

2 MIPS32® M14K™ Processor Core Family Datasheet, Revision 02.05

• Multiply/Divide Unit (MDU) - the MDU can be
configured for either performance or area optimizations.
The high-performance optimization supports a single-
cycle 32x16-bit MAC instruction or two-cycle 32x32-bit
instructions.

• A simple SRAM-style interface that is configurable for
independent instruction and data or as a unified interface.
The SRAM interface enables deterministic response,
while maintaining high-performance operation

• Support for the MCU ASE to enhance common functions
used in microcontroller applications such as interrupts
and semaphore manipulation.

• Security features such as the Memory Protection Unit to
restrict execution capabilities from untrusted code and
SecureDebug to restrict untrusted EJTAG debug access.

• Reference design for SRAM interface to AMBA-3 AHB-
Lite bus and flash memory.

• Parity support.

• An optional Enhanced JTAG (EJTAG version 4.52)
block allows for single-stepping of the processor as well
as instruction and data virtual address/value breakpoints.
iFlowtrace™ version 2.0 is also supported to add real-
time instruction program counter and special events trace
capability for debug. Additionally, Fast Debug Channel,
Performance Counters, and PC/Data sampling functions
are added to enrich debug and profiling features on the
M14K core.

• External block to convert 4-wire EJTAG (IEEE 1149.1)
interface to 2-wire cJTAG (IEEE 1149.7) interface.

• Configurable hardware breakpoints triggered by address
match or address range.

Features
• 5-stage pipeline

• 32-bit Address and Data Paths

• MIPS32 Instruction Set Architecture

• MIPS32 Enhanced Architecture Features

• Vectored interrupts and support for external inter-
rupt controller

• Programmable exception vector base

• Atomic interrupt enable/disable

• GPR shadow registers (one, three, seven, or fifteen
additional shadows can be optionally added to min-
imize latency for interrupt handlers)

• Bit field manipulation instructions

• microMIPS Instruction Set Architecture

• microMIPS ISA is a build-time configurable option
that reduces code size over MIPS32, while main-
taining MIPS32 performance.

• Combining both 16-bit and 32-bit opcodes, micro-
MIPS supports all MIPS32 instructions (except
branch-likely instructions) with new optimized
encoding. Frequently used MIPS32 instructions are
available as 16-bit instructions.

• Added fifteen new 32-bit instructions and thirty-
nine 16-bit instructions.

• Stack pointer implicit in instruction.

• MIPS32 assembly and ABI-compatible.

• Supports MIPS architecture Modules and User-
defined Instructions (UDIs).

• MCU™ ASE

• Increases the number of interrupt hardware inputs
from 6 to 8 for Vectored Interrupt (VI) mode, and
from 63 to 255 for External Interrupt Controller
(EIC) mode.

• Separate priority and vector generation. 16-bit vec-
tor address is provided.

• Hardware assist combined with the use of Shadow
Register Sets to reduce interrupt latency during the
prologue and epilogue of an interrupt.

• An interrupt return with automated interrupt epi-
logue handling instruction (IRET) improves inter-
rupt latency.

• Supports optional interrupt chaining.

• Two memory-to-memory atomic read-modify-write
instructions (ASET and ACLR) eases commonly
used semaphore manipulation in microcontroller
applications. Interrupts are automatically disabled
during the operation to maintain coherency.

• Memory Management Unit

• Simple Fixed Mapping Translation (FMT) mecha-
nism

• Memory Protection Unit

• Optional feature that improves system security by
restricting access, execution, and trace capabilities
from untrusted code in predefined memory regions.

• Simple SRAM-Style Interface

• 32-bit address and data; input byte-enables enable
simple connection to narrower devices

• Single or multi-cycle latencies

• Configuration option for dual or unified instruction/
data interfaces

• Redirection mechanism on dual I/D interfaces per-
mits D-side references to be handled by I-side

MIPS32® M14K™ Processor Core Family Datasheet, Revision 02.05 3

• Transactions can be aborted

• Reference Design

• A typical SRAM reference design is provided.

• An AHB-Lite BIU reference design is provided
between the SRAM interface and AHB-Lite Bus.

• An optimized interface for slow memory (Flash)
access using prefetch buffer scheme is provided.

• Parity Support

• The ISRAM and DSRAM support optional parity
detection.

• Multiply/Divide Unit (high-performance configuration)

• Maximum issue rate of one 32x16 multiply per
clock via on-chip 32x16 hardware multiplier array.

• Maximum issue rate of one 32x32 multiply every
other clock

• Early-in iterative divide. Minimum 11 and maxi-
mum 34 clock latency (dividend (rs) sign exten-
sion-dependent)

• Multiply/Divide Unit (area-efficient configuration)

• 32 clock latency on multiply

• 34 clock latency on multiply-accumulate

• 33-35 clock latency on divide (sign-dependent)

• CorExtend® User-Defined Instruction Set Extensions

• Allows user to define and add instructions to the
core at build time

• Maintains full MIPS32 compatibility

• Supported by industry-standard development tools

• Single or multi-cycle instructions

• Multi-Core Support

• External lock indication enables multi-processor
semaphores based on LL/SC instructions

• External sync indication allows memory ordering

• Debug support includes cross-core triggers

• Coprocessor 2 interface

• 32-bit interface to an external coprocessor

• Power Control

• Minimum frequency: 0 MHz

• Power-down mode (triggered by WAIT instruction)

