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Architectural Overview

The proAptiv Multiprocessing System is a high performance multi-core microprocessor with best in class power effi-
ciency for use in system-on-chip (SoC) applications. The proAptiv Multiprocessing System combines a deep pipeline 
with multi-issue out of order execution to deliver outstanding computational throughput.  The proAptiv Multiprocess-
ing System is fully configurable/synthesizable and can contain one to six MIPS32® proAptiv cores, system level 
coherence manager with L2 cache, optional coherent I/O port, and optional floating point unit.

The proAptiv Multiprocessing System is available in the following configurations. All of these configurations 
include a second generation Coherence Manager with integrated L2 cache (CM2).

• Single core

• Dual core

• Three or more cores

The proAptiv Multiprocessing System contains the following logic blocks.

• proAptiv Cores (1, 2, 3, 4, or 6)

• Coherence Manager (2nd generation) with integrated L2 cache (CM2)

• Optional enhanced 2nd generation Floating Point Unit per core (FPU2)

• Cluster Power Controller (CPC)

• Global Interrupt Controller (GIC)

• I/O Coherence Unit (IOCU)

• Global Configuration Registers (GCR)

• Multiprocessing System Debug Unit

• Optional PDTrace in-system trace debugger

Figure 1.1 shows a block diagram of the proAptiv Multiprocessing System.
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– Cluster Power Controller (CPC) controlling shut down of idle CPU cores

• EJTAG Debug 5.0 port supporting multi-CPU debug

• MIPS PDtrace debug version 6.16 (optional)
– PC, data address and data value tracing w/ trace compression
– Includes features for correlation with CM trace
– Support for on-chip and off-chip trace memory
– Support for system-level trace

• Full scan design achieves test coverage in excess of 99% with optional memory BIST for internal SRAM arrays

1.1.2 CPU Core Level Features

• Efficient pipeline with integer, floating point and optional CorExtend execution units shared amongst issue 
pipes.

• MIPS32 Release3 Instruction Set and Privileged Resource Architecture.

• Optional 2nd generation IEEE-754 compliant Floating Point Unit (FP2)

• Enhanced virtual addressing (EVA) mode allows for up to 3.5 GB of user or kernel virtual address space

• Instruction Fetch Unit (IFU) with 4 instructions fetched per cycle

• Quad integer Out-of-Order issue with dedicated integer completion buffers that hold execution results until 
instructions are graduated in program order

• Dual floating-point issue with dedicated completion buffers that hold execution results until instructions are 
graduated in program order

• Programmable Memory Management Unit with large first-level ITLB/DTLB backed by fast on-core second-
level variable page size TLB (VTLB) and fixed page size TLB (FTLB):
– 16-entry Instruction TLB (ITLB) with page sizes of 4 KB or 16 KB per entry
– 32 dual-entry Data TLB (DTLB) with page sizes of 4 KB or 16 KB per entry
– 64 dual-entry VTLB with page sizes up to 256 MB per entry
– 512 dual-entry 4-way set associative FTLB with page sizes of 4 KB or 16 KB per entry (optional)
– VTLB and FTLB can be accessed simultaneously on lookups

• L1 Instruction and Data Caches
– Can be configured as 32 or 64 KB per cache
– L1 MESI coherent cache states
– 32-byte cache line size
– Virtually indexed, physically tagged
– Parity support on L1 data cache
– Parity support on L1 instruction cache

• Data and Instruction Scratchpad RAM can be configured from 4 KB to 1 MB (optional).

• Optional MIPS DSP ASE:
– 3 additional pairs of accumulator registers
– Fractional data types, Saturating arithmetic
– SIMD instructions operate on 2x16b or 4x8b simultaneously
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• Write merging for uncached accelerated (UCA) operations

• Integrated integer Multiply/Divide Unit (MDU)

• CorExtend® MIPS32® compatible User Defined Instruction Set Extension allows user to define and add instruc-
tions to the core at build time

• Core Power Reduction Features
– Power reduction by turning off core clock during outstanding bus requests
– Power reduction by implementing intelligent way selection in the L1 instruction cache
– Power Reduction by enabling 32-bit accesses of the L1 data cache RAMs
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The IFU employs sophisticated branch prediction and instruction supply strategies. The main predictor consists of 
large RAM-based global branch history tables (BHT) that are indexed by different combinations of instruction PC 
and global history. A proprietary scheme is used to combine information from the three arrays to make a branch 
direction prediction.

Branch target prediction is provided by a hierarchy of multiple arrays. The fully-associative Level 0 and Level 1 
Branch Target Buffer (BTB) are used tor fast target re-steers on predicted taken branches, including returns. A large 
4-way associative Level 2 BTB backs up the Level 0 and Level 1 BTB’s and also predicts indirect branches, even 
those with multiple target addresses. 

The IFU also has a hardware-based return prediction stack to predict subroutine return addresses.The main predictor 
contains a BTAC (Branch Target Address Calculator) that can correct target mispredicts from lower-level predictors 
without paying a full branch resolution penalty. The IFU supports fully out-of-order branch resolution.

The IFU has a 16-entry micro-Instruction TLB (ITLB) used to translate the virtual address into a physical address. 
This translated physical address is used to compare against tags in the instruction cache to determine a hit. Refer to 
Section 1.2.5 “Memory Management Unit (MMU)” for more information.

A 24-entry instruction buffer decouples the instruction fetch from the execution. Up to 4 instructions can be written 
into this buffer, and a maximum of 2 instructions can be read from this buffer. To maximize performance, some 
‘bonding’ (or concatenation) of instructions is done at this stage while other types of instruction ‘bonding’ are per-
formed downstream.

The IFU can also be configured to allow for hardware prefetching of cache lines on a miss. When an instruction cache 
miss is detected, the IFU can prefetch the next 0, 1, or 2 lines (in addition to the missed line) to reduce average miss 
latency. This mechanism provides excellent performance without incurring the area, power and latency costs of 
overly complicated branch or instruction prefetch strategies.

The Global History register is internal to the IFU block and supports a novel history computation scheme that factors 
different information into the history for different kinds of control transfer instructions. These novel hashing schemes 
enable significantly lower mispredict rates than other competing processors, directly translating to real world perfor-
mance in many different applications.

The proAptiv level 1 (L1) instruction cache incorporates ‘next fetch way’ hit prediction logic. This allows the IFU to 
power on only those cache tag and data arrays that will provide the final instruction bytes and contributes to low 
power consumption.

1.2.3 Instruction Issue Unit (IIU)

The Instruction Issue Unit (IIU) unit is responsible for receiving instructions from the IFU and dispatching them to 
the out-of-order instruction scheduling windows and global instruction tracking window at a rate of 4 instructions per 
cycle. 

The IIU tracks dynamic data flow dependencies between operations and issues them to the various pipes as efficiently 
as possible. Two schedulers, called the ALU DDQ and the AGU DDQ, service the various integer pipes.

The schedulers employ multiple dependency wake-up and pick schemes to enable age-based scheduling at high fre-
quency. Having only two schedulers, rather than a low-frequency centralized scheduler or a large number of distrib-
uted reservation stations, is key to providing superior performance and power characteristics.
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The IIU helps to ‘bond’ load and store operations whereby two 32-bit loads or stores to adjacent locations are 
‘bonded’ or concatenated into one 64-bit memory access. This allows a factor of two improvement in certain memory 
intensive codes. The IIU also enables instruction ‘cracking’, whereby certain operations, like cacheable stores, are 
split into multiple micro-ops such as store-address and store-data operations.

Instructions are first renamed using a rename map, replacing the architectural register names with microarchitectural 
names from a global rename pool. The IIU also keeps track of the progress of each instruction through the pipeline, 
updating the availability of operands in the ‘rename map’ and in all dependent instructions. Renamed instructions are 
steered to the most appropriate schedulers, taking opcode and other information into account.

The IIU also keeps track of global pipeline flushes, adjusting the rename map and other control structures to deal with 
interrupts, exceptions and other unexpected changes of control. 

1.2.4 proAptiv L1 Caches

The proAptiv core contains L1 instruction and data caches as described in the following subsections.

1.2.4.1 Level 1 Instruction Cache 

The Level-1 (L1) instruction cache is configurable at 32 or 64 KB in size and is organized as 4-way set associative. 
Up to four instruction cache misses can be outstanding. The instruction cache is virtually indexed and physically 
tagged to make the data access independent of virtual to physical address translation. Instruction cache tag and data 
access are staggered across 2 cycles, with up to 4 instructions fetched per cycle.

An instruction tag entry holds 21 bits of physical address, a valid bit, a lock bit, and an optional parity bit. There are 7 
precode bits per instruction pair, making a total of 28 bits per tag entry. The data array line consists of 256 bits (8 
MIPS32 instructions) of data.

The proAptiv core supports instruction-cache locking. Cache locking allows critical code segments to be locked into 
the cache on a “per-line” basis, enabling the system programmer to maximize the performance of the system cache.

The cache-locking function is always available on all instruction-cache entries. Entries can be marked as locked or 
unlocked on a per entry basis using the CACHE instruction.

1.2.4.2 Level 1 Data Cache 

The Level 1 (L1) data cache is configurable at 32 or 64 in size. It is also organized as 4-way set associative. Data 
cache misses are non-blocking and up to nine misses may be outstanding. The data cache is virtually indexed and 
physically tagged to make the data access independent of virtual-to-physical address translation. To achieve the high-
est possible frequencies using commercially available SRAM generators, cache access and hit determination is 
spread across three pipeline stages, dedicating an entire cycle for the SRAM access. 

A data cache tag entry holds 21 bits of physical address, a valid bit, a lock bit, and an optional parity bit. The data 
entry holds 64 bits of data per way, with optional parity per byte. There are 4 data entries for each tag entry. The tag 
and data entries exist for each way of the cache.

The proAptiv core supports a data-cache locking mechanism identical to that used in the instruction cache. Critical 
data segments are locked into the cache on a “per-line” basis. The locked contents can be updated on a store hit, but 
are not selected for replacement on a cache miss. Locked lines do not participate in the coherence scheme so pro-
cesses which lock lines into a particular cache should be locked to that processor and prevented from migrating.

The cache-locking function is always available on all data-cache entries. Entries can then be marked as locked or 
unlocked on a per entry basis using the CACHE instruction.
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1.2.4.3 Level 1 Cache Memory Configuration

As described above, the proAptiv CPU incorporates on-chip L1 instruction and data caches that are typically imple-
mented from readily available single-port synchronous SRAMs and accessed in two cycles: one cycle for the actual 
SRAM read and another cycle for the tag comparison, hit determination, and way selection. The instruction and data 
caches each have their own 64-bit data paths and can be accessed simultaneously. Table 1.1 lists the proAptiv CPU 
instruction and data cache attributes.

1.2.5 Memory Management Unit (MMU)

The proAptiv core contains a Memory Management Unit (MMU) that is primarily responsible for converting virtual 
addresses to physical addresses and providing attribute information for different segments of memory. The proAptiv 
MMU contains the following Translation Lookaside Buffer (TLB) types:

• 16-entry Instruction TLB (ITLB) with 4 KB or 16 KB per entry

• 32 dual-entry Data TLB (DTLB) with up to 4 KB or 16 KB per entry

• 64 dual-entry Variable Page Size Translation Lookaside Buffer (VTLB) with up to 256 MB per entry

• 512 dual-entry 4-way set associative Fixed Page Size Translation Lookaside Buffer (FTLB) with up to 16 KB per 
entry

1.2.5.1 Instruction TLB (ITLB)

The ITLB is a 16-entry high speed TLB dedicated to performing translations for the instruction stream. The ITLB 
maps only 4 KB or 16 KB pages. Larger pages are split into smaller pages of one of these two sizes and installed in 
the ITLB.

The ITLB is managed by hardware and is transparent to software. The larger VTLB and FTLB structures are used as 
a backup structure for the ITLB. If a fetch address cannot be translated by the ITLB, the VTLB/FTLB attempts to 
translate it in the following clock cycle or when available. If successful, the translation information is copied into the 
ITLB for future use. 

Table 1.1 proAptiv™ CPU L1 Instruction and Data Cache Attributes 

Parameter Instruction Data

Size1

1. For Linux based applications, MIPS recommends a cache size of 64 KB, with a minimum size of 32 KB.

32 or 64 KB 32 or 64 KB

Organization 4-way set associative 4-way set associative

Line Size 32 Bytes 32 Bytes

Read Unit 64 bits 64 bits

Write Policies N/A coherent and non-coherent write-back 
with write allocate

Miss restart after transfer of miss word miss word

Cache Locking per line  per line

Error Detection Mechanism Parity Parity
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Figure 1.6 Example Enhanced Virtual Address (EVA) Memory Map

Figure 1.6 shows an example of how the traditional MIPS kernel virtual address space can be remapped using pro-
grammable memory segmentation to facilitate an extended virtual address space. As a result of defining the larger 
kernel segment as xkseg0, the kernel has unmapped access to the lower 3GB of the virtual address space. This allows 
for a total of 3GB of DRAM to be supported in the system.

To allow for efficient kernel access to user space, new load and store instructions have been defined which allow ker-
nel mapped access to useg. For more information, refer to the MMU chapter.

Note that the attributes of xkseg0 are the same as the previous kseg0 space in that it is a kernel unmapped, uncached 
region.

1.2.6 Execution Pipelines

The proAptiv core contains the following execution pipelines; 

• Arithmetic Logic Pipeline

• DSP Pipeline

• Multiply-Divide Pipeline

• Memory Pipeline

• Branch Pipeline

• Two FPU Pipelines (optional)

Each of these execution units is described in the following subsections. Instruction intended for arithmetic logic pipe-
line are driven by the out-of-order ALU Decode and Dispatch queue inside the Instruction Issue Unit (IIU) as shown 
in Figure 1.2. The other four pipelines are driven by the out-of-order Address Generation unit (AGU) Decode and 
Dispatch queue also located in the IIU.

0.0 GB

3.0 GB

3.5 GB

4.0 GB

Kernel Virtual 
Address

0.0 GB

3.0 GB

4.0 GB

Physical Memory

Kernel Mapped
(kseg3)

Kernel Mapped
(kseg)

Kernel 
Un-Mapped

(xkseg0)
Main Memory

0.0 GB

3.0 GB

4.0 GB

User Virtual 
Address

User Mapped
(useg)



 

54 MIPS32® proAptiv™ Multiprocessing System Software User’s Manual, Revision 01.22

1.2.6.1 Arithmetic Logic Pipeline

The arithmetic unit pipeline consists of one execution unit, called the ALU (Arithmetic Logic Unit), which performs 
integer instructions such as adds, shifts and bitwise logical operations with a single cycle latency. 

If the IIU decodes a single cycle instruction, it is usually sent to the ALU dispatch queue that feeds the arithmetic unit 
pipeline. This pipeline also contributes to performing ‘bonded’ loads. Refer to Section 1.2.3 “Instruction Issue Unit 
(IIU)” for a definition of instruction ‘bonding’.

1.2.6.2 Digital Signal Processing Pipeline

The DSP pipeline executes a subset of the DSP instructions, including shifts. It can also execute certain arithmetic 
operations, large shifts and special operations such as counting leading zeroes or ones. Most operations in this unit 
execute with a two cycle latency.

1.2.6.3 Multiply/Divide Pipeline

The multiply/divide pipeline executes integer multiplies, integer divides, integer multiply-accumulates and some 
DSP instructions. The multiply/divide pipeline incorporates a new very high-speed integer divider.

The MDU consists of a 32 × 32 multiplier, result/accumulation registers (HI and LO), a divide state machine, and all 
necessary multiplexers and control logic.

The MDU supports execution of one multiply or multiply-accumulate operation every clock cycle whereas divides 
can be executed as fast as one every six cycles.

1.2.6.4 Memory Pipeline

The memory pipeline primarily contains the LSU (Load Store Unit), which is responsible for interfacing with the 
AGU dispatch queue and processing load/store instructions to read/write data from data caches and downstream 
memory. 

This unit is capable of handling loads and stores issued out-of-order. The LSU also supports the ‘cracking’ of store 
instructions by allowing a store’s data and address to reach it in any order. This ability to receive loads and stores in 
almost any order enables very high performance, compared to competing out-of-order machines that do not allow 
such concurrency. Such instruction-level parallelism allows maximum utilization of the memory pipe resources with 
minimal area and power.

The LSU can execute loads and stores at twice the rate of regular operations by concatenating data from two 32-bit 
memory locations to form a single 64-bit entity. This ‘bonding’ of instructions allows the LSU to provide almost all 
the benefits of dual memory access pipes without incurring the area and power costs of multiple tag, data and TLB 
structures.

The Memory Pipe receives instructions from the Instruction Issue Unit (IIU) and interfaces to the L1 data cache and 
data scratchpad RAM (DSPRAM). Loads are non-blocking in the proAptiv core. Loads that miss in the data cache are 
allowed to proceed with their destination register marked unavailable. Consumers of this destination register are held 
back and replayed as needed once the cache miss has been serviced by the downstream memory subsystem, which 
includes the high performance L2 cache.

Graduated load misses and store hits and misses are sent in order to the Load/Store Graduation Buffer (LSGB). The 
LSGB has corresponding data and address buffers to hold all relevant attributes. 
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An 8-entry Fill Store Buffer (FSB) tracks outstanding fill or copy-back requests. It fills the data cache at the rate of 
128-bits per cycle when an incoming line is completely received. Each FSB entry can hold an entire cache line. The 
Load Data Queue (LDQ) keeps track of outstanding load misses and forwards the critical data to the main pipe as 
soon as it becomes available.

Hardware anti-aliasing allows using the core with operating systems that do not support software page coloring. The 
fully-associative DTLB operates a clock earlier in the LSU pipeline, making use of fast add-and-compare logic to 
enable virtual address to physical address translations that do not require the area and power expense of virtual tag-
ging. All of this is done completely transparent to software.

1.2.6.5 Branch Pipeline

The Branch pipeline performs the following functions:

• Executes Branch and Jump instructions

• Performs Branch resolution

• Performs Jump resolution

• Sends the redirect to the Instruction Fetch Unit (IFU)

• Performs a write-back to the Link registers

1.2.6.6 Floating Point Pipelines

The optional Floating Point Unit (FPU) contains two pipelines; one for arithmetic operations and one for data transfer 
operations. The arithmetic pipeline executes operations such as multiply, divide, and square root. 

The data transfer pipeline executes floating point loads, stores, move operations, and register-to-register transfers 
between the FPU and the integer unit.

For more information, refer to Section 1.2.13 “Floating Point Unit (FP2)”.

1.2.6.7 Graduation Unit (GRU)

The Graduation Unit (GRU) is responsible for committing execution results and releasing buffers and resources used 
by these instructions. The GRU is also responsible for evaluating the exception conditions reported by execution 
units and taking the appropriate exception. Asynchronous interrupts are funneled into the GRU, which prioritizes 
those events with existing conditions and takes the appropriate interrupt.

The GRU reads the next set of completed instructions from the global instruction window every cycle and then reads 
the corresponding completion buffers and associated information. After processing the exception conditions, the 
GRU performs the following functions:

• Destination register(s) are updated and the completion buffers are released.

• Graduation information is sent to the IIU so it can update the rename maps to reflect the state of execution results 
(i.e., GPRs, Accumulators, etc.). 

• Resolved branch information is sent to the IFU so that branch history tables can be updated and if needed, a pipe-
line redirect can be initiated. If sequential control flow is aborted for any reason, the GRU signals all core units to 
flush and recover microarchitectural state. After recovery is complete, it allows the IIU to resume dispatching 
instructions.
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1.2.7 Instruction and Data Scratch Pad RAM

The proAptiv core allows blocks of scratchpad RAM to be attached to the load/store and/or instruction units. These 
allow low-latency access to a fixed block of memory. The size of both the instruction scratch pad RAM (ISPRAM) 
and data scratch pad RAM (DSPRAM) can be configured from a range of 4 KB to 1 MB. These RAM’s are used for 
the temporary storage of information and can be modified by the user at any time.

1.2.8 Bus Interface (BIU)

The Bus Interface Unit (BIU) controls the programmable 64-bit or 256-bit interface to the CM2. The interface imple-
ments the Open Core Protocol (OCP). This implementation features 128-bit read and write data buses to efficiently 
transfer data to and from the L1 caches.

1.2.8.1 Write Buffer

The BIU contains a merging write buffer. The purpose of this buffer is to store and combine write transactions before 
issuing them to the external interface. The write buffer is organized as eight, 32-byte buffers. Each buffer can contain 
data from a single 32-byte aligned block of memory.

When using the write-through cache policy or performing uncached accelerated writes, the write buffer significantly 
reduces the number of write transactions on the external interface and reduces the amount of stalling in the core 
caused by the issuance of multiple writes in a short period of time.

The write buffer also holds eviction data for write-back lines. The load-store unit extracts dirty data from the cache 
and sends it to the BIU. In the BIU, the dirty data is gathered in the write buffer and sent out as a bursted write.

For uncached accelerated writes, the write buffer can gather multiple writes together and then perform a bursted write 
in order to increase the efficiency of the bus. Uncached accelerated gathering is supported for any size less than a 
doubleword.

Gathering of uncached accelerated stores can start on any arbitrary address and can be combined in any order within 
a cache line. Uncached accelerated stores that do not meet the conditions required to start gathering are treated like 
regular uncached stores.

1.2.8.2 SimpleBE Mode

To aid in attaching the proAptiv core to structures that cannot easily handle arbitrary byte-enable patterns, there is a 
mode that generates only “simple” byte enables. In this mode, only byte enables representing naturally aligned byte, 
halfword, word, and doubleword transactions will be generated.

In SimpleBE mode, the SI_SimpleBE input pin only controls the byte enables generated by the proAptiv core(s). It 
has no effect on byte enables produced by the IOCU. To achieve the effect of setting SI_SimpleBE to ‘one’ in sys-
tems with an IOCU, the I/O sub-system must only issue requests to the IOCU with naturally aligned byte enables.

When the SI_SimpleBE input signal to the proAptiv core is asserted, hardware sets bit 21 of the Config register 
(Config.SB) to indicate the device is in simple byte enable mode. 

1.2.9 System Control Coprocessor (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation and cache protocols, the 
exception control system, the processor’s diagnostic capability, the operating modes (kernel, user, supervisor, and 
debug), and whether interrupts are enabled or disabled. Configuration information, such as cache size and associativ-
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ity, and the presence of features like MIPS16e or a floating point unit, are also available by accessing the CP0 regis-
ters.

CP0 also contains the logic used for identifying and managing exceptions. Exceptions can be caused by a variety of 
sources, including boundary cases in data, external events, or program errors. 

For more information, refer to the CP0 chapter.

1.2.10 Interrupt Handling

The proAptiv core supports six hardware interrupts, two software interrupts, a timer interrupt, and a performance 
counter interrupt. These interrupts can be used in any of three interrupt modes, as defined by Release 3 of the MIPS32 
Architecture:

• Interrupt compatibility mode, which acts identically to that in an implementation of Release 1 of the Architec-
ture.

• Vectored Interrupt (VI) mode, which adds the ability to prioritize and vector interrupts to a handler dedicated to 
that interrupt. The presence of this mode is denoted by the VInt bit in the Config3 register. This mode is architec-
turally optional. As it is always present on the proAptiv core, the VInt bit will always read 1.

• External Interrupt Controller (EIC) mode, which provides support for an external interrupt controller that handles 
prioritization and vectoring of interrupts. This mode is optional in the Release 3 architecture. The presence of 
this mode is denoted by the VEIC bit in the Config3 register. 

1.2.11 Modes of Operation

The proAptiv core supports four modes of operation: 

• User mode, most often used for application programs.

• Supervisor mode provides an intermediate privilege level with access to the ksseg (kernel supervisor segment) 
address space.

• Kernel mode, typically used for handling exceptions and operating system kernel functions, including CP0 man-
agement and I/O device accesses. 

• Debug mode is used during system bring-up and software development. Refer to Section 1.2.15 “EJTAG Debug 
Support” for more information on debug mode.

1.2.12 Coprocessor Interface Unit (CIU)

The CIU provides an interface between the main integer core and the Floating Point Unit (FPU2). The CIU contains a 
number of queues used to pass data to and from the coprocessors.

Coprocessor1 Load/Store instructions are forwarded to the FPU2. Even though some Coprocessor instructions do not 
go through the main integer pipeline, they are assigned an instruction identifier. This identifier is tracked in the Grad-
uation Unit to generate a synchronization signal that is used to indicate to the CP1 coprocessor that the instruction has 
been cleared of all speculation and exception conditions in the integer pipe. Only coprocessor instructions that have 
reached such a state are allowed to commit results in the Coprocessor.

Coprocessor-based conditional branches are handled in the graduation unit, with condition-code information passed 
through the CIU.
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The FPU implements a bypass mechanism that allows the result of an operation to be forwarded directly to the 
instruction that needs it without having to write the result to the FPU register and then read it back.

For more information, refer to the FPU chapter.

1.2.14 proAptiv Core Power Management

The proAptiv core offers several power management features, supporting low-power design, such as active power 
management and power-down modes of operation. The proAptiv core is a static design that supports slowing or halt-
ing the clocks to reduce system power consumption during idle periods.

For more information, refer to the Power Management chapter.

1.2.15 EJTAG Debug Support

The proAptiv core includes an Enhanced JTAG (EJTAG) block for use in software debugging of application and ker-
nel code. For this purpose, in addition to standard user/supervisor/kernel modes of operation, the proAptiv core pro-
vides a Debug mode. 

Debug mode is entered when a debug exception occurs (resulting from a hardware breakpoint, single-step exception, 
etc.) and continues until a debug exception return (DERET) instruction is executed. During this time, the processor 
executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring 
test data in and out of the proAptiv core. In addition to the standard JTAG instructions, special instructions defined in 
the EJTAG specification define which registers are selected and how they are used.

There are several types of simple hardware breakpoints defined in the EJTAG specification. These breakpoints stop 
the normal operation of the CPU and force the system into debug mode.

During synthesis, the proAptiv core can be configured to support the following breakpoint options:

• Zero instruction, zero data breakpoints

• Two instruction, one data breakpoints

• Four instruction, two data breakpoints

Instruction breaks occur on instruction fetch operations, and the break is set on the virtual address. Instruction breaks 
can also be made on the ASID value used by the MMU. A mask can be applied to the virtual address to set break-
points on a range of instructions.

Data breakpoints occur on load and/or store transactions. Breakpoints are set on virtual address and address space 
identifier (ASID) values, similar to the Instruction breakpoint. Data breakpoints can also be set based on the value of 
the load/store operation. Finally, masks can be applied to the virtual address, ASID value, and the load/store value.

In debug mode, EJTAG can request that a ‘soft’ reset be masked. This request is signalled via the EJ_SRstE pin. 
When this pin is deasserted, the system can choose to block some sources of soft reset. Hard resets, such as power-on 
reset or a reset switch, should not be blocked by this signal. This reset pin has no effect inside the core.
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1.3 Multiprocessing System

The proAptiv Multiprocessing System consists of the logic modules shown in Figure 1.1. Each of these blocks is 
described throughout this section.

1.3.1 Cluster Power Controller (CPC)

Individual CPUs within the cluster can have their clock and/or power gated off when they are not in use. This gating 
is managed by the Cluster Power Controller (CPC). The CPC handles the power shutdown and ramp-up of all CPUs 
in the cluster. Any proAptiv CPU that supports power-gating features is managed by the CPC. 

The CPC also organizes power-cycling of the CM2 dependent on the individual core status and shutdown policy. 
Reset and root-level clock gating of individual CPUs are considered part of this sequencing.

1.3.1.1 Cluster Power Controller Reset Control

The reset input of the system resets the Cluster Power Controller (CPC). Reset sideband signals are required to qual-
ify a reset as system cold, or warm start. Register setting determine the course of action:

• Remain in powered-down

• Go into clock-off mode

• Power-up and start execution

This prevents random power up of power domains before the CPC is properly initialized. In case of a system cold 
start, after reset is released, the CPC powers up the proAptiv CPUs as directed in the CPC cold start configuration. If 
at least one CPU has been chosen to be powered up on system cold start, the CM2 is also powered up. 

When supply rail conditions of power gated coress have reached a nominal level, the CPC will enable clocks and 
schedule reset sequences for those coress and the coherence manager.

At a warm start reset, the CPC brings all power domains into their cold start configuration. However, to ensure power 
integrity for all domains, the CPC ensures that domain isolation is raised before power is gated off. Domains that 
were previously powered and are configured to power up at cold start remain powered and go through a reset 
sequence.

Within a warm start reset, sideband signals are also used to qualify if coherence manager status registers and GIC 
watch dog timers are to be reset or remain unchanged. The CPC, after power up of any CPU, provides a test logic 
reset sequence per domain to initialize TAP and PDTrace logic.

Note that unused CPUs are not held in reset until released by writing into the configuration registers. Rather, unused 
CPUs remain powered down and are held isolated towards the rest of the cluster. If power gating is not selected for a 
given implementation, unused CPUs are powered but receive no clock and remain isolated until activated by the 
CPC. 

In addition to controlling the deassertion of the CPC reset signal, there are memory-mapped registers that can set the 
value for each CPU’s SI_ExceptionBase pins. This allows different boot vectors to be specified for each of the 
cores so they can execute unique code if required. Each of the cores will have a unique CPU number, so it is also pos-
sible to use the same boot vector and branch based on that.
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• Memory reads that are required because they were not speculative are issued to the Memory Interface Unit 
(MIU).

• Modified data returned from the CPU is sent to the MIU to be written back to memory.

• Data returned from the CPU is forwarded to the Response Unit (RSU) to be sent to the requester.

• The MESI state in which the line is installed by the requesting CPU is determined (the “install state”). If there are 
no other CPUs with the data, a Shared request is upgraded to Exclusive.

Each device updates its cache state for the intervention and responds when the state transition has completed. The 
previous state of the line is indicated in the response. If a read type intervention hits on a line that the CPU has in a 
Modified or Exclusive state, the CPU returns the cache line with its response. A cacheless device, such as the IOCU, 
does not require an intervention port. Note that the IVU is not included in non-coherent configurations, such as a sin-
gle core without an IOCU.

1.3.2.3 System Memory Unit (SMU)

The System Memory Unit (SMU) provides the interface to the memory OCP port. For an L2 refill, the SMU reads the 
data from an internal buffer and issues the refill request to the L2 pipeline. 

Note that the external interface may operate at a lower frequency than the Coherence Manager (CM2), and the exter-
nal block may not be able to accept as many requests as multiple CPUs can generate, so some buffering of requests 
may be required.

1.3.2.4 Response Unit (RSU)

The RSU takes responses from the SMU, L2, IVU, or auxiliary port and places them on the appropriate OCP inter-
face. Data from the L2 or SMU is buffered inside a buffer associated with each RSU port, which is an enhancement 
over the previous generation Coherence Manager. 

When a coherent read receives an intervention hit in the MODIFIED or EXCLUSIVE state, the Intervention Unit 
(IVU) provides the data to the RSU. The RSU then returns the data to the requesting core. 

1.3.2.5 Transaction Routing Unit

The Transaction Routing Unit (TRU) arbitrates between requests from the RQU and IVU, and routes requests to 
either the L2 or the SMU. The TRU also contains the request and intervention data buffers which are written directly 
from the RQU and IVU, respectively. The TRU reads the appropriate write buffer when it processes the correspond-
ing write request. 

1.3.2.6 Level 2 Cache

The unified L2 cache holds both instruction and data references and contains a 7-stage pipeline to achieve high fre-
quencies with low power while using commercially available SRAM generators. 

Cache read misses are non-blocking; that is, the L2 can continue to process cache accesses while up to 15 misses are 
outstanding. The cache is physically indexed and physical tagged. Figure 1.10 shows a block diagram of the L2 
cache.
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L2 Pipeline Tasks

The L2 pipeline manages the flow of data to and from the L2 cache. The L2 pipeline performs the following tasks:

• Accesses the tags and data RAMs located in the memory block (MEM).

• Returns data to the RSU for cache hits.

• Issues L2 miss requests.

• Issues L2 write and eviction requests.

• Returns L2 write data to the SMU. The SMU issues refill requests to the L2 for installation of data for L2 alloca-
tions

1.3.2.7 CM2 Configuration Registers

The Registers block (GCR) contains the control and status registers for the CM2. It also contains the Trace Funnel, 
EJTAG TAP state machine, and other multi-core features.

The configuration registers in the CM2 allow software to configure and control various aspects of the operation of the 
CM2. Some of the control options include:

• Address map: the base address for the GCR and GIC address ranges can be specified. An additional four address 
ranges can be defined as well. These control whether non-coherent requests go to memory or to memory-mapped 
I/O. A default can also be selected for addresses that do not fall within any range.

• Error reporting and control: Logs information about errors detected by the CM2 and controls how errors are 
handled (ignored, interrupt, etc.).

• Control Options: Various features of the CM2 can be disabled or configured. Examples of this are disabling spec-
ulative reads and preventing read/shared requests from being upgraded to exclusive.

1.3.2.8 PDTrace Unit

The CM2 PDTrace Unit (PDT) is an optional unit used to collect, pack and send out CM2 debug information. 

1.3.2.9 Performance Counter Unit

The CM Performance Counter Unit (PERF) implements the performance counter logic.

1.3.2.10 Coherence Manager Performance

The CM2 has a number of high performance features: 

• 256-bit wide internal data paths throughout the CM2

• 256-bit wide system OCP interface

• Cache to Cache transfers: If a read request hits in another L1 cache in the EXCLUSIVE or MODIFIED state, it 
will return the data to the CM and it will be forwarded to the requesting CPU, thus reducing latency on the miss.

• Speculative Reads: Coherent read requests are forwarded to the memory interface before they are looked up in 
the other caches. This is speculating that the cache line will not be found in another CPU’s L1 cache. If another 
cache was able to provide the data, the memory request is not needed, and the CM2 cancels the speculative 
request—dropping the request if it has not been issued, or dropping the memory response if it has.
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• Writes are issued to the CM2 in the order they were received.

• The CM2 provides an acknowledge (ACK) signal to the IOCU when writes are "visible" (guaranteed that a sub-
sequent CPU read will receive that data).

• Non-coherent write is acknowledged after serialization

• Coherent write is acknowledged after intervention complete on all CPUs

• The IOCU can be configured to treat incoming writes as non-posted and provide a write ACK when they become 
visible.

When I/O devices access the same memory that is accessed by the processor cores, care must be taken to account for 
the caches. When an I/O device is reading memory, dirty data in the caches means that main memory may not contain 
the latest data, and a read directly from memory can receive stale data. When writing main memory, data is the caches 
becomes stale—the cores can read the stale value and potentially write it back to memory, overwriting the more 
recent I/O data.

Taking care of these problems can be handled by hardware, software, or a combination of both. 

1.3.3.1 Software I/O Coherence

For cases where system redesign to accommodate hardware I/O coherence is not feasible, the CPUs and Coherence 
Manager provide support for an efficient software-managed I/O coherence. This support is through the globalization 
of hit-type CACHE instructions. 

When a coherent address is used for the CACHE operations, the CPU makes a corresponding coherent request. The 
CM2 sends interventions for the request to all of the CPUs, allowing all of the L1 caches to be maintained together. 
The basic software coherence routines developed for single CPU systems can be reused with minimal modifications.

In software managed I/O coherence, software running on the CPU performs any cache operations that are required in 
accordance with I/O memory accesses. This may include pushing dirty data out of the caches before an I/O read and 
invalidating stale data after an I/O write. The software I/O coherence code can run on one of the cores and ensure that 
the appropriate action is taken in all of the caches in the Cluster. 

Previous uniprocessor cores from MIPS Technologies have not included support for hardware I/O coherence, and 
systems based on those cores have relied on software coherence. Generally, the same coherence routines will work on 
the multi-CPU system.

1.3.3.2 Hardware I/O Coherence

For hardware I/O coherence, the coherence features on the CPU are used to ensure that I/O requests are handled prop-
erly. Requests from I/O devices go to the I/O Coherence Unit (IOCU) and then to a request port of the Coherence 
Manager. Requests that are marked coherent will generate interventions to the cores. I/O read requests can obtain any 
dirty data directly from a data cache that has it in the M state. I/O write requests will invalidate the line in any data 
caches that have copies of it. Coherent requests access the in-line L2 cache from the CM, so they will automatically 
be coherent with the L2 cache.

Note that I/O interventions do not affect the instruction cache. The instruction cache cannot contain dirty data, so I/O 
reads are not a problem. However, if the I/O device is writing addresses that may reside in the instruction cache, soft-
ware coherence must be used to invalidate the stale cache data.

In addition, even if hardware I/O coherence is present, there may be a need for software to explicitly maintain coher-
ence. Examples of this are for systems configured without I/O coherence, devices that are not connected to the coher-
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ent port, or devices that directly access memory non-coherently. Initially, with the non-coherent I-Cache, this will 
also be needed to maintain I-Cache coherence with I/O traffic and data operations.

1.3.4 Global Interrupt Controller

The Global Interrupt Controller (GIC) handles the distribution of interrupts between and among the CPUs in the clus-
ter. This block has the following features:

• Software interface through relocatable memory-mapped address range.

• Configurable number of system interrupts - from 8 to 256 in multiples of 8.

• Support for different interrupt types:

• Level-sensitive: active high or low.

• Edge-sensitive: positive, negative, or double-edge-sensitive.

• Ability to mask and control routing of interrupts to a particular CPU.

• Support for NMI routing.

• Standardized mechanism for sending inter-processor interrupts.

1.3.5 Global Configuration Registers (GCR)

The Global Configuration Registers (GCR) are a set of memory-mapped registers that are used to configure and con-
trol various aspects of the Coherence Manager and the coherence scheme.

1.3.5.1 Reset Control

The reset input of the system resets the Cluster Power Controller (CPC). Reset sideband signals are required to qual-
ify a reset as system cold, or warm start. Register setting determine the course of action:

• Remain in powered-down

• Go into clock-off mode

• Power-up and start execution

This prevents random power up of power domains before the CPC is properly initialized. In case of a system cold 
start, after reset is released, the CPC powers up the proAptiv CPUs as directed in the CPC cold start configuration. If 
at least one CPU has been chosen to be powered up on system cold start, the CM2 is also powered up. 

When supply rail conditions of power gated CPUs have reached a nominal level, the CPC will enable clocks and 
schedule reset sequences for those CPUs and the coherence manager.

At a warm start reset, the CPC brings all power domains into their cold start configuration. However, to ensure power 
integrity for all domains, the CPC ensures that domain isolation is raised before power is gated off. Domains that 
were previously powered and are configured to power up at cold start remain powered and go through a reset 
sequence.

Within a warm start reset, sideband signals are also used to qualify if coherence manager status registers and GIC 
watch dog timers are to be reset or remain unchanged. The CPC, after power up of any CPU, provides a test logic 
reset sequence per domain to initialize TAP and PDTrace logic.
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Note that unused CPUs are not held in reset until released by writing into the configuration registers. Rather, unused 
CPUs remain powered down and are held isolated towards the rest of the cluster. If power gating is not selected for a 
given implementation, unused CPUs are powered but receive no clock and remain isolated until activated by the 
CPC. 

In addition to controlling the deassertion of the CPC reset signal, there are memory-mapped registers that can set the 
value for each CPU’s SI_ExceptionBase pins. This allows different boot vectors to be specified for each of the 
cores so they can execute unique code if required. Each of the cores will have a unique CPU number, so it is also pos-
sible to use the same boot vector and branch based on that.

1.3.5.2 Inter-CPU Debug Breaks

The CPS includes registers that enable cooperative debugging across all CPUs. Each core features an EJ_DebugM 
output that indicates it has entered debug mode (possibly through a debug breakpoint). Registers are defined that 
allow CPUs to be placed into debug groups such that whenever one CPU within the group enters debug mode, a 
debug interrupt is sent to all CPUs within the group, causing them to also enter debug mode and stop executing non-
debug mode instructions.

1.3.5.3 CM2 Control Registers

Control registers in the CM2 allow software to configure and control various aspects of the operation of the CM2. 
Some of the control options include:

• Address map: the base address for the GCR and GIC address ranges can be specified. An additional four address 
ranges can be defined as well. These control whether non-coherent requests go to memory or to memory-mapped 
I/O. A default can also be selected for addresses that do not fall within any range.

• Error reporting and control: Logs information about errors detected by the CM2 and controls how errors are 
handled (ignored, interrupt, etc.).

• Control Options: Various features of the CM2 can be disabled or configured. Examples of this are disabling spec-
ulative reads and preventing ReadShared requests from being upgraded to Exclusive.

1.3.6 Clocking Options

The proAptiv core has the following clock domains:

• Cluster domain — This is the main clock domain, and includes all proAptiv cores (including optional FP2) and 
the CM2 (including Coherence Manager, Global Interrupt Controller, Cluster Power Controller, trace funnel, 
IOCU, and L2 cache).

• System Domain - The OCP port connecting to the SOC and the rest of the memory subsystem may operate at a 
ratio of the cluster domain. Supported ratios are 1:1, 1:1.5, 1:2, 1:2.5, 1:3, 1:3.5, 1:4, 1:5, and 1:10.

• TAP domain - This is a low-speed clock domain for the EJTAG TAP controller, controlled by the EJ_TCK pin. 
It is asynchronous to SI_ClkIn.

• IO Domain - This is the OCP port connecting the IOCU to the I/O Subsystem. This clock may operate at a ratio 
of the CM2 domain. Supported ratios are the same as the system domain.

Figure 1.12 shows a diagram with the four clock domains.
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CP0 Registers

The proAptiv System Control Coprocessor (CP0) provides the register interface to the proAptiv core and supports 
memory management, address translation, exception handling, and other privileged operations. Each CP0 register has 
a unique number that identifies it, referred to as its register number. A separate select number is used to differentiate 
additional registers within the register number. For example, as shown in the table below, there are eight configura-
tion registers with register number 16. If the select number is omitted, it is zero. 

This chapter contains the following sections:

• Section 2.1 “CP0 Register Summary”

• Section 2.2 “CP0 Register Formats”

• Section 2.3 “CP0 Register Descriptions”

2.1 CP0 Register Summary

The following two subsections show the CP0 register set grouped by function and grouped by number.

2.1.1 CP0 Registers Grouped by Function

The CP0 registers set are divided into the register groups shown in Table 2.1. Note that assembly programmers mod-
ifying certain CP0 registers or register fields must clear any execution or instruction hazards created by the modifica-
tion. Refer to Section 6.3.1, "Hazard Barrier Instructions" in Chapter 6 for more information on hazard barrier 
instructions. 

The following table provides a functional listing of the CP0 registers. Click on a Name column entry to provide a link 
to the desired register. 
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Table 2.1 proAptiv CP0 Registers Grouped by Function 

Category Register Name
Register 
Number

Register 
Select Location in Document

CPU Configuration 
and Status

Config 16 0 Section 2.3.1.1 on page 82

Config1 16 1 Section 2.3.1.2 on page 84

Config2 16 2 Section 2.3.1.3 on page 87

Config3 16 3 Section 2.3.1.4 on page 89

Config4 16 4 Section 2.3.1.5 on page 90

Config5 16 5 Section 2.3.1.6 on page 92

Config6 16 6 Section 2.3.1.7 on page 93

Config7 16 7 Section 2.3.1.8 on page 96

PRId 15 0 Section 2.3.1.9 on page 100

EBase 15 1 Section 2.3.1.10 on page 100

Status 12 0 Section 2.3.1.11 on page 102

IntCtl 12 1 Section 2.3.1.12 on page 106

TLB Management Index 0 0 Section 2.3.2.1 on page 108

Random 1 0 Section 2.3.2.2 on page 109

EntryLo0 2 0 Section 2.3.2.3 on page 110

EntryLo1 3 0

EntryHi 10 0 Section 2.3.2.4 on page 112

Context 4 0 Section 2.3.2.5 on page 113

ContextConfig 4 1 Section 2.3.2.6 on page 114

PageMask 5 0 Section 2.3.2.7 on page 115

PageGrain 5 1 Section 2.3.2.8 on page 116

Wired 6 0 Section 2.3.2.9 on page 117

BadVAddr 8 0 Section 2.3.2.10 on page 118

Memory Segmentation SegCtl0 5 2 Section 2.3.3.1 on page 119

SegCtl1 5 3 Section 2.3.3.2 on page 120

SegCtl2 5 4 Section 2.3.3.3 on page 121

Exception Control Cause 13 0 Section 2.3.4.1 on page 124

EPC 14 0 Section 2.3.4.2 on page 127

ErrorEPC 30 0 Section 2.3.4.3 on page 128

Timer Count 9 0 Section 2.3.5.1 on page 129

Compare 11 0 Section 2.3.5.2 on page 129
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Cache Management ITagLo 28 0 Section 2.3.6.1 on page 130

ITagHi 29 0 Section 2.3.6.2 on page 132

IDataLo 28 1 Section 2.3.6.3 on page 133

IDataHi 29 1 Section 2.3.6.4 on page 133

DTagLo 28 2 Section 2.3.6.5 on page 134

DDataLo 28 3 Section 2.3.6.6 on page 140

L23TagLo 28 4 Section 2.3.6.7 on page 141

L23DataLo 28 5 Section 2.3.6.8 on page 141

L23DataHi 29 5 Section 2.3.6.9 on page 142

ErrCtl 26 0 Section 2.3.6.10 on page 142

CacheErr 27 0 Section 2.3.6.11 on page 144

Shadow Registers SRSCtl 12 2 Section 2.3.7.1 on page 146

Performance 
Monitoring

PerfCtl0 25 0 Section 2.3.8.1 on page 149

PerfCtl1 25 2

PerfCtl2 25 4

PerfCtl3 25 6

PerfCnt0 25 1 Section 2.3.8.2 on page 158

PerfCnt1 25 3

PerfCnt2 25 5

PerfCnt3 25 7

Debug Debug 23 0 Section 2.3.9.1 on page 158

DEPC 24 0 Section 2.3.9.2 on page 161

DESAVE 31 0 Section 2.3.9.3 on page 162

WatchLo0 18 0 Section 2.3.9.4 on page 162

WatchLo1 18 1

WatchLo2 18 2

WatchLo3 18 3

WatchHi0 19 0 Section 2.3.9.5 on page 163

WatchHi1 19 1

WatchHi2 19 2

WatchHi3 19 3

Table 2.1 proAptiv CP0 Registers Grouped by Function (continued)

Category Register Name
Register 
Number

Register 
Select Location in Document



 

76 MIPS32® proAptiv™ Multiprocessing System Software User’s Manual, Revision 01.22

PDTrace TraceControl 23 1 Section 2.3.10.1 on page 164

TraceControl2 23 2 Section 2.3.10.2 on page 167

TraceControl3 24 2 Section 2.3.10.3 on page 169

UserTraceData1 23 3 Section 2.3.10.4 on page 170

UserTraceData2 24 3 Section 2.3.10.5 on page 170

TraceIPBC 23 4 Section 2.3.10.6 on page 170

TraceDBPC 23 5 Section 2.3.10.7 on page 171

User Mode Support HWREna 7 0 Section 2.3.11.1 on page 172

UserLocal 4 2 Section 2.3.11.2 on page 174

Kernel Mode Support KScratch0 31 2 Section 2.3.12.1 on page 175

KScratch1 31 3 Section 2.3.12.2 on page 175

KScratch2 31 4 Section 2.3.12.3 on page 175

Memory Mapped CDMMBase 15 2 Section 2.3.13.1 on page 176

CMGCRBase 15 3 Section 2.3.13.2 on page 177

Table 2.1 proAptiv CP0 Registers Grouped by Function (continued)

Category Register Name
Register 
Number

Register 
Select Location in Document
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2.1.2 CP0 Registers Grouped by Number

The following table provides a numerical listing of the proAptiv CP0 registers. Click on a Name column entry to pro-
vide a link to the desired register. 

Table 2.2 CP0 Registers Grouped by Number 

Register

Function LocationNum Sel Name

0 0 Index Index into the TLB array Section 2.3.2.1

1 0 Random Randomly generated index into the TLB array. Section 2.3.2.2

2 0 EntryLo0 Low-order portion of the TLB entry for even-numbered virtual pages. Section 2.3.2.3

3 0 EntryLo1 Low-order portion of the TLB entry for odd-numbered virtual pages.

4 0 Context Pointer to page table entry in memory. Section 2.3.2.5

4 1 ContextConfig Defines the bits of the Context register into which the high order bits 
of the virtual address causing a TLB exception will be written, and 
how many bits of that virtual address will be extracted.

Section 2.3.2.6

4 2 UserLocal User information that can be written by privileged software and read 
via RDHWR register 29

Section 2.3.11.2

5 0 PageMask PageMask controls the variable page sizes in TLB entries. Section 2.3.2.7

5 1 PageGrain PageGrain controls the granularity of the page sizes in TLB entries. Section 2.3.2.7

5 2 SegCtl0 Segmentation control register 0. Used for enhanced virtual addressing 
(EVA).

Section 2.3.3.1

5 3 SegCtl1 Segmentation control register 1. Used for enhanced virtual addressing 
(EVA). 

Section 2.3.3.2

5 4 SegCtl2 Segmentation control register 2. Used for enhanced virtual addressing 
(EVA). 

Section 2.3.3.3

6 0 Wired Controls the number of fixed (“wired”) TLB entries. This register is 
reserved if the TLB is not implemented.

Section 2.3.2.9

7 0 HWREna Enables access via the RDHWR instruction to selected hardware reg-
isters in non-privileged mode.

Section 2.3.11.1

8 0 BadVAddr Reports the address for the most recent address-related exception. Section 2.3.2.10

9 0 Count Processor cycle count. Section 2.3.5.1

10 0 EntryHi High-order portion of the TLB entry. This register is reserved if the 
TLB is not implemented.

Section 2.3.2.4

11 0 Compare Timer interrupt control. Section 2.3.5.2

12 0 Status Processor status and control. Section 2.3.1.11

12 1 IntCtl Setup for interrupt vector and interrupt priority features. Section 2.3.1.12

12 2 SRSCtl Shadow register set control. Section 2.3.7.1

13 0 Cause Cause of last exception. Section 2.3.4.1

14 0 EPC Program counter at last exception. Section 2.3.4.2

15 0 PRId Processor identification and revision. Section 2.3.1.9

15 1 EBase Exception base address. Section 2.3.1.10

15 2 CDMMBase Common Device Memory Map Base Address. Section 2.3.13.1
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15 3 CMGCRBase Defines the 36-bit physical base address for the memory-mapped 
Coherency Manager Global Configuration Register (CMGCR) space.

Section 2.3.13.1

16 0 Config Configuration register. Section 2.3.1.1

16 1 Config1 Configuration for MMU, caches etc. Section 2.3.1.2

16 2 Config2 Configuration for MMU, caches etc. Section 2.3.1.3

16 3 Config3 Interrupt and ASE capabilities Section 2.3.1.4

16 4 Config4 Indicates presence of Config5 register Section 2.3.1.5

16 5 Config5 Provides information on EVA and cache error exception vector. Section 2.3.1.6

16 5 Config6 Provides information about the presence of optional extensions to the 
base MIPS32 architecture.

Section 2.3.1.7

16 7 Config7 proAptiv Multiprocessing System family-specific configuration regis-
ter.

Section 2.3.1.8

18 0 WatchLo0 Watchpoint address associated with instruction watchpoint 0. Section 2.3.9.4

18 1 WatchLo1 Watchpoint address associated with instruction watchpoint 1.

18 2 WatchLo2 Watchpoint address associated with data watchpoints 0.

18 3 WatchLo3 Watchpoint address associated with data watchpoints 1.

19 0 WatchHi0 Watchpoint ASID and Mask associated with instruction watchpoint 0. Section 2.3.9.5

19 1 WatchHi1 Watchpoint ASID and Mask associated with instruction watchpoint 1.

19 2 WatchHi2 Watchpoint ASID and Mask associated with data watchpoint 0.

19 3 WatchHi3 Watchpoint ASID and Mask associated with data watchpoint 1.

23 0 Debug EJTAG Debug register. Section 2.3.9.1

23 1 TraceControl EJTAG Trace Control register Section 2.3.10.1

23 2 TraceControl2 EJTAG Trace Control2 register Section 2.3.10.2

23 3 UserTraceData1 EJTAG User Trace Data1 register Section 2.3.10.4

23 4 TraceIBPC EJTAG Trace Instruction breakpoint control register Section 2.3.10.6

23 5 TraceDBPC EJTAG Trace Debug breakpoint control register Section 2.3.10.7

24 0 DEPC Restart address from last EJTAG debug exception. Section 2.3.9.2

24 2 TraceControl3 EJTAG Trace Control3 register Section 2.3.10.3

24 3 UserTraceData2 EJTAG User Trace Data2 register Section 2.3.10.5

25 0 PerfCtl0 Performance counter 0 control. Section 2.3.8.1

25 1 PerfCnt0 Performance counter 0 count. Section 2.3.8.2

25 2 PerfCtl1 Performance counter 1 control. Section 2.3.8.1

25 3 PerfCnt1 Performance counter 1 count. Section 2.3.8.2

25 4 PerfCtl2 Performance counter 2 control. Section 2.3.8.1

25 5 PerfCnt2 Performance counter 2 count. Section 2.3.8.2

25 6 PerfCtl3 Performance counter 3 control. Section 2.3.8.1

25 7 PerfCnt3 Performance counter 3 count. Section 2.3.8.2

Table 2.2 CP0 Registers Grouped by Number (continued)

Register

Function LocationNum Sel Name
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26 0 ErrCtl Software test enable of way-select and Data RAM arrays for I-Cache 
and D-Cache.

Section 2.3.6.10

27 0 CacheErr Records information about cache parity errors Section 2.3.6.11

28 0 ITagLo Cache tag read/write interface for I-cache. Section 2.3.6.1

28 1 IDataLo Low-order data read/write interface for I-cache. Section 2.3.6.3

28 2 DTagLo Cache tag read/write interface for D-cache. Section 2.3.6.5

28 3 DDataLo Low-order data read/write interface for D-cache. Section 2.3.6.6

28 4 L23TagLo Cache tag read/write interface for L2-cache. Section 2.3.6.7

28 5 L23DataLo Low-order data read/write interface for L2-cache. Section 2.3.6.8

28 0 ITagHi Cache tag read/write interface for I-cache, upper 32 bits. Section 2.3.6.1

29 1 IDataHi High-order data read/write interface for I-cache. Section 2.3.6.4

29 5 L23DataHi High-order data read/write interface for L2-cache. Section 2.3.6.9

30 0 ErrorEPC Program counter at last error. Section 2.3.4.3

31 0 DESAVE Debug handler scratchpad register. Section 2.3.9.3

31 2 KScratch0 Kernel scratch pad register 0. Section 2.3.12.1

31 3 KScratch1 Kernel scratch pad register 1. Section 2.3.12.2

31 4 KScratch2 Kernel scratch pad register 2. Section 2.3.12.3

Table 2.2 CP0 Registers Grouped by Number (continued)

Register

Function LocationNum Sel Name
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2.2 CP0 Register Formats

This section contains descriptions of each CP0 register. The registers are listed in numerical order, first by register 
number, then by select field number. 

2.2.1 CP0 Register Field Types

For each register described below, field descriptions include the read/write properties of the field, and the reset state 
of the field.

R/W Access Types

For each register described below, field descriptions include the read/write access properties of the field and the reset 
state of the field. The read/write access properties are described in Table 2.3.

Table 2.3 CP0 Register Field R/W Access Types

Notation Hardware Interpretation Software Interpretation

R/W A field in which all bits are readable and writable by software and potentially by hardware.

Hardware updates of this field are visible by software reads. Software updates of this field are visible by hard-
ware reads.

If the reset state of this field is “Undefined”, either software or hardware must initialize the value before the 
first read will return a predictable value. This should not be confused with the formal definition of UNDE-
FINED behavior.

SO Software Only. A field that is read and written by software but has no hardware effect. An example is the 
DESAVE register.

R A field that is either static or is updated only by hard-
ware.

If the Reset State of this field is either “0” or “Preset”, 
hardware initializes this field to zero or to the appro-
priate state, respectively, on powerup.

If the Reset State of this field is “Undefined”, hard-
ware updates this field only under those conditions 
specified in the description of the field.

A field to which the value written by software is 
ignored by hardware. Software may write any value to 
this field without affecting hardware behavior. Soft-
ware reads of this field return the last value updated 
by hardware.

If the Reset State of this field is “Undefined,” software 
reads of this field result in an UNPREDICTABLE 
value except after a hardware update done under the 
conditions specified in the description of the field.

W A field that can be written by software but which cannot be read by software.

Software reads of this field will return an UNDEFINED value.

W0 Hardware can write 1’s or 0’s to this field. Software writes will only cause the bit to be cleared. 
Software can never set this bit. An example is the NMI 
bit field in the Status register.

W1C Hardware can write 1’s or 0’s to this field. Software should write “1” to this bit to clear it. An 
example is the I, R, and W bit fields in the WatchHi0-
3 register.
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Color Coding of Register Descriptions

The color codes used in the register descriptions to indicate the access types are summarized in Figure 2.1. A field 
with two access types (for example, R/W0) is uncolored, 

Figure 2.1 Register Format Color Coding of Access Field Types 

Power-up State of CP0 Registers

The traditions of the MIPS architecture regard it as software’s job to initialize CP0 registers. As a rule, only fields 
where a wrong setting could prevent the CPU from booting are specified to be brought to a particular state by reset; 
other fields—perhaps other fields in the same register—are undefined. This manual documents where a field has a 
forced-from-reset value; conversely, when no reset-time value is documented, that means the register comes up in an 
undefined state.

