
Document Number: MD00848
Revision 1.06

December 10, 2013

microMIPS32® Architecture for
Programmers Volume IV-i: Virtualization

Module of the microMIPS32®
Architecture

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCI, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

ƳƛŎǊƻaLt{онϯ !ǊŎƘƛǘŜŎǘǳǊŜ ŦƻǊ tǊƻƎǊŀƳƳŜǊǎ ±ƻƭǳƳŜ L±πƛΥ±ƛǊǘǳŀƭƛȊŀǘƛƻƴ aƻŘǳƭŜ ƻŦ ǘƘŜ ƳƛŎǊƻaLt{онϯ !ǊŎƘƛǘŜŎǘǳǊŜΣ wŜǾƛǎƛƻƴ мΦлс

3 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 4

Table of Contents

Chapter 1: About This Book .. 10
1.1: Typographical Conventions ... 10

1.1.1: Italic Text.. 11
1.1.2: Bold Text .. 11
1.1.3: Courier Text ... 11

1.2: UNPREDICTABLE and UNDEFINED ... 11
1.2.1: UNPREDICTABLE... 11
1.2.2: UNDEFINED .. 12
1.2.3: UNSTABLE .. 12

1.3: Special Symbols in Pseudocode Notation... 12
1.4: For More Information ... 15

Chapter 2: The Virtualization Module of the microMIPS32® Architecture 16
2.1: Base Architecture Requirements... 16
2.2: Software Detection of the Module ... 16
2.3: Compliance and Subsetting... 16
2.4: Overview of the Virtualization Module ... 16
2.5: Instruction Bit Encoding... 16

Chapter 3: Overview of Virtualization Support .. 22
3.1: Overview.. 22

Chapter 4: The Virtualization Privileged Resource Architecture ... 24
4.1: Introduction.. 24
4.2: Overview.. 24
4.3: Compliance.. 24
4.4: Operating Modes ... 25

4.4.1: The Onion Model.. 26
4.4.2: Terminology ... 28
4.4.3: Definition of Guest Mode.. 28
4.4.4: The Guest Context ... 31

4.5: Virtual Memory .. 34
4.5.1: Virtualized MMU GuestID Use ... 39
4.5.2: Root and Guest Shared TLB Operation ... 42
4.5.3: Nested Guest CCA Support ... 43

4.6: Coprocessor 0 ... 43
4.6.1: New and Modified CP0 Registers .. 44
4.6.2: New CP0 Instructions... 45
4.6.3: Guest CP0 registers... 45
4.6.4: Guest Privileged Sensitive Features .. 51
4.6.5: Access Control for Guest CP0 Register Fields .. 51
4.6.6: Guest Config Register Fields ... 52
4.6.7: Guest Context Dynamically Set Read-only Fields ... 54
4.6.8: Guest Timer ... 55
4.6.9: Guest Cache Operations.. 57
4.6.10: UNPREDICTABLE and UNDEFINED in Guest Mode.. 57

5 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

4.7: Exceptions ... 58
4.7.1: Exceptions in Guest Mode ... 58
4.7.2: Faulting Address for Exceptions from Guest Mode.. 60
4.7.3: Guest initiated Root TLB Exception ... 60
4.7.4: Exception Priority ... 61
4.7.5: Exception Vector Locations.. 65
4.7.6: Synchronous and Synchronous Hypervisor Exceptions .. 65
4.7.7: Guest Privileged Sensitive Instruction Exception... 66
4.7.8: Guest Software Field Change Exception ... 67
4.7.9: Guest Hardware Field Change Exception.. 69
4.7.10: Guest Reserved Instruction Redirect ... 70
4.7.11: Hypercall Exception ... 71
4.7.12: Guest Exception Code in Root Context ... 71

4.8: Interrupts ... 72
4.8.1: External Interrupts.. 74
4.8.2: Derivation of Guest.CauseIP/RIPL... 79
4.8.3: Timer Interrupts.. 80
4.8.4: Performance Counter Interrupts... 81

4.9: Instructions and Machine State, other than CP0 ... 82
4.9.1: General Purpose Registers and Shadow Register Sets .. 82
4.9.2: Multiplier Result Registers ... 84
4.9.3: DSP Module ... 84
4.9.4: Floating Point Unit (Coprocessor 1) ... 84
4.9.5: Coprocessor 2.. 85
4.9.6: MSA (MIPS SIMD Architecture) ... 85
4.9.7: User FR Feature .. 85
4.9.8: LL/SC LLbit Handling ... 86
4.9.9: XPA : Extended Physical Address ... 86
4.9.10: SDBBP Instruction Handling .. 87

4.10: Combining the Virtualization Module and the MT Module ... 87
4.11: Guest Mode and Debug features .. 89
4.12: Watchpoint Debug Support ... 90
4.13: Virtualization Module features and Hypervisor Software... 92
4.14: Lightweight Virtualization... 98

4.14.1: Introduction .. 98
4.14.2: Support for Lightweight Virtualization... 98

Chapter 5: Coprocessor 0 (CP0) Registers .. 102
5.1: CP0 Register Summary... 102
5.2: GuestCtl0 Register (CP0 Register 12, Select 6) ... 103
5.3: GuestCtl1 Register (CP0 Register 10, Select 4) ... 111
5.4: GuestCtl2 Register (CP0 Register 10, Select 5) ... 112
5.5: GuestCtl3 Register (CP0 Register 10, Select 6) ... 115
5.6: GuestCtl0Ext Register (CP0 Register 11, Select 4) .. 116
5.7: GTOffset Register (CP0 Register 12, Select 7)... 119
5.8: Cause Register (CP0 Register 13, Select 0) ... 120
5.9: Configuration Register 3 (CP0 Register 16, Select 3) ... 121
5.10: WatchHi Register (CP0 Register 19)... 122
5.11: Performance Counter Register (CP0 Register 25) .. 122
5.12: BadVAddr Register (CP0 Register 8, Select 0) ... 125
5.13: EntryHi Register (CP0 Register 10, Select 0).. 126
5.14: Note on future CP0 features.. 127

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 6

Chapter 6: Instruction Descriptions.. 128
6.1: Overview.. 128

HYPCALL .. 131
MFGC0.. 132
MFHGC0 ... 133
MTGC0.. 134
MTHGC0 ... 136
TLBGINV... 137
TLBGINVF... 139
TLBGP... 142
TLBGR .. 145
TLBGWI... 147
TLBGWR... 149
TLBINVF.. 151
TLBINV.. 153
TLBP ... 154
TLBR ... 156
TLBWI ... 159

Chapter 7: Notes ... 162
7.1: Potential areas of improvement... 162

Appendix A: Revision History ... 164

7 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

List of Figures

Figure 4.1: State Transitions between Operating Modes.. 26
Figure 4.2: Virtualization Module Onion Model ... 26
Figure 4.3: Virtualization Module Onion Model and exceptions.. 27
Figure 4.4: Simplified processor operation in root mode... 33
Figure 4.5: Virtualization Module Onion Model applied to simplified processor (full virtualization)......................... 34
Figure 4.6: Outline of Address Translation.. 36
Figure 4.7: Root and Guest Timers... 57
Figure 4.8: Interrupts in the Virtualization Module onion model .. 73
Figure 4.9: Guest and Root CauseIP (non-EIC) Virtualization.. 76
Figure 4.10: A MT Module processor equipped with three VPEs ... 88
Figure 4.11: A MT Module processor equipped with three VPEs and the Virtualization Module 88
Figure 5.1: GuestCtl0 Register Format ... 103
Figure 5.2: GuestCtl1 Register Format ... 112
Figure 5.3: GuestCtl2 Register Format for non-EIC mode.. 112
Figure 5.4: GuestCtl2 Register Format for EIC mode... 113
Figure 5.5: GuestCtl3 Register Format ... 116
Figure 5.6: GuestCtl0Ext Register Format .. 116
Figure 5.7: GTOffset Register Format... 120
Figure 5.8: Virtualization Module Cause Register Format .. 120
Figure 5-9: Config3 Register Format... 121
Figure 5-10: WatchHi Register Format ... 122
Figure 5-11: Performance Counter Control Register Format .. 123
Figure 5-12: BadVAddr Register Format... 125
Figure 5-13: EntryHi Register Format ... 126

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 8

List of Tables

Table 1.1: Symbols Used in Instruction Operation Statements... 12
Table 2.1: Symbols Used in the Instruction Encoding Tables... 17
Table 2.2: microMIPS32 Encoding of Major Opcode Field in Virtualization Module ... 17
Table 2.3: POOL32A Encoding of Minor Opcode Field in Virtualization Module .. 18
Table 2.4: POOL32Axf Encoding of Minor Opcode Extension Field in Virtualization Module................................. 18
Table 2-1: POOL32Axp Encoding of Minor Opcode Extension Field in Virtualization Module 19
Table 2.5: POOL32S Encoding of Minor Opcode Field .. 19
Table 2.6: POOL32Sxf Encoding of Minor Opcode Extension Field... 20
Table 4.1: Guest, Root and Debug modes ... 30
Table 4.2: GuestID Translation Related Usage Mode Control.. 40
Table 4.3: GuestID Use by TLB instructions. .. 41
Table 4.4: Guest Nested CCA .. 43
Table 4.5: CP0 Registers Introduced by the Virtualization Module... 44
Table 4.6: CP0 Registers Modified by the Virtualization Module .. 45
Table 4.7: CP0 Instructions Introduced by the Virtualization Module.. 45
Table 4.8: CP0 Registers in Guest CP0 context ... 46
Table 4.9: Root Modification of Guest CP0 Configuration .. 49
Table 4.10: Guest CP0 Fields Subject to Software or Hardware Field Change Exception..................................... 52
Table 4.11: Guest CP0 Read-only Config Fields Writable from Root Mode ... 53
Table 4.12: Guest CP0 Read-only Fields Writable from Root Mode... 54
Table 4.13: Priority of Exceptions ... 61
Table 4.14: Exception Type Characteristics.. 64
Table 4.15: Hypervisor Exception Conditions ... 65
Table 4.16: Root effect on Guest XPA control .. 86
Table 4.17: Virtualization control of SDBBP execution ... 87
Table 4.18: Debug Features and Application to Virtualization Module ... 90
Table 4.19: Guest Watchpoint Support ... 91
Table 4.20: Watch Control .. 91
Table 4.21: Virtualization Optimizations and their Intended Purpose ... 92
Table 4.22: MMU Configurations with RPU .. 99
Table 5.1: Virtualization Module Changes to Coprocessor 0 Registers in Numerical Order................................. 102
Table 5.2: GuestCtl0 Register Field Descriptions ... 104
Table 5.3: GuestCtl0 GExcCode values ... 110
Table 5.4: GuestCtl1 Register Field Descriptions ... 112
Table 5.5: non-EIC mode GuestCtl2 Register Field Descriptions .. 113
Table 5.6: EIC mode GuestCtl2 Register Field Descriptions ... 115
Table 5.7: GuestCtl3 Register Field Descriptions ... 116
Table 5.8: GuestCtl0Ext Register Field Descriptions .. 117
Table 5.9: GTOffset Register Field Descriptions... 120
Table 5.11: Cause Register ExcCode values ... 121
Table 5.10: Cause Register Field Description, modified by Virtualization Module.. 121
Table 5.13: WatchHi Register Field Descriptions.. 122
Table 5.12: Config3 Register Field Descriptions... 122
Table 5.14: New Performance Counter Control Register Field Descriptions .. 124
Table 5.15: BadVAddr Register Field Descriptions... 125
Table 5.16: EntryHi Register Field Descriptions ... 126
Table 6.1: New and Modified Instructions... 128

9 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

Chapter 1

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 10

About This Book

The microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32®
Architecture comes as part of a multi-volume set.

• Volume I-A describes conventions used throughout the document set, and provides an introduction to the
MIPS32® Architecture

• Volume I-B describes conventions used throughout the document set, and provides an introduction to the
microMIPS32™ Architecture

• Volume II-A provides detailed descriptions of each instruction in the MIPS32® instruction set

• Volume II-B provides detailed descriptions of each instruction in the microMIPS32™ instruction set

• Volume III describes the MIPS32® and microMIPS32™ Privileged Resource Architecture which defines and
governs the behavior of the privileged resources included in a MIPS® processor implementation

• Volume IV-a describes the MIPS16e™ Application-Specific Extension to the MIPS32® Architecture. Beginning
with Release 3 of the Architecture, microMIPS is the preferred solution for smaller code size.

• Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS64® Architecture and
microMIPS64™. It is not applicable to the MIPS32® document set nor the microMIPS32™ document set. With
Release 5 of the Architecture, MDMX is deprecated. MDMX and MSA can not be implemented at the same
time.

• Volume IV-c describes the MIPS-3D® Application-Specific Extension to the MIPS® Architecture

• Volume IV-d describes the SmartMIPS®Application-Specific Extension to the MIPS32® Architecture and the
microMIPS32™ Architecture .

• Volume IV-e describes the MIPS® DSP Module to the MIPS® Architecture

• Volume IV-f describes the MIPS® MT Module to the MIPS® Architecture

• Volume IV-h describes the MIPS® MCU Application-Specific Extension to the MIPS® Architecture

• Volume IV-i describes the MIPS® Virtualization Module to the MIPS® Architecture

• Volume IV-j describes the MIPS® SIMD Architecture Module to the MIPS® Architecture

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fonts in this book.

 About This Book

11microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

1.1.1 Italic Text

• is used for emphasis

• is used for bits, fields, registers, that are important from a software perspective (for instance, address bits used by
software, and programmable fields and registers), and various floating point instruction formats, such as S, D,
and PS

• is used for the memory access types, such as cached and uncached

1.1.2 Bold Text

• represents a term that is being defined

• is used for bits and fields that are important from a hardware perspective (for instance, register bits, which are
not programmable but accessible only to hardware)

• is used for ranges of numbers; the range is indicated by an ellipsis. For instance, 5..1 indicates numbers 5 through
1

• is used to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the pro-
cessor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions in
a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register). Unpriv-
ileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and unprivileged
software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction,
or as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause a result to be generated or not. If a result is gener-
ated, it is UNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

• Implementations of operations generating UNPREDICTABLE results must not depend on any data source
(memory or internal state) which is inaccessible in the current processor mode

• UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
is inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process

1.3 Special Symbols in Pseudocode Notation

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 12

• UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

• UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which
there is no exit other than powering down the processor). The assertion of any of the reset signals must restore the
processor to an operational state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDICTABLE values, software may depend on the fact that a sampling of an UNSTABLE value results in a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABLE values have one implementation restriction:

• Implementations of operations generating UNSTABLE results must not depend on any data source (memory or
internal state) which is inaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning

← Assignment

=, ≠ Tests for equality and inequality

|| Bit string concatenation

xy A y-bit string formed by y copies of the single-bit value x

b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the
binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the default base is 10.

0bn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).

0xn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).

xy z Selection of bits y through z of bit string x. Little-endian bit notation (rightmost bit is 0) is used. If y is less
than z, this expression is an empty (zero length) bit string.

+, − 2’s complement or floating point arithmetic: addition, subtraction

 About This Book

13microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

*, × 2’s complement or floating point multiplication (both used for either)

div 2’s complement integer division

mod 2’s complement modulo

/ Floating point division

< 2’s complement less-than comparison

> 2’s complement greater-than comparison

≤ 2’s complement less-than or equal comparison

≥ 2’s complement greater-than or equal comparison

nor Bitwise logical NOR

xor Bitwise logical XOR

and Bitwise logical AND

or Bitwise logical OR

not Bitwise inversion

&& Logical (non-Bitwise) AND

<< Logical Shift left (shift in zeros at right-hand-side)

>> Logical Shift right (shift in zeros at left-hand-side)

GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers

GPR[x] CPU general-purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR[x] is a short-hand notation for SGPR[SRSCtlCSS, x].

SGPR[s,x] In Release 2 of the Architecture and subsequent releases, multiple copies of the CPU general-purpose regis-
ters may be implemented. SGPR[s,x] refers to GPR set s, register x.

FPR[x] Floating Point operand register x

FCC[CC] Floating Point condition code CC. FCC[0] has the same value as COC[1].

FPR[x] Floating Point (Coprocessor unit 1), general register x

CPR[z,x,s] Coprocessor unit z, general register x, select s

CP2CPR[x] Coprocessor unit 2, general register x

CCR[z,x] Coprocessor unit z, control register x

CP2CCR[x] Coprocessor unit 2, control register x

COC[z] Coprocessor unit z condition signal

Xlat[x] Translation of the MIPS16e GPR number x into the corresponding 32-bit GPR number

BigEndianMem Endian mode as configured at chip reset (0 →Little-Endian, 1 → Big-Endian). Specifies the endianness of
the memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endi-
anness of Kernel and Supervisor mode execution.

BigEndianCPU The endianness for load and store instructions (0 → Little-Endian, 1 → Big-Endian). In User mode, this
endianness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be com-
puted as (BigEndianMem XOR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode only,
and is implemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRRE and User mode).

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

1.3 Special Symbols in Pseudocode Notation

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 14

LLbit Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when a linked load occurs and is tested by the conditional store. It is cleared, during other CPU operation,
when a store to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

I:,
I+n:,
I-n:

This occurs as a prefix to Operation description lines and functions as a label. It indicates the instruction
time during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a
time label of I. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections
labeled with the instruction time, relative to the current instruction I, in which the effect of that pseudocode
appears to occur. For example, an instruction may have a result that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in a section labeled I+1.
The effect of pseudocode statements for the current instruction labelled I+1 appears to occur “at the same
time” as the effect of pseudocode statements labeled I for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statements for
different instructions that occur “at the same time,” there is no defined order. Programs must not depend on a
particular order of evaluation between such sections.

PC The Program Counter value. During the instruction time of an instruction, this is the address of the instruc-
tion word. The address of the instruction that occurs during the next instruction time is determined by assign-
ing a value to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.
In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the
restart address into a GPR on a jump-and-link or branch-and-link instruction, or into a Coprocessor 0 register
on an exception. The PC value contains a full 32-bit address all of which are significant during a memory ref-
erence.

ISA Mode In processors that implement the MIPS16e Application Specific Extension or the microMIPS base architec-
tures, the ISA Mode is a single-bit register that determines in which mode the processor is executing, as fol-
lows:

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Mode into a GPR on a jump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 phys-

ical address bits were implemented, the size of the physical address space would be 2PABITS = 236 bytes.

FP32RegistersMode Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). It is optional if the FPU has
32 64-bit FPRs in which 64-bit data types are stored in any FPR.

microMIPS64 implementations have a compatibility mode in which the processor references the FPRs as if
it were a microMIPS32 implementation. In such a case FP32RegisterMode is computed from the FR bit in
the Status register. If this bit is a 0, the processor operates as if it had 32 32-bit FPRs. If this bit is a 1, the pro-
cessor operates with 32 64-bit FPRs.
The value of FP32RegistersMode is computed from the FR bit in the Status register.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

Encoding Meaning

0 The processor is executing 32-bit MIPS instructions

1 The processor is executing MIIPS16e or microMIPS
instructions

 About This Book

15microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

1.4 For More Information

Various MIPS RISC processor manuals and additional information about MIPS products can be found at the MIPS
URL: http://www mips.com

For comments or questions on the MIPS32® Architecture or this document, send Email to support@mips.com.

InstructionInBranchDe-
laySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch
or jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the value is
false if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which
is not executed in the delay slot of a branch or jump.

SignalException(excep-
tion, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
parameter as an exception-specific argument). Control does not return from this pseudocode function—the
exception is signaled at the point of the call.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

Chapter 2

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 16

The Virtualization Module of the microMIPS32®
Architecture

2.1 Base Architecture Requirements

The Virtualization Application-Specific Extension (Module) requires the following base architecture support:

• The microMIPS32 Architecture: The Virtualization Module requires a compliant implementation of the
microMIPS32 Architecture, Release 5.00 or later.

• A TLB-based MMU is required.

• Coprocessor 0 registers KScratch1 and KScratch2 are required

2.2 Software Detection of the Module

Software can determine if the Virtualization Module is implemented by checking the state of the VZ bit in the
Config3 CP0 register.

2.3 Compliance and Subsetting

The Virtualization Module to the microMIPS32 Architecture provides hardware support for software-controlled plat-
form virtualization. A subset of Virtualization Module instructions and registers must be implemented, but certain
instructions and machine state are defined to be optional and may be omitted.

2.4 Overview of the Virtualization Module

The Virtualization Module extends the microMIPS32® Architecture with a set of new instructions and machine state,
and makes backward-compatible modifications to existing microMIPS32 features.The Virtualization Module is
designed to enable full virtualization of operating systems.

2.5 Instruction Bit Encoding

Table 2.2 through Table 2.4 describe the instruction encodings used for the Virtualization Module. Table 2.1
describes the meaning of the symbols used in the tables. These tables only list the instruction encodings for the Virtu-
alization Module instructions. See Volume II-B of this multi-volume set for a full encoding of all instructions.

 The Virtualization Module of the microMIPS32® Architecture

17microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

Table 2.1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

∗ Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction must cause a Reserved Instruction Exception.

δ (Also italic field name.) Operation or field codes marked with this symbol denotes a field class.
The instruction word must be further decoded by examining additional tables that show values for
another instruction field.

β Operation or field codes marked with this symbol represent a valid encoding for a higher-order
MIPS ISA level. Executing such an instruction must cause a Reserved Instruction Exception.

θ Operation or field codes marked with this symbol are available to licensed MIPS partners. To avoid
multiple conflicting instruction definitions, MIPS Technologies will assist the partner in selecting
appropriate encodings if requested by the partner. The partner is not required to consult with MIPS
Technologies when one of these encodings is used. If no instruction is encoded with this value,
executing such an instruction must cause a Reserved Instruction Exception (SPECIAL2 encodings
or coprocessor instruction encodings for a coprocessor to which access is allowed) or a Coproces-
sor Unusable Exception (coprocessor instruction encodings for a coprocessor to which access is
not allowed).

σ Field codes marked with this symbol represent an EJTAG support instruction and implementation
of this encoding is optional for each implementation. If the encoding is not implemented, execut-
ing such an instruction must cause a Reserved Instruction Exception. If the encoding is imple-
mented, it must match the instruction encoding as shown in the table.

ε Operation or field codes marked with this symbol are reserved for MIPS Modules. If the Module is
not implemented, executing such an instruction must cause a Reserved Instruction Exception.

φ Operation or field codes marked with this symbol are obsolete and will be removed from a future
revision of the microMIPS32 ISA. Software should avoid using these operation or field codes.

Table 2.2 microMIPS32 Encoding of Major Opcode Field in Virtualization Module

Major MSB..MSB-2

MSB-3..
MSB-5

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000 POOL32A δ

1 001 16bit

2 010 16bit

3 011 16bit

4 100

5 101

6 110

7 111

2.5 Instruction Bit Encoding

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 18

Table 2.3 POOL32A Encoding of Minor Opcode Field in Virtualization Module

Minor bit 5..3

bit 2..0

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000

1 001

2 010

3 011

4 100 POOL32Axpδ POOL32Axf δ

5 101

6 110

7 111

Table 2.4 POOL32Axf Encoding of Minor Opcode Extension Field in Virtualization Module

Extension bit 11. 9

bit 8..6 0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000

1 001

2 010

3 011

4 100

R2 COP0 R0+ COP0 R1+ MT COP0 R1 COP0 R0+ R1 bit15..12

5 101 TLBGP 0000 0

5 101 TLBGR 0001 1

5 101 TLBGWI 0010 2

5 101 TLBGWR 0011 3

5 101 TLBGINV 0100 4

5 101 TLBGINVF 0101 5

5 101 0110 6

5 101 0111 7

5 101 1000 8

5 101 * * 1001 9

5 101 1010 a

 The Virtualization Module of the microMIPS32® Architecture

19microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

5 101 1011 b

5 101 HYPCALL 1100 c

5 101 1101 d

5 101 1110 e

5 101 1111 f

R2+ SMART R1+ SMART R2+ MT

6 110 MFGC0 MTGC0 MFGC0 MTGC0

R2 DSP R2 DSP R1 DSP

7 111

Table 2-1POOL32Axp Encoding of Minor Opcode Extension Field in Virtualization Module

Extension bit 11. 9

bit 8..6 0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000

1 001

2 010

3 011 MFHC0 MTHC0 MFHGC0 MTHGC0 MFHC0 MTHC0 MFHGC0 MTHGC0

Table 2.5 POOL32S Encoding of Minor Opcode Field

Minor bit 5..3

bit 2..0

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000

1 001

2 010

3 011

4 100 POOL32Sxf δ

5 101

6 110

7 111 * * * * * * * *

Table 2.4 POOL32Axf Encoding of Minor Opcode Extension Field (Continued)in Virtualization Module

2.5 Instruction Bit Encoding

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 20

Table 2.6 POOL32Sxf Encoding of Minor Opcode Extension Field

Extension bit 11. 9

bit 8..6 0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000

1 001

2 010

3 011 DMFGC0 DMTGC0 DMFGC0 DMTGC0

4 100

5 101

6 110

7 111

 The Virtualization Module of the microMIPS32® Architecture

21microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

Chapter 3

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 22

Overview of Virtualization Support

3.1 Overview

The Virtualization Module defines a set of extensions to the microMIPS32 Architecture for efficient implementation
of virtualized systems.

Virtualization is enabled by software - the key element is a control program known as a Virtual Machine Monitor
(VMM) or hypervisor. The hypervisor is in full control of machine resources at all times.

When an operating system (OS) kernel is run within a virtual machine (VM), it becomes a ‘guest’ of the hypervisor.
All operations performed by a guest must be explicitly permitted by the hypervisor. To ensure that it remains in con-
trol, the hypervisor always runs at a higher level of privilege than a guest operating system kernel.

The hypervisor is responsible for managing access to sensitive resources, maintaining the expected behavior for each
VM, and sharing resources between multiple VMs.

In a traditional operating system, the kernel (or ‘supervisor’) typically runs at a higher level of privilege than user
applications. The kernel provides a protected virtual-memory environment for each user application, inter-process
communications, IO device sharing and transparent context switching. The hypervisor performs the same basic func-
tions in a virtualized system - except that the hypervisor’s clients are full operating systems rather than user applica-
tions.

The virtual machine execution environment created and managed by the hypervisor consists of the full Instruction Set
Architecture, including all Privileged Resource Architecture facilities, plus any device-specific or board-specific
peripherals and associated registers. It appears to each guest operating system as if it is running on a real machine
with full and exclusive control.

The Virtualization Module enables full virtualization, and is intended to allow VM scheduling to take place while
meeting real-time requirements, and to minimize costs of context switching between VMs.

Minimum Requirements for Virtualization

The first implementations of platform virtualization used ‘trap-and-emulate’ software techniques, which rely on cer-
tain properties of the underlying hardware. To be considered ‘classically virtualizable’ an architecture must have the
following characteristics:

• At least two operating modes - including privileged and unprivileged

• System resources can only be controlled through privileged instructions while executing in privileged mode

• Execution of a privileged instruction in unprivileged mode will cause an exception (trap), returning control to
privileged mode software

• Address translation is performed on the entire address space when in unprivileged mode

 Overview of Virtualization Support

23microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

In the ‘classic’ approach, the guest operating system kernel is ‘de-privileged’ and is executed in the unprivileged
mode. All privileged operations attempted by the guest will trap back to the hypervisor, which executes in the privi-
leged mode. The hypervisor emulates all guest privileged operations, keeps track of the guest view of privileged state,
and ensures that the system behaves as expected by the guest. Full address translation allows an unmodified guest ker-
nel to execute from its original location in memory, and allows the hypervisor to manage address translation to match
the expectations of the guest kernel. This approach is also known as ‘trap and emulate’ virtualization.

The base microMIPS32 architecture satisfies all the requirements for classic virtualization, except that address trans-
lation is not provided for the entire address space in user mode. User mode programs can only run from kuseg,
located in the lower portion of the virtual address space. The kernel is typically compiled to run from kseg0, which is
located in the upper portion of the virtual address space, and is accessible only in kernel mode. An operating system
kernel compiled to work with instructions and data located in kseg0 cannot efficiently execute in user mode.

A Segmentation Control system is available for use by the Virtualization Module. This is a programmable memory
segmentation system defined to support remapping (and therefore virtualization) of the existing fixed segment mem-
ory model.

In addition to addressing the minimum requirements for virtualization, the Virtualization Module provides features
designed to reduce the number of hypervisor traps required, and to reduce the length of each hypervisor intervention.

For an outline of virtualization support and for a description of each included feature, see Chapter 4, “The
Virtualization Privileged Resource Architecture” on page 24.

For a description of how each feature is intended to be used by software, see Section 4.13 “Virtualization Module
features and Hypervisor Software”.

For a description of recommended features, see Table 4.8.

Chapter 4

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 24

The Virtualization Privileged Resource Architecture

4.1 Introduction

The microMIPS32 Privileged Resource Architecture (PRA) defines a set of environments and capabilities on which
the Instruction Set Architecture operates. This includes definitions of the programming interface and operation of the
system coprocessor, CP0. The Virtualization Module defines extensions to the microMIPS32 PRA that are desirable
for the execution of guest Operating Systems in a fully virtualized environment. This document describes these exten-
sions. It is not intended to be a stand-alone PRA specification, and must be read in the context of the microMIPS32
Privileged Resource Architecture specification.

4.2 Overview

The Virtualization Module defines extensions to microMIPS32 which are related to virtualization:

• Guest Operating Mode

• Partial CP0 register set (or context) for Guest Mode use

• Registers for Guest Mode control

• Guest interrupt system

• Two-level address translation

• Detection of Virtualization Features

The Virtualization Module provides a separate Coprocessor 0 register set (or context) for guest mode opera-
tion, which is physically separate from, and a subset of the Root Coprocessor 0 context. This Coprocessor 0 con-
text is referred to by the term ‘context’ throughout this document.

The presence of the Virtualization Module is indicated by the Config3VZ field.See Section 5.9 “Configuration
Register 3 (CP0 Register 16, Select 3)”.

4.3 Compliance

Features described as Required in this document are required of all processors claiming compatibility with the Virtu-
alization Module. Any features described as Recommended should be implemented unless there is an overriding need
not to do so. Features described as Optional are features that may or may not be appropriate for a particular Virtual-
ization Module processor implementation. If such a feature is implemented, it must be implemented as described in
this document if a processor is to claim compatibility with the Virtualization Module.

 The Virtualization Privileged Resource Architecture

25microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

In some cases, there are features within features that have different levels of compliance. For example, if there is an
Optional field within a Required register, this means that the register must be implemented, but the field may or may
not be, depending on the needs of the implementation. Similarly, if there is a Required field within an Optional regis-
ter, this means that if the register is implemented, it must have the specified field.

4.4 Operating Modes

Fundamental to the Virtualization Module is a limited-privilege guest operating mode. Guest mode consists of new
operating modes guest-kernel, guest-user and guest-supervisor - orthogonal to the existing kernel, user and supervisor
modes.

The pre-existing (non-guest) operating mode is known as root mode. The pre-existing kernel, user and supervisor
operating modes can be referred to as root-kernel, root-user and root-supervisor respectively, to distinguish them
from their guest-mode equivalents.

The guest mode allows the separation between kernel, user and supervisor modes to be retained for a guest operating
system running within a virtual machine - the guest-kernel mode can handle interrupts and exceptions, and manage
virtual memory for guest-user mode processes.

The separation between root mode and the limited-privilege guest mode allows root mode software to be in full con-
trol of the machine at all times even when a guest is running. Backward compatibility is retained for existing software
running in root mode.

The GuestCtl0 register, described in Section 5.2, contains the GM (Guest Mode) bit. This bit is used along with
root-mode exception and error status bits (StatusEXL, StatusERL) and the Debug Mode bit (DebugDM) to determine
whether the processor is operating in guest mode or root mode.

See also Section 4.4.3 “Definition of Guest Mode”.

Figure 4.1 shows the state transitions between operating modes.

4.4 Operating Modes

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 26

Figure 4.1 State Transitions between Operating Modes

4.4.1 The Onion Model

The Virtualization Module applies an ‘onion model’ to address translation and exception handling for guests. Three
operating modes are required to execute a virtualized guest operating system: unprivileged guest-user, limited-privi-
lege guest-kernel and full-privilege root-kernel. The root-user mode is used to execute non-virtualized software. At
each layer within the onion, any operation must be permitted by all the outer layers.

Figure 4.3 shows the logical arrangement of operating modes.

Figure 4.2 Virtualization Module Onion Model

In a microMIPS32 processor, Coprocessor 0 contains system control registers, and can be accessed only by privileged
instructions. A processor implementing the Virtualization Module physically replicates a subset of the Coprocessor 0
register set for use by the Guest Operating System. Root mode operation uses one set of Coprocessor 0 registers and
Guest mode operation the other. The term ‘context’ refers to the software visible state held within each Coprocessor 0

root-kernel

root-user

guest-kernel

guest-user

Guest-handled
IRQs,

IRQ,
Exceptions

Reset

Hypercall
Root-handled exceptions

eret

eret

eret

Root-handled IRQs

eret IRQs,
Exceptions

exceptions

exceptions,
hypcall, if Guest.StatusCU0=1

root-user

root-kernel

guest-user

guest-kernel

root Coprocessor 0

guest Coprocessor 0

 The Virtualization Privileged Resource Architecture

27microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

register set. The software visible state is the contents of these registers and any state which is accessed via these reg-
isters, such as TLB entries and Segmentation Control configurations. For a Hypervisor to save, restore or switch con-
text from one guest to another, it is the entire software visible state which must be saved and restored, not solely the
replicated registers themselves, but also the physical resources which are shared between Root and Guest, such as the
GPRs, FPRs and Hi/Lo registers.

During guest mode execution, both the guest Coprocessor 0 and the root Coprocessor 0 are active. The presence of
two simultaneously active Coprocessor 0 contexts is fundamental to the operation of the Virtualization Module.

During guest mode execution, all guest operations are first tested against the guest CP0 context, and then against the
root CP0 context. An ‘operation’ is any process which can trigger an exception - this includes address translation,
instruction fetches, memory accesses for data, instruction validity checks, coprocessor accesses and breakpoints.

Exceptions are handled in the mode whose context triggered the exception. An exception triggered by the guest CP0
context will be handled in guest mode. An exception triggered by the root CP0 context will be handled in root mode.

Guest mode software has no access to the root Coprocessor 0. Root mode software can access the guest Coprocessor
0, and if required can emulate guest-mode accesses to disabled or unimplemented features within guest Coprocessor
0. The guest Coprocessor 0 is partially populated - only a subset of the complete root Coprocessor 0 is implemented.

The presence of two Coprocessor 0 contexts allows for an immediate switch between guest and root modes - without
requiring a context switch to/from memory. Simultaneously active contexts for the guest and root Coprocessor 0
allows guest-kernel privileged code to execute with the minimum hypervisor intervention, and ensures that key
root-mode machine systems such timekeeping, address translation and external interrupt handling continue to operate
without major changes during guest execution.

Figure 4.3 shows the how the Virtualization Module ‘onion model’ is applied to operations starting in each of the
operating modes (supervisor modes are omitted for clarity).

Figure 4.3 Virtualization Module Onion Model and exceptions

An operation executed in guest-user mode must travel from the inside of the onion to the outside.

guest-user

guest-kernel root-kernel

Guest CP0

guest-kernel handler root-kernel handler

Complete

root-user

operation
exception?

Root CP0
exception?

N N

Y Y

operation start point

4.4 Operating Modes

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 28

The first layer to be crossed is the guest CP0 context (controlled by guest-kernel mode software). All exception and
translation rules defined by the guest CP0 context are applied, and resulting exceptions taken in guest mode.

If the operation does not trigger a guest-context exception, the next layer to be crossed is the root CP0 context (con-
trolled by root-kernel mode software). All exception and translation rules defined by the root CP0 context are applied,
and resulting exceptions taken in root mode.

For example, an access to Coprocessor 1 (the Floating Point Unit) must first be permitted by the guest context
StatusCU1 bit, and then by the root context StatusCU1 bit. However, access of guest to Coprocessor 0 is not qualified
by root context StatusCU0 as Coprocessor 0 state is not shared with root.

External interrupts must travel from the outside of the onion to the inside - first being parsed by the root CP0 context,
and if passed on by the hypervisor software, by the guest CP0 context.

4.4.2 Terminology

When executing in guest mode, both the root and guest Coprocessor 0 contexts are in active use. See Section
4.4.1 “The Onion Model”. A prefix is used to distinguish between registers located in the guest and root contexts.

For example - Root.Status refers to the status register from the root context, and Guest.Compare refers to the timer
compare register in the guest context.

Pseudocode in this document uses object-oriented terminology to describe processes which can be applied to multiple
contexts. A prefix is used to indicate which context is to be operated on by the process. In object-oriented terminol-
ogy, the subroutines shown are akin to methods provided by a CP0 class.

For example:
Perform TLB lookup using Root CP0 context
- exceptions taken in root context
Root.TLBLookup(.., .., ..)

Perform TLB lookup using Guest CP0 context
- exceptions taken in guest context
Guest.TLBLookup(.., .., ..)

Perform TLB lookup using context defined by ‘object’ variable
- exceptions taken in ‘object’ context
object.TLBLookup(.., .., ..)

Perform TLB lookup using context of the caller
TLBLookup(.., .., ..

4.4.3 Definition of Guest Mode

4.4.3.1 Definition

The processor is in guest mode (guest-user, guest-supervisor or guest-kernel) when:

• Root.GuestCtl0GM = 1 and Root.StatusEXL=0 and Root.StatusERL=0 and Root.DebugDM=0.

Guest mode operation is determined as follows. This subroutine will be used in pseudo-code to test whether processor
is in guest-mode.

subroutine IsGuestMode() :

 The Virtualization Privileged Resource Architecture

29microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

if (GuestCtl0GM=1) and (Root.DebugDM=0) and
(Root.StatusERL=0) and (Root.StatusEXL=0) then
return(true)

else
return(false)

endif
endsub

In contrast, the following subroutine is to be used in pseudo-code to test whether processor is in root-mode.
subroutine IsRootMode() :

if (
(GuestCtl0GM=0) or
((GuestCtl0GM=1) and not ((Root.DebugDM=0) and
(Root.StatusERL=0) and (Root.StatusEXL=0))
) then
return(true)

else
return(false)

endif
endsub

4.4.3.2 Entry to Guest mode

The recommended method of entering Guest mode is by executing an ERET instruction when Root.GuestCtl0GM=1,
Root.StatusEXL=1, Root.StatusERL=0 and Root.DebugDM=0.

Instructions executed in root mode use the root context. When an ERET instruction is executed in root mode and
Root.StatusERL=0, the target address is obtained from Root.EPC and the exception-level bit EXL is cleared in
Root.Status. After the ERET instruction execution is completed, the processor will be in guest mode if the
Root.GuestCtl0GM bit was set.