• Support for software-controlled clock divider

• Support for extensive use of local gated clocks

• EJTAG Debug/Profiling and iFlowtrace™ Mechanism

• CPU control with start, stop, and single stepping

• Virtual instruction and data address/value break-
points

• Hardware breakpoint supports both address match
and address range triggering

• Optional simple hardware breakpoints on virtual
addresses; 8I/4D, 6I/2D, 4I/2D, 2I/1D breakpoints,
or no breakpoints

• Optional complex hardware breakpoints with 8I/
4D, 6I/2D simple breakpoints

• TAP controller is chainable for multi-CPU debug

• Supports EJTAG (IEEE 1149.1) and compatible
with cJTAG 2-wire (IEEE 1149.7) extension proto-
col

• Cross-CPU breakpoint support

• iFlowtrace support for real-time instruction PC and
special events

• PC and/or load/store address sampling for profiling

• Performance Counters

• Support for Fast Debug Channel (FDC)

• SecureDebug

• An optional feature that disables access via EJTAG
in an untrusted environment

• Testability

• Full scan design achieves test coverage in excess of
99% (dependent on library and configuration
options)

Architecture Overview

The M14K core contains both required and optional blocks,
as shown in Figure 1. Required blocks must be implemented
to remain MIPS-compliant. Optional blocks can be added to
the M14K core based on the needs of the implementation.

The required blocks are as follows:

• Instruction Decode

• Execution Unit

• General Purposed Registers (GPR)

• Multiply/Divide Unit (MDU)

• System Control Coprocessor (CP0)

• Memory Management Unit (MMU)

• I/D SRAM Interfaces

• Power Management

Optional or configurable blocks include:

• Configurable instruction decoder supporting three ISA
modes: MIPS32-only, MIPS32 and microMIPS, or
microMIPS-only

4 MIPS32® M14K™ Processor Core Family Datasheet, Revision 02.05

• Memory Protection Unit (MPU)

• Reference Design of I/D-SRAM, BIU, Slow Memory
Interface

• Coprocessor 2 interface

• CorExtend® User-Defined Instruction (UDI) interface

• Debug/Profiling with Enhanced JTAG (EJTAG)
Controller, Break points, Sampling, Performance
counters, Fast Debug Channel, and iFlowtrace logic

The section "MIPS32® M14K™ Core Required Logic
Blocks" on page 5 discusses the required blocks. The section
"MIPS32® M14K™ Core Optional or Configurable Logic
Blocks" on page 10 discusses the optional blocks.

Pipeline Flow

The M14K core implements a 5-stage pipeline with a
performance similar to the M4K® pipeline. The pipeline
allows the processor to achieve high frequency while
minimizing device complexity, reducing both cost and power
consumption.

The M14K core pipeline consists of five stages:

• Instruction (I Stage)

• Execution (E Stage)

• Memory (M Stage)

• Align (A Stage)

• Writeback (W stage)

The M14K core implements a bypass mechanism that allows
the result of an operation to be forwarded directly to the
instruction that needs it without having to write the result to
the register and then read it back.

Figure 2 shows a timing diagram of the M14K core pipeline
(shown with the-high performance MDU).

Figure 2 MIPS32® M14K™ Core Pipeline

I Stage: Instruction Fetch

During the Instruction fetch stage:

• An instruction is fetched from the instructionSRAM.

• If both MIPS32 and microMIPS ISAs are supported,
microMIPS instructions are converted to MIPS32-like
instructions. If the MIPS32 ISA is not supported, 16-bit
microMIPS instructions will be first recoded into 32-bit
microMIPS equivalent instructions, and then decoded in
native microMIPS ISA format.

E Stage: Execution

During the Execution stage:

• Operands are fetched from the register file.

• Operands from the M and A stage are bypassed to this
stage.

• The Arithmetic Logic Unit (ALU) begins the arithmetic
or logical operation for register-to-register instructions.

• The ALU calculates the virtual data address for load and
store instructions, and the MMU performs the fixed
virtual-to-physical address translation.

• The ALU determines whether the branch condition is
true and calculates the virtual branch target address for
branch instructions.

• Instruction logic selects an instruction address and the
MMU performs the fixed virtual-to-physical address
translation.

• All multiply and divide operations begin in this stage.

M Stage: Memory Fetch

During the Memory fetch stage:

• The arithmetic ALU operation completes.

I E M A W

I-A1

RegRd

I Dec

ALU Op

Align RegWD-AC

Bypass
Bypass

Mul-16x16, 32x16 RegW

Bypass

Acc

Mul-32x32 RegWAcc

I-A2

Bypass

Div RegWAcc

I-SRAM
D-SRAM

MIPS32® M14K™ Processor Core Family Datasheet, Revision 02.05 5

• The data SRAM access is performed for load and store
instructions.

• A 16x16 or 32x16 multiply calculation completes (high-
performance MDU option).

• A 32x32 multiply operation stalls the MDU pipeline for
one clock in the M stage (high-performance MDU option
).

• A multiply operation stalls the MDU pipeline for 31
clocks in the M stage (area-efficient MDU option).

• A multiply-accumulate operation stalls the MDU pipeline
for 33 clocks in the M stage (area-efficient MDU option
).

