rotations will
enable a TC in a higher group to be prioritized higher than TCs in lower groups. The exact weighting function is com-
plicated due to the interplay of non-runnable TCs, but generally, TCs in the next higher group will get at least twice
the bandwidth of the TCs in the lower group.

The rotation schedule is described in Table 13.5.

31 16 15 12 11 8 7 4 3 0

0 SYSS WBBS FSBS LDQS

Table 13.4 VPEScheFBack Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

0 31:16 Reserved. Must be written as 0. R 0

SYSS 15:12 System Buffer Size. This is a reflection of the value on
PM_sys_size[3:0].

R Preset

WBBS 11:8 WBB Size R Preset

FSBS 7:4 FSB Size. R Preset

LDQS 3:0 LDQ Size. R Preset

Table 13.5 Rotation of Group Priority Levels

Rotation
Count

Group3
Priority

Group2
Priority

Group1
Priority

Group0
Priority

4’b0001 P3 P2 P1 P0

4’b0010 P2 P3 P0 P1

4’b0011 P3 P2 P1 P0

4’b0100 P2 P0 P3 P1

4’b0101 P3 P2 P1 P0

4’b0110 P2 P3 P0 P1

4’b0111 P3 P1 P2 P0

4’b1000 P0 P2 P1 P3

4’b1001 P3 P1 P2 P0

4’b1010 P2 P3 P0 P1

4’b1011 P3 P2 P1 P0

4’b1100 P2 P0 P3 P1

4’b1101 P3 P2 P1 P0

4’b1110 P2 P3 P0 P1

4’b1111 P3 P1 P2 P0

13.2 Policy Managers

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 387

The group priorities can easily be generated using a 4b counter and a priority encoder.

G3_priority = { Cnt[0] | Cnt[1] | Cnt[2], Cnt[0]};

G2_priority =
{(~Cnt[3]&~Cnt[2] | ~Cnt[2]&Cnt[1] | Cnt[1]&~Cnt[0] | ~Cnt[1]&(Cnt[2]^~Cnt[0])),
(Cnt[2]&Cnt[1] | Cnt[1]&~Cnt[0] | Cnt[3]&~Cnt[2]&~Cnt[1]&Cnt[0])};

The priority values for the other groups can easily be calculated from the above as follows:

G1_priority = ~G2_priority;
G0_priority = ~G3_priority;

With this mechanism, each group gets successively more slots at the highest priority. Group0 is the highest priority
1/15 slots, Group1 - 2/15, Group2 - 4/15, and Group3 - 8/15. Here are some of the properties of this rotation schedule.

For adjacent groups:

• Group3 is higher priority than group2 10/15 cycles. (G3 has 100% more bandwidth than G2)

• Group2 is higher priority than group1 10/15 cycles. (G2 has 100% more bandwidth than G1)

• Group1 is higher priority than group0 10/15 cycles. (G1 has 100% more bandwidth than G0)

For groups 2 levels apart:

• Group3 is higher priority than group1 12/15 cycles (G3 has 300% more bandwidth than G1)

• Group2 is higher priority than group0 12/15 cycles (G2 has 300% more bandwidth than G0)

And finally, for groups 3 levels apart:

• Group3 is higher priority than group0 14/15 cycles (G3 has 1300% more bandwidth than G0)

The priorities are rotated potentially every cycle. However, when the highest priority group in a given cycle has mul-
tiple runnable TCs in it, then that rotation is held for as many cycles as there are TCs in that highest priority group.
This mechanism enables the relative bandwidth between groups to be maintained even when one group contains more
TCs than another group.

For instance, assume we have a 4 TC system with 3 TCs in group1 and 1 TC in group0. The exact cycle by cycle pri-
ority is described in Table 13.6.

Table 13.6 Priority Level Rotation (3TCs in group1, 1 TC in group0)

Cycle
Count

Rotation
Count

Group3
Priority

Group2
Priority

Group1
Priority

Group0
Priority

1 4’b0001 P3 P2 P1 P0

2 P3 P2 P1 P0

3 P3 P2 P1 P0

4 4’b0010 P2 P3 P0 P1

 Policy Manager in the 1004K™ CPU

388 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

As can be seen in the table, the full rotation actually requires 35 cycles to complete. Out of these 35 cycles, group1 is
higher priority than group0 for 30 cycles. However, since group1 contains 3 TCs, these will be round-robin’d by the
DS, so on average, each of these TCs will get 33% of this group’s bandwidth, or 10cycles. (29% of all the issue slots
for each of those TCs in group1). The one TC in group0 gets 5 issue slots, or 14%. As can be seen, each of the TCs in
group1 gets about double the issue slots of the TC in group0.

5 4’b0011 P3 P2 P1 P0

6 P3 P2 P1 P0

7 P3 P2 P1 P0

8 4’b0100 P2 P0 P3 P1

9 P2 P0 P3 P1

10 P2 P0 P3 P1

11 4’b0101 P3 P2 P1 P0

12 P3 P2 P1 P0

13 P3 P2 P1 P0

14 4’b0110 P2 P3 P0 P1

15 4’b0111 P3 P1 P2 P0

16 P3 P1 P2 P0

17 P3 P1 P2 P0

18 4’b1000 P0 P2 P1 P3

19 4’b1001 P3 P1 P2 P0

20 P3 P1 P2 P0

21 P3 P1 P2 P0

22 4’b1010 P2 P3 P0 P1

23 4’b1011 P3 P2 P1 P0

24 P3 P2 P1 P0

25 P3 P2 P1 P0

26 4’b1100 P2 P0 P3 P1

27 P2 P0 P3 P1

28 P2 P0 P3 P1

29 4’b1101 P3 P2 P1 P0

30 P3 P2 P1 P0

31 P3 P2 P1 P0

32 4’b1110 P2 P3 P0 P1

33 4’b1111 P3 P1 P2 P0

34 P3 P1 P2 P0

35 P3 P1 P2 P0

Table 13.6 Priority Level Rotation (3TCs in group1, 1 TC in group0)

Cycle
Count

Rotation
Count

Group3
Priority

Group2
Priority

Group1
Priority

Group0
Priority

Chapter 14

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 389

Instruction Set Overview

This chapter provides a general overview on the three CPU instruction set formats of the MIPS architecture: Immedi-
ate, Jump, and Register. Refer to Chapter 15, “1004K™ Processor CPU Instructions” on page 395 for a complete list-
ing and description of instructions.

This chapter discusses the following topics

• Section 14.1 “CPU Instruction Formats”

• Section 14.2 “Load and Store Instructions”

• Section 14.3 “Computational Instructions”

• Section 14.4 “Jump and Branch Instructions”

• Section 14.5 “Control Instructions”

• Section 14.6 “Coprocessor Instructions”

14.1 CPU Instruction Formats

Each CPU instruction consists of a single 32-bit word, aligned on a word boundary. There are three instruction for-
mats immediate (I-type), jump (J-type), and register (R-type)—as shown in Figure 14.1. The use of a small number of
instruction formats simplifies instruction decoding, allowing the compiler to synthesize more complicated (and less
frequently used) operations and addressing modes from these three formats as needed.

14.3 Computational Instructions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 391

Regardless of access type or byte ordering (endianness), the address given specifies the low-order byte in the
addressed field. For a big-endian configuration, the low-order byte is the most-significant byte; for a little-endian
configuration, the low-order byte is the least-significant byte.

The access type, together with the three low-order bits of the address, define the bytes accessed within the addressed
word as shown in Table 14.1. Only the combinations shown in Table 14.1 are permissible; other combinations cause
address error exceptions.

Instruction fetches are either halfword accesses (MIPS16e™ code) or word accesses (32b code). These references
will be impacted by endianness the same as load/store references of those sizes.

14.3 Computational Instructions

Computational instructions can be either in register (R-type) format, in which both operands are registers, or in imme-
diate (I-type) format, in which one operand is a 16-bit immediate.

Computational instructions perform the following operations on register values:

• Arithmetic

Table 14.1 Byte Access Within a Doubleword

Access Type

Low-Order
Address Bits

Bytes Accessed

Big Endian
(63----------------31-------------------0)

Little Endian
(63----------------31-------------------0)

2 1 0 Byte Byte

Doubleword 0 0 0 0 1 2 3 4 5 6 7 7 6 5 4 3 2 1 0

Word 0 0 0 0 1 2 3 3 2 1 0

1 0 0 4 5 6 7 7 6 5 4

Triplebyte 0 0 0 0 1 2 2 1 0

0 0 1 1 2 3 3 2 1

1 0 0 4 5 6 6 5 4

1 0 1 5 6 7 7 6 5

Halfword 0 0 0 0 1 1 0

0 1 0 2 3 3 2

1 0 0 4 5 5 4

1 1 0 6 7 7 6

Byte 0 0 0 0 0

0 0 1 1 1

0 1 0 2 2

0 1 1 3 3

1 0 0 4 4

1 0 1 5 5

1 1 0 6 6

1 1 1 7 7

 Instruction Set Overview

392 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

• Logical

• Shift

• Count Leading Zeros/Ones

• Multiply

• Divide

These operations fit in the following four categories of computational instructions:

• ALU Immediate instructions

• Three-operand Register-type Instructions

• Shift Instructions

• Multiply And Divide Instructions

14.3.1 Cycle Timing for Multiply and Divide Instructions

Any multiply instruction in the integer pipeline is transferred to the multiplier as remaining instructions continue
through the pipeline; the product of the multiply instruction is saved in the HI and LO registers. If the multiply
instruction is followed by an MFHI or MFLO before the product is available, the pipeline interlocks until this product
does become available. Refer to Chapter 2, “Pipeline of the 1004K™ CPU” on page 37 for more information on
instruction latency and repeat rates.

14.4 Jump and Branch Instructions

Jump and branch instructions change the control flow of a program. All jump and branch instructions occur with a
delay of one instruction: that is, the instruction immediately following the jump or branch (this is known as the
instruction in the delay slot) always executes while the target instruction is being fetched from storage.

14.4.1 Overview of Jump Instructions

Subroutine calls in high-level languages are usually implemented with Jump or Jump and Link instructions, both of
which are J-type instructions. In J-type format, the 26-bit target address shifts left 2 bits and combines with the
high-order 4 bits of the current program counter to form an absolute address.

Returns, dispatches, and large cross-page jumps are usually implemented with the Jump Register or Jump and Link
Register instructions. Both are R-type instructions that take the 32-bit byte address contained in one of the general
purpose registers.

For more information about jump instructions, refer to the individual instructions in MIPS32® Architecture Refer-
ence Manual, Volume II: The MIPS32® Instruction Set.

14.4.2 Overview of Branch Instructions

All branch instruction target addresses are computed by adding the address of the instruction in the delay slot to the
16-bit offset (shifted left 2 bits and sign-extended to 32 bits). All branches occur with a delay of one instruction.

14.5 Control Instructions

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 393

If a conditional branch likely is not taken, the instruction in the delay slot is nullified.

Branches, jumps, ERET, and DERET instructions should not be placed in the delay slot of a branch or jump.

14.5 Control Instructions

Control instructions allow the software to initiate traps; they are always R-type.

14.6 Coprocessor Instructions

CP0 instructions perform operations on the System Control Coprocessor registers to manipulate the memory manage-
ment and exception handling facilities of the processor. Refer to Chapter 15, “1004K™ Processor CPU Instructions”
on page 395 for a listing of CP0 instructions.

 Instruction Set Overview

394 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Chapter 15

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 395

1004K™ Processor CPU Instructions

This chapter supplements the MIPS32 Architecture Reference Manual by describing instruction behavior that is spe-
cific to a 1004K CPU. The chapter is divided into the following sections:

• Section 15.1 “Understanding the Instruction Descriptions”

• Section 15.2 “1004K™ Opcode Map”

• Section 15.3 “Floating Point Unit Instruction Format Encodings”

• Section 15.4 “MIPS32® Instruction Set for the 1004K™ CPU”

The 1004K CPU also supports the MIPS16e ASE to the MIPS32 architecture. The MIPS16e ASE instruction set is
described in Chapter 16, “MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set” on page 443.

15.1 Understanding the Instruction Descriptions

Refer to Volume II of the MIPS32 Architecture Reference Manual [2] for more information about the instruction
descriptions. There is a description of the instruction fields, definition of terms, and a description function notation
available in that document.

15.2 1004K™ Opcode Map

Table 15.1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

∗ Operation or field codes marked with this symbol are reserved for future use, are valid encodings
for a higher-order MIPS ISA level, or are part of an application specific extension not imple-
mented on this core. Executing such an instruction will cause a Reserved Instruction Exception.

δ (Also italic field name.) Operation or field codes marked with this symbol denotes a field class.
The instruction word must be further decoded by examining additional tables that show values for
another instruction field.

∇ Operation or field codes marked with this symbol represent instructions which are only legal if
64-bit floating point operations are enabled. In other cases, executing such an instruction will
cause a Reserved Instruction Exception (non-coprocessor encodings or coprocessor instruction
encodings for a coprocessor to which access is allowed) or a Coprocessor Unusable Exception
(coprocessor instruction encodings for a coprocessor to which access is not allowed).

φ Operation or field codes marked with this symbol are obsolete and will be removed from a future
revision of the MIPS32 ISA. Software should avoid using these operation or field codes.

 1004K™ Processor CPU Instructions

396 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Table 15.2 MIPS32 Encoding of the Opcode Field

opcode bits 28..26

0 1 2 3 4 5 6 7

bits 31..29 000 001 010 011 100 101 110 111

0 000 SPECIAL δ REGIMM δ J JAL BEQ BNE BLEZ BGTZ

1 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2 010 COP0 δ COP1 δ COP2 δ COP1X BEQL φ BNEL φ BLEZL φ BGTZL φ
3 011 ∗ ∗ ∗ ∗ SPECIAL2

δ
JALX ∗ SPECIAL3

δ
4 100 LB LH LWL LW LBU LHU LWR ∗
5 101 SB SH SWL SW ∗ ∗ SWR CACHE

6 110 LL LWC1 LWC2 PREF ∗ LDC1 LDC2 ∗
7 111 SC SWC1 SWC2 * ∗ SDC1 SDC2 ∗

Table 15.3 MIPS32 SPECIAL Opcode Encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 SLL1

1. Specific encodings of the rt, rd, and sa fields are used to distinguish among the SLL, NOP, SSNOP, PAUSE, and
EHB functions.