To ensure robust programs, you should initialize all CP0 register fields, except those in which a random value is 
known to be harmless.

A Note on Unused Fields in CP0 Registers

Unused fields in registers are marked either with the digit 0, an "X", or occasionally a "U". A field marked zero is 
expected to read zero; a

field marked "U" is expected to read back whatever you last wrote to it; and if the field is marked "X", the value is 
unpredictable.

But again, for robustness, you should write unused fields either to a value you previously read from the same field or 
(if no such value is available) to zero. 

2.2.2 Value Notations

The following conventions are used for numeric values in this document:

• Decimal values are written as standard base 10 numbers.

• Hexadecimal values are prefaced with “0x”.

0 A field that hardware does not update, and for which 
hardware can assume a zero value.

A field to which the value written by software must be 
zero. Software writes of non-zero values to this field 
may result in UNDEFINED behavior of the hard-
ware. Software reads of this field return zero as long 
as all previous software writes are zero.

If the Reset State of this field is “Undefined”, software 
must write this field with zero before it is guaranteed 
to read as zero.

U A field that is not read or written by hardware. Software writes to this field will be ignored. Software 
reads of this field will return an UNDEFINED value.

31 0

R/W SO R WRITE HAS UNUSUAL
EFFECT (W, WO, W1C) 0 U

Table 2.3 CP0 Register Field R/W Access Types(continued)

Notation Hardware Interpretation Software Interpretation
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• Binary numbers are appended with the prefix x’by. The number preceding the ‘b (x) indicates the number of 
binary bits involved. The numbers after the ‘b (y) indicates the actual binary value. The number of bits of y 
should match the value stated in x.

• For example, the following numbers are equivalent: 17 decimal = 0x11 = 5’b10001. 

• If the (y) value is the same for all bits, only one number need be shown. For example, 12’b0 would indicate 
there are 12 bits in the field and all of them are zero.

2.3 CP0 Register Descriptions

The following subsections describe the CP0 registers listed in Table 2.1 above.

2.3.1 CPU Configuration and Status Registers

This section contains the following CPU Configuration and Status registers.

• Section 2.3.1.1, "Device Configuration — Config (CP0 Register 16, Select 0)" on page 82

• Section 2.3.1.2, "Device Configuration 1 — Config1 (CP0 Register 16, Select 1)" on page 84

• Section 2.3.1.3, "Device Configuration 2 — Config2 (CP0 Register 16, Select 2)" on page 87

• Section 2.3.1.4, "Device Configuration 3 — Config3 (CP0 Register 16, Select 3)" on page 89

• Section 2.3.1.5, "Device Configuration 4 — Config4 (CP0 Register 16, Select 4)" on page 90

• Section 2.3.1.6, "Device Configuration 5 — Config5 (CP0 Register 16, Select 5)" on page 92

• Section 2.3.1.7, "Device Configuration 6 — Config6 (CP0 Register 16, Select 6)" on page 93

• Section 2.3.1.8, "Device Configuration 7 — Config7 (CP0 Register 16, Select 7)" on page 96

• Section 2.3.1.9, "Processor ID — PRId (CP0 Register 15, Select 0)" on page 100

• Section 2.3.1.10, "Exception Base Address — EBase (CP0 Register 15, Select 1)" on page 100

• Section 2.3.1.11, "Status (CP0 Register 12, Select 0)" on page 102

• Section 2.3.1.12, "Interrupt Control — IntCtl (CP0 Register 12, Select 1)" on page 106

2.3.1.1 Device Configuration — Config (CP0 Register 16, Select 0)

The main role of the Config register is to be a read-only repository of information about the proAptiv core resources, 
encoded so as to be useful to operating system initialization code.

Figure 2.2 Config Register Format  
31 30 28 27 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 7 6 4 3 2 0

M K23 KU ISP DSP UDI SB 0 MM 0 BM BE AT AR MT 0 VI K0

Table 2.4 Field Descriptions for Config Register

Name Bit(s) Description
Read/ 
Write Reset State

M 31 This bit is hardwired to ‘1’ to indicate the presence of the Config1 register. R 1

K23 30:28 These fields are unused in the proAptiv core since the TLB structure is sup-
ported. They should be written as zero only.

R 0

KU 27:25 R 0
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ISP 24 Instruction Scratch Pad RAM present.

0: Iinstruction scratch pad RAM (ISPRAM) is not implemented.

1: Instruction scratch pad RAM (ISPRAM) is implemented.

R Preset

DSP 23 Data Scratch Pad RAM present.

0: Data scratch pad RAM (DSPRAM) is not implemented.

1: Data scratch pad RAM (DSPRAM) is implemented.

This bit should not be confused with the MIPS DSP ASE, whose presence is 
indicated by Config3DSPP. 

R Preset

UDI 22 User-Defined Instrucitons.

0: The proAptiv core does not contain user-defined "CorExtend" instructions.

1: The proAptiv core contains user-defined "CorExtend" instructions.

R Preset

SB 21 Read-only "SimpleBE" bus mode indicator, which reflects the proAptiv Multi-
processing System input signal SI_SimpleBE.

0: No reserved byte enabled on the OCP interface.

1: Only simple byte enables allows on the OCP interface.

If set by hardware, the proAptiv Multiprocessing System core will only do sim-
ple partial-word transfers on its OCP interface; that is, the only partial-word 
transfers will be byte, aligned half-word, and aligned word.

If zero, it may generate partial-word transfers with an arbitrary set of bytes 
enabled. This generates less requests, but may not be supported by all down-
stream devices.

R Externally Set

0 20:19 Must be written as zero; returns zero on read. R 0

MM 18 Write Merge.This bit indicates whether write-through merging is enabled in the 
32-byte collapsing write buffer. 

0: No merging allowed

1: Merging allowed

Setting this bit allows writes resulting from separate store instructions in write-
through mode to be merged into a single transaction at the interface. 

The state of this bit does not affect cache writebacks (which are always whole 
blocks together) or uncached writes (which are never merged). 

Note that write-through caching is not supported in the proAptiv core, so this bit 
has no meaning.

R/W 1

0 17 Must be written as zero; returns zero on read. R 0

Table 2.4 Field Descriptions for Config Register(continued)

Name Bit(s) Description
Read/ 
Write Reset State
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2.3.1.2 Device Configuration 1 — Config1 (CP0 Register 16, Select 1)

The Config1 register provides information such as the size of the VTLB and the L1 instruction and data cache param-
eters. It also contains a series of single bits that indicate the presence of selected logic units on the proAptiv core.

Figure 2.3 Config1 Register Format  

BM 16 Burst Mode. 

0: Sequential burst mode

1: SubBlock burst mode

This bit reads 0 when the bus uses sequential burst ordering and reads 1 when it 
uses sub-block burst ordering. This bit is set by the input signal SI_SBlock sig-
nal to match the system controller. 

Note that the proAptiv core only supports sequential burst ordering. Hence this 
bit is always zero.

R 0

BE 15 Endian mode.

0: Little endian

1: Big endian

This bit is written by hardware based on the state of the SI_Endian input pin.

R Externally Set

AT 14:13 Architecture type implemented by the processor. 

This field is always 00 to indicate the MIPS32 architecture.

R 0

AR 12:10 Architecture release. 

0x0 = Release 1

0x1 = Release 2 or Release 3

This bit always reads 1 to reflect Release 3 of the MIPS32 architecture.

R 1

MT 9:7 MMU type:

000: Reserved
001: VTLB Only
010 - 011: Reserved
100: VTLB + FTLB
101 - 111: Reserved

R 1

0 6:4 Must be written as zero; returns zero on read. R 0

VI 3 Virtually indexed. This bit is set by hardware and is 0 to indicate that the L1 
instruction cache is physically tagged.

R 0

K0 2:0 Kseg0 coherency attribute of the page. See Table 2.21 for the field encoding. R/W 2

31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 5 4 3 2 1 0

M MMUSize IS IL IA DS DL DA C2 MD PC WR CA EP FP

Table 2.4 Field Descriptions for Config Register(continued)

Name Bit(s) Description
Read/ 
Write Reset State
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Table 2.5 Field Descriptions for Config1 Register

Name Bit(s) Description Read/ Write Reset State

M 31 Continuation bit, set to 1 to indicate that the Config2 register is implemented. R 1

MMUSize 30:25 The size of the VTLB array (the array has MMUSize + 1 entries). Refer to the 
Config4 register for more information.

R 0x3F

IS 24:22 L1 Instruction cache number of sets per way. This field indicates the number of 
sets per way in the L1 instruction cache. The number of sets is multiplied by 
the number of ways and the line size to derive the cache size. In this case, the 
number of sets defines the cache size since the line size and number of ways in 
the proAptiv core are fixed. This field is encoded as follows:

000 - 001: Reserved

010: 256 sets per way (equates to 32 KByte instruction cache)

011: 512 sets per way (equates to 64 KByte instruction cache)

100 - 111: Reserved

Because the line size and associativity are fixed for the proAptiv instruction 
cache as defined in the IL and IA fields below, the IS field is used to determine 
the overall cache size as follows:

If this field is set to 2, the instruction cache size would be:

256 sets/way x 32 bytes/line x 4 sets per way = 32 KBytes.

If this field is set to 3, the instruction cache size would be:

512 sets/way x 32 bytes/line x 4 sets per way = 64 KBytes.

R Preset

IL 21:19 L1 Instruction cache line size. In the proAptiv core, the instruction cache line 
size is fixed at 32 bytes. As such, this field is encoded as follows:

000 - 011: Reserved

100: 32 byte line size

101 - 111: Reserved

A value of zero in this field indicates means no cache.

R 4

IA 18:16 L1 Instruction cache associativity. In the proAptiv core, the instruction cache 
associativity is fixed at 4 ways. As such, this field is encoded as follows:

000 - 010: Reserved

011: 4-ways

100 - 111: Reserved

A default value of 3 indicates a 4-way set associative instruction cache. Refer 
to the IS field above to determine how to calculate the size of the L1 instruc-
tion cache.

R 3
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DS 15:13 L1 Data cache number of sets per way. This field indicates the number of sets 
per way in the L1 data cache and is encoded as follows: The number of sets is 
multiplied by the number of ways and the line size to derive the cache size. In 
this case, the number of sets defines the cache size since the line size and num-
ber of ways in the proAptiv core are fixed. This field is encoded as follows:

000 - 001: Reserved

010: 256 sets per way (equates to 32 KByte instruction cache)

011: 512 sets per way (equates to 64 KByte instruction cache)

100 - 111: Reserved

Because the line size and associativity are fixed for the proAptiv data cache as 
defined in the DL and DA fields below, the DS field is used to determine the 
overall cache size as follows:

If this field is set to 2, the data cache size would be:

256 sets/way x 32 bytes/line x 4 sets per way = 32 KBytes.

If this field is set to 3, the data cache size would be:

512 sets/way x 32 bytes/line x 4 sets per way = 64 KBytes.

R Preset

DL 12:10 L1 data cache line size. In the proAptiv core, the data cache line size is fixed at 
32 bytes. As such, this field is encoded as follows:

000 - 011: Reserved

100: 32 byte line size

101 - 111: Reserved

A value of zero in this field indicates means no cache.

R 4

DA 9:7 L1 data cache associativity. In the proAptiv core, the data cache associativity is 
fixed at 4 ways. As such, this field is encoded as follows:

000 - 010: Reserved

011: 4-ways

100 - 111: Reserved

A default value of 3 indicates a 4-way set associative data cache.

R 3

C2 6 This bit is cleared to indicate that a coprocessor 2 does not exist in the system. R 0

MD 5 MDMX Application Specific Extension (ASE). 

A logic ‘0’ indicates that the MDMX ASE is not implemented in the floating 
point unit (FPU) of the proAptiv core. Note that if the FPU is not implemented, 
this bit has no meaning.

R 0

PC 4 Performance counter enable. 

There is at least one performance counter implemented in the proAptiv core. 
Hence this bit is always a logic ‘1’. Refer to the PerfCtl0-3 and PerfCnt0-3 
registers for more information. 

R 1

WR 3 Watchpoint registers present. 

This bit always reads 1 because the proAptiv core always has watchpoint regis-
ters. Refer to the WatchLo 0-3/WatchHi 0-3 registers in Section 
2.3.9.4 “Watch Low 0 - 3 — WatchLo0-3 (CP0 Register 18, Select 0-3)”. 

R 1

Table 2.5 Field Descriptions for Config1 Register

Name Bit(s) Description Read/ Write Reset State
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2.3.1.3 Device Configuration 2 — Config2 (CP0 Register 16, Select 2)

The Config2 register provides information about the size and organization of L2 and L3 caches. The Config2 register 
also has fields that indicate the presence of some extensions to the base MIPS32 architecture. 

An L3 cache can be used with the proAptiv Multiprocessing System core. However, the core does not support passing 
of the L3 configuration information via the Config2 register. As such, the TU, TS, TL and TA bits of this register, 
which handle L3 operations, are not used and are all tied to 0. Information on L3 transfers may be available in an 
implementation specific register elsewhere in the system.

Figure 2.4 Config2 Register Format   

CA 2 MIPS16e present. This bit always reads 1 to indicate the MIPS16e com-
pressed-code instruction set is available.

R 1

EP 1 EJTAG unit present. This bit always reads 1 as the EJTAG debug unit is pro-
vided on the proAptiv core. 

R 1

FP 0 Floating Point Unit present. This bit is set to indicate that a floating point unit 
is present. The floating point unit is optional on the proAptiv core. If no FPU is 
present, this bit will be zero. 
•

R Preset

31 30 28 27 24 23 20 19 16 15 13 12 11 8 7 4 3 0

M TU TS TL TA SU L2B SS SL SA

Table 2.6 Field Descriptions for Config2 Register

Name Bit(s) Description Read/ Write Reset State

M 31 This bit is hardwired to ‘1’ to indicate the presence of the Config3 register. R 1

TU 30:28 An L3 cache can be used with the proAptiv core. However, the core does not 
support passing of the L3 configuration data via the Config2 register. As such, 
the TU, TS, TL and TA bits of this register, which report L3 information, are not 
used and are all tied to 0. Details of the L3 configuration may be available in an 
implementation specific register elsewhere in the system.

R 0

TS 27:24 R 0

TL 23:20 R 0

TA 19:16 R 0

SU 15:13 This bit is reserved in the proAptiv core and is always 0. R 0

L2B 12 L2 cache bypass. Setting this bit disables or bypasses the L2 cache. Setting this 
bit also forces Config2SL to 0. Based on this information, most operating system 
code will conclude that there is no L2 cache on the system. 

Setting this bit forces hardware to drivea series of internal handshake signals 
between the core to the CM2, placing the L2 cache into bypass mode.

When this bit is set through a write operation, a subsequent read of this bit will 
not indicate a logic 1 until the L2 has asserted its internal handshakle signal, 
indicating that it has been bypassed. 

R/W 0

Table 2.5 Field Descriptions for Config1 Register

Name Bit(s) Description Read/ Write Reset State
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SS 11:8 L2 cache number of sets per way. This field indicates the number of sets per way 
in the L2 cache of the Coherent Processing System (CPS) and is written by hard-
ware at reset based on the state of the L2_Sets[3:0] signals. 

At IP configuration time, the user selects the cache size and the line size. Hard-
ware then takes this information and selects the appropriate number of sets. See 
the example formulas below for determining the number of sets based on cache 
and line size.

This field is encoded as follows:

0x0 - 0x2: Reserved

0x3: 512 sets per way

0x4: 1024 sets per way

0x5: 2048 sets per way

0x6: 4096 sets per way

0x7: 8192 sets per way

0x8: 16384 sets per way

0x9: 32768 sets per way

0xA- 0xF: Reserved

For example: 

If this field is set to 0x3, the SL field is set to 0x5, and the SA field is set to 0x4, 
the L2 cache size would be:

512 sets/way x 64 bytes/line x 8 ways = 256 KBytes

Conversely, if this field is set to 0x9, the SL field is set to 0x4, and the SA field 
is set to 0x4, the L2 cache size would be:

32768 sets/way x 32 bytes/line x 8 ways = 8 MBytes

Note that the setting for 32768 sets/way cannot be used with the 64-byte line 
size because the proAptiv core does not support a 16 MB L2 cache size.

R Preset

SL 7:4 L2 data cache line size. In the proAptiv core, the L2 cache line size can be con-
figured at 32 or 64 bytes. This field is written by hardware at reset based on the 
state of the L2_LineSize[3:0] signals. These signals are driven based on the 
customer’s line size choice during IP configuration. As such, this field is 
encoded as follows:

0x0 - 0x1: Reserved

0x2: 32 byte line size

0x3: 64 byte line size

0x4 - 0xF: Reserved

R Preset per GUI

SA 3:0 L2 cache associativity. In the proAptiv core, the L2 cache associativity is fixed 
at 8 ways. This field is written by hardware at reset based on the state of the 
L2_Assoc[3:0] signals. As such, this field is encoded as follows:

0x0 - 0x6: Reserved

0x7: 8 ways

0x8 - 0xF: Reserved

R 0x7

Table 2.6 Field Descriptions for Config2 Register

Name Bit(s) Description Read/ Write Reset State
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2.3.1.4 Device Configuration 3 — Config3 (CP0 Register 16, Select 3)

Config3 provides information about the presence of optional extensions to the base MIPS32 architecture in addition to 
those specified in Config2. All fields in the Config3 register are read-only.

Figure 2.5 Config3 Register Format — Multi-Core   
31 30 29 28 26 25 24 16

M 0 CMGCR 0 SC 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ISA ULRI RXI DSP2P DSPP CTXTC 0 VEIC VInt SP CDMM MT SM TL

Table 2.7 Field Descriptions for Config3 Register 

Name Bit(s) Description
Read/ 
Write Reset State

M 31 Configuration continuation bit. This bit is always one to indicate the presence 
of Config4. 

R 1

0 30 Must be written as zeros; returns zeros on read 0 0

CMGCR 29 Reads 1 to indicate that the Coherence Manager has a Global Configuration 
Register Space and the CMGCRBase cop0 register is implemented.

R 1

0 28:26 Must be written as zeros; returns zero on read. R 0

SC 25 Segment Control implemented. This bit indicates whether the Segment Control 
registers SegCtl0, SegCtl1 and SegCtl2 are present. This bit is always 1 in 
the proAptiv core. 

R 1

0 24:16 Must be written as zero; returns zero on read. R 0

ISA 15:14 Indicates the instruction set availability. This bit is always 0 to indicate 
MIPS32.

R 0

ULRI 13 Reads 1 to indicate that the UserLocal Register is implemented. R 1

RXI 12 Reads 1 to indicate that the RIE and XIE fields exist in the PageGrain register. R 1

DSP2P 11 Reads 1 to indicate that Revision 2 of the MIPS DSP ASE is implemented R 1

DSPP 10 Reads 1 to indicate that the MIPS DSP ASE extension is implemented. R 1

CTXTC 9 Reads 1 to indicate the ContextConfig register is implemented. The width of 
the BadVPN2 field in the Context register depends on the contents of the 
ContextConfig register. 

R 1

0 8:7 Must be written as zero; returns zero on read. R 0

VEIC 6 Support for an external interrupt controller. This bit is set or cleared by hard-
ware depending on whether the EIC option was selected at build time. 

0: Support for EIC mode not supported.

1: Support of EIC mode supported.

The value of this bit is set by the static input, SI_EICPresent. This allows 
external logic to communicate whether an external interrupt controller is 
attached to the processor or not

R Externally Set
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2.3.1.5 Device Configuration 4 — Config4 (CP0 Register 16, Select 4)

The Config4 register encodes additional capabilities such as the number of page-pair entries within the FTLB.

Figure 2.6 Config4 Register Format   

VInt 5 Vectored interrupts implemented. This bit indicates whether vectored interrupts 
are implemented.. On the proAptiv core, this bit reads 1 to indicate the CPU can 
handle vectored interrupts. 

R 1

SP 4 Reads 0 to indicate the CPU does not support 1 Kbyte TLB pages. R 0

CDMM 3 Reads 1 to indicate the Common Device Memory Map (CDMM) feature is 
implemented, as well as the CDMMBase register is present.

R 1

MT 2 Reads 0 to indicate the proAptiv core does not include the MIPS MT module. R 0

SM 1 Reads 0 to indicate the CPU does not include the instructions of the SmartMIPS 
ASE. 

R 0

TL 0 Reads 1 to indicate PDTrace is supported. R 1

31 30 29 28 24 23 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M IE 0 KScrExist MMU
ExtDef

MMUConfig
Configuration depends on state of MMUExtDef

MMUExtDef = 1 000000 ExtVTLB

MMUExtDef = 3 0 FTLB Page Size FTLB Ways FTLB Sets

All other MMUExtDef values reserved.

Table 2.8 Field Descriptions for Config4 Register 

Name Bit(s) Description
Read/ 
Write Reset State

M 31 Configuration continuation bit. This bit is one to indicate the presence of 
Config5. 

R 1

IE 30:29 TLBINV instruction support. For this field, the proAptiv core only returns 
the following encoding. 

10: TLBINV, TLBINVF instruction supported, EntryHiEHINV supported. 
TLBINV, TLBINVF instruction operate on one TLB entry. 

R 2

0 28:24 Reserved. Must be written as zero. Ignored on reads. R 0

Table 2.7 Field Descriptions for Config3 Register (continued)

Name Bit(s) Description
Read/ 
Write Reset State
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KScrExist 23:16 Indicates how many scratch registers are available to kernel-mode software 
within CP0 Register 31. In the proAptiv architecture, three kernal scratch 
registers are included at register selects 2, 3, and 4.

Each bit represents a select for CP0 Register 31. Bit 16 represents Select 0, 
Bit 23 represents Select 7. If the bit is set, the associated scratch register is 
implemented and available for kernel-mode software. Therefore, this field 
contains a value of 0x1C (8’b00011100). This indicates that bits 18 - 20 are 
set, corresponding to selects 2, 3, and 4.

These registers are used by the kernel for temporary storage of information. 
Refer to Section 2.3.12, "Kernel Mode Support Registers" on page 174 for 
more information.

R 0x1C

MMUExtDef 15:14 MMU Extension Definition. This 2-bit field defines how Config4[12:0] is to 
be interpreted. Refer to Figure 2.6 for more information. This field is 
encoded as follows:

R 1

Assignment of bits 13:0 when MMUExtDef = 2’b11

0 13 Reserved. Must be written as zero. Ignored on reads. R 0

FTLB Page 
Size

12:8 Indicates the Page Size of the FTLB Array Entries. The FTLB must be 
flushed of any valid entries before this register field value is changed by soft-
ware. The FTLB behavior is UNDEFINED if there are valid FTLB entries 
which were not all programmed using a common page size.

This field is encoded as follows:

Note that the MMUExtDef field must contain have a value of 2’b11 for this 
field to have meaning. If the MMUExtDef field is 2’b01, this field is 
ignored. This bit is set not used during reset as the FLTB is disabled by 
default. If the FTLB is not enabled, this field is ignored.

R/W 0x01

Table 2.8 Field Descriptions for Config4 Register (continued)

Name Bit(s) Description
Read/ 
Write Reset State

 Encoding Meaning

00 Reserved
01 Config4[7:0] used as MMUSizeExt.
10 Reserved
11 Config4[3:0] indicates FTLB ways.

Config4[7:4] indicates FTLB sets.
Config4[12:8] indicates FTLB page size.

 Encoding Page Size

00000 Reserved
00001 4 KB
00010 16 KB

00011 - 11111 Reserved
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2.3.1.6 Device Configuration 5 — Config5 (CP0 Register 16, Select 5)

The Config5 register encodes additional capabilities for the address mode programming and cache error exceptions.

Figure 2.7 Config5 Register Format 

FTLB Ways 7:4 Indicates the set associativity of the FTLB array, which is fixed at 4 in the 
proAptiv architecture. This field is encoded as follows: 

This field is not used during reset as the FLTB is disabled by default. If the 
FTLB is not enabled, this field is used as part the MMUSizeExt field. For 
more information, refer to Section 5.3.3.2 of the MMU chapter.

R 0x2

FTLB Sets 3:0 Indicates the number of sets per way within the FTLB array, which is fixed at 
128 in the proAptiv architecture. This field is encoded as follows: 

This field is not used during reset as the FLTB is disabled by default. If the 
FTLB is not enabled, this field is used as part the MMUSizeExt field. For 
more information, refer to Section 5.3.3.2 of the MMU chapter.

R 0x7

Assignment of bits 13:0 when MMUExtDef = 2’b01

0 13:8 Reserved. Must be written as zero. Ignored on reads. R 0

ExtVTLB 7:0 If the FTLB is either not present or disabled, bits 7:0 of the Config4 register 
are used to extend the number of VTLB entries indicated by the 6-bit 
Config4MMUSize field. This extends the number of bits used to determine the 
number of VTLB entries from 6 to 14. 

This field can be used to extend the number of VTLB entries in future gener-
ations of MIPS processors. Since there are a maximum of 64 VLTB entries in 
the proAptiv core, bits 7:0 of the Config4 register always contain a value of 
0 when only the VTLB is present. 

R 0x00

31 30 29 28 27 0

M K CV EVA 0

Table 2.8 Field Descriptions for Config4 Register (continued)

Name Bit(s) Description
Read/ 
Write Reset State

 Encoding Associativity

0000 - 0001 Reserved
0010 4

0011 - 1111 Reserved

 Encoding Sets per Way

0000 - 0110 Reserved
0111 128

1000 - 1111 Reserved
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2.3.1.7 Device Configuration 6 — Config6 (CP0 Register 16, Select 6)

Config6 provides information about the presence of optional extensions to the base MIPS32 architecture.

Table 2.9 Field Descriptions for Config5 Register

Name Bit(s) Description
Read/ 
Write Reset State

M 31 Configuration continuation bit. Even though the Config6 and Config7 reg-
isters are used in the proAptiv Multiprocessing System, they are both defined 
as implementation-specific registers. As such, this bit is zero and is not used 
to indicate the presence of Config6. 

R 0

K 30 This bit effects the cache coherency attributes, the boot exception vector 
overlay, and the location of the exception vector as follows:

When this bit is cleared, the following events occur:

1. The ConfigK0 field is used to set the cache coherency attributes for the 
kseg0 region (0x8000_0000 - 0x9FFF_FFFF).

2. Hardware creates two boot overlay segments, one for kseg0 and one for 
kseg1.

3. The exception vectors are forced to reside in kseg0/kseg1 by ignoring the 
state of bits 31:30 of the EBase register as well as the 
SI_ExceptionBase[31:30] pins and forcing them to a value of 2’b10.

When this bit is set, the following events occur:

1: The Configk0 field is ignored and the cache coherency attributes are 
derived from the C fields of the various segmentation control registers 
(SegCtl0 - SegCtl2).

2. Hardware creates one boot overlay segment that can reside anywhere in 
virtual address space. 

3. The exception vectors are not forced to reside in kseg0/kseg1. Rather, bits 
31:30 of the EBase register, as well as the SI_ExceptionBase[31:30] sig-
nals and used to place the exception vectors anywhere within virtual address 
space.

R/W 0

CV 29 Cache error exception vector control. Disables logic forcing use of kseg1 
region in the event of a Cache Error exception when StatusBEV = 0.

When the CV bit is cleared, bits 31:30 of the EBase Register are fixed with 
the value 2’b10 to force the exception base address to be in the kseg0 or 
kseg1 unmapped virtual address segments. Bit 29 of exception base address 
will be forced to 1 on Cache Error exceptions so the exception handler will 
be executed from the uncached kseg1 segment. 

When the CV bit is set, the ExcBase field is expanded to include bits 31:30 
to facilitate programmable memory segmentation.

R/W 0

EVA 28 This bit is always a logic one to indicate support for enhanced virtual address 
(EVA).

R 1

Reserved 27:0 Reserved. Must be written as zero. Ignored on reads. R 0



 

94 MIPS32® proAptiv™ Multiprocessing System Software User’s Manual, Revision 01.22

Figure 2.8 Config6 Register Format  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 FPDSR DOPC MNAN DSFW DWP DL1B DNPE ODTG ODDG DLSB DFIS HITLB HDTLB EFTLB

15 14 13 12 10 9 1 0

EFTLB SPCD 0 PERFSEL[2:0] 0 JDRC

Table 2.10 Field Descriptions for Config6 Register

Name Bit(s) Description
Read/ 
Write Reset State

0 31:30 Reserved. Write as zero. Ignored on reads. R 0

FPDSR 30 Floating point disable square root.

0: Enable floating point divide and square root
1: Disable floating point divide and square root 

R/W 0

DOPC 29 Opcode cache disable. Setting this bit indicates that the opcode cache is dis-
abled.

0: Opcode cache is enabled.
1: Opcode cache is disabled.

R/W 0

MNAN 28 MIPS NaN compliance. 

0: Default NaN compliance.
1: Legacy MIPS NaN compliance.

R/W 0

DSFW 27 Disable superforwarding. 

0: Enable superforwarding.
1: Disable superforwarding.

R/W 0

DWP 26 Disable IFU way prediction. 

0: Enable IFU way prediction.
1: Disable IFU way prediction.

R/W 0

DL1B 25 Disable L1 branch target buffer. 

0: Enable L1 branch target buffer.
1: Disable L1 branch target buffer.

R/W 0

DNPE 24 Disable NOP elimination. 

0: Enable NOP elimination.
1: Disable NOP elimination.

R/W 0

ODTG 23 Override data cache tag clock gater. 

0: Enable data cache tag clock gating.
1: Override data cache tag clock gating. Enable the clock to data cache tag 
array always.

R/W 0

ODDG 22 Override data cache data clock gater. 

0: Enable data cache data clock gating.
1: Override data cache data clock gating. Enable the clock to data cache data 
array always.

R/W 0

DLSB 21 Disable load/store bonding. 

0: Enable load/store bonding.
1: Disable load/store bonding.

R/W 0
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DFIS 20 Disable ‘cracking’. 

0: Enable cracking.
1: Disable cracking.

R/W 0

HITLB 19 Half size instruction TLB (ITLB). When this bit is set, the ITLB becomes 
half of its current size.

0: Full size ITLB.
1: Half size ITLB.

R/W 0

HDTLB 18 Half size data TLB (DTLB). When this bit is set, the DTLB becomes half of 
its current size.

0: Full size DTLB.
1: Half size DTLB.

R/W 0

FTLBP 17:16 FTLB probability. On a TLBWR instruction, if the PageMask register 
matches the FTLB page size, the write would be done to the FTLB. Other-
wise it would go to the FTLB. However, for systems that use only a single 
page size, the FTLB would be used and most of the FTLB would be unused. 

This field allows some TLBWR instruction to go to the VTLB instead of the 
FTLB whenever the PageMask register matches the FTLB page size. If the 
contents of the PageMask register do not match the FTLB page size, the 
TLBWR instruction goes to the VTLB.

0: FTLB only. All TLBWR instructions go to the FTLB.
1: FTLB:VTLB = 15:1. For every 16 TLBWR instructions, 15 go to the 
FTLB and 1 goes to the VTLB.
2: FTLB:VTLB = 7:1. For every 8 TLBWR instructions, 7 go to the FTLB 
and 1 goes to the VTLB.
3: FTLB:VTLB = 3:1. For every 4 TLBWR instructions, 3 go to the FTLB 
and 1 goes to the VTLB.

R/W 0

FTLBEn 15 FTLB enable. Setting this bit indicates that the FTLB is enabled.

0: FTLB is disabled.
1: FTLB is enabled.

R/W 0

SPCD 14 Sleep state performance counter disable. When this bit is set, the perfor-
mance counter proAptiv clocks are prevented from shutting down.

The primary use of this bit is to keep performance counters alive when the 
proAptiv core is in sleep mode.

0: Performance counters are enabled in sleep mode.
1: Performance counters are disabled in sleep mode.

R/W 0

0 13 Reserved. Write as zero. Ignored on reads. R 0

Table 2.10 Field Descriptions for Config6 Register(continued)

Name Bit(s) Description
Read/ 
Write Reset State
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2.3.1.8 Device Configuration 7 — Config7 (CP0 Register 16, Select 7)

This register controls machine-specific features of the proAptiv core. A few of them are for hardware interface adap-
tation, but most are for chip or system test only. They default to a "safe" value. Most software, including bootstrap 
software, can and should ignore these registers unless specifically advised to use them.

Figure 2.9 Config7 Register Format   

IFUPerfCtl 12:10 IFU Performance Control. This field encodes IFU events that provide debug 
and performance information for the IFU pipeline and is encoded as follows: 

Lost IDU bandwidth occurs when the IDU is accepting instructions, but 
instructions are not being provided by the IFU. The count of these events can 
be seen via Performance Counters 0 or 3, and the event number 11. In order 
to view the IFU Perf Ctl events, the Performance Counter Control needs to 
be programmed accordingly See Table 2.63, "Performance Counter Events 
and Codes" for general information on event number 11.

R/W 0

0 9:1 Reserved. Write as zero. Ignored on reads. R 0

JRCD 0 Jump register cache prediction disable. Setting this bit disables the Jump 
Register (JR) target address prediction.

0: JR cache target address prediction is enabled.
1: JR cache target address prediction is not enabled.

R/W 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WII FPFS IHB 0 SEHB 0 DGHR SG SUI 0 HCI 0 AR

15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PREF IAR IVAD ES 0 CP1IO 0 ULB BP RPS BHT SL

Table 2.10 Field Descriptions for Config6 Register(continued)

Name Bit(s) Description
Read/ 
Write Reset State

 Encoding Meaning

000 IDU is accepting instructions, but IFU is not 
providing any.

001 A control transfer instruction such as a 
branch or jump causes lost IDU bandwidth.

010 A stalled instruction such as an unpredicted 
jump must wait for an address and thus 
causes lost IDU bandwidth.

011 Cache prediction was correct.
100 Cache prediction was incorrect.
101 Cache did not predict due to invalid JR 

cache entry, or the instruction tag miscom-
pared with tag in JR cache.

110 Unimplemented.
111 Condition branch was taken.
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Table 2.11 Field Descriptions for Config7 Register

Name Bit(s) Description
Read/ 
Write Reset State

WII 31 Wait IE Ignore. When this bit is set, an interrupt will unblock a wait instruc-
tion, even if StatusIE is preventing the interrupt from being taken. If WII reads 
0, the proAptiv core remains in the wait condition forever if entered with inter-
rupts disabled. If set to 1, it allows operating system code to avoid complex race 
conditions. 

R 1

FPFS 30 Fast prepare for store. When this bit is set, pref 31 will behave as specified, 
i.e., the prefetch instruction will only validate the data tag but not write 0’s into 
the data cache. 

By default, this bit will be 0 and pref 31 will behave like pref 30. This 
means that pref 31 will validate the data tag and write 0’s into the data cache 
array for the specified line.

R/W 0

IHB 29 Implicit hazard barrier.

If IHB = 1, the following behavior will be true:
• When the proAptiv sees any explicit/implicit mtc0(cache, ll, mtc0, 
tlbop, eret, deret, sync-in-debug-mode, di, ei) followed by 
any implicit mfc0 (ehb, mfc0, eret, deret, di, ei), the pipe-
line will behave as if an ehb is introduced implicitly prior to executing the 
mfc0. This ensures all state modification by mtc0 is completely seen by 
mfc0.

• Any jalr r31, jr r31 instruction seen by the CPU when CP0 is usable 
(i.e CU0=1 or Kernel or Debug mode as defined in the PRA) will automagi-
cally treat those instructions as jalr.hb and jr.hb. 

If IHB = 0, the following behavior will be true:
• Programmer is responsible for resolving hazards and put ehb or .hb where 

appropriate. Prior cores may have used some number of nops or ssnops 
to ensure that the effect of a CP0 modifying instruction is seen by a CP0 read 
instruction, but the proAptiv core cannot guarantee such behavior with a 
small number of nops/ssnops.

Per Release3, the programmer is expected to put in an explicit ehb or .hb 
where needed. If there is reason to believe that the programmer has not done 
this, then this bit can be enabled to get correct operation.

R/W 0

0 28 Reserved. Write as zero. Ignored on reads. R 0

SEHB 27 Slow EHB. An experimental mode to accelerate CP0 sequences using the ehb 
instruction.

If this bit is set, ehb will block issue of instructions from the instruction buffer 
until all older instructions have graduated and the pipe is empty. By default, 
ehb will block issue of instructions from the instruction buffer only if there are 
pending explicit CP0-modifying instructions in the pipe.

R/W 0

0 26:24 Reserved for future use. R/W 0

DGHR 23 Disables the use of any global history in the branch predictor. R/W 0

SG 22 Set 1 to allow only one instruction to graduate per cycle. This has a negative 
impact on performance and should only be used for test purposes. 

R/W 0
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SUI 21 Strict Uncached Instruction (SUI) policy control.

When this bit is set, hardware runs uncached instructions strictly in order and (as 
far as possible) unpipelined. This will cause a significant performance degrada-
tion as it will introduce a bubble equivalent to the depth of the pipeline between 
each instruction. Only the branch-delay-slot instruction of a branch is fetched 
without this bubble.

The advantage is that the CPU will not wander off speculatively fetching 
unwanted instructions from a (perhaps slow) boot memory. 

R/W 0

0 20:19 Reserved. Write as zero. Ignored on reads. R 0

HCI 18 Hardware Cache Initialization: Indicates that a cache does not require initializa-
tion by software. This bit will most likely only be set on simulation-only cache 
models and not on real hardware.

R Based on HW 
present

0 17 Reserved. Write as zero. Ignored on reads. R 0

AR 16 Alias removed. Hardware sets this bit to indicate that the L1 data cache is con-
figured to avoid cache aliases. The data cache virtual aliasing hardware is 
always present in the proAptiv core.

R Preset at build time

0 15:13 Reserved. Write as zero. Ignored on reads. R 0

PREF 12:11 These two bits control the extent of prefetching of instructions into the instruc-
tion cache as indicated. This field is encoded as follows:

R/W 01

IAR 10 Instruction Alias Removed.

Indicates that the proAptiv core has hardware support to remove instruction 
cache aliasing. This hardware is only present when the proAptiv core is config-
ured with a TLB and cache size of 32KB or larger. The virtual aliasing hardware 
can be disabled via the IVAD bit described below. The instruction cache virtual 
aliasing hardware is always present in the proAptiv core. 

R 1

Table 2.11 Field Descriptions for Config7 Register(continued)

Name Bit(s) Description
Read/ 
Write Reset State

 Encoding Meaning

00 Prefetch 0 cache lines on an I-cache miss in addi-
tion to fetching the missing cache line. i.e. Disable 
I-cache prefetching.

01 Prefetch 1 cache line (sequential next line) on an 
I-cache miss in addition to fetching the missing 
cache line.

10 Reserved.
11 Prefetch 2 cache lines (sequential next 2 lines) on 

an I-cache miss in addition to fetching the missing 
cache line.
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IVAD 9 Instruction Virtual Aliasing disabled.

The hardware required to resolve instruction cache virtual alising is always pres-
ent in the proAptiv core as noted by the defualt state of the IAR bit shown 
above. However, software can toggle the IVAD bit to enable or disable the vir-
tual aliasing hardware for the instruction cache. 

Setting this bit disables the hardware alias removal on the instruction cache. If 
this bit is cleared, the CACHE Hit Invalidate and SYNCI instructions 
look up all possible aliased locations and invalidate the given cache line in all of 
them.
This bit is Read-only if IAR = 0.

R/W 0
(hardware aliasing 

enabled)

ES 8 Externalize sync.

If this bit is set, and if the downstream device (toward memory) is capable of 
accepting SYNCs (indicated by the pin SI_SyncTxEn), the sync instruction 
causes a SYNC-specific transaction to go out on the external bus. If this bit is 
cleared or if SI_SyncTxEn is deasserted, no transaction will go out, but all 
SYNC handling internal to the CPU will nevertheless be performed. 

The sync instruction is signalled on the proAptiv’s OCP interface as an 
"ordering barrier" transaction. The transaction is an extension to the OCP stan-
dards, and system controllers which don’t support it typically under-decode it as 
a read from the boot ROM area. But that’s going to be quite slow, so set this bit 
only if your system understands the synchronizing transaction. 

When this bit is read, the value returned depends on the state of the 
SI_SyncTxEn pin. If SI_SyncTxEn is 0, a value of 0 is returned. If 
SI_SyncTxEn is 1, the value returned is the last value that was written to this 
bit.

R 1

0 7 Reserved. Write as zero. Ignored on reads. R 0

CP1IO 6 CP1 instruction order. By default, data sent from the proAptiv core to a copro-
cessor block may be sent in an order reflecting the internal pipeline execution 
sequence. Set this bit to arrange that data will be sent only in instruction order to 
the FPU.

R/W 0

0 5 Reserved. Write as zero. Ignored on reads. R 0

ULB 4 Uncached load blocking. Set to 1 to make all uncached loads blocking (a pro-
gram usually only blocks when it uses the data which is loaded).

R/W 0

BP 3 Branch prediction. When set, no branch prediction is done, and all branches and 
jumps stall as above. 

R/W 0

RPS 2 Return prediction stack. When set, the return address branch predictor is dis-
abled, so jr $31 is treated just like any other jump register. An instruction 
fetch stalls after the branch delay slot, until the jump instruction reaches the 
Address Generation pipeline and can provide the right address. 

R/W 0

BHT 1 Branch history table. When set, the branch history table is disabled and all 
branches are predicted taken. This bit is don’t care if Config7BP is set. 

R/W 0

SL 0 Scheduled loads. When set, non-blocking loads are disabled. Normally the 
proAptiv core continues to after a load instruction, even if it misses in the D-
cache, until the data is used. When this bit is set, the CPU stalls on any D-cache 
load miss. 

R/W 0

Table 2.11 Field Descriptions for Config7 Register(continued)

Name Bit(s) Description
Read/ 
Write Reset State
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2.3.1.9 Processor ID — PRId (CP0 Register 15, Select 0)

The Processor Identification (PRId) register is a 32 bit read-only register that contains information identifying the 
manufacturer, manufacturing options, processor identification, and revision level of the processor.

Figure 2.10 PRId Register Format 

2.3.1.10 Exception Base Address — EBase (CP0 Register 15, Select 1)

The EBase register is a read/write register containing the base address of the exception vectors used when StatusBEV 
equals 0, and a read-only CPU number value that may be used by software to distinguish different processors in a 
multi-processor system.

The EBase register provides the ability for software to identify the specific processor within a multi-processor sys-
tem, and allows the exception vectors for each processor to be different. Bits 31:12 of the EBase register are concate-
nated with zeros to form the base of the exception vectors when StatusBEV is 0. The exception vector base address 
comes from the fixed defaults when StatusBEV is 1, or for any EJTAG Debug exception. The reset state of bits 31:12 
of the EBase register initialize the exception base register to 0x8000.0000, providing backward compatibility with 
Release 1 implementations.

The size of the ExcBase field depends on the state of the WG bit. At reset, the WG bit is cleared by default. In this 
case, the ExcBase field is comprised of bits 29:12. Bits 31:30 of the EBase Register are not writeable and are forced 

31 24 23 16 15 8 7 0

CoOpt CoID ProcType Rev

Table 2.12 Field Descriptions for PRId Register

Name Bit(s) Description
Read/ 
Write Reset State

CoOpt 31:24 Company Option. Should be a number between 0 and 127— higher values are 
reserved by MIPS Technologies. 

R Preset

CoID 23:16 Company ID. Identifies the company that designed or manufactured the proces-
sor. In the proAptiv Multiprocessing System, this field contains a value of 1 to 
indicate MIPS Technologies, Inc.

R 1

ProcType 15:8 Processor ID. Identifies the type of processor. This field allows software to dis-
tinguish between the various types of processors from MIPS Technologies. The 
value of this field is 0xA3 for the proAptiv core.

R A3

Rev 7:0 The revision number of the proAptiv design. This field allows software to distin-
guish between one revision and another of the same processor type.

This field is broken up into the following three subfields:

R Preset

Bit(s) Name Meaning

7:5 Major
Revision

This number is increased on major 
revisions of the proAptiv core.

4:2 Minor
Revision

This number is increased on each 
incremental revision of the processor 
and reset on each new major revision.

1:0 Patch 
Level

If a patch is made to modify an older 
revision of the processor, this field will 
be incremented.
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to a value of 2'b10 by hardware so that the exception handler will be executed from the kseg0/kseg1 segments. This is 
shown in Figure 2.11.

When the WG bit is set, bits 31:30 of the ExcBase field become writeable and are used to relocate the ExcBase field 
to other segments after they have been setup using the SegCtl0 through SegCtl2 registers. This is shown in Figure 
2.12. Note that if the WG bit is set by software (allowing bits 31:30 to become part of the ExcBase field) and then 
cleared, bits 31:30 can no longer be written by software and the state of these bits remains unchanged for any writes 
after WG was cleared. Therefore, it is the responsibility of software to write a value of 2'b10 to bits 31:30 of the 
EBase register prior to clearing the WG bit if it wants to ensure that future exceptions will be executed from the kseg0 
or kseg1 segments.

Note that the WG bit is different from the CV bit in the SegCtl0 register located in Section 2.3.3.1, "Segmentation 
Control 0 — SegCtl0 (CP0 Register 5, Select 2)". Although their functions are similar, the CV bit applies only to 
cache error exceptions, whereas the WG bit applies to all exceptions. 

If the value of the exception base register is to be changed, this must be done with StatusBEV equal to 1. The opera-
tion of the processor is UNDEFINED if the exception base field is written with a different value when StatusBEV is 
0.

Combining bits 31:12 with the Exception Base field allows the base address of the exception vectors to be placed at 
any 4KBbyte page boundary.

Figure 2.11 EBase Register Format — WG = 0 

Figure 2.12 EBase Register Format — WG = 1  

31 30 29 12 11 10 9 0

1 0 ExcBase WG 0 CPUNum

31 12 11 10 9 0

ExcBase WG 0 CPUNum

Table 2.13 Field Descriptions for EBase Register

Name Bit(s) Description
Read/ 
Write Reset State

ExcBase 31:12 Exception Base Address. The size and behavior of this field depends on the state 
of the WG bit. When the WG bit is set, the ExcBase field includes bits 31:30 to 
facilitate programmable memory segmentation. This field specifies the base 
address of the exception vectors when StatusBEV is zero. Bits 31:30 can be writ-
ten only when WG is set. When WG is zero, these bits are unchanged on a write.

When the WG bit is cleared, bits 31:30 of this field must be 2’b10 to make sure 
the exception vector maps to kseg0 or kseg1, conventionally used for OS code.

In a multi-core environment, setting EBase in any CPU to a unique value allows 
that CPU can have its own unique exception handlers.

This field should be written only when StatusBEV is set so that any exception 
will be handled through the ROM entry points. 

R/W 0x8000.0

WG 11 Write gate. 

When the WG bit is set, the ExcBase field is expanded to include bits 31:30 of 
the EBase register to facilitate programmable memory segmentation controlled 
by the SegCtl0 through SegCtl2 registers.

When the WG bit is cleared, bits 31:30 of the EBase register are not writeable 
and remain unchanged from the last time that WG was cleared.

R/W Externally Set
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2.3.1.11 Status (CP0 Register 12, Select 0)

The Status register is a read/write register that contains the operating mode, interrupt enabling, and diagnostic states 
of the processor. Fields in this register and the CP0 Debug register combine to create operating modes for the proces-
sor. Selected bits are encoded as follows to place the processor into one of the operating modes. Refer to the MMU 
chapter for more information on the various operating modes. A brief summary is provided below. 

Figure 2.13 shows the format of the Status Register; Table 2.15 describes the Status register fields.

Figure 2.13 Status Register Format

0 10 Reserved. Write as zero. Ignored on reads. R 0

CPUNum 9:0 This field contains an identifier that will be unique among the CPU’s in a multi-
processor system. The value in this field is set by the SI_CPUNum[9:0] static 
input pins to the proAptiv core. 

R Externally Set

Table 2.14 Operating Mode Encoding

StatusIE StatusERL StatusEXL StatusKSU DebugDM Mode of Operation

1 0 0 x 0 Individual interrupts can be disabled/enabled 
using the StatusIM7-0 mask bits.

x 0 0 0x2 0 User Mode. In user mode, the CPU has access only 
to the mapped kuseg address region.

x 0 0 0x1 0 Supervisor Mode. In supervisor mode, the CPU has 
access to the top half of the kseg2 region (some-
times known as kseg3), but no access to CP0 reg-
isters or most kernel memory.

x 1 1 0 0 Kernel Mode. In kernel mode, the CPU has unre-
stricted access to all memory spaces (including, 
importantly, the "unmapped" regions kseg0 and 
kseg1), and to all the privileged (CP0) registers 
documented in this chapter, but it is unable to 
access some debug resources.

x x x x 1 Debug Mode. In debug mode, the processor has full 
access to all resources that are available in Kernel 
Mode operation, in addition to those provided by 
EJTAG.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 8 7 5 4 3 2 1 0

CU3 CU2 CU1 CU0 RP FR RE MX 0 BEV TS SR NMI 0 CEE 0 IM7-0 0 KSU ERL EXL IE

Table 2.13 Field Descriptions for EBase Register

Name Bit(s) Description
Read/ 
Write Reset State
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Table 2.15 Field Descriptions for Status Register 

Name Bit(s) Description
Read/ 
Write Reset State

CU3 31 Coprocessor 3 Usable. Because the proAptiv core does not support a 
coprocessor 3, StatusCU3 is hardwired to zero.

R 0

CU2 30 Coprocessor 2 Usable. Controls access to coprocessor 2.

0: Access not allowed.
1: Access allowed. 

CU2 is reserved for a customer’s coprocessor. Currently the proAptiv Multipro-
cessing System family of cores does not support Coprocessor 2, so this bit is 
read-only and reads zero.

R 0

CU1 29 Coprocessor 1 Usable. Controls access to coprocessor 1.

0: Access not allowed.
1: Access allowed. 

CU1 is most often used for a floating-point unit. When no coprocessor 1 is pres-
ent, this bit is read-only and reads zero. 

R/W Undefined

CU0 28 Coprocessor 0 accessible in User Mode. This bit controls user mode access to 
coprocessor 0.

0: Access not allowed.
1: Access allowed. 

Coprocessor 0 is always usable when the processor is running in Kernel or 
Debug Mode, regardless of the state of the CU0 bit.

Setting StatusCU0 to 1 has the effect of allowing privileged instructions to exe-
cute in user mode, although this is not something a secure OS is likely to allow. 

R/W Undefined

RP 27 Reduced Power. Enable/disable reduced power mode.

0: Disable reduced power mode.
1: Enable reduced power mode.

The state of the RP bit is visible on the core’s external interface signal SI_RP. 

R/W 0
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FR 26 Floating Register. This bit is used to control the floating-point register mode for 
64-bit floating point units:

This bit must be ignored on writes and read as zero under the following condi-
tions

• No floating point unit is implemented
• 64-bit floating point unit is not implemented

If the proAptiv core is equipped with an optional FPU, set this bit to 0 for 
MIPS I compatibility mode, which allows for 16 real FP registers, with 16 odd 
FP register numbers reserved for access to the high-order bits of double-preci-
sion values. .

R/W 0

RE 25 Reverse Endian. Enables Reverse endianness for instructions that execute in 
User mode. This bit is always 0 as this feature is not supported in the proAptiv 
Multiprocessing System. 

R 0

MX 24 MIPS DSP Extension. Enables access to DSP ASE resources.

0: Access not allowed.
1: Access allowed. 

An attempt to execute any DSP ASE instruction before when this bit is 0 will 
cause a DSP State Disabled exception. The state of this bit is reflected in 
Config3DSPP .

R/W 0

0 23 Reserved. Write as zero. Ignored on reads. R 0

BEV 22 Boot Exception Vector. Controls the location of exception vectors:

0: Normal. Refer to the EBase register for more information. 
1: Bootstrap

When set to 1, all exception entry points are relocated to near the reset start 
address.

R/W 1

TS 21 TLB Shutdown. This bit is set by hardware if software attempts to create a dupli-
cate TLB entry (which will also produce a "machine check" exception). It can be 
cleared to zero by software, but can never set to 1. 

The name of the field originated as a "TLB Shutdown". Historically, MIPS 
CPUs stop translating addresses when they detected invalid TLB operations. 

R/W0 0
(Set by hardware, 
Cleared by soft-

ware)

SR 20 Soft Reset. The proAptiv core only supports a full external reset, so this bit is not 
used and always reads zero. 

R 0

NMI 19 Indicates that the entry through the reset exception vector was due to an NMI.

0: Not NMI (reset)
1: NMI

Software can only write a 0 to this bit to clear it and cannot force a 0 to 1 transi-
tion.

R/W0 1 for NMI
0 otherwise

Table 2.15 Field Descriptions for Status Register (continued)

Name Bit(s) Description
Read/ 
Write Reset State

Encoding Meaning

0 Floating point registers can contain any 32-bit data 
type. 64-bit data types are stored in even-odd pairs 
of registers.

1 Floating point registers can contain any datatype
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0 18 Reserved. Write as zero. Ignored on reads. R 0

CEE 17 CorExtend Enable. Enable/disable CorExtend User Defined Instructions (UDIs).

0: Disable CorExtend block
1: Enable CorExtend block

The presence of the CorExtend extension is indicated in ConfigUDI, which is set 
when the core is configured. This bit is reserved if CorExtend is not present.

R/W Undefined

0 16 Reserved. Write as zero. Ignored on reads. R 0

IM7-0 15:8 Interrupt Mask. Bitwise interrupt enables for the eight interrupt conditions. The 
state of these bits is visible in CauseIP7-0, except in EIC mode. 

External Interrupt Controller (EIC) mode is activated when the Config3VEIC is 
set by hardware at reset based on the state of the SI_EICPresent signal. If this 
bit is set by hardware, software should set the CauseIV bit, then write a non-zero 
"vector spacing" in the VS bit of the IntCtl register.

In EIC mode, IM7-2 is used as a 6-bit StatusIPL (Interrupt Priority Level) field. 
An interrupt is only triggered when the interrupt controller presents an interrupt 
code which is numerically higher than the current value of StatusIPL.

StatusIM1-0 always acts as a bitwise mask for the two software interrupt bits 
programmable in CauseIP1-0. 

R/W Undefined

0 7:5 Reserved. Write as zero. Ignored on reads. R 0

KSU 4:3 These bits denote the processor’s operating mode.

2’b00: Kernel Mode

2’b01: Supervisor Mode

2’b10: User Mode.

Note that the processor can also be in Kernel mode if ERL or EXL is set, regard-
less of the state of these bits.

R/W Undefined

ERL 2 Error Level; Set by the processor when a Reset, NMI, or Cache Error exception 
is taken.

0: Normal level
1: Error level

When ERL is set:

• The processor is running in kernel mode
• Interrupts are disabled
• The ERET instruction will use the return address held in ErrorEPC instead of 

EPC
• When ERL = 1 in the Status register, the segment kuseg (legacy) or xkseg0 

(EVA) is treated as an unmapped and uncached address space. While in this 
setting, the kuseg virtual address maps directly to the same physical address, 
and does not include the ASID field. 

R/W 1

Table 2.15 Field Descriptions for Status Register (continued)

Name Bit(s) Description
Read/ 
Write Reset State
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2.3.1.12 Interrupt Control — IntCtl (CP0 Register 12, Select 1)

The IntCtl register controls the interrupt capabilities of the proAptiv Multiprocessing System core, including vectored 
interrupts and support for an external interrupt controller. 

Figure 2.14 IntCtl Register Format  

EXL 1 Exception Level; Set by the processor when any exception other than Reset, 
Cache Error, or NMI exception is taken.

0: Normal level
1: Exception level

When EXL is set:

• The processor is running in Kernel Mode.
• Hardware and software interrupts are disabled.
• TLB Refill exceptions use the general exception vector instead of the TLB 

Refill vector.

When an exception occurs and EXL is set, a nested TLB Refill exception is sent 
to the general exception handler (rather than to its dedicated handler) and the 
values in EPC, CauseBD are not overwritten. The result is that, after returning 
from the second exception, the processor jumps back to the code that was exe-
cuting before the first exception occurred.

R/W Undefined

IE 0 Interrupt Enable. Acts as the master enable for software and hardware interrupts.

0: Interrupts are disabled
1: Interrupts are enabled

This bit can be written using the di/ei instructions. 

R/W Undefined

31 29 28 26 25 23 22 10 9 5 4 0

IPTI IPPCI IPFDCI 0 VS 0

Table 2.16 Field Descriptions for IntCtl Register 

Name Bit(s) Description
Read/ 
Write Reset State

IPTI 31:29 For Interrupt Compatibility and Vectored Interrupt modes, this field specifies 
the IP number to which the Timer Interrupt request is merged, and allows soft-
ware to determine whether to consider CauseTI for a potential interrupt. This 
field is encoded as shown in Table 2.17, "Encoding of IPTI, IPPCI, and IPFDCI 
Fields".

The value of this bit is set by the static input, SI_IPTI[2:0]. This allows external 
logic to communicate the specific SI_Int hardware interrupt pin to which the 
SI_TimerInt signal is attached.