• A divide operation stalls the MDU pipeline for a
maximum of 34 clocks in the M stage. Early-in sign
extension detection on the dividend will skip 7, 15, or 23
stall clocks (only the divider in the fast MDU option
supports early-in detection).

A Stage: Align

During the Align stage:

• Load data is aligned to its word boundary.

• A multiply/divide operation updates the HI/LO registers
(area-efficient MDU option).

• Multiply operation performs the carry-propagate-add.
The actual register writeback is performed in the W stage
(high-performance MDU option).

• A MUL operation makes the result available for
writeback. The actual register writeback is performed in
the W stage.

• EJTAG complex break conditions are evaluated.

W Stage: Writeback

During the Writeback stage:

• For register-to-register or load instructions, the
instruction result is written back to the register file.

MIPS32® M14K™ Core Required
Logic Blocks

The required logic blocks of the M14K core (Figure 1) are
defined in the following subsections.

Execution Unit

The M14K core execution unit implements a load/store
architecture with single-cycle ALU operations (logical, shift,
add, subtract) and an autonomous multiply/divide unit.

 The execution unit includes:

• Arithmetic Logic Unit (ALU) for performing arithmetic
and bitwise logical operations. Shared adder for
arithmetic operations, load/store address calculation, and
branch target calculation.

• Address unit for calculating the next PC and next fetch
address selection muxes.

• Load Aligner.

• Shifter and Store Aligner.

• Branch condition comparator.

• Trap condition comparator.

• Bypass muxes to advance result between two adjacent
instructions with data dependency.

• Leading Zero/One detect unit for implementing the CLZ
and CLO instructions.

• Actual execution of the Atomic Instructions defined in
the MCU ASE.

General Purpose Registers

The M14K core contains thirty-two 32-bit general-purpose
registers used for integer operations and address calculation.
Optionally, one, three, seven or fifteen additional register file
shadow sets (each containing thirty-two registers) can be
added to minimize context switching overhead during
interrupt/exception processing. The register file consists of
two read ports and one write port and is fully bypassed to
minimize operation latency in the pipeline.

Multiply/Divide Unit (MDU)

The M14K core includes a multiply/divide unit (MDU) that
contains a separate, dedicated pipeline for integer multiply/
divide operations. This pipeline operates in parallel with the
integer unit (IU) pipeline and does not stall when the IU
pipeline stalls. This allows the long-running MDU operations
to be partially masked by system stalls and/or other integer
unit instructions.

The MIPS architecture defines that the result of a multiply or
divide operation be placed in a pair of HI and LO registers.
Using the Move-From-HI (MFHI) and Move-From-LO
(MFLO) instructions, these values can be transferred to the
general-purpose register file.

There are two configuration options for the MDU: 1) a higher
performance 32x16 multiplier block; 2) an area-efficient
iterative multiplier block. . The selection of the MDU style
allows the implementor to determine the appropriate
performance and area trade-off for the application.

6 MIPS32® M14K™ Processor Core Family Datasheet, Revision 02.05

MDU with 32x16 High-Performance Multiplier

The high-performance MDU consists of a 32x16 Booth-
recoded multiplier, a pair of result/accumulation registers (HI
and LO), a divide state machine, and the necessary
multiplexers and control logic. The first number shown (‘32’
of 32x16) represents the rs operand. The second number (‘16’
of 32x16) represents the rt operand. The M14K core only
checks the value of the rt operand to determine how many
times the operation must pass through the multiplier. The
16x16 and 32x16 operations pass through the multiplier once.
A 32x32 operation passes through the multiplier twice.

The MDU supports execution of one 16x16 or 32x16
multiply or multiply-accumulate operation every clock cycle;
32x32 multiply operations can be issued every other clock
cycle. Appropriate interlocks are implemented to stall the
issuance of back-to-back 32x32 multiply operations. The
multiply operand size is automatically determined by logic
built into the MDU.

Table 1 and Table 2 list the repeat rate (how often the
operation can be reissued when there is no data dependency)
and latency (number of cycles until a result is available) for
the multiply and divide instructions. The approximate latency
and repeat rates are listed in terms of pipeline clocks. For a
more detailed discussion of latencies and repeat rates, refer to
Chapter 2 of the MIPS32 M14K™ Processor Core Family
Software User’s Manual.

MDU with Area-Efficient Option

With the area-efficient option, multiply and divide operations
are implemented with a simple 1-bit-per-clock iterative
algorithm. Any attempt to issue a subsequent MDU
instruction while a multiply/divide is still active causes an
MDU pipeline stall until the operation is completed.

Table 2 lists the latency (number of cycles until a result is
available) for the M14K core multiply and divide
instructions. The latencies are listed in terms of pipeline
clocks.

Regardless of the multiplier array implementation, divide
operations are implemented with a simple 1-bit-per-clock
iterative algorithm. An early-in detection checks the sign
extension of the dividend (rs) operand. If rs is 8 bits wide, 23
iterations are skipped. For a 16-bit-wide rs, 15 iterations are
skipped, and for a 24-bit-wide rs, 7 iterations are skipped.
Any attempt to issue a subsequent MDU instruction while a
divide is still active causes an IU pipeline stall until the divide
operation has completed.

System Control Coprocessor (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-
to-physical address translation, the exception control system,
the processor’s diagnostics capability, the operating modes
(kernel, user, and debug), and whether interrupts are enabled
or disabled. Configuration information, such as presence of
build-time options like microMIPS, CorExtend Module or
Coprocessor 2 interface, is also available by accessing the
CP0 registers.