MOVCI δ SRL δ SRA SLLV * SRLV δ SRAV

1 001 JR2

2. Specific encodings of the hint field are used to distinguish JR from JR.HB and JALR from JALR.HB

JALR2 MOVZ MOVN SYSCALL BREAK * SYNC

2 010 MFHI MTHI MFLO MTLO ∗ * ∗ ∗
3 011 MULT MULTU DIV DIVU ∗ ∗ ∗ ∗
4 100 ADD ADDU SUB SUBU AND OR XOR NOR

5 101 * * SLT SLTU ∗ ∗ ∗ ∗
6 110 TGE TGEU TLT TLTU TEQ * TNE *

7 111 ∗ * ∗ ∗ ∗ * ∗ ∗

Table 15.4 MIPS32 REGIMM Encoding of rt Field

rt bits 18..16

0 1 2 3 4 5 6 7

bits 20..19 000 001 010 011 100 101 110 111

0 00 BLTZ BGEZ BLTZL φ BGEZL φ * * * *

1 01 TGEI TGEIU TLTI TLTIU TEQI * TNEI *

2 10 BLTZAL BGEZAL BLTZALL φ BGEZALL φ * * * *

3 11 * * * * BPOSGE32 * * SYNCI

15.2 1004K™ Opcode Map

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 397

Table 15.5 MIPS32 SPECIAL2 Encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 MADD MADDU MUL ∗ MSUB MSUBU * *

1 001 * * * * * * * *

2 010 CorExtend

3 011

4 100 CLZ CLO * * ∗ ∗ * *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * * * * * SDBBP

Table 15.6 MIPS32 Special3 Encoding of Function Field for Release 2 of the Architecture

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 EXT ∗ ∗ ∗ INS ∗ ∗ ∗
1 001 * * LX * INSV * * *

2 010 ADDU.QB CMPUEQ.QB ABSQ_S.PH SHLL_QB * * * *

3 011 * * * * * * * *

4 100 BSHFL δ * * * ∗ * * *

5 101 * * * * * * * *

6 110 DPAG.W.P
H

* * * * * * *

7 111 EXTR.W * * RDHWR * * * *

Table 15.7 MIPS32 MOVCI Encoding of tf Bit

tf bit 16

0 1

MOVF MOVT

Table 15.8 MIPS32 SRL Encoding of Shift/Rotate

tf bit 21

0 1

SRL ROTR

Table 15.9 MIPS32 SRLV Encoding of Shift/Rotate

tf bit 6

0 1

SRLV ROTRV

 1004K™ Processor CPU Instructions

398 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Table 15.10 MIPS32 BSHFLEncoding of sa Field1

1. The sa field is sparsely decoded to identify the final instructions. Entries in this table with no mnemonic are
reserved for future use by MIPS Technologies and may or may not cause a Reserved Instruction exception.

sa bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00 WSBH

1 01

2 10 SEB

3 11 SEH

Table 15.11 MIPS32® ADDU.QB Encoding of the op Field1

1. The op field is decoded to identify the final instructions. Entries in this table with no mnemonic are reserved for future use by
MIPS Technologies and may or may not cause a Reserved Instruction exception.

op bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00 ADDU.QB SUBU.QB ∗ ∗ ADDU_S.QB SUBU_S.QB
MULEU_S.PH.Q

BL
MULEU_S.PH.Q

BR

1 01 * * ADDQ.PH SUBQ.PH * * ADDQ_S.PH SUBQ_S.PH

2 10 ADDSC ADDWC MODSUB ∗ RADDU.W.QB ∗ ADDQ_S.W SUBQ_S.W

3 11 ∗ ∗ ∗ ∗
MULEQ_S.W.PH

L
MULEQ_S.W.PH

R * MULQ_RS.PH

Table 15.12 MIPS32® CMPU.EQ.QB Encoding of the op Field

op bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00 CMPU.EQ.QB CMPU.LT.QB CMPU.LE.QB PICK.QB CMPGU.EQ.QB CMPGU.LT.QB CMPGU.LE.QB ∗

1 01 CMP.EQ.PH CMP.LT.PH CMP.LE.PH PICK.PH PRECRQ.QB.PH * PACKRL.PH
PRECRQU_S.Q

B.PH

2 10 ∗ ∗ ∗ ∗ PRECRQ.PH.W
PRECRQ_RS.P

H.W ∗ ∗

3 * * * ∗ ∗ ∗ * *

15.2 1004K™ Opcode Map

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 399

Table 15.13 MIPS32® ABSQ_S.PH Encoding of the op Field

op bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00 ∗ * REPL.QB REPLV.QB
PRECEQU.PH.Q

BL
PRECEQU.PH.Q

BR
PRECEQU.PH.Q

BLA
PRECEQU.PH.Q

BRA

1 01 ∗ ABSQ_S.PH REPL.PH REPLV.PH PRECEQ.W.PHL
PRECEQ.W.PH

R ∗ ∗

2 10 ∗ ABSQ_S.W ∗ ∗ * ∗ ∗ ∗

3 11 ∗ ∗ ∗ BITREV
PRECEU.PH.QB

L
PRECEU.PH.QB

R
PRECEU.PH.QB

LA
PRECEU.PH.QB

RA

Table 15.14 MIPS32® SHLL.QB Encoding of the op Field

op bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00 SHLL.QB SHRL.QB SHLLV.QB SHRLV.QB * * * *

1 01 SHLL.PH SHRA.PH SHLLV.PH SHRAV.PH SHLL_S.PH SHRA_R.PH SHLLV_S.PH SHRAV_R.PH

2 10 ∗ ∗ ∗ ∗ SHLL_S.W SHRA_R.W SHLLV_S.W SHRAV_R.W

3 11 ∗ * ∗ * ∗ ∗ ∗ ∗

Table 15.15 MIPS32® LX Encoding of the op Field

op bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00 LWX ∗ ∗ ∗ LHX ∗ LBUX ∗

1 01 β ∗ ∗ ∗ ∗ ∗ ∗ ∗

2 10 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

3 11 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 15.16 MIPS32® DPAQ.W.PH Encoding of the op Field

op bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00 * * * DPAU.H.QBL DPAQ_S.W.PH DPSQ_S.W.PH
MULSAQ_S.W.P

H DPAU.H.QBR

1 01 * * ∗ DPSU.H.QBL DPAQ_SA.L.W DPSQ_SA.L.W ∗ DPSU.H.QBR

2 10 MAQ_SA.W.PHL ∗
MAQ_SA.W.PH

R ∗ MAQ_S.W.PHL ∗ MAQ_S.W.PHR ∗

3 11 * * * * ∗ ∗ ∗ ∗

 1004K™ Processor CPU Instructions

400 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Table 15.17 MIPS32® EXTR.W Encoding of the op Field

op bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00 EXTR.W EXTRV.W EXTP EXTPV EXTR_R.W EXTRV_R.W EXTR_RS.W EXTRV_RS.W

1 01 ∗ ∗ EXTPDP EXTPDPV ∗ ∗ EXTR_S.H EXTRV_S.H

2 10 ∗ ∗ RDDSP WRDSP ∗ ∗ ∗ ∗

3 11 ∗ ∗ SHILO SHILOV ∗ ∗ ∗ MTHLIP

Table 15.18 MIPS32 COP0 Encoding of rs Field

rs bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC0 ∗ * * MTC0 ∗ * *

1 01 * * RDPGPR MFMC01 δ

1. Release 2 of the Architecture added the MFMC0 function, which is further decoded as the DI and EI instructions.

* * WRPGPR *

2 10 C0 δ
3 11

Table 15.19 MIPS32COP0 Encoding of Function Field When rs=CO

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 * TLBR TLBWI * * * TLBWR *

1 001 TLBP * * * * * * *

2 010 * * * * * * * *

3 011 ERET * * * * * * DERET

4 100 WAIT * * * * * * *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * * * * * *

Table 15.20 MIPS32 COP1 Encoding of rs Field

rs bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC1 ∗ CFC1 MFHC1 MTC1 ∗ CTC1 MTHC1

1 01 BC1 δ ∗ ∗ * * * * *

2 10 S δ D δ * * W δ L δ * *

3 11 * * * * * * * *

15.2 1004K™ Opcode Map

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 401

Table 15.21 MIPS32 COP1 Encoding of Function Field When rs=S

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 ADD SUB MUL DIV SQRT ABS MOV NEG

1 001 ROUND.L ∇ TRUNC.L ∇ CEIL.L ∇ FLOOR.L ∇ ROUND.W TRUNC.W CEIL.W FLOOR.W

2 010 * MOVCF δ MOVZ MOVN * RECIP ∇ RSQRT ∇ *

3 011 * * * * ∗ ∗ ∗ ∗
4 100 * CVT.D * * CVT.W CVT.L ∇ ∗ *

5 101 * * * * * * * *

6 110 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
7 111 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 15.22 MIPS32 COP1 Encoding of Function Field When rs=D

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 ADD SUB MUL DIV SQRT ABS MOV NEG

1 001 ROUND.L ∇ TRUNC.L ∇ CEIL.L ∇ FLOOR.L ∇ ROUND.W TRUNC.W CEIL.W FLOOR.W

2 010 * MOVCF δ MOVZ MOVN * RECIP ∇ RSQRT ∇ *

3 011 * * * * ∗ ∗ ∗ ∗
4 100 CVT.S * * * CVT.W CVT.L ∇ * *

5 101 * * * * * * * *

6 110 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
7 111 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 15.23 MIPS32 COP1 Encoding of Function Field When rs=W or L1

1. Format type L is legal only if 64-bit floating point operations are enabled.

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 * * * * * * * *

1 001 * * * * * * * *

2 010 * * * * * * * *

3 011 * * * * * * * *

4 100 CVT.S CVT.D * * * * ∗ *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * * * * * *

 1004K™ Processor CPU Instructions

402 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

15.3 Floating Point Unit Instruction Format Encodings

Instruction format encodings for the floating point unit are presented in this section. This information is a tabular pre-
sentation of the encodings described in tables Table 15.20 and Table 15.25 above.

Table 15.24 MIPS32 COP1 Encoding of tf Bit When rs=S or D, Function=MOVCF

tf bit 16

0 1

MOVF fmt MOVT.fmt

Table 15.25 MIPS64 COP1X Encoding of Function Field1

1. COP1X instructions are legal only if 64-bit floating point operations are enabled.

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 LWXC1 ∇ LDXC1 ∇ * * * LUXC1 ∇ * *

1 001 SWXC1 ∇ SDXC1 ∇ * * * SUXC1 ∇ * PREFX ∇
2 010 * * * * * * * *

3 011 * * * * * * ∗ *

4 100 MADD.S ∇ MADD.D ∇ * * * * ∗ *

5 101 MSUB.S ∇ MSUB.D ∇ * * * * ∗ *

6 110 NMADD.S
∇

NMADD.D
∇

* * 24k
*

* ∗ *

7 111 NMSUB.S ∇NMSUB.D ∇ * * * * ∗ *

Table 15.26 MIPS32 COP2 Encoding of rs Field

rs bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC2 ∗ CFC2 MFHC2 MTC2 ∗ CTC2 MTHC2

1 01 BC2δ ∗ ∗ * * * * *

2 10 C2

3 11

Table 15.27 Floating Point Unit Instruction Format Encodings

fmt field
(bits 25..21 of COP1

opcode)

fmt3 field
(bits 2..0 of COP1X

opcode)

Mnemonic Name Bit Width Data TypeDecimal Hex Decimal Hex

0..15 00..0F — — Used to encode Coprocessor 1 interface instructions (MFC1,
CTC1, etc.). Not used for format encoding.

16 10 0 0 S Single 32 Floating Point

17 11 1 1 D Double 64 Floating Point

15.4 MIPS32® Instruction Set for the 1004K™ CPU

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 403

15.4 MIPS32® Instruction Set for the 1004K™ CPU

This section describes the MIPS32 instructions for the 1004K CPUs. Table 15.28 lists the instructions in alphabetical
order. Instructions that have implementation dependent behavior are described afterwards. The descriptions for other
instructions exist in the architecture reference manual and are not duplicated here.

18..19 12..13 2..3 2..3 Reserved for future use by the architecture.

20 14 4 4 W Word 32 Fixed Point

21 15 5 5 L Long 64 Fixed Point

22 16 6 6 PS Paired Single 2 × 32 Floating Point

23 17 7 7 Reserved for future use by the architecture.

24..31 18..1F — — Reserved for future use by the architecture. Not available for
fmt3 encoding.