The value of this field is not meaningful if External Interrupt Controller Mode is 
enabled. The external interrupt controller is expected to provide this information 
for that interrupt mode.

R Externally Set

Table 2.15 Field Descriptions for Status Register (continued)

Name Bit(s) Description
Read/ 
Write Reset State



 

MIPS32® proAptiv™ Multiprocessing System Software User’s Manual, Revision 01.22 107

IPPCI 28:26 For Interrupt Compatibility and Vectored Interrupt modes, this field specifies 
the IP number to which the Performance Counter Interrupt request is merged, 
and allows software to determine whether to consider CausePCI for a potential 
interrupt. This field is encoded as shown in Table 2.17, "Encoding of IPTI, 
IPPCI, and IPFDCI Fields".

The value of this bit is set by the static input SI_IPPCI[2:0]. This allows exter-
nal logic to communicate the specific SI_Int hardware interrupt pin to which the 
SI_PCInt signal is attached.

The value of this field is not meaningful if External Interrupt Controller Mode is 
enabled. The external interrupt controller is expected to provide this information 
for that interrupt mode.

R Externally Set

IPFDCI 25:23 For Interrupt Compatibility and Vectored Interrupt modes, this field specifies 
the IP number to which the Fast Debug Channel Interrupt request is merged, and 
allows software to determine whether to consider CauseFDCI for a potential 
interrupt. This field is encoded as shown in Table 2.17, "Encoding of IPTI, 
IPPCI, and IPFDCI Fields".

The value of this bit is set by the static input, SI_IPFDCI[2:0]. This allows 
external logic to communicate the specific SI_Int hardware interrupt pin to 
which the SI_FDCInt signal is attached.

The value of this field is not meaningful if External Interrupt Controller Mode is 
enabled. The external interrupt controller is expected to provide this information 
for that interrupt mode.

R Externally Set

0 22:10 Reserved. Write as zero. Ignored on reads. R 0

VS 9:5 Vector Spacing. If vectored interrupts are implemented (as denoted by 
Config3VInt or Config3VEIC), this field specifies the spacing between vectored 
interrupts.

All other values are reserved. The operation of the processor is UNDEFINED if 
a reserved value is written to this field.

R/W 0

0 4:0 Reserved. Write as zero. Ignored on reads. R 0

Table 2.16 Field Descriptions for IntCtl Register 

Name Bit(s) Description
Read/ 
Write Reset State

VS Field 
Encoding

Spacing Between 
Vectors (hex)

Spacing Between 
Vectors (decimal)

0x00 0x000 0
0x01 0x020 32
0x02 0x040 64
0x04 0x080 128
0x08 0x100 256
0x10 0x200 512
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2.3.2 TLB Management Registers

This section contains the following TLB management registers.

• Section 2.3.2.1, "Index (CP0 Register 0, Select 0)" on page 108

• Section 2.3.2.2, "Random (CP0 Register 1, Select 0)" on page 109

• Section 2.3.2.3, "EntryLo0 - EntryLo1 (CP0 Registers 2 and 3, Select 0)" on page 110

• Section 2.3.2.4, "EntryHi (CP0 Register 10, Select 0)" on page 112

• Section 2.3.2.5, "Context (CP0 Register 4, Select 0)" on page 113

• Section 2.3.2.6, "Context Configuration — ContextConfig (CP0 Register 4, Select 1)" on page 114

• Section 2.3.2.6, "Context Configuration — ContextConfig (CP0 Register 4, Select 1)" on page 114

• Section 2.3.2.7, "PageMask (CP0 Register 5, Select 0)" on page 115

• Section 2.3.2.8, "Page Granularity — PageGrain (CP0 Register 5, Select 1)" on page 116

• Section 2.3.2.9, "Wired (CP0 Register 6, Select 0)" on page 117

• Section 2.3.2.10, "Bad Virtual Address — BadVAddr (CP0 Register 8, Select 0)" on page 118

2.3.2.1 Index (CP0 Register 0, Select 0)

Index is used as the TLB index when reading or writing the TLB with TLBR/TLBWI/TLBINV/TLBINVF respec-
tively.  It is also set by a TLB probe (TLBP) instruction to return the location of an address match in the TLB.

During execution of a TLBR instruction, the Index field that was previously written by software or by a TLBP 
instruction is used to indicate the TLB entry to be read. Hardware then uses this information to perform the read oper-
ation.

During execution of a TLBWI, TLBINV, or TLBINVF instruction, the Index field that was previously written by soft-
ware or by a TLBP instruction is used to indicate the TLB entry to be written or invalidated. Hardware then uses this 
information to perform the respective write or invalidate operation.

Table 2.17 Encoding of IPTI, IPPCI, and IPFDCI Fields

Encoding IP bit Hardware Interrupt Source

0 0 Reserved

1 1 Reserved

2 2 HW0

3 3 HW1

4 4 HW2

5 5 HW3

6 6 HW4

7 7 HW5
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Prior to executing a TLBP instruction, the VPN to be searched should have been written to the VPN2 field in the 
EntryHi register. During the TLBP instruction, hardware searches the TLB array for a match to the VPN stored in the 
EntryHi register. If a match is found, hardware writes the index into the Index field of this register. 

The P bit of this register is set by hardware to indicate that a match was not found. If this bit is not set, software can 
then read the corresponding index from this register.

The size of the index field depends on whether the device is configured with a fixed TLB (FTLB). In the proAptiv 
architecture, the VTLB is 64 dual entries, and the FTLB is 512 dual entries. If an FTLB is implemented and enabled, 
the Index field is 10 bits wide. If the FTLB is not implemented or not enabled, the Index field is 6 bits wide and is 
used to index the VTLB. This is shown in Figure 2.15 below. A hardware lookup can occur on the VTLB and the 
FTLB simultaneously. 

The operation of the processor is UNDEFINED if a value greater than or equal to the number of TLB entries is writ-
ten to the Index register.

Figure 2.15 Index Register Format    

2.3.2.2 Random (CP0 Register 1, Select 0)

The Random register is a read-only register whose value is used to index the VTLB during a TLBWR instruction. It 
provides a quick way of replacing a VTLB entry at random. As a result, it will not take values less than the value pro-
grammed in the Wired register. The Random register employs a pseudo-random least-recently-used (LRU) algorithm 
that ensures that no wired entries are selected, Only those LRU entries that are not in the Wired register are targeted 
for replacement. The contents of the Random register are modified after a VTLB write, or on a write to the Wired reg-
ister.

The processor initializes the Random register to the reflect the maximum number of entries (63) on a Reset exception. 
Note that the Random register is used only for VTLB accesses. It is not used for FTLB accesses.

31 30 6 5 0

P 0 Index
(VTLB only)

31 30 10 9 0

P 0 Index
(VTLB + FTLB)

Table 2.18 Field Descriptions for Index Register

Name Bit(s) Description
Read/ 
Write Reset State

P 31 Probe Failure. This bit is automatically set when a TLBP search of the TLB 
fails to find a matching entry. 

R Undefined

0 30:10 or 
30:6

Must be written as zero; returns zero on reads. 0 0

Index 9:0 or 
5:0

An index into the TLB used for TLBR, TLBWI, TLBINV and TLB-
INVF instructions. This field is set by the TLBP instruction when it finds a 
matching entry. 

R/W Undefined
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Figure 2.16 Random Register Format

2.3.2.3 EntryLo0 - EntryLo1 (CP0 Registers 2 and 3, Select 0)

The pair of EntryLo registers act as the interface between the TLB and the TLBR, TLBWI, and TLBWR instructions. 
These registers store the contents of a TLB entry. Each entry maps a pair of pages. The EntryLo0 and EntryLo1 regis-
ter store even and odd numbered virtual pages respectively. These registers are read during a TLBWR or TBLWI 
instruction, and written by a tlbr instruction. They are not used for any other purpose.

Figure 2.17 EntryLo0 and EntryLo1 Register Format  

31 6 5 0

0 Random

Table 2.19 Field Descriptions for Random Register

Name Bit(s) Description
Read/ 
Write Reset State

0 31:6 Must be written as zero; returns zero on reads. 0 0

Random 5:0 This field cycles "randomly" through the potential indices of the VTLB, so its 
length varies with the VTLB size. It is a pseudo-least-recently-used VTLB 
index.

Refer to the MMUSize field (bits [30:25]) in Section 2.3.1.2 “Device 
Configuration 1 — Config1 (CP0 Register 16, Select 1)” for more information 
on the VTLB size. This field is not used for FTLB accesses.

R VTLB Entries — 1

31 30 29 26 25 6 5 3 2 1 0

RI XI U PFN C D V G

Table 2.20 Field Descriptions for EntryLo0 and EntryLo1 Registers 

Name Bit(s) Description
Read/ 
Write Reset State

RI 31 Read Inhibit. If this bit is set in a TLB entry, any attempt (other than a MIPS16 
PC-relative load) to read data on the virtual page causes either a TLB Invalid or 
a TLBRI exception, even if the V (Valid) bit is set. The RI bit is writable only if 
the RIE bit of the PageGrain register is set. For more information, refer to 
Section 2.3.2.8, "Page Granularity — PageGrain (CP0 Register 5, Select 1)".

If the RIE bit of the PageGrain register is not set, the RI bit of Entry 0 and 
Entry 1 are set to zero on any write to the register, regardless of the value writ-
ten.

R/W Undefined

XI 30 Execute Inhibit. If this bit is set in a TLB entry, any attempt to fetch an instruc-
tion or to load MIPS16 PC-relative data from the virtual page causes a TLB 
Invalid or a TLBXI exception, even if the V (Valid) bit is set. The XI bit is writ-
able only if the XIE bit of the PageGrain register is set. For more information, 
refer to Section 2.3.2.8, "Page Granularity — PageGrain (CP0 Register 5, Select 
1)".

If the XIE bit of the PageGrain register not set, the XI bit of TLB Entry 0 - 1 is 
set to zero on any write to the register, regardless of the value written.

R/W Undefined
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U 29:26 The upper 4 bits of the PFN cannot be written by software and will return 0 on 
reads.

R/W Undefined

PFN 25:6 The "Physical Frame Number" represents bits 31:12 of the physical address. 
The 20 bits of PFN, together with 12 bits of in-page address, make up a 32-bit 
physical address. The MIPS32® Architecture permits the PFN to be as large as 
24 bits. The proAptiv Multiprocessing System core supports a 32-bit physical 
address bus. 

R/W Undefined

C 5:3 Coherency attribute of the page. See Table 2.21. R/W Undefined

D 2 The "Dirty" flag. Indicates that the page has been written, and/or is writable. If 
this bit is a one, stores to the page are permitted. If this bit is a zero, stores to the 
page cause a TLB Modified exception.

Software can use this bit to track pages that have been written to. When a page 
is first mapped, this bit should be cleared. It is set on the first write that causes 
an exception. 

R/W Undefined

V 1 The “Valid” flag. Indicates that the TLB entry, and thus the virtual page map-
ping, are valid. If this bit is a set, accesses to the page are permitted. If this bit is 
a zero, accesses to the page cause a TLB Invalid exception.

This bit can be used to make just one of a pair of pages valid. 

R/W Undefined

G 0 The “Global” bit. On a TLB write, the logical AND of the G bits in both the 
Entry 0 and Entry 1 registers become the G bit in the TLB entry. If the TLB 
entry G bit is a one, then the ASID comparisons are ignored during TLB 
matches. On a read from a TLB entry, the G bits of both Entry 0 and Entry 1 
reflect the state of the TLB G bit.

R/W Undefined

Table 2.21 Cache Coherency Attributes Encoding of the C Field

C[5:3] / K0[2:0]1 Name Cache Coherency Attribute

0 — Reserved

1 — Reserved

2 UC Uncached, non-coherent

3 WB Cacheable, noncoherent, write-back, write allocate

4 CWBE Cacheable, coherent, write-back, write-allocate, read misses request Exclusive

5 CWB Cacheable, coherent, write-back, write-allocate, read misses request Shared

6 — Reserved

7 UCA Uncached Accelerated, non-coherent

1. State of the K0 field at bits 2:0 of the Config register. See Section 2.3.1.1 “Device Configuration — Config (CP0 Register 16, 
Select 0)”

Table 2.20 Field Descriptions for EntryLo0 and EntryLo1 Registers 

Name Bit(s) Description
Read/ 
Write Reset State
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2.3.2.4 EntryHi (CP0 Register 10, Select 0)

The EntryHi register contains the upper portion of the virtual address match information used for TLB read, write, and 
access operations. The remaining information is stored in the EntryLo0 and EntryLo1 registers described in Section 
2.3.2.3 “EntryLo0 - EntryLo1 (CP0 Registers 2 and 3, Select 0)”.

A TLB exception (TLB Refill, TLB Invalid, TLB Read Inhibit, TLB Execute Inhibit, or TLB Modified) causes bits 
VA31:13 of the virtual address to be written into the VPN2 field of the EntryHi register. A TLBR instruction writes the 
EntryHi register with the corresponding fields from the selected TLB entry. The ASID field is written by software with 
the current address space identifier value and is used during the TLB comparison process to determine TLB match.

Because the ASID and EHINV fields are overwritten by a TLBR instruction, software must save and restore the value 
of ASID around use of the TLBR. This is especially important in TLB Invalid and TLB Modified exceptions, and in 
other memory management software.

The VPN2 field of the EntryHi register is not defined after an address error exception and this field may be modified 
by hardware during the address error exception sequence. Software writes of the EntryHi register (via MTC0) do not 
cause the implicit write of address-related fields in the BadVAddr and Context registers.

The EntryHiEHINV field has been added to support explicit invalidation of TLB entries via the TLBWI instruction. 
When EntryHiEHINV = 1, the TLBWI instruction acts as a TLB invalidate operation, setting the hardware valid bit 
associated with a TLB entry to the invalid state. When EntryHiEHINV = 1, only the Index register is required to be 
valid. Behavior of the TLBWR instruction is unmodified by EntryHiEHINV. The TLBR instruction copies the EHINV 
bit from the TLB Entry to EntryHIEHINV. Note that execution of the TLBP instruction does not change this value.

Figure 2.18 EntryHi Register Format  
31 13 12 11 10 9 8 7 0

VPN2 0 EHINV 0 ASID

Table 2.22 Field Descriptions for EntryHi Register

Name Bit(s) Description
Read/ 
Write Reset State

VPN2 31:13 EntryHiVPN2 is the virtual address to be matched on a TLBP. This field 
consists of VA31:13 of the virtual address (virtual page number / 2). It is 
also the virtual address to be written into the TLB on a TLBWI and 
TLBWR, and the destination of the virtual address on a TLBR. 

On a TLB-related exception, the VPN2 field is automatically set to the 
virtual address that was being translated when the exception occurred. 

This field is written by software before a TLBP or TLBWI and written 
by hardware in all other cases.

R/W Undefined

0 12:11 Reserved. Write as zero. Ignored on reads. R 0

EHINV 10 TLBWI invalidate enable. When this bit is set, the TLBWI instruction 
acts as a TLB invalidate operation, setting the hardware valid bit associ-
ated with the TLB entry to the invalid state. When this bit is set, the 
PageMask and EntryLo0/EntryLo1 registers do not need to be valid. 
Only the Index register is required to be valid.

This bit is ignored on a TLBWR instruction. 

R/W 0

0 9:8 Reserved. Write as zero. Ignored on reads. R 0
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2.3.2.5 Context (CP0 Register 4, Select 0)

The Context register is a read/write register containing a pointer to an entry in the page table entry (PTE) array. This 
array is an operating system data structure that stores virtual-to-physical translations. During a TLB miss, the operat-
ing system loads the TLB with the missing translation from the PTE array. The Context register duplicates some of 
the information provided in the BadVAddr register but is organized in such a way that the operating system can 
directly reference an 8-byte page table entry (PTE) in memory.

The BadVPN2 field of the Context register is not defined after an address error exception, and this field may be mod-
ified by hardware during the address error exception sequence.

The pointer implemented by the Context register can point to any power-of-two-sized PTE structure within memory. 
This allows the TLB refill handler to use the pointer without additional shifting and masking steps. For example, if 
the low-order bit of the PTEBase field is 20, the page table entry (PTE) structure occurs on a 1M boundary. If the 
low-order bit is 21, PTE structure occurs on a 2M boundary, etc. Depending on the value in the ContextConfig regis-
ter, it may point to an 8-byte pair of 32-bit PTEs within a single-level page table scheme, or to a first level page direc-
tory entry in a two-level lookup scheme.

A TLB exception (Refill, Invalid, Modified, Read Inhibit, Execute Inhibit) causes the virtual address to be written to 
a variable range of bits, defined as (X-1):Y of the Context register. This range corresponds to the contiguous range of 
set bits in the ContextConfig register. Bits 31:X, Y-1:0 are read/write to software and are unaffected by the exception. 

For example, if X = 23 and Y = 4, i.e. bits 22:4 are set in ContextConfig, the behavior is identical to the standard 
MIPS32 Context register (bits 22:4 are filled with VA31:13). Although the fields have been made variable in size and 
interpretation, the MIPS32 nomenclature is retained. Bits 31:X are referred to as the PTEBase field, and bits X-1:Y 
are referred to as BadVPN2. 

The value of the Context register is UNPREDICTABLE following a modification of the contents of the 
ContextConfig register. After the ContextConfig register is modified, software should write the PTEBase field of the 
Context register. However, note that the contents of the BadVPN2 field will not be valid until the next TLB exception.

Figure 2.19 shows the format of the Context Register; Table 2.23 describes the Context register fields.

Figure 2.19 Context Register Format  

ASID 7:0 Address space identifier. This field is used to stage data to and from the 
TLB, but in normal running software it’s also the source of the current 
"ASID" value, used to extend the virtual address and help to map address 
translations for the current process. 

This field is written by hardware on a TLB read and by software to estab-
lish the current ASID value for TLB write and against which TLB refer-
ences match each entry’s TLB ASID field. 

This field supports up to 256 unique ASID values, consisting of a virtual 
tag that is in addition to the 32-bit address.

R/W 0

31 X X-1 Y Y-1 0

PTEBase BadVPN2 PTEBaseLow

Table 2.22 Field Descriptions for EntryHi Register

Name Bit(s) Description
Read/ 
Write Reset State
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2.3.2.6 Context Configuration — ContextConfig (CP0 Register 4, Select 1)

The ContextConfig register defines the bits of the Context register into which the high order bits of the virtual address 
causing a TLB exception will be written, and how many bits of that virtual address will be extracted. Bits above the 
selected BadVPN2 field of the Context register are read/write to software and serve as the PTEBase field. Bits below 
the selected BadVPN2 field of the Context register serve as the PTEBaseLow field.

Software writes a set of contiguous ones to the VirtualIndex field of the ContextConfig register. Hardware then deter-
mines which bits of this register are high and low. The highest order bit that is a logic ‘1’ serves as the MSB of the 
BadVPN2 field of the Context register. The lowest order bit that is a logic ‘1’ serves as the LSB of the BadVPN2 field 
of the Context register. A value of all zero’s in the VirtualIndex field means that the full 32 bits of the Context register 
are R/W for software and are unaffected by TLB exceptions.

Figure 2.20 shows the formats of the ContextConfig register; Table 2.24 describes the ContextConfig register fields.

Figure 2.20 ContextConfig Register Forma t  

Table 2.23  Context Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateName Bits

PTEBase Variable, 31:X where
X in {31:0}

This field is for use by the operating system and is 
normally written with a value that allows the operat-
ing system to use the Context Register as a pointer to 
an array of data structures in memory corresponding 
to the address region that contains the virtual address 
which caused the exception. 

The size of the BadVPN2 field is determined by num-
ber of contiguous ‘ones’ in the VirtualIndex field of 
the ContextConfig register described below. If the 
VirtualIndex field is all ‘ones’, then the BadVPN2 
field is comprised of bits 22:2. If the VirtualIndex 
field is all ‘zero’, then there is no BadVPN and the 
PTEBase and PTEBase low fields are merged 
together to form a single 32-bit PTEBase value. 

R/W Undefined

BadVPN2 Variable, (X-1):Y where 
X in {23:Y} and 
Y in {22:2}.

This field is written by hardware on a TLB exception. 
It contains bits VA31:32-X+Y of the virtual address that 
caused the exception. 

R Undefined

PTEBaseLow Variable, (Y-1):0
where 
Y in {22:2}.

This field is for use by the operating system and is 
normally written with a value that allows the operat-
ing system to use the Context Register as a pointer to 
an array of data structures in memory corresponding 
to the address region that contains the virtual address 
which caused the exception.

R/W Undefined

31 23 22 2 1 0

0 VirtualIndex 0
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2.3.2.7 PageMask (CP0 Register 5, Select 0)

Every TLB entry has an independent virtual-address mask that allows it to ignore some address bits when deciding to 
match. By selectively ignoring lower page addresses, the entry can be made to match all the addresses in a "page" 
larger than 4KB. 

Software can determine the maximum page size supported by writing all ones to the PageMask register, then reading 
the value back. If a pair of bits reads back as ones, the processor implements that page size. Note that the bits are read 
in pairs, so bits 14:13 are read first and can have only a value of 00 or 11. If they are both 11, bits 16:15 are read, and 
so on.

The operation of the processor is UNDEFINED if software loads the Mask field with a value other than one of those 
listed in Table 2.26, even if the hardware returns a different value on read. Hardware may depend on this requirement 
in implementing hardware structures.

Figure 2.21 PageMask Register Format   

Table 2.24  ContextConfig Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

0 31:23 Ignored on write; returns zero on read. R 0x00

VirtualIndex 22:2 A mask of 0 to 21 contiguous 1 bits in this field causes the corre-
sponding bits of the Context register to be written with the high-
order bits of the virtual address causing a TLB exception.

Behavior of the processor is UNDEFINED if non-contiguous 1 
bits are written into the register field. Note that it is the responsi-
bility of software to ensure that this field is written with contigu-
ous ones because if non-contiguous 1 bits are written, no exception 
will be taken.

R/W 0x1F_FFFC

0 1:0 Ignored on write; returns zero on read. R 0

31 29 28 13 12 0

0 Mask 0

Table 2.25 Field Descriptions for PageMask Register 

Name Bit(s) Description
Read/ 
Write Reset State

0 31:29 Ignored on write; returns zero on read. R 0

Mask 28:13 Acts as a kind of backward mask, in that a 1 bit means "don’t compare this 
address bit when matching this address". However, only a restricted range of 
PageMask values are legal (i.e., with "1"s filling the PageMaskMask field 
from low bits upward, two at a time)

R/W Undefined

0 12:0 Ignored on write; returns zero on read. R 0



 

116 MIPS32® proAptiv™ Multiprocessing System Software User’s Manual, Revision 01.22

Software may determine which page sizes are supported by writing all ones to the PageMask register, then reading 
the value back. If a pair of bits reads back as ones, the processor implements that page size. The operation of the pro-
cessor is UNDEFINED if software loads the Mask field with a value other than one of those listed in Table 2.26, 
even if the hardware returns a different value on read. Hardware may depend on this requirement in implementing 
hardware structures.

2.3.2.8 Page Granularity — PageGrain (CP0 Register 5, Select 1)

The PageGrain register is a read/write register used for XI/RI TLB protection bits.The PageGrain register is present 
in Release 3 (and subsequent releases) of the architecture.

Figure 2.22 shows the format of the PageGrain register; Table 2.27 describes the PageGrain register fields.

Figure 2.22 PageGrain Register Format

Table 2.26 PageMask Register Values

PageMask Register Value Size of Each Output Page

0x0000.0000 4 Kbytes

0x0000.6000 16 Kbytes

0x0001.E000 64 Kbytes

0x0007.E000 256 Kbytes

0x001F.E000 1 Mbyte

0x007F.E000 4 Mbytes

0x01FF.E000 16 Mbytes

0x07FF.E000 64 Mbytes

0x1FFF.E000 256 Mbytes

31 30 29 28 27 26 13 12 8 7 0

RIE XIE 0 ESP IEC 0 ASE 0

Table 2.27 Field Descriptions for PageGrain Register 

Name Bit(s) Description
Read/ 
Write Reset State

RIE 31 Read inhibit enable.

0: RI bit of the Entry0 and Entry1 registers is disabled and not writeable by soft-
ware.
1: RI bit of the Entry0 and Entry1 registers is enabled.

R/W 0

XIE 30 Execute inhibit enable.

0: XI bit of the Entry0 and Entry1 registers is disabled and not writeable by soft-
ware.
1: XI bit of the Entry0 and Entry1 registers is enabled.

R/W 0

0 29 Reserved. Ignored on write; returns zero on read. R 0

ESP 28 This bit is always 0 as 1K pages are not supported. This bit must be written with 
0.

R 0
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2.3.2.9 Wired (CP0 Register 6, Select 0)

The Wired register is a read/write register that specifies the boundary between the wired and random entries in the 
TLB as shown in Figure 2.28. Wired entries are fixed, non-replaceable entries that cannot be overwritten by a 
TLBWR instruction. Wired entries can be overwritten by a TLBWI instruction.

Note that wired entries in the TLB must be contiguous and start from 0. For example, if the Wired field of this register 
contains a value of 5, this indicates that entries 4, 3, 2, 1, and 0 of the VTLB are wired. Refer to Section 3.9, 
"Hardwiring VTLB Entries" for more information.

The Wired register is reset to zero by a Reset exception. Writing the Wired register may cause the Random register to 
change state.

The operation of the processor is undefined if a value greater than or equal to the number of VTLB entries is written 
to the Wired register. Wired can be set to a non-zero value to prevent the random replacement of up to 63 VTLB 
pages.

Figure 2.23 Wired Register Format  

IEC 27 Enables unique exception codes for the Read-Inhibit and Execute-Inhibit excep-
tions.

0: Read-Inhibit and Execute-Inhibit exceptions both use the TLBL exception 
code.
1: Read-Inhibit exceptions use the TLBRI exception code. Execute-Inhibit 
exceptions use the TLBXI exception code.

R/W 0

0 26:13 Reserved. Ignored on write; returns zero on read. R 0

ASE 12:8 Ignored on write; returns zero on read. R 0

0 7:0 Reserved. Ignored on write; returns zero on read. R 0

31 6 5 0

0 Wired

Table 2.28 Field Descriptions for Wired Register 

Name Bit(s) Description
Read/ 
Write Reset State

0 31:6 Ignored on write; returns zero on read. R 0

Table 2.27 Field Descriptions for PageGrain Register (continued)

Name Bit(s) Description
Read/ 
Write Reset State



 

118 MIPS32® proAptiv™ Multiprocessing System Software User’s Manual, Revision 01.22

2.3.2.10 Bad Virtual Address — BadVAddr (CP0 Register 8, Select 0)

The BadVAddr register is a read-only register that captures the most recent virtual address that caused one of the fol-
lowing exceptions: 

• Address error (AdEL or AdES)

• TLB Refill

• TLB Invalid (TLBL, TLBS)

• TLB Read Inhibit (TLBRI)

• TLB Execute Inhibit (TLBXI)

• TLB Modified

The BadVAddr register does not capture address information for cache or bus errors, since they are not addressing 
errors.

There is more information about this register in the notes to the CauseExcCode field.

Figure 2.24 BadVAddr Register Format

Wired 5:0 Defines the number of wired dual entries in the TLB. Up to 63 of the 64 dual 
entries in the VTLB can be hard wired using this register. A value of 0 in this 
field indicates that no VTLB entries are hard wired. A value of 0x3F indicates 
that 63 of the 64 VTLB entries are hard wired.This field is encoded as follows:

0x00: 0 TLB entries are hardwired
0z01: 1 TLB entry is hardwired
0x02: 2 TLB entries are hardwired

......

0x3F: 63 TLB entries are hardwired

These entries become a good place for an OS to keep translations which must 
never cause a TLB translation-not-present exception. 

R/W 0

31 0

BadVAddr

Table 2.29 BadVAddr Register Field Description

Fields

Description
Read / 
Write Reset StateName Bits

BadVAddr 31:0 Bad virtual address. This register stores the virtual address that causes one 
of the TLB exceptions listed above.

R Undefined

Table 2.28 Field Descriptions for Wired Register 

Name Bit(s) Description
Read/ 
Write Reset State
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2.3.3 Memory Segmentation Registers

This section contains the following memory segmentation registers.

• Section 2.3.3.1, "Segmentation Control 0 — SegCtl0 (CP0 Register 5, Select 2)" on page 119

• Section 2.3.3.2, "Segmentation Control 1 — SegCtl1 (CP0 Register 5, Select 3)" on page 120

• Section 2.3.3.3, "Segmentation Control 2 — SegCtl2 (CP0 Register 5, Select 4)" on page 121

Programmable segmentation allows for the virtual address space segments to be programmed with different access 
modes and attributes. Control of the 4GB of virtual address space is divided into six segments that are controlled 
using three CP0 registers; SegCtl0 through SegCtl2. Each register has two 16-bit fields. Each field controls one of the 
six address segments as shown in Table 2.30. For more information, refer to Section 2.6 of the MMU chapter of this 
manual. 

2.3.3.1 Segmentation Control 0 — SegCtl0 (CP0 Register 5, Select 2)

The SegCtl0 register works in conjunction with the SegCtl1 and SegCtl2 registers to allow for configuration of the 
memory segmentation system. The address is split into the six segments defined in Table 2.30.

Figure 2.25 shows the format of the SegCtl0 Register. Note that the Config3SR bit must be set to enable this register.

Figure 2.25 SegCtl0 Register Format (CP0 Register 5, Select 2)   

Table 2.30 Programmable Segmentation Register Interface

Register CP0 Location Memory Segment
Register 

Bits
Virtual Address 

Space Controlled
Virtual Address 

Range (Hex)

SegCtl2 Register 5
Select 4

CFG5 31:16 0.0 GB to 1.0 GB 0x0000_0000 - 
0x3FFF_FFFF

CFG4 15:0 1.0 GB to 2.0 GB 0x4000_0000 - 
0x7FFF_FFFF

SegCtl1 Register 5
Select 3

CFG3 31:16 2.0 GB to 2.5 GB 0x8000_0000 - 
0x9FFF_FFFF

CFG2 15:0 2.5 GB to 3.0 GB 0xA000_0000 - 
0xBFFF_FFFF

SegCtl0 Register 5
Select 2

CFG1 31:16 3.0 GB to 3.5 GB 0xC000_0000 - 
0xDFFF_FFFF

CFG0 15:0 3.5 GB to 4.0 GB 0xE000_0000 - 
0xFFFF_FFFF

31 25 24 23 22 20 19 18 16 15 9 8 7 6 4 3 2 0

CFG1_PA 0 CFG1_AM CFG1_EU CFG1_C CFG 0_PA 0 CFG0_AM CFG0_EU CFG0_C
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2.3.3.2 Segmentation Control 1 — SegCtl1 (CP0 Register 5, Select 3)

The SegCtl1 register works in conjunction with the SegCtl0 and SegCtl2 registers to allow for configuration of the 
memory segmentation system. The address is split into six segments defined in Table 2.30.

Segmentation Control allows address-specific behaviors defined by the Privileged Resource Architecture to be modi-
fied or disabled. 

Figure 2.26 shows the format of the SegCtl1 Register. Note that the Config3SR bit must be set to enable this register. 
For more information on the reset states of these fields, refer to Chapter 3, “”, Section 3.6.6 “Switching From Legacy 
Mode to EVA Mode After Boot-up”.

Table 2.31 SegCtl0 Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

CFG1_PA 31:25 Physical address bits 31:29 for segment 1. For use when 
unmapped. Bits 27:25 correspond to physical address bits 31:29. 
Bits 31:28 are reserved for future expansion. For more informa-
tion, refer to Section 3.5.2.4 “Defining the Physical Address 
Range for Each Memory Segment”

R/W Configuration 
Dependent

0 24:23 Reserved. RO 0

CFG1_AM 22:20 Configuration 1 access control mode. See Table 2.34 for encoding. 
For more information, refer to Section 3.5.2.3 “Setting the Access 
Control Mode”.

R/W Configuration 
Dependent

CFG1_EU 19 Error condition behavior. Configuration segment 1 becomes 
unmapped and uncached when StatusERL = 1.

R/W Configuration 
Dependent

CFG1_C 18:16 Cache coherency attribute for segment 1. The encoding of the 
CFG1_C field is the same as the C field of the EntryLo0/EntryLo1 
registers described in Section 2.3.2.3. Refer to Table 2.21 for the 
encoding of this field. For more information, refer to Section 
3.5.2.3 “Setting the Access Control Mode”.

R/W Configuration 
Dependent

CFG0_PA 15:9 Physical address bits 31:29 for segment 0. For use when 
unmapped. Bits 11:9 correspond to physical address bits 31:29 for 
segment 0. Bits 15:12 are reserved for future expansion. For more 
information, refer to Section 3.5.2.4 “Defining the Physical 
Address Range for Each Memory Segment”.

R/W Configuration 
Dependent

0 8:7 Reserved. RO 0

CFG0_AM 6:4 Configuration 0 access control mode. See Table 2.34 for encoding. 
For more information, refer to Section 3.5.2.3 “Setting the Access 
Control Mode”.

R/W Configuration 
Dependent

CFG0_EU 3 Error condition behavior. Configuration segment 0 becomes 
unmapped and uncached when StatusERL = 1.

R/W Configuration 
Dependent

CFG0_C 2:0 Cache coherency attribute for segment 0. The encoding of the 
CFG0_C field is the same as the C field of the EntryLo0/EntryLo1 
registers described in Section 2.3.2.3. Refer to Table 2.21 for the 
encoding of this field. For more information, refer to Section 
3.5.2.3 “Setting the Access Control Mode”.

R/W Configuration 
Dependent
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Figure 2.26 SegCtl1 Register Format (CP0 Register 5, Select 3)   

2.3.3.3 Segmentation Control 2 — SegCtl2 (CP0 Register 5, Select 4)

The SegCtl2 register works in conjunction with the SegCtl0 and SegCtl1 registers to allow for configuration of the 
memory segmentation system. The address is split into six segments defined in Table 2.30. 

Segmentation Control allows address-specific behaviors defined by the Privileged Resource Architecture to be modi-
fied or disabled. 

Figure 2.27 shows the format of the SegCtl2 Register. Note that the Config3SR bit must be set to enable this register. 
For more information on the reset states of these fields, refer to Chapter 3, “”, Section 3.6.6 “Switching From Legacy 
Mode to EVA Mode After Boot-up”.

31 25 24 23 22 20 19 18 16 15 9 8 7 6 4 3 2 0

CFG3_PA 0 CFG3_AM CFG3_EU CFG3_C CFG2_PA 0 CFG2_AM CFG2_EU CFG2_C

Table 2.32 SegCtl1 Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

CFG3_PA 31:25 Physical address bits 31:29 for segment 3. For use when 
unmapped. Bits 27:25 correspond to physical address bits 31:29. 
Bits 31:28 are reserved for future expansion. For more informa-
tion, refer to Section 3.5.2.4 “Defining the Physical Address 
Range for Each Memory Segment”.

R/W Configuration 
Dependent

0 24:23 Reserved. Must be written as zeros; returns zeros on reads. RO 0

CFG3_AM 22:20 Configuration 3 access control mode. See Table 2.34 for encoding. 
For more information, refer to Section 3.5.2.3 “Setting the Access 
Control Mode”.

R/W Configuration 
Dependent

CFG3_EU 19 Error condition behavior. Configuration segment 3 becomes 
unmapped and uncached when StatusERL = 1.

R/W Configuration 
Dependent

CFG3_C 18:16 Cache coherency attribute for segment 3, for use when unmapped. 
As defined by the base architecture. For more information, refer to 
Section 3.5.2.3 “Setting the Access Control Mode”.

R/W Configuration 
Dependent

CFG2_PA 15:9 Physical address bits 31:29 for segment 2. For use when 
unmapped. Bits 11:9 correspond to physical address bits 31:29 for 
segment 0. Bits 15:12 are reserved for future expansion. For more 
information, refer to Section 3.5.2.4 “Defining the Physical 
Address Range for Each Memory Segment”.

R/W Configuration 
Dependent

0 8:7 Reserved. Must be written as zeros; returns zeros on reads. RO 0

CFG2_AM 6:4 Configuration 2 access control mode. See Table 2.34 for encoding. 
For more information, refer to Section 3.5.2.3 “Setting the Access 
Control Mode”.

R/W Configuration 
Dependent

CFG2_EU 3 Error condition behavior. Configuration segment 2 becomes 
unmapped and uncached when StatusERL = 1.

R/W Configuration 
Dependent

CFG2_C 2:0 Cache coherency attribute for segment 2, for use when unmapped. 
As defined by the base architecture. For more information, refer to 
Section 3.5.2.3 “Setting the Access Control Mode”.

R/W Configuration 
Dependent
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Figure 2.27 SegCtl2 Register Format (CP0 Register 5, Select 4)   
31 25 24 23 22 20 19 18 16 15 9 8 7 6 4 3 2 0

CFG5_PA 0 CFG5_AM CFG5_EU CFG5_C CFG4_PA 0 CFG4_AM CFG4_EU CFG4_C

Table 2.33 SegCtl2 Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

CFG5_PA 31:25 Physical address bits 31:29 for segment 5. For use when 
unmapped. Bits 27:25 correspond to physical address bits 31:29. 
Bits 31:28 are reserved for future expansion.

Note that for this field, bit 25 is ignored since CFG5 is mapped to a 
1 GByte boundary.

For more information, refer to Section 3.5.2.4 “Defining the 
Physical Address Range for Each Memory Segment”.

R/W Configuration 
Dependent

0 24:23 Reserved. RO

CFG5_AM 22:20 Configuration 5 access control mode. See Table 2.34 for encoding. 
For more information, refer to Section 3.5.2.3 “Setting the Access 
Control Mode”.

R/W Configuration 
Dependent

CFG5_EU 19 Error condition behavior. Configuration segment 5 becomes 
unmapped and uncached when StatusERL = 1.

R/W Configuration 
Dependent

CFG5_C 18:16 Cache coherency attribute for segment 5. The encoding of the 
CFG5_C field is the same as the C field of the EntryLo0/EntryLo1 
registers described in Section 2.3.2.3. Refer to Table 2.21 for the 
encoding of this field. For additional information, refer to Section 
3.5.2.3 “Setting the Access Control Mode”

R/W Configuration 
Dependent

CFG4_PA 15:9 Physical address bits 31:29 for segment 4. For use when 
unmapped. Bits 11:9 correspond to physical address bits 31:29 for 
segment 0. Bits 15:12 are reserved for future expansion.

Note that for this field, bit 9 is ignored since CFG4 is mapped to a 
1 GByte boundary.

For more information, refer to Section 3.5.2.4 “Defining the 
Physical Address Range for Each Memory Segment”.

R/W Configuration 
Dependent

0 8:7 Reserved. RO

CFG4_AM 6:4 Configuration 4 access control mode. See Table 2.34 for encoding. 
For more information, refer to Section 3.5.2.3 “Setting the Access 
Control Mode”. 

R/W Configuration 
Dependent

CFG4_EU 3 Error condition behavior. Configuration segment 4 becomes 
unmapped and uncached when StatusERL = 1.

R/W Configuration 
Dependent

CFG4_C 2:0 Cache coherency attribute for segment 4. The encoding of the 
CFG4_C field is the same as the C field of the EntryLo0/EntryLo1 
registers described in Section 2.3.2.3. Refer to Table 2.21 for the 
encoding of this field. For additional information, refer to Section 
3.5.2.3 “Setting the Access Control Mode”

R/W Configuration 
Dependent
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Table 2.34 describes the access control modes specifiable in the CFGAM fields. 

Table 2.35 describes the state of each Segment Configuration register at reset in legacy mode.

Table 2.34 Segment Configuration Access Control Modes

Mode

Action when referenced from Operating 
Mode

DescriptionUser mode
Supervisor 

mode
Kernel 
mode

UK 000 Address 
Error

Address Error Unmapped Kernel-only unmapped region
e.g. kseg0, kseg1

MK 001 Address 
Error

Address Error Mapped Kernel-only mapped region

e.g. kseg3

MSK 010 Address 
Error

Mapped Mapped Supervisor and kernel mapped region

e.g. ksseg, sseg

MUSK 011 Mapped Mapped Mapped User, supervisor and kernel mapped region

e.g. useg, kuseg, suseg

MUSUK 100 Mapped Mapped Unmapped Used to implement a fully-mapped flat address 
space in user and supervisor modes, with unmapped 
regions which appear in kernel mode.

USK 101 Address 
Error

Unmapped Unmapped Supervisor and kernel unmapped region

e.g. sseg in a fixed mapping TLB.

- 110 Undefined Undefined Undefined Reserved

UUSK 111 Unmapped Unmapped Unmapped Unrestricted unmapped region

Table 2.35 Segment Configuration Reset States in Legacy Mode

CFG Segment CFGAM CFGPA CFGC CFGEU

0 kseg3 MK Undefined Undefined 0

1 ksseg, sseg MSK Undefined Undefined 0

2 kseg1 UK 3’b000 2 0

3 kseg0 UK 3’b000 3 0

4 kuseg, suseg, useg MUSK 3’b010 Undefined 1

5 kuseg, suseg, useg MUSK 3’b000 Undefined 1
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2.3.4 Exception Control Registers

This section contains the following exception control registers.

• Section 2.3.4.1, "Cause (CP0 Register 13, Select 0)" on page 124

• Section 2.3.4.2, "Exception Program Counter — EPC (CP0 Register 14, Select 0)" on page 127

• Section 2.3.4.3, "Error Exception Program Counter — ErrorEPC (CP0 Register 30, Select 0)" on page 128

Also refer to the Interrupt Control register in Section 2.3.1.12, "Interrupt Control — IntCtl (CP0 Register 12, Select 
1)" on page 106.

2.3.4.1 Cause (CP0 Register 13, Select 0)

The Cause register describes the cause of the most recent exception and controls software interrupt requests and the 
vector through which interrupts are dispatched. With the exception of the IP1:0, DC, IV, and WP fields, all fields in the 
Cause register are read-only. IP7:2 are interpreted as the Requested Interrupt Priority Level (RIPL) in External Inter-
rupt Controller (EIC) interrupt mode.

Figure 2.28 Cause Register Format   
31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 8 7 6 2 1 0

BD TI CE DC PCI 0 IV WP FDCI 0 IP7-2 IP1-0 0 ExcCode 0

Table 2.36 Field Descriptions for Cause Register

Name Bit(s) Description
Read/ 
Write Reset State

BD 31 Indicates whether the last exception taken occurred in a branch delay slot.

0: Exception taken was not in delay slot
1: Exception taken was in delay slot

The processor updates BD only if the EXL bit in the Status register was zero 
when the exception occurred.

If the exception occurred in a branch delay slot, the exception program counter 
(EPC) is set to restart execution at the branch. Software should read this bit to 
determine if the exception was taken in a delay slot. 

R Undefined

TI 30 Timer Interrupt. Denotes whether a timer interrupt is pending (analogous to the 
IP bits for other interrupt types)

0: No timer interrupt is pending
1: Timer interrupt is pending

Hardware sets this bit based on the state of the external SI_TimerInt signal. See 
also the descriptions of the Count and Compare registers.

R Undefined

CE 29:28 Coprocessor unit number referenced when a Coprocessor Unusable exception is 
taken. This field is loaded by hardware on every exception, but is UNPRE-
DICTABLE for all exceptions except Coprocessor Unusable.

00: Coprocessor 0
01: Coprocessor 1
10: Coprocessor 2 (not supported in proAptiv
11: Coprocessor 3 (not supported in proAptiv)

R Undefined
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DC 27 Disable Count register. In some power-sensitive applications, the Count regis-
ter is not used but may still be the source of some noticeable power dissipation. 
This bit allows the Count register to be stopped in such situations. For example, 
this can be useful during low-power operation following a wait instruction.

0: Enable counting of Count register
1: Disable counting of Count register

R/W 0

PCI 26 Performance Counter Interrupt. Indicates whether a performance counter inter-
rupt is pending (analogous to the IP bits for other interrupt types).

0: No performance counter interrupt is pending
1: Performance counter interrupt is pending

See also the description of the PerfCnt registers. 

R Undefined

0 25:24 Reserved. Write as zero. Ignored on reads. R 0

IV 23 Indicates whether an interrupt exception uses the general exception vector or a 
special interrupt vector:

0: Use the general exception vector (0x180)
1: Use the special interrupt vector (0x200)

When the IV bit in the Cause register is 1 and the BEV bit in the Status register 
is 0, the special interrupt vector represents the base of the vector interrupt table.

R/W Undefined

WP 22 Indicates that a watch exception was deferred because either the StatusEXL bit 
or the StatusERL bit was a logic ‘1’ at the time the watch exception was 
detected. This bit both indicates that the watch exception was deferred, and 
causes the exception to be initiated when StatusEXL and StatusERL are both 
zero. As such, software must clear this bit as part of the watch exception handler 
to prevent a watch exception loop.

Software should never write a 1 to this bit when its value is a 0, thereby causing 
a 0-to-1 transition. If such a transition is caused by software, it is UNPRE-
DICTABLE whether hardware ignores the write, accepts the write with no side 
effects, or accepts the write and initiates a watch exception once StatusEXL and 
StatusERL are both zero. Software should clear this bit, but never set it. It is set 
by hardware.

R/W Undefined

FDCI 21 Fast Debug Channel Interrupt: This bit denotes whether an FDC interrupt is 
pending (analogous to the IP bits for other interrupt types).

0: No FDC interrupt is pending
1: FDC interrupt is pending

This bit is set by hardware based on the state of the external SI_FDCInt signal.

R Undefined

0 20:16 Reserved. Write as zero. Ignored on reads. R 0

Table 2.36 Field Descriptions for Cause Register(continued)

Name Bit(s) Description
Read/ 
Write Reset State
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IP7-2
RIPL

15:10 Indicates an interrupt is pending. 

If External Interrupt Controller (EIC) mode is disabled (Config3VEIC = 0), 
timer interrupts are combined in a system-dependent way with any hardware 
interrupt. Each bit of this field maps to an individual hardware interrupt.

If EIC interrupt mode is enabled (Config3VEIC = 1), these bits take on a differ-
ent meaning and are interpreted as the Requested Interrupt Priority Level 
(RIPL) field.

When EIC interrupt mode is enabled, this field (RIPL) contains the encoded (0 - 
63) value of the requested interrupt. A value of zero indicates that no interrupt is 
requested.

R Undefined

IP1-0 9:8 Controls the request for software interrupts: 

These bits are exported to an external interrupt controller for prioritization in 
EIC interrupt mode with other interrupt sources. The state of these bits are 
driven onto the external SI_SWInt[1:0] bus.

R/W Undefined

0 7 Reserved. Write as zero. Ignored on reads. R 0

ExcCode 6:2 Encodes the cause of the last exception as described in Table 2.37. R Undefined

0 1:0 Reserved. Write as zero. Ignored on reads. R 0

Table 2.37 Exception Code Values in ExcCode Field of Cause Register 

Value
(decimal)

Value
(hex) Code Description

0 0x0 Int Interrupt

1 0x1 Mod Store, but page marked as read-only in the TLB

2 0x2 TLBL Load or fetch, but page not present or marked as invalid in the TLB

3 0x3 TLBS Store, but page not present or marked as invalid in the TLB

Table 2.36 Field Descriptions for Cause Register(continued)

Name Bit(s) Description
Read/ 
Write Reset State

Bit Name Meaning

15 IP7 Hardware interrupt 5
14 IP6 Hardware interrupt 4
13 IP5 Hardware interrupt 3
12 IP4 Hardware interrupt 2
11 IP3 Hardware interrupt 1
10 IP2 Hardware interrupt 0

Bit Name Meaning

9 IP1 Request software interrupt 1
8 IP0 Request software interrupt 0
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2.3.4.2 Exception Program Counter — EPC (CP0 Register 14, Select 0)

Following an exception other than an error or debug exception, the Exception Program Counter (EPC) contains the 
address at which processing resumes after the exception has been serviced (the corresponding debug and error excep-
tion use DEPC and ErrorEPC respectively).

4 0x4 AdEL Address error on load/fetch or store respectively. Address is either wrongly aligned, or a 
privilege violation.5 0x5 AdES

6 0x6 IBE Bus error signaled on instruction fetch

7 0x7 DBE Bus error signaled on load/store (imprecise)

8 0x8 Sys System call, i.e. syscall instruction executed.

9 0x9 Bp Breakpoint, i.e. break instruction executed. If an SDBBP instruction is executed while 
the processor is running in EJTAG Debug Mode, this value is written to the 
DebugDExcCode field to denote an SDBBP in Debug mode. 

10 0xA RI Reserved instruction. Instruction code not recognized (or not legal)

11 0xB CpU Coprocessor Unusable Exception. Instruction code was for a co-processor which is not 
enabled in StatusCU3-0.

12 0xC Ov Overflow exception. Overflow from a trapping variant of integer arithmetic instructions.

13 0xD Tr Trap exception. Condition met on one of the conditional trap instructions teq etc.

14 0xE - Reserved

15 0xF FPE Floating point unit exception — more details in the FPU control/status registers.

16 0x10 TLBPAR TLB parity error exception.

17 - 18 0x11 - 0x12 - Available for implementation-dependent use.

19 0x13 TLBRI TLB read inhibit exception.

20 0x14 TLBXI TLB execute inhibit exception.

21-22 0x15 - 0x16 - Reserved.

23 0x17 WATCH Instruction or data reference matched a watchpoint. Refer to WatchHi/WatchLo 
address.

24 0x18 MCheck Machine check exception.

25 0x19 - Reserved

26 0x1A DSPDis DSP ASE not enabled or not present exception. This exception occurs when trying to run 
an instruction from the MIPS DSP ASE, but the ASE is either not enabled or not avail-
able. If this exception occurs and the DSP ASE is present in the system, check the state 
of the StatusMX bit to make sure it is set to ‘1’.

27-29 0x1B - 0x1D - Reserved.

30 0x1E CacheErr Parity/ECC error occurred somewhere in the proAptiv core, on either an instruction 
fetch, load, or cache refill. This exception does not occur during normal operation, but 
can occur while in debug mode. Refer to Section 2.3.9.1 “Debug (CP0 Register 23, 
Select 0)” for more information.

31 0x1F - Reserved.

Table 2.37 Exception Code Values in ExcCode Field of Cause Register (continued)

Value
(decimal)

Value
(hex) Code Description
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Unless the EXL bit in the Status register is set (indicating, among other things, that interrupts are disabled), the pro-
cessor writes the EPC register when an exception occurs.

• For synchronous (precise) exceptions, EPC contains either:

• The virtual address of the instruction that was the direct cause of the exception, or

• The virtual address of the immediately preceding branch or jump instruction, when the exception causing 
instruction is in a branch delay slot, and the Branch Delay bit in the Cause register is set. 

• For asynchronous (imprecise) exceptions, EPC contains the address of the instruction at which to resume execu-
tion.

The processor reads the EPC register as the result of execution of the eret instruction.

Figure 2.29 EPC Register Format  

2.3.4.3 Error Exception Program Counter — ErrorEPC (CP0 Register 30, Select 0)

The ErrorEPC register is a read/write register, similar to the EPC register, except that ErrorEPC is used on error 
exceptions. All bits of the ErrorEPC register are significant and must be writable. It is also used to store the program 
counter on Reset, Soft Reset, and nonmaskable interrupt (NMI) exceptions.

This full 32-bit register is filled with the restart address on a cache error exception or any kind of CPU reset — in fact, 
any exception which sets StatusERL and leaves the CPU in "error mode". 

Figure 2.30 ErrorEPC Register Format

31 0

EPC

Table 2.38 EPC Register Field Description

Fields

Description
Read / 
Write Reset StateName Bit(s)

EPC 31:0 Exception Program Counter. R/W Undefined

31 0

ErrorEPC

Table 2.39 ErrorEPC Register Field Description

Fields

Description
Read / 
Write Reset StateName Bit(s)

ErrorEPC 31:0 Error Exception Program Counter. R/W Undefined
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2.3.5 Timer Registers

This section contains the following timer registers.

• Section 2.3.5.1, "Count (CP0 Register 9, Select 0)" on page 129

• Section 2.3.5.2, "Compare (CP0 Register 11, Select 0)" on page 129

2.3.5.1 Count (CP0 Register 9, Select 0)

The Count register acts as a timer, incrementing at a constant rate. Incrementing of this register occurs whether or not 
an instruction is executed, retired, or any forward progress is made through the pipeline. When enabled by clearing 
the DC bit in the Cause register, the counter increments every other clock (half the clock rate). 

The Count may be stopped in either of the following two circumstances.

• Some implementations may stop Count in the low-power mode, for example, through the wait instruction, but 
only if the CauseDC flag is set to 1. 

• When the device is in debug mode, the Count register can be stopped by setting DebugCountDM. By writing the 
CountDM bit, it is possible to control whether the Count register continues incrementing while the processor is in 
debug mode.

The Count field starts counting from whatever value is loaded into it. However, OS timers are usually implemented 
by leaving Count free-running and writing Compare as necessary. This counter rolls over when reaching it maximum 
value.

By writing the CountDM bit in the Debug register, it is possible to control whether the Count register continues incre-
menting while the processor is in debug mode.

Figure 2.31 Count Register Format  

2.3.5.2 Compare (CP0 Register 11, Select 0)

The Compare register acts in conjunction with the Count register to implement a timer and timer interrupt function. 
When the value of the Count register equals the value of the Compare register, the SI_TimerInt output pin is asserted. 
SI_TimerInt remains asserted until the Compare register is written. 

The SI_TimerInt output can be fed back into the proAptiv core on one of the interrupt pins to generate an interrupt. 
Traditionally, this has been done by multiplexing it with hardware interrupt 5 in order to set interrupt bit IP(7) in the 
Cause register. 

For diagnostic purposes, the Compare register is a read/write register. In normal use however, the Compare register is 
write-only. As a side effect, writing a value to this register clears the timer interrupt.

31 0

Count

Table 2.40 Count Register Field Description

Fields

Description Read / Write Reset StateName Bits

Count 31:0 Interval counter. R/W Undefined
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Figure 2.32 Compare Register Format  

2.3.6 Cache Management Registers

This section contains the following cache management registers.

• Section 2.3.6.1, "Level 1 Instruction Cache Tag Low — ITagLo (CP0 Register 28, Select 0)" on page 130

• Section 2.3.6.2, "Level 1 Instruction Cache Tag High — ITagHi (CP0 Register 29, Select 0)" on page 132

• Section 2.3.6.3, "Level 1 Instruction Cache Data Low — IDataLo (CP0 Register 28, Select 1)" on page 133

• Section 2.3.6.4, "Level 1 Instruction Cache Data High — IDataHi (CP0 Register 29, Select 1)" on page 133

• Section 2.3.6.5, "Level 1 Data Cache Tag Low — DTagLo (CP0 Register 28, Select 2)" on page 134

• Section 2.3.6.6, "Level 1 Data Cache Data Low — DDataLo (CP0 Register 28, Select 3)" on page 140

• Section 2.3.6.7, "Level 2/3 Cache Tag Low — L23TagLo (CP0 Register 28, Select 4)" on page 141

• Section 2.3.6.8, "Level 2/3 Cache Data Low — L23DataLo (CP0 Register 28, Select 5)" on page 141

• Section 2.3.6.9, "Level 2/3 Cache Data High — L23DataHi (CP0 Register 29, Select 5)" on page 142

• Section 2.3.6.10, "ErrCtl (CP0 Register 26, Select 0)" on page 142

• Section 2.3.6.11, "Cache Error — CacheErr (CP0 Register 27, Select 0)" on page 144

2.3.6.1 Level 1 Instruction Cache Tag Low — ITagLo (CP0 Register 28, Select 0)

The ITagLo register acts as the interface to the instruction cache tag array. The Index Store Tag and Index Load Tag 
operations of the CACHE instruction use the ITagLo register as the source of tag information. Note that the proAptiv 
Multiprocessing System CPU does not implement the ITagHi register.

When the WST bit of the ErrCtl register is asserted, this register becomes the interface to the way-selection RAM. In 
this mode, the fields are redefined to give appropriate access the contents of the WS array instead of the Tag array. 

These registers are a staging location for cache tag information being read/written with cache load-tag/store-tag 
operations.

The interpretation of this register changes depending on the setting s of ErrCtlWST and ErrCtlSPR. 

• Default cache interface mode (ErrCtlWST = 0, ErrCtlSPR = 0)

• Diagnostic "way select test mode" (ErrCtlWST = 1, ErrCtlSPR = 0)

• For scratchpad memory setup (ErrCtlWST = 0, ErrCtlSPR = 1)

See the diagrams below for a description. 

31 0

Compare

Table 2.41 Compare Register Field Description

Fields

Description
Read / 
Write Reset StateName Bit(s)

Compare 31:0 Interval count compare value. R/W Undefined
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ITagLo (ErrCtlWST = 0, ErrCtlSPR = 0) 

In this mode, this register is a staging location for cache tag information being read/written with cache load-tag/
store-tag operations—routinely used in cache initialization. 

Figure 2.33 ITagLo Register Format (ErrCtl WST = 0, ErrCtlSPR = 0)    

ITagLo-WST (ErrCtlWST = 1, ErrCtlSPR = 0)

The way-select RAM is an independent slice of the cache memory (distinct from the tag and data arrays). Test soft-
ware can access the data in these fields either by cache load-tag or store-tag operations when ErrCtlWST is set. 

