

Document Number: MD00866
Revision 1.12

February 3, 2016

MIPS® Architecture for Programmers
Volume IV-j: The MIPS32® SIMD

Architecture Module

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Public. This publication contains proprietary information which is subject to change without notice and is supplied ‘as is’, without any warranty of any kind.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 8

Chapter 1

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 12

About This Book

The MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module comes as part of
a multi-volume set.

• Volume I-A describes conventions used throughout the document set, and provides an introduction to the
MIPS32® Architecture

• Volume I-B describes conventions used throughout the document set, and provides an introduction to the
microMIPS32™ Architecture

• Volume II-A provides detailed descriptions of each instruction in the MIPS32® instruction set

• Volume II-B provides detailed descriptions of each instruction in the microMIPS32™ instruction set

• Volume III describes the MIPS32® and microMIPS32™ Privileged Resource Architecture which defines and
governs the behavior of the privileged resources included in a MIPS® processor implementation

• Volume IV-a describes the MIPS16e™ Application-Specific Extension to the MIPS32® Architecture. Beginning
with Release 3 of the Architecture, microMIPS is the preferred solution for smaller code size.

• Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS64® Architecture and
microMIPS64™. It is not applicable to the MIPS32® document set nor the microMIPS32™ document set. With
Release 5 of the Architecture, MDMX is deprecated. MDMX and MSA can not be implemented at the same
time.

• Volume IV-c describes the MIPS-3D® Application-Specific Extension to the MIPS® Architecture

• Volume IV-d describes the SmartMIPS®Application-Specific Extension to the MIPS32® Architecture and the
microMIPS32™ Architecture .

• Volume IV-e describes the MIPS® DSP Module to the MIPS® Architecture

• Volume IV-f describes the MIPS® MT Module to the MIPS® Architecture

• Volume IV-h describes the MIPS® MCU Application-Specific Extension to the MIPS® Architecture

• Volume IV-i describes the MIPS® Virtualization Module to the MIPS® Architecture

• Volume IV-j describes the MIPS® SIMD Architecture Module to the MIPS® Architecture

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fonts in this book.

1.2 UNPREDICTABLE and UNDEFINED

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 13

1.1.1 Italic Text

• is used for emphasis

• is used for bits, fields, registers, that are important from a software perspective (for instance, address bits used by
software, and programmable fields and registers), and various floating point instruction formats, such as S, D,
and PS

• is used for the memory access types, such as cached and uncached

1.1.2 Bold Text

• represents a term that is being defined

• is used for bits and fields that are important from a hardware perspective (for instance, register bits, which are
not programmable but accessible only to hardware)

• is used for ranges of numbers; the range is indicated by an ellipsis. For instance, 5..1 indicates numbers 5 through
1

• is used to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the pro-
cessor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions in
a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register). Unpriv-
ileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and unprivileged
software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction,
or as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause a result to be generated or not. If a result is gener-
ated, it is UNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

• Implementations of operations generating UNPREDICTABLE results must not depend on any data source
(memory or internal state) which is inaccessible in the current processor mode

• UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
is inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process

1.3 Special Symbols in Pseudocode Notation

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 14

• UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

• UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which
there is no exit other than powering down the processor). The assertion of any of the reset signals must restore the
processor to an operational state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDICTABLE values, software may depend on the fact that a sampling of an UNSTABLE value results in a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABLE values have one implementation restriction:

• Implementations of operations generating UNSTABLE results must not depend on any data source (memory or
internal state) which is inaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning

 Assignment

, Tests for equality and inequality

 Bit string concatenation

xy A y-bit string formed by y copies of the single-bit value x

b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the
binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the default base is 10.

0bn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).

0xn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).

xy z Selection of bits y through z of bit string x. Little-endian bit notation (rightmost bit is 0) is used. If y is less
than z, this expression is an empty (zero length) bit string.

, 2’s complement or floating point arithmetic: addition, subtraction

1.3 Special Symbols in Pseudocode Notation

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 15

*, 2’s complement or floating point multiplication (both used for either)

div 2’s complement integer division

mod 2’s complement modulo

 Floating point division

 2’s complement less-than comparison

 2’s complement greater-than comparison

 2’s complement less-than or equal comparison

 2’s complement greater-than or equal comparison

nor Bitwise logical NOR

xor Bitwise logical XOR

and Bitwise logical AND

or Bitwise logical OR

not Bitwise inversion

&& Logical (non-Bitwise) AND

<< Logical Shift left (shift in zeros at right-hand-side)

>> Logical Shift right (shift in zeros at left-hand-side)

GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers

GPR[x] CPU general-purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR[x] is a short-hand notation for SGPR[SRSCtlCSS, x].

SGPR[s,x] In Release 2 of the Architecture and subsequent releases, multiple copies of the CPU general-purpose regis-
ters may be implemented. SGPR[s,x] refers to GPR set s, register x.

FPR[x] Floating Point operand register x

FCC[CC] Floating Point condition code CC. FCC[0] has the same value as COC[1].

FPR[x] Floating Point (Coprocessor unit 1), general register x

CPR[z,x,s] Coprocessor unit z, general register x, select s

CP2CPR[x] Coprocessor unit 2, general register x

CCR[z,x] Coprocessor unit z, control register x

CP2CCR[x] Coprocessor unit 2, control register x

COC[z] Coprocessor unit z condition signal

Xlat[x] Translation of the MIPS16e GPR number x into the corresponding 32-bit GPR number

BigEndianMem Endian mode as configured at chip reset (0 Little-Endian, 1 Big-Endian). Specifies the endianness of
the memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endi-
anness of Kernel and Supervisor mode execution.

BigEndianCPU The endianness for load and store instructions (0 Little-Endian, 1 Big-Endian). In User mode, this
endianness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be com-
puted as (BigEndianMem XOR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode only,
and is implemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRRE and User mode).

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

1.3 Special Symbols in Pseudocode Notation

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 16

LLbit Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when a linked load occurs and is tested by the conditional store. It is cleared, during other CPU operation,
when a store to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

I:,
I+n:,
I-n:

This occurs as a prefix to Operation description lines and functions as a label. It indicates the instruction time
during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a
time label of I. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections
labeled with the instruction time, relative to the current instruction I, in which the effect of that pseudocode
appears to occur. For example, an instruction may have a result that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in a section labeled I+1.
The effect of pseudocode statements for the current instruction labelled I+1 appears to occur “at the same
time” as the effect of pseudocode statements labeled I for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statements for dif-
ferent instructions that occur “at the same time,” there is no defined order. Programs must not depend on a
particular order of evaluation between such sections.

PC The Program Counter value. During the instruction time of an instruction, this is the address of the instruc-
tion word. The address of the instruction that occurs during the next instruction time is determined by assign-
ing a value to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.
In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the restart
address into a GPR on a jump-and-link or branch-and-link instruction, or into a Coprocessor 0 register on an
exception. The PC value contains a full 32-bit address all of which are significant during a memory refer-
ence.

ISA Mode In processors that implement the MIPS16e Application Specific Extension or the microMIPS base architec-
tures, the ISA Mode is a single-bit register that determines in which mode the processor is executing, as fol-
lows:

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Mode into a GPR on a jump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 phys-
ical address bits were implemented, the size of the physical address space would be 2PABITS = 236 bytes.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

Encoding Meaning

0 The processor is executing 32-bit MIPS instructions
1 The processor is executing MIIPS16e or microMIPS

instructions

1.4 For More Information

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 17

1.4 For More Information

Various MIPS RISC processor manuals and additional information about MIPS products can be found at the MIPS
URL: http://www mips.com

For comments or questions on the MIPS32® Architecture or this document, send Email to support@mips.com.

FP32RegistersMode Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32 Release 1, the FPU
has 32 32-bit FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, (and option-
ally in MIPS32 Release2 and MIPSr3) the FPU has 32 64-bit FPRs in which 64-bit data types are stored in
any FPR.

In MIPS32 Release 1 implementations, FP32RegistersMode is always a 0. MIPS64 implementations have a
compatibility mode in which the processor references the FPRs as if it were a MIPS32 implementation. In
such a case FP32RegisterMode is computed from the FR bit in the Status register. If this bit is a 0, the pro-
cessor operates as if it had 32 32-bit FPRs. If this bit is a 1, the processor operates with 32 64-bit FPRs.
The value of FP32RegistersMode is computed from the FR bit in the Status register.

InstructionInBranchDe-
laySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch
or jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the value is
false if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which
is not executed in the delay slot of a branch or jump.

SignalException(excep-
tion, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
parameter as an exception-specific argument). Control does not return from this pseudocode function—the
exception is signaled at the point of the call.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

Chapter 2

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 18

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphabetical
order in the tables at the beginning of the next chapter.

2.1 Understanding the Instruction Fields

Figure 2.1 shows an example instruction. Following the figure are descriptions of the fields listed below:

• “Instruction Fields” on page 19

• “Instruction Descriptive Name and Mnemonic” on page 20

• “Format Field” on page 20

• “Purpose Field” on page 21

• “Description Field” on page 21

• “Restrictions Field” on page 21

• “Operation Field” on page 22

• “Exceptions Field” on page 22

• “Programming Notes and Implementation Notes Fields” on page 23

2.1 Understanding the Instruction Fields

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 20

Fields encoding the instruction word are shown in register form at the top of the instruction description. The follow-
ing rules are followed:

• The values of constant fields and the opcode names are listed in uppercase (SPECIAL and ADD in Figure 2.2).
Constant values in a field are shown in binary below the symbolic or hexadecimal value.

• All variable fields are listed with the lowercase names used in the instruction description (rs, rt, and rd in Figure
2.2).

• Fields that contain zeros but are not named are unused fields that are required to be zero (bits 10:6 in Figure 2.2).
If such fields are set to non-zero values, the operation of the processor is UNPREDICTABLE.

Figure 2.2 Example of Instruction Fields

2.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as shown in Figure
2.3.

Figure 2.3 Example of Instruction Descriptive Name and Mnemonic

2.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defined are
given in the Format field. If the instruction definition was later extended, the architecture levels at which it was
extended and the assembler formats for the extended definition are shown in their order of extension (for an example,
see C.cond fmt). The MIPS architecture levels are inclusive; higher architecture levels include all instructions in pre-
vious levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the
extended architecture.

Figure 2.4 Example of Instruction Format

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the lowercase names of the appropriate fields. The architectural level at
which the instruction was first defined, for example “MIPS32” is shown at the right side of the page.

There can be more than one assembler format for each architecture level. Floating point operations on formatted data
show an assembly format with the actual assembler mnemonic for each valid value of the fmt field. For example, the
ADD fmt instruction lists both ADD.S and ADD.D.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000 rs rt rd 0

00000
ADD

100000
6 5 5 5 5 6

Add Word ADD

Format: ADD fd,rs,rt MIPS32

2.1 Understanding the Instruction Fields

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 21

The assembler format lines sometimes include parenthetical comments to help explain variations in the formats (once
again, see C.cond.fmt). These comments are not a part of the assembler format.

2.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

Figure 2.5 Example of Instruction Purpose

2.1.5 Description Field

If a one-line symbolic description of the instruction is feasible, it appears immediately to the right of the Description
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operation.

Figure 2.6 Example of Instruction Description

The body of the section is a description of the operation of the instruction in text, tables, and figures. This description
complements the high-level language description in the Operation section.

This section uses acronyms for register descriptions. “GPR rt” is CPU general-purpose register specified by the
instruction field rt. “FPR fs” is the floating point operand register specified by the instruction field fs. “CP1 register
fd” is the coprocessor 1 general register specified by the instruction field fd. “FCSR” is the floating point Control /
Status register.

2.1.6 Restrictions Field

The Restrictions field documents any possible restrictions that may affect the instruction. Most restrictions fall into
one of the following six categories:

• Valid values for instruction fields (for example, see floating point ADD fmt)

• ALIGNMENT requirements for memory addresses (for example, see LW)

• Valid values of operands (for example, see ALNV.PS)

• Valid operand formats (for example, see floating point ADD.fmt)

Purpose: Add Word

To add 32-bit integers. If an overflow occurs, then trap.

Description: GPR[rd] GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to produce a 32-bit
result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination
register is not modified and an Integer Overflow exception occurs.

• If the addition does not overflow, the 32-bit result is placed into GPR rd.

2.1 Understanding the Instruction Fields

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 22

• Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline hazards
for which some processors do not have hardware interlocks (for example, see MUL).

• Valid memory access types (for example, see LL/SC)

Figure 2.7 Example of Instruction Restrictions

2.1.7 Operation Field

The Operation field describes the operation of the instruction as pseudocode in a high-level language notation resem-
bling Pascal. This formal description complements the Description section; it is not complete in itself because many
of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Figure 2.8 Example of Instruction Operation

See 2.2 “Operation Section Notation and Functions” on page 23 for more information on the formal notation used
here.

2.1.8 Exceptions Field

The Exceptions field lists the exceptions that can be caused by Operation of the instruction. It omits exceptions that
can be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be caused by asyn-
chronous external events such as an Interrupt. Although a Bus Error exception may be caused by the operation of a
load or store instruction, this section does not list Bus Error for load and store instructions because the relationship
between load and store instructions and external error indications, like Bus Error, are dependent upon the implemen-
tation.

Figure 2.9 Example of Instruction Exception

An instruction may cause implementation-dependent exceptions that are not present in the Exceptions section.

Restrictions:

None

Operation:

temp (GPR[rs]31||GPR[rs]31..0) + (GPR[rt]31||GPR[rt]31..0)
if temp32 temp31 then

SignalException(IntegerOverflow)
else

GPR[rd] temp
endif

Exceptions:

Integer Overflow

2.2 Operation Section Notation and Functions

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 23

2.1.9 Programming Notes and Implementation Notes Fields

The Notes sections contain material that is useful for programmers and implementors, respectively, but that is not nec-
essary to describe the instruction and does not belong in the description sections.

Figure 2.10 Example of Instruction Programming Notes

2.2 Operation Section Notation and Functions

In an instruction description, the Operation section uses a high-level language notation to describe the operation per-
formed by each instruction. Special symbols used in the pseudocode are described in the previous chapter. Specific
pseudocode functions are described below.

This section presents information about the following topics:

• “Instruction Execution Ordering” on page 23

• “Pseudocode Functions” on page 23

2.2.1 Instruction Execution Ordering

Each of the high-level language statements in the Operations section are executed sequentially (except as constrained
by conditional and loop constructs).

2.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudocode more
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and
include the following:

• “Coprocessor General Register Access Functions” on page 23

• “Memory Operation Functions” on page 25

• “Floating Point Functions” on page 28

• “Miscellaneous Functions” on page 31

2.2.2.1 Coprocessor General Register Access Functions

Defined coprocessors, except for CP0, have instructions to exchange words and doublewords between coprocessor
general registers and the rest of the system. What a coprocessor does with a word or doubleword supplied to it and
how a coprocessor supplies a word or doubleword is defined by the coprocessor itself. This behavior is abstracted into
the functions described in this section.

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

2.2 Operation Section Notation and Functions

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 24

COP_LW

The COP_LW function defines the action taken by coprocessor z when supplied with a word from memory during a
load word operation. The action is coprocessor-specific. The typical action would be to store the contents of mem-
word in coprocessor general register rt.

Figure 2.11 COP_LW Pseudocode Function

COP_LW (z, rt, memword)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memword: A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */

endfunction COP_LW

COP_LD

The COP_LD function defines the action taken by coprocessor z when supplied with a doubleword from memory
during a load doubleword operation. The action is coprocessor-specific. The typical action would be to store the con-
tents of memdouble in coprocessor general register rt.

Figure 2.12 COP_LD Pseudocode Function

COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memdouble: 64-bit doubleword value supplied to the coprocessor.

/* Coprocessor-dependent action */

endfunction COP_LD

COP_SW

The COP_SW function defines the action taken by coprocessor z to supply a word of data during a store word opera-
tion. The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in
coprocessor general register rt.

Figure 2.13 COP_SW Pseudocode Function

dataword COP_SW (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
dataword: 32-bit word value

/* Coprocessor-dependent action */

endfunction COP_SW

COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store dou-
bleword operation. The action is coprocessor-specific. The typical action would be to supply the contents of the low-
order doubleword in coprocessor general register rt.

2.2 Operation Section Notation and Functions

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 25

Figure 2.14 COP_SD Pseudocode Function

datadouble COP_SD (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
datadouble: 64-bit doubleword value

/* Coprocessor-dependent action */

endfunction COP_SD

CoprocessorOperation

The CoprocessorOperation function performs the specified Coprocessor operation.

Figure 2.15 CoprocessorOperation Pseudocode Function

CoprocessorOperation (z, cop_fun)

/* z: Coprocessor unit number */
/* cop_fun: Coprocessor function from function field of instruction */

/* Transmit the cop_fun value to coprocessor z */

endfunction CoprocessorOperation

2.2.2.2 Memory Operation Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the smallest byte
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for a little-endian
ordering this is the least-significant byte.

In the Operation pseudocode for load and store operations, the following functions summarize the handling of virtual
addresses and the access of physical memory. The size of the data item to be loaded or stored is passed in the Access-
Length field. The valid constant names and values are shown in Table 2.1. The bytes within the addressed unit of
memory (word for 32-bit processors or doubleword for 64-bit processors) that are used can be determined directly
from the AccessLength and the two or three low-order bits of the address.

AddressTranslation

The AddressTranslation function translates a virtual address to a physical address and its cacheability and coherency
attribute, describing the mechanism used to resolve the memory reference.

Given the virtual address vAddr, and whether the reference is to Instructions or Data (IorD), find the corresponding
physical address (pAddr) and the cacheability and coherency attribute (CCA) used to resolve the reference. If the vir-
tual address is in one of the unmapped address spaces, the physical address and CCA are determined directly by the
virtual address. If the virtual address is in one of the mapped address spaces then the TLB or fixed mapping MMU
determines the physical address and access type; if the required translation is not present in the TLB or the desired
access is not permitted, the function fails and an exception is taken.

Figure 2.16 AddressTranslation Pseudocode Function

(pAddr, CCA) AddressTranslation (vAddr, IorD, LorS)

/* pAddr: physical address */
/* CCA: Cacheability&Coherency Attribute,the method used to access caches*/

2.2 Operation Section Notation and Functions

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 26

/* and memory and resolve the reference */

/* vAddr: virtual address */
/* IorD: Indicates whether access is for INSTRUCTION or DATA */
/* LorS: Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

LoadMemory

The LoadMemory function loads a value from memory.

This action uses cache and main memory as specified in both the Cacheability and Coherency Attribute (CCA) and
the access (IorD) to find the contents of AccessLength memory bytes, starting at physical location pAddr. The data is
returned in a fixed-width naturally aligned memory element (MemElem). The low-order 2 (or 3) bits of the address
and the AccessLength indicate which of the bytes within MemElem need to be passed to the processor. If the memory
access type of the reference is uncached, only the referenced bytes are read from memory and marked as valid within
the memory element. If the access type is cached but the data is not present in cache, an implementation-specific size
and alignment block of memory is read and loaded into the cache to satisfy a load reference. At a minimum, this
block is the entire memory element.

Figure 2.17 LoadMemory Pseudocode Function

MemElem LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a natural alignment. The */
/* width is the same size as the CPU general-purpose register, */
/* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */
/* respectively. */
/* CCA: Cacheability&CoherencyAttribute=method used to access caches */
/* and memory and resolve the reference */

/* AccessLength: Length, in bytes, of access */
/* pAddr: physical address */
/* vAddr: virtual address */
/* IorD: Indicates whether access is for Instructions or Data */

endfunction LoadMemory

StoreMemory

The StoreMemory function stores a value to memory.

The specified data is stored into the physical location pAddr using the memory hierarchy (data caches and main mem-
ory) as specified by the Cacheability and Coherency Attribute (CCA). The MemElem contains the data for an aligned,
fixed-width memory element (a word for 32-bit processors, a doubleword for 64-bit processors), though only the
bytes that are actually stored to memory need be valid. The low-order two (or three) bits of pAddr and the AccessLen-
gth field indicate which of the bytes within the MemElem data should be stored; only these bytes in memory will actu-
ally be changed.

Figure 2.18 StoreMemory Pseudocode Function

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

2.2 Operation Section Notation and Functions

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 27

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */
/* AccessLength: Length, in bytes, of access */
/* MemElem: Data in the width and alignment of a memory element. */
/* The width is the same size as the CPU general */
/* purpose register, either 4 or 8 bytes, */
/* aligned on a 4- or 8-byte boundary. For a */
/* partial-memory-element store, only the bytes that will be*/
/* stored must be valid.*/
/* pAddr: physical address */
/* vAddr: virtual address */

endfunction StoreMemory

Prefetch

The Prefetch function prefetches data from memory.

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may
increase performance but must not change the meaning of the program or alter architecturally visible state.

Figure 2.19 Prefetch Pseudocode Function

Prefetch (CCA, pAddr, vAddr, DATA, hint)

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */
/* pAddr: physical address */
/* vAddr: virtual address */
/* DATA: Indicates that access is for DATA */
/* hint: hint that indicates the possible use of the data */

endfunction Prefetch

Table 2.1 lists the data access lengths and their labels for loads and stores.

SyncOperation

The SyncOperation function orders loads and stores to synchronize shared memory.

Table 2.1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning

DOUBLEWORD 7 8 bytes (64 bits)

SEPTIBYTE 6 7 bytes (56 bits)

SEXTIBYTE 5 6 bytes (48 bits)

QUINTIBYTE 4 5 bytes (40 bits)

WORD 3 4 bytes (32 bits)

TRIPLEBYTE 2 3 bytes (24 bits)

HALFWORD 1 2 bytes (16 bits)

BYTE 0 1 byte (8 bits)

2.2 Operation Section Notation and Functions

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 28

This action makes the effects of the synchronizable loads and stores indicated by stype occur in the same order for all
processors.

Figure 2.20 SyncOperation Pseudocode Function

SyncOperation(stype)

/* stype: Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

2.2.2.3 Floating Point Functions

The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are inter-
preted to form a formatted value. If an FPR contains a value in some format, rather than unformatted contents from a
load (uninterpreted), it is valid to interpret the value in that format (but not to interpret it in a different format).

ValueFPR

The ValueFPR function returns a formatted value from the floating point registers.

Figure 2.21 ValueFPR Pseudocode Function

value ValueFPR(fpr, fmt)

/* value: The formattted value from the FPR */

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */
/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */
/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in SWC1 and SDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:

valueFPR FPR[fpr]

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode 0)

if (fpr0 0) then
valueFPR UNPREDICTABLE

else
valueFPR FPR[fpr1]31..0 FPR[fpr]31..0

endif
else

valueFPR FPR[fpr]
endif

L, PS:
if (FP32RegistersMode 0) then

valueFPR UNPREDICTABLE

2.2 Operation Section Notation and Functions

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 29

else
valueFPR FPR[fpr]

endif

DEFAULT:
valueFPR UNPREDICTABLE

endcase
endfunction ValueFPR

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored into CP1
registers by a computational or move operation. This binary representation is visible to store or move-from instruc-
tions. Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a
different format.

StoreFPR

Figure 2.22 StoreFPR Pseudocode Function

StoreFPR (fpr, fmt, value)

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */
/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */
/* value: The formattted value to be stored into the FPR */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in LWC1 and LDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:

FPR[fpr] value

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode 0)

if (fpr0 0) then
UNPREDICTABLE

else
FPR[fpr] UNPREDICTABLE32 value31..0
FPR[fpr1] UNPREDICTABLE32 value63..32

endif
else

FPR[fpr] value
endif

L, PS:
if (FP32RegistersMode 0) then

UNPREDICTABLE
else

FPR[fpr] value
endif

endcase

2.2 Operation Section Notation and Functions

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 30

endfunction StoreFPR

The pseudocode shown below checks for an enabled floating point exception and conditionally signals the exception.

CheckFPException

Figure 2.23 CheckFPException Pseudocode Function

CheckFPException()

/* A floating point exception is signaled if the E bit of the Cause field is a 1 */
/* (Unimplemented Operations have no enable) or if any bit in the Cause field */
/* and the corresponding bit in the Enable field are both 1 */

if ((FCSR17 1) or
((FCSR16..12 and FCSR11..7) 0))) then

SignalException(FloatingPointException)
endif

endfunction CheckFPException

FPConditionCode

The FPConditionCode function returns the value of a specific floating point condition code.

Figure 2.24 FPConditionCode Pseudocode Function

tf FPConditionCode(cc)

/* tf: The value of the specified condition code */

/* cc: The Condition code number in the range 0..7 */

if cc = 0 then
FPConditionCode FCSR23

else
FPConditionCode FCSR24+cc

endif

endfunction FPConditionCode

SetFPConditionCode

The SetFPConditionCode function writes a new value to a specific floating point condition code.

Figure 2.25 SetFPConditionCode Pseudocode Function

SetFPConditionCode(cc, tf)
if cc = 0 then

FCSR FCSR31..24 || tf || FCSR22..0
else

FCSR FCSR31..25+cc || tf || FCSR23+cc..0
endif

endfunction SetFPConditionCode

2.2 Operation Section Notation and Functions

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 31

2.2.2.4 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

SignalException

The SignalException function signals an exception condition.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.26 SignalException Pseudocode Function

SignalException(Exception, argument)

/* Exception: The exception condition that exists. */
/* argument: A exception-dependent argument, if any */

endfunction SignalException

SignalDebugBreakpointException

The SignalDebugBreakpointException function signals a condition that causes entry into Debug Mode from non-
Debug Mode.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.27 SignalDebugBreakpointException Pseudocode Function

SignalDebugBreakpointException()

endfunction SignalDebugBreakpointException

SignalDebugModeBreakpointException

The SignalDebugModeBreakpointException function signals a condition that causes entry into Debug Mode from
Debug Mode (i.e., an exception generated while already running in Debug Mode).

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.28 SignalDebugModeBreakpointException Pseudocode Function

SignalDebugModeBreakpointException()

endfunction SignalDebugModeBreakpointException

NullifyCurrentInstruction

The NullifyCurrentInstruction function nullifies the current instruction.

The instruction is aborted, inhibiting not only the functional effect of the instruction, but also inhibiting all exceptions
detected during fetch, decode, or execution of the instruction in question. For branch-likely instructions, nullification
kills the instruction in the delay slot of the branch likely instruction.

2.3 Op and Function Subfield Notation

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 32

Figure 2.29 NullifyCurrentInstruction PseudoCode Function

NullifyCurrentInstruction()

endfunction NullifyCurrentInstruction

JumpDelaySlot

The JumpDelaySlot function is used in the pseudocode for the PC-relative instructions in the MIPS16e ASE. The
function returns TRUE if the instruction at vAddr is executed in a jump delay slot. A jump delay slot always immedi-
ately follows a JR, JAL, JALR, or JALX instruction.

Figure 2.30 JumpDelaySlot Pseudocode Function

JumpDelaySlot(vAddr)

/* vAddr:Virtual address */

endfunction JumpDelaySlot

PolyMult

The PolyMult function multiplies two binary polynomial coefficients.

Figure 2.31 PolyMult Pseudocode Function

PolyMult(x, y)
temp 0
for i in 0 .. 31

if xi = 1 then
temp temp xor (y(31-i)..0 || 0

i)
endif

endfor

PolyMult temp

endfunction PolyMult

2.3 Op and Function Subfield Notation

In some instructions, the instruction subfields op and function can have constant 5- or 6-bit values. When reference is
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction,
op=COP1 and function=ADD. In other cases, a single field has both fixed and variable subfields, so the name con-
tains both upper- and lowercase characters.

2.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfields in an instruction format (such as fs, ft, imme-
diate, and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown in upper-
case.

For the sake of clarity, an alias is sometimes used for a variable subfield in the formats of specific instructions. For
example, rs=base in the format for load and store instructions. Such an alias is always lowercase since it refers to a
variable subfield.

2.4 FPU Instructions

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 33

Bit encodings for mnemonics are given in Volume I, in the chapters describing the CPU, FPU, MDMX, and MIPS16e
instructions.

See “Op and Function Subfield Notation” on page 32 for a description of the op and function subfields.

Chapter 3

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 34

The MIPS32® SIMD Architecture

The MIPS® SIMD Architecture (MSA) module adds new instructions to the industry-standard MIPS Release 5
(“R5”) architecture that allow efficient parallel processing of vector operations. This functionality is of growing
importance across a range of consumer electronics and enterprise applications.

In consumer electronics, while dedicated, non-programmable hardware aids the CPU and GPU by handling
heavy-duty multimedia codecs, there is a recognized trend toward adding a software-programmable solution in the
CPU to handle emerging applications or a small number of functions not covered by the dedicated hardware. In this
way, SIMD can provide increased system flexibility, and the MSA is ideal for these applications.

However, the MSA is not just another multimedia SIMD extension. Rather than focusing on narrowly defined instruc-
tions that must have optimized code written manually in assembly language in order to be utilized, the MSA is
designed to accelerate compute-intensive applications in conjunction with leveraging generic compiler support.

A wide range of applications – including data mining, feature extraction in video, image and video processing,
human-computer interaction, and others – have some built-in data parallelism that lends itself well to SIMD. These
compute-intensive software packages will not be written in assembly for any specific architecture, but rather in
high-level languages using operations on vector data types.

The MSA module was implemented with strict adherence to RISC (Reduced Instruction Set Computer) design princi-
ples. From the beginning, MIPS architects designed the MSA with a carefully selected, simple SIMD instruction set
that is not only programmer- and compiler-friendly, but also hardware-efficient in terms of speed, area, and power
consumption. The simple instructions are also easy to support within high-level languages, enabling fast and simple
development of new code, as well as leverage of existing code.

This chapter describes the purpose and key features of the MIPS32® SIMD Architecture (MSA).

3.1 Overview

The MSA complements the well-established MIPS architecture with a set of more than 150 new instructions operat-
ing on 32 vector registers of 8-, 16-, 32-, and 64-bit integer, 16-and 32-bit fixed- point, or 32- and 64-bit float-
ing-point data elements. In the current release, MSA implements 128-bit wide vector registers shared with the 64-bit
wide floating-point unit (FPU) registers.

In multi-threaded implementations, MSA allows for fewer than 32 physical vector registers per hardware thread con-
text. The thread contexts have access to as many vector registers as needed, up to the full 32 vector registers set
defined by the architecture. When the hardware runs out of physical vector registers, the OS re-schedules the running
threads or processes to accommodate the pending requests. The actual mapping of the physical vector registers to the
hardware thread contexts is managed by the hardware.

The MSA floating-point implementation is compliant with the IEEE Standard for Floating-Point Arithmetic
754TM-2008. All standard operations are provided for 32-bit and 64-bit floating-point data. 16-bit floating-point stor-
age format is supported through conversion instructions to/from 32-bit floating-point data. In the case of a float-

3.2 MSA Software Detection

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 35

ing-point exception, each faulting vector element is precisely identified without the need for software emulation for
all vector elements.

For compare and branch, MSA uses no global condition flags: compare instructions write the results per vector ele-
ment as all zero or all one bit values. Branch instructions test for zero or not zero element(s) or vector value.

MSA is built on the same principles pioneered by MIPS and its earlier MDMX (MIPS Digital Media eXtension): a
simple, yet very efficient instruction set. The opcodes allocated to MDMX are reused for MSA, which means that
MDMX is deprecated at the time of the release of MSA.

MSA requires a compliant implementation of the MIPS32 Architecture, Release 5 or later.

3.2 MSA Software Detection

The presence of MSA implementation is indicated by the Config3 MSAP bit (CP0 Register 16, Select 3, bit 28) as
shown in Figure 3-1. MSAP bit is fixed by the hardware implementation and is read-only for the software. The soft-
ware may determine if the MSA is implemented by checking if the MSAP bit is set. Any attempt to execute MSA
instructions must cause a Reserved Instruction Exception if the MSAP bit is not set.

Figure 3-1 Config3 (CP0 Register 16, Select 3) MSA Implementation Present Bit

Config5 MSAEn bit (CP0 Register 16, Select 5, bit 27), shown in Figure 3-2, is used to enable the MSA instructions.
Executing a MSA instruction when MSAEn bit is not set causes a MSA Disabled Exception, see Section
3.5.1 “Handling the MSA Disabled Exception”. The reset state of the MSAEn bit is zero.

Figure 3-2 Config5 (CP0 Register 16, Select 5) MSA Enable Bit

3.3 MSA Vector Registers

The MSA operates on 32 128-bit wide vector registers. If both MSA and the scalar floating-point unit (FPU) are pres-
ent, the 128-bit MSA vector registers extend and share the 64-bit FPU registers. MSA and FPU can not be both pres-
ent, unless the FPU has 64-bit floating-point registers.

MSA vector register have four data formats: byte (8-bit), halfword (16-bit), word (32-bit), doubleword (64-bit). Cor-
responding to the associated data format, a vector register consists of a number of elements indexed from 0 to n,

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSAP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSAEn

3.3 MSA Vector Registers

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 36

where the least significant bit of the 0th element is the vector register bit 0 and the most significant bit of the nth ele-
ment is the vector register bit 127.

When both FPU and MSA are present, the floating-point registers are mapped on the corresponding MSA vector reg-
isters as the 0th elements.

3.3.1 Registers Layout

Figure 3-3 through Figure 3-6 show the vector register layout for elements of all four data formats where [n] refers to
the nth vector element and MSB and LSB stand for the element’s Most Significant and Least Significant Byte.

Figure 3-3 MSA Vector Register Byte Elements

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

[15] [14] [13] [12] [11] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1] [0]

Figure 3-4 MSA Vector Register Halfword Elements

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

[7] [6] [5] [4] [3] [2] [1] [0]

MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB

Figure 3-5 MSA Vector Register Word Elements

127 96 95 64 63 32 31 0

[3] [2] [1] [0]

MSB LSB MSB LSB MSB LSB MSB LSB

Figure 3-6 MSA Vector Register Doubleword Elements

127 64 63 0

[1] [0]

MSB LSB MSB LSB

3.3 MSA Vector Registers

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 37

The vector register layout for slide instructions SLD and SLDI is a 2-dimensional byte array, with as many rows as
bytes in the integer data format. For byte data format, the 1-row array is reduced to the vector shown in Figure 3-3.
For halfword, the byte array has 2 rows (Figure 3-7), there are 4 rows for word (Figure 3-8), and 8 rows (Figure 3-9)
for doubleword data format.

MSA vectors are stored in memory starting from the 0th element at the lowest byte address. The byte order of each
element follows the big- or little-endian convention as indicated by the BE bit in the CP0 Config register (CP0 Regis-
ter 16, Select 0, bit 15). For example, Table 3.1 shows the memory representation for a MSA vector consisting of
word elements in both big- and little-endian mode.

Figure 3-7 MSA Vector Register as 2-Row Byte Array

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

[15] [14] [13] [12] [11] [10] [9] [8]

[7] [6] [5] [4] [3] [2] [1] [0]

Figure 3-8 MSA Vector Register as 4-Row Byte Array

31 24 23 16 15 8 7 0

[15] [14] [13] [12]

[11] [10] [9] [8]

[7] [6] [5] [4]

[3] [2] [1] [0]

Figure 3-9 MSA Vector Register as 8-Row Byte Array

15 8 7 0

[15] [14]

[13] [12]

[11] [10]

[9] [8]

[7] [6]

[5] [4]

[3] [2]

[1] [0]

3.3 MSA Vector Registers

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 38

3.3.2 Floating-Point Registers Mapping

The scalar floating-point unit (FPU) registers are mapped on the MSA vector registers. To facilitate register data shar-
ing between scalar floating-point instructions and vector instructions, the FPU is required to use 64-bit floating-point
registers operating in 64-bit mode. More specifically:

• If MSA and FPU are both present, then the FPU must implement 64-bit floating point registers, i.e. bits
Config3MSAP and FIRF64 (CP1 Control Register 0, bit 22) are set.

• If MSA and FPU are both present, then the FPU must be compliant with the IEEE Standard for Floating-Point
Arithmetic 754TM-2008, i.e. the read-only bits FCSRNAN2008 and FCSRABS2008 (CP1 Control Register 31,
bits 18 and 19) are set.

• MSA instructions are not enabled while the FPU (Coprocessor 1) is usable and operates in 32-bit mode. i.e. bit
StatusCU1 (CP Register 12, Select 0, bit 29) is set and bit StatusFR (CP Register 12, Select 0, bit 26) is not set.
Any attempt to execute MSA instructions with StatusCU1 set and StatusFR clear will generate the Reserved
Instruction exception.

Table 3.1 Word Vector Memory Representation

Word Vector Element
Little-Endian Byte

Address Offset
Big-Endian Byte
Address Offset

Word
[0]

Byte [0] / LSB 0 3

Byte [1] 1 2

Byte [2] 2 1

Byte [3] / MSB 3 0

Word
[1]

Byte [0] / LSB 4 7

Byte [1] 5 6

Byte [2] 6 5

Byte [3] / MSB 7 4

Word
[2]

Byte [0] / LSB 8 11

Byte [1] 9 10

Byte [2] 10 9

Byte [3] / MSB 11 8

Word
[3]

Byte [0] / LSB 12 15

Byte [1] 13 14

Byte [2] 14 13

Byte [3] / MSB 15 12

3.4 MSA Control Registers

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 39

When StatusFR is set, the read and write operations for the FPU/MSA mapped floating-point registers are defined as
follows:

• A read operation from the floating-point register r, where r = 0, …, 31, returns the value of the element with
index 0 in the vector register r. The element’s format is word for 32-bit (single precision floating-point) read or
double for 64-bit (double precision floating-point) read.

• A 32-bit read operation from the high part of the floating-point register r, where r = 0, …, 31, returns the value of
the word element with index 1 in the vector register r.

• A write operation of value V to the floating-point register r, where r = 0, …, 31, writes V to the element with
index 0 in the vector register r and all remaining elements are UNPREDICTABLE. Figure 3-10 and Figure 3-11
show the vector register r after writing a 32-bit (single precision floating-point) and a 64-bit (double precision
floating-point) value V to the floating-point register r.

• A 32-bit write operation of value V to the high part of the floating-point register r, where r = 0, …, 31, writes V to
the word element with index 1 in the vector register r, preserves word element 0, and all remaining elements are
UNPREDICTABLE. Figure 3-12 shows the vector register r after writing a 32-bit value V to the floating-point
register r.

Changing the StatusFR value renders all floating-point and vector registers UNPREDICTABLE.

3.4 MSA Control Registers

The control registers are used to record and manage the MSA state and resources. Two dedicated instructions are pro-
vided for this purpose: CFCMSA (Copy From Control MSA register) and CTCMSA (Copy To Control MSA regis-
ter). The only information residing outside the MSA control registers is the implementation bit Config3MSAP and the

Figure 3-10 FPU Word Write Effect on the MSA Vector Register (StatusFR set)

127 96 95 64 63 32 31 0

UNPREDICTABLE UNPREDICTABLE UNPREDICTABLE Word value V

Figure 3-11 FPU Doubleword Write Effect on the MSA Vector Register (StatusFR set)

127 64 63 0

UNPREDICTABLE Doubleword value V

Figure 3-12 FPU High Word Write Effect on the MSA Vector Register (StatusFR set)

127 96 95 64 63 32 31 0

UNPREDICTABLE UNPREDICTABLE Word value V Unchanged

3.4 MSA Control Registers

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 40

enable bit Config5MSAEn discussed in Section 3.2 “MSA Software Detection”.

There are 8 MSA control registers. See Table 3.2 for a summary and the following sections for the complete descrip-
tion.

3.4.1 MSA Implementation Register (MSAIR, MSA Control Register 0)

Compliance Level: Required if MSA is implemented
Access Mode: Not privileged, user mode accessible

The MSA Implementation Register (MSAIR) is a 32-bit read-only register that contains information specifying the
identification of MSA. Figure 3-13 shows the format of the MSAIR; Figure 3-14 describes the MSAIR fields.

The software can read the MSAIR using CFCMSA (Copy From Control MSA register) instruction. If the
multi-threading module is present, all thread contexts share one MSAIR register instance.

Figure 3-13 MSAIR Register Format

Table 3.2 MSA Control Registers

Name Index
Access Mode

Read/Write Description
MSAIRWRP = 1 MSAIRWRP = 0

MSAIR 0 User mode accessible, not privileged Read Only Implementation

MSACSR 1 User mode accessible, not privileged Read/Write Control and status

MSAAccess 2 Privileged Reserved Read Only Available vector registers mask

MSASave 3 Privileged Reserved Read/Write Saved vector registers mask

MSAModify 4 Privileged Reserved Read/Write Modified (written) vector registers mask

MSARequest 5 Privileged Reserved Read Only Requested vector registers mask

MSAMap 6 Privileged Reserved Read/Write Mapping vector register index

MSAUnmap 7 Privileged Reserved Read/Write Unmapping vector register index

31 25 24 23 18 17 16 15 8 7 0

0
00000000000000 WRP ProcessorID Revision

3.4 MSA Control Registers

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 41

Figure 3-14 MSAIR Register Field Descriptions

3.4.2 MSA Control and Status Register (MSACSR, MSA Control Register 1)

Compliance Level: Required if MSA is implemented
Access Mode: Not privileged, user mode accessible

The MSA Control and Status Register (MSACSR) is a 32-bit read/write register that controls the operation of the
MSA unit. Figure 3-15 shows the format of the MSACSR; Figure 3-16 describes the MSACSR fields.

The software can read and write the MSACSR using CFCMSA and CTCMSA (Copy From and To Control MSA
register) instructions. If the multi-threading module is present, each thread context has its own MSACSR register
instance.

Floating Point Control and Status Register (FCSR, CP1 Control Register 31) and MSA Control and Status Register
(MSACSR) are closely related in their purpose. However, each serves a different functional unit and can exist inde-
pendently of the other.

Figure 3-15 MSACSR Register Format

Fields

Description
Read/
Write Reset State ComplianceName Bits

0 31:17 Reserved for future use; reads as zero and must be writ-
ten as zero.

R0 0 Reserved

WRP 16 Vector Registers Partitioning.
Using vector registers partitioning MSA allows for mul-
tithreaded implementations with fewer than 32 physical
vector registers per hardware thread context.

R Preset Required

ProcID 15:8 Processor ID number R Preset Required

Rev 7:0 Revision number R Preset Required

31 25 24 23 22 21 20 19 18 17 12 11 7 6 2 1 0

0
00000000 FS 0 Impl 0 NX Cause Enables Flags RM

E V Z O U I V Z O U I V Z O U I

Encoding Meaning

0 Vector registers partitioning not
implemented.

1 Vector registers partitioning imple-
mented.

3.4 MSA Control Registers

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 42

Figure 3-16 MSACSR Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

0 31:25 Reserved for future use; reads as zero and must be writ-
ten as zero.

R0 0 Reserved

FS 24 Flush to zero. If not implemented, reads as zero and
writes are ignored.
Every input subnormal value and tiny non-zero result is
replaced with zero of the same sign. See Section
3.5.4 “Flush to Zero and Exception Signaling”.

R/W 0 Optional

0 23 Reserved for future use; reads as zero and must be writ-
ten as zero.

R0 0 Reserved

Impl 22:21 Available to control implementation dependent features. R/W Undefined Optional

0 20:19 Reserved for future use; reads as zero and must be writ-
ten as zero.

R0 0 Reserved

Encoding Meaning

0 Input subnormal values and tiny
non-zero results are not altered.
Unimplemented Operation Exception
may be signaled as needed.