The behavior of ERET, and DERET and their usage of EPC, ErrorEPC and DEPC registers are unchanged from the
base architecture. The determination of Guest vs. Root mode is the result of setting the Root register fields
GuestCtl0GM, StatusEXL, StatusERL and DebugDM to the Guest mode definition state (Root.GuestCtl0GM = 1 and
Root.StatusEXL=0 and Root.StatusERL=0 and Root.DebugDM=0).

4.4.3.3 Exit from Guest mode

When an interrupt or exception is to be taken in root mode, the bits Root.StatusEXL or Root.StatusERL are set on entry,
before any machine state is saved. As a result, execution of the handler will take place in root mode, and root mode
exception context registers are used, including Root.EPC, Root.Cause, Root.BadVAddr, Root.Context, Root.EntryHi.

The HYPCALL instruction is provided for controlled guest-to-root transitions. This instruction triggers a Hypercall
Exception, taken in root mode. See Section 4.7.11 “Hypercall Exception”.

The ERET instruction cannot be used to enter root mode from guest mode. No root-mode state is accessible from
guest mode, thus the guest cannot change the Root.GuestCtl0, Root.Status or Root.Debug registers.

4.4.3.4 Guest mode execution

When running in guest mode, the distinction between guest-user, guest-supervisor and guest-kernel is made using
Guest.StatusERL, Guest.StatusEXL and Guest.StatusKSU/UM, following the rules described in the base architecture.

4.4 Operating Modes

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 30

When an interrupt or exception is to be taken in guest mode, the bits Root.StatusEXL or Root.StatusERL remain unal-
tered on entry. As a result, execution of the handler will take place in guest mode, and guest mode exception context
registers are used, including Guest.EPC, Guest.Cause, Guest.BadVAddr, Guest.Context, Guest.EntryHi.

4.4.3.5 Reset

At reset, Root.StatusERL=1, thus a microMIPS32 processor will always start in root mode.

In addition, Root.GuestCtl0GM=0 on reset, ensuring that the operation of existing software is unchanged.

4.4.3.6 Debug Mode

For processors that implement EJTAG, the processor is operating in debug privileged execution mode (Debug Mode)
when Root.DebugDM=1. If the processor is running in Debug Mode, it has full access to all resources that are avail-
able to Root Kernel Mode operation.

Debug Mode, Root Mode and Guest Mode are mutually exclusive. At any given time, the processor can only be in
one of the three modes. Note that Debug mode operates in the Root context, while Guest mode operates in its own
unique context.

4.4.3.7 Fields affecting processor mode

Table 4.1 describes the fields affecting the processor mode.

Table 4.1 Guest, Root and Debug modes

Root Guest

ModeDebugDM StatusERL StatusEXL StatusKSU
GuestCtl0

GM StatusERL StatusEXL StatusKSU

1 Don’t care Debug

0 1 Don’t care Root-Kernel

0 1 Don’t care

0 00 0 Don’t care

01 Root-Supervisor

10 Root-User

Don’t care 1 1 Don’t care Guest-Kernel

0 1 Don’t care

0 00

01 Guest-Supervisor

10 Guest-User

Don’t care 11 UNPREDICTABLE

Don’t care 11 Don’t care UNDEFINED

 The Virtualization Privileged Resource Architecture

31microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

4.4.4 The Guest Context

The Virtualization Module provides root-mode software with controls over the instructions that can be executed, the
registers which can be accessed, and the interrupts and exceptions which can be taken when in guest mode. These
controls are combined with new exceptions that return control to root mode when intervention is required. The overall
intent is to allow guest-mode software to perform the most common privileged operations without root-mode inter-
vention - including transitions between guest kernel and guest user mode, controlling the virtual memory system (the
TLB) and dealing with interrupt and exception conditions. Controls allows root-mode software to enforce security
policies, and allow for virtualized features to be provided using direct access or trap-and-emulate approaches.

The features added by the Virtualization Module are primarily concerned with virtualizing the privileged state of the
machine and dealing with related exception conditions. Hence most features are related to guest-mode interaction
with Coprocessor 0. A partially-populated Coprocessor 0 context is added for guest-mode use. See Section
4.6.3 “Guest CP0 registers”.

The Virtualization Module provides controls to trigger an exception on any access to Coprocessor 0 from the guest,
access to a particular register or registers, or to trigger an exception after a particular field has been changed. See
Section 5.2 “GuestCtl0 Register (CP0 Register 12, Select 6)”.

The guest Coprocessor 0 context includes its own interrupt system. Root-mode software can directly control guest
interrupt sources, and can also pass through one or more external hardware interrupts to the Guest. Guest mode soft-
ware can enable or disable its own interrupts to enforce critical regions. The root-mode interrupt system remains
active, allowing timer and external interrupts to be dealt with by root-mode handlers at any time. See Section
4.8 “Interrupts”.

The guest context includes its own TLB. This is useful for fully virtualized systems, where direct guest access to the
TLB is necessary to maintain performance. A two-level address translation system is present, along with the related
exception system. This system is used to manage guest mode access to virtual and physical memory, and then to
relate those accesses to the real machine’s physical memory. See Section 4.5 “Virtual Memory”.

All microMIPS32 unprivileged instructions and registers can be used by guest mode software without restriction.
This includes the General Purpose Registers (GPRs) and multiplier result registers hi and lo. See Section
4.9 “Instructions and Machine State, other than CP0”.

MIPS defines optional architecture features and Modules which add machine state and instructions to the base
microMIPS32 architecture. Some examples include the Floating Point Unit, the DSP Module, and the UserLocal reg-
ister. The presence of these optional features and Modules within the machine is indicated by read-only configuration
bits in the Root.Config0..7 registers.

The Virtualization Module allows implementations to choose which optional features are available to the guest con-
text. The optional features available to the guest are indicated by fields in the Guest.Config0..7 registers. An imple-
mentation can further choose to allow run-time configuration of the features available to the guest by allowing
root-mode writes to fields in the Guest.Config0..7 registers.

Root-mode software can control guest writes to the Guest.Config registers when GuestCtl0CF=0. This allows Root to
control changes to Guest configuration, or be informed of changes to Guest configuration. See Section 4.6.6 “Guest
Config Register Fields”.

The base microMIPS32 architecture includes access controls which allow kernel-mode code to limit access to
optional or Module features. Examples include the StatusCU1 bit and the StatusMX bit. The ‘onion model’ requires
that both root-mode and guest-mode permissions are applied to guest-mode accesses. For example, access to the
floating point unit must be enabled by the root (Root.StatusCU1) and the guest (Guest.StatusCU1) before excep-

4.4 Operating Modes

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 32

tion-free accesses can be performed. See Section 4.9.4 “Floating Point Unit (Coprocessor 1)”. There are exceptions
to the onion model, for example the HWREna register only applies in respective context for guest and root operations.

In a fully virtualized system, the virtual machine presented to the guest is a faithful copy of a real machine - all pro-
cessor state, instructions, memory and peripherals operate as expected by the guest software.

Figure 4.4 shows a simplified microMIPS32 processor during root mode execution. Shadow register controls deter-
mine which General Purpose Register set is used. Multiplier result registers are accessible in user and kernel modes.
Address translation is performed using a TLB-based MMU and Segment Configurations. Access to the FPU is con-
trolled by kernel-mode software using the StatusCU1 bit. Interrupts can result from external sources or the system
timer. Exceptions can result from address translation, breakpoints, instruction execution, or serious errors such as
NMI, Machine Check or Cache Error.

The example assumes a non-EIC interrupt system, and for reasons of clarity, omits Supervisor modes and Config0..7

registers.

 The Virtualization Privileged Resource Architecture

33microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

Figure 4.4 Simplified processor operation in root mode

Figure 4.5 shows the Virtualization Module ‘onion model’ applied to the simplified microMIPS32 processor from
Figure 4.4, for a fully virtualized guest. Guest context shadow register controls determine which General Purpose
Register set is used. Multiplier result registers are accessible in user and kernel modes. Address translation is per-
formed first using the guest context (enabled by GuestCtl0AT=1 or 3), then through the root context TLB. Note that
root context Segment Configurations are not used - the root context TLB translates every address from the guest.

Exceptions detected by the guest context are handled in guest mode - from guest segmentation/translation, guest
coprocessor enables, guest timekeeping, and IRQs - both external sources passed through by the root context, and
IRQ sources directly asserted by root-mode software. Exceptions detected by the root context are handled in root
mode - root timekeeping, IRQs, coprocessor enables and second-level address translation, plus new controls over
guest behavior.

User Mode

Root-Kernel Mode

GPRs hi, lo

Base Instrs. FPU Instrs. IRQ detect
CauseIP7..2
StatusIE
StatusIM7..2
IntlCtlIPTI

Timekeeping
Count
Compare

Shadow Regs
SRSCtl
SRSMap

IRQs

StatusCU1

Exceptions

EPC
ErrorEPC
Cause
BadVAddr

BreakpointsEJTAG

Memory FPU

NMI, Cache Error,
Machine Check

External Debug

Address

Segmentation
Control (optional)

EntryLo0,1
EntryHi
PageMask
PageGrain
Index, Wired

Translation

 The Virtualization Privileged Resource Architecture

35microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

In guest mode when guest segmentation and translation are enabled (GuestCtl0AT=1 or 3), two levels of address trans-
lation are performed. The first level uses the guest segmentation controls and the guest MMU. This translates an
address from a Guest Virtual address (GVA) to a Guest Physical Address (GPA). The second level of translation uses
the root TLB, using the GPA in place of the Virtual Address (VA) that would normally be used. This second transla-
tion results in a Physical Address (PA). The cache attribute used is that supplied by the guest context. In this second
level of translation, exceptions in address translation are handled by Root.

When a TLB-based guest MMU is provided, it is recommended the number of entries be equal to the number of
entries in the root-context TLB used for Guest mappings. The page sizes used in the root-mode TLB must be care-
fully considered to allow sufficient control for root-mode software, while maximizing the number of guest-mode TLB
entries which are mapped through each root-mode TLB entry. Larger root TLB pages will likely result in better per-
formance.

Both the guest and root MMU’s can be active at the same time. We recommend that the Root TLB maintain an ade-
quate amount of reserved TLB entries for its own use to avoid cascading TLB evictions (thrashing).

Figure 4.6 shows the outline of address translation in the Virtualization Module.

4.5 Virtual Memory

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 36

Figure 4.6 Outline of Address Translation

Implementation note: Processor designs incorporating the Virtualization Module and implementing a guest context
MMU are unlikely to perform translation twice on each memory access. A hardware mechanism will be used to
ensure that a Physical Address can be obtained from a Guest Virtual Address within the CPU pipeline in a single
translation. The mechanism may use micro-TLBs - for example, on a micro-TLB refill, a guest TLB lookup would be
followed by a root TLB lookup, to produce a one-step GVA-PA translation. Other methods are possible. The system
must be arranged to allow for efficient execution and to appear to software that two independent translation steps are
taking place for each memory access.

Guest mode segmentation controls and the guest mode MMU have no effect on the root mode address space.

The optional ‘GuestID’ field (GuestCtl1ID or GuestCtl1RID) represents a unique identifier for Root and all Guest Vir-
tual Address spaces. Each Guest’s address space is identified by a unique non-zero GuestID. The GuestID value zero
is reserved for Root address space. The GuestCtl1 CP0 register is unique in the Root register space and inaccessible in
guest mode. GuestID is an optimization, designed to minimize TLB invalidation overhead on a virtual machine con-
text switch and simplify Root access to Guest TLB entries. The implementation of a GuestID is recommended.
Implementation complexity can be minimized by reducing the GuestID to 1 bit. This allows the Root TLB to distin-

Virtual Address (VA)

Root CP0
segmentation OPTIONAL

Guest CP0
segmentation OPTIONAL

Root TLB

Mapped?

Guest TLB

Exception?

Mapped?

Exception?

Root Virtual Address
Root ASID

YN

YN

N

Root exception

Guest exception

Y

Physical Address (PA)

N

Y

Guest?

MMU

N

Y

enabled?

GuestID=0

N

ASID
Guest

GuestID=N

Y

Guest Physical Address
Root ASID is ignored
GuestID=N

 The Virtualization Privileged Resource Architecture

37microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

guish between Root and Guest Entries, and flush either set of mappings in entirety with the TLBINVF instruction.
Alternatively, GuestID can be eliminated by having Root virtual address space shared with Guest physical addresses.

The pseudocode below describes the complete address translation process for the microMIPS32 Virtualization Mod-
ule. Segmentation, TLB lookups, hardware TLB refill and second-level address translation are invoked below. The
process is described in top-down order - subsequent sections describe the subroutines called. See Section
4.5.1 “Virtualized MMU GuestID Use” for description of RAD and DRG terms.

/* Inputs
* vAddr - Virtual Address
* IorD - Access type - INSTRUCTION or DATA
* LorS - Access type - LOAD or STORE
* pLevel - Privilege level - USER, SUPER, KERNEL
*
* Outputs
* pAddr - physical address
* CCA - cache attribute (valid when mapped)
*
* Exceptions: See called functions
* Called from guest or root context.
*/

subroutine AddressTranslation(vAddr, IorD, LorS, pLevel)

// Initialization.
// GuestID is only applicable if GuestCtl0RAD=0. Otherwise GuestID
// is ignored (not applicable) in process of address translation.
GuestID ← ignored

if (IsGuestMode()) then
// This is a Guest Address translation
// step 1: Guest Virtual -> Guest Physical Address translation
if (GuestCtl0RAD=0)

GuestID ← GuestCtl1ID
endif
(mapped, addr, CCA) ← AddressDecode(vAddr, pLevel)
if (ConfigMT=1 or ConfigMT=4) then // TLB type MMU

if (mapped) then
asid ← Guest.EntryHiASID
(addr, CCA) ← Guest.TLBLookup(asid, GuestID, addr, IorD, LorS)

endif
else

if (ConfigMT=0) then
MMU=None case is undefined
UNDEFINED

else
Other MMU type, FMT or BAT. BAT will use LorS.
(addr, CCA) ← Guest.OtherMMULookup(addr, CCA, LorS, pLevel)

endif
endif
if (exception)

Guest Exception
// TLB exceptions may include Refill, Invalid, Execute-Inhibit for
// Instruction, Refill, Invalid, Modified, Read-Inhibit for Data.

4.5 Virtual Memory

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 38

// Guest segment map related exceptions may include Address Error
endif

// step 2: Guest Physical -> Root Physical Address translation
// if GuestCtl0RAD=0, then guest entry ASID is global in Root TLB.
// H/W must set G=1 for guest entry for TLBWI and TLBWR.
asid ← Root.EntryHiASID
pAddr ← Root.TLBLookup(asid, GuestID, addr, IorD, LorS)
if (exception)

Root Exception
// This is a Root exception initiated in guest context
// This includes all TLB exceptions.
// Segment map Address Error exception not included, as guest does not
// lookup root segment map.

endif

else
// This is a Root Address translation
// Root Virtual -> Root Physical Address translation
// If GuestCtl0DRG=1,GuestCtl1RID is non-zero,Root.StatusEXL,ERL=0,
// and DebugDM=0, then all root kernel data accesses are mapped and root
// SegCtl is ignored.H/W must set G=1 as if the access were for guest.
drg_valid ← (GuestCtl0DRG=1 and Root.StatusKSU=00 and Root.StatusEXL=0 and
Root.StatusERL=0 and DebugDM=0 and GuestCtl1RID!=0 and !Instruction)
if (drg_valid) then

mapped ← 1
addr ← vAddr

else
(mapped, addr, CCA) ← AddressDecode(vAddr, pLevel)

endif
if (!mapped) then

pAddr ← addr
else if (GuestCtl0RAD=0)

if (Instruction or (!drg_valid))
GuestID ← 0

else
GuestID ← GuestCtl1RID

endif
endif

asid ← Root.EntryHiASID
(pAddr, CCA) ← Root.TLBLookup(asid, GuestID, addr, IorD, LorS)

endif
endif
if (exception)

Root Exception
// Includes all TLB and Segment related exceptions in Root context.
// If drg_valid, and access is not by root-kernel,then an Address Error
// exception is caused.

endif

return (pAddr,CCA)
end

subroutine AddressDecode(vAddr, pLevel) :
Determine whether address is mapped
- if unmapped, obtain physical address and cache attribute
if (Config3SC) then

 The Virtualization Privileged Resource Architecture

39microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

// optional Segmentation Control based address decode
(mapped, addr, CCA) ← SegmentLookup(vAddr, pLevel)

else
(mapped, addr, CCA) ← LegacyDecode(vAddr[31:29], pLevel)

endif
return (mapped, addr, CCA)

endsub

See also Section 4.7.1 “Exceptions in Guest Mode” and Section 4.7.2 “Faulting Address for Exceptions from Guest
Mode”.

4.5.1 Virtualized MMU GuestID Use

The use of GuestID is optional as specified by the value of GuestCtl0G1. Software can detect presence of GuestCtl1

and thus GuestCtl1ID and GuestCtl1RID by reading GuestCtl0G1.

For an implementation that supports GuestCtl0RAD=0, GuestCtl0G1 must be preset to 1, otherwise GuestCtl0G1 must
be preset to 0. GuestCtl0RAD is read-only - an implementation can support one or the other, but never both. On the
other hand, GuestCtl0DRG is R/W. See Table 5.2 for description of R/W state of DRG and RAD.

GuestCtl1ID is used for guest-mode operation, while GuestCtl1RID is used for root-mode operation. Root address
translation assumes GuestID=0 providing GuestCtl0DRG=0.

The Guest TLB may or may not be shared by multiple guests. The Root TLB will be shared by Root and at least one
unique Guest. Options to support dealiasing guest and root entries in Root TLB, and possibly multiple guests in the
Guest TLB is described below.

A processor will support one of the two modes below. Software can determine the mode by reading GuestCtl1RAD

described in Table 4.2

1. Dealiasing by GuestID

GuestID is used to dealias multiple guest contexts in both Guest and Root TLB. Specifically, GuestCtl1ID is used
for guest-mode operation, whereas GuestCtl1RID is used for root-mode operations. A guest or root-mode opera-
tion is an instruction or data translation, or TLB instruction.

An implementation may choose to provide direct root-mode access to guest entries (GPA->RPA) in the Root
TLB. Direct root-mode access is described by GuestCtl0DRG in Table 4.2. In the absence of this feature, root
would have to probe the Root TLB with GPA, and subsequently read on match to obtain the RPA. If a miss
occurs, then root must walk the guest shadow page tables in memory. Otherwise, with direct access, a miss will
result in a hardware pagewalk, assuming a hardware pagewalker is supported.

Root ASID for guest entries in the Root TLB are ignored because hardware will set the global bit on a write for
such entries.

2. Dealiasing by Root ASID.

This option should be used if no GuestID is implemented. Software can detect this mode by reading
GuestCtl1RAD.

4.5 Virtual Memory

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 40

Between Guest context-switches, the Guest and Root TLBs must be flushed of current guest context by root soft-
ware. Root.EntryHiASID is used to dealias Root from Guest entries in the Root TLB. Root software must maintain
a one is to one correspondence between allocated ASID and the unique Guest it represents.

Root ASID for guest entries in the Root TLB are not ignored unless software explicitly sets G=1 for the guest
entry.

.

The following pseudo-code indicates how to specify the ASID and GuestID(if present) interface to the Root and
Guest TLBs for Guest and Root address translations, as a function of GuestCtl0RAD. A field within a TLB entry needs
to be compared with a “Key” as input to the interface to determine whether a match is has occurred.

Guest and Root TLB interfaces for GuestID dealiasing method (GuestCtl0RAD=0):

Guest TLB Interface:
if (Instruction or Load or Store)

GuestTLB.Key[GuestID] = GuestCtl1ID
endif

Table 4.2 GuestID Translation Related Usage Mode Control

Field Description

GuestCtl0RAD RAD, or “Root ASID Dealias” mode determines the means that a Virtualized
MMU implementation uses to dealias different contexts.

GuestCtl0DRG DRG, or “Direct Root to Guest” access determines whether an implementation
with GuestCtl0RAD=0 provides root kernel the means to access guest entries

directly in the Root TLB for access to guest memory. If GuestCtl0DRG=1 then

GuestCtl1RID must be used. If GuestID for root operation is non-zero, root is

in kernel mode, Root.StatusEXL,ERL=0 and DebugDM=0, then all root kernel

data accesses are mapped, root SegCtl is ignored and Root TLB CCA is used.
Access in root mode by other than kernel will cause an address error. H/W
must set G=1 as if the access were for guest.

Encoding Meaning

0 GuestID used to dealias both Guest
and Root TLB entries in Root TLB.

1 Root ASID is used to dealias Root
TLB entries, while Guest TLB con-
tains only one context at any given
time.

Encoding Meaning

0 Root software cannot access guest
entries directly.

1 Root software can access guest entries
directly.

 The Virtualization Privileged Resource Architecture

41microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

GuestTLB.Key[ASID] = Guest.EntryHiASID

Root TLB Interface:
if (IsRootMode())

drg_valid ← (GuestCtl0DRG=1 and Root.StatusKSU=00 and Root.StatusEXL=0 and
Root.StatusERL=0 and DebugDM=0 and GuestCtl1RID!=0 and !Instruction)

if (!drg_valid) then
// Instruction or Load or Store
RootTLB.Key[GuestID] = 0

else // special mode - root access guest entries
RootTLB.Key[GuestID] = GuestCtl1RID

endif
else // Guest mode

// Instruction or Load or Store
RootTLB.Key[GuestID] = GuestCtl1ID

endif
RootTLB.Key[ASID] = Root.EntryHiASID

With GuestCtl0RAD=0, Guest entries in the Root TLB must ignore the ASID. For this reason, if GuestCtlRID!=0, that
is entry is a Guest entry, then Root mode execution of TLBWI and TLBWR sets the entry’s G bit to 1 automatically.
Otherwise, for Root entries, TLBWI and TLBWR must set/clear the G bit in accordance with the baseline architec-
ture.

Guest and Root TLB interface for Root ASID dealiasing method (GuestCtl0RAD=1) :

Guest TLB Interface:
GuestTLB.Key[ASID] = Guest.EntryHiASID

Root TLB Interface:
RootTLB.Key[ASID] = Root.EntryHiASID

GuestCtl0DRG has no effect on the Guest and Root address translations if GuestCtl0RAD=1. If GuestCtl0RAD=1, then
GuestCtl0DRG must be read-only as 0.

For more detail on Guest and Root address translation, please refer to pseudo-code in Section 4.5 “Virtual Memory”.

Table 4.3 specifies the association of GuestID with TLB instructions. For supporting information, refer to Section
4.6.2 “New CP0 Instructions”.

Table 4.3 GuestID Use by TLB instructions.

TLB Operation
GuestID

(GuestCtl1ID/GuestCtl1RID)

TLBGINV GuestCtl1RID

TLBGINVF GuestCtl1RID

TLBGP GuestCtl1RID

TLBGR GuestCtl1RID

TLBGWI GuestCtl1RID

TLBGWR GuestCtl1RID

4.5 Virtual Memory

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 42

4.5.2 Root and Guest Shared TLB Operation

An implementation may choose to share a common physical TLB amongst root and guest. In a TLB structure that
incorporates a VTLB (Variable page size TLB) and FTLB (Fixed page size TLB), the VTLB must accommodate
wired entries for both root and guest in a shared structure. In other implementations, the VTLB may be standalone
without a supporting FTLB.

In a non-virtualized design, the number of wired entries is limited by the CP0 Wired register in either context. And the
number of entries in the VTLB is determined by Config1MMUSize-1 and Config4VTLBSizeExt or Config4MMUSizeExt. For
this purpose, it is required that any of these fields be writeable by root as given in Table 4.11.

In a recommended shared TLB implementation, the root index increases from the bottom of the physical TLB while
the guest index increases from the top of the physical TLB. This is to avoid overlap of root and guest wired entries, if
programmed appropriately. On the other hand, the root and guest indices to the FTLB grow from the bottom of the
FTLB. Both guest and root TLB operations must interpret the TLB index accordingly.

It is expected that root will allocate the appropriate number of wired entries to itself, and then write guest Config1 and
Config4 related fields to set the available VTLB entries for guest. Root will read Guest.Config4MMUExtDef to deter-
mine which of the guest Config4 MMU size extension fields need to be written. Since the entries allocated for guest
use also includes non wired entries shared by both root and guest, root software must be careful not to allocate all
remaining non root-wired entries to guest. This prevents guest from populating all remaining non root-wired entries
with its own guest-wired entries, leaving no entries for non root-wired entries.

Root software should not change guest MMU configuration while the guest is in operation, as is the case for any guest
configuration that is read-only to guest but writeable by root.

It is not required that hardware check for illegal values written to guest MMU size and extensions. A typical imple-
mentation will however check to ensure that any field write saturates at the maximum number of bits required to sup-
port the total number of entries in the shared TLB.

TLBINV if RootMode then GuestCtl1RID

else GuestCtl1ID

TLBINVF if RootMode then GuestCtl1RID

else GuestCtl1ID

TLBP if RootMode then GuestCtl1RID

else GuestCtl1ID

TLBR if RootMode then GuestCtl1RID

else GuestCtl1ID

TLBWI if RootMode then GuestCtl1RID

else GuestCtl1ID

TLBWR if RootMode then GuestCtl1RID

else GuestCtl1ID

Table 4.3 GuestID Use by TLB instructions.

TLB Operation
GuestID

(GuestCtl1ID/GuestCtl1RID)

 The Virtualization Privileged Resource Architecture

43microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

4.5.3 Nested Guest CCA Support

The specification optionally provides the ability for root CCA, in the 2nd step of guest address translation, to modify
guest CCAs.

As specified, nesting is specifically recommended if the hypervisor allows guest to access device addresses, or mem-
ory-mapped I/O addresses. It is possible for a rogue guest to store data in the cache as writeback using a cacheable
CCA, with this data later on being evicted in another guest’s operating context, with the intent of corrupting a periph-
eral. The hypervisor would allow guest access assuming that the system MMU is programmed correctly to selectively
allow guest access to device address ranges. However such a system MMU would not have the capability of prevent-
ing writeback data from accessing the peripheral as it either allows read/write access on a per guest basis and does not
further differentiate the access.

Nesting is not required if the hypervisor traps and emulates all guest accesses to I/O address ranges.

In either case, guest access to physical memory does not require the application of nesting, as the Root MMU protects
such accesses on a per guest page basis. However, hypervisor may always apply the policies given in Table 4.4.

See Table 5.8 for definition of related configuration, GuestCtl0ExtNCC.

4.6 Coprocessor 0

Defined by the microMIPS32 Privileged Resource Architecture (PRA), Coprocessor 0 (CP0) contains system control
registers. Access to these registers is restricted and can only be performed using privileged instructions.

The Virtualization Module provides a partial set of CP0 registers for use by the guest, this is known as the guest con-
text. When in guest mode, the behavior of the machine is controlled by the combination of the guest CP0 context and
the root CP0 context. When in root mode, the behavior of the machine is controlled entirely by the root CP0 context.

Table 4.4 Guest Nested CCA

Root CCA Guest CCA

Resultant
Guest CCA Changed? Comment

1st step of
guest address

translation

2nd step of
guest address

translation

not UC or UCA Any Unchanged

UC UC UC Unchanged

UC1

1. UC - Uncacheable CCA, Architecturally defined.

WB/WT2

2. WB/WT (Writeback/ Writethru) - Cacheable CCA, Implementation defined.

UC Unchanged Protects against WB to device address

UC UCA UC Unchanged Possible performance impact for guest
UCA

UCA3

3. UCA - Uncacheable Accelerated CCA, Implementation defined.

UC UC Unchanged

UCA WB/WT UCA Changed Store gathering may occur on cache-
able accesses

UCA UCA UCA Unchanged No performance impact

4.6 Coprocessor 0

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 44

The guest CP0 context consists of a base set plus optional features.

Access to features within the guest CP0 context is controlled from root mode. The Guest.Config0-7 registers deter-
mine which architecture features are active during guest mode execution. The GuestCtl0 register controls whether a
guest access to a privileged feature will trigger an exception.

Guest CP0 registers can be accessed from root mode by using the root-only MFGC0 and MTGC0 instructions. Guest
TLB contents can be accessed by using the root-only TLBGP, TLBGR, TLBGWI and TLBGWR instructions.

Root context software (hypervisor) is required to manage the initial state of writable Guest context registers. On
power-up, the initial state defaults to the hardware reset state as defined in the base architecture. On Guest context
save and restore, the hypervisor is required to preserve and re-initialize the Guest state. For virtual boot of a Guest,
the hypervisor is required to initialize the Guest state equivalent to the hardware reset state.

Root has the ability to define the presence of and control the contents of Guest CP0 registers. Therefore, if so config-
ured, Guest access to guest CP0 state may cause a Guest Privileged Sensitive Instruction exception. Refer to Table
4.8, Section 4.6.6 “Guest Config Register Fields” and Section 4.7.7 “Guest Privileged Sensitive Instruction
Exception” for further information.

Root may deconfigure guest CP0 registers by writing to guest configuration registers as defined in Table 4.11. Guest
behavior in response to these modifications is defined in Table 4.9.

The Virtualization Module requires that scratch registers KScratch1 and KScratch2 are present in the root context.
This ensures that hypervisor exception handlers have an adequate number of scratch registers to save and restore all
general purpose registers in use by the guest.

4.6.1 New and Modified CP0 Registers

Coprocessor 0 registers are added by the Virtualization Module to control the guest context - GuestCtl0, GuestCtl1
and GTOffset.

Table 4.5 describes CP0 registers introduced by the Virtualization Module.

Table 4.5 CP0 Registers Introduced by the Virtualization Module

Register
Number Sel

Register
Name Description Reference

Compliance
Level

12 6 GuestCtl0 Controls guest mode behavior. Section 5.2 Required

10 4 GuestCtl1 Guest ID Section 5.3 Optional

10 5 GuestCtl2 Virtual Interrupts Section 5.4 Optional

10 6 GuestCtl3 Virtual Shadow Sets Section 5.5 Optional

11 4 GuestCtl0Ext Extension to GuestCtl0 Section 5.6 Optional

12 7 GTOffset Offset for guest timer value Section 5.7 Required

 The Virtualization Privileged Resource Architecture

45microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

Table 4.6 describes CP0 registers modified by the Virtualization Module.

4.6.2 New CP0 Instructions

The Virtualization Module introduces new instructions for root mode access to the guest CP0 context, and for a guest
to make a call into root mode - a ‘hypervisor call’.

Table 4.7 describes CP0 instructions introduced by the Virtualization Module.

4.6.3 Guest CP0 registers

The Virtualization Module provides a partial set of CP0 registers for use by the guest, this is known as the guest con-
text. Many guest context registers are optional or can be disabled under software control.

As in the base architecture, fields in Guest.Config, Guest.Config1..7 registers define the architectural capabilities of
the guest context. When a CP0 register does not exist in the guest context, or is disabled by a root-writable
Guest.Config field, it can have no effect on guest behavior. See Section 4.6.6 “Guest Config Register Fields” for
information on guest Config register fields which can be dynamically reconfigured by Root. Note that accesses to
Guest CP0 registers in certain cases will trigger a Guest Privileged Sensitive Instruction (GPSI) exception as defined
in Table 4.8.

Table 4.6 CP0 Registers Modified by the Virtualization Module

Register
Number Sel

Register
Name Description Reference

Compliance
Level

13 0 Cause Addition of hypervisor cause code. Section 5.8 Required

16 3 Config3 Identifies Virtualization Module feature set. Section 5.9 Required

19 0 WatchHi Added support for Guest Watch. Section 5.10 Optional

25 0 PerfCnt Added support for Root/Guest performance count. Section 5.11 Optional

8 0 BadVAddr 32-bit extension of BadVAddr for XPA. Section 5.12 Optional

10 0 EntryHi 32-bit extension of EntryHi for XPA. Section 5.13 Optional

31 2 KScratch1 Required in root context. - Required

31 3 KScratch2 Required in root context. - Required

Table 4.7 CP0 Instructions Introduced by the Virtualization Module

Instruction Description Reference
Compliance

Level

HYPCALL Hypercall - call to root mode. “HYPCALL” on page 131 Required

MFGC0 Move from Guest CP0 “MFGC0” on page 132

MTGC0 Move to Guest CP0 “MTGC0” on page 134

TLBGINV Guest TLB Invalidate “TLBGINV” on page 137 Optional

TLBGINVF Guest TLB Invalidate Flush “TLBGINVF” on page 139 Optional

TLBGP Probe Guest TLB “TLBGP” on page 142 Required
when guest
TLB present

TLBGR Read Guest TLB “TLBGR” on page 145

TLBGWI Write Guest TLB “TLBGWI” on page 147

TLBGWR Write Random to Guest TLB “TLBGWR” on page 149

4.6 Coprocessor 0

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 46

When a CP0 register is defined in the guest context, it is used to control guest execution. Fields in the GuestCtl0 reg-
ister can be used to cause Guest Privileged Sensitive Instruction exceptions when an access from guest mode is
attempted. This allows hypervisor software to control the value of a register in the guest CP0 context (thus controlling
guest-mode execution) while denying guest-kernel access to the register. See Section 4.6.4 “Guest Privileged
Sensitive Features”.

Attempting modification of certain fields in guest context CP0 registers triggers a Guest Software Field Change
exception. In a similar manner, the Guest Hardware Field Change exception is triggered when a hardware initiated
change to Guest CP0 registers occurs. These mechanisms are used to support Root recognition of Guest initiated
changes to guest context CP0 registers. This is done to properly manage the operation of the guest virtual machine.
See Section 4.6.5 “Access Control for Guest CP0 Register Fields”.

Table 4.8 lists the base architecture CP0 registers noting which may be implemented in the guest context.

Definitions of terms used in Table 4.8:

• Required - Must be implemented in the Guest context.

• Recommended - Should be implemented in the Guest context.

• Optional - Implementation dependent as to whether included in the Guest context.

• Not Available - Never implemented in the Guest context.

The guest CP0 context must include all CP0 registers from an optional feature or an Module if the associated
Guest.Config field indicates that the feature or Module is available in the guest context. For any of these registers,
guest access may be controlled by Root software. This is done by triggering a Guest Privileged Sensitive Instruction
Exception on a guest-mode access. Guest Software Field Change and Guest Hardware Field Change exceptions can
also be used.

See also Section 4.9.10 “SDBBP Instruction Handling”.

Table 4.8 CP0 Registers in Guest CP0 context

Register
Number Sel Register Name

Available to
Guest-Kernel software

when

Guest Privileged
Sensitive Instruction

Exception when
Root.GuestCtl0CP0=0,

or
Compliance

Level

0 0 Index Guest.ConfigMT=1 or

Guest.ConfigMT=4

GuestCtl0ExtMG=1 Required for
Guest context

TLB
1 0 Random

2 0 EntryLo0

3 0 EntryLo1

4 0 Context

4 1 ContextConfig Guest.Config3SM=1 or

Guest.Config3CTXTC=1

Optional

4 2 UserLocal Guest.Config3ULRI=1 GuestCtl0ExtOG=1 Recom-
mended

 The Virtualization Privileged Resource Architecture

47microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

5 0 PageMask Guest.ConfigMT=1 or

Guest.ConfigMT=4

GuestCtl0ExtMG=1 Required for
Guest context

TLB5 1 PageGrain GuestCtl0AT=1

5 2 SegCtl0 Guest.Config3SC=1 Optional

5 3 SegCtl1

5 4 SegCtl2

5 5 PWBase Guest.Config3PW=1 Optional

5 6 PWField

5 7 PWSize

6 0 Wired Guest.ConfigMT=1 or

Guest.ConfigMT=4

Required for
Guest context

TLB

6 6 PWCtl Guest.Config3PW=1 Optional

7 0 HWREna Guest.ConfigAR>=1 GuestCtl0ExtOG=1 Required

8 0 BadVAddr Always GuestCtl0ExtBG=1

8 1 BadInstr Guest.Config3BI=1 GuestCtl0ExtBG=1 Optional

8 2 BadInstrP Guest.Config3BP=1 GuestCtl0ExtBG=1 Optional

9 0 Count Always GuestCtl0GT=0 Required

10 0 EntryHi Guest.ConfigMT=1 or

Guest.ConfigMT=4

GuestCtl0ExtMG=1 Required for
Guest context

TLB

11 0 Compare Always GuestCtl0GT=0 Required

12 0 Status Always -

12 1 IntCtl Guest.ConfigAR>=1 -

12 2 SRSCtl Guest.ConfigAR>=1 Always Optional

12 3 SRSMap Guest.ConfigAR>=1

13 0 Cause Always - Required

13 5 NestedExc Guest.Config5NFExists=1 - Optional

14 0 EPC Always - Required

14 2 NestedEPC Guest.Config5NFExists=1 - Optional

15 0 PRid - Always Not Available
Emulated by
Hypervisor

15 1 EBase Guest.ConfigAR>=1 - Required

Table 4.8 CP0 Registers in Guest CP0 context

Register
Number Sel Register Name

Available to
Guest-Kernel software

when

Guest Privileged
Sensitive Instruction

Exception when
Root.GuestCtl0CP0=0,

or
Compliance

Level

4.6 Coprocessor 0

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 48

15 2 CDMMBase Guest.Config3CDMM=1 Always Not Available
Emulated by
Hypervisor15 3 CMGCRBase Guest.Config3CMGCR=1

16 0 Config Always On write access when
GuestCtl0CF=0.

Required

16 1 Config1 Guest.ConfigM=1

16 2 Config2 Guest.Config1M=1

16 3 Config3 Guest.Config2M=1

16 4 Config4 Guest.Config3M=1

16 5 Config5 Guest.Config4M=1

16 6 Config6 Implementation dependent - Optional

16 7 Config7

17 0 LLAddr GuestCtl0ExtOG=1 Optional1

17 1 MAAR Guest.Config5MRP=1 Always Not Available
Release 5

17 2 MAARI Guest.Config5MRP=1 Always Not Available
Release 5

18 0 WatchLo Guest.Config1WR=1 Conditional, refer to Section
4.12 “Watchpoint Debug

Support”

Optional

19 0 WatchHi Guest.Config1WR=1

23 0 Debug Guest.Config1EP=1 Always Not Available

24 0 DEPC Guest.Config1EP=1

25 0-n PerfCnt Guest.Config1PC=1 Conditional, refer to Section
4.8.4 “Performance
Counter Interrupts”

26 0 ErrCtl - Always

27 0 CacheErr

28 0 TagLo

28 1 DataLo

28 2 TagLo

28 3 DataLo

29 0 TagHi

29 1 DataHi

29 2 TagHi

29 3 DataHi

30 0 ErrorEPC Always2 - Required

31 0 DESAVE Guest.Config1EP=1 Always Not Available

Table 4.8 CP0 Registers in Guest CP0 context

Register
Number Sel Register Name

Available to
Guest-Kernel software

when

Guest Privileged
Sensitive Instruction

Exception when
Root.GuestCtl0CP0=0,

or
Compliance

Level

 The Virtualization Privileged Resource Architecture

49microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

Table 4.8 indicates the conditions under which guest access of guest CP0 registers can cause a Guest Privileged Sen-
sitive Instruction exception (GPSI) to Root. If a GPSI is taken for a guest CP0 register which may or may not be
active in guest mode, the corresponding root CP0 register must be implemented. This is true because the guest CP0
context is always a subset of the root CP0 context. Otherwise, access to the corresponding guest CP0 register is
UNPREDICTABLE.