Table 15.28 1004K™ CPU Instruction Set

Instruction Description Function

ABS.fmt Floating Point Absolute Value
fmt = s,d

Fd = abs(Fs)

ADD Integer Add Rd = Rs + Rt

ADD.fmt Floating Point Add
fmt = s,d

Fd = Fs + Ft

ADDI Integer Add Immediate Rt = Rs + Immed

ADDIU Unsigned Integer Add Immediate Rt = Rs +U Immed

ADDIUPC Unsigned Integer Add Immediate to PC (MIPS16 only) Rt = PC +u Immed

ADDU Unsigned Integer Add Rd = Rs +U Rt

AND Logical AND Rd = Rs & Rt

ANDI Logical AND Immediate Rt = Rs & (016 || Immed)

B Unconditional Branch
(Assembler idiom for: BEQ r0, r0, offset)

PC += (int)offset

BAL Branch and Link
(Assembler idiom for: BGEZAL r0, offset)

GPR[31] = PC + 8
PC += (int)offset

BC1F Branch On Floating Point False if (cc[i] == 0) then
 PC += (int)offset

Table 15.27 Floating Point Unit Instruction Format Encodings (Continued)

fmt field
(bits 25..21 of COP1

opcode)

fmt3 field
(bits 2..0 of COP1X

opcode)

Mnemonic Name Bit Width Data TypeDecimal Hex Decimal Hex

 1004K™ Processor CPU Instructions

404 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

BC1FL Branch On Floating Point False Likely if (cc[i] == 0)then
PC += (int)offset

else
Ignore Next Instruction

BC1T Branch On Floating Point True if(cc[i] == 1) then
PC += (int)offset

BC1TL Branch On Floating Point True Likely if (cc[i] == 1) then
PC += (int)offset

else
Ignore Next Instruction

BC2F Branch On CP2 False if (cc[i] == 0) then
 PC += (int)offset

BC2FL Branch On CP2 False Likely if (cc[i] == 0)then
PC += (int)offset

else
Ignore Next Instruction

BC2T Branch On CP2 True if(cc[i] == 1) then
PC += (int)offset

BC2TL Branch On CP2 True Likely if (cc[i] == 1) then
PC += (int)offset

else
Ignore Next Instruction

BEQ Branch On Equal if Rs == Rt
PC += (int)offset

BEQL Branch On Equal Likely if Rs == Rt
PC += (int)offset

else
Ignore Next Instruction

BGEZ Branch on Greater Than or Equal To Zero if !Rs[31]
PC += (int)offset

BGEZAL Branch on Greater Than or Equal To Zero And Link GPR[31] = PC + 8
if !Rs[31]

PC += (int)offset

BGEZALL Branch on Greater Than or Equal To Zero And Link
Likely

GPR[31] = PC + 8
if !Rs[31]

PC += (int)offset
else

Ignore Next Instruction

BGEZL Branch on Greater Than or Equal To Zero Likely if !Rs[31]
PC += (int)offset

else
Ignore Next Instruction

BGTZ Branch on Greater Than Zero if !Rs[31] && Rs != 0
PC += (int)offset

BGTZL Branch on Greater Than Zero Likely if !Rs[31] && Rs != 0
PC += (int)offset

else
Ignore Next Instruction

Table 15.28 1004K™ CPU Instruction Set (Continued)

Instruction Description Function

15.4 MIPS32® Instruction Set for the 1004K™ CPU

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 405

BLEZ Branch on Less Than or Equal to Zero if Rs[31] || Rs == 0
PC += (int)offset

BLEZL Branch on Less Than or Equal to Zero Likely if Rs[31] || Rs == 0
PC += (int)offset

else
Ignore Next Instruction

BLTZ Branch on Less Than Zero if Rs[31]
PC += (int)offset

BLTZAL Branch on Less Than Zero And Link GPR[31] = PC + 8
if Rs[31]

PC += (int)offset

BLTZALL Branch on Less Than Zero And Link Likely GPR[31] = PC + 8
if Rs[31]

PC += (int)offset
else

Ignore Next Instruction

BLTZL Branch on Less Than Zero Likely if Rs[31]
PC += (int)offset

else
Ignore Next Instruction

BNE Branch on Not Equal if Rs != Rt
PC += (int)offset

BNEL Branch on Not Equal Likely if Rs != Rt
PC += (int)offset

else
Ignore Next Instruction

BREAK Breakpoint Break Exception

C.cond.fmt Floating Point Compare
fmt = s,d

cc[i] = Fs compare_cond Ft

CACHE Cache Operation See Below

CEIL.L.fmt Floating Point Ceiling to Long Fixed Point Fd = convert_and_round(Fs)

CEIL.W.fmt Floating Point Ceiling to Word Fixed Point Fd = convert_and_round(Fs)

CFC1 Move Control Word From Floating Point Rt = FP_Control[Fs]

CFC2 Move Control Word From CP2 Rt = CP2_Control[Fs]

CLO Count Leading Ones Rd = NumLeadingOnes(Rs)

CLZ Count Leading Zeroes Rd = NumLeadingZeroes(Rs)

COP2 Coprocessor 2 Operation Implementation dependent

CTC1 Move Control Word To Floating Point FP_Control[Fs] = Rt

CTC2 Move Control Word to CP2 CP2 Control[Fs] = Rt

CVT.D.fmt Floating Point Convert to Double Floating Point
fmt = S,W,L

Fd = convert_and_round(Fs)

Table 15.28 1004K™ CPU Instruction Set (Continued)

Instruction Description Function

 1004K™ Processor CPU Instructions

406 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

CVT.D.fmt Floating Point Convert to Double Floating Point
fmt = S,W,L

Fd = convert_and_round(Fs)

CVT.L.fmt Floating Point Convert to Long Fixed Point
fmt = S,D

Fd = convert_and_round(Fs)

CVT.S.fmt Floating Point Convert to Single Floating Point
fmt = W,D,L

Fd = convert_and_round(Fs)

CVT.W.fmt Floating Point Convert to Word Fixed Point
fmt = S,D

Fd = convert_and_round(Fs)

DERET Return from Debug Exception PC = DEPC
Exit Debug Mode

DI Atomically Disable Interrupts Rt = Status; StatusIE = 0

DIV Divide LO = (int)Rs / (int)Rt
HI = (int)Rs % (int)Rt

DIV.fmt Floating Point Divide
fmt = S,D

Fd = Fs/Ft

DIVU Unsigned Divide LO = (uns)Rs / (uns)Rt
HI = (uns)Rs % (uns)Rt

DMT Clear VPEControl[TE], which suspends execution of
all other TCs affiliates to the same VPE

The rt register receives the original value
of VPEControl; if you don’t specify a
register rt it receives the previous con-
tents of the MVPControl register.

DVPE Disable all multithreading, including any other TCs
affiliated to other VPEs, leaving this thread running
alone

Implemented as an atomic clear of the
MVPContorl[VEP] bit. If you specify a
register rt it receives the previous con-
tents of the MVPControl register.

EHB Execution Hazard Barrier Stop instruction execution until execution
hazards are cleared

EI Atomically Enable Interrupts Rt = Status; StatusIE = 1

EMT Atomically sets the VPEControl[TE] bit and returns the
old value

VPEControl[TE] = 1

ERET Return from Exception if SR[2]
PC = ErrorEPC

else
PC = EPC
SR[1] = 0

SR[2] = 0
LL = 0

EVPE Returns the previous value of the MVPControl register
and enable multi-VPE execution

GPR[rt] <- MVPControl;
MVPControlEVP <- 1

EXT Extract Bit Field Rt = ExtractField(Rs, pos, size)

FLOOR.L.fmt Floating Point Floor to Long Fixed Point
fmt = S,D

Fd = convert_and_round(Fs)

Table 15.28 1004K™ CPU Instruction Set (Continued)

Instruction Description Function

15.4 MIPS32® Instruction Set for the 1004K™ CPU

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 407

FLOOR.W.fmt Floating Point Floor to Word Fixed Point
fmt = S,D

Fd = convert_and_round(Fs)

FORK Find a TC and activate it, so it starts at rs The new thread’s rd register will be set to
the value provided in rt.

INS Insert Bit Field Rt = InsertField(Rs, Rt, pos,
size)

J Unconditional Jump PC = PC[31:28] || offset<<2

JAL Jump and Link GPR[31] = PC + 8
PC = PC[31:28] || offset<<2

JALR Jump and Link Register Rd = PC + 8
PC = Rs

JALR.HB Jump and Link Register with Hazard Barrier Like JALR, but also clears execution and
instruction hazards

JALRC Jump and Link Register Compact - do not execute
instruction in jump delay slot(MIPS16 only)

Rd = PC + 2
PC = Rs

JR Jump Register PC = Rs

JR.HB Jump Register with Hazard Barrier Like JR, but also clears execution and
instruction hazards

JRC Jump Register Compact - do not execute instruction in
jump delay slot (MIPS16 only)

PC = Rs

LB Load Byte Rt = (byte)Mem[base+offset]

LBU Unsigned Load Byte Rt = (ubyte)Mem[base+offset]

LDC1 Load Doubleword to Floating Point Ft = memory[base+offset]

LDC2 Load Doubleword to CP2 Ft = memory[base+offset]

LDXC1 Load Doubleword Indexed to Floating Point Fd = memory[base+index]

LH Load Halfword Rt = (half)Mem[base+offset]

LHU Unsigned Load Halfword Rt = (uhalf)Mem[base+offset]

LL Load Linked Word Rt = Mem[base+offset]
LL = 1

LUI Load Upper Immediate Rt = immediate << 16

LUXC1 Load Doubleword Indexed Unaligned to Floating Point Fd =
memory[(base+index)psize-1..3

LW Load Word Rt = Mem[Rs+offset]

LWC1 Load Word to Floating Point Ft = memory[base+offset]

LWC2 Load Word to CP2 Ft = memory[base+offset]

LWPC Load Word, PC relative Rt = Mem[PC+offset]

Table 15.28 1004K™ CPU Instruction Set (Continued)

Instruction Description Function

 1004K™ Processor CPU Instructions

408 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

LWXC1 Load Word Indexed to Floating Point Fd = memory[base+index]

LWL Load Word Left See Architecture Reference Manual

LWR Load Word Right See Architecture Reference Manual

MADD Multiply-Add HI | LO += (int)Rs * (int)Rt

MADD.fmt Floating Point Multiply Add
fmt = S,D

Fd = Fs * Ft + Fr

MADDU Multiply-Add Unsigned HI | LO += (uns)Rs * (uns)Rt

MFC0 Move From Coprocessor 0 Rt = CPR[0, Rd, sel]

MFC1 Move From FPR Rt = Fs31..0

MFC2 Move From CP2 Register Rt = Fs31..0

MFHC1 Move From High Half of FPR Rt = Fs63..32

MFHC2 Move From High Half of CP2 Register Rt = Fs63..32

MFHI Move From HI Rd = HI

MFLO Move From LO Rd = LO

MFTR Move from thread register belonging to some other TC Rd = Rt

MOV.fmt Floating Point Move Fd = Fs

MOVF GPR Conditional Move on Floating Point False if (cc[i] == 0) then Rd = Rs

MOVF.fmt FPR Conditional Move on Floating Point False if (cc[i] == 0) then Fd = Fs

MOVN GPR Conditional Move on Not Zero if Rt ≠ 0 then
Rd = Rs

MOVN.fmt FPR Conditional Move on Not Zero if Rt ≠ 0 then
Fd = Fs

MOVT GPR Conditional Move on Floating Point True if (cc[i] == 1) then Rd = Rs

MOVT.fmt FPR Conditional Move on Floating Point True if (cc[i] == 1) then Fd = Fs

MOVZ GPR Conditional Move on Zero if Rt = 0 then
Rd = Rs

MOVZ.fmt FPR Conditional Move on Zero if (Rt == 0) then Fd = Fs

MSUB Multiply-Subtract HI | LO -= (int)Rs * (int)Rt

MSUB.fmt Floating Point Multiply Subtract
fmt = S,D

Fd = Fs * Ft - Fr

MSUBU Multiply-Subtract Unsigned HI | LO -= (uns)Rs * (uns)Rt

MTC0 Move To Coprocessor 0 CPR[0, n, Sel] = Rt

MTC1 Move To FPR Fs = Rt

MTC2 Move to CP2 register Fs = Rt

Table 15.28 1004K™ CPU Instruction Set (Continued)

Instruction Description Function

15.4 MIPS32® Instruction Set for the 1004K™ CPU

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 409

MTHC1 Move To High Half of FPR Fd = Rt || Fs31..0

MTHC2 Move to High Half of CP2 register Fd = Rt || Fs31..0

MTHI Move To HI HI = Rs

MTLO Move To LO LO = Rs

MTTR Move to thread register belonging to some other TC Rt = Rd

MUL Multiply with register write HI | LO =Unpredictable
Rd = ((int)Rs * (int)Rt)31..0

MUL.fmt Floating Point Multiply
fmt = S,D

Fd = Fs * Ft

MULT Integer Multiply HI | LO = (int)Rs * (int)Rd

MULTU Unsigned Multiply HI | LO = (uns)Rs * (uns)Rd

NEG.fmt Floating Point Negate
fmt = S,D

Fd = neg(Fs)

NMADD.fmt Floating Point Negative Multiply Add
fmt = S,D

Fd = neg(Fs * Ft + Fr)

NMSUB.fmt Floating Point Negative Multiply Subtract
fmt = S,D

Fd = neg(Fs * Ft - Fr)

NOP No Operation
(Assembler idiom for: SLL r0, r0, r0)

NOR Logical NOR Rd = ~(Rs | Rt)

OR Logical OR Rd = Rs | Rt

ORI Logical OR Immediate Rt = Rs | Immed

PAUSE Wait until LLbit is cleared

PREF Prefetch Load Specified Line into Cache

PREFX Prefetch Indexed Load Specified Line into Cache

RDHWR Read Hardware Register Allows unprivileged access to registers
enabled by HWREna register

RDPGPR Read GPR from Previous Shadow Set Rt = SGPR[SRSCtlPSS, Rd]

RECIP.fmt Floating Point Reciprocal Approximation
fmt = S,D

Fd = recip(Fs)

RESTORE Restore registers and deallocate stack frame (MIPS16
only)

See Architecture Reference Manual

ROTR Rotate Word Right Rd = Rtsa-1..0 || Rt31..sa

ROTRV Rotate Word Right Variable Rd = RtRs-1..0 || Rt31..Rs

Table 15.28 1004K™ CPU Instruction Set (Continued)

Instruction Description Function

 1004K™ Processor CPU Instructions

410 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

ROUND.L.fmt Floating Point Round to Long Fixed Point
fmt = S,D

Fd = convert_and_round(Fs)

ROUND.W.fmt Floating Point Round to Word Fixed Point
fmt = S,D

Fd = convert_and_round(Fs)

RSQRT.fmt Floating Point Reciprocal Square Root Approximation
fmt = S,D

Fd = rsqrt(Fs)

SAVE Save registers and allocate stack frame (MIPS16 only) See Architecture Reference Manual

SB Store Byte (byte)Mem[base+offset] = Rt

SC Store Conditional Word if LL = 1
 mem[base+offset] = Rt
Rt = LL

SDBBP Software Debug Break Point Trap to SW Debug Handler

SDC1 Store Doubleword from Floating Point memory[base+offset] = Ft

SDC2 Store Doubleword from CP2 memory[base+offset] = Ft

SDXC1 Store Word Indexed from Floating Point memory[base+index] = Fs

SEB Sign Extend Byte Rd = (byte)Rs

SEH Sign Extend Half Rd = (half)Rs

SH Store Half (half)Mem[base+offset] = Rt

SLL Shift Left Logical Rd = Rt << sa

SLLV Shift Left Logical Variable Rd = Rt << Rs[4:0]