1 Replace every input subnormal value
and tiny non-zero result with zero of
the same sign. No Unimplemented
Operation Exception is signaled.

3.4 MSA Control Registers

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 43

NX 18 Non-trapping floating point exception mode.
In normal exception mode, the destination register is not
written and the floating point exceptions set the Cause
bits and trap.
In non-trapping exception mode, the operations which
would normally signal floating point exceptions do not
write the Cause bits and do not trap. All the destination
register’s elements are set either to the calculated results
or, if the operation would normally signal an exception,
to signaling NaN values (see Section 3.5.2 “Handling
the MSA Floating Point Exception”) with the least sig-
nificant 6 bits recording the specific exception type
detected for that element in the same format as the Cause
field. The Flags bits are updated for all floating-point
operation with an IEEE exception condition that does
not result in a MSA floating point exception (i.e., the
Enable bit is off).

R/W 0 Required for
floating-point

Cause 17:12 Cause bits.
These bits indicate the IEEE exception conditions that
arise during the execution of all operations in a vector
floating-point instruction. A bit is set to 1 if the corre-
sponding exception condition arises during the execution
of any operation in the vector floating-point instruction
and is set to 0 otherwise. The exception conditions
caused by the preceding vector floating-point instruction
can be determined by reading the Cause field.
Refer to Table 3.3 for the meaning of each bit.

R/W Undefined Required for
floating-point

Enable 11:7 Enable bits.
These bits control whether or not a exception is taken
when an IEEE exception condition arises for any of the
five conditions. The exception is taken when both an
Enable bit and the corresponding Cause bit are set either
during the execution of any operation in vector float-
ing-point instruction or by moving a value to MSACSR
or one of its alternative representations. Note that Cause
bit E (Unimplemented Operation) has no corresponding
Enable bit; the non-IEEE Unimplemented Operation
Exception is defined by MIPS as always enabled.
Refer to Table 3.3 for the meaning of each bit.

R/W Undefined Required for
floating-point

Fields

Description
Read/
Write Reset State ComplianceName Bits

Encoding Meaning

0 Normal exception mode

1 Non-trapping exception mode

3.4 MSA Control Registers

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 44

Flags 6:2 Flag bits.
This field shows any exception conditions that have
occurred for all operations in the vector floating-point
instructions completed since the flag was last reset by
software. When a floating-point operation raises an
IEEE exception condition that does not result in a MSA
floating point exception (i.e., the Enable bit is off), the
corresponding bit(s) in the Flags field are set, while the
others remain unchanged. Arithmetic operations that
result in a floating point exception (i.e., the Enable bit is
on) do not update the Flags bits.This field is never reset
by hardware and must be explicitly reset by software.
Refer to Table 3.3 for the meaning of each bit.

R/W Undefined Required for
floating-point

RM 1:0 Rounding Mode.
This field indicates the rounding mode used for most
floating point operations (some operations use a specific
rounding mode).
Refer to Table 3.4 for the meaning of the encodings of
this field.

R/W 0 Required for
floating-point

Table 3.3 Cause, Enable, and Flag Bit Definitions

Bit Name Bit Meaning

E Unimplemented Operation.
This bit exists only in the Cause field.

V Invalid Operation.
The Invalid Operation Exception is signaled if and only if there is no usefully definable result. In
these cases the operands are invalid for the operation to be performed.
Under default exception handling, i.e. when the Invalid Operation Exception is not enabled, the
default floating-point result is a quiet NaN (see Table 3.6).

Z Divide by Zero.
The Divide by Zero Exception is signaled if and only if an exact infinite result is defined for an
operation on finite operands.
Under default exception handling, i.e. when the Divide by Zero Exception is not enabled, the
default result is an infinity correctly signed according to the operation (see Table 3.6).

O Overflow.
The Overflow Exception is signaled if and only if the destination format’s largest finite number is
exceeded in magnitude by what would have been the rounded floating-point result were the expo-
nent range unbounded.
Under default exception handling, i.e. when the Overflow Exception is not enabled, the overflowed
rounded result (see Table 3.6) is delivered to the destination. In addition, the Inexact bit in the
Cause field is set.

Fields

Description
Read/
Write Reset State ComplianceName Bits

3.4 MSA Control Registers

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 45

3.4.3 MSA Access Register (MSAAccess, MSA Control Register 2)

Compliance Level: Required for vector registers partitioning (i.e. MSAIRWRP set), otherwise Reserved

Access Mode: Privileged, accessible only when access to Coprocessor 0 is enabled

The MSA Access register (MSAAccess) is a 32-bit read-only register specifying which of the 32 architecturally
defined vector registers W0, …, W31 are available to the software. Figure 3-17 shows the format of the MSAAccess.
Vector register Wn, where n = 0, …, 31, is available and can be used only if MSAAccessWn bit is set. The reset state
of the MSA Access register is zero.

The software can read the MSAAccess using CFCMSA (Copy From Control MSA register) instruction. If the
multi-threading module is present, each thread context has its own MSAAccess register instance.

U Underflow.
If enabled, the Underflow Exception is signaled when a tiny non-zero result is detected after
rounding regardless of whether the rounded result is exact or inexact.
Under default exception handling, i.e. when the Underflow Exception is not enabled, the rounded
result (see Table 3.6) is delivered to the destination and:
• If the rounded result is inexact, the Inexact bit in the Cause field is set.
• If the rounded result is exact, no bit in the Flags field is set. Such an underflow condition has no

observable effect under default handling.

I Inexact.
Unless stated otherwise, if the rounded result of an operation is inexact -- that is, it differs from
what would have been computed were both exponent range and precision unbounded -- then the
Inexact Exception is be signaled.
Under default exception handling, i.e. when the Inexact Exception is not enabled, the rounded
result is delivered to the destination (see Table 3.6).

Table 3.4 Rounding Modes Definitions

RM Field
Encoding Meaning

0 Round to nearest / ties to even.
Rounds the result to the nearest representable value. When two representable values are equally
near, the result is rounded to the value whose least significant bit is zero (that is, even)

1 Round toward zero.
Rounds the result to the value closest to but not greater in magnitude than the result.

2 Round towards positive / plus infinity.
Rounds the result to the value closest to but not less than the result.

3 Round towards negative / minus infinity.
Rounds the result to the value closest to but not greater than the result.

Table 3.3 Cause, Enable, and Flag Bit Definitions

Bit Name Bit Meaning

3.4 MSA Control Registers

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 46

To get access to vector register Wn, n = 0, …, 31, the software writes n to MSAMap. Wn is mapped to an available
physical register and MSAAccessWn is set. To free up an already mapped vector register Wn, the software writes n
to MSAUnmap. Wn is unmapped and MSAAccessWn cleared.

The total number of vector registers mapped at any time can not exceed the number of physical registers imple-
mented.

Figure 3-17 MSAAccess Register Format

3.4.4 MSA Save Register (MSASave, MSA Control Register 3)

Compliance Level: Required for vector registers partitioning (i.e. MSAIRWRP set), otherwise Reserved

Access Mode: Privileged, accessible only when access to Coprocessor 0 is enabled

The MSA Save register (MSASave) is a 32-bit read/write register specifying which of the 32 architecturally defined
vector registers W0, …, W31 have not been saved after a software context switch. Figure 3-18 shows the format of
the MSASave. The reset state of the MSA Save register is zero.

The software can read and write the MSASave using CFCMSA and CTCMSA (Copy From and To Control MSA
register) instructions. If the multi-threading module is present, each thread context has its own MSASave register
instance.

If both bit MSAAccessWn and bit MSASaveWn are set, where n = 0, …, 31, then register Wn has to be saved on
behalf of the previous software context and restored with the value corresponding to the current context.

Figure 3-18 MSASave Register Format

3.4.5 MSA Modify Register (MSAModify, MSA Control Register 4)

Compliance Level: Required for vector registers partitioning (i.e. MSAIRWRP set), otherwise Reserved

Access Mode: Privileged, accessible only when access to Coprocessor 0 is enabled

The MSA Modify register (MSAModify) is a 32-bit read/write register specifying which of the 32 architecturally
defined vector registers W0, …, W31 have been modified (written). Figure 3-13 shows the format of the MSAModify.
The reset state of the MSA Modify register is zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

W
31

W
30

W
29

W
28

W
27

W
26

W
25

W
24

W
23

W
22

W
21

W
20

W
19

W
18

W
17

W
16

W
15

W
14

W
13

W
12

W
11

W
10

W
9

W
8

W
7

W
6

W
5

W
4

W
3

W
2

W
1

W
0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

W
31

W
30

W
29

W
28

W
27

W
26

W
25

W
24

W
23

W
22

W
21

W
20

W
19

W
18

W
17

W
16

W
15

W
14

W
13

W
12

W
11

W
10

W
9

W
8

W
7

W
6

W
5

W
4

W
3

W
2

W
1

W
0

3.4 MSA Control Registers

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 47

The software can read and write the MSAModify using CFCMSA and CTCMSA (Copy From and To Control MSA
register) instructions. If the multi-threading module is present, each thread context has its own MSAModify register
instance.

MSAModify is updated by the hardware when the execution of each MSA or FPU instruction completes. The update
is a logical or operation, i.e. hardware updates never clear any bits in MSAModify register.

If bit MSAModifyWn is set, where n = 0, …31, then the software has been granted access to and has modified register
Wn since the last time the software cleared bit n.

Figure 3-19 MSAModify Register Format

3.4.6 MSA Request Register (MSARequest, MSA Control Register 5)

Compliance Level: Required for vector registers partitioning (i.e. MSAIRWRP set), otherwise Reserved

Access Mode: Privileged, accessible only when access to Coprocessor 0 is enabled

The MSA Request register (MSARequest) is a 32-bit read-only register specifying which of the 32 architecturally
defined vector registers W0, …, W31 the current MSA or FPU instruction has requested access to but are not yet
available, i.e. MSAAccesWn is clear, or are not yet saved, i.e. MSASaveWn is set. Figure 3-13 shows the format of
the MSARequest. The reset state of the MSA Request register is zero.

The software can read the MSARequest using CFCMSA (Copy From Control MSA register) instruction. If the
multi-threading module is present, each thread context has its own MSARequest register instance.

MSARequest is set by the hardware for each MSA or FPU instruction with all vector registers the instruction will
access in either read or write mode. MSARequest is always cleared before setting the bits for the current MSA or
FPU instruction.

Figure 3-20 MSARequest Register Format

3.4.7 MSA Map Register (MSAMap, MSA Control Register 6)

Compliance Level: Required for vector registers partitioning (i.e. MSAIRWRP set), otherwise Reserved

Access Mode: Privileged, accessible only when access to Coprocessor 0 is enabled

The MSA Map register (MSAMap) is a 32-bit read/write register specifying a vector register to be mapped. Figure
3-21 shows the format of the MSAMap. Figure 3-22 describes the MSAMap fields.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

W
31

W
30

W
29

W
28

W
27

W
26

W
25

W
24

W
23

W
22

W
21

W
20

W
19

W
18

W
17

W
16

W
15

W
14

W
13

W
12

W
11

W
10

W
9

W
8

W
7

W
6

W
5

W
4

W
3

W
2

W
1

W
0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

W
31

W
30

W
29

W
28

W
27

W
26

W
25

W
24

W
23

W
22

W
21

W
20

W
19

W
18

W
17

W
16

W
15

W
14

W
13

W
12

W
11

W
10

W
9

W
8

W
7

W
6

W
5

W
4

W
3

W
2

W
1

W
0

3.4 MSA Control Registers

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 48

The software can read and write the MSAMap using CFCMSA and CTCMSA (Copy From and To Control MSA reg-
ister) instructions. If the multi-threading module is present, each thread context has its own MSAMap register
instance.

When value n, n = 0, …, 31, is written to MSAMap, the hardware is instructed to map vector register Wn to one of
the available physical registers. The successful mapping is confirmed by setting MSAAccessWn.

The total number of vector registers mapped at any time can not exceed the number of physical registers imple-
mented.

Figure 3-21 MSAMap Register Format

Figure 3-22 MSAMap Register Field Descriptions

3.4.8 MSA Unmap Register (MSAUnmap, MSA Control Register 7)

Compliance Level: Required for vector registers partitioning (i.e. MSAIRWRP set), otherwise Reserved

Access Mode: Privileged, accessible only when access to Coprocessor 0 is enabled

The MSA Unmap register (MSAUnmap) is a 32-bit read/write register specifying a vector register to be unmapped.
Figure 3-23 shows the format of the MSAUnmap. Figure 3-24 describes the MSAUnmap fields.

The software can read and write the MSAUnmap using CFCMSA and CTCMSA (Copy From and To Control MSA
register) instructions. If the multi-threading module is present, each thread context has its own MSAUnmap register
instance.

When value n, n = 0, …, 31, is written to MSAUnmap, the hardware is instructed to unmap vector register Wn. The
unmapping is confirmed by clearing MSAAccessWn.

Figure 3-23 MSAUnmap Register Format

31 25 24 23 18 17 16 15 8 7 5 4 3 2 1 0

0
000000000000000000000000000 n

Fields

Description
Read/
Write Reset State ComplianceName Bits

0 31:5 Reserved for future use; reads as zero and must be writ-
ten as zero.

R0 0 Reserved

n 4:0 Vector register index. R/W 0 Required

31 25 24 23 18 17 16 15 8 7 5 4 3 2 1 0

0
000000000000000000000000000 n

3.5 Exceptions

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 49

Figure 3-24 MSAUnmap Register Field Descriptions

3.5 Exceptions

MSA instructions can generate the following exceptions (see Table 3.5):

• Reserved Instruction, if bit Config3MSAP (CP0 Register 16, Select 3, bit 28) is not set, or if the usable FPU oper-
ates in 32-bit mode, i.e. bit StatusCU1 (CP Register 12, Select 0, bit 29) is set and bit StatusFR (CP Register 12,
Select 0, bit 26) is not set. This exception uses the common exception vector with ExcCode field in Cause CP0
register set to 0x0a.

• Coprocessor Unusable, if CFCMSA or CTCMSA instructions attempt to read or write privileged MSA control
registers without Coprocessor 0 access enabled. This exception uses the common exception vector with ExcCode
field in Cause CP0 register set to 0x0b and CE field set to 0 to indicate Coprocessor 0.

• MSA Disabled, if bit Config5MSAEn (CP0 Register 16, Select 5, bit 27) is not set or, when vector registers parti-
tioning is enabled (i.e. MSAIRWRP set), if any MSA vector register accessed by the instruction is either not
available or needs to be saved/restored due to a software context switch. This exception uses the common excep-
tion vector with ExcCode field in Cause CP0 register set to 0x15.

• MSA Floating Point, a data dependent exception signaled by the MSA floating point instruction. This exception
uses the common exception vector with ExcCode field in Cause CP0 register set to 0x0e. The exact reason for
taking this exception is in the Cause bits of the MSA Control and Status Register MSACSR.

All MSA reserved opcodes in Table 3.18 are considered to be part of the MIPS SIMD Architecture on cores imple-
menting MSA. These opcodes will generate the following exceptions (see Table 3.5):

• MSA Disabled, if MSA instructions are not enabled.

• Reserved Instruction, if MSA instructions are enabled.

The conditions under which the MSA instructions are enabled are documented in Section 3.2 “MSA Software
Detection” and Section 3.3.2 “Floating-Point Registers Mapping”.

Fields

Description
Read/
Write Reset State ComplianceName Bits

0 31:5 Reserved for future use; reads as zero and must be writ-
ten as zero.

R0 0 Reserved

n 4:0 Vector register index. R/W 0 Required

3.5 Exceptions

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 50

Table 3.5 MSA Exception Code (ExcCode) Values

3.5.1 Handling the MSA Disabled Exception

The exact reason for taking a MSA Disabled Exception can be determined by checking the Config5MSAEn bit. No
MSA instruction can be executed if this bit is not set. By setting Config5MSAEn, the OS knows the current software
context uses MSA resources and therefore it will save/restore MSA registers on context switch.

If the vector registers partitioning is implemented (i.e. MSAIRWRP is set), the MSA Disabled Exception could be sig-
naled even if Config5MSAEn bit is set. In this instance, the exception is caused by some vector registers not being
ready (either not available or in need to be saved/restored) for the current software context. The OS can map or
save/restore these vector registers by examining MSARequest, MSAAccess, and MSASave.

See Appendix A, “Vector Registers Partitioning” for an example of handling the MSA Disabled Exception when vec-
tor registers partitioning is implemented.

3.5.2 Handling the MSA Floating Point Exception

In normal operation mode, floating point exceptions are signaled if at least one vector element causes an exception
enabled by the MSACSR Enable bitfield. There is no precise indication in this case on which elements are at fault
and the corresponding exception causes. The exception handling routine should set the MSACSR non-trapping
exception mode bit NX and re-execute the MSA floating point instruction. All elements which would normally signal
an exception according to the MSACSR Enable bitfield are set to signaling NaN values, where the least significant 6
bits have the same format as the MSACSR Cause field (see Figure 3-25, Table 3.3) to record the specific exception
or exceptions detected for that element. The other elements will be set to the calculated results based on their oper-
ands.

Figure 3-25 Output Format for Faulting Elements when NX is set

Exception Code Value

Mnemonic DescriptionDecimal Hexadecimal

10 0x0a RI Reserved Instruction exception

11 0x0b CpU Coprocessor Unusable exception

14 0x0e MSAFPE MSA Floating Point exception

21 0x15 MSADis MSA Disabled exception

… 6 5 4 3 2 1 0

Signaling NaN Bits Cause

E V Z O U I

3.5 Exceptions

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 51

When the non-trapping exception mode bit NX is set, no floating point exception will be taken, not even the always
enabled Unimplemented Operation Exception. Note that by setting the NX bit, the MSACSR Enable bitfield is not
changed and is still used to generate the appropriate default results. Regardless of the NX value, if a floating point
exception is not enabled, i.e. the corresponding MSACSR Enable bit is 0, the floating point result is a default value
as shown in Table 3.6.

The pseudocode in Figure 3.26 shows the process of updating the MSACSR Cause bits and setting the destination’s
value. This process is invoked element-by-element for all elements the instruction operates on. It is assumed
MSACSR Cause bits are all cleared before executing the instruction. The MSACSR Flags bits are updated after all
the elements have been processed and MSACSR Cause contains no enabled exceptions. If there are enabled excep-
tions in MSACSR Cause, a MSA floating-point exception will be signaled and the MSACSR Flags are not updated.
The pseudocode in Figure 3.27 describes the MSACSR Flags update and exception signaling condition.

For instructions with non floating-point results, the pseudocode in Figure 3.26 and Figure 3.27 apply unchanged and
both the format in Figure 3-25 and the default values from Table 3.6 are preserved for enabled exceptions when NX
bit is set. For disabled exceptions, the default values are explicitly documented case-by-case in the instruction’s
description section.

Table 3.6 Default Values for Floating Point Exceptions

Exception Rounding Mode
Default Value,

Disabled Exception
Default Value,

Enabled Exception, and NX set

Invalid
Operation

The default value is either the default quiet
NaN (see Table 3.7), or one of the signaling
NaN operands propagated as a quiet NaN.

The default signaling NaN (see Table 3.7)
of the format shown in Figure 3-25 with
Cause V bit set.

Divide by
Zero

The default value is the properly signed infin-
ity.

The default signaling NaN (see Table 3.7)
of the format shown in Figure 3-25 with
Cause Z bit set.

Underflow The default value is the rounded result based
on the rounding mode.

The default signaling NaN (see Table 3.7)
of the format shown in Figure 3-25 with
Cause U bit set.

Inexact The default value is the rounded result based
on the rounding mode. If caused by an over-
flow without the overflow exception enabled,
the default value is the overflowed result.

The default signaling NaN (see Table 3.7)
of the format shown in Figure 3-25 with
Cause I bit set.

Overflow The default value depends on the rounding
mode, as shown below.

The default signaling NaN (see Table 3.7)
of the format shown in Figure 3-25 with
Cause O bit set.

Round to nearest An infinity with the sign of the overflow value.

Round toward zero The format’s largest finite number with the
sign of the overflow value.

Round towards
positive

For positive overflow values, positive infinity.
For negative overflow values, the format’s
smallest negative finite number.

Round towards
negative

For positive overflow values, the format’s larg-
est finite number. For negative overflow val-
ues, minus infinity.

3.5 Exceptions

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 52

Figure 3.26 MSACSRCause Update Pseudocode

Input
c: current element exception(s) E, V, Z, O, U, I bitfield

(bit E is 0x20, O is 0x04, U is 0x02, and I is 0x01)
d: default value to be used in case of a disabled exception
e: signaling NaN value to be used in case of NX set, i.e. a non-trapping

exception
r: result value if the operation completed without an exception

Output
v: value to be written to destination element
Updated MSACSRCause

enable MSACSREnable | E /* Unimplemented (E) is always enabled */

/* Set Inexact (I) when Overflow (O) is not enabled (see Table 3.3) */
if (c & O) 0 and (enable & O) = 0 then

c c | I
endif

/* Clear Exact Underflow when Underflow (U) is not enabled (see Table 3.3) */
if (c & U) 0 and (enable & U) = 0 and (c & I) = 0 then

c c ^ U
endif

cause c & enable

if cause = 0 then
/* No enabled exceptions, update the MSACSR Cause with all current exceptions */
MSACSRCause MSACSRCause | c

if c = 0 then
/* Operation completed successfully, destination gets the result */
v r

else
/* Current exceptions are not enabled, destination

gets the default value for disabled exceptions case */
v d

Table 3.7 Default NaN Encodings

Format Quiet NaN Signaling NaN

16-bit 0x7E00 0x7CNN1

1. All signaling NaN values have the format shown in Figure 3-25. Byte 0xNN has at least
one bit set showing the reason for generating the signaling NaN value.

32-bit 0x7FC0 0000 0x7F80 00NN

64-bit 0x7FF8 0000 0000 0000 0x7FF0 0000 0000 00NN

3.5 Exceptions

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 53

endif
else

/* Current exceptions are enabled */
if MSACSRNX = 0 then

/* Exceptions will trap, update MSACSR Cause with all current exceptions,
destination is not written */

MSACSRCause MSACSRCause | c
else

/* No trap on exceptions, element not recorded in MSACSR Cause,
destination gets the signaling NaN value for non-trapping exception */

v ((e >> 6) << 6) | c
endif

endif

Figure 3.27 MSACSRFlags Update and Exception Signaling Pseudocode

if (MSACSRCause & (MSACSREnable | E)) = 0 then /* Unimplemented (bit E 0x20)
 is always enabled */

/* No enabled exceptions, update the MSACSR Flags with all exceptions */
MSACSRFlags MSACSRFlags | MSACSRCause

else
/* Trap on the exceptions recorded in MSACSR Cause,

MSACSR Flags are not updated */
SignalException(MSAFPE, MSACSRCause)

3.5.3 NaN Propagation

MSA propagates NaN operands as specified by the IEEE Standard for Floating-Point Arithmetic 754TM-2008.

If the destination format is floating-point, all NaN propagating operations with one NaN operand produce a NaN with
the payload of the input NaN. When two or three operands are NaN, the payload of the resulting NaN is identical to
the payload of one of the input NaNs selected from left to right as described by the instruction format.

The above NaN propagation rules apply to select the signaling NaN operand used in generating the default quiet NaN
value when the Invalid Operation exception is disabled (see Table 3.6).

Note that signaling NaN operands always signal the Invalid Operation exception and as such, they take precedence
over all quiet NaN operands.

If the destination format is not floating-point (e.g. conversions to integer/fixed-point or compares) or the NaN oper-
ands are not propagated (e.g. min or max operations), the expected result is documented in the instruction’s descrip-
tion section.

Quiet NaN values are generated from input signaling NaN values by:

• Copying the signaling NaN sign value to the quiet NaN sign

• Copying the most significant bits of the signaling NaN mantissa to the most significant bits of the quiet NaN
mantissa. In cases where the source signaling NaN and destination quiet NaN have the same width, all mantissa

3.6 Instruction Syntax

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 54

bits are copied. In cases where the destination is wider than the source, the least significant bits of the destination
mantissa are set to zero. In cases where the destination is narrower than the source, the least significant bits of the
input mantissa are ignored.

• Setting the quiet NaN’s exponent field to the maximum value and the most significant mantissa bit to 1.

3.5.4 Flush to Zero and Exception Signaling

Some MSA floating point instructions might not handle subnormal input operands or compute tiny non-zero results.
Such instructions may signal the Unimplemented Operation Exception and let the software emulation finalize the
operation. If software emulation is not needed or desired, MSACSR FS bit could be set to replace every tiny non-zero
result and subnormal input operand with zero of the same sign.

The MSACSR FS bit changes the behavior of the Unimplemented Operation Exception. All the other floating point
exceptions are signaled according to the new values of the operands or the results. In addition, when MSACSR FS bit
is set:

• Tiny non-zero results are detected before rounding1. Flushing of tiny non-zero results causes Inexact and Under-
flow Exceptions to be signaled for all instructions except the approximate reciprocals.

• Flushing of subnormal input operands in all instructions except comparisons causes Inexact Exception to be sig-
naled.

• For floating-point comparisons, the Inexact Exception is not signaled when subnormal input operands are
flushed.

• 16-bit floating-point values and inputs to non arithmetic floating-point instructions are never flushed.

Should the alternate exception handling attributes of the IEEE Standard for Floating-Point Arithmetic 754TM-2008,
Section 8 be desired, the MSACSR FS bit should be zero, the Underflow Exception be enabled and a trap handler be
provided to carry out the execution of the alternate exception handling attributes.

3.6 Instruction Syntax

The MSA assembly language coding uses the following syntax elements:

• func: function/instruction name, e.g. ADDS_S or adds_s for signed saturated add

• df: destination data format, which could be a byte, halfword, word, doubleword, or the vector itself

• wd, ws, and wt: destination, source, and target vector registers, e.g. $w0, …, $w31

• rd, rs: general purpose registers (GPRs), e.g. $0, …, $31

• ws[n]: vector register element of index n, where n is a valid index value for elements of data format df

• m: immediate value valid as a bit index for the data format df

1 Tiny non-zero results that would have been normal after rounding are flushed to zero.

3.6 Instruction Syntax

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 55

• uN, sN: N-bit unsigned or signed value, e.g. s10, u5

• iN: N-bit value where the sign is not relevant, e.g. i8

MSA instructions have two or three register, immediate, or element operands. One of the destination data format
abbreviations shown in Table 3.8 is appended to the instruction name2. Note that the data format abbreviation is the
same regardless of the instruction’s assumed data type. For example all integer, fixed-point, and floating-point
instructions operating on 32-bit elements use the same word (“.W” in Table 3.8) data format.

3.6.1 Vector Element Selection

MSA instructions of the form func.df wd,ws[n] and func.df rd,ws[n] select the nth element in the vector register ws
based on the data format df. The valid element index values for various data formats and vector register sizes are
shown in Table 3.9. The vector element is being used as a fixed operand across all destination vector elements.

3.6.2 Load/Store Offsets

The vector load and store instructions take a 10-bit signed offset s10 in data format df units. By convention, in the
assembly language syntax all offsets are in bytes and have to be multiple of the size of the data format.

2 Instructions names and data format abbreviations are case insensitive.

Table 3.8 Data Format Abbreviations

Data Format Abbreviation

Byte, 8-bit .B

Halfword16-bit .H

Word, 32-bit .W

Doubleword, 64-bit .D

Vector .V

Table 3.9 Valid Element Index Values

Data Format Element Index

Byte n = 0, …, 15

Halfword n = 0, …, 7

Word n = 0, …, 3

Doubleword n = 0, 1

3.6 Instruction Syntax

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 56

For example, the offset indicated by the load word vector instruction

ld.w $w5,12($1)

is not 12 words, but rather 12 bytes. The assembler divides the byte offset (i.e. 12) by the size of the word data format
(i.e. 4), and generates the LD.W machine instruction by setting s10 bitfield to the word offset value (i.e. 3 = 12 / 4).

3.6.3 Instruction Examples

Let us assume vector registers $w1 and $w2 are initialized to the word values shown in Figure 3-28, Figure 3-29 and
GPR $2 is initialized as shown in Figure 3-30.

Regular MSA instructions operate element-by-element with identical source, target, and destination data types.
Figure 3-31 through Figure 3-34 have the resulting values of destination vectors $w4, $w5, $w6, and $w7 after exe-
cuting the following sequence of word additions and move instructions:

addv.w $w5,$w1,$w2
fill.w $w6,$2
addvi.w $w7,$w1,17
splati.w $w8,$w2[2]

Figure 3-28 Source Vector $w1 Values

127 64 63 0

a b c d

Figure 3-29 Source Vector $w2 Values

127 64 63 0

A B C D

Figure 3-30 Source GPR $2 Value

31 0

E

Figure 3-31 Destination Vector $w5 Value for ADDV.W Instruction

127 64 63 0

a + A b + B c + C d + D

3.7 Instruction Encoding

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 57

Other MSA instructions operate on adjacent odd/even source elements generating results on data formats twice as
wide. See Figure 3-35 for the destination layout of such an instruction, i.e. the signed doubleword dot product:

dotp_s.d $w9,$w1,$w2

Note that the actual instruction, e.g. DOTP_S.D, specifies the data format of the destination. The data format of the
source operands is inferred as being also signed and half the width, i.e. word in this case.

3.7 Instruction Encoding

3.7.1 Data Format and Index Encoding

Most of the MSA instructions operate on byte, halfword, word or doubleword data formats (see Section 3.3 “MSA
Vector Registers”). Internally, the data format df is coded by a 2-bit field as shown in Table 3.10. For instructions
operating only on two data formats, the internal coding is shown in Table 3.11 and Table 3.12.

Figure 3-32 Destination Vector $w6 Value for FILL.W Instruction

127 64 63 0

E E E E

Figure 3-33 Destination Vector $w7 Value for ADDVI.W Instruction

127 64 63 0

a + 17 b + 17 c + 17 d + 17

Figure 3-34 Destination Vector $w8 Value for SPLAT.W Instruction

127 64 63 0

B B B B

Figure 3-35 Destination Vector $w9 Value for DOTP_S Instruction

127 64 63 0

a * A + b * B c * C + d * D

3.7 Instruction Encoding

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 58

MSA instructions using a specific vector element code both data format and element index in a 6-bit field df/n as
shown in Table 3.13. All invalid index values or data formats will generate a Reserved Instruction Exception. For
example, a vector register has 16 byte elements while the byte data format can code up to 32 byte elements. Selecting
any vector byte element other than 0, 1, …, 15 generates a Reserved Instruction Exception.

The combinations marked Vector (“.V” in Table 3.8) are used for coding certain instructions with data formats other
than byte, halfword, word, or doubleword.

If an instruction specifies a bit position, the data format and bit index df/m are coded as shown in Table 3.14.

Table 3.10 Two-bit Data Format Field Encoding

df Bit 0

Bit 1 0 1

0 Byte Halfword

1 Word Doubleword

Table 3.11 Halfword/Word Data Format Field Encoding

df Bit 0

0 1

Halfword Word

Table 3.12 Word/Doubleword Data Format Field Encoding

df Bit 0

0 1

Word Doubleword

Table 3.13 Data Format and Element Index Field Encoding

df/n1

1. Bits marked as n give the element index value.

 Bits 5…0

00nnnn 100nnn 1100nn 11100n

Byte Halfword Word Doubleword

df/n Bits 5…0

01nnnn 101nnn 1101nn 11101n

Reserved

Table 3.14 Data Format and Bit Index Field Encoding

df/m1

1. Bits marked as m give the bit index value.

 Bits 6…0

0mmmmmm 10mmmmm 110mmmm 1110mmm

Doubleword Word Halfword Byte

3.7 Instruction Encoding

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 59

3.7.2 Instruction Formats

All MSA instructions except branches use 40 minor opcodes in the MSA major opcode 30 (see Table 3.16). MSA
branch instructions use 10 rs field encodings in the COP1 opcode 17 (see Table 3.17).

Each allocated minor opcode is associated specific instruction formats as follows:

• I8 (Figure 3-36): instructions with an 8-bit immediate value and either implicit data format or data format df
(Table 3.8) coded in bits 25…24

• I5 (Figure 3-37): instructions with a 5-bit immediate value, where the data format df (Table 3.8) is coded in bits
22…21 and the operation in bits 25…23

• BIT (Figure 3-38): instructions with an immediate bit index and data format df/m (Table 3.14) coded in bits
22…16, where the operation is coded in bits 25…23

• I10 (Figure 3-39): instructions with a 10-bit immediate, where the data format df (Table 3.8) is coded in bits
22…21 and the operation in bits 25…23

• 3R (Figure 3-40): 3-register operations coded in bits 25…23 with data format df (Table 3.8) is coded in bits
22…21

• ELM (Figure 3-41): instructions with an immediate element index and data format df/n (Table 3.13) coded in bits
21…16, where the operation is coded in bits 25…22

• 3RF (Figure 3-42): 3-register floating-point or fixed-point operations coded in bits 25…22 with data format df
(Table 3.11, Table 3.12) coded in bit 21

• VEC (Figure 3-43): 3-register instructions with implicit data formats depending on the operations coded in bits
25…21

• MI10 (Figure 3-44): 2-register instructions with a 10-bit immediate value, where the data format is either implicit
or explicitly coded as df (Table 3.8) in bits 1…0, and the operation is coded in bit 25 and the minor opcode bits
5…2

• 2R (Figure 3-45): 2-register operations coded in bits 25…18 with data format df (Table 3.11) is coded in bits
17…16

• 2RF (Figure 3-46): 2-register floating-point operations coded in bits 25…17 with data format df (Table 3.11)
coded in bit 16

• Branch (Figure 3-47): instructions with a 16-bit immediate, where the data format is either implicit or explicitly
coded as df (Table 3.8) in bits 22…21, and the operation is coded in bits 25…23

3.7 Instruction Encoding

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 60

Figure 3-36 I8 Instruction Format

Figure 3-37 I5 Instruction Format

Figure 3-38 BIT Instruction Format

Figure 3-39 I10 Instruction Format

Figure 3-40 3R Instruction Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSA
011110 df i8 ws wd minor opcode

6 2 8 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSA
011110 operation df i5 ws wd minor opcode

6 3 2 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSA
011110 operation df/m ws wd minor opcode

6 3 7 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSA
011110 operation df i10 wd minor opcode

6 3 2 10 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSA
011110 operation df wt ws wd minor opcode

6 3 2 5 5 5 6

3.7 Instruction Encoding

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 61

Figure 3-41 ELM Instruction Format

Figure 3-42 3RF Instruction Format

Figure 3-43 VEC Instruction Format

Figure 3-44 MI10 Instruction Format

Figure 3-45 2R Instruction Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSA
011110 operation df/n ws wd minor opcode

6 4 6 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSA
011110 operation df wt ws wd minor opcode

6 4 1 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSA
011110 operation wt ws wd minor opcode

6 5 5 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSA
011110 s10 rs wd minor opcode df

6 10 5 5 3 2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSA
011110 operation df ws wd minor opcode

6 8 2 5 5 6

3.7 Instruction Encoding

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 62

Figure 3-46 2RF Instruction Format

Figure 3-47 Branch Instruction Format

3.7.3 Instruction Bit Encoding

This chapter describes the bit encoding tables used for the MSA. Table 3.15 describes the meaning of the symbols
used in the tables. These tables only list the instruction encoding for the MSA instructions. See Volumes I and II of
this multi-volume set for a full encoding of all instructions.

Figure 3.48 shows a sample encoding table and the instruction opcode field this table encodes. Bits 31…29 of the
opcode field are listed in the left-most columns of the table. Bits 28…26 of the opcode field are listed along the top-
most rows of the table. Both decimal and binary values are given, with the first three bits designating the row, and the
last three bits designating the column.

An instruction’s encoding is found at the intersection of a row (bits 31…29) and column (bits 28…26) value. For
instance, the opcode value for the instruction labelled EX1 is 33 (decimal, row and column), or 011011 (binary). Sim-
ilarly, the opcode value for EX2 is 64 (decimal), or 110100 (binary).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSA
011110 operation df ws wd minor opcode

6 9 1 5 5 6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COP1
010001 operation df wt s16

6 3 2 5 16

3.7 Instruction Encoding

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 64

 Operation or field codes marked with this symbol are reserved for MIPS Application Specific
Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved
Instruction Exception.

 Operation or field codes marked with this symbol are obsolete and will be removed from a future
revision of the MIPS32 ISA. Software should avoid using these operation or field codes.

 Operation or field codes marked with this symbol are valid for Release 2 implementations of the
architecture. Executing such an instruction in a Release 1 implementation must cause a Reserved
Instruction Exception.

Table 3.16 MIPS32 Encoding of the Opcode Field

opcode bits 28…26

0 1 2 3 4 5 6 7
bits 31…29 000 001 010 011 100 101 110 111

0 000
1 001
2 010 COP1

3 011 MSA

4 100
5 101
6 110
7 111

Table 3.17 MIPS32 COP1 Encoding of rs Field for MSA Branch Instructions

rs bits 23…21

0 1 2 3 4 5 6 7
bits 25…24 000 001 010 011 100 101 110 111

0 00
1 01 BZ.V BNZ.V
2 10
3 11 BZ.B BZ.H BZ.W BZ.D BNZ.B BNZ.H BNZ.W BNZ.D

Table 3.15 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

3.7 Instruction Encoding

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 65

Table 3.18 Encoding of MIPS MSA Minor Opcode Field1

1. The opcodes marked ‘*’ are MSA reserved opcodes and will generate the MSA Disabled exception or the Reserved
Instruction exception as specified in Section 3.5 “Exceptions”.

minor Bits 2…0

Bits 5…3

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000 I8 I8 I8 * * * I5 I52

2. Includes I10

1 001 * BIT BIT * * 3R 3R 3R

2 010 3R 3R 3R 3R 3R 3R * *

3 011 * ELM 3RF 3RF 3RF * VEC/2R/2RF *

4 100 MI10 MI10 MI10 MI10 MI10 MI10 MI10 MI10

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * * * * * *

Table 3.19 Encoding of Operation Field for MI10 Instruction Formats

operation
data

format1

1. See Table 3.8.

Bits 5…2 Bits 1…0

8 1000 LD

00 .B

01 .H

10 .W

11 .D

9 1001 ST

00 .B

01 .H

10 .W

11 .D

3.7 Instruction Encoding

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 66

Table 3.20 Encoding of Operation Field for I5 Instruction Format

operation Bits 5…0

data
format1

1. See Table 3.8.

Bits 25…23

6 7

Bits 22…21000110 000111

0 000 ADDVI CEQI

00 .B

01 .H

10 .W

11 .D

1 001 SUBVI *

00 .B

01 .H

10 .W

11 .D

2 010 MAXI_S CLTI_S

00 .B

01 .H

10 .W

11 .D

3 011
MAXI_U

CLTI_U

00 .B

01 .H

10 .W

11 .D

4 100 MINI_S CLEI_S

00 .B

01 .H

10 .W

11 .D

5 101 MINI_U CLEI_U

00 .B

01 .H

10 .W

11 .D

6 110 * LDI2

2. I10 instruction format.

00 .B

01 .H

10 .W

11 .D

7 111 * *

00 .B

01 .H

10 .W

11 .D

3.7 Instruction Encoding

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 67

Table 3.21 Encoding of Operation Field for I8 Instruction Format

operation Bits 5…0

Bits 25…24

0 1 2

000000 000001 000010

0 00 ANDI.B BMNZI.B SHF.B

1 01 ORI.B BMZI.B SHF.H

2 10 NORI.B BSELI.B SHF.W

3 11 XORI.B * *

Table 3.22 Encoding of Operation Field for VEC/2R/2RF Instruction Formats

operation Bits 22…21

Bits 25…23

0 1 2 3

00 01 10 11

0 000 AND.V OR.V NOR.V XOR.V

1 001 BMNZ.V BMZ.V BSEL.V *

2 010 * * * *

3 011 * * * *

4 100 * * * *

5 101 * * * *

6 110 2R format 2RF format * *

7 111 * * * *

Table 3.23 Encoding of Operation Field for 2R Instruction Formats

operation
data

format1

Bits 20…18 Bits 17…16

0 000 FILL

00 .B

01 .H

10 .W

11 .D

1 001 PCNT

00 .B

01 .H

10 .W

11 .D

3.7 Instruction Encoding

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 68

2
010 NLOC

00 .B

01 .H

10 .W

11 .D

3 011 NLZC

00 .B

01 .H

10 .W

11 .D

4…7 100…111 *

00 .B

01 .H

10 .W

11 .D

1. See Table 3.8.

Table 3.24 Encoding of Operation Field for 2RF Instruction Formats

operation
data

format1

Bits 20…17 Bit 16

0 0000 FCLASS
0 .W

1 .D

1 0001 FTRUNC_S
0 .W

1 .D

2 0010 FTRUNC_U
0 .W

1 .D

3 0011 FSQRT
0 .W

1 .D

4 0100 FRSQRT
0 .W

1 .D

5 0101 FRCP
0 .W

1 .D

6 0110 FRINT
0 .W

1 .D

7 0111 FLOG2
0 .W

1 .D

8 1000 FEXUPL
0 .W

1 .D

9 1001 FEXUPR
0 .W

1 .D

Table 3.23 Encoding of Operation Field for 2R Instruction Formats (Continued)

3.7 Instruction Encoding

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 69

10 1010 FFQL
0 .W

1 .D

11 1011 FFQR
0 .W

1 .D

12 1100 FTINT_S
0 .W

1 .D

13 1101 FTINT_U
0 .W

1 .D

14 1110 FFINT_S
0 .W

1 .D

15 1111 FFINT_U
0 .W

1 .D

1. See Table 3.12.

Table 3.25 Encoding of Operation Field for 3R Instruction Format

operatio
n Bits 5…0

data
format1

Bits
25…23

13 14 15 16 17 18 19 20 21

Bits 22…21001101 001110 001111 010000 010001 010010 010011 010100 010101

0 000 SLL ADDV CEQ ADD_A SUBS_S MULV

*

SLD VSHF

00 .B

DOTP_S

01 .H

10 .W

11 .D

1 001 SRA SUBV * ADDS_A SUBS_U MADDV

*

SPLAT SRAR

00 .B

DOTP_U

01 .H

10 .W

11 .D

2 010 SRL MAX_S CLT_S ADDS_S SUBSUS_U MSUBV

*

PCKEV SRLR

00 .B

DPADD_S

01 .H

10 .W

11 .D

3 011 BCLR MAX_U CLT_U ADDS_U SUBSUU_S *

*

PCKOD *

00 .B

DPADD_U

01 .H

10 .W

11 .D

4 100 BSET MIN_S CLE_S AVE_S ASUB_S DIV_S

*

ILVL

* 00 .B

DPSUB_S HADD_S

01 .H

10 .W

11 .D

Table 3.24 Encoding of Operation Field for 2RF Instruction Formats (Continued)

3.7 Instruction Encoding

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 70

5 101 BNEG MIN_U CLE_U AVE_U ASUB_U DIV_U

*

ILVR

* 00 .B

DPSUB_U HADD_U

01 .H

10 .W

11 .D

6 110 BINSL MAX_A * AVER_S * MOD_S * ILVEV

* 00 .B

HSUB_S

01 .H

10 .W

11 .D

7 111 BINSR MIN_A * AVER_U * MOD_U * ILVOD

* 00 .B

HSUB_U

01 .H

10 .W

11 .D

1. See Table 3.8.

Table 3.26 Encoding of Operation Field for ELM Instruction Format

operation data format1

Bits 25…22 Bits 21…16

0 0000

SLDI

00nnnn .B

100nnn .H

1100nn .W

11100n .D

* 11110n

CTCMSA 111110

* 111111

1 0001

SPLATI

00nnnn .B

100nnn .H

1100nn .W

11100n .D

* 11110n

CFCMSA 111110

* 111111

2 0010

COPY_S

00nnnn .B

100nnn .H

1100nn .W

11100n *

* 11110n

MOVE.V 111110

* 111111

3 0011

COPY_U

00nnnn .B

100nnn .H

1100nn .W

11100n *

*

11110n

111110

111111

Table 3.25 Encoding of Operation Field for 3R Instruction Format (Continued)

3.7 Instruction Encoding

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 71

4 0100

INSERT

00nnnn .B

100nnn .H

1100nn .W

11100n *

*

11110n

111110

111111

5 0101

INSVE

00nnnn .B

100nnn .H

1100nn .W

11100n .D

*

11110n

111110

111111

6…15 0110…1111

*

00nnnn

100nnn

1100nn

11100n

*

11110n

111110

111111

1. See Table 3.13.

Table 3.27 Encoding of Operation Field for 3RF Instruction Format

operation Bits 5…0

data
format1

Bits 25…22

26 27 28 Bit 21

011010 011011 011100

0 0000 FCAF
.W

FADD
.W

*
.W 0

.D .D .D 1

1 0001 FCUN
.W

FSUB
.W

FCOR
.W 0

.D .D .D 1

2 0010 FCEQ
.W

FMUL
.W

FCUNE
.W 0

.D .D .D 1

3 0011 FCUEQ
.W

FDIV
.W

FCNE
.W 0

.D .D .D 1

4 0100 FCLT
.W

FMADD
.W

MUL_Q
.H 0

.D .D .W 1

5 0101 FCULT
.W

FMSUB
.W

MADD_Q
.H 0

.D .D .W 1

6 0110 FCLE
.W

* MSUB_Q
.H 0

.D .W 1

7 0111 FCULE
.W

FEXP2
.W

*
0

.D .D 1

8 1000 FSAF
.W

FEXDO
.H

*
.W 0

.D .W .D 1

Table 3.26 Encoding of Operation Field for ELM Instruction Format (Continued)

3.7 Instruction Encoding

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 72

9 1001 FSUN
.W

* FSOR
.W 0

.D .D 1

10 1010 FSEQ
.W

FTQ
.H

FSUNE
.W 0

.D .W .D 1

11 1011 FSUEQ
.W

* FSNE
.W 0

.D .D 1

12 1100 FSLT
.W

FMIN
.W

MULR_Q
.H 0

.D .D .W 1

13 1101 FSULT
.W

FMIN_A
.W

MADDR_Q.
.H 0

.D .D .W 1

14 1110 FSLE
.W

FMAX
.W

MSUBR_Q
.H 0

.D .D .W 1

15 1111 FSULE
.W

FMAX_A
.W

*
0

.D .D 1

1. See Table 3.11 and Table 3.12.

Table 3.28 Encoding of Operation Field for BIT Instruction Format

operation Bits 5…0 data format1

Bits 25…23

9 10

Bits 22…16001001 001010

0 000 SLLI SAT_S

1110mmm .B

110mmmm .H

10mmmmm .W

0mmmmmm .D

1 001 SRAI SAT_U

1110mmm .B

110mmmm .H

10mmmmm .W

0mmmmmm .D

2 010 SRLI SRARI

1110mmm .B

110mmmm .H

10mmmmm .W

0mmmmmm .D

3 011 BCLRI SRLRI

1110mmm .B

110mmmm .H

10mmmmm .W

0mmmmmm .D

4 100 BSETI *

1110mmm .B

110mmmm .H

10mmmmm .W

0mmmmmm .D

Table 3.27 Encoding of Operation Field for 3RF Instruction Format (Continued)

3.7 Instruction Encoding

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 73

5 101 BNEGI *

1110mmm .B

110mmmm .H

10mmmmm .W

0mmmmmm .D

6 110 BINSLI *

1110mmm .B

110mmmm .H

10mmmmm .W

0mmmmmm .D

7 111 BINSRI *

1110mmm .B

110mmmm .H

10mmmmm .W

0mmmmmm .D

1. See Table 3.14.

Table 3.28 Encoding of Operation Field for BIT Instruction Format (Continued)

Chapter 4

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 74

The MIPS32® SIMD Architecture Instruction Set

4.1 Instruction Set Descriptions

The MIPS32® SIMD Architecture (MSA) consists of integer, fixed-point, and floating-point instructions, all encoded
in the MSA major opcode space.