If the configuration of a Guest accessible CP0 register can be modified by Root, then Guest access behavior is as
specified in Table 4.9.

Root should not modify Guest configuration while the Guest is running. It is assumed that the Guest software will
read its configuration registers during boot and not thereafter. Since Root can modify guest configuration, Root
should maintain a copy of guest configuration at hardware reset so that it knows which guest CP0 registers are actu-
ally implemented. Once modified by Root, the guest configuration registers may not accurately reflect the physical
existence of guest CP0 registers.

31 2 KScratch1 Always
Defined by

Guest.Config4KScrExist

GuestCtl0ExtOG=1 Optional

31 3 KScratch2

31 4 KScratch3

31 5 KScratch4

31 6 KScratch5

31 7 KScratch6

1. LLAddr may optionally be implemented providing the Guest context has access to Guest Physical
Addresses, else Not Available.

2. ErrorEPC is required in guest context because it used as scratch by some MIPS compatible OSes.

Table 4.9 Root Modification of Guest CP0 Configuration

 Register
Replicated in

Guest
Context?

Guest
Configuration

register bit
Root writeable
as per Table

4.11

Guest
Configuration
Register bit

value on reset

Guest
Configuration
Register bit
value after

write by Root,
if writeable Interpretation of Configuration

No No 0 N/A The register does not exist in Guest. Reads and writes to this
register are UNDEFINED.

Yes No 1 N/A The register is replicated in the Guest. Guest can access its ver-
sion of the register without traps to Root excluding the cases

identified in Table 4.8

No Yes 0 0 The register exists in Root and is not replicated in the Guest
context. In Guest mode, reads and writes to this register are

UNDEFINED.

Table 4.8 CP0 Registers in Guest CP0 context

Register
Number Sel Register Name

Available to
Guest-Kernel software

when

Guest Privileged
Sensitive Instruction

Exception when
Root.GuestCtl0CP0=0,

or
Compliance

Level

4.6 Coprocessor 0

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 50

4.6.3.1 Guest Reserved Register Handling

This section defines the behaviour of guest access to reserved CP0 registers of different types.

1. Reserved for Architecture. These are CP0 registers reserved by the privileged architecture for future use.

2. Reserved for Implementation. These are CP0 registers reserved for implementations which may or may not be
present in guest context.

The list of registers is CP0 Register 9 (Selects 6 and 7), Register 11 (Selects 6 and 7), Register 16 (Selects 6 and
7), Register 22 (all Selects).

The behaviour of Reserved for Architecture registers follows.

if (GuestCtl0CP0=0) {

<GPSI>
} elsif (GuestCtl0ExtOG=1) {

<GPSI>
} elsif (is_MFC0) {

MF(H)C0 is UNPREDICTABLE
} else { // is_MTC0

MT(H)C0 is UNPREDICTABLE
}

A recommended UNPREDICTABLE response is for an MF(H)C0 to return 0s, and for an MT(H)C0 to be dropped.

Release 5 of the architecture introduces extensions to 32-bit CP0 registers. The following distinction applies to han-
dling of a CP0 register and its extension.

• A CP0 register may exist but not be extended. An MT(F)HC0 should be treated as if the extension were Reserved
for Architecture.

No Yes 0 1 The register exists in Root and is not replicated in the Guest
context. In Guest mode, reads and writes to this register throw a

GPSI exception which allows Root to selectively emulate the
register. Registers which conform to this definition are the
Watch Registers (4.12) and Performance Registers (5.11).

Yes Yes 1 1 The register exists in the Root context and is replicated in the
Guest context. Guest can access its version of the register with-

out exception excluding cases identified in Table 4.8

Yes Yes 1 0 The register exists in the Root context and is replicated in the
Guest context. Guest access to the register is disabled. Reads
and writes to the register are UNDEFINED.

Table 4.9 Root Modification of Guest CP0 Configuration

 Register
Replicated in

Guest
Context?

Guest
Configuration

register bit
Root writeable
as per Table

4.11

Guest
Configuration
Register bit

value on reset

Guest
Configuration
Register bit
value after

write by Root,
if writeable Interpretation of Configuration

 The Virtualization Privileged Resource Architecture

51microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

• A guest CP0 register may extended but access to the extension disabled in its own context. The behaviour of
MT(F)HC0 should be as if the extension were not present. Example, if PageGrainELPA = 0 for XPA (Extended
Physical Addressing) related registers, an MT(F)HC0 should follow the rules for access to Reserved for Archi-
tecture registers.

• If the CP0 register itself does not exist then MT(F)HC0 must always be treated as if the extension were Reserved
for Architecture.

An implementation that supports MT(F)C0 must also support MT(F)GC0. The rules for handling of MT(F)GC0 are
identical to MT(F)C0 except that if a guest copy exists and access to the register is under the control of an enable,
then root copy of the enable determines whether the MT(F)GC0 is treated as an access to a Reserved for Architecture
register. For example, for XPA related registers, an MT(F)HC0 will be treated as if the related registers were
Reserved for Architecture if and only if root PageGrainELPA = 0. The same rules also apply to MT(F)HGC0.

The behaviour of Reserved for Implementation registers follows.

if (GuestCtl0CP0=0) {

<GPSI>
} elsif (is_MFC0) {

MF(H)C0 is UNPREDICTABLE
} else {

MT(H)C0 is UNPREDICTABLE
}

If an implementation dependent register is not supported, then it is recommended that the UNPREDICTABLE
response be identical to that of a Reserved for Architecture register.

Any extensions to Implementation Dependent CP0 registers should follow the behaviour described for Reserved for
Architecture registers.

Reserved for Implementation registers are not qualified by GuestCtl0ExtOG=1 because the requirements for imple-
mentation dependent registers is unknown.

4.6.4 Guest Privileged Sensitive Features

The GuestCtl0 register controls which privileged features can be accessed from guest mode. See Section
5.2 “GuestCtl0 Register (CP0 Register 12, Select 6)”.

A hypervisor can limit guest access to privileged (CP0) registers and privileged sensitive instructions. A hypervisor
exception is taken when a guest accesses a privileged feature which is ‘sensitive’. See Section 4.7.7 “Guest
Privileged Sensitive Instruction Exception”.

4.6.5 Access Control for Guest CP0 Register Fields

The microMIPS32 Privileged Resource Architecture includes register fields which are critical to machine behavior,
where a Guest Hardware Field Change (GHFC) or Guest Software Field Change (GSFC) requires immediate hyper-
visor intervention. Guest Software Field Change and Guest Hardware Field Change detection mechanisms are pro-
vided in order to reduce the need for hypervisor exceptions for all CP0 writes, exceptions, interrupts and privileged
instructions which could cause changes to critical fields.

4.6 Coprocessor 0

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 52

The GuestCtl0MC field controls programmable change detection for certain guest CP0 fields. Changes to these fields
will always result in a Guest Software Field Change or Guest Hardware Field Change exception.

See Section 4.7.8 “Guest Software Field Change Exception” and Section 4.7.9 “Guest Hardware Field Change
Exception”.

Table 4.10 lists fields which can trigger a GSFC or GHFC exception. The architecture also provides the capability to
disable GSFC and GHFC exceptions with GuestCtl0ExtFCD . Table 4.10 assumes GuestCtl0ExtFCD=0. See Section

4.14 “Lightweight Virtualization” and Table 5.8 for reference to GuestCtl0ExtFCD.

4.6.6 Guest Config Register Fields

The Guest.Config0-7 registers control the behavior of architecture features during guest execution. All fields follow
base microMIPS32 architecture definitions.

Virtualization Module implementations are permitted to choose whether to implement Optional microMIPS32 fea-
tures in the guest context. All Required features specified by the architecture revision (Guest.ConfigAR) must be
implemented. The operation of the guest context must always follow the setting of the Guest.Config register fields.

Table 4.10 Guest CP0 Fields Subject to Software or Hardware Field Change Exception

Register Field Purpose
Exception

Type

Status CU2..CU1 Coprocessor access.
StatusCU1 causes GSFC if GuestCtl0SFC1=0

StatusCU2 causes GSFC if GuestCtl0SFC2=0

GSFC

Status RP Reduced power mode. Guest value is ignored, Root.StatusRP controls

system power mode.

GSFC

Status FR Floating point register mode. GSFC

Status MX Enable access to MDMX and DSP resources. GSFC

Status BEV Bootstrap exception vector. Controls location of exception vectors, and is
used to determine EIC vs non-EIC interrupt mode.

GSFC

Status TS TLB multiple match. Both

Status SR Reset exception vector due to Soft Reset. GSFC

Status NMI Reset exception vector due to Non-Maskable Interrupt. GSFC

Status Impl (17..16) Implementation dependent. GSFC

Status UM/KSU Operating mode. GSFC exception only when GuestCtl0MC=1. GSFC

Status EXL Exception level. GHFC exception only when GuestCtl0MC=1. GHFC

Status ERL Error level. GSFC

Cause DC Disable Count. Root software should disable guest timer access and emu-
late a non-counting timer when this bit is set by the guest.

GSFC

Cause IV Interrupt Vector. Controls EIC vs non-EIC interrupt mode. GSFC

IntCtl VS Vector spacing. Controls EIC vs non-EIC interrupt mode. GSFC

PerfCnt Event,
EventExt

Performance Counter Control Event field.
EventExt is Optional in implementations.

GSFC

 The Virtualization Privileged Resource Architecture

53microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

The guest context must be a subset of the root context - the guest context can only include features available in the
root context.

The microMIPS32 architecture defines many read-only Config register fields. For each read-only Root.Config0-7 reg-
ister field, the Virtualization Module implementation must choose a fixed value or allow dynamic reconfiguration in
the corresponding Guest.Config0-7 field.

Dynamic configuration is implemented by permitting root-mode writes to fields in Guest.Config registers. Only val-
ues supported by the implementation will be accepted on writes to read-only Guest.Config fields from root mode.
When an unsupported value is written, the field will remain unchanged after the write. The Guest.Config fields con-
trolling dynamic reconfiguration are never writable from guest mode.

Root mode software can determine whether programmable features are available in the guest context by attempting to
write values to Guest.Config fields.

Table 4.11 lists Guest.Config register fields which can be written from root mode in the microMIPS32 Virtualization
Module

The virtualization architecture does not require that hardware provide the capability to emulate different architectural
releases for guest software that is different from the base implementation, due to complexity. For this reason, root
cannot write Guest.ConfigAR.

Table 4.11 Guest CP0 Read-only Config Fields Writable from Root Mode

Register Field Purpose Root write

Config M Config1 implemented Optional

Config MT MMU Type Optional

Config1 M Config2 implemented Optional

Config1 MMU Size - 1 Number of entries in (guest) MMU Required for-

Shared TLB1

Config1 C2 Coprocessor 2 implemented Optional

Config1 MD MDMX implemented Optional

Config1 PC Performance Counter registers implemented Optional

Config1 WR Watch registers implemented Optional

Config1 CA Code compression (MIPS16e) implemented Optional

Config1 FP FPU implemented Optional

Config2 M Config3 implemented Optional

Config3 M Config4 implemented Optional

Config3 MSAP MSA (MIPS SIMD Architecture) implemented Optional

Config3 BPG Big pages feature implemented Optional

Config3 ULRI UserLocal implemented Optional

Config3 DSP2P DSP Module Revision 2 implemented Optional

Config3 DSPP DSP Module implemented Optional

Config3 CTXTC ContextConfig etc. implemented Optional

Config3 ITL IFlowTrace mechanism implemented Optional

Config3 LPA XPA is implemented Optional

4.6 Coprocessor 0

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 54

1. Root must be able to write guest MMU size related fields in Config1 and Config4 if a TLB is shared between root and guest
as described in Section 4.5.2 .

4.6.7 Guest Context Dynamically Set Read-only Fields

The microMIPS32 Privileged Resource Architecture includes register fields which are read only, and dynamically set
by hardware. Corresponding fields in the guest context can be written from root mode, but remain read-only to the
guest.

Reserved (zero) bits and static configuration bits are not included. The Random register is not included.

Table 4.12 lists fields which are read-only to the guest and writable from root mode.

Config3 VEIC External Interrupt Controller implemented Optional

Config3 VInt Vectored interrupts implemented Optional

Config3 SP Small pages feature implemented Optional

Config3 CDMM Common Device Memory Map implemented Optional

Config3 MT MT (MultiThreading) Module implemented Optional

Config3 SM SmartMIPS Module implemented Optional

Config3 TL Trace Logic implemented Optional

Config4 M Config5 implemented Optional

Config4 VTLBSizeExt Extends Config1MMUSize-1 if

Config4MMUExtDef=3

Required for

Shared TLB1

Config4 MMUSizeExt Extends Config1MMUSize-1 if

Config4MMUExtDef=1

Required for

Shared TLB1

Config5 MRP MAAR registers present (Release 5) Optional

Table 4.12 Guest CP0 Read-only Fields Writable from Root Mode

Register Field Purpose

Index P Root restore of P in guest context.

Context BadVPN2 Virtual Page Number from the address causing last exception.

BadVAddr BadVAddr Address causing last exception

SRSCtl HSS Highest Shadow Set

SRSCtl EICSS External Interrupt Controller Shadow Set

SRSCtl CSS Current Shadow Set

Cause BD Last exception occurred in a delay slot

Cause TI Timer interrupt is pending

Cause CE Coprocessor number for coprocessor unusable exception

Cause FDCI Fast Debug Channel interrupt is pending

Cause IP7..2 Non-EIC interrupt pending bits. Write to Cause[7:2] is Optional if
GuestCtl2 implemented.

Table 4.11 Guest CP0 Read-only Config Fields Writable from Root Mode

Register Field Purpose Root write

 The Virtualization Privileged Resource Architecture

55microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

1 Root writes of 1 to Guest.StatusSR or Guest.StatusNMI will not directly cause an interrupt in the guest. Root software may set

EPC to the guest’s reset vector and ERET back to the guest such that to the guest it appears as if an NMI or SR had occurred.
This feature is useful for resetting a guest that might be hung or otherwise unresponsive.

4.6.8 Guest Timer

Timekeeping within the guest context is controlled by root mode. The guest time value is generated from the root
timer value Root.Count by adding the two’s complement offset in the Root.GTOffset register. The guest time value
can be read from the Guest.Count register, and is used to generate timer interrupts within the guest context.

When GuestCtl0GT=1, guest mode can read and write the Compare register, and can read from the Count register. A
guest write to Count always results in a Guest Privileged Sensitive Instruction exception.

When GuestCtl0GT=0, all guest accesses to the Count and Compare registers result in a Guest Privileged Sensitive
Instruction exception, including read via the RDHWR instruction.

The value of Guest.CauseDC has no direct effect on the calculation of the guest time value. A Guest Software Field
Change (GSFC) exception results when an attempt is made to change the value of Guest.CauseDC from guest mode.
Note that the value of Root.CauseDC affects the value of Root.Count during debug mode operation - this indirectly
affects the value of Guest.Count.

The guest timer interrupt affects only the guest context - it cannot interrupt the root context. Similarly, the root timer
interrupt cannot be directly assigned to the guest.

Usage note: Guest.CauseTI is set when Guest.Count = Guest.Compare, even when the device is running in Root
mode. In order to preserve the value of Guest.CauseTI while restoring Guest.Cause, the following approach may be
taken:

#
Root.StatusEXL ← 1

Calculate desired GTOffset value based on saved
Guest.Count and current Root.Count values as well as hypervisor policies.
GTOoffset has a few different purposes:
- To provide each guest a different value of Count.
- To restore a guest’s virtual time between context switches.
In the latter case, GTOffset allows Root to restore time to when a guest was
switched out, by offsetting Root.Count by elapsed time.Or it allows guest Count
to reflect elapsed time also.

Cause RIPL EIC interrupt pending level. Optional if GuestCtl2 implemented.

Cause ExcCode Exception code, from last exception

EBase CPUNum CPU number in multi-core system

Status SR Soft Reset. Root write is Optional.1

Status NMI Non Maskable Interrupt. Root write is Optional. 1

BadInstr BadInstr Faulting Instruction Word. Optional in base architecture.

BadInstrP BadInstrP Prior Branch Instruction. Optional in base architecture.

Wired Limit Allow root to set guest Wired Limit field. (Release 6)

Table 4.12 Guest CP0 Read-only Fields Writable from Root Mode

Register Field Purpose

4.6 Coprocessor 0

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 56

#
Under the simplest scheme, the new GTOffset must adjust current Root.Count
for elapsed time between guest save an restore.

new_gt_offset ← calculate_gt_offset()
GTOffset ← new_gt_offset
Restore Guest.Cause since Guest.Cause.TI may be 1.Guest.Cause must be saved
after Guest.Count to provide most current Cause.TI.
Guest.Cause ← saved_cause

after the following statement, the hardware might now set Guest.Cause[TI]

Guest.Compare ← saved_compare
current_guest_count ← Guest.Count

set Guest.CauseTI if it would have been set while the guest was sleeping.
Since GTOffset for the guest and Guest.Compare restore is not atomic, this code
is required to ensure that Guest.Cause.TI is set appropriately, since current
Guest.Count could have raced ahead of saved_count before restoring Guest.Compare.
if (current_guest_count > saved_count) then

if (saved_compare > saved_count && saved_compare < current_guest_count) then
saved_cause[TI] ← 1
Guest.Cause ← saved_cause

endif
else

The count has wrapped. Check to see if
Guest.Count has passed the saved_compare value.
if (saved_compare > saved_count || saved_compare < current_guest_count) then

saved_cause[TI] ← 1
Guest.Cause ← saved_cause

endif
endif

#The trick is to not overwrite the Guest.Cause here
Root.GuestCtlGM ← 1
restore_register_state()
eret
#

Root-mode writes to Guest.Count are ignored.

See also Section 4.8 “Interrupts” and Section 5.7 “GTOffset Register (CP0 Register 12, Select 7)”.

Figure 4.7 shows how the guest timer value is computed from the root timer.

 The Virtualization Privileged Resource Architecture

57microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

Figure 4.7 Root and Guest Timers

4.6.9 Guest Cache Operations

A limited set of cache operations can be performed from guest mode, when the CACHE instruction is enabled by
GuestCtl0CG=1. For this case, any guest-mode cache operation using Effective Address Operand type other than
‘Address’ will result in a Guest Privileged Sensitive Instruction exception.

When GuestCtl0CG=0, guest-mode execution of the CACHE instruction will result in a Guest Privileged Sensitive
Instruction exception.

The above description also applies to the CACHEE instruction, which is optional in the baseline architecture.

See Section 4.7.7 “Guest Privileged Sensitive Instruction Exception”.

4.6.10 UNPREDICTABLE and UNDEFINED in Guest Mode

The terms UNPREDICTABLE and UNDEFINED have specific meanings in MIPS architecture documents. See
Section 1.3 “Special Symbols in Pseudocode Notation”.

A distinction is drawn between UNPREDICTABLE and UNDEFINED. Unprivileged instructions can only have
results which are UNPREDICTABLE.

This is to ensure that unprivileged code cannot:

• Compromise availability by preventing control being returned to the highest level of privilege on an interrupt or
exception - for example by causing a hang or other indefinite stall.

• Compromise confidentiality by allowing data (machine state or memory) to be read without permission or detec-
tion.

• Compromise integrity by allowing data (machine state or memory) to be altered without permission or detection.
This includes:

• Altering data or instructions used by another process
- e.g. alter a bank balance or bypass a license check

• Altering data, instructions or machine state used by the highest level of privilege
- e.g. to gain a higher level of privilege, or install an alternative interrupt handler

Root.Count

increment

Root.Compare =

Guest.Count

Guest.Compare =

Root.GTOffset
+

Guest
Timer
IRQ

Root
Timer
IRQ

4.7 Exceptions

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 58

• Compromised integrity also includes the case where one unprivileged process can communicate with
another process without permission - a “covert channel”. The channel can use data in memory, machine state
which is not context switched, or the ability to cause timing changes detectable in another process.

The definition of UNPREDICTABLE requires that any result returned is produced only from data sources which are
accessible in the unprivileged mode. This ensures that the UNPREDICTABLE result cannot be reproduced by
another process - provided that the complete set of available data sources are context switched between unprivileged
processes.

Hence process A might be able to perform an operation which produces a deterministic value where an UNPRE-
DICTABLE result is defined by the architecture. Process A may even be able to control the value returned. However,
if a full context switch is made between process A and process B, then process B will not be able to read hidden mes-
sages sent by process A. The value returned by the UNPREDICTABLE operation is dependent entirely on the state
visible to process B, which has been fully context switched. No covert communication channel is allowed, and no
data can be accidentally revealed from another process or from a higher level of privilege.

The definition of UNDEFINED only requires that the processor can be returned to a functioning state by application
of the reset signal. This means that it is in theory possible to design a system which would allow information to be
stored in hidden state, and communicated from one point in privileged code execution to another, even when it
appears that all available machine state has been context switched.

The MIPS architecture requires that UNDEFINED operations can only result from operations performed in Kernel
Mode or Debug Mode, or when the CP0 access bit is set (granting Kernel-level permissions). In other words, UNDE-
FINED operations can result only from operations at the highest level of privilege.

The Virtualization Module adds Guest Kernel Mode as a limited-privilege mode. Software executing in a Guest Mode
(guest-kernel, guest-supervisor or guest-user) must never cause an UNDEFINED result.

Wherever a privileged operation is described by the MIPS architecture as having an UNDEFINED result, this must
be interpreted as an UNPREDICTABLE result when executing in Guest Mode.

This mechanism ensures that guest operating systems cannot compromise the availability, confidentiality or integrity
of the hypervisor, other guests or the system as a whole.

4.7 Exceptions

Normal execution of instructions can be interrupted when an exception occurs. Such events can be generated as a
by-product of instruction execution (e.g., an integer overflow caused by an add instruction or a TLB miss caused by a
load instruction), by an illegal attempt to use a privileged instruction (e.g. MTC0 from user mode), or by an event not
directly related to instruction execution (e.g., an external interrupt).

When an exception occurs, the processor stops processing instructions, saves sufficient state to resume the interrupted
instruction stream, enters Exception or Error mode, and starts a software exception handler. The saved state and the
address of the software exception handler are a function of both the type of exception, and the current state of the pro-
cessor.

4.7.1 Exceptions in Guest Mode

The Virtualization Module retains the exception-processing methodology of the base microMIPS32 architecture, and
adds additional rules for processing of exception conditions detected during guest-mode execution.

 The Virtualization Privileged Resource Architecture

59microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

The ‘onion model’ requires that every guest-mode operation be checked first against the guest CP0 context, and then
against the root CP0 context. Exceptions resulting from the guest CP0 context can be handled entirely within guest
mode without root-mode intervention. Exceptions resulting from the root-mode CP0 context (including GuestCtl0
permissions) require a root mode (hypervisor) handler.

During guest mode execution, the mode in which an exception is taken is determined by the following:

• Guest-mode operations must first be permitted by guest-mode CP0 context and then by root mode CP0 context

• This includes all operations for which exceptions can be generated - memory accesses, coprocessor
accesses, breakpoints and so forth.

• Exceptions are always taken in the mode whose CP0 state triggered the exception

• When architecture features in the guest context are present and enabled by the Guest.Config registers, excep-
tions triggered by those features are taken in guest mode.

• Exceptions resulting from control bits set in the Root.GuestCtl0 register, and exceptions resulting from
address translation of guest memory accesses through the root-mode TLB are taken in root mode.

Asynchronous exceptions such as Reset, NMI, Memory Error, Cache Error are taken in root mode. External inter-
rupts are received by the root CP0 context, and if enabled are taken in root mode. If an interrupt is not enabled in root
mode and is bypassed to the guest CP0 context, and is enabled in the guest CP0 context, the interrupt is taken in guest
mode.

When an exception is detected during guest mode execution, any required mode switch is performed after the excep-
tion is detected and before any machine state is saved. This allows machine state to be saved to either the root or guest
contexts, and allows the exception to be handled in the proper mode. See also Section 4.7.2 “Faulting Address for
Exceptions from Guest Mode”.

Booleans, indicating source of exception:
root_async - Asynchronous root context exception
root_sync - Synchronous exception triggered by root context
guest_async - Asynchronous exception triggered by guest context
guest_sync - Synchronous exception triggered by guest context
#
Exceptions directed to root context set Root.Status.ERL or Root.Status.EXL,
meaning that the processor executes the handler in root mode.

Ordering of exception conditions
if (root_async) then

ctx ← Root
elsif (guest_async) then

ctx ← Guest
elsif (guest_sync) then

ctx ← Guest
elsif (root_sync) then

ctx ← Root
else

ctx ← null
endif

if (ctx) then
Defined by microMIPS32 Privileged Resource Architecture
ctx.GeneralExceptionProcessing()

4.7 Exceptions

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 60

endif

4.7.2 Faulting Address for Exceptions from Guest Mode

The BadVAddr register is a read-only register that captures the most recent virtual address that caused one of the fol-
lowing exceptions.

• Address error

• TLB Refill

• TLB Invalid

• TLB Modified

• TLB Execute Inhibit

• TLB Read Inhibit

4.7.3 Guest initiated Root TLB Exception

When an exception is triggered as a result of a root TLB access during guest-mode execution, the handler will be exe-
cuted in root mode, and exception state is stored into root CP0 registers. The registers affected are GuestCtl0,
Root.EPC, Root.BadVAddr, Root.EntryHi, Root.Cause and Root.ContextBadVPN2.

The faulting address value stored into Root.BadVAddr and Root.ContextBadVPN2 is ideally the Guest Physical Address
(GPA) presented to the root TLB by the guest context. A Guest Virtual Address (GVA) unmapped by the Guest MMU
is considered a GPA from the root’s perspective.

Whether the GPA can be provided is implementation dependent. If a GVA is mapped by the Guest MMU, yet the
GPA is not available for write to root context, then GuestCtl0GExcCode must indicate this. In a specific e.g., guest TLB
refill exception will always set GPA in GuestCtl0GExcCode, while TLB modified/invalid/execute-inhibit/read-inhibit
exceptions may set GVA due to implementation limitations.

The GPA presented to the root TLB is the result of translation through the guest context Segmentation Control if
implemented, and through the guest TLB if in a mapped region of memory. The value stored in Root.BadVAddr and
Root.ContextBadVPN2 is the Guest Physical Address being accessed by the guest.

This process ensures that after an exception, both Root.BadVAddr and Root.ContextBadVPN2 refer to a virtual address
which is immediately usable by a root-mode handler, irrespective of whether the exception was triggered by
root-mode or guest-mode execution.

 The Virtualization Privileged Resource Architecture

61microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

4.7.4 Exception Priority

Table 4.13 lists all possible exceptions, and the relative priority of each, highest to lowest. The table also lists new
exception conditions introduced by the Virtualization Module, and defines whether a switch to root mode is required
before handling each exception.

Table 4.13 Priority of Exceptions

Exception Description Type
Taken in

mode

Reset The Cold Reset signal was asserted to the processor Asynchronous
Reset

Root

Soft Reset The Reset signal was asserted to the processor

Debug Single Step An EJTAG Single Step occurred. Prioritized above other excep-
tions, including asynchronous exceptions, so that one can sin-
gle-step into interrupt (or other asynchronous) handlers.

Synchronous
Debug

Root

Debug Interrupt An EJTAG interrupt (EjtagBrk or DINT) was asserted. Asynchronous
Debug

Root

Imprecise Debug Data
Break

An imprecise EJTAG data break condition was asserted.

Nonmaskable Interrupt
(NMI)

The NMI signal was asserted to the processor. Asynchronous Root

Machine Check Root, or Root TLB related.
This can only occur as part of a guest (second step) address trans-
lation, root address translation, and root TLB operation (write,
probe) whether for guest or root TLB. It is recommended that the
Machine-Check be synchronous. A TLB instruction must cause a
synchronous Machine Check.

Asynchronous
or Synchronous

Root

An internal inconsistency was detected by the processor. Root

Guest TLB related.
This can only occur as part of a guest address translation (first
step), and guest TLB operation (write, probe). It is recommended
that the Machine-Check be synchronous. A TLB instruction must
cause a synchronous Machine Check.

Guest

Interrupt A root enabled interrupt occurred. Asynchronous Root

Deferred Watch A Root watch exception, deferred because EXL was one when the
exception was detected, was asserted after EXL went to zero. A
deferred root watch exception may occur in guest mode in which
case it is prioritized higher than a simultaneous occuring guest
interrupt.

Asynchronous Root

Interrupt A guest enabled interrupt occurred. Asynchronous Guest

Deferred Watch A Guest watch exception, deferred because Guest EXL was one
when the exception was detected, was asserted after EXL went to
zero.

Asynchronous Guest

Debug Instruction Break An EJTAG instruction break condition was asserted. Prioritized
above instruction fetch exceptions to allow break on illegal instruc-
tion addresses.

Synchronous
Debug

Root

4.7 Exceptions

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 62

Watch - Instruction fetch A root context watch address match was detected on an instruction
fetch. Prioritized above instruction fetch exceptions to allow watch
on illegal instruction addresses. Refer to ‘Watch Registers’ -
Section 4.12 “Watchpoint Debug Support”.

Synchronous Root

A guest-context watch address match was detected on an instruc-
tion fetch. Prioritized above instruction fetch exceptions to allow
watch on illegal instruction addresses.
Refer to ‘Watch Registers’ - Section 4.12 “Watchpoint Debug
Support”.

Guest

Address Error - Instruc-
tion fetch

A non-word-aligned address was loaded into PC. Synchronous Current

TLB Refill - Instruction
fetch

A Guest TLB miss occurred on an instruction fetch Synchronous Guest

A Root TLB miss occurred on an instruction fetch.
This can occur due to a Root or Guest translation.

Root

TLB Invalid - Instruction
fetch

The valid bit was zero in the guest context TLB entry mapping the
address referenced by an instruction fetch.

Synchronous Guest

The valid bit was zero in the Root TLB entry mapping the address
referenced by an instruction fetch.
This can occur due to a Root or Guest translation.

Root

TLB Execute-inhibit An instruction fetch matched a valid Guest TLB entry which had
the XI bit set.

Synchronous Guest

An instruction fetch matched a valid Root TLB entry which had
the XI bit set.
This can occur due to a Root or Guest translation.

Root

Cache Error - Instruction
fetch

A cache error occurred on an instruction fetch. Synchronous
or

Asynchronous

Root

Bus Error - Instruction
fetch

A bus error occurred on an instruction fetch.

SDBBP An EJTAG SDBBP instruction was executed. Synchronous
Debug

Root

Guest Reserved Instruc-
tion Redirect

A guest-mode instruction will trigger a Reserved Instruction
Exception. When GuestCtl0RI=1, this root-mode exception is

raised before the guest-mode exception can be taken. Reserved
Instruction Exception processing otherwise follow standard rules
of prioritization within a given context - Reserved Instruction
Redirect is taken as a side-effect of this processing.

Synchronous
Hypervisor

Root

Table 4.13 Priority of Exceptions

Exception Description Type
Taken in

mode

 The Virtualization Privileged Resource Architecture

63microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

Instruction Validity
Exceptions

An instruction could not be completed because it was not allowed
access to the required resources, or was illegal: Coprocessor Unus-
able, Reserved Instruction, MSA disabled. If both exceptions
occur on the same instruction, the Coprocessor Unusable, MSA
disabled Exception takes priority over the Reserved Instruction
Exception.

Synchronous Current

Coprocessor unusable - guest. Access to a coprocessor was permit-
ted by the Guest.StatusCU1-2 bits, but denied by

Root.StatusCU1-2 bits.

MSA disabled - guest. Access to the MSA unit was permitted by
Guest.Config5MSAEn, but denied by Root.Config5MSAEn.

Root

Machine Check Root TLB related.
This can only occur as part of a Guest or Root address translation,
or a TLBP/TLBWI/TLBGP/TLBGWI executed in root-mode.

Synchronous Root

Guest TLB related.
This can only occur as part of a Guest address translation, or a
TLBP/TLBWI executed in guest-mode

Guest

An internal inconsistency was detected by the processor. Root

Guest Privileged Sensi-
tive Instruction Exception

An instruction executing in guest-mode could not be completed
because it was denied access to the required resources by the
Root.GuestCtl0 register.

Synchronous
Hypervisor

Root

Hypercall A HYPCALL hypercall instruction was executed. Synchronous
Hypervisor

Root

Guest Software Field-
Change

During guest execution, a software initiated change to certain CP0
register fields occured. Refer to Section 4.7.8 “Guest Software
Field Change Exception”.

Synchronous
Hypervisor

Root

Guest Hardware Field-
Change

During guest execution, a hardware initiated set of StatusEXL/TS

occurred. See Section 4.7.9 “Guest Hardware Field Change

Exception” for further information.

Synchronous
Hypervisor

Root

Execution Exception An instruction-based exception occurred: Integer overflow, trap,
system call, breakpoint, floating point, coprocessor 2 exception.

Synchronous Current

Precise Debug Data Break A precise EJTAG data break on load/store (address match only) or
a data break on store (address+data match) condition was asserted.
Prioritized above data fetch exceptions to allow break on illegal
data addresses.

Synchronous
Debug

Root

Watch - Data access A root context watch address match was detected on the address
referenced by a load or store. Prioritized above data fetch excep-
tions to allow watch on illegal data addresses. Refer to ‘Watch
Registers’ - Section 4.12 “Watchpoint Debug Support”

Synchronous Root

A guest context watch address match was detected on the address
referenced by a load or store. Prioritized above data fetch excep-
tions to allow watch on illegal data addresses. Refer to ‘Watch
Registers’ - Section 4.12 “Watchpoint Debug Support”

Guest

Table 4.13 Priority of Exceptions

Exception Description Type
Taken in

mode

4.7 Exceptions

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 64

The “Type” column of Table 4.13 describes the type of exception. Table 4.14 explains the characteristics of each
exception type.

Address error - Data
access

An unaligned address, or an address that was inaccessible in the
current processor mode was referenced, by a load or store instruc-
tion

Synchronous Current

TLB Refill - Data access A guest TLB miss occurred on a data access Synchronous Guest

A root TLB miss occurred on a data access.
This can occur due to a Root or Guest translation.

Root

TLB Invalid - Data access On a data access, a matching guest TLB entry was found, but the
valid (V) bit was zero.

Synchronous Guest

On a data access, a matching root TLB entry was found, but the
valid (V) bit was zero.
This can occur due to a Root or Guest translation.

Root

TLB Read-Inhibit On a data read access, a matching guest TLB entry was found, and
the RI bit was set.

Synchronous Guest

On a data read access, a matching root TLB entry was found, and
the RI bit was set.
This can occur due to a Root or Guest translation.

Root

TLB Modified - Data
access

The dirty bit was zero in the guest TLB entry mapping the address
referenced by a store instruction

Synchronous Guest

The dirty bit was zero in the root TLB entry mapping the address
referenced by a store instruction.
This can occur due to a Root or Guest translation.

Root

Cache Error - Data access A cache error occurred on a load or store data reference Synchronous
or

Asynchronous

Root

Bus Error - Data access A bus error occurred on a load or store data reference

Precise Debug Data Break A precise EJTAG data break on load (address+data match only)
condition was asserted. Prioritized last because all aspects of the
data fetch must complete in order to do data match.

Synchronous
Debug

Root

Table 4.14 Exception Type Characteristics

Exception Type Characteristics

Asynchronous Reset Denotes a reset-type exception that occurs asynchronously to instruction execution.
These exceptions always have the highest priority to guarantee that the processor can
always be placed in a runnable state. These exceptions always require a switch to root
mode.

Asynchronous Debug Denotes an EJTAG debug exception that occurs asynchronously to instruction execu-
tion. These exceptions have very high priority with respect to other exceptions because
of the desire to enter Debug Mode, even in the presence of other exceptions, both asyn-
chronous and synchronous. These exceptions always require a switch to root mode.

Table 4.13 Priority of Exceptions

Exception Description Type
Taken in

mode

 The Virtualization Privileged Resource Architecture

65microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

4.7.5 Exception Vector Locations

Exception vector locations are as defined in the base architecture.

The vector location is determined from the values of EBase, StatusEXL, StatusBEV, IntCtlVS and Config3VEIC obtained
from the context in which the exception will be handled.

The General Exception entry point is used for new hypervisor exceptions Guest Privileged Sensitive Instruction,
Guest Reserved Instruction Redirect, Guest Software Field Change, Guest Hardware Field Change and Hypercall.

4.7.6 Synchronous and Synchronous Hypervisor Exceptions

During guest mode execution, control can be returned to root mode at any time. When an exception condition is
detected during guest mode execution and the condition requires a switch to root mode, the switch is made before any
exception state is saved. As a result, exception state in the guest CP0 context is not affected.

The switch to root mode is achieved by setting Root.StatusEXL=1 or Root.StatusERL=1 (as appropriate) before any
other state is saved. This ensures that all exception state is stored into root CP0 context, regardless of whether the pro-
cessor was executing in root or guest mode at the point where the exception was detected.

Table 4.15 summarizes hypervisor conditions.

Asynchronous Denotes any other type of exception that occurs asynchronously to instruction execu-
tion. These exceptions are shown with higher priority than synchronous exceptions
mainly for notational convenience. If one thinks of asynchronous exceptions as occur-
ring between instructions, they are either the lowest priority relative to the previous
instruction, or the highest priority relative to the next instruction. The ordering of the
table above considers them in the second way. These exceptions always require a
switch to root mode.

Synchronous Debug Denotes an EJTAG debug exception that occurs as a result of instruction execution, and
is reported precisely with respect to the instruction that caused the exception. These
exceptions are prioritized above other synchronous exceptions to allow entry to Debug
Mode, even in the presence of other exceptions. These exceptions always require a
switch to root mode.

Synchronous Hypervi-
sor

Denotes an exception that occurs as a result of guest-mode instruction execution which
requires hypervisor intervention. It is reported precisely with respect to the instruction
that caused the exception. These exceptions always require a switch to root mode.

Synchronous Denotes any other exception that occurs as a result of instruction execution, and is
reported precisely with respect to the instruction that caused the exception. These
exceptions tend to be prioritized below other types of exceptions, but there is a relative
priority of synchronous exceptions with each other. In some cases, these exceptions
can be handled without switching modes.

Table 4.15 Hypervisor Exception Conditions

Type
Root-mode

Vector Causes Reference

Synchronous Hypervisor General Guest Privileged Sensitive Instruction Section 4.7.7

Table 4.14 Exception Type Characteristics

Exception Type Characteristics

4.7 Exceptions

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 66

4.7.7 Guest Privileged Sensitive Instruction Exception

A Guest Privileged Sensitive Instruction exception occurs when an attempt is made to use a Guest Privileged Sensi-
tive Instruction from guest mode, where the instruction is either not permitted in guest mode or is not enabled in guest
mode. The term ‘sensitive’ refers to an instruction which may trigger a hypervisor exception when executed in guest
kernel mode, and selectively guest user, as is the case for RDHWR described below.