Table 1 High-Performance Integer Multiply/Divide
Unit Latencies and Repeat Rates

Opcode

Operand
Size

(mul rt)
(div rs) Latency

Repeat
Rate

MUL
(GPR destination)

16 bits 5 2

32 bits 6 3

MULT, MULTU,
MADD, MADDU,
MSUB, MSUBU
(Hi/Lo destination)

16 bits 2 1

32 bits 3 2

DIV / DIVU
(Hi/Lo destination)

8 bits 11-12 / 11 11-12 / 11

16 bits 19-20 / 19 19-20 / 19

24 bits 27-28 / 27 27-28 / 27

32 bits 34-35 / 34 34-35 / 34

Table 2 Area-Efficient Integer Multiply/Divide Unit
Operation Latencies

Opcode

Operand
Size

(mul rt)
(div rs) Latency

Repeat
Rate

MUL
(GPR destination)

any 35 32

MULT, MULTU,
(Hi/Lo destination)

any 32 32

MADD, MADDU,
MSUB, MSUBU
(Hi/Lo destination)

any 34 34

DIV / DIVU
(Hi/Lo destination)

any 33-34 / 33 33-34 / 33

MIPS32® M14K™ Processor Core Family Datasheet, Revision 02.05 7

Coprocessor 0 also contains the logic for identifying and
managing exceptions. Exceptions can be caused by a variety
of sources, including boundary cases in data, external events,
or program errors.

Interrupt Handling

The M14K core includes support for eight hardware interrupt
pins, two software interrupts, and a timer interrupt. These
interrupts can be used in any of three interrupt modes, as
defined by Release 2 of the MIPS32 Architecture:

• Interrupt compatibility mode, which acts identically to
that in an implementation of Release 1 of the
Architecture.

• Vectored Interrupt (VI) mode, which adds the ability to
prioritize and vector interrupts to a handler dedicated to
that interrupt, and to assign a GPR shadow set for use
during interrupt processing. The presence of this mode is
denoted by the VInt bit in the Config3 register. This
mode is architecturally optional; but it is always present
on the M14K core, so the VInt bit will always read as a 1
for the M14K core.

• External Interrupt Controller (EIC) mode, which
redefines the way in which interrupts are handled to
provide full support for an external interrupt controller
handling prioritization and vectoring of interrupts. The
presence of this mode denoted by the VEIC bit in the
Config3 register. Again, this mode is architecturally
optional. On the M14K core, the VEIC bit is set externally
by the static input, SI_EICPresent, to allow system logic
to indicate the presence of an external interrupt
controller.

The reset state of the processor is interrupt compatibility
mode, such that a processor supporting Release 2 of the
Architecture, the M14K core for example, is fully compatible
with implementations of Release 1 of the Architecture.

VI or EIC interrupt modes can be combined with the optional
shadow registers to specify which shadow set should be used
on entry to a particular vector. The shadow registers further
improve interrupt latency by avoiding the need to save
context when invoking an interrupt handler.

In the M14K core, interrupt latency is reduced by:

• Speculative interrupt vector prefetching during the
pipeline flush.

• Interrupt Automated Prologue (IAP) in hardware:
Shadow Register Sets remove the need to save GPRs,
and IAP removes the need to save specific Control
Registers when handling an interrupt.

• Interrupt Automated Epilogue (IAE) in hardware:
Shadow Register Sets remove the need to restore GPRs,
and IAE removes the need to restore specific Control
Registers when returning from an interrupt.

• Allow interrupt chaining. When servicing an interrupt
and interrupt chaining is enabled, there is no need to
return from the current Interrupt Service Routine (ISR) if
there is another valid interrupt pending to be serviced.
The control of the processor can jump directly from the
current ISR to the next ISR without IAE and IAP.

GPR Shadow Registers

The MIPS32 Architecture optionally removes the need to
save and restore GPRs on entry to high-priority interrupts or
exceptions, and to provide specified processor modes with
the same capability. This is done by introducing multiple
copies of the GPRs, called shadow sets, and allowing
privileged software to associate a shadow set with entry to
kernel mode via an interrupt vector or exception. The normal
GPRs are logically considered shadow set zero.

The number of GPR shadow sets is a build-time option. The
M14K core allows 1 (the normal GPRs), 2, 4, 8, or 16 shadow
sets. The highest number actually implemented is indicated
by the SRSCtlHSS field. If this field is zero, only the normal
GPRs are implemented.

Shadow sets are new copies of the GPRs that can be
substituted for the normal GPRs on entry to kernel mode via
an interrupt or exception. Once a shadow set is bound to a
kernel-mode entry condition, references to GPRs operate
exactly as one would expect, but they are redirected to
registers that are dedicated to that condition. Privileged
software may need to reference all GPRs in the register file,
even specific shadow registers that are not visible in the
current mode, and the RDPGPR and WRPGPR instructions
are used for this purpose. The CSS field of the SRSCtl register
provides the number of the current shadow register set, and
the PSS field of the SRSCtl register provides the number of the
previous shadow register set that was current before the last
exception or interrupt occurred.