Most MSA instructions operate vector element by vector element in a typical SIMD manner. Few instructions handle
the operands as bit vectors because the elements don’t make sense, e.g. for the bitwise logical operations.

For certain instructions, the source operand could be an immediate value or a specific vector element selected by an
immediate index. The immediate or vector element is being used as a fixed operand across all destination vector ele-
ments.

The next two sections list MSA instructions grouped by category and provide individual instruction descriptions
arranged in alphabetical order. The constant WRLEN used in all instruction descriptions is set to 128, i.e. the MSA
vector register width in bits.

4.1.1 Instruction Set Summary by Category

MSA instruction set implements the following categories of instructions: integer arithmetic (Table 4.1), bitwise
(Table 4.2), floating-point arithmetic (Table 4.3) and non arithmetic (Table 4.4), floating-point compare (Table 4.5),
floating-point conversions (Table 4.6), fixed-point (Table 4.7), branch and compare (Table 4.8), load/store and move
(Table 4.9), and element permute (Table 4.10).

The left-shift add instruction LSA (Table 4.11) is integral part of the MIPS base architecture. The corresponding doc-
umentation pages will be incorporated in the future releases of the base architecture specifications.

Table 4.1 MSA Integer Arithmetic Instructions

Mnemonic Instruction Description

ADDV, ADDVI Add

ADD_A, ADDS_A Add and Saturated Add Absolute Values

ADDS_S, ADDS_U Signed and Unsigned Saturated Add

HADD_S, HADD_U Signed and Unsigned Horizontal Add

ASUB_S, ASUB_U Absolute Value of Signed and Unsigned Subtract

AVE_S, AVE_U Signed and Unsigned Average

AVER_S, AVER_U Signed and Unsigned Average with Rounding

4.1 Instruction Set Descriptions

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 75

DOTP_S, DOTP_U Signed and Unsigned Dot Product

DPADD_S, DPADD_U Signed and Unsigned Dot Product Add

DPSUB_S, DPSUB_U Signed and Unsigned Dot Product Subtract

DIV_S, DIV_U Divide

MADDV Multiply-Add

MAX_A, MIN_A Maximum and Minimum of Absolute Values

MAX_S, MAXI_S, MAX_U, MAXI_U Signed and Unsigned Maximum

MIN_S, MINI_S, MIN_U, MINI_U Signed and Unsigned Maximum

MSUBV Multiply-Subtract

MULV Multiply

MOD_S, MOD_U Signed and Unsigned Remainder (Modulo)

SAT_S, SAT_U Signed and Unsigned Saturate

SUBS_S, SUBS_U Signed and Unsigned Saturated Subtract

HSUB_S, HSUB_U Signed and Unsigned Horizontal Subtract

SUBSUU_S Signed Saturated Unsigned Subtract

SUBSUS_U Unsigned Saturated Signed Subtract from Unsigned

SUBV, SUBVI Subtract

Table 4.2 MSA Bitwise Instructions

Mnemonic Instruction Description

AND, ANDI Logical And

BCLR, BCLRI Bit Clear

BINSL, BINSLI, BINSR, BINSRI Bit Insert Left and Right

BMNZ, BMNZI Bit Move If Not Zero

BMZ, BMZI Bit Move If Zero

BNEG, BNEGI Bit Negate

BSEL, BSELI Bit Select

BSET, BSETI Bit Set

NLOC Leading One Bits Count

Table 4.1 MSA Integer Arithmetic Instructions (Continued)

Mnemonic Instruction Description

4.1 Instruction Set Descriptions

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 76

NLZC Leading Zero Bits Count

NOR, NORI Logical Negated Or

PCNT Population (Bits Set to 1) Count

OR, ORI Logical Or

SLL, SLLI Shift Left

SRA, SRAI Shift Right Arithmetic

SRAR, SRARI Rounding Shift Right Arithmetic

SRL, SRLI Shift Right Logical

SRLR, SRLRI Rounding Shift Right Logical

XOR, XORI Logical Exclusive Or

Table 4.3 MSA Floating-Point Arithmetic Instructions

Mnemonic Instruction Description

FADD Floating-Point Addition

FDIV Floating-Point Division

FEXP2 Floating-Point Base 2 Exponentiation

FLOG2 Floating-Point Base 2 Logarithm

FMADD, FMSUB Floating-Point Fused Multiply-Add and Multiply-Subtract

FMAX, FMIN Floating-Point Maximum and Minimum

FMAX_A, FMIN_A Floating-Point Maximum and Minimum of Absolute Values

FMUL Floating-Point Multiplication

FRCP Approximate Floating-Point Reciprocal

FRINT Floating-Point Round to Integer

FRSQRT Approximate Floating-Point Reciprocal of Square Root

FSQRT Floating-Point Square Root

FSUB Floating-Point Subtraction

Table 4.2 MSA Bitwise Instructions (Continued)

Mnemonic Instruction Description

4.1 Instruction Set Descriptions

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 77

Table 4.4 MSA Floating-Point Non Arithmetic Instructions

Mnemonic Instruction Description

FCLASS Floating-Point Class Mask

Table 4.5 MSA Floating-Point Compare Instructions

Mnemonic Instruction Description

FCAF Floating-Point Quiet Compare Always False

FCUN Floating-Point Quiet Compare Unordered

FCOR Floating-Point Quiet Compare Ordered

FCEQ Floating-Point Quiet Compare Equal

FCUNE Floating-Point Quiet Compare Unordered or Not Equal

FCUEQ Floating-Point Quiet Compare Unordered or Equal

FCNE Floating-Point Quiet Compare Not Equal

FCLT Floating-Point Quiet Compare Less Than

FCULT Floating-Point Quiet Compare Unordered or Less Than

FCLE Floating-Point Quiet Compare Less Than or Equal

FCULE Floating-Point Quiet Compare Unordered or Less Than or Equal

FSAF Floating-Point Signaling Compare Always False

FSUN Floating-Point Signaling Compare Unordered

FSOR Floating-Point Signaling Compare Ordered

FSEQ Floating-Point Signaling Compare Equal

FSUNE Floating-Point Signaling Compare Unordered or Not Equal

FSUEQ Floating-Point Signaling Compare Unordered or Equal

FSNE Floating-Point Signaling Compare Not Equal

FSLT Floating-Point Signaling Compare Less Than

FSULT Floating-Point Signaling Compare Unordered or Less Than

FSLE Floating-Point Signaling Compare Less Than or Equal

FSULE Floating-Point Signaling Compare Unordered or Less Than or Equal

4.1 Instruction Set Descriptions

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 78

Table 4.6 MSA Floating-Point Conversion Instructions

Mnemonic Instruction Description

FEXDO Floating-Point Down-Convert Interchange Format

FEXUPL, FEXUPR Left-Half and Right-Half Floating-Point Up-Convert Interchange Format

FFINT_S, FFINT_U Floating-Point Convert from Signed and Unsigned Integer

FFQL, FFQR Left-Half and Right-Half Floating-Point Convert from Fixed-Point

FTINT_S, FTINT_U Floating-Point Round and Convert to Signed and Unsigned Integer

FTRUNC_S, FTRUNC_U Floating-Point Truncate and Convert to Signed and Unsigned Integer

FTQ Floating-Point Round and Convert to Fixed-Point

Table 4.7 MSA Fixed-Point Instructions

Mnemonic Instruction Description

MADD_Q, MADDR_Q Fixed-Point Multiply and Add without and with Rounding

MSUB_Q, MSUBR_Q Fixed-Point Multiply and Subtract without and with Rounding

MUL_Q, MULR_Q Fixed-Point Multiply without and with Rounding

Table 4.8 MSA Branch and Compare Instructions

Mnemonic Instruction Description

BNZ Branch If Not Zero

BZ Branch If Zero

CEQ, CEQI Compare Equal

CLE_S, CLEI_S, CLE_U, CLEI_U Compare Less-Than-or-Equal Signed and Unsigned

CLT_S, CLTI_S, CLT_U, CLTI_U Compare Less-Than Signed and Unsigned

4.1 Instruction Set Descriptions

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 79

4.1.2 Alphabetical List of Instructions

Table 4.9 MSA Load/Store and Move Instructions

Mnemonic Instruction Description

CFCMSA, CTCMSA Copy from and copy to MSA Control Register

LD Load Vector

LDI Load Immediate

MOVE Vector to Vector Move

SPLAT, SPLATI Replicate Vector Element

FILL Fill Vector from GPR

INSERT, INSVE Insert GPR and Vector element 0 to Vector Element

COPY_S, COPY_U Copy element to GPR Signed and Unsigned

ST Store Vector

Table 4.10 MSA Element Permute Instructions

Mnemonic Instruction Description

ILVEV, ILVOD Interleave Even, Odd

ILVL, ILVR Interleave the Left, Right

PCKEV, PCKOD Pack Even and Odd Elements

SHF Set Shuffle

SLD, SLDI Element Slide

VSHF Vector shuffle

Table 4.11 Base Architecture Instructions

Mnemonic Instruction Description

LSA Left-shift add or load/store address calculation.

Vector Add Absolute Values ADD_A.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 80

Format: ADD_A.df
ADD_A.B wd,ws,wt MSA
ADD_A.H wd,ws,wt MSA
ADD_A.W wd,ws,wt MSA
ADD_A.D wd,ws,wt MSA

Purpose: Vector Add Absolute Values

Vector addition to vector using the absolute values.

Description: wd[i] absolute_value(ws[i]) + absolute_value(wt[i])

The absolute values of the elements in v ector wt are added to the absolute values of the elements in v ector ws. The
result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

ADD_A.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i abs(WR[ws]8i+7..8i, 8) + abs(WR[wt]8i+7..8i, 8)
endfor

ADD_A.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i abs(WR[ws]16i+15..16i, 16) + abs(WR[wt]16i+15..16i, 16)
endfor

ADD_A.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i abs(WR[ws]32i+31..32i, 32) + abs(WR[wt]32i+31..32i, 32)
endfor

ADD_A.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i abs(WR[ws]64i+63..64i, 64) + abs(WR[wt]64i+63..64i, 64)
endfor

function abs(tt, n)
if ttn-1 = 1 then

return -ttn-1...0
else

return ttn-1..0
endif

endfunction abs

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 000 df wt ws wd 3R

010000
6 3 2 5 5 5 6

Vector Add Absolute Values ADD_A.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 81

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Saturated Add of Absolute Values ADDS_A.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 82

Format: ADDS_A.df
ADDS_A.B wd,ws,wt MSA
ADDS_A.H wd,ws,wt MSA
ADDS_A.W wd,ws,wt MSA
ADDS_A.D wd,ws,wt MSA

Purpose: Vector Saturated Add of Absolute Values

Vector saturated addition to vector of absolute values.

Description: wd[i] saturate_signed(absolute_value(ws[i]) + absolute_value(wt[i]))

The absolute values of the elements in v ector wt are added to the absolute values of the elements in v ector ws. The
saturated signed result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

ADDS_A.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i adds_a(WR[ws]8i+7..8i, WR[wt]8i+7..8i, 8)
endfor

ADDS_A.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i adds_a(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 16)
endfor

ADDS_A.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i adds_a(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

ADDS_A.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i adds_a(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
endfor

function abs(tt, n)
if ttn-1 = 1 then

return -ttn-1...0
else

return ttn-1..0
endif

endfunction abs

function sat_s(tt, n, b)
if ttn-1 = 0 and ttn-1..b-1 0

n-b+1 then

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 001 df wt ws wd 3R

010000
6 3 2 5 5 5 6

Vector Saturated Add of Absolute Values ADDS_A.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 83

return 0n-b+1 || 1b-1

endif
if ttn-1 = 1 and ttn-1..b-1 1

n-b+1 then
return 1n-b+1 || 0b-1

else
return tt

endif
endfunction sat_s

function adds_a(ts, tt, n)
t (0 || abs(ts, n)) + (0 || abs(tt, n))
return sat_s(t, n+1, n)

endfunction adds_a

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Signed Saturated Add of Signed Values ADDS_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 84

Format: ADDS_S.df
ADDS_S.B wd,ws,wt MSA
ADDS_S.H wd,ws,wt MSA
ADDS_S.W wd,ws,wt MSA
ADDS_S.D wd,ws,wt MSA

Purpose: Vector Signed Saturated Add of Signed Values

Vector addition to vector saturating the result as signed value.

Description: wd[i] saturate_signed(signed(ws[i]) + signed(wt[i]))

The elements in v ector wt are added to the ele ments in vector ws. Signed arithmetic is performed and o verflows
clamp to the largest and/or smallest representable signed values before writing the result to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

ADDS_S.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i adds_s(WR[ws]8i+7..8i, WR[wt]8i+7..8i, 8)
endfor

ADDS_S.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i adds_s(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 16)
endfor

ADDS_S.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i adds_s(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

ADDS_S.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i adds_s(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
endfor

function sat_s(tt, n, b)
if ttn-1 = 0 and ttn-1..b-1 0

n-b+1 then
return 0n-b+1 || 1b-1

endif
if ttn-1 = 1 and ttn-1..b-1 1

n-b+1 then
return 1n-b+1 || 0b-1

else
return tt

endif
endfunction sat_s

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 010 df wt ws wd 3R

010000
6 3 2 5 5 5 6

Vector Signed Saturated Add of Signed Values ADDS_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 85

function adds_s(ts, tt, n)
t (tsn-1 || ts) + (ttn-1 || tt)
return sat_s(t, n+1, n)

endfunction adds_s

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Unsigned Saturated Add of Unsigned Values ADDS_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 86

Format: ADDS_U.df
ADDS_U.B wd,ws,wt MSA
ADDS_U.H wd,ws,wt MSA
ADDS_U.W wd,ws,wt MSA
ADDS_U.D wd,ws,wt MSA

Purpose: Vector Unsigned Saturated Add of Unsigned Values

Vector addition to vector saturating the result as unsigned value.

Description: wd[i] saturate_unsigned(unsigned(ws[i]) + unsigned(wt[i]))

The elements in v ector wt are added to the elements in vector ws. Unsigned arithmetic is performed and overflows
clamp to the largest representable unsigned value before writing the result to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

ADDS_U.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i adds_u(WR[ws]8i+7..8i, WR[wt]8i+7..8i, 8)
endfor

ADDS_U.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i adds_u(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 16)
endfor

ADDS_U.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i adds_u(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

ADDS_U.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i adds_u(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
endfor

function sat_u(tt, n, b)
if ttn-1..b 0

n-b then
return 0n-b || 1b

else
return tt

endif
endfunction sat_u

function adds_u(ts, tt, n)
t (0 || ts) + (0 || tt)

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 011 df wt ws wd 3R

010000
6 3 2 5 5 5 6

Vector Unsigned Saturated Add of Unsigned Values ADDS_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 87

return sat_u(t, n+1, n)
endfunction adds_u

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Add ADDV.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 88

Format: ADDV.df
ADDV.B wd,ws,wt MSA
ADDV.H wd,ws,wt MSA
ADDV.W wd,ws,wt MSA
ADDV.D wd,ws,wt MSA

Purpose: Vector Add

Vector addition to vector.

Description: wd[i] ws[i] + wt[i]

The elements in vector wt are added to the elements in vector ws. The result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

ADDV.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i WR[ws]8i+7..8i + WR[wt]8i+7..8i
endfor

ADDV.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i WR[ws]16i+15..16i + WR[wt]16i+15..16i
endfor

ADDV.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i WR[ws]32i+31..32i + WR[wt]32i+31..32i
endfor

ADDV.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i WR[ws]64i+63..64i + WR[wt]64i+63..64i
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 000 df wt ws wd 3R

001110
6 3 2 5 5 5 6

Immediate Add ADDVI.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 89

Format: ADDVI.df
ADDVI.B wd,ws,u5 MSA
ADDVI.H wd,ws,u5 MSA
ADDVI.W wd,ws,u5 MSA
ADDVI.D wd,ws,u5 MSA

Purpose: Immediate Add

Immediate addition to vector.

Description: wd[i] ws[i] + u5

The 5-bit immediate unsigned value u5 is added to the elements in vector ws. The result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

ADDVI.B
 t 03 || u54..0

for i in 0 .. WRLEN/8-1
WR[wd]8i+7..8i WR[ws]8i+7..8i + t

endfor

ADDVI.H
 t 011 || u54..0

for i in 0 .. WRLEN/16-1
WR[wd]16i+15..16i WR[ws]16i+15..16i + t

endfor

ADDVI.W
 t 027 || u54..0

for i in 0 .. WRLEN/32-1
WR[wd]32i+31..32i WR[ws]32i+31..32i + t

endfor

ADDVI.D
 t 059 || u54..0

for i in 0 .. WRLEN/64-1
WR[wd]64i+63..64i WR[ws]64i+63..64i + t

endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 000 df u5 ws wd I5

000110
6 3 2 5 5 5 6

Vector Logical And AND.V

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 90

Format: AND.V
AND.V wd,ws,wt MSA

Purpose: Vector Logical And

Vector by vector logical and.

Description: wd ws AND wt

Each bit of vector ws is combined with the corresponding bit of vector wt in a bitwise logical AND operation. The
result is written to vector wd.

The operands and results are bit vector values.

Restrictions:

No data-dependent exceptions are possible.

Operation:

 WR[wd] WR[ws] and WR[wt]

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 21 20 16 15 11 10 6 5 0

MSA
011110 00000 wt ws wd VEC

011110
6 5 5 5 5 6

Immediate Logical And ANDI.B

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 91

Format: ANDI.B
ANDI.B wd,ws,i8 MSA

Purpose: Immediate Logical And

Immediate by vector logical and.

Description: wd[i] ws[i] AND i8

Each byte element of vector ws is combined with the 8-bit immediate i8 in a bitwise logical AND operation. The
result is written to vector wd.

The operands and results are values in integer byte data format.

Restrictions:

No data-dependent exceptions are possible.

Operation:

 for i in 0 .. WRLEN/8-1
WR[wd]8i+7..8i WR[ws]8i+7..8i and i87..0

endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 24 23 16 15 11 10 6 5 0

MSA
011110 00 i8 ws wd I8

000000
6 2 8 5 5 6

Vector Absolute Values of Signed Subtract ASUB_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 92

Format: ASUB_S.df
ASUB_S.B wd,ws,wt MSA
ASUB_S.H wd,ws,wt MSA
ASUB_S.W wd,ws,wt MSA
ASUB_S.D wd,ws,wt MSA

Purpose: Vector Absolute Values of Signed Subtract

Vector subtraction from vector of signed values taking the absolute value of the results.

Description: wd[i] absolute_value(signed(ws[i]) - signed(wt[i]))

The signed elements in v ector wt are subtracted from the signed elements in v ector ws. The absolute value of the
signed result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

ASUB_S.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i asub_s(WR[ws]8i+7..8i, WR[wt]8i+7..8i, 8)
endfor

ASUB_S.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i asub_s(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 16)
endfor

ASUB_S.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i asub_s(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

ASUB_S.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i asub_s(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
endfor

function asub_s(ts, tt, n)
t (tsn-1 || ts) - (ttn-1 || tt)
if tn = 0 then

return tn-1..0
else

return (-t)n-1..0
endfunction asub_s

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 100 df wt ws wd 3R

010001
6 3 2 5 5 5 6

Vector Absolute Values of Signed Subtract ASUB_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 93

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Absolute Values of Unsigned Subtract ASUB_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 94

Format: ASUB_U.df
ASUB_U.B wd,ws,wt MSA
ASUB_U.H wd,ws,wt MSA
ASUB_U.W wd,ws,wt MSA
ASUB_U.D wd,ws,wt MSA

Purpose: Vector Absolute Values of Unsigned Subtract

Vector subtraction from vector of unsigned values taking the absolute value of the results.

Description: wd[i] absolute_value(unsigned(ws[i]) - unsigned(wt[i]))

The unsigned elements in vector wt are subtracted from the unsigned elements in vector ws. The absolute value of the
signed result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

ASUB_U.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i asub_u(WR[ws]8i+7..8i, WR[wt]8i+7..8i, 8)
endfor

ASUB_U.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i asub_u(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 16)
endfor

ASUB_U.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i asub_u(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

ASUB_U.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i asub_u(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
endfor

function asub_u(ts, tt, n)
t (0 || ts) - (0 || tt)
if tn = 0 then

return tn-1..0
else

return (-t)n-1..0
endfunction asub_s

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 101 df wt ws wd 3R

010001
6 3 2 5 5 5 6

Vector Absolute Values of Unsigned Subtract ASUB_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 95

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Signed Average AVE_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 96

Format: AVE_S.df
AVE_S.B wd,ws,wt MSA
AVE_S.H wd,ws,wt MSA
AVE_S.W wd,ws,wt MSA
AVE_S.D wd,ws,wt MSA

Purpose: Vector Signed Average

Vector average using the signed values.

Description: wd[i] (ws[i] + wt[i]) / 2

The elements in vector wt are added to the elements in vector ws. The addition is done signed with full precision, i.e.
the result has one extra bit. Signed division by 2 (or arithmetic shift right by one bit) is performed before writing the
result to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

AVE_S.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i ave_s(WR[ws]8i+7..8i, WR[wt]8i+7..8i, 8)
endfor

AVE_S.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i ave_s(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 16)
endfor

AVE_S.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i ave_s(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

AVE_S.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i ave_s(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
endfor

function ave_s(ts, tt, n)
t (tsn-1 || ts) + (ttn-1 || tt)
return tn..1

endfunction ave_s

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 100 df wt ws wd 3R

010000
6 3 2 5 5 5 6

Vector Unsigned Average AVE_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 97

Format: AVE_U.df
AVE_U.B wd,ws,wt MSA
AVE_U.H wd,ws,wt MSA
AVE_U.W wd,ws,wt MSA
AVE_U.D wd,ws,wt MSA

Purpose: Vector Unsigned Average

Vector average using the unsigned values.

Description: wd[i] (ws[i] + wt[i]) / 2

The elements in vector wt are added to the elements in vector ws. The addition is done unsigned with full precision,
i.e. the result has one extra bit. Unsigned division by 2 (or logical shift right by one bit) is performed before writing
the result to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

AVE_U.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i ave_u(WR[ws]8i+7..8i, WR[wt]8i+7..8i, 8)
endfor

AVE_U.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i ave_u(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 16)
endfor

AVE_U.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i ave_u(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

AVE_U.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i ave_u(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
endfor

function ave_u(ts, tt, n)
t (0 || ts) + (0 || tt)
return tn..1

endfunction ave_u

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 101 df wt ws wd 3R

010000
6 3 2 5 5 5 6

Vector Signed Average Rounded AVER_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 98

Format: AVER_S.df
AVER_S.B wd,ws,wt MSA
AVER_S.H wd,ws,wt MSA
AVER_S.W wd,ws,wt MSA
AVER_S.D wd,ws,wt MSA

Purpose: Vector Signed Average Rounded

Vector average rounded using the signed values.

Description: wd[i] (ws[i] + wt[i] + 1) / 2

The elements in vector wt are added to the elements in vector ws. The addition of the elements plus 1 (for rounding) is
done signed with full precision, i.e. the result has one extra bit. Signed division by 2 (or arithmetic shift right by one
bit) is performed before writing the result to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

AVER_S.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i aver_s(WR[ws]8i+7..8i, WR[wt]8i+7..8i, 8)
endfor

AVER_S.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i aver_s(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 16)
endfor

AVER_S.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i aver_s(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

AVER_S.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i aver_s(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
endfor

function ave_s(ts, tt, n)
t (tsn-1 || ts) + (ttn-1 || tt) + 1
return tn..1

endfunction aver_s

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 110 df wt ws wd 3R

010000
6 3 2 5 5 5 6

Vector Unsigned Average Rounded AVER_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 99

Format: AVER_U.df
AVER_U.B wd,ws,wt MSA
AVER_U.H wd,ws,wt MSA
AVER_U.W wd,ws,wt MSA
AVER_U.D wd,ws,wt MSA

Purpose: Vector Unsigned Average Rounded

Vector average rounded using the unsigned values.

Description: wd[i] (ws[i] + wt[i] + 1) / 2

The elements in vector wt are added to the elements in vector ws. The addition of the elements plus 1 (for rounding) is
done unsigned with full precision, i.e. the result has one extra bit. Unsigned division by 2 (or logical shift right by
one bit) is performed before writing the result to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

AVER_U.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i aver_u(WR[ws]8i+7..8i, WR[wt]8i+7..8i, 8)
endfor

AVER_U.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i aver_u(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 16)
endfor

AVER_U.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i aver_u(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

AVER_U.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i aver_u(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
endfor

function ave_u(ts, tt, n)
t (0 || ts) + (0 || tt) + 1
return tn..1

endfunction aver_u

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 111 df wt ws wd 3R

010000
6 3 2 5 5 5 6

Vector Bit Clear IBCLR.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 100

Format: BCLR.df
BCLR.B wd,ws,wt MSA
BCLR.H wd,ws,wt MSA
BCLR.W wd,ws,wt MSA
BCLR.D wd,ws,wt MSA

Purpose: Vector Bit Clear

Vector selected bit position clear in each element.

Description: wd[i] bit_clear(ws[i], wt[i])

Clear (set to 0) one bit in each element of vector ws. The bit position is given by the elements in wt modulo the size
of the element in bits. The result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

BCLR.B
 for i in 0 .. WRLEN/8-1

t WR[wt]8i+2..8i
WR[wd]8i+7..8i WR[ws]8i+7..8i and (1

7-t || 0 || 1t)
endfor

BCLR.H
 for i in 0 .. WRLEN/16-1

t WR[wt]16i+3..16i
WR[wd]16i+15..16i WR[ws]16i+15..16i and (1

15-t || 0 || 1t)
endfor

BCLR.W
 for i in 0 .. WRLEN/32-1

t WR[wt]32i+4..32i
WR[wd]32i+31..32i WR[ws]32i+31..32i and (1

31-t || 0 || 1t)
endfor

BCLR.D
 for i in 0 .. WRLEN/64-1

t WR[wt]64i+5..64i
WR[wd]64i+63..64i WR[ws]64i+63..64i and (1

63-t || 0 || 1t)
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 011 df wt ws wd 3R

001101
6 3 2 5 5 5 6

Immediate Bit Clear IBCLRI.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 101

Format: BCLRI.df
BCLRI.B wd,ws,m MSA
BCLRI.H wd,ws,m MSA
BCLRI.W wd,ws,m MSA
BCLRI.D wd,ws,m MSA

Purpose: Immediate Bit Clear

Immediate selected bit position clear in each element.

Description: wd[i] bit_clear(ws[i], m)

Clear (set to 0) one bit in each element of vector ws. The bit position is given by the immediate m modulo the size of
the element in bits. The result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

BCLRI.B
 t m

for i in 0 .. WRLEN/8-1
WR[wd]8i+7..8i WR[ws]8i+7..8i and (1

7-t || 0 || 1t)
endfor

BCLRI.H
 t m

for i in 0 .. WRLEN/16-1
WR[wd]16i+15..16i WR[ws]16i+15..16i and (1

15-t || 0 || 1t)
endfor

BCLRI.W
 t m

for i in 0 .. WRLEN/32-1
WR[wd]32i+31..32i WR[ws]32i+31..32i and (1

31-t || 0 || 1t)
endfor

BCLRI.D
 t m

for i in 0 .. WRLEN/64-1
WR[wd]64i+63..64i WR[ws]64i+63..64i and (1

63-t || 0 || 1t)
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 16 15 11 10 6 5 0

MSA
011110 011 df/m ws wd BIT

001001
6 3 7 5 5 6

Vector Bit Insert Left IBINSL.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 102

Format: BINSL.df
BINSL.B wd,ws,wt MSA
BINSL.H wd,ws,wt MSA
BINSL.W wd,ws,wt MSA
BINSL.D wd,ws,wt MSA

Purpose: Vector Bit Insert Left

Vector selected left most bits copy while preserving destination right bits.

Description: wd[i] bit_insert_left(wd[i], ws[i], wt[i])

Copy most significant (left) bits in each element of vector ws to elements in vector wd while preserving the least sig-
nificant (right) bits. The number of bits to copy is given by the elements in vector wt modulo the size of the element in
bits plus 1.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

BINSL.B
 for i in 0 .. WRLEN/8-1

t WR[wt]8i+2..8i
WR[wd]8i+7..8i WR[ws]8i+7..8i+7-t || WR[wd]8i+7-t-1..8i

endfor

BINSL.H
 for i in 0 .. WRLEN/16-1

t WR[wt]16i+3..16i
WR[wd]16i+15..16i WR[ws]16i+15..16i+15-t || WR[wd]16i+15-t-1..16i

endfor

BINSL.W
 for i in 0 .. WRLEN/32-1

t WR[wt]32i+4..32i
WR[wd]32i+31..32i WR[ws]32i+31..32i+31-t || WR[wd]32i+31-t-1..32i

endfor

BINSL.D
 for i in 0 .. WRLEN/64-1

t WR[wt]64i+5..64i
WR[wd]64i+63..64i WR[ws]64i+63..64i+63-t || WR[wd]64i+63-t-1..64i

endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 110 df wt ws wd 3R

001101
6 3 2 5 5 5 6

Immediate Bit Insert Left IBINSLI.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 103

Format: BINSLI.df
BINSLI.B wd,ws,m MSA
BINSLI.H wd,ws,m MSA
BINSLI.W wd,ws,m MSA
BINSLI.D wd,ws,m MSA

Purpose: Immediate Bit Insert Left

Immediate selected left most bits copy while preserving destination right bits.

Description: wd[i] bit_insert_left(wd[i], ws[i], m)

Copy most significant (left) bits in each element of vector ws to elements in vector wd while preserving the least sig-
nificant (right) bits. The number of bits to copy is given by the immediate m modulo the size of the element in bits
plus 1.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

BINSLI.B
 t m

for i in 0 .. WRLEN/8-1
WR[wd]8i+7..8i WR[ws]8i+7..8i+7-t || WR[wd]8i+7-t-1..8i

endfor

BINSLI.H
 t m

for i in 0 .. WRLEN/16-1
WR[wd]16i+15..16i WR[ws]16i+15..16i+15-t || WR[wd]16i+15-t-1..16i

endfor

BINSLI.W
 t m

for i in 0 .. WRLEN/32-1
WR[wd]32i+31..32i WR[ws]32i+31..32i+31-t || WR[wd]32i+31-t-1..32i

endfor

BINSLI.D
 t m

for i in 0 .. WRLEN/64-1
WR[wd]64i+63..64i WR[ws]64i+63..64i+63-t || WR[wd]64i+63-t-1..64i

endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 16 15 11 10 6 5 0

MSA
011110 110 df/m ws wd BIT

001001
6 3 7 5 5 6

Vector Bit Insert Right IBINSR.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 104

Format: BINSR.df
BINSR.B wd,ws,wt MSA
BINSR.H wd,ws,wt MSA
BINSR.W wd,ws,wt MSA
BINSR.D wd,ws,wt MSA

Purpose: Vector Bit Insert Right

Vector selected right most bits copy while preserving destination left bits.

Description: wd[i] bit_insert_right(wd[i], ws[i], wt[i])

Copy least significant (right) bits in each element of vector ws to elements in vector wd while preserving the most sig-
nificant (left) bits. The number of bits to copy is given by the elements in vector wt modulo the size of the element in
bits plus 1.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

BINSR.B
 for i in 0 .. WRLEN/8-1

t WR[wt]8i+2..8i
WR[wd]8i+7..8i WR[wd]8i+7..8i+t+1 || WR[ws]8i+t..8i

endfor

BINSR.H
 for i in 0 .. WRLEN/16-1

t WR[wt]16i+3..16i
WR[wd]16i+15..16i WR[wd]16i+15..16i+t+1 || WR[ws]16i+t..16i

endfor

BINSR.W
 for i in 0 .. WRLEN/32-1

t WR[wt]32i+4..32i
WR[wd]32i+31..32i WR[wd]32i+31..32i+t+1 || WR[ws]32i+t..32i

endfor

BINSR.D
 for i in 0 .. WRLEN/64-1

t WR[wt]64i+5..64i
WR[wd]64i+63..64i WR[wd]64i+63..64i+t+1 || WR[ws]64i+t..64i

endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 111 df wt ws wd 3R

001101
6 3 2 5 5 5 6

Immediate Bit Insert Right IBINSRI.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 105

Format: BINSRI.df
BINSRI.B wd,ws,m MSA
BINSRI.H wd,ws,m MSA
BINSRI.W wd,ws,m MSA
BINSRI.D wd,ws,m MSA

Purpose: Immediate Bit Insert Right

Immediate selected right most bits copy while preserving destination left bits.

Description: wd[i] bit_insert_right(wd[i], ws[i], m)

Copy least significant (right) bits in each element of vector ws to elements in vector wd while preserving the most sig-
nificant (left) bits. The number of bits to copy is given by the immediate m modulo the size of the element in bits plus
1.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

BINSRI.B
 t m

for i in 0 .. WRLEN/8-1
WR[wd]8i+7..8i WR[wd]8i+7..8i+7+t+1 || WR[ws]8i+t..8i

endfor

BINSRI.H
 t m

for i in 0 .. WRLEN/16-1
WR[wd]16i+15..16i WR[wd]16i+15..16i+t+1 || WR[ws]16i+t..16i

endfor

BINSRI.W
 t m

for i in 0 .. WRLEN/32-1
WR[wd]32i+31..32i WR[wd]32i+31..32i+t+1 || WR[ws]32i+t..32i

endfor

BINSRI.D
 t m

for i in 0 .. WRLEN/64-1
WR[wd]64i+63..64i WR[wd]64i+63..64i+t+1 || WR[ws]64i+t..64i

endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 16 15 11 10 6 5 0

MSA
011110 111 df/m ws wd BIT

001001
6 3 7 5 5 6

Vector Bit Move If Not Zero IBMNZ.V

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 106

Format: BMNZ.V
BMNZ.V wd,ws,wt MSA

Purpose: Vector Bit Move If Not Zero

Vector mask-based copy bits on the condition mask being set.

Description: wd (ws AND wt) OR (wd AND NOT wt)

Copy to destination vector wd all bits from source v ector ws for which the corresponding bits from target vector wt
are 1 and leaves unchanged all destination bits for which the corresponding target bits are 0.

The operands and results are bit vector values.

Restrictions:

No data-dependent exceptions are possible.

Operation:

 WR[wd] (WR[ws] and WR[wt]) or (WR[wd] and not WR[wt])

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 21 20 16 15 11 10 6 5 0

MSA
011110 00100 wt ws wd VEC

011110
6 5 5 5 5 6

Immediate Bit Move If Not Zero IBMNZI.B

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 107

Format: BMNZI.B
BMNZI.B wd,ws,i8 MSA

Purpose: Immediate Bit Move If Not Zero

Immediate mask-based copy bits on the condition mask being set.

Description: wd[i] (ws[i] AND i8) OR (wd[i] AND NOT i8)

Copy to destination vector wd all bits from source vector ws for which the corresponding bits from immediate i8 are 1
and leaves unchanged all destination bits for which the corresponding immediate bits are 0.

The operands and results are vector values in integer byte data format.

Restrictions:

No data-dependent exceptions are possible.

Operation:

 WR[wd] (WR[ws]8i+7..8i and i87..0) or (WR[wd]8i+7..8i and not i87..0)

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 24 23 16 15 11 10 6 5 0

MSA
011110 00 i8 ws wd I8

000001
6 2 8 5 5 6

Vector Bit Move If Zero IBMZ.V

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 108

Format: BMZ.V
BMZ.V wd,ws,wt MSA

Purpose: Vector Bit Move If Zero

Vector mask-based copy bits on the condition mask being clear.

Description: wd (ws AND NOT wt) OR (wd AND wt)

Copy to destination vector wd all bits from source v ector ws for which the corresponding bits from target vector wt
are 0 and leaves unchanged all destination bits for which the corresponding target bits are 1.

The operands and results are bit vector values.

Restrictions:

No data-dependent exceptions are possible.

Operation:

 WR[wd] (WR[ws] and not WR[wt]) or (WR[wd] and WR[wt])

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 21 20 16 15 11 10 6 5 0

MSA
011110 00101 wt ws wd VEC

011110
6 5 5 5 5 6

Immediate Bit Move If Zero IBMZI.B

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 109

Format: BMZI.B
BMZI.B wd,ws,i8 MSA

Purpose: Immediate Bit Move If Zero

Immediate mask-based copy bits on the condition mask being clear.

Description: wd[i] (ws[i] AND NOT i8) OR (wd[i] AND i8)

Copy to destination vector wd all bits from source vector ws for which the corresponding bits from immediate i8 are 0
and leaves unchanged all destination bits for which the corresponding immediate bits are 1.

The operands and results are vector values in integer byte data format.

Restrictions:

No data-dependent exceptions are possible.

Operation:

 WR[wd] (WR[ws] and not i87..0) or (WR[wd] and i87..0)

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 24 23 16 15 11 10 6 5 0

MSA
011110 01 i8 ws wd I8

000001
6 2 8 5 5 6

Vector Bit Negate IBNEG.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 110

Format: BNEG.df
BNEG.B wd,ws,wt MSA
BNEG.H wd,ws,wt MSA
BNEG.W wd,ws,wt MSA
BNEG.D wd,ws,wt MSA

Purpose: Vector Bit Negate

Vector selected bit position negate in each element.

Description: wd[i] bit_negate(ws[i], wt[i])

Negate (complement) one bit in each element of vector ws. The bit position is given by the elements in wt modulo the
size of the element in bits. The result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

BNEG.B
 for i in 0 .. WRLEN/8-1

t WR[wt]8i+2..8i
WR[wd]8i+7..8i WR[ws]8i+7..8i xor (0

7-t || 1 || 0t)
endfor

BNEG.H
 for i in 0 .. WRLEN/16-1

t WR[wt]16i+3..16i
WR[wd]16i+15..16i WR[ws]16i+15..16i xor (0

15-t || 1 || 0t)
endfor

BNEG.W
 for i in 0 .. WRLEN/32-1

t WR[wt]32i+4..32i
WR[wd]32i+31..32i WR[ws]32i+31..32i xor (0

31-t || 1 || 0t)
endfor

BNEG.D
 for i in 0 .. WRLEN/64-1

t WR[wt]64i+5..64i
WR[wd]64i+63..64i WR[ws]64i+63..64i xor (0

63-t || 1 || 0t)
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 101 df wt ws wd 3R

001101
6 3 2 5 5 5 6

Immediate Bit Negate IBNEGI.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 111

Format: BNEGI.df
BNEGI.B wd,ws,m MSA
BNEGI.H wd,ws,m MSA
BNEGI.W wd,ws,m MSA
BNEGI.D wd,ws,m MSA

Purpose: Immediate Bit Negate

Immediate selected bit position negate in each element.