Figure 2.34 ITagLo Register Format (ErrCtlWST = 1, ErrCtlSPR = 0)

31 12 11 10 9 8 7 6 5 4 1 0

PTagLo U 0 V 0 L 0 P

Table 2.42 Field Descriptions for ITagLo Register

Name Bit(s) Description
Read/ 
Write Reset State

PTagLo 31:12 The cache address tag, which is a physical address because the proAptiv Multi-
processing System’s caches are physically tagged. It holds bits 31:12 of the 
physical address, i.e., the low-order 12 bits of the address are implied by the 
position of the data in the cache. 

R/W Undefined

Unused 31:16 Unused field. R/W Undefined

0 9:8 Must be written as zero; returns zero on read. 0 0

V 7 Set to 1 if this cache entry is valid (set to zero to initialize the cache). R/W Undefined

0 6 Must be written as zero; returns zero on read. 0 0

L 5 Specifies the lock bit for the cache tag. This bit is set to lock this cache entry, 
preventing it from being replaced by another line when a cache miss occurs. 
When this bit is set, and the V bit is set, the corresponding cache line will not be 
replaced by the cache replacement algorithm.

This can be used for critical data that must not be removed from the cache. How-
ever, this can reduce the efficiency of the cache for memory data competing for 
space at this index. 

R/W Undefined

0 4:1 Must be written as zero; returns zero on read. 0 0

P 0 Parity bit over the cache tag entries (excluding the D bit). This bit is updated 
with tag array parity on CACHE Index Load Tag operations and used as tag 
array parity on Index Store Tag operations when the PO bit of the ErrCtl register 
is set.

R/W Undefined

31 16 15 10 9 8 7 6 5 4 1 0

U LRU 0 U 0 U 0 U
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ITagLo-WST (ErrCtlWST = 0, ErrCtlSPR = 1)

In this mode, the ITagLo register becomes the interface to the instruction scratchpad RAM. 

Figure 2.35 ITagLo Register Format (ErrCtlWST = 0, ErrCtlSPR = 1)

2.3.6.2 Level 1 Instruction Cache Tag High — ITagHi (CP0 Register 29, Select 0)

This register represents the I-cache Predecode bits and is intended for diagnostic use only

Figure 2.36 ITagHi Register Format

Table 2.43 Field Descriptions for ITagLo-WST Register

Name Bit(s) Description
Read/ 
Write Reset State

LRU 15:10 LRU bits. This field contains the value read from the WS array after a 
CACHE Index Load WS operation. It is used to store into the WS array 
during CACHE Index Store WS operations.

When reading or writing the tag in way-select test mode (that is, with 
ErrCtlWST set), this field reads or writes the LRU ("least recently used") 
state bits, held in the way-select RAM. 

R/W Undefined

tag 31 19 16 15 12 11 10 9 8 7 6 5 4 1 0

0 BasePA U 0 E 0 U 0 U

1 U Size U 0 U 0 U 0 U

Table 2.44 Field Descriptions for ITagLo-SPR Register

Name Bit(s) Description
Read/ 
Write Reset State

ErrCtlWST = 0, ErrCtlSPR = 1 — Tag 0

BasePA 31:12 When reading pseudo-tag 0 of a scratchpad RAM, this field contains bits 
[31:12] of the base address of the scratchpad region.

R/W Undefined

E 7 When reading pseudo-tag 0 of a scratchpad RAM, this bit indicates 
whether the scratchpad is enabled.

R/W Undefined

ErrCtlWST = 0, ErrCtlSPR = 1 — Tag 1

Size 19:12 When reading pseudo-tag 1 of a scratchpad RAM, this field indicates the 
size of the scratchpad array. This field is the number of 4KB sections it 
contains. Combined with bits 11:0, the register will contain the number of 
bytes in the scratchpad region. 

R/W Undefined

31 25 24 18 17 11 10 4 3 2 1 0

PREC_67 PREC_45 PREC_23 PREC_01 P_67 P_45 P_23 P_01
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2.3.6.3 Level 1 Instruction Cache Data Low — IDataLo (CP0 Register 28, Select 1)

The IDataLo register is a register that acts as the interface to the instruction cache data array and is intended for diag-
nostic operations only. The Index Load Tag operation of the CACHE instruction reads the corresponding data values 
into the IDataLo register. If the WST bit in the ErrCtl register is set, then the contents of IDataLo can be written to the 
cache data array by doing an Index Store Data CACHE instruction. If the SPR bit in the ErrCtl register is set, then the 
contents of IDataLo can be written to the scratchpad RAM data array by doing an Index Store Data CACHE instruc-
tion.

Two registers (IDataHi, IDataLo) are needed, because the proAptiv Multiprocessing System loads I-cache data at least 
64 bits at a time. 

Figure 2.37 IDataLo Register Format

2.3.6.4 Level 1 Instruction Cache Data High — IDataHi (CP0 Register 29, Select 1)

The IDataHi register is a register that acts as the interface to the cache data array and is intended for diagnostic opera-
tions only. The Index Load Tag operation of the CACHE instruction reads the corresponding data values into the 
IDataHi register. If the WST bit in the ErrCtl register is set, then the contents of IDataHi can be written to the cache data 
array by doing an Index Store Data CACHE instruction. If the SPR bit in the ErrCtl register is set, then the contents of 
IDataHi can be written to the scratchpad RAM data array by doing an Index Store Data CACHE instruction.

Because the interface to the I-cache only operates on pairs of instructions, two registers (IDataHi, IDataLo) are needed 
because the proAptiv Multiprocessing System loads I-cache data at least 64-bits at a time. The high instruction is 
written into the IDataHi register. Note that IDataHi and IDataLo reflect the memory ordering of the instructions. 

Table 2.45 Field Descriptions for ITagHi Register

Name Bit(s) Description
Read/ 
Write Reset State

PREC_67 31:25 proAptiv Multiprocessing System family cores do some decoding of instruc-
tions when they’re loaded into the I-cache, which helps speed instruction dis-
patch. When you use cache tag load/store instructions, you see that 
information here.

The individual PREC fields hold precode information for pairs of adjacent 
instructions in the I-cache line, and the P fields hold parity over them. 

R/W Undefined

PREC_45 24:18 R/W Undefined

PREC_23 17:11 R/W Undefined

PREC_01 10:4 R/W Undefined

P_67 3 R/W Undefined

P_45 2 R/W Undefined

P_23 1 R/W Undefined

P_01 0 R/W Undefined

31 0

DATA

Table 2.46 IDataLo Register Field Description

Fields

Description
Read / 
Write Reset StateName Bit(s)

DATA 31:0 Low-order data read from the cache data array. R/W Undefined
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Depending on the endianness of the system, Instruction0 belongs in either IDataHi (BigEndian) or IDataLo (LittleEn-
dian) and vice versa for Instruction1.

Figure 2.38 IDataHi Register Format

2.3.6.5 Level 1 Data Cache Tag Low — DTagLo (CP0 Register 28, Select 2)

The DTagLo register acts as the interface to the data cache tag array. The Index Store Tag and Index Load Tag opera-
tions of the CACHE instruction use the DTagLo register as the source of tag information. 

When the WST bit of the ErrCtl register is asserted, this register becomes the interface to the way-selection RAM. In 
this mode, the fields are redefined to give appropriate access the contents of the WS array instead of the Tag array.

These registers are a staging location for cache tag information being read/written with cache load-tag/store-tag 
operations. 

The D-cache has five logical memory arrays associated with this DTagLo register. The tag RAM stores tags and other 
state bits with special attention to the needs of the CPU. The duplicate tag RAM also stores tags and state, but is opti-
mized for the needs of interventions. Both of these arrays are set-associative (4-way). The Dirty RAM and duplicate 
Dirty RAM store the dirty bits (indicating modified data) for intervention uses, and each combine their ways together 
in a single entry per set. The WS RAM also combines the lock and LRU data in a single entry per set. Accessing these 
arrays for index cache loads and stores is controlled by using three bits in the ErrCtl register to create modes that 
allow the correct access to these arrays.

Note that the proAptiv core does not implement the DTagHi register.

The interpretation of this register changes depending on the settings of ErrCtlWST, ErrCtlDYT, and ErrCtlSPR. 

• Default cache interface mode (ErrCtlWST = 0, ErrCtlDYT = 0, ErrCtlSPR = 0)

• Diagnostic "way select test mode" (ErrCtlWST = 1, ErrCtlDYT = 0, ErrCtlSPR = 0)

• Diagnostic "dirty array test mode" (ErrCtlWST = 0, ErrCtlDYT = 1, ErrCtlSPR = 0)

• For scratchpad memory setup (ErrCtlWST = 0, ErrCtlDYT = 0, ErrCtlSPR = 1)

• Diagnostic “duplicate tag array test mode” (ErrCtlWST = 1, ErrCtlDYT = 0, ErrCtlSPR= 1)

• Diagnostic “duplicate dirty array test mode” (ErrCtlWST = 1, ErrCtlDYT = 1, ErrCtlSPR= 1)

31 0

DATA

Table 2.47 IDataHi Register Field Description

Fields

Description
Read / 
Write Reset StateName Bit(s)

DATA 31:0 High-order data read from the cache data array. R/W Undefined
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For all modes, the data RAM, tag RAM, WS RAM, and duplicate tag RAM are read. In addition, for duplicate tag 
array test mode, the duplicate tag RAM is also read, and for duplicate dirty array test mode, the duplicate Dirty RAM 
is read. Table 2.48 shows which RAMs are accessed for each mode for Loads and Stores. 

DTagLo (ErrCtlWST = 0, ErrCtlDYT = 0, ErrCtlSPR = 0)

In this mode, this register is a staging location for cache tag information being read/written with cache load-tag/
store-tag operations—routinely used in cache initialization. For stores in this mode, the tag RAM, WS RAM, and 
duplicate tag RAM are written. Also for stores, the ErrCtlPO bit controls whether the tag RAM is written with P bit or 
with generated parity; the other RAMs written in this mode always use generated parity. 

Figure 2.39 DTagLo Register Format (ErrCtlWST = 0, ErrCtlDYT = 0, ErrCtlSPR = 0)  

 

Table 2.48 Summary of D-cache RAM accesses for Index Loads and Stores

Index 
Cacheop

Mode RAM Being Accessed

WST DYT SPR
Primary 
Tag RAM WS RAM Data RAM

Dirty 
RAM

Duplicate 
Tag RAM

Duplicate 
Dirty 
RAM

Tag Store 0 0 0 WR partial WR RD — WR —

Tag Load 0 0 0 RD RD RD RD — —

Tag Store 1 0 0 — partial WR RD — — —

Tag Load 1 0 0 RD RD RD RD — —

Data Store 1 0 0 — — WR — — —

Tag Store 0 1 0 — — RD WR — WR

Tag Load 0 1 0 RD RD RD RD — —

Tag Store 1 0 1 — — RD — WR —

Tag Load 1 0 1 RD RD RD RD RD —

Tag Store 1 1 1 — — RD — — WR

Tag Load 1 1 1 RD RD RD RD — RD

31 12 11 10 9 8 7 6 5 4 1 0

PTagLo VA11 U 0 V E L 0 P

Table 2.49 Field Descriptions for DTagLo Register 

Name Bit(s) Description
Read/ 
Write Reset State

PTagLo 31:12 The cache address tag — a physical address because the proAptiv Multi-
processing System caches are physically tagged. It holds bits 31-12 of 
the physical address — the low 12 bits of the address are implied by the 
position of the data in the cache. 

R/W Undefined

VA11 11 This bit always gets the virtual address bit [11] of the tag if the index load 
tag cache instruction is executed. 

R/W Undefined
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DTagLo-WST(ErrCtlWST = 1, ErrCtlDYT = 0, ErrCtlSPR = 0) 

The way-select RAM is an independent slice of the cache memory (distinct from the tag and data arrays). Test soft-
ware can access either by cache load-tag/store-tag operations when ErrCtlWST is set: then you get the data in these 
fields. For stores in this mode, the WS RAM is written. Also for stores, the ErrCtlPO bit controls whether the WS 
RAM is written with LP bits or with generated parity; the other RAMs written in this mode always use generated par-
ity. Also for stores, the LP and L fields only have the appropriate way written in the WS RAM. It is software’s 
responsibility to maintain consistency with the value of the L field written into the duplicate tag RAM.

Figure 2.40 DTagLo Register Format (ErrCtlWST = 1, ErrCtlDYT = 0, ErrCtlSPR = 0)  

U 10 Unused R/W Undefined

0 9:8 Reserved. Write as zero. Ignored on reads. R 0

V 7 Valid entry: This bit is set if this cache entry is valid (set zero to initialize 
the cache). 

Index Load: load from V field in primary tag RAM
Index Store: store to V field in primary and duplicate tag RAM

R/W Undefined

E 6 Exclusive entry: This bit is set if this cache entry is exclusive (set zero to 
initialize the cache). 

Index Load: load from E field in primary tag RAM
Index Store: store to E field in primary tag RAM

R/W Undefined

L 5 Locked entry: This bit is set to lock this cache entry, preventing it from 
being replaced by another line when there’s a cache miss. Done when you 
have data so critical that it must be in the cache: it’s quite costly, reducing 
the efficiency of the cache for memory data competing for space at this 
index. 

Index Load: load from appropriate way of L field in WS RAM
Index Store: store to appropriate way of L and LP field in WS RAM, and 
if V is set, make selected way MRU in WS RAM; also, store to L field of 
duplicate tag RAM.

R/W Undefined

0 4:1 Reserved. Write as zero. Ignored on reads. R 0

P 0 Parity bit over the PTAG, E, and V bits of the cache tag entries

Index Load: load from P field in primary tag RAM
Index Store: possible write value for the P field of the primary tag RAM; 
write this bit if ErrCtl.PO = 1, else generate; 
parity written to other RAMs is generated.

R/W Undefined

31 24 23 20 19 16 15 10 9 8 7 5 4 1 0

U LP L LRU 0 U 0 U

Table 2.49 Field Descriptions for DTagLo Register (continued)

Name Bit(s) Description
Read/ 
Write Reset State
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DTagLo-DYT (ErrCtlWST = 0, ErrCtlDYT = 1, ErrCtlSPR = 0)

The dirty RAM is another slice of the cache memory (distinct from the tag and data arrays). Test software can access 
either by cache load-tag/store-tag operations when ErrCtlDYT is set: then you get the data in these fields. For stores, 
the Dirty RAM is written. For stores, the Dirty RAM and duplicate Dirty RAM are written. Also for stores, the 
ErrCtlPO bit controls whether the Dirty RAM is written with DP bits or with generated parity; the other RAMs written 
in this mode always use generated parity.

Figure 2.41 Field Descriptions for DTagLo-DYT Register  

Table 2.50 Field Descriptions for DTagLo-WST Register

Name Bit(s) Description
Read/ 
Write Reset State

U 31:24 Undefined. R 0

LP 23:20 Parity for Cache-line locking control bits, held in the way select RAM. 
Each bit of this field is a parity bit for the corresponding bit in the L field.

Index Load: load from LP field of WS RAM

Index Store: store to appropriate way of LP field of WS RAM if 
ErrCtlPO=1,

else generate; 

R/W Undefined

L 19:16 Cache-line locking control bits, held in the way select RAM.

Index Load: load from L field of WS RAM

Index Store: store to appropriate way of L field of WS RAM.

R/W Undefined

LRU 15:10 When you read or write the tag in way select test mode (that is, with 
ErrCtlWST set) this field reads or writes the LRU ("least recently used") 
state bits, held in the way select RAM. 

Index Load: load from LRU field of WS RAM

Index Store: store to LRU field of WS RAM

R/W Undefined

0 9:8 Reserved. Write as zero. Ignored on reads. R 0

U 7:5 Undefined. R 0

0 4:1 Reserved. Write as zero. Ignored on reads. R 0

U 0 Undefined. R 0

31 24 23 20 19 16 15 12 11 10 9 8 7 5 4 1 0

U DP D U A 0 U 0 U

Table 2.51 Field Descriptions for DTagLo-DYT Register

Name Bit(s) Description
Read/ 
Write Reset State

U 31:24 Undefined. R 0

DP 23:20 Parity for Cache line "dirty" bits.

Index Load: load from DP field of Dirty RAM

Index Store: store to DP field of Dirty RAM if ErrCtlPO=1, else generate;

R/W Undefined
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If a scratchpad RAM has been implemented, it must be initialized and managed using cache load/store operations 
while ErrCtlSPR is set. The tag load/store operations are used to read and write control registers: During these opera-
tions, the DTagLo register has the following bit assignments.

Figure 2.42 DTagLo Register Format (ErrCtlWST = 0, ErrCtlDYT = 0, ErrCtlSPR = 1)   

DTagLo-DDTag (ErrCtlWST = 1, ErrCtlDYT = 0, ErrCtlSPR = 1)

The duplicate tag RAM keeps tag state that is checked by interventions due to multiprocessing. In this mode, the 
duplicate tag RAM can be loaded and stored independently of the (primary) tag RAM. For stores in this mode, only 
the duplicate tag RAM is written.

D 19:16 Cache line "dirty" bits.

Index Load: load from D field of Dirty RAM

Index Store: store to D field of Dirty RAM

R/W Undefined

U 15:12 Undefined. R 0

A 11:10 Cache line "alias" bits. 

Index Load: load from A field of Dirty RAM

Index Store: store 0 and A[10] to A field of Dirty RAM

R/W Undefined

0 9:8 Reserved. Write as zero. Ignored on reads. R 0

U 7:5 Undefined. R 0

0 4:1 Reserved. Write as zero. Ignored on reads. R 0

U 0 Undefined. R 0

31 12 11 10 9 8 7 6 5 4 1 0

PTAG U 0 E U 0 U

Table 2.52 Field Descriptions for DTagLo-SPR Register

Name Bit(s) Description
Read/ 
Write Reset State

PTAG 31:12 Scratchpad control. Sets base address. R/W Undefined

U 11:10 Undefined. R 0

0 9:8 Reserved. Write as zero. Ignored on reads. R 0

E 7 Scratchpad control enable. R/W Undefined

U 6:5 Undefined. R 0

0 4:1 Reserved. Write as zero. Ignored on reads. R 0

U 0 Undefined. R 0

Table 2.51 Field Descriptions for DTagLo-DYT Register

Name Bit(s) Description
Read/ 
Write Reset State
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Figure 2.43 DTagLo Register Format (ErrCtlWST = 1, ErrCtlDYT = 0, ErrCtlSPR = 1)

DTagLo-DDYT (ErrCtlWST = 1, ErrCtlDYT = 1, ErrCtlSPR= 1)

The duplicate Dirty RAM keeps dirty state that is checked by interventions due to multiprocessing. In this mode, the 
duplicate Dirty RAM can be loaded and stored independently of the (primary) Dirty RAM. For stores in this mode, 
only the duplicate Dirty RAM is written.

Figure 2.44 Field Descriptions for DTagLo-DDYT Register

31 12 11 10 9 8 7 6 5 4 2 1 0

PTag U 0 V 0 L 0 P1 P0

Table 2.53 Field Descriptions for DTagLo-DDTag Register 

Name Bit(s) Description
Read/ 
Write Reset State

PTag 31:12 The cache address tag — a physical address because the proAptiv Multi-
processing System CPU’s caches are physically tagged. It holds bits 31-
12 of the physical address — the low 12 bits of the address are implied 
by the position of the data in the cache. 

Index Load: load from PTag filed in duplicate tag RAM

Index Store: store to PTag field in duplicate tag RAM

R/W Undefined

U 11:10 Unused R/W Undefined

V, L 7, 5 For duplicate tag ram, these 2 bits encode the state of the cache line (set 
zero to initialize the cache). 

Index Load: load from V and L field in duplicate tag RAM

Index Store: store to V and L field in duplicate tag RAM 

R/W Undefined

0 4:2 Reserved. Write as zero. Ignored on reads. R 0

P1 1 Parity bit over the L bit of the cache tag entries.

Index Load: load from P field in duplicate tag RAM.

Index Store: possible write value for the P field of the duplicate tag 
RAM; write this bit if ErrCtlPO = 1, else generate.

R/W Undefined

P0 0 Parity bit over the all bits except the L bit of the cache tag entries.

Index Load: load from P field in duplicate tag RAM.

Index Store: possible write value for the P field of the duplicate tag 
RAM; write this bit if ErrCtlPO = 1, else generate.

R/W Undefined

31 24 23 20 19 16 15 12 11 10 9 8 7 6 5 4 1 0

U DP D U A 0 U 0 U 0 U U

V,L encoding Meaning

00 Invalid
01 Shared
10 Exclusive (Modified if Duplicate Dirty is set)
11 Lock
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2.3.6.6 Level 1 Data Cache Data Low — DDataLo (CP0 Register 28, Select 3)

In the proAptiv core, software can read or write cache data using a cache index load tag/index store data instruction. 
Which word of the cache line is transferred depends on the low address fed to the cache instruction. 

The DDataLo register acts as the interface to the data cache data array and is intended for diagnostic operations only. 
The Index Load Tag operation of the CACHE instruction reads the corresponding data values into the DDataLo regis-
ter. If the WST bit in the ErrCtl register is set, then the contents of DDataLo can be written to the cache data array by 
doing an Index Store Data CACHE instruction. If the SPR bit in the ErrCtl register is set, then the contents of 
DDataLo can be written to the scratchpad RAM data array by doing an Index Store Data CACHE instruction.

Figure 2.45 DDataLo Register Format

Table 2.54 Field Descriptions for DTagLo-DDYT Register

Name Bit(s) Description
Read/ 
Write Reset State

U 31:24 Unused R/W Undefined

DP 23:20 Parity for Cache line "dirty" bits.

Index Load: load from DP field of duplicate Dirty RAM

Index Store: store to DP field of duplicate Dirty RAM if ErrCtlPO = 1, 
else generate

R/W Undefined

D 19:16 Cache line "dirty" bits.

Index Load: load from D field of duplicate Dirty RAM

Index Store: store to D field of duplicate Dirty RAM

R/W Undefined

U 15:12 Unused R/W Undefined

A 11:10 Cache line "alias" bits. 

Index Load: load zeroes
Index Store: none

R/W 00

0 9:8 Reserved. Write as zero. Ignored on reads. R 0

U 7 Undefined. R 0

0 6 Reserved. Write as zero. Ignored on reads. R 0

U 5 Undefined. R 0

0 4:1 Reserved. Write as zero. Ignored on reads. R 0

U 0 Undefined. R 0

31 0

DATA
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2.3.6.7 Level 2/3 Cache Tag Low — L23TagLo (CP0 Register 28, Select 4)

The L23TagLo register acts as the interface to the L2 or L3 cache tag array. The L2 and L3 Index Store Tag and Index 
Load Tag operations of the CACHE instruction use the L23TagLo register as the source of tag information. Note that 
the proAptiv Multiprocessing System CPU does not implement the L23TagHi register.

The core can be configured without L2/L3 cache support. In this case, this register will be a read-only register that 
reads as 0. 

Figure 2.46 L23TagLo Register Format

2.3.6.8 Level 2/3 Cache Data Low — L23DataLo (CP0 Register 28, Select 5)

The L23DataLo register is a register that acts as the interface to the L2 or L3 cache data array and is intended for diag-
nostic operations only. The Index Load Tag operation of the CACHE instruction reads the corresponding data values 
into the L23DataLo register. If the WST bit in the ErrCtl register is set, then the contents of L23DataLo can be written 
to the cache data array by doing an Index Store Data CACHE instruction. 

The core can be configured without L2/L3 cache support. In this case, this register will be a read-only register that 
reads as 0. 

On proAptiv Multiprocessing System family cores, test software can read or write cache data using a cache index 
load/store data instruction. Which word of the cache line is transferred depends on the low address fed to the cache 
instruction. 

Figure 2.47 L23DataLo Register Format

Table 2.55 DDataLo Register Field Description

Fields

Description
Read / 
Write Reset StateName Bit(s)

DATA 31:0 Low-order data read from the cache data array. R/W Undefined

31 0

DATA

31 0

DATA

Table 2.56 L23DataLo Register Field Description

Fields

Description
Read / 
Write Reset StateName Bit(s)

DATA 31:0 Low-order data read from the cache data array. R/W Undefined
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2.3.6.9 Level 2/3 Cache Data High — L23DataHi (CP0 Register 29, Select 5)

On proAptiv Multiprocessing System family cores, test software can read or write cache data using a cache index 
load/store data instruction. Which word of the cache line is transferred depends on the low address fed to the cache 
instruction. 

Figure 2.48 L23DataHi Register Format

2.3.6.10 ErrCtl (CP0 Register 26, Select 0)

Most of the fields of this register are for test software only. The MIPS32 architecture defines this register as imple-
mentation-dependent, but most CPUs put the parity-enable control in the top bit. So running OS software is well 
advised to set this register to 0x8000.0000 to enable cache parity checking, or to zero to disable parity checking. 

Figure 2.49 Error Control Register Format   

31 0

DATA

Table 2.57 L23DataHi Register Field Description

Fields

Description
Read / 
Write Reset StateName Bit(s)

DATA 31:0 High-order data read from the cache data array. R/W Undefined

31 30 29 28 27 26 25 24 23 22 21 20 19 18 12 11 4 3 0

PE PO WST SPR PCO 0 LBE WABE L2EccEn PCD DYT SE FE 0 PI PD

Table 2.58 Field Descriptions for ErrCtl Register 

Name Bit(s) Description
Read/ 
Write Reset State

PE 31 This bit is set to 1 to enable cache parity checking. Hard-wired to zero if 
parity is not implemented.

R/W 0

PO 30 Parity Overwrite. Set 1 to set the parity bit regardless of parity computa-
tion, which is only for diagnostic/test purposes.

After setting this bit you can use cache IndexStoreTag to set 
the cache data parity to the value currently in PI (for I-cache) or PD (for 
D-cache), while the tag parity is forcefully set from ITagLoP/DTagLoP.

0 = User calculated parity

1 = Override calculated parity

R/W 0

WST 29 Write to 1 for test mode for cache IndexLoadTag/
cache IndexStoreTag instructions, which then read/write the 
cache’s internal way-selection RAM instead of the cache tags.  

R/W 0

SPR 28 Scratchpad RAM. When set, index-type cache instructions work on the 
scratchpad/DSPRAM/ISPRAM, if implemented. 

R/W 0
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PCO 27 Precode override. Used for diagnostic/test of the instruction cache. When 
this bit is set, then the precode values in the ITagHi register are used 
instead of the hardware generated precode values. This applies to index 
store data cacheop operations.

R/W 0

0 26 Reserved. R 0

LBE 25 Indicates whether a bus error (the last one, if there’s been more than one) 
was triggered by a load or a write-allocate respectively. A write-allocate 
is where a cacheable write has missed in the cache, and the cache has 
read the line from memory.

Where both a load and write-allocate are waiting on the same cache-line 
refill, both could be set. These bits are "sticky", remaining set until 
explicitly written zero. 

R/W0 Undefined

WABE 24 R/W0 Undefined

L2EccEn 23 L2 cache ECC enable. Indicates whether ECC is enabled on the L2Cache 
if present. If the L2 cache is not present, this bit has no meaning.

0: L2 cache present, L2 ECC disabled
1: L2 cache present, L2 ECC enabled

R/W 0

PCD 22 Precode Disable. When set, cache IndexStoreTag instructions 
do not update the corresponding precode field and precode parity in the 
instruction cache tag array. 

R/W 0

DYT 21 Setting this bit allows cache load/store data operations to work on the 
"dirty array" — the slice of cache memory which holds the "dirty"/
"stored-into" bits. 

R/W 0

SE 20 Indicates that a second cache or TLB error was detected before the first 
error was processed. This is an unrecoverable error. This bit is set when a 
cache error is detected while the FE bit is set. This bit is cleared on reset 
or when a cache error is detected with FE cleared.

R 0

FE 19 Indicates that this is the first cache or TLB error and therefore potentially 
recoverable. Error handling software should clear this bit when the error 
has been processed. This bit is set by hardware and cleared by software 
on reset. Refer to the SE bit description for implications of this bit. 

Note that software can only write a 0 to this bit. A write value of 1 will 
not have any effect.

R/W 0

0 18:12 Reserved. R 0

PI 11:4 Parity bits per double-word (two instructions) of data being read/written 
to the instruction cache data when the PO bit is set. During a read of IDa-
taHi and IDataLo registers, the parity bits are stored here.

This field is updated by hardware on every instruction fetch and also dur-
ing a CacheOp store. 

During a CacheOp store, this field can be used for instruction cache data 
parity error injection apart from the Instruction cache store index.

During a CacheOp read, this field can be used to check/read the instruc-
tion cache parity bits and also for storing the parity bits when an index 
load tag is executed.

R/W 0x00

PD 3:0 Parity bits being read/written to the data cache when PO is set. R/W 0x0

Table 2.58 Field Descriptions for ErrCtl Register (continued)

Name Bit(s) Description
Read/ 
Write Reset State
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2.3.6.11 Cache Error — CacheErr (CP0 Register 27, Select 0)

Read-only register used to analyze the details of a parity error. It may also be a good idea to have a separate table to 
indicate the valid bits for an FTLB parity error.

The FTLB parity error will set the EREC field to ‘b11, it will either set the ED or ET bits indicating a data or tag par-
ity error (not both) and it will update the index and way fields. The other bits are left as 0. Note that the index field 
will contain the FTLB set and not the index value from the Index CP0 register.

I have also attached an email that indicates when the data and tag RAMs are checked for parity errors. Let’s talk if 
any of this is not clear.

Figure 2.50 CacheErr Register Format  
31 30 29 28 27 26 25 24 23 22 21 19 18 17 16 0

EREC ED ET ES EE EB EF SP EW Way DR 0 Index

Table 2.59 Field Descriptions for CacheErr Register

Name Bit(s) Description
Read/ 
Write Reset State

EREC 31:30 This 2-bit field indicates the block where the error occurred and is 
encoded as follows: 

The FTLB parity error sets the EREC field to ‘b11, and sets either the 
ED or ET bits indicating a data or tag parity error (not both). It also 
updates the Index (bits 16:0) and Way (bits 21:19) fields. The other bits 
are left as 0. Note that the index field will contain the FTLB set and not 
the index value from the CP0 Index register.

R Undefined

ED 29 The encoding of these two bits depends on the state of the EREC field 
above. If the state of this feld contains an encoding of 00, 01, or 10, indi-
cating a cache error, the encoding of this field is as shown in the table 
below.

ED and ET Bit Encoding on Cache Errors

If the state of the EREC feld contains an encoding of 11, indicating a 
TLB error, the encoding of this field is as follows. 

A parity error in the FTLB tag sets the ET bit (28), while a parity error in 
the FTLB data sets the ED bit (29). One or both of these bits may be set.

R Undefined

ET 28 R Undefined

Encoding Meaning

00 L1 instruction cache error
01 External cache error
10 L1 data cache error
11 FTLB parity error

Encoding Meaning

00 No tag or data RAM error detected
01 Primary tag RAM error
10 Data RAM error 
11 Duplicate tag RAM error
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ES 27 Error source. In a multi-core system, this bit teads 0 if the error was 
caused by one of the cores and 1 if the error was caused by an external 
snoop request.

In a single-core system, this bit is not supported.

R Undefined

EE 26 Error external: In a multi-core system, this bit indicates that a parity error 
was seen on a coherent L1 cache in another CPU.

In a single-core system, this bit is not supported.

R Undefined

EB/EM 25 If EC equals 0 indicating an error in the L1 cache, this bit is EB, indicat-
ing an error in Both caches. If data and instruction-fetch errors are 
reported on the same instruction, it is unrecoverable. If so, the rest of the 
register reports on the instruction-fetch error. 

If EC equals 1, indicating an error in the L2 cache, this bit is EM, indi-
cating there are errors in multiple locations in the cache. 

R Undefined

EF 24 Unrecoverable (fatal) error (other than the EB type above). Some parity 
errors can be fixed by invalidating the cache line and relying on good 
data from memory. However, if this bit is set, it indicates the error cannot 
be fixed. Here are some possible scenarios of when the EF bit might be 
set by hardware:

• Dirty parity error in dirty line being displaced from cache
• Line being displaced from cache has a tag parity error.
• The line being displaced from cache tag indicates it has been written 

by the CPU since it was obtained from memory (the line is "dirty" and 
needs a write-back), but it has a data parity error.

• Writeback store miss and CacheErrEW error.
• At least one more cache error happened concurrently with or after this 

one, but before the original error reached the cache error exception 
handler. 

• If EC equals 0, and a second L2 error occurs when an earlier L2 error 
is pending.

R Undefined

SP 23 Error affecting a Scratchpad RAM access. R Undefined

EW 22 Parity error on way-selection RAM array. R Undefined

Way 21:19 If EC equals 0, bit 19 is unused. Bits 21:20 indicate the way-number of 
the cache entry where the error occurred. It is not valid if a Scratchpad 
RAM error is detected (SP=1).

If EC equals 1, indicating an L2 or higher-level cache error, bits 21:19 
indicate the way-number of the cache entry where the error occurred. 

On a FTLB error, bits 20:19 indicate the number of ways in each set. Bit 
21 is not used on a FTLB error.

R Undefined

DR 18 A 1 bit indicates that the reported error affected the cache-line "dirty" 
bits. This bit is only meaningful in case of an L1 data cache access.

R Undefined

Table 2.59 Field Descriptions for CacheErr Register(continued)

Name Bit(s) Description
Read/ 
Write Reset State
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2.3.7 Thead Context Registers

Although the proAptiv Multiprocessing System does not support thread contexts or shadow registers, the Shadow 
Register Set Control (SRSCtl) register is implemented to allow software to read this register to determine that shadow 
registers are not implemented.

2.3.7.1 SRSCtl Register (CP0 Register 12, Select 2)

The SRSCtl register controls the operation of GPR shadow sets in the processor.

Figure 2.51 SRSCtl Register Format   

Index 16:0 The cache index or Scratchpad RAM index of the double word entry 
where the error occurred. The way of the faulty cache is written by hard-
ware in the Way field. The CacheErr bits [16:0] represents the Address 
index bits [19:3].

The index-type cache instruction will need an "index" with the way 
bits glued on top of this cache-entry field; you know how to put that 
together, because the shape of the cache is defined in the Config1-2 reg-
isters. 

On a TLB error, this field indicates the number of sets in the FTLB. The 
number of bits is implementation dependent and is always right-justified 
in the Index field.

R Undefined

31 30 29 26 25 22 21 18 17 16 15 12 11 10 9 6 5 4 3 0

0 HSS 0 EICSS 0 ESS 0 PSS 0 CSS

Table 2.60 SRSCtl Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateName Bits

HSS 29:26 Highest Shadow Set. This field contains the highest shadow set 
number that is implemented by this processor. A value of zero in this 
field indicates that only the normal GPRs are implemented.
Possible values of this field for the proAptiv Multiprocessing Sys-
tem processor are:
The value in this field also represents the highest value that can be 
written to the ESS, EICSS, PSS, and CSS fields of this register, or 
to any of the fields of the SRSMap register. The operation of the 
processor is UNDEFINED if a value larger than the one in this field 
is written to any of these other fieldsThis field is automatically 
updated when SRSConf0 is written.

R Preset

Table 2.59 Field Descriptions for CacheErr Register(continued)

Name Bit(s) Description
Read/ 
Write Reset State
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EICSS 21:18 EIC interrupt mode shadow set. If Config3VEIC is 1 (EIC interrupt 
mode is enabled), this field is loaded from the external interrupt con-
troller for each interrupt request and is used in place of the SRSMap 
register to select the current shadow set for the interrupt.
If Config3VEIC is 0, this field returns zero on read.

R Undefined

ESS 15:12 Exception Shadow Set. This field specifies the shadow set to use on 
entry to Kernel Mode caused by any exception other than a vectored 
interrupt.
The operation of the processor is UNDEFINED if software writes a 
value into this field that is greater than the value in the HSS field.

R/W 0

PSS 9:6 Previous Shadow Set. If GPR shadow registers are implemented, 
and with the exclusions noted in the next paragraph, this field is cop-
ied from the CSS field when an exception or interrupt occurs. An 
ERET instruction copies this value back into the CSS field if 
StatusBEV = 0.
This field is not updated on any exception which sets StatusERL to 1 
(i.e., Reset, Soft Reset, NMI, cache error), an entry into EJTAG 
Debug mode, or any exception or interrupt that occurs with 
StatusEXL = 1, or StatusBEV = 1. This field is not updated on an 
exception that occurs while StatusERL = 1.
The operation of the processor is UNDEFINED if software writes a 
value into this field that is greater than the value in the HSS field.

R/W 0

CSS 3:0 Current Shadow Set. If GPR shadow registers are implemented, this 
field is the number of the current GPR set. With the exclusions noted 
in the next paragraph, this field is updated with a new value on any 
interrupt or exception, and restored from the PSS field on an ERET. 
Table 2.61 describes the various sources from which the CSS field is 
updated on an exception or interrupt.
This field is not updated on any exception which sets StatusERL to 
1 (i.e., Reset, Soft Reset, NMI, cache error), an entry into EJTAG 
Debug mode, or any exception or interrupt that occurs with 
StatusEXL = 1, or StatusBEV = 1. Neither is it updated on an ERET 
with StatusERL = 1 or StatusBEV = 1. This field is not updated on 
an exception that occurs while StatusERL = 1.
 The value of CSS can be changed directly by software only by writ-
ing the PSS field and executing an ERET instruction.

R 0

0 31:30, 
25:22, 
17:16, 

11:10, 5:4

Must be written as zeros; returns zero on read. 0 0

Table 2.61 Sources for new SRSCtlCSS on an Exception or Interrupt 

Exception Type Condition SRSCtlCSS Source Comment

Exception All SRSCtlESS

Non-Vectored Interrupt CauseIV = 0 SRSCtlESS Treat as exception

Table 2.60 SRSCtl Register Field Descriptions (continued)

Fields

Description
Read / 
Write Reset StateName Bits
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Vectored Interrupt CauseIV = 1 and
Config3VEIC = 0 and

Config3VInt = 1

SRSMapVECTNUM Source is internal map register.

Vectored EIC Interrupt CauseIV = 1 and
Config3VEIC = 1

SRSCtlEICSS Source is external interrupt 
controller.

Table 2.61 Sources for new SRSCtlCSS on an Exception or Interrupt (continued)

Exception Type Condition SRSCtlCSS Source Comment
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2.3.8 Performance Monitoring Registers

This section contains the following performance monitoring registers.

• Section 2.3.8.1, "Performance Counter Control 0 - 3 — PerfCtl0-3 (CP0 Register 25, Select 0, 2, 4, 6)" on page 
149

• Section 2.3.8.2, "Performance Counter 0 - 3 — PerfCnt0-3 (CP0 Register 25, Select 1, 3, 5, 7)" on page 158

2.3.8.1 Performance Counter Control 0 - 3 — PerfCtl0-3 (CP0 Register 25, Select 0, 2, 4, 6)

Cores in the proAptiv Multiprocessing System family provide four performance counters that provide the capability 
to count events or cycles for use in performance analysis. Each performance counter consists of a pair of registers: a 
32-bit control register (PerfCtl) and a 32-bit counter register (PerfCnt). 

Performance counters can be configured to count implementation-dependent events or cycles under a specified set of 
conditions that are determined by the performance counter’s control register. The counter register increments once for 
each enabled event; when the most-significant bit of the counter register is a one (the counter overflows), and the 
counter is enabled, the performance counter optionally requests an interrupt.

The IE flag in the performance counter control register is used to enable an interrupt to be signalled when bit 31 of the 
corresponding counter overflows. The OR of all the performance counter register interrupts becomes the CPU output 
SI_PCI, which is typically fed back into an interrupt input, conventionally identified by IntCtlIPPCI. However, systems 
using more sophisticated interrupt controllers may feed the performance counter interrupt into the interrupt controller.

Figure 2.52 PerfCtl0-3 Register Format  
31 30 16 15 14 12 11 5 4 3 2 1 0

M 0 PCTD 0 Event IE U S K EXL

Table 2.62 Field Descriptions for PerfCtl0-3 Register 

Name Bit(s) Description
Read/ 
Write Reset State

M 31 Set to 1 if there is another PerfCtl register after this one. This field is set 
for PerfCtl0-2 and cleared on PerfCtl3.

R X

0 30:16 Reserved. Must be written as zeros; returns zeros on reads. R 0

PCTD 15 Performance Counter Trace Disable. Setting this bit will prevent the trac-
ing of data from this performance counter when performance counter 
trace mode in PDTrace is enabled.

R/W Undefined

0 14:12 Reserved. Must be written as zeros; returns zeros on reads. R 0

Event 11:5 Determines which event to count. Available events are listed in Table 
2.63, "Performance Counter Events and Codes". 

R/W Undefined

IE 4 Set to cause an interrupt when the counter overflows into bit 31. This can 
either be used to implement an extended count or (by presetting the coun-
ter appropriately) to notify software after a certain number of events have 
occurred. 

R/W 0

U 3 Count events in User mode. When this bit is set, events can be counted in 
User mode. 

R/W Undefined

S 2 Count events in Supervisor mode. When this bit is set, events can be 
counted in Supervisor mode. 

R/W Undefined

K 1 Count events in Kernel mode. When this bit is set, events can be counted 
in Kernel mode. 

R/W Undefined
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Table 2.63 provides a list of performance counter events as encoded into the Event field in bits 11:5. 

EXL 0 Count events in Exception mode. When this bit is set, events can be 
counted in Exception mode (when StatusEXL is set). 

R/W Undefined

Table 2.63 Performance Counter Events and Codes 

Event 
Number Counter 0/2 Counter 1/3

0 Cycles

1 Instructions graduated

2  jr $31 (return) instructions whose target is pre-
dicted.

jr $31 (return) predicted but guessed wrong.

3 Cycles where no instruction is fetched because it has 
no “next address” candidate. This includes stalls due 
to register indirect jumps such as jr, stalls follow-
ing a wait or eret 

Redirect Stall cycles due to:
• Stalls due to register indirect jumps including non-

predicted JR $31.
• Stalls due to ERET, WAIT instructions.
• Stalls due to IFU determined exception.

and stalls dues to exceptions from instruction fetch

jr $31 (return) instructions fetched and not predicted 
using RPS

4 ITLB accesses. ITLB misses, which result in an MMU access.

ITLB misses seen at the ID stage (this is the same for 
MMU instruction accesses). It is possible that a pending 
ITLB is killed before accessing the MMU.

5 Reserved JTLB instruction access misses (will lead to an exception)

6 Instruction Cache accesses. proAptiv cores have a 
128-bit connection to the I-cache and fetch 4 instruc-
tions every access. This counts every such access, 
including accesses for instructions which are eventu-
ally discarded. For example, following a branch 
which is incorrectly predicted, the proAptiv core will 
continue to fetch instructions, which will eventually 
get thrown away.

Instruction cache misses. Includes misses resulting from 
fetch-ahead and speculation.

7 Cycles where no instruction is fetched because we 
missed in the I-cache. 

I-cache miss stall cycles. This includes the cycles 
where the IFU state machine for a given TC is in the 
miss state. It is possible that multiple TCs requesting 
the same line will all count the same miss cycles.

Reserved

8 Uncached Instruction Fetch stall cycles.

Cycles where no instruction is fetched because we 
are waiting for an I-fetch from uncached memory.

PDTrace back stalls

Table 2.62 Field Descriptions for PerfCtl0-3 Register (continued)

Name Bit(s) Description
Read/ 
Write Reset State
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9 Number of IFU fetch stalls due to lack of credits on 
the IBUF interface.

Valid fetch slots killed due to taken branches/jumps or 
stalling instructions.

10 Reserved in single-core environments

In a multi-core environment, store misses transition-
ing to I->M or S->M

Reserved in single-core environments

In a multi-core environment, load misses transitioning to 
I->S or I->E

11 Cycles IFU-IDU gate is closed due to mispredicted 
branch. This counts the time from when IEU closes 
the gate to when GRU opens.

Cycles IFU-IDU gate is open but no instructions fetched 
by IFU. May be overridden by changing Config6.IFU-
PerfSel field. See Table 2.10, "Field Descriptions for 
Config6 Register" for a description of the other overload-
ing events.

12 Cycles IFU-IDU gate is closed due to other reasons:
• MTC0/MFC0 sequence in pipe
• EHB
• DD_DR_DS is blocked

Reserved in single-core environments.

In a multi-core environment, intervention hits.

13 Number of cycles where no instruction is inserted in 
DDQ0 because it is full.

Number of cycles where no instruction is inserted in 
DDQ1 because it is full.

14 Number of cycles where no instructions can be 
issued because there are no completion buffer ID’s.

Reserved.

15 Cycles where no instructions can be added to the 
issue pool, because we have used all the FIFO entries 
in the CLDQ, which keep track of data coming back 
from the FPU. 

Cycles where no instructions can be added to the issue 
pool, because we have filled the “in order” FIFO used for 
coprocessor 1 instructions (IOIQ).

16 - 17 Reserved Reserved

18 Cycles when three instructions are issued. Cycles when four instructions are issued.

19 Reserved Reserved

20 Cycles when only one instruction is issued. Cycles when two instructions are issued.

21 Number of jr (not $31) instructions mispre-
dicted at graduation.

Number of jr $31 instructions graduated.

22 Number of graduated JAR/JALR.HB D-cache line refill (not LD/ST misses)

23 Counts the number of speculative loads. Pairs of 
loads or stores that are bonded count as one.

Speculative data cache accesses. Pairs of loads or stores 
that are bonded count as one.

24 Number of data cache misses at graduation. D-cache misses. This count is per instruction at gradua-
tion and includes load, store, prefetch, synci and 
address based cacheops.

25 JTLB translation fails on d-side (data side as 
opposed to instruction side) accesses. This pertains 
to graduated instructions only.

 Reserved

26 Load/store instruction redirects, which happen when 
the load/store follows too closely on a possibly 
matching cacheop.

Load/Store generated replays - typically, a load fol-
lowing a CacheOp that has matches the Index match 
of the CacheOp.

Reserved

Table 2.63 Performance Counter Events and Codes (continued)

Event 
Number Counter 0/2 Counter 1/3
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27 LSGB graduation blocked cycles. Reasons for block:

• CP1/2 store data not ready
• SYNC, SYNCI at the head
• sc at the head
• CACHEOP at the head

FSB, LDQ, WBB, or ITU FIFO full.

LSGB graduation that does not result in a request going 
out on the bus. Reasons include:

• Misses at integer pipe graduation turn into hit.
• Miss merges with outstanding fill request.

28 L2 cache writebacks L2 cache accesses

29 L2 cache misses L2 cache miss cycles

30 Cycles Fill Store Buffer (FSB) are full and cause a 
pipe stall

Cycles Fill Store Buffer (FSB) > 1/2 full

31 Cycles Load Data Queue (LDQ) are full and cause a 
pipe stall

Cycles Load Data Queue (LDQ) > 1/2 full

32 Cycles Writeback Buffer (WBB) are full and cause a 
pipe stall

Cycles Writeback Buffer (WBB) > 1/2 full

33 Reserved in single-core environments

In a multi-core environment, counts requests that 
will receive data from the Coherence Manager.

Reserved in single-core environments.

In a multi-core environment, request latency to first data 
word of data from the Coherence Manager.

34 Reserved in single-core environments

In a multi-core environment, invalidate intervention 
hits.

Reserved in single-core environments.

In a multi-core environment, all invalidate interventions.

35 Replays following optimistic issue of instruction 
dependent on load which missed. Counted only when 
the dependent instruction graduates. 

Floating Point Load instructions graduated. 

36 jr (not $31) instructions graduated. jr $31 mispredicted at graduation.

37 Integer Branch instructions graduated. Floating Point Branch instructions graduated.

38 Branch likely instructions graduated. Mispredicted Branch likely instructions graduated.

39 Conditional branches graduated. Mispredicted Conditional branches graduated.

40 Integer instructions graduated (includes nop, 
ssnop, ehb as well as all arithmetic, logic, 
shift and extract type operations). 

Floating Point instructions graduated (but not counting 
Floating Point load/store).

41 Loads graduated. Bonded load/store counted as 2. Stores graduated. Bonded load/store counted as 2.

42 j/jal graduated. MIPS16e instructions graduated.

43 no-ops graduated - included sll, nop, 
ssnop, and ehb). 

integer multiply/divides graduated.

44 DSP instructions graduated. ALU-DSP instructions graduated, result was saturated.

45 DSP branch instructions graduated. MDU-DSP instructions graduated, result was saturated.

46 Uncached loads graduated. Uncached stores graduated.

47 Reserved in single-core environments.

In a multi-core environment, writebacks due to evic-
tions.

Reserved in single-core environments.

In a multi-core environment, writebacks due to any rea-
son.

Table 2.63 Performance Counter Events and Codes (continued)

Event 
Number Counter 0/2 Counter 1/3
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48 Reserved in single-core environments.

In a multi-core environment, count of all invalidates 
(M,E,S)->I

Reserved in single-core environments.

In a multi-core environment, count of transitions from 
(I,S)->E.

49 EJTAG instruction triggers. EJTAG data triggers.

50 CP1 branches mispredicted. Reserved

51 sc instructions graduated. sc instructions failed.

52 prefetch instructions graduated at the top of 
LSGB.

prefetch instructions which did nothing, because 
they hit in the cache. 

53 Cycles where no instructions graduated. Load misses graduated. Includes Floating Point Loads.

54 Cycles where one instruction graduated. Cycles where two instructions graduated.

55 GFifo blocked cycles. Floating point stores graduated.

56 GFifo blocked due to TLB or Cacheop. Number of cycles no instructions graduated from the time 
the pipe was flushed because of a replay until the first 
new instruction graduates. This is an indicator graduation 
bandwidth loss due to replay. Often times this replay is a 
result of event 25 and therefore an indicator of bandwidth 
lost due to cache miss. 

57 Mispredicted branch instruction graduations without 
the delay slot (in the same cycle).

Cycles waiting for delay slot to graduate on a mispre-
dicted branch.

58 Exceptions taken. Replays initiated from graduation.

59 Implementation-specific CorExtend event. The inte-
grator of the proAptiv core may connect the 
UDI_perfcnt_event pin to an event to be counted. 
This is intended for use with the CorExtend inter-
face. 

Reserved

60 Reserved in single-core environments.

In a multi-core environment, state transition from S-
>M (coherent and non-coh).

Reserved in single-core environments.

In a multi-core environment, state transitions from (M,E)-
>S.

61 Reserved in single-core environments.

In a multi-core environment, request latency to self-
intervention.

Reserved in single-core environments.

In a multi-core environment, count of requests that will 
receive self-intervention.

62 Implementation-specific ISPRAM event. Implementation-specific DSPRAM event. The integrator 
of the proAptiv core may connect the 
SP_prf_c13_e62_xx pin to the event to be counted.

63 L2 single-bit errors detected. Reserved in single-core environments.

In a multi-core environment, all interventions.

64 SI_Event[0] - Implementation-specific system event. 
The system integrator of the proAptiv core may con-
nect the SI_PCEvent[0] pin to an event to be 
counted.

SI_Event[1] - Implementation-specific system event. The 
system integrator of the proAptiv core may connect the 
SI_PCEvent[1] pin to an event to be counted.

Table 2.63 Performance Counter Events and Codes (continued)

Event 
Number Counter 0/2 Counter 1/3
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65 SI_Event[2] - Implementation-specific system event. 
The system integrator of the proAptiv core may con-
nect the SI_PCEvent[2] pin to an event to be 
counted.

SI_Event[3] - Implementation-specific system event. The 
system integrator of the proAptiv core may connect the 
SI_PCEvent[3] pin to an event to be counted.

66 SI_Event[4] - Implementation-specific system event. 
The system integrator of the proAptiv core may con-
nect the SI_PCEvent[4] pin to an event to be 
counted.

SI_Event[5] - Implementation-specific system event. The 
system integrator of the proAptiv core may connect the 
SI_PCEvent[5] pin to an event to be counted.

67 SI_Event[7] - Implementation-specific system event. 
The system integrator of the proAptiv core may con-
nect the SI_PCEvent[7] pin to an event to be 
counted.

SI_Event[8] - Implementation-specific system event. The 
system integrator of the proAptiv core may connect the 
SI_PCEvent[8] pin to an event to be counted.

68 All OCP requests accepted. All OCP cacheable requests accepted.

69 OCP read requests accepted. OCP cacheable read requests accepted.

70 OCP write requests accepted. OCP cacheable write requests accepted.

71 Reserved OCP write data sent.

72 Reserved OCP read data received.

73 Reserved in single-core environments.

In a multi-core environment, OCP Intervention write 
data stalled (valid but not accepted).

Reserved in single-core environments.

In a multi-core environment, OCP Intervention write data 
valid (accepted or not).

74 Cycles Fill Store Buffer (FSB) < 1/4 full. Cycles Fill Store Buffer (FSB) 1/4 to 1/2 full.

75 Cycles Load Data Queue (LDQ) < 1/4 full. Cycles Load Data Queue (LDQ) 1/4 to 1/2 full.

76 Cycles Writeback Buffer (WBB) < 1/4 full. Cycles Writeback Buffer (WBB) 1/4 to 1/2 full.

77 Counts the number of times that the L1 Branch Tar-
get Buffer (L1BTB) caused a redirect without IFU 
predecode-based prediction, causing a redirect or 
replay. Measues the number of true hits for the 
Return Prediction Stack (RPS) portion of the 
L1BTB.

Counts the number of times that the L1 Branch Target 
Buffer (L1BTB) caused a redirect without IFU prede-
code-based prediction causing a redirect or replay. Mea-
sues the number of true hits for the branch portion of the 
L1BTB.

78 Counts the number of times that the L1 Branch Tar-
get Buffer (L1BTB) caused a redirect with IFU pre-
decode-based prediction causing a redirect or replay. 
Measues the number of mispredicts for the Return 
Prediction Stack (RPS) portion of the L1BTB.

Counts the number of times that the L1 Branch Target 
Buffer (L1BTB) caused a redirect with IFU predecode-
based prediction causing a redirect or replay. Measues the 
number of mispredicts for the branch portion of the 
L1BTB.

79 Counts the number of writes to the Return Prediction 
Stack (RPS) portion of the L1 Branch Target Buffer 
(L1BTB) with no L1BTB hit (cold miss).

Counts the number of writes to the branch portion of the 
L1 Branch Target Buffer (L1BTB) with no L1BTB hit 
(cold miss).

80 Number of L1 Branch Target Buffer masked hits due 
to lack of credit for DS. 

Number of L1 Branch Target Buffer masked hits due to 
lack of credit for target. 

81 Number of NFW or L1 Branch Target Buffer mispre-
dicts for instruction cache way-hit prediction. 

Reserved

82 - 83 Reserved Reserved

Table 2.63 Performance Counter Events and Codes (continued)

Event 
Number Counter 0/2 Counter 1/3
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84 Counts the  number of times a Write-Back Buffer 
(WBB) entry is newly allocated for an Uncached 
Accelerated (UCA) store and there is one UCA store 
already active in the WBB.

Counts the  number of times a Write-Back Buffer (WBB) 
entry is newly allocated for an Uncached Accelerated 
(UCA) store and there are two UCA stores already active 
in the WBB.

85 Number of times an uncached instruction arrives at 
BIU while there is an actively gathering UCA buffer.

Reserved

86 Reserved Reserved

87 Number of stall cycles due to the lack of load/store 
queue (LSQ) ID.

Number of stall cycles due to the lack of IID.

88 Number of stall cycles due to the lack of DSP ID. Reserved.

89 Number of cycles when no FP instructions are dis-
patched.

Number of cycles when no integer instructions are dis-
patched.

90 Number of cycles when one FP instruction is dis-
patched.

Number of cycles when one integer instruction is dis-
patched.

91 Number of cycles when two FP instructions are dis-
patched.

Number of cycles when two integer instructions are dis-
patched.

92 - 93 Reserved Reserved

94 Number of cycles when three instructions are issued. Number of cycles when four instructions are issued.

95 - 96 Reserved Reserved

97 Number of instructions issued on AGU port from 
DDQ1.

Number of instructions issued on BSU port from DDQ1.

98 Number of instructions issued on MDU/ALU2 port 
from DDQ1.

Number of instructions issued on ALU1 port from DDQ0.

99 Number of DTLB accesses (speculative). Number of DTLB misses (speculative).

100 Data side hits in the VTLB/FTLB. This includes 
FTLB and VTLB hits and unmapped region 
accesses.

Instruction side hits in the VTLB/FTLB. This includes 
FTLB and VTLB hits and unmapped region accesses.

101 Number of data side hits in the VTLB/FTLB in an 
unmapped region.

Number of instruction side hits in the VTLB/FTLB in an 
unmapped region.

102 - 104 Reserved Reserved

105 Number of DTLB hits to the half of EntryLo that 
caused a fill (speculative).

Number of DTLB hits to the half of EntryLo that did not 
cause a fill (speculative).