If the processor is operating in VI interrupt mode, binding of
a vectored interrupt to a shadow set is done by writing to the
SRSMap register. If the processor is operating in EIC interrupt
mode, the binding of the interrupt to a specific shadow set is
provided by the external interrupt controller and is configured
in an implementation-dependent way. Binding of an
exception or non-vectored interrupt to a shadow set is done
by writing to the ESS field of the SRSCtl register. When an
exception or interrupt occurs, the value of SRSCtlCSS is copied
to SRSCtlPSS, and SRSCtlCSS is set to the value taken from the
appropriate source. On an ERET, the value of SRSCtlPSS is

8 MIPS32® M14K™ Processor Core Family Datasheet, Revision 02.05

copied back into SRSCtlCSS to restore the shadow set of the
mode to which control returns.

Modes of Operation

The M14K core implements three modes of operation:

• User mode is most often used for applications pro-
grams.

• Kernel mode is typically used for handling excep-
tions and operating-system kernel functions, includ-
ing CP0 management and I/O device accesses.

• Debug mode is used during system bring-up and
software development. Refer to the EJTAG section
for more information on debug mode.

Figure 3 shows the virtual address map of the MIPS
Architecture.

Figure 3 M14K™ Core Virtual Address Map

Memory Management Unit (MMU)

The M14K core contains a simple Fixed Mapping Translation
(FMT) MMU that interfaces between the execution unit and
the SRAM controller.

Fixed Mapping Translation (FMT)

A FMT is smaller and simpler than the full Translation
Lookaside Buffer (TLB) style MMU found in other MIPS
cores. Like a TLB, the FMT performs virtual-to-physical
address translation and provides attributes for the different
segments. Those segments that are unmapped in a TLB
implementation (kseg0 and kseg1) are translated identically
by the FMT.

Figure 4 shows how the FMT is implemented in the M14K
core.

Figure 4 Address Translation During SRAM Access
with FMT Implementation

SRAM Interface Controller

Instead of caches, the M14K core contains an interface to
SRAM-style memories that can be tightly coupled to the core.
This permits deterministic response time with less area than
is typically required for caches. The SRAM interface includes
separate uni-directional 32-bit buses for address, read data,
and write data.

Dual or Unified Interfaces

The SRAM interface includes a build-time option to select
either dual or unified instruction and data interfaces.

The dual interface enables independent connection to
instruction and data devices. It generally yields the highest
performance, because the pipeline can generate simultaneous
I and D requests, which are then serviced in parallel.

For simpler or cost-sensitive systems, it is also possible to
combine the I and D interfaces into a common interface that
services both types of requests. If I and D requests occur
simultaneously, priority is given to the D side.

kuseg

kseg0

kseg1

kseg2

kseg3

0x00000000

0x7FFFFFFF
0x80000000

0x9FFFFFFF
0xA0000000

0xBFFFFFFF
0xC0000000

0xDFFFFFFF

0xE0000000

0xF1FFFFFF

Kernel Virtual Address Space

Unmapped, 512 MB
Kernel Virtual Address Space

Uncached

Unmapped, 512 MB
Kernel Virtual Address Space

User Virtual Address Space

1. This space is mapped to memory in user or kernel mode,
and by the EJTAG module in debug mode.

0xFF200000
0xFF3FFFFF
0xFF400000

0xFFFFFFFF

Memory/EJTAG1

Mapped, 2048 MB

Fixed Mapped, 512 MB

Fixed Mapped

Fixed Mapped
Instruction
Address
Calculator

FMT

Data
Address
Calculator PhysicalVirtual

Address

Virtual
Address

Address

Physical
Address

SRAM
interface

Data
SRAM

Inst
SRAM

MIPS32® M14K™ Processor Core Family Datasheet, Revision 02.05 9

Back-stalling

Typically, read and write transactions will complete in a
single cycle. However, if multi-cycle latency is desired, the
interface can be stalled to allow connection to slower devices.

Redirection

When the dual I/D interface is present, a mechanism exists to
divert D-side references to the I-side, if desired. The
mechanism can be explicitly invoked for any other D-side
references, as well. When the DS_Redir signal is asserted, a
D-side request is diverted to the I-side interface in the
following cycle, and the D-side will be stalled until the
transaction is completed.

Transaction Abort

The core may request a transaction (fetch/load/store/sync) to
be aborted. This is particularly useful in case of interrupts.
Because the core does not know whether transactions are re-
startable, it cannot arbitrarily interrupt a request which has
been initiated on the SRAM interface. However, cycles spent
waiting for a multi-cycle transaction to complete can directly
impact interrupt latency. In order to minimize this effect, the
interface supports an abort mechanism. The core requests an
abort whenever an interrupt is detected and a transaction is
pending (abort of an instruction fetch may also be requested
in other cases). The external system logic can choose to
acknowledge or to ignore the abort request.

Connecting to Narrower Devices

The instruction and data read buses are always 32 bits in
width. To facilitate connection to narrower memories, the
SRAM interface protocol includes input byte-enables that can
be used by system logic to signal validity as partial read data
becomes available. The input byte-enables conditionally
register the incoming read data bytes within the core, and thus
eliminate the need for external registers to gather the entire 32
bits of data. External muxes are required to redirect the
narrower data to the appropriate byte lanes.

Lock Mechanism

The SRAM interface includes a protocol to identify a locked
sequence, and is used in conjunction with the LL/SC atomic
read-modify-write semaphore instructions.