Description: wd[i] bit_negate(ws[i], m)

Negate (complement) one bit in each element of vector ws. The bit position is given by the immediate m modulo the
size of the element in bits. The result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

BNEGI.B
 t m

for i in 0 .. WRLEN/8-1
WR[wd]8i+7..8i WR[ws]8i+7..8i xor (0

7-t || 1 || 0t)
endfor

BNEGI.H
 t m

for i in 0 .. WRLEN/16-1
WR[wd]16i+15..16i WR[ws]16i+15..16i xor (0

15-t || 1 || 0t)
endfor

BNEGI.W
 t m

for i in 0 .. WRLEN/32-1
WR[wd]32i+31..32i WR[ws]32i+31..32i xor (0

31-t || 1 || 0t)
endfor

BNEGI.D
 t m

for i in 0 .. WRLEN/64-1
WR[wd]64i+63..64i WR[ws]64i+63..64i xor (0

63-t || 1 || 0t)
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 16 15 11 10 6 5 0

MSA
011110 101 df/m ws wd BIT

001001
6 3 7 5 5 6

Immediate Branch If All Elements Are Not Zero IBNZ.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 112

Format: BNZ.df
BNZ.B wt,s16 MSA
BNZ.H wt,s16 MSA
BNZ.W wt,s16 MSA
BNZ.D wt,s16 MSA

Purpose: Immediate Branch If All Elements Are Not Zero

Immediate PC offset branch if all destination elements are not zero.

Description: if wt[i] 0 for all i then branch PC-relative s16

PC-relative branch if all elements in wt are not zero.

 The branch instruction has a delay slot. s16 is a PC word offset, i.e. signed count of 32-bit instructions, from the PC
of the delay slot.

Restrictions:

 Processor operation is UNPREDICTABLE if a branch is placed in the delay slot of a branch or jump.

Operation:

BNZ.B
 branch(WR[wt]8i+7..8i 0 for all i, s16)

BNZ.H
 branch(WR[wt]16i+15..16i 0 for all i, s16)

BNZ.W
 branch(WR[wt]32i+31..32i 0 for all i, s16)

BNZ.D
 branch(WR[wt]64i+63..64i 0 for all i, s16)

function branch(cond, offset)
if cond then

 I: target_offset (offset9)
GPRLEN-12 || offset9..0 || 0^^2

I+1: PC PC + target_offset
 endif
endfunction branch

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 0

COP1
010001 111 df wt s16

6 3 2 5 16

Immediate Branch If Not Zero (At Least One Element of Any Format Is Not Zero) IBNZ.V

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 113

Format: BNZ.V
BNZ.V wt,s16 MSA

Purpose: Immediate Branch If Not Zero (At Least One Element of Any Format Is Not Zero)

Immediate PC offset branch if destination vector is not zero.

Description: if wt 0 then branch PC-relative s16

PC-relative branch if at least one bit in wt is not zero, i.e at least one element is not zero regardless of the data format.

 The branch instruction has a delay slot. s16 is a PC word offset, i.e. signed count of 32-bit instructions, from the PC
of the delay slot.

Restrictions:

 Processor operation is UNPREDICTABLE if a branch is placed in the delay slot of a branch or jump.

Operation:

 branch(WR[wt] 0, s16)

function branch(cond, offset)
if cond then

 I: target_offset (offset9)
GPRLEN-12 || offset9..0 || 0^^2

I+1: PC PC + target_offset
 endif
endfunction branch

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 21 20 16 15 0

COP1
010001 01111 wt s16

6 5 5 16

Vector Bit Select IBSEL.V

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 114

Format: BSEL.V
BSEL.V wd,ws,wt MSA

Purpose: Vector Bit Select

Vector mask-based copy bits from two source vectors selected by the bit mask value

Description: wd (ws AND NOT wd) OR (wt AND wd)

Selectively copy bits from the source v ectors ws and wt into destination vector wd based on the corresponding bit
in wd: if 0 copies the bit from ws, if 1 copies the bit from wt.

Restrictions:

The operands and results are bit vector values.

Operation:

 WR[wd] (WR[ws] and not WR[wd]) or (WR[wt] and WR[wd])

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 21 20 16 15 11 10 6 5 0

MSA
011110 00110 wt ws wd VEC

011110
6 5 5 5 5 6

Immediate Bit Select IBSELI.B

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 115

Format: BSELI.B
BSELI.B wd,ws,i8 MSA

Purpose: Immediate Bit Select

Immediate mask-based copy bits from two source vectors selected by the bit mask value

Description: wd (ws AND NOT wd) OR (i8 AND wd)

Selectively copy bits from the the 8-bit immediate i8 and source v ector ws into destination vector wd based on the
corresponding bit in wd: if 0 copies the bit from ws, if 1 copies the bit from i8.

Restrictions:

The operands and results are bit vector values.

Operation:

 for i in 0 .. WRLEN/8-1
WR[wd]8i+7..8i

(WR[ws]8i+7..8i and not WR[wd]8i+7..8i) or (i87..0 and WR[wd]8i+7..8i)
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 24 23 16 15 11 10 6 5 0

MSA
011110 10 i8 ws wd I8

000001
6 2 8 5 5 6

Vector Bit Set IBSET.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 116

Format: BSET.df
BSET.B wd,ws,wt MSA
BSET.H wd,ws,wt MSA
BSET.W wd,ws,wt MSA
BSET.D wd,ws,wt MSA

Purpose: Vector Bit Set

Vector selected bit position set in each element.

Description: wd[i] bit_set(ws[i], wt[i])

Set to 1 one bit in each element of v ector ws. The bit position is given by the elements in wt modulo the size of the
element in bits. The result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

BSET_S.B
 for i in 0 .. WRLEN/8-1

t WR[wt]8i+2..8i
WR[wd]8i+7..8i WR[ws]8i+7..8i or (0

7-t || 1 || 0t)
endfor

BSET_S.H
 for i in 0 .. WRLEN/16-1

t WR[wt]16i+3..16i
WR[wd]16i+15..16i WR[ws]16i+15..16i or (0

15-t || 1 || 0t)
endfor

BSET_S.W
 for i in 0 .. WRLEN/32-1

t WR[wt]32i+4..32i
WR[wd]32i+31..32i WR[ws]32i+31..32i or (0

31-t || 1 || 0t)
endfor

BSET_S.D
 for i in 0 .. WRLEN/64-1

t WR[wt]64i+5..64i
WR[wd]64i+63..64i WR[ws]64i+63..64i or (0

63-t || 1 || 0t)
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 100 df wt ws wd 3R

001101
6 3 2 5 5 5 6

Immediate Bit Set IBSETI.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 117

Format: BSETI.df
BSETI.B wd,ws,m MSA
BSETI.H wd,ws,m MSA
BSETI.W wd,ws,m MSA
BSETI.D wd,ws,m MSA

Purpose: Immediate Bit Set

Immediate selected bit position set in each element.

Description: wd[i] bit_set(ws[i], m)

Set to 1 one bit in each element of vector ws. The bit position is given by the immediate m. The result is written to
vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

BSETI_S.B
 t m

for i in 0 .. WRLEN/8-1
WR[wd]8i+7..8i WR[ws]8i+7..8i or (0

7-t || 1 || 0t)
endfor

BSETI_S.H
 t m

for i in 0 .. WRLEN/16-1
WR[wd]16i+15..16i WR[ws]16i+15..16i or (0

15-t || 1 || 0t)
endfor

BSETI_S.W
 t m

for i in 0 .. WRLEN/32-1
WR[wd]32i+31..32i WR[ws]32i+31..32i or (0

31-t || 1 || 0t)
endfor

BSETI_S.D
 t m

for i in 0 .. WRLEN/64-1
WR[wd]64i+63..64i WR[ws]64i+63..64i or (0

63-t || 1 || 0t)
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 16 15 11 10 6 5 0

MSA
011110 100 df/m ws wd BIT

001001
6 3 7 5 5 6

Immediate Branch If At Least One Element Is Zero IBZ.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 118

Format: BZ.df
BZ.B wt,s16 MSA
BZ.H wt,s16 MSA
BZ.W wt,s16 MSA
BZ.D wt,s16 MSA

Purpose: Immediate Branch If At Least One Element Is Zero

Immediate PC offset branch if at least one destination element is zero.

Description: if wt[i] = 0 for some i then branch PC-relative s16

PC-relative branch if at least one element in wt is zero.

 The branch instruction has a delay slot. s16 is a PC word offset, i.e. signed count of 32-bit instructions, from the PC
of the delay slot.

Restrictions:

 Processor operation is UNPREDICTABLE if a branch is placed in the delay slot of a branch or jump.

Operation:

BZ.B
 for i in 0 .. WRLEN/8-1

branch(WR[wt]8i+7..8i = 0, s16)
endfor

BZ.H
 for i in 0 .. WRLEN/16-1

branch(WR[wt]16i+15..16i = 0, s16)
endfor

BZ.W
 for i in 0 .. WRLEN/32-1

branch(WR[wt]32i+31..32i = 0, s16)
endfor

BZ.D
 for i in 0 .. WRLEN/64-1

branch(WR[wt]64i+63..64i = 0, s16)
endfor

function branch(cond, offset)
if cond then

 I: target_offset (offset9)
GPRLEN-12 || offset9..0 || 0^^2

I+1: PC PC + target_offset
 endif
endfunction branch

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 0

COP1
010001 110 df wt s16

6 3 2 5 16

Immediate Branch If Zero (All Elements of Any Format Are Zero) IBZ.V

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 119

Format: BZ.V
BZ.V wt,s16 MSA

Purpose: Immediate Branch If Zero (All Elements of Any Format Are Zero)

Immediate PC offset branch if destination vector is zero.

Description: if wt = 0 then branch PC-relative s16

PC-relative branch if all wt bits are zero, i.e. all elements are zero regardless of the data format.

 The branch instruction has a delay slot. s16 is a PC word offset, i.e. signed count of 32-bit instructions, from the PC
of the delay slot.

Restrictions:

 Processor operation is UNPREDICTABLE if a branch is placed in the delay slot of a branch or jump.

Operation:

 branch(WR[wt] = 0, s16)

function branch(cond, offset)
if cond then

 I: target_offset (offset9)
GPRLEN-12 || offset9..0 || 0^^2

I+1: PC PC + target_offset
 endif
endfunction branch

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 21 20 16 15 0

COP1
010001 01011 wt s16

6 5 5 16

Vector Compare Equal ICEQ.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 120

Format: CEQ.df
CEQ.B wd,ws,wt MSA
CEQ.H wd,ws,wt MSA
CEQ.W wd,ws,wt MSA
CEQ.D wd,ws,wt MSA

Purpose: Vector Compare Equal

Vector to vector compare for equality; if true all destination bits are set, otherwise clear.

Description: wd[i] (ws[i] = wt[i])

Set all bits to 1 in wd elements if the corresponding ws and wt elements are equal, otherwise set all bits to 0.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

CEQ.B
 for i in 0 .. WRLEN/8-1

c WR[ws]8i+7..8i = WR[wt]8i+7..8i
WR[wd]8i+7..8i c8

endfor

CEQ.H
 for i in 0 .. WRLEN/16-1

c WR[ws]16i+15..16i = WR[wt]16i+15..16i
WR[wd]16i+15..16i c16

endfor

CEQ.W
 for i in 0 .. WRLEN/32-1

c WR[ws]32i+31..32i = WR[wt]32i+31..32i
WR[wd]32i+31..32i c32

endfor

CEQ.D
 for i in 0 .. WRLEN/64-1

c WR[ws]64i+63..64i = WR[wt]64i+63..64i
WR[wd]64i+63..64i c64

endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 000 df wt ws wd 3R

001111
6 3 2 5 5 5 6

Immediate Compare Equal ICEQI.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 121

Format: CEQI.df
CEQI.B wd,ws,s5 MSA
CEQI.H wd,ws,s5 MSA
CEQI.W wd,ws,s5 MSA
CEQI.D wd,ws,s5 MSA

Purpose: Immediate Compare Equal

Immediate to vector compare for equality; if true all destination bits are set, otherwise clear.

Description: wd[i] (ws[i] = s5)

Set all bits to 1 in wd elements if the corresponding ws element and the 5-bit signed immediate s5 are equal, other-
wise set all bits to 0.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

CEQI.B
 t (s54)

3 || s54..0
for i in 0 .. WRLEN/8-1

c WR[ws]8i+7..8i = t
WR[wd]8i+7..8i c8

endfor

CEQI.H
 t (s54)

11 || s54..0
for i in 0 .. WRLEN/16-1

c WR[ws]16i+15..16i = t
WR[wd]16i+15..16i c16

endfor

CEQI.W
 t (s54)

27 || s54..0
for i in 0 .. WRLEN/32-1

c WR[ws]32i+31..32i = t
WR[wd]32i+31..32i c32

endfor

CEQI.D
 t (s54)

59 || s54..0
for i in 0 .. WRLEN/64-1

c WR[ws]64i+63..64i = t
WR[wd]64i+63..64i c64

endfor

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 000 df s5 ws wd I5

000111
6 3 2 5 5 5 6

Immediate Compare Equal ICEQI.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 122

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

GPR Copy from MSA Control Register ICFCMSA

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 123

Format: CFCMSA
CFCMSA rd,cs MSA

Purpose: GPR Copy from MSA Control Register

GPR value copied from MSA control register.

Description: rd cs

The content of MSA control register cs is copied to GPR rd.

Restrictions:

The read operation returns ZERO if cs specifies a reserved register or a register that does not exist.

Operation:

if cs = 0 then
GPR[rd] MSAIR

elseif cs = 1 then
GPR[rd] MSACSR

elseif MSAIRWRP = 1 then
if cs = 2 then

if not IsCoprocessorEnabled(0) then
SignalException(CoprocessorUnusableException, 0)

endif
GPR[rd] MSAAccess

elseif cs = 3 then
if not IsCoprocessorEnabled(0) then

SignalException(CoprocessorUnusableException, 0)
endif
GPR[rd] MSASave

elseif cs = 4 then
if not IsCoprocessorEnabled(0) then

SignalException(CoprocessorUnusableException, 0)
endif
GPR[rd] MSAModify

elseif cs = 5 then
if not IsCoprocessorEnabled(0) then

SignalException(CoprocessorUnusableException, 0)
endif
GPR[rd] MSARequest

elseif cs = 6 then
if not IsCoprocessorEnabled(0) then

SignalException(CoprocessorUnusableException, 0)
endif
GPR[rd] MSAMap

elseif cs = 7 then
if not IsCoprocessorEnabled(0) then

SignalException(CoprocessorUnusableException, 0)
endif
GPR[rd] MSAUnmap

else

31 26 25 16 15 11 10 6 5 0

MSA
011110 0001111110 cs rd ELM

011001
6 10 5 5 6

GPR Copy from MSA Control Register ICFCMSA

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 124

GPR[rd] = 0
endif

else
GPR[rd] = 0

endif

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception. Coprocessor 0 Unusable Exception.

Vector Compare Signed Less Than or Equal ICLE_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 125

Format: CLE_S.df
CLE_S.B wd,ws,wt MSA
CLE_S.H wd,ws,wt MSA
CLE_S.W wd,ws,wt MSA
CLE_S.D wd,ws,wt MSA

Purpose: Vector Compare Signed Less Than or Equal

Vector to vector compare for signed less or equal; if true all destination bits are set, otherwise clear.

Description: wd[i] (ws[i] <= wt[i])

Set all bits to 1 in wd elements if the corresponding ws elements are signed less than or equal to wt elements, other-
wise set all bits to 0.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

CLE_S.B
 for i in 0 .. WRLEN/8-1

c WR[ws]8i+7..8i <= WR[wt]8i+7..8i
WR[wd]8i+7..8i c8

endfor

CLE_S.H
 for i in 0 .. WRLEN/16-1

c WR[ws]16i+15..16i <= WR[wt]16i+15..16i
WR[wd]16i+15..16i c16

endfor

CLE_S.W
 for i in 0 .. WRLEN/32-1

c WR[ws]32i+31..32i <= WR[wt]32i+31..32i
WR[wd]32i+31..32i c32

endfor

CLE_S.D
 for i in 0 .. WRLEN/64-1

c WR[ws]64i+63..64i <= WR[wt]64i+63..64i
WR[wd]64i+63..64i c64

endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 100 df wt ws wd 3R

001111
6 3 2 5 5 5 6

Vector Compare Unsigned Less Than or Equal ICLE_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 126

Format: CLE_U.df
CLE_U.B wd,ws,wt MSA
CLE_U.H wd,ws,wt MSA
CLE_U.W wd,ws,wt MSA
CLE_U.D wd,ws,wt MSA

Purpose: Vector Compare Unsigned Less Than or Equal

Vector to vector compare for unsigned less or equal; if true all destination bits are set, otherwise clear.

Description: wd[i] (ws[i] <= wt[i])

Set all bits to 1 in wd elements if the corresponding ws elements are unsigned less than or equal to wt elements, other-
wise set all bits to 0.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

CLE_U.B
 for i in 0 .. WRLEN/8-1

c (0 || WR[ws]8i+7..8i) <= (0 || WR[wt]8i+7..8i)
WR[wd]8i+7..8i c8

endfor

CLE_U.H
 for i in 0 .. WRLEN/16-1

c (0 || WR[ws]16i+15..16i) <= (0 || WR[wt]16i+15..16i)
WR[wd]16i+15..16i c16

endfor

CLE_U.W
 for i in 0 .. WRLEN/32-1

c (0 || WR[ws]__32i+31..32i_)_ <= (0 || WR[wt]32i+31..32i)
WR[wd]32i+31..32i c32

endfor

CLE_U.D
 for i in 0 .. WRLEN/64-1

c (0 || WR[ws]64i+63..64i) <= (0 || WR[wt]64i+63..64i)
WR[wd]64i+63..64i c64

endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 101 df wt ws wd 3R

001111
6 3 2 5 5 5 6

Immediate Compare Signed Less Than or Equal ICLEI_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 127

Format: CLEI_S.df
CLEI_S.B wd,ws,s5 MSA
CLEI_S.H wd,ws,s5 MSA
CLEI_S.W wd,ws,s5 MSA
CLEI_S.D wd,ws,s5 MSA

Purpose: Immediate Compare Signed Less Than or Equal

Immediate to vector compare for signed less or equal; if true all destination bits are set, otherwise clear.

Description: wd[i] (ws[i] <= s5)

Set all bits to 1 in wd elements if the corresponding ws element is less than or equal to the 5-bit signed immediate s5,
otherwise set all bits to 0.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

CLEI_S.B
 t (s54)

3 || s54..0
for i in 0 .. WRLEN/8-1

c WR[ws]8i+7..8i <= t
WR[wd]8i+7..8i c8

endfor

CLEI_S.H
 t (s54)

11 || s54..0
for i in 0 .. WRLEN/16-1

c WR[ws]16i+15..16i <= t
WR[wd]16i+15..16i c16

endfor

CLEI_S.W
 t (s54)

27 || s54..0
for i in 0 .. WRLEN/32-1

c WR[ws]32i+31..32i <= t
WR[wd]32i+31..32i c32

endfor

CLEI_S.D
 t (s54)

59 || s5__4.. 0__
for i in 0 .. WRLEN/64-1

c WR[ws]64i+63..64i <= t
WR[wd]64i+63..64i c64

endfor

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 100 df s5 ws wd I5

000111
6 3 2 5 5 5 6

Immediate Compare Signed Less Than or Equal ICLEI_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 128

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Immediate Compare Unsigned Less Than or Equal ICLEI_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 129

Format: CLEI_U.df
CLEI_U.B wd,ws,u5 MSA
CLEI_U.H wd,ws,u5 MSA
CLEI_U.W wd,ws,u5 MSA
CLEI_U.D wd,ws,u5 MSA

Purpose: Immediate Compare Unsigned Less Than or Equal

Immediate to vector compare for unsigned less or equal; if true all destination bits are set, otherwise clear.

Description: wd[i] (ws[i] <= u5)

Set all bits to 1 in wd elements if the corresponding ws element is unsigned less than or equal to the 5-b it unsigned
immediate u5, otherwise set all bits to 0.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

CLEI_U.B
 t 03 || u54..0

for i in 0 .. WRLEN/8-1
c (0 || WR[ws]8i+7..8i) <= (0 || t)
WR[wd]8i+7..8i c8

endfor

CLEI_U.H
 t 011 || u54..0

for i in 0 .. WRLEN/16-1
c (0 || WR[ws]16i+15..16i) <= (0 || t)
WR[wd]16i+15..16i c16

endfor

CLEI_U.W
 t 027 || u54..0

for i in 0 .. WRLEN/32-1
c WR[ws]32i+31..32i <= (0 || t)
WR[wd]32i+31..32i c32

endfor

CLEI_U.D
 t 059 || u54..0

for i in 0 .. WRLEN/64-1
c WR[ws]64i+63..64i <= (0 || t)
WR[wd]64i+63..64i c64

endfor

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 101 df u5 ws wd I5

000111
6 3 2 5 5 5 6

Immediate Compare Unsigned Less Than or Equal ICLEI_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 130

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Compare Signed Less Than ICLT_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 131

Format: CLT_S.df
CLT_S.B wd,ws,wt MSA
CLT_S.H wd,ws,wt MSA
CLT_S.W wd,ws,wt MSA
CLT_S.D wd,ws,wt MSA

Purpose: Vector Compare Signed Less Than

Vector to vector compare for signed less than; if true all destination bits are set, otherwise clear.

Description: wd[i] (ws[i] < wt[i])

Set all bits to 1 i n wd elements if the corresponding ws elements are signed less than wt elements, otherwise set all
bits to 0.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

CLT_S.B
 for i in 0 .. WRLEN/8-1

c WR[ws]8i+7..8i < WR[wt]8i+7..8i
WR[wd]8i+7..8i c8

endfor

CLT_S.H
 for i in 0 .. WRLEN/16-1

c WR[ws]16i+15..16i < WR[wt]16i+15..16i
WR[wd]16i+15..16i c16

endfor

CLT_S.W
 for i in 0 .. WRLEN/32-1

c WR[ws]32i+31..32i < WR[wt]32i+31..32i
WR[wd]32i+31..32i c32

endfor

CLT_S.D
 for i in 0 .. WRLEN/64-1

c WR[ws]64i+63..64i < WR[wt]64i+63..64i
WR[wd]64i+63..64i c64

endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 010 df wt ws wd 3R

001111
6 3 2 5 5 5 6

Vector Compare Unsigned Less Than ICLT_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 132

Format: CLT_U.df
CLT_U.B wd,ws,wt MSA
CLT_U.H wd,ws,wt MSA
CLT_U.W wd,ws,wt MSA
CLT_U.D wd,ws,wt MSA

Purpose: Vector Compare Unsigned Less Than

Vector to vector compare for unsigned less than; if true all destination bits are set, otherwise clear.

Description: wd[i] (ws[i] < wt[i])

Set all bits to 1 in wd elements if the corresponding ws elements are unsigned less than wt elements, otherwise set all
bits to 0.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

CLT_U.B
 for i in 0 .. WRLEN/8-1

c (0 || WR[ws]8i+7..8i) < (0 || WR[wt]8i+7..8i)
WR[wd]8i+7..8i c8

endfor

CLT_U.H
 for i in 0 .. WRLEN/16-1

c (0 || WR[ws]16i+15..16i) < (0 || WR[wt]16i+15..16i)
WR[wd]16i+15..16i c16

endfor

CLT_U.W
 for i in 0 .. WRLEN/32-1

c (0 || WR[ws]__32i+31..32i_)_ < (0 || WR[wt]32i+31..32i)
WR[wd]32i+31..32i c32

endfor

CLT_U.D
 for i in 0 .. WRLEN/64-1

c (0 || WR[ws]64i+63..64i) < (0 || WR[wt]64i+63..64i)
WR[wd]64i+63..64i c64

endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 011 df wt ws wd 3R

001111
6 3 2 5 5 5 6

Immediate Compare Signed Less Than ICLTI_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 133

Format: CLTI_S.df
CLTI_S.B wd,ws,s5 MSA
CLTI_S.H wd,ws,s5 MSA
CLTI_S.W wd,ws,s5 MSA
CLTI_S.D wd,ws,s5 MSA

Purpose: Immediate Compare Signed Less Than

Immediate to vector compare for signed less than; if true all destination bits are set, otherwise clear.

Description: wd[i] (ws[i] < s5)

Set all bits to 1 in wd elements if the corresponding ws element is less than the 5-bit signed immediate s5, otherwise
set all bits to 0.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

CLTI_S.B
 t (s54)

3 || s54..0
for i in 0 .. WRLEN/8-1

c WR[ws]8i+7..8i < t
WR[wd]8i+7..8i c8

endfor

CLTI_S.H
 t (s54)

11 || s54..0
for i in 0 .. WRLEN/16-1

c WR[ws]16i+15..16i < t
WR[wd]16i+15..16i c16

endfor

CLTI_S.W
 t (s54)

27 || s54..0
for i in 0 .. WRLEN/32-1

c WR[ws]32i+31..32i < t
WR[wd]32i+31..32i c32

endfor

CLTI_S.D
 t (s54)

59 || s5__4.. 0__
for i in 0 .. WRLEN/64-1

c WR[ws]64i+63..64i < t
WR[wd]64i+63..64i c64

endfor

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 010 df s5 ws wd I5

000111
6 3 2 5 5 5 6

Immediate Compare Signed Less Than ICLTI_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 134

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Immediate Compare Unsigned Less Than ICLTI_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 135

Format: CLTI_U.df
CLTI_U.B wd,ws,u5 MSA
CLTI_U.H wd,ws,u5 MSA
CLTI_U.W wd,ws,u5 MSA
CLTI_U.D wd,ws,u5 MSA

Purpose: Immediate Compare Unsigned Less Than

Immediate to vector compare for unsigned less than; if true all destination bits are set, otherwise clear.

Description: wd[i] (ws[i] < u5)

Set all bits to 1 in wd elements if the corresponding ws element is unsigned less than the 5-bit unsigned immediate u5,
otherwise set all bits to 0.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

CLTI_U.B
 t 03 || u54..0

for i in 0 .. WRLEN/8-1
c (0 || WR[ws]8i+7..8i) < (0 || t)
WR[wd]8i+7..8i c8

endfor

CLTI_U.H
 t 011 || u54..0

for i in 0 .. WRLEN/16-1
c (0 || WR[ws]16i+15..16i) < (0 || t)
WR[wd]16i+15..16i c16

endfor

CLTI_U.W
 t 027 || u54..0

for i in 0 .. WRLEN/32-1
c WR[ws]32i+31..32i < (0 || t)
WR[wd]32i+31..32i c32

endfor

CLTI_U.D
 t 059 || u54..0

for i in 0 .. WRLEN/64-1
c WR[ws]64i+63..64i < (0 || t)
WR[wd]64i+63..64i c64

endfor

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 011 df u5 ws wd I5

000111
6 3 2 5 5 5 6

Immediate Compare Unsigned Less Than ICLTI_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 136

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Element Copy to GPR Signed ICOPY_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 137

Format: COPY_S.df
COPY_S.B rd,ws[n] MSA
COPY_S.H rd,ws[n] MSA
COPY_S.W rd,ws[n] MSA

Purpose: Element Copy to GPR Signed

Element value sign extended and copied to GPR.

Description: rd signed(ws[n])

Sign-extend element n of vector ws and copy the result to GPR rd.

Restrictions:

No data-dependent exceptions are possible.

Operation:

COPY_S.B
 GPR[rd] sign_extend(WR[ws]8n+7..8n, 32)

COPY_S.H
 GPR[rd] sign_extend(WR[ws]16n+15..16n, 32)

COPY_S.W
 GPR[rd] WR[ws]32n+31..32n

function sign_extend(tt, n)
return (ttn-1)

GPRLEN-n || ttn-1..0
endfunction sign_extend

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 22 21 16 15 11 10 6 5 0

MSA
011110 0010 df/n ws rd ELM

011001
6 4 6 5 5 6

Element Copy to GPR Unsigned ICOPY_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 138

Format: COPY_U.df
COPY_U.B rd,ws[n] MSA
COPY_U.H rd,ws[n] MSA

Purpose: Element Copy to GPR Unsigned

Element value zero extended and copied to GPR.

Description: rd unsigned(ws[n])

Zero-extend element n of vector ws and copy the result to GPR rd.

Restrictions:

No data-dependent exceptions are possible.

Operation:

COPY_U.B
 GPR[rd] zero_extend(WR[ws]8n+7..8n, 32))

COPY_U.H
 GPR[rd] zero_extend(WR[ws]16n+15..16n, 32))

function zero_extend(tt, n)
return 0GPRLEN-n || ttn-1..0

endfunction zero_extend

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 22 21 16 15 11 10 6 5 0

MSA
011110 0011 df/n ws rd ELM

011001
6 4 6 5 5 6

GPR Copy to MSA Control Register ICTCMSA

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 139

Format: CTCMSA
CTCMSA cd,rs MSA

Purpose: GPR Copy to MSA Control Register

GPR value copied to MSA control register.

Description: cd rs

The content of GPR rs is copied to MSA control register cd.

Writing to the MSA Control and Status Register MSACSR causes the appropriate e xception if any Cause bit and its
corresponding Enable bit are both set. The register is written before the exception occurs and the EPC register con-
tains the address of the CTCMSA instruction.

Restrictions:

The write attempt is IGNORED if cd specifies a reserved register or a register that does not exist or is not writable.

Operation:

if cd = 1 then
MSACSR GPR[rs]
if MSACSRCause and (1 || MSACSREnables) 0 then

SignalException(MSAFloatingPointException)
endif

elseif MSAIRWRP = 1 then
if cd = 3 then

if not IsCoprocessorEnabled(0) then
SignalException(CoprocessorUnusableException, 0)

endif
MSASave GPR[rs]

elseif cd = 4 then
if not IsCoprocessorEnabled(0) then

SignalException(CoprocessorUnusableException, 0)
endif
MSAModify GPR[rs]

elseif cd = 6 then
if not IsCoprocessorEnabled(0) then

SignalException(CoprocessorUnusableException, 0)
endif
MSAMap GPR[rs]

elseif cd = 7 then
if not IsCoprocessorEnabled(0) then

SignalException(CoprocessorUnusableException, 0)
endif
MSAUnmap GPR[rs]

endif
endif

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception. Coprocessor 0 Unusable

31 26 25 16 15 11 10 6 5 0

MSA
011110 0000111110 rs cd ELM

011001
6 10 5 5 6

GPR Copy to MSA Control Register ICTCMSA

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 140

Exception.

Vector Signed Divide IDIV_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 141

Format: DIV_S.df
DIV_S.B wd,ws,wt MSA
DIV_S.H wd,ws,wt MSA
DIV_S.W wd,ws,wt MSA
DIV_S.D wd,ws,wt MSA

Purpose: Vector Signed Divide

Vector signed divide.

Description: wd[i] ws[i] div wt[i]

The signed integer elements in vector ws are divided by signed integer elements in vector wt. The result is written to
vector wd. If a divisor element vector wt is zero, the result value is UNPREDICTABLE.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

DIV_S.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i WR[ws]8i+7..8i div WR[wt]8i+7..8i
endfor

DIV_S.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i WR[ws]16i+15..16i div WR[wt]16i+15..16i
endfor

DIV_S.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i WR[ws]32i+31..32i div WR[wt]32i+31..32i
endfor

DIV_S.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i WR[ws]64i+63..64i div WR[wt]64i+63..64i
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 100 df wt ws wd 3R

010010
6 3 2 5 5 5 6

Vector Unsigned Divide IDIV_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 142

Format: DIV_U.df
DIV_U.B wd,ws,wt MSA
DIV_U.H wd,ws,wt MSA
DIV_U.W wd,ws,wt MSA
DIV_U.D wd,ws,wt MSA

Purpose: Vector Unsigned Divide

Vector unsigned divide.

Description: wd[i] ws[i] udiv wt[i]

The unsigned integer elements in vector ws are divided by unsigned integer elements in vector wt. The result is writ-
ten to vector wd. If a divisor element vector wt is zero, the result value is UNPREDICTABLE.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

DIV_U.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i WR[ws]8i+7..8i udiv WR[wt]8i+7..8i
endfor

DIV_U.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i WR[ws]16i+15..16i udiv WR[wt]16i+15..16i
endfor

DIV_U.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i WR[ws]32i+31..32i udiv WR[wt]32i+31..32i
endfor

DIV_U.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i WR[ws]64i+63..64i udiv WR[wt]64i+63..64i
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 101 df wt ws wd 3R

010010
6 3 2 5 5 5 6

Vector Signed Dot Product IDOTP_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 143

Format: DOTP_S.df
DOTP_S.H wd,ws,wt MSA
DOTP_S.W wd,ws,wt MSA
DOTP_S.D wd,ws,wt MSA

Purpose: Vector Signed Dot Product

Vector signed dot product (multiply and then pairwise add the adjacent multiplication results) to double width ele-
ments.

Description: (wd[2i+1], wd[2i]) signed(ws[2i+1]) * signed(wt[2i+1]) + signed(ws[2i]) *
signed(wt[2i])

The signed integer elements in vector wt are multiplied by signed integer elements in vector ws producing a result
twice the size of the input operands. The multiplication results of adjacent odd/even elements are added and stored to
the destination.

The operands are values in integer data format half the size of df. The results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

DOTP_S.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i dotp_s(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 8)
endfor

DOTP_S.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i dotp_s(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 16)
endfor

DOTP_S.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i dotp_s(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 32)
endfor

function mulx_s(ts, tt, n)
s (tsn-1)

n || tsn-1..0
t (ttn-1)

n || ttn-1..0
p s * t
return p2n-1..0

endfunction mulx_s

function dotp_s(ts, tt, n)
p1 mulx_s(ts2n-1..n, tt2n-1..n, n)
p0 mulx_s(tsn-1..0, ttn-1..0, n)
p p1 + p0
return p2n-1..0

endfunction dotp_s

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 000 df wt ws wd 3R

010011
6 3 2 5 5 5 6

Vector Signed Dot Product IDOTP_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 144

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Unsigned Dot Product IDOTP_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 145

Format: DOTP_U.df
DOTP_U.H wd,ws,wt MSA
DOTP_U.W wd,ws,wt MSA
DOTP_U.D wd,ws,wt MSA

Purpose: Vector Unsigned Dot Product

Vector unsigned dot product (multiply and then pairwise add the adjacent multiplication results) to double width ele-
ments.

Description: (wd[2i+1], wd[2i]) unsigned(ws[2i+1]) * unsigned(wt[2i+1]) +
unsigned(ws[2i]) * unsigned(wt[2i])

The unsigned integer elements in v ector wt are multiplied by unsigned integer elements in vector ws producing a
result twice the size of the input operands. The multiplication results of adj acent odd/even elements are added and
stored to the destination.

The operands are values in integer data format half the size of df. The results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

DOTP_U.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i dotp_u(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 8)
endfor

DOTP_U.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i dotp_u(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 16)
endfor

DOTP_U.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i dotp_u(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 32)
endfor

function mulx_u(ts, tt, n)
s 0n || tsn-1..0
t 0n || ttn-1..0
p s * t
return p2n-1..0

endfunction mulx_s

function dotp_u(ts, tt, n)
p1 mulx_u(ts2n-1..n, tt2n-1..n, n)
p0 mulx_u(tsn-1..0, ttn-1..0, n)
p p1 + p0
return p2n-1..0

endfunction dotp_u

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 001 df wt ws wd 3R

010011
6 3 2 5 5 5 6

Vector Unsigned Dot Product IDOTP_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 146

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Signed Dot Product and Add IDPADD_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 147

Format: DPADD_S.df
DPADD_S.H wd,ws,wt MSA
DPADD_S.W wd,ws,wt MSA
DPADD_S.D wd,ws,wt MSA

Purpose: Vector Signed Dot Product and Add

Vector signed dot p roduct (multiply and then pairwise ad d the adjacent mu ltiplication results) and add to double
width elements.

Description: (wd[2i+1], wd[2i]) (wd[2i+1], wd[2i]) + signed(ws[2i+1]) *
signed(wt[2i+1]) + signed(ws[2i]) * signed(wt[2i])

The signed integer elements in vector wt are multiplied by signed integer elements in vector ws producing a result
twice the size of the input operands. The multiplication results of adjacent odd/even elements are added to the integer
elements in vector wd.

The operands are values in integer data format half the size of df. The results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

DPADD_S.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i
WR[wd]16i+15..16i + dotp_s(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 8)

endfor

DPADD_S.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i
WR[wd]32i+31..32i + dotp_s(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 16)

endfor

DPADD_S.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i
WR[wd]64i+63..64i + dotp_s(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 32)

endfor

function mulx_s(ts, tt, n)
s (tsn-1)

n || tsn-1..0
t (ttn-1)

n || ttn-1..0
p s * t
return p2n-1..0

endfunction mulx_s

function dotp_s(ts, tt, n)
p1 mulx_s(ts2n-1..n, tt2n-1..n, n)
p0 mulx_s(tsn-1..0, ttn-1..0, n)

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 010 df wt ws wd 3R

010011
6 3 2 5 5 5 6

Vector Signed Dot Product and Add IDPADD_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 148

p p1 + p0
return p2n-1..0

endfunction dotp_s

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Unsigned Dot Product and Add IDPADD_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 149

Format: DPADD_U.df
DPADD_U.H wd,ws,wt MSA
DPADD_U.W wd,ws,wt MSA
DPADD_U.D wd,ws,wt MSA

Purpose: Vector Unsigned Dot Product and Add

Vector unsigned dot product (multiply and then pairwise add the adjacent multiplication results) and add to double
width results.

Description: (wd[2i+1], wd[2i]) (wd[2i+1], wd[2i]) + unsigned(ws[2i+1]) *
unsigned(wt[2i+1]) + unsigned(ws[2i]) * unsigned(wt[2i])

The unsigned integer elements in v ector wt are multiplied by unsigned integer elements in vector ws producing a
result twice the size of the input operands. The multiplication results of adjacent odd/even elements are added to the
integer elements in vector wd.

The operands are values in integer data format half the size of df. The results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

DPADD_U.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i
WR[wd]16i+15..16i + dotp_u(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 8)

endfor

DPADD_U.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i
WR[wd]32i+31..32i + dotp_u(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 16)

endfor

DPADD_U.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i
WR[wd]64i+63..64i + dotp_u(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 32)

endfor

function mulx_u(ts, tt, n)
s 0n || tsn-1..0
t 0n || ttn-1..0
p s * t
return p2n-1..0

endfunction mulx_s

function dotp_u(ts, tt, n)
p1 mulx_u(ts2n-1..n, tt2n-1..n, n)
p0 mulx_u(tsn-1..0, ttn-1..0, n)

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 011 df wt ws wd 3R

010011
6 3 2 5 5 5 6

Vector Unsigned Dot Product and Add IDPADD_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 150

p p1 + p0
return p2n-1..0

endfunction dotp_u

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Signed Dot Product and Subtract IDPSUB_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 151

Format: DPSUB_S.df
DPSUB_S.H wd,ws,wt MSA
DPSUB_S.W wd,ws,wt MSA
DPSUB_S.D wd,ws,wt MSA

Purpose: Vector Signed Dot Product and Subtract

Vector signed dot product (multiply and then pairwise add the adjacent multiplication results) and subtract from dou-
ble width elements.

Description: (wd[2i+1], wd[2i]) (wd[2i+1], wd[2i]) - (signed(ws[2i+1]) *
signed(wt[2i+1]) + signed(ws[2i]) * signed(wt[2i]))

The signed integer elements in vector wt are multiplied by signed integer elements in vector ws producing a signed
result twice the size of the input ope rands. The sum of multiplication results of adjacent odd/even elements is sub-
tracted from the integer elements in vector wd to a signed result.

The operands are values in integer data format half the size of df. The results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

DPSUB_S.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i
WR[wd]16i+15..16i - dotp_s(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 8)

endfor

DPSUB_S.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i
WR[wd]32i+31..32i - dotp_s(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 16)

endfor

DPSUB_S.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i
WR[wd]64i+63..64i - dotp_s(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 32)

endfor

function mulx_s(ts, tt, n)
s (tsn-1)

n || tsn-1..0
t (ttn-1)

n || ttn-1..0
p s * t
return p2n-1..0

endfunction mulx_s

function dotp_s(ts, tt, n)
p1 mulx_s(ts2n-1..n, tt2n-1..n, n)
p0 mulx_s(tsn-1..0, ttn-1..0, n)

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 100 df wt ws wd 3R

010011
6 3 2 5 5 5 6

Vector Signed Dot Product and Subtract IDPSUB_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 152

p p1 + p0
return p2n-1..0

endfunction dotp_s

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Unsigned Dot Product and Subtract IDPSUB_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 153

Format: DPSUB_U.df
DPSUB_U.H wd,ws,wt MSA
DPSUB_U.W wd,ws,wt MSA
DPSUB_U.D wd,ws,wt MSA

Purpose: Vector Unsigned Dot Product and Subtract

Vector unsigned dot product (multiply and then pairwise add the adjacent multiplication results) and subtract from
double width elements.

Description: (wd[2i+1], wd[2i]) (wd[2i+1], wd[2i]) - (unsigned(ws[2i+1]) *
unsigned(wt[2i+1]) + unsigned(ws[2i]) * unsigned(wt[2i]))

The unsigned integer elements in vector wt are multiplied by unsigned integer elements in vector ws producing a pos-
itive, unsigned result twice the size of the input operands. The sum of multiplication results of adjacent odd/even ele-
ments is subtracted from the integer elements in vector wd to a signed result.

The operands are values in integer data format half the size of df. The results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

DPSUB_U.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i
WR[wd]16i+15..16i - dotp_u(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 8)

endfor

DPSUB_U.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i
WR[wd]32i+31..32i - dotp_u(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 16)

endfor

DPSUB_U.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i
WR[wd]64i+63..64i - dotp_u(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 32)

endfor

function mulx_u(ts, tt, n)
s 0n || tsn-1..0
t 0n || ttn-1..0
p s * t
return p2n-1..0

endfunction mulx_s

function dotp_u(ts, tt, n)
p1 mulx_u(ts2n-1..n, tt2n-1..n, n)
p0 mulx_u(tsn-1..0, ttn-1..0, n)

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 101 df wt ws wd 3R

010011
6 3 2 5 5 5 6

Vector Unsigned Dot Product and Subtract IDPSUB_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 154

p p1 + p0
return p2n-1..0

endfunction dotp_u

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Floating-Point Addition IFADD.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 155

Format: FADD.df
FADD.W wd,ws,wt MSA
FADD.D wd,ws,wt MSA

Purpose: Vector Floating-Point Addition

Vector floating-point addition.

Description: wd[i] ws[i] + wt[i]

The floating-point elements in vector wt are added to the floating-point elements in vector ws. The result is written to
vector wd.

The add operation is defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008.

The operands and results are values in floating-point data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FADD.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i AddFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

FADD.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i AddFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
endfor

function AddFP(tt, ts, n)
/* Implementation defined add operation. */

endfunction AddFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 0000 df wt ws wd 3RF

011011
6 4 1 5 5 5 6

Vector Floating-Point Quiet Compare Always False IFCAF.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 156

Format: FCAF.df
FCAF.W wd,ws,wt MSA
FCAF.D wd,ws,wt MSA

Purpose: Vector Floating-Point Quiet Compare Always False

Vector to vector floating-point quiet compare always false; all destination bits are clear.