106 Number of pairs of bonded stores at graduation. Number of pairs of bonded loads at graduation.

107 Reserved Speculative count of ‘over-eager’ loads that hit a store 
without the data being available.

108 Number of times a load is not issued because it is 
tagged by the ‘over-eager’ predictor.

Reserved

109 Speculative count of incorrectly bonded loads and 
stores.

Reserved

110 Number of misaligned loads that graduated. Number of misaligned stores that graduated.

Table 2.63 Performance Counter Events and Codes (continued)

Event 
Number Counter 0/2 Counter 1/3
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FPU Performance Counters

112 Counts the number of cycles that the arithmetic 
channel is full and signalling busy to the integer 
core.

Counts the number of cycles the to-from channel is full 
and signalling busy to the integer core.

113 Counts the total number of arithmetic instructions 
issued.

Counts the total number of to-from instructions issued.

114 Counts the total number of add/multiply class 
instructions (add, sub, cvt, ceil, floor, round, trunc, 
mul).

Counts the total number of arithmetic multiply-add 
instructions (madd, msub, nmadd, nmsub). 

115 Counts the total number of arithmetic iteration class 
instructions (div, recip, sqrt, rsqrt).

Counts the total number of arithmetic compare class 
instructions (C.cond).

116 Counts the total number of arithmetic miscellaneous 
class instructions (abs, neg, move, bra).

Counts the total number of data stall retires due to an 
scheduled load queue preempt write.

117 The retire stage is stalled if there is an older atirhme-
tic to-from instruction in the other channel with the 
same FD, or if there is an older, unissued arithmetic 
to-from instruction in the other channel. 

Counts the total number of data channel conflict stalls.

118 Counts the total number of arithmetic channel kill 
received stalls. This retire stall occurs if the instruc-
tion has not received a kill strobe.

Counts the total number of data channel kill received 
stalls. Same as arithmetic condition.

119 Counts the total number of arithmetic channel result 
valid stalls. This retire stall occurs if the result is not 
yet available from the APU.

Counts the total number of data channel due to no room in 
the Scheduled Load Queue.

120 Counts the total number of arithmetic channel 
instruction issue stalls. This retire stall occurs if the 
instruction has not yet been issued.

Counts the total number of data channel instruction issue 
stalls.

121 Counts the total number of arithmetic channel retire 
stall cycles. This is the sum of all of the retire stall 
conditions on counters 0/2 as described in events 116 
- 120.

Counts the total number of data channel retire stall cycles. 
This is the sum of all of the retire stall conditions on coun-
ters 1/3 as described in events 116 - 120.

122 Counts the total number of arithmetic channel inde-
terminate dependency or format mismatch stalls. A 
stall occurs when:

a. The youngest instruction is unknown due to taking 
an additional clock cycle to determine which of 
many instructions is the youngest.

b. The youngest instruction is unknown because it 
has not yet received a null strobe.

c. The youngest dependent instruction has a format 
mismatch that precludes the bypassing of data.

Counts the total number of data channel indeterminate 
dependency or format mismatch stalls. Stall conditions 
for the data channel are the same as for arithmetic chan-
nel.

123 Counts the total number of arithmetic channel APU 
stalls. This type of stall occurs when the APU is 
unable to take this class of instruction.

Reserved.

Table 2.63 Performance Counter Events and Codes (continued)

Event 
Number Counter 0/2 Counter 1/3
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124 Counts the total number of arithmetic channel arith-
metic data stalls. This type of stall occurs when the 
arithmetic unit is waiting for data from an arithmetic 
instruction.

Counts the total number of data channel arithmetic data 
stalls.

125 Counts the total number of arithmetic channel to-
data stalls. This type of stall occurs when the arith-
metic unit is waiting for data from a to-from instruc-
tion.

Counts the total number of data channel to-data stalls.

126 Counts the number of arithmetic channel stalls due to 
a pipecleaner instruction. Either the instruction is a 
pipecleaner and is stalling while waiting for all older 
instructions to retire, or an instruction is stalled while 
waiting for an older pipecleaner instruction to retire.

Counts the number of data channel stalls due to a pipe-
cleaner instruction. Either the instruction is a pipecleaner 
and is stalling while waiting for all older instructions to 
retire, or an instruction is stalled while waiting for an 
older pipecleaner instruction to retire.

127 Counts the number of all arithmetic channel issue 
stall cycles. This is the sum of all of the above arith-
metic channel issue stall conditions.

Counts the number of all data channel issue stall cycles. 
This is the sum of all of the above data channel issue stall 
conditions.

Table 2.63 Performance Counter Events and Codes (continued)

Event 
Number Counter 0/2 Counter 1/3
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2.3.8.2 Performance Counter 0 - 3 — PerfCnt0-3 (CP0 Register 25, Select 1, 3, 5, 7)

General purpose event counters, which operate as directed by PerfCtl0-3. 

Figure 2.53 Performance Counter 0 - 3 Register   

2.3.9 Debug Registers

This section contains the following debug registers.

• Section 2.3.9.1, "Debug (CP0 Register 23, Select 0)" on page 158

• Section 2.3.9.2, "Debug Exception Program Counter — DEPC (CP0 Register 24, Select 0)" on page 161

• Section 2.3.9.3, "Debug Save — DESAVE (CP0 Register 31, Select 0)" on page 162

• Section 2.3.9.4, "Watch Low 0 - 3 — WatchLo0-3 (CP0 Register 18, Select 0-3)" on page 162

• Section 2.3.9.5, "Watch High 0 - 3 — WatchHi0-3 (CP0 Register 19, Select 0-3)" on page 163

2.3.9.1 Debug (CP0 Register 23, Select 0)

The Debug register provides control and status information while in debug mode. During normal operation (non-
debug mode), this register may not be written at all, and only the DM bit and the EJTAGver field returns valid data.

The read-only bits are updated by hardware every time the debug exception is taken, or when a normal exception is 
taken when already in debug mode (a "nested exception"). Not all fields are valid in both circumstances: Halt and 
Doze are not defined after a nested exception, and the nested-exception-type field DExcCode is undefined from a 
debug exception. 

31 0

Counter

Table 2.64 Performance Counter 0 - 3 Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

Counter 31:0 Counter R/W Undefined
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Figure 2.54 Debug Register Format
31 30 29 28 27 26 25 24 23 22 21 20

DBD DM NoDCR LSNM Doze Halt CountDM IBusEP MCheckP CacheEP DBusEP IEXI

19 18 17 15 14 10 9 8 7 6 5 4 3 2 1 0

DDBSImpr DDBLImpr EJTAGver DExcCode NoSSt SSt 0 DINT DIB DDBS DDBL DBp DSS

Table 2.65 Field Descriptions for Debug Register 

Name Bit(s) Description
Read/ 
Write Reset State

DBD 31 Indicates if the last debug exception or exception in debug mode 
occurred in a branch delay slot.

0: Not in delay slot
1: In delay slot

When set to 1, the Debug Exception Program Counter (DEPC) points 
to the branch instruction, which is usually the correct place to restart. 

R Undefined

DM 30 Indicates if the processor is operating in debug mode.

0: Processor is operating in non-debug mode
1: Processor is operating in debug mode

In debug mode, this bit is set on any debug exception and is cleared by 
deret. 

R 0

NoDCR 29 Indicates if the dseg memory segment and a memory-mapped DCR 
register is present.

0: dseg address space is present
1: dseg address space is not present

R 0

LSNM 28 Controls access of load/store between dseg and main memory.

0: Load/stores in dseg address range goes to dseg
1: Load/stores in dseg address range goes to main memory

Setting this bit causes debug-mode accesses to dseg addresses to be 
sent to system memory. This makes most of the EJTAG unit’s control 
systems unavailable, so will probably only be done around a particular 
load/store. 

R/W 0

Doze 27 Indicates that the processor was in any kind of low power mode when 
a debug exception occurred.

0: Processor not in low power mode when debug exception occurred
1: Processor in low power mode when debug exception occurred

Before the debug exception, CPU was in one of the reduced power 
mode.

R Undefined

Halt 26 Indicates that the internal system bus clock was stopped when the 
debug exception occurred. 

0: Internal system bus clock running
1: Internal system bus clock stopped

Before the debug exception, the CPU was stopped — probably asleep 
following a wait instruction. 

R Undefined
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CountDM 25 Controls or indicates the Count register behavior in debug mode.

0: Count register stopped in debug mode
1: Count register is running in debug mode

R/W 1

IBusEP 24 These "pending exception" flags remember exception events caused 
by instructions run in debug mode, but which have not yet occurred 
because they are imprecise and DebugIEXI is set. Note that you can 
write a 1 to any of these at any time, so they survive writes to the 
whole Debug register; but a write of zero to a field is ignored.

They remain set until DebugIEXI is cleared explicitly, or implicitly by 
a deret. If the deret clears the bit, the exception is taken and the 
pending bit cleared.

IBusEP remembers a bus error on an instruction fetch.  This excep-
tion is precise, so it cannot occur and the field is always zero. 
MCheckP machine check condition (usually an illegal TLB update).  
The machine check can be either precise or imprecise dependgin on 
the type of error. Refer to the Machine Check exception in the Excep-
tion chapter for more information. 

CacheEP indicates a precise cache parity error is pending.

Data access Bus Error exception Pending: DBusEP remembers a bus 
error on a data access. Set when an data bus error event occurs or if a 1 
is written to the bit by software. Cleared when a Data Bus Error 
exception is taken by the processor, and by reset. If DBusEP is set 
when IEXI is cleared, a Data Bus Error exception is taken by the pro-
cessor, and DBusEP is cleared

R/W 0

MCheckP 23 R/W 0

CacheEP 22 R/W 0

DBusEP 21 R/W 0

IEXI 20 Imprecise Error eXception Inhibit. Set to 1 to defer imprecise excep-
tions. By default, this bit is set on entry to debug mode and cleared on 
exit. The deferred exception returns when and if this bit is cleared, and 
until then the occurrence of the imprecise exception can be observed 
in the “pending exception” flags described in bits 24:21 above.

R/W 0

DDBSImpr 19 Imprecise store breakpoint. DEPC probably points to an instruction 
some time later in the sequence than the store which triggered the 
breakpoint. 

R 0

DDBLImpr 18 Imprecise load breakpoint. DEPC probably points to an instruction 
some time later in the sequence than the store which triggered the 
breakpoint. The debugger or user (or both) have to cope as best they 
can. 

R 0

EJTAGver 17:15 These read-only bits encode the revision of the EJTAG specification 
to which this implementation conforms. The legal values are.

101: Version 5.0

All other values are reserved.

R 5

DExcCode 14:10 Indicates the cause of the latest exception in debug mode. Following 
initial entry to debug mode, this field is undefined. The subsequent 
value will be one of those defined in CauseExcCode. See Table 2.37 
for a list of values. Value is undefined after a debug exception. 

R Undefined

Table 2.65 Field Descriptions for Debug Register (continued)

Name Bit(s) Description
Read/ 
Write Reset State
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2.3.9.2 Debug Exception Program Counter — DEPC (CP0 Register 24, Select 0)

The Debug Exception Program Counter (DEPC) points to the instruction to restart when a deret is executed to exit 
debug mode. When DebugDBD is set, it means that the "real" return address is in a branch delay slot, and DEPC points 
to the preceding branch.

NoSSt 9 Indicates whether the single-step feature controllable by the SSt bit is 
available in this implementation. This read-only bit is always zero on 
the proAptiv core because single-step is implemented. 

R 0

SSt 8 Controls if debug single step exception is enabled. 

0 = No debug single-step exception enabled
1 = Debug single-step exception enabled

R/W 0

0 7:6 Reserved. Must be written as zeros; returns zeros on reads. R 0

Offline 7 Implemented per-TC. When this bit is 1, TC is allowed to execute 
only in Debug mode.

R/W 0

R 6 Reserved. Must be written as zeros; returns zeros on reads. R 0

DINT 5 Indicates that a debug interrupt exception (from EJTAG pin) occurred. 
Cleared on exception in debug mode.

0: No debug interrupt exception
1: Debug interrupt exception

R Undefined

DIB 4 Instruction breakpoint. This bit is set by hardware when an instruction 
breakpoint occurs. 

0: No debug exception breakpoint
1: Debug exception breakpoint occurred

R Undefined

DDBS 3 Indicates that a debug data break exception occurred on a store. 
Cleared on exception in debug mode.

0: No debug data exception on a store
1: Debug instruction exception on a store

R Undefined

DDBL 2 Indicates that a debug data break exception occurred on a load. 
Cleared on exception in debug mode.

0: No debug data exception on a load
1: Debug instruction exception on a load

R Undefined

DBp 1 Indicates that a debug software breakpoint exception occurred. 
Cleared on exception in debug mode. 

0: No debug software breakpoint exception
1: Debug software breakpoint exception

R Undefined

DSS 0 Indicates that a debug single-step exception occurred. Cleared on 
exception in debug mode.

0: No debug single-step exception
1: Debug single-step exception

R Undefined

Table 2.65 Field Descriptions for Debug Register (continued)

Name Bit(s) Description
Read/ 
Write Reset State
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Figure 2.55 DEPC Register Format 

2.3.9.3 Debug Save — DESAVE (CP0 Register 31, Select 0)

Software-only register, with no hardware effect. Provided because the debug exception handler can’t use the k0-1 GP 
registers, used by ordinary exception handlers to bootstrap themselves: but a debug handler can save a GPR into 
DESAVE, and then use that GPR register in code which saves everything else. 

Figure 2.56 DeSave Register Format

2.3.9.4 Watch Low 0 - 3 — WatchLo0-3 (CP0 Register 18, Select 0-3)

Used in conjunction with WatchHi0-3 respectively, each of these registers carries the virtual address and what-to-
match fields for a CP0 watchpoint. WatchLo0-1 are used for instruction side accesses and WatchLo2-3 are used for 
data side accesses. The bit assignments for each of the WatchLo registers is identical. Hence, only one register is 
shown below.

Figure 2.57 WatchLo0-3 Register Format

31 0

DEPC

Table 2.66 DEPC Register Formats

Field

Description
Read / 
Write ResetName Bit(s)

DEPC 31:0 The DEPC register is updated with the virtual address of the 
instruction that caused the debug exception. If the instruction is in 
the branch delay slot, then the virtual address of the immediately 
preceding branch or jump instruction is placed in this register. 

Execution of the deret instruction causes a jump to the address 
in the DEPC.

R/W Undefined

31 0

DESAVE

Table 2.67 DeSave Register Field Description

Fields

Description
Read / 
Write Reset StateName Bit(s)

DESAVE 31:0 Debug exception save contents. SO Undefined

31 3 2 1 0

VAddr I R W
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2.3.9.5 Watch High 0 - 3 — WatchHi0-3 (CP0 Register 19, Select 0-3)

These registers provide the interface to a debug facility that causes an exception if an instruction or data access 
matches the address specified in the registers. Watch exceptions are not taken if the CPU is already in exception mode 
(that is if StatusEXL or StatusERL is already set).

Watch events which trigger in exception mode are remembered, and result in a "deferred" exception, taken as soon as 
the CPU leaves exception mode.

WatchHi0-1 are used for instruction side accesses and WatchHi2-3 are used for data side accesses. 

This CP0 watchpoint system is independent of the EJTAG debug system (which provides more sophisticated hard-
ware breakpoints).

The WatchLo0-3 registers hold the address to match, while WatchHi0-3 hold a bundle of control fields.

Figure 2.58 WatchHi0-3 Register Format

Table 2.68 Field Descriptions for WatchLo0-3 Register

Name Bit(s) Description
Read/ 
Write Reset State

VAddr 31:3 The address to match on, with a resolution of a doubleword. R/W Undefined

I 2 Accesses to match: 

I = Instruction fetches
R = Reads (loads)
W = Writes (stores) 

WatchLo0-1R and WatchLo0-1W are fixed to zero, while WatchLo2-3I 
will be zero. 

R/W 0

R 1 R/W 0

W 0 R/W 0

31 30 29 24 23 16 15 12 11 3 2 1 0

M G 0 ASID 0 Mask I R W

Table 2.69 Field Descriptions for WatchHi0-3 Register

Name Bit(s) Description
Read/ 
Write Reset State

M 31 The WatchHi0-3M bit is set whenever there is one more watchpoint register 
pair to find. Software can use these four bits (starting with WatchHi0) to 
determine how many watchpoints there are. This field is set for WatchHi0-2 
and cleared on WatchHi3.

R 1
(WatchHi0-2)

0
(WatchHi3)

G 30 WatchHi0-3ASID matches addresses from a particular address space (the 
"ASID" is like that in TLB entries) — except that the WatchHi0-3G 
("global") can be set to match the address in any address space. 

If the WatchHi0-3G bit is set, the address is always matched, regardless of the 
ASID value.

R/W Undefined

0 29:24 Reserved. Write as zero. Ignored on reads. R 0
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2.3.10 PDTrace Registers

This section contains the following MIPS PDTrace registers.

• Section 2.3.10.1, "Trace Control Register — TraceControl (CP0 Register 23, Select 1)" on page 164

• Section 2.3.10.2, "Trace Control 2 Register — TraceControl2 (CP0 Register 23, Select 2)" on page 167

• Section 2.3.10.3, "Trace Control 3 Register — TraceControl3 (CP0 Register 24, Select 2)" on page 169

• Section 2.3.10.4, "User Trace Data 1 Register — UserTraceData1 (CP0 Register 23, Select 3)" on page 170

• Section 2.3.10.5, "User Trace Data 2 Register — UserDataTrace2 (CP0 Register 24, Select 3)" on page 170

• Section 2.3.10.6, "Trace Instruction Breakpoint Condition Register — TraceIBPC (CP0 Register 23, Select 4)" 
on page 170

• Section 2.3.10.7, "Trace Data Breakpoint Condition Register — TraceDBPC (CP0 Register 23, Select 5)" on 
page 171

2.3.10.1 Trace Control Register — TraceControl (CP0 Register 23, Select 1)

The TraceControl register configuration is shown below.

ASID 23:16 WatchHi0-3ASID matches addresses from a particular address space (the 
"ASID" is like that in TLB entries) — except that you can set WatchHi0-3G 
("global") to match the address in any address space. 

The match a particular address, the WatchHi0-3G bit is cleared and the 
WatchHi0-3ASID value is used to ensure that the match is to the correct 
address space. If the If the WatchHi0-3G bit is set, the address is always 
matched, regardless of the WatchHi0-3ASID value.

R/W Undefined

0 15:12 Reserved. Write as zero. Ignored on reads. R 0

Mask 11:3 Watch mask. This field marks the corresponding WatchLo0-3VAddr address 
bits to be ignored when deciding whether this is a match. 

R/W Undefined

I 2 Watch exception type. These bits indicate what type of access (if any) 
matched after a watch exception.

I = Instruction fetches
R = Reads (loads)
W = Writes (stores) 

Write a 1 to any of these bits in order to clear it (and therefore prevent the 
exception from immediately happening again). This behavior is unusual 
among CP0 registers, but it is quite convenient: to clear a watchpoint of all the 
exception causes you’ve seen, just read the value of WatchHi0-3 and write it 
back again. WatchHi0-1R and WatchHi0-1W should always read 0 and 
WatchHi2-3I should always read 0

W1C Undefined

R 1 W1C Undefined

W 0 W1C Undefined

Table 2.69 Field Descriptions for WatchHi0-3 Register(continued)

Name Bit(s) Description
Read/ 
Write Reset State
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Figure 2.59 TraceControl Register Format   

31 30 29 28 27 26 25 24 23 22 21 20 13 12 5 4 3 2 1 0

TS UT 0 Ineff TB IO D E K S U ASID_M ASID G TFCR TLSM TIM On

Table 2.70 TraceControl Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

TS 31 The trace select bit is used to select between the hardware and the 
software trace control bits. A value of zero selects the external hard-
ware trace block signals, and a value of one selects the trace control 
bits in the TraceControl register. 

R/W 0

UT 30 This bit is deprecated since there are now two explicit trace regis-
ters, UserTraceData1 and UserTraceData2. Previously this bit 
indicated the type of user-triggered trace record. A value of zero 
implies a user type 1, and a value of one implies a user type 2. The 
actual triggering of a user trace record happens on a write to the 
UserTraceData register.

0 Undefined

0 29 Reserved. Must be written as zero; returns zero on read. 0 0

Ineff 28 When set to 1, core-specific inefficiency tracing is enabled, and 
core-specific trace information is included in the trace stream. The 
inefficiency code replaces an “NI” and is interpreted in the trace 
stream with an expanded InsComp (Instruction Completion Indica-
tor). The InsComp is expanded from 3b to 4b for all trace formats.

R/W 0

TB 27 Trace All Branch. When set to 1, this tells the processor to trace the 
PC value for all branches taken, not just the ones whose branch tar-
get address is statically unpredictable.

R/W Undefined

IO 26 Inhibit Overflow. This signal is used to indicate to the proAptiv 
Multiprocessing System trace logic that slow but complete tracing is 
desired. Hence, the proAptiv Multiprocessing System tracing logic 
must not allow a FIFO overflow and discard trace data. This is 
achieved by stalling the pipeline when the FIFO is nearly full, so 
that no trace records are ever lost.

R/W Undefined

D 25 Debug mode. When set to one, this enables tracing in debug mode. 
For a trace to be enabled in Debug mode, the On bit must also be 
set, and either the G bit must be set, or the current process ASID 
must match the ASID field in this register.

When set to zero, trace is disabled in debug mode.

R/W Undefined

E 24 Exception mode. When set to one, tracing is enabled in Exception 
mode. For a trace to be enabled in Exception mode, the On bit must 
be set, and either the G bit must be set, or the current process ASID 
must match the ASID field in this register.

When set to zero, trace is disabled in Exception Mode.

R/W Undefined

K 23 Kernel mode. When set to one, enables tracing in Kernel mode. For 
a trace to be enabled in Kernel mode, the On bit must be set, and 
either the G bit must be set, or the current process ASID must match 
the ASID field in this register.

When set to zero, trace is disabled in Kernel Mode.

R/W Undefined
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S 22 Supervisor mode. When set to one, tracing is enabled in Supervisor 
Mode. For a trace to be enabled in Supervisor mode, the On bit must 
be set, and either the G bit must be set, or the current process ASID 
must match the ASID field in this register.

When set to zero, trace is disabled in Supervisor Mode, regardless of 
other bits.

If the processor does not implement Supervisor Mode, this bit is 
ignored on write and returns zero on read.

R/W Undefined

U 21 User mode. When set to one, tracing is enabled in User mode. For a 
trace to be enabled in User mode, the On bit must be set, and either 
the G bit must be set, or the current process ASID must match the 
ASID field in this register.

When set to zero, trace is disabled in User Mode, regardless of the 
setting of other bits.

R/W Undefined

ASID_M 20:13 ASID mask. This is a mask value applied to the ASID comparison 
(done when the G bit is zero). A “1” in any bit in this field inhibits 
the corresponding ASID bit from participating in the match. As 
such, a value of zero in this field compares all bits of ASID. 

Note that the ability to mask the ASID value is not available in the 
hardware signal bit; it is only available via the software control reg-
ister.

R/W Undefined

ASID 12:5 Address space identifier. This field stores the ASID field to match 
when the G bit is zero. When the G bit is one, this field is ignored.

R/W Undefined

G 4 Global enable. When set, tracing is to be enabled for all processes, 
provided that other enabling functions (like U, S, etc.,) are also true.

R/W Undefined

TFCR 3 When set, indicates to the PDtrace interface that the optional Fcr bit 
must be traced in the appropriate trace formats. If PC tracing is dis-
abled, the full PC of the function call (or return) instruction must 
also be traced. Note that function call/return information is only 
traced if tracing is actually enabled for the current mode.

R/W Undefined

TLSM 2 Load/Store Miss trace. When set, this indicates to the PDtrace inter-
face that information about data cache misses should be traced. If 
PC, load/store address, and data tracing are disabled (see the 
TraceControl2Mode field), the full PC and load/store address are 
traced for data cache misses. 

If load/store data tracing is enabled, the LSM bit must be traced in 
the appropriate trace format. Note that data cache miss information 
is only traced if tracing is actually enabled for the current mode.

R/W Undefined

TIM 1 Trace IM bit. When set, this indicates to the PDtrace interface that 
the optional IM bit must be traced in the appropriate trace formats. If 
PC tracing is disabled, the full PC of the instruction that missed in 
the I-cache must be traced. Note that instruction cache miss informa-
tion is only traced if tracing is actually enabled in the current mode.

R/W Undefined

On 0 This is the master trace enable switch in software control. When 
zero, tracing is always disabled. When set to one, tracing is enabled 
whenever the other enabling functions are also true.

R/W 0

Table 2.70 TraceControl Register Field Descriptions(continued)

Fields

Description
Read / 
Write Reset StateName Bits
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2.3.10.2 Trace Control 2 Register — TraceControl2 (CP0 Register 23, Select 2)

The TraceControl2 register provides additional control and status information. Note that some fields in the 
TraceControl2 register are read-only, but have a reset state of “Undefined”. This is because these values are loaded 
from the Trace Control Block (TCB). As such, these fields in the TraceControl2 register will not have valid values 
until the TCB asserts these values.

This register is only implemented if the MIPS Trace capability is present.

Figure 2.60 TraceControl2 Register Format  
31 30 29 28 21 20 12 11 7 6 5 4 3 2 0

SyPExt CPUIdV CPUId R Mode ValidModes TBI TBU SyP

Table 2.71 TraceControl2 Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

SyPExt 31:30 Sync period extension. Extension to the SyP (sync period) field for 
implementations that need higher numbers of cycles between syn-
chronization events.

The value of SyP is extended by assuming that these two bits are 
juxtaposed to the left of the three bits of SyP (SypExtSyP). When 
only SyP was used to specify the synchronization period, the value 
was 2x, where x was computed from SyP by adding 5 to the actual 
value represented by the bits. A similar formula is applied to the 5 
bits just obtained by the juxtaposition of SyPExt and SyP. Sync 
period values greater than 231 are UNPREDICTABLE. That is all 
values greater than 11010 (26 + 5 = 31) are UNPREDICTABLE. 
With SyPExt bits, a sync period range of 25 to 231 cycles can be 
obtained.

R/W 0

CPUIdV 29 When set, this bit specifies that the CPU defined in CPUId must be 
traced. Otherwise, instructions from all CPUs are traced when other 
conditions for tracing are valid. This bit is ignored if TCV is 
asserted.

R/W 0

CPUId 28:21 This field specifies the number of the CPU to trace when CPUIdV 
is set.

R/W 0

R 20:12 Reserved. Write as zero. Ignored on reads. R 0

Mode 11:7 When tracing is turned on, these five bits specify what information 
is to be traced by the core. Each bit turns on tracing of a specific 
tracing mode when that bit value is a 1. If the corresponding bit is 0, 
then the corresponding trace (shown in the table below) is not 
traced by the processor. 

R/W Undefined

Bit Trace the Following

7 PC
8 Load address
9 Store address

10 Load data
11 Store data
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ValidModes 6:5 This field specifies the subset of tracing that is supported by the 
processor.

R Preset

TBI 4 This bit indicates how many trace buffers are implemented by the 
TCB, as follows.

0: Only one trace buffer is implemented, and the TBU bit of this 
register indicates which trace buffer is implemented.

1: Both on-chip and off-chip trace buffers are implemented by the 
TCB and the TBU bit of this register indicates to which trace buffer 
the traces is currently written.

R Undefined

TBU 3 This bit denotes to which trace buffer the trace is currently being 
written and is used to select the appropriate interpretation of the 
TraceControl2SyP field.

0: Trace data is being sent to an on-chip trace buffer
1: Trace Data is being sent to an off-chip trace buffer

This bit is loaded from TCBCONTROLBOfC.

R Undefined

SyP 2:0 The period (in cycles) to which the internal synchronization counter 
is reset when tracing is started, or when the synchronization counter 
has overflowed. 

This field is loaded from TCBCONTROLASyP.

R Undefined

Table 2.71 TraceControl2 Register Field Descriptions(continued)

Fields

Description
Read / 
Write Reset StateName Bits

Encoding Meaning

00 PC tracing only
01 PC and load and store address tracing only
10 PC, load and store address, and load and store data
11 Reserved

SyP Sync Period

000 25

001 26

010 27

011 28

100 29

101 210

110 211

111 212
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2.3.10.3 Trace Control 3 Register — TraceControl3 (CP0 Register 24, Select 2)

The TraceControl3 register provides additional control and status information. Note that some fields in the 
TraceControl3 register are read-only, but have a reset state of “Undefined”. This is because these values are loaded 
from the Trace Control Block (TCB). As such, these fields in the TraceControl3 register will not have valid values 
until the TCB asserts these values.

This register is only implemented if the PDtrace capability is present. 

Figure 2.61 TraceControl3 Register Format  
31 14 13 12 11 10 9 8 7 3 3 1 0

0 PeCOvf PeCFCR PeCBP PeCSync PeCE PeC 0 TRIDLE TRPAD FDT

Table 2.72 TraceControl3 Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

0 31:14 Reserved. Must be written as zeros; returns zeros on reads. R 0

PeCOvf 13 Performance counter overflow. Setting this bit enables the trace con-
trol logic to trace a performance counter overflow.

R/W 0

PeCFCR 12 Performance counter function/call return. Setting this bit enables the 
trace control logic to trace a function call/return condition or an 
exception handler entry.

R/W 0

PeCBP 11 Performance counter hardware breakpoint. Setting this bit enables 
the trace control logic to trace a hardware breakpoint condition.

R/W 0

PeCSync 10 Performance counter synchronization counter expiration. Setting 
this bit enables the trace control logic to trace a synchronization 
counter expiration condition.

R/W 0

PeCE 9 Performance counter tracing enable. When set to 0, the tracing out of 
performance counter values as specified is disabled. To enable, this 
bit must be set to 1. This bit is used under software control. When 
trace is controlled by an external probe, this enabling is done via 
TraceControl3PeCE.

R/W 0

PeC 8 Specifies whether or not Performance Control Tracing is imple-
mented. This is an optional feature that may be omitted by imple-
mentation choice. Implemented when set to 1.

R/W 0

0 7:3 Reserved. Must be written as zeros; returns zeros on reads. R 0

TrIDLE 2 Trace Unit Idle. This bit indicates if the trace hardware is currently 
idle (not processing any data). This can be useful when switching 
control of trace from hardware to software and vice versa. The bit is 
read-only and updated by the trace hardware.

R/W 0

TRPAD 1 Trace RAM Access Disable. Disables program software access to 
the on-chip trace RAM using load/store instructions. This bit is 
loaded from TCBCONTROLBTRPAD.

R/W 0

FDT 0 Filtered data trace mode enable. 

0: Filtered data trace mode is disabled.
1: Filtered data trace mode is enabled. 

R/W 0
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2.3.10.4 User Trace Data 1 Register — UserTraceData1 (CP0 Register 23, Select 3) 

A software write to any bits in the UserTraceData1 register triggers a trace record to be written with a type indicator 
TU1. 

These register are only implemented if the MIPS Trace capability is present.

Figure 2.62 User Trace Data 1 Register Format 

2.3.10.5 User Trace Data 2 Register — UserDataTrace2 (CP0 Register 24, Select 3)

A software write to any bits in the UserTraceData2 register triggers a trace record to be written with a type indicator 
TU2. 

These register are only implemented if the MIPS Trace capability is present.

Figure 2.63 User Trace Data 2 Register Format 

2.3.10.6 Trace Instruction Breakpoint Condition Register — TraceIBPC (CP0 Register 23, Select 4)

The TraceIBPC register is used to control start and stop of tracing using an EJTAG Instruction Hardware breakpoint. 
The Instruction Hardware breakpoint would then be set as a trigger source and optionally also as a Debug exception 
breakpoint.

This register is only implemented if both Hardware breakpoints and the MIPS Trace capability are present.

31 0

Data

Table 2.73 User Trace Data 1 Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

Data 31:0 Software readable/writable data. When written, this triggers a user 
format trace record out of the PDtrace interface that transmits the 
Data field to trace memory.

R/W 0

31 0

Data

Table 2.74 User Trace Data 2 Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

Data 31:0 Software readable/writable data. When written, this triggers a user 
format trace record out of the PDtrace interface that transmits the 
Data field to trace memory.

R/W 0
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Figure 2.64 TraceIBPC Register Format 

2.3.10.7 Trace Data Breakpoint Condition Register — TraceDBPC (CP0 Register 23, Select 5)

The TraceDBPC register is used to control start and stop of tracing using an EJTAG Data Hardware breakpoint. The 
Data Hardware breakpoint would then be set as a trigger source and optionally also as a Debug exception breakpoint.

This register is only implemented if both Hardware breakpoints and the MIPS Trace capability are present.

Figure 2.65 TraceDBPC Register Format  

31 30 29 28 27 12 11 9 8 6 5 3 2 0

0 PCT IE 0 IBPC3 IBPC2 IBPC1 IBPC0

Table 2.75 TraceIBPC Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

0 31:30 Reserved. Must be written as zeros; returns zeros on reads. R 0

PCT 29 Used to specify whether a performance counter trigger signal is generated 
when an EJTAG instruction breakpoint match occurs.

0: Disables performance counter trigger signal from instruction break-
points

1: Enables performance trigger signals from instruction breakpoints

R/W 0

IE 28 Used to specify whether or not the trigger signal from EJTAG instruction 
breakpoint should trigger tracing functions.

0: Disables trigger signals from instruction breakpoints
1: Enables trigger signals from instruction breakpoints

R/W 0

0 27:12 Reserved. Must be written as zeros; returns zeros on reads. R 0

IBPC3
IBPC2
IBPC1
IBPC0

11:9
9:6
5:3
2:0

The four 3-bit fields are decoded to enable different tracing modes. Table 
2.77 shows the possible interpretations. Each set of 3 bits represents the 
encoding for the instruction breakpoint n in the EJTAG implementation, 
if it exists. If the breakpoint does not exist, then the bits are reserved, read 
as zero, and writes are ignored.

R/W 0

31 30 29 28 27 6 5 3 2 0

0 PCT DE 0 DBPC1 DBPC0

Table 2.76 TraceDBPC Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

0 31:30 Reserved. Must be written as zeros; returns zeros on reads. R 0

PCT 29 Used to specify whether a performance counter trigger signal is gener-
ated when an EJTAG data breakpoint match occurs.

0: Disables performance counter trigger signal from data breakpoints
1: Enables performance trigger signals from data breakpoints

R/W 0
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2.3.11 User Mode Support Registers

This section contains the following hardware access registers.

• Section 2.3.11.1, "Hardware Enable — HWREna (CP0 Register 7, Select 0)" on page 172

• Section 2.3.11.2, "UserLocal (CP0 Register 4, Select 2)" on page 174

2.3.11.1 Hardware Enable — HWREna (CP0 Register 7, Select 0)

The HWREna register contains a bit mask that determines which hardware registers are accessible via the rdhwr 
instruction when that instruction is executed in user mode. 

DE 28 Used to specify whether the trigger signal from EJTAG data breakpoint 
should trigger tracing functions.

0: Disables trigger signals from data breakpoints
1: Enables trigger signals from data breakpoints

R/W 0

0 27:26 Reserved. Must be written as zeros; returns zeros on reads. R 0

DBPC0
DBPC1

2:0
5:3

The two 3-bit fields are decoded to enable different tracing modes. 
Table 2.77 shows the possible interpretations. Each set of 3 bits repre-
sents the encoding for the data breakpoint n in the EJTAG implementa-
tion, if it exists. If the breakpoint does not exist then the bits are 
reserved, read as zero and writes are ignored.

R/W 0

Table 2.77 BreakPoint Control Modes: IBPC and DBPC 

Value Trigger Action Description

000 Unconditional Trace Stop Unconditionally stop tracing if tracing was turned on. If tracing is 
already off, then there is no effect.

001 Unconditional Trace Start Unconditionally start tracing if tracing was turned off. If tracing is 
already turned on, then there is no effect.

010 None Reserved for future implementations.

100 Identical to trigger condition 
000, and in addition, dump the 
full performance counter values 
into the trace stream

If tracing is currently on, dump the full values of all the implemented 
performance counters into the trace stream, and turn tracing off. If trac-
ing is already off, then there is no effect.

101 Identical to trigger condition 
001, and in addition, also dump 
the full performance counter val-
ues into the trace stream

Unconditionally start tracing if tracing was turned off. If tracing is 
already turned on, then there is no effect. In both cases, dump the full 
values of all the implemented performance counters into the trace 
stream.

110 Not used Reserved for future implementations.

Table 2.76 TraceDBPC Register Field Descriptions(continued)

Fields

Description
Read / 
Write Reset StateName Bits
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The low-order four bits [3:0] control access to the four registers required by the MIPS32® architecture standard. The 
two high-order bits [31:30] are available for implementation-dependent use.

Using the HWREna register, privileged software may select which of the hardware registers are accessible via the 
RDHWR instruction. In doing so, a register may be virtualized at the cost of handling a Reserved Instruction Excep-
tion, interpreting the instruction, and returning the virtualized value. For example, if it is not desirable to provide 
direct access to the Count register, access to that register may be individually disabled and the return value can be vir-
tualized by the operating system.

Software may determine which registers are implemented by writing all ones to the HWREna register, then reading 
the value back. If a bit reads back as a one, the processor implements that hardware register.

Figure 2.66 HWREna Register Format
31 30 29 28 4 3 2 1 0

Impl UL 0 CCRes CC SYNCI_Step CPUNum

Table 2.78 Field Descriptions for HWREna Register

Name Bit(s) Description
Read/ 
Write Reset State

Impl 31:30 These bits control access to implementation-dependent hardware reg-
isters. These registers are not currently implemented in any proAptiv 
Multiprocessing System family processor. Attempts to access these 
bits results in a Reserved Instruction Exception.

R 0

UL 29 UserLocal register present. This register provides read access to the 
coprocessor 0 UserLocal register. Set this bit to 1 to permit user pro-
grams to obtain the value of the UserLocal CP0 register using 
rdhwr 29.

R/W 0

0 28:4 Ignored on write; returns zero on read. R 0

CCRes 3 Resolution of the Count register. This value denotes the number of 
cycles between updates of the Count register. Setting this bit allows 
selected instructions to read the Count register. For example, if this 
bit is set, the execution of a user-mode rdhwr 3 instruction read the 
interval at which the Count register increments.

R/W 0

CC 2 Count register present. This register provides read access to the 
coprocessor 0 Count Register. Set this bit to 1 so a user-mode 
rdhwr 2 can read out the value of the Count register. 

R/W 0

CCRes Value Meaning

1 Count register increments every cycle

2 Count register increments every second cycle

3 Count register increments every third cycle

etc.
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2.3.11.2 UserLocal (CP0 Register 4, Select 2)

UserLocal is a read-write 32-bit register that is not interpreted by the hardware and conditionally readable by soft-
ware. This register is suitable for a kernel-maintained ID whose value can be read by user-level code with 
rdhwr 29, as long as HWRENAUL is set. 

The presence of the UserLocal register is indicated by Config3ULRI = 1.

Figure 2.67 UserLocal Register Format 

2.3.12 Kernel Mode Support Registers

This section contains the following hardware access registers.

• Section 2.3.12.1, "Kernel Scratch Register 1 — KScratch1 (CP0 Register 31, Select 2)" on page 175

SYNCI_Step 1 L1 cache line size. Setting this bit allows hardware to read the line 
size of the L1 cache. This field is used in conjunction synci 
instruction. See that instruction’s description for the use of this value. 

In the typical implementation, this value should be zero if there are 
no caches in the system that must be synchronized (either because 
there are no caches, or because the instruction cache tracks writes to 
the data cache). In other cases, the return value should be the smallest 
line size of the caches that must be synchronized.

For the proAptiv Multiprocessing System core, the SYNCI_Step 
value is 32 since the line size is 32 bytes.

Set this bit to 1 so that a user-mode rdhwr 1 can read the cache 
line size (actually, the smaller of the L1 I-cache line size and D-cache 
line size). That line size determines the step between successive uses 
of the synci instruction, which does the cache manipulation neces-
sary to ensure that the CPU can correctly execute the instructions. 

R/W 0

CPUNum 0 This register provides read access to the coprocessor 0 
EBaseCPUNum field. Set this bit 1 so a user-mode rdhwr 0 reads 
out the CPU ID number.

R/W 0

31 0

UserLocal

Table 2.79 UserLocal Register Field Description

Fields

Description
Read / 
Write Reset StateName Bits

UserLocal 31:0 Software information that is not interpreted by hardware. R/W Undefined

Table 2.78 Field Descriptions for HWREna Register

Name Bit(s) Description
Read/ 
Write Reset State
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• Section 2.3.12.2, "Kernel Scratch Register 2 — KScratch2 (CP0 Register 31, Select 3)" on page 175

• Section 2.3.12.3, "Kernel Scratch Register 3 — KScratch3 (CP0 Register 31, Select 4)" on page 175

2.3.12.1 Kernel Scratch Register 1 — KScratch1 (CP0 Register 31, Select 2)

KScratch1 is a read-write 32-bit register that is used by the kernel for temporary storage of information.

The presence of the KScratch1 register is indicated by Config4KScrExist[2] = 1’b1.

Figure 2.68 KScratch1 Register Format  

2.3.12.2 Kernel Scratch Register 2 — KScratch2 (CP0 Register 31, Select 3)

KScratch2 is a read-write 32-bit register that is used by the kernel for temporary storage of information.

The presence of the KScratch2 register is indicated by Config4KScrExist[3] = 1’b1.

Figure 2.69 KScratch2 Register Format  

2.3.12.3 Kernel Scratch Register 3 — KScratch3 (CP0 Register 31, Select 4)

KScratch3 is a read-write 32-bit register that is used by the kernel for temporary storage of information.

The presence of the KScratch3 register is indicated by Config4KScrExist[4] = 1’b1.

Figure 2.70 KScratch3 Register Format  

31 0

KScratch1

Table 2.80 KScratch0 Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

KScratch1 31:0 Used by the kernel for temporary storage of information. R/W Undefined

31 0

KScratch2

Table 2.81 KScratch2 Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

KScratch2 31:0 Used by the kernel for temporary storage of information. R/W Undefined

31 0

KScratch3
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2.3.13 Memory Mapped Registers

This section contains the following memory mapped registers. As shown by the blue text in Section 2.3.13.2, this reg-
ister is only available in a multi-core environment implementing the Coherent Processing System (CPS).

• Section 2.3.13.1, "Common Device Memory Map Base Address — CDMMBase (CP0 Register 15, Select 2)" on 
page 176

• Section 2.3.13.2, "Coherency Manager Global Configuration Register Base Address — CMGCRBase (CP0 
Register 15, Select 3)" on page 177

2.3.13.1 Common Device Memory Map Base Address — CDMMBase (CP0 Register 15, Select 2)

The 36-bit physical base address for the Common Device Memory Map facility is defined by this register. This regis-
ter only exists if Config3CDMM is set to one.

Figure 2.71 shows the format of the CDMMBase register, and Table 2.83 describes the register fields.

Figure 2.71 CDMMBase Register

Table 2.82 KScratch2 Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

KScratch3 31:0 Used by the kernel for temporary storage of information. R/W Undefined

31 28 27 11 10 9 8 0

U CDMM_UPPER_ADDR EN CI CDMMSize

Table 2.83 CDMMBase Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

U 31:28 Unimplemented physical address bits. Writes are ignored, returns 
0 on read

R 0

CDMM_UPPER_
ADDR

27:11 Bits 31:15 of the base physical address of the common device 
memory-mapped registers. 

R/W Undefined

EN 10 Enables the CDMM region. 

If this bit is cleared, memory requests to this address region go to 
regular system memory. If this bit is set, memory requests to this 
region go to the CDMM logic.

0: CDMM region is disabled.
1: CDMM region is enabled.

R/W 0

CI 9 If set to 1 by hardware, this bit indicates that the first 64-byte 
Device Register Block (DRB) of the CDMM is reserved for addi-
tional registers which manage CDMM region behavior and are 
not IO device registers.

This bit is always 0 in the proAptiv core since additional I/O 
device registers are not implemented.

R 0
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2.3.13.2 Coherency Manager Global Configuration Register Base Address — CMGCRBase 
(CP0 Register 15, Select 3)

This register is used in a multi-core environment and defines the 36-bit physical base address for the memory-mapped 
Coherency Manager Global Configuration Register (CMGCR) space. This register only exists if Config3CMGCR is 
set.

Figure 2.72 shows the format of the CMGCRBase register, and Table 2.84 describes the register fields.

Figure 2.72 CMGCRBase Register 

CDMMSize 8:0 This field represents the number of 64-byte Device Register 
Blocks (DRB) instantiated in the proAptiv core. 

R 2

31 28 27 11 10 0

U CMGCR_BASE_ADDR 0

Table 2.84 CMGCRBase Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

U 31:28 Unimplemented physical address bits. Writes are ignored, 
returns 0 on read

R 0

CMGCR_
BASE_ADDR

31:11 Bits 35:15 of the base physical address of the memory-
mapped Coherency Manager Global Configuration registers.

The number of implemented physical address bits is imple-
mentation-specific. For the unimplemented address bits, 
writes are ignored, reads return zero.

The reset value is set when the core is configured using the 
Configuration GUI.

R Preset

0 10:0 Must be written as zero; returns zero on read R 0

Table 2.83 CDMMBase Register Field Descriptions(continued)

Fields

Description
Read / 
Write Reset StateName Bits

Encoding Meaning

0 1 DRB

1 2 DRB’s

2 3 DRB’s

... ...

511 512 DRB’s
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Memory Management Unit

The proAptiv core includes a Memory Management Unit (MMU) that translates virtual addresses to physical 
addresses. The MMU consists of a 16-entry Instruction TLB (ITLB), a 32-entry data TLB (DTLB), 64 dual-entry 
Variable TLB (VTLB), and an optional 512 dual-entry Fixed TLB (FTLB). The FTLB is a build-time option. 

This chapter contains the following sections:

• Section 3.1, "Introduction" on page 179

• Section 3.2, "Memory Management Unit Architecture" on page 180

• Section 3.3, "MMU Configuration Options" on page 183

• Section 3.4, "Overview of Virtual-to-Physical Address Translation" on page 186

• Section 3.5, "Relationship of TLB Entries and CP0 Registers" on page 190

• Section 3.6, "Enhanced Virtual Address" on page 196

• Section 3.7, "Boot Exception Vector Relocation in Kernel Mode" on page 205

• Section 3.8, "Indexing the VTLB and FTLB" on page 221

• Section 3.9, "Hardwiring VTLB Entries" on page 222

• Section 3.10, "VTLB Random Replacement" on page 222

• Section 3.11, "FTLB Parity Errors" on page 223

• Section 3.12, "FTLB Hashing Scheme and the TLBWI Instruction" on page 224

• Section 3.13, "TLB Exception Handling" on page 226

• Section 3.14, "Exception Base Address Relocation" on page 233

• Section 3.15, "VTLB and FTLB Initialization" on page 234

• Section 3.17, "Modes of Operation" on page 236

• Section 3.18, "TLB Instructions" on page 249

3.1 Introduction

The MMU translates a virtual address to a physical address before the request is sent to the cache controllers for tag 
comparison or to the bus interface unit for an external memory reference. Virtual-to-physical address translation is 
especially useful for operating systems that must manage physical memory to accommodate multiple tasks active in 
the same memory, and possibly in the same virtual address space. The MMU also enforces the protection of memory 
areas and defines the cache protocols.

The MMU size in the proAptiv architecture has been increased from the traditional 64 dual entries up to 576 dual 
entries, thereby increasing performance by reducing the number of TLB misses.
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The ITLB is functionally invisible to software and is automatically refilled from the VTLB/FTLB when required, and 
automatically cleared whenever the VTLB/FTLB is updated. 

3.2.2 Data TLB (DTLB)

The DTLB is a 32 dual-entry high speed TLB dedicated to performing translations for the data stream. The DTLB 
maps only 4 KB or 16 KB pages. For 4 KB or 16 KB pages, the entire page is mapped in the DTLB. 

The DTLB is managed by hardware and is transparent to software. The larger VTLB/FTLB is used as a backup struc-
ture for the DTLB. If a load/store address cannot be translated by the DTLB, the VTLB/FTLB/SegCtl logic1 attempts 
to translate it in the following clock cycle or when available. If successful, the translation information is copied into 
the DTLB for future use. 

The ITLB is functionally invisible to software and is automatically refilled from the VTLB/FTLB when required, and 
automatically cleared whenever the VTLB/FTLB is updated. 

3.2.3 Variable Page Size TLB (VTLB)

The VTLB is a fully associative variable page size translation lookaside buffer with 64 dual entries. The purpose of 
the VTLB is to translate virtual addresses and their corresponding ASID into a physical memory address. The transla-
tion is performed by comparing the upper bits of the virtual address (along with the ASID bits) against each of the 
entries in the tag portion of the VTLB structure. This structure is used to translate both instruction and data virtual 
addresses.

The VTLB is organized as 64 pairs of even and odd entries. The VTLB implements the following page sizes: 

4K, 16K, 64K, 256K, 1M, 4M, 16M, 64M, and 256M

The VTLB/FTLB is organized in pairs of page entries to minimize its overall size. Each virtual tag entry corresponds 
to two physical data entries, an even page entry and an odd page entry. The highest order virtual address bit not par-
ticipating in the tag comparison is used to determine which of the two data entries is used. Since page size can vary on 
a page-pair basis, the determination of which address bits participate in the comparison and which bit is used to make 
the even-odd selection must be done dynamically during the TLB lookup.

The PageMask register is loaded with the desired page size, which is then entered into the TLB when a new entry is 
written. Thus, operating systems can provide special-purpose maps. For example, a typical frame buffer can be mem-
ory-mapped with only one TLB entry. Software can determine which page sizes are supported by writing all ones to 
the PageMask register, then reading the value back.

The VTLB/FTLB entries are controlled through select CP0 registers. Refer to Section 3.5, "Relationship of TLB 
Entries and CP0 Registers" for more information. 

3.2.4 Fixed Page Size TLB (FTLB)

The 512-entry FTLB is a fixed page size TLB organized as 128 sets and 4-ways. Each set of each way contains dual 
data RAM entries and one tag RAM entry. If the tag RAM contents matches the requested address, either the low or 
high RAM location of the dual data RAM is accessed depending on the state of the most-significant-bit (MSB) of the 
VPN2 offset portion of the virtual address. Refer to Section 3.5.3, "Address Translation Examples" for more informa-
tion on VPN2 usage.

1. The VTLB/FTLB is used during mapped accessed. The SegCtl registers are used during unmapped accesses.
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The FTLB is organized as 512 pairs of even and odd entries. The FTLB implements the following page sizes: 

4K, 16K

If the FTLB is implemented, the organization is as shown in Table 3.1. Note that all of the entries in the FTLB must 
be the same page size, either 4K or 16K. The size is determined by the Config4FTLB Page Size field as described in the 
following table. 

The FTLB resides at the top of the VTLB range as shown in Figure 3.2.

Figure 3.2 proAptiv VTLB and FTLB 

As shown in Figure 3.3, the 512-entry FTLB contains four ways and 128 sets. Each set of each way contains one 
dual-entry.

Table 3.1 FTLB Configuration Options

FTLB Parameter Programmable Options Register Reference

Ways 4 ways Config4FTLB Ways

Sets 128 sets Config4FTLB Sets

Page Size 4 KB
16KB

Config4FTLB Page Size

0

63
64

VTLB

191

FTLB - Way 0

192

319

FTLB - Way 1

320

447

FTLB - Way 2

448

575

FTLB - Way 3
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Note that the size of the FTLB is fixed at 512 entries. The user cannot implement less than 512 entries if the FTLB is 
enabled.

3.3.2 MMU Type

The MT field of the Config register (CP0 Register 16, Select 0) is programmed depending on whether the FTLB is 
enabled. This is determined by the state of the Config6FTLBEn bit described above. If Config6FTLBEn is cleared, or if the 
FTLB is not present, hardware writes a value of 3’b001 to this field. If Config6FTLBEn is set, hardware writes a value 
of 3’b100 to this field. The kernel code uses this field to determine how to configure the TLB.

The 3-bit ConfigMT field supports the following two encodings. All other encodings are reserved.
• 3’b001: VTLB only (FTLB disabled or not present)
• 3’b100: VTLB and FTLB present

3.3.3 MMU Size and Organization

The proAptiv core uses the following CP0 register fields to determine the size and organization of the MMU. Each of 
the items below is described in the following subsections.

• Bits 30:25 of the Config1 register (Config1MMUSIZE). Determines VTLB size.

• Bits 15:14 of the Config4 register (Config4MMUExtDef). Determines how bits 12:0 of this register are used based on 
whether an FTLB is present. If the value in this field is 2’b01, the FTLB is not present and the lower 7 bits of the 
Config4 register are used to extend the VTLB size as described below. If the value in this field is 2’b11, the FTLB 
is present and the lower 13 bits of the Config4 register are used to determine the size and organization of the 
FTLB.

• Bits 12:8 of the Config4 register (Config4FTLB Page Size). Determines the FTLB page size. These bits are only used 
when the FTLB is present and enabled. If the FTLB is not present or disabled, this field is ignored.

• Bits 7:4 of the Config4 register (Config4FTLB Ways). If an FTLB is present and enabled, this field determines the 
number of ways in the FTLB. If the FTLB is not present or disabled, this field is used to extend the VTLB size as 
described below.

• Bits 3:0 of the Config4 register (Config4FTLB Sets). If an FTLB is present and enabled, this field determines the 
number of sets per way in the FTLB. If the FTLB is not present or disabled, this field is used to extend the VTLB 
size as described below.

3.3.3.1 Determining VTLB Size

The 6-bit MMUSize field in the Config1 register (Config1MMUSize) is used to determine the number of entries in the 
VTLB. Hardware writes a value of 0x3F into this field at reset, indicating 64 entries. Note that the number of VTLB 
entries in the proAptiv core is fixed at 64. The user cannot modify this value. 

Not Present Don’t Care 3’b001
(FTLB Not Present)

1. See Section 3.3.2, "MMU Type".

Table 3.2 FTLB Present or Not Present in the System

FTLB Present/Not Present
(Build Time Option)

Config6FTLBEn Bit
(Set by Software)

ConfigMT Field1

(Set by Hardware)
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3.3.3.2 Interpreting the Config4 Fields

The 2-bit MMUExtDef field in the Config4 register (Config4MMUExtDef) is used to determine how bits 12:0 of this regis-
ter are interpreted. This read-only field is written by hardware based on the setting of the FTLBEn bit in the Config6 
register (CP0 Register 16, Select 6). The MMUExtDef field can be written with one of the following two values. All 
other values are reserved.

• Config4MMUExtDef = 2’b01; VTLB enabled, FTLB disabled or not present
• Config4MMUExtDef = 2’b11; VTLB enabled, FTLB enabled

FTLB Not Present or Disabled

If the FTLB is either not present or disabled, bits 7:0 of the Config4 register are used to extend the number of VTLB 
entries indicated by the 6-bit Config4MMUSize field described in the previous subsection. This extends the number of 
bits used to determine the number of VTLB entries from 6 to 14. This concept is shown in Figure 3.4 below. 

Figure 3.4 Extending the Number of VTLB Entries — FTLB Not Present or Disabled

This field can be used to extend the number of VTLB entries in future generations of MIPS processors. Since there is 
a maximum of 64 VLTB entries in the proAptiv core, bits 7:0 of the Config4 register always contain a value of 0 when 
only the VTLB is present. 

FTLB Present and Enabled

If the FTLBEn bit is set, indicating the FTLB is present and enabled, hardware writes a value of 2’b11 into the 
Config4MMUExtDef field. In this case, bits 12:0 of the Config4 register are used to determine the size and organization of 
the FTLB.

When the Config4MMUExtDef field is set to 2’b11, bits 12:0 of this register are used to indicate the FTLB page size 
(Config4FTLB Page Size), the number of ways (Config4FTLB Ways), and the number of sets (Config4FTLB Sets). In the 
proAptiv core, only the FTLB page size is programmable. The number of ways is fixed at 4 and the number of sets is 
fixed at 128. The page size can be programmed to either 4KB or 16KB pages. This concept is shown in Figure 3.5.

31 16 15 14 13 8 7 0
01 ExtVTLB

31 26 25 0

Config4 Config1
30
MMUSize

5 0
1 1 1 1 1 1

13 6
0 0 0 0 0 0 0 0 Number of VTLB Entries = 64
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3.5 Relationship of TLB Entries and CP0 Registers

Each TLB entry in the VTLB/FTLB consists of a tag portion and dual-data portion as shown in Figure 3.10. In this 
figure, the following registers are used to manage the TLB entries.

• EntryLo0 (CP0 Register 2, Select 0)
• EntryLo1 (CP0 Register 3, Select 0)
• EntryHi (CP0 Register 10, Select 0)
• PageMask (CP0 Register 5, Select 0)

In order to fill an entry in the VTLB/FTLB, software executes a TLBWI or TLBWR instruction (see Section 3.18). 
Prior to invoking one of these instructions, the CP0 registers listed above must be updated with the information to be 
written to the TLB entry:

• PageMask is set in the CP0 PageMask register.

• VPN2, and ASID are set in the CP0 EntryHi register.

• PFN0, C0, D0, V0, RI, XI, and G bits are set in the CP0 EntryLo0 register.

• PFN1, C1, D1, V1, RI, XI, and G bits are set in the CP0 EntryLo1 register.

These register fields and their relationship to a TLB entry is described in the following subsections.
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has different code and data lying in the same virtual address region). The ASID field is generated using the EntryHi 
register.