The list of sensitive instructions follows:

• WAIT

• CACHE, CACHEE
- when GuestCtl0CG=0
- with anything other than ‘Address’ as Effective Address Operand Type, if GuestCtl0CG=1. Specifically
CACHE(E) instructions with code 0b000, 0b001, 0b010, 0b011 will cause a GPSI.

GuestCtl0ExtCGI is an optional qualifier of GuestCtl0CG as described in Table 5.8. If GuestCtl0ExtCGI =1
and GuestCtl0CG=1 then CACHE(E) instructions of type Index Invalidate (code 0b000) are excluded from
the CACHE(E) instructions that cause a GPSI.

• TLBWR, TLBWI, TLBR, TLBP, TLBINV, TLBINVF when GuestCtl0AT != 3.
- TLBINV, TLBINVF are optional in the baseline architecture.

• Access to PageGrain, Wired, SegCtl0, SegCtl1, SegCtl2, PWBase, PWField, PWSize, PWCtl when
GuestCtl0AT != 3 (Guest TLB resources disabled)

• Write access to any Config0-7 register when GuestCtl0CF=0

• Access to Count or Compare registers when GuestCtl0GT=0
- including indirect read from CC using RDHWR providing CC is present and enabled by guest HWREna.

• Access to CP0 registers, or other non-CP0 sources (CCRes, Sync_Step), using RDHWR when
GuestCtl0CP0=0 providing the registers are enabled for access by guest user or kernel.

- Guest user access is enabled either by guest HWREna or StatusCU0.

- Guest kernel always has access to registers specified by RDHWR, regardless of guest HWREna and
StatusCU0.
- Guest access to CC may also cause GPSI based on GuestCtl0GT.

Synchronous Hypervisor General Guest Software Field Change Section 4.7.8

Synchronous Hypervisor General Guest Hardware Field Change Section 4.7.9

Synchronous Hypervisor General Guest Reserved Instruction Redirect Section 4.7.10

Synchronous Hypervisor General Hypercall Section 4.7.11

Table 4.15 Hypervisor Exception Conditions

Type
Root-mode

Vector Causes Reference

 The Virtualization Privileged Resource Architecture

67microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

Whether a guest RDHWR access to an implementation defined register causes a GPSI is implementation
defined i.e., the access may cause a GPSI or not in an implementation dependent manner. Access to reserved
registers with RDWR generates a Reserved Instruction exception in respective context.

Guest GPSI applies to both guest user and kernel access, as GuestCtl0CP0 applies to guest kernel access
also.

• Write to Count register

• Access to SRSCtl or SRSMap CP0 registers regardless of whether SRSCtlHSS = 0 (not present in guest con-
text), or SRSCtlHSS > 0 (present in guest context). See Section 4.9.1 “General Purpose Registers and
Shadow Register Sets”.

• Guest-kernel use of RDPGPR or WRPGPR instructions when SRSCtlHSS = 0. See Section 4.9.1 “General
Purpose Registers and Shadow Register Sets”.

• All Privileged Instruction, excluding selected Release 3 EVA instructions, when GuestCtl0CP0=0

The baseline architecture defines privileged instructions as the following : CACHE, DI, EI, MT(H)C0,
MF(H)C0, ERET, DERET, RDPGPR, WRPGPR, WAIT, all Enhanced Virtual Addressing (EVA) related
instructions (e.g., LBE, LBUE) (optional), and all TLB related instructions.

All EVA instructions except CACHEE are excluded from causing a GPSI when GuestCtl0CP0=0.

Privileged instructions are defined in Volume II of the architecture. Instructions that are supported depend on
the architecture release that an implementation is compliant with, and in some cases instructions are optional
within a release.

• Access to any Guest CP0 registers that are active in guest context and always take Guest Privileged Sensitive
Instruction Exception as given in Table 4.8.

Cause Register ExcCode value

GE (27, 0x1B)

GuestCtl0 Register GExcCode value

GPSI (0, 0x00)

Additional State saved

BadInstr

BadInstrP

Entry Vector Used

General Exception Vector (offset 0x180).

4.7.8 Guest Software Field Change Exception

A Guest Software Field Change exception occurs when the value of certain CP0 register bitfields changes during
guest-mode execution.

4.7 Exceptions

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 68

Change is caused by MT(H)C0 execution, the instruction is copied to the root context BadInstr register (if the imple-
mentation is so equipped) and the exception is taken. The exception is used to allow the hypervisor to track changes
to certain guest-context fields (e.g. StatusRP or CauseIV). This can be used to ensure the proper operation of the emu-
lated guest virtual machine.

This exception can only be raised by a MT(H)C0 instruction executed in guest mode. It is the responsibility of Root
to increment EPC in order to return to the instruction following the MT(H)C0. Note that the guest MT(H)C0 is never
executed, unless causing GSFC exception is disabled by GuestCtl0ExtFCD , or selectively by GuestCtl0SFC1/2. It is
the responsibility of Root to modify the field on the behalf of Guest, providing guest access causes a GSFC.

If a field indicated below is meant to enable access to a resource, but the implementation does not support the
resource, then a GSFC exception is not taken. As an example, if Guest.Config1MD=0, i.e.,, MDMX Module is not
supported, then a guest write to Guest.StatusMX will not cause a GSFC exception.

Changes to the following CP0 register bitfields always trigger the exception.

• Guest.Status bits: CU[2:1], RP, FR, MX, BEV, SR, NMI, UM/KSU, ERL, Impl (17..16), TS (always on clear,
optionally on set),

A change to UM/KSU can only cause a GSFC if GuestCtl0MC=1. Whether guest access to StatusImpl causes a
GSFC is implementation-dependent.

The occurrence of GSFC on guest write to StatusFR is dependent on Config5UFR as described below.

• Config5 : MSAEn. (Enable for MIPS SIMD Architecture module. Applicable only if MSA implemented.)
: UFR. (User FR enable, Release 5 optional feature)

• PageGrain: ELPA. (Applicable only if XPA is supported)

• Guest.Cause bits: DC, IV

• Guest.IntCtl bits: VS

• Root.PerfCnt w/ PerfCntEC=2/3: Event, EventExt(Optional)

PerfCnt does not exist in guest context. When PerfCntEC=2/3, however root context registers are accessible to
Guest. GPSI on guest access is only taken only in this configuration.

Guest software may modify CU[2:1] often. To prevent frequent GSFC on these events, a set of enables,
GuestCtl0SFC2 and GuestCtl0SFC1, have been provided. GuestCtl0SFC2 and GuestCtl0SFC1 have been defined in
Section 5.2 “GuestCtl0 Register (CP0 Register 12, Select 6)”.

Guest write of 0 to SR or NMI will raise this exception. Guest write of 1 to Guest StatusSR or StatusNMI is UNPRE-
DICTABLE behavior as specified in the base architecture. It is optional for an implementation to cause this excep-
tion on a guest write of 1 to either the SR or NMI or TS bits within the Status register. Guest StatusSR or StatusNMI

are never set by hardware, nor will Root software write of 1 to either Guest StatusSR or StatusNMI cause an interrupt

in Guest context. Root will handle hardware asserted SR/NMI as per Table 4.13.

Guest software modification of EXL will not cause a GSFC. This is because guest kernel will often write EXL=1
prior to setting KSU to user mode(b10), allowing processor to stay in kernel mode. ERET will clear EXL, affecting
change to user mode. To avoid frequent GSFC on such events, guest kernel modification of EXL is not trapped on.

 The Virtualization Privileged Resource Architecture

69microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

A D/MTC0 that attempts to clear TS will cause a GSFC, while setting of TS, caused by hardware, should result in a
GHFC. Optionally, the setting of TS may cause a GSFC also instead of GHFC, for ease of implementation. However,
it is recommended that setting of TS result in GHFC.

Clearing of TS will result in GSFC before the D/MTC0 completes. This should be contrasted with setting of TS as
described in Section 4.7.9 “Guest Hardware Field Change Exception”, which must set the value in Guest.Status
before GHFC is taken.

If Root PerfCnt.EC=2 or 3, then Guest can access shared Root PerfCnt without GPSI exception. However, any
change to the Event or EventExt fields must be reported as a GSFC exception to Root.

Release 5 introduces an optional feature which allows user code to change the value of StatusFR. The presence of this
feature in a Release 5 implementation is determined by the writeable state of Config5UFR. If Config5UFR=1, then a
GSFC exception on guest write to StatusFR is not generated. See Section 4.9.7 “User FR Feature” also.

Cause Register ExcCode value

GE (27, 0x1B)

GuestCtl0 Register GExcCode value

GSFC(1, 0x01)

Additional State saved

BadInstr

BadInstrP

Entry Vector Used

General Exception Vector (offset 0x180).

4.7.9 Guest Hardware Field Change Exception

A Guest Hardware Field Change Exception is caused by exception/interrupt processing or a hardware initiated field
change. The exception is taken after Guest state has been updated and before the following instruction is executed.

A Guest Hardware Field Change exception is considered synchronous with respect to the Guest action that caused it.
In terms of priority, it is only lower than any asynchronous Root exception. It is not prioritized with respect to Guest
exceptions: Guest exceptions are first prioritized amongst themselves, and then the Guest exception may then subse-
quently cause a Hardware Field Change exception.

When GuestCtl0ExtFCD=1 (refer to Section 5.6), then no Guest Hardware Field Change exception is triggered.
Hardware events that cause the described events must be allowed to modify state as in the baseline architecture.

When GuestCtl0MC=1, changes to the following bitfields trigger this exception.

• Guest Status bits: EXL.

Set of the following bitfield triggers this exception.

• Guest Status bits: TS (set)

4.7 Exceptions

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 70

A change in value in any of these fields causes a Guest Hardware Field Change exception, regardless of whether there
is an effective change in mode.

Since events (Reset, NMI, Cache Error) that set ERL are always processed by Root, hardware initiated field changes
involving ERL will not result in this exception.

Guest StatusEXL will be modified by hardware on a Guest exception. The Guest Hardware Field Change exception is
taken prior to the actual Guest exception handler (when EXL is set) and after the Guest exception handler is com-
pleted (when ERET clears EXL) but prior to the first Guest instruction after the handler. The Guest Hardware Field
Change exception handler must compare state between successive invocations to determine which of TS or EXL have
changed.

For the transition of EXL from 0 to 1, it is recommended that guest context be loaded with exception related data as if
the guest exception handler were to be executed. Prior to execution of first instruction of guest handler, hardware
must cause a GHFC trap to root. The only root state modified is Root StatusEXL(=1), CauseExcCode(=”Guest Exit”)
and GuestCtl0GExcCode(=”GHFC”). Hardware handling of transition of EXL from 1 to 0 should be similar. In this
manner, the hardware overhead of setting appropriate context for guest and root is kept to a minimum.

The GHFC exception must be viewed atomically with respect to the guest exception that caused it. In a recommended
implementation, the guest exception will cause guest context to be updated simultaneously along with root context
for the GHFC exception. Guest entry on completion of GHFC exception will cause related guest exception to be
taken.

Guest StatusTS is set by hardware, this exception is taken after TS is set and prior to start of the first instruction of the
Guest machine-check exception handler. Therefore, the Guest Hardware Field Change exception handler will return
to the first instruction of the Guest machine check exception handler.

See comment in Section 4.7.8 “Guest Software Field Change Exception”. Setting of TS in guest context may option-
ally cause GSFC in lieu of GHFC. GHFC is however recommended response.

Cause Register ExcCode value

GE (27, 0x1B)

GuestCtl0 Register GExcCode value

GHFC(9, 0x09)

Entry Vector Used

General Exception Vector (offset 0x180).

4.7.10 Guest Reserved Instruction Redirect

A Guest Reserved Instruction Redirect Exception occurs when GuestCtl0RI=1 and a guest mode instruction would
trigger a Reserved Instruction Exception. This exception is raised before the guest mode exception can be taken. The
instruction is not executed, the exception is taken in Root mode and the Guest context is unchanged.

The Reserved Instruction Redirect (GRR) must be prioritized in the context of other guest-mode exceptions. For e.g.,
a Coprocessor Unusable exception due to guest context is ranked higher in priority than a Reserved Instruction excep-
tion. Thus a Reserved Instruction Redirect exception is not taken in this case. Another e.g., relates to the case where
Root.StatusCU1=0, while Guest.Status.CU1=1. If the processor is in guest-mode and executes a reserved COP1

 The Virtualization Privileged Resource Architecture

71microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

instruction, then the Coprocessor Unusable exception is a result of Root qualification. It would be ranked higher pri-
ority than a Reserved Instruction exception for the same guest-mode instruction.

Cause Register ExcCode value

GE (27, 0x1B)

GuestCtl0 Register GExcCode value

GRR (3, 0x03)

Additional State saved

BadInstr

BadInstrP

Entry Vector Used

General Exception Vector (offset 0x180).

4.7.11 Hypercall Exception

A Hypercall Exception occurs when a HYPCALL instruction is executed. This is a Privileged Instruction and thus
can only be executed in kernel mode (root-kernel or guest-kernel mode) or debug mode. It is specifically meant to
cause a guest-exit. For specifics of Hypercall root-kernel and debug mode handling, refer to hypercall definition in
Chapter 6, “Instruction Descriptions” .

Cause Register ExcCode value

GE (27, 0x1B)

GuestCtl0 Register GExcCode value

Hyp (2, 0x02)

Additional State saved

BadInstr

BadInstrP

Entry Vector Used

General Exception Vector (offset 0x180).

4.7.12 Guest Exception Code in Root Context

In the case of a guest exception which causes a guest exit to root, hardware must supply the appropriate value for
Root.CauseExcCode and GuestCtl0GExcCode, as described in the pseudo-code below.

if guest exception is (GPSI or GSFC or GHFC or HC or GRR or IMP) then
Root.CauseExcCode ← “GE”

Root.GuestCtl0GExcCode ← “GPSI” or “GSFC” or “GHFC” or “HC” or “GRR” or “IMP”

elseif guest exception is (Root TLB-Refill or TLB-Invalid)

4.8 Interrupts

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 72

Root.CauseExcCode ← “TLBS” or “TLBL”

loading of GPA for both TLB-Refill and TLB-Invalid is recommended.
Root.GuestCtl0GExcCode ← “GPA”

elseif guest exception is (Root TLB-Execute_Inhibit or TLB-Read_Inhibit)
if (Root.PageGrainIEC = 0) then

Root.CauseExcCode ← “TLBL”

Root.GuestCtl0GExcCode ← “GPA” or GVA”

elseif (TLB Execute-Inhibit)
Root.CauseExcCode ← “TLBXI”

Root.GuestCtl0GExcCode ← “GVA” or “GPA”

else
Root.CauseExcCode ← “TLBRI”

Root.GuestCtl0GExcCode ← “GVA” or “GPA”

endif
elseif guest exception is (TLB Modified)

Root.CauseExcCode ← “MOD”

Root.GuestCtl0GExcCode ← “GVA” or “GPA”

else
Root.CauseExcCode ← baseline “ExcCode”

Root.GuestCtl0GExcCode ← “UNDEFINED”

endif

4.8 Interrupts

The Virtualization Module provides a virtualized interrupt system for the guest.

The root context interrupt system is always active, even during guest mode execution. An interrupt source enabled in
the root context will always result in a root-mode interrupt. Guests cannot disable root mode interrupts.

Standard microMIPS32 interrupt rules are used by both root and guest contexts to determine when an interrupt should
be taken. An interrupt enabled in the root context is taken in root mode. An interrupt masked by root and enabled in
the guest context is taken in guest mode. Root interrupts take priority over guest interrupts.

Figure 4.8 shows the how the Virtualization Module ‘onion model’ is applied to interrupt sources.

 The Virtualization Privileged Resource Architecture

73microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

Figure 4.8 Interrupts in the Virtualization Module onion model

The Guest.CauseRIPL/IP field is the source of guest interrupts. The behavior of this field is controlled from the root
context. Two methods can be used to trigger guest interrupts - a root-mode write to the Guest.Cause register, or direct
assignment of real interrupt signal to the guest interrupt system. Interrupt sources are combined such that both meth-
ods can be used.

Timers and related interrupts are available in both guest and root contexts.

The set of pending interrupts seen by the guest context is the combination (logical OR) of:

• External interrupts passed through from the root context, enabled by GuestCtl0PIP if implemented.

• Interrupts generated within the guest context (e.g., Timer interrupts, Software interrupts)

• Root asserted interrupts, set by software write to GuestCtl2VIP field in non-EIC mode, or hardware capture of a
guest interrupt in GuestCtl2GRIPL in EIC mode.

Software should enable direct interrupt assignment only when root and guest agree on the interpretation of interrupt
pending/enable fields in the Status and Cause registers. Direct assignment is appropriate if both Root and Guest use
EIC mode, or if both use non-EIC mode. Root can track changes to the guest interrupt system status using the
field-change exceptions which result from guest initiated changes to fields StatusBEV, CauseIV or IntCtlVS.

Root must assign interrupts to Guest with caution. For example, in non-EIC mode, if an interrupt pin (HW[5:0]) is
shared by multiple interrupt sources, then enabling direct guest visibility (in Guest CauseIP[n] via GuestCtl0PIP[n]=1)
will cause all the interrupt sources on that pin to be visible to the Guest, possibly removing Root intervention capabil-
ity. If Root Software needs to guarantee Root intervention capability on an interrupt then that interrupt should not be
directly visible to Guest.

In non-EIC mode, the guest timer interrupt is always applied to the interrupt source indicated by the Guest.IntCtlIPTI

field and is not affected by the GuestCtl0PIP field. Similarly, Guest software interrupts are not affected by the
GuestCtl0PIP field, and are always applied to the interrupt source indicated by Guest.IntCtlIPPCI

A virtualization-based external interrupt delivery system, whether EIC or non-EIC provides the following capabili-
ties:

IRQ?

Guest handler

Y
No action

NPendingIRQ?

Root handler

Y

No action

N
Pending Pass?

N

Y

Root can assert IRQ by
write to pending field

Root

Guest

Timer, Timer,
etc. etc.

External
Sources

4.8 Interrupts

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 74

1. Root assignment of External Interrupt.

Hardware delivers interrupt to root context, with root-mode servicing of external interrupt.

2. Guest assignment of External Interrupt with Root Intervention.

Hardware delivers interrupt to root context, with root-mode hand-off to guest by writing to GuestCtl2vIP, fol-
lowed by guest servicing of external interrupt.

If root requires visibility into guest interrupts, then root should use this method to deliver interrupts to guest.

3. Guest assignment of External Interrupt without Root Intervention.

Hardware delivers interrupt to guest context without root intervention, followed by guest servicing of external
interrupt. The interrupt is not visible to root as root has made the choice to assign to guest.

A MIPS enabled virtualized external interrupt delivery system also provides support for Virtual Interrupts. Root can
simulate a guest interrupt by writing 1 to GuestCtl2vIP. It can subsequently clear the interrupt by writing 0 to
GuestCtl2vIP.

Virtual Interrupt capability can be used to support guest virtual drivers. Root will inject an interrupt into guest con-
text. Guest will field the interrupt, and in so doing cause a trap to Root, either by device activity or protected memory
access. Root may then clear the interrupt by writing to guest CauseIP set earlier.

4.8.1 External Interrupts

4.8.1.1 Non-EIC Interrupt Handling

This section provides a detailed description of non-EIC handling in a recommended implementation. The term HW is
used to represent an external interrupt source. HW is alternatively referred to as IRQ in other sections of the Module.
HW is a set of interrupt pins common to both root and guest context.

Whether an external interrupt is visible to guest context or root context is dependent on GuestCtl0PIP (Pending Inter-
rupt Passthrough). If GuestCtl0PIP[n] =1, then HW[n] is visible to guest context through Guest.CauseIP[n+2], other-
wise it is visible to root context through Root.CauseIP[n+2].

If GuestCtl0PIP[n]=0, but Root needs to transfer the external interrupt to Guest, then it must write to a software visible
register, GuestCtl2vIP[n] (Interrupt Pending, Virtual). This method is also used by Root to inject a virtual interrupt
into guest context. It is also a convenient way for Root to save and restore interrupt state of a Guest, if an interrupt had
been injected by Root, but needs to be preserved across context switches. In the absence of GuestCtl2vIP, Root would
need to derive the equivalent of vIP by reading Guest.CauseIP which may be problematic since other interrupts could
also be present.

GuestCtl2vIP, Guest.CauseIP and Root.CauseIP handling is described below in relation to GuestCtl2vIP and
GuestCtl0PIP. The application of GuestCtl2HC is discussed below.

GuestCtl2vIP Handling:

if (MTC0[GuestCtl2vIP[n]]=1)

GuestCtl2vIP[n] ← 1

else if ((Deassertion of HW[n] and GuestCtl2HC[n]) or (MTC0[GuestCtl2vIP[n]]=0))

GuestCtl2vIP[n] ← 0

endif

 The Virtualization Privileged Resource Architecture

75microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

Guest.CauseIP Handling:

Guest.CauseIP[n+2] = ((HW[n] and GuestCtl0PIP[n]) or GuestCtl2vIP[n])

Root.CauseIP Handling:

Root.CauseIP[n+2]

= (HW[n] and !(GuestCtl0PIP[n] or (GuestCtl2vIP[n] and GuestCtl2HC[n])))

GuestCtl2HC is provided to control how GuestCtl2vIP is reset. If a bit of GuestCtl2HC is 1, then the deassertion of
related external interrupt will always cause associated GuestCtl2vIP to be cleared. If a bit of GuestCtl2HC is 0 then the
deassertion of HW[n] will not cause GuestCtl2vIP to be cleared. In this case, it is the responsibility of root software to
clear by writing 0 to GuestCtl2vIP [n] . See Section 5.4 “GuestCtl2 Register (CP0 Register 10, Select 5)”for further
definition.

In summary, interrupt injection in guest context serves two purposes - root assignment of external interrupts and
injection of virtual interrupts to Guest. GuestCtl2HC provides the means to root software to distinguish between the
two. Root software can use this facility to transfer an external interrupt HW[n] for guest servicing. In this scenario,
GuestCtl2HC[n]=1 and the assertion of GuestCtl2vIP [n] will cause corresponding Root.CauseIP[n+2] to be cleared,
thus transparently affecting the transfer. Otherwise, Root would have to disable interrupts for that specific source by
clearing Root.StatusIM[n]. On the other hand, Root can use this capability to inject interrupts into Guest context for
guest virtual device drivers, as an e.g.. In this case, GuestCtl2HC[n]=0, the assumption is that there is no external inter-
rupt tied to the injected interrupt, and thus assertion of GuestCtl2vIP [n] should not cause Root.CauseIP[n+2] to be
cleared. Guest.CauseIP[n+2] is asserted in both cases described.

Virtual interrupt handling is an option that can be detected by the presence of GuestCtl2. Hardware clear capability is
also an option, even if virtual interrupts are supported. This capability exists if the field is writeable or preset to 1.

Figure 4.9 shows virtualized management of the Guest and Root Cause register IP field . In the absence of support for
GuestCtl2vIP , a hardware-only version of GuestCtl2vIP should be considered to exist. Root may write a 1 to the hard-
ware copy with MTGC0[CauseIP]. Root may also write a 0 to the hardware copy to clear the interrupt, whille deas-
sertion of HW[n] will also clear corresponding bit in this hardware register. In presence of GuestCtl2vIP, root writes to
Guest.CauseIP[7 2] is considered optional. The mode of a hardware shadow copy should not be implemented if virtual
interrupt capability is supported.

4.8 Interrupts

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 76

Figure 4.9 Guest and Root CauseIP (non-EIC) Virtualization

4.8.1.2 EIC Interrupt Handling

In EIC mode, the external interrupt controller (EIC) is responsible for combining internal and external sources into a
single interrupt-priority level, which appears in the CauseRIPL field.

When an implementation makes EIC mode available (as indicated by Guest.Config3VEIC=1), two interrupt prior-
ity-level signals must be generated within the EIC - one for the root context (affecting Root.CauseRIPL), and one for
the guest context (affecting Guest.CauseRIPL). The root and guest timer interrupt signals are combined in an imple-
mentation-dependent way with external inputs to produce the root and guest interrupt priority levels.

HW[n] GuestCtl0PIP[n]

set by MTC0[GuestCtl2vIP[n]]=1

Guest.CauseIP[n]

Guest PCI/Timer Interrupts

HW[n] GuestCtl0PIP[n]

Root PCI/Timer Interrupts

D

Root.CauseIP[n]

cleared by MTC0[GuestCtl2vIP[n]]=0, or

D

GuestCtl2vIP[n]

GuestCtl2vIP[n]

Deassertion of HW[n] if GuestCtl2HC[n]=1

GuestCtl2HC[n]

 The Virtualization Privileged Resource Architecture

77microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

In addition to RIPL, the interrupt Vector (offset or number), and EICSS will also be sent on each of the root and guest
interrupt buses. The Vector from the EIC is either utilized by hardware as is, or derived from the EIC input. A Gues-
tID accompanies only the root bus, providing GuestID is supported in the implementation. This is because the EIC
can also send an interrupt for guest on the root interrupt bus. Thus the GuestID for the root interrupt bus may be
non-zero. The GuestID for a guest interrupt taken in root mode must be registered in GuestCtl1EID as described in
Table 5.4. The guest associated with the guest bus is by default equal to GuestCtl1ID .

In the architecture as defined, the type of vector a virtualized core can accept from the EIC is fixed - it is either a vec-
tor number or offset but never both. This is because currently there is no capability to distinguish between the two
types, intentionally so. It is recommended that a typical virtualized EIC source a vector number to the core.

The EIC should assign interrupts to root and guest interrupt buses as per the following rules:

• Root interrupts must always be taken in root context and thus be presented on root interrupt bus by the EIC.

• If a guest interrupt requires root intervention, then it must be presented on the root interrupt bus by the EIC.
And interrupt for a non-resident guest must always be sent on the root interrupt bus. An interrupt for the res-
ident guest may also be sent on the root interrupt bus.

A guest interrupt while the processor is in root mode can cause an interrupt immediately unless masked by
Root.StatusIPL. Hardware should not stall the interrupt until the processor enters guest mode.

• Only an interrupt for a resident guest can be sent on the guest interrupt bus. If software programs the EIC to
send an interrupt for a non-resident guest on the guest interrupt bus, then an implementation of the core is
not required to respond to this interrupt. .

To allow the EIC to distinguish between resident and non-resident guests, the core must send GuestCtl1ID to the EIC.
An implementation must account for the delay between when the GuestCtl1ID changes and when it is visible to the
EIC to avoid a spurious interrupt for a non-resident guest from being sent on the guest interrupt bus.

The processor and EIC are required to implement a protocol to avoid the above mentioned race. On a guest context
switch, root software must first write 0 to GuestCtl1ID. This is equivalent to a STOP command for the EIC. EIC will
recognize this as a stall and will not send interrupts to guest context by setting the requested interrupt priority level to
0 on the guest interrupt bus to the core. Root software can then save and restore guest context, followed by a write of
new GuestID to GuestCtl1ID . Once the write is complete, root software can enable guest mode operation. If an EIC
implementation and root software follow this recommendation, then this prevents loss of an interrupt posted to the
guest interrupt bus while root is switching guest context. An interrupt for the formerly active guest will now be posted
on the root interrupt bus.

An EIC mode interrupt is generated in either guest or root context whenever hardware detects a change in RIPL on
the respective interrupt buses from the EIC. It is possible for an EIC implementation to have active interrupts on both
bus. In this case the root interrupt is always higher priority then the guest interrupt.

For the case of an interrupt in root context, two different interrupt vectors are used, one for root, the other for guest.
Hardware is able to distinguish between the two by checking the GuestID on the root interrupt bus. The following
pseudo-code describes how hardware generates the interrupt vector, depending on whether the EIC provides a vector
offset (vectorOffset) or vector number (vectorNumber).

EIC_mode ← Config3.VEIC=1 && IntCtl.VS!=0 && Cause.IV=1 && Status.BEV=0
if EIC_mode

if (EIC provides vectorNumber)
if (GuestID=0)

vectorOffset ← 0x200 + (EIC_vectorNumber x (IntCtl.VS || 0b00000))

4.8 Interrupts

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 78

else //GuestID is non-zero
vectorOffset ←0x200

endif
else // EIC provides vectorOffset

if (GuestID=0)
// EIC provides an offset relative to 0x200
vectorOffset ←EIC_vectorOffset

else //GuestID is non-zero
vectorOffset ←0x200

endif
endif

endif

If the interrupt is for guest, then the handler must compare GuestCtl1EID to GuestCtl1ID. If they are not equal, then
interrupt is for non-resident guest, and interrupt servicing may either continue in root or guest context. If interrupt
servicing is to continue in guest context, then the handler must first save the resident guest architected state (CP0,
GPRs etc) following by a restore of the new guest’s context. The root ERET instruction causes a transfer to guest
mode (when GuestCtl0GM=1), followed by a guest interrupt providing GuestCtl2GRIPL is non-zero.

If GuestCtl1EID and GuestCtl1ID are equal, then save and restore is not needed. Interrupt servicing may either
continue in root or guest context. If the interrupt is to be serviced in guest context, then the root ERET instruction
causes a change to guest mode (when GuestCtl0GM=1), following by a guest interrupt providing GuestCtl2GRIPL is
non-zero.

As described above, for any change in GuestCtl1ID, root software must first insert a STOP command on interface to
EIC by writing 0 to GuestCtl1ID. Once quiescent, root software may execute whatever software sequence it needs to.
This is followed by a write of new GuestID to GuestCtl1ID, then the root ERET instruction. There may be some
arbitrary delay between write of GuestID and ERET instruction where EIC can respond with an interrupt on guest
bus, but hardware will not trigger an interrupt because processor is in root mode.

A root interrupt must use Root.SRSCtlEICSS. Otherwise, hardware forces use of Root.SRSCtlESS if the interrupt on the
root interrupt bus is for any guest.

The guest interrupt in the scenario where the interrupt is transferred from root context after having been received on
the root interrupt bus is caused when the processor enters guest mode and hardware detects that GuestCtl2GRIPL is
non-zero.

Once in guest mode, the guest interrupt handler completes with an ERET instruction. The guest will continue
execution from its EPC, and not transfer back to root mode even if there was a change in guest context. If a return to
root mode is required, then the HYPERCALL instruction must be used.

The root CP0 register, GuestCtl2, where the root interrupt bus Vector, EICSS and RIPL is described in Section
5.4 Storage in root CP0 state is required because in a typical EIC-based implementation, an acknowlegement is
returned to the EIC when the interrupt is triggered. If an interrupt for the guest is initially triggered in root context,
then the use of these fields will not occur until the root ERET instruction is executed to effect a change to guest mode.
In the meanwhile, another root interrupt can occur which can overwrite the fields on the bus. Saving the fields as root
CP0 register allows for nesting of these fields, and thus supports nesting of interrupts.

Hardware optimizes the transfer of GuestCtl2GRIPL and GuestCtl2EICSS into guest CP0 context on guest entry.
Hardware will write GuestCtl2GRIPL to Guest.CauseRIPL, and GuestCtl2EICSS to Guest.SRSCtlEICSS providing
GuestCtl2GRIPL is non-zero. Root software thus has the option of preventing hardware transfer by clearing
GuestCtl2GRIPL before guest entry.

 The Virtualization Privileged Resource Architecture

79microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

In the case where root injects an interrupt into guest context after the interrupt was received on the root interrupt bus,
hardware must ensure that two acknowledgements are not returned to the EIC as this may cause a loss of an interrupt.
In the case where an interrupt is received on the root interrupt bus, hardware must always send an acknowledgement
on the root interrupt bus. But in the case where the interrupt was injected into guest context by root, hardware should
not send an acknowledgement on the guest interrupt bus as the interrupt was not received on this bus. Hardware can
determine this because GuestCtl2GRIPL would be a non-zero value for the case of root injection.

The overhead of saving and restoring guest CP0 context can be minimized. Table 4.8 indicates which guest CP0
registers will cause a Guest Physical Senstive Instruction (GPSI) on guest access, and under what root configuration.
Root software can opportunistically save/restore those guest CP0 registers which cause, or can be configured to cause
a GPSI.

Guest GPR Shadow Sets are protected by virtual mapping to physical Shadow Sets. Section 4.9.1 “General Purpose
Registers and Shadow Register Sets” describes how root enables virtual mapping for a guest. For the virtual map for
Guest GPR Shadow Sets to be enabled, GuestCtl3GLSS must be written by root with appropriate value for the guest. It
is assumed that Guest.SRSCtl is saved and restored.

Access to COP1 FPR and COP2 may be protected setting Root.StatusCU[2 1] appropriately. If access is disabled in
root context, then it is also disabled in guest and will cause the appropriate exception (Coprocessor Unusable in root
context). Hi/Lo registers are not protected by any means, and must be saved/restored if necessary.

4.8.2 Derivation of Guest.CauseIP/RIPL

The interrupt pending value seen by the guest is calculated as shown below. The result value can be read by the guest
(and the root) from the Guest.CauseRIPL / IP field and is the value used to determine whether a guest interrupt will be
taken. Note that the value returned from Guest.CauseRIPL / IP on a read is generated from the value originally written
by the root and from the status of directly assigned external interrupts. Hence the value written by the root may not be
equal to the value read back.

Returns:
Non-EIC IP7..0.
EIC - (RIPL << 2) + IP1..0

subroutine GuestInterruptPending() :

if ((Guest.Config3VEIC = 1) and
(Guest.IntCtlVS != 0) and
(Guest.CauseIV = 1) and
(Guest.StatusBEV = 0)) then
Guest in EIC mode
- GuestCtl0PIP does not apply in EIC mode.
- EIC must include guest interrupt sources in the EICGuestLevel signal
- This includes Guest’s TI, IP1, IP0 and PCI if implemented.

- FDCI is only visible in root context.
- GuestCtl2 required in EIC mode.
if (EICGuestLevel > GuestCtl2GRIPL)

irq ← EICGuestLevel
else

irq ← GuestCtl2GRIPL
h/w must clear if GuestCtl2GRIPL is source of interrupt.
GuestCtl2GRIPL ← 0

endif
Guest.CauseIP[1:0] is incorporated in EIC.
State of Guest.CauseIP[1:0] is however preserved.

4.8 Interrupts

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 80

r ← (irq << 2) OR Guest.CauseIP[1:0]

else
Guest in non-EIC mode
- External interrupts factored in if guest passthrough enabled.
- Internal interrupts applied here, if implemented
- Includes support for guest interrupt injection by root.
irq[7:2] ← HW[5:0]
if (GuestCtl0PT=0)

All interrupts processed first by root.
if (GuestCtl0G2=1)

root software injects interrupts.
r ← GuestCtl2vIP[5:0]

else
if GuestCtl2vIP is not supported, then root writes Guest.Cause.IP
to inject interrupt in guest context. H/W captures the write in a
shadow register called Root_HW_VIP.
r ← Root_HW_VIP[5:0]

endif
else

Guest interrupt passthrough supported.
if (GuestCtl0G2=1)

r ← Root.GuestCtl2vIP[5:0] OR (irq[7:2] AND Root.GuestCtl0PIP[5:0])
else

r ← Root_HW_VIP[5:0] OR (irq[7:2] AND Root.GuestCtl0PIP[5:0])
endif

endif
r ← r << 2
r ← r OR (GuestTimerInterrupt << Guest.IntCtlIPTI)
r ← r OR (PCIEvent << Guest.IntCtlIPPCI)
r ← r OR Guest.CauseIP[1:0]

endif

return(r)
endsub

The value returned by GuestInterruptPending() will subsequently be qualified by Guest StatusIM in non-EIC mode or
Guest StatusIPL in EIC mode, as per the base architecture.

Fields in Guest Config registers indicate which interrupt options are available to the guest.

4.8.3 Timer Interrupts

Root may inject a timer interrupt in guest context by setting Guest CauseTI and indirectly Guest CauseIP[IPTI]. This
may happen under the scenario where a guest has been switched out, but its virtual timer, maintained by root, is trig-
gered. Root would set Guest CauseTI before entering guest mode for the guest. Guest would take a timer interrupt,
clear Guest Compare, which would then clear Guest CauseTI. As per baseline MIPS architecture, a write to Compare
will clear CauseTI.

Root maintaining a virtual timer for a guest is recommended if there are multiple guests in operation. Otherwise, if
there is only one guest, but the processor is in root mode, then a match on Guest Count and Guest Compare is allowed
in an implementation to set Guest CauseTI and Guest CauseIP[IPTI]. Once Root transitions to guest mode, then guest
timer interrupt can be signaled in guest mode.

 The Virtualization Privileged Resource Architecture

81microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

Root Injection of Guest TI:

if (MTGC0[Guest.CauseTI]=1)

Root.Guest.CauseTI ← 1

else if ((MTC0[Guest.Compare]))

Root.Guest.CauseTI ← 0

endif

where Root.Guest.CauseTI is a hardware shadow copy of Guest.CauseTI that is set when Guest.CauseTI is written by
Root.

Guest.CauseIP[IPTI] = Root.Guest.CauseTI or “Other External and Internal interrupts”.

where “Other External and Internal interrupts” is defined in Section 4.8.2 “Derivation of Guest.CauseIP/RIPL”.

4.8.4 Performance Counter Interrupts

Root can configure the definition of performance counters in the Guest context via Guest Config1PC as follows:

• Guest Config1PC=0, then performance counters are unimplemented in the guest context, access is UNPRE-
DICTABLE.

• Guest Config1PC=1, the performance counters are virtually shared by root and guest contexts.

The PerfCnt register(s) are never implemented in the Guest context. A Guest may have direct access to virtual perfor-
mance counter registers under root software management when Config1PC=1. If virtually shared, the encodings of
PerfCntEC as 0 or 1 cause a GPSI Exception to be raised on Guest access to a performance counter register. Root
software may choose to configure performance counters for legal Guest access by encoding PerfCntEC as 2 or 3.

Software may choose to assign all performance counters to Guest or Root, but not both. This is the recommended pol-
icy for sharing between Root and Guest. Root will typically configure Guest access when it initializes guest context.
If assigned to Guest then Guest access will not cause a GPSI Exception.

Alternatively, an implementation may optionally choose to assign a subset of the total PerfCnt registers in Root CP0
context to Guest. Read of guest PerfCnt(N)M should return root PerfCnt(N+1)EC[1] to indicate PerfCnt(N+1) is
owned by guest. If all PerfCnt pairs are allocated to guest, then guest read of the last M bit must return 0. Guest Per-
fCnt pairs assigned to Guest in this manner must be a contiguous range, starting from the least significant pair. It is
further assumed that the allotment of performance counters to a guest is not dynamic - once established after initial
guest access (which caused GPSI), then the allotment must remain as such for duration of guest.

Once assigned to Guest or Root (default) context, that context independently manages the performance counters,
including interrupts. E.g., if the performance counters are enabled for Root, then Root CausePCI and Root
CauseIP[IPPCI] are set by hardware on counter overflow. Otherwise, counter overflow sets Guest.CausePCI and
Guest.CauseIP[IPPCI].