Description: wd[i] quietFalse(ws[i], wt[i])

Set all bits to 0 in wd elements. Signaling NaN elements in ws or wt signal Invalid Operation exception.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FS in
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has all bits set to
0.

The operands are values in floating-point data format df. The results are values in integer data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FCAF.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i QuietFALSE(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

FCAF.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i QuietFALSE(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
endfor

function QuietFALSE(tt, ts, n)
/* Implementation defined signaling NaN test */
return 0

endfunction QuietFALSE

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 0000 df wt ws wd 3RF

011010
6 4 1 5 5 5 6

Vector Floating-Point Quiet Compare Equal IFCEQ.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 157

Format: FCEQ.df
FCEQ.W wd,ws,wt MSA
FCEQ.D wd,ws,wt MSA

Purpose: Vector Floating-Point Quiet Compare Equal

Vector to vector floating-point quiet compare for equality; if true all destination bits are set, otherwise clear.

Description: wd[i] (ws[i] =(quiet) wt[i])

Set all bits to 1 in wd elements if the corresponding ws and wt floating-point elements are ordered and equal, other-
wise set all bits to 0.

The quiet compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FS in
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has all bits set to
0.

The operands are values in floating-point data format df. The results are values in integer data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FCEQ.W
 for i in 0 .. WRLEN/32-1

c EqualFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
WR[wd]32i+31..32i c32

endfor

FCEQ.D
 for i in 0 .. WRLEN/64-1

c EqualFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
WR[wd]64i+63..64i c64

endfor

function EqualFP(tt, ts, n)
/* Implementation defined quiet equal compare operation. */

endfunction EqualFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 0010 df wt ws wd 3RF

011010
6 4 1 5 5 5 6

Vector Floating-Point Class Mask IFCLASS.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 158

Format: FCLASS.df
FCLASS.W wd,ws MSA
FCLASS.D wd,ws MSA

Purpose: Vector Floating-Point Class Mask

Vector floating-point class shown as a bit mask for Zero, Negative, Infinite, Subnormal, Quiet NaN, or Signaling
NaN.

Description: wd[i] class(ws[i])

Store in each element of v ector wd a bit mask reflect ing the floating-point class of the correspo nding element of
vector ws.

The mask has 10 bits as follows. Bits 0 and 1 indicate NaN values: signaling NaN (bit 0) and quiet NaN (bit 1). Bits
2, 3, 4, 5 classify negative values: infinity (bit 2), normal (bit 3), subnormal (bit 4), and zer o (bit 5). Bits 6, 7, 8, 9
classify positive values:infinity (bit 6), normal (bit 7), subnormal (bit 8), and zero (bit 9).

The input values and generated bit masks are not affected by the flush-to-zero bit FS in MSA Control and Status
Register MSACSR.

The operands are values in floating-point data format df. The results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

FCLASS.W
 for i in 0 .. WRLEN/32-1

c ClassFP(WR[ws]32i+31..32i, 32)
WR[wd]32i+31..32i 022 || c9..0

endfor

FCLASS.D
 for i in 0 .. WRLEN/64-1

c ClassFP(WR[ws]64i+63..64i, 64)
WR[wd]64i+63..64i 054 || c9..0

endfor

function ClassFP(tt, n)
/* Implementation defined class operation. */

endfunction ClassFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 17 16 15 11 10 6 5 0

MSA
011110 110010000 df ws wd 2RF

011110
6 9 1 5 5 6

Vector Floating-Point Quiet Compare Less or Equal IFCLE.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 159

Format: FCLE.df
FCLE.W wd,ws,wt MSA
FCLE.D wd,ws,wt MSA

Purpose: Vector Floating-Point Quiet Compare Less or Equal

Vector to vector floating-point quiet compare for less than or equal; if true all destination bits are set, otherwise clear.

Description: wd[i] (ws[i] <=(quiet) wt[i])

Set all bits to 1 in wd elements if the corresponding ws floating-point elements are ordered and either less than or
equal to wt floating-point elements, otherwise set all bits to 0.

The quiet compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FS in
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has all bits set to
0.

The operands are values in floating-point data format df. The results are values in integer data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FCLE.W
 for i in 0 .. WRLEN/32-1

c LessFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
d EqualFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
WR[wd]32i+31..32i (c | d)32

endfor

FCLE.D
 for i in 0 .. WRLEN/64-1

c LessFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
d EqualFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
WR[wd]64i+63..64i (c | d)64

endfor

function LessThanFP(tt, ts, n)
/* Implementation defined quiet less than compare operation. */

endfunction LessThanFP

function EqualFP(tt, ts, n)
/* Implementation defined quiet equal compare operation. */

endfunction EqualFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 0110 df wt ws wd 3RF

011010
6 4 1 5 5 5 6

Vector Floating-Point Quiet Compare Less Than IFCLT.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 160

Format: FCLT.df
FCLT.W wd,ws,wt MSA
FCLT.D wd,ws,wt MSA

Purpose: Vector Floating-Point Quiet Compare Less Than

Vector to vector floating-point quiet compare for less than; if true all destination bits are set, otherwise clear.

Description: wd[i] (ws[i] <(quiet) wt[i])

Set all bits to 1 in wd elements if the corresponding ws floating-point elements are ordered and less than wt floating-
point elements, otherwise set all bits to 0.

The quiet compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FS in
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has all bits set to
0.

The operands are values in floating-point data format df. The results are values in integer data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FCLT.W
 for i in 0 .. WRLEN/32-1

c LessFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
WR[wd]32i+31..32i c32

endfor

FCLT.D
 for i in 0 .. WRLEN/64-1

c LessFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
WR[wd]64i+63..64i c64

endfor

function LessThanFP(tt, ts, n)
/* Implementation defined quiet less than compare operation. */

endfunction LessThanFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 0100 df wt ws wd 3RF

011010
6 4 1 5 5 5 6

Vector Floating-Point Quiet Compare Not Equal IFCNE.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 161

Format: FCNE.df
FCNE.W wd,ws,wt MSA
FCNE.D wd,ws,wt MSA

Purpose: Vector Floating-Point Quiet Compare Not Equal

Vector to vector floating-point quiet compare for not equal; if true all destination bits are set, otherwise clear.

Description: wd[i] (ws[i] (quiet) wt[i])

Set all bits to 1 in wd elements if the corresponding ws and wt floating-point elements are ordered and not equal, oth-
erwise set all bits to 0.

The quiet compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FS in
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has all bits set to
0.

The operands are values in floating-point data format df. The results are values in integer data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FCNE.W
 for i in 0 .. WRLEN/32-1

c NotEqualFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
WR[wd]32i+31..32i c32

endfor

FCNE.D
 for i in 0 .. WRLEN/64-1

c NotEqualFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
WR[wd]64i+63..64i c64

endfor

function NotEqualFP(tt, ts, n)
/* Implementation defined quiet not equal compare operation. */

endfunction NotEqualFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 0011 df wt ws wd 3RF

011100
6 4 1 5 5 5 6

Vector Floating-Point Quiet Compare Ordered IFCOR.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 162

Format: FCOR.df
FCOR.W wd,ws,wt MSA
FCOR.D wd,ws,wt MSA

Purpose: Vector Floating-Point Quiet Compare Ordered

Vector to vector floating-point quiet compare ordered; if true all destination bits are set, otherwise clear.

Description: wd[i] ws[i] !?(quiet) wt[i]

Set all bits to 1 in wd elements if the corresponding ws and wt floating-point elements are ordered, i.e. both elements
are not NaN values, otherwise set all bits to 0.

The quiet compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FS in
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has all bits set to
0.

The operands are values in floating-point data format df. The results are values in integer data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FCOR.W
 for i in 0 .. WRLEN/32-1

c OrderedFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
WR[wd]32i+31..32i c32

endfor

FCOR.D
 for i in 0 .. WRLEN/64-1

c OrderedFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
WR[wd]64i+63..64i c64

endfor

function OrderedFP(tt, ts, n)
/* Implementation defined quiet ordered compare operation. */

endfunction OrderedFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 0001 df wt ws wd 3RF

011100
6 4 1 5 5 5 6

Vector Floating-Point Quiet Compare Unordered or Equal IFCUEQ.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 163

Format: FCUEQ.df
FCUEQ.W wd,ws,wt MSA
FCUEQ.D wd,ws,wt MSA

Purpose: Vector Floating-Point Quiet Compare Unordered or Equal

Vector to vector floating-point quiet compare for unordered or equality; if true all destination bits are set, otherwise
clear.

Description: wd[i] (ws[i] =?(quiet) wt[i])

Set all bits to 1 in wd elements if the corresponding ws and wt floating-point elements are unordered or equal, other-
wise set all bits to 0.

The quiet compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FS in
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has all bits set to
1.

The operands are values in floating-point data format df. The results are values in integer data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FCUEQ.W
 for i in 0 .. WRLEN/32-1

c UnorderedFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
d EqualFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
WR[wd]32i+31..32i (c | d)32

endfor

FCUEQ.D
 for i in 0 .. WRLEN/64-1

c UnorderedFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
d EqualFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
WR[wd]64i+63..64i (c | d)64

endfor

function UnorderedFP(tt, ts, n)
/* Implementation defined quiet unordered compare operation. */

endfunction UnorderedFP

function EqualFP(tt, ts, n)
/* Implementation defined quiet equal compare operation. */

endfunction EqualFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 0011 df wt ws wd 3RF

011010
6 4 1 5 5 5 6

Vector Floating-Point Quiet Compare Unordered or Less or Equal IFCULE.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 164

Format: FCULE.df
FCULE.W wd,ws,wt MSA
FCULE.D wd,ws,wt MSA

Purpose: Vector Floating-Point Quiet Compare Unordered or Less or Equal

Vector to vector floating-point quiet compare for unordered or less than or equal; if true all destination bits are set,
otherwise clear.

Description: wd[i] (ws[i] <=?(quiet) wt[i])

Set all bits to 1 in wd elements if the corresponding ws floating-point elements are unordered or less than or equal
to wt floating-point elements, otherwise set all bits to 0.

The quiet compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FS in
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has all bits set to
1.

The operands are values in floating-point data format df. The results are values in integer data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FCULE.W
 for i in 0 .. WRLEN/32-1

c UnorderedFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
d LessFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
e EqualFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
WR[wd]32i+31..32i (c | d | e)32

endfor

FCULE.D
 for i in 0 .. WRLEN/64-1

c UnorderedFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
d LessFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
e EqualFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
WR[wd]64i+63..64i (c | d | e)64

endfor

function UnorderedFP(tt, ts, n)
/* Implementation defined quiet unordered compare operation. */

endfunction UnorderedFP

function LessThanFP(tt, ts, n)
/* Implementation defined quiet less than compare operation. */

endfunction LessThanFP

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 0111 df wt ws wd 3RF

011010
6 4 1 5 5 5 6

Vector Floating-Point Quiet Compare Unordered or Less or Equal IFCULE.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 165

function EqualFP(tt, ts, n)
/* Implementation defined quiet equal compare operation. */

endfunction EqualFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

Vector Floating-Point Quiet Compare Unordered or Less Than IFCULT.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 166

Format: FCULT.df
FCULT.W wd,ws,wt MSA
FCULT.D wd,ws,wt MSA

Purpose: Vector Floating-Point Quiet Compare Unordered or Less Than

Vector to vector floating-point quiet compare for unordered or less than; if true all destination bits are set, otherwise
clear.

Description: wd[i] (ws[i] <?(quiet) wt[i])

Set all bits to 1 in wd elements if the corresponding ws floating-point elements are unordered or less than wt floating-
point elements, otherwise set all bits to 0.

The quiet compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FS in
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has all bits set to
1.

The operands are values in floating-point data format df. The results are values in integer data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FCULT.W
 for i in 0 .. WRLEN/32-1

c UnorderedFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
d LessFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
WR[wd]32i+31..32i (c | d)32

endfor

FCULT.D
 for i in 0 .. WRLEN/64-1

c LessFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
d UnorderedFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
WR[wd]64i+63..64i c64

endfor

function UnorderedFP(tt, ts, n)
/* Implementation defined quiet unordered compare operation. */

endfunction UnorderedFP

function LessThanFP(tt, ts, n)
/* Implementation defined quiet less than compare operation. */

endfunction LessThanFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 0101 df wt ws wd 3RF

011010
6 4 1 5 5 5 6

Vector Floating-Point Quiet Compare Unordered IFCUN.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 167

Format: FCUN.df
FCUN.W wd,ws,wt MSA
FCUN.D wd,ws,wt MSA

Purpose: Vector Floating-Point Quiet Compare Unordered

Vector to vector floating-point quiet compare unordered; if true all destination bits are set, otherwise clear.

Description: wd[i] (ws[i] ?(quiet) wt[i])

Set all bits to 1 in wd elements if the corresponding ws and wt floating-point elements are unordered, i.e. at least one
element is a NaN value, otherwise set all bits to 0.

The quiet compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FS in
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has all bits set to
1.

The operands are values in floating-point data format df. The results are values in integer data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FCUN.W
 for i in 0 .. WRLEN/32-1

c UnorderedFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
WR[wd]32i+31..32i c32

endfor

FCUN.D
 for i in 0 .. WRLEN/64-1

c UnorderedFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
WR[wd]64i+63..64i c64

endfor

function UnorderedFP(tt, ts, n)
/* Implementation defined quiet unordered compare operation. */

endfunction UnorderedFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 0001 df wt ws wd 3RF

011010
6 4 1 5 5 5 6

Vector Floating-Point Quiet Compare Unordered or Not Equal IFCUNE.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 168

Format: FCUNE.df
FCUNE.W wd,ws,wt MSA
FCUNE.D wd,ws,wt MSA

Purpose: Vector Floating-Point Quiet Compare Unordered or Not Equal

Vector to vector floating-point quiet compare for unordered or not equal; if true all destination bits are set, otherwise
clear.

Description: wd[i] (ws[i] ?(quiet) wt[i])

Set all bits to 1 in wd elements if the corresponding ws and wt floating-point elements are unordered or not equal, oth-
erwise set all bits to 0.

The quiet compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FS in
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has all bits set to
1.

The operands are values in floating-point data format df. The results are values in integer data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FCUNE.W
 for i in 0 .. WRLEN/32-1

c UnorderedFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
d NotEqualFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
WR[wd]32i+31..32i (c | d)32

endfor

FCUNE.D
 for i in 0 .. WRLEN/64-1

c UnorderedFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
d NotEqualFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
WR[wd]64i+63..64i (c | d)64

endfor

function UnorderedFP(tt, ts, n)
/* Implementation defined quiet unordered compare operation. */

endfunction UnorderedFP

function NotEqualFP(tt, ts, n)
/* Implementation defined quiet not equal compare operation. */

endfunction NotEqualFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 0010 df wt ws wd 3RF

011100
6 4 1 5 5 5 6

Vector Floating-Point Division IFDIV.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 169

Format: FDIV.df
FDIV.W wd,ws,wt MSA
FDIV.D wd,ws,wt MSA

Purpose: Vector Floating-Point Division

Vector floating-point division.

Description: wd[i] ws[i] / wt[i]

The floating-point elements in vector ws are divided by the floating-point elements in vector wt. The result is written
to vector wd.

The divide operation is defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008.

The operands and results are values in floating-point data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FDIV.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i DivideFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

FDIV.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i DivideFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
endfor

function DivideFP(tt, ts, n)
/* Implementation defined divide operation. */

endfunction DivideFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 0011 df wt ws wd 3RF

011011
6 4 1 5 5 5 6

Vector Floating-Point Down-Convert Interchange Format IFEXDO.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 170

Format: FEXDO.df
FEXDO.H wd,ws,wt MSA
FEXDO.W wd,ws,wt MSA

Purpose: Vector Floating-Point Down-Convert Interchange Format

Vector conversion to smaller interchange format.

Description: left_half(wd)[i] down_convert(ws[i]); right_half(wd)[i]
down_convert(wt[i])

The floating-point elements in vectors ws and wt are down-converted to a smaller interchange format, i.e. from 64-bit
to 32-bit, or from 32-bit to 16-bit.

The format down-conversion operation is defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008.

16-bit floating-point results are not affected by the flush-to-zero bit FS in MSA Control and Status Register MSACSR.

The operands are values in floating-point data format d ouble the size of df. The results are floating-point values in
data format of df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FEXDO.H
 for i in 0 .. WRLEN/32-1

f DownConvertFP(WR[ws]32i+31..32i, 32)
g DownConvertFP(WR[wt]32i+31..32i, 32)
WR[wd]16i+15+WRLEN/2..16i+WRLEN/2 f
WR[wd]16i+15..16i g

endfor

FEXDO.W
 for i in 0 .. WRLEN/64-1

f DownConvertFP(WR[ws]64i+63..64i, 64)
g DownConvertFP(WR[wt]64i+63..64i, 64)
WR[wd]32i+31+WRLEN/2..32i+WRLEN/2 f
WR[wd]32i+31..32i g

endfor

function DownConvertFP(tt, n)
/* Implementation defined format down-conversion. */

endfunction DownConvertFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 1000 df wt ws wd 3RF

011011
6 4 1 5 5 5 6

Vector Floating-Point Base 2 Exponentiation IFEXP2.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 171

Format: FEXP2.df
FEXP2.W wd,ws,wt MSA
FEXP2.D wd,ws,wt MSA

Purpose: Vector Floating-Point Base 2 Exponentiation

Vector floating-point base 2 exponentiation.

Description: wd[i] ws[i] * 2wt[i]

The floating-point elements in vector ws are scaled, i.e. multiplied, by 2 to the power of integer elements in vector wt.
The result is written to vector wd.

The operation is the homogeneous scaleB() as defined by the IEEE Standard for Floating-Point Arithmetic 754TM-
2008.

The ws operands and wd results are values in floating-point data format df. The wt operands are values in integer data
format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FEXP2.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i Exp2FP(WR[ws]32i+31..32i, WR[wt]32i+31..32i)
endfor

FEXP2.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i Exp2FP(WR[ws]64i+63..64i, WR[wt]64i+63..64i)
endfor

function Exp2FP(tt, ts, n)
/* Implementation defined tt * 2ts operation. */

endfunction Exp2FP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 0111 df wt ws wd 3RF

011011
6 4 1 5 5 5 6

Vector Floating-Point Up-Convert Interchange Format Left IFEXUPL.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 172

Format: FEXUPL.df
FEXUPL.W wd,ws MSA
FEXUPL.D wd,ws MSA

Purpose: Vector Floating-Point Up-Convert Interchange Format Left

Vector left elements conversion to wider interchange format.

Description: wd[i] up_convert(left_half(ws)[i])

The left half floating-point elements in vector ws are up-converted to a larger interchange format, i.e. from 16-bit to
32-bit, or from 32-bit to 64-bit. The result is written to vector wd.

The format up-conversion operation is defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008.

16-bit floating-point inputs are not affected by the flush-to-zero bit FS in MSA Control and Status Register MSACSR.

The operands are values in floating-point data format half the size of df. The results are floating-point values in data
format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FEXUPL.W
 for i in 0 .. WRLEN/32-1

f UpConvertFP(WR[ws]16i+15+WRLEN/2..16i+WRLEN/2, 16)
WR[wd]32i+31..32i f

endfor

FEXUPL.D
 for i in 0 .. WRLEN/64-1

f UpConvertFP(WR[ws]32i+31+WRLEN/2..32i+WRLEN/2, 32)
WR[wd]64i+63..64i f

endfor

function UpConvertFP(tt, n)
/* Implementation defined format up-conversion. */

endfunction UpConvertFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 17 16 15 11 10 6 5 0

MSA
011110 110011000 df ws wd 2RF

011110
6 9 1 5 5 6

Vector Floating-Point Up-Convert Interchange Format Right IFEXUPR.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 173

Format: FEXUPR.df
FEXUPR.W wd,ws MSA
FEXUPR.D wd,ws MSA

Purpose: Vector Floating-Point Up-Convert Interchange Format Right

Vector right elements conversion to wider interchange format.

Description: wd[i] up_convert(right_half(ws)[i])

The right half floating-point elements in vector ws are up-converted to a larger interchange format, i.e. from 16-bit to
32-bit, or from 32-bit to 64-bit. The result is written to vector wd.

The format up-conversion operation is defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008.

16-bit floating-point inputs are not affected by the flush-to-zero bit FS in MSA Control and Status Register MSACSR.

The operands are values in floating-point data format half the size of df. The results are floating-point values in data
format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FEXUPR.W
 for i in 0 .. WRLEN/32-1

f UpConvertFP(WR[ws]16i+15..16i, 16)
WR[wd]32i+31..32i f

endfor

FEXUPR.D
 for i in 0 .. WRLEN/64-1

f UpConvertFP(WR[ws]32i+31..32i, 32)
WR[wd]64i+63..64i f

endfor

function UpConvertFP(tt, n)
/* Implementation defined format up-conversion. */

endfunction UpConvertFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 17 16 15 11 10 6 5 0

MSA
011110 110011001 df ws wd 2RF

011110
6 9 1 5 5 6

Vector Floating-Point Round and Convert from Signed Integer IFFINT_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 174

Format: FFINT_S.df
FFINT_S.W wd,ws MSA
FFINT_S.D wd,ws MSA

Purpose: Vector Floating-Point Round and Convert from Signed Integer

Vector floating-point round and convert from signed integer.

Description: wd[i] from_int_s(ws[i])

The signed integer elements in ws are converted to floating-point values. The result is written to vector wd.

The integer to floating-point conversion operation is defined by the IEEE Standard for Float ing-Point Arithmetic
754TM-2008.

The operands are values in integer data format df. The results are values in floating-point data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FFINT_S.W
 for i in 0 .. WRLEN/32-1

f FromIntSignedFP(WR[ws]32i+31..32i, 32)
WR[wd]32i+31..32i f

endfor

FFINT_S.D
 for i in 0 .. WRLEN/64-1

f FromIntSignedFP(WR[ws]64i+63..64i, 64)
WR[wd]64i+63..64i f

endfor

function FromFixPointFP(tt, n)
/* Implementation defined signed integer to floating-point

conversion. */
endfunction FromFixPointFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 17 16 15 11 10 6 5 0

MSA
011110 110011110 df ws wd 2RF

011110
6 9 1 5 5 6

Vector Floating-Point Convert from Unsigned Integer IFFINT_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 175

Format: FFINT_U.df
FFINT_U.W wd,ws MSA
FFINT_U.D wd,ws MSA

Purpose: Vector Floating-Point Convert from Unsigned Integer

Vector floating-point convert from unsigned integer.

Description: wd[i] from_int_u(ws[i])

The unsigned integer elements in ws are converted to floating-point values. The result is written to vector wd.

The integer to floating-point conversion operation is defined by the IEEE Standard for Float ing-Point Arithmetic
754TM-2008.

The operands are values in integer data format df. The results are values in floating-point data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FFINT_U.W
 for i in 0 .. WRLEN/32-1

f FromIntUnsignedFP(WR[ws]32i+31..32i, 32)
WR[wd]32i+31..32i f

endfor

FFINT_U.D
 for i in 0 .. WRLEN/64-1

f FromIntUnsignedFP(WR[ws]64i+63..64i, 64)
WR[wd]64i+63..64i f

endfor

function FromIntUnsignedFP(tt, n)
/* Implementation defined unsigned integer to floating-point

conversion. */
endfunction FromIntUnsignedFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 17 16 15 11 10 6 5 0

MSA
011110 110011111 df ws wd 2RF

011110
6 9 1 5 5 6

Vector Floating-Point Convert from Fixed-Point Left IFFQL.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 176

Format: FFQL.df
FFQL.W wd,ws MSA
FFQL.D wd,ws MSA

Purpose: Vector Floating-Point Convert from Fixed-Point Left

Vector left fix-point elements format conversion to floating-point doubling the element width.

Description: wd[i] from_q(left_half(ws)[i])

The left half fixed-point elements in vector ws are up-converted to floating-point data format, i.e. from 16-bit Q15 to
32-bit floating-point, or from 32-bit Q31 to 64-bit floating-point. The result is written to vector wd.

The fixed-point Q15 or Q31 value is first converted to floating-point as a 16-bit or 32-bit integer (as though it was
scaled up by 215 or 231) and then the resulting floating-point value is scaled down (divided by 215 or 231).

The scaling and integer to floating-point conversion operations are defined by the IEEE Standard for Floating-Point
Arithmetic 754TM-2008. No floating-point exceptions are possible because the input data is half the size of the out-
put.

The operands are values in fixed-point data format half the size of df. The results are floating-point values in data
format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

FFQL.W
 for i in 0 .. WRLEN/32-1

f FromFixPointFP(WR[ws]16i+15+WRLEN/2..16i+WRLEN/2, 16)
WR[wd]32i+31..32i f

endfor

FFQL.D
 for i in 0 .. WRLEN/64-1

f FromFixPointFP(WR[ws]32i+31+WRLEN/2..32i+WRLEN/2, 32)
WR[wd]64i+63..64i f

endfor

function FromFixPointFP(tt, n)
/* Implementation defined fixed-point to floating-point conversion. */

endfunction FromFixPointFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 17 16 15 11 10 6 5 0

MSA
011110 110011010 df ws wd 2RF

011110
6 9 1 5 5 6

Vector Floating-Point Convert from Fixed-Point Right IFFQR.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 177

Format: FFQR.df
FFQR.W wd,ws MSA
FFQR.D wd,ws MSA

Purpose: Vector Floating-Point Convert from Fixed-Point Right

Vector right fix-point elements format conversion to floating-point doubling the element width.

Description: wd[i] from_q(right_half(ws)[i]);

The right half fixed-point elements in vector ws are up-converted to floating-point data format, i.e. from 16-bit Q15 to
32-bit floating-point, or from 32-bit Q31 to 64-bit floating-point. The result is written to vector wd.

The fixed-point Q15 or Q31 value is first converted to floating-point as a 16-bit or 32-bit integer (as though it was
scaled up by 215 or 231) and then the resulting floating-point value is scaled down (divided by 215 or 231).

The scaling and integer to floating-point conversion operations are defined by the IEEE Standard for Floating-Point
Arithmetic 754TM-2008. No floating-point exceptions are possible because the input data is half the size of the out-
put.

The operands are values in fixed-point data format half the size of df. The results are floating-point values in data
format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

FFQR.W
 for i in 0 .. WRLEN/32-1

f FromFixPointFP(WR[ws]16i+15..16i, 16)
WR[wd]32i+31..32i f

endfor

FFQR.D
 for i in 0 .. WRLEN/64-1

f FromFixPointFP(WR[wt]32i+31..32i, 32)
WR[ws]64i+63..64i f

endfor

function FromFixPointFP(tt, n)
/* Implementation defined fixed-point to floating-point conversion. */

endfunction FromFixPointFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 17 16 15 11 10 6 5 0

MSA
011110 110011011 df ws wd 2RF

011110
6 9 1 5 5 6

Vector Fill from GPR IFILL.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 178

Format: FILL.df
FILL.B wd,rs MSA
FILL.H wd,rs MSA
FILL.W wd,rs MSA

Purpose: Vector Fill from GPR

Vector elements replicated from GPR.

Description: wd[i] rs

Replicate GPR rs value to all elements in vector wd. If the source GPR is wider than the destination data format, the
destination's elements will be set to the least significant bits of the GPR.

Restrictions:

No data-dependent exceptions are possible.

Operation:

FILL.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i GPR[rs]7..0
endfor

FILL.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i GPR[rs]15..0
endfor

FILL.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i GPR[rs]31..0
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 18 17 16 15 11 10 6 5 0

MSA
011110 11000000 df rs wd 2R

011110
6 8 2 5 5 6

Vector Floating-Point Base 2 Logarithm IFLOG2.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 179

Format: FLOG2.df
FLOG2.W wd,ws MSA
FLOG2.D wd,ws MSA

Purpose: Vector Floating-Point Base 2 Logarithm

Vector floating-point base 2 logarithm.

Description: wd[i] log2(ws[i])

The signed integral base 2 e xponents of floating-point elements in vector ws are written as floating-point values to
vector elements wd.

This operation is the hom ogeneous base 2 logB() as defined by the IEEE Standard for Float ing-Point Arithmetic
754TM-2008.

The ws operands and wd results are values in floating-point data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FLOG2.W
 for i in 0 .. WRLEN/32-1

l Log2FP(WR[ws]32i+31..32i, 32)
WR[wd]32i+31..32i l

endfor

FLOG2.D
 for i in 0 .. WRLEN/64-1

f Log2FP(WR[ws]64i+63..64i, 64)
WR[wd]64i+63..64i f

endfor

function Log2FP(tt, n)
/* Implementation defined logarithm base 2 operation. */

endfunction Log2FP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 17 16 15 11 10 6 5 0

MSA
011110 110010111 df ws wd 2RF

011110
6 9 1 5 5 6

Vector Floating-Point Multiply-Add IFMADD.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 180

Format: FMADD.df
FMADD.W wd,ws,wt MSA
FMADD.D wd,ws,wt MSA

Purpose: Vector Floating-Point Multiply-Add

Vector floating-point multiply-add

Description: wd[i] wd[i] + ws[i] * wt[i]

The floating-point elements in vector wt multiplied by floating-point elements in vector ws are added to the floating-
point elements in vector wd. The operation is fused, i.e. computed as if with unbounded range and precision, rounding
only once to the destination format.

The multiply add operation is defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008. The multipli-
cation between an infinity and a zero si gnals Invalid Operation exception. If the Invalid Operation exception is dis-
abled, the result is the default quiet NaN.

The operands and results are values in floating-point data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FMADD.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i
MultiplyAddFP(WR[wd]32i+31..32i, WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)

endfor

FMADD.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i
MultiplyAddFP(WR[wd]64i+63..64i, WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)

endfor

function MultiplyAddFP(td, tt, ts, n)
/* Implementation defined multiply add operation. */

endfunction MultiplyAddFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 0100 df wt ws wd 3RF

011011
6 4 1 5 5 5 6

Vector Floating-Point Maximum IFMAX.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 181

Format: FMAX.df
FMAX.W wd,ws,wt MSA
FMAX.D wd,ws,wt MSA

Purpose: Vector Floating-Point Maximum

Vector floating-point maximum.

Description: wd[i] max(ws[i], wt[i])

The largest values between corresponding floating-point elements in vector ws and vector wt are written to vector wd.

The largest value is defined by the maxNum operation in the IEEE Standard for Floating-Point Arithmetic 754TM-
2008.

The operands and results are values in floating-point data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FMAX.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i MaxFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

FMAX.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i MaxFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
endfor

function MaxFP(tt, ts, n)
/* Implementation defined, returns the largest argument. */

endfunction MaxFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 1110 df wt ws wd 3RF

011011
6 4 1 5 5 5 6

Vector Floating-Point Maximum Based on Absolute Values IFMAX_A.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 182

Format: FMAX_A.df
FMAX_A.W wd,ws,wt MSA
FMAX_A.D wd,ws,wt MSA

Purpose: Vector Floating-Point Maximum Based on Absolute Values

Vector floating-point maximum based on the magnitude, i.e. absolute values.

Description: wd[i] absolute_value(ws[i]) > absolute_value(wt[i])? ws[i]: wt[i]

The value with the largest magnitude, i.e. absolute value, between corresponding floating-point elements in vector ws
and vector wt are written to vector wd.

The largest absolute value is defined by the maxNumMag operation in the IEEE Standard for Floating-Point Arithme-
tic 754TM-2008.

The operands and results are values in floating-point data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FMAX_A.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i MaxAbsoluteFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

FMAX_A.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i MaxAbsoluteFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
endfor

function MaxAbsoluteFP(tt, ts, n)
/* Implementation defined, returns the argument with largest

absolute value. For equal absolute values, returns the largest
argument.*/

endfunction MaxAbsoluteFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 1111 df wt ws wd 3RF

011011
6 4 1 5 5 5 6

Vector Floating-Point Minimum IFMIN.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 183

Format: FMIN.df
FMIN.W wd,ws,wt MSA
FMIN.D wd,ws,wt MSA

Purpose: Vector Floating-Point Minimum

Vector floating-point minimum.

Description: wd[i] min(ws[i], wt[i])

The smallest value between corresponding floating-point elements in v ector ws and v ector wt are written to
vector wd.

The smallest value is defined by the minNum operation in the IEEE Standard for Floating-Point Arithmetic 754TM-
2008.

The operands and results are values in floating-point data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FMIN.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i MinFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

FMIN.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i MinFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
endfor

function MinFP(tt, ts, n)
/* Implementation defined, returns the smallest argument. */

endfunction MinFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 1100 df wt ws wd 3RF

011011
6 4 1 5 5 5 6

Vector Floating-Point Minimum Based on Absolute Values IFMIN_A.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 184

Format: FMIN_A.df
FMIN_A.W wd,ws,wt MSA
FMIN_A.D wd,ws,wt MSA

Purpose: Vector Floating-Point Minimum Based on Absolute Values

Vector floating-point minimum based on the magnitude, i.e. absolute values.

Description: wd[i] absolute_value(ws[i]) < absolute_value(wt[i])? ws[i]: wt[i]

The value with the smallest magnitude, i.e. absol ute value, between corres ponding floating-point elements in
vector ws and vector wt are written to vector wd.

The smallest absolute value is defined by the minNumMag operation in the IEEE Standard for Floating-Point Arith-
metic 754TM-2008.

The operands and results are values in floating-point data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FMIN_A.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i MinAbsoluteFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

FMIN_A.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i MinAbsoluteFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
endfor

function MinAbsoluteFP(tt, ts, n)
/* Implementation defined, returns the argument with smallest

absolute value. For equal absolute values, returns the smallest
argument.*/

endfunction MinAbsoluteFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 1101 df wt ws wd 3RF

011011
6 4 1 5 5 5 6

Vector Floating-Point Multiply-Sub IFMSUB.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 185

Format: FMSUB.df
FMSUB.W wd,ws,wt MSA
FMSUB.D wd,ws,wt MSA

Purpose: Vector Floating-Point Multiply-Sub

Vector floating-point multiply-sub

Description: wd[i] wd[i] - ws[i] * wt[i]

The floating-point elements in vector wt multiplied by floating-point elements in vector ws are subtracted from the
floating-point elements in vector wd. The operation is fused, i.e. computed as if with unbounded range and precision,
rounding only once to the destination format.

The multiply subtr act operation is defined by the IEEE Standard for F loating-Point Arithmetic 754TM-2008. The
multiplication between an infinity and a zero signals Invalid Operation exception. If the Invalid Operation exception
is disabled, the result is the default quiet NaN.

The operands and results are values in floating-point data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FMSUB.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i
MultiplySubFP(WR[wd]32i+31..32i, WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)

endfor

FMSUB.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i
MultiplySubFP(WR[wd]64i+63..64i, WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)

endfor

function MultiplySubFP(td, tt, ts, n)
/* Implementation defined multiply subtract operation. */

endfunction MultiplySubFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 0101 df wt ws wd 3RF

011011
6 4 1 5 5 5 6

Vector Floating-Point Multiplication IFMUL.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 186

Format: FMUL.df
FMUL.W wd,ws,wt MSA
FMUL.D wd,ws,wt MSA

Purpose: Vector Floating-Point Multiplication

Vector floating-point multiplication.

Description: wd[i] ws[i] * wt[i]

The floating-point elements in vector wt are multiplied by the floating-point elements in vector ws. The result is writ-
ten to vector wd.

The multiplication operation is defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008.

The operands and results are values in floating-point data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FMUL.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i MultiplyFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

FMUL.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i MultiplyFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
endfor

function MultiplyFP(tt, ts, n)
/* Implementation defined multiplication operation. */

endfunction MultiplyFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 0010 df wt ws wd 3RF

011011
6 4 1 5 5 5 6

Vector Approximate Floating-Point Reciprocal IFRCP.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 187

Format: FRCP.df
FRCP.W wd,ws MSA
FRCP.D wd,ws MSA

Purpose: Vector Approximate Floating-Point Reciprocal

Vector floating-point reciprocal.

Description: wd[i] 1.0 / ws[i]

The reciprocals of fl oating-point elements in vector ws are calculated as specif ied below. The result is w ritten to
vector wd.

The compliant reciprocal operation is defined as 1.0 divided by element value, where the IEEE Standard for Floating-
Point Arithmetic 754TM-2008 defined divide operation is affected by the rounding mode bits RM and flush-to-zero
bit FS in MSA Control and Status Register MSACSR. The compliant reciprocals signal all the exceptions specified by
the IEEE Standard for Floating-Point Arithmetic 754TM-2008 for the divide operation.

The reciprocal operation is allowed to be approximate. The approximation differs from the compliant reciprocal rep-
resentation by no more than one unit in the least significant place. Approximate reciprocal operations signal the Inex-
act exception if the compliant reciprocal is Inexact or if there is a chance the approximated result may differ from the
compliant reciprocal. Approximate reciprocal operations are allowed to not signal the Overflow or Underflow excep-
tions. The Invalid and divide by Zero exceptions are signaled based on the IEEE Standard for Floating-Point Arithme-
tic 754TM-2008 defined divide operation.

The operands and results are values in floating-point data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FRCP.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i ReciprocalFP(WR[ws]32i+31..32i, 32)
endfor

FRCP.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i ReciprocalFP(WR[ws]64i+63..64i, 64)
endfor

function ReciprocalFP(tt, ts, n)
/* Implementation defined Reciprocal operation. */

endfunction ReciprocalFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 17 16 15 11 10 6 5 0

MSA
011110 110010101 df ws wd 2RF

011110
6 9 1 5 5 6

Vector Floating-Point Round to Integer IFRINT.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 188

Format: FRINT.df
FRINT.W wd,ws MSA
FRINT.D wd,ws MSA

Purpose: Vector Floating-Point Round to Integer

Vector floating-point round to integer.

Description: wd[i] round_int(ws[i])

The floating-point elements in vector ws are rounded to an integral valued floating-point number in the same format
based on the rounding mode bits RM in MSA Control and Status Register MSACSR. The result is written to
vector wd.

The round to integer operation is exact as defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008,
i.e. the Inexact exception is signaled if the result does not have the same numerical value as the input operand.

The operands and results are values in floating-point data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FRINT.W
 for i in 0 .. WRLEN/32-1

f RoundIntFP(WR[ws]32i+31..32i, 32)
WR[wd]32i+31..32i f

endfor

FRINT.D
 for i in 0 .. WRLEN/64-1

f RoundIntFP(WR[ws]64i+63..64i, 64)
WR[wd]64i+63..64i f

endfor

function RoundIntFP(tt, n)
/* Implementation defined round to integer operation. */

endfunction RoundIntFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 17 16 15 11 10 6 5 0

MSA
011110 110010110 df ws wd 2RF

011110
6 9 1 5 5 6

Vector Approximate Floating-Point Reciprocal of Square Root IFRSQRT.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 189

Format: FRSQRT.df
FRSQRT.W wd,ws MSA
FRSQRT.D wd,ws MSA

Purpose: Vector Approximate Floating-Point Reciprocal of Square Root

Vector floating-point reciprocal of square root.

Description: wd[i] 1.0 / sqrt(ws[i])

The reciprocals of the square roots of floating-point elements in vector ws are calculated as specif ied below. The
result is written to vector wd.

The compliant reciprocal of the square root operation is defined as 1.0 di vided by the square root of the element
value, where the IEEE Standard for Floating-Point Arithmetic 754TM-2008 defined divide and square root operations
are affected by the rounding mode bits RM and flush-to-zero bit FS in MSA Control and Status Register MSACSR.
The compliant reciprocals of the square roots signal all the exceptions specified by the IEEE Standard for Floating-
Point Arithmetic 754TM-2008 for the divide and square roots operations.

The reciprocal of the square root operation is allowed to be approximate. The approximation differs from the compli-
ant reciprocal of the square root representation by no more than two units in the least significant place. Approximate
reciprocal of the square root operations signal the Inexact exception if the compliant reciprocal of the square root is
Inexact or if there is a chance the appr oximated result may differ from the co mpliant reciprocal of the square root.
The Invalid and divide by Zero exceptions are signaled based on the IEEE Stand ard for Floating-Point Arithmetic
754TM-2008 defined divide operation.

The operands and results are values in floating-point data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FRSQRT.W
 for i in 0 .. WRLEN/32-1

f SquareRootReciprocalFP(WR[ws]32i+31..32i, 32)
WR[wd]32i+31..32i f

endfor

FRSQRT.D
 for i in 0 .. WRLEN/64-1

f SquareRootReciprocalFP(WR[ws]64i+63..64i, 64)
WR[wd]64i+63..64i f

endfor

function SquareRootReciprocalFP(tt, ts, n)
/* Implementation defined square root reciprocal operation. */

endfunction SquareRootReciprocalFP

31 26 25 17 16 15 11 10 6 5 0

MSA
011110 110010100 df ws wd 2RF

011110
6 9 1 5 5 6

Vector Approximate Floating-Point Reciprocal of Square Root IFRSQRT.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 190

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

Vector Floating-Point Signaling Compare Always False IFSAF.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 191

Format: FSAF.df
FSAF.W wd,ws,wt MSA
FSAF.D wd,ws,wt MSA

Purpose: Vector Floating-Point Signaling Compare Always False

Vector to vector floating-point signaling compare always false; all destination bits are clear.

Description: wd[i] signalingFalse(ws[i], wt[i])

Set all bits to 0 in wd elements. Signaling and quiet NaN elements in ws or wt signal Invalid Operation exception.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FS in
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has all bits set to
0.

The operands are values in floating-point data format df. The results are values in integer data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FSAF.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i SignalingFALSE(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

FSAF.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i SignalingFALSE(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
endfor

function SignalingFALSE(tt, ts, n)
/* Implementation defined signaling and quiet NaN test */
return 0

endfunction SignalingFALSE

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 1000 df wt ws wd 3RF

011010
6 4 1 5 5 5 6

Vector Floating-Point Signaling Compare Equal IFSEQ.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 192

Format: FSEQ.df
FSEQ.W wd,ws,wt MSA
FSEQ.D wd,ws,wt MSA

Purpose: Vector Floating-Point Signaling Compare Equal

Vector to vector floating-point signaling compare for equality; if true all destination bits are set, otherwise clear.

Description: wd[i] (ws[i] =(signaling) wt[i])

Set all bits to 1 in wd elements if the corresponding ws and wt floating-point elements are equal, otherwise set all bits
to 0.

The signaling compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FS in
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has all bits set to
0.

The operands are values in floating-point data format df. The results are values in integer data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FSEQ.W
 for i in 0 .. WRLEN/32-1

c EqualSigFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
WR[wd]32i+31..32i c32

endfor

FSEQ.D
 for i in 0 .. WRLEN/64-1

c EqualSigFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
WR[wd]64i+63..64i c64

endfor

function EqualSigFP(tt, ts, n)
/* Implementation defined signaling equal compare operation. */

endfunction EqualSigFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 1010 df wt ws wd 3RF

011010
6 4 1 5 5 5 6

Vector Floating-Point Signaling Compare Less or Equal IFSLE.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 193

Format: FSLE.df
FSLE.W wd,ws,wt MSA
FSLE.D wd,ws,wt MSA

Purpose: Vector Floating-Point Signaling Compare Less or Equal

Vector to vector floating-point signaling compare for less than or equal; if true all destination bits are set, otherwise
clear.

Description: wd[i] (ws[i] <=(signaling) wt[i])

Set all bits to 1 in wd elements if the corresponding ws floating-point elements are less than or equal to wt floating-
point elements, otherwise set all bits to 0.