SLT Set on Less Than if (int)Rs < (int)Rt
Rd = 1

else
Rd = 0

SLTI Set on Less Than Immediate if (int)Rs < (int)Immed
Rt = 1

else
Rt = 0

SLTIU Set on Less Than Immediate Unsigned if (uns)Rs < (uns)Immed
Rt = 1

else
Rt = 0

SLTU Set on Less Than Unsigned if (uns)Rs < (uns)Immed
Rd = 1

else
Rd = 0

SQRT.fmt Floating Point Square Root
fmt = S,D

Fd = sqrt(Fs)

SRA Shift Right Arithmetic Rd = (int)Rt >> sa

SRAV Shift Right Arithmetic Variable Rd = (int)Rt >> Rs[4:0]

Table 15.28 1004K™ CPU Instruction Set (Continued)

Instruction Description Function

15.4 MIPS32® Instruction Set for the 1004K™ CPU

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 411

SRL Shift Right Logical Rd = (uns)Rt >> sa

SRLV Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]

SSNOP Superscalar Inhibit No Operation NOP

SUB Integer Subtract Rt = (int)Rs - (int)Rd

SUB.fmt Floating Point Subtract
fmt = S,D

Fd = Fs - Ft

SUBU Unsigned Subtract Rt = (uns)Rs - (uns)Rd

SUXC1 Store Doubleword Indexed Unaligned from Floating
Point

memory[(base+index)psize-1..3]
= Fs

SW Store Word Mem[base+offset] = Rt

SWC1 Store Word From Floating Point Mem[base+offset] = Fs

SWC2 Store Word From CP2 Register Mem[base+offset] = Fs

SWL Store Word Left See Architecture Reference Manual

SWR Store Word Right See Architecture Reference Manual

SWXC1 Store Word Indexed to Floating Point memory[base+index] = Fs

SYNC Synchronize See Below

SYNCI Synchronize Caches to Make Instruction Writes Effec-
tive

For D-cache writeback and I-cache
invalidate on specified address

SYSCALL System Call SystemCallException

TEQ Trap if Equal if Rs == Rt
TrapException

TEQI Trap if Equal Immediate if Rs == (int)Immed
 TrapException

TGE Trap if Greater Than or Equal if (int)Rs >= (int)Rt
 TrapException

TGEI Trap if Greater Than or Equal Immediate if (int)Rs >= (int)Immed
 TrapException

TGEIU Trap if Greater Than or Equal Immediate Unsigned if (uns)Rs >= (uns)Immed
 TrapException

TGEU Trap if Greater Than or Equal Unsigned if (uns)Rs >= (uns)Rt
 TrapException

TLBWI Write Indexed TLB Entry See Below

TLBWR Write Random TLB Entry See Below

TLBP Probe TLB for Matching Entry See Architecture Reference Manual

TLBR Read Index for TLB Entry See Below

Table 15.28 1004K™ CPU Instruction Set (Continued)

Instruction Description Function

 1004K™ Processor CPU Instructions

412 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

.

TLT Trap if Less Than if (int)Rs < (int)Rt
 TrapException

TLTI Trap if Less Than Immediate if (int)Rs < (int)Immed
 TrapException

TLTIU Trap if Less Than Immediate Unsigned if (uns)Rs < (uns)Immed
 TrapException

TLTU Trap if Less Than Unsigned if (uns)Rs < (uns)Rt
 TrapException

TNE Trap if Not Equal if Rs != Rt
 TrapException

TNEI Trap if Not Equal Immediate if Rs != (int)Immed
 TrapException

TRUNC.L.fmt Floating Point Truncate to Long Fixed Point Fd = convert_and_round(Fs)

TRUNC.W.fmt Floating Point Truncate to Word Fixed Point Fd = convert_and_round(Fs)

WAIT Wait for Interrupts Stall until interrupt occurs

WRPGPR Write to GPR in Previous Shadow Set SGPR[SRSCtlPSS, Rd] = Rt

WSBH Word Swap Bytes Within HalfWords Rd = Rt23..16 || Rt31..24 || Rt7..0
|| Rt15..8

XOR Exclusive OR Rd = Rs ^ Rt

XORI Exclusive OR Immediate Rt = Rs ^ (uns)Immed

YIELD A multipurpose instruction whose action depends on Rs. Rs==0; It terminates the thread and
makesthe TC available for a subsequent
fork. Rs==-1; paused while other
threads run and any scheduling policy
change filters through. Rs==-2; is just
done to poll yield inputs. Rs > 0; you wait
for one of the yield input signals, but only
one for which there’s a corresponding bit
set in Rs.

ZEB Zero extend byte (MIPS16 only) Rt = (ubyte) Rs

ZEH Zero extend half (MIPS16 only) Rt = (uhalf) Rs

Table 15.29 List of instructions in the MIPS32® DSP ASE in the Arithmetic sub-class

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

ADDQ.PH rd,rs,rt
ADDQ_S.PH rd,rs,rt

Pair Q15 Pair Q15 GPR VoIP
SoftM

Element-wise addition of two vectors of Q15
fractional values, with optional saturation.

ADDQ_S.W rd,rs,rt Q31 Q31 GPR Audio Add two Q31 fractional values with saturation.

Table 15.28 1004K™ CPU Instruction Set (Continued)

Instruction Description Function

15.4 MIPS32® Instruction Set for the 1004K™ CPU

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 413

ADDU.QB rd,rs,rt
ADDU_S.QB rd,rs,rt

Quad
Unsigned
Byte

Quad
Unsigned
Byte

GPR Video Element-wise addition of vectors of four
unsigned byte values. Results may be option-
ally saturated to 255.

SUBQ.PH rd,rs,rt
SUBQ_S.PH rd,rs,rt

Pair Q15 Pair Q15 GPR VoIP Element-wise subtraction of two vectors of
Q15 fractional values, with optional satura-
tion.

SUBQ_S.W rd,rs,rt Q31 Q31 GPR Audio Subtraction with Q31 fractional values, with
saturation.

SUBU.QB rd,rs,rt
SUBU_S.QB rd,rs,rt

Quad
Unsigned
Byte

Quad
Unsigned
Byte

GPR Video Element-wise subtraction of unsigned byte
values, with optional unsigned saturation.

ADDSC rd,rs,rt Signed
Word

Signed
Word

GPR &
DSPControl

Audio Add two signed words and set the carry bit in
the DSPControl register.

ADDWC rd,rs,rt Signed
Word

Signed
Word

GPR Audio Add two signed words with the carry bit from
the DSPControl register.

MODSUB rd,rs,rt Signed
Word

Signed
Word

GPR Misc Modulo addressing support: update a byte
index into a circular buffer by subtracting a
specified decrement (in bytes) from the index,
resetting the index to a specified value if the
subtraction results in underflow.

RADDU.W.QB rd,rs Quad
Unsigned
Byte

Unsigned
Word

GPR Misc Reduce (add together) the 4 unsigned byte val-
ues in rs, zero-extending the sum to 32 bits
before writing to the destination register. For
example, if all 4 input values are 0x80 (deci-
mal 128), then the result in rd is 0x200 (deci-
mal 512).

ABSQ_S.PH rd,rt Pair Q15 Pair Q15 GPR Misc Find the absolute value of each of two Q15
fractional halfword elements in the source reg-
ister, saturating values of -1.0 to the maximum
positive Q15 fractional value.

ABSQ_S.W rd,rt Q31 Q31 GPR Misc Find the absolute value of the Q31 fractional
element in the source register, saturating the
value -1.0 to the maximum positive Q31 frac-
tional value.

PRECRQ.QB.PH rd,rs,rt 2 Pair Q15 Quad Byte GPR Misc Reduce the precision of four Q15 fractional
input values by truncation to create four Q7
fractional output values. The two Q15 values
from register rs are written to the two
left-most byte results, allowing an
endian-agnostic implementation.

Table 15.29 List of instructions in the MIPS32® DSP ASE in the Arithmetic sub-class (Continued)

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

 1004K™ Processor CPU Instructions

414 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

PRECR_SRA.PH.W
rt,rs,sa
PRECR_SRA_R.PH.W
rt,rs,sa

Two Inte-
ger Words

Pair Integer
Halfword

GPR Misc Reduce the precision of two integer word val-
ues to create a pair of integer halfword values.
Each word value is first shifted right arithmeti-
cally by sa bit positions, and optionally
rounded up by adding 1 at the most-significant
discard bit position. The 16 least-significant
bits of each word are then written to the corre-
sponding halfword elements of destination
register rt.

PRECRQ.PH.W rd,rs,rt
PRECRQ_RS.PH.W
rd,rs,rt

2 Q31 Pair half-
word

GPR Misc Reduce the precision of two Q31 fractional
input values by truncation to create two Q15
fractional output values. The Q15 value
obtained from register rs creates the left-most
result, allowing an endian-agnostic implemen-
tation. Results may be optionally rounded up
and saturated before being written to the desti-
nation.

PRECRQU_S.QB.PH
rd,rs,rt

2 Pair Q15 Quad
Unsigned
Byte

GPR Misc Reduce the precision of four Q15 fractional
values by saturating and truncating to create
four unsigned byte values.

PRECEQ.W.PHL rd,rt
PRECEQ.W.PHR rd,rt

Q15 Q31 GPR Misc Expand the precision of a Q15 fractional value
to create a Q31 fractional value by adding 16
least-significant bits to the input value.

PRECEQU.PH.QBL rd,rt
PRECEQU.PH.QBR rd,rt
PRECEQU.PH.QBLA
rd,rt
PRECEQU.PH.QBRA
rd,rt

Unsigned
Byte

Q15 GPR Video Expand the precision of two unsigned byte
values by prepending a sign bit and adding
seven least-significant bits to each to create
two Q15 fractional values.

PRECEU.PH.QBL rd,rt
PRECEU.PH.QBR rd,rt
PRECEU.PH.QBLA rd,rt
PRECEU.PH.QBRA rd,rt

Unsigned
Byte

Unsigned
halfword

GPR Video Expand the precision of two unsigned byte
values by adding eight least-significant bits to
each to create two unsigned halfword values.

Table 15.30 List of instructions in the MIPS32® DSP ASE in the GPR-Based Shift sub-class

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

SHLL.QB rd, rt, sa
SHLLV.QB rd, rt, rs

Quad
Unsigned
Byte

Quad
Unsigned
Byte

GPR Misc Element-wise left shift of eight signed bytes.
Zeros are inserted into the bits emptied by the
shift. The shift amount is specified by the three
least-significant bits of sa or rs.

Table 15.29 List of instructions in the MIPS32® DSP ASE in the Arithmetic sub-class (Continued)

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

15.4 MIPS32® Instruction Set for the 1004K™ CPU

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 415

SHLL.PH rd, rt, sa
SHLLV.PH rd, rt, rs
SHLL_S.PH rd, rt, sa
SHLLV_S.PH rd, rt, rs

Pair Signed
halfword

Pair Signed
halfword

GPR Misc Element-wise left shift of two signed half-
words, with optional saturation on overflow.
Zeros are inserted into the bits emptied by the
shift. The shift amount is specified by the four
least-significant bits of sa or rs.

SHLL_S.W rd, rt, sa
SHLLV_S.W rd, rt, rs

Signed
Word

Signed
Word

GPR Misc Left shift of a signed word, with saturation on
overflow. Zeros are inserted into the bits emp-
tied by the shift. The shift amount is specified
by the five least-significant bits of sa or rs.
Use the MIPS32 instructions SLL or SLLV for
non-saturating shift operations.

SHRL.QB rd, rt, sa
SHRLV.QB rd, rt, rs

Quad
Unsigned
Byte

Quad
Unsigned
Byte

GPR Video Element-wise logical right shift of four byte
values. Zeros are inserted into the bits emptied
by the shift. The shift amount is specified by
the three least-significant bits of sa or rs.

SHRA.PH rd, rt, sa
SHRAV.PH rd, rt, rs
SHRA_R.PH rd, rt, sa
SHRAV_R.PH rd, rt, rs

Pair Signed
halfword

Pair Signed
halfword

GPR Misc Element-wise arithmetic (sign preserving)
right shift of two halfword values. Optionally,
rounding may be performed, adding 1 at the
most-significant discard bit position. The shift
amount is specified by the four least-signifi-
cant bits of rs or by the argument sa.

SHRA_R.W rd, rt, sa
SHRAV_R.W rd, rt, rs

Signed
Word

Signed
Word

GPR Video Arithmetic (sign preserving) right shift of a
word value. Optionally, rounding may be per-
formed, adding 1 at the most-significant dis-
card bit position. The shift amount is specified
by the five least-significant bits of rs or the
argument sa.

Table 15.31 List of instructions in the MIPS32® DSP ASE in the Multiply sub-class

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

MULEU_S.PH.QBL
rd,rs,rt
MULEU_S.PH.QBR
rd,rs,rt

Pair
Unsigned
Byte, Pair
Unsigned
Halfword,

Pair
Unsigned
Halfword

GPR Still
Image

Element-wise multiplication of two unsigned
byte values from register rs with two unsigned
halfword values from register rt. Each 24-bit
product is truncated to 16 bits, with saturation
if the product exceeds 0xFFFF, and written to
the corresponding element in the destination
register.

Table 15.30 List of instructions in the MIPS32® DSP ASE in the GPR-Based Shift sub-class (Continued)

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

 1004K™ Processor CPU Instructions

416 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

MULQ_RS.PH rd,rs,rt Pair Q15 Pair Q15 GPR Misc Element-wise multiplication of two Q15 frac-
tional values to create two Q15 fractional
results, with rounding and saturation. After
multiplication, each 32-bit product is rounded
up by adding 0x00008000, then truncated to
create a Q15 fractional value that is written to
the destination register. If both multiplicands
are -1.0, the result is saturated to the maximum
positive Q15 fractional value.
To stay compliant with the base architecture,
this instruction leaves the base HI-LO pair
UNPREDICTABLE after the operation. The
other DSP ASE accumulators ac1-ac3 are
untouched.