If Root software needs to inject a performance counter interrupt into Guest context, it must do so by setting the
most-significant bit of the PerfCnt counter. Similarly Root may clear a guest performance counter interrupt by clear-
ing the most-significant bit of the counter. Thus, Root does not require the ability to read/write Guest.CausePCI.

The PerfCntEC field is Root only virtualization control and is not visible to the Guest.

4.9 Instructions and Machine State, other than CP0

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 82

PerfCnt use of Status register K, S, U, and EXL fields is taken from the current Root or Guest context.

PerfCnt interrupt behavior is solely governed by PerfCntIE, enabled context Status register interrupt masks and
enable.

4.9 Instructions and Machine State, other than CP0

The Virtualization Module adds guest-mode context to duplicate privileged state, which is located in Coprocessor 0.
Typically, all machine state located outside Coprocessor 0 is shared by guest and root contexts and thus would require
save or restore by Root between context switches. Alternatively, in limited cases, state may be virtually shared among
different contexts as in the case of GPR Shadow Sets.

4.9.1 General Purpose Registers and Shadow Register Sets

Guest SRSCtl and SRSMap are optional in guest CP0 context. The following cases apply to use and implementation
of these CP0 registers.

1. No shadow sets are implemented. In this case, guest access to SRSCtl and SRSMap, or guest use of RDPGPR or
WRPGPR always cause a GPSI. Root would return emulated Guest SRSCtlHSS=0 in guest context to indicate to
guest that no shadow sets are present.

2. Shadow sets are implemented in root context only. In this case, guest access to SRSCtl and SRSMap, or guest use
of RDPGPR or WRPGPR always causes a GPSI. Root software would return emulated SRSCtlHSS=0 on guest
read of SRSCtl to indicate that no shadow sets are present in guest context. Hardware would return SRSCtlHSS =0
on root read of guest SRSCtl, while root writes to guest SRSCtl are ignored.

Guest is provided Root.SRSCtlCSS as its set of GPRs.

3. Shadow sets are implemented in root context, and virtually shared between root and guest. In this case, guest
SRSCtl and SRSMap must be present in guest CP0 context. Guest access to SRSCtl and SRSMap will cause GPSI
to prevent guest from defining writeable SRSCtl fields specifically SRSCtlESS/PSS. Guest use of RDPGPR or
WRPGPR will not cause a GPSI as these instructions refer to guest SRSCtlPSS which is writeable only by root -
guest writes to SRSCtlPSS always cause a GPSI.

The case where Shadow Sets are implemented in guest context is not discussed in this section - it is not recommended
due to the overhead of guest context save and restore of Shadow Sets. A mechanism of virtual sharing of a unique set
of Shadow Sets amongst guests is thus not provided.

In the case of virtual sharing, the read-only field guest SRSCtlHSS must be writeable by root. This allows root software
to set the total number of Shadow Set available to guest, which is equal to guest SRSCtlHSS . The Lowest Shadow Set
is specified by GuestCtl3GLSS. Guest use will always assume GuestCtl3GLSS to GuestCtl3GLSS plus Guest SRSCtlHSS

physical Shadow Sets as available to the guest. Root can write Guest SRSCtlESS/PSS with (D)MTGC0 instructions.

A non-zero GuestCtl3GLSS is useful if a large number of Shadow Sets are implemented and can be physically
partitioned among guests and root. Prior to guest entry, root would write GuestCtl3GLSS and guest SRSCtlHSS to define
the continuous range of Shadow Sets available to the guest. This range should be non-overlapping with any other
guests and root’s range to avoid the overhead of save and restore. Root would also write Guest SRSCtlESS/PSS. Root
may also choose to write guest SRSCtlEICSS , taking the example of an EIC (External Interrupt Controller) interrupt.

 The Virtualization Privileged Resource Architecture

83microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

In this case, root would read GuestCtl1EID then write this value to SRSCtlEICSS. unless hardware implements the
transfer itself, as described in Section 4.8.1.2 .

Hardware must offset SRSCtlESS/PSS by GuestCtl3GLSS before access of corresponding Shadow Set for guest.
Similarly, the EIC, if supported, would drive a virtual EICSS. The virtual EICSS is registered and offset similarly
before use.

A zero (default) GuestCtl3GLSS is useful is there are few Shadow Sets. Root may allocate one set for all guests, and
one set for root. Any switch between guests would require a save and restore of the related Shadow Set.

Guest SRSCtlEICSS is set by EIC. EIC must be root managed since it is a shared resource and thus access must be
virtualized amongst guests. Guest SRSCtlEICSS must always fall in guest range of Shadow Sets.

4.9.1.1 Pseudo-code for Shadow Set Handling

The pseudo-code below uses the logical term GSRSEn specifically to indicate whether Shadow Sets are available in
guest context.

GSRSEn ← (Guest.SRSCtl.HSS > 0) ? 1 : 0;

Guest Shadow Sets are thus available if Shadow Sets are implemented in guest context (not recommended), or virtu-
ally-shared between root and guest (case 3).

Determination of Current and Previous Shadow Sets:

// Mode-specific CSS
Current_Shadow_Set (SRSCtlCSS) ←

guest_mode and GSRSEn ? Guest.SRSCtlCSS + GuestCtl3GLSS : Root.SRSCtlCSS ;

In the case where the processor is in guest mode and GRSEn=0 (e.g., case 2), guest will share
Root.SRSCtlCSS Shadow Set with root.

// Mode-specific PSS, effective for RDPGPR/WRPGPR.
Previous_Shadow_Set (SRSCtlPSS) ←

guest_mode and GSRSEn ? Guest.SRSCtlPSS + GuestCtl3GLSS :

guest_mode and not GSRSEn ? <GPSI> : Root.SRSCtlPSS ;

In the case where the processor is in guest mode and GRSEn=0 (e.g., case 2), guest use of RDPGPR/WRPGPR will
cause a GPSI.

Events that update Root or Guest PSS and CSS:

Exception taken in root mode

Root.SRSCtlPSS ← Root.SRSCtlCSS;

Root.SRSCtlCSS ← Root.SRSCtlESS/EICSS or Root.SRSMapSSVx

This behavior is also applicable to exceptions taken in guest mode that cause a guest-exit to root mode.

Exception taken in guest mode, with GSRSEn = 1

4.9 Instructions and Machine State, other than CP0

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 84

Guest.SRSCtlPSS ← Guest.SRSCtlCSS
Guest.SRSCtlCSS ← Guest.SRSCtlESS/EICSS or Guest.SRSMapSSVx

In this case that the exception originates and is taken in guest mode.

Exception taken in guest mode, with GSRSEn = 0

Not Applicable.

ERET executed in root mode

Root.SRSCtlCSS ← Root.SRSCtlPSS

This is applicable to an exception taken in root mode, or an exception that causes a guest-exit to root mode.

ERET executed in guest mode, with GSRSEn=1:

Guest.SRSCtlCSS ← Guest.SRSCtlPSS

ERET executed in guest mode, with GSRSEn=0:

Not Applicable.

4.9.2 Multiplier Result Registers

The guest and root contexts share the multiplier result registers LO and HI.

4.9.3 DSP Module

The guest and root contexts share the DSP Module, if it is implemented. The DSP Module is available to the guest
context when Guest.Config3DSPP=1.

During guest mode execution, access to the DSP Module is controlled by the StatusMX bits from both the root and
guest contexts. The DSP/MDMX enable bit Guest.StatusMX is checked first. If access is not granted, a DSP Module
state unusable exception is taken in guest mode.

The Root.StatusMX bit is checked next. If access is not granted by the Root.StatusMX bit, a DSP Module state unus-
able exception is taken in root mode.

Root has the ability to deconfigure DSP resources in guest context by writing Config3DSPP and Config3DSP2P. as
given in Table 4.11. The writeable state of Guest.StatusMX, as visible in guest context, is dependent on
Guest.Config3DSPP only. An implementation may choose to limit root writeability to Guest.Config3DSPP as selective
enabling of DSP and DSP Revision 2 is not recommended in implementations. As a consequence of deconfiguration
either all DSP resources are available to guest or none.

4.9.4 Floating Point Unit (Coprocessor 1)

The guest and root contexts share the Floating Point Unit, if it is implemented. The floating point unit is available to
the guest context when Guest.Config1FP=1.

 The Virtualization Privileged Resource Architecture

85microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

During guest mode execution, access to the floating point unit is controlled by the StatusCU1 bits from both the root
and guest contexts. The coprocessor enable bit Guest.StatusCU1 is checked first. If access is not granted, a coproces-
sor unusable exception is taken in guest mode.

The Root.StatusCU1 bit is checked next. If access is not granted by the Root.StatusCU1 bit, a coprocessor unusable
exception is taken in root mode.

4.9.5 Coprocessor 2

The guest and root contexts share coprocessor 2, if it is implemented. Coprocessor 2 is available to the guest context
when Guest.Config1C2=1.

During guest mode execution, access to the coprocessor 2 is controlled by the StatusCU2 bits from both the root and
guest contexts. The coprocessor enable bit Guest.StatusCU2 is checked first. If access is not granted, a coprocessor
unusable exception is taken in guest mode.

The Root.StatusCU2 bit is checked next. If access is not granted by the Root.StatusCU2 bit, a coprocessor unusable
exception is taken in root mode.

4.9.6 MSA (MIPS SIMD Architecture)

The guest and root contexts share the MSA module, if it is implemented. The MSA module is available to the guest
context when Guest.Config5MSAEn=1.

During guest mode execution, access to the MSA module is controlled by the Config5MSAEn bits from both the root
and guest contexts. Guest.Config5MSAEn is checked first. If access is not granted, a MSA disabled exception is taken
in guest mode.

The Root.Config5MSAEn bit is checked next. If access is not granted by Root.Config5MSAEn, a MSA disabled exception
is taken in root mode.

4.9.7 User FR Feature

User access to StatusFR is an optional feature in Release 5 of the architecture. The purpose of this feature is to facili-
tate a transition from an Floating-Point Register File that supports both 16 and 32 FP register models to one that sup-
ports only 32 FP register model.

The ability of user to modify StatusFR is under the control of privileged Config5UFR with this new feature. In a virtu-
alized implementation, guest kernel write of Config5UFR will cause a GSFC exception providing the write results in a
change to Config5UFR . If Config5UFR =1, then guest access of StatusFR will not cause a GSFC exception. See Section
4.7.8 “Guest Software Field Change Exception”.

In this state where change to guest StatusFR is invisible to the hypervisor, hypervisor must always check guest Sta-

tusFR before saving guest FP register state, once the transition to Config5UFR=1 has been signalled to the hypervisor.
This will determine the number of saves and thus restores that need to be done by hypervisor, based on active FP reg-
ister model.

4.9 Instructions and Machine State, other than CP0

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 86

4.9.8 LL/SC LLbit Handling

Root and guest context maintain separate copies of LLbit. An event that clears root LLbit will not effect guest LLbit
as a side-effect. Example, an ERET executed in root context will only clear the LLbit in root context itself.

4.9.9 XPA : Extended Physical Address

Release 5 of the base architecture adds the capability to extend the physical address beyond 36-bit in 32-bit imple-
mentations. This capability is termed Extended Physical Address (XPA).

Support for XPA is optional. In a virtualized implementation that supports XPA, the following changes are required
for both root and guest contexts :

• EntryLo0/1, LLAddr, TagLo, MAAR (Release 5) are extended by a maximum of 32-bits to support extended
PA.

• Config3LPA and PageGrainELPA are required by software to detect presence of and to enable XPA.

• New instructions, MTHC0 and MFHC0 are required to access the extensions.

• New instructions, MTHGC0 and MFHGC0 are required by root to access the guest COP0 extensions.

SegCtl0/1/2 PA fields are not extended. The PA fields are only used for unmapped accesses. Guest and root privileged

software are expected to constrain unmapped accesses to the lower 236 (or 232) of guest or root physical address
space, respectively. Privileged software can use mapped accesses for addresses out of this range.

Since the guest physical address may be extended, root software is required to map this GPA to RPA. For this purpose
the root context (and only root) requires the following changes:

• EntryHi and BadVAddr must be extended such that the virtual address matches GPA implemented size.

ContextConfig is not extended - it is used by the Refill handler for a single-level page table entry lookup. A single
level lookup is not practical for XPA.

Pagewalker COP0 registers are similarly not impacted. PWBase is root virtual, which does not require an extension.
PWField and PWSize pointers can support a full 64-bit address.

The architecture enforces control over guest XPA capabilities by allowing root software to optionally write guest
Config3LPA. Guest write to PageGrainELPA that causes a change in value will result in a root GSFC exception.

Table 4.16 describes how root software and the state of root context Config3LPA and PageGrainELPA effects the state of
guest context Config3LPA and PageGrainELPA.

Table 4.16 Root effect on Guest XPA control1

Root Guest Guest GSFC
on write to

PageGrainELPA Guest XPA supportedConfig3LPA PageGrainELPA Config3LPA PageGrainELPA

1 1 1 0/1 Possible Yes

1 1 0 Force Reserved2 Never Disabled by root clearing Config3LPA
Guest 36-bit PAE possible.

 The Virtualization Privileged Resource Architecture

87microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

4.9.10 SDBBP Instruction Handling

Release 6 of the architecure adds virtualization constraints over use of software use of the SDBBP instruction in the
form of Config5SBRI. As defined in the base architecture,

• If SBRI=0, then SDBBP can be executed in any privileged mode. This state allows backward compatibility.
• If SBRI=1, then SDBBP can be executed in kernel mode only. User (or supervisor) SDBBP causes RI.

Refer to Table 4.17 for virtualization control over SDBBP.

4.10 Combining the Virtualization Module and the MT Module

The MIPS MT Module defines a set of instructions and machine state which are used to implement multithreading.
The presence of the MT Module is indicated by the Config3MT field.

Like the Virtualization Module, the MT Module provides duplicate Coprocessor 0 state. A single MIPS CPU can con-
tain multiple Virtual Processing Elements (VPEs). Each of these VPEs uses a separate set of general purpose registers
(GPRs), and a separate CP0 context. Mechanisms for controlling one VPE from another are provided, to allow for
system initialization and control.

Each VPE runs a separate and independent program - a ‘thread’. Switching between VPEs happens very rapidly - for
example switching to a different VPEs on each cycle.

1 0 Force Reserved Force Reserved Never Disabled by hardware due to
PageGrainELPA=0

Guest 36-bit PAE not possible.3

0 Reserved Reserved4 Reserved Never XPA not available in either context
Guest 36-bit PAE not possible

1. Root control is also superimposed over the state of guest COP0 PA bits.
2. “Forced Reserved” - Hardware must force the related state to be reserved based on root state.
3. Hardware must force PA[35:32] to zero in COP0 registers CDMMBase, CMGCRBase, MAAR, EntryLo0/1, SegCtl. The number of PA

bits is implementation dependent. Registers added in the future with PA should be similarly constrained.
4. “Reserved” - always reserved regardless of root state.

Table 4.17 Virtualization control of SDBBP execution

Config5SBRI Context of SDBBP Execution and Result

Guest Root Guest User Guest Kernel Root User Root Kernel

0 0 No RI1

1. Reserved Instruction exception

No RI No RI No RI

0 1 Root RI Root RI Root RI No RI

1 0 Guest RI No RI No RI No RI

1 1 Guest RI Root RI Root RI No RI

Table 4.16 Root effect on Guest XPA control1

Root Guest Guest GSFC
on write to

PageGrainELPA Guest XPA supportedConfig3LPA PageGrainELPA Config3LPA PageGrainELPA

 The Virtualization Privileged Resource Architecture

89microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

The ‘onion model’ would in theory allow a processor to be built which would incorporate MT Module state and
instructions within the guest context (Guest.Config3MT=1), but this is not recommended. The guest context of a real-
istic machine will not contain the MT Module - hence Guest.Config3MT=0. When Guest.Config3MT=0, then
(D)MT(H)C0 and (D)MF(H)C0 of MT Module CP0 registers are UNPREDICTABLE and attempts to execute MT
Module instructions result in a Reserved Instruction exception in Guest context.

Hypervisor software running on each VPE manages the thread of execution for that VPE - as in a multi-core system.
The hypervisor software controls the physical address space and privileges of each guest - for example whether the
VPEs share a common physical address space (e.g. a SMP machine), or are configured to be entirely separate.

A trap-and-emulate approach is required for full virtualization of a guest which uses the MT Module (though this is
not recommended). MT Module registers are never present in Guest CP0 context, even if the intent is to emulate.
Root would write Guest.Config3MT=1 to simulate presence of MT Module in guest context. Any guest-kernel access
to MT Module registers, guest use of MT instructions will trigger a Guest Privileged Sensitive Instruction exception.

When multiple guest virtual machines are running on a single-threaded machine, switches between guests occur tens,
hundreds or thousands of times per second. When a context switch takes place the outgoing guest’s machine state is
read out and saved, and the incoming guest’s machine state is loaded and restored. The processor is controlled by one
hypervisor instance, which is in control of the root context.

When multiple guest virtual machines are running on a multi-core machine, switches between guests on each core
may still occur tens or hundreds of times per second, using the context switch method. However, multiple guests can
be run simultaneously - one on each processor core. A distinct hypervisor instance on each processor is in control of
that processor’s root context - these hypervisor instances communicate to achieve shared goals, as in a traditional
SMP system.

A similar arrangement is used when multiple guest virtual machines are running on a single-core multi-threaded
machine. Switches between guests are achieved on a cycle-by-cycle basis - as the processor switches between VPEs.
Multiple guests can run simultaneously - one on each VPE. A distinct hypervisor instance on each VPE is in control
of that VPE’s root context.

This concept can be further extended to a multi-threaded, multi-core machine. Each processor core features multiple
VPEs, each of which has its own guest context. A distinct hypervisor instance is present on each VPE and in control
of the root context.

The MT Module and Virtualization Module provide complementary feature sets, which allow hypervisor software the
flexibility to schedule guest virtual machines on separate cores, on separate VPEs, and to schedule using traditional
time-sharing methods.

4.11 Guest Mode and Debug features

The Virtualization Module provides full access to Debug facilities implemented through the EJTAG interface.

When the processor is running in Debug privileged execution mode, it has full access to all resources that are avail-
able in the Root context.

As per Table 4.1, The Debug privileged execution mode exists in the root context. A processor supporting virtualiza-
tion operates in two contexts, Root and Guest. Within Guest, there are three privileged execution modes; kernel,
supervisor and user, and in Root context, there are four; kernel, supervisor, user and debug.

4.12 Watchpoint Debug Support

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 90

Table 4.18 lists debug features and their application to the Virtualization Module.

4.12 Watchpoint Debug Support

Root and Guest Watchpoint debug support is provided by Coprocessor 0 WatchHi and WatchLo register pair(s). These registers are present
in Root if Root Config1WR=1 and in Guest if Guest Config1WR=1 .

A virtualized implementation may choose to provide no Watch register support, Root-only Watch register support, or Root and Guest Watch
register support. Virtualized handling applies to both WatchHi and WatchLo registers but will be generically referred to as “Watch” regis-
ters.

Table 4.18 Debug Features and Application to Virtualization Module

Feature Description Reference

Debug mode Guest mode is mutually exclusive with Debug mode. When in
Debug mode (DebugDM=1), the processor is not in guest mode.

Section
4.4.3 “Definition
of Guest Mode”

When the processor is running in Debug mode, it has full access to
all resources that are available to Root-Kernel mode operation.

MIPS EJTAG
Specification.
Section 7.2.3 -
Debug Mode

Handling of Pro-
cessor Resources

Debug Segment (dseg) When the processor is running in Debug mode, the memory map is
determined by the root context. Memory mappings are unchanged
from the microMIPS32 and EJTAG specifications.

MIPS EJTAG
Specification.
Section 7.2.2 -
Debug Mode

Address Space

Access to guest CP0 context Debug tools access general purpose registers (GPRs) and coproces-
sor registers by executing instructions in the processor pipeline.

Access to the guest CP0 context must use the Virtualization Module
instructions provided to transfer data between the root and guest
contexts - MTGC0 and MFGC0.

Accesses to the guest TLB must use the instructions provided to ini-
tiate guest TLB operations from the root context - TLBGP, TLBGR,
TLBGWI, TLBGWR. These operations are used to transfer data
between the guest TLB and the guest CP0 context. When accessing
the guest TLB in debug mode, a two-step process is required - to
transfer data to/from the guest CP0 context and guest TLB, and to
transfer data to/from the root CP0 context and guest CP0 context.

Section 4.6.2

Hardware Breakpoints When implemented, hardware breakpoints are part of the root con-
text. The root context remains active during guest mode execution,
allowing hardware breakpoints to be used to debug guest software.

Exceptions resulting from hardware breakpoints are of type Syn-
chronous Debug or Asynchronous Debug. In both cases, the excep-
tions are handled in Debug mode.

Section 4.7.4

Watch registers Support for use of watchpoint from the Guest is optionally provided. Refer to Section
4.12 “Watchpoin
t Debug Support”

 The Virtualization Privileged Resource Architecture

91microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

In Table 4.19, the state of Guest Config1WR. conveys what support is available to Guest.

Root-only Watch registers (Root Config1WR=1 and Guest Config1WR=0) allows for Root Watch of Root Virtual Addresses (RVA), and

optionally Guest Physical Addresses (GPA). Root Watch of GPA in this configuration is enabled through Root WatchHiWM[0].

If both Root and Guest Watch registers are present (Guest Config1WR=1), then Root and Guest Watch will operate independently. Watch

exceptions detected on match will be taken in respective modes.

The Virtualization Debug definition also allows for virtual Guest Watch via Root Watch registers (Guest Config1WR=0/1). This feature is

optional. Root Software can test R/W state of Guest Config1WR to determine whether virtual Guest Watch registers are supported.

There is no support for Root emulation of Guest watch registers. Root emulation of Guest watch registers would require that every guest read
and write trap to Root. In sharing mode, once a watch register pair is assigned to Guest, Guest can setup registers without Root intervention.

Referring to Table 4.20, if Guest Config1WR=0, then no watch register pairs are enabled for Guest watch. A Guest access will be treated as

as UNPREDICTABLE. Recommended implementations may either no-op both MTC0 and MFC0, trap to Root software with a GPSI, or
no-op an MTC0 and return 0s on MFC0. If Guest Config1WR=1, then a Guest access is treated normally except a MTC0 cannot modify

WatchHiWM, and an MFC0 will return 0s for WatchHiWM.

If Guest Config1WR=1, then selected Root Watch register pairs are enabled for Root or Guest watch. Referring to Table 4.20, this is deter-

mined by Root WatchHiWM[1]. Root WatchHiWM[0] determines whether Root is watching RVA or GPA. Root Watch of GPA is optional. If

not supported, then a write of 1 to Root WatchHiWM[1:0], will write 0, defaulting to RVA watch. Root Watch of GPA would include qualifi-

cation with WatchHiG and WatchHiASID. WatchHiASID would be guest’s value. To exclude WatchHiASID, Root software would set WatchHiG
=1.

Table 4.19 Guest Watchpoint Support

Guest
Config1WR Value R/W State Function

0 R No Guest Watch
registers.

1 R Guest Watch reg-
isters present.

0/1 R (Guest)
R/W (Root)

Virtual Guest
Watch support

provided.

Table 4.20 Watch Control

Guest
Config1WR Value

(in R/W State)
Root

WatchHiWM[1:0] Function

Guest
Exception on

Access

Guest
Exception on

Match
Root

Exception

0 X0 Root Watch RVA UNPREDICTABLE None Watch

0 X1 Root Watch GPA (optional) UNPREDICTABLE None Watch

1 00 Root Watch RVA GPSI None Watch

1 01 Root Watch GPA (optional) GPSI None Watch

1 10 Guest Watch GVA None Watch None

1 11 Reserved - - -

4.13 Virtualization Module features and Hypervisor Software

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 92

If under Guest control, Guest can only watch GVA. A write of 3 to Root WatchHiWM[1:0], will write 2 in this configuration, defaulting to

GVA watch. Root can take away privilege from Guest at any time by writing to Root Watch registers. Root access will thus not take an
exception on access of a shared pair of registers under Guest control. If under Root control with Root WatchHiWM[1]=0 then a Guest access

will result in a GPSI. Root may choose to assign this register pair to Guest at this point, or return to the guest instruction following the move.

Guest watch is enabled strictly in guest mode as defined by the equation:
(Root.GuestCtl0GM = 1 and Root.StatusEXL = 0 and Root.StatusERL = 0 and Root.DebugDM = 0)

There is no facility for Guest to watch addresses related to Root intervention events. That is, events occuring when the following equation is
true:

(Root.GuestCtl0GM = 1 and (Root.StatusEXL = 1 or Root.StatusERL = 1 or Root.DebugDM = 1))

In an implementation that supports virtual sharing between Root and Guest, Root software may choose to assign all WatchHi and WatchLo to
Guest or Root, but not both. This is the recommended policy for sharing between Root and Guest. If assigned to Guest then Guest access will
not cause a GPSI exception.

Alternatively, an implementation may optionally choose to assign a subset of the total Watch register pairs in Root CP0 context to Guest for
simultaneous use by Guest and Root. Read of guest WatchHi(N)M should return root WatchHi(N+1)WM[1] to indicate to guest software that

root WatchLo/Hi(N+1) is owned by guest. If all pairs are allocated to guest, then read by guest of the M bit in the last register pair should
return 0. Initial access by guest to the Watch registers will result in a GPSI exception, allowing Root to configure Watch registers for guest
use. Watch register pairs assigned to Guest in this manner must be a contiguous range, starting from the least significant pair. It is further
assumed that the allotment of Watch registers to a guest is not dynamic - once established after initial guest access (which caused GPSI) or
on guest configuration by root software, then the allotment must remain as such for duration of guest operation.

4.13 Virtualization Module features and Hypervisor Software

The Virtualization Module provides many features which are intended as optimizations to reduce the number of
hypervisor traps required, and to reduce the length of each hypervisor intervention.

Table 4.21 describes an outline of the design intent of each feature, and how it is expected to be used in a virtualized
system. It is intended to be treated as a guideline, and does not aim to specify how software should be implemented.

Table 4.21 Virtualization Optimizations and their Intended Purpose

Virtualization Optimization Description

Guest mode The Guest Mode allows for a “limited privilege” kernel mode, in addition to
the existing modes within the microMIPS32 Privileged Resource Architec-
ture.

The separation of privileges between user and kernel modes is duplicated in
guest mode, through the use of the guest-user and guest-kernel modes. This is
intended to minimize virtualization overhead on mode transitions within a
guest.

A separation is introduced between the existing full-privilege kernel mode and
the limited-privilege guest-kernel mode. This enables a hypervisor to selec-
tively grant access to system resources through emulation, address translation
or by granting direct access.

 The Virtualization Privileged Resource Architecture

93microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

Separate Guest CP0 context A partial CP0 context is provided for use when in guest mode.

The guest CP0 context includes registers for processor status, exception state
and timer access. Depending on the options chosen by the implementation, the
guest CP0 context can also include registers to control segmentation and hard-
ware page table walking within the guest context.

The separate CP0 context for the guest reduces the context switch overhead
when transitioning between root and guest modes. An interrupt or exception
causing an exit from guest mode can be immediately handled using the origi-
nal (root) CP0 context without additional context switching.

The guest CP0 context is partially populated. Guest accesses to registers which
are not included can be emulated by hypervisor handling of guest exceptions.

The registers chosen to be included in the guest CP0 context are either neces-
sary to control guest mode operation, or are so frequently accessed by guest
kernels that trap-and-emulate is impractical.

Simultaneously active guest and root
CP0 contexts

During guest mode execution the guest CP0 context is used, but the original
(root) CP0 context remains active. This permits an ‘onion model’ whereby
guest activities are first checked against the guest CP0 context, and then
against the root CP0 context. Exceptions are taken in the mode whose context
triggered the exception.

Systems controlled by the root CP0 context continue operating during guest
mode execution. This includes CP0-controlled systems such as performance
counters and breakpoints. It also includes logic which detects external inter-
rupts and serious exceptions such as NMI, Bus Error or Cache Error. The
onion model allows the pre-existing programming interface for these systems
to be retained, and for their continued operation during guest mode execution.

The addition of the guest-mode CP0 context allows an inner layer of systems
to be used by the guest without hypervisor intervention. For example, the guest
interrupt, timekeeping and address translation systems can be programmed
and maintained by the guest kernel. Since these systems are active only during
guest mode execution, and the pre-existing root-context systems remain active,
little hypervisor intervention is required, as the guest cannot inflict damage to
the root.

When an exception returns control to root mode during guest mode execution,
the guest context is immediately disabled. No context switch is required. The
presence of two separate contexts allows for an immediate entry to the
root-mode exception handler, using the root-mode exception state. On exit, an
immediate return to the guest is possible. No time-consuming memory
accesses for context switch are required.

Following the rules of the ‘onion model’, access to coprocessors must be
enabled by both the guest and original CP0 contexts. This allows for lazy con-
text switch of coprocessors (for example, the floating point unit) when switch-
ing between guests.

Table 4.21 Virtualization Optimizations and their Intended Purpose

Virtualization Optimization Description

4.13 Virtualization Module features and Hypervisor Software

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 94

Dual-level address translation and
guest TLB

In a fully virtualized system, the ‘onion model’ is applied to address transla-
tion.

Memory accesses from the guest are translated using the guest context Seg-
ment Configurations and the guest context TLB. Exceptions or TLB refills
resulting from this translation step are handled by the guest. The result is a
‘guest physical’ address (GPA).

The root TLB (the original TLB) is used to perform a second level of transla-
tion - from the ‘guest physical’ address to a machine physical address. Excep-
tions or TLB refills resulting from this translation step are handled by the
hypervisor, using the pre-existing TLB exceptions, or the new hardware page
table walking system.

This arrangement allows the guest kernel to maintain its own page tables
which map guest-virtual to guest-physical addresses. The guest kernel can
handle TLB refills and other exceptions without hypervisor intervention.

The hypervisor maintains a separate page table which maps guest-physical
addresses to machine physical addresses. The hypervisor is not required to
parse or otherwise interpret the guest page tables, or to maintain a page table
on behalf of the guest. No hypervisor knowledge of guest-virtual addresses is
required.

The two translation systems operate independently, greatly simplying the soft-
ware architecture. Despite the two levels of translation, hardware implementa-
tions ensure that each memory access is translated only once within processor
pipeline stages. This is done by dynamically creating single-level translations
which combine the translations held within both guest and root TLBs.

If the root TLB and guest TLB use the same page size, a guest TLB refill is
likely to require a root TLB refill. When the root TLB uses page sizes larger
than those used by the guest operating system, the number of root TLB refills
can be reduced.

Guest context Config0-7 registers The guest context includes its own set of Config0-7 registers. These are used

for two purposes within a virtualized system.

The first purpose is to indicate to hypervisor software how the guest context is
configured in the particular hardware implementation. For example the hyper-
visor can determine the size of the guest TLB, and which optional features are
included.

The second purpose is for the hypervisor software to indicate to the hardware
implementation how the guest context should behave. Hardware implementa-
tions can choose to allow writes to fields within guest context Config0-7 regis-

ters.
This allows the hypervisor to enable or disable certain architectural features,
or to change the virtual machine behavior seen by the guest.

The guest Config0-7 register are primarily intended for use by hypervisor soft-

ware, but access by guest kernels can be enabled. Given the infrequent access
to Config0-7 registers, it is likely that a hypervisor would choose to trap and

emulate guest accesses.

Table 4.21 Virtualization Optimizations and their Intended Purpose

Virtualization Optimization Description

 The Virtualization Privileged Resource Architecture

95microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

Interrupt delivery to guests Global and individual interrupt enables are included in the guest context, along
with interrupt-pending signals. Interrupt handlers are located at the standard
entry points within the guest address space, or controlled by the guest context
exception base register.

Hypervisor software can deliver interrupts to a guest by writing the interrupt
pending bits within the guest context. The hypervisor can enable immediate
delivery of an external interrupt to a guest through direct assignment (pending
interrupt passthrough).

Guest kernels can implement critical regions using the normal interrupt
enable/disable mechanisms, thus holding off delivery of interrupts to the guest
context.

External interrupts controlled by the root context cause an immediate exit from
guest mode, returning control to a hypervisor interrupt handler. The guest can-
not hold off these interrupts, as they are controlled by the root context.

Guest Timer system Hypervisor software needs to control the passage of time as viewed by a guest.
Guests need an efficient method to set up timer interrupts without incurring
drift.

The hypervisor can set a control bit to which allows a guest to read from the
timer’s Count register, and allows the guest to set up timer interrupts with the
Compare register.

The timer value seen by the guest is created by adding an offset to the real
timer value, stored in Root.GTOffset. The guest does not have direct write
access to its timer value - writes must be trapped and emulated by the hypervi-
sor.

It may be necessary for a hypervisor to disallow guest timer access when emu-
lation is required. This may be the case if a guest kernel is booted on a system
with one timer clock frequency, and is subsequently required to be re-sched-
uled on a core with a different timer clock frequency.

Secure, unique TLB entries based on
GuestID.

An optional GuestID feature provides a Root programmable unique identifier
for use in TLB entries eliminating the requirement for invalidation of TLB
entries on virtual machine context switch. Refer to documentation on
GuestCtl1ID and GuestCtl1RID fields in Section 5.3 “GuestCtl1 Register

(CP0 Register 10, Select 4)”.

Root control of Guest TLB mapping
and Guest TLB resources.

1) mapping using Guest TLB
2) Guest TLB instructions/registers -
GuestCtl0AT

The GuestCtl0AT field provides control for whether the guest may use the

privileged registers and instructions related to the MMU.

This allows the situation where the guest TLB and Segmentation Control is
part of the address translation, but any guest access to the control registers
results in an exception (GuestCtl0AT=1). This can be used both for hypervisor

control and to debug guest behavior.

Table 4.21 Virtualization Optimizations and their Intended Purpose

Virtualization Optimization Description

4.13 Virtualization Module features and Hypervisor Software

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 96

Guest Software Field Change excep-
tions

The Guest Software Field Change exception system allows for hypervisor
intervention before certain guest-context register fields are changed. The
exception is taken prior to execution of the instruction which would have mod-
ified the field.

Some guest register fields are implemented which correspond to fields in the
root CP0 context, but are not actually connected to hardware. An example is
the “reduced power” control bit StatusRP. When the guest kernel changes the

value of such a field, it is expecting some change of behavior in the virtual
machine. The field-change exception allows the hypervisor to respond appro-
priately.
In other cases (e.g., CauseIV) the field change would affect guest execution,

but hypervisor intervention may be required in order to set up some other
aspect of the virtual machine - for the example given, changes may be required
to how external interrupts are passed to the guest.

Guest Hardware Field Change excep-
tion

The Guest Hardware Field Change exception is related to the Guest Software
Field Change exception. It is used to trigger hypervisor intervention on a hard-
ware initiated field change within a guest. This mechanism can be used for
debug, security or emulation purposes by the hypervisor.

Guest Privileged Sensitive Instruction
exceptions

The guest kernel mode is a limited privilege mode. The Guest Privileged Sen-
sitive Instruction exception is the primary mechanism by which the hypervisor
traps privileged instructions executed in guest mode.

It can be used for emulation of non-existent CP0 registers, and emulation of
accesses to registers which have been disabled by the hypervisor.

The hypervisor is provided with a catch-all mechanism to trap on all guest
privileged operations (GuestCtl0CP0), and a number of more targeted

enables. These targeted enables include fields to control access to guest
address translation (GuestCtl0AT), the guest timer (GuestCtl0GT), limited

cache operations (GuestCtl0CG), and the Config0-7 registers present in the

guest context (GuestCtl0CF).

The ability to control access to these features allows the hypervisor to restrict
guest permissions, or to emulate the hardware behavior expected by a guest -
for example different Config0-7 registers than are present in the machine.

Guest Reserved Instruction Redirect
exception

A control bit is provided (GuestCtl0RI) which allows guest RI exceptions to

be redirected to hypervisor software. This enables emulation of instructions
which are not available in the guest context.

New privileged instruction HYP-
CALL

A new instruction is provided, specifically to allow guest kernels to make API
calls to the hypervisor software. This can be used from both guest-kernel and
root-kernel modes.

Table 4.21 Virtualization Optimizations and their Intended Purpose

Virtualization Optimization Description

 The Virtualization Privileged Resource Architecture

97microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

New privileged instructions
MFGC0, MTGC0
TLBGINV, TLBGINVF,
TLBGR, TLBGWI,
TLBGP, TLBGWR

New instructions are provided to allow access to the guest CP0 context for
hypervisor software running in root mode. These instructions also provide
access to the guest CP0 context for instructions executed in Debug mode, pro-
vided by the EJTAG debug system.

The instructions MFGC0 and MTGC0 allow data to be transferred between
general purpose registers (GPRs) and guest CP0 context registers.

The instructions TLBGINV, TLBGINVF, TLBGP, TLBGR, TLBGWI and
TLBGWR are used from root mode to access the guest context TLB using the
TLB registers located in the guest context.

Table 4.21 Virtualization Optimizations and their Intended Purpose

Virtualization Optimization Description

4.14 Lightweight Virtualization

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 98

4.14 Lightweight Virtualization

4.14.1 Introduction

The Virtualization architecture provides support for a lightweight implementation. The focus of such an implementa-
tion is to reduce implementation cost and feature complexity. The added benefit of reduced feature complexity is that
root software is simplified to the point where it need not be a complete hypervisor. For example, it may handle guest
interrupts, guest exceptions and related context switching, but it wouldn’t provide support for an added level of guest
translation.

The lightweight virtualization specification may also support a different class of embedded applications. For exam-
ple, where a Root Protection Unit (RPU) is used, the guests are not different OSes, but applications within an OS,
where the applications are from different vendors who do not trust each other. Virtualization in this case has been
extended to secure embedded applications.

4.14.2 Support for Lightweight Virtualization

4.14.2.1 Root Protection Unit (RPU)

The RPU is a defeatured Root TLB that does not translate a guest physical address to a root physical address, and thus
does not require storage for root physical address. Instead it assumes that the guest physical address is identity
mapped to physical memory. However, the RPU checks the guest physical address on a page basis, where the page is
programmed by root software. If the page matches, then the guest has access to related physical memory. Otherwise
the access will trap to root software, using standard exceptions.

The RPU and its software interface support all instructions and COP0 registers of the baseline architecture and exten-
sions provided in the Virtualization Module. Root EntryLo0 and EntryLo1 PFN fields are assumed read-only as 0
since the RPU does not translate guest physical addresses.

The CCA(Cache Coherency Attribute) field is required if guest CCA nesting is implemented. Nested guest CCA han-
dling is described in Section 4.5.3 . Otherwise the guest CCA field is not required.

The RPU supports XI(Execute-Inhibit), RI(Read-Inhibit) along with D(Dirty) page attributes which are mandatory in
an RPU implementation.

An RPU will support multiple page-sizes, though it is implementation dependent in the baseline architecture as to
which page sizes are supported.