Sync Mechanism

The interface includes a protocol that externalizes the
execution of the SYNC instruction. External logic might
choose to use this information to enforce memory ordering
between various elements in the system.

External Call Indication

The instruction fetch interface contains signals that indicate
that the core is fetching the target of a subroutine call-type
instruction such as JAL or BAL. At some point after a call,
there will typically be a return to the original code sequence.
If a system prefetches instructions, it can make use of this
information to save instructions that were prefetched and are
likely to be executed after the return.

Hardware Reset

The M14K core has two types of reset input signals: SI_Reset
and SI_ColdReset. Functionally, these two signals are ORed
together within the core and then used to initialize critical
hardware state.

Both reset signals can be asserted either synchronously or
asynchronously to the core clock, SI_ClkIn, and will trigger a
Reset exception. The reset signals are active high and must be
asserted for a minimum of 5 SI_ClkIn cycles. The falling edge
triggers the Reset exception.

The primary difference between the two reset signals is that
SI_Reset sets a bit in the Status register; this bit could be used
by software to distinguish between the two reset signals, if
desired. The reset behavior is summarized in Table 3.

One (or both) of the reset signals must be asserted at power-
on or whenever hardware initialization of the core is desired.
A power-on reset typically occurs when the machine is first
turned on. A hard reset usually occurs when the machine is
already on and the system is rebooted.

In debug mode, EJTAG can request that a soft reset (via the
SI_Reset pin) be masked. It is system-dependent whether this
functionality is supported. In normal mode, the SI_Reset pin
cannot be masked. The SI_ColdReset pin is never masked.

Power Management

The M14K core offers a number of power management
features, including low-power design, active power
management, and power-down modes of operation. The core

Table 3 Reset Types

SI_Reset SI_ColdReset Action

0 0 Normal operation, no reset.

1 0 Reset exception; sets
StatusSR bit.

X 1 Reset exception.

10 MIPS32® M14K™ Processor Core Family Datasheet, Revision 02.05

is a static design that supports slowing or halting the clocks,
which reduces system power consumption during idle
periods.

The M14K core provides two mechanisms for system-level
low-power support:

• Register-controlled power management

• Instruction-controlled power management

Register-Controlled Power Management

The RP bit in the CP0 Status register provides a software
mechanism for placing the system into a low-power state.
The state of the RP bit is available externally via the SI_RP
signal. The external agent then decides whether to place the
device in a low-power mode, such as reducing the system
clock frequency.

Three additional bits,StatusEXL, StatusERL, and DebugDM
support the power management function by allowing the user
to change the power state if an exception or error occurs while
the M14K core is in a low-power state. Depending on what
type of exception is taken, one of these three bits will be
asserted and reflected on the SI_EXL, SI_ERL, or
EJ_DebugM outputs. The external agent can look at these
signals and determine whether to leave the low-power state to
service the exception.

The following four power-down signals are part of the system
interface and change state as the corresponding bits in the
CP0 registers are set or cleared:

• The SI_RP signal represents the state of the RP bit (27) in
the CP0 Status register.

• The SI_EXL signal represents the state of the EXL bit (1)
in the CP0 Status register.

• The SI_ERL signal represents the state of the ERL bit (2)
in the CP0 Status register.

• The EJ_DebugM signal represents the state of the DM bit
(30) in the CP0 Debug register.

Instruction-Controlled Power Management

The second mechanism for invoking power-down mode is by
executing the WAIT instruction. When the WAIT instruction
is executed, the internal clock is suspended; however, the
internal timer and some of the input pins (SI_Int[5:0], SI_NMI,

SI_Reset, and SI_ColdReset) continue to run. Once the CPU
is in instruction-controlled power management mode, any
interrupt, NMI, or reset condition causes the CPU to exit this
mode and resume normal operation.

The M14K core asserts the SI_Sleep signal, which is part of
the system interface bus, whenever the WAIT instruction is
executed. The assertion of SI_Sleep indicates that the clock
has stopped and the M14K core is waiting for an interrupt.

Local clock gating

The majority of the power consumed by the M14K core is in
the clock tree and clocking registers. The core has support for
extensive use of local gated-clocks. Power-conscious
implementors can use these gated clocks to significantly
reduce power consumption within the core.

MIPS32® M14K™ Core Optional or
Configurable Logic Blocks

The M14K core contains several optional or configurable
logic blocks, shown as shaded in the block diagram in Figure
1.

Reference Design

The M14K core contains a reference design that shows a
typical usage of the core with:

• Dual I-SRAM and D-SRAM interface with fast
memories (i.e., SRAM) for instruction and data storage.

• Optimized interface for slow memory (i.e., Flash
memory) access by having a prefetch buffer and a wider
Data Read bus (i.e., IS_RData[127:0]) to speed up I-
Fetch performance.

• AHB-lite bus interface to the system bus if the memory
accesses are outside the memory map for the SRAM and
Flash regions. AHB-Lite is a subset of the AHB bus
protocol that supports a single bus master. The interface
shares the same 32-bit Read and Write address bus and
has two unidirectional 32-bit buses for Read and Write
data.

The reference design is optional and can be modified by the
user to better fit the SOC design requirement.