3.5.1.3 PageMask Field

The size of the tag can be configured using the ‘PageMask’ field. This field determines how many incoming address 
bits to match. For the VTLB, the proAptiv core allows page sizes of 4 Kbytes up to 256 Mbytes in multiples of four. 
For the FTLB, the proAptiv core allows page sizes of 4 Kbytes and 16 Kbytes. The PageMask field is generated 
using the PageMask register.

In the PageMask field, a ‘1’ on a given bit means "don’t compare this address bit when matching this address". How-
ever, only a restricted range of PageMask values are legal. The values must start with "1"s filling the PageMask field 
from the low-order bits upward, two at a time. A list of valid 32-bit PageMask register values, the corresponding 
binary value of the PageMask[28:13] field, and the corresponding page size is shown in Table 3.3. For the Page-
Mask[28:13] field, note that the bits are set two at a time from the least significant bit (LSB) to the most significant 
bit (MSB). 

Note that the 4 KByte and 16 KByte entries in the above table correspond to the VTLB and the FTLB. All other 
entries correspond to the VTLB only.

3.5.1.4 Global (G) Bit

The ‘G’ (global) bit in the tag entry is a logical AND between the G bits of the EntryLo0 and EntryLo1 registers. When 
set, it causes addresses to match regardless of their ASID value, thus defining a part of the address space which will 
be shared by all applications. For example, Linux applications share some ‘kseg2’ space used for kernel extensions.

Note that since the G bit in the TLB tag entry is a logical AND between two G bits, software must be sure to set 
EntryLo0G and EntryLo1G to the same value. 

3.5.2 TLB Data Entry

The data portion of the TLB entry contains the data and associated flag bits for the corresponding tag entry. This sec-
tion describes each field of the TLB data entry shown in Figure 3.10.

Table 3.3 PageMask Value and Corresponding Page Size

32-bit PageMask 
Register Value PageMask[28:13] Page Size

Even/Odd Bank 
Select Bit

0x0000_0000 0x00_0000_0000_0000_00 4 KBytes VAddr[12]

0x0000_6000 0x00_0000_0000_0000_11 16 KBytes VAddr[14]

0x0001_E000 0x00_0000_0000_0011_11 64 KBytes VAddr[16]

0x0007_E000 0x00_0000_0000_1111_11 256 KBytes VAddr[18]

0x001F_E000 0x00_0000_1111_1111_11 1 MByte VAddr[20]

0x007F_E000 0x00_0011_1111_1111_11 4 MBytes VAddr[22]

0x01FF_E000 0x00_0011_1111_1111_11 16 MBytes VAddr[24]

0x07FF_E000 0x00_1111_1111_1111_11 64 MBytes VAddr[26]

0x1FFF_E000 0x11_1111_1111_1111_11 256 MBytes VAddr[28]
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3.5.2.1 Page Frame Number (PFN)

The Page Frame Number (PFN) contains the high-order bits of the physical address. The 20-bit PFN, together with 
the lower 12 bits of address that are not translated, make up the 32-bit physical address.

3.5.2.2 Flag Fields (C, D, V, RI, and XI)

These flag bits contain information about the translated address. All of these bits are generated by the EntryLo0 and 
EntryLo1 registers.

C Field: This field contains the cacheability attributes for the corresponding TLB entry. It indicates how to cache data 
for this page. Pages can be marked cacheable, uncacheable, coherent, non-coherent, uncached accelerated, write-
back, write-allocate, etc. 

D bit: The "dirty" flag. Setting this bit indicates that the page has been written, and/or is writable. If this bit is a one, 
stores to the page are permitted. If this bit is a cleared, stores to the page cause a TLB Modified exception. Software 
can use this bit to track pages that have been written to. When a page is first mapped, this bit should be cleared. It is 
set on the first write that causes an exception. 

V bit: The "valid" flag. Indicates that the TLB entry, and thus the virtual page mapping, are valid. If this bit is set, 
accesses to the page are permitted. If this bit is a zero, accesses to the page cause a TLB Invalid exception.

RI bit: The ‘read inhibit’ flag. If this bit is set in a TLB entry, any attempt (other than a MIPS16 PC-relative load) to 
read data on the virtual page causes either a TLBL or a TLBRI exception depending on the state of the PageGrainEIC 
bit, even if the V (Valid) bit is set. If the PageGrainEIC bit is cleared, and TLBL exception is taken. If the PageGrainEIC 
bit is set, and TLBRI exception is taken. Note that the RI bit is writable only if the RIE bit of the PageGrain register is 
set.

XI bit: The ‘execute inhibit’ flag. If this bit is set in a TLB entry, any attempt to fetch an instruction or to load MIPS16 
PC-relative data from the virtual page causes either a TLBL or TLBXI exception depending on the state of the 
PageGrainEIC bit, even if the V (Valid) bit is set. If the PageGrainEIC bit is cleared, and TLBL exception is taken. If the 
PageGrainEIC bit is set, and TLBXI exception is taken. Note that the XI bit is writable only if the XIE bit of the 
PageGrain register is set.

3.5.3 Address Translation Examples

As shown in Figure 3.10, there are two PFN values for each tag match. Which of them is used is determined by the 
lowest-order bit of the VPN field of the address. So in standard form (using 4KByte pages) each entry translates an 
8KByte region of virtual address, but each 4Kbyte page can be mapped onto any physical address (with any permis-
sion flag bits). This concept is described in the following subsections.

4 KByte Page Size Example

In a 4KB page size, 12 address bits are required to select an entry within the page. Therefore, 12 bits of the virtual 
address are used for the offset into the page table. The upper 20 bits of the virtual address are used as a pointer to the 
page table. With a 4 KByte page size, this allows support for up to 1M page table entries.

The upper 20 bits of virtual address pass through the TLB to generate the corresponding physical address. As 
described in Section 3.4, the proAptiv architecture implements a dual-entry VTLB/FTLB scheme, where each TLB 
tag corresponds to two data entries. To select between these two entries, hardware reads the low-order bit of the VPN 
(first bit after the offset, shown as the S bit in the figure below). In a 4 KByte page example, this equates to bit 12. 
This is shown in Figure 3.11.
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3.6 Enhanced Virtual Address

Traditional MIPS virtual memory support divides up the virtual address space into fixed size segments, each with 
fixed attributes and access privileges. Such a scheme limits unmapped kernel access to 512 MBytes, the size of 
kseg0/kseg1. Furthermore, application sizes are growing beyond the 2GB limit imposed by the useg user segment.

Programmable Memory Segmentation relaxes these limitations. The size of virtual address space segments can be 
programmed, as can their attributes and privilege access. With this ability to overlap access modes, kseg0 can now be 
extended up to 3.0GB2, leaving at least one 1.0GB segment for mapped kernel accesses. This extended kseg0 is 
called xkseg0. xkseg0 overlaps with useg, because segments in xkseg0 are programmed to support mapped user 
accesses and unmapped kernel accesses. Consequently, user space is equal to the size of xkseg0, which can be up to 
3.0GB.

To allow for efficient kernel access to user space, new load and store instructions have been defined which allow ker-
nel mapped access to useg. The new instructions, along with Programmable Memory Segmentation, are requirements 
for the scheme, called Enhanced Virtual Address or EVA, which allows for more efficient use of 32b address space.

3.6.1 Virtual and Physical Address Maps

In previous generation MIPS32 processors, the address map was fixed as shown in Figure 3.13. In this architecture, 
physical memory is limited by kseg0 to 0.5GB, the amount of kernel unmapped cached address space. This memory 
must also be shared by the I/O and kernel, thus in reality less than 0.5GB is available to any user process.

Figure 3.13 Traditional Virtual Address Mapping in Previous Generation MIPS32 Processors 

Figure 3.14 shows an example of how the traditional MIPS kernel virtual address space can be remapped using pro-
grammable memory segmentation to facilitate the EVA scheme. As a result of defining the larger kernel segment as 
xkseg0, the kernel has unmapped access to the lower 3GB of the virtual address space. The larger user segment could 

2. If necessary, xkseg0 can be extended to 3.5GB, allowing 0.5GB for Kernel mapped virtual address space (now kseg2).
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be defined because the address space is not statically partitioned. This allows for a total of 3.5GB of DRAM to be 
supported in the system.

Figure 3.14 Example of Remapping Kernel and User Virtual Address Space Using EVA 

Note that xkseg0 is equivalent to the previous kseg0 space in that it is a kernel unmapped, cacheable region.

3.6.2 Programmable Segmentation Control

Programmable segmentation allows for the virtual address space segments to be programmed with different access 
modes and attributes. Control of the 4GB of virtual address space is divided into six segments that are controlled 
using three CP0 registers; SegCtl0 through SegCtl2. Each register has two 16-bit fields. Each field controls one of the 
six address segments as shown in Table 3.4. 

Table 3.4 Programmable Segmentation Register Interface

Register CP0 Location Memory Segment
Register 

Bits
Virtual Address 

Space Controlled Virtual Address Range

SegCtl2 Register 5
Select 4

CFG5 31:16 0.0 GB to 1.0 GB 0x0000_0000 - 
0x3FFF_FFFF

CFG4 15:0 1.0 GB to 2.0 GB 0x4000_0000 - 
0x7FFF_FFFF

SegCtl1 Register 5
Select 3

CFG3 31:16 2.0 GB to 2.5 GB 0x8000_0000 - 
0x9FFF_FFFF

CFG2 15:0 2.5 GB to 3.0 GB 0xA000_0000 - 
0xBFFF_FFFF

Kernel Mapped
(kseg3)

Kernel Unmapped
(xkseg0)

0.0 GB

3.0 GB

3.5 GB

4.0 GB

0.0 GB

3.0 GB

4.0 GB

Main Memory
User Mapped

(useg)

0.0 GB

3.0 GB

4.0 GB
Kernel Virtual Address User Virtual AddressPhysical Memory

Kernel Mapped
(ksseg)
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Each 16-bit field listed in the above table contains information on the corresponding memory segment such as 
address range (for kernel unmapped segments), access mode, and cache coherency attributes. Table 3.5 describes the 
16-bit configuration fields (CFG0 - CFG5) defined in the SegCtl0 - SegCtl2 registers.

SegCtl0 Register 5
Select 2

CFG1 31:16 3.0 GB to 3.5 GB 0xC000_0000 - 
0xDFFF_FFFF

CFG0 15:0 3.5 GB to 4.0 GB 0xE000_0000 - 
0xFFFF_FFFF

Table 3.5 CFG (Segment Configuration) Field Descriptions

CFGn Fields

DescriptionName Bits

PA 15:9 
and 

31:25

Physical address bits 31:29 for segment, for use when unmapped. These bits are used when the vir-
tual address space is configured as kernel unmapped to select the segment in memory to be 
accessed. 

For segments 0, 2, and 4, CFG[11:9] correspond to physical address bits 31:29. CFG[15:12] corre-
spond to physical address bits 35:32 in a 36-bit addressing scheme and are reserved for future use. 
The state of CFG[15:12] are read/write and can be programmed, but these bits are not driven onto 
the address bus.

For segments 1, 3, and 5, CFG[27:25] correspond to physical address bits 31:29. CFG[31:28] cor-
respond to physical address bits 35:32 in a 36-bit addressing scheme and are reserved for future 
use. 

These bits are not used by the CFG4 and CFG5 spaces listed in Table 3.4 above when these seg-
ments are programmed to be kernel mapped and the physical address is determined by the TLB. 
They are also not used for any of the user mapped (useg) region for the same reason.

Reserved 8:7 
and 

24:23

Reserved.

AM 6:4 
and 

22:20

Access control mode. See Section 3.6.2.5, "Setting the Access Control Mode".

For programmable segmentation, these bits are set as shown in Table 3.7.

Bits 6:4 correspond to segments 0, 2, and 4. Bits 22:20 correspond to segments 1, 3, and 5.

EU 3 
and 
19

Error condition behavior. Segment becomes unmapped and uncached when 
StatusERL = 1.

Bit 3 corresponds to segments 0, 2, and 4. Bit 19 corresponds to segments 1, 3, and 5.

C 2:0 
and 

18:16

Cache coherency attribute, for use when unmapped. 

For programmable segmentation, these bits are set as shown in Table 3.7.

Bits 2:0 correspond to segments 0, 2, and 4. Bits 18:16 correspond to segments 1, 3, and 5.

Table 3.4 Programmable Segmentation Register Interface

Register CP0 Location Memory Segment
Register 

Bits
Virtual Address 

Space Controlled Virtual Address Range
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3.6.2.1 Cache Coherency Attribute Control and the Segmentation Control Registers

The CP0 memory segmentation control registers (SegCtl0 - SegCtl2) are new to the MIPS32 R3 architecture and are 
used to control the size and function of the various memory map segments in the proAptiv core. 

In the previous generation MIPS32 R2 architecture, only the cache coherency attributes of the kseg0 memory seg-
ment could be modified by the user. All other parameters were fixed. In the MIPS32 R3 proAptiv core, each segmen-
tation control register (SegCtl0 - SegCtl2) contains its own cache coherency attribute field to allow for maximum 
flexibility when assigning cacheability attributes to the memory. However, since existing code will not be aware of 
the existence of the SegCtl0 - SegCtl2 registers, the proAptiv core allows a mechanism for the cache coherency attri-
butes (CCA) of kseg0 to be set either by the Config.K0 field, as is done in the MIPS32 R2 architecture, or by the 
CFG3_C field (bits 18:16) of the SegCtl1 register. This allows existing code to configure virtual memory for the leg-
acy setting.

To control where the cache coherency attributes for the memory are taken from, the Config5.K bit has been added to 
the CP0 Config5 register. If the Config5.K bit is cleared, the cache coherency attributes for kseg0 are derived from the 
3-bit Config.K0 field of the CP0 Config register. This can be done when booting the proAptiv core using existing code. 
If the Config5.K bit is set, the cache coherency attributes are derived from the 3-bit SegCtlx.CFGy_C field of the seg-
mentation control registers (where x indicates the segmentation control register number 0 - 2, and y indicates memory 
segments 0 - 5). When configured for EVA, each of the six memory segments can be indivudually defined with its 
own cache coherency attributes. Refer to Section 2.3.3, "Memory Segmentation Registers" in the CP0 chapter for 
more information on the segmentation control registers.

The initial programming of Config5.K bit is determined by the state of the SI_EVAReset pin at reset as described in 
Section 3.6.2.3, "Setting the Memory Addressing Scheme — SI_EVAReset and CONFIG5.K". 

3.6.2.2 Functions of the Config5.K Bit

The Config5.K bit effects the cache coherency attributes, the boot exception vector overlay mechanism, and the loca-
tion of the exception vector as described below.

When the Config5.K bit is cleared, the following events occur:

1. The 3-bit Config.K0 field is used to set the cache coherency attributes for the kseg0 region (0x8000_0000 - 
0x9FFF_FFFF). See Section 3.6.2.1 above for more information.

2. Hardware creates two boot overlay segments, one for kseg0 and one for kseg1. Refer to Section 3.7.3, "Mapping 
of the Boot Exception Vector in the Legacy Configuration" for more information.

3. Hardware ignores the state of bits 31:30 of the EBase register as well as the SI_ExceptionBase[31:30] pins. 
Instead, hardware forces these bits to a value of 2’b10, causing the vectors to reside in kseg0/kseg1 space. Refer 
to Section 3.7, "Boot Exception Vector Relocation in Kernel Mode" for more information.

When the Config5.K bit is set, the following events occur:

1. The 3-bit Config.K0 field is ignored and the cache coherency attributes are derived from the CFGn_C fields of the 
various segmentation control registers (SegCtl0 - SegCtl2). Refer to Section 3.6.2.3, "Setting the Memory 
Addressing Scheme — SI_EVAReset and CONFIG5.K" for more information.

2. Hardware creates one boot overlay segment that can reside anywhere in virtual address space. Refer to Section 
3.7, "Boot Exception Vector Relocation in Kernel Mode" for more information.
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3. The exception vectors are not forced to reside in kseg0/kseg1. Rather, bits 31:30 of the EBase register, as well as 
the SI_ExceptionBase[31:30] signals are used to place the exception vectors anywhere within virtual address 
space. Refer to Section 3.14, "Exception Base Address Relocation" for more information.

3.6.2.3 Setting the Memory Addressing Scheme — SI_EVAReset and CONFIG5.K

The SI_EVAReset pin determines the addressing scheme and whether the device boots up in the legacy setting or the 
EVA setting. The legacy setting is defined as having the traditional MIPS virtual memory map used in previous gen-
eration processors. The EVA setting places the device in the enhanced virtual address configuration, where the initial 
size and function of each segment in the virtual memory map is determined from the segmentation control registers 
(SegCtl0 - SegCtl2).

If the SI_EVAReset pin is deasserted at reset, the proAptiv core comes up in the legacy configuration and hardware 
takes the following actions:

• The CONFIG5.K bit becomes read-write and is programmed by hardware to a value of 0 to indicate the legacy 
configuration. In this case, the cache coherency attributes for the kseg0 segment are derived from the Config.K0 
field as described in the previous subsection. In addition to selecting the location of the cache coherency attri-
butes, the CONFIG5.K bit also causes hardware to generate two boot exception overlay segments, one for kseg0 
and one for kseg1, as described in Section 3.7, "Boot Exception Vector Relocation in Kernel Mode".

• Hardware programs the CP0 memory segmentation registers (SegCtl0 - SegCtl2) for the legacy setting. An 
example of this programming is shown in Table 3.13. Note that these registers are new in the proAptiv core and 
are not used by legacy software. However, they are used by hardware during normal operation, so their default 
values should not be changed. 

If the SI_EVAReset pin is asserted at reset, the proAptiv core comes up in the EVA configuration (default is xkseg0 
space = 3 GB) and hardware takes the following actions:

• The CONFIG5.K bit becomes read-only and is forced to a value of 1 to indicate the EVA configuration. In this 
case, the CONFIG.K0 field is ignored and is no longer used to determine the kseg0 cache coherency attributes 
(CCA). Rather, the values in bits 2:0 (segments 0, 2, and 4) and bits 18:16 (segments 1, 3, and 5) of the SegCtl0 - 
SegCtl2 registers are used to define the CCA for each memory segment as shown in Table 3.5. In this case, hard-
ware generates only one BEV overlay segment as described in Section 3.7, "Boot Exception Vector Relocation 
in Kernel Mode".

• Hardware sets the CP0 memory segmentation registers (SegCtl0 - SegCtl2) for the EVA configuration. An exam-
ple of this programming is shown in Table 3.14.

These two options are illustrated in Figure 3.15. Refer to Section 2.3.1.6, "Device Configuration 5 — Config5 (CP0 
Register 16, Select 5)" in the CP0 register chapter for more information on the CONFIG5.K bit.
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Figure 3.15 Relationship Between SI_EVAReset and CONFIG5.K at Reset

3.6.2.4 Enhanced Virtual Address Detection and Support

As described above, the SegCtl0 - SegCtl2 registers are used to control the various memory segments. In addition to 
these registers, two other configuration registers are also used in enhanced virtual addressing (EVA). 

The EVA bit in the Config5 register (Config5EVA) is used to detect support for the enhanced virtual address scheme. 
This read-only bit is always 1 to indicate support for EVA.

In addition to the EVA bit, the SC bit in the Config3 register (Config3SC) is used by hardware to detect the presence of 
the SegCtl0 - SegCtl2 registers. This read-only bit is always 1 in the proAptiv core to indicate the presence of these 
registers. Note that both of these features must be present to configure the virtual address space for EVA.

3.6.2.5 Setting the Access Control Mode

In addition to setting the Config5EVA and Config3SC bits described above, each memory segment must be set to the 
programmable segmentation mode. Bits 6:4 (segments 0, 2, and 4) and bits 22:20 (segments 1, 3, and 5) of the 
SegCtl0 through SegCtl2 registers define the access control mode. 

To set the programmable segmentation registers to mimic the traditional MIPS32 virtual address mapping shown in 
Figure 3.13, the AM and C subfields (defined in Table 3.5) of each 16-bit CFG field of the SegCtl0 - SegCtl2 registers 
should be programmed as shown in Table 3.6. 

Table 3.6 Setting the Access Control Mode for the Legacy Configuration 

SegCtl 
Register CFGn

CFGn Subfields
Segment 

Size

Location in 
Virtual Memory 

Map DescriptionAM C

0 0
(bits 15:0)

MK
(bits 6:4 = 0x1)

0x3
(bits 2:0)

0.5GB 3.5 - 4.0 GB Mapped kernel region.

0 1
(bits 31:16)

MSK
(bits 22:20 = 0x2)

0x3
(bits 18:16)

0.5GB 3.0 - 3.5 GB Mapped kernel, supervisor region.

SI_EVAReset Logic 0

0
K State

R/W

CONFIG5.K Bit statePlaces device in the Legacy setting. in the Legacy setting

SI_EVAReset
Logic 1

Places device in the EVA setting.

Core

1
K State

RO

CONFIG5.K Bit state
in the EVA setting

29

29

Core
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To set the programmable segmentation registers to implement EVA with a 3.0 GB xkseg0 space as shown in Figure 
3.14, the AM and C subfields (defined in Table 3.5) of each CFG field of the SegCtl0 - SegCtl2 registers should be 
programmed as shown in Table 3.7.

MUSUK is an acronym for Mapped User/Supervisor, Unmapped Kernel. This mode sets the kernel unmapped virtual 
address space to xkseg0 as shown in Figure 3.14. 

3.6.2.6 Defining the Physical Address Range for Each Memory Segment

As shown in Table 3.4, each of the six 16-bit CFGn fields of the SegCtl0 through SegCtl2 fields controls a specific 
portion of the physical address range. Bits 11:9 (segments 0, 2, and 4) and bits 27:25 (segments 1, 3, and 5) of the 
SegCtl0 through SegCtl2 registers represent the state of physical address bits 31:29 and defines the starting address of 
each segment. These bits control the six segments of the physical address.

1 2
(bits 15:0)

UK
(bits 6:4 = 0x0)

0x2
(bits 2:0)

0.5GB 2.5 - 3.0 GB Kernel unmapped, uncached region.

1 3
(bits 31:16)

UK
(bits 22:20 = 0x0)

0x3
(bits 18:16)

0.5GB 2.0 - 2.5 GB Kernel unmapped, cached region.

2 4
(bits 15:0)

MUSK
(bits 6:4 = 0x3)

0x3
(bits 2:0)

1.0GB 1.0 - 2.0 GB User, supervisor, and kernel mapped 
region.

2 5
(bits 31:16)

MUSK
(bits 22:20 = 0x3)

0x3
(bits 18:16)

1.0GB 0.0 - 1.0 GB User, supervisor, and kernel mapped 
region.

Table 3.7 Setting the Access Control Mode for the EVA Configuration 

SegCtl 
Register CFGn

CFGn Subfields
Segment 

Size
Location in Virtual 

Memory Map DescriptionAM C

0 0
(bits 15:0)

MK
(bits 6:4 = 0x1)

0x3
(bits 2:0)

0.5GB 3.5 - 4.0 GB Mapped kernel region.

0 1
(bits 31:16)

MK1

(bits 22:20 = 0x1)

1. This segment can also be mapped to MSK (bits 22:20 = 0x2) if supervisor mode is supported.

0x3
(bits 18:16)

0.5GB 3.0 - 3.5 GB Mapped kernel region.

1 2
(bits 15:0)

MUSUK
(bits 6:4 = 0x4)

0x3
(bits 2:0)

0.5GB 2.5 - 3.0 GB Mapped user/supervisor, unmapped ker-
nel region.

1 3
(bits 31:16)

MUSUK
(bits 22:20 = 0x4)

0x3
(bits 18:16)

0.5GB 2.0 - 2.5 GB Mapped user/supervisor, unmapped ker-
nel region.

2 4
(bits 15:0)

MUSUK
(bits 6:4 = 0x4)

0x3
(bits 2:0)

1.0GB 1.0 - 2.0 GB Mapped user/supervisor, unmapped ker-
nel region.

2 5
(bits 31:16)

MUSUK
(bits 22:20 = 0x4)

0x3
(bits 18:16)

1.0GB 0.0 - 1.0 GB Mapped user/supervisor, unmapped ker-
nel region.

Table 3.6 Setting the Access Control Mode for the Legacy Configuration (continued)

SegCtl 
Register CFGn

CFGn Subfields
Segment 

Size

Location in 
Virtual Memory 

Map DescriptionAM C



 

MIPS32® proAptiv™ Multiprocessing System Software User’s Manual, Revision 01.22 203

Note that bits 31:28 and bits 15:12 are also part of the physical address field, but they are not used in the proAptiv 
core and are reserved for future use by devices that implement a 36-bit address. 

Figure 3.16 below shows an example of how each segment of the physical address can be mapped to the SegCtl0 
through SegCtl2 registers.

Figure 3.16 Mapping of SegCtl 0 - 2 Registers to Physical Address Space 

For example, to program the xkseg0 region to a size of 3.0GB, the PA field of each register would be programmed as 
follows: 

Table 3.8 Example of a 3.0GB Kernel Unmapped Segment

Register CFGn Field Bits PA Field
Memory 
Segment Virtual Address Range

SegCtl01 CFG0 15:9 0x07 kseg2 0xE000_0000 - 
0xFFFF_FFFF

CFG1 31:25 0x06 0xC000_0000 - 
0xDFFF_FFFF

SegCtl1 CFG2 15:9 0x05 0xA000_0000 - 
0xBFFF_FFFF

CFG3 31:25 0x04 0x8000_0000 - 
0x9FFF_FFFF

SegCtl2 CFG4 15:9 0x02 xkseg0 0x4000_0000 - 
0x7FFF_FFFF

CFG5 31:25 0x00 0x0000_0000 - 
0x3FFF_FFFF

0.0 GB

2.0 GB

3.0 GB

3.5 GB

4.0 GB

2.5 GB

CFG5PA = 0x00

1.0 GB

SegCtl2, bits 31:25 (PA field)

CFG4PA = 0x02 SegCtl2, bits 15:9 (PA field)

CFG3PA = 0x04 SegCtl1, bits 31:25 (PA field)

CFG2PA = 0x05 SegCtl1, bits 15:9 (PA field)

CFG1PA = 0x06 SegCtl0, bits 31:25 (PA field)

CFG0PA = 0x07 SegCtl0, bits 15:9 (PA field)



 

204 MIPS32® proAptiv™ Multiprocessing System Software User’s Manual, Revision 01.22

3.6.2.7 Enhanced Virtual Address (EVA) Instructions

By default, an implementation that supports EVA requires a number of new load/store instructions that are used when 
the enhanced virtual address scheme is enabled. These kernel-mode user load/store instructions allow the kernel 
mapped access to user address space as if it were in user mode. 

For example, the kernel can copy data from user address space to kernel physical address space by using such instruc-
tions with user virtual addresses. Kernel system-calls from user space can be conveniently changed by replacing nor-
mal load/store instructions with these instructions. Switching modes (kernel to user) is an alternative but this is an 
issue if the same virtual address is being simultaneously used by the kernel. Further, there is a performance penalty in 
context-switching. 

The opcode for these instructions is embedded into bits 2:0 of the instruction, known as the Type field. Note that some 
fields can have the same encoding depending whether the operation is a load or a store. The load/store designation is 
determined by the AIU L/S field, or bits 5:3 of the instruction. Table 3.9 lists the new kernel load/store instructions. 

For a complete list of new instructions, refer to Section 17.7, "New Instructions for the proAptiv™ Core".

1. In the 3GB xkseg0 example, the PA portion of the CFG0 and CFG1 fields are not used because they are associated with kernel mapped 
address spaces. In this case the PA fields are not required since the physical address is determined by the TLB. In the maximum con-
figuration, xkseg0 can be extended to 3.5GB. In this case, the CFG1 field of the SegCtl0 register would become part of the xkseg0 
segment and the PA subfield would be used. 

Table 3.9 Load/Store Instructions in Programmable Memory Segmentation Mode

Instruction Mnemonic Instruction Name Description

LBE Load Byte Kernel Load byte (as if user from) kernel extended virtual addressing 
load from user virtual memory while operating in kernel mode.

LBUE Load Byte 
Unsigned Kernel

Load byte unsigned (as if user from) kernel.

LHE Load Halfword Kernel Load halfword (as if user from) kernel.

LHUE Load Halfword
Unsigned Kernel

Load halfword unsigned (as if user from) kernel.

LWE Load Word Kernel Load word (as if user from) kernel.

SBE Store Byte Kernel Store byte (as if user from) kernel extended virtual addressing 
load from user virtual memory while operating in kernel mode.

SHE Store Halfword Kernel Store halfword (as if user from) kernel.

SWE Store Word Kernel Store word (as if user from) kernel.
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3.7 Boot Exception Vector Relocation in Kernel Mode

Historically in MIPS processors, the boot exception vector (BEV) has always been at the same location in both virtual 
and physical memory, being mapped from a virtual address of 0xBFC0_0000 to a physical address of 0x1FC0_0000. 
With the advent of memory segmentation in the proAptiv Multiprocessing System, the BEV vector may not always 
map to a physical address of 0x1FC0_0000. This can cause a scenario where the boot exception vector resides at two 
different physical addresses depending on the memory mode. To address this issue, the proAptiv core implements a 
boot exception vector overlay scheme that allows the BEV to be mapped to a single location in physical memory, 
regardless of the memory mode.

This section describes how to define the BEV overlay segment and the BEV relocation process for both the legacy 
setting and the Enhanced Virtual Address (EVA) setting, which is one element of the proAptiv memory segmentation 
scheme.

Note that boot exception vector relocation is performed only in Kernel mode. For more information on placing the 
proAptiv core in kernel mode, refer to Section 3.17.4, "Kernel Mode".

3.7.1 Boot Configurations

In kernel mode, the proAptiv Multiprocessing System can be powered up in one of two address settings:

• Legacy setting

• Enhanced Virtual Address (EVA) setting

Legacy Setting

The legacy setting is the traditional boot mode followed by all MIPS processor prior to proAptiv, where the boot 
exception vector (BEV) is located at 0xBFC0_0000 in virtual address space, and maps to 0x1FC0_0000 in physical 
address space. An example of legacy mode is described in Section 3.7.3, "Mapping of the Boot Exception Vector in 
the Legacy Configuration". 

EVA Setting

In the EVA setting, the boot exception vector can be located anywhere in virtual address space and mapped to any-
where in physical address space. An example of an EVA configuration is described in Section 3.7.4, "Example 
Mapping of the Boot Exception Vector in the EVA Configuration". 

For more information on configuring the proAptiv Multiprocessing System in the Legacy and EVA settings, refer to 
Section 3.7.5.1, "Setting the Type of Memory Addressing Mode".

3.7.2 Pins Used to Support Boot Exception Vector Relocation

To facilitate the BEV overlay scheme, a number of pins were added to the proAptiv core that allow the user to select 
the boot overlay parameters at build time. The initial state of the default values selected by the user at build time are 
registered inside the Coherence Manager (CM2) block using two Global Configuration Registers (GCR). As shown 
in Figure 3.17, there are two GCR registers used per core. Each core has its own pair of GCR registers and its own set 
of BEV related pins. This allows each core to be programmed in a different manner and independently from one 
another.

The CM2 drives these values to the proAptiv cores at reset. Note that the two CGR registers are loaded only on a cold 
boot and are programmed with the values selected by the user at build time. Each of these pins is described in the fol-
lowing subsections.
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The boot exception vector relocation pins are described in Table 3.10. 

Table 3.10 proAptiv Boot Exception Vector Pins  

Pin Name
Field Size 

in Bits
CM2 GCR Register 

Mapping Description

SI_EVAReset 1 Bit 31 of the
Core-Local Reset 

Exception Extended Base 
Register

(offset = 0x0030)

If this pin is asserted at reset, the proAptiv core comes 
up in the EVA configuration. In this case the 
CONFIG5.K bit becomes read-only with a fixed value 
of 1 to indicate EVA as the addressing scheme. In addi-
tion, the SegCtl0 - SegCtl2 registers are configured 
with values that correspond to the EVA mapping.

If this pin is not asserted at reset, the proAptiv core 
comes up in the legacy setting. In this case the 
CONFIG5.K bit becomes read-write with an initial 
value of 0 to indicate legacy mode. This bit is modified 
by software when switching from legacy mode to EVA 
mode as described in Section 3.7.6, "Switching the 
Addressing Scheme from Legacy to EVA After Boot-
up".

This pin is used in both the legacy and EVA settings. 
There is one SI_EVAReset pin per core.

SI_UseExceptionBase 1 Bit 30 of the
Core-Local Reset 

Exception Extended Base 
Register

(offset = 0x0030)

In the legacy configuration, if the 
SI_UseExceptionBase pin is not asserted, then the 
BEV location defaults to 0xBFC0_0000. 

If the SI_UseExceptionBase pin is asserted, address 
bits SI_ExceptionBase[31:30] are forced to a value of 
2’b10 to force the BEV location into the KSEG0/
KSEG1 space.

This pin is only used in the legacy configuration. There 
is one SI_UseExceptionBase pin per core.

SI_ExceptionBaseMask[27:20] 8 Bits 27:20 of the
Core-Local Reset 

Exception Extended Base 
Register

(offset = 0x0030)

Used to determine the size of the boot exception vector 
overlay region from 1 MB to 256 MB in powers of two. 
These pins are used in both the legacy and EVA config-
urations. There is one set of SI_ExceptionBaseMask 
pins per core. 

SI_ExceptionBasePA[31:29] 3 Bits 3:1 of the
Core-Local Reset 

Exception Extended Base 
Register

(offset = 0x0030)

Upper physical address bits. The size of the overlay 
region defined by SI_ExceptionBaseMask[27:20] is 
remapped to a location in physical address space 
pointed to by the SI_ExceptionBasePA[31:29] pins. 
This allows the overlay region to be placed into one of 
the 512 MB segments in physical memory. These pins 
are used in both the legacy and EVA configurations. 
There is one set of SI_ExceptionBasePA pins per 
core. 
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3.7.3 Mapping of the Boot Exception Vector in the Legacy Configuration

In all MIPS processors prior to proAptiv, the boot exception vector (BEV) was located at a virtual address of 
0xBFC0_0000, and a corresponding physical address of 0x1FC0_0000. In addition, since both the Kernel Segment 1 
(KSEG1) and Kernel Segment 0 (KSEG0) virtual memory spaces mapped to the same physical address space, the 
contents of the BEV were duplicated at a virtual address of 0x9FC0_0000. This concept is shown in Figure 3.18.

SI_ExceptionBase[31:12] 20 Bits 31:12 of the
Core-Local Reset 

Exception Base Register
(offset = 0x0020)

The SI_ExceptionBase[31:12] pins define the boot 
address in virtual address space which is used to define 
the overlay region. These pins, along with the 
SI_ExceptionBaseMask[27:20] pins, determine the 
size and location of the BEV region within virtual 
address space.
Note that the CONFIG5.K CP0 register bit is used to 
determine which pins of the 
SI_ExceptionBase[31:12] address are used to calcu-
late the overlay as described in Section 3.7.5.1.
These pins are used in the EVA setting and can also be 
used in the legacy setting. There is one set of 
SI_ExceptionBase pins per core. 

Table 3.10 proAptiv Boot Exception Vector Pins(continued) 

Pin Name
Field Size 

in Bits
CM2 GCR Register 

Mapping Description
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2. Determine which virtual address bits will be used to calculate the boot exception vector base address. This func-
tion is described in Section 3.7.5.2, "Using the SI_UseExceptionBase Pin and CONFIG5.K to Determine How to 
Calculate the BEV Base Address".

3. Determine the size and location of the overlay region in virtual address space. This function is described in 
Section 3.7.5.3, "Determining the Size and Location of the Overlay Region in Virtual Address Space".

4. Determine the location of the overlay region in physical address space. This function is described in Section 
3.7.5.4, "Determining the Location of the Overlay Region in Physical Memory".

3.7.5.1 Setting the Type of Memory Addressing Mode

The SI_EVAReset pin, along with the CONFIG5.K bit, determines whether the addressing scheme is set to legacy or 
EVA at reset. 

Refer to Section 3.6.2.3, "Setting the Memory Addressing Scheme — SI_EVAReset and CONFIG5.K" for more 
information.

3.7.5.2 Using the SI_UseExceptionBase Pin and CONFIG5.K to Determine How to Calculate the BEV 
Base Address

The SI_UseExceptionBase pin and the CONFIG5.K register bit are also used to determine the addressing scheme 
and how the location of the boot exception vector will be calculated. The relationship between the 
SI_UseExceptionBase pin and the CONFIG5.K register is shown in Table 3.11. This table shows how to use the 
various address fields (SI_ExceptionBaseMask[27:20] and SI_ExceptionBase[31:12]) described in Section 
3.7.5.3, "Determining the Size and Location of the Overlay Region in Virtual Address Space". 

Table 3.11 SI_UseExceptionBase Pin and CONFIG5.K Encoding

CONFIG5.K Bit
SI_UseExceptionBase 

Pin Condition Action

0 0 Legacy Configuration
SI_ExceptionBase[31:12] pins are 
not used.

Use default BEV location of 0xBFC0_0000.

0 1 Legacy Configuration
Use only SI_ExceptionBase[29:12] 
for the BEV base location. Bits 31:30 
are forced to a value of 2’b10 to put the 
BEV vector into KSEG0/KSEG1 
virtual address space.

The BEV location is determined as follows:

SI_ExceptionBase[31:12] = 2’b10, 
SI_ExceptionBase[29:12] pins, 12’b0

Bits 31:30 are forced to a value of 2’b10 to 
put the BEV vector into KSEG0/KSEG1 
virtual address space.

1 Don’t care EVA Configuration
Use SI_ExceptionBase[31:12] pins.

The SI_ExceptionBase[31:12] pins are used 
directly to derive the BEV location. The 
SI_UseExceptionBase pin is ignored.
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3.7.5.3 Determining the Size and Location of the Overlay Region in Virtual Address Space

The starting location of the overlay region in virtual address space is defined using either the 
SI_ExceptionBase[31:12] pins, or the SI_ExceptionBase[29:12] pins depending on the state of the 
SI_UseExceptionBase pin and CONFIG5.K bit as described in Table 3.11 above. The size of the overlay region 
where the BEV is located is determined using the SI_ExceptionBaseMask[27:20] pins a shown in Table 3.12. 

Consider the following example:

• The location of the BEV is at 0xBFC0_0000

• The overlay size is 1 MB (SI_ExceptionBaseMask[27:20] = 00000000)

• The CONFIG5.K CP0 register bit is set

In this case the BEV segment would be located in virtual address space as shown in Figure 3.20.

Table 3.12 Encoding of SI_ExceptionBaseMask[27:20]

SI_ExceptionBaseMask[27:20] Segment Size

00000000 1 MB

00000001 2 MB

00000011 4 MB

00000111 8 MB

00001111 16 MB

00011111 32 MB

00111111 64 MB

01111111 128 MB

11111111 256 MB
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Figure 3.20 Size and Location of Overlay Region in Virtual Address Space — 1 MB Example

In the above example, the start of the BEV is aligned on a 1 MB boundary and therefore is at the start of the 1MB 
address space. This may not always be the case depending on the size of the overlay region as shown in Figure 3.21 
below.

In another example:

• The location of the BEV is at 0xBFC0_0000

• The overlay size is 16 MB (SI_ExceptionBaseMask[27:20] = 00001111)

• The CONFIG5.K CP0 register bit is set

In this case the BEV segment would be located in virtual address space as shown in Figure 3.21.

0xBFC0_0000

0xBFCF_FFFF
BEV Overlay

Segment

SI_ExceptionBase[31:12] = 0xBFC0_0000
indicates base address of BEV.

Boot Exception Vector

SI_ExceptionBaseMask[27:20] = 
00000000 indicates an overlay
of 1 MB. In this case the overlay
segment is aligned to the 1 MB
boundary surrounding the boot
exception vector.
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Figure 3.21 Size and Location of Overlay Region in Virtual Address Space — 16 MB Example

3.7.5.4 Determining the Location of the Overlay Region in Physical Memory

As described in the previous subsections, the SI_ExceptionBase[31:12] and SI_ExceptionBaseMask[27:20] 
fields are used to determine the size and location of the overlay within virtual address space. This segment of virtual 
memory is then remapped to physical memory at a location determined by the SI_ExceptionBasePA[31:29] pins. 
These pins divide the physical address space into a number of 512 MByte segments. For example, in a 4 GB physical 
address space, the space can be divided into eight 512 MByte segments. This concept is shown in Figure 3.22.

0xBF00_0000

0xBFFF_FFFF

BEV Overlay
SegmentSI_ExceptionBase[31:12] = 0xBFC0_0

indicates base address of the BEV

Boot Exception Vector0xBFC0_0000

SI_ExceptionBaseMask[27:20] = 
00001111 indicates an overlay
of 16 MB. In this case the overlay
segment is aligned on the 16 MB
boundary surrounding the boot
exception vector.
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Figure 3.22 Physical Address Space Segmentation Using SI_ExceptionBasePA[31:29] 

For example, assume that the boot exception vector resides at a virtual address of 0xBFC0_0000, and the size of the 
segment is 1 MB as determined by the SI_ExceptionBaseMask[27:20] pins. The physical memory size (amount of 
DRAM) is 2 GB, and the boot ROM that contains the BEV has been relocated to the top 512 MB of the 4 GB physical 
address space using the SI_ExceptionBasePA[31:29] pins, which selects the segment from 3.5 GB to 4.0 GB. The 
remapping of the boot exception vector would be as shown in Figure 3.23.

In this example, because the overlay region has been defined, the boot exception vector would be relocated to the 
same address space, regardless of whether the addressing scheme is legacy or EVA. In addition, the memory space 
that contains the BEV no longer need be shared with actual physical memory in the first 512 MB of memory space as 
with previous MIPS processors, thereby allowing for all of the memory to be contiguous and available to the user. 

0 - 0.5 GB

0.5 GB - 1.0 GB

1.0 GB - 1.5 GB

1.5 GB - 2.0 GB

2.0 GB - 2.5 GB

2.5 GB - 3.0 GB

3.0 GB - 3.5 GB

3.5 GB - 4.0 GB

SI_ExceptionBasePA[31:29] = 000

SI_ExceptionBasePA[31:29] = 001

SI_ExceptionBasePA[31:29] = 010

SI_ExceptionBasePA[31:29] = 011

SI_ExceptionBasePA[31:29] = 100

SI_ExceptionBasePA[31:29] = 101

SI_ExceptionBasePA[31:29] = 110

SI_ExceptionBasePA[31:29] = 111

Physical Address
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Table 3.13 SegCtl0 - SegCtl2 Register Settings in the Legacy Configuration

Register Bits Segment Size Name Definition Reset value

SegCtl0 (CFG0) [2:0] 0.5 GB
(3.5 - 4.0 GB)

CCA CFG0 Cache 
Coherency Attributes

Not defined since this is a mapped kernel 
region.

SegCtl0 (CFG0) [3] EU CFG0 Error 1'b0: CP0 Status.ERL ignored

SegCtl0 (CFG0) [6:4] AM CFG0 Region Type 3'b001: Mapped only kernel region. This 
is kseg3.

SegCtl0 (CFG0) [15:9] PA CFG 0 Physical Address 
Bits [35:29]

Not defined since it is a mapped region

SegCtl0 (CFG1) [18:16] 0.5 GB
(3.0 - 3.5 GB)

CCA CFG1 Cache 
Coherency Attributes

Not defined since this is a mapped kernel 
region.

SegCtl0 (CFG1) [19] EU CFG1 Error 1'b0: CP0 Status.ERL ignored

SegCtl0 (CFG1) [22:20] AM CFG1 Region Type 3'b010: Mapped Kernel/Supervisor region. 
This is kseg2/ksseg.

SegCtl0 (CFG1) [31:25] PA CFG1 Physical Address 
Bits [35:29]

Not defined since it is a mapped region

SegCtl1 (CFG2) [2:0] 0.5 GB
(2.5 - 3.0 GB)

CCA CFG2 Cache 
Coherency Attributes

0x2: Uncached

SegCtl1 (CFG2) [3] EU CFG2 Error 1'b0: CP0 Status.ERL ignored.

SegCtl1 (CFG2) [6:4] AM CFG2 Region Type 3'b000: Kernel unmapped region. This is 
kseg1.

SegCtl1 (CFG2) [15:9] PA CFG2 Physical Address 
Bits [35:29]

0x0: Points to 0.0 - 0.5 GB physical 
address region.

SegCtl1 (CFG3) [18:16] 0.5 GB
(2.0 - 2.5 GB)

CCA CFG3 Cache 
Coherency Attributes

0x3: Cacheable, noncoherent, write-back, 
write allocate

SegCtl1 (CFG3) [19] EU CFG3 Error 1'b0: CP0 Status.ERL ignored

SegCtl1 (CFG3) [22:20] AM CFG3 Region Type 3'b000: Kernel unmapped region. This is 
kseg0.

SegCtl1 (CFG3) [31:25] PA CFG3 Physical Address 
Bits [35:29]

0x0: Points to 0.0 - 0.5 GB physical 
address region.

SegCtl2 (CFG4) [2:0] 1.0 GB
(1.0 - 2.0 GB)

CCA CFG4 Cache 
Coherency Attributes

Not defined since it is a mapped region.

SegCtl2 (CFG4) [3] EU CFG4 Error 1'b1: CP0 Status.ERL bit set.

SegCtl2 (CFG4) [6:4] AM CFG4 Region Type 3'b011: Kernel/Supervisor/User mapped 
region. This is upper half of kuseg 
(0x4000_0000 - 0x7FFF_FFFF).

SegCtl2 (CFG4) [15:9] PA CFG4 Physical Address 
Bits [35:29]

7’b000001x: Points to 1.0 - 2.0 GB region.
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To make the transition from Legacy to EVA, software can execute the following steps. These steps are also called out 
in Figure 3.24.

1. Temporarily set bits 6:4 of the SegCtl0 register (CP0 Register 5, Select 2) to a value of 0x0, and bits 2:0 to a 
value of 0x2 to set the CFG0 region as kernel unmapped, uncached. This is shown as #1 in Figure 3.24.

2. Temporarily set bits 15:9 of the SegCtl0 register (CP0 Register 5, Select 2) to a value of 0x0 to map the CFG0 
segment to a PA (physical address) value of 0x0.

3. Unpack the boot code and copy it to the CFG0 virtual address space (3.5 GB - 4.0 GB). This is shown as #3 in 
Figure 3.24.

4. Jump to the boot code unpacked in step 3 and continue executing the bring-up code using a PC in the range of 3.5 
- 4.0 GB.

5. Initialize the caches.

6. Program all other segments other than segment 0 (since the code is currently executing out of the CFG0 segment) 
to the following. This is shown as #6 in Figure 3.24.

– CFG1: AM = 0x1. Mapped Kernel (MK)
– CFG2: AM = 0x4. Mapped User/Supervisor, Unmapped Kernel (MUSUK)
– CFG3: AM = 0x4. Mapped User/Supervisor, Unmapped Kernel (MUSUK)
– CFG4: AM = 0x4. Mapped User/Supervisor, Unmapped Kernel (MUSUK)
– CFG5: AM = 0x4. Mapped User/Supervisor, Unmapped Kernel (MUSUK)

7. Set the CONFIG5.K bit to enable the EVA addressing scheme. Note that the Segment Control registers must be set 
for EVA as shown in step 6 above before the CONFIG5.K bit is set.

8. Unpack the kernel code in the low address space (0.0 - 1.0 GB). This is shown as #8 in Figure 3.24.

9. Jump to the kernel code that was extracted in the previous step.

10. Set the SegCtl0 register to the values shown in Table 3.14 below. This is shown as #10 in Figure 3.24.

When set for EVA, the SegCtl0 - SegCtl2 registers should be programmed as shown in Table 3.14 below.

SegCtl2 (CFG5) [18:16] 1.0 GB
(0.0 - 1.0 GB)

CCA CFG5 Cache 
Coherency Attributes

Not defined since it is a mapped region.

SegCtl2 (CFG5) [19] EU CFG5 Error 1'b1: CP0 Status.ERL bit set.

SegCtl2 (CFG5) [22:20] AM CFG5 Region Type 3'b011: Kernel/Supervisor/User mapped 
region. This is the lower half of kuseg 
(0x0000_0000 - 0x3FFF_FFFF).

SegCtl2 (CFG5) [31:25] PA CFG5 Physical Address 
Bits [35:29]

7’b000000x: Points to 0.0 - 1.0 GB region.

Table 3.13 SegCtl0 - SegCtl2 Register Settings in the Legacy Configuration

Register Bits Segment Size Name Definition Reset value
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Table 3.14 New SegCtl0 - SegCtl2 Register Settings for the EVA Configuration

Register Bits Segment Size Name Definition Reset value

SegCtl0 (CFG0) [2:0] 0.5 GB
(3.5 - 4.0 GB)

CCA CFG0 Cache 
Coherency Attributes

3'bx - Not defined since it is a mapped 
region.

SegCtl0 (CFG0) [3] EU CFG0 Error 1'b0

SegCtl0 (CFG0) [6:4] AM CFG0 Region Type 3'h1 - Mapped kernel. This is the upper 512 
MB of the 1024 MB mapped kernel space
(3.5 - 4.0 GB).

SegCtl0 (CFG0) [15:9] PA CFG 0 Physical 
Address Bits [35:29]

7'hx - Not defined since it is a mapped 
region

SegCtl0 (CFG1) [18:16] 0.5 GB
(3.0 - 3.5 GB)

CCA CFG1 Cache 
Coherency Attributes

3'bx - Not defined since it is a mapped 
region

SegCtl0 (CFG1) [19] EU CFG1 Error 1'b0

SegCtl0 (CFG1) [22:20] AM CFG1 Region Type 3'h1 - Mapped kernel. This is the lower 512 
MB of the 1024 MB mapped kernel space
(3.0 - 3.5 GB).

SegCtl0 (CFG1) [31:25] PA CFG1 Physical 
Address Bits [35:29]

7'hx - Not defined since it is a mapped 
region

SegCtl1 (CFG2) [2:0] 0.5 GB
(2.5 - 3.0 GB)

CCA CFG2 Cache 
Coherency Attributes

3'b3 - WB

SegCtl1 (CFG2) [3] EU CFG2 Error 1'b1

SegCtl1 (CFG2) [6:4] AM CFG2 Region Type 3'b4 - MUSUK. Mapped user/supervisor, 
unmapped kernel. This is the upper 512 
MB of the 3072 MB MUSUK space 
(2.5 - 3.0 GB).

SegCtl1 (CFG2) [15:9] PA CFG2 Physical 
Address Bits [35:29]

7'h5 - 0xA000_0000 - 0xBFFF_FFFF 
(2.5 - 3.0 GB)

SegCtl1 (CFG3) [18:16] 0.5 GB
(2.0 - 2.5 GB)

CCA CFG3 Cache 
Coherency Attributes

3'h3 - WB

SegCtl1 (CFG3) [19] EU CFG3 Error 1'b1

SegCtl1 (CFG3) [22:20] AM CFG3 Region Type 3'h4 - MUSUK. Mapped user/supervisor, 
unmapped kernel. This is the next 512 MB 
of the 3072 MB MUSUK space 
(2.0 - 2.5 GB).

SegCtl1 (CFG3) [31:25] PA CFG3 Physical 
Address Bits [35:29]

7'h4 - 0x8000_0000 - 0x9FFF_FFFF 
(2.0 - 2.5 GB)
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3.8 Indexing the VTLB and FTLB

In the proAptiv core, the VTLB is 64 dual entries, and the FTLB is 512 dual entries. The FTLB is a build-time config-
uration option. If the FTLB is implemented and enabled, a 10-bit value is used to index all 576 dual entries of the 
VTLB and FTLB. If the FTLB is not implemented or not enabled, a 6-bit value is used to index the 64 dual entries of 
the VTLB. This is shown in Figure 3.25. This value is stored in the Index register (CP0 register 0, Select 0). 

Figure 3.25 Index Register Format Depending on TLB Size   

The Index register determines which TLB entry is accessed by a TLBWI instruction. This register is also used for the 
result of a TLBP instruction (used to determine whether a particular address was successfully translated by the CPU). 
Note that a TLBP instruction which fails to find a match for the specified virtual address sets bit 31 of Index register. 

SegCtl2 (CFG4) [2:0] 1.0 GB
(1.0 - 2.0 GB)

CCA CFG4 Cache 
Coherency Attributes

3'h3 - WB

SegCtl2 (CFG4) [3] EU CFG4 Error 1'b1

SegCtl2 (CFG4) [6:4] AM CFG4 Region Type 3'h4 - MUSUK. Mapped user/supervisor, 
unmapped kernel. This is the next 1024 
MB of the 3072 MB MUSUK space 
(1.0 - 2.0 GB).

SegCtl2 (CFG4) [15:9] PA CFG4 Physical 
Address Bits [35:29]

7'h2 - 0x4000_0000 - 0x7FFF_FFFF 
(1.0 - 2.0 GB)

SegCtl2 (CFG5) [18:16] 1.0 GB
(0.0 - 1.0 GB)

CCA CFG5 Cache 
Coherency Attributes

3'h3 - WB

SegCtl2 (CFG5) [19] EU CFG5 Error 1'b1

SegCtl2 (CFG5) [22:20] AM CFG5 Region Type 3'h4 - MUSUK. Mapped user/supervisor, 
unmapped kernel. This is the low-order 
1024 MB of the 3072 MB MUSUK space 
(0.0 - 1.0 GB).

SegCtl2 (CFG5) [31:25] PA CFG5 Physical 
Address Bits [35:29]

7'h0 - 0x0000_0000 - 0x3FFF_FFFF 
(0.0 - 1.0 GB)

31 30 6 5 0

P 0 Index
(VTLB only)

31 30 10 9 0

P 0 Index
(VTLB + FTLB)

Table 3.14 New SegCtl0 - SegCtl2 Register Settings for the EVA Configuration(continued)

Register Bits Segment Size Name Definition Reset value
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Depending on the instruction being executed, hardware may or may not report a parity error for the tag and/or data 
array of the FTLB. Table 3.16 lists each TLB instruction and whether parity errors are logged for the data and tag 
arrays. 

3.12 FTLB Hashing Scheme and the TLBWI Instruction

When a TLBWI instruction is executed, the following hashing scheme is used to calculate the FTLB index from the 
VPN2 field of the EntryHi register and the Index field of the Index register. This scheme is used only when the 
EntryHiEHINV bit is 0. When EntryHiEHINV = 1, hashing is ignored and the indexing of the FLTB is performed entirely 
in hardware.

When the EntryHiEHINV bit is 0, the VPN2 field in the EntryHi register must be consistent with the index value stored 
in the 10-bit Index field of the CP0 Index register. This field is used to index the total number of entries in the TLB, 
which equates to 64 entries in the VTLB and 512 entries in the FTLB for a total of 576 entries. To determine the size 
of the FTLB, hardware subtracts the VTLB size, which is always 64 entries, from the total number of entries (576) to 
derive an FTLB size of 512 entries. This number of entries is indexed by the lower 9 bits of the 10-bit Index field.

When the core is configured with an FTLB, the lower 9 bits of the Index field are organized as follows:

• Bits 6:0 = FTLB set

• Bits 8:7 = FTLB way

The FTLB set reflected in bits 6:0 of the Index field of the Index register (IndexIndex) must be the same as the set num-
ber calculated from the VPN2 field of the EntryHi register (EntryHiVPN2). 

For a 4 KByte page size, the set number is calculated by performing an Exclusive OR (XOR) function of bits [26:20] 
and bits [19:13] of the EntryHiVPN2 field. 

For a 16 KByte page size, the set number is calculated by performing an Exclusive OR (XOR) function of bits 
[28:22] and bits [21:15] of the EntryHiVPN2 field. 

Table 3.16 FLTB Parity Error Reporting per Instruction

Instruction

Parity Error Checked?

FTLB Data Array FTLB Tag Array

TLBINV No Yes

TLBINVF No No

TLBR Yes Yes

TLBWI No
EntryHiEHINV = 1

No
EntryHiEHINV = 1

No
EntryHiEHINV = 0

Yes
EntryHiEHINV = 0

TLBWR No Yes

TLBP Yes Yes

Lookup
(ITLB or DTLB miss)

Yes Yes
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3.13 TLB Exception Handling

The proAptiv core allows for the following types of TLB exceptions. 
• Address error (AdEL or AdES)
• TLB Refill
• TLB (TLBL, TLBS)
• TLB Read Inhibit (TLBRI)
• TLB Execute Inhibit (TLBXI)
• TLB Modified
• FTLB Parity

The Address Error exceptions (AdEL and AdES) are used in both user mode and supervisor mode. 
• On a load in user mode, an AdEL exception is taken when the user does not have permission for the load 

address being accessed. 
• On a store in user mode, an AdES exception is taken when the user does not have permission for the store 

address being accessed. 
• On a load in supervisor mode, an AdEL exception is taken when the supervisor does not have permission for 

the load address being accessed. 
• On a store in supervisor mode, an AdES exception is taken when the supervisor does not have permission for 

the store address being accessed.

The TLB Refill exception is taken on any TLB miss regardless of the operating mode. 

The TLB exceptions (TLBL and TLBS) are taken under the following conditions. 
• TLBL exception: On a load in any mode, there is a TLB hit, but the valid bit for that TLB entry is not set.
• TLBS exception: On a store in any mode, there is a TLB hit, but the valid bit for that TLB entry is not set.