MULEQ_S.W.PHL
rd,rs,rt
MULEQ_S.W.PHR
rd,rs,rt

Pair Q15 Q31 GPR VoIP Multiplication of two Q15 fractional values,
shifting the product left by 1 bit to create a
Q31 fractional result. If both multiplicands are
-1.0 the result is saturated to the maximum
positive Q31 value.
To stay compliant with the base architecture,
this instruction leaves the base HI-LO pair
UNPREDICTABLE after the operation. The
other DSP ASE accumulators ac1-ac3 must
be untouched.

DPAU.H.QBL
DPAU.H.QBR

Pair Bytes Halfword Acc Image Dot-product accumulation. Two pairs of corre-
sponding unsigned byte elements from source
registers rt and rs are separately multiplied,
and the two 16-bit products are then summed
together. The summed products are then added
to the accumulator.

DPSU.H.QBL
DPSU.H.QBR

Pair Bytes Halfword Acc Image Dot-product subtraction. Two pairs of corre-
sponding unsigned byte elements from source
registers rt and rs are separately multiplied,
and the two 16-bit products are then summed
together. The summed products are then sub-
tracted from the accumulator.

Table 15.31 List of instructions in the MIPS32® DSP ASE in the Multiply sub-class (Continued)

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

15.4 MIPS32® Instruction Set for the 1004K™ CPU

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 417

DPAQ_S.W.PH ac,rs,rt Pair Q15 Q32.31 ac VoIP /
SoftM

Dot-product accumulation. Two pairs of corre-
sponding Q15 fractional values from source
registers rt and rs are separately multiplied and
left-shifted 1 bit to create two Q31 fractional
products. For each product, if both multipli-
cands are equal to -1.0 the product is clamped
to the maximum positive Q31 fractional value.
The products are then summed, and the sum is
then sign extended to the width of the accumu-
lator and accumulated into the specified accu-
mulator.
This instruction may be used to compute the
imaginary component of a 16-bit complex
multiplication operation after first swapping
the operands to place them in the correct order.

DPSQ_S.W.PH ac,rs,rt Pair Q15 Q32.31 ac VoIP /
SoftM

Dot-product subtraction. Two pairs of corre-
sponding Q15 fractional values from source
registers rt and rs are separately multiplied and
left-shifted 1 bit to create two Q31 fractional
products. For each product, if both multipli-
cands are equal to -1.0 the product is clamped
to the maximum positive Q31 fractional value.
The products are then summed, and the sum is
then sign extended to the width of the accumu-
lator and subtracted from the specified accu-
mulator.
This instruction may be used to compute the
imaginary component of a 16-bit complex
multiplication operation after first swapping
the operands to place them in the correct order.

MULSAQ_S.W.PH
ac,rs,rt

Pair Q15 Q32.31 ac SoftM Complex multiplication step. Performs ele-
ment-wise fractional multiplication of the two
Q15 fractional values from registers rt and rs,
subtracting one product from the other to cre-
ate a Q31 fractional result that is added to
accumulator ac. The intermediate products are
saturated to the maximum positive Q31 frac-
tional value if both multiplicands are equal to
-1.0.

DPAQ_SA.L.W ac,rs,rt Q31 Q63 ac Audio Fractional multiplication of two Q31 fractional
values to produce a Q63 fractional product. If
both multiplicands are -1.0 the product is satu-
rated to the maximum positive Q63 fractional
value. The product is then added to accumula-
tor ac. If the addition results in overflow or
underflow, the accumulator is saturated to the
maximum positive or minimum negative
value.

Table 15.31 List of instructions in the MIPS32® DSP ASE in the Multiply sub-class (Continued)

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

 1004K™ Processor CPU Instructions

418 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

DPSQ_SA.L.W ac,rs,rt Q31 Q63 ac Audio Fractional multiplication of two Q31 fractional
values to produce a Q63 fractional product. If
both multiplicands are -1.0 the product is satu-
rated to the maximum positive Q63 fractional
value. The product is then subtracted from
accumulator ac. If the addition results in over-
flow or underflow, the accumulator is satu-
rated to the maximum positive or minimum
negative value.

MAQ_S.W.PHL ac,rs,rt
MAQ_S.W.PHR ac,rs,rt

Q15 Q32.31 ac SoftM Fractional multiply-accumulate. The product
of two Q15 fractional values is sign extended
to the width of the accumulator and added to
accumulator ac. The intermediate product is
saturated to the maximum positive Q31 frac-
tional value if both multiplicands are equal to
-1.0.

MAQ_SA.W.PHL ac,rs,rt
MAQ_SA.W.PHR ac,rs,rt

Q15 Q31 ac speech Fractional multiply-accumulate with satura-
tion after accumulation. The product of two
Q15 fractional values is sign extended to the
width of the accumulator and added to accu-
mulator ac. The intermediate product is satu-
rated to the maximum positive Q31 fractional
value if both multiplicands are equal to -1.0.
If the accumulation results in overflow or
underflow, the accumulator value is saturated
to the maximum positive or minimum negative
Q31 fractional value.

MADD, MADDU,
MSUB, MSUBU, MULT,
MULTU

Word Double-
Word

ac Misc Allows these instructions to target accumula-
tors ac1, ac2, and ac3 (in addition to the origi-
nal ac0 destination).

Table 15.32 List of instructions in the MIPS32® DSP ASE in the Bit/ Manipulation sub-class

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

BITREV rd,rt Unsigned
Word

Unsigned
Word

GPR Audio /
FFT

Reverse the order of the 16 least-significant
bits of register rt, writing the result to register
rd. The 16 most-significant bits are set to zero.

INSV rt,rs Unsigned
Word

Unsigned
Word

GPR Misc Like the Release 2 INS instruction, except that
the 5 bits for pos and size values are obtained
from the DSPControl register. size =
scount[14:10], and pos = pos[20:16].

Table 15.31 List of instructions in the MIPS32® DSP ASE in the Multiply sub-class (Continued)

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

15.4 MIPS32® Instruction Set for the 1004K™ CPU

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 419

REPL.QB rd,imm
REPLV.QB rd,rt

Byte Quad Byte GPR Video /
Misc

Replicate a signed byte value into the four byte
elements of register rd. The byte value is given
by the 8 least-significant bits of the specified
10-bit immediate constant or by the 8
least-significant bits of register rt.

REPL.PH rd,imm
REPLV.PH rd,rt

Signed
halfword

Pair Signed
halfword

GPR Misc Replicate a signed halfword value into the two
halfword elements of register rd. The halfword
value is given by the 16 least-significant bits
of register rt, or by the value of the 10-bit
immediate constant, sign-extended to 16 bits.

Table 15.33 List of instructions in the MIPS32® DSP ASE in the Compare-Pick sub-class

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

CMPU.EQ.QB rs,rt
CMPU.LT.QB rs,rt
CMPU.LE.QB rs,rt

Quad
Unsigned
Byte

Quad
Unsigned
Byte

DSPControl Video Element-wise unsigned comparison of the four
unsigned byte elements of rs and rt, recording
the boolean comparison results to the four
right-most bits in the ccond field of the
DSPControl register.

CMPGU.EQ.QB rd,rs,rt
CMPGU.LT.QB rd,rs,rt
CMPGU.LE.QB rd,rs,rt

Quad
Unsigned
Byte

Quad
Unsigned
Byte

GPR Video Element-wise unsigned comparison of the four
right-most unsigned byte elements of rs and rt,
recording the boolean comparison results to
the four least-significant bits of register rd.

CMP.EQ.PH rs,rt
CMP.LT.PH rs,rt
CMP.LE.PH rs,rt

Pair Signed
halfword

Pair Signed
halfword

DSPControl Misc Element-wise signed comparison of the two
halfword elements of rs and rt, recording the
boolean comparison results to the two
right-most bits in the ccond field of the
DSPControl register.

PICK.QB rd,rs,rt Quad
Unsigned
Byte

Quad
Unsigned
Byte

GPR Video Element-wise selection of unsigned bytes from
the four bytes of registers rs and rt into the
corresponding elements of register rd, based
on the value of the four right-most bits of the
ccond field in the DSPControl register. If the
corresponding ccond bit is 1, the byte value is
copied from register rs, otherwise it is copied
from rt.

Table 15.32 List of instructions in the MIPS32® DSP ASE in the Bit/ Manipulation sub-class (Continued)

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

 1004K™ Processor CPU Instructions

420 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

PICK.PH rd,rs,rt Pair Signed
halfword

Pair Signed
halfword

GPR Misc Element-wise selection of signed halfwords
from the two halfwords in registers rs and rt
into the corresponding elements of register rd,
based on the value of the two right-most bits of
the ccond field in the DSPControl register. If
the corresponding ccond bit is 1, the halfword
value is copied from register rs, otherwise it is
copied from rt.

PACKRL.PH rd,rs,rt Pair Signed
Halfwords

Pair Signed
Halfword

GPR Misc Pack two halfwords taken from registers rs
and rt into destination register rd.

Table 15.34 List of instructions in the MIPS32® DSP ASE in the Accumulator and DSPControl Access
sub-class

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

EXTR.W rt,ac,shift
EXTR_R.W rt,ac,shift
EXTR_RS.W rt,ac,shift

Q63 Q31 GPR Misc Extract a Q31 fractional value from the 32
least-significant bits of 64-bit accumulator ac.
The accumulator value may be shifted right
logically by shift bits prior to the extraction,
and the extracted value may be optionally
rounded or rounded and saturated before being
written to register rt.
The shift argument value ranges from 0 to 31.
The optional rounding step adds 1 at the
most-significant bit position discarded by the
shift. The optional saturation clamps the
extracted value to the maximum positive Q31
value if the rounding step results in overflow.

EXTR_S.H rt,ac,shift Q63 Q15 GPR Misc Extract a Q15 fractional value from the 16
least-significant bits of 64-bit accumulator ac.
The accumulator value may be shifted right
logically by shift bits prior to the extraction,
and the extracted value is saturated before
being written to register rt.
The shift argument value ranges from 0 to 31.
The saturation clamps the extracted value to
the maximum positive or minimum negative
Q15 value if the shifted accumulator value
cannot be represented accurately as a Q15 for-
mat value.

Table 15.33 List of instructions in the MIPS32® DSP ASE in the Compare-Pick sub-class (Continued)

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

15.4 MIPS32® Instruction Set for the 1004K™ CPU

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 421

EXTRV_S.H rt,ac,rs Q63 Q15 GPR Misc Extract a Q15 fractional value from the 16
least-significant bits of 64-bit accumulator ac.
The accumulator value may be shifted right
logically by shift bits prior to the extraction,
and the extracted value is saturated before
being written to register rt.
The shift argument ranges from 0 to 31 and is
given by the five least-significant bits of regis-
ter rs. The saturation clamps the extracted
value to the maximum positive or minimum
negative Q15 value if the shifted accumulator
value cannot be represented accurately as a
Q15 format value.

EXTRV.W rt,ac,rs
EXTRV_R.W rt,ac,rs
EXTRV_RS.W rt,ac,rs

Q63 Q31 GPR Misc Extract a Q31 fractional value from the 32
least-significant bits of 64-bit accumulator ac.
The accumulator value may be shifted right
logically by shift bits prior to the extraction,
and the extracted value may be optionally
rounded or rounded and saturated before being
written to register rt.
The shift argument value is provided by the
five least-significant bits of rs and ranges from
0 to 31. The optional rounding step adds 1 at
the most-significant bit position discarded by
the shift. The optional saturation clamps the
extracted value to the maximum positive Q31
value if the rounding step results in overflow.

EXTP rt,ac,size
EXTPV rt,ac,rs
EXTPDP rt,ac,size
EXTPDPV rt,ac,rs

Unsigned
DWord

Unsigned
Word

GPR /
DSPControl

Audio /
Video

Extract a set of size+1 contiguous bits from
accumulator ac, right-justifying and
sign-extending the result to 32 bits before writ-
ing the result to register rt.
The position of the left-most bit to extract is
given by the value of the pos field in the
DSPControl register (see Section 4.1.2 “DSP
Control Register” for details). The number of
bits (less one) to extract is provided either by
the size immediate operand or by the five
least-significant bits of rs.
The EXTPDP and EXTPDPV instructions also
decrement the pos field by size+1 to facilitate
sequential bit field extraction operations.

Table 15.34 List of instructions in the MIPS32® DSP ASE in the Accumulator and DSPControl Access
sub-class (Continued)

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

 1004K™ Processor CPU Instructions

422 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

SHILO ac,shift
SHILOV ac,rs

Unsigned
DWord

Unsigned
DWord

ac Misc Shift accumulator ac left or right by the speci-
fied number of bits, writing the shifted value
back to the accumulator. The signed shift
argument is specified either by the immediate
operand shift or by the six least-significant bits
of register rs. A negative shift argument
results in a right shift of up to 32 bits, and a
positive shift argument results in a left shift of
up to 31 bits.

MTHLIP rs, ac Unsigned
Word

Unsigned
Word

ac /
DSPControl

Audio /
Video

Copy the LO register of the specified accumu-
lator to the HI register, copy rs to LO, and
increment the pos field in DSPcontrol by 32.

MFHI/MFLO/MTHI/MT
LO

Unsigned
Word

Unsigned
Word

GPR/ac Misc Copy an unsigned word to or from the speci-
fied accumulator HI or LO register to the spec-
ified GPR.

WRDSP rt,mask Unsigned
Word

Unsigned
Word

DSPControl Misc Overwrite specific fields in the DSPControl
register using the corresponding bits from the
specified GPR. Bits in the mask argument cor-
respond to specific fields in DSPControl; a
value of 1 causes the corresponding
DSPControl field to be overwritten using the
corresponding bits in rt, otherwise the field is
unchanged.

RDDSP rt,mask Unsigned
Word

Unsigned
Word

GPR Misc Copy the values of specific fields in the
DSPControl register to the specified GPR.
Bits in the mask argument correspond to spe-
cific fields in DSPControl; a value of 1 causes
the corresponding DSPControl field to be
copied to the corresponding bits in rt, other-
wise the bits in rt are unchanged.

Table 15.35 List of instructions in the MIPS32™ DSP ASE in the Indexed-Load sub-class

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

LBUX rd,index(base) - Unsigned
byte

GPR Misc Index byte load from address base+(index).
Loads the byte in the low-order bits of the des-
tination register and zero-extends the result.