12 MIPS32® M14K™ Processor Core Family Datasheet, Revision 02.05

Debug Registers

Four debug registers (DEBUG, DEBUG2, DEPC, and DESAVE)
have been added to the MIPS Coprocessor 0 (CP0) register
set. The DEBUG and DEBUG2 registers show the cause of the
debug exception and are used for setting up single-step
operations. The DEPC (Debug Exception Program Counter)
register holds the address on which the debug exception was
taken, which is used to resume program execution after the
debug operation finishes. Finally, the DESAVE (Debug
Exception Save) register enables the saving of general-
purpose registers used during execution of the debug
exception handler.

To exit debug mode, a Debug Exception Return (DERET)
instruction is executed. When this instruction is executed, the
system exits debug mode, allowing normal execution of
application and system code to resume.

EJTAG Hardware Breakpoints

There are several types of simple hardware breakpoints
defined in the EJTAG specification. These stop the normal
operation of the CPU and force the system into debug mode.
There are two types of simple hardware breakpoints
implemented in the M14K core: Instruction breakpoints and
Data breakpoints. Additionally, complex hardware
breakpoints can be included, which allow detection of more
intricate sequences of events.

The M14K core can be configured with the following
breakpoint options:

• No data or instruction, or complex breakpoints

• One data and two instruction breakpoints, without
complex breakpoints

• Two data and four instruction breakpoints, without
complex breakpoints

• Two data and six instruction breakpoints, with or without
complex breakpoints

• Four data and eight instruction breakpoints, with or
without complex breakpoints

Instruction breakpoints occur on instruction execution
operations, and the breakpoint is set on the virtual address. A
mask can be applied to the virtual address to set breakpoints
on a binary range of instructions.

Data breakpoints occur on load/store transactions, and the
breakpoint is set on a virtual address value, with the same
single address or binary address range as the Instruction
breakpoint. Data breakpoints can be set on a load, a store, or
both. Data breakpoints can also be set to match on the
operand value of the load/store operation, with byte-

granularity masking. Finally, masks can be applied to both
the virtual address and the load/store value.

In addition, the M14K core has a configurable feature to
support data and instruction address-range triggered
breakpoints, where a breakpoint can occur when a virtual
address is either within or outside a pair of 32-bit addresses.
Unlike the traditional address-mask control, address-range
triggering is not restricted to a power-of-two binary
boundary.

Complex breakpoints utilize the simple instruction and data
breakpoints and break when combinations of events are seen.
Complex break features include:

• Pass Counters - Each time a matching condition is seen, a
counter is decremented. The break or trigger will only be
enabled when the counter has counted down to 0.

• Tuples - A tuple is the pairing of an instruction and a
data breakpoint. The tuple will match if both the virtual
address of the load or store instruction matches the
instruction breakpoint, and the data breakpoint of the
resulting load or store address and optional data value
matches.

• Priming - This allows a breakpoint to be enabled only
after other break conditions have been met. Also called
sequential or armed triggering.

• Qualified - This feature uses a data breakpoint to qualify
when an instruction breakpoint can be taken. Once a load
matches the data address and the data value, the
instruction break will be enabled. If a load matches the
address, but has mis-matching data, the instruction break
will be disabled.

Performance Counters

Performance counters are used to accumulate occurrences of
internal predefined events/cycles/conditions for program
analysis, debug, or profiling. A few examples of event types
are clock cycles, instructions executed, specific instruction
types executed, loads, stores, exceptions, and cycles while the
CPU is stalled. There are two, 32-bit counters. Each can count
one of the 64 internal predefined events selected by a
corresponding control register. A counter overflow can be
programmed to generate an interrupt, where the interrupt
handler software can maintain larger total counts.

PC/Address Sampling

This sampling function is used for program profiling and hot-
spots analysis. Instruction PC and/or Load/Store addresses
can be sampled periodically. The result is scanned out
through the EJTAG port. The Debug Control Register (DCR)
is used to specify the sample period and the sample trigger.

MIPS32® M14K™ Processor Core Family Datasheet, Revision 02.05 13

Fast Debug Channel (FDC)

The M14K core includes optional FDC as a mechanism for
high bandwidth data transfer between a debug host/probe and
a target. FDC provides a FIFO buffering scheme to transfer
data serially, with low CPU overhead and minimized waiting
time. The data transfer occurs in the background, and the
target CPU can either choose to check the status of the
transfer periodically, or it can choose to be interrupted at the
end of the transfer.

Figure 6 FDC Overview

iFlowtrace™

The M14K core has an option for a simple trace mechanism
called iFlowtrace. This mechanism only traces the instruction
PC, not data addresses or values. This simplification allows
the trace block to be smaller and the trace compression to be
more efficient. iFlowtrace memory can be configured as off-
chip, on-chip, or both.

iFlowtrace also offers special-event trace modes when
normal tracing is disabled, namely:

• Function Call/Return and Exception Tracing mode to
trace the PC value of function calls and returns and/or
exceptions and returns.

• Breakpoint Match mode traces the breakpoint ID of a
matching breakpoint and, for data breakpoints, the PC
value of the instruction that caused it.

• Filtered Data Tracing mode traces the ID of a matching
data breakpoint, the load or store data value, access type
and memory access size, and the low-order address bits
of the memory access, which is useful when the data
breakpoint is set up to match a binary range of addresses.

• User Trace Messages. The user can instrument their code
to add their own 32-bit value messages into the trace by
writing to the Cop0 UTM register.