The RPU is only supported in a configuration with a root FMT (Fixed Mapping Table). Any addresses in root mode
must use the Root FMT. Any guest addresses go through the guest FMT or TLB, and RPU.

An RPU is present in an implementation that supports virtualization (Root.Config3VZ=1) and has a root FMT
(Root.ConfigMT=3). It is thus possible for the guest MMU to support a guest TLB with an RPU.

 The Virtualization Privileged Resource Architecture

99microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06

Refer to Table 4.22 for possible MMU configurations with an RPU.

4.14.2.2 Architectural Control

Additional software visible control has been added for lightweight virtualization.

1. GuestCtl0ExtFCD

This field disables hardware generation of Guest Hardware Field Change Exception, and Guest Software Field
Change Exceptions. Consequently, root software does not need to support related exception handlers.

See Section 5.6 for reference.

2. GuestCtl3GLSS

This field allows virtualization Shadow Set allocation among guests. This root managed field provides the lowest
shadow set allocated to a guest, with the upper bounds provided by root-writeable Guest.SRSCtlHSS . The context
switch penalty is minimized as root need only write GuestCtl3GLSS when entering a new guest.

See Section 5.5 and Section 4.9.1 for reference.

3. GuestCtl0ExtMG,OG,BG

These fields have been introduced to enable GPSI on guest access to specified guest CP0 registers. This is useful
for fast guest context switching. In this case, root will save and restore limited guest CP0 registers, but in case the
unsaved registers are accessed by guest, then an exception to root will allow root software to save and restore the
effected registers opportunistically.

See Section 5.6 for reference.

4. GuestCtl2GRIPL,GEICSS,GVEC

See Section 5.4 and Figure 5.4, for reference for reference.

In EIC(External Interrupt Controller) mode for interrupt handling, GuestCtl2 provides the capability of fast
guest-to-guest interrupt switching capability. A guest interrupt on the root interrupt bus from the EIC will cause
capture of interrupt related state (GRIPL,GEICSS,GVEC) in GuestCtl2. Guest entry will subsequently cause
hardware to load GRIPL and GEICSS into guest context automatically, and GVEC would be used by the guest
interrupt handler directly. The root interrupt handler thus does not have to copy state from GuestCtl2 to guest
context.

Table 4.22 MMU Configurations with RPU

Guest Logical Address
Translation

Root Logical Address
Translation1st Pass 2nd Pass

FMT RPU FMT

TLB RPU FMT

4.14 Lightweight Virtualization

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 100

See Section 4.8.1.2 for a description of EIC handling.

4.14.2.3 Optional Features of Virtualization Architecture

Certain features are optional in the virtualization architecture. An implementation may choose to support such fea-
tures based on the class of applications that the product will support. An example being that an implementation need
not support root write of all Configuration fields listed in Table 4.12.

 The Virtualization Privileged Resource Architecture

101 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

Chapter 5

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 102

Coprocessor 0 (CP0) Registers

The Coprocessor 0 (CP0) registers provide the interface between the Instruction Set Architecture (ISA) and the Privi-
leged Resource Architecture (PRA). The CP0 registers that are added or extended by the Virtualization Module are
discussed below, with the registers presented in numerical order, first by register number, then by select field number.

5.1 CP0 Register Summary

Table 5.1 lists the CP0 registers affected by the Virtualization Module specification, in numerical order. The individ-
ual registers are described later in this document. Registers which are not described here follow the definitions from
the microMIPS32 Privileged Resource Architecture. The Sel column indicates the value to be used in the field of the
same name in the MFC0 and MTC0 instructions.

Section 4.6.3 “Guest CP0 registers” describes CP0 register availability in guest mode.

Table 5.1 Virtualization Module Changes to Coprocessor 0 Registers in Numerical Order

Register
Number Sel

Register
Name Modification Reference

Compliance
Level

12 6 GuestCtl0 New Register. Controls guest mode behavior. Section 5.2 Required

10 4 GuestCtl1 New Register. Guest ID Section 5.3 Optional

10 5 GuestCtl2 New Register. Interrupt related Section 5.4 Optional

10 6 GuestCtl3 New Register. GPR Shadow Set related. Section 5.5 Optional

11 4 GuestCtl0Ext Extension to GuestCtl0 Section 5.6 Optional

12 7 GTOffset New Register. Guest timer offset. Section 5.7 Required

13 0 Cause Addition of hypervisor cause code. Section 5.8 Required

16 3 Config3 Identifies Virtualization Module feature set. Section 5.9 Required

19 0 WatchHi Watch Debug. Section 5.10 Optional

25 0 PerfCnt Performance Counter, adds virtualization support. Section 5.11 Optional

8 0 BadVaddr Upper 32-bits of BadVaddr for XPA (Extended
Physical Address).
MT(F)H(G)C0 must be used for access.

Section 5.12 Optional

10 0 EntryHi Upper 32-bits of EntryHi for XPA (Extended
Physical Address).
MT(F)H(G)C0 must be used for access.

Section 5.13 Optional

31 2 KScratch1 Required in root context. - Required

31 3 KScratch2 Required in root context. - Required

 Coprocessor 0 (CP0) Registers

103 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

5.2 GuestCtl0 Register (CP0 Register 12, Select 6)

Compliance Level: Required by the Virtualization Module.

The GuestCtl0 register contains control bits that indicate whether the base mode of the processor is guest mode or
root mode, plus additional bits controlling guest mode access to privileged resources. The GuestCtl0 register is acces-
sible only in root mode.

The GuestCtl0 register is instantiated per-VPE in a MT Module processor. This register is added by the Virtualization
Module.

Note on behaviour of GuestCtl0DRG/RAD: These R/W fields define additional functions for the Guest and Root TLBs.
Both must be interpreted together. An implementation does not have to support all valid combinations. Root software
can test supported combinations by writing then reading legal values. Legal values for (RAD,DRG)={00,01,11}.

Figure 5.1 shows the format of the Virtualization Module GuestCtl0 register; Table 5.2 describes the GuestCtl0 regis-
ter fields.

Figure 5.1 GuestCtl0 Register Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GM RI MC CP0 AT GT CG CF G1 Impl
G

0E PT ASE PIP

R
A

D

D
R

G

G
2 GExcCode

S FC
2

S FC
1

5.2 GuestCtl0 Register (CP0 Register 12, Select 6)

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 104

Table 5.2 GuestCtl0 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

GM 31 Guest Mode
The processor is in guest mode when GM=1, Root.StatusEXL=0 and

Root.StatusERL=0 and Root.DebugDM=0.

R/W 0 Required

RI 30 Guest Reserved Instruction Redirect. R/W 0 Required

MC 29 Guest Mode-Change exception enable. The purpose of this enable is to
provide Root software control over certain mode-changing events
within guest context that may be frequent in guest context by causing
Field Change exceptions.

R/W 0 Required

Encoding Meaning

0 Reserved Instruction exceptions dur-
ing guest-mode execution are taken in
guest mode.

1 Reserved Instruction exceptions dur-
ing guest-mode execution result in a
Guest Reserved Instruction Redirect
exception, taken in root mode.

Encoding Meaning

0 During guest mode execution a hardware
initiated change to Guest.StatusEXL will

not trigger a Guest Hardware Field
Change Exception.
During guest mode execution, a software
initiated change to Guest.StatusUM/KSU
will not trigger a Guest Software Field
Change Exception.

1 During guest mode execution a hardware
initiated change to Guest.StatusEXL will

trigger a Guest Hardware Field Change
Exception.
During guest mode execution, a software
initiated change to Guest.StatusUM/KSU

will trigger a Guest Software Field
Change Exception.

 Coprocessor 0 (CP0) Registers

105 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

CP0 28 Guest access to coprocessor 0.

The list of Guest Privileged Sensitive instructions which trigger a
Guest Privileged Sensitive Instruction exception is given in Section
4.7.7
The CP0 bit has no other effect on the operation of coprocessor 0 in
guest mode.

R/W 0 Required

Table 5.2 GuestCtl0 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Guest-kernel use of any Guest Privi-
leged Sensitive Instruction will trigger
a Guest Privileged Sensitive Instruc-
tion exception.
E.g., Guest use of TLBWI always
causes GPSI if CP0=0.

1 Guest-kernel use of selective Guest
Privileged Sensitive Instructions is
permitted, subject to all other excep-
tion conditions.
Eg., Guest use of TLBWI only causes
GPSI if GuestCtl0AT !=3 while CP0=1

5.2 GuestCtl0 Register (CP0 Register 12, Select 6)

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 106

AT 27:26 Guest Address Translation control.

Guest TLB resources are:
• TLB related Instructions - TLBWR, TLBWI, TLBR, TLBP, TLB-

INV, TLBINVF.
• Supporting Registers - Index, Random, EntryLo0, EntryLo1,

EntryHi, Context, XContext, ContextConfig, PageMask,
PageGrain, SegCtl0, SegCtl1, SegCtl2, PWBase, PWField,
PWSize, PWCtl.

If the Guest TLB resources (excluding Index, Random, EntryLo0,
EntryLo1, Context, XContext, ContextConfig, PageMask and
EntryHi) are under Root control (GuestCtl0AT=1), Guest use of these

instructions or access to any of these registers (see Table 4.8), will
trigger a Guest Privileged Sensitive Instruction exception, allowing
Root to control Guest address translation directly. For additional infor-
mation refer to Table 4.21, Entry: “Root control of Guest TLB map-
ping and Guest TLB resources.”

In default mode (GuestCtl0AT=3), the Guest TLB resources are active

under Guest control. Refer to Section 4.5 “Virtual Memory” for addi-
tional information on guest virtual address translation.

R or R/W
if more

than
default
mode
imple-

mented.

Imple-
mentation

defined

Required

Table 5.2 GuestCtl0 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Reserved.

1 Guest MMU under Root control.

Guest and Root MMU both implemented and
active in hardware.
This mode is optional.

2 Reserved

3 Guest MMU under Guest control.

Guest and Root MMU both implemented and
active in hardware.
This mode is required.

 Coprocessor 0 (CP0) Registers

107 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

GT 25 Timer register access.

The GT bit has no other effect on the operation of timers in guest
mode.

R/W 0 Required

CG 24 Cache Instruction Guest-mode enable.
If R0, then GPSI exception will always occur. CG as an enable in thuis
thus optional.

CACHEE is optional in the baseline architecture.

R0,
R/W

0 Optional

CF 23 Config register access.

The CF bit has no other effect on the operation of Config register
fields in guest mode.

R/W 0 Required

Table 5.2 GuestCtl0 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Guest-kernel access to Count or
Compare registers, or a read from
CC with RDHWR will trigger a Guest
Privileged Sensitive Instruction
exception.

1 Guest kernel read access from Count
and guest-kernel read or write access
to Compare is permitted. Guest reads
from CC using RDHWR are permit-
ted in any mode.

Encoding Meaning

0 A Guest Privileged Sensitive Instruc-
tion exception will result from use the
CACHE, CACHEE instruction.

1 The CACHE, CACHEE instruction
can be used with an Effective Address
Operand type of ‘Address’. A Guest
Privileged Sensitive Instruction
exception will result from use of any
other Effective Address Operand type.

Encoding Meaning

0 Guest-kernel write access to
Config0-7 will trigger a Guest Privi-
leged Sensitive Instruction exception.

1 Guest-kernel access to Config0-7 is
permitted.

5.2 GuestCtl0 Register (CP0 Register 12, Select 6)

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 108

G1 22 GuestCtl1 register implemented. Set by hardware. R preset Required

Impl 21..20 Implementation defined.
These bits are implementation dependent and not
defined by the architecture. If not implemented,
they must be ignored on write and read as zero.
If implemented and if modifying the behavior of
the processor, it must be defined in such a way that
correct behavior is preserved if software, with no knowledge
of these bits, reads the GuestCtl0 register, modifies
another field, and writes the updated value back to the
GuestCtl0 register.

R/W 0 Required

G0E 19 GuestCtl0Ext register implemented. Set by hardware. R preset Required

PT 18 Defines the existence of the Pending Interrupt Passthrough feature.

Implementation of the Pending Interrupt Passthrough feature is
strongly recommended.

R preset Required

ASE 17..16 Reserved for MCU Module Pending Interrupt Passthrough. 0 0 Required for
MCU Module;

Otherwise
Reserved

Table 5.2 GuestCtl0 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Unimplemented

1 Implemented.

Encoding Meaning

0 Unimplemented

1 Implemented.

Encoding Meaning

0 GuestCtl0PIP not supported.

GuestCtl0PIP is a reserved field.

All external interrupts are processed
via Root intervention.

1 GuestCtl0PIP supported. Interrupts

may be assigned to Root or Guest.

 Coprocessor 0 (CP0) Registers

109 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

PIP 15..10 Pending Interrupt Passthrough.
In non-EIC mode, controls how external interrupts are passed through
to the guest CP0 context. Interpreted as a bit mask and applies 1:1 to
Guest.CauseIP[7:2]. GuestCtl1PIP may be extended by GuestCtl1ASE.

Existence of the PIP feature is defined by the GuestCtl0PT field.

See Section 4.8.

R/W
R0 if

unimple-
mented

0 Required

RAD 9 RAD, or “Root ASID Dealias” mode determines the means that a Vir-
tualized MMU implementation uses Root ASID to dealias different
contexts.

R 0 Required

DRG 8 DRG, or “Direct Root to Guest” access determines whether an imple-
mentation provides root kernel the means to access guest entries
directly in the Root TLB for access to guest memory.
If GuestCtl0DRG=1 then GuestCtl0RID must be used. If GuestID for

root operation is non-zero, root is in kernel mode, Root.Statu-
sEXL,ERL=0 and DebugDM=0, then all root kernel data accesses are

mapped, root SegCtl is ignored and Root TLB CCA is used. Access in
root mode by other than kernel will cause an address error. H/W must
set G=1 as if the access were for guest.

DRG is R0 if only DRG=0 supported, otherwise it must be R/W.

R0,
R/W

0 Required

Table 5.2 GuestCtl0 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Corresponding interrupt request is not
visible in guest context.

1 Corresponding interrupt request is
visible in guest context.

Encoding Meaning

0 GuestID used to dealias both Guest
and Root TLB entries.

1 Root ASID is used to dealias Root
TLB entries, while Guest TLB con-
tains only one context at any given
time.

Encoding Meaning

0 Root software cannot access guest
entries directly.

1 Root software can access guest entries
directly.

5.2 GuestCtl0 Register (CP0 Register 12, Select 6)

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 110

Table 5.3 describes the cause codes use for GExcCode.

G2 7 GuestCtl2 register implemented. Set by hardware. R preset Required

GExc-
Code

6..2 Hypervisor exception cause code. Described in Table 5.3.
This field is UNDEFINED on a root exception.

R Undefined Required

SFC2 1 Guest Software Field Change exception enable for Guest.StatusCU[2].

The purpose of this enable is to provide Root software control over
guest COP2 enable related Field Change exception. Guest software
may utilize StatusCU2 for COP2 specific context switching.

R/W if
imple-

mented, 0
otherwise

0 Optional

SFC1 0 Guest Software Field Change exception enable for Guest.StatusCU[1].

The purpose of this enable is to provide Root software control over
guest COP1 enable related Field Change exception. Guest software
may utilize StatusCU1 for COP1 specific context switching.

R/W if
imple-

mented, 0
otherwise.

0 Optional

Table 5.3 GuestCtl0 GExcCode values

Exception code value

Mnemonic DescriptionDecimal Hexadecimal

0 0x00 GPSI Guest Privileged Sensitive instruction. Taken when execution of a Guest Privi-
leged Sensitive Instruction was attempted from guest-kernel mode, but the
instruction was not enabled for guest-kernel mode.

1 0x01 GSFC Guest Software Field Change event

2 0x02 HC Hypercall

Table 5.2 GuestCtl0 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Unimplemented

1 Implemented.

Encoding Meaning

0 GSFC exception taken if CU[2] is
modified by guest.

1 GSFC exception not taken if CU[2]
modified by guest.

Encoding Meaning

0 GSFC exception taken if CU[1] is
modified by guest.

1 GSFC exception not taken if CU[1]
modified by guest.

 Coprocessor 0 (CP0) Registers

111 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

5.3 GuestCtl1 Register (CP0 Register 10, Select 4)

Compliance Level: Optional in the Virtualization Module.

The GuestCtl1 register defines GuestID control fields for Root (GuestCtl1RID) and Guest (GuestCtl1ID) which may be
used in the context of TLB instructions, instruction and data address translation. The GuestCtl1RID field additionally
is written by the processor on a TLBR or TLBGR instruction in Root mode, then containing the GuestID read from
the TLB entry. A TLBR executed in Guest mode does not cause a write to either GuestCtl1ID and GuestCtl1RID.

GuestCtl1 is optional and thus the use of GuestID is optional in the context of TLB instructions, instruction and data
address translation. The GuestCtl1 register only exists in Root Context. GuestID value of 0 is reserved for Root.

Section 4.5.1 “Virtualized MMU GuestID Use” provides additional detail on GuestID usage as it applies to instruc-
tion and data address translation. Section 4.6.2 “New CP0 Instructions” describes the TLB instructions and their use
of GuestID.

The primary purpose of the GuestID is to provide a unique component of the Guest/Root TLB entry eliminating TLB
invalidation overhead on virtual machine level context switch.

A system implementing a GuestID is required to support a guest identifier field (GID) in each Guest and Root TLB
entry. This GuestID field within the TLB is not accessible to the Guest. While operating in guest context, the behavior
of guest TLB operations is constrained by the GuestCtl1ID field so that only guest TLB entries with a matching GID
field are considered.

The actual number of bits usable in the GuestCtl1ID and GuestCtl1RID fields is implementation dependent. Software
may determine the usable size of these fields by writing all ones and reading the value back. The size of GuestCtl1ID

and GuestCtl1RID must be equal.

The GuestCtl1 register is instantiated per-VPE in a MT Module processor.

3 0x03 GRR Guest Reserved Instruction Redirect. A Reserved Instruction exception would
be taken in guest mode. When GuestCtl0RI=1, this root-mode exception is

raised before the guest-mode exception can be taken.

4 - 7 0x4 - 0x7 IMP Available for implementation specific use

8 0x08 GVA Guest mode initiated Root TLB exception has Guest Virtual Address available.
Set when a Guest mode initiated TLB translation results in a Root TLB related
exception occurring in Root mode and the Guest Physical Address is not avail-
able.

9 0x09 GHFC Guest Hardware Field Change event

10 0x0A GPA Guest mode initiated Root TLB exception has Guest Physical Address avail-
able.
Set when a Guest mode initiated TLB translation results in a Root TLB related
exception occurring in Root mode and the Guest Physical Address is available.

11 - 31 0xB - 0x1f - Reserved

Table 5.3 GuestCtl0 GExcCode values

Exception code value

Mnemonic DescriptionDecimal Hexadecimal

5.4 GuestCtl2 Register (CP0 Register 10, Select 5)

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 112

Figure 5.2 shows the format of the Virtualization Module GuestCtl1 register; Table 5.4 describes the GuestCtl1 regis-
ter fields.

Figure 5.2 GuestCtl1 Register Format

5.4 GuestCtl2 Register (CP0 Register 10, Select 5)

Compliance Level: Optional in the Virtualization Module.

The GuestCtl2 register is optional in an implementation. It is only required if support for Virtual Interrupts in
non-EIC mode is included in an implementation. Alternatively, if EIC mode is supported, then GuestCtl2 is required.
Refer to Section 4.8.1 “External Interrupts” for a description of interrupt handling in EIC and non-EIC modes.

An implementation that supports the virtual interrupt functionality of GuestCtl2 is not required to support root writes
of Guest.CauseIP[7:2] or Guest.CauseRIPL as described in Table 4.12.

GuestCtl2 is present in an implementation if GuestCtl2G2=1.

The GuestCtl2 register is instantiated per-VPE in a MT Module processor.

Figure 5.3 shows the format of the Virtualization Module GuestCtl2 register in non-EIC mode. Table 5.5 describes
the non-EIC mode GuestCtl2 register fields.

Figure 5.4 shows the format of the Virtualization Module GuestCtl2 register in EIC mode. Table 5.6 describes the
EIC mode GuestCtl2 register fields.

Figure 5.3 GuestCtl2 Register Format for non-EIC mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EID RID 0 ID

Table 5.4 GuestCtl1 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

EID 31..24 External Interrupt Controller Guest ID.
Required if an External Interrupt Controller (EIC) is supported.
A guest interrupt which is posted by the EIC to the root interrupt bus,
must cause the Guest ID of the root interrupt bus to be registered in EID
once the interrupt is taken.
If implemented, the field is read-only and set by hardware.
If not implemented then must be written as zero; returns zero on read.

R0 or R 0 Optional

RID 23..16 Root control GuestID. Used by root TLB operations, and when
GuestCtl0DRG=1 in root mode.

R/W 0 Required

0 15..8 Must be written as zero; returns zero on read. R0 0 Reserved

ID 7..0 Guest control GuestID. Identifies resident guest. Applies to guest
address translation.

R/W 0 Required

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASE HC 0 ASE VIP 0 Impl

 Coprocessor 0 (CP0) Registers

113 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

Figure 5.4 GuestCtl2 Register Format for EIC mode
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASE GRIPL 0 GEICSS 0 GVEC

Table 5.5 non-EIC mode GuestCtl2 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

ASE 31:30 MCU Module extension for HC. Must be written as zero; returns zero
on read.

R0 0 Reserved

HC 29..24 Hardware Clear for GuestCtl2VIP

This set of bits maps one to one to GuestCtl2VIP.

HC may be bit-wise Read-only or R/W. If a bit is Read-only, then it may
be preset to 0 or 1. Similarly, if a bit is R/W, then it may be reset to 0 or
1. The interpretation of 0 or 1 state follows.

In the case of HC=0, Guest.CauseIP[n+2] could continue to be asserted

due to an external interrupt when GuestCtl2VIP[n] is cleared by soft-

ware. Source of external interrupt must be serviced appropriately.

The choice of Read-only vs. R/W is implementation dependent. Root
software can write then read field to determine supported configuration.

R,
R/W

0 or 1 Optional

0 25..18 Must be written as zero; returns zero on read. R0 0 Reserved

ASE 17:16 MCU Module extension for VIP. Must be written as zero; returns zero
on read.

R0 0 Reserved

Encoding Meaning

0 The deassertion of related external
interrupt (IRQ[n]) has no effect on
GuestCtl2VIP[n]. Root software must

write zero to GuestCtl2VIP[n] to clear

the virtual interrupt.

1 The deassertion of related external
interrupt (IRQ[n]) causes
GuestCtl2VIP[n] to be cleared by h/w.

5.4 GuestCtl2 Register (CP0 Register 10, Select 5)

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 114

VIP 15..10 Virtual Interrupt Pending.
The VIP field is used by root to inject virtual interrupts into Guest con-
text. VIP[5..0] maps to Guest.StatusIP[7..2]. VIP effects Guest.StatusIP

in the the following manner:

R/W 0 Required

0 9..5 Must be written as zero; returns zero on read. R0 0 Reserved

Impl 4:0 Implementation.
These bits are implementation dependent and not
defined by the architecture. If not implemented,
they must be written as 0, and read as zero.
If implemented and if modifying the behavior of
the processor, it must be defined in such a way that
correct behavior is preserved if software, with no knowledge
of these bits, reads the GuestCtl2 register, modifies
another field, and writes the updated value back to the
GuestCtl2 register.

R/W 0 Required

Table 5.5 non-EIC mode GuestCtl2 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Guest.StatusIP[n+2] cannot be

asserted due to VIP[n], though it may
be asserted by an external interrupt
IRQ[n]. n = 5..0

1 Guest.StatusIP[n+2] must at least be

asserted due to VIP[n]. It may also be
asserted by a concurrent external
interrupt. n=5..0

 Coprocessor 0 (CP0) Registers

115 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

5.5 GuestCtl3 Register (CP0 Register 10, Select 6)

Compliance Level: Optional in the Virtualization Module.

The GuestCtl3 register is optional. It is required only if Shadow GPR Sets are supported, and the Shadow Sets used
by a guest are virtual and require mapping to physical Shadow Sets. With this mechanism, a pool of Shadow Sets can
be physically shared by partitioning the sets among multiple guests and root, under root control.

Virtual mapping of Guest GPR set(s) is supported if Guest SRSCtlHSS is writeable by root. Presence of GuestCtl3 can
be detected by root software by writing any non-zero value less than or equal to root SRSCtlHSS to Guest SRSCtlHSS.

If a read returns the value written, then GuestCtl3 is present.

Table 5.6 EIC mode GuestCtl2 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

ASE 31:30 MCU Module extension for GRIPL. Must be written as zero; returns
zero on read.

R0 0 Reserved

GRIPL 29..24 Guest RIPL
This field is written only when an interrupt received on the root interrupt
bus for a guest is taken. The RIPL(Requested Interrupt Priority Level)
sent by EIC on the root interrupt bus is written to this field.

Root software can write the field if it needs to modify the EIC value
before assigning to guest. It may also clear this field to prevent a transi-
tion to guest mode from causing an interrupt if this field was set with a
non-zero value earlier.

GRIPL is 10 bits only for an implementation that complies with the
MCU Module, otherwise it is 8 bits as in baseline architecture.

R/W 0 Required

GEICSS 21:18 Guest EICSS
This field is written only when an interrupt received on the root interrupt
bus for a guest is taken. The EICSS (External Interrupt Controller
Shadow Set) sent by EIC on the root interrupt bus is written to this field

Root software can write the field if it needs to modify the EIC value
before assigning to guest.

R/W Undefined Required

0 17:16 Must be written as zero; returns zero on read. R0 0 Reserved

GVEC 15:0 Guest Vector
This field is written only when an interrupt is received on the root inter-
rupt bus for a guest. The Vector Offset (or Number) sent by EIC on the
root interrupt bus is written to this field.

GVEC is not loaded into any guest CP0 field, but is used to generate an
interrupt vector in guest mode using the root interrupt bus vector and not
the guest interrupt bus vector. This will only occur if the interrupt was
first taken in root mode.

It is recommended that root software use write access only to restore
context, not to modify the value delivered by the EIC.

R/W Undefined Required

5.6 GuestCtl0Ext Register (CP0 Register 11, Select 4)

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 116

The GuestCtl3 register is instantiated per-VPE in a MT Module processor.

Figure 5.3 shows the format of the Virtualization Module GuestCtl3 register; Table 5.7 describes the GuestCtl3 regis-
ter fields.

Figure 5.5 GuestCtl3 Register Format

5.6 GuestCtl0Ext Register (CP0 Register 11, Select 4)

Compliance Level: Optional in the Virtualization Module.

GuestCtl0Ext is an optional extension to GuestCtl0. If not supported, the register must read as 0.

GuestCtl0G0E should be read by software to determine if GuestCtl0Ext is implemented.

The GuestCtl0Ext register is instantiated per-VPE in a MT Module processor.

Figure 5.6 shows the format of the Virtualization Module GuestCtl0Ext register; Table 5.8describes the GuestCtl0Ext
register fields.

Figure 5.6 GuestCtl0Ext Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 GLSS

Table 5.7 GuestCtl3 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

0 31:4 This bit must be written as zero, returns zero on read. R0 0 Reserved

GLSS 3:0 Guest Lowest Shadow Set number.
This determines the lowest physical Shadow Set number assigned by
root to guest. Guest is thus assigned physical Shadow Sets GLSS to
GLSS plus Guest SRSCtlHSS.

If this field is reserved, then all writes must be zero, and reads should
return 0.

 R0,
R/W

0 Required

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 RPW NCC 0

C
G

I

FC
D

O
G

B
G

M
G

 Coprocessor 0 (CP0) Registers

117 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

Table 5.8 GuestCtl0Ext Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

0 31:6 Must be written as zero, returns zero on read. R0 0 Reserved

RPW 9:8 Root Page Walk configuration.
Determines whether Root COP0 Page Walk registers are used for GPA
to RPA or RVA to RPA translations, or both.
Support for RPW is optional. If this field is read-only 0, it implies page-
walk is supported for both cases.

R0,
R/W

0 Optional

NCC 7:6 Nested Cache Coherency Attributes
Determines whether guest CCA is modified by root CCA in 2nd step of
guest address translation.

R Preset Optional

0 5 Must be written as zero, returns zero on read. R0 0 Reserved

Encoding Meaning

00 Pagewalk, if enabled, is enabled for
both. Root software is responsible for
restoring COP0 Page Walk related
registers on context switch between
root and guest.

01 Reserved

10 Pagewalk in root context is enabled
for guest GPA to RPA translation.
Root miss in root TLB will cause an
exception.

11 Pagewalk in root context is enabled
for root RVA to RPA translation.
Guest miss in root TLB will cause a
root exception.

Encoding Meaning

00 Guest CCA is independent of root CCA

01 Guest CCA is modified by root CCA in
manner described in Table 4.4

10 Reserved

11 Reserved

5.6 GuestCtl0Ext Register (CP0 Register 11, Select 4)

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 118

CGI 4 Related to GuestCtl0CG. Allows execution of CACHE, CACHEE Index

Invalidate operations in guest mode.

This field is R0 if feature is not implemented.
The CACHEE instruction is optional in the baseline architecture.

R0,
R/W

0 Optional

FCD 3 Disables Guest Software/Hardware Field Change Exceptions
(GSFC/GHFC).
This mode is useful for an implementation with root software that is not
a full-featured hypervisor. For e.g., the software may just support mem-
ory protection, but may not require protection of CP0 state.

If FCD=1, then hardware must treat guest write, in case of GSFC, and
hardware events, in case of GHFC, as in the baseline architecture.

This field is R0 if feature is not implemented.

R0,
R/W

0 Optional

Table 5.8 GuestCtl0Ext Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Definition of GuestCtl0CG does not

change.

1 If GuestCtl0CG =1 and

GuestCtl0ExtCGI =1, then all CACHE,

CACHEE Index Invalidate (code
0xb000) operations may execute in
guest mode without causing a GPSI.

Encoding Meaning

0 GSFC or GHFC event will cause
exception.

1 GSFC or GHFC event will not cause
exception.

 Coprocessor 0 (CP0) Registers

119 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

5.7 GTOffset Register (CP0 Register 12, Select 7)

Compliance Level: Required by the Virtualization Module.

Timekeeping within the guest context is controlled by root mode. The guest time value is generated by adding the
two’s complement offset in the Root.GTOffset register to the root timer in value Root.Count.

OG 2 Other GPSI Enable. Applies to UserLocal, HWREna, LLAddr, Reserved
(for Architecture), UserTraceData1, UserTraceData2, KScratch1
through KScratch6, when implemented. If function is not supported, this
field reads as 0.

For a description of Reserved for Architecture registers, see Section
4.6.3.1 .
UserTraceData1, UserTraceData2 are optional CP0 registers defined in
MIPS PDTrace, iFlowTrace specifications.

This field is R0 if feature is not implemented.

R0,
R/W

0 Optional

BG 1 Bad register GPSI Enable. Applies to BadVAddr, BadInstr, BadInstrP
when implemented. If function is not supported, this field reads as 0.

This field is R0 if feature is not implemented.

R0,
R/W

0 Optional

MG 0 MMU GPSI Enable. Applies to Index, Random, EntryLo0, EntryLo1,
Context, ContextConfig, PageMask, EntryHi. If function is not sup-
ported, this field reads as 0.

This field is R0 if feature is not implemented.

R0,
R/W

0 Optional

Table 5.8 GuestCtl0Ext Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 GPSI not enabled for these registers
unless GuestCtl0CP0=0.

1 GPSI enabled for these registers.

Encoding Meaning

0 GPSI not enabled for these registers
unless GuestCtl0CP0=0.

1 GPSI enabled for these registers.

Encoding Meaning

0 GPSI not enabled for these registers
unless GuestCtl0CP0=0.

1 GPSI enabled for these registers.

5.8 Cause Register (CP0 Register 13, Select 0)

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 120

The guest time value is used to generate timer interrupts within the guest context, by comparison with the
Guest.Compare register. The guest time value can be read from the Guest.Count register. Guest writes to the
Guest.Count register always result in a Guest Privileged Sensitive Instruction exception.

The number of bits supported in GTOffset is implementation dependent but must be non-zero. It is recommended that
a minimum of 16 bits be implemented. Root software can check the number of implemented bits by writing all ones
and then reading. Unimplemented bits will return zero.

The GTOffset register is instantiated per-VPE in a MT Module processor. This register is added by the Virtualization
Module.

See Section 4.6.8 “Guest Timer”.

Figure 5.7 shows the Virtualization Module format of the GTOffset register; Table 5.9 describes the GTOffset register
fields.

Figure 5.7 GTOffset Register Format

5.8 Cause Register (CP0 Register 13, Select 0)

Compliance Level: Required by the Virtualization Module.

As in microMIPS32, the Cause register describes the cause of the most recent exception, and provides control of soft-
ware interrupt requests and interrupt vector selection.

The behavior of the Cause register is changed by the Virtualization Module only by the addition of one new cause
code.

The Cause register is instantiated per-VPE in a MT Module processor.

Figure 5.8 shows the format of the Cause register; Table 5.10 describes fields modified by the Virtualization Module.

Figure 5.8 Virtualization Module Cause Register Format

31 0

GTOffset

Table 5.9 GTOffset Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

GTOffset 31:0 Two’s complement offset from Root.Count R/W 0 Required

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 10 9 8 7 6 2 1 0

BD TI CE DC PCI 0 IV WP 0
Mod-
ule

IP7..IP2 / RIPL IP1..IP0 0 ExcCode 0

 Coprocessor 0 (CP0) Registers

121 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

Table 5.11 describes the new cause code value defined for ExcCode.

5.9 Configuration Register 3 (CP0 Register 16, Select 3)

Compliance Level: Required by the Virtualization Module.

The Config3 register encodes additional capabilities. All fields in the Config3 register are read-only.

This register operates as described by the base architecture, except that the VZ field is added.

If Virtualization is supported (Config3VZ=1), and GuestID is supported, then explicit invalid TLB entry support
(EHINV) is required in order for a Guest to be able to detect invalid entries in the Guest TLB.

In Guest context, the VZ field is reserved and read as 0.

Figure 5-9 shows the format of the Config3 register; Table 5.12 describes the fields added to the Config3 register by
the Virtualization Module.

Table 5.10 Cause Register Field Description, modified by Virtualization Module

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

ExcCode 6..2 Exception Code - See Table 5.11.
Addition of Hypervisor (GE) code.

R Undefined Required

Table 5.11 Cause Register ExcCode values

Exception code value

Mnemonic DescriptionDecimal Hexadecimal

27 0x1b GE Hypervisor Exception (Guest Exit). GE is set to 1 in following cases:
- Hypervisor-intervention exception occurred during guest mode execution.
- Hypercall executed in root mode
GuestCtl0GExcCode contains additional cause information.

Figure 5-9 Config3 Register Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M
B
P
G

C
M
G
C
R

M
S
A
P

B
P

B
I

S
C

P
W

V
Z

IPLW MMAR
M
u
C
o
n

ISA
On
Exc

ISA

U
L
R
I

R
X
I

D
S
P
2
P

D
S
P
P

C
T
X
T
C

I
T
L

L
P
A

V
E
I
C

V
I
n
t

SP
CD
M
M

M
T

SM TL

5.10 WatchHi Register (CP0 Register 19)

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 122

5.10 WatchHi Register (CP0 Register 19)

Compliance Level: Optional.

The WatchHi register is as defined in the base architecture, except that it has been extended to optionally support
watch management in virtualized guest and root contexts.

Figure 5-10 shows the format of the WatchHi register; Table 5.13 describes the added WatchHi register fields.

The WatchHi register has a 10b wide ASID field only if Config4AE=1. Otherwise, the ASID field is 8b wide.

5.11 Performance Counter Register (CP0 Register 25)

Compliance Level: Optional.

Table 5.12 Config3 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State

Complianc
eName Bits

VZ 23 MIPS® Virtualization Module implemented. This bit
indicates whether the Virtualization Module is present.

R Preset
(Always 0
in Guest
context)

Required

Figure 5-10 WatchHi Register Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M G WM 0 ASID 0 Mask I R W

Table 5.13 WatchHi Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

WM 29..28 This field is used for Root management of Watch func-
tionality in an implementation supporting the Virtualiza-
tion Module.
This field is reserved and read as 0, for Guest WatchHi,
or if such functionality is unimplemented. Software can
determine existence of this feature by writing then read-
ing this field.
Refer to Section 4.12 “Watchpoint Debug Support”

R/W or
R

0 Required
(Release 3)

Encoding Meaning

0 Virtualization Module not imple-
mented

1 Virtualization Module is implemented

 Coprocessor 0 (CP0) Registers

123 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

The PerfCnt register(s) are as defined in the base architecture, except that the EC field has been added to optionally
support performance measurement in virtualized guest and root contexts.

The Control Register associated with each performance counter controls the behavior of the performance counter.
Figure 5-11 shows the format of the Performance Counter Control Register; Table 5.14 describes the new Perfor-
mance Counter Control Register fields.

Figure 5-11 Performance Counter Control Register Format
31 30 29 25 24 23 22 16 15 14 11 10 5 4 3 2 1 0

M W Impl EC 0 PCTD EventExt Event IE U S K EXL

5.11 Performance Counter Register (CP0 Register 25)

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 124

Table 5.14 New Performance Counter Control Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

EC 24:23 Event Class. Root only. Reserved, read-only 0 in all
other contexts. An implementation may detect the exist-
ence of this feature by writing a non-zero value to the
field and reading. If value read is 0, then EC is not sup-
ported.

Root events are those that occur when GuestCtl0GM=0.

Root intervention events are those that occur when
GuestCtl0GM=1 and !(Root.StatusEXL=0 and Root.Sta-

tusERL=0 and Root.DebugDM=0)

Guest events are those that occur when GuestCtl0GM=1

and Root.StatusEXL=0 and Root.StatusERL=0 and

Root.DebugDM=0

For the case of root intervention mode, PerfCtlU/S/K/EXL

are ignored as Root.StatusEXL=1 and root must be in

kernel mode.

An implementation must qualify existing performance
counter events with the value of EC. For example, if an
event is “Instructions Graduated” and EC=0, then only
instructions graduated in root mode are counted.

R/W in
Root

mode.
R0 in all
others.

0 Optional

Encoding Meaning

0 Root events counted. [default]
Active in Root context.

1 Root intervention events counted,
Active in Root context.

2 Guest events counted.
Active in Guest context.

3 Guest events plus Root intervention
events counted.
Active in Guest context.
Root will only assign encoding if it
wants to give Guest visibility into
Root intervention events.

 Coprocessor 0 (CP0) Registers

125 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

5.12 BadVAddr Register (CP0 Register 8, Select 0)

Compliance Level: Required.
.i.<RegisterName>BadVAddr<Default Para Font> register;

The BadVAddr register is a read-only register that captures the most recent virtual address that caused one of the fol-
lowing exceptions:

• Address error (AdEL or AdES)

• TLB/XTLB Refill

• TLB Invalid (TLBL, TLBS)

• TLB Modified

The BadVAddr register does not capture address information for cache or bus errors, or for Watch exceptions, since
none is an addressing error.