LHX rd,index(base) - Signed
halfword

GPR Misc Index halfword load from address
base+(index). Loads the halfword in the
low-order bits of the register and sign-extends
the result.

Table 15.34 List of instructions in the MIPS32® DSP ASE in the Accumulator and DSPControl Access
sub-class (Continued)

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

15.4 MIPS32® Instruction Set for the 1004K™ CPU

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 423

LWX rd, index(base) - Signed
Word

GPR Misc Indexed word load from address base+(index).

Table 15.36 List of instructions in the MIPS32® DSP ASE in the Branch sub-class

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

BPOSGE32 offset - - - Audio /
Video

Branch if the pos value is greater than or equal
to integer 32.

Table 15.35 List of instructions in the MIPS32™ DSP ASE in the Indexed-Load sub-class (Continued)

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

Perform Cache Operation CACHE

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 425

Tag operation, as these operations are used for initialization and diagnostic purposes.

An address Error Exception (with cause code equal AdEL) occurs if the effective address references a portion of the
kernel address space which would normally result in such an exception.

Bits [17:16] of the instruction specify the cache on which to perform the operation, as follows:

Some of the operations use coprocessor0 registers as either sources or destinations. Each of the caches has a separate
set of Tag and Data registers. The last column in Table 15.40 lists which registers are used by operations to each
cache. In the description of the operations, these may be explicitly listed or referred to in general, such as xTagLo,
which would refer to the TagLo register corresponding to that cache.

Bits [20:18] of the instruction specify the operation to perform. On Index Load Tag and Index Store Data operations,
the specific word (primary D) or double-word (primary I, secondary) that is addressed is loaded into / read from the
DDataLo (primary D), L23DataLo and L23DataHi (secondary), or IDataLo and IDataHi (primary I) registers. All
other cache instructions are line-based and the word and byte indexes will not affect their operation.

Table 15.38 Encoding of Bits[17:16] of CACHE Instruction

Code Name Cache Cop0 Registers Used

2#00 I Primary Instruction ITagLo, IDataLo, IDataHi, ErrCtl

2#01 D Primary Data DTagLo, DDataLo, ErrCtl

2#10 T Tertiary - Not supported

2#11 S Secondary L23TagLo, L23DataLo, L23DataHi

Table 15.39 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST,SPR] Cleared

Code Caches Name

Effective
Address
Operand

Type Operation Implemented?

2#000 I Index Invalidate Index Set the state of the cache line at the specified
index to invalid.
This encoding may be used by software to
invalidate the entire instruction cache by step-
ping through all valid indices.

Yes

D, S, T Index Writeback
Invalidate

Index If the state of the cache line at the specified
index is valid and dirty, write the line back to
the memory address specified by the cache tag.
After that operation is completed, set the state
of the cache line to invalid. If the line is valid
but not dirty, set the state of the line to invalid.

This encoding may be used by software to
invalidate the entire data cache by stepping
through all valid indices. Note that Index Store
Tag should be used to initialize the cache at
powerup.

Yes

Perform Cache Operation CACHE

426 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

2#001 I Index Load Tag Index • Read the tag for the cache line at the speci-
fied index into the TagLo0 Coprocessor 0
register.

• Read the data corresponding to the dword
index into the DataLo0 and DataHi0 regis-
ters.

• Precode bits and data array parity bits are
also read into the ErrCtl register.

Yes

2#001 D Index Load Tag Index • Read the tag for the cache line at the speci-
fied index into the TagLo0 Coprocessor 0
register.

• Read the data corresponding to the word
index into the DataLo1 register.

• Data array parity bits are also read into the
ErrCtl register.

Yes

2#001 S Index Load Tag Index • Read the tag for the cache line at the speci-
fied index into the TagLo2 Coprocessor 0
register.

• Read the data corresponding to the dword
index into the L23DataLo and L23DataHi
registers.

Yes

2#010 All Index Store Tag Index Write the tag for the cache line at the specified
index from the associated TagLoN
Coprocessor 0 register.

By default, the tag parity value will be
automatically calculated. For test purposes, the
parity/ECC bits from the TagLoN register will
be used if ErrCtlPO is set.

This encoding may be used by software to ini-
tialize the entire instruction or data caches by
stepping through all valid indices. Doing so
requires that the TagLo register associated
with the cache be initialized first.

Yes

2#011 I,D,T Reserved Unspecified Executed as a no-op No

2#011 S Index Store Data Index Write the L23DataHi and L23DataLo
Coprocessor 0 register contents at the way and
dword index specified.

The ECC bits are always generated by the
hardware (if present)

Yes

Table 15.39 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST,SPR] Cleared (Continued)

Code Caches Name

Effective
Address
Operand

Type Operation Implemented?

Perform Cache Operation CACHE

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 427

2#100 All Hit Invalidate Address If the cache line contains the specified address,
set the state of the cache line to invalid.
This encoding may be used by software to
invalidate a range of addresses from the
instruction cache by stepping through the
address range by the line size of the cache.

Yes

2#101 I Fill Address Fill the cache from the specified address.

The cache line is refetched even if it is already
in the cache.

Yes

D, S, T Hit WriteBack
Invalidate

Address If the cache line contains the specified address
and it is valid and dirty, write the contents back
to memory. After that operation is completed,
set the state of the cache line to invalid. If the
line is valid but not dirty, set the state of the line
to invalid.

This encoding may be used by software to
invalidate a range of addresses from the data
cache by stepping through the address range
by the line size of the cache.

Yes

2#110 D, S, T Hit WriteBack Address If the cache line contains the specified address
and it is valid and dirty, write the contents back
to memory. After the operation is completed,
leave the state of the line valid, but clear the
dirty state.

Yes

2#111 All Fetch and Lock Address If the cache does not contain the specified
address, fill it from memory, performing a
writeback if required, and set the state to valid
and locked. If the cache already contains the
specified address, set the state to locked. The
way selected on fill from memory is the least
recently used.

The lock state is cleared by executing an Index
Invalidate, Index Writeback Invalidate, Hit
Invalidate, or Hit Writeback Invalidate
operation to the locked line, or via an Index
Store Tag operation with the lock bit reset in
the xTagLo register.

It is illegal to lock all ways at a given cache
index. If all ways are locked, subsequent
references to that index will displace one of the
locked lines.

Yes

Table 15.39 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST,SPR] Cleared (Continued)

Code Caches Name

Effective
Address
Operand

Type Operation Implemented?

Perform Cache Operation CACHE

428 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Table 15-1 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST] Set. ErrCtl[SPR] Cleared

Code Caches Name

Effective
Address
Operand

Type Operation Implemented?

2#001 All Index Load WS Index Read the WS RAM at the specified index into
the xTagLo Coprocessor 0 register. Yes

2#010 I Index Store WS Index Update the WS RAM at the specified index
from the ITagLo Coprocessor 0 register. Yes

2#010 D Index Store WS Index Update the WS RAM at the specified index
from the DTagLo Coprocessor 0 register.

If ErrCtlPO is set, the dirty parity values in the
DTagLo register will be written to the WS
RAM. Otherwise, the parity will be calculated
for the write data.

Yes

2#010 S Index Store WS Index Update the WS RAM at the specified index
from the L23TagLo Coprocessor 0 register.

If ErrCtlPO is set, the dirty parity values in the
L23TagLo register will be written to the WS
RAM. Otherwise, the parity will be calculated
for the write data.

Yes

2#011 I Index Store Data Index Write the IDataHi and IDataLo Coprocessor 0
register contents at the way and dword index
specified.

If ErrCtlPO is set, ErrCtlPI is used for the parity
value. Otherwise, the parity value is calculated
for the write data.

If ErrCtlPCO is set, ErrCtlPCI is used for the
precode values. Otherwise, the precode values
will be calculated based on the write data.

Yes

2#011 D Index Store Data Index Write the DDataLo Coprocessor 0 register
contents at the way and word index specified.

If ErrCtlPO is set, ErrCtlPD is used for the parity
value. Otherwise, the parity value is calculated
for the write data.

Yes

2#011 S Index Store ECC Index Write the DDataLo Coprocessor 0 register
contents to the ECC bits at the way and dword
index specified.

Yes

All Oth-
ers

All Other codes should not be used while
ErrCtlWST is set.

Perform Cache Operation CACHE

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 429

Restrictions:

The operation of this instruction is UNDEFINED for any operation/cache combination that is not implemented.

The operation of this instruction is UNDEFINED if the operation requires an address, and that address is uncache-
able.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

vAddr ← GPR[base] + sign_extend(offset)
(pAddr, uncached) ← AddressTranslation(vAddr, DataReadReference)
CacheOp(op, vAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception

Coprocessor Unusable Exception

Address Error Exception

Cache Error Exception

Bus Error Exception

Table 15.40 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[SPR] Set, ErrCtl[WST] Cleared

Code Caches Name

Effective
Address
Operand

Type Operation Implemented?

2#001 I Index Load Tag Index Read the SPRAM tag at the specified index
into the ITagLo Coprocessor 0 register. Also
read the instruction data and precode
information corresponding to the byte index
into the IDataHi,IDataLo, and ErrCtl registers

Yes

2#001 D Index Load Tag Index Read the SPRAM tag at the specified index
into the DTagLo Coprocessor 0 register.

Yes

2#010 I, D Index Store Tag Index Update the SPRAM tag at the specified index
from the xTagLo Coprocessor 0 register.

Yes

2#011 I Index Store Data Index Write the IDataLo and IDataHi Coprocessor 0
register contents into the SPRAM at the dword
index specified.

Yes

2#011 D Index Store Data Index Write the DDataLo Coprocessor 0 register
contents into the SPRAM at the word index
specified.

Yes

All Oth-
ers

I,D Other codes should not be used while
ErrCtlSPR is set.

All S,T Secondary and Tertiary operations should not
be performed while ErrCtlSPR is set.

Load Linked Word LL

430 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Format: LL rt, offset(base) MIPS32

Purpose: Load Linked Word

To load a word from memory for an atomic read-modify-write

Description: GPR[rt] ← memory[GPR[base] + offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
written into GPR rt. The 16-bit signed offset is added to the contents of GPR base to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LL is executed it starts an active RMW sequence replacing any other sequence that was active. The RMW
sequence is completed by a subsequent SC instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.

Executing LL on one processor does not cause an action that, by itself, causes an SC for the same block to fail on
another processor.

An execution of LL does not have to be followed by execution of SC; a program is free to abandon the RMW
sequence without attempting a write.

Restrictions:

The addressed location must be synchronizable by all processors and I/O devices sharing the location; if it is not, the
result in UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective address is non-
zero, an Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ← memword
LLbit ← 1

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Watch

Programming Notes:

There is no Load Linked Word Unsigned operation corresponding to Load Word Unsigned.

31 26 25 21 20 16 15 0

LL
110000

base rt offset

6 5 5 16

Wait for the LLBit to clear IPAUSE

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 431

Format: PAUSE MIPS32 Release 2/MT ASE

Purpose: Wait for the LLBit to clear

Description:

Locks implemented using the LL/SC instructions are a common method of synchronization between threads of con-
trol. A typical lock implementation does a load-linked instruction and checks the value returned to determine whether
the software lock is set. If it is, the code branches back to retry the load-linked instruction, thereby implementing an
active busy-wait sequence. The PAUSE instruction is intended to be placed into the busy-wait sequence to block the
instruction stream until such time as the load-linked instruction has a chance to succeed in obtaining the software
lock.

The PAUSE instruction deschedules the instruction stream until the LLBit is zero. This is implemented as a short
term YIELD operation which resumes at the next instruction when the LLBit is zero. It is assumed that the instruction
stream which gives up the software lock does so via a write to the lock variable, which causes the processor to clear
the LLBit as seen by this thread of execution.

The encoding of the instruction is such that it is backward compatible with all previous implementations of the archi-
tecture. The PAUSE instruction can therefore be placed into existing lock sequences since it will be treated as a NOP
if the processor does not implement the PAUSE instruction.

Restrictions:

The operation of the processor is UNPREDICTABLE if a PAUSE instruction is placed in the delay slot of a branch
or a jump.

Operation:

if LLBit ≠ 0 then
EPC ← PC + 4 /* Resume at the following instruction */
DescheduleInstructionStream()

endif

Exceptions:

None

Programming Notes:

The PAUSE instruction is intended to be inserted into the instruction stream after an LL instruction has set the LLBit
and found the software lock set. The program may wait forever if a PAUSE instruction is executed and there is no
possibility that the LLBit will ever be cleared.

An example use of the PAUSE instruction is included in the following example:

acquire_lock:
ll t0, 0(a0) /* Read software lock, set hardware lock */
bnez t0, acquire_lock_retry: /* Branch if software lock is taken */
addiu t0, t0, 1 /* Set the software lock */
sc t0, 0(a0) /* Try to store the software lock */
bnez t0, 10f /* Branch if lock acquired successfully */

31 26 25 24 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0
00000

0
00000

0
00000

5
00101

SLL
000000

6 5 5 5 5 6

Wait for the LLBit to clear PAUSE

432 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

sync
acquire_lock_retry:

pause /* Wait for LLBIT to clear before retry */
b acquire_lock /* and retry the operation */
nop

10:

Critical region code

release_lock:
sync
sw zero, 0(a0) /* Release software lock, clearing LLBIT */

/* for any PAUSEd waiters */

Prefetch IPREF

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 433

Format: PREF hint,offset(base) MIPS32

Purpose: Prefetch

To move data between memory and cache.

Description: prefetch_memory(GPR[base] + offset)

PREF adds the 16-bit signed offset to the contents of GPR base to form an effective byte address. The hint field sup-
plies information about the way that the data is expected to be used.

PREF is an advisory instruction that may change the performance of the program. However, for all hint values except
for PrepareForStore, and all effective addresses, it neither changes the architecturally visible state nor does it alter the
meaning of the program.

PREF does not cause addressing-related exceptions, including TLB exceptions. If the address specified would cause
an addressing exception, the exception condition is ignored and no data movement occurs.However even if no data is
moved, some action that is not architecturally visible, such as writeback of a dirty cache line, can take place.