• Delta Cycle mode works in combination with the above
trace modes to provide a timestamp between stored
events. It reports the number of cycles that have elapsed
since the last message was generated and put into the
trace.

cJTAG Support

The M14K core provides an external conversion block which
converts the existing EJTAG (IEEE 1149.1) 4-wire interface
at the M14K core to a cJTAG (IEEE 1149.7) 2-wire interface.
cJTAG reduces the number of wires from 4 to 2 and enables
the support of Star-2 scan topology in the system debug
environment.

Figure 7 cJTAG Support

SecureDebug

SecureDebug improves security by disabling untrusted
EJTAG debug access. An input signal is used to disable
debug features, such as Probe Trap, Debug Interrupt
Exception (EjtagBrk and DINT), EJTAGBOOT instruction,
and PC Sampling.

Testability

Testability for production testing of the core is supported
through the use of internal scan and memory BIST.

Internal Scan

Full mux-based scan for maximum test coverage is
supported, with a configurable number of scan chains. ATPG
test coverage can exceed 99%, depending on standard cell
libraries and configuration options.

Memory BIST

Memory BIST for the on-chip trace memory is optional.

M14K
ProbeEJTAG

TAP

FDC

Tap Controller

TDI

TDO

TMS

 FIFOReceive from
Probe to Core

Transmit from
Core to Probe FIFO

32

32

Tap
Controller

M14K

EJTAG
EJTAG
4-wire

interface

TDI
TDO
TCK
TMS

TMSC
TCK

cJTAG
Conversion

Block

cJTAG
2-wire

interface

14 MIPS32® M14K™ Processor Core Family Datasheet, Revision 02.05

Memory BIST can be inserted with a CAD tool or other user-
specified method. Wrapper modules and special side-band
signal buses of configurable width are provided within the
core to facilitate this approach.

Build-Time Configuration Options

The M14K core allows a number of features to be customized
based on the intended application. Table 4 summarizes the

key configuration options that can be selected when the core
is synthesized and implemented.

For a core that has already been built, software can determine
the value of many of these options by checking an appropriate
register field. Refer to the MIPS32® M14K™ Processor Core
Family Software User’s Manual for a more complete
description of these fields. The value of some options that do
not have a functional effect on the core are not visible to
software.

Table 4 Build-time Configuration Options

Option Choices Software Visibility

Integer register file sets 1, 2, 4, 8 or 16 SRSCtlHSS

Integer register file implementation style Flops or generator N/A

ISA support MIPS32 only, or
microMIPS only, or
MIPS32 and microMIPS present

Config3ISA

Multiply/divide implementation style High performance or min area ConfigMDU

Memory Protection Unit Present or not. If present 1 - 16 regions N/A

Adder implementation style Structured or Simple N/A

EJTAG TAP controller Present or not N/A

EJTAG TAP Fast Debug Channel (FDC) Present or not (even when TAP is present) DCRFDCI

EJTAG TAP FDC FIFO size Two TX/two RX, or eight TX/four RX 32-bit registers FDCFG

Instruction/data hardware breakpoints 0/0, 2/1, 4/2, 6/2, or 8/4 DCRInstBrk, IBSBCN

DCRDataBrk, DBSBCN

Hardware breakpoint trigger by Address match, or
Address match and address range

IBCnhwart, DBCnhwart

Complex breakpoints 0/0, 6/2, or 8/4 DCRCBT

Performance Counters Present or not Config1PC

iFlowtrace hardware Present or not Config3ITL

iFlowtrace memory location On-core or off-chip IFCTLofc

iFlowtrace on-chip memory size 256B - 8MB N/A

CorExtend interface Present or not ConfigUDI*

Coprocessor2 interface Present or not Config1C2*

SRAM interface style Separate instruction/data or unified ConfigDS

SRAM Parity Present or not ErrCtlPE

* These bits indicate the presence of an external block. Bits will not be set if interface is present, but block is not.

MIPS32® M14K™ Processor Core Family Datasheet, Revision 02.05 15

Revision History

Interrupt synchronizers Present or not N/A

Interrupt Vector Offset Compute from Vector Input or Immediate Offset N/A

Clock gating Top-level, integer register file array, fine-grain, or none N/A

PC Sampling Present or not Debug Control Register

Data Address Sampling Present or not Debug Control Register

PRID User defined Processor Identification PRIDCompanyOpt

Table 4 Build-time Configuration Options (Continued)

Option Choices Software Visibility

* These bits indicate the presence of an external block. Bits will not be set if interface is present, but block is not.

Revision Date Description

01.00 November 2, 2009 • Initial 1_0_0 release.

02.00 December 17, 2010 • 2_0_0 Maintenance release.

02.01 September 30, 2011 • 2_1_0 Maintenance release.

02.02 March 12, 2012 • 2_1a_0 Patch release.

02.03 April 30, 2012 • 2_2_0 Maintenance release.

02.04 December 27, 2012 • 2_x_x Maintenance release.

02.05 March 24, 2014 • Changed document format and legal text.

16 MIPS32® M14K™ Processor Core Family Datasheet, Revision 02.05

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCI, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

aLt{онϯ aмпYȎ t ǊƻŎŜǎǎƻǊ /ƻǊŜ CŀƳƛƭȅ 5ŀǘŀǎƘŜŜǘΣ wŜǾƛǎƛƻƴ лнΦлр a5ллссс

Copyright © Wave Computing, Inc. All rights reserved.

www.wavecomp.ai