The signaling compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FS in
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has all bits set to
0.

The operands are values in floating-point data format df. The results are values in integer data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FSLE.W
 for i in 0 .. WRLEN/32-1

c LessSigFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
d EqualSigFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
WR[wd]32i+31..32i (c | d)32

endfor

FSLE.D
 for i in 0 .. WRLEN/64-1

c LessSigFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
d EqualSigFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
WR[wd]64i+63..64i (c | d)64

endfor

function LessThanSigFP(tt, ts, n)
/* Implementation defined signaling less than compare operation. */

endfunction LessThanSigFP

function EqualSigFP(tt, ts, n)
/* Implementation defined signaling equal compare operation. */

endfunction EqualSigFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 1110 df wt ws wd 3RF

011010
6 4 1 5 5 5 6

Vector Floating-Point Signaling Compare Less Than IFSLT.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 194

Format: FSLT.df
FSLT.W wd,ws,wt MSA
FSLT.D wd,ws,wt MSA

Purpose: Vector Floating-Point Signaling Compare Less Than

Vector to vector floating-point signaling compare for less than; if true all destination bits are set, otherwise clear.

Description: wd[i] (ws[i] <(signaling) wt[i])

Set all bits to 1 in wd elements if the corresponding ws floating-point elements are less than wt floating-point ele-
ments, otherwise set all bits to 0.

The signaling compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FS in
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has all bits set to
0.

The operands are values in floating-point data format df. The results are values in integer data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FSLT.W
 for i in 0 .. WRLEN/32-1

c LessSigFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
WR[wd]32i+31..32i c32

endfor

FSLT.D
 for i in 0 .. WRLEN/64-1

c LessSigFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
WR[wd]64i+63..64i c64

endfor

function LessThanSigFP(tt, ts, n)
/* Implementation defined signaling less than compare operation. */

endfunction LessThanSigFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 1100 df wt ws wd 3RF

011010
6 4 1 5 5 5 6

Vector Floating-Point Signaling Compare Not Equal IFSNE.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 195

Format: FSNE.df
FSNE.W wd,ws,wt MSA
FSNE.D wd,ws,wt MSA

Purpose: Vector Floating-Point Signaling Compare Not Equal

Vector to vector floating-point signaling compare for not equal; if true all destination bits are set, otherwise clear.

Description: wd[i] (ws[i] (signaling) wt[i])

Set all bits to 1 in wd elements if the corresponding ws and wt floating-point elements are not equal, otherwise set all
bits to 0.

The signaling compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FS in
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has all bits set to
0.

The operands are values in floating-point data format df. The results are values in integer data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FSNE.W
 for i in 0 .. WRLEN/32-1

c NotEqualSigFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
WR[wd]32i+31..32i c32

endfor

FSNE.D
 for i in 0 .. WRLEN/64-1

c NotEqualSigFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
WR[wd]64i+63..64i c64

endfor

function NotEqualSigFP(tt, ts, n)
/* Implementation defined signaling not equal compare operation. */

endfunction NotEqualSigFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 1011 df wt ws wd 3RF

011100
6 4 1 5 5 5 6

Vector Floating-Point Signaling Compare Ordered IFSOR.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 196

Format: FSOR.df
FSOR.W wd,ws,wt MSA
FSOR.D wd,ws,wt MSA

Purpose: Vector Floating-Point Signaling Compare Ordered

Vector to vector floating-point signaling compare ordered; if true all destination bits are set, otherwise clear.

Description: wd[i] ws[i] !?(signaling) wt[i]

Set all bits to 1 in wd elements if the corresponding ws and wt floating-point elements are ordered, i.e. both elements
are not NaN values, otherwise set all bits to 0.

The signaling compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FS in
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has all bits set to
0.

The operands are values in floating-point data format df. The results are values in integer data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FSOR.W
 for i in 0 .. WRLEN/32-1

c OrderedSigFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
WR[wd]32i+31..32i c32

endfor

FSOR.D
 for i in 0 .. WRLEN/64-1

c OrderedSigFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
WR[wd]64i+63..64i c64

endfor

function OrderedSigFP(tt, ts, n)
/* Implementation defined signaling ordered compare operation. */

endfunction OrderedSigFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 1001 df wt ws wd 3RF

011100
6 4 1 5 5 5 6

Vector Floating-Point Square Root IFSQRT.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 197

Format: FSQRT.df
FSQRT.W wd,ws MSA
FSQRT.D wd,ws MSA

Purpose: Vector Floating-Point Square Root

Vector floating-point square root.

Description: wd[i] sqrt(ws[i])

The square roots of floating-point elements in vector ws are written to vector wd.

The square root operation is defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008.

The operands and results are values in floating-point data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FSQRT.W
 for i in 0 .. WRLEN/32-1

f SquareRootFP(WR[ws]32i+31..32i, 32)
WR[wd]32i+31..32i f

endfor

FSQRT.D
 for i in 0 .. WRLEN/64-1

f SquareRootFP(WR[ws]64i+63..64i, 64)
WR[wd]64i+63..64i f

endfor

function SquareRootFP(tt, ts, n)
/* Implementation defined square root operation. */

endfunction SquareRootFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 17 16 15 11 10 6 5 0

MSA
011110 110010011 df ws wd 2RF

011110
6 9 1 5 5 6

Vector Floating-Point Subtraction IFSUB.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 198

Format: FSUB.df
FSUB.W wd,ws,wt MSA
FSUB.D wd,ws,wt MSA

Purpose: Vector Floating-Point Subtraction

Vector floating-point subtraction.

Description: wd[i] ws[i] - wt[i]

The floating-point elements in vector wt are subtracted from the floa ting-point elements in vector ws. The result is
written to vector wd.

The subtract operation is defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008.

The operands and results are values in floating-point data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FSUB.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i SubtractFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

FSUB.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i SubtractFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
endfor

function SubtractFP(tt, ts, n)
/* Implementation defined subtract operation. */

endfunction SubtractFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 0001 df wt ws wd 3RF

011011
6 4 1 5 5 5 6

Vector Floating-Point Signaling Compare Unordered or Equal IFSUEQ.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 199

Format: FSUEQ.df
FSUEQ.W wd,ws,wt MSA
FSUEQ.D wd,ws,wt MSA

Purpose: Vector Floating-Point Signaling Compare Unordered or Equal

Vector to vector floating-point signaling compare for unordered or equality; if true all destination bits are set, other-
wise clear.

Description: wd[i] (ws[i] =?(signaling) wt[i])

Set all bits to 1 in wd elements if the corresponding ws and wt floating-point elements are unordered or equal, other-
wise set all bits to 0.

The signaling compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FS in
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has all bits set to
1.

The operands are values in floating-point data format df. The results are values in integer data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FSUEQ.W
 for i in 0 .. WRLEN/32-1

c UnorderedSigFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
d EqualSigFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
WR[wd]32i+31..32i (c | d)32

endfor

FSUEQ.D
 for i in 0 .. WRLEN/64-1

c UnorderedSigFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
d EqualSigFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
WR[wd]64i+63..64i (c | d)64

endfor

function UnorderedSigFP(tt, ts, n)
/* Implementation defined signaling unordered compare operation. */

endfunction UnorderedSigFP

function EqualSigFP(tt, ts, n)
/* Implementation defined signaling equal compare operation. */

endfunction EqualSigFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 1011 df wt ws wd 3RF

011010
6 4 1 5 5 5 6

Vector Floating-Point Signaling Compare Unordered or Less or Equal IFSULE.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 200

Format: FSULE.df
FSULE.W wd,ws,wt MSA
FSULE.D wd,ws,wt MSA

Purpose: Vector Floating-Point Signaling Compare Unordered or Less or Equal

Vector to vector floating-point signaling compare for unordered or less than or equal; if true all destination bits are
set, otherwise clear.

Description: wd[i] (ws[i] <=?(signaling) wt[i])

Set all bits to 1 in wd elements if the corresponding ws floating-point elements are unordered or less than or equal
to wt floating-point elements, otherwise set all bits to 0.

The signaling compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FS in
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has all bits set to
1.

The operands are values in floating-point data format df. The results are values in integer data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FSULE.W
 for i in 0 .. WRLEN/32-1

c UnorderedSigFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
d LessSigFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
e EqualSigFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
WR[wd]32i+31..32i (c | d | e)32

endfor

FSULE.D
 for i in 0 .. WRLEN/64-1

c UnorderedSigFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
d LessSigFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
e EqualSigFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
WR[wd]64i+63..64i (c | d | e)64

endfor

function UnorderedSigFP(tt, ts, n)
/* Implementation defined signaling unordered compare operation. */

endfunction UnorderedSigFP

function LessThanSigFP(tt, ts, n)
/* Implementation defined signaling less than compare operation. */

endfunction LessThanSigFP

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 1111 df wt ws wd 3RF

011010
6 4 1 5 5 5 6

Vector Floating-Point Signaling Compare Unordered or Less or Equal IFSULE.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 201

function EqualSigFP(tt, ts, n)
/* Implementation defined signaling equal compare operation. */

endfunction EqualSigFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

Vector Floating-Point Signaling Compare Unordered or Less Than IFSULT.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 202

Format: FSULT.df
FSULT.W wd,ws,wt MSA
FSULT.D wd,ws,wt MSA

Purpose: Vector Floating-Point Signaling Compare Unordered or Less Than

Vector to vector floating-point signaling compare for unordered or less than; if true all destination bits are set, other-
wise clear.

Description: wd[i] (ws[i] <?(signaling) wt[i])

Set all bits to 1 in wd elements if the corresponding ws floating-point elements are unordered or less than wt floating-
point elements, otherwise set all bits to 0.

The signaling compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FS in
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has all bits set to
1.

The operands are values in floating-point data format df. The results are values in integer data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FSULT.W
 for i in 0 .. WRLEN/32-1

c UnorderedSigFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
d LessSigFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
WR[wd]32i+31..32i (c | d)32

endfor

FSULT.D
 for i in 0 .. WRLEN/64-1

c UnorderedSigFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
d LessSigFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
WR[wd]64i+63..64i (c | d)64

endfor

function UnorderedSigFP(tt, ts, n)
/* Implementation defined signaling unordered compare operation. */

endfunction UnorderedSigFP

function LessThanSigFP(tt, ts, n)
/* Implementation defined signaling less than compare operation. */

endfunction LessThanSigFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 1101 df wt ws wd 3RF

011010
6 4 1 5 5 5 6

Vector Floating-Point Signaling Compare Unordered IFSUN.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 203

Format: FSUN.df
FSUN.W wd,ws,wt MSA
FSUN.D wd,ws,wt MSA

Purpose: Vector Floating-Point Signaling Compare Unordered

Vector to vector floating-point signaling compare unordered; if true all destination bits are set, otherwise clear.

Description: wd[i] (ws[i] ?(signaling) wt[i])

Set all bits to 1 in wd elements if the corresponding ws and wt floating-point elements are unordered, i.e. at least one
element is a NaN value, otherwise set all bits to 0.

The signaling compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FS in
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has all bits set to
1.

The operands are values in floating-point data format df. The results are values in integer data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FSUN.W
 for i in 0 .. WRLEN/32-1

c UnorderedSigFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
WR[wd]32i+31..32i c32

endfor

FSUN.D
 for i in 0 .. WRLEN/64-1

c UnorderedSigFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
WR[wd]64i+63..64i c64

endfor

function UnorderedSigFP(tt, ts, n)
/* Implementation defined signaling unordered compare operation. */

endfunction UnorderedSigFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 1001 df wt ws wd 3RF

011010
6 4 1 5 5 5 6

Vector Floating-Point Signaling Compare Unordered or Not Equal IFSUNE.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 204

Format: FSUNE.df
FSUNE.W wd,ws,wt MSA
FSUNE.D wd,ws,wt MSA

Purpose: Vector Floating-Point Signaling Compare Unordered or Not Equal

Vector to vector floating-point signaling compare for unordered or not equal; if true all destination bits are set, other-
wise clear.

Description: wd[i] (ws[i] ?(signaling) wt[i])

Set all bits to 1 in wd elements if the corresponding ws and wt floating-point elements are unordered or not equal, oth-
erwise set all bits to 0.

The signaling compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FS in
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has all bits set to
1.

The operands are values in floating-point data format df. The results are values in integer data format df.

Restrictions:

Data-dependent exceptions are poss ible as s pecified by the I EEE Standard for Floating-Point Arithmetic 754TM-
2008.

Operation:

FSUNE.W
 for i in 0 .. WRLEN/32-1

c UnorderedSigFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
d NotEqualSigFP(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
WR[wd]32i+31..32i (c | d)32

endfor

FSUNE.D
 for i in 0 .. WRLEN/64-1

c UnorderedSigFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
c NotEqualSigFP(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
WR[wd]64i+63..64i (c | d)64

endfor

function UnorderedSigFP(tt, ts, n)
/* Implementation defined signaling unordered compare operation. */

endfunction UnorderedSigFP

function NotEqualSigFP(tt, ts, n)
/* Implementation defined signaling not equal compare operation. */

endfunction NotEqualSigFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 1010 df wt ws wd 3RF

011100
6 4 1 5 5 5 6

Vector Floating-Point Convert to Signed Integer IFTINT_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 205

Format: FTINT_S.df
FTINT_S.W wd,ws MSA
FTINT_S.D wd,ws MSA

Purpose: Vector Floating-Point Convert to Signed Integer

Vector floating-point convert to signed integer.

Description: wd[i] to_int_s(ws[i])

The floating-point elements in ws are rounded and converted to signed integer values based on the rounding mode bits
RM in MSA Control and Status Register MSACSR. The result is written to vector wd.

The floating-point to integer conversion operation is exact as defined by the IEEE Standard for Floating-Point Arith-
metic 754TM-2008, i.e. the Inexact exception is signaled if the result does not have the same numerical value as the
input operand. In this case, the default result is the rounded result.

NaN values and nu meric operands converting to an in teger outside the range of the destination format signal the
Invalid Operation exception. For positive numeric operands outside the range, the default result is the largest signed
integer value. The default result for negative numeric operands outside the range is the smallest signed integer value.
The default result for NaN operands is zero.

The operands are values in floating-point data format df. The results are values in integer data format df.

Restrictions:

Data-dependent exceptions are possible.

Operation:

FTINT_S.W
 for i in 0 .. WRLEN/32-1

f ToIntSignedFP(WR[ws]32i+31..32i, 32)
WR[wd]32i+31..32i f

endfor

FTINT_S.D
 for i in 0 .. WRLEN/64-1

f ToIntSignedFP(WR[ws]64i+63..64i, 64)
WR[wd]64i+63..64i f

endfor

function ToIntSignedFP(tt, n)
/* Implementation defined floating-point rounding and signed

integer conversion. */
endfunction ToIntSignedFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 17 16 15 11 10 6 5 0

MSA
011110 110011100 df ws wd 2RF

011110
6 9 1 5 5 6

Vector Floating-Point Round and Convert to Unsigned Integer IFTINT_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 206

Format: FTINT_U.df
FTINT_U.W wd,ws MSA
FTINT_U.D wd,ws MSA

Purpose: Vector Floating-Point Round and Convert to Unsigned Integer

Vector floating-point round and convert to unsigned integer.

Description: wd[i] to_int_u(ws[i])

The floating-point elements in ws are rounded and converted to unsigned integer values based on the rounding mode
bits RM in MSA Control and Status Register MSACSR. The result is written to vector wd.

The floating-point to integer conversion operation is exact as defined by the IEEE Standard for Floating-Point Arith-
metic 754TM-2008, i.e. the Inexact exception is signaled if the result does not have the same numerical value as the
input operand. In this case, the default result is the rounded result.

NaN values and nu meric operands converting to an in teger outside the range of the destination format signal the
Invalid Operation exception. For positive numeric operands outside the range, the default result is the largest unsigned
integer value. The default result for negative numeric operands is zero. The default result for NaN operands is zero.

The operands are values in floating_point data format df. The results are values in integer data format df.

Restrictions:

Data-dependent exceptions are possible.

Operation:

FTINT_U.W
 for i in 0 .. WRLEN/32-1

f ToIntUnsignedFP(WR[ws]32i+31..32i, 32)
WR[wd]32i+31..32i f

endfor

FTINT_U.D
 for i in 0 .. WRLEN/64-1

f ToIntUnsignedFP(WR[ws]64i+63..64i, 64)
WR[wd]64i+63..64i f

endfor

function ToIntUnsignedFP(tt, n)
/* Implementation defined floating-point rounding and unsigned

integer conversion. */
endfunction ToIntUnsignedFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 17 16 15 11 10 6 5 0

MSA
011110 110011101 df ws wd 2RF

011110
6 9 1 5 5 6

Vector Floating-Point Convert to Fixed-Point IFTQ.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 207

Format: FTQ.df
FTQ.H wd,ws,wt MSA
FTQ.W wd,ws,wt MSA

Purpose: Vector Floating-Point Convert to Fixed-Point

Vector fix-point format conversion from floating-point.

Description: left_half(wd)[i] to_q(ws[i]); right_half(wd)[i] to_q(wt[i])

The floating-point elements in vectors ws and wt are down-converted to a fixed-point representation, i.e. from 64-bit
floating-point to 32-bit Q31 fixed-point representation, or from 32-bit floating-point to 16-bit Q15 fixed-point repre-
sentation.

The floating-point data inside the fixed-point range is first scaled up (multiplied by 215 or 231) and then rounded and
converted to a 16-bit or 32 -bit integer based on the ro unding mode bits RM in MSA Control and St atus
Register MSACSR. The resulting value is the Q15 or Q31 representation.

The scaling and floating-point to integer conversion operations are defined by the IEEE Standard for Floating-Point
Arithmetic 754TM-2008. The integer conversion operation is exact, i.e. the Inexact exception is signaled if the result
does not have the same numerical value as the input operand. In this case, the default result is the rounded result.

NaN values signal the Invalid Operation exception. Numeric operands converting to fixed-point values outside the
range of the destination format signal the Overflow and the Inexact exceptions. For positive numeric operands outside
the range, the default result is the largest fixed-point value. The default result for negative numeric operands outside
the range is the smallest fixed-point value. The default result for NaN operands is zero.

The operands are values in floating-point data format df. The results are fixed-point values in data format half the size
of df.

Restrictions:

Data-dependent exceptions are possible.

Operation:

FTQ.H
 for i in 0 .. WRLEN/32-1

q ToFixPointFP((WR[ws]32i+31..32i, 32)
r ToFixPointFP((WR[wt]32i+31..32i, 32)
WR[wd]16i+15+WRLEN/2..16i+WRLEN/2 q
WR[wd]16i+15..16i r

endfor

FTQ.W
 for i in 0 .. WRLEN/64-1

q ToFixPointFP((WR[ws]64i+63..64i, 64)
r ToFixPointFP((WR[wt]64i+63..64i, 64)
WR[wd]32i+31+WRLEN/2..32i+WRLEN/2 q
WR[wd]32i+31..32i r

endfor

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 1010 df wt ws wd 3RF

011011
6 4 1 5 5 5 6

Vector Floating-Point Convert to Fixed-Point IFTQ.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 208

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

Vector Floating-Point Truncate and Convert to Signed Integer IFTRUNC_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 209

Format: FTRUNC_S.df
FTRUNC_S.W wd,ws MSA
FTRUNC_S.D wd,ws MSA

Purpose: Vector Floating-Point Truncate and Convert to Signed Integer

Vector floating-point truncate and convert to signed integer.

Description: wd[i] truncate_to_int_s(ws[i])

The floating-point elements in ws are truncated, i.e. rounded toward zero, to signed integer values. The rounding
mode bits RM in MSA Control and Status Register MSACSR are not used. The result is written to vector wd.

The floating-point to integer conversion operation is exact as defined by the IEEE Standard for Floating-Point Arith-
metic 754TM-2008, i.e. the Inexact exception is signaled if the result does not have the same numerical value as the
input operand. In this case, the default result is the rounded result.

NaN values and nu meric operands converting to an in teger outside the range of the destination format signal the
Invalid Operation exception. For positive numeric operands outside the range, the default result is the largest signed
integer value. The default result for negative numeric operands outside the range is the smallest signed integer value.
The default result for NaN operands is zero.

The operands are values in floating-point data format df. The results are values in integer data format df.

Restrictions:

Data-dependent exceptions are possible.

Operation:

FTRUNC_S.W
 for i in 0 .. WRLEN/32-1

f TruncToIntSignedFP(WR[ws]32i+31..32i, 32)
WR[wd]32i+31..32i f

endfor

FTRUNC_S.D
 for i in 0 .. WRLEN/64-1

f TruncToIntSignedFP(WR[ws]64i+63..64i, 64)
WR[wd]64i+63..64i f

endfor

function TruncToIntSignedFP(tt, n)
/* Implementation defined floating-point truncation and signed

integer conversion. */
endfunction TruncToIntSignedFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 17 16 15 11 10 6 5 0

MSA
011110 110010001 df ws wd 2RF

011110
6 9 1 5 5 6

Vector Floating-Point Truncate and Convert to Unsigned Integer IFTRUNC_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 210

Format: FTRUNC_U.df
FTRUNC_U.W wd,ws MSA
FTRUNC_U.D wd,ws MSA

Purpose: Vector Floating-Point Truncate and Convert to Unsigned Integer

Vector floating-point truncate and convert to unsigned integer.

Description: wd[i] truncate_to_int_u(ws[i])

The floating-point elements in ws are truncated, i.e. rounded toward zero, to unsigned integer values. The rounding
mode bits RM in MSA Control and Status Register MSACSR are not used. The result is written to vector wd.

The floating-point to integer conversion operation is exact as defined by the IEEE Standard for Floating-Point Arith-
metic 754TM-2008, i.e. the Inexact exception is signaled if the result does not have the same numerical value as the
input operand. In this case, the default result is the rounded result.

NaN values and nu meric operands converting to an in teger outside the range of the destination format signal the
Invalid Operation exception. For positive numeric operands outside the range, the default result is the largest unsigned
integer value. The default value for negative numeric operands is zero. The default result for NaN operands is zero.

The operands are values in floating_point data format df. The results are values in integer data format df.

Restrictions:

Data-dependent exceptions are possible.

Operation:

FTRUNC_U.W
 for i in 0 .. WRLEN/32-1

f TruncToIntUnsignedFP(WR[ws]32i+31..32i, 32)
WR[wd]32i+31..32i f

endfor

FTRUNC_U.D
 for i in 0 .. WRLEN/64-1

f TruncToIntUnsignedFP(WR[ws]64i+63..64i, 64)
WR[wd]64i+63..64i f

endfor

function TruncToIntUnsignedFP(tt, n)
/* Implementation defined floating-point truncation and unsigned

integer conversion. */
endfunction TruncToIntUnsignedFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

31 26 25 17 16 15 11 10 6 5 0

MSA
011110 110010010 df ws wd 2RF

011110
6 9 1 5 5 6

Vector Signed Horizontal Add IHADD_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 211

Format: HADD_S.df
HADD_S.H wd,ws,wt MSA
HADD_S.W wd,ws,wt MSA
HADD_S.D wd,ws,wt MSA

Purpose: Vector Signed Horizontal Add

Vector sign extend and pairwise add the odd elements with the even elements to double width elements

Description: (wd[2i+1], wd[2i]) signed(ws[2i+1]) + signed(wt[2i])

The sign-extended odd elements in vector ws are added to the sign-extended even elements in vector wt producing a
result twice the size of the input operands. The result is written to vector wd.

The operands are values in integer data format half the size of df. The results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

HADD_S.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i hadd_s(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 8)
endfor

HADD_S.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i hadd_s(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 16)
endfor

HADD_S.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i hadd_s(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 32)
endfor

function hadd_s(ts, tt, n)
t ((ts2n-1)

n || ts2n-1..n) + ((ttn-1)
n || ttn-1..0)

return t
endfunction hadd_s

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 100 df wt ws wd 3R

010101
6 3 2 5 5 5 6

Vector Unsigned Horizontal Add IHADD_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 212

Format: HADD_U.df
HADD_U.H wd,ws,wt MSA
HADD_U.W wd,ws,wt MSA
HADD_U.D wd,ws,wt MSA

Purpose: Vector Unsigned Horizontal Add

Vector zero extend and pairwise add the odd elements with the even elements to double width elements

Description: (wd[2i+1], wd[2i]) unsigned(ws[2i+1]) + unsigned(wt[2i])

The zero-extended odd elements in vector ws are added to the zero-extended even elements in vector wt producing a
result twice the size of the input operands. The result is written to vector wd.

The operands are values in integer data format half the size of df. The results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

HADD_U.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i hadd_u(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 8)
endfor

HADD_U.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i hadd_u(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 16)
endfor

HADD_U.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i hadd_u(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 32)
endfor

function hadd_u(ts, tt, n)
t (0n || ts2n-1..n) + (0

n || ttn-1..0)
return t

endfunction hadd_u

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 101 df wt ws wd 3R

010101
6 3 2 5 5 5 6

Vector Signed Horizontal Subtract IHSUB_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 213

Format: HSUB_S.df
HSUB_S.H wd,ws,wt MSA
HSUB_S.W wd,ws,wt MSA
HSUB_S.D wd,ws,wt MSA

Purpose: Vector Signed Horizontal Subtract

Vector sign extend and pairwise subtract the even elements from the odd elements to double width elements

Description: (wd[2i+1], wd[2i]) signed(ws[2i+1]) - signed(wt[2i])

The sign-extended odd elements in vector wt are subtracted from the sign-extended even elements in vector wt pro-
ducing a signed result twice the size of the input operands. The result is written to vector wd.

The operands are values in integer data format half the size of df. The results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

HSUB_S.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i hsub_s(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 8)
endfor

HSUB_S.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i hsub_s(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 16)
endfor

HSUB_S.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i hsub_s(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 32)
endfor

function hsub_s(ts, tt, n)
t ((ts2n-1)

n || ts2n-1..n) - ((ttn-1)
n || ttn-1..0)

return t
endfunction hsub_s

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 110 df wt ws wd 3R

010101
6 3 2 5 5 5 6

Vector Unsigned Horizontal Subtract IHSUB_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 214

Format: HSUB_U.df
HSUB_U.H wd,ws,wt MSA
HSUB_U.W wd,ws,wt MSA
HSUB_U.D wd,ws,wt MSA

Purpose: Vector Unsigned Horizontal Subtract

Vector zero extend and pairwise subtract the even elements from the odd elements to double width elements

Description: (wd[2i+1], wd[2i]) unsigned(ws[2i+1]) - unsigned(wt[2i])

The zero-extended odd elements in vector wt are subtracted from the zero-extended even elements in vector ws pro-
ducing a signed result twice the size of the input operands. The result is written to vector wd.

The operands are values in integer data format half the size of df. The results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

HSUB_U.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i hsub_u(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 8)
endfor

HSUB_U.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i hsub_u(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 16)
endfor

HSUB_U.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i hsub_u(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 32)
endfor

function hsub_u(ts, tt, n)
t (0n || ts2n-1..n) - (0

n || ttn-1..0)
return t

endfunction hsub_u

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 111 df wt ws wd 3R

010101
6 3 2 5 5 5 6

Vector Interleave Even IILVEV.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 215

Format: ILVEV.df
ILVEV.B wd,ws,wt MSA
ILVEV.H wd,ws,wt MSA
ILVEV.W wd,ws,wt MSA
ILVEV.D wd,ws,wt MSA

Purpose: Vector Interleave Even

Vector even elements interleave.

Description: wd[2i] wt[2i]; wd[2i+1] ws[2i]

Even elements in v ectors ws and wt are copied to vector wd alternating one element from ws with one element
from wt.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

ILVEV.B
 for i in 0 .. WRLEN/16-1

j 2 * i
k 2 * i + 1
WR[wd]8j+7..8j WR[wt]8j+7..8j
WR[wd]8k+7..8k WR[ws]8j+7..8j

endfor

ILVEV.H
 for i in 0 .. WRLEN/32-1

j 2 * i
k 2 * i + 1
WR[wd]16j+15..16j WR[wt]16j+15..16j
WR[wd]16k+15..16k WR[ws]16j+15..16j

endfor

ILVEV.W
 for i in 0 .. WRLEN/64-1

j 2 * i
k 2 * i + 1
WR[wd]32j+31..32j WR[wt]32j+31..32j
WR[wd]32k+31..32k WR[ws]32j+31..32j

endfor

ILVEV.D
 for i in 0 .. WRLEN/128-1

j 2 * i
k 2 * i + 1
WR[wd]64j+63..64j WR[wt]64j+63..64j
WR[wd]64k+63..64k WR[ws]64j+63..64j

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 110 df wt ws wd 3R

010100
6 3 2 5 5 5 6

Vector Interleave Even IILVEV.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 216

endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Interleave Left IILVL.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 217

Format: ILVL.df
ILVL.B wd,ws,wt MSA
ILVL.H wd,ws,wt MSA
ILVL.W wd,ws,wt MSA
ILVL.D wd,ws,wt MSA

Purpose: Vector Interleave Left

Vector left elements interleave.

Description: wd[2i] left_half(wt)[i]; wd[2i+1] left_half(ws)[i]

The left half elements in vectors ws and wt are copied to vector wd alternating one element from ws with one element
from wt.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

ILVL.B
 for i in 0 .. WRLEN/16-1

j 2 * i
k 2 * i + 1
WR[wd]8j+7..8j WR[wt]8i+7+WRLEN/2..8i+WRLEN/2
WR[wd]8k+7..8k WR[ws]8i+7+WRLEN/2..8i+WRLEN/2

endfor

ILVL.H
 for i in 0 .. WRLEN/32-1

j 2 * i
k 2 * i + 1
WR[wd]16j+15..16j WR[wt]16i+15+WRLEN/2..16i+WRLEN/2
WR[wd]16k+15..16k WR[ws]16i+15+WRLEN/2..16i+WRLEN/2

endfor

ILVL.W
 for i in 0 .. WRLEN/64-1

j 2 * i
k 2 * i + 1
WR[wd]32j+31..32j WR[wt]32i+31+WRLEN/2..32i+WRLEN/2
WR[wd]32k+31..32k WR[ws]32i+31+WRLEN/2..32i+WRLEN/2

endfor

ILVL.D
 for i in 0 .. WRLEN/128-1

j 2 * i
k 2 * i + 1
WR[wd]64j+63..64j WR[wt]64i+63+WRLEN/2..64i+WRLEN/2
WR[wd]64k+63..64k WR[ws]64i+63+WRLEN/2..64i+WRLEN/2

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 100 df wt ws wd 3R

010100
6 3 2 5 5 5 6

Vector Interleave Left IILVL.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 218

endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Interleave Odd IILVOD.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 219

Format: ILVOD.df
ILVOD.B wd,ws,wt MSA
ILVOD.H wd,ws,wt MSA
ILVOD.W wd,ws,wt MSA
ILVOD.D wd,ws,wt MSA

Purpose: Vector Interleave Odd

Vector odd elements interleave.

Description: wd[2i] wt[2i+1]; wd[2i+1] ws[2i+1]

Odd elements in v ectors ws and wt are copied to v ector wd alternating one element from ws with one element
from wt.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

ILVOD.B
 for i in 0 .. WRLEN/16-1

j 2 * i
k 2 * i + 1
WR[wd]8j+7..8j WR[wt]8k+7..8k
WR[wd]8k+7..8k WR[ws]8k+7..8k

endfor

ILVOD.H
 for i in 0 .. WRLEN/32-1

j 2 * i
k 2 * i + 1
WR[wd]16j+15..16j WR[wt]16k+15..16k
WR[wd]16k+15..16k WR[ws]16k+15..16k

endfor

ILVOD.W
 for i in 0 .. WRLEN/64-1

j 2 * i
k 2 * i + 1
WR[wd]32j+31..32j WR[wt]32k+31..32k
WR[wd]32k+31..32k WR[ws]32k+31..32k

endfor

ILVOD.D
 for i in 0 .. WRLEN/128-1

j 2 * i
k 2 * i + 1
WR[wd]64j+63..64j WR[wt]64k+63..64k
WR[wd]64k+63..64k WR[ws]64k+63..64k

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 111 df wt ws wd 3R

010100
6 3 2 5 5 5 6

Vector Interleave Odd IILVOD.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 220

endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Interleave Right IILVR.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 221

Format: ILVR.df
ILVR.B wd,ws,wt MSA
ILVR.H wd,ws,wt MSA
ILVR.W wd,ws,wt MSA
ILVR.D wd,ws,wt MSA

Purpose: Vector Interleave Right

Vector right elements interleave.

Description: wd[2i] right_half(wt)[i]; wd[2i+1] right_half(ws)[i]

The right half elements in vectors ws and wt are copied to vector wd alternating one element from ws with one ele-
ment from wt.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

ILVR.B
 for i in 0 .. WRLEN/16-1

j 2 * i
k 2 * i + 1
WR[wd]8j+7..8j WR[wt]8i+7..8i
WR[wd]8k+7..8k WR[ws]8i+7..8i

endfor

ILVR.H
 for i in 0 .. WRLEN/32-1

j 2 * i
k 2 * i + 1
WR[wd]16j+15..16j WR[wt]16i+15..16i
WR[wd]16k+15..16k WR[ws]16i+15..16i

endfor

ILVR.W
 for i in 0 .. WRLEN/64-1

j 2 * i
k 2 * i + 1
WR[wd]32j+31..32j WR[wt]32i+31..32i
WR[wd]32k+31..32k WR[ws]32i+31..32i

endfor

ILVR.D
 for i in 0 .. WRLEN/128-1

j 2 * i
k 2 * i + 1
WR[wd]64j+63..64j WR[wt]64i+63..64i
WR[wd]64k+63..64k WR[ws]64i+63..64i

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 101 df wt ws wd 3R

010100
6 3 2 5 5 5 6

Vector Interleave Right IILVR.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 222

endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

GPR Insert Element IINSERT.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 223

Format: INSERT.df
INSERT.B wd[n],rs MSA
INSERT.H wd[n],rs MSA
INSERT.W wd[n],rs MSA

Purpose: GPR Insert Element

GPR value copied to vector element.

Description: wd[n] rs

Set element n in vector wd to GPR rs value. All other elements in vector wd are unchanged. If the source GPR is
wider than the destination data format, the destination's elements will be set to the least significant bits of the GPR.

The operands and results are values in data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

INSERT.B
 WR[wd]8n+7..8n GPR[rs]7..0

INSERT.H
 WR[wd]16n+15..16n GPR[rs]15..0

INSERT.W
 WR[wd]32n+31..32n GPR[rs]31..0

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 22 21 16 15 11 10 6 5 0

MSA
011110 0100 df/n rs wd ELM

011001
6 4 6 5 5 6

Element Insert Element IINSVE.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 224

Format: INSVE.df
INSVE.B wd[n],ws[0] MSA
INSVE.H wd[n],ws[0] MSA
INSVE.W wd[n],ws[0] MSA
INSVE.D wd[n],ws[0] MSA

Purpose: Element Insert Element

Element value copied to vector element.

Description: wd[n] ws[0]

Set element n in vector wd to element 0 in vector ws value. All other elements in vector wd are unchanged.

The operands and results are values in data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

INSVE.B
 WR[wd]8n+7..8n WR[ws]7..0

INSVE.H
 WR[wd]16n+15..16n WR[ws]15..0

INSVE.W
 WR[wd]32n+31..32n WR[ws]31..0

INSVE.D
 WR[wd]64n+63..64n WR[ws]63..0

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 22 21 16 15 11 10 6 5 0

MSA
011110 0101 df/n ws wd ELM

011001
6 4 6 5 5 6

Vector Load ILD.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 225

Format: LD.df
LD.B wd,s10(rs) MSA
LD.H wd,s10(rs) MSA
LD.W wd,s10(rs) MSA
LD.D wd,s10(rs) MSA

Purpose: Vector Load

Vector load element-by-element from base register plus offset memory address,

Description: wd[i] memory[rs + (s10 + i) * sizeof(wd[i])]

The WRLEN / 8 bytes at the ef fective memory location addressed by the base rs and the 10-bit signed immediate
offset s10 are fetched and placed in wd as elements of data format df.

The s10 offset in data format df units is added to the base rs to form the effective memory location address. rs and the
effective memory location address have no alignment restrictions.

If the effective memory location address is element aligned, the vector load instruction is atomic at the element level
with no guaranteed ordering among elemen ts, i.e. each element load is an ato mic operation issued in no particular
order with respect to the element's vector position.

By convention, in the assembly language syntax all offsets are in bytes and have to be multiple of the size of the data
format df. The assembler determines the s10 bitfield value dividing the byte offset by the size of the data format df.

Restrictions:

Address-dependent exceptions are possible.

Operation:

LD.B
 a rs + s10

LoadByteVector(WR[wd]WRLEN-1..0, a, WRLEN/8)

LD.H
 a rs + s10 * 2

LoadHalfwordVector(WR[wd]WRLEN-1..0, a, WRLEN/16)

LD.W
 a rs + s10 * 4

LoadWordVector(WR[wd]WRLEN-1..0, a, WRLEN/32)

LD.D
 a rs + s10 * 8

LoadDoublewordVector(WR[wd]WRLEN-1..0, a, WRLEN/64)

function LoadByteVector(ts, a, n)
/* Implementation defined load ts vector of n bytes from virtual

address a. */
endfunction LoadByteVector

function LoadHalfwordVector(ts, a, n)
/* Implementation defined load ts vector of n halfwords from

31 26 25 16 15 11 10 6 5 2 1 0

MSA
011110 s10 rs wd MI10

1000 df

6 10 5 5 4 2

Vector Load ILD.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 226

virtual address a. */
endfunction LoadHalfwordVector

function LoadWordVector(ts, a, n)
/* Implementation defined load ts vector of n words from virtual

address a. */
endfunction LoadWordVector

function LoadDoublewordVector(ts, a, n)
/* Implementation defined load ts vector of n doublewords from

virtual address a. */
endfunction LoadDoublewordVector

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception. Data access TLB and Address Error Exceptions.

Immediate Load ILDI.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 227

Format: LDI.df
LDI.B wd,s10 MSA
LDI.H wd,s10 MSA
LDI.W wd,s10 MSA
LDI.D wd,s10 MSA

Purpose: Immediate Load

Immediate value replicated across all destination elements.

Description: wd[i] s10

The signed immediate s10 is replicated in all wd elements. For byte elements, only the least significant 8 bits of s10
will be used.

Restrictions:

No data-dependent exceptions are possible.

Operation:

LDI.B
 t s107..0

for i in 0 .. WRLEN/8-1
WR[wd]8i+7..8i t

endfor

LDI.H
 t (s109)

6 || s109..0
for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i t
endfor

LDI.W
 t (s109)

22 || s109..0
for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i t
endfor

LDI.D
 t (s109)

54 || s109..0
for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i t
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 11 10 6 5 0

MSA
011110 110 df s10 wd I10

000111
6 3 2 10 5 6

Left Shift Add ILSA

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 228

Format: LSA
LSA rd,rs,rt,sa MSA

Purpose: Left Shift Add

To left-shift a word by a fixed number of bits and add the result to another word.

Description: GPR[rd] (GPR[rs] << (sa + 1)) + GPR[rt]

The 32-bit word value in GPR rs is shifted left, inserting zeros into the emptied bits; the 32-bit word result is added to
the 32-bit value in GPR rt and the 32-bit arithmetic result is sign-extended and placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

A Reserved Instruction Exception is signaled if MSA implementation is not present.

If GPR rt does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the operation is UNPRE-
DICTABLE.

Operation:

if NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
if Config3MSAP = 1 then

s sa + 1
temp (GPR[rs](31-s)..0 || 0

s) + GPR[rt]
GPR[rd] sign_extend(temp31..0)

else
SignalException(ReservedInstruction)

endif

Exceptions:

Reserved Instruction Exception.

31 26 25 21 20 16 15 11 10 8 7 6 5 0

SPECIAL
000000 rs rt rd 000 sa LSA

000101
6 5 5 5 3 2 6

Vector Fixed-Point Multiply and Add IMADD_Q.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 229

Format: MADD_Q.df
MADD_Q.H wd,ws,wt MSA
MADD_Q.W wd,ws,wt MSA

Purpose: Vector Fixed-Point Multiply and Add

Vector fixed-point multiply and add.

Description: wd[i] saturate(wd[i] + ws[i] * wt[i])

The products of fixed-point elements in vector wt by fixed-point elements in vector ws are added to the fixed-point
elements in vector wd. The multiplication result is not saturated, i.e. exact (-1) * (-1) = 1 is added to the destination.
The saturated fixed-point results are stored back to wd.

Internally, the multiplication and addition operate on data double the size of df. Truncation to fixed-point data
format df is performed at the very last stage, after saturation.

The operands and results are values in fixed-point data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

MADD_Q.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i
q_madd(WR[wd]16i+15..16i, WR[ws]16i+15..16i, WR[wt]16i+15..16i, 16)

endfor

MADD_Q.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i
q_madd(WR[wd]32i+31..32i, WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)

endfor

function mulx_s(ts, tt, n)
s (tsn-1)

n || tsn-1..0
t (ttn-1)

n || ttn-1..0
p s * t
return p2n-1..0

endfunction mulx_s

function sat_s(tt, n, b)
if ttn-1 = 0 and ttn-1..b-1 0

n-b+1 then
return 0n-b+1 || 1b-1

endif
if ttn-1 = 1 and ttn-1..b-1 1

n-b+1 then
return 1n-b+1 || 0b-1

else
return tt

endif

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 0101 df wt ws wd 3RF

011100
6 4 1 5 5 5 6

Vector Fixed-Point Multiply and Add IMADD_Q.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 230

endfunction sat_s

function q_madd(td, ts, tt, n)
p mulx_s(ts, tt, n)
d (tdn-1 || tdn-1..0 || 0

n-1) + p2n-1..0
d sat_s(d2n-1..n-1, n+1, n)
return dn-1..0

endfunction q_madd

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Fixed-Point Multiply and Add Rounded IMADDR_Q.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 231

Format: MADDR_Q.df
MADDR_Q.H wd,ws,wt MSA
MADDR_Q.W wd,ws,wt MSA

Purpose: Vector Fixed-Point Multiply and Add Rounded

Vector fixed-point multiply and add rounded.

Description: wd[i] saturate(round(wd[i] + ws[i] * wt[i]))

The products of fixed-point elements in vector wt by fixed-point elements in vector ws are added to the fixed-point
elements in vector wd. The multiplication result is not saturated, i.e. exact (-1) * (-1) = 1 is added to the destination.
The rounded and saturated fixed-point results are stored back to wd.

Internally, the multiplication, addition, and rounding operate on data double the size of df. Truncation to fixed-point
data format df is performed at the very last stage, after saturation.

The rounding is done by adding 1 to the most significant bit that is going to be discarded at truncation.