It is implementation-dependent whether a Bus Error or Cache Error exception is reported, when such an error is
detected as a by-product of the action taken by the PREF instruction.

PREF neither generates a memory operation nor modifies the state of a cache line for a location with an uncached
memory access type, whether this type is specified by the address segment (e.g., kseg1), the programmed coherency
attribute of a segment (e.g., the use of the K0, KU, or K23 fields in the Config register), or the per-page coherency
attribute provided by the TLB.

If PREF results in a memory operation, the memory access type and coherency attribute used for the operation are
determined by the memory access type and coherency attribute of the effective address, just as it would be if the
memory operation had been caused by a load or store to the effective address.

Any of the following conditions causes the core to treat a PREF instruction as a NOP.

• A reserved hint value is used

• The address has a translation error

• The address maps to an uncacheable page

In all other cases, except when hint equals 25, execution of the PREF instruction initiates an external bus read trans-
action. PREF is a non-blocking operation and does not cause the pipeline to stall while waiting for the data to be
returned.

31 26 25 21 20 16 15 0

PREF
110011

base hint offset

6 5 5 16

Table 15.41 Values of hint Field for PREF Instruction

Value Name Data Use and Desired Prefetch Action

0 load Use: Prefetched data is expected to be read (not modified).
Action: Fetch data as if for a load.

1 store Use: Prefetched data is expected to be stored or modified.
Action: Fetch data as if for a store.

Prefetch PREF

434 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Restrictions:

None

Operation:

vAddr ← GPR[base] + sign_extend(offset)
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, LOAD)

2-3 Reserved Reserved - treated as a NOP.

4 load_streamed Use: Prefetched data is expected to be read (not modified) but not reused
extensively; it “streams” through cache.
Action: Fetch data as if for a store. LRU replacement information is ignored
and data is placed in way 0 of the cache, so it will be displaced by other
streamed prefetches and not displace retained prefetches. If way 0 is locked,
the prefetch will be dropped.

5 store_streamed Use: Prefetched data is expected to be stored or modified but not reused
extensively; it “streams” through cache.
Action: Fetch data as if for a store. LRU replacement information is ignored
and data is placed in way 0 of the cache, so it will be displaced by other
streamed prefetches and not displace retained prefetches. If way 0 is locked,
the prefetch will be dropped.

6 load_retained Use: Prefetched data is expected to be read (not modified) and reused exten-
sively; it should be “retained” in the cache.
Action: Fetch data as if for a load. LRU replacement information is used, but
way 0 of the cache is specifically excluded. This prevents streamed
prefetches from displacing the line.

7 store_retained Use: Prefetched data is expected to be stored or modified and reused exten-
sively; it should be “retained” in the cache.
Action: Fetch data as if for a store. LRU replacement information is used, but
way 0 of the cache is specifically excluded. This prevents streamed
prefetches from displacing the line.

8-24 Reserved Reserved - treated as a NOP.

25 writeback_invalidate (also
known as “nudge”)

Use: Data is no longer expected to be used.
Action: Schedule a writeback of any dirty data. The cache line is marked as
invalid upon completion of the writeback or if the line was found clean.

26-29 Reserved Reserved - treated as a NOP.

30 PrepareForStore Use: Prepare the cache for writing an entire line, without the overhead
involved in filling the line from memory.
Action: If the reference hits in the cache, no action is taken. If the reference
misses in the cache, a line is selected for replacement, any valid and dirty
victim is written back to memory, the entire line is filled with zero data, and
the state of the line is marked as valid and dirty.
Programming Note: Because the cache line is filled with zero data only on a
cache miss, software must not assume that this action, in and of itself, can be
used as a fast bzero-type function.

31 Reserved Reserved - treated as a NOP.

Table 15.41 Values of hint Field for PREF Instruction

Prefetch IPREF

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 435

Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Bus Error, Cache Error

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

Prefetch cannot move data to or from a mapped location unless the translation for that location is present in the TLB.
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so prefetch
may not be effective for such locations.

Prefetch does not cause addressing exceptions. A prefetch may be used using an address pointer before the validity of
the pointer is determined without worrying about an addressing exception.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a by-product of the action taken by the PREF instruction. Typically, this only occurs in systems which have high-
reliability requirements.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

Store Conditional Word SC

436 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Format: SC rt, offset(base) MIPS32

Purpose: Store Conditional Word

To store a word to memory to complete an atomic read-modify-write

Description: if atomic_update then memory[GPR[base] + offset] ← GPR[rt], GPR[rt] ← 1
else GPR[rt] ← 0

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for syn-
chronizable memory locations.

The 32-bit word in GPR rt is conditionally stored in memory at the location specified by the aligned effective address.
The 16-bit signed offset is added to the contents of GPR base to form an effective address.

The SC completes the RMW sequence begun by the preceding LL instruction executed on the processor. To complete
the RMW sequence atomically, the following occur:

• The 32-bit word of GPR rt is stored into memory at the location specified by the aligned effective address.

• A 1, indicating success, is written into GPR rt.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt.

If any of the following events occurs between the execution of LL and SC, the SC fails:

• Any TC completes a store within the same cacheline as the word accessed by LL and SC.

• The TCRestart register for this TC is written

• A coherent store is completed by another processor or coherent I/O module into the cacheline containing the
word.

• An ERET instruction is executed.

If either of the following events occurs between the execution of LL and SC, the SC may succeed or it may fail; the
success or failure is not predictable. Portable programs should not cause one of these events.

• A memory access instruction (load, store, or prefetch) is executed on the TC executing the LL/SC.

• The instructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

The following conditions must be true or the result of the SC is UNPREDICTABLE:

• Execution of SC must have been preceded by execution of an LL instruction.

• An RMW sequence executed without intervening events that would cause the SC to fail must use the same
address in the LL and SC. The address is the same if the virtual address, physical address, and cache-coherence
algorithm are identical.

31 26 25 21 20 16 15 0

SC
111000

base rt offset

6 5 5 16

Store Conditional Word ISC

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 437

Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one that
is associated with the state and logic necessary to implement the LL/SC semantics. Whether a memory location is
synchronizable depends on the processor and system configurations, and on the memory access type used for the
location:

• Uniprocessor atomicity: To provide atomic RMW on a single processor, all accesses to the location must be
made with memory access type of either cached noncoherent or cached coherent. All accesses must be to one or
the other access type, and they may not be mixed.

• MP atomicity: To provide atomic RMW among multiple processors, all accesses to the location must be made
with a memory access type of cached coherent.

• I/O System: To provide atomic RMW with a coherent I/O system, all accesses to the location must be made with
a memory access type of cached coherent. If the I/O system does not use coherent memory operations, then
atomic RMW cannot be provided with respect to the I/O reads and writes.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[rt]
if LLbit then

StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endif
GPR[rt] ← 031 || LLbit

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

LL and SC are used to atomically update memory locations, as shown below.

L1:
LL T1, (T0) # load counter
ADDI T2, T1, 1 # increment
SC T2, (T0) # try to store, checking for atomicity
BEQ T2, 0, L1 # if not atomic (0), try again
NOP # branch-delay slot

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided. Some examples of
these are arithmetic operations that trap, system calls, and floating point operations that trap or require software emu-
lation assistance.

LL and SC function on a single processor for cached noncoherent memory so that parallel programs can be run on
uniprocessor systems that do not support cached coherent memory access types.

SYNC

438 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Format: SYNC (stype = 0 implied) MIPS32

Purpose: To order loads and stores for shared memory.

Description:

These types of ordering guarantees are available through the SYNC instruction:

• Completion Barriers

• Ordering Barriers

Simple Description for Completion Barrier:

• The specified memory instructions (loads or stores or both) that occur before the SYNC instruction must be
completed before the specified memory instructions after the SYNC are allowed to start.

• Loads are completed when the destination register is written. Stores are completed when the stored value is
visible to every other processor in the system.

Detailed Description for Completion Barrier:

• Every synchronizable specified memory instruction (loads or stores or both) that occurs in the instruction
stream before the SYNC instruction must be already globally performed before any synchronizable speci-
fied memory instruction that occurs after the SYNC are allowed to be performed, with respect to any other
processor or coherent I/O module.

• The barrier does not guarantee the order in which instruction fetches are performed.

• A stype value of zero will always be defined such that it performs the most complete set of synchronization
operations that are defined. This means stype zero always does a completion barrier that affects both loads
and stores preceding the SYNC instruction and both loads and stores that are subsequent to the SYNC
instruction. Non-zero values of stype may be defined by the architecture or specific implementations to per-
form synchronization behaviors that are less complete than that of stype zero. If an implementation does not
use one of these non-zero values to define a different synchronization behavior , then that non-zero value of
stype must act the same as stype zero completion barrier. This allows software written for an implementa-
tion with a lighter-weight barrier to work on another implementation which only implements the stype zero
completion barrier.

• A completion barrier is required, potentially in conjunction with SSNOP (in Release 1 of the Architecture)
or EHB (in Release 2 of the Architecture), to guarantee that memory reference results are visible across
operating mode changes. For example, a completion barrier is required on entry to and exit from Debug
Mode to guarantee that memory affects are handled correctly.

Completion Barrier Types:

All completion barrier types will flush any pending writes and generate an external SYNC request. The CPU will

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0
00 0000 0000 0000 0

stype
SYNC
001111

6 15 5 6

ISYNC

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 439

wait for all pending reads to complete as well as the SYNC response.

• 0x2 - Implementation specific stype. Intervention SYNC. When coherence is enabled, this SYNC will gen-
erate a CoherentSync request. The CoherenceManager will respond to the SYNC when the interventions for
all older coherent requests have been completed. If coherence is not enabled, will default to stype 0x0.

• 0x3 - Implementation specific style. Memory SYNC. When coherence is enabled, this SYNC will also gen-
erate a CoherentSync request. When interventions for all older coherent requests have completed, the sync
will be sent to memory interface unit. All pending transactions will be sent out. If the next level device (L2
or system) supports legacy SYNC transactions, as indicated by SI_CM_SyncTxEn = 1, and
CM_SYNC_TX_DISABLE in the CM Control GCR is 0, an external SYNC request will also be generated.
The CM will send a response to the CPU when all prior requests have completed and a SYNC response is
received (if it was externalized). If coherence is not enabled, will default to stype 0x0.

• 0x0 - If coherence is enabled, this will be mapped to either a type 0x2 or 0x3 based on the value of the SYN-
CCTL bit in the CM Control GCR. If coherence is not enabled, a legacy SYNC request will be generated.
This will bypass the intervention pipeline in the CM and go directly to the memory unit. If SyncTxEn = 1
and CM_SYNC_TX_DISABLE in the CM Control GCR is 0, an external SYNC request will be generated.

Simple Description for Ordering Barrier:

• The specified memory instructions (loads or stores or both) that occur before the SYNC instruction must
always be ordered before the specified memory instructions after the SYNC.

• Memory instructions which are ordered before other memory instructions are processed by the load/store
datapath first before the other memory instructions.

Detailed Description for Ordering Barrier:

• Every synchronizable specified memory instruction (loads or stores or both) that occurs in the instruction
stream before the SYNC instruction must reach a stage in the load/store datapath after which no instruction
re-ordering is possible before any synchronizable specified memory instruction which occurs after the
SYNC instruction in the instruction stream reaches the same stage in the load/store datapath.

• If any memory instruction before the SYNC instruction in program order, generates a memory request to the
external memory and any memory instruction after the SYNC instruction in program order also generates a
memory request to external memory, the memory request belonging to the older instruction must be globally
performed before the time the memory request belonging to the younger instruction is globally performed.

• The barrier does not guarantee the order in which instruction fetches are performed.

As compared to the completion barrier, the ordering barrier is a lighter-weight operation as it does not require the
specified instructions before the SYNC to be already completed. Instead it only requires that those specified instruc-
tions which are subsequent to the SYNC in the instruction stream are never re-ordered for processing ahead of the
specified instructions which are before the SYNC in the instruction stream. This potentially reduces how many cycles
the barrier instruction must stall before it completes.

The Acquire and Release barrier types are used to minimize the memory orderings that must be maintained and still
have software synchronization work.

SYNC

440 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Because the CPU processes loads and stores in order, ordering barriers are much lighter weight. The CPU handles all
ordering barriers identically. The LSU will complete any pending evictions and the BIU will stop merging on all
WBB entries. No external request will be generated and the CPU will not wait for pending transactions to complete.

For the purposes of this description, the CACHE, PREF and PREFX instructions are treated as loads and stores. That
is, these instructions and the memory transactions sourced by these instructions obey the ordering and completion
rules of the SYNC instruction.

Table 15.42 lists the available completion barrier and ordering barriers behaviors that can be specified using the stype
field..

Table 15.42 Encodings of the Bits[10:6] of the SYNC instruction; the SType Field

Code Name

Older instructions
which must reach

the load/store
ordering point

before the SYNC
instruction
completes.

Younger
instructions

which must reach
the load/store
ordering point
only after the

SYNC instruction
completes.

Older instructions
which must be

globally
performed when

the SYNC
instruction
completes

0x0 SYNC
or

SYNC(0)

Loads, Stores Loads, Stores Loads, Stores

0x2 SYNC(2)
Intervention Sync

Load,Stores Loads, Stores Loads, Stores

0x3 SYNC(3)
Memory Sync

Load,Stores Loads, Stores Loads, Stores

0x4 SYNC_WMB
or

SYNC(4)

Stores Stores

0x10 SYNC_MB
or

SYNC(16)

Loads, Stores Loads, Stores

0x11 SYNC_ACQUIRE
or

SYNC(17)

Loads Loads, Stores

0x12 SYNC_RELEASE
or

SYNC(18)

Loads, Stores Stores

0x13 SYNC_RMB
or

SYNC(19)

Loads Loads

0x1,0x5-0xF,0x14 -
0x1F

RESERVED

ISYNC

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 441

Restrictions:

None

Operation:

SyncOperation(stype)

Exceptions:

None

Software written to use a SYNC instruction with a non-zero stype value, expecting one type of barrier behavior,
should only be run on hardware that actually implements the expected barrier behavior for that non-zero stype value
or on hardware which implements a superset of the behavior expected by the software for that stype value. If the hard-
ware does not perform the barrier behavior expected by the software, the system may fail.