The TLB Read Inhibit exception (TLBRI) is taken when there is a TLB hit during a read operation, the RI bit of the 
entry is set, and the PageGrainEIC bit is set. If the PageGrainEIC bit is cleared, a TLBL exception is taken.

The TLB Execute Inhibit exception (TLBXI) is taken when there is a TLB hit during an instruction fetch, the XI bit of 
the entry is set, and the PageGrainEIC bit is set. If the PageGrainEIC bit is cleared, a TLBL exception is taken.

A TLB Modified exception is taken whenever there is a TLB hit and the Dirty bit associated with that entry is not set.

A FTLB Parity exception is taken whenever a parity error occurs on an FTLB read. The FTLB parity exception is 
taken only when bit 31 of the CP0 Error Control register (ErrCtl.PE) is set. If this bit is cleared, FTLB parity errors are 
ignored.

Note that for the CacheOp and SyncI instructions, the TLBRI and TLBXI exceptions are not supported.
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3.13.1 Overview of TLB Exception Handling Registers

The proAptiv core uses three CP0 registers to manage TLB exceptions. The exception flow in terms of these registers 
is described in Section 3.13.2, "TLB Exception Flow Examples".

• Context (CP0 register 4, Select 0): Contains the pointer to an entry in the page table entry (PTE) array.
• ContextConfig (CP0 register 4, Select 1): Defines the range of bits used by the Context register into which 

the high order bits of the virtual address causing the TLB exception will be written depending on the page 
size.

• BadVAddr (CP0 register 8, Select 0): Stores the virtual address that caused the exception.

3.13.1.1 Context Register

The Context register is a read/write register containing a pointer to an entry in the page table entry (PTE) array. When 
a TLB exception is taken, hardware performs the bit shifting and manipulation of the value stored in the BadVAddr 
register and places the result into the BadVPN2 field of the Context register. This eliminates software from having to 
perform this function manually.

A TLB exception causes the virtual address to be written to a variable range of bits, defined as (X-1):Y of the Context 
register. This range corresponds to the contiguous range of set bits in the ContextConfig register. Bits 31:X, Y-1:0 are 
read/write to software and are unaffected by the exception. Software sets the ContextConfigPTEBase field to point to 
the base address of a page table in memory. The ContextConfigBadVPN2 is derived from the virtual address associated 
with the exception. 

Figure 3.29 shows the format of the Context register. Refer to Section 3.13.2, "TLB Exception Flow Examples" for 
more information on the usage of this register.

Figure 3.29 Context Register Format  

3.13.1.2 ContextConfig Register

The ContextConfig register defines the bits of the Context register into which the high order bits of the virtual address 
causing a TLB exception will be written (BadVPN2), and how many bits of that virtual address will be extracted. In 
the Context register, bits above the selected BadVPN2 field are read/write to software and serve as the PTEBase field. 
Bits below the selected BadVPN2 field serve as the PTEBaseLow field.

Software writes a set of contiguous ones to the ContextConfigVirtualIndex field. Hardware then determines which bits of 
this register are high and low. The highest order bit that is a logic ‘1’ serves as the MSB of the BadVPN2 field of the 
Context register. The lowest order bit that is a logic ‘1’ serves as the LSB of the BadVPN2 field of the Context regis-
ter. A value of all zero’s in the VirtualIndex field means that the full 32 bits of the Context register are R/W for soft-
ware and are unaffected by TLB exceptions.

A value of all ones in the ContextConfigVirtualIndex field means that the full 21 bits of the faulting virtual address will 
be copied into the context register, making it duplicate the BadVAddr register. A value of all zeroes means that the full 
32 bits of the Context register are R/W for software and unaffected by TLB exceptions.

Figure 3.30 shows the formats of the ContextConfig Register. Refer to Section 3.13.2, "TLB Exception Flow 
Examples" for more information on use of the this register.

31 X X-1 Y Y-1 0

PTEBase BadVPN2 PTEBaseLow
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Figure 3.30 ContextConfig Register Format 

It is permissible to implement a subset of the ContextConfig register, in which some number of bits are read-only and 
set to one or zero as appropriate. It is possible for software to determine which bits are implemented by alternately 
writing all zeroes and all ones to the register, and reading back the resulting values. Table 3.17 describes some useful 
ContextConfig values. In this table, note that for a page table entry size of 32 bits per page, a total of 64 bits are copied 
from memory to support the dual-entry structure of the VTLB/FTLB. In this case, the lower 32 bits would be copied 
to entry 0 of the dual entry structure, and the upper 32 bits would be copied to entry 1 of the structure. The same is 
true for a page table with 64 bits per page. In this case, 128 bits would be fetched from memory.

3.13.1.3 BadVAddr Register

The BadVAddr is a 32-bit read-only register which holds the virtual address which caused the last address-related 
exception. It is set for the exception types shown at the beginning of Section 3.13, "TLB Exception Handling".

Note that the BadVAddr register does not capture address information for cache or bus errors, since they are not 
addressing errors.

Figure 3.31 BadVAddr Register Format

3.13.2 TLB Exception Flow Examples

The following two examples show the flow of a TLB exception for the single level and dual level page table configu-
rations.

3.13.2.1 Single Level Table Configuration

When a VTLB/FTLB error occurs, hardware writes the most recent virtual address that caused the error into bits 31:0 
of the read-only BadVAddr register. The number of bits used by hardware to index the page table depends on the page 
size. For example, with a 4 KByte page size, hardware uses bits 31:13 of the BadVAddr register, along with the 
PTEBase field of the Context register, to determine the address that caused the exception.

Hardware assembles this information and places the result into the Context register. Use of the Context and 
ContextConfig registers eliminates software from having to derive the page table index manually. Depending on the 
page table architecture, software programs the ContextConfig register to indicate how many bits of the BadVAddr reg-

31 23 22 2 1 0

0 VirtualIndex 0

Table 3.17 Example ContextConfig Values — Single Level Page Table Organization

Value
Page Table 

Organization Page Size
Page Table 
Entry Size Memory Structure

0x007F_FFF0 Single Level 4K 64 bits/page 128-bit

0x003F_FFF8 Single Level 4K 32 bits/page 64-bit

31 0

BadVAddr
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ister are used by hardware to program the Context register. This determines the size of both the ContextBadVPN2 and 
ContextPTEBase fields. 

The example shown in Figure 3.32 is for a single level table configuration with a 4 KByte page size and 32 bits per 
page. 

When an exception is taken, hardware writes the address that caused the exception into the BadVAddr register. 
Because the page table is single level and the page size is already known to be 4 KBytes, software programs a value 
of 0x3F_FFF8 into the ContextConfigVirtualIndex field. This value indicates the following information:

• The lower three bits of this value are 0, indicating that a 64-bit memory structure is being accessed. For this 
64-bit value, the lower 32 bits are written to the entry 0 of the dual-entry TLB, and the upper 32 bits are writ-
ten to entry 1 of the same TLB entry. Since the lower 3 bits of this field are zero, bit 3 (the first bit that is set) 
is used to define the low-order bit of the BadVPN2 field in the Context register. 

• The highest-order bit that is 1 in this field is bit 21. This indicates that bit 21 is the last bit of the BadVPN2 
field in the Context register. As a result, the PTEBase field of the Context register occupies bits 31:22. 

Based on this information, hardware assembles the value in the Context register as follows:
• ContextPTEBase = bits 31:22. Indicates the base address of the page table in memory. This 10-bit value is a 

pointer to the start of the page table in memory.
• ContextBadVPN2 = bits 21:3. Hardware copies bits 31:13 of the BadVAddr register into this field. This 19-bit 

value is a pointer for up to 1M entries in each page table selected by the ContextPTEBase field. Bits 12:0 of 
the BadVAddr register are not used in this case since the page size is 4 KBytes.

• ContextPTEBaseLow = bits 2:0. Indicates access to a 64-bit memory location.
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The example shown in Figure 3.33 is for a dual level table configuration with a 4 KByte page size and 32 bits per 
page. 

When an exception is taken, hardware writes the address that caused the exception into the 32-bit BadVAddr register. 
Because each table in this example contains 1K entries, software programs a value of 0x00_0FFC into the 
ContextConfigVirtualIndex field. This value indicates the following information:

• The lower two bits of this value are 0, indicating that a 32-bit memory structure is being accessed. This also 
indicates that bit 2 will be the low-order bit for the ContextBadVPN2 field.

• The highest-order bit that is ‘1’ in the ContextConfigVirtualIndex field is bit 11. This indicates that bit 11 will be 
the highest-order bit of the ContextBadVPN2 field. As a result, the ContextPTEBase field occupies bits 31:12. 
This field is used to access the location of the root level page table in memory.

Based on this information, hardware assembles the context register as follows:
• ContextPTEBase = bits 31:12. Indicates the base address of the page table in memory. This 20-bit value is a 

pointer to the root page table in memory.
• ContextBadVPN2 = bits 11:2. Based on the state of the ContextConfigVirtualIndex field in this example, hardware 

copies bits 31:22 of the BadVAddr register into this field. This 10-bit value is a pointer to the 1024 entries in 
the root page table selected by the ContextPTEBase field. Bits 12:0 of the BadVAddr register are not used in 
this case since the page size is 4 KBytes.

• ContextPTEBaseLow = bits 1:0. Indicates access to a 32-bit memory location.

As stated above, bits 31:22 of the BadVAddr register are copied into the BadVPN2 field of the Context register and are 
used to select one of 1024 entries in the root page table. Each of these entries acts as a pointer to one of the 1024 sec-
ond level tables. Software uses bits 21:13 of the BadVAddr register to index one of 1024 entries in each second level 
page table.This concept is shown in Figure 3.33.
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4. Set the EntryHiEHINV bit to indicate that TLBWI invalidate is enabled. When this bit is set, the TLBWI instruction 
acts as a TLB invalidate operation, setting the hardware valid bit associated with the TLB entry to the invalid 
state. This bit is ignored on a TLBWR instruction. Refer to the EntryHi register in the chapter entitled CP0 Regis-
ters of the proAptiv Core for more information.

5. Write all zero’s to the EntryLo0 and EntryLo1 registers to initialize them. Refer to the EntryLo0 and EntryLo1 reg-
isters in the chapter entitled CP0 Registers of the proAptiv Core for more information.

6. Write the appropriate TLB size to the IndexINDEX field. The value written depends on whether or not an FTLB is 
present. If the FTLB is not present, a value of 0x3F is programmed into the lower 6 bits of this register. If the 
FTLB is present, a value of 0x1FF is programmed into the lower 10 bits of this register and indicates a total of 
576 entries (64 VTLB + 512 FTLB). Refer to the Index register in the chapter entitled CP0 Registers of the 
proAptiv Core for more information.

3.15.2 TLB Initialization Code

The following code snippet can be used to initialize the VTLB and FTLB.

**************************************************************

/* ... at this point, t0 = index of highest tlb entry in jtlb or ftlb if present */

/*    initialize EntryHi.EHINV=1 */

        li      t1, M_EntryHiEHINV
mtc0    t1, C0_EntryHi         # set EntryHi.EHINV=1

/* initialize EntryLo0/1 to avoid x's in simulation */

        mtc0     zero, C0_EntryLo0
mtc0     zero, C0_EntryLo1

/*    invalidate each entry */

10:    mtc0      t0, C0_Index         # Store new index in register
tlbwi                          # Initialize the TLB entry
bne    t0, zero, 10b           # Loop if more to do
addi    t0, t0, -1             # Subtract one from index field

/* clear out EHINV bit again */

        mtc0   zero,C0_EntryHi

**************************************************************

3.16 TLB Duplicate Entries

The VTLB/FTLB entries come up in a random state on power-up and must be initialized by hardware before use. 
Typically, bootstrap software initializes each entry in the TLB. Since the VTLB is a fully-associative array and entries 
are written by index, it is possible to load duplicate entries, where two or more entries match the same virtual address/
ASID. 
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If duplicate entries are detected on a TLB write, no machine check is generated and the older entries are just invali-
dated. The new entry gets written. When writing to the TLB, all ways of a single set in the FTLB and all the entries of 
the VTLB are searched for duplicates. If a large page is written to the VTLB and multiple duplicates exist for that 
larger page in the FTLB (multiple sets in the FTLB), then not all the duplicates are detected (and invalidated). 

3.17 Modes of Operation

The MMU’s virtual-to-physical address translation is determined by the mode in which the processor is operating. 
The proAptiv core operates in one of four modes: 

• User mode

• Supervisor mode 

• Kernel mode

• Debug mode

User mode is most often used for application programs. Supervisor mode is an intermediate privilege level with 
access to an additional region of memory and is only supported with the TLB-based MMU. Kernel mode is typically 
used for handling exceptions and privileged operating system functions, including CP0 management and I/O device 
accesses. Debug mode is used for software debugging and usually occurs within a software development tool. 

3.17.1 Virtual Memory Segments

The proAptiv architecture supports the following virtual memory schemes.
• Traditional MIPS32 virtual address space, which contains fixed address ranges for the various user and ker-

nel segments.
• Enhanced Virtual Address (EVA) mode that allows the kernel and user address spaces to be programmed to 

different sizes depending on the needs of the application.

Table 3.18 Selecting the Addressing Mode

Mode

Status Debug

DescriptionEXL ERL KSU DM

User 0 0 2’b2 0 User addressing mode. In this mode, a TLB miss 
goes to the TLB Refill Handler.

Supervisor 0 0 2’b1 0 Supervisor addressing mode. In this mode, a TLB 
miss goes to the TLB Refill Handler.

Kernel x x 2’b0 0 Kernel addressing mode. In this mode, a TLB miss 
goes to the TLB Refill Handler.

x 1 x 0 Kernel addressing mode. In this mode, a TLB miss 
goes to the TLB Refill Handler.

1 x x 0 Kernel addressing mode. In this mode, a TLB miss 
goes to the general exception handler as opposed to 
the TLB Refill handler.

Debug x x x 1 Debug mode.
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MIPS32 Virtual Address Space — Legacy Addressing Scheme

In the legacy mode, the MIPS32 architecture supports a 4 GByte virtual address space that is partitioned into a num-
ber of segments, each characterized by a set of attributes defined by hardware and software. The virtual memory seg-
ments are different depending on the mode of operation. Figure 3.36 shows the segmentation for the 4 GByte (232 
bytes) virtual memory space, addressed by a 32-bit virtual address, for each of the four modes.

User mode accesses are limited to a subset of the virtual address space (0x0000_0000 to 0x7FFF_FFFF) and can be 
inhibited from accessing CP0 functions. In User mode, virtual addresses 0x8000_0000 to 0xFFFF_FFFF are invalid 
and cause an exception if accessed. Supervisor mode adds access to sseg (0xC000_0000 to 0xDFFF_FFFF). kseg0, 
kseg1, and kseg3 will still cause exceptions if they are accessed. In Kernel mode, software has access to the entire 
address space, as well as all CP0 registers. 

Debug mode is entered on a debug exception. While in Debug mode, the debug software has access to the same 
address space and CP0 registers as Kernel mode. In addition, while in Debug mode, the CPU has access to the debug 
segment (dseg). This area overlays part of the kernel segment kseg3. Access to dseg in Debug mode can be turned on 
or off, allowing full access to the entire kseg3 in Debug mode, if so desired.
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Figure 3.36 Virtual Memory Map — Legacy Mode

MIPS32 Virtual Address Space — EVA Addressing Scheme

In the EVA addressing scheme, the MIPS32 architecture supports a 4 GByte virtual address space that is partitioned 
into a number of programmable segments using the SegCtl0 through SegCtl2 registers. The EVA scheme is described 
in Section 3.6, "Enhanced Virtual Address". The virtual memory segments are different depending on the mode of 
operation and the programming of these registers. 

Figure 3.37 shows an example segmentation for the 4 GByte (232 bytes) virtual memory space, with the kernel and 
user segments being defined as 3 GB in size. Note that is only and example and the sizes of these memory segments 
can be increased or decreased depending on the needs of the application.
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Figure 3.37 Virtual Memory Map — EVA Mode, 3GB xkseg0 Example

Segments can be mapped or unmapped, as described in the following subsections. 

3.17.1.1 Unmapped Segments

An unmapped segment does not use the TLB to translate virtual to physical addresses. Especially after reset, it is 
important to have unmapped memory segments, because the TLB is not yet programmed to perform the translation. 
Unmapped segments have a simple translation from virtual to physical address. 

Except for kseg0, unmapped segments are always uncached. The cacheability of kseg0 is set in the K0 field of the 
CP0 Config register.

User Mode Kernel Mode Debug ModeVirtual Address
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Figure 3.40 Supervisor Mode Virtual Address Space 

The supervisor user segment begins at address 0x0000_0000 and ends at address 0x7FFF_FFFF. The supervisor seg-
ment begins at 0xC000_0000 and ends at 0xDFFF_FFFF. Accesses to all other addresses in Supervisor mode cause 
an address error exception.

The processor operates in Supervisor mode when the Status register contains the following bit values:

• KSU = 2’b01

• EXL = 0

• ERL = 0

In addition to the above values, the DM bit in the Debug register must be 0.

Address Error
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Table 3.19 lists the characteristics of the Supervisor mode segments in the legacy. 

The system maps all references to suseg and sseg through the TLB. The virtual address is extended with the contents 
of the 8-bit ASID field to form a unique virtual address before translation. Also, bit settings within the TLB entry for 
the page determine the cacheability of a reference.

3.17.3.2 Supervisor Mode — EVA Configuration

In the supervisor mode - EVA configuration, the virtual address spaces are called the supervisor user segment (suseg), 
and the supervisor segment (sseg). The size of each field depends on the programming of the segment control regis-
ters. Figure 3.41 shows an example of a 3GB supervisor user segment (suseg), and a 512MB supervisor segment 
(sseg).

Figure 3.41 Supervisor Mode Virtual Address Space — EVA Configuration

Table 3.19 Supervisor Mode Segments — Legacy Configuration

Address-Bit 
Value

Status Register

Segment
Name Address Range Segment Size

Bit Value

EXL ERL UM SM

32-bit
A(31) = 0

0 0 0 1 suseg 0x0000_0000 --> 
0x7FFF_FFFF

2 GByte
(231 bytes)

32-bit
A(31:29) = 3’b110

0 0 0 1 sseg 0xC000_0000 ->
0xDFFF_FFFF

512MB
(229 bytes)

suseg

sseg

kseg3

Mapped, 3072MB

Supervisor virtual address space
Mapped, 512MB

Address Error

0x0000_0000

0xC000_0000

0xE000_0000

0xBFFF_FFFF

0xDFFF_FFFF

0xFFFF_FFFF
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The supervisor user segment begins at address 0x0000_0000 and ends at address 0xBFFF_FFFF. The supervisor seg-
ment begins at 0xC000_0000 and ends at 0xDFFF_FFFF. Accesses to all other addresses in Supervisor mode cause 
an address error exception.

Note that the sseg segment is programmed when the bits 17:14 of the SegCtl0 register contains a value of 0x2. This 
causes the address range of 0xC000_0000 to 0xDFFF_FFFF to be mapped in supervisor space. However, while in 
supervisor mode, where 0x0000_0000 - 0xBFFF_FFFF is defined as the suseg segment, the 0xC000_0000 to 
0xDFFF_FFFF address range can be configured as kernel mapped. This occurs when 17:14 of the SegCtl0 register 
contains a value of 0x1. Refer to Table 3.6 and Table 3.7 for more information.

3.17.4 Kernel Mode

In kernel mode, two uniform virtual address spaces are available, legacy and EVA. The size of these spaces depends 
on the addressing mode used as described below.

3.17.4.1 Kernel Mode — Legacy Configuration

The processor operates in Kernel mode when the DM bit in the Debug register is 0 and the Status register contains one 
or more of the following values:

• KSU = 2’b00

• ERL = 1

• EXL = 1

When a non-debug exception is detected, EXL or ERL will be set and the processor will enter Kernel mode. At the end 
of the exception handler routine, an Exception Return (ERET) instruction is generally executed. The ERET instruc-
tion jumps to the Exception PC, clears ERL, and clears EXL if ERL=0. This may return the processor to User mode. 

In Kernel mode, a program has access to the entire virtual address space. Kernel mode virtual address space is divided 
into regions differentiated by the high-order bits of the virtual address, as shown in Figure 3.42. The characteristics of 
kernel-mode segments are listed in Table 3.20. 

The CPU enters Kernel mode both at reset and when an exception is recognized.
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Figure 3.42 Kernel Mode Virtual Address Space — Legacy Configuration  

Table 3.20 Kernel Mode Segments

Address-Bit Values

Status Register Is 
One of These Values

Segment 
Name Address Range

Segment
SizeKSU EXL ERL

A(31) = 0 (KSU = 002
or

EXL = 1
or

ERL = 1)
and

DM = 0

kuseg 0x0000_0000
through

0x7FFF_FFFF

2 GBytes (231 bytes)

A(31:29) = 3’b100 kseg0 0x8000_0000
through

0x9FFF_FFFF

512 MBytes (229 bytes)

A(31:29) = 3’b101 kseg1 0xA000_0000
through

0xBFFF_FFFF

512 MBytes (229 bytes)

A(31:29) = 3’b110 ksseg/kseg2 0xC000_0000
through

0xDFFF_FFFF

512 MBytes (229 bytes)

A(31:29) = 3’b111 kseg3 0xE000_0000
through

0xFFFF_FFFF

512 MBytes (229 bytes)

Kernel virtual address space
Unmapped, 512MB

kuseg

kseg0

kseg1

ksseg/kseg2

kseg3

Mapped, 2048MB

Kernel virtual address space
Unmapped, Uncached, 512MB

Kernel virtual address space
Mapped, 512MB

Kernel virtual address space
Mapped, 512MB

0x0000_0000

0x8000_0000

0xA000_0000

0xC000_0000

0xE000_0000

0x7FFF_FFFF

0x9FFF_FFFF

0xBFFF_FFFF

0xDFFF_FFFF

0xFFFF_FFFF
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Kernel Mode, User Space (kuseg)

In Kernel mode, when the most-significant bit of the virtual address (A31) is cleared, the 32-bit kuseg virtual address 
space is selected and covers the full 231 bytes (2 GBytes) of the current user address space mapped to addresses 
0x0000_0000 - 0x7FFF_FFFF. For cores with TLBs, the virtual address is extended with the contents of the 8-bit 
ASID field to form a unique virtual address.

When ERL = 1 in the Status register, the user address region becomes a 231-byte unmapped and uncached address 
space. While in this setting, the kuseg virtual address maps directly to the same physical address, and does not include 
the ASID field.

Kernel Mode, Kernel Space 0 (kseg0)

In Kernel mode, when the most-significant three bits of the virtual address are 3’b100, 32-bit kseg0 virtual address 
space is selected; it is the 229-byte (512-MByte) kernel virtual space located at addresses 0x8000_0000 - 
0x9FFF_FFFF. References to kseg0 are unmapped; the physical address selected is defined by subtracting 
0x8000_0000 from the virtual address. The K0 field of the Config register controls cacheability.

Kernel Mode, Kernel Space 1 (kseg1)

In Kernel mode, when the most-significant three bits of the 32-bit virtual address are 3’b101, kseg1 virtual address 
space is selected. kseg1 is the 229-byte (512-MByte) kernel virtual space located at addresses 0xA000_0000 - 
0xBFFF_FFFF. References to kseg1 are unmapped; the physical address selected is defined by subtracting 
0xA000_0000 from the virtual address. Caches are disabled for accesses to these addresses, and physical memory (or 
memory-mapped I/O device registers) are accessed directly.

Kernel Mode, Kernel/Supervisor Space 2 (ksseg/kseg2)

In Kernel mode, when KSU = 2’b00, ERL = 1, or EXL = 1 in the Status register, and DM = 0 in the Debug register, and 
the most-significant three bits of the 32-bit virtual address are 3’b110, 32-bit kseg2 virtual address space is selected. 
With the FM MMU, this 229-byte (512-MByte) kernel virtual space is located at physical addresses 0xC000_0000 - 
0xDFFF_FFFF. Otherwise, this space is mapped through the TLB.

Kernel Mode, Kernel Space 3 (kseg3)

In Kernel mode, when the most-significant three bits of the 32-bit virtual address are 3’b111, the kseg3 virtual address 

space is selected. With the FM MMU, this 229-byte (512-MByte) kernel virtual space is located at physical addresses 
0xE000_0000 - 0xFFFF_FFFF. Otherwise, this space is mapped through the TLB.

3.17.4.2 Kernel Mode — EVA Configuration

In the kernel mode - EVA configuration, the size of each kernel virtual address segment depends on the programming 
of the segment control registers. Figure 3.41 shows an example of a 3GB xkseg0 segment (suseg), a 512MB kernel 
supervisor segment (ksseg), and a 512MB kernel segment 3 (kseg3).
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dseg is subdivided into the dmseg segment at 0xFF20_0000 to 0xFF2F_FFFF, which is used when the debug probe 
services the memory segment, and the drseg segment at 0xFF30_0000 to 0xFF3F_FFFF, which is used when mem-
ory-mapped debug registers are accessed. The subdivision and attributes of the segments are shown in Table 3.21.

Accesses to memory that would normally cause an exception in kernel mode cause the CPU to re-enter debug mode 
via a debug-mode exception. This includes accesses usually causing a TLB exception, with the result that such 
accesses are not handled by the usual memory-management routines.

The unmapped kseg0 and kseg1 segments from kernel-mode address space are available in debug mode, which 
allows the debug handler to be executed from uncached, unmapped memory. 

3.17.5.1 Debug Mode, Register (drseg)

The behavior of CPU access to the drseg address range at 0xFF30_0000 to 0xFF3F_FFFF is determined as shown in 
Table 3.22 

Debug software is expected to read the Debug Control register (DCR) to determine which other memory-mapped reg-
isters exist in drseg. The value returned in response to a read of any unimplemented memory-mapped register is 
unpredictable, and writes are ignored to any unimplemented register in drseg. For more information about the DCR, 
refer to Chapter 14, “EJTAG Debug Support”.

The allowed access size is limited for the drseg. Only word-size transactions are allowed. Operation of the processor 
is undefined for other transaction sizes.

Table 3.21 Physical Address and Cache Attributes for dseg, dmseg, and drseg 

Segment 
Name

Sub-Segment 
Name

Virtual 
Address Generates Physical Address

Cache 
Attribute

dseg dmseg 0xFF20_0000
through

0xFF2F_FFFF

dmseg maps to addresses 0x0_0000 - 
0xF_FFFF in EJTAG probe memory 
space. 
drseg maps to the breakpoint registers 
0x0_0000 - 0xF_FFFF

Uncached

drseg 0xFF30_0000
through

0xFF3F_FFFF

Table 3.22 CPU Access to drseg

Transaction
LSNM Bit in Debug 

Register Access

Load / Store 1 Kernel mode address space (kseg3)

Fetch Don’t care drseg, see comments below

Load / Store 0
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3.17.5.2 Debug Mode, Memory (dmseg)

The conditions for CPU accesses to the dmseg address range (0xFF20_0000 to 0xFF2F_FFFF) are shown in Table 
3.23.

An attempt to access dmseg when the ProbEn bit in the DCR register is 0 should not happen, because debug software 
is expected to check the state of the ProbEn bit in DCR register before attempting to reference dmseg. If such a refer-
ence does occur, the reference hangs until it is satisfied by the probe. The probe must not assume that there will never 
be a reference to dmseg when the ProbEn bit in the DCR register is 0, because there is an inherent race between the 
debug software sampling the ProbEn bit as 1, and the probe clearing it to 0.

3.18 TLB Instructions

Table 3.24 lists the TLB-related instructions implemented in the proAptiv core. .

Refer to the Instructions chapter for more information on the TLB instructions.

Table 3.23 CPU Access to dmseg

Transaction
ProbEn Bit in 

DCR Register1

1. The NoDCR bit in the CP0 Debug register indicates if the dmseg and drseg address spaces and associated DCR 
register exists in memory mapped space. The NoDCR bit must be cleared, this DCR register exists. If the bit is 
set, the register does not exist.

LSNM Bit in 
Debug Register Access

Load / Store Don’t care 1 Kernel mode address space (kseg3)

Fetch 1 Don’t care dmseg

Load / Store 1 0 dmseg

Fetch 0 Don’t care See comments below

Load / Store 0 0 See comments below

Table 3.24 TLB Instructions

Mnemonic Instruction Description

TLBP Translation Lookaside Buffer Probe Used to determine whether a particular address was 
successfully translated. When a TLBP instruction is 
executed and fails to find a match for the specified 
virtual address, hardware sets bit 31 of the Index 
register.

TLBR Translation Lookaside Buffer Read

TLBWI Translation Lookaside Buffer Write Index TLB write extended to support invalidation of
individual TLB entries.

TLBWR Translation Lookaside Buffer Write Random

TLBINV Translation Lookaside Buffer Invalidate Added to support set level invalidation of TLB
entries.

TLBINVF Translation Lookaside Buffer Invalidate Flush Added to support VTLB flush based invalidation
of TLB entries.
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Primary and Secondary Caches

This chapter describes the caches present in an proAptiv core and contains the following sections:

• Section 4.1 “Cache Configurations”

• Section 4.2 “L1 Instruction Cache”

• Section 4.3 “L1 Data Cache”

• Section 4.4 “L1 Instruction and Data Cache Software Testing”

• Section 4.5 “L2 Cache”

• Section 4.6 “The CACHE Instruction”

• Section 4.7 “Write Back Buffer”

4.1 Cache Configurations

The proAptiv Multiprocessing System contains three caches; L1 instruction, L1 data, and shared L2. All of these 
caches are non-optional in the proAptiv architecture and are always present. The size of each cache can be configured 
as shown in Table 4.1. 

The L1 instruction cache is attached to the Instruction Fetch Unit (IFU) via four 128-bit data paths, allowing for up to 
four instruction fetches per cycle.The L1 data cache contains four 128-bit data paths, allowing for up to four data 
read/write operations per cycle. The L2 cache is embedded within the Coherence Manager (CM2) and communicates 
with external memory via a configurable 64-bit or 256-bit OCP interface.

For more information on the L1 instruction cache, refer to Section 4.2 “L1 Instruction Cache”. 

For more information on the L1 data cache, refer to Section 4.3 “L1 Data Cache”. 

For more information on the L2 cache, refer to Section 4.5 “L2 Cache”.

Table 4.1 proAptiv Cache Configurations

Attribute L1 Instruction Cache L1 Data Cache L2 Cache

Size1

1. For Linux-based applications, MIPS recommends an optimum cache size of 64 KB, and a minimum cache size of 32 KB.

32 KB or 64 KB 32 KB or 64 KB 256 KB, 512 KB
1 MB, 2 MB, 4 MB, or 8 MB

Line Size 32-byte 32-byte 32-byte or 64-byte

Number of Cache Sets 256 or 512 256 or 512 512, 1024, 2048, 4096, 
8192, 16384, or 32768

Associativity 4 way 4 way 8 way
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4.1.1 Cacheability Attributes

The proAptiv core supports the following cacheability attributes:

• Uncached (code #2): Addresses in a memory area indicated as uncached are not read from the cache. Stores to 
such addresses are written directly to main memory, without changing cache contents.

• Non-coherent Writeback With Write Allocation (code #3): Loads and instruction fetches first search the cache, 
reading main memory only if the desired data does not reside in the cache. On data store operations, the cache is 
first searched to see if the target address is in the cache. If it is, the cache contents are updated, but main memory 
is not written. If the cache lookup misses on a store, main memory is read to bring the line into the cache and 
merge it with the new store data. Hence, the allocation policy on a cache miss is read- or write-allocate. Data 
stores will update the appropriate dirty bit in the ‘dirty’ array to indicate that the line contains modified data. 
When a line with dirty data is displaced from the cache, it is written back to memory.

• Coherent Write-back With Write Allocation, Exclusive (code #4): This attribute is similar to code #5 described 
below, except that load misses bring data into the cache in the exclusive state rather than the shared state. This 
can be used if data is not shared and will eventually be written. This can reduce bus traffic, because the line does 
not have to be refetched in an exclusive state when a store is done.

• Coherent Write-back With Write Allocation, Exclusive on Write (code #5): Use coherent data. Load misses will 
bring the data into the cache in a shared state. Multiple caches can contain data in the shared state. Stores will 
bring data into the cache in an exclusive state - no other caches can contain that same line. If a store hits on a 
shared line in the cache, the line will be invalidated and brought back into the cache in an exclusive state.

• Uncached Accelerated (code #7): Uncached stores are gathered together for more efficient bus utilization. 
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4.2 L1 Instruction Cache

The L1 instruction cache contains three arrays: tag, data, and way-select. The L1 instruction cache is virtually 
indexed, since a virtual address is used to select the appropriate line within each of the three arrays. The caches are 
physically tagged, as the tag array contains a physical, not virtual, address.

The tag and data arrays hold 4 ways of information per set, corresponding to the 4-way set associativity of the cache. 
The way-select array holds information to choose the way to be filled, as well as dirty bits in the case of the data 
cache.

A tag entry consists of the upper bits of the physical address (bits [31:12]) for instruction cache, one valid bit for the 
line, and a lock bit. A data entry contains the four, 64-bit doublewords in the line, for a total of 32 bytes. All four 
words in the line are present or not in the data array together, hence the single valid bit stored with the tag.

A way-select entry holds bits choosing the way to be replaced according to a Least Recently Used (LRU) algorithm. 
The LRU information applies to all the ways and there is one way-select entry for all the ways in the set. The instruc-
tion cache only supports reads, hence only LRU entries are stored in the instruction way-select array.

Table 4.2 shows the key characteristics of the L1 instruction cache. Figure 4.1 shows the format of an entry in the 
three arrays comprising the instruction cache: data, tag, and way-select. 

Table 4.2 L1 Instruction Cache Attributes

Attribute With Parity

Size1

1. For Linux based applications, MIPS recommends a 64 KB L1 instruction cache size, with a minimum size of 32 KB.

32 KB or 64 KB

Line Size 32-byte

Number of Cache Sets 256 or 512

Associativity 4-way

Replacement LRU

Cache Locking per line

Data Array

Read Unit 144b x 4

Write Unit 144b

Tag Array

Read Unit 55b x 4

Write Unit 55b

Way-Select Array

Read Unit 6b

Write Unit 1-6b
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Figure 4.1 L1 Instruction Cache Organization  

4.2.1 L1 Instruction Cache Virtual Aliasing

The instruction cache on the proAptiv core is virtually indexed and physically tagged. The lower bits of the virtual 
address are used to access the cache arrays and the physical address is used in the tags. Because the way size can be 
larger than the minimum TLB page size, there is a potential for virtual aliasing. This means that one physical address 
can exist in multiple indices within the cache, if it is accessed with different virtual addresses. Virtual aliasing comes 
into effect only for cache sizes that are larger than 16 KB.

In the proAptiv core, the Config7IAR bit is always set to indicate the existence of instruction cache virtual aliasing 
hardware. The core allows a physical address to reside at multiple indices if accessed with different virtual addresses.  
When an invalidate request is made due to the CACHE or SYNCI instructions, the core will serially check each pos-
sible alias location for the given physical address.

The hardware can be enabled and disabled using the Config7IVAD bit. When this bit is cleared, the hardware used to 
remove instruction cache virtual aliasing is enabled. In this case the virtual aliasing is managed in hardware. No soft-
ware interaction is required. When the Config7IVAD bit is set, the virtual aliasing hardware is disabled. This can be 
done when software ensures that no cache aliases are possible, for example when using a minimum TLB page size of 
16KB. In cases where the TLB page size is less than 116 KB, it is up to software to manage virtual aliasing within the 
instruction cache.

4.2.2 L1 Instruction Cache Precode Bits

In order for the fetch unit to quickly detect branches and jumps when executing code, the instruction cache array con-
tains some additional precode bits. These bits indicate the type and location of branch or jump instructions within a 
64b fetch bundle. These precode bits are not used when executing MIPS16e code.

4.2.3 L1 Instruction Cache Parity 

The instruction cache contains 16 parity bits — one for each byte of the 128 bits of data. The tag array has 5 parity 
bits for each tag, one for each of the 4 precode fields and one for the physical tag, lock, and valid bits. The LRU array 
does not have any parity. Instruction cache parity is always present in the instruction cache and cannot be disabled.

Tag (per way):
(55 bits total)

Data (per way)1:
(288 bits total)

Way-Select:
(6 bits total)

5 1 1 20 7 7 7 7

Parity Valid Lock PA[31:12] Precode_67 Precode_45 Precode_23 Precode_01

16 64 64 16 64 64

Parity dword3 dword2 Parity dword1 dword0

6

LRU

1. Parity bits in data array will be interleaved with precode and data bytes.
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4.2.4 L1 Instruction Cache Replacement Policy

The L1 instruction cache replacement policy refers to how a way is chosen to hold an incoming cache line on a miss 
which will result in a cache fill. The replacement policy is least-recently used (LRU), but excluding any locked ways. 
The LRU bit(s) in the way-select array encode the order in which ways on that line have been accessed.

On a cache miss, the lock and LRU bits for the tag and way-select entries of the selected line may be used to deter-
mine the way which will be chosen. 

The LRU field in the way select array is updated as follows:

• On a cache hit, the associated way is updated to be the most recently used. The order of the other ways relative to 
each another is unchanged.

• On a cache refill, the filled way is updated to be the most recently used.

• On CACHE instructions, the update of the LRU bits depends on the type of operation to be performed:

• Index (Writeback) Invalidate: Least-recently used.

• Index Load Tag: No update.

• Index Store Tag, WST = 0: Most-recently used if valid bit is set in TagLo CP0 register. Least-recently used 
if valid bit is cleared in TagLo CP0 register. 

• Index Store Tag, WST = 1: Update the field with the contents of the TagLo CP0 register (refer to Table  for 
the valid values of this field).

• Index Store Data: No update.

• Hit Invalidate: Least-recently used if a hit is generated, otherwise unchanged.

• Fill: Most-recently used.

• Hit Writeback: No update.

• Fetch and Lock: For instruction cache, no update. For data cache, most-recently used.

If all ways are valid, then any locked ways will be excluded from consideration for replacement. For the unlocked 
ways, the LRU bits are used to identify the way which has been used least-recently, and that way is selected for 
replacement.

4.2.5 L1 Instruction Cache Line Locking

The proAptiv core does not support the locking of all 4 ways of either cache at a particular index. If all 4 ways of the 
cache at a given index are locked by either Fetch and Lock or Index Store Tag CACHE instructions, subsequent cache 
misses at that cache index will displace one of the locked lines.

Locking lines in the caches is somewhat counter to the idea of coherence. If a line is locked into a particular cache, it 
is expected that any processes utilizing that data will be locked to that processor and coherence is not needed. Based 
on this usage model, locking coherent lines into the cache is not recommended. However, should this occur, the 
CPUadheres to the following rules:
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• SYNCI instructions are user-mode instructions. Since locking is a kernel mode feature (requires the CACHE 
instruction), SYNCI is not allowed to unlock cache lines. This applies to both local and globalized SYNCI 
instructions.

• Locking overrides coherence. Intervention requests from other CPUs and I/O devices that match on a locked line 
are treated as misses.

• Self-intervention requests for globalized CACHE instructions are allowed to affect a locked line. This is done 
primarily for handling lock and unlock requests for kseg0 addresses when kseg0 is being treated coherently.

• The CPU does not support the locking of all 4 ways of either cache at a particular index. If all 4 ways of the 
cache at a given index are locked, subsequent cache misses at that cache index will displace one of the locked 
lines.

4.2.6 L1 Instruction Cache Memory Coherence Issues

The proAptiv core supports cache coherency in a multi-CPU cluster using Cache Coherence Attributes (CCAs) spec-
ified on a per cache-line basis and an Intervention Port containing coherent requests by all CPUs in the system. Each 
proAptiv core monitors its Intervention Port and updates the state of its cache lines (valid, lock, and dirty tag bits) 
accordingly. 

The L1 instruction caches utilizes a modified MESI protocol. Each cache line will be in one of the following states:

Invalid: The line is not present in this cache.

Exclusive: This cache has a copy of the line with the right to modify. The line is not present in other L1 data caches. 
The line is still clean and is consistent with the value in L2 cache or memory.

The SYNC instruction may also be useful to software in enforcing memory coherence, because it flushes the write 
buffers.

In the proAptiv core, the hardware does not automatically keep the instruction caches coherent with the data caches. 
Doing so requires many additional cache lookups and would likely require the instruction cache tag array to be dupli-
cated as well. For many types of code, this would be of small benefit, and the added area and power costs would not 
make sense. Further, the existing non-coherent cores from MIPS do not keep the I-Cache coherent with the D-Cache, 
so the code already exists for software I-Cache coherence where it is required.

Globalized CACHE and SYNCI instructions ease the task of software I-Cache coherence. Existing, single-CPU rou-
tines that push dirty data out of the data cache and invalidate stale instruction cache lines using hit-type CACHE or 
SYNCI instructions can be globalized, and the coherence can be handled for all of the instruction caches in parallel. 

4.2.7 Software I-Cache Coherence (JVM, Self-modifying Code)

The CPU does not support hardware I-Cache coherence, so code that modifies the instruction stream must clean up 
the instruction cache. This is equivalent to what is currently required on uniprocessor systems that also do not have a 
coherent I-Cache. The recommended SYNCI sequence shown below will also work for coherent addresses:

SW instn_address
SYNCI instn_address
SYNC
JR.HB instn_address
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NOP

4.2.8 L1 Instruction Software Cache Management 

The L1 instruction cache is not fully “coherent” and requires OS intervention at times. The CACHE instruction is the 
building block of such OS interventions, and is required for correct handling of DMA data and for cache initializa-
tion. Historically, the CACHE instruction also had a role when writing instructions. Unless the programmer takes the 
appropriate action, those instructions may only be in the D-cache and would need them to be fetched through the I-
cache at the appropriate time. Wherever possible, use the SYNCI instruction for this purpose, as described in Section 
4.2.11 “Cache Management When Writing Instructions - the “SYNCI” Instruction”. 

A cache operation instruction is written cache op,addr where addr is just an address format, written as for a load/
store instruction. Cache operations are privileged and can only run in kernel mode (SYNCI works in user mode, 
though). 

The op field packs together a 5-bit field. The lower 2 bits of this field (17:16) select which cache to work on: 

The upper 3-bits of the OP field encodes a command to be carried out on the line the instruction selects. 

The CACHE instruction come in three varieties which differ in how they pick the cache entry (the “cache line”) they 
will work on: 

• Hit-type cache operation: presents an address (just like a load/store), which is looked up in the cache. If this loca-
tion is in the cache (it “hits”) the cache operation is carried out on the enclosing line. If this location is not in the 
cache, nothing happens. 

• Address-type cache operation: presents an address of some memory data, which is processed just like a cached 
access - if the cache was previously invalid the data is fetched from memory. 

• Index-type cache operation: as many low bits of the address as are required are used to select the byte within the 
cache line, then the cache line address inside one of the four cache ways, and then the way. The size of the cache 
(contained within the Config1 register) to know exactly where the field boundaries are located. The address is 
used as follows: 

Note that the MIPS32 specification allows the CPU designer to select whether to derive the index from the vir-
tual or physical address. For index-type operations, MIPS recommends using a kseg0 address, so that the virtual 
and physical address are the same. This also avoids a potential of cache aliasing.

31 26 25 21 20 18 17 16 15 0
cache base op offset 
47 register what to do which cache

Figure 4.2 Fields in the Encoding of a CACHE Instruction 

00 L1 I-cache 
01 L1 D-cache 
10 reserved
11 L2 cache

31 5 4 0 

Unused Way1-0 Index byte-within-line 
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4.2.9 L1 Instruction Cache CP0 Register Interface 

The proAptiv core uses different CP0 registers for instruction cache operations. 

4.2.9.1 Config1 Register (CP0 register 16, Select 1)

The Config1.IS field (bits 24:22) indicates the number of sets per way in the instruction cache. The proAptiv L1 
instruction cache supports 256 sets per way, which is used to configure a 32 KB cache, or 512 sets per way, which is 
used to configure a 64 KB cache.

The Config1.IL field (bits 21:19) indicates the line size for the instruction cache. The proAptiv L1 instruction cache 
supports a fixed line size of 32 bytes as indicated by a default value of 4 for this field.

The Config1.IA field (bits 18:16) indicates the set associativity for the instruction cache. The proAptiv L1 instruction 
cache is fixed at 4-way set associative as indicated by a default value of 3 for this field.

For more information, refer to Section 2.3.1.2, "Device Configuration 1 — Config1 (CP0 Register 16, Select 1)". 

4.2.9.2 CacheErr Register (CP0 register 27, Select 0)

The CacheErr register is a read-only register used to determine the status of a cache error. The upper two bits of this 
register (CacheErr.EREC) indicate whether the contents of the register pertain to an L1 instruction cache error, an L1 
data cache error, a TLB error, or an external error. This register provides information such as:

• L1 data versus L2 data cache error

• Tag RAM versus Data RAM error

• External snoop request indication in multi-core systems

• Indicates coherent L1 cache error in another CPU in a multi-core system

• Fatal/non-fatal error indication

Table 4.1 Instruction Cache CP0 Register Interface

CP0 Registers CP0 number

Config1 16.1

CacheErr 27.0

ITagLo 28.0

ITagHi 29.0

IDataLo 28.1

IDataHi 29.1

L23TagLo1

1. In past versions of this manual L23TagLo was known as “STagLo”, and so on. But this 
name is more mnemonic.

28.4

L23DataLo 28.5

L23DataHi 29.5
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• Indicates if the error affects the Scratchpad RAM

• Indicates the cache index or Scratchpad RAM index of the double word entry where the error occurred

For more information, refer to Section 2.3.6.11, "Cache Error — CacheErr (CP0 Register 27, Select 0)". 

4.2.9.3 L1 Instruction Cache TagLo Register (CP0 register 28, Select 0)

These registers are a staging location for cache tag information being read/written with cache load-tag/store-tag 
operations.

The interpretation of this register changes depending on the setting of the ErrCtlWST and ErrCtlSPR bits. 

• Default cache interface mode (ErrCtlWST = 0, ErrCtlSPR = 0)

• Diagnostic "way select test mode" (ErrCtlWST = 1, ErrCtlSPR = 0)

• For scratchpad memory setup (ErrCtlWST = 0, ErrCtlSPR = 1)

For more information, refer to Section 2.3.6.1, "Level 1 Instruction Cache Tag Low — ITagLo (CP0 Register 28, 
Select 0)". 

4.2.9.4 L1 Instruction Cache TagHi Register (CP0 register 29, Select 0)

This register represents the I-cache pre-decode bits and is intended for diagnostic use only.

For more information, refer to Section 2.3.6.2, "Level 1 Instruction Cache Tag High — ITagHi (CP0 Register 29, 
Select 0)". 

4.2.9.5 L1 Instruction Cache DataLo Register (CP0 register 28, Select 1)

Staging registers for special cache instruction which loads or stores data from or to the cache line. Two registers 
(IDataHi, IDataLo) are needed, because the proAptiv core loads I-cache data at least 64 bits at a time. This register 
stores the lower 32 bits of the load data.

For more information, refer to Section 2.3.6.3, "Level 1 Instruction Cache Data Low — IDataLo (CP0 Register 28, 
Select 1)". 

4.2.9.6 L1 Instruction Cache DataHi Register (CP0 register 29, Select 1)

Staging registers for special cache instruction which loads or stores data from or to the cache line. Two registers 
(IDataHi, IDataLo) are needed, because the proAptiv core loads I-cache data at least 64 bits at a time. This register 
stores the upper 32 bits of the load data.

For more information, refer to Section 2.3.6.4, "Level 1 Instruction Cache Data High — IDataHi (CP0 Register 29, 
Select 1)". 
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4.2.10 L1 Instruction Cache Initialization

The L1 instruction cache must be initialized during power-up or reset in order to place the lines of the cache in a 
known state. This is accomplished via the cache initialization routine, which is normally part of the boot code. 
For experienced user’s, a sample boot code is shown in the following subsection.

4.2.10.1 L1 Instruction Cache Initialization Routine

The following assembly provides an example initialization routine for the instruction cache.

/**************************************************************************************
init_icache invalidates all Instruction cache entries
**************************************************************************************/

LEAF(init_icache)

// For this Core there is always an instruction cache
// The IS field determines how many sets there are:
// IS = 2 there are 256 sets
// IS = 3 there are 512 sets
// $11 set to line size, will be used to increment through the cache tags

li $11, 32 # Line size is always 32 bytes.
mfc0 $10, $16, 1 # Read C0_Config1
ext  $12, $10, 22, 3 # Extract IS
li $14, 2 # Used to test against
beq $14, $12, Isets_done# if  IS = 2
li $12, 256 # sets = 256
li $12, 512 # else sets = 512 Skipped if branch taken

Isets_done:
lui $14, 0x8000 # Get a KSeg0 address for cacheops
// clear the lock bit, valid bit, and the LRF bit
mtc0    $0, $28 # Clear C0_ITagLo to invalidate entry

next_icache_tag:
cache   0x8, 0($14) # Index Store tag Cache opt
add     $12, -1 # Decrement set counter
bne     $12, $0, next_icache_tag # Done yet?
add     $14, $11    # Increment line address by line size

done_icache:

ins     r31_return_addr, $0, 29, 1
jr      r31_return_addr
nop

END(init_icache)

4.2.10.2 L1 Instruction Cache Initialization Routine Details

This section provides a detailed description of each line of code in the L1 instruction cache initialization routine 
described above. Note that this code represents an example of an implementation specific cache initialization. The 
core is code is used in specifies specific cache sizes of 32K or 64K, is always part of a CPS and will always have the 
L2 cache present. The code example is written with those parameters in mind.
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Before use, the cache must be initialized to a known state; that is, all cache entries must be invalidated. This code 
example initializes the cache, finds the total number of cache sets, then loops through the cache sets using the cache 
instruction to invalidate each cache set.

LEAF (init_icache)

// For this Core there is always an L1 nstuction cache
// The IS field determines how many sets there are
// IS = 2 there are 256 sets
// IS = 3 there are 512 sets
// $11 set to line size, will be used to increment through the cache tags

li $11, 32 # Line size is always 32 bytes.

This instruction cache always has a line size of 32 bytes, 4 ways and can have a size of either 32 KB or 64 KB. The IS 
field (sets per way) of the Config1 register will be use to determine the size of the cache. This field can have one of 
two values. A value of 0x2 indicates a 32 KB cache and a value of 0x3 indicates a 64 KB cache.

mfc0 $10, $16, 1 # Read C0_Config1
ext $12, $10, 22, 3 # Extract IS
li $14, 2 # Used to test against

If the check is true, the code uses the branch delay slot (which is always executed) to set the set iteration value to 256 
for a 32 KB cache and then branches ahead to Isets_done. If the check is false, the code assumes that the size of the 
cache is 64 KB. At this point, the code still sets the iteration value to 256 in the branch delay slot, but then falls 
through and sets it again to 512 for a 64 KB cache.

beq $14, $12, Isets_done # if  IS = 2
li $12, 256 # sets = 256
li $12, 512 # else sets = 512 Skipped if branch taken

Isets_done:

GPR 14 will be used as an index into the cache. It will be set to a virtual address, and then translated to a physical 
address. Since the address 0x8000_0000 is in kseg0, the CPU will ignore the top bit, so virtual 0x8000_0000 will 
become physical address 0x0000_0000. Since the cache is physically indexed, the first time through the loop, the 
cache instruction will write the tag to way 0 index line 0. 

The lui instruction loads 0x8000 into the upper 16 bits and clears the lower 16 bits of the GPR14 register.

lui $14, 0x8000 # Get a KSeg0 address for cacheops

Clearing the tag registers performs two important functions: it sets the Physical Tag address called PTagLo to 0, 
which ensures the upper physical address bits are zeroed out, and it also clears the valid bit for the set, which ensures 
that the set is free and may be filled as needed.

The code uses the Move to Coprocessor zero instruction to move the general purpose register zero, which always 
contains a zero, to the tag register.
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// clear the lock bit, valid bit, and the LRF bit

mtc0 $0, $28 # Clear C0_ITagLo to invalidate entry

The Cache instruction uses the Index Store Tag operation on the Level 1 instruction cache so the op field is 
coded with a value of 0x8. The first two bits are 2’b00 for the L1 instruction cache, and the operation code for Index 
Store tag is encoded as 3’b010 in bits two, three and four.

next_icache_tag:

cache 0x8, 0($14) # Index Store tag Cache op

The index type of operation can be used to address a byte in the cache in a specific way of the cache. This is done by 
breaking down the virtual address argument stored in the base register of the Cache instruction into several fields.

Bits 14:0 of the Cache Instruction 

The size of the index field varies according to the size of a cache way. The larger the way, the larger the index. In the 
table above, the combined byte and page index is 13 bits because each way of the cache is 8K. The way number is 
always the next two bits following the index.

The code does not explicitly set the way bits. Instead it just increments the virtual address by the cache lines size so 
the next time through the loop the Cache instruction will initialize the next set in the cache. Eventually this incre-
ment has the effect of setting the cache to index 0 of the next way in the cache because it overflows into the way bits.

At this point all the code needs to do is loop maintenance. First decrement the loop counter (12/t4).

add $12, -1 # Decrement set counter

Then test it to see if it has gotten to zero and if it has not branch back to label one.

bne $12, $0, next_icache_tag # Done yet?

The instruction in the branch delay slot, which is always executed, is used to increment the virtual address (14/t6) to 
the next set in the cache. (11/t3) holds the line size in bytes.

add $14, $11    # Increment line address by line size

From this point on, the code can be executed from a cached address. This is easily done by changing the return 
address from a KSEG1 address to a KSEG0 address by simply inserting a 0 into bit 29 of the address. However, dur-
ing debugging, this operation will confuse the debugger and you will no longer be able to do source-level debugging. 
That is why it is commented out here. Once the code has been debugged, the "ins" line can be uncommented.

done_icache:

// Modify return address to kseg0 which is cacheable 
// (for code linked in kseg1.)
// However it makes it easier to debug if this is not done. So while
// debugging, this should be commented out.

14 13 12 5 4 0

Way Page Index Byte Index
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ins     r31_return_addr, $0, 29, 1
jr      r31_return_addr
nop

END (init_icache)

4.2.11 Cache Management When Writing Instructions - the “SYNCI” Instruction

The synci instruction (new to the MIPS32 Release 2 update) provides a mechanism available to user-level code for 
ensuring that previously written instructions are correctly presented for execution (it combines a D-cache writeback 
with an I-cache invalidate). Use of the synci instruction is preferred to the traditional alternative of a D-cache write-
back followed by an I-cache invalidate.
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4.3 L1 Data Cache

The L1 data cache is similar to the instruction cache, with a few key differences;

• In addition to the three arrays (tag, data, and way-select), the L1 data cache also contains a separate dirty array to 
hold the dirty bits of cache lines.

• The data cache does not contain any precode information.

• To handle store bytes, the data array is byte-accessible, and the data parity is 1 bit per byte. 

• The way-select array for the data cache holds the lock bits (and lock parity bits) for each cache line, in addition to 
the LRU information. The lock bits indicate the cache lines that have been locked using the CACHE instruction. 

Like the L1 instruction cache, the L1 data cache is virtually indexed, since a virtual address is used to select the 
appropriate line within each of the arrays. The cache is physically tagged, as the tag array contains a physical, not vir-
tual, address.

The tag and data arrays hold 4 ways of information per set, corresponding to the 4-way set associativity of the cache. 
The way-select array holds information to choose the way to be filled, as well as dirty bits in the case of the data 
cache.

A tag entry consists of the upper bits of the physical address (bits [31:11] for data cache), one valid bit for the line, 
and a lock bit. A data entry contains the four, 64-bit doublewords in the line, for a total of 32 bytes. All four words in 
the line are present or not in the data array together, hence the single valid bit stored with the tag. Once a valid line is 
resident in the cache, byte, halfword, triple-byte, word, or doubleword stores can update all or a portion of the words 
in that line. The tag and data entries are repeated for each of the 4 lines in the set.

A way-select entry holds bits choosing the way to be replaced according to a Least Recently Used (LRU) algorithm. 
The LRU information applies to all the ways and there is one way-select entry for all the ways in the set. 

Table 4.3 shows the key characteristics of the data cache. Figure 4.3 shows the format of an entry in the arrays com-
prising the data cache: tag, data, way-select, and dirty.

Table 4.3 L1 Data Cache Organization

Attribute With Parity

Size 32 or 64KB

Line Size 32-byte

Number of Cache Sets 256 or 512

Associativity 4-way

Replacement LRU

Cache Locking per line

Data Array

Read Unit 72b x 4

Write Unit 9b

Tag Array

Read Unit 24b x 4

Write Unit 24b
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Figure 4.3 L1 Data Cache Organization  

4.3.1 L1 Data Cache Virtual Aliasing

The data cache on the proAptiv core is virtually indexed and physically tagged. The lower bits of the virtual address 
are used to access the cache arrays and the physical address is used in the tags. Because the way size can be larger 
than the minimum TLB page size, there is a potential for virtual aliasing. This means that one physical address can 
exist in multiple indices within the cache, if it is accessed with different virtual addresses. 

The following table indicates the conditions under which virtual aliasing can occur. 