The operands and results are values in fixed-point data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

MADDR_Q.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i
q_maddr(WR[wd]16i+15..16i, WR[ws]16i+15..16i, WR[wt]16i+15..16i, 16)

endfor

MADDR_Q.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i
q_maddr(WR[wd]32i+31..32i, WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)

endfor

function mulx_s(ts, tt, n)
s (tsn-1)

n || tsn-1..0
t (ttn-1)

n || ttn-1..0
p s * t
return p2n-1..0

endfunction mulx_s

function sat_s(tt, n, b)
if ttn-1 = 0 and ttn-1..b-1 0

n-b+1 then
return 0n-b+1 || 1b-1

endif
if ttn-1 = 1 and ttn-1..b-1 1

n-b+1 then
return 1n-b+1 || 0b-1

else
return tt

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 1101 df wt ws wd 3RF

011100
6 4 1 5 5 5 6

Vector Fixed-Point Multiply and Add Rounded IMADDR_Q.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 232

endif
endfunction sat_s

function q_maddr(td, ts, tt, n)
p mulx_s(ts, tt, n)
d (tdn-1 || tdn-1..0 || 0

n-1) + p2n-1..0
d d + (1 || 0n-2)
d sat_s(d2n-1..n-1, n+1, n)
return dn-1..0

endfunction q_maddr

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Multiply and Add IMADDV.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 233

Format: MADDV.df
MADDV.B wd,ws,wt MSA
MADDV.H wd,ws,wt MSA
MADDV.W wd,ws,wt MSA
MADDV.D wd,ws,wt MSA

Purpose: Vector Multiply and Add

Vector multiply and add.

Description: wd[i] wd[i] + ws[i] * wt[i]

The integer elements in vector wt are multiplied by integer elements in vector ws and added to the integer elements in
vector wd. The most significant half of the multiplication result is discarded.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

MADDV.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i
WR[wd]8i+7..8i + WR[ws]8i+7..8i * WR[wt]8i+7..8i

endfor

MADDV.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i
WR[wd]16i+15..16i + WR[ws]16i+15..16i * WR[wt]16i+15..16i

endfor

MADDV.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i
WR[wd]32i+31..32i + WR[ws]32i+31..32i * WR[wt]32i+31..32i

endfor

MADDV.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i
WR[wd]64i+63..64i + WR[ws]64i+63..64i * WR[wt]64i+63..64i

endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 001 df wt ws wd 3R

010010
6 3 2 5 5 5 6

Vector Maximum Based on Absolute Values IMAX_A.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 234

Format: MAX_A.df
MAX_A.B wd,ws,wt MSA
MAX_A.H wd,ws,wt MSA
MAX_A.W wd,ws,wt MSA
MAX_A.D wd,ws,wt MSA

Purpose: Vector Maximum Based on Absolute Values

Vector and vector maximum based on the absolute values.

Description: wd[i] absolute_value(ws[i]) > absolute_value(wt[i])? ws[i]: wt[i]

The value with the largest magnitude, i.e. absolute value, between corresponding signed elements in vector ws and
vector wt are written to vector wd.

The minimum negative value representable has the largest absolute value.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

MAX_A.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i max_a(WR[ws]8i+7..8i, WR[wt]8i+7..8i, 8)
endfor

MAX_A.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i max_a(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 16)
endfor

MAX_A.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i max_a(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

MAX_A.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i max_a(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
endfor

function abs(tt, n)
if ttn-1 = 1 then

return -ttn-1...0
else

return ttn-1..0
endif

endfunction abs

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 110 df wt ws wd 3R

001110
6 3 2 5 5 5 6

Vector Maximum Based on Absolute Values IMAX_A.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 235

function max_a(ts, tt, n)
t 0 || abs(tt, n)
s 0 || abs(ts, n)
if t < s then

return ts
else

return tt
endif

endfunction max_a

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Signed Maximum IMAX_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 236

Format: MAX_S.df
MAX_S.B wd,ws,wt MSA
MAX_S.H wd,ws,wt MSA
MAX_S.W wd,ws,wt MSA
MAX_S.D wd,ws,wt MSA

Purpose: Vector Signed Maximum

Vector and vector signed maximum.

Description: wd[i] max(ws[i], wt[i])

Maximum values between signed elements in vector wt and signed elements in vector ws are written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

MAX_S.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i max_s(WR[ws]8i+7..8i, WR[wt]8i+7..8i, 8)
endfor

MAX_S.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i max_s(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 16)
endfor

MAX_S.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i max_s(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

MAX_S.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i max_s(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
endfor

function max_s(ts, tt, n)
t ttn-1 || tt
s tsn-1 || ts
if t < s then

return ts
else

return tt
endif

endfunction max_s

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 010 df wt ws wd 3R

001110
6 3 2 5 5 5 6

Vector Signed Maximum IMAX_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 237

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Unsigned Maximum IMAX_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 238

Format: MAX_U.df
MAX_U.B wd,ws,wt MSA
MAX_U.H wd,ws,wt MSA
MAX_U.W wd,ws,wt MSA
MAX_U.D wd,ws,wt MSA

Purpose: Vector Unsigned Maximum

Vector and vector unsigned maximum.

Description: wd[i] max(ws[i], wt[i])

Maximum values between unsigned elements in v ector wt and uns igned elements in v ector ws are written to
vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

MAX_U.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i max_u(WR[ws]8i+7..8i, WR[wt]8i+7..8i, 8)
endfor

MAX_U.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i max_u(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 16)
endfor

MAX_U.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i max_u(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

MAX_U.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i max_u(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
endfor

function max_u(ts, tt, n)
t 0 || tt
s 0 || ts
if t < s then

return ts
else

return tt
endif

endfunction max_u

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 011 df wt ws wd 3R

001110
6 3 2 5 5 5 6

Vector Unsigned Maximum IMAX_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 239

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Immediate Signed Maximum IMAXI_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 240

Format: MAXI_S.df
MAXI_S.B wd,ws,s5 MSA
MAXI_S.H wd,ws,s5 MSA
MAXI_S.W wd,ws,s5 MSA
MAXI_S.D wd,ws,s5 MSA

Purpose: Immediate Signed Maximum

Immediate and vector signed maximum.

Description: wd[i] max(ws[i], s5)

Maximum values between signed elements in vector ws and the 5-bit signed immediate s5 are written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

MAXI_S.B
 t (s54)

3 || s54..0
for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i max_s(WR[ws]8i+7..8i, t, 8)
endfor

MAXI_S.H
 t (s54)

11 || s54..0
for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i max_s(WR[ws]16i+15..16i, t, 16)
endfor

MAXI_S.W
 t (s54)

27 || s54..0
for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i max_s(WR[ws]32i+31..32i, t, 32)
endfor

MAXI_S.D
 t (s54)

59 || s54..0
for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i max_s(WR[ws]64i+63..64i, t, 64)
endfor

function max_s(ts, tt, n)
t ttn-1 || tt
s tsn-1 || ts
if t < s then

return ts
else

return tt

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 010 df s5 ws wd I5

000110
6 3 2 5 5 5 6

Immediate Signed Maximum IMAXI_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 241

endif
endfunction max_s

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Immediate Unsigned Maximum IMAXI_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 242

Format: MAXI_U.df
MAXI_U.B wd,ws,u5 MSA
MAXI_U.H wd,ws,u5 MSA
MAXI_U.W wd,ws,u5 MSA
MAXI_U.D wd,ws,u5 MSA

Purpose: Immediate Unsigned Maximum

Immediate and vector unsigned maximum.

Description: wd[i] max(ws[i], u5)

Maximum values between unsigned elements in v ector ws and the 5-bit unsigned immediate u5 are written to
vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

MAXI_U.B
 t 03 || u54..0

for i in 0 .. WRLEN/8-1
WR[wd]8i+7..8i max_u(WR[ws]8i+7..8i, t, 8)

endfor

MAXI_U.H
 t 011 || u54..0

for i in 0 .. WRLEN/16-1
WR[wd]16i+15..16i max_u(WR[ws]16i+15..16i, t, 16)

endfor

MAXI_U.W
 t 027 || u54..0

for i in 0 .. WRLEN/32-1
WR[wd]32i+31..32i max_u(WR[ws]32i+31..32i, t, 32)

endfor

MAXI_U.D
 t 059 || u54..0

for i in 0 .. WRLEN/64-1
WR[wd]64i+63..64i max_u(WR[ws]64i+63..64i, t, 64)

endfor

function max_u(ts, tt, n)
t 0 || tt
s 0 || ts
if t < s then

return ts
else

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 011 df u5 ws wd I5

000110
6 3 2 5 5 5 6

Immediate Unsigned Maximum IMAXI_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 243

return tt
endif

endfunction max_u

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Minimum Based on Absolute Value IMIN_A.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 244

Format: MIN_A.df
MIN_A.B wd,ws,wt MSA
MIN_A.H wd,ws,wt MSA
MIN_A.W wd,ws,wt MSA
MIN_A.D wd,ws,wt MSA

Purpose: Vector Minimum Based on Absolute Value

Vector and vector minimum based on the absolute values.

Description: wd[i] absolute_value(ws[i]) < absolute_value(wt[i])? ws[i]: wt[i]

The value with the smallest magnitude, i.e. absolute value, between corresponding signed elements in vector ws and
vector wt are written to vector wd.

The minimum negative value representable has the largest absolute value.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

MIN_A.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i min_a(WR[ws]8i+7..8i, WR[wt]8i+7..8i, 8)
endfor

MIN_A.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i min_a(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 16)
endfor

MIN_A.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i min_a(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

MIN_A.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i min_a(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
endfor

function min_a(ts, tt, n)
t 0 || abs(tt, n)
s 0 || abs(ts, n)
if t > s then

return ts
else

return tt
endif

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 111 df wt ws wd 3R

001110
6 3 2 5 5 5 6

Vector Minimum Based on Absolute Value IMIN_A.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 245

endfunction min_a

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Signed Minimum IMIN_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 246

Format: MIN_S.df
MIN_S.B wd,ws,wt MSA
MIN_S.H wd,ws,wt MSA
MIN_S.W wd,ws,wt MSA
MIN_S.D wd,ws,wt MSA

Purpose: Vector Signed Minimum

Vector and vector signed minimum.

Description: wd[i] min(ws[i], wt[i])

Minimum values between signed elements in vector wt and signed elements in vector ws are written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

MIN_S.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i min_s(WR[ws]8i+7..8i, WR[wt]8i+7..8i, 8)
endfor

MIN_S.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i min_s(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 16)
endfor

MIN_S.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i min_s(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

MIN_S.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i min_s(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
endfor

function min_s(ts, tt, n)
t ttn-1 || tt
s tsn-1 || ts
if t > s then

return ts
else

return tt
endif

endfunction min_s

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 100 df wt ws wd 3R

001110
6 3 2 5 5 5 6

Vector Signed Minimum IMIN_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 247

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Unsigned Minimum IMIN_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 248

Format: MIN_U.df
MIN_U.B wd,ws,wt MSA
MIN_U.H wd,ws,wt MSA
MIN_U.W wd,ws,wt MSA
MIN_U.D wd,ws,wt MSA

Purpose: Vector Unsigned Minimum

Vector and vector unsigned minimum.

Description: wd[i] min(ws[i], wt[i])

Minimum values between unsigned elements in vector wt and unsigne d elements in v ector ws are w ritten to
vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

MIN_U.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i min_u(WR[ws]8i+7..8i, WR[wt]8i+7..8i, 8)
endfor

MIN_U.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i min_u(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 16)
endfor

MIN_U.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i min_u(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

MIN_U.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i min_u(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
endfor

function min_u(ts, tt, n)
t 0 || tt
s 0 || ts
if t > s then

return ts
else

return tt
endif

endfunction min_u

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 101 df wt ws wd 3R

001110
6 3 2 5 5 5 6

Vector Unsigned Minimum IMIN_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 249

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Immediate Signed Minimum IMINI_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 250

Format: MINI_S.df
MINI_S.B wd,ws,s5 MSA
MINI_S.H wd,ws,s5 MSA
MINI_S.W wd,ws,s5 MSA
MINI_S.D wd,ws,s5 MSA

Purpose: Immediate Signed Minimum

Immediate and vector signed minimum.

Description: wd[i] min(ws[i], s5)

Minimum values between signed elements in vector ws and the 5-bit signed immediate s5 are written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

MINI_S.B
 t (s54)

3 || s54..0
for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i min_s(WR[ws]8i+7..8i, t, 8)
endfor

MINI_S.H
 t (s54)

11 || s54..0
for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i min_s(WR[ws]16i+15..16i, t, 16)
endfor

MINI_S.W
 t (s54)

27 || s54..0
for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i min_s(WR[ws]32i+31..32i, t, 32)
endfor

MINI_S.D
 t (s54)

59 || s54..0
for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i min_s(WR[ws]64i+63..64i, t, 64)
endfor

function min_s(ts, tt, n)
t ttn-1 || tt
s tsn-1 || ts
if t > s then

return ts
else

return tt

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 100 df s5 ws wd I5

000110
6 3 2 5 5 5 6

Immediate Signed Minimum IMINI_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 251

endif
endfunction min_s

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Immediate Unsigned Minimum IMINI_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 252

Format: MINI_U.df
MINI_U.B wd,ws,u5 MSA
MINI_U.H wd,ws,u5 MSA
MINI_U.W wd,ws,u5 MSA
MINI_U.D wd,ws,u5 MSA

Purpose: Immediate Unsigned Minimum

Immediate and vector unsigned minimum.

Description: wd[i] min(ws[i], u5)

Minimum values between unsigned elements in vector ws and the 5-bit unsigned immediate u5 are written to
vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

MINI_U.B
 t 03 || u54..0

for i in 0 .. WRLEN/8-1
WR[wd]8i+7..8i min_u(WR[ws]8i+7..8i, t, 8)

endfor

MINI_U.H
 t 011 || u54..0

for i in 0 .. WRLEN/16-1
WR[wd]16i+15..16i min_u(WR[ws]16i+15..16i, t, 16)

endfor

MINI_U.W
 t 027 || u54..0

for i in 0 .. WRLEN/32-1
WR[wd]32i+31..32i min_u(WR[ws]32i+31..32i, t, 32)

endfor

MINI_U.D
 t 059 || u54..0

for i in 0 .. WRLEN/64-1
WR[wd]64i+63..64i min_u(WR[ws]64i+63..64i, t, 64)

endfor

function min_u(ts, tt, n)
t 0 || tt
s 0 || ts
if t > s then

return ts
else

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 101 df u5 ws wd I5

000110
6 3 2 5 5 5 6

Immediate Unsigned Minimum IMINI_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 253

return tt
endif

endfunction min_u

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Signed Modulo IMOD_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 254

Format: MOD_S.df
MOD_S.B wd,ws,wt MSA
MOD_S.H wd,ws,wt MSA
MOD_S.W wd,ws,wt MSA
MOD_S.D wd,ws,wt MSA

Purpose: Vector Signed Modulo

Vector signed remainder (modulo).

Description: wd[i] ws[i] mod wt[i]

The signed integer elements in vector ws are divided by signed integer elements in vector wt. The remainder of the
same sign as the dividend is written to vector wd. If a divisor element vector wt is zero, the result v alue is UNPRE-
DICTABLE.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

MOD_S.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i WR[ws]8i+7..8i mod WR[wt]8i+7..8i
endfor

MOD_S.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i WR[ws]16i+15..16i mod WR[wt]16i+15..16i
endfor

MOD_S.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i WR[ws]32i+31..32i mod WR[wt]32i+31..32i
endfor

MOD_S.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i WR[ws]64i+63..64i mod WR[wt]64i+63..64i
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 110 df wt ws wd 3R

010010
6 3 2 5 5 5 6

Vector Unsigned Modulo IMOD_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 255

Format: MOD_U.df
MOD_U.B wd,ws,wt MSA
MOD_U.H wd,ws,wt MSA
MOD_U.W wd,ws,wt MSA
MOD_U.D wd,ws,wt MSA

Purpose: Vector Unsigned Modulo

Vector unsigned remainder (modulo).

Description: wd[i] ws[i] umod wt[i]

The unsigned integer elements in vector ws are divided by unsigned integer elements in vector wt. The remainder is
written to vector wd. If a divisor element vector wt is zero, the result value is UNPREDICTABLE.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

MOD_U.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i WR[ws]8i+7..8i umod WR[wt]8i+7..8i
endfor

MOD_U.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i WR[ws]16i+15..16i umod WR[wt]16i+15..16i
endfor

MOD_U.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i WR[ws]32i+31..32i umod WR[wt]32i+31..32i
endfor

MOD_U.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i WR[ws]64i+63..64i umod WR[wt]64i+63..64i
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 111 df wt ws wd 3R

010010
6 3 2 5 5 5 6

Vector Move IMOVE.V

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 256

Format: MOVE.V
MOVE.V wd,ws MSA

Purpose: Vector Move

Vector to vector move.

Description: wd ws

Copy all WRLEN bits in vector ws to vector wd.

The operand and result are bit vector values.

Restrictions:

No data-dependent exceptions are possible.

Operation:

 WR[wd] WR[ws]

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 16 15 11 10 6 5 0

MSA
011110 0010111110 ws wd ELM

011001
6 10 5 5 6

Vector Fixed-Point Multiply and Subtract IMSUB_Q.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 257

Format: MSUB_Q.df
MSUB_Q.H wd,ws,wt MSA
MSUB_Q.W wd,ws,wt MSA

Purpose: Vector Fixed-Point Multiply and Subtract

Vector fixed-point multiply and subtract.

Description: wd[i] saturate(wd[i] - ws[i] * wt[i])

The product of fixed-point elements in vector wt by fixed-point elements in vector ws are subtracted from the fixed-
point elements in vector wd. The multiplication result is not saturated, i.e. exact (-1) * (-1) = 1 is subtracted from the
destination. The saturated fixed-point results are stored back to wd.

Internally, the multiplication and subtraction operate o n data double the size of df. Truncation to fixed-point data
format df is performed at the very last stage, after saturation.

The operands and results are values in fixed-point data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

MSUB_Q.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i
q_msub(WR[wd]16i+15..16i, WR[ws]16i+15..16i, WR[wt]16i+15..16i, 16)

endfor

MSUB_Q.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i
q_msub(WR[wd]32i+31..32i, WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)

endfor

function mulx_s(ts, tt, n)
s (tsn-1)

n || tsn-1..0
t (ttn-1)

n || ttn-1..0
p s * t
return p2n-1..0

endfunction mulx_s

function sat_s(tt, n, b)
if ttn-1 = 0 and ttn-1..b-1 0

n-b+1 then
return 0n-b+1 || 1b-1

endif
if ttn-1 = 1 and ttn-1..b-1 1

n-b+1 then
return 1n-b+1 || 0b-1

else
return tt

endif

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 0110 df wt ws wd 3RF

011100
6 4 1 5 5 5 6

Vector Fixed-Point Multiply and Subtract IMSUB_Q.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 258

endfunction sat_s

function q_msub(td, ts, tt, n)
p mulx_s(ts, tt, n)
d (tdn-1 || tdn-1..0 || 0

n-1) - p2n-1..0
d sat_s(d2n-1..n-1, n+1, n)
return dn-1..0

endfunction q_msub

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Fixed-Point Multiply and Subtract Rounded IMSUBR_Q.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 259

Format: MSUBR_Q.df
MSUBR_Q.H wd,ws,wt MSA
MSUBR_Q.W wd,ws,wt MSA

Purpose: Vector Fixed-Point Multiply and Subtract Rounded

Vector fixed-point multiply and subtract rounded.

Description: wd[i] saturate(round(wd[i] - ws[i] * wt[i]))

The products of fixed-point elements in vector wt by fixed-point elements in vector ws are subtracted from the fixed-
point elements in vector wd. The multiplication result is not saturated, i.e. exact (-1) * (-1) = 1 is subtracted from the
destination. The rounded and saturated fixed-point results are stored back to wd.

Internally, the multiplication, subtraction, and rounding operate on data double the size of df. Truncation to fixed-
point data format df is performed at the very last stage, after saturation.

The rounding is done by adding 1 to the most significant bit that is going to be discarded at truncation.

The operands and results are values in fixed-point data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

MSUBR_Q.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i
q_msubr(WR[wd]16i+15..16i, WR[ws]16i+15..16i, WR[wt]16i+15..16i, 16)

endfor

MSUBR_Q.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i
q_msubr(WR[wd]32i+31..32i, WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)

endfor

function mulx_s(ts, tt, n)
s (tsn-1)

n || tsn-1..0
t (ttn-1)

n || ttn-1..0
p s * t
return p2n-1..0

endfunction mulx_s

function sat_s(tt, n, b)
if ttn-1 = 0 and ttn-1..b-1 0

n-b+1 then
return 0n-b+1 || 1b-1

endif
if ttn-1 = 1 and ttn-1..b-1 1

n-b+1 then
return 1n-b+1 || 0b-1

else
return tt

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 1110 df wt ws wd 3RF

011100
6 4 1 5 5 5 6

Vector Fixed-Point Multiply and Subtract Rounded IMSUBR_Q.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 260

endif
endfunction sat_s

function q_msubr(td, ts, tt, n)
p mulx_s(ts, tt, n)
d (tdn-1 || tdn-1..0 || 0

n-1) - p2n-1..0
d d + (1 || 0n-2)
d sat_s(d2n-1..n-1, n+1, n)
return dn-1..0

endfunction q_msubr

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Multiply and Subtract IMSUBV.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 261

Format: MSUBV.df
MSUBV.B wd,ws,wt MSA
MSUBV.H wd,ws,wt MSA
MSUBV.W wd,ws,wt MSA
MSUBV.D wd,ws,wt MSA

Purpose: Vector Multiply and Subtract

Vector multiply and subtract.

Description: wd[i] wd[i] - ws[i] * wt[i]

The integer elements in vector wt are multiplied by integer elements in vector ws and subtracted from the integer ele-
ments in vector wd. The most significant half of the multiplication result is discarded.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

MSUBV.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i
WR[wd]8i+7..8i - WR[ws]8i+7..8i * WR[wt]8i+7..8i

endfor

MSUBV.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i
WR[wd]16i+15..16i - WR[ws]16i+15..16i * WR[wt]16i+15..16i

endfor

MSUBV.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i
WR[wd]32i+31..32i - WR[ws]32i+31..32i * WR[wt]32i+31..32i

endfor

MSUBV.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i
WR[wd]64i+63..64i - WR[ws]64i+63..64i * WR[wt]64i+63..64i

endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 010 df wt ws wd 3R

010010
6 3 2 5 5 5 6

Vector Fixed-Point Multiply IMUL_Q.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 262

Format: MUL_Q.df
MUL_Q.H wd,ws,wt MSA
MUL_Q.W wd,ws,wt MSA

Purpose: Vector Fixed-Point Multiply

Vector fixed-point multiplication.

Description: wd[i] ws[i] * wt[i]

The fixed-point elements in vector wt multiplied by f ixed-point elements in vector ws. The result is written to
vector wd.

Fixed-point multiplication for 16-bit Q15 and 32-bit Q31 is a regular signed multiplication followed by one bit shift
left with saturation. Only the most significant half of the result is preserved.

The operands and results are values in fixed-point data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

MUL_Q.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i q_mul(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 16)
endfor

MUL_Q.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i q_mul(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

function mulx_s(ts, tt, n)
s (tsn-1)

n || tsn-1..0
t (ttn-1)

n || ttn-1..0
p s * t
return p2n-1..0

endfunction mulx_s

function q_mul(ts, tt, n)
if ts = 1 || 0n-1 and tt = 1 || 0n-1 then

return 0 || 1n-1

else
p mulx_s(ts, tt, n)
return p2n-2..n-1

endif
endfunction q_mul

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 0100 df wt ws wd 3RF

011100
6 4 1 5 5 5 6

Vector Fixed-Point Multiply Rounded IMULR_Q.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 263

Format: MULR_Q.df
MULR_Q.H wd,ws,wt MSA
MULR_Q.W wd,ws,wt MSA

Purpose: Vector Fixed-Point Multiply Rounded

Vector fixed-point multiply rounded.

Description: wd[i] round(ws[i] * wt[i])

The fixed-point elements in vector wt multiplied by fixed-point elements in vector ws. The rounded result is written
to vector wd.

Fixed-point multiplication for 16-bit Q15 and 32-bit Q31 is a regular signed multiplication followed by one bit shift
left with saturation. Only the most significant half of the result is preserved.

The rounding is done by adding 1 to the most significant bit that is going to be discarded prior to shifting left the full
multiplication result.

The operands and results are values in fixed-point data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

MULR_Q.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i q_mulr(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 16)
endfor

MULR_Q.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i q_mulr(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

function mulx_s(ts, tt, n)
s (tsn-1)

n || tsn-1..0
t (ttn-1)

n || ttn-1..0
p s * t
return p2n-1..0

endfunction mulx_s

function q_mulr(ts, tt, n)
if ts = 1 || 0n-1 and tt = 1 || 0n-1 then

return 0 || 1n-1

else
p mulx_s(ts, tt, n)
p p + (1 || 0n-2)
return p2n-2..n-1

endfunction q_mulr

31 26 25 22 21 20 16 15 11 10 6 5 0

MSA
011110 1100 df wt ws wd 3RF

011100
6 4 1 5 5 5 6

Vector Fixed-Point Multiply Rounded IMULR_Q.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 264

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Multiply IMULV.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 265

Format: MULV.df
MULV.B wd,ws,wt MSA
MULV.H wd,ws,wt MSA
MULV.W wd,ws,wt MSA
MULV.D wd,ws,wt MSA

Purpose: Vector Multiply

Vector multiply.

Description: wd[i] ws[i] * wt[i]

The integer elements in vector wt are multiplied by integer elements in vector ws. The result is written to vector wd.
The most significant half of the multiplication result is discarded.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

MULV.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i WR[ws]8i+7..8i * WR[wt]8i+7..8i
endfor

MULV.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i WR[ws]16i+15..16i * WR[wt]16i+15..16i
endfor

MULV.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i WR[ws]32i+31..32i * WR[wt]32i+31..32i
endfor

MULV.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i WR[ws]64i+63..64i * WR[wt]64i+63..64i
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 000 df wt ws wd 3R

010010
6 3 2 5 5 5 6

Vector Leading Ones Count INLOC.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 266

Format: NLOC.df
NLOC.B wd,ws MSA
NLOC.H wd,ws MSA
NLOC.W wd,ws MSA
NLOC.D wd,ws MSA

Purpose: Vector Leading Ones Count

Vector element count of leading bits set to 1.

Description: wd[i] leading_one_count(ws[i])

The number of leading ones for elements in vector ws is stored to the elements in vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

NLOC.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i leading_one_count(WR[ws]8i+7..8i, 8)
endfor

NLOC.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i leading_one_count(WR[ws]16i+15..16i, 16)
endfor

NLOC.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i leading_one_count(WR[ws]32i+31..32i, 32)
endfor

NLOC.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i leading_one_count(WR[ws]64i+63..64i, 64)
endfor

function leading_one_count(tt, n)
z 0
for i in n-1..0

if tti = 0 then
return z

else
z z + 1

endif
endfunction leading_one_count

31 26 25 18 17 16 15 11 10 6 5 0

MSA
011110 11000010 df ws wd 2R

011110
6 8 2 5 5 6

Vector Leading Ones Count INLOC.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 267

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Leading Zeros Count INLZC.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 268

Format: NLZC.df
NLZC.B wd,ws MSA
NLZC.H wd,ws MSA
NLZC.W wd,ws MSA
NLZC.D wd,ws MSA

Purpose: Vector Leading Zeros Count

Vector element count of leading bits set to 0.

Description: wd[i] leading_zero_count(ws[i])

The number of leading zeroes for elements in vector ws is stored to the elements in vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

NLZC.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i leading_zero_count(WR[ws]8i+7..8i, 8)
endfor

NLZC.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i leading_zero_count(WR[ws]16i+15..16i, 16)
endfor

NLZC.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i leading_zero_count(WR[ws]32i+31..32i, 32)
endfor

NLZC.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i leading_zero_count(WR[ws]64i+63..64i, 64)
endfor

function leading_zero_count(tt, n)
z 0
for i in n-1..0

if tti = 1 then
return z

else
z z + 1

endif
endfunction leading_zero_count

31 26 25 18 17 16 15 11 10 6 5 0

MSA
011110 11000011 df ws wd 2R

011110
6 8 2 5 5 6

Vector Leading Zeros Count INLZC.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 269

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Logical Negated Or INOR.V

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 270

Format: NOR.V
NOR.V wd,ws,wt MSA

Purpose: Vector Logical Negated Or

Vector by vector logical negated or.

Description: wd ws NOR wt

Each bit of vector ws is combined with the corresponding bit of vector wt in a bi twise logical NOR operation. The
result is written to vector wd.

The operands and results are bit vector values.

Restrictions:

No data-dependent exceptions are possible.

Operation:

 WR[wd] WR[ws] nor WR[wt]

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 21 20 16 15 11 10 6 5 0

MSA
011110 00010 wt ws wd VEC

011110
6 5 5 5 5 6

Immediate Logical Negated Or INORI.B

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 271

Format: NORI.B
NORI.B wd,ws,i8 MSA

Purpose: Immediate Logical Negated Or

Immediate by vector logical negated or.

Description: wd[i] ws[i] NOR i8

Each byte element of vector ws is combined with the 8-bit immediate i8 in a bitwis e logical NOR operation. The
result is written to vector wd.

The operands and results are values in integer byte data format.

Restrictions:

No data-dependent exceptions are possible.

Operation:

 for i in 0 .. WRLEN/8-1
WR[wd]8i+7..8i WR[ws]8i+7..8i nor i87..0

endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 24 23 16 15 11 10 6 5 0

MSA
011110 10 i8 ws wd I8

000000
6 2 8 5 5 6

Vector Logical Or IOR.V

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 272

Format: OR.V
OR.V wd,ws,wt MSA

Purpose: Vector Logical Or

Vector by vector logical or.

Description: wd ws OR wt

Each bit of vector ws is combined with the corresponding bit of vector wt in a bit wise logical OR operation. The
result is written to vector wd.

The operands and results are bit vector values.

Restrictions:

No data-dependent exceptions are possible.

Operation:

 WR[wd] WR[ws] or WR[wt]

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 21 20 16 15 11 10 6 5 0

MSA
011110 00001 wt ws wd VEC

011110
6 5 5 5 5 6

Immediate Logical Or IORI.B

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 273

Format: ORI.B
ORI.B wd,ws,i8 MSA

Purpose: Immediate Logical Or

Immediate by vector logical or.

Description: wd[i] ws[i] OR i8

Each byte element of vector ws is combined with the 8-bit immediate i8 in a bitwise logical OR operation. The result
is written to vector wd.

The operands and results are values in integer byte data format.

Restrictions:

No data-dependent exceptions are possible.

Operation:

 for i in 0 .. WRLEN/8-1
WR[wd]8i+7..8i WR[ws]8i+7..8i or i87..0

endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 24 23 16 15 11 10 6 5 0

MSA
011110 01 i8 ws wd I8

000000
6 2 8 5 5 6

Vector Pack Even IPCKEV.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 274

Format: PCKEV.df
PCKEV.B wd,ws,wt MSA
PCKEV.H wd,ws,wt MSA
PCKEV.W wd,ws,wt MSA
PCKEV.D wd,ws,wt MSA

Purpose: Vector Pack Even

Vector even elements copy.

Description: left_half(wd)[i] ws[2i]; right_half(wd)[i] wt[2i]

Even elements in vector ws are copied to the left half of vector wd and even elements in vector wt are copied to the
right half of vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

PCKEV.B
 for i in 0 .. WRLEN/16-1

j 2 * i
WR[wd]8i+7+WRLEN/2..8i+WRLEN/2 WR[ws]8j+7..8j
WR[wd]8i+7..8i WR[wt]8j+7..8j

endfor

PCKEV.H
 for i in 0 .. WRLEN/32-1

j 2 * i
WR[wd]16i+15+WRLEN/2..16j+WRLEN/2 WR[ws]16j+15..16j
WR[wd]16i+15..16i WR[wt]16j+15..16j

endfor

PCKEV.W
 for i in 0 .. WRLEN/64-1

j 2 * i
WR[wd]32i+31+WRLEN/2..32j+WRLEN/2 WR[ws]32j+31..32j
WR[wd]32i+31..32i WR[wt]32j+31..32j

endfor

PCKEV.D
 for i in 0 .. WRLEN/128-1

j 2 * i
WR[wd]64i+63+WRLEN/2..64j+WRLEN/2 WR[ws]64j+63..64j
WR[wd]64i+63..64i WR[wt]64j+63..64j

endfor

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 010 df wt ws wd 3R

010100
6 3 2 5 5 5 6

Vector Pack Even IPCKEV.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 275

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Pack Odd IPCKOD.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 276

Format: PCKOD.df
PCKOD.B wd,ws,wt MSA
PCKOD.H wd,ws,wt MSA
PCKOD.W wd,ws,wt MSA
PCKOD.D wd,ws,wt MSA

Purpose: Vector Pack Odd

Vector odd elements copy.

Description: left_half(wd)[i] ws[2i+1]; right_half(wd)[i] wt[2i+1]

Odd elements in vector ws are copied to the left half of vector wd and odd elements in vector wt are copied to the right
half of vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

PCKOD.B
 for i in 0 .. WRLEN/16-1

k 2 * i + 1
WR[wd]8i+7+WRLEN/2..8i+WRLEN/2 WR[ws]8k+7..8k
WR[wd]8i+7..8i WR[wt]8k+7..8k

endfor

PCKOD.H
 for i in 0 .. WRLEN/32-1

k 2 * i + 1
WR[wd]16i+15+WRLEN/2..16i+WRLEN/2 WR[ws]16k+15..16k
WR[wd]16i+15..16i WR[wt]16k+15..16k

endfor

PCKOD.W
 for i in 0 .. WRLEN/64-1

k 2 * i + 1
WR[wd]32i+31+WRLEN/2..32i+WRLEN/2 WR[ws]32k+31..32k
WR[wd]32i+31..32i WR[wt]32k+31..32k

endfor

PCKOD.D
 for i in 0 .. WRLEN/128-1

k 2 * i + 1
WR[wd]64i+63+WRLEN/2..64i+WRLEN/2 WR[ws]64k+63..64k
WR[wd]64i+63..64i WR[wt]64k+63..64k

endfor

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 011 df wt ws wd 3R

010100
6 3 2 5 5 5 6

Vector Pack Odd IPCKOD.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 277

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Population Count IPCNT.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 278

Format: PCNT.df
PCNT.B wd,ws MSA
PCNT.H wd,ws MSA
PCNT.W wd,ws MSA
PCNT.D wd,ws MSA

Purpose: Vector Population Count

Vector element count of all bits set to 1.

Description: wd[i] population_count(ws[i])

The number of bits set to 1 for elements in vector ws is stored to the elements in vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

PCNT.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i population_count(WR[ws]8i+7..8i, 8)
endfor

PCNT.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i population_count(WR[ws]16i+15..16i, 16)
endfor

PCNT.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i population_count(WR[ws]32i+31..32i, 32)
endfor

PCNT.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i population_count(WR[ws]64i+63..64i, 64)
endfor

function population_count(tt, n)
z 0
for i in n-1..0

if tti = 1 then
z z + 1

endif
endfunction population_count

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 18 17 16 15 11 10 6 5 0

MSA
011110 11000001 df ws wd 2R

011110
6 8 2 5 5 6

Immediate Signed Saturate ISAT_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 279

Format: SAT_S.df
SAT_S.B wd,ws,m MSA
SAT_S.H wd,ws,m MSA
SAT_S.W wd,ws,m MSA
SAT_S.D wd,ws,m MSA

Purpose: Immediate Signed Saturate

Immediate selected bit width saturation of signed values.

Description: wd[i] saturate_signed(ws[i], m+1)

Signed elements in vector ws are saturated to signed values of m+1 bits without changing the data width. The result is
written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SAT_S.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i sat_s(WR[ws]8i+7..8i, 8, m+1)
endfor

SAT_S.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i sat_s(WR[ws]16i+15..16i, 16, m+1)
endfor

SAT_S.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i sat_s(WR[ws]32i+31..32i, 32, m+1)
endfor

SAT_S.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i sat_s(WR[ws]64i+63..64i, 64, m+1)
endfor

function sat_s(tt, n, b)
if ttn-1 = 0 and ttn-1..b-1 0

n-b+1 then
return 0n-b+1 || 1b-1

endif
if ttn-1 = 1 and ttn-1..b-1 1

n-b+1 then
return 1n-b+1 || 0b-1

else
return tt

endif
endfunction sat_s

31 26 25 23 22 16 15 11 10 6 5 0

MSA
011110 000 df/m ws wd BIT

001010
6 3 7 5 5 6

Immediate Signed Saturate ISAT_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 280

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Immediate Unsigned Saturate ISAT_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 281

Format: SAT_U.df
SAT_U.B wd,ws,m MSA
SAT_U.H wd,ws,m MSA
SAT_U.W wd,ws,m MSA
SAT_U.D wd,ws,m MSA

Purpose: Immediate Unsigned Saturate

Immediate selected bit width saturation of unsigned values.

Description: wd[i] saturate_unsigned(ws[i], m+1)

Unsigned elements in vector ws are saturated to unsigned values of m+1 bits without changing the data width. The
result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SAT_U.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i sat_u(WR[ws]8i+7..8i, 8, m+1)
endfor

SAT_U.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i sat_u(WR[ws]16i+15..16i, 16, m+1)
endfor

SAT_U.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i sat_u(WR[ws]32i+31..32i, 32, m+1)
endfor

SAT_U.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i sat_u(WR[ws]64i+63..64i, 64, m+1)
endfor

function sat_u(tt, n, b)
if ttn-1..b 0

n-b then
return 0n-b || 1b

else
return tt

endif
endfunction sat_u

31 26 25 23 22 16 15 11 10 6 5 0

MSA
011110 001 df/m ws wd BIT

001010
6 3 7 5 5 6

Immediate Unsigned Saturate ISAT_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 282

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Immediate Set Shuffle Elements ISHF.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 283

Format: SHF.df
SHF.B wd,ws,i8 MSA
SHF.H wd,ws,i8 MSA
SHF.W wd,ws,i8 MSA

Purpose: Immediate Set Shuffle Elements

Immediate control value-based 4 element set copy

Description: wd[i] shuffle_set(ws, i, i8)

The set shuffle instruction w orks on 4-element sets in df data format. All sets are shuf fled in the same w ay: the
element i82i+1..2i in ws is copied over the element i in wd, where i is 0, 1, 2, 3.

The operands and results are values in byte data format.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SHF.B
 for i in 0 .. WRLEN/8-1

j i % 4
k i - j + i82j+1..2j
WR[wd]8i+7..8i WR[ws]8k+7..8k

endfor

SHF.H
 for i in 0 .. WRLEN/16-1

j i % 4
k i - j + i82j+1..2j
WR[wd]16i+15..16i WR[ws]16k+15..16k

endfor

SHF.W
 for i in 0 .. WRLEN/32-1

j i % 4
k i - j + i82j+1..2j
WR[wd]32i+31..32i WR[ws]32k+31..32k

endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 24 23 16 15 11 10 6 5 0

MSA
011110 df i8 ws wd I8

000010
6 2 8 5 5 6

GPR Columns Slide ISLD.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 284

Format: SLD.df
SLD.B wd,ws[rt] MSA
SLD.H wd,ws[rt] MSA
SLD.W wd,ws[rt] MSA
SLD.D wd,ws[rt] MSA

Purpose: GPR Columns Slide

GPR number of columns to slide left source array.

Description: wd[i] slide(wd, ws, rt)

Vector registers wd and ws contain 2-dimensional byte arrays (rectangles) stored row-wise, with as many rows as
bytes in integer data format df.

The slide instructions manipulate the content of vector registers wd and ws as byte elements, with data format df indi-
cating the 2-dimensional byte array layout.

The two source rectangles wd and ws are concatenated horizontally in the order they appear in the syntax, i.e. first wd
and then ws. Place a new destination rectangle over ws and then slide it to the left over the concatenation of wd and ws
by the number of columns given in GPR rt. The result is written to vector wd.

GPR rt value is interpreted modulo the number of columns in destination rectangle, or equivalently, the number of
data format df elements in the destination vector.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SLD.B
 n GPR[rt] % (WRLEN/8)

v WR[wd] || WR[ws]
for i in 0 .. WRLEN/8-1

j i + n
WR[wd]8i+7..8i v8j+7..8j

endfor

SLD.H
 n GPR[rt] % (WRLEN/16)

s WRLEN/2
for k in 0, 1

t = s * k
v (WR[wd]t+s-1..t || WR[ws]t+s-1..t)
for i in 0 .. s/8-1

j i + n
WR[wd]t+8i+7..t+8i v8j+7..8j

endfor
endfor

SLD.W
 n GPR[rt] % (WRLEN/32)

s WRLEN/4

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 000 df rt ws wd 3R

010100
6 3 2 5 5 5 6

GPR Columns Slide ISLD.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 285

for k in 0, .., 3
t = s * k
v (WR[wd]t+s-1..t || WR[ws]t+s-1..t)
for i in 0 .. s/8-1

j i + n
WR[wd]t+8i+7..t+8i v8j+7..8j

endfor
endfor

SLD.D
 n GPR[rt] % (WRLEN/64)

s WRLEN/8
for k in 0, .., 7

t = s * k
v (WR[wd]t+s-1..t || WR[ws]t+s-1..t)
for i in 0 .. s/8-1

j i + n
WR[wd]t+8i+7..t+8i v8j+7..8j

endfor
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Immediate Columns Slide ISLDI.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 286

Format: SLDI.df
SLDI.B wd,ws[n] MSA
SLDI.H wd,ws[n] MSA
SLDI.W wd,ws[n] MSA
SLDI.D wd,ws[n] MSA

Purpose: Immediate Columns Slide

Immediate number of columns to slide left source array.

Description: wd[i] slide(wd, ws, n)

Vector registers wd and ws contain 2-dimensional byte arrays (rectangles) stored row-wise, with as many rows as
bytes in integer data format df.

The slide instructions manipulate the content of vector registers wd and ws as byte elements, with data format df indi-
cating the 2-dimensional byte array layout.

The two source rectangles wd and ws are concatenated horizontally in the order they appear in the syntax, i.e. first wd
and then ws. Place a new destination rectangle over ws and then slide it to the left over the concatenation of wd and ws
by n columns. The result is written to vector wd.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SLDI.B
 v WR[wd] || WR[ws]

for i in 0 .. WRLEN/8-1
j i + n
WR[wd]8i+7..8i v8j+7..8j

endfor

SLDI.H
 s WRLEN/2

for k in 0, 1
t = s * k
v (WR[wd]t+s-1..t || WR[ws]t+s-1..t)
for i in 0 .. s/8-1

j i + n
WR[wd]t+8i+7..t+8i v8j+7..8j

endfor
endfor

SLDI.W
 s WRLEN/4

for k in 0, .., 3
t = s * k
v (WR[wd]t+s-1..t || WR[ws]t+s-1..t)
for i in 0 .. s/8-1

j i + n

31 26 25 22 21 16 15 11 10 6 5 0

MSA
011110 0000 df/n ws wd ELM

011001
6 4 6 5 5 6

Immediate Columns Slide ISLDI.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 287

WR[wd]t+8i+7..t+8i v8j+7..8j
endfor

endfor

SLDI.D
 s WRLEN/8

for k in 0, .., 7
t = s * k
v (WR[wd]t+s-1..t || WR[ws]t+s-1..t)
for i in 0 .. s/8-1

j i + n
WR[wd]t+8i+7..t+8i v8j+7..8j

endfor
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Shift Left ISLL.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 288

Format: SLL.df
SLL.B wd,ws,wt MSA
SLL.H wd,ws,wt MSA
SLL.W wd,ws,wt MSA
SLL.D wd,ws,wt MSA

Purpose: Vector Shift Left

Vector bit count shift left.