BadVAddr is extended by upto 32-bits to support XPA (Extended Physical Address). Support for XPA is indicated by
Config3LPA in Release 5 of the base architecture. MTH(G)C0 and MFH(G)C0 must be used to access the upper
32-bits of these registers.

Figure 5-12 shows the format of the BadVAddr register; Table 5.15 describes the BadVAddr register fields.

Figure 5-12 BadVAddr Register Format
63 0

BadVAddr

Table 5.15 BadVAddr Register Field Descriptions

Fields

Description
Read/W

rite Reset State ComplianceName Bits

BadVAddr 63..32 Bad virtual address, upper 32-bit R Undefined Required

5.13 EntryHi Register (CP0 Register 10, Select 0)

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 126

5.13 EntryHi Register (CP0 Register 10, Select 0)

Compliance Level: Required for TLB-based MMU if XPA is implemented; Optional otherwise.
.i.<RegisterName>EntryHi<Default Para Font> register;

For Release 5 of the Architecture, the EntryHi register may be optionally extended by 32-bits in support of XPA
(Extended Physical Address). The EntryHi extension is required in an implementation that supports XPA since if the
guest physical address (GPA) is extended, then the virtual address input to the root MMU must be extended by the
same number of bits. The EntryHi extension only exists in root context.

Software can access the 32-bit extension with new MTH(G)C0 and MFH(G)C0 instructions defined in Release 5.

Figure 5-13 shows the format of the EntryHi register; Table 5.16 describes the EntryHi register fields. Both assume a
virtual address sized to accommodate a guest physical address of 59-bits. For an implementation that supports fewer
bits, the EntryHiFill and EntryHiVPNU can be sized accordingly.

Figure 5-13 EntryHi Register Format
63 62 61 59 58 35 32

Fill VPNU

VPN2 VPN2X
EH
INV ASIDX ASID

31 13 12 11 10 8 7 0

Table 5.16 EntryHi Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Fill 63..59 Fill bits reserved for expansion or reduction of the vir-
tual address space for XPA. Returns zeros on read,
ignored on write.

R 0 Required
(Release 5)

VPNU 58.32 Virtual Page Number Extension, Upper. VA59 32 of the

virtual address. VPNU is an extension of the VPN2 field.
This field is written by hardware on a TLB exception or
on a TLB read, and is written by software before a TLB
write.
The default width of this field as shown describes imple-
mentation of a 59-bit XPA solution. Any extension
greater than 36-bit PAE requires a greater than 32-bit
EntryHi implementation. If the processor implements a
different number of virtual address bits than this default,
the Fill field must be modifed accordingly.

R/W Undefined Required
(Release 5)

 Coprocessor 0 (CP0) Registers

127 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

5.14 Note on future CP0 features

Implementation note: Addition of a new feature to the root context does not mean that it must be included in the guest
context. However, when it becomes necessary to include a new architectural feature in the guest CP0 context, the fol-
lowing rules must be followed.

• A new architectural feature must have a corresponding Guest.Config field, which matches the Root.Config defini-
tion.

• The guest context must always be a subset of the root. No feature can be specified with a Guest.Config field
which does not also exist in the root.

• It is recommended that the Guest.Config field be writable from root mode, to allow the feature to be disabled and
become invisible to the guest.

• When the corresponding Guest.Config field indicates that a feature is present, it will operate as specified for root
mode, and will only use state held in the guest context. The functional behavior of the feature will not be altered
by fields in the root context. Timing may be affected.

• Root mode state can only be used to apply translations to the inputs or outputs of the feature, to check for excep-
tion conditions within the feature, or to check guest interaction with the feature. The GuestCtl0 register should be
used for single-bit exception-enable bits.

• Hypervisor exceptions can be triggered without the need for a GuestCtl0 bit, if the exception always results from
specified guest-mode interactions with the feature, or specified events within the feature itself. These exceptions
will be taken in root mode.

• All memory accesses performed by the feature must be translated under root control. This will be through the
root TLB unless another mechanism is provided (e.g. an IOMMU).

• Synchronous exceptions detected by the guest context have a higher priority than the equivalent exception
detected by the root context. Synchronous exceptions originate from the ‘inside of the onion’ - the first boundary
to be crossed is the guest context, then the root context.

• Asynchronous exceptions detected by the root context have higher priority than the equivalent exception detected
by the guest context. Asynchronous exceptions (e.g. interrupts, memory error) originate from ‘outside of the
onion’ - the first boundary to be crossed is the root context, and then the guest context.

Chapter 6

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 128

Instruction Descriptions

6.1 Overview

The Virtualization Module adds new and modifies existing instructions to allow root-mode access to the guest Copro-
cessor 0 context and the guest TLB. A new ‘hypercall’ instruction is added, to allow hypervisor calls to be made from
guest mode.

Table 6.1 lists in alphabetical order the instructions newly defined or modified by the Virtualization Module.

Table 6.1 New and Modified Instructions

Mnemonic Instruction Description Reference

HYPCALL Hypercall Trigger Hypercall exception. “HYPCALL” on
page 131

MFGC0 Move from Guest Coprocessor 0 Read guest coprocessor 0 into GPR. “MFGC0” on
page 132

MTGC0 Move from Guest Coprocessor 0 Write guest coprocessor 0 from GPR. “MTGC0” on
page 134

TLBGINV Guest TLB Invalidate Trigger guest TLB invalidate from root mode. “TLBGINV” on
page 137

TLBGINVF Guest TLB Invalidate Flush Trigger guest TLB invalidate from root mode. “TLBGINVF” on
page 139

TLBGP Probe Guest TLB Trigger guest TLB probe from root mode. “TLBGP” on
page 142

TLBGR Read Guest TLB Trigger guest TLB read from root mode. “TLBGR” on
page 145

TLBGWI Write Guest TLB Trigger guest TLB write from root mode. “TLBGWI” on
page 147

TLBGWR Write Guest TLB Trigger guest TLB write from root mode. “TLBGWR” on
page 149

TLBINV TLB Invalidate Modified TLB Invalidate behavior. “TLBINV” on
page 153

TLBINVF TLB Invalidate Flush Modified TLB Invalidate Flush behavior. “TLBINVF” on
page 151

TLBP TLB Probe Modified TLB probe behavior. “TLBP” on
page 154

TLBR Read TLB Modified TLB read behavior. “TLBR” on
page 156

TLBWI Write TLB, Indexed Modified indexed TLB write behavior. “TLBWI” on
page 159

 Instruction Descriptions

129 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

TLBWR Write TLB, Random Modified random TLB write behavior. “TLBWR” on
page 168

Table 6.1 New and Modified Instructions

Mnemonic Instruction Description Reference

6.1 Overview

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 130

Hypervisor Call HYPCALL

131 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

Format: HYPCALL microMIPS

Purpose: Hypervisor Call

To cause a Hypercall exception

Description:

A hypervisor call (hypercall) exception occurs, immediately and unconditionally transferring control to the exception
handler.

The code field is available for use as a software parameter. It can be retrieved by the exception handler from the
BadInstr register, or by loading the contents of the memory word containing the instruction.

Restrictions:

This instruction is available to debug, root kernel and guest kernel modes.

Execution of Hypercall in debug mode is defined, but will not cause a mode transition to root. The processor will stay
in debug mode (DebugDM=1), and root COP0 state is unmodified.

Refer to MD00047, “EJTAG Specification”, for rules regarding Hypercall exception processing in debug mode.
Hypercall exception falls into the category of “Other execution-based exceptions” in EJTAG Section 2.4.1. Debug-
DExcCode is set to GE=27 (see Table 5.3), no COP0 state is modified, and other modifications to COP0 Debug state
are made according to the rules in EJTAG Section 2.4.3.

Further, if root executes a hypercall in root mode, Root.CauseExcCode gets set to GE=27 (even though its not a guest-
exit) and GuestCtl0GExcCode is set to HC=2. Root can distinguish a root hypercall from a guest hypercall by looking
at GuestCtl0GM. If it is set, then the hypercall must have come from a guest, if it is reset, then hypercall must have
come from root since Root.StatusEXL must have been 0, otherwise hypercall in root mode would not cause an excep-
tion.

Execution of hypercall in either root-kernel or debug mode is not recommended.

Operation:

if IsCoprocessorEnabled(0) then
SignalException(HyperCall, 0)

else
SignalException(CoprocessorUnusable, 0)

endif

Exceptions:

HyperCall Exception

Coprocessor Unusable Exception

31 26 25 16 15 6 5 0

POOL32A
00000

code
HYPCALL
1100001101

POOL32AXf
111100

6 10 10 6

Move from Guest Coprocessor 0 IMFGC0

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 132

Format: MFGC0 rt, rs microMIPS
MFGC0 rt, rs, sel microMIPS

Purpose: Move from Guest Coprocessor 0

To move the contents of a guest coprocessor 0 register to a general register.

Description: GPR[rt] ← Guest.CPR[0, rs, sel]

The contents of the guest context coprocessor 0 register specified by the combination of rs and sel are loaded into
general register rt. Note that not all guest context coprocessor 0 registers support the sel field. In those instances, the
sel field must be zero.

Restrictions:

The results are UNDEFINED if the guest context coprocessor 0 does not contain the register specified by rs and sel.

The guest context does not implement the Virtualization Module. Use of this instruction in guest-kernel mode will
result in a Reserved Instruction exception, taken in guest mode.

MFGC0 must behave exactly the same as the corresponding guest MFC0 instruction, except that it will not cause
exceptions that are specific to guest, such as GPSI and GSFC. Specifically, if the guest register is replicated in guest
context, then the read will return the register value, if the register is Reserved for Architecture/Implementation or is
Not Available, the read returns 0, if the register is Shared (such as WatchHi) then the read will always return the
register value except that fields invisible to guest are zeroed out.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

if IsCoprocessorEnabled(0) then
if (Config3VZ = 0) then

SignalException(ReservedInstruction, 0)
break

endif
reg = rs

data ← Guest.CPR[0,reg,sel]
GPR[rt] ← data

else
SignalException(CoprocessorUnusable, 0)

endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 14 13 12 11 10 6 5 0

POOL32A
000000

rt rs 00 sel
MFGC0
10011

POOL32AXf
111100

6 5 5 2 3 5 6

Move from High Guest Coprocessor 0 MFHGC0

133 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

Format: MFHGC0 rt, rs microMIPS Release 5
MFHGC0 rt, rs, sel microMIPS Release 5

Purpose: Move from High Guest Coprocessor 0

To move the contents of the upper 32-bits of a guest coprocessor 0 register, extended by 32-bits, to a general register.

Description: GPR[rt] ← Guest.CPR[0,rs,sel][63:32]

The contents of the guest coprocessor 0 register specified by the combination of rs and sel are loaded into general
register rt. Note that not all coprocessor 0 registers support the sel field. In those instances, the sel field must be zero.

Restrictions:

The results are UNDEFINED if guest coprocessor 0 does not contain a register as specified by rs and sel, or the reg-
ister exists but is not extended by 32-bits, or the register is extended for XPA, but XPA is not enabled. XPA is a
Release 5 feature.

The guest context does not implement the Virtualization Module. Use of this instruction in guest-kernel mode will
result in a Reserved Instruction exception, taken in guest mode.

MFHGC0 must behave exactly the same as the corresponding guest MFHC0 instruction, except that it will not cause
exceptions that are specific to guest, such as GPSI and GSFC. Specifically, if the guest register is replicated in guest
context, then the read will return the register value, if the register is Reserved for Architecture/Implementation or is
Not Available, the read returns 0, if the register is Shared (e.g., WatchHi, but it is not extended) then the read will
always return the register value except that fields invisible to guest are zeroed out.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

if IsCoprocessorEnabled(0) then
reg ← rs
data ← Guest.CPR[0,reg,sel]
GPR[rt] ← data63..32

else
SignalException(CoprocessorUnusable, 0)

endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 14 13 11 10 6 5 0

POOL32A
000000

rt rs 00 sel
MFHGC0

10011
POOL32P

110100

6 5 5 3 5 6

Move to Guest Coprocessor 0 IMTGC0

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 134

Format: MTGC0 rt, rs microMIPS
MTGC0 rt, rs, sel microMIPS

Purpose: Move to Guest Coprocessor 0

To move the contents of a general register to a guest coprocessor 0 register.

Description: Guest.CPR[0, rs, sel] ← GPR[rt]

The contents of general register rt are loaded into the guest context coprocessor 0 register specified by the combina-
tion of rs and sel. Not all guest context coprocessor 0 registers support the sel field. In those instances, the sel field
must be set to zero.

Restrictions:

The results are UNDEFINED if guest context coprocessor 0 does not contain the register as specified by rs and sel or
the destination register is the Guest.Count register, which is read-only

The guest context does not implement the Virtualization Module. Use of this instruction in guest-kernel mode will
result in a Reserved Instruction exception, taken in guest mode.

MTGC0 must behave exactly the same as the corresponding guest MTC0 instruction, except that it will not cause
exceptions that are specific to guest, such as GPSI and GSFC. Specifically, if the guest register is replicated in guest
context, then the write must complete, if the register is Reserved for Architecture/Implementation or is Not Available,
the write is ignored, if the register is Shared (such as WatchHi) then the write always completes but does not effect
fields invisible to guest.

In a 64-bit processor, the MTGC0 instruction writes all 64 bits of register rt into the guest context coprocessor regis-
ter specified by rd and sel if that register is a 64-bit register.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

if IsCoprocessorEnabled(0) then
if (Config3VZ = 0) then

SignalException(ReservedInstruction, 0)
break

endif
data ← GPR[rt]
reg ← rs
Guest.CPR[0,reg,sel] ← data

else
SignalException(CoprocessorUnusable, 0)

endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 14 13 12 11 10 6 5 0

POOL32A
000000

rt rs 00 sel
MTGC0
11011

POOL32AXf
111100

6 5 5 2 3 5 6

Move to Guest Coprocessor 0 MTGC0

135 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

Move to High Guest Coprocessor 0 IMTHGC0

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 136

Format: MTHGC0 rt, rs microMIPS Release 5
MTHGC0 rt, rs, sel microMIPS Release 5

Purpose: Move to High Guest Coprocessor 0

To move the contents of a general register to the upper 32-bits of a guest coprocessor 0 register that has been extended
by 32-bits.

Description: Guest.CPR[0, rs, sel][63:32] ← GPR[rt]

The contents of general register rt are loaded into the guest coprocessor 0 register specified by the combination of rs
and sel. Not all coprocessor 0 registers support the the sel field. In those instances, the sel field must be set to zero.

Restrictions:

The results are UNDEFINED if guest coprocessor 0 does not contain a register as specified by rs and sel, or if the
register exists but is not extended by 32-bits, or the register is extended for XPA, but XPA is not enabled. XPA is a
Release 5 feature.

MTHGC0 must behave exactly the same as the corresponding guest MTHC0 instruction, except that it will not cause
exceptions that are specific to guest, such as GPSI and GSFC. Specifically, if the guest register is replicated in guest
context, then the write must complete, if the register is Reserved for Architecture/Implementation or is Not Available,
the write is ignored, if the register is Shared (such as WatchHi) then the write always completes but does not effect
fields invisible to guest.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

if IsCoprocessorEnabled(0) then
data ← GPR[rt]
reg ← rs
Guest.CPR[0,reg,sel][63:32] ← data

else
SignalException(CoprocessorUnusable, 0)

endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 14 13 11 10 6 5 0

POOL32A
000000

rt rs 00 sel
MTHGC0

11011
POOL32P

110100

6 5 5 2 3 5 6

Guest TLB Invalidate TLBGINV

137 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

Format: TLBGINV microMIPS

Purpose: Guest TLB Invalidate

TLBGINV invalidates a set of guest TLB entries based on ASID and guest Index match. The virtual address is
ignored in the match.

Implementation of the TLBGINV instruction is optional. The implementation of this instruction is indicated by the IE
field in Config4.

Implementation of EntryHIEHINV field is required for implementation of TLBGINV instruction.

Support for TLBGINV is recommended for implementations supporting VTLB/FTLB type TLB’s.

Description:

On execution of the TLBGINV instruction, the set of guest TLB entries with matching ASID are marked invalid,
excluding those guest TLB entries which have their G bit set to 1.

The EntryHIASID field has to be set to the appropriate ASID value before executing the TLBGINV instruction.

Behavior of the TLBGINV instruction applies to all applicable guest TLB entries and is unaffected by the setting of
the Guest.Wired register.

For JTLB-based MMU(ConfigMT=1):
All matching entries in the guest JTLB are invalidated. Index is unused.

For VTLB/FTLB -based MMU(ConfigMT=4):

A TLBGINV with Index set in guest VTLB range causes all matching entries in the guest VTLB to be invali-
dated. A TLBGINV with Index set in guest FTLB range causes all matching entries in the single addressed guest
FTLB set to be invalidated.

If TLB invalidate walk is implemented in software (Config4IE=2), then software must do these steps:

1. one TLBGINV instruction is executed with an index in guest VTLB range (invalidates all matching guest
VTLB entries)

2. a TLBGINV instruction is executed for each guest FTLB set (invalidates all matching entries in guest FTLB
set)

If TLB invalidate walk is implemented in hardware (Config4IE=3), then software must do these steps:

1. one TLBGINV instruction is executed (invalidates all matching entries in both guest FTLB & guest VTLB).
In this case, Index is unused.

In an implementation supporting GuestID (GuestCtl0G1=1), matching of guest TLB entries includes comparison of
the TLB entry GuestID with the Root GuestID control field, GuestCtl1RID .

Note that the TLBGINV instruction only invalidates guest virtual address translations in the guest TLB, invalidation
of guest physical address translations requires execution of the equivalent TLBINV instruction sequence in the root
TLB.

Restrictions:

31 26 25 16 15 6 5 0

POOL32A
000000

0000000000
TLBGINV

0100000101
POOL32Axf

111100

6 10 10 6

Guest TLB Invalidate ITLBGINV

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 138

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of avail-
able TLB entries (for the case of ConfigMT=4).

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

For processors that do not include a TLB, the operation of this instruction is UNDEFINED. The preferred implemen-
tation is to signal a Reserved Instruction Exception.

Operation:

if (Guest.ConfigMT=1 or
(Guest.ConfigMT=4 & Guest.Cοnfig4IE=2 & Index ≤ Guest.Config1MMU_SIZE-1))
startnum ← 0
endnum ← Guest.Config1MMU_SIZE-1

endif
// treating VTLB and FTLB as one array
if (Guest.ConfigMT=4 & Guest.Cοnfig4IE=2 & Index > Guest.Config1MMU_SIZE-1)

startnum ← start of selected Guest FTLB set // implementation specific
endnum ← end of selected Guest FTLB set - 1 //implementation specifc

endif

if (Guest.ConfigMT=4 & Guest.Cοnfig4IE=3))
startnum ← 0
endnum ← Guest.Config1MMU_SIZE-1 +
((Guest.Config4FTLBWays + 2) * Guest.Config4FTLBSets)

endif

if IsCoprocessorEnabled(0) then
for (i = startnum to endnum)

if ((Guest.TLB[i]ASID = Guest.EntryHiASID) & (Guest.TLB[i]G = 0))
if (GuestCtl0G1 = 1)

if (Guest.TLB[i]GuestID = GuestCtl1RID)
Guest.TLB[i]hardware_invalid ← 1

endif
else

Guest.TLB[i]hardware_invalid ← 1
endif

endif
endfor

else
SignalException(CoprocessorUnusable, 0)

endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Guest TLB Invalidate Flush TLBGINVF

139 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

Format: TLBGINVF microMIPS

Purpose: Guest TLB Invalidate Flush

TLBGINVF invalidates a set of Guest TLB entries based on Index match. The virtual address and ASID are ignored
in the match.

Implementation of the TLBGINVF instruction is optional. The implementation of this instruction is indicated by the
IE field in Config4.

Implementation of the EntryHIEHINV field is required for implementation of TLBGINV and TLBGINVF instruc-
tions.

Support for TLBGINVF is recommend for implementations supporting VTLB/FTLB type TLB’s.

Description:

On execution of the TLBGINVF instruction, all entries within range of guest Index are invalidated.

Behavior of the TLBGINVF instruction applies to all applicable guest TLB entries and is unaffected by the setting of
the Wired register.

For JTLB-based MMU(ConfigMT=1):

TLBGINVF causes all entries in the guest JTLB to be invalidated. Index is unused.

For VTLB/FTLB-based MMU(ConfigMT=4):

TLBINVF with Index in guest VTLB range causes all entries in the guest VTLB to be invalidated.

TLBINVF with Index in guest FTLB range causes all entries in the single corresponding set in the guest FTLB
to be invalidated.

If TLB invalidate walk is implemented in software (Config4IE=2), then software must do these steps:

1. one TLBGINV instruction is executed with an index in guest VTLB range (invalidates all matching guest
VTLB entries)

2. a TLBGINV instruction is executed for each guest FTLB set (invalidates all matching entries in guest FTLB
set)

If TLB invalidate walk is implemented in hardware (Config4IE=3), then software must do these steps:

1. one TLBGINV instruction is executed (invalidates all matching entries in both guest FTLB & guest VTLB).
In this case, Index is unused.

In an implementation supporting GuestID (GuestCtl0G1=1), matching of guest TLB entries includes comparison of
the TLB entry GuestID with the Root GuestID control field, GuestCtl1RID .

Note that the TLBGINVF instruction only invalidates guest virtual address translations in the guest TLB, invalidation
of guest physical address translations requires execution of the equivalent TLBINVF instruction sequence in the root
TLB.

31 26 25 16 15 6 5 0

POOL32A
000000

0000000000
TLBGINVF
0101000101

POOL32Axf
111100

6 10 10 6

Guest TLB Invalidate Flush ITLBGINVF

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 140

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries visible as defined by the Config4 register.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

For processors that do not include the standard TLB MMU, the operation of this instruction is UNDEFINED. The
preferred implementation is to signal a Reserved Instruction Exception.

Operation:

if (Guest.ConfigMT=1 or
(Guest.ConfigMT=4 & Guest.Cοnfig4IE=2 & Index ≤ Guest.Config1MMU_SIZE-1))
startnum ← 0
endnum ← Guest.Config1MMU_SIZE-1

endif
// treating VTLB and FTLB as one array
if (Guest.ConfigMT=4 & Guest.Cοnfig4IE=2 & Index > Guest.Config1MMU_SIZE-1)

startnum ← start of selected Guest FTLB set // implementation specific
endnum ← end of selected Guest FTLB set - 1 //implementation specifc

endif

if (Guest.ConfigMT=4 & Guest.Cοnfig4IE=3))
startnum ← 0
endnum ← Guest.Config1MMU_SIZE-1 +
((Guest.Config4FTLBWays + 2) * Guest.Config4FTLBSets)

endif

if IsCoprocessorEnabled(0) then
for (i = startnum to endnum)

if (GuestCtl0G1 = 1)
if (Guest.TLB[i]GuestID = GuestCtl1RID)

Guest.TLB[i]hardware_invalid ← 1
endif

else
Guest.TLB[i]hardware_invalid ← 1

endif
endfor

else
SignalException(CoprocessorUnusable, 0)

endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Guest TLB Invalidate Flush TLBGINVF

141 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

Probe Guest TLB for Matching Entry ITLBGP

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 142

Format: TLBGP microMIPS

Purpose: Probe Guest TLB for Matching Entry

To find a matching entry in the Guest TLB, initiated from root mode.

Description:

The Guest.Index register is loaded with the address of the Guest TLB entry whose contents match the contents of the
Guest.EntryHi register. If no Guest TLB entry matches, the high-order bit of the Guest.Index register is set.

In an implementation supporting GuestID (GuestCtl0G1=1), if the GuestID read does not match GuestCtl1RID, then
the match fails.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

If an implementation detects multiple matches, and does not detect all multiple matches on TLB write, then a TLBGP
instruction can take a Machine Check Exception if multiple matches occur.

For processors that do not include a TLB in the guest context, the operation of this instruction is UNDEFINED. The
preferred implementation is to signal a Reserved Instruction Exception.

Operation:

if IsCoprocessorEnabled(0) then
if (Config3VZ = 0) then

SignalException(ReservedInstruction, 0)
break

endif
Guest.Index ← 1 || UNPREDICTABLE31

// If a set-associative TLB is used, then a single set may be probed.

for i in 0...Guest.TLBEntries-1
if (((Guest.TLB[i]VPN2 and ~(Guest.TLB[i]Mask)) =

(Guest.EntryHiVPN2 and ~(Guest.TLB[i]Mask))) and
((Config4IE >= 2)and not TLB[i]hardware_invalid) and
(Guest.TLB[i]G or (Guest.TLB[i]ASID = Guest.EntryHiASID)))then

if (GuestCtl0G1 = 1)
if (Guest.TLB[i]GuestID = GuestCtl1RID)

Guest.Index ← i
endif

else
Guest.Index ← i

endif
endif

endfor
else

SignalException(CoprocessorUnusable, 0)
endif

31 26 25 16 15 6 5 0

POOL32A
000000

0
0000000000

TLBGP
0000000101

POOL32AXf
111100

6 10 10 6

Probe Guest TLB for Matching Entry TLBGP

143 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

Exceptions:

Coprocessor Unusable

Machine Check (implementation dependent)

Reserved Instruction

Probe Guest TLB for Matching Entry ITLBGP

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 144

Read Indexed Guest TLB Entry TLBGR

145 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

Format: TLBGR microMIPS

Purpose: Read Indexed Guest TLB Entry

To read an entry from the Guest TLB into the guest context, initiated from root mode.

Description:

The Guest.EntryHi, Guest.EntryLo0, Guest.EntryLo1, and Guest.PageMask registers are loaded with the con-
tents of the Guest TLB entry pointed to by the Guest.Index register. Note that the value written to the
Guest.EntryHi, Guest.EntryLo0, and Guest.EntryLo1 registers may be different from that originally written to the
TLB via these registers in that:

• The value returned in the VPN2 field of the EntryHi register may have those bits set to zero corresponding to the
one bits in the Mask field of the TLB entry (the least significant bit of VPN2 corresponds to the least significant
bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed after a TLB
entry is written and then read.

• The value returned in the PFN field of the EntryLo0 and EntryLo1 registers may have those bits set to zero cor-
responding to the one bits in the Mask field of the TLB entry (the least significant bit of PFN corresponds to the
least significant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed
after a TLB entry is written and then read.

• The value returned in the G bit in both the EntryLo0 and EntryLo1 registers comes from the single G bit in the
TLB entry. Recall that this bit was set from the logical AND of the two G bits in EntryLo0 and EntryLo1 when
the TLB was written.

In an implementation supporting GuestID, if the TLB entry is not marked invalid, the GuestCtl1RID field is written
with the GuestID of the TLB entry read.

Restrictions:

The operation is UNDEFINED if the contents of the Guest.Index register are greater than or equal to the number of
TLB entries in the guest context.

If root-mode access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

The guest context does not implement the Virtualization Module. Use of this instruction in guest-kernel mode will
result in a Reserved Instruction exception, taken in guest mode.

For processors that do not include a TLB in the guest context, the operation of this instruction is UNDEFINED. The
preferred implementation is to signal a Reserved Instruction Exception.

Operation:

if IsCoprocessorEnabled(0) then
if (Config3VZ = 0) then

SignalException(ReservedInstruction, 0)
break

endif
i ← Guest.Index
if i > (Guest.TLBEntries - 1) then

31 26 25 16 15 6 5 0

POOL32A
000000

0
0000000000

TLBGR
0001000101

POOL32AXf
111100

6 10 10 6

Read Indexed Guest TLB Entry ITLBGR

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 146

UNDEFINED
endif
if (Config4IE >= 2 && Guest.TLB[i]EHINV = 1) then

GuestCtl1RID ← 0
Guest.PagemaskMask ← 0
Guest.EntryHi ← 0
Guest.EntryLo1 ← 0
Guest.EntryLo0 ← 0
Guest.EntryHiEHINV ← 1
break

endif
if (GuestCtl0G1 = 1)

GuestCtl1RID ← Guest.TLB[i]GuestID
endif
Guest.PageMaskMask ← Guest.TLB[i]Mask
Guest.EntryHi ←

(Guest.TLB[i]VPN2 and not Guest.TLB[i]Mask) || # Masking impl dependent
05 || Guest.TLB[i]ASID

Guest.EntryLo1 ← 02 ||
(Guest.TLB[i]PFN1 and not Guest.TLB[i]Mask) || # Masking impl dependent
Guest.TLB[i]C1 || Guest.TLB[i]D1 || Guest.TLB[i]V1 || Guest.TLB[i]G

Guest.EntryLo0 ← 02 ||
(Guest.TLB[i]PFN0 and not Guest.TLB[i]Mask) || # Masking impl dependent
Guest.TLB[i]C0 || Guest.TLB[i]D0 || Guest.TLB[i]V0 || Guest.TLB[i]G

else
SignalException(CoprocessorUnusable, 0)

endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Write Indexed Guest TLB Entry TLBGWI

147 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

Format: TLBGWI microMIPS

Purpose: Write Indexed Guest TLB Entry

To write a Guest TLB entry indexed by the Index register, initiated from root mode.

Description:

The Guest TLB entry pointed to by the Guest.Index register is written from the contents of the Guest.EntryHi,
Guest.EntryLo0, Guest.EntryLo1, and Guest.PageMask registers. The information written to the Guest TLB
entry may be different from that in the Guest.EntryHi, Guest.EntryLo0, and Guest.EntryLo1 registers, in that:

• The value written to the VPN2 field of the TLB entry may have those bits set to zero corresponding to the one
bits in the Mask field of the PageMask register (the least significant bit of VPN2 corresponds to the least signif-
icant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed during a
TLB write.

• The value written to the PFN0 and PFN1 fields of the TLB entry may have those bits set to zero corresponding to
the one bits in the Mask field of PageMask register (the least significant bit of PFN corresponds to the least sig-
nificant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed during a
TLB write.

• The single G bit in the TLB entry is set from the logical AND of the G bits in the EntryLo0 and EntryLo1 regis-
ters.

• In an implementation supporting GuestID, GuestCtl1RID is written in the TLB entry.

If EHINV is implemented, the TLBGWI instruction also acts as an explicit TLB entry invalidate operation. The Guest
TLB entry pointed to by the Guest.Index register is marked invalid when guest EntryHIEHINV=1.

When EntryHIEHINV=1, no machine check generating error conditions exist.

Implementation of the TLBGWI invalidate feature is required if the TLBGINV and TLBGINVF instructions are
implemented, optional otherwise.

Restrictions:

The operation is UNDEFINED if the contents of the Guest.Index register are greater than or equal to the number of
TLB entries in the guest context.

If access to the root Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

On an FTLB enabled system, if Guest.Index is in FTLB range and the page size specified does not match FTLB
page size, recommended behavior is that the write not complete and a Machine Check Exception be signaled.

On an FTLB enabled system, for a write in FTLB range, if the VPN is inconsistent with Index, it is recommended that
a Machine Check Exception be signaled.

It is implementation dependent whether multiple TLB matches are detected on a TLBGWI, though it is recom-
mended. If a TLB write detects multiple matches, but not necessarily all multiple matches, then it is recommended
that a TLB lookup or TLB probe operation signal a Machine Check Exception on detection of multiple matches.

31 26 25 16 15 6 5 0

POOL32A
000000

0000000000
TLBGWI

0010000101
POOL32Axf

111100

6 10 10 6

Write Indexed Guest TLB Entry ITLBGWI

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 148

If multiple match detection is implemented, then on detection, it is recommended that the multiple match be invali-
dated and the write completed. It is recommended that no Machine Check Exception be signaled.

The guest context does not implement the Virtualization Module. Use of this instruction in guest-kernel mode will
result in a Reserved Instruction Exception, taken in guest mode.

For processors that do not include a TLB in the guest context, the operation of this instruction is UNDEFINED. The
preferred implementation is to signal a Reserved Instruction Exception.

Operation:

if IsCoprocessorEnabled(0) then
if (Config3VZ = 0) then

SignalException(ReservedInstruction, 0)
break

endif
i ← Guest.Index
if (Config4IE >= 2) then

Guest.TLB[i]hardware_invalid ← 0
if (EntryHIEHINV=1) then

Guest.TLB[i]hardware_invalid ← 1
endif

endif
Guest.TLB[i]Mask ← Guest.PageMaskMask
Guest.TLB[i]R ← Guest.EntryHiR
Guest.TLB[i]VPN2 ← Guest.EntryHiVPN2 and not Guest.PageMaskMask # Impl dependent
Guest.TLB[i]ASID ← Guest.EntryHiASID
Guest.TLB[i]G ← Guest.EntryLo1G and Guest.EntryLo0G
Guest.TLB[i]PFN1 ← Guest.EntryLo1PFN and not Guest.PageMaskMask # Impl dependent
Guest.TLB[i]C1 ← Guest.EntryLo1C
Guest.TLB[i]D1 ← Guest.EntryLo1D
Guest.TLB[i]V1 ← Guest.EntryLo1V
Guest.TLB[i]PFN0 ← Guest.EntryLo0PFN and not Guest.PageMaskMask # Impl dependent
Guest.TLB[i]C0 ← Guest.EntryLo0C
Guest.TLB[i]D0 ← Guest.EntryLo0D
Guest.TLB[i]V0 ← Guest.EntryLo0V
if (GuestCtl0G1) then

Guest.TLB[i]GuestID ← GuestCtl1RID
endif

else
SignalException(CoprocessorUnusable, 0)

endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Machine Check (disabled if guest EntryHIEHINV=1.)

Write Random Guest TLB Entry TLBGWR

149 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

Format: TLBGWR microMIPS

Purpose: Write Random Guest TLB Entry

To write a Guest TLB entry indexed by the Random register, initiated from root mode.

Description:

The Guest TLB entry pointed to by the Guest.Random register is written from the contents of the Guest.EntryHi,
Guest.EntryLo0, Guest.EntryLo1, and Guest.PageMask registers.

The information written to the Guest TLB entry may be different from that in the Guest.EntryHi, Guest.EntryLo0,
and Guest.EntryLo1 registers, in that:

• The value written to the VPN2 field of the Guest TLB entry may have those bits set to zero corresponding to the
one bits in the Mask field of the Guest.PageMask register (the least significant bit of VPN2 corresponds to the
least significant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed
during a Guest TLB write.

• The value written to the PFN0 and PFN1 fields of the TLB entry may have those bits set to zero corresponding to
the one bits in the Mask field of Guest.PageMask register (the least significant bit of PFN corresponds to the
least significant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed
during a Guest TLB write.

• The single G bit in the Guest TLB entry is set from the logical AND of the G bits in the Guest.EntryLo0 and
Guest.EntryLo1 registers.

• In an implementation supporting GuestID, GuestCtl1RID is written in the TLB entry.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

On an VTLB/FTLB enabled implementation, if the Pagemask register contains a page size differing from the FTLB
page size defined in Config4, then the write goes into a random entry in the VTLB.

It is implementation dependent whether multiple TLB matches are detected on a TLBGWR, though it is recom-
mended. If a TLB write detects multiple matches, but not necessarily all multiple matches, then a TLB lookup or TLB
probe operation should signal a Machine Check Exception on detection of multiple matches.

If multiple match detection is implemented, then on detection, the multiple match should be invalidated and the write
completed. No Machine Check Exception should be signaled.

The guest context does not implement the Virtualization Module. Use of this instruction in guest-kernel mode will
result in a Reserved Instruction exception, taken in guest mode.

For processors that do not include a TLB in the guest context, the operation of this instruction is UNDEFINED. The
preferred implementation is to signal a Reserved Instruction Exception.

Operation:

if IsCoprocessorEnabled(0) then
if (Config3VZ = 0) then

31 26 25 16 15 6 5 0

POOL32A
000000

0000000000
TLBGWR

0011000101
POOL32Axf

111100

6 10 10 6

Write Random Guest TLB Entry ITLBGWR

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 150

SignalException(ReservedInstruction, 0)
break

endif
i ← Guest.Random
if (Config4IE >= 2) then

Guest.TLB[i]hardware_invalid ← 0
if (EntryHIEHINV=1) then

Guest.TLB[i]hardware_invalid ← 1
endif

endif
Guest.TLB[i]Mask ← Guest.PageMaskMask
Guest.TLB[i]R ← Guest.EntryHiR
Guest.TLB[i]VPN2 ← Guest.EntryHiVPN2 and not Guest.PageMaskMask # Impl. dependent
Guest.TLB[i]ASID ← Guest.EntryHiASID
Guest.TLB[i]G ← Guest.EntryLo1G and Guest.EntryLo0G
Guest.TLB[i]PFN1 ← Guest.EntryLo1PFN and not PageMaskMask # Impl. dependent
Guest.TLB[i]C1 ← Guest.EntryLo1C
Guest.TLB[i]D1 ← Guest.EntryLo1D
Guest.TLB[i]V1 ← Guest.EntryLo1V
Guest.TLB[i]PFN0 ← Guest.EntryLo0PFN and not PageMaskMask # Impl. dependent
Guest.TLB[i]C0 ← Guest.EntryLo0C
Guest.TLB[i]D0 ← Guest.EntryLo0D
Guest.TLB[i]V0 ← Guest.EntryLo0V
if (GuestCtl0G1) then

Guest.TLB[i]GuestID ← GuestCtl1RID
endif

else
SignalException(CoprocessorUnusable, 0)

endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Machine Check (implementation dependent)

TLB Invalidate Flush TLBINVF

151 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

Format: TLBINVF microMIPS

Purpose: TLB Invalidate Flush

Description:

The TLBINVF instruction is unmodified from the base architectural definition, except in an implementation support-
ing GuestID:

• When executing in Guest mode, if the GuestID read does not match GuestCtl1ID, then the TLB entry is not
modified.

• When executing in Root mode, if the GuestID read does not match GuestCtl1RID, then the TLB entry is not
modified. Note that this only applies to the root TLB, invalidation of guest virtual address translations requires
execution of the equivalent TLBGINVF instruction sequence to modify the guest TLB.

Restrictions:

Unchanged from the base architecture.

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 16 15 6 5 0

POOL32A
000000

0000000000
TLBINV

0101001101
POOL32Axf

111100

6 10 10 6

TLB Invalidate Flush ITLBINVF

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 152

TLB Invalidate TLBINV

153 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

Format: TLBINV microMIPS

Purpose: TLB Invalidate

Description:

The TLBINV instruction is unmodified from the base architectural definition, except in an implementation supporting
GuestID:

• When executing in Guest mode, if the GuestID read does not match GuestCtl1ID, then the TLB entry is not
modified.

• When executing in Root mode, if the GuestID read does not match GuestCtl1RID, then the TLB entry is not
modified. Note that this only applies to the root TLB, invalidation of guest virtual address translations requires
execution of the equivalent TLBGINV instruction sequence to modify the guest TLB.

Restrictions:

Unchanged from the base architecture.

Exceptions:

Unchanged from the base architecture.