Enter Standby Mode WAIT

442 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Format: WAIT MIPS32

Purpose: Enter Standby Mode

Wait for Event

Description:

The WAIT instruction forces the CPU into low power mode. The pipeline is stalled and when all external requests are
completed, the processor’s main clock is stopped. The processor will restart when reset (SI_Reset) is signaled, or a
non-masked interrupt is taken (SI_NMI, SI_Int, or EJ_DINT). Note that the CPU does not use the code field in this
instruction.

If the pipeline restarts as the result of an enabled interrupt, that interrupt is taken between the WAIT instruction and
the following instruction (EPC for the interrupt points at the instruction following the WAIT instruction). Note that it
is also possible for an interrupt to be taken on the WAIT instruction itself (before the WAIT instruction has halted the
pipeline). Software should be aware of this possibility and take appropriate actions to avoid returning to the WAIT if
there is additional work to be done.This is the case for ‘bottom half’ interrupt processing that exists in Linux and
other OSes. To facilitate this, the CPU implements a feature where the pipeline will be unfrozen by an interrupt even
if StatusIE=0. The idle loop can thus disable interrupts prior to executing the WAIT and know that processing will
resume after the WAIT when an interrupt is signaled. On a processor that does not support this feature, this sequence
would prevent the CPU from waking up without a reset or NMI, so it should be verified that the feature is present.
This CPU indicates that the feature is present by a value of 1 for Config7WII

Restrictions:

The operation of the processor is UNDEFINED if a WAIT instruction is placed in the delay slot of a branch or a
jump.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

I: Enter lower power mode
I+1:/* Potential interrupt taken here */

Exceptions:

Coprocessor Unusable Exception

31 26 25 24 6 5 0

COP0
010000

CO
1

Implementation-Dependent Code
WAIT

100000

6 1 19 6

Chapter 16

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 443

MIPS16e™ Application-Specific Extension to the MIPS32®
Instruction Set

This chapter describes the MIPS16e ASE as implemented in the 1004K CPU. Refer to Volume IV-a of the MIPS32®
Architecture Reference Manual [4] for a general description of the MIPS16e ASE and descriptions of the instructions.

 This chapter covers the following topics:

• Section 16.1 “Instruction Bit Encoding”

• Section 16.2 “Instruction Listing”

16.1 Instruction Bit Encoding

Table 16.2 through Table 16.9 describe the encoding used for the MIPS16e ASE. Table 16.1 describes the meaning of
the symbols used in the tables.

Table 16.1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

∗ Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction cause a Reserved Instruction Exception.

δ (Also italic field name.) Operation or field codes marked with this symbol denotes a field class.
The instruction word must be further decoded by examining additional tables that show values for
another instruction field.

β Operation or field codes marked with this symbol represent a valid encoding for a higher-order
MIPS ISA level. Executing such an instruction cause a Reserved Instruction Exception.

θ Operation or field codes marked with this symbol are available to licensed MIPS partners. To
avoid multiple conflicting instruction definitions, the partner must notify MIPS Technologies, Inc.
when one of these encodings is used. If no instruction is encoded with this value, executing such an
instruction must cause a Reserved Instruction Exception (SPECIAL2 encodings or coprocessor
instruction encodings for a coprocessor to which access is allowed) or a Coprocessor Unusable
Exception (coprocessor instruction encodings for a coprocessor to which access is not allowed).

σ Field codes marked with this symbol represent an EJTAG support instruction and implementation
of this encoding is optional for each implementation. If the encoding is not implemented, execut-
ing such an instruction must cause a Reserved Instruction Exception. If the encoding is imple-
mented, it must match the instruction encoding as shown in the table.

ε Operation or field codes marked with this symbol are reserved for MIPS Application Specific
Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved
Instruction Exception.

φ Operation or field codes marked with this symbol are obsolete and will be removed from a future
revision of the MIPS64 ISA. Software should avoid using these operation or field codes.

 MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set

444 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

Table 16.2 MIPS16e Encoding of the Opcode Field

opcode bits 13..11

0 1 2 3 4 5 6 7

bits 15..14 000 001 010 011 100 101 110 111

0 00 ADDIUSP1

1. The ADDIUSP opcode is used by the ADDIU rx, sp, immediate instruction

ADDIUPC2

2. The ADDIUPC opcode is used by the ADDIU rx, pc, immediate instruction

B JAL(X) δ BEQZ BNEZ SHIFT δ β

1 01 RRI-A δ ADDIU83

3. The ADDIU8 opcode is used by the ADDIU rx, immediate instruction

SLTI SLTIU I8 δ LI CMPI β

2 10 LB LH LWSP4

4. The LWSP opcode is used by the LW rx, offset(sp) instruction

LW LBU LHU LWPC5

5. The LWPC opcode is used by the LW rx, offset(pc) instruction

β

3 11 SB SH SWSP6

6. The SWSP opcode is used by the SW rx, offset(sp) instruction

SW RRR δ RR δ EXTEND δ β

Table 16.3 MIPS16e JAL(X) Encoding of the x Field

x bit 26

0 1

JAL JALX

Table 16.4 MIPS16e SHIFT Encoding of the f Field

f bits 1..0

0 1 2 3

00 01 10 11

SLL β SRL SRA

Table 16.5 MIPS16e RRI-A Encoding of the f Field

f bit 4

0 1

ADDIU1

1. The ADDIU function is used by
the ADDIU ry, rx, immediate
instruction

β

Table 16.6 MIPS16e I8 Encoding of the funct Field

funct bits 10..8

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

BTEQZ BTNEZ SWRASP1

1. The SWRASP function is used by the SW ra, offset(sp) instruction

ADJSP2 SVRS δ MOV32R3 * MOVR324

16.1 Instruction Bit Encoding

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 445

2. The ADJSP function is used by the ADDIU sp, immediate instruction
3. The MOV32R function is used by the MOVE r32, rz instruction
4. The MOVR32 function is used by the MOVE ry, r32 instruction

Table 16.7 MIPS16e RRR Encoding of the f Field

f bits 1..0

0 1 2 3

00 01 10 11

β ADDU β SUBU

Table 16.8 MIPS16e RR Encoding of the Funct Field

funct bits 2..0

0 1 2 3 4 5 6 7

bits 4..3 000 001 010 011 100 101 110 111

0 00 J(AL)R(C) δ SDBBP SLT SLTU SLLV BREAK SRLV SRAV

1 01 β * CMP NEG AND OR XOR NOT

2 10 MFHI CNVT δ MFLO β β * β β
3 11 MULT MULTU DIV DIVU β β β β

Table 16.9 MIPS16e I8 Encoding of the s Field when funct=SVRS

s bit 7

0 1

RESTORE SAVE

Table 16.10 MIPS16e RR Encoding of the ry Field when funct=J(AL)R(C)

ry bits 7..5

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

JR rx JR ra JALR * JRC rx JRC ra JALRC *

Table 16.11 MIPS16e RR Encoding of the ry Field when funct=CNVT

ry bits 7..5

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

ZEB ZEH β * SEB SEH β *

 MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set

446 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

16.2 Instruction Listing

Table 16.12 through 16.19 list the MIPS16e instruction set.

Table 16.12 MIPS16e Load and Store Instructions

Mnemonic Instruction
Extensible
Instruction

LB Load Byte Yes

LBU Load Byte Unsigned Yes

LH Load Halfword Yes

LHU Load Halfword Unsigned Yes

LW Load Word Yes

SB Store Byte Yes

SH Store Halfword Yes

SW Store Word Yes

Table 16.13 MIPS16e Save and Restore Instructions

Mnemonic Instruction
Extensible
Instruction

RESTORE Restore Registers and Deallocate Stack Frame Yes

SAVE Save Registers and Setup Stack Frame Yes

Table 16.14 MIPS16e ALU Immediate Instructions

Mnemonic Instruction
Extensible
Instruction

ADDIU Add Immediate Unsigned Yes

CMPI Compare Immediate Yes

LI Load Immediate Yes

SLTI Set on Less Than Immediate Yes

SLTIU Set on Less Than Immediate Unsigned Yes

Table 16.15 MIPS16e Arithmetic Two or Three Operand Register Instructions

Mnemonic Instruction
Extensible
Instruction

ADDU Add Unsigned No

AND AND No

CMP Compare No

16.2 Instruction Listing

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 447

MOVE Move No

NEG Negate No

NOT Not No

OR OR No

SEB Sign-Extend Byte No

SEH Sign-Extend Halfword No

SLT Set on Less Than No

SLTU Set on Less Than Unsigned No

SUBU Subtract Unsigned No

XOR Exclusive OR No

ZEB Zero-Extend Byte No

ZEH Zero-Extend Halfword No

Table 16.16 MIPS16e Special Instructions

Mnemonic Instruction
Extensible
Instruction

BREAK Breakpoint No

SDBBP Software Debug Breakpoint No

EXTEND Extend No

Table 16.17 MIPS16e Multiply and Divide Instructions

Mnemonic Instruction
Extensible
Instruction

DIV Divide No

DIVU Divide Unsigned No

MFHI Move From HI No

MFLO Move From LO No

MULT Multiply No

MULTU Multiply Unsigned No

Table 16.18 MIPS16e Jump and Branch Instructions

Mnemonic Instruction
Extensible
Instruction

B Branch Unconditional Yes

Table 16.15 MIPS16e Arithmetic Two or Three Operand Register Instructions (Continued)

Mnemonic Instruction
Extensible
Instruction

 MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set

448 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

BEQZ Branch on Equal to Zero Yes

BNEZ Branch on Not Equal to Zero Yes

BTEQZ Branch on T Equal to Zero Yes

BTNEZ Branch on T Not Equal to Zero Yes

JAL Jump and Link No

JALR Jump and Link Register No

JALRC Jump and Link Register Compact No

JALX Jump and Link Exchange No

JR Jump Register No

JRC Jump Register Compact No

Table 16.19 MIPS16e Shift Instructions

Mnemonic Instruction
Extensible
Instruction

SRA Shift Right Arithmetic Yes

SRAV Shift Right Arithmetic Variable No

SLL Shift Left Logical Yes

SLLV Shift Left Logical Variable No

SRL Shift Right Logical Yes

SRLV Shift Right Logical Variable No

Table 16.18 MIPS16e Jump and Branch Instructions (Continued)

Mnemonic Instruction
Extensible
Instruction

Appendix A

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 449

References

This appendix lists other documents available from MIPS Technologies, Inc. that are referenced elsewhere in this
document. These documents may be included in the $MIPS_HOME/$MIPS_CORE/doc area of a typical 1004K
soft or hard core release, or in some cases may be available on the MIPS web site, http://www mips.com.

1. MIPS32® Architecture For Programmers, Volume I: Introduction to the MIPS32® Architecture
MIPS document: MD0082

2. MIPS32® Architecture For Programmers, Volume II: The MIPS32® Instruction Set
MIPS document: MD0086

3. MIPS32® Architecture For Programmers, Volume III: The MIPS32® Privileged Resource Architecture
MIPS document: MD0090

4. MIPS32® Architecture For Programmers, Volume IV-a: The MIPS16e™ Application-Specific Extension to the
MIPS32® Architecture
MIPS document: MD00076

5. MIPS32® Architecture For Programmers, Volume IV-e: The MIPS® DSP Application-Specific Extension to the
MIPS32® Architecture
MIPS document: MD00374

6. MIPS32® Architecture for Programmers, Volume IV-f: The MIPS® MT Application-Specific Extension to the
MIPS32® Architecture
MIPS document: MD00378

7. MIPS® 1004K™ Coherent Processing System Datasheet
MIPS document: MD00584

8. MIPS® 1004K™ Coherent Processing System User's Manual
MIPS document: MD00597

9. MIPS32® 1004K™ CPU Family Integrator’s Guide
MIPS document: MD00620

10. MIPS32® 1004K™ CPU Family Implementor’s Guide
MIPS document: MD00621

11. Programming the MIPS32® 1004K™ Coherent Processing System Family
MIPS document: MD00638

12. CoreExtend® Instruction Integrator's Guide for MIPS32® Cores
MIPS document: MD00348

 References

450 MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21

13. PDtrace™ Interface and Trace Control Block Specification
MIPS document: MD00439

14. Open Core Protocol Specification
Available from the OCP International Partnership at http://www.ocpip.org

15. EJTAG Specification
MIPS document: MD00047

16. Cache Configuration Application Note
MIPS document: MD00213

Appendix B

MIPS32® 1004K™ CPU Family Software User’s Manual, Revision 01.21 451

Revision History

Change bars (vertical lines) in the margins of this document indicate significant changes in the document since its last
release. Change bars are removed for changes that are more than one revision old.

This document may refer to Architecture specifications (for example, instruction set descriptions and EJTAG register
definitions), and change bars in these sections indicate changes since the previous version of the relevant Architecture
document.

Revision Date Description

01.00 June 23, 2008 • Initial external release

01.01 December 19, 2008 • Added Mode column to performance counter event table
• Added system specific performance counter events
• Updated description of Single Threaded Mode performance

counter
• Added missing DebugControlRegisterPCSe bit as well as

other DCR bits for unsupported debug features
• Update TCStatusTCU3-0 description

• Reviewed usage of term CPU for consistency, particularly
around MT

• Added details on PAUSE instruction

1.10 July 15, 2009 • Fixed link to PageMask register in MMU chapter
• Update to EJTAG 5.0/PDtrace 6.1
• Add Fast Debug Channel
• Add relocatable debug exception vector
• Add Common Device Memory Map and CDMMBASE cop0

register
• Note that thread selection stage can be bypassed in single TC

configurations
• Mention Cluster Power Controller capabilities

1.20 January 21, 2011 • Clarified PAUSE operation
• Clarified description of ITC cell numbering
• Noted that perfcounter interrupt is also deasserted if IE bit is

cleared
• Added MFHC1/MTHC1 to list of FP move instructions
• Added WRR2 policy Manager example module description.
• Add option for 2I/1D EJTAG breakpoints
• Added option for reducing instruction buffer to 6 entries

1.21 December 15, 2011 • Clarify merging operation for Uncached Accelerated Stores

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