Description: wd[i] ws[i] << wt[i]

The elements in vector ws are shifted left by the number of bits the elements in vector wt specify modulo the size of
the element in bits. The result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SLL.B
 for i in 0 .. WRLEN/8-1

t WR[wt]8i+2..8i
WR[wd]8i+7..8i WR[ws]8i+8-t-1..8i || 0

t

endfor

SLL.H
 for i in 0 .. WRLEN/16-1

t WR[wt]16i+3..16i
WR[wd]16i+15..16i WR[ws]16i+16-t-1..16i || 0

t

endfor

SLL.W
 for i in 0 .. WRLEN/32-1

t WR[wt]32i+4..32i
WR[wd]32i+31..32i WR[ws]32i+32-t-1..32i || 0

t

endfor

SLL.D
 for i in 0 .. WRLEN/64-1

t WR[wt]64i+5..64i
WR[wd]64i+63..64i WR[ws]64i+64-t-1..64i || 0

t

endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 000 df wt ws wd 3R

001101
6 3 2 5 5 5 6

Immediate Shift Left ISLLI.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 289

Format: SLLI.df
SLLI.B wd,ws,m MSA
SLLI.H wd,ws,m MSA
SLLI.W wd,ws,m MSA
SLLI.D wd,ws,m MSA

Purpose: Immediate Shift Left

Immediate bit count shift left.

Description: wd[i] ws[i] << m

The elements in vector ws are shifted left by m bits. The result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SLLI.B
 t m

for i in 0 .. WRLEN/8-1
WR[wd]8i+7..8i WR[ws]8i+8-t-1..8i || 0

t

endfor

SLLI.H
 t m

for i in 0 .. WRLEN/16-1
WR[wd]16i+15..16i WR[ws]16i+16-t-1..16i || 0

t

endfor

SLLI.W
 t m

for i in 0 .. WRLEN/32-1
WR[wd]32i+31..32i WR[ws]32i+32-t-1..32i || 0

t

endfor

SLLI.D
 t m

for i in 0 .. WRLEN/64-1
WR[wd]64i+63..64i WR[ws]64i+64-t-1..64i || 0

t

endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 16 15 11 10 6 5 0

MSA
011110 000 df/m ws wd BIT

001001
6 3 7 5 5 6

GPR Element Splat ISPLAT.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 290

Format: SPLAT.df
SPLAT.B wd,ws[rt] MSA
SPLAT.H wd,ws[rt] MSA
SPLAT.W wd,ws[rt] MSA
SPLAT.D wd,ws[rt] MSA

Purpose: GPR Element Splat

GPR selected element replicated in all destination elements.

Description: wd[i] ws[rt]

Replicate vector ws element with index given by GPR rt to all elements in vector wd.

GPR rt value is interpreted modulo the number of data format df elements in the destination vector.

The operands and results are values in data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SPLAT.B
 n GPR[rt] % (WRLEN/8)

for i in 0 .. WRLEN/8-1
WR[wd]8i+7..8i WR[ws]8n+7..8n

endfor

SPLAT.H
 n GPR[rt] % (WRLEN/16)

for i in 0 .. WRLEN/16-1
WR[wd]16i+15..16i WR[ws]16n+15..16n

endfor

SPLAT.W
 n GPR[rt] % (WRLEN/32)

for i in 0 .. WRLEN/32-1
WR[wd]32i+31..32i WR[ws]32n+31..32n

endfor

SPLAT.D
 n GPR[rt] % (WRLEN/64)

for i in 0 .. WRLEN/64-1
WR[wd]64i+63..64i WR[ws]64n+63..64n

endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 001 df rt ws wd 3R

010100
6 3 2 5 5 5 6

Immediate Element Splat ISPLATI.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 291

Format: SPLATI.df
SPLATI.B wd,ws[n] MSA
SPLATI.H wd,ws[n] MSA
SPLATI.W wd,ws[n] MSA
SPLATI.D wd,ws[n] MSA

Purpose: Immediate Element Splat

Immediate selected element replicated in all destination elements.

Description: wd[i] ws[n]

Replicate element n in vector ws to all elements in vector wd.

The operands and results are values in data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SPLATI.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i WR[ws]8n+7..8n
endfor

SPLATI.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i WR[ws]16n+15..16n
endfor

SPLATI.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i WR[ws]32n+31..32n
endfor

SPLATI.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i WR[ws]64n+63..64n
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 22 21 16 15 11 10 6 5 0

MSA
011110 0001 df/n ws wd ELM

011001
6 4 6 5 5 6

Vector Shift Right Arithmetic ISRA.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 292

Format: SRA.df
SRA.B wd,ws,wt MSA
SRA.H wd,ws,wt MSA
SRA.W wd,ws,wt MSA
SRA.D wd,ws,wt MSA

Purpose: Vector Shift Right Arithmetic

Vector bit count shift right arithmetic.

Description: wd[i] ws[i] >> wt[i]

The elements in vector ws are shifted right arithmetic by the number of bits the elements in vector wt specify modulo
the size of the element in bits. The result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SRA.B
 for i in 0 .. WRLEN/8-1

t WR[wt]8i+2..8i
WR[wd]8i+7..8i (WR[ws]8i+7)

t || WR[ws]8i+7..8i+t
endfor

SRA.H
 for i in 0 .. WRLEN/16-1

t WR[wt]16i+3..16i
WR[wd]16i+15..16i (WR[ws]16i+15)

t || WR[ws]16i+15..16i+t
endfor

SRA.W
 for i in 0 .. WRLEN/32-1

t WR[wt]32i+4..32i
WR[wd]32i+31..32i (WR[ws]32i+31)

t || WR[ws]32i+31..32i+t
endfor

SRA.D
 for i in 0 .. WRLEN/64-1

t WR[wt]64i+5..64i
WR[wd]64i+63..64i (WR[ws]64i+63)

t || WR[ws]64i+63..64i+t
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 001 df wt ws wd 3R

001101
6 3 2 5 5 5 6

Immediate Shift Right Arithmetic ISRAI.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 293

Format: SRAI.df
SRAI.B wd,ws,m MSA
SRAI.H wd,ws,m MSA
SRAI.W wd,ws,m MSA
SRAI.D wd,ws,m MSA

Purpose: Immediate Shift Right Arithmetic

Immediate bit count shift right arithmetic.

Description: wd[i] ws[i] >> m

The elements in vector ws are shifted right arithmetic by m bits. The result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SRAI.B
 t m

for i in 0 .. WRLEN/8-1
WR[wd]8i+7..8i (WR[ws]8i+7)

t || WR[ws]8i+7..8i+t
endfor

SRAI.H
 t m

for i in 0 .. WRLEN/16-1
WR[wd]16i+15..16i (WR[ws]16i+15)

t || WR[ws]16i+15..16i+t
endfor

SRAI.W
 t m

for i in 0 .. WRLEN/32-1
WR[wd]32i+31..32i (WR[ws]32i+31)

t || WR[ws]32i+31..32i+t
endfor

SRAI.D
 t m

for i in 0 .. WRLEN/64-1
WR[wd]64i+63..64i (WR[ws]64i+63)

t || WR[ws]64i+63..64i+t
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 16 15 11 10 6 5 0

MSA
011110 001 df/m ws wd BIT

001001
6 3 7 5 5 6

Vector Shift Right Arithmetic Rounded ISRAR.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 294

Format: SRAR.df
SRAR.B wd,ws,wt MSA
SRAR.H wd,ws,wt MSA
SRAR.W wd,ws,wt MSA
SRAR.D wd,ws,wt MSA

Purpose: Vector Shift Right Arithmetic Rounded

Vector bit count shift right arithmetic with rounding

Description: wd[i] ws[i] >>(rounded) wt[i]

The elements in vector ws are shifted right arithmetic by the number of bits the elements in vector wt specify modulo
the size of the element in bits. The most significant discarded bit is added to the shifted value (for rounding) and the
result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SRAR.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i srar(WR[ws]8i+7..8i, WR[wt]8i+2..8i, 8)
endfor

SRAR.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i srar(WR[ws]16i+15..16i, WR[wt]16i+3..16i, 16)
endfor

SRAR.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i srar(WR[ws]32i+31..32i, WR[wt]32i+4..32i, 32)
endfor

SRAR.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i srar(WR[ws]64i+63..64i, WR[wt]64i+5..64i, 64)
endfor

function srar(ts, n, b)
if n = 0 then

return ts
else

return ((tsb-1)
n || tsb-1..n) + tsn-1

endif
endfunction srar

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 001 df wt ws wd 3R

010101
6 3 2 5 5 5 6

Vector Shift Right Arithmetic Rounded ISRAR.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 295

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Immediate Shift Right Arithmetic Rounded ISRARI.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 296

Format: SRARI.df
SRARI.B wd,ws,m MSA
SRARI.H wd,ws,m MSA
SRARI.W wd,ws,m MSA
SRARI.D wd,ws,m MSA

Purpose: Immediate Shift Right Arithmetic Rounded

Immediate bit count shift right arithmetic with rounding

Description: wd[i] ws[i] >>(rounded) m

The elements in v ector ws are shifted right arithmetic by m bits. The most significant discarded bit is added to the
shifted value (for rounding) and the result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SRARI.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i srar(WR[ws]8i+7..8i, m, 8)
endfor

SRARI.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i srar(WR[ws]16i+15..16i, m, 16)
endfor

SRARI.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i srar(WR[ws]32i+31..32i, m, 32)
endfor

SRARI.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i srar(WR[ws]64i+63..64i, m, 64)
endfor

function srar(ts, n, b)
if n = 0 then

return ts
else

return ((tsb-1)
n || tsb-1..n) + tsn-1

endif
endfunction srar

31 26 25 23 22 16 15 11 10 6 5 0

MSA
011110 010 df/m ws wd BIT

001010
6 3 7 5 5 6

Immediate Shift Right Arithmetic Rounded ISRARI.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 297

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Shift Right Logical ISRL.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 298

Format: SRL.df
SRL.B wd,ws,wt MSA
SRL.H wd,ws,wt MSA
SRL.W wd,ws,wt MSA
SRL.D wd,ws,wt MSA

Purpose: Vector Shift Right Logical

Vector bit count shift right logical.

Description: wd[i] ws[i] >> wt[i]

The elements in vector ws are shifted right logical by the number of bits the elements in vector wt specify modulo the
size of the element in bits. The result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SRL.B
 for i in 0 .. WRLEN/8-1

t WR[wt]8i+2..8i
WR[wd]8i+7..8i 0t || WR[ws]8i+7..8i+t

endfor

SRL.H
 for i in 0 .. WRLEN/16-1

t WR[wt]16i+3..16i
WR[wd]16i+15..16i 0t || WR[ws]16i+15..16i+t

endfor

SRL.W
 for i in 0 .. WRLEN/32-1

t WR[wt]32i+4..32i
WR[wd]32i+31..32i 0t || WR[ws]32i+31..32i+t

endfor

SRL.D
 for i in 0 .. WRLEN/64-1

t WR[wt]64i+5..64i
WR[wd]64i+63..64i (WR[ws]64i+63)

t || WR[ws]64i+63..64i+t
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 010 df wt ws wd 3R

001101
6 3 2 5 5 5 6

Immediate Shift Right Logical ISRLI.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 299

Format: SRLI.df
SRLI.B wd,ws,m MSA
SRLI.H wd,ws,m MSA
SRLI.W wd,ws,m MSA
SRLI.D wd,ws,m MSA

Purpose: Immediate Shift Right Logical

Immediate bit count shift right logical.

Description: wd[i] ws[i] >> m

The elements in vector ws are shifted right logical by m bits. The result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SRLI.B
 t m

for i in 0 .. WRLEN/8-1
WR[wd]8i+7..8i 0t || WR[ws]8i+7..8i+t

endfor

SRLI.H
 t m

for i in 0 .. WRLEN/16-1
WR[wd]16i+15..16i 0t || WR[ws]16i+15..16i+t

endfor

SRLI.W
 t m

for i in 0 .. WRLEN/32-1
WR[wd]32i+31..32i 0t || WR[ws]32i+31..32i+t

endfor

SRLI.D
 t m

for i in 0 .. WRLEN/64-1
WR[wd]64i+63..64i 0t || WR[ws]64i+63..64i+t

endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 16 15 11 10 6 5 0

MSA
011110 010 df/m ws wd BIT

001001
6 3 7 5 5 6

Vector Shift Right Logical Rounded ISRLR.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 300

Format: SRLR.df
SRLR.B wd,ws,wt MSA
SRLR.H wd,ws,wt MSA
SRLR.W wd,ws,wt MSA
SRLR.D wd,ws,wt MSA

Purpose: Vector Shift Right Logical Rounded

Vector bit count shift right logical with rounding

Description: wd[i] ws[i] >>(rounded) wt[i]

The elements in vector ws are shifted right logical by the number of bits the elements in vector wt specify modulo the
size of the element in bits. The most significant discarded bit is added to the shifted value (for rounding) and the result
is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SRLR.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i srlr(WR[ws]8i+7..8i, WR[wt]8i+2..8i, 8)
endfor

SRLR.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i srlr(WR[ws]16i+15..16i, WR[wt]16i+3..16i, 16)
endfor

SRLR.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i srlr(WR[ws]32i+31..32i, WR[wt]32i+4..32i, 32)
endfor

SRLR.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i srlr(WR[ws]64i+63..64i, WR[wt]64i+5..64i, 64)
endfor

function srlr(ts, n, b)
if n = 0 then

return ts
else

return (0n || tsb-1..n) + tsn-1
endif

endfunction srlr

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 010 df wt ws wd 3R

010101
6 3 2 5 5 5 6

Vector Shift Right Logical Rounded ISRLR.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 301

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Immediate Shift Right Logical Rounded ISRLRI.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 302

Format: SRLRI.df
SRLRI.B wd,ws,m MSA
SRLRI.H wd,ws,m MSA
SRLRI.W wd,ws,m MSA
SRLRI.D wd,ws,m MSA

Purpose: Immediate Shift Right Logical Rounded

Immediate bit count shift right logical with rounding

Description: wd[i] ws[i] >>(rounded) m

The elements in vector ws are shifted right logical by m bits. The most significant discarded bit is added to the shifted
value (for rounding) and the result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SRLRI.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i srlr(WR[ws]8i+7..8i, m, 8)
endfor

SRLRI.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i srlr(WR[ws]16i+15..16i, m, 16)
endfor

SRLRI.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i srlr(WR[ws]32i+31..32i, m, 32)
endfor

SRLRI.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i srlr(WR[ws]64i+63..64i, m, 64)
endfor

function srlr(ts, n, b)
if n = 0 then

return ts
else

return (0n || tsb-1..n) + tsn-1
endif

endfunction srlr

31 26 25 23 22 16 15 11 10 6 5 0

MSA
011110 011 df/m ws wd BIT

001010
6 3 7 5 5 6

Immediate Shift Right Logical Rounded ISRLRI.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 303

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Store IST.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 304

Format: ST.df
ST.B wd,s10(rs) MSA
ST.H wd,s10(rs) MSA
ST.W wd,s10(rs) MSA
ST.D wd,s10(rs) MSA

Purpose: Vector Store

Vector store element-by-element to base register plus offset memory address.

Description: memory[rs + s10 + i * sizeof(wd[i])] wd[i]

The WRLEN / 8 bytes in vector wd are stored as elements of data format df at the effective memory location addressed
by the base rs and the 10-bit signed immediate offset s10.

The s10 offset in data format df units is added to the base rs to form the effective memory location address. rs and the
effective memory location address have no alignment restrictions.

If the effective memory location address is element aligned, the vector store instruction is atomic at the element level
with no guaranteed ordering among elemen ts, i.e. each element store is an atomic operation issued in no particular
order with respect to the element's vector position.

By convention, in the assembly language syntax all offsets are in bytes and have to be multiple of the size of the data
format df. The assembler determines the s10 bitfield value dividing the byte offset by the size of the data format df.

Restrictions:

Address-dependent exceptions are possible.

Operation:

ST.B
 a rs + s10

StoreByteVector(WR[wd]WRLEN-1..0, a, WRLEN/8)

ST.H
 a rs + s10 * 2

StoreHalfwordVector(WR[wd]WRLEN-1..0, a, WRLEN/16)

ST.W
 a rs + s10 * 4

StoreWordVector(WR[wd]WRLEN-1..0, a, WRLEN/32)

ST.D
 a rs + s10 * 8

StoreDoublewordVector(WR[wd]WRLEN-1..0, a, WRLEN/64)

function StoreByteVector(tt, a, n)
/* Implementation defined store n byte vector tt to virtual

address a. */
endfunction StoreByteVector

function StoreHalfwordVector(tt, a, n)
/* Implementation defined store n halfword vector tt to virtual

31 26 25 16 15 11 10 6 5 2 1 0

MSA
011110 s10 rs wd MI10

1001 df

6 10 5 5 4 2

Vector Store IST.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 305

address a. */
endfunction StoreHalfwordVector

function StoreWordVector(tt, a, n)
/* Implementation defined store n word vector tt to virtual

address a. */
endfunction StoreWordVector

function StoreDoublewordVector(tt, a, n)
/* Implementation defined store n doubleword vector tt to virtual

address a. */
endfunction StoreDoublewordVector

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception. Data access TLB and Address Error Exceptions.

Vector Signed Saturated Subtract of Signed Values ISUBS_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 306

Format: SUBS_S.df
SUBS_S.B wd,ws,wt MSA
SUBS_S.H wd,ws,wt MSA
SUBS_S.W wd,ws,wt MSA
SUBS_S.D wd,ws,wt MSA

Purpose: Vector Signed Saturated Subtract of Signed Values

Vector subtraction from vector saturating the result as signed value.

Description: wd[i] saturate_signed(signed(ws[i]) - signed(wt[i]))

The elements in vector wt are subtracted from the eleme nts in vector ws. Signed arithmetic is performed and o ver-
flows clamp to the largest and/or smallest representable signed values before writing the result to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SUBS_S.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i subs_s(WR[ws]8i+7..8i, WR[wt]8i+7..8i, 8)
endfor

SUBS_S.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i subs_s(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 16)
endfor

SUBS_S.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i subs_s(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

SUBS_S.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i subs_s(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
endfor

function sat_s(tt, n, b)
if ttn-1 = 0 and ttn-1..b-1 0

n-b+1 then
return 0n-b+1 || 1b-1

endif
if ttn-1 = 1 and ttn-1..b-1 1

n-b+1 then
return 1n-b+1 || 0b-1

else
return tt

endif
endfunction sat_s

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 000 df wt ws wd 3R

010001
6 3 2 5 5 5 6

Vector Signed Saturated Subtract of Signed Values ISUBS_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 307

function subs_s(ts, tt, n)
t (tsn-1 || ts) - (ttn-1 || tt)
return sat_s(t, n+1, n)

endfunction subs_s

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Unsigned Saturated Subtract of Unsigned Values ISUBS_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 308

Format: SUBS_U.df
SUBS_U.B wd,ws,wt MSA
SUBS_U.H wd,ws,wt MSA
SUBS_U.W wd,ws,wt MSA
SUBS_U.D wd,ws,wt MSA

Purpose: Vector Unsigned Saturated Subtract of Unsigned Values

Vector subtraction from vector saturating the result as unsigned value.

Description: wd[i] saturate_unsigned(unsigned(ws[i]) - unsigned(wt[i]))

The elements in vector wt are subtracted from the elements in vector ws. Unsigned arithmetic is performed and under-
flows clamp to 0 before writing the result to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SUBS_U.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i subs_u(WR[ws]8i+7..8i, WR[wt]8i+7..8i, 8)
endfor

SUBS_U.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i subs_u(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 16)
endfor

SUBS_U.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i subs_u(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

SUBS_U.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i subs_u(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
endfor

function sat_u(tt, n, b)
if ttn-1..b 0

n-b then
return 0n-b || 1b

else
return tt

endif
endfunction sat_u

function subs_u(ts, tt, n)
t (0 || ts) - (0 || tt)

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 001 df wt ws wd 3R

010001
6 3 2 5 5 5 6

Vector Unsigned Saturated Subtract of Unsigned Values ISUBS_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 309

if tn = 0
return sat_u(t, n+1, n)

else
return 0

endfunction subs_u

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Unsigned Saturated Subtract of Signed from Unsigned ISUBSUS_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 310

Format: SUBSUS_U.df
SUBSUS_U.B wd,ws,wt MSA
SUBSUS_U.H wd,ws,wt MSA
SUBSUS_U.W wd,ws,wt MSA
SUBSUS_U.D wd,ws,wt MSA

Purpose: Vector Unsigned Saturated Subtract of Signed from Unsigned

Vector subtraction of signed values from unsigned values saturating the results as unsigned values.

Description: wd[i] saturate_unsigned(unsigned(ws[i]) - signed(wt[i]))

The signed elements in v ector wt are subtracted from the un signed elements in v ector ws. The signe d result is
unsigned saturated and written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SUBSUS_U.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i subsus_u(WR[ws]8i+7..8i, WR[wt]8i+7..8i, 8)
endfor

SUBSUS_U.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i subsus_u(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 16)
endfor

SUBSUS_U.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i subsus_u(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

SUBSUS_U.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i subsus_u(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
endfor

function sat_u(tt, n, b)
if ttn-1..b 0

n-b then
return 0n-b || 1b

else
return tt

endif
endfunction sat_u

function subsus_u(ts, tt, n)
t (0 || ts) - (ttn-1 || tt)

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 010 df wt ws wd 3R

010001
6 3 2 5 5 5 6

Vector Unsigned Saturated Subtract of Signed from Unsigned ISUBSUS_U.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 311

if tn = 0
return sat_u(t, n+1, n)

else
return 0

endfunction subsus_u

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Signed Saturated Subtract of Unsigned Values ISUBSUU_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 312

Format: SUBSUU_S.df
SUBSUU_S.B wd,ws,wt MSA
SUBSUU_S.H wd,ws,wt MSA
SUBSUU_S.W wd,ws,wt MSA
SUBSUU_S.D wd,ws,wt MSA

Purpose: Vector Signed Saturated Subtract of Unsigned Values

Vector subtraction from vector of unsigned values saturating the results as signed values.

Description: wd[i] saturate_signed(unsigned(ws[i]) - unsigned(wt[i]))

The unsigned elements in vector wt are subtracted from the unsigned elements in v ector ws. The si gned result is
signed saturated and written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SUBSUU_S.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i subsuu_s(WR[ws]8i+7..8i, WR[wt]8i+7..8i, 8)
endfor

SUBSUU_S.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i subsuu_s(WR[ws]16i+15..16i, WR[wt]16i+15..16i, 16)
endfor

SUBSUU_S.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i subsuu_s(WR[ws]32i+31..32i, WR[wt]32i+31..32i, 32)
endfor

SUBSUU_S.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i subsuu_s(WR[ws]64i+63..64i, WR[wt]64i+63..64i, 64)
endfor

function sat_s(tt, n, b)
if ttn-1 = 0 and ttn-1..b-1 0

n-b+1 then
return 0n-b+1 || 1b-1

endif
if ttn-1 = 1 and ttn-1..b-1 1

n-b+1 then
return 1n-b+1 || 0b-1

else
return tt

endif
endfunction sat_s

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 011 df wt ws wd 3R

010001
6 3 2 5 5 5 6

Vector Signed Saturated Subtract of Unsigned Values ISUBSUU_S.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 313

function subsuu_s(ts, tt, n)
t (0 || ts) - (0 || tt)
return sat_s(t, n+1, n)

endfunction subsuu_s

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Subtract ISUBV.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 314

Format: SUBV.df
SUBV.B wd,ws,wt MSA
SUBV.H wd,ws,wt MSA
SUBV.W wd,ws,wt MSA
SUBV.D wd,ws,wt MSA

Purpose: Vector Subtract

Vector subtraction from vector.

Description: wd[i] ws[i] - wt[i]

The elements in vector wt are subtracted from the elements in vector ws. The result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SUBV.B
 for i in 0 .. WRLEN/8-1

WR[wd]8i+7..8i WR[ws]8i+7..8i - WR[wt]8i+7..8i
endfor

SUBV.H
 for i in 0 .. WRLEN/16-1

WR[wd]16i+15..16i WR[ws]16i+15..16i - WR[wt]16i+15..16i
endfor

SUBV.W
 for i in 0 .. WRLEN/32-1

WR[wd]32i+31..32i WR[ws]32i+31..32i - WR[wt]32i+31..32i
endfor

SUBV.D
 for i in 0 .. WRLEN/64-1

WR[wd]64i+63..64i WR[ws]64i+63..64i - WR[wt]64i+63..64i
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 001 df wt ws wd 3R

001110
6 3 2 5 5 5 6

Immediate Subtract ISUBVI.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 315

Format: SUBVI.df
SUBVI.B wd,ws,u5 MSA
SUBVI.H wd,ws,u5 MSA
SUBVI.W wd,ws,u5 MSA
SUBVI.D wd,ws,u5 MSA

Purpose: Immediate Subtract

Immediate subtraction from vector.

Description: wd[i] ws[i] - u5

The 5-bit immediate unsigned value u5 is subtracted from the elements in v ector ws. The r esult is written to
vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SUBVI.B
 t 03 || u54..0

for i in 0 .. WRLEN/8-1
WR[wd]8i+7..8i WR[ws]8i+7..8i - t

endfor

SUBVI.H
 t 011 || u54..0

for i in 0 .. WRLEN/16-1
WR[wd]16i+15..16i WR[ws]16i+15..16i - t

endfor

SUBVI.W
 t 027 || u54..0

for i in 0 .. WRLEN/32-1
WR[wd]32i+31..32i WR[ws]32i+31..32i - t

endfor

SUBVI.D
 t 059 || u54..0

for i in 0 .. WRLEN/64-1
WR[wd]64i+63..64i WR[ws]64i+63..64i - t

endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 001 df u5 ws wd I5

000110
6 3 2 5 5 5 6

Vector Data Preserving Shuffle IVSHF.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 316

Format: VSHF.df
VSHF.B wd,ws,wt MSA
VSHF.H wd,ws,wt MSA
VSHF.W wd,ws,wt MSA
VSHF.D wd,ws,wt MSA

Purpose: Vector Data Preserving Shuffle

Vector elements selective copy based on the control vector preserving the input data vectors.

Description: wd vector_shuffle(control(wd), ws, wt)

The vector shuffle instructions selectively copy data elements from the concatenation of vectors ws and wt into
vector wd based on the corresponding control element in wd.

The least significant 6 bits in wd control elements modulo the number of elements in the concatenated vectors ws, wt
specify the index of the source element. If bit 6 or bit 7 is 1, there will be no copy, but rather the destination element
is set to 0.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

VSHF.B
 v WR[ws] || WR[wt]

for i in 0 .. WRLEN/8-1
k WR[wd]8i+5..8i mod (WRLEN/4)
if WR[wd]8i+7..8i+6 0 then

WR[wd]8i+7..8i 0
else

WR[wd]8i+7..8i v8k+7..8k
endif

endfor

VSHF.H
 v WR[ws] || WR[wt]

for i in 0 .. WRLEN/16-1
k WR[wd]16i+5..16i mod (WRLEN/8)
if WR[wd]16i+7..16i+6 0 then

WR[wd]16i+15..16i 0
else

WR[wd]16i+15..16i v16k+15..16k
endif

endfor

VSHF.W
 v WR[ws] || WR[wt]

for i in 0 .. WRLEN/32-1
k WR[wd]32i+5..32i mod (WRLEN/16)

31 26 25 23 22 21 20 16 15 11 10 6 5 0

MSA
011110 000 df wt ws wd 3R

010101
6 3 2 5 5 5 6

Vector Data Preserving Shuffle IVSHF.df

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 317

if WR[wd]32i+7..32i+6 0 then
WR[wd]32i+31..32i 0

else
WR[wd]32i+31..32i v32k+31..32k

endif
endfor

VSHF.D
 v WR[ws] || WR[wt]

for i in 0 .. WRLEN/64-1
k WR[wd]64i+5..64i mod (WRLEN/32)
if WR[wd]64i+7..64i+6 0 then

WR[wd]64i+63..64i 0
else

WR[wd]64i+63..64i v64k+63..64k
endif

endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Vector Logical Exclusive Or XOR.V

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 318

Format: XOR.V
XOR.V wd,ws,wt MSA

Purpose: Vector Logical Exclusive Or

Vector by vector logical exclusive or.

Description: wd ws XOR wt

Each bit of vector ws is combined with the corresponding bit of vector wt in a bi twise logical XOR operation. The
result is written to vector wd.

The operands and results are bit vector values.

Restrictions:

No data-dependent exceptions are possible.

Operation:

 WR[wd] WR[ws] xor WR[wt]

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 21 20 16 15 11 10 6 5 0

MSA
011110 00011 wt ws wd VEC

011110
6 5 5 5 5 6

Immediate Logical Exclusive Or IXORI.B

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 319

Format: XORI.B
XORI.B wd,ws,i8 MSA

Purpose: Immediate Logical Exclusive Or

Immediate by vector logical exclusive or.

Description: wd[i] ws[i] XOR i8

Each byte element of vector ws is combined with the 8-bit immediate i8 in a bitwis e logical XOR operation. The
result is written to vector wd.

The operands and results are values in integer byte data format.

Restrictions:

No data-dependent exceptions are possible.

Operation:

 for i in 0 .. WRLEN/8-1
WR[wd]8i+7..8i WR[ws]8i+7..8i xor i87..0

endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

31 26 25 24 23 16 15 11 10 6 5 0

MSA
011110 11 i8 ws wd I8

000000
6 2 8 5 5 6

Appendix A

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 320

Vector Registers Partitioning

MSA allows for multi-threaded implementations with fewer than 32 physical vector registers per hardware thread
context. The thread contexts have access to as many vector registers as needed. When the hardware runs out of physi-
cal registers, the OS re-schedules the running threads or processes to accommodate for the pending requests.

The OS is responsible for saving and restoring the vector registers on software context switching. The actual mapping
of the physical registers to the thread contexts is managed by the hardware itself and it is totally invisible to the soft-
ware.

An overview of the this process is presented in the following sections. The hardware/software interface used for vec-
tor register allocation and software context switching relies on the MSA control registers and the MSA Access Dis-
abled Exception, all described in Section 3.4 “MSA Control Registers” and Section 3.5 “Exceptions”.

A.1 Vector Registers Mapping

Let’s assume an implementation with 4 hardware thread contexts tc0, …, tc3, and 64 physical vector registers pv0, …,
pv63. Each hardware thread context has its own set of MSA control registers.

The hardware maintains a look-up table with the mapping of the 64 physical registers to any of the architecturally
defined 32 vector registers W0, …, W31 usable from within the 4 hardware thread contexts. Hypothetically, the
look-up table could be as shown in Table A.1.

The OS grants a vector register to a hardware thread context by writing the register index to MSAMap. The success-
ful mapping is confirmed in MSAAccess. For example, on writing 1 to MSAMap, the hardware finds a free physical

Table A.1 Physical-to-Thread Context Vector Register Mapping (Hardware Internal)

Physical
Register

Hardware
Thread Context

Architecture
Register

pv0 tc3 W5

pv1 tc3 W0

pv2 none N/A

pv4 tc0 W2

… … …

pv63 none N/A

A.2 Saving/Restoring Vector Registers on Context Switch

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 321

register, maps it to W1 for tc0, and updates its internal look-up table (see Table A.2). Now that the context tc0 already
using W2 is being granted access to vector register is W1, the tc0 MSAAccess control register changes from
0x00000004 (only MSAAccessW2 bit set) to 0x00000006 (now MSAAccessW2 and MSAAccessW1 bits are set).

If the hardware runs out of physical vector registers to map, the MSAAccess does not change. To confirm the avail-
ability, the OS should read back and check MSAAccess.

A.2 Saving/Restoring Vector Registers on Context Switch

Using the above hardware implementation, i.e. 4 thread contexts tc0, …, tc3, and 64 physical vector registers pv0, …,
pv63, the OS manages the context switching for a set of software threads, s0, …, s10, s11, s12, … Two look-up tables
are used for this purpose: one with the status of the software context mapping and previously saved vector registers
(Table A.3) and the second with the vector register usage for each software thread (Table A.4).

Table A.3 and Table A.4 show software thread s10 on thread context tc0 using vector register W2. The other running
thread is s11 on tc3 using W0 and W5. The hardware view of this configuration has been presented above in Table
A.1. In Table A.3, thread s12 is waiting to be scheduled and has vector register W1 saved from a previous run.

Table A.2 Updated Physical-to-Thread Context Vector Register Mapping (Hardware Internal)

Physical
Register

Hardware
Thread Context

Architecture
Register

pv0 tc3 W5

pv1 tc3 W0

pv2 tc0 W11

1. Updated entry.

pv4 tc0 W2

… … …

pv63 none N/A

Table A.3 Context Mapping Table (OS Internal)

Software
Thread

Hardware
Thread Context Status

Saved
Registers

(Hex Mask)

Saved
Registers

(Register List)

s10 tc0 running on 0x00000000 none

s11 tc3 running on 0x00000000 none

s12 N/A waiting 0x00000002 W1

 Vector Registers Partitioning

322 MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Let’s suppose there is context switch between s10 and s12 on tc0. What the OS does is to start running s12 on tc0 with-
out changing the current tc0 MSAAccess, but setting in MSASave all the bits set in either MSAAccess or in the s12
saved registers mask. Therefore MSASave has two bits set: MSASaveW2 and MSASaveW1, which allows for sav-
ing W2 register used by s10 and restoring W1 register already saved for s12 when this register is requested.

If the first MSA instruction s12/tc0 runs writes vector register W2 and reads vector register W1, the hardware sets
MSARequestW1, MSARequestW2 and signals the MSA Access Disabled Exception. The exception is signaled
because W2 needs to be saved, i.e. MSASaveW2 is set, and W1 is not available i.e. MSAAccessW1 is clear. Then,
the OS will take the following actions:

• Save W2 because MSASaveW2 is set. From the register usage Table A.4 it is known that tc0/W2 belongs to s10.
Saving W2 requires a vector store followed by setting bit 2 in Saved Registers Mask of s10, and clearing the
MSASaveW2.

• Request a new physical vector register for W1 by writing 1 to MSAMap.

• Restore the previous W1 used by s12 according to the Saved Registers Mask in Table A.3. Restoring W1 requires
a vector load followed by clearing MSASaveW1. Because W1 has been written, the hardware will set
MSAModifyW1.

• Clear MSAModifyW1 because the restored W1 is not changed with respect of the saved value. In this context, the
s12 Saved Registers Mask bit W1 is still relevant and should be preserved as set.

Table A.5 and Table A.6 show the software context mapping / saved registers and the vector register usage look-up
tables after these updates.

Table A.4 Register Usage Table (OS Internal)

Software
Thread

Hardware
Thread Context

MSAAccess
(Hex Mask)

MSAAccess
(Register List)

s10 tc0 0x00000004 W2

s11 tc3 0x00000021 W0, W5

Table A.5 Updated Context Mapping Table (OS Internal)

Software
Thread

Hardware
Thread Context Status

Saved
Registers

(Hex Mask)

Saved
Registers

(Register List)

s10 N/A waiting 0x00000004 W21

s11 tc3 running on 0x00000000 none

s12 tc0 running on 0x00000002 W1

A.3 Re-allocating Physical Vector Registers

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 323

A.3 Re-allocating Physical Vector Registers

A physical register is mapped to a thread context/architecture register by writing the architecture register index to
MSAMap. It is not relevant if the software knows what the particular mapping is — it can always access the same
register from the same hardware thread context.

Physical vector registers re-allocation from one software thread to another on the same thread context (intra re-alloca-
tion) is done by setting the corresponding bits in the MSASave control register. If the new software thread starts with
MSASave being identical to MSAAccess, it is guaranteed all vector registers used by the new software thread are
properly saved/restored. An example of this procedure is presented above in Section A.2 “Saving/Restoring Vector
Registers on Context Switch”.

Inter-thread contexts physical vector registers re-allocation (between different hardware thread contexts), mandates
the owner thread context to save all the registers intended for re-allocation and unmap them by writing the corre-
sponding indexes to MSAUnmap. To exemplify, let’s start from the configuration shown in Table A.5 / Table A.6
(OS view) and Table A.2 (hardware view). If the software decides to free up vector register W0 on tc3 when re-sched-
uling s11, then it saves W0, marks W0 as saved for s11, and writes 0 to MSAUnmap. Then, the hardware will mark
pv1, i.e. the hypothetical mapping in Table A.2 used for W0/tc3, as free. In a different thread context, let’s say tc1, the
software could now map a new vector register, e.g. W9, and if the hardware decides pv1 is the next free register, pv1
will be used by tc1 for W9.

A.4 Heuristic for Vector Register Allocation

The performance of a multithreaded MSA implementation with less than 32 vector registers per thread context
depends the actual register usage at run-time and the OS scheduling strategy.

In a typical application, one software thread might use lots of vector registers for longer time, while the other threads
sporadically use very few. The OS could schedule the most demanding software thread on the same thread context,
while time-sharing another context for the software threads with a lighter usage pattern.

1. Updated entry.

Table A.6 Updated Register Usage Table (OS Internal)

Software
Thread

Hardware
Thread Context

MSAAccess
(Hex Mask)

MSAAccess
(Register List)

s11 tc3 0x00000021 W0, W5

s12 tc0 0x00000006 W1, W21

1. Updated entry, s10 changed to s12.

Appendix B

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 324

Revision History

Revision Date Description

1.00 December 12, 2012 • MIPS Architecture Release 5.

1.01 February 8, 2013 • Signaling NaN definition, non-trapping exception pseudocode clarification.
• LDX/STX pseudocode typo fix.
• FLOG2 description clarification.
• Typo fix for 64-bit GPR-based instructions.
• Reserved df/n values for elements outside the 128-bit wide vector registers.
• Specified WRLEN constant to be 128.
• 3RF opcode table H/W vs. W/D typo fixed.
• Specified NaN propagation rule.
• FMADD/FMSUB signals Invalid for infinity * 0.
• CTCMSA/CFCMSA signal Coprocessor 0 Unusable exception for privileged MSA

control registers
• MSA instruction can not be executed when FPU is usable and operates with float-

ing-point registers in 32-bit mode.
• FTQ signals the Overflow exception for out of range numeric operands.

1.02 March 4, 2013 • Reset state for MSAEn bit and MSA Access, Save, Modify and Request control regis-
ters is zero.

• Added new instructions: INSVE, FRCP, and FRSQRT instructions.
• Specified new flush to zero control bits.
• Clarified the effects of changing FR from 0 to 1 and from 1 to 0.

1.03 March 8, 2013 • Specified the effect of FPR high read/write operations on the vector registers.
• Removed unused VECS5 instruction format.

1.04 May 31, 2013 • Fixed NX mode description to specify that the output is always a signaling NaN value
for any floating-point exception detected when NX is set.

• Clarified address calculation for load/store instructions with no alignment restrictions.
• Flush to zero is controlled with one bit (FS) for both subnormal input operands and tiny

non-zero results.
• Clarified subnormal input operands flush to zero in compare instructions.
• FPR registers are UNPREDICTABLE after changing FR from 0 to 1 and from 1 to 0.
• Explicit MIPS Architecture Release 5 and FPU NAN2008/ABS2008 requirements.
• Renamed INSV to INSERT, SUBSS_U to SUBSUU_S, and SUBUS_S to SUBSUS_U.
• New instructions (FTRUNC_S, FTRUNC_U) for floating-point to integer truncation.
• New instructions for shift right with rounding (SRAR, SRARI. SRLR, SRLRI) and hor-

izontal add/sub (HADD_S, HADD_U, HSUB_S, HSUB_U).
• Eliminated redundant floating point compare instructions FCGT, FSGT, FCGE, FSGE.
• New floating point compare instructions (FCAF, FSAF, FCUEQ, FSUEQ, FCULT,

FSULT, FCULE, FSULE, FSUN, FCOR, FSOR, FCUNE, FSUNE).
• Opcode changes for FCNE, FSNE, MUL_Q, MULR_Q, MADD_Q, MADDR_Q,

MSUB_Q, MSUBR_Q.
• Defined floating-point registers access in the context of vector registers partitioning.
• Load/store pseudocode update.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 325

1.05 June 21, 2013 • Template update to change MIPS logo and legal text.
• Flush to zero (FS) does not apply to 16-bit float data used by format conversion instruc-

tions FEXDO, FEXUPL, and FEXUPR and to non arithmetic instruction FCLASS.
• Load/store instructions are atomic at the element level and do not guarantee any order-

ing among elements.
• Defined reserved fields as R0: read as zero and must be written as zero.
• Clarified SLD/SLDI register layout and data format.
• FRCP and FRSQRT clarifications regarding Underflow, Overflow, and Inexact signal-

ing.

1.06 August 6, 2013 • Missing immediate instructions and FMSUB added to the Instruction Set Summary.
• Explicitly defined i8 immediates as 8-bit values where the sign is not relevant.
• Typos fixed for source and destination registers in VSHF.W and COPY_S/U pseudo-

code.
• COPY_S/U.D and INSERT.D are MIPS64 instructions. Updated ELM Instruction For-

mat table accordingly.
• Added “ordered” text to the ordered floating-point compare instructions.
• Typo fixed in mulx_s/u pseudocode for bit selection.
• Changed MSA MIPS32 AFP document class to 2B.
• The default value for Underflow is the rounded result based on the rounding mode.
• Approximate reciprocal instructions FRCP and FRSQRT signal Inexact only for finite

numerical operands.

1.07 October 2, 2013 • Typo fixed in MSACSR Flags update pseudocode.
• Specified CTCMSA/CFCMSA reserved control registers behavior.
• Removed indexed load/store LDX/STX instructions.
• Introduced base architecture left-shift add LSA instruction.
• LDI opcode changed.
• Load/store offsets are 10-bit values in data format units.
• Branch offsets are 16 bits.
• Added signaling to quiet NaN conversion rules.
• Corrections for fixed point multiply add/sub and signed-to-unsigned saturation pseudo-

code.
• Deleted the superfluous text for multiply add/sub NaN propagation as this case is no

exception from the general left-to-right rule.

1.09 December 20, 2013 • Fixed some typos in the instruction formats.
• Explicit referenced IEEE 2008 maxNum/maxNumMag and minNum/minNumMag in

FMAX/FMAX_A and FMIN/FMIN_A.
• Typos fixed in FEXUPL description and FMAX_A pseudocode.
• FCLASS pseudocode typo fixed.
• FTQ signals both the Overflow and Inexact for values outside the range.

1.10 February 7, 2014 • Expanded the text describing the NaN propagation rules.
• LD/ST descriptions show s10 offsets.
• Specified the flush-to-zero exception signaling for approximate reciprocal instructions.
• Reciprocal instructions FRCP and FRSQRT comply with the IEEE rules.

1.11 April 8, 2014 • Higher vector register bits are UNPREDICTABLE after writing scalar float-
ing-point values.

• Reserved MSA opcodes generate MSA Disabled exception.
• Specified that the assembler syntax for the LD/ST offset is in bytes.
• Neither the base address nor the calculated effective LD/ST address have any alignment

restrictions.

1.12 February 3, 2016 • COPY_U.W removed from MSA32.
• Replaced u2 with sa in the LSA description.
• Load/store atomicity is guaranteed only if the address is element aligned.
• Fixed FFQL/FFQR scaling typo.

Revision Date Description

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