31 26 25 16 15 6 5 0

POOL32A
000000

0000000000
TLBINV

0100001101
POOL32Axf

111100

6 10 10 6

Probe TLB for Matching Entry ITLBP

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 154

Format: TLBP microMIPS

Purpose: Probe TLB for Matching Entry

To find a matching entry in the TLB.

Description:

The TLBP instruction is unmodified from the base architectural definition, except in an implementation supporting
GuestID:

• When executing in Guest mode, if the GuestID read does not match GuestCtl1ID, then the match fails.

• When executing in Root mode, if the GuestID read does not match GuestCtl1RID, then the match fails.

Restrictions:

Unchanged from the base architecture.

Operation:

if IsCoprocessorEnabled(0) then
Index ← 1 || UNPREDICTABLE31

for i in 0...TLBEntries-1
if ((TLB[i]VPN2 & ~(TLB[i]Mask)) = (EntryHiVPN2 & ~(TLB[i]Mask))) and

(Config4IE >= 2 && TLB[i]hardware_invalid != 1) and
((IsRootMode() and (TLB[i]GuestID = GuestCtl1RID)) or
(IsGuestMode() and (TLB[i]GuestID = GuestCtl1ID))) and
((TLB[i]G = 1) or (TLB[i]ASID = EntryHiASID))then
Index ← i

endif
endfor

else
SignalException(CoprocessorUnusable, 0)

endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Machine Check (implementation defined)

31 26 25 16 15 6 5 0

POOL32A
000000

0
0000000000

TLBP
0000001101

POOL32AXf
111100

6 10 10 6

Probe TLB for Matching Entry TLBP

155 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

Read Indexed TLB Entry ITLBR

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 156

Format: TLBR microMIPS

Purpose: Read Indexed TLB Entry

To read an entry from the TLB.

Description:

The TLBR instruction is unmodified from the base architectural definition, except in an implementation supporting
GuestID:

• When executing in Guest mode, if the GuestID read does not match GuestCtl1ID, then the TLB related CP0 reg-
isters are zeroed and EHINV is set to 1.

• When executing in Root mode and the TLB entry is not marked as invalid, GuestCtl1RID is set to the GuestID of
the TLB entry read, else it is set to 0.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

For processors that do not include the standard TLB MMU, the operation of this instruction is UNDEFINED. The
preferred implementation is to signal a Reserved Instruction Exception.

Operation:

if IsCoprocessorEnabled(0) then
i ← Index
if i > (TLBEntries - 1) then

UNDEFINED
endif
if (Config4IE >= 2 && TLB[i]hardware_invalid=1) then

if GuestCtl0G1=1
if (GuestCtl0GM=0 or (GuestCtl0GM=1 and (Root.DebugDM=1 or

Root.StatusERL=1 or Root.StatusEXL=1))) then
GuestCtl1RID ← 0 // RID only updated in root mode

endif
endif
// Remaining state is handled similarly in root and guest modes.
PagemaskMask ← 0
EntryHi ← 0
EntryLo1 ← 0
EntryLo0 ← 0
EntryHiEHINV ← 1
break

endif
PageMaskMask ← TLB[i]Mask
EntryHi ←

(TLB[i]VPN2 and not TLB[i]Mask) || # Masking implementation dependent
05 || TLB[i]ASID

31 26 25 16 15 6 5 0

POOL32A
000000

0
0000000000

TLBR
0001001101

POOL32AXf
111100

6 10 10 6

Read Indexed TLB Entry TLBR

157 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

EntryLo1 ← 02 ||
(TLB[i]PFN1 and not TLB[i]Mask) || # Masking mplementation dependent
TLB[i]C1 || TLB[i]D1 || TLB[i]V1 || TLB[i]G

EntryLo0 ← 02 ||
(TLB[i]PFN0 and not TLB[i]Mask) || # Masking mplementation dependent
TLB[i]C0 || TLB[i]D0 || TLB[i]V0 || TLB[i]G

if in guest mode, if the TLB entry guest id != guest id then zero the result
if (GuestCtl0G1 = 1)

if (GuestCtl0GM=1) and (Root.DebugDM=0) and
(Root.StatusERL=0) and (Root.StatusEXL=0) then

if (TLB[i]ID != GuestCtl1ID) then
PagemaskMask ← 0
EntryHi ← 0
EntryLo1 ← 0
EntryLo0 ← 0
EntryHiEHINV ← 1

endif
else #in root mode, RID with GuestID

GuestCtl1RID ← TLB[i]GuestID
endif

endif
else

SignalException(CoprocessorUnusable, 0)
endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Read Indexed TLB Entry ITLBR

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 158

Write Indexed TLB Entry TLBWI

159 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

Format: TLBWI microMIPS

Purpose: Write Indexed TLB Entry

To write a TLB entry indexed by the Index register.

Description:

The TLBWI instruction is unmodified from the base architecture, except in an implementation supporting GuestID:

• When executing in Guest mode, GuestCtl1ID is written in the guest TLB entry.

• When executing in Root mode GuestCtl1RID is written in the root TLB entry.

It is expected that a Guest entry in the Root TLB must have its Global(G) bit set to 1 on a TLB write. This is because
the ASID field is not applicable for a Guest entry in the Root TLB.

If EHINV is implemented, the TLBWI instruction also acts as an explicit TLB entry invalidate operation. The TLB
entry pointed to by the Index register is marked invalid when EntryHIEHINV=1.

When EntryHIEHINV=1, no machine check generating error conditions exist.

Restrictions:

Unmodified from the base architecture.

Operation:

if IsCoprocessorEnabled(0) then
i ← Index
if (Config4IE >= 2) then

TLB[i]hardware_invalid ← 0
if (EntryHIEHINV=1) then

TLB[i]hardware_invalid ← 1
endif

endif
TLB[i]Mask ← PageMaskMask
TLB[i]VPN2 ← EntryHiVPN2 and not PageMaskMask # Implementation dependent
TLB[i]ASID ← EntryHiASID
if (GuestCtl0G1) then

if ((GuestCtl0RAD=0) and IsRootMode() and (GuestCtl1RID != 0))
TLB[i]G ← 1

else
TLB[i]G ← EntryLo1G and EntryLo0G

endif
else

TLB[i]G ← EntryLo1G and EntryLo0G
endif
if (IsRootMode()) then

TLB[i]GuestID ← GuestCtl1RID
else

TLB[i]GuestID ← GuestCtl1ID

31 26 25 16 15 6 5 0

POOL32A
000000

0000000000
TLBWI

0010001101
POOL32Axf

111100

6 10 10 6

Write Indexed TLB Entry ITLBWI

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 160

endif
TLB[i]PFN1 ← EntryLo1PFN and not PageMaskMask # Implementation dependent
TLB[i]C1 ← EntryLo1C
TLB[i]D1 ← EntryLo1D
TLB[i]V1 ← EntryLo1V
TLB[i]PFN0 ← EntryLo0PFN and not PageMaskMask # Implementation dependent
TLB[i]C0 ← EntryLo0C
TLB[i]D0 ← EntryLo0D
TLB[i]V0 ← EntryLo0V

else
SignalException(CoprocessorUnusable, 0)

endif

Exceptions:

Unmodified from the base architecture.

Write Indexed TLB Entry TLBWI

161 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

Chapter 7

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 162

Notes

This Virtualization Module specification is a work in progress. Feedback and comments are welcomed on the func-
tional behavior, and the explanations of that behavior.

7.1 Potential areas of improvement

The following items have been identified as potential areas of improvement in the specification.

• Extensions to EJTAG specification to allow additional control over hardware breakpoints used during guest exe-
cution.

• Consider options to allow for translation of 36-bit physical addresses

• Consider options to reduce the cost of guest0-guest1-guest0 context switching.

• Security: JTAG, DEBUG, Boot, IOMMU

 Notes

163 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

Appendix A

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 164

Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant
changes to this document since its last release. Significant changes are defined as those which you should take note of
as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

 Please note: Limitations on the authoring tools make it difficult to place change bars on changes to figures. Change
bars on figure titles are used to denote a potential change in the figure itself.

Version Date Comments

0.02 18-Aug-09 First paravirtualization spec for internal consumption.

0.03 21-Aug-09 Changes:
• First full virtualization spec for internal consumption.
• Revisions to paravirtualization spec as a result of full virtualization updates.

0.04 18-Sep-09 Changes:
• Modified PageMaskKE bit description

• Removed L2V0/1 from TLB entry, kept GP0/1
• Changed all ‘real-physical’ references to ‘root-physical’
• Renamed GuestCtl02 to GuestID

0.05 22-Sep-09 Changes:
• Replaced upper-half configuration registers SegmentCtl/SegmentCtl2 with

Segment Configuration system covering full virtual address space.
• Re-arranged sections to lighten load in overview chapters.
• Removed generic chapters - “About This Book” and “Guide To The Instruc-

tion Set”

0.06 31-Mar-10 Significant revisions, including:
• Combined introductory chapters
• Root and guest mode follow consistent rules, clarified transitions between

modes.
• Removed spec duplication with MIPS32 where possible
• Address translation uses guest TLB as first level, root TLB used for second

level
• Added direct assignment of interrupts
• Added timer support

 Revision History

165 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

0.07 1-Jun-10 Changes:
• Fixed many typos
• Changed how guest timer interrupt is applied (pseudocode)
• Expanded description of EIC use with guest mode
• Clarified use of CauseDC.

• Moved HYPCALL to COP0 opcode, changed from RI to CU exception when
used from guest-user mode

• Requires v3.00 of Volume III (PRA) rather than 2.80. Removed descriptions
of Context and ContextConfig. Added RI, XI bits and related exceptions.

• Renamed Segment Control modes, added UKSU unmapped, unrestricted
mode.

• Changed segmentation scheme to remove fall-back to MIPS32 when Statu-
sERL=1. Changes required to segment control registers and EBase. Adjusted

scheme to incorporate FMT and BAT translation systems. Allowed imple-
mentation-dependent number of segments.

• Moved MTGC0 and MFGC0 onto the same sub-opcode, bit 3 selects.
• Adjusted description of guest mode entry with ERET.
• Moved PageGrain KE bit to avoid clash with IEC bit.
• Section covering UNDEFINED and UNPREDICTABLE and guest mode.
• Revised hardware page table walking scheme
• Added BadInstr register for faulting instruction word
• Added Guest Reserved Instruction Redirect exception
• Added additional description to GTOffset register
• Guest mode and Debug mode are mutually exclusive
• Added section describing design intent of features, how they are expected to

be used by hypervisor software.
• Added TLBGP, TLBGWR
• Added description of shadow register set operation
• Added MIPS64 support

0.08 4-Jun-10 Changes:
• Identified BadInstr as a future base architecture feature
• Changed guest-mode TLB enable from writable Guest.ConfigMT to new field

GuestCtl0ST.

• Fixed minor typos

0.09 07-Jul-10 • Merge GuestCtl0ST and GuestCtl0AT fields into one encoded field as not all

combinations of the 2 bits make sense.

0.10 03-Mar-11 • Removed non-virtualization specific functionality to CP0 enhancement pro-
posal.

0.11 14-Sep-11 Added Guest TLB invalidate instructions.
Updated HYPCALL field size.
Updated TLBGWI pseudo-code for EHINV use.

0.12 December 20, 2011 Minor corrections/enhancements.
Count register added to those available in Guest CP0 context.
(Impl) Implementation defined fields added to GuestCTL0 register.
Config5 addition noted.
Noted that a TLB related machine check exception is taken in current mode,
rather than always root.
Dropped GuestCtl0.AT=0 mode, pending further review.
Clarified Guest Watch exception behavior.
Noted that an exception caused by Root level address translation initiated by a
Guest address translation is not a Guest level TLB related exception.

Version Date Comments

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 166

0.13 January 11, 2012 Minor corrections/enhancements.
Guest/Root Watch support defined and enhanced.
Added Guest Mode change exception.
Updated Guest Field change definition.
Clarified entry to Guest mode definition.
Enhanced definition of Guest/Root TLB based address translation.
Improved GuestID definition.
Improved definition of TLBR behavior in Guest mode.
Extended Guest/Root CP0 register availability definition.
Improved Guest initiated Root TLB exception handling definition.
Enhanced exception priority definitions.
Added Guest exception codes for GVA, GPA recognition
Added RID field to GuestCtl1 register, supplies last Guest ID read.

0.14 January 12, 2012 Added optional PerfCnt support (GM, RM fields).

0.15 February 29, 2012 Updated GuestCtl1 RID/ID definition.
Added definition of behavioral changes caused by GuestID to TLB lookup and
TLB instructions.
Renamed Guest Field/Mode Change exceptions to Guest Software Filed
Change/Guest Hardware Field Change exceptions.
Updated Performance Counter, Watch register descriptions.
Updated Interrupt behavior definition.
GuestCtl0.PT (PIP implemented) added.
Added TLBWI to note G=1 behavior.
Defined SRSCtl/SRSMap as not available in Guest context.
PSI renamed to GPSI for consistency with Guest Exception names.

0.16 May 18, 2012 Clarified that GPSI for guest use of RDHWR is signaled only if guest CP0 reg-
isters are present and enabled by HWREna and GuestCtl0.CPO=0.
TLBR and TLBGR instructions set EntryHi, EntryLo0, EntryLo1, Page-
Mask mask and GuestCtl1.RID to zero on read of an invalid TLB entry or in
guest mode when the current guest id does not match the guest id in the TLB
entry read.

Version Date Comments

 Revision History

167 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

0.17 June 8, 2012 Root/Guest TLB invalidate instructions only apply to Root/Guest TLB’s. Clari-
fied use of GuestCtl1.ID/RID field usage by TLB instructions: TLBR, TLBWI,
TLBGWI, TLBGWR.
Clarified use of EHINV by TLB instructions: TLBR, TLBGR, TLBP, TLBWI,
TLBGWI, TLBGWR.
Change MC to recommended on FTLB page size match, FTLB write with VPN
inconsistent with Index, and multiple match on TLBGWI.
Updated MFGC0, MTGC0 to contain recent MIPS32 RI/XI bit changes.
DMTGC0 assignment typo fixed.
Table 4.2 GuestCtl0 register field descriptions:
PWCtl added to list of GPSI triggering registers.
Index, Random EntryLo0/1, Context, XContext, COntextConfig, PageMask and
EntryHi dropped from list of GPSI triggering registers.
Table 3.5 Count: GuestCtl0.GT added as a modifier triggering GPSI.
Mention of potential support of recursive virtualization deleted to avoid confu-
sion.
Table 3.16 guest TLB was noted as optional, it’s required.
Watchpoint debug moved to seperate section.
Table 3.13 reference to dmseg removed.
Sec. 3.8.2 Clarified, assign performance counters to guest or root, not both.
Sec. 3.8 Interrupts. clarified PIP and other behavior under development.
Sec. 3.7.8 Clarified handler ERET behavior requirements.
Sec. 3.7.7 Added PWCtl to GPSI triggering list.
Sec. 3.7.5 Added GRIR to Exception Vector Locations list.
Table 3.10 priority of GSFC placed above Execution Exception since it only
occurs on (D)MTC0 instruction execution and suppresses execution.
Sec. 3.7.3 typo on GExcCode fixed.
Sec. 3.7.2 Added TLB Execute-Inhibit and Read-Inhibit to TLB exceptions
which update BadVaddr.
Table 3.7 Added Status {CU3..0, PX,KX,SX, UX} and PerfCtl.Control to Guest
CP0 fields subject to Software or Hardware field change Exceptions.
Table 3.5 DEPC, DESAVE added. XContextConfig made optional.
Sec. 3.5 Error in pseudo-code fixed. (now returns Guest CCA).
Sec. 3.4.3.6 Attempted to clarifiy operating mode definition.
Added Config4.IE=1 check to describe optionality of EHINV in TLBGWI,
TLBWI, TLBP, TLBGP, TLBR and TLBGR instruction pseudo-code.
Description of Guest/Root Cause.IP added.

Version Date Comments

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 168

0.18 July 5, 2012 (Lists changes that may impact architecture or implementation.. No clarifica-
tions noted.)
Added Section 4.5.1 - Virtualized MMU GuestID Use
- Changed pseudo-code in Section 4.5 accordingly.
Rewrote Section 4.8.1 on External Interrupts - Detail handling plus Virtual
Interrupt handling.
Table 4.12 “Priority of Exceptions Table”
- Machine Check Asynchronous. Described event accurately. Split out guest
related events to reposition below GHFC.
- Machine Check Synchronous. Added event. Position below Instruction Valid-
ity.
- Repositioned Deferred Watch Guest below GHFC.
- GSFC has been repositioned below Instruction Validity.
- GRR has been repositioned below Instruction Validity.
Table 4.11 “Guest CP0 Read-only fields writeable from Root mode”
- Remove PCI,SR,NMI.
Updated Section 4.12 “Watchpoint Debug Support”
- Table 4.17: Added column for Guest exception on Access.
- Added para for sharing policy.
Section 4.8. “Performance Counter Interrupts”
- Changed UNDEFINED to UNPREDICTABLE.
- Added para for sharing policy
- Added para for root control of guest PCI state.
Table 4.7: “CP0 Registers in Guest CP0 context”
- ContextConfig, XContextConfig: Remove presence of TLB as qualifying con-
dition to determine presence of these registers.
Section 4.7.8 “Guest Software Field Change Exception”
- setting TS by h/w can cause GSFC in lieu of GHFC.
- added description for optional GuestCtl0SRC/SFK.
Modified Section 4.8.2 “Derivation of Guest.Cause.IP” pseudo-code to include
Virtual Interrupts”.

Version Date Comments

 Revision History

169 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

0.19 August 15, 2012 Owner: sanjay
// Only lists new functionality or modifications to existing functionality. Minor
self-evident changes not listed.
Page 9. Table 2.5 Added missing WAIT/ERET/DERET
Page 19. 4.4.3.1. Added subroutines IsGuestMode and IsRootMode. Used in
pseudo-code throughout.
Page 22. 4.4.4. Only guest writes constrained.
Pages 28-29. 4.5. pseudo-code corrected for RAD/DRG use.
Page 30, 4.5.1. Mention that RAD/DRG need not be Read-only.
Page 31, 4.5.1. Modified pseudo-code for RAD/DRG use.
Page 39, Table 4.5.1. SRSCtl/Map now Optional instead of Not_Available.
Page 42, Table 4.9.
- Miscellaneous changes.
- PerfCnt event fields added as causing GSFC.
Page 44, Table 4.11
- Added SR/NMI back. Now Optional.
- Added BadInstr.InstrP from COP0 Enhancement Spec.
Page 51, Table 4.12:
- Moved guest Machine-Check Async back to original priority.
- Moved guest Deferred Watch back to original priority.
- Above two had been shifted because of GHFC. Now resolved.
- Page 53, Table 4.12
- GHFC positioned below Instruction Validity.
Page 56, 4.7.7
- Count and Compare - should only cause GPSI if enabled.
Page 57, 4.7.8
- Miscellaneous changes.
- Added PerfCnt.Event, if under guest ctl, to list.
Page 59, 4.7.8
- UM/KSU GSFC enabled by GuestCtl0.MC
- Added GuestCtl0.SFC1/SFC2.
- Added PerfCnt.Event
Page 61, 4.7.9
- Mention atomic handling of GHFC exception.
Page 64, 4.8.1
- Rewrote section on Non-EIC Interrupt Handling.
- Introduce GuestCtl2.SCVIP.
Page 67, 4.8.2
- Modified GuestInterruptPending.
- Removed Guest.Cause.IP[1:0] or’ing from EIC mode.
- Added Guest.Cause.IP[1:0] or’ing into non-EIC mode.
Page 69, 4.8.4
- Added conditions under which guest access to PerfCnt causes GPSI.
- Enhanced description for simultaneous sharing of PerfCnt.
Page 70, 4.9.1
- Rewrote virtualized Shadow Set control.
Page 72, 4.10
- Rewrote emulation of MT Module in guest context.
Page 76, Table 4.17
- Removed GPSI from “Guest Exception on Match” column,.
Page 77, 4.12
- Enhanced description for simultaneous sharing of Watch Register.
Page 85, Table 5.1
- Added GuestCtl2. Corrected Section #s.

Version Date Comments

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 170

0.19 August 15, 2012 Page 87, Table 5.2
- GuestCtl0.MC now includes UM/KSU.
Page 90, Table 5.2
- GuestCtl0.CG can be R0 - implementation dependent.
Page 92, Table 5.2
- Added GuestCtl0.G2
- SFC,SFK changed to SFC2,SFC1
Page 95, Section 5.4
- GuestCtl2 is new.
Page 105, Table 6.1
- TLBWR is new.
Page 117, TLBGINV Operation
- Added test for GuestID,.
- VPN2_invalid changed to hardware_invalid.
Page 119, TLBGINVF Operation
- Added test for GuestID,.
- VPN2_invalid changed to hardware_invalid.
Page 121, TLBGP
- Added test for GuestID,
Page 127, TLBGWI
- Added test for GuestID
Page 129, TLBGWR
- Added test for GuestID
Page 133, TLBP
- Changed inRoot/GuestMode to IsRoot/GuestMode
Page 136, TLBR
- Added test for GuestID
Page 138, TLBWI
- Added test for GuestID
- Guest Entries are globalized for RAD=0
Page 141, TLBWR
- - Added test for GuestID
- Guest Entries are globalized for RAD=0
Note : For v0.20, add operation section for any instruction impacted by Gues-
tID.

Version Date Comments

 Revision History

171 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

0.20 September 7, 2012 // Updated Virtual Interrupt Handling. These changes are meant to
//keep compatibility between two different implementations on
//non-EIC mode.
GuestCtl2.SCVIP converted to GuestCtl2.HC. Changed 4.8.1.1 accordingly.
Made reset state of GuestCtl2.HC implementation dependent.
In GuestCtl2, shifted current SCVIP field left by 1b. Removed M bit as
GuestCtl3 presence can be detected through other means.
// Following edits are meant only for low end VZ implementations.
Added GuestCtl0.FCE, Field Change exception Enable. Allows disable of cor-
responding exceptions. Optional for high-end implementations.
Added GuestCtl0.AT=2. This is to indicate that a Root Protection Unit is sup-
ported.
// Following edits meant for External Interrupt Controller root intervention sup-
port.
New Section 4.8.1.2 for EIC Interrupt Handling
Added GuestCtl1.EID - External Interrupt Controller (EIC) GuestID.
Section 4.8.1.2 - add comment about GuestID requirements for root and guest
buses.
Add GuestCtl2 definition for EIC mode.
// Following edits meant for virtualized Shadow Sets
Section 4.9.1 - Describe scheme for virtual sharing of Shadow Sets.
Added HSS,EICSS,CSS to Table 4.11 as root writeable read-only fields in guest
SRSCtl.
Added GuestCtl3.
// Miscellaneous
Changed GuestCtl0.FCE to FCD. This is to make compatible with existing
implementations.

0.21 September 22, 2012 Table 4.12, Priority of Exceptions. Add type of exception to Instruction
Cache/Bus Error. Missing.
Section 4.8.2 Changed non-EIC pseudo-code for interrupts.
- Inserted r<<2 earlier to accommodate IPTI and IPPCI. Both are 3b values and
can shift upto 7.
- Recoded slightly to indicate Guest.Cause.IP is not a term that is ORed into the
equation.
Section 4.8.1.2. Modified GuestCtl0.PIP paragraph to allow control of guest
interrupts in EIC mode.

Version Date Comments

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 172

0.22 November 4, 2012
November 27, 2012

- Section 4.8 - Changed wording of 3rd bullet of set of pending interrupts. Root
interrupt njection through GuestCtl2.VIP and GRIPL.
- Modified pseudo-code in Section 4.8.2 to include virtual RIPL inclusion in
EIC interrupts.
- Section 4.9.1 : Guest cannot write Guest SRSCtl.ESS/PSS. Modified 3rd last
para to reflect contradiction.
- Section 5.2, GuestCtl0.AT=2 is now listed as optional. AT=2 is VZ-lite option.
- Section 4.8.2 EIC pseudo-code corrected - EIC interrupt level is only qualified
by Root.Status.IPL.
- Section 4.6.8. Added text to clarify purpose of pseudo-code, and specify dif-
ferent methods for restoring guest timer.
- Section 4.8.1.1 : non-EIC handling. Described NetL compatible mode for
injecting interrupt into guest context. This mode supported before virtual inter-
rupt injection was added.
- Updated 4.8.1.2, EIC Handling. Allow auto-update of guest RIPL and EICSS
from GuestCtl2 on guest entry.
- Added GuestCtl0Ext for additional GPSI enables for Virtuoso.
- Shifted GuestCtl0.FCD to GuestCtl0Ext
- Added GuestCtl0.G0E as GuestCtl0Ext presence bit.
- In section 4.8.2 correction - EICGuestLevel compared against Guest.Sta-
tus.IPL instead of Root.Status.IPL.
- Section 4.12 Clarified guest access to Watch for Guest Config1.WR=0/1.
- Added recommendation to Restriction section for TLBWR and TLBGWR.
The recommendation is for handling Random and Index overlap on write.

1.00 December 7, 2012 Copy of 0.22 for Release 5 of architecture.

1.01 January 10, 2013 - Add GuestCtl0Ext.CGI to allow guest to execute CACHE index invalidate
instructions.
-Remove GuestCtl0.AT=2. This was meant to indicate presence of Root Protec-
tion Unit. software will instead detect RPU through Config3.VZ and Root.Con-
fig.MT=3(FMT)..
- In section 4.8.1.2, replace all references to IRET with ERET.
- In section 4.8.1.2, update text on STOP protocol.
- Updated Table 4.11. Root write to Guest.Cause.IP/RIPL is now optional.
Made optional because if GuestCtl2.VIP/GRIPL are implemented then root
does not need to write these fields.
- Updated Figure 4.11 to show that guest-user hypcall can cause transition to
root if Guest.Status.CU0=1.
- Updated GuestCtl1.PIP to indicate PIP only applicable in non-EIC mode.
Removed reference to PIP in section 4.8.1.2.
- Removed reference to PIP in section 4.8.2, showed prioritization of
EICGuestLevel and GuestCtl2.RIPL. It was assumed before that
EICGuestLevel was higher priority.
- Added reserved ASE fields to GuestCtl2 for MCU ASE.
- Added Section 4.7.12 to describe setting of Root.Cause.ExcCode and
GuestCtl2.GExcCode.
- Updated Section 4.7.9 for recommended method of handling GHFC.

Version Date Comments

 Revision History

173 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

1.02 February 19th, 2013 - Fix typo in Section 4.7.9. GuestCtl2.GExcCode should be GuestCtl0.GExc-
Code.
- Section 4.8.1.2. Removed comment about timeout. We have specified and sup-
port a method for correct functionality. Thus, redundant.
- Section 5.3, Table 5.4. Change EID field to read-only if implemented. Was
R/W.
- Section 4.8.2 (pseudocode). Modified GuestCtl0.PT qualification. Added
GuestCtl0.G2 qualification for optional interrupt passthrough.
- Section 4.5.1 (pseudocode+table) and 5.2 (DRG). Comment -
“GuestCtl0DRG=1 and GuestCtl1RID is non-zero, then all root accesses are

mapped. H/W must set G=1 as if the access were for guest”
- Removed Reserved from list of registers qualified by GuestCtl0Ext.OG. Since
it is reserved, it should be unimplemented in guest context. Add comment that
UserTraceData is specific to iFlowTrace.
- Section 5.7 - GTOffset. # of bits made implementation dependent. For
lower-cost solutions.
- Section 5.5. Added that root must write a non-zero value to guest SRSCtl.HSS
to indicate guest SRSCtl.HSS is not writeable, shadow sets are not supported in
guest context, and thus GuestCtl3 is not present.
Section 5.4 : Added ASE extension for GuestCtl2.HC. Right shifted
GuestCtl2.HC by 2 bits. Left shifted GRIPL and its ASE extension by 2 bits.

Version Date Comments

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 174

1.03 March 27, 2013 // Part 1:
- Amended last para of 4.8.1.1 (Non-EIC Interrupts) to indicate root can write 1
or 0 to Guest.Cause.IP[7:2]. Earlier it could only set 1 but not clear. This addi-
tional capability is required for context switching in KVM. (possible functional
change)
- Table 4.7. Incorrect reference to Config3.AR. Should be Config.AR.
- In section 4.7.8, repositioned single line that references GuestCtl0,MC=1. (No
functional change.)
- In section 4.7.7, add list of privileged instructions. (No functional change.)
- Added examples to definition of GuestCtl0.CP0 in Table 5.2. (No functional
change.)
- Table 4.10. Remove Config.AR. The requirement that h/w emulate different
architectural releases is complex and thus not supported. See comment above
table also. (possible functional change)
- Section 4.7.7. Under bullet referencing RDHWR, remove sentence which ref-
erences partial set of registers. Must be complete set that is supported in
HWREna. (possible functional change)
- For new MSA ASE/Module, add Config5.MSAEn to Section 4.7.8, on GSFC.
Added 4.9.6 to explain nesting of MSAEn in guest context.
(functional change)
- Section 4.7.7. Amended CACHE bullet. Added control for GuestCtl0ExtCGI.
Added CACHEE (possible functional change due to addition of detail).
- Section 4.7.7. Added optional TLBINV/F to 3rd bullet. (no functional
change). (possible functional change due to addition of detail).
- Table 4.9, added comment for GuestCtl0.SFC1/2 control of Status.CU2..1 (no
functional change).
- Table 5.8, Correction. GuestCtl0Ext. OG,BG,MG are optional features not
required. (no functional change)
- Table 4.7, Added GuestCtl0.Ext OG,BG,MG to qualify related entries. (no
functional change)
// Part 2:
- Added greater detail on virtualization of SRSes to Section 4.9.1. (possible
functional change due to addition of detail)
- Section 4.8.4, Perf Ctr Interrupts. In paragraph that describes simultaneous
virtual sharing of perf ctrs by root, added that h/w can accomplish root control
over Guest PerfCtr.M state by qualifying it with Root.PerfCtr.EC[1]. This is
instead of root write to guest PerfCtr.M. (possible functional change if sup-
ported).
- Section 4.14.2.1. Removed mention of CCA. CCA should not be included in
an RPU design. Listed as optional currently. (no functional change since CCA
excluded in existing implementations).
- Section 4.7.11, Chapter6 - Hypercall. Added clarification for hypercall execu-
tion in debug mode and root mode(possible functional change because response
is now defined instead of UNDEFINED.)
- Section 4.7.8, GSFC. Added clarification that guest (D)MT/F will not com-
plete unless disabled by GuestCtl0.SFC1/1 and GuestCtl0Ext.FCD. (no func-
tional change)

Version Date Comments

 Revision History

175 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

1.03
(continued)

March 27, 2013
April 8, 2013 (Part 3)
April 22, 2013 (Part 4)

- Section 4.5 (pseudo-code), Section 4.5.1 (pseudo-code) GuestCtl0.DRG
mode. Removed GuestCtl1.RID from guest address translation path. (functional
change due to bug in architecture)
- Section 4.5 (pseudo-code), Table 4.2, Table 5.2: GuestCtl0.DRG mode. Clari-
fied that only root kernel is allowed access to guest entries in root TLB. This
access ignores root SegCtl, access is mapped, and root CCA is inherited. (clari-
fication which may require functional change due to lack of detail).
- Table 5.14, PerfCtr. In EC field, mention PerfCtlU/S/K/EXL is ignored in root

intervention mode since Status.EXL is set. Hardware should qualify instead of
requiring guarantee from s/w. (functional change).
- Section 4.5.2 (new) Relevant to share root and guest TLB. Determines how
root s/w allocates wired and non-wired entries in a shared TLB. Table 4.10 has
also been updated to allow writeability of Config4 TLB size extensions. (func-
tional change for implementations with shared TLB.)
- Section 4.9.3, DSP Module. Added clarification of guest Status.MX writeabil-
ity based on state of guest Config3.DSPP only. Config3.DSP2P need not be fac-
tored in. (possible functional change)
- Section 4.5.1, Virtualized MMU GuestID Use. Removed sentence that says
that GuestCtl0DRG must be preset to 1 if GuestCtl0RAD=1. Must be R0 in this
case. (possible functional change due to inconsistency in spec.)
- Section 4.5. Virtual Memory. Added special transformation for data virtual
addresses when StatusUX=0, specifically in reference to 1st step of guest
address translation. Standard in MIPS64 base architecture (possible functional
change for MIPS64 implementations).
- Table 4.12. Priority of Exceptions. Created an explicit entry for guest enabled
interrupts and placed at lower priority then root deferred watch. Though it is
inferred that root deferred watch is higher priority then a guest interrupt, this
change was made to avoid any confusion. (possible functional change due to
addition of detail).
- Table 4.12. In Machine_Check lines, clarified cases where guest or root can
cause an MC. (no functional change unless there is a bug in the spec).
// Part 3
- Table 4.11. Added footnote to explain use case for root write of 1 to Guest Sta-
tus.SR/NMI. (no functional change)
- Section 4.7.8. Added reference to GuestCtl0Ext.FCD. Similarily, added clarity
to Section 5.6 on behaviour of h/w if FCD=1. (no functional change).
- Table 4.12. Added MSA disabled exception to Instruction Validity category.
(functional change)
- section 4.5, Section 5.2. Changed GuestCtl0.DRG handling slightly by includ-
ing terms Root.Status.ERL/EXL and Debug.DM. (functional change).
// Part 4. (James Robinson’s feedback, Oliver’s bug)
- Table 4.7, Table 5.8 (GuestCtl0Ext). Moved UserLocal from
GuestCtl0Ext.MG to GuestCtl0Ext.OG. (functional change.)
- Sections 4.5, 4.5.1Virtual Memory. See pseudo-code for new term drg_valid in
regards to GuestCtl0.DRG. (part 3 change was incorrect)
- Table 4.10. Added that root write to guest Config1,4 MMU Size fields is
required for a shared TLB implementation.(clarification)
- Section 4.6.3.1 - Simplified reserved register handling. (possible functional
change)
- Table 4.7 - changed Config6,7 response based on changes to Section 4.6.3.1.
No longer takes GPSI if CF=0. (functional change)
- Section 4.7.8. Made GSFC on guest access to Status.Impl imp-dependent. It is
impossible to judge what an implementation may use it for. (functional change)

Version Date Comments

microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revision
1.06 176

1.04 May 29th, 2013 - Part 1
July 2nd, 2013 - Part 2
July 16, 2013 - Part 3
July 26, 2013 - Part 4

// Part 1
- Section 4.7.8 : Added User FR impact - GSFC on guest access to
Config5.UFR. GSFC on guest access to StatusFR is now conditional on
Config5.UFR.
- Added Section 4.9.7 to describe s/w impact of UFR.
- Section 4.7.7: Updated Shadow Set related bullets (2). Description was incon-
sistent with Section 4.9.1.
// Part 2 - change bars also include Part 1
- Table 5.5, GuestCtl2 : Fixed typo. In GuestCtl2 HC entry, Was Status.IP, Now
correctly Cause.IP.
- Fixed Config4.IE value tested for in instruction descriptions for TLBGR,
TLBR, TLBWI, TLBGP, TLBGWI, TLBGWI, TLBGWR, TLBP. It was a 1b
field but was extended to 2-b. (may be a bug leading to functional change)
- Section 4.12 - Adding comment that Root Watch of GPA should include com-
parison of {G,ASID}.
- Section 4.4.1 - Added sentence saying guest access to guest COP0 is not qual-
ified by root Status.CU0.
- Section 4.8.1.2 - EIC Interrupt Handling. Added comment saying that a core
need only implement accepting vector number or offset from a virtualized EIC,
but not both.
- Table 5.5, GuestCtl2. added comment to GuestCtl2.GVEC saying that root
write to GVEC is only meant to restore context.
// Part 3
- VA extensions for extended PA (XPA) : Added MT(F)GC0, BadVAddr,
EntryHi 32-bit extensions.
- Added Section 4.9.9 to describe XPA impact on VZ
- Whereever MT(F)C0 word is used, I have extended the use to include
MT(F)HC0.
- Added Section 4.9.8 to describe VZ handling of LLbit.
- Added GuestCtl0Ext.RPW to enable h/w pagewalk for root or guest in root
context. (functional change)
// Part 4.
Added clarity to TLBGINV pseudo-code. EntryHi.ASID reference is guest’s
not root, so prefixed “Guest“ to EntryHi.ASID. (possible functional change).
Section 4.7.7, GPSI: remove all EVA instructions except CACHEE from list of
instructions that cause GPSI. (functional change)
TLBR : TLBR in guest mode does not update RID. Corresponds to text descrip-
tion now. (possible functional change)
Table 4.10: Config3.MSAP is now writeable by root, as an optional feature.
Section 4.12. Added emphasis that virtualized handling applies to both Lo and
Hi. (no functional change)

Version Date Comments

 Revision History

177 microMIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the microMIPS32® Architecture, Revi-
sion 1.06

1.05 11/1/2013
11/11/2013

11/1/2013
-Section 4.9.8 : LL/SC LLbit Handling. Added comment that ERET in root con-
text only clears LLbit in root context.
-Section 4.9.9 : XPA. Added Table 4.15 to describe root control over guest XPA.
-Table 4.7. Added Release 5 MAAR/MAARI. 11/11 - Made Not_Available.
-Section 4.6.31: Guest Reserved Register Handling. Added comments about
MT/FHC0 for extensions to COP0 registers.
-Table 4.12: Priority of Exceptions. Changed relative priority of RIDR vs. RI in
table. This is not an architectural change as the only real prioritization is RI vs.
other exceptions. RIDR is taken as a side-effect of this prioritization.
-Section 4.7.7: GPSI. Explicitly mention that RDHWR GPSI also applies to
CCRes & Sync_Step, which are not CP0 regs. Elaborated on conditions under
which guest user or kernel access causes GPSI.
- uMIPS Table 2.8 : Corrected HYPCALL position in Table 2.8. Now corre-
sponds to instruction description.
- uMIPS DMTGC0/DMFGC0 instruction descriptions - POOL32Sxf value cor-
rected to 111100. Changed DMTC0 field to 10011, and DMFC0 field to 11011.
11/11/2013
- Added Section 4.9.10, “SDBBP Instruction Handling” for virtualization con-
trol over guest execution of SDBBP. R6P related.
- Added Section 4.5.3, “Nested Guest CCA Support”. Optional feature to allow
root control over guest CCA.
- Table 5.8. Added field NCC to GuestCtl0Ext for Nested CCA control.
- Added Wired Limit field to Table 4.12, “Guest Read-only fields writeable
from root mode. R6P related.
- Section 4.9.9, “XPA”. Removed CDMMBase, CMGCRBase from list of regis-
ters requiring extension.
- Section 4.14, “Lightweight Virtualization”. Indicated RPU CCA support is
optional whereas before this field was reserved. Dependent on 4.5.3, nested
CCA handling.

1.06 1/10 -Modified GuestCtl0.RPW for b/w compatible mode. (functional change)
- Added effects of root XPA on guest 36-bit PAE. Table 4.16, “Root Effect on
Guest XPA control”. (may be a functional change.)
- Added explicit comments about behaviour of MT(F)G(H)C0 instructions in
instruction descriptions (not a functional change - added detail).

Version Date Comments

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