Way-Select Array

Read Unit 14b

Write Unit 1-14b

Dirty Array

Read Unit 10b

Write Unit 1-10b

Table 4.1 L1 Data Cache Virtual Aliasing Conditions

Cache Size MMU Page Size Way Size
Aliasing Can 

Occur
Hardware Aliasing 

Fix Required

32 KB 4 KB 8 K Yes Yes

64 KB 4 KB 16 K Yes Yes

32 KB >= 16 KB 8 K No No

Table 4.3 L1 Data Cache Organization(continued)

Attribute With Parity

Data (per way):
(288 bits total)

Way-Select:
(14 bits total)

1 8
Bytes 1 - 30.

(each byte contains one parity bit) 1 8

Parity Data31 ... Parity Data0

4 4 6

Lock Parity Lock LRU

2 4 4

Reserved Dirty Parity Dirty
Dirty
(10 bits total)

Tag (per way):
(24 bits total)

1 1 21 1

Parity State PA31:11 Valid
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In the proAptiv core, the read-only Config7.AR bit determines whether the data cache virtual aliasing hardware is 
enabled based on the build-time configuration. Note that for some of the configuration options in the table above, the 
hardware aliasing fix (HWAF) is required. As such, it is incumbent upon the designer to select the HWAF option at 
build time. The selection of this option causes hardware to set the Config7.AR bit. 

4.3.2 L1 Data Cache Parity

The data array requires a parity bit for each byte, corresponding to the minimum number of bytes for a store. The tag 
array has a single parity bit for each tag. The way-select array has separate parity bits to cover each lock bit, but the 
LRU bits are not covered by parity. The dirty array also has a parity bit for each dirty bit. Instruction cache parity is 
always present in the instruction cache and cannot be disabled.

4.3.3 L1 Data Cache Replacement Policy

The replacement policy refers to how a way is chosen to hold an incoming cache line on a miss which will result in a 
cache fill. The replacement policy is least-recently used (LRU), but excluding any locked ways. The LRU bit(s) in the 
way-select array encode the order in which ways on that line have been accessed.

On a cache miss, the lock and LRU bits for the tag and way-select entries of the selected line may be used to deter-
mine the way which will be chosen. 

The LRU field in the way select array is updated as follows:

• On a cache hit, the associated way is updated to be the most recently used. The order of the other ways relative to 
each another is unchanged.

• On a cache refill, the filled way is updated to be the most recently used.

• On CACHE instructions, the update of the LRU bits depends on the type of operation to be performed:

• Index (Writeback) Invalidate: Least-recently used.

• Index Load Tag: No update.

• Index Store Tag, WST = 0: Most-recently used if valid bit is set in TagLo CP0 register. Least-recently used 
if valid bit is cleared in TagLo CP0 register.

• Index Store Tag, WST = 1: Update the field with the contents of the TagLo CP0 register.

• Index Store Data: No update.

• Hit Invalidate: Least-recently used if a hit is generated, otherwise unchanged.

• Fill: Most-recently used.

• Hit (Writeback) Invalidate: Least-recently used if a hit is generated, otherwise unchanged.

64 KB >= 16 KB 16 K No No

Table 4.1 L1 Data Cache Virtual Aliasing Conditions(continued)

Cache Size MMU Page Size Way Size
Aliasing Can 

Occur
Hardware Aliasing 

Fix Required
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• Hit Writeback: No update.

• Fetch and Lock: For instruction cache, no update. For data cache, most-recently used.

If all ways are valid, then any locked ways will be excluded from consideration for replacement. For the unlocked 
ways, the LRU bits are used to identify the way which has been used least-recently, and that way is selected for 
replacement.

If the way selected for replacement has its dirty bit asserted in the way-select array, then that 32-byte line will be writ-
ten back to memory before the new fill can occur.

4.3.4 L1 Data Cache Line Locking

The mechanism for line locking in the L1 data cache is identical to that of the L1 instruction cache. For more infor-
mation, refer to Section 4.2.5, "L1 Instruction Cache Line Locking".

4.3.5 L1 Data Cache Memory Coherence Protocol

The proAptiv core supports cache coherency in a multi-CPU cluster using Cache Coherence Attributes (CCAs) spec-
ified on a per cache-line basis and an Intervention Port containing coherent requests by all CPUs in the system. Each 
proAptiv core monitors its Intervention Port and updates the state of its cache lines (valid, lock, and dirty tag bits) 
accordingly. 

The L1 data caches utilize a standard MESI protocol. Each cache line will be in one of the following four states:

Invalid: The line is not present in this cache.

Shared: This cache has a read-only copy of the line. The line may be present in other L1 data caches, also in a Shared 
state. The line will have the same value as it does in the L2 cache or memory.

Exclusive: This cache has a copy of the line with the right to modify. The line is not present in other L1 data caches. 
The line is still clean - consistent with the value in L2 cache or memory.

Modified: This cache has a dirty copy of the line. The line is not present in other L1 data caches. This is the only up-
to-date copy of the data in the system (the value in the L2 cache or memory is stale).

The SYNC instruction may also be useful to software in enforcing memory coherence, because it flushes the write 
buffers.

Some of the basic characteristics of the coherence protocol are summarized below. Coherence can occur on the data 
cache. 

• Writeback cache - Uses a writeback cache to ensure high performance

• Cache-line based - Coherence and ownership is maintained per 32-byte cache line

• Snoopy protocol - Each CPU snoops the stream of transactions and updates its cache state accordingly

• Invalidate - A line is invalidated from the cache (possibly with a writeback to memory) when a store from 
another processor is seen.
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4.3.6 L1 Data Cache Initialization

The L1 data cache must be initialized during power-up or reset in order to place the lines of the cache in a known 
state. This is accomplished via the cache initialization routine, which is normally part of the boot code. For expe-
rienced user’s, a sample boot code is shown in the following subsection.

4.3.6.1 L1 Data Cache Initialization Routine

The following assembly provides an example initialization routine for the data cache.

/***************************************************************************
init_dcache invalidates all data cache entries
****************************************************************************/

LEAF (init_dcache)

// For the proAptiv MPS there is always an L1 data cache
// The ID field determines how many sets there are
// DS = 2 there are 256 sets
// DS = 3 there are 512 sets
// $11 set to line size, will be used to increment through the cache tags

li $11, 32 # Line size is always 32 bytes
mfc0 $10, $16, 1 # Read C0_Config1
ext  $12, $10, 13, 3 # Extract DS
li $14, 2 # Used to test against
beq $14, $12, Dsets_done # if  DS = 2
li $12, 256 # sets = 256
li $12, 512 # else sets = 512, skipped if branch taken

Dsets_done:

lui   $14, 0x8000 # Get a KSeg0 address for cacheops
// clear the lock bit, valid bit, and the LRF bit
mtc0    $0, $28, 2 # Clear C0_DTagLo to invalidate entry

next_dcache_tag:

cache 0x9, 0($14) # Index Store tag Cache opt
add  $12, -1 # Decrement set counter
bne $12, $0, next_dcache_tag # Done yet?
add  $14, $11 # Increment line address by line size

done_dcache:

    jr      r31_return_addr
nop

END (init_dcache)
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4.3.6.2 L1 Data Cache Initialization Routine Details

This section provides a detailed description of each line of code in the initialization routine. The L1 data cache initial-
ization routine is very similar to the L1 instruction cache initialization routine.

LEAF(init_dcache)

// For the proAptiv CPS there is always a L1 data cache
// The DS field determines how many sets there are
// DS = 2 there are 256 sets
// DS = 3 there are 512 sets
// $11 set to line size, will be used to increment through the cache tags

li $11, 32 # Line size is always 32 bytes.

The data cache always has a line size of 32 bytes and 4 ways, and can have a size of either 32 KB or 64 KB. The DS 
field (sets per way) of the Config1 register is used to determine the size of the cache. This field can have one of two 
values. A value of 0x2 indicates a 32 KB cache and a value of 0x3 indicates a 64 KB cache.

mfc0 $10, $16, 1 # Read C0_Config1
ext $12, $10, 13, 3 # Extract DS
li $14, 2 # Used to test against

If the check is true, the code uses the branch delay slot (which is always executed) to set the set iteration value to 256 
for a 32 KB cache and then branches ahead to Dsets_done. If the check is false, the code assumes that the size of the 
cache is 64 KB. At this point, the code still sets the iteration value to 256 in the branch delay slot, but then falls 
through and sets it again to 512 for a 64 KB cache.

beq $14, $12, Dsets_done # if  DS = 2
li $12, 256 # sets = 256
li $12, 512 # else sets = 512 Skipped if branch taken

Dsets_done:

GPR 14 will be used as an index into the data cache. It is set to a virtual address and then translated to a physical 
address. Since the address 0x8000_0000 is in kseg0, the CPU will ignore the top bit, so virtual 0x8000_0000 will 
become physical address 0x0000_0000. Since the cache is physically indexed, the first time through the loop, the 
cache instruction will write the tag to way 0 index line 0. 

The lui instruction loads 0x8000 into the upper 16 bits and clears the lower 16 bits of the GPR14 register.

lui $14, 0x8000 # Get a KSeg0 address for cacheops

Clearing the tag registers performs two important functions: it sets the Physical Tag address called PTagLo to 0, 
which ensures the upper physical address bits are zeroed out, and it also clears the valid bit for the set, which ensures 
that the set is free and may be filled as needed.

The code uses the Move to Coprocessor zero instruction to move the general purpose register zero, which always 
contains a zero, to the tag register.

// clear the lock bit, valid bit, and the LRF bit
mtc0    $0, $28, 2 # Clear C0_DTagLo to invalidate entry
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The Cache instruction uses the Index Store Tag operation on the Level 1 data cache so the op field is coded 
with a value of 0x9. The first two bits are 2’b01 for the L1 data cache, and the operation code for Index Store 
tag is encoded as 3’b010 in bits two, three and four.

next_dcache_tag:

cache 0x9, 0($14) # Index Store tag Cache opt

The index type of operation can be used to address a byte in the cache in a specific way of the cache. This is done by 
breaking down the virtual address argument stored in the base register of the Cache instruction into several fields.

Bits 14:0 of the Cache Instruction 

The size of the index field varies according to the size of a cache way. The larger the way, the larger the index. In the 
table above, the combined byte and page index is 13 bits because each way of the cache is 8K. The way number is 
always the next two bits following the index.

The code does not explicitly set the way bits. Instead it just increments the virtual address by the cache line size so the 
next time through the loop the Cache instruction will initialize the next set in the cache. Eventually this increment 
has the effect of setting the cache to index 0 of the next way in the cache because it overflows into the way bits.

At this point all the code needs to do is loop maintenance. First decrement the loop counter (12/t4).

add $12, -1 # Decrement set counter

Then test it to see if it has gotten to zero and if not branch back to label one.

bne $12, $0, next_dcache_tag # Done yet?

The instruction in the branch delay slot, which is always executed, is used to increment the virtual address (14/t6) to 
the next set in the cache. (11/t3) holds the line size in bytes

add $14, $11    # Increment line address by line size

At this point the Dcache initialization is done.

done_dcache:

    jr      r31_return_addr
nop

END (init_dcache)

14 13 12 5 4 0

Way Page Index Byte Index



 

MIPS32® proAptiv™ Multiprocessing System Software User’s Manual, Revision 01.22 271

4.3.7 Data Cache CP0 Register Interface 

The proAptiv core uses different CP0 registers for data cache operations. 

4.3.7.1 Config1 Register (CP0 register 16, Select 1)

The Config1.DS field (bits 15:13) indicates the number of sets per way in the data cache. The proAptiv L1 data cache 
supports 256 sets per way, which is used to configure a 32 KB cache, or 512 sets per way, which is used to configure 
a 64 KB cache.

The Config1.DL field (bits 12:10) indicates the line size for the data cache. The proAptiv L1 data cache supports a 
fixed line size of 32 bytes as indicated by a default value of 4 for this field.

The Config1.DA field (bits 9:7) indicates the set associativity for the data cache. The proAptiv L1 data cache is fixed at 
4-way set associative as indicated by a default value of 3 for this field.

For more information, refer to Section 2.3.1.2, "Device Configuration 1 — Config1 (CP0 Register 16, Select 1)". 

4.3.7.2 CacheErr Register (CP0 register 27, Select 0)

The CacheErr register is a read-only register used to determine the status of a cache error. The upper two bits of this 
register (CacheErr.EREC) indicate whether the contents of the register pertain to an L1 instruction cache error, an L1 
data cache error, a TLB error, or an external error. 

For more information, refer to Section 2.3.6.11, "Cache Error — CacheErr (CP0 Register 27, Select 0)". 

4.3.7.3 L1 Data Cache TagLo Register (CP0 register 28, Select 2)

These registers are a staging location for cache tag information being read/written with cache load-tag/store-tag 
operations. 

In a multi-core system, the D-cache has five logical memory arrays associated with this DTagLo register. The tag 
RAM stores tags and other state bits with special attention to the needs of the CPU. The duplicate tag RAM also 
stores tags and state, but is optimized for the needs of interventions. Both of these arrays are set-associative (4-way). 
The Dirty RAM and duplicate Dirty RAM store the dirty bits (indicating modified data) for CPU and intervention 
uses, and each combine their ways together in a single entry per set. The WS RAM also combines the lock and LRU 

Table 4.4 Data Cache CP0 Register Interface

CP0 Registers CP0 number

Config1 16.1

CacheErr 27.0

DTagLo 28.2

DDataLo 28.3

L23TagLo1

1. In past versions of this manual L23TagLo was known as “STagLo”, and so on. But this 
name is more mnemonic.

28.4

L23DataLo 28.5

L23DataHi 29.5
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data in a single entry per set. Accessing these arrays for index cache loads and stores is controlled by using three bits 
in the ErrCtl register to create modes that allow the correct access to these arrays.

Note that the proAptiv core does not implement the DTagHi register. 

The interpretation of this register changes depending on the settings of ErrCtlWST, ErrCtlDYT, and ErrCtlSPR. 

For more information, refer to Section 2.3.6.5, "Level 1 Data Cache Tag Low — DTagLo (CP0 Register 28, Select 
2)". 

4.3.7.4 L1 Data Cache DataLo Register (CP0 register 28, Select 3)

In the proAptiv core, software can read or write cache data using a cache index load tag/index store data instruction. 
Which word of the cache line is transferred depends on the low address fed to the cache instruction. 

Note that the proAptiv core does not implement the DDataHi register.

For more information, refer to Section 2.3.6.6, "Level 1 Data Cache Data Low — DDataLo (CP0 Register 28, Select 
3)". 

4.4 L1 Instruction and Data Cache Software Testing

Typically, the cache RAM arrays will be tested using BIST. It is, however, possible for software running on the pro-
cessor to test all of the arrays. Of course, testing of the I-cache arrays should be done from an uncacheable space with 
interrupts disabled in order to maintain the cache contents. There are multiple methods for testing these arrays in soft-
ware, some of which are described in the following subsections. 

4.4.1 L1 Instruction Cache Tag Arrays

The L1 instruction cache tag array can be tested via the Index Load Tag and Index Store Tag varieties of 
the CACHE instruction. An Index Store Tag writes the contents of the ITagLo and ITagHi registers into the 
selected tag entry. An Index Load Tag will read the selected tag entry into the ITagLo and ITagHi registers.

If parity is implemented, the parity bits can be tested as normal bits by setting the PO (parity override) bit in the ErrCtl 
register. This will override the parity calculation and use the parity bits in ITagLo and ItagHi as the parity values.

4.4.2 L1 Data Cache Tag Arrays

The L1 data cache tag array can be tested via the Index Load Tag and Index Store Tag varieties of the 
CACHE instruction. An Index Store Tag writes the contents of the DTagLo register into the selected tag entry. 
An Index Load Tag will read the selected tag entry into the DTagLo register.

If parity is implemented, the parity bits can be tested as normal bits by setting the PO (parity override) bit in the ErrCtl 
register. This will override the parity calculation and use the parity bits in DTagLo as the parity values.

4.4.3 Duplicate D-cache Tag Array

This array can be tested via the Index Load Tag and Index Store Tag varieties of the CACHE instruction. In order to 
access the duplicate tags, the WST and SPR bits of ErrCtl should both be set. Index Store Tag will write the contents 
of the TagLo register into the selected tag entry. Index Load Tag will read the selected tag entry into the TagLo. In 
normal mode, with WST and SPR cleared, IndexStoreTags will write into both the primary and duplicate tags, while 
IndexLoadTags will read the primary tag.
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If parity is implemented, the parity bit can be tested as a normal bit by setting the PO bit in the ErrCtl register. This 
will override the parity calculation and write P bit in TagLo as the parity value.

4.4.4 I-Cache Data Array

This array can be tested using the Index Store Data and Index Load Tag varieties of the CACHE instruction. The 
Index Store Data variety is enabled by setting the WST bit in the ErrCtl register.

The Index Store Data instruction can optionally update the corresponding precode field in the tag array.The precode 
bits in the array are updated if the PCD bit in the ErrCtl register is zero when executing the Index Store Data instruc-
tion. The precode value is generated by the hardware automatically if the PCO bit in the ErrCtl register is zero. Other-
wise, the corresponding precode value (PREC_01/PREC_23/PREC_45/PREC_67) from the ITagHi register is used in 
updating the tag array.

The parity bits in the array can be tested by setting the PO bit in the ErrCtl register. This will use the PI field in ErrCtl 
instead of calculating the parity on a write.

The rest of the data bits are read/written to/from the IDataLo and IDataHi registers.

4.4.5 I-Cache WS Array

The testing of this array is done with via Index Load Tag and Index Store Tag CACHE instructions. By setting the 
WST bit in the ErrCtl register, these operations will read and write the WS array instead of the tag array.

4.4.6 D-Cache Data Array

This array can be tested using the Index Store Tag CACHE, SW, and LW instructions. First, use Index Store Tag to set 
the initial state of the tags to valid with a known physical address (PA). Write the array using SW instructions to the 
PAs that are resident in the cache. The value can then be read using LW instructions and compared to the expected 
data.

The parity bits can be implicitly tested using this mechanism. The parity bits can be explicitly tested by setting the PO 
bit in ErrCtl and using Index Store Data and Index Load Tag CACHE operations. The parity bits (one bit per byte) are 
read/written to/from the PD field in ErrCtl. Unlike the I-cache, the DataHi register is not used, and only 32b of data is 
read/written per operation.

4.4.7 D-Cache WS Array

The lock and LRU bits can be tested using the same mechanism as the I-cache WS array.

4.4.8 D-Cache DirtyArray

The testing of this array is also done through Index Load Tag and Index Store Tag CACHE instructions. By setting 
the DYT bit in the ErrCtl register, these operations will read and write the dirty array instead of the tag array.
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4.5 L2 Cache

The L2 cache processes transactions that are not serviced by the L1 cache. L2 is generally larger than the L1 cache, 
but slower, due to the use of higher-density memories.

The L2 communicates with external memory via an Open Core Protocol (OCP) interface. Because the L2 cache is 
integrated into the Coherence Manager (CM2) in the proAptiv architecture, no OCP interface between the two is 
required, reducing both latency and complexity. 

The L2 also communicates with the CPU(s) through the performance counter interface, error reporting interface, and 
other side band signals. In addition to these interfaces, the L2 has the clock, reset, and bypass signals as well as some 
static input signals which can be used to configure it for different operating modes.

4.5.1 L2 Cache General Features

• 7-stage pipeline. (Optional 8th stage1 for pipelined memory arrays.)

• 32-bit address paths and 256-bit internal data paths

• Associativity: 8-way

• Cache size: 256 KB, 512 KB, 1 MB, 2 MB, 4 MB, 8 MB

• Latency: The hit latency is 9-1-1-1 in the cm_clk domain (9-0-0-0 if a wide system bus). If pipelined memory 
arrays are used, the latency will increase to 10 cycles. If parity is enabled, the latency is 10 cycles. If both pipe-
lined and parity, it is 11 cycles. The L2 read miss request latency is 8 cycles from the cycle L2 receives a proces-
sor request to the cycle L2 sends a request to the system. The L2 read miss response latency is 2 cycles from 
receiving the system response to L2 driving the response to the processor. Therefore, the aggregate read miss 
latency is 10 cycles plus the system latency. Of the 8 cycle read miss latency, 5 cycles are required to determine 
hit/miss and 3 cycles are required from the detected miss to the time the request goes out on the system bus. 
Uncached read latency is 7 (five request plus 2 response) cycles plus system latency.

• Line Size: 32 or 64 bytes (4 or 8 doublewords)

• Locking Support: Yes

• Replacement Algorithm: Pseudo LRU for 8-way

• Write policy: Write Back and Write through

• Write miss allocation policy: No-Write-Allocate and Write-Allocate.

• Error Checking and Correction (ECC): Optional 2-bit error detection and 1-bit error correction covering the tag 
and data arrays. 1-bit error detection covering the WS array.

• Maximum read misses outstanding: 8, 12 or 15. Build-time configuration option.

• Out-Of-Order processing (OOO): Yes

• Coherency: Non-coherent

1. Build time option.  The customer must choose this option if they are using pipelined RAM’s in the wrappers instead of stan-
dard RAM cells (that are not pipelined in this way).
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• 256-bit or 64-bit OCP SData/MData width on memory-side OCP interface.

• OCP Burst Size on the memory interface: 64-byte line size: 8 beats of 64-bit data or 2 beats of 256-bit data

• Bypass Mode Support: In bypass mode, all processor requests are routed to the system. This mode is used only 
for debug purposes and should not be used during normal operation.

• Multi-cycle Data Rams: 0, 1, 2, or 3 stalls can set Data RAM access times to 1, 2, 3, or 4 clocks.

• Multi-cycle Tag Rams: 0, 1, 2, or 3 stalls can set Tag RAM access times to 1, 2, 3, or 4 clocks.

• Multi-cycle Way-Select Rams: 0, 1, 2, or 3 stalls can set the Way-Select RAM access times to 1, 2, 3, or 4 clocks.

• Endianness: Independent of endianness 

In the table above, the associativity of the L2 cache is fixed at 8 ways. As a result, changes to the number of sets per 
way and the line size determine the overall size of the L2 cache. The proAptiv Multiprocessing Systemonly supports 
the cache sizes shown in Table 4.5 above. As a result, some of the options for line size and sets per way are invalid as 
they would result in cache sizes being either smaller or larger than those listed above. Table 4.6 shows the list of pos-
sible configurations and which ones are valid or invalid. The invalid configurations are shaded in the table. 

Table 4.5 L2 Cache Attributes

Attribute With Parity

Size 256 KB, 512 KB, 1 MB, 2 MB, 4 MB, or 8 MB

Line Size 32-byte or 64-byte

Number of Cache Sets 512, 1024, 2048, 4096, 8192, 16384 of 32768

Associativity 8 way

Table 4.6 Valid and Invalid Cache Configurations

Line Size
Sets per 

Way
Number of 

Ways
Total L2 

Cache Size
Valid L2 Cache 
Configuration Notes

32 bytes 1024 8 256 KBytes Yes
32 bytes 2048 8 512 KBytes Yes
32 bytes 4096 8 1 MByte Yes
32 bytes 8192 8 2 MByte Yes
32 bytes 16384 8 4 MByte Yes
32 bytes 32768 8 8 MByte Yes
64 bytes 512 8 256 KBytes Yes
64 bytes 1024 8 512 KBytes Yes
64 bytes 2048 8 1 MByte Yes
64 bytes 4096 8 2 MByte Yes
64 bytes 8192 8 4 MByte Yes
64 bytes 16384 8 8 MByte Yes
64 bytes 32768 8 16 MByte No 32768 sets/way valid only 

with 32 byte line size
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When a write hits in the L2 cache, the data in the cache is always updated with the new data from the OCP master. 

When a write misses in the L2 cache, the data is written into either the L2 cache or the main memory depending on 
PB_MReqInfo[4].

Note that the L2 never allocate on miss if the write is write-through type or is writing a partial data. Table 4.8 shows 
the L2 behaviors.

4.5.4.2 Read

MReqInfo[4] field also controls whether or not the L2 allocates read data after a miss in the cache array.

As shown in Table 4.9, on a read hit, there are no differences; the line will be returned to the core. However, when the 
read misses, depending on the value of PB_MReqInfo[4], the line that has been brought in from the main memory 
will end up residing in the L2 cache in the end of the operation.

4.5.5 Write-Through vs. Write-Back

Write-through and write-back operations are both supported. The L2 decodes MReqInfo[2:0] fields and determines 
which way to handle the write data.

Table 4.7 L2 writes - Full Line AND Write-Back Cacheable (cca 3)

Allocation policy 
(PB_MReqInfo[4]) L2 hit/miss What L2 does1

1. If not mentioned, L2 does not generate a main memory write.

No allocate (0) hit overwrite, mark dirty

miss write out to the main memory, no-allocate

Allocate (1) hit overwrite, mark dirty

miss write-allocate, mark dirty

Table 4.8 L2 writes - partial data OR write-through cacheable (cca 0)

Allocation policy 
(PB_MReqInfo[4]) L2 hit/miss What L2 does

Don’t care hit update the cache. write out to memory if it 
is write-through type

miss no-allocate, just write out to the main 
memory

Table 4.9 L2 reads - cacheable (cca 0/3)

L2 hit/miss
Allocation policy 

(MReqInfo[4]) What L2 does

hit Don’t care Return the data. Keep the line in the L2.

miss Allocate (0) Get the data from memory. Return the data to 
the core. Allocate into the L2.

No allocate (1) Get the data from memory. Return the data to 
the core. Don’t allocate into the L2.
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When a write hits in the L2 cache, the data is written into the L2 cache, and also sent to the main memory when it was 
write-through type (MReqInfo[2:0] = 0).

When a write misses, the no-write-allocation policy is employed in most cases. That is, the write data is forwarded to 
the main memory without updating the L2 cache contents. However, for the write-back type write with full line data, 
usually resulting from the L1 D-cache eviction, the L2 supports write-allocate on miss as well as the normal no-allo-
cate policy. This is controlled by the value on MReqInfo[4] that is set by the OCP requester. Please refer to the 
Section 4.5.4 “L2 Allocation Policy” for more details.

4.5.6 Cacheable vs. Uncacheable vs. Uncached Accelerated

The L2 cache supports cacheable and uncacheable accesses. This information also is conveyed on the MReqInfo[2:0] 
field. Cacheable operations access the cache memories, whereas an uncached access bypasses the L2 cache arrays 
and is sent directly to the main memory. 

Uncached accelerated accesses are treated the same way as non-accelerated uncached accesses. This CCA enables 
uncached transactions to better utilize bus bandwidth via burst transactions. L2 supports single-beat as well as 4-beat 
burst uncacheable transactions for both read and write operations.

4.5.7 Cache Aliases

The L2 cache is physically addressed and physically tagged. It is not subject to virtual aliasing.

4.5.8 Performance Counters

The L2 tracks and reports to core the number of the following events.

• the number of cached accesses

• the number of misses

• the number of write backs 

• the amount of cycles the L2 is held due to misses

• the number of single bit errors that were corrected

• L2 pipeline utilization — Counts the number of starts into the TA stage of the L2 pipeline

• L2 hit qualifier — Counts different types of L2 cache hits and misses, crossed with the instruction being 
requested

4.5.9 Sleep Modes

The L2 cache contains two basic sleep modes:

• Instruction controlled sleep mode using the WAIT instruction

• Internal dynamic sleep mode
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4.5.9.1 Sleep Mode Using the WAIT Instruction

In addition to slowing down or stopping the primary cm_clk input, software may initiate low-power Sleep Mode via 
the execution of the WAIT instruction in the processor.

When the processor enters into Sleep Mode, it will assert SI_Sleep. The SI_Sleep drives the SI_L2_Sleep input to 
the L2. The L2 then enters a low-power state and asserts the L2_Sleep output once all outstanding bus activity has 
completed. Most clocks in the L2 will be stopped, but a handful of flops will remain active to sense the wake up call 
from the processor, which is the deassertion of SI_L2_Sleep. 

Power is reduced since the global clock goes to the vast majority of flops within the L2, which are held idle during 
this period. There is no bus activity while the L2 is in sleep mode, so the system bus logic which interfaces to the L2 
could be placed into a low power state as well.

When the L2 samples SI_L2_Sleep asserted and there is no activity in the L2, the L2 will assert L2_Sleep two 
cm_clks later. Any activity in the L2 will delay the start of L2_Sleep assertion.

When SI_L2_Sleep is deasserted, the L2 will deassert L2_Sleep and assert PB_SCmdAccept two clocks later. If 
there is a valid PB_MCmd waiting at the L2 pins at the cm_clk, then the following cm_clk will have a coincident 
internal l2_clk edge (clocks are now enabled) and the command that was accepted is launched into the pipeline as 
indicated by inst_ta. The following clock after that will have an l2_tram_clk that initiates the tag ram access for that 
command. Thus, there is a four cm_clk latency from SI_L2_Sleep deassertion to the start of a tag ram access.

4.5.9.2 Internal Dynamic Sleep Mode

When there is no activity at the input pins of the L2 cache and all pending transactions from the CPU are completed, 
the L2 cache will eventually empty. When this occurs, the L2 cache will turn off the l2_clk signal after some small 
delay. Only data of value in the CMOS SRAM’s retains state.

Beside the WAIT instruction induced sleep mode, the L2 is also equipped with the dynamic global clock gating. 
When there are no pending transactions in the L2 cache, the L2 shuts down the majority of internal clocks to save 
power. While the most part of the L2 cache can be turned off, the minimum required logic on the core-side OCP inter-
face remain active. Thus, the L2 cache can accept a new OCP request from core at any time, and this will wake up the 
whole L2 cache controller.

4.5.10 Bypass Mode

Note: Bypass mode is strictly a debug feature and is not intended to be a normal mode of operation. It was not 
intended for active switching during normal operation.

Bypass mode is a test/bringup feature that causes the L2 cache to forward all requests received from either the core or 
the Coherency Manager to the OCP system interface to main memory. Entering or exiting from Bypass Mode other 
than at reset requires flushing of the L2 cache while running from uncached memory to restore the L2 cache state to a 
stable state. In bypass mode, all requests are forwarded to the system as received including L2 CACHE instructions 
and SYNCs.

4.5.11 L2 Cache Initialization

The L2 cache controller contains minimal hardware initialization logic. It normally relies on software to fully initial-
ize the L2 arrays. The registers used to support cache initialization are described in Section 4.5.12, "L2 Cache CP0 
Interface". For additional information, refer to the CP0 Registers chapter of this manual.
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The L1 data cache must be initialized during power-up or reset in order to place the lines of the cache in a known 
state. This is accomplished via the cache initialization routine, which is normally part of the boot code. For experi-
enced user’s, a sample boot code is shown in the following subsection.

4.5.11.1 init_l2u Cache Initialization Routine

The following assembly provides an example initialization routine for the L2 cache.

LEAF(init_l2u) 
# Use CCA Override to allow cached execution of L2 init. 
# Check for CCA_Override_Enable by writing a one. 
lw r4_temp_data, 0x0008(r22_gcr_addr) # Read GCR_BASE register
li r7_temp_mark, 0x50 # CM_DEFAULT_TARGET Memory 
# CCA Override Uncached enabled 
ins r4_temp_data, r7_temp_mark, 0, 8 
sw r4_temp_data, 0x0008(r22_gcr_addr) 
lw r4_temp_data, 0x0008(r22_gcr_addr) # GCR_BASE 
ext r4_temp_data, r4_temp_data, 4, 1 # Extract CCA_Override_Enable 
bnez r4_temp_data, done_l2 # Skip if CCA Override is implemented. 
nop 
b init_l2u 
nop 

END(init_l2u) 

4.5.11.2 init_l2c Cache Initialization Routine

The code in this function will be called from start.S after the L1 caches have been initialized. It will check to see if the 
core implements CCA Override. If it does, it will call the code to initialize the L2 cache.

LEAF(init_l2c)

# Skip cached execution if CCA Override is not implemented.
# If CCA override is not implemented the L2 cache would have already
# been initialized when init_l2u was called.

lw r4_temp_data, 0x0008(r22_gcr_addr) # Read GCR_BASE
bnez r16_core_num, done_l2 # Only done from core 0.
ext r4_temp_data, r4_temp_data, 4, 1 # CCA_Override_Enable
beqz r4_temp_data, done_l2 
nop

END(init_l2c)

4.5.11.3 init_L2u Initialization Routine Details

This section provides a detailed description of each line of code in the init_l2u initialization routine.
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The L2 cache is a system resource used by all cores in the proAptiv Multiprocessing System. Initialization of the L2 
cache is done only by Core 0 in a CPS, because it only needs to be done once. The initialization of the L2 cache can 
be time consuming depending on its size. For example, a 256 KByte cache initializes quicker than an 8 MB cache.

The L2 cache initialization code executes faster if it is being run out of the instruction cache, so ideally the L2 initial-
ization should be done after the L1 instruction cache in core 0 has been initialized. The instruction cache is a per-core 
resource and not initialized in the system initialization section of the code. Therefore, to be efficient and run the L2 
cache initialization code out of the I-cache, the boot code tries to put off L2 cache initialization until the core 0 
resources have been initialized. This can only be done if the L2 cache can be disabled before other cores are released 
to run this boot code. Otherwise there is a danger that other cores will use the L2 cache before it has been initialized 
by core 0. 

The CCA override feature controls the cache attributes for the L2 cache. It allows for the disabling of the L2 cache by 
enabling the CCA override and setting the CCA to uncached. The CCA override works along with the L2 cache 
implementation. 

The init_l2u function tries to enable the CCA override and set the L2 cache to uncached in the GCR_BASE register, 
thus disabling it. On systems that do not support CCA override, writes to the CCA override field have no effect, and 
reading back the GCR_BASE register will not show the CCA override being set.

The code reads the GCR Base register.

lw r4_temp_data, 0x0008(r22_gcr_addr) # GCR_BASE

The next 3 lines of code are used to enable CCA Override and set the L2 cache CCA to uncached.

li r7_temp_mark, 0x50 # CM_DEFAULT_TARGET Memory
# CCA Override Uncached enabled
ins r4_temp_data, r7_temp_mark, 0, 8
sw r4_temp_data, 0x0008(r22_gcr_addr)

Now the code reads back the GCR_BASE register. If the CCA override bit is set, it means the code above worked, 
and the L2 cache is set to uncached. In this case, the code skips the initialization for now. The routine will be recalled 
later once the code is executing out of the L1 instruction cache. If not, the code branches to the init_l2 function, which 
initializes the L2 cache.

lw r4_temp_data, 0x0008(r22_gcr_addr) # GCR_BASE
ext r4_temp_data, r4_temp_data, 4, 1 # CCA_Override_Enable
bnez r4_temp_data, done_l23 # Skip if CCA Override is implemented.
nop
b init_l2
nop

END(init_l2u)

4.5.11.4 init_L2c Initialization Routine Details

This section provides a detailed description of each line of code in the init_l2c initialization routine. The code in this 
function is called from the start.S function after the L1 caches have been initialized. It checks to see if the core imple-
ments CCA Override. If it does, it calls the code to initialize the L2 cache.
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In Section 4.5.11.3 the code also checks to see if CCA override was implemented, If it was not, then it initialized the 
L2 cache while the code was executing in uncached mode, so there is no need to do it again here.

LEAF(init_l2c)

# Skip cached execution if CCA Override is not implemented.
# If CCA override is not implemented the L2 cache
# would have already been initialized when init_l2u was called.

lw r4_temp_data, 0x0008(r22_gcr_addr) # GCR_BASE
bnez r16_core_num, done_l2 # Only done from core 0
ext r4_temp_data, r4_temp_data, 4, 1 # CCA_Override_Enable
beqz r4_temp_data, done_l23 nop

END(init_l2c)

4.5.12 L2 Cache CP0 Interface

The proAptiv core uses different CP0 registers for L2 cache operations. 

This section describes the base processor core CP0 registers that support the L2 cache. A complete description and bit 
assignments for each register listed is described in Chapter 2, “CP0 Registers”.

4.5.12.1 Config2 Register (CP0 register 16, Select 2)

Asserting Config2.L2B (bit 12) enables the bypass-mode of the L2 cache. This bit is reflected on the L2_Bypass out-
put from the core. When L2 goes into bypass-mode, L2 responds by asserting L2_Bypassed output, and the value or 
L2_Bypassed is returned when Config2.L2B is read by software. Thus, reading this Config2.L2B bit does not read 
back what was written: it reflects the value of a signal sent back from the L2. The feedback signal, L2_Bypassed, 
will reflect the previously written value with some implementation and clock ratio dependent delay.

Changing the value of Config2.L2B field in the middle of the normal operation may cause an unwanted loss of an OCP 
transaction in the L2 cache. For the safe transition into the L2 bypass-mode, an externalized SYNC before the MTC0 
Config2.L2B is necessary to make sure all the pending transactions in L2 are completed. And, these instructions should 
run from the uncached space. It might be also a good idea to check if L2 is really in bypass-mode by reading the 
Config2.L2B field before moving onto the next instructions.

Table 4.1 L2 Cache CP0 Register Interface

CP0 Registers CP0 number

Config2 16.2

ErrCtl 26.0

CacheErr 27.0

L23TagLo 28.4

L23DataLo 28.5

L23DataHi 29.5
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The Config2.SS field (bits 11:8) indicates the number of sets per way in the data cache. The proAptiv L2 cache sup-
ports from 512 up to 32768 sets per way, which is used to configure cache sizes from 256 KBytes to 8 MBytes.

The Config2.SL field (bits 7:4) indicates the line size for the L2 cache. The proAptiv L2 cache can be configured for a 
32-byte or 64 byte line size.

The Config2.SA field (bits 3:0) indicates the set associativity for the L2 cache. The proAptiv L2 cache is fixed at 8-
way set associative as indicated by a default value of 4 for this field.

For more information, refer to Section 2.3.1.3, "Device Configuration 2 — Config2 (CP0 Register 16, Select 2)". 

4.5.12.2 Error Control Register (CP0 register 26, Select 0)

ErrorControl.L2P (bit 23) is used to enable L2 ECC checking and correction. This bit is read-only if the L2 has not 
been built with ECC/Parity support. Specific parity support is enabled using both L2P and ErrorControl.PE (bit 31) as 
described in Table 4.10. L2P is also reflected on the L2_ECCEnable output from the core.

These encodings were chosen such that legacy code which is unaware of L2P, will by default enable L2 ECC logic 
when it enables L1 parity. For more information, refer to Section 2.3.6.10, "ErrCtl (CP0 Register 26, Select 0)"

4.5.12.3 Cache Error Register (CP0 register 27, Select 0)

When the L2 detects an uncorrectable error, CacheError.EC is set, identifying the exception as an L2 error. The Cache 
Error register stores information such as the cache way where the error was detected, the cache index of the double word 
in which the error was detected, the cache level at which the error was detected, if the tag RAM was involved, etc.

For more information, refer to Section 2.3.6.11, "Cache Error — CacheErr (CP0 Register 27, Select 0)". 

4.5.12.4 L23TagLo Register (CP0 register 28, Select 4)

The L23TagLo register contains the contents of the L2 tag array at the location accessed by the L2 Index Load Tag 
cache-op. It is also used as the source register for the L2 Index Store Tag cache-op. 

For more information, refer to Section 2.3.6.7, "Level 2/3 Cache Tag Low — L23TagLo (CP0 Register 28, Select 
4)". 

4.5.12.5 L23DataHi Register(CP0 register 29, Select 5) / L23DataLo Register(CP0 register 28, Select 5)

For the L2 Index Load Tag cache-op, L23DataHi and L23DataLo hold the contents of the doubleword from the L2 
data array at the indexed location. (L23DataHi holds the most-significant word and L23DataLo holds the least-signif-
icant word). For the L2 Index Load WS cache-op, L23DataHi and L23DataLo each hold the ECC parity of the dou-
bleword from the L2 data array at the indexed location. 

Table 4.10 L2_ECC_Enable

PE L2P L2_ECCEnable

1 0 1

1 1 0

0 0 0

0 1 1
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These registers are also used for the source data for the Index Store Data cache-op. Finally, L23DataLo is used as the 
data source for the ECC to be written by the Index Store ECC cache-ops. For more details on the data returned by the 
L2 on a Index Load Tag/Data cache-op, please refer to Section 4.6 “The CACHE Instruction”.

For more information on the L23DataLo register, refer to Section 2.3.6.8, "Level 2/3 Cache Data Low — L23DataLo 
(CP0 Register 28, Select 5)". For more information on the L23DataHi register, refer to Section 2.3.6.9, "Level 2/3 
Cache Data High — L23DataHi (CP0 Register 29, Select 5)". 

4.5.13 L2 Cache Operations

Cache-ops are used for control operations such as initialization, invalidation, eviction, etc. A brief description of the 
cache-ops implemented by the L2 are given below:

Index Writeback Invalidate: If the state of the cache line at the specified index is valid and dirty, the line is writ-
ten back to the memory address specified by the cache tag. After that operation is completed, the state of the cache 
line is set to invalid. If the line is valid but not dirty, the state of the line is set to invalid.

Index Load Tag: The tag, valid, lock, dirty, parity and LRU bits for the cache line at the specified index are read. 
The doubleword indexed in the data RAM is also read.

Index Load WS: The LRU, dirty, and dirty parity bits for the cache line at the specified index are read. ECC for the 
doubleword indexed in the data RAM is also read.

Hit Invalidate: If the cache contains the specified address, the state of that cache line is set to invalid.

Hit Writeback Inv: If the cache contains the specified address and it is valid and dirty, the contents of that line are 
written back to main memory. After that operation is completed, the state of the cache line is set to invalid. If the line 
is valid but not dirty, the state of the line is set to invalid.

Hit Writeback: If the cache contains the specified address and it is valid and dirty, the contents of that line are writ-
ten back to main memory. After the operation is completed, the state of the line is left valid, but the dirty state is 
cleared.

Index Store Tag: Write the tag for the cache line at the specified index.

Index Store WS: Write the WS array for the cache line at the specified index.

Fetch And Lock: If the cache contains the specified address, lock the line. If the cache does not contain the speci-
fied address, refill the line from main memory and then lock the line.

Index Store Data: Write the data and ECC for the cache line at the specified index. Proper ECC is generated for the 
written data and written into the ECC field.

Index Store ECC: Write the ECC for the cache line at the specified index.

Most CP0 instructions are used rarely, in code which is not timing-critical. But an OS which has to manage caches 
around I/O operations or otherwise may have to sit in a tight loop issuing hundreds of cache operations at a time, so 
performance can be important.

4.5.13.1 Bus Transaction Equivalence

When the base processor executes an L2 CACHE instruction, the operands and as well as data to be written to CP0 
registers is transferred to and from L2. Index Load Tag and Index Load WS generate burst read transactions. All other 
L2 cache-ops generate single write transactions. 
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For 64 byte line configurations, bit 5 (the LSB of the Index field) is the selector to which 32 byte half of the 64 byte 
line is targeted (essentially it becomes an additional DW bit). For tag and ws type cache-ops, this bit is disregarded 
and cache-ops with either value of bit 5 impact the exact same tag or ws entry. For data type cache-ops, bit 5 selects 
which half of the 64 byte cache line is being accessed.

Figure 4.5 Index Encoding for PB_MAddr (1MB, 8-way)

4.5.13.2 Details of Cache-ops

Table 4.11 indicates the operation and behavior of the L2 cache for each cache-op. 

31 23 22 20 19 5 4 3 2 0

Unused Way Index DW Unused

Table 4.11 Cache-ops

Cache-op

Effective 
Address 

Operand Type Operation

Index WB inv/
Indx Inv

(OPCODE: 0)

INDEX • If the state of the cache line at the specified index is valid and dirty, the line is written 
back to the memory address specified by the cache tag. After that operation is completed, 
the state of the cache line is set to invalid.

• If the line is valid but not dirty, the state of the line is set to invalid
• The LRU bits are updated to Least-recently-used.
• The dirty bits are updated to clean for that way.

Index Load Tag
(OPCODE: 1)

ErrCtl.WST = 0

INDEX • The tag, valid, lock, and parity fields from the tag array for the cache line at the specified 
index are written into L23TagLo. Furthermore, the dirty bit from the WS array corre-
sponding to the specified index is also written into L23TagLo. (First beat of return data)

• For the first beat of return data, the two halves of the 64-bit data bus are identical.
• The indexed doubleword is written into {L23DataHi, L23DataLo}. (2nd beat of return 

data)
• ErrCtl.PO is treated as a don’t care
• The LRU bits are unchanged

Index Load WS
(OPCODE: 1)

ErrCtl.WST = 1

INDEX • The dirty, dirty parity, and LRU fields from the WS array for the cache line at the speci-
fied index are written into L23TagLo. (First beat of return data)

• For the first beat of return data, the two halves of the 64-bit data bus are identical.
• The WS data at the indexed location is written into L23TagLo. (First beat of return data)
• The indexed doubleword’s ECC is written into {L23DataHi, L23DataLo}. (2nd beat of 

return data)
• ErrCtl.PO is treated as a don’t care
• The LRU bits are unchanged
• Data RAM:
• The DW ECC to be read in the line is determined by PB_MAddr[4:3]
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Index Store Tag
(OPCODE: 2)

ErrCtl.WST = 0

INDEX • The tag, valid, and lock fields in the Tag array at the indexed location are written from 
L23TagLo.

• If ErrCtl.PO==1, the parity and total parity fields in the Tag array at the indexed location 
are written from L23TagLo.

• If ErrCtl.PO==0, the parity and total parity fields in the Tag array at the indexed location 
are written with hardware generated values.

• If valid==1, the LRU bits in the WS array are updated to make the indexed way most-
recently-used. If valid==0, the LRU bits are updated with least-recently-used.

• If valid==1, the dirty bit in the WS array at the indexed location is written from 
L23TagLo.

• If valid==0, the dirty bit in the WS array at the indexed location is cleared.
• The dirty parity bit in the WS array at the indexed location is written with the correct 

hardware generated values.

Index Store WS
(OPCODE: 2)

ErrCtl.WST = 1

INDEX • The dirty and LRU fields for all 8 ways of the WS array at the indexed location are writ-
ten from L23TagLo

• If ErrCtl.PO==1, the dirty parity fields for all 8 ways of the WS array at the indexed loca-
tion are written from L23TagLo

• If ErrCtl.PO==0, the dirty parity fields for all 8 ways of the WS array at the indexed loca-
tion are written with hardware generated values

Index Store Data
(OPCODE: 3)

ErrCtl.WST = 0

INDEX • The doubleword in the data array at the indexed location and doubleword offset is written 
from {L23DataHi, L23DataLo} regardless of the PB_MDataByteEn value.

• The Parity/ECC field in the data array at the indexed location and doubleword offset is 
written with a hardware generated value.

• The LRU bits in the WS array are updated to make the indexed way most-recently-used.

Index Store ECC
(OPCODE: 3)

ErrCtl.WST = 1

INDEX • The Parity/ECC field in the data array at the indexed location and doubleword offset is 
written from L23DataLo[7:0].

• The LRU bits in the WS array are updated to make the indexed way most-recently-used.

HIT Inv
(OPCODE: 4)

ADDRESS • If the address is not contained in L2, nothing happens.
• If the address hits in L2, it is invalidated, the dirty bit is cleared, and the LRU bits in the 

WS array are updated to make the invalidated way least-recently-used.
• If any arrays are written, the appropriate parity fields are updated by hardware.

HIT WB Inv
(OPCODE: 5)

ADDRESS • If the address is not contained in L2, nothing happens.
• If the address hits in L2, and it is dirty, the line is written back to main memory. It is then 

invalidated, the dirty bit is cleared, and the LRU bits in the WS array are updated to make 
the invalidated way least -recently-used.

• If the address hits in L2, and it is clean, it is invalidated and the LRU bits in the WS array 
are updated to make the invalidated way least-recently-used.

• If any arrays are written, the appropriate parity fields are updated by hardware.

HIT WB
(OPCODE: 6)

ADDRESS • If the address is not contained in L2, nothing happens.
• If the address hits in L2, and it is dirty, the line is written back to main memory, the dirty 

bit is cleared, and the LRU bits in the WS array are updated to make the invalidated way 
least -recently-used.

• If the address hits in L2, and it is clean, nothing happens.
• If any arrays are written, the appropriate parity fields are updated by hardware.

Fetch and Lock
(OPCODE: 7)

ADDRESS • If the address is not contained in L2, the line is refilled. The refilled line is then locked in 
the cache. The LRU bits in the WS array are updated to make the fetched way most-
recently-used. The Dirty bit and the dirty parity bit are set to clean.

• On a hit the line is locked and the operation retires. The LRU bits or the dirty bits are not 
affected.

Table 4.11 Cache-ops(continued)

Cache-op

Effective 
Address 

Operand Type Operation
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4.5.13.3 Sync in L2

A Sync operation can be used to guarantee ordering of transactions. The L2 ensures that all transactions preceding a 
Sync request will be ordered in front of transactions received after the Sync request. Within the L2 only requests are 
ordered, not responses, i.e., there is no guarantee of the ordering between a read response vs. the Sync.

One example of the use of a Sync involves cache operations. Normally, the L2 does not guarantee the ordering 
between a cache operation, such as a Hit-Writeback-Invalidate, vs. an subsequent uncached request. If the software 
wants to ensure that any writes on the system interface due to the Hit-Writeback-Invalidate will be ordered in front of 
a subsequent uncached write, then a Sync must be issued between the cache operation and uncached write. Note that 
in order for a core to externalize a Sync request, Config7.ES bit must be set before the sync instruction.

The L2 issues a response to a Sync after all 3 of the following have completed:

• All previous requests have cleared the L2 pipeline

• The L2 has issued all requests to the system interface that are required by previous transactions, such as 
uncached requests, cache operations, cache misses, evictions, or previous Syncs. 

• If the downstream system can take a sync OCP transaction (L2_SyncTxEn=1), it will externalize the sync 
transaction to the system once the above criteria has been satisfied. When the Sync response is received 
from the system interface, the L2 will return a Sync response to the processor interface.

4.5.13.4 L2 Cache Fetch and Lock

In the L2 cache, each line in a way can be locked independently. If a line is locked it will not be evicted. Software is 
not allowed to lock all available ways at the same cache index, since L2 would be unable to refill any other addresses 
at that index.

If the requested address is not contained in the L2 cache, the line is refilled and then locked in the cache. The LRU 
bits in the WS array are updated to make the fetched way most-recently-used. The dirty bit and the dirty parity bit are 
set to clean. 

On a hit the L2 cache line is locked and the operation retires. The LRU bits or the dirty bits are not affected.

4.5.14 L2 Cache Error Management

This section describes ECC, parity, and bus error support for the L2 cache. 

4.5.14.1 ECC/Parity Support

If ECC/Parity support is selected at build time, and this support is enabled via software by setting the ErrCtl.L2EccEn 
bit in the Error Control register (CP0 register 26, Select 0), then the tag and the data arrays are protected with single-
error correction logic as well as double-error detection logic. The Way Select RAM is protected with single-error 
detection logic. Correctable errors are not reported to the processor, but uncorrectable errors are reported to the pro-
cessor. If ECC/Parity support is either not selected at build time or disabled, then no errors are detected (or corrected) 
on any of the cache arrays.

The ECC logic uses Hamming’s error correcting code. In the data array, each 64-bit doubleword is independently 
ECC protected. This requires 8 parity bits per doubleword. The tag array requires 6 parity bits. 
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To perform a single detection and correction the parity bits are placed at 2n locations among the data bits. The bits at 
different locations are then grouped together. The grouping is done by analyzing the binary weights of the particular 
location. 

For example, to protect 8 data bits, 4 parity bits are needed which will be placed as below: 

Note that Bit location 0 does not exist.

The binary weight of bit location 3 is 2^0 and 2^1, which is derived from its binary value 0011b. Therefore, bit loca-
tion 3 falls in group g0 and g1. Similarly, Bit location 11 falls into groups g0, g1 and g3.

Parity bit p0 will belong to g0 and its value will is generated such that g0 will have an even parity. Similarly all other 
parity bits are generated such that their respective group ends up in even parity.

This sharing of binary weights across groups enables the L2 to determine precisely which data or parity bit was in 
error. That is achieved by recreating the parity bits from the data read from the memory and XORing it with the parity 
bits read from the memory. The XORed value, or the syndrome, points to the bit in error. Once this error is detected 
the L2 corrects it. A value of zero on the syndrome indicates that there was no error in the parity and data bits.

To achieve double bit error detection an even parity is generated across the parity and data bits, which is termed as the 
total parity bit. The total parity bit will be flipped in case of a single bit error, whereas for a double bit error it will 
remain the same. The syndrome along with the total parity bit is then used to detect a double bit error.

The WSRAM’s dirty bits are protected, whereas the LRU bits are not. For each dirty bit there is one more bit added 
called the dirty parity bit. The value of the dirty parity bit enforces even parity protection.

4.5.14.2 Tag, Data, and WS Array Format

Logical Tag Array Format

The width of the tag in an 8 way 128 MB cache is 18 bits per way. The data array format is as shown in Figure 4.13. 

Where, d0-d17 : Tag
V : Valid bit
L : Lock bit
p0-p4 : parity bits
TP : Total parity bit

For larger caches, the width of the tag reduces. In that case, the upper data bits are ignored from the calculation as 
appropriate.

Table 4.12 Parity Bit Distribution

Bit Location 12 11 10 9 8 7 6 5 4 3 2 1

Parity and data bits d7 d6 d5 d4 p3 d3 d2 d1 p2 d0 p1 p0

Table 4.13 Logical Tag Array Format for a 8 Way 128 MB Cache

Bit position 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Content TP L V d17 d16 d15 d14 d13 d12 d11 p4 d10 d9 d8 d7 d6 d5 d4 p3 d3 d2 d1 p2 d0 p1 p0
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Logical Data Array Format 

The data array format is as shown in Figure 4.14.

4.5.14.3 Cache Parity Error Handling

The three types of memory arrays in the L2 have an option for parity. If selected, this option provides single bit cor-
rection and double bit detection of the tag rams and data rams. 

• The Tag RAM coverage is for each way.

• The Data RAM coverage is for each way and each double-word in each way. 

• The Way Select RAM has parity for each dirty bit. A correctable bit failure is corrected and no notification of this 
event is present at the L2 pins. 

The five types of ECC/parity errors are handled internally as follows.

Single Bit (correctable) Tag RAM Error in a Way

The corrected tag value is written back into the tag ram by replaying the request.

Single Bit (correctable) Data RAM Error in a Dword of a Way

The corrected data value is written back into the data ram by replaying the request. This may occur due to a read that 
hits or a partial write where a dword in the way has a single bit failure.

Double Bit (uncorrectable) Tag RAM Error in a Way

An uncorrectable tag ram failure kills the request in the L2 pipeline. A write request is dropped and a read request is 
treated as a hit to an arbitrary way.

Double Bit (uncorrectable) Data RAM Error in a Dword of a Way

For a read hit, the uncorrected data is returned.

Parity Error (uncorrectable) on a Dirty Bit in the Wsram

When a dirty parity error is detected, the L2 treats the state as dirty by default. This means that a victim line being 
evicted due to either allocation or invalidation by a request might not have really have needed to be written.

4.5.14.4 Multiple Uncorrectable Errors

This error is reported when more than one uncorrectable error is being reported on the same L2 clock cycle. Since 
double-bit Tag RAM errors, double-bit Data RAM error, and parity bit errors in the Way Select RAM are each 
reported in different L2 pipeline stages, this assertion indicates that different requests have encountered uncorrectable 
requests. In other words, if a single request suffers all three uncorrectable errors, the error will be reported three 
times. 

Table 4.14 Logical Data Array Format

Bit position 72 71..65 64 63:33 32 31:17 16 15..9 8 7..5 4 3 2 1

Content TP [63:57] p6 [56:26] p5 [25:11] p4 [10:4] p3 [3:1] p2 [0] p1 p0
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4.5.14.5 Bus Error Handling

Bus errors are never originated by the L2. However, bus errors may be received from the system on an OCP read 
from the L2 to the system. The error is indicated when the read-data is returned back to the L2. The L2 propagates the 
bus error when returning data to the processor or CM2.

If a bus error is received on a 64-byte burst read to the system, the L2 signals the bus error for the processor read that 
originated the request. If the L2 receives a subsequent read to the same 64-byte cache line before all the data has been 
received from memory for the previous request, the new request also receives a bus error response.

In general, a bus error reported in a system response due to a processor/CM request is considered to be reporting the 
entire cache line as having a bus error. However, if the original request is satisfied before the L2 detects the system 
bus error, then the response to the processor/CM will not have a bus error.

There is no capability for signalling bus errors on writes. 
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4.6 The CACHE Instruction

The L1 instruction, L1 data, and L2 caches in the proAptiv Multiprocessing System support the CACHE instruction, 
which allow users to manipulate the contents of the Data and Tag arrays, including the locking of individual cache 
lines. The behavior of the CACHE instruction is identical for both the L1 instruction and data caches. 

4.6.1 Decoding the Type of Cache Operation

The type of cache operation performed is encoded using a combination of the 5-bit op field of the CACHE instruc-
tion, and selected bits from the ErrCtl register (CP0 Register 26, Select 0). In addition to performing operations on the 
L1 instruction, L1 data, and L2 caches themselves, there are other CACHE operations that are performed on internal 
memories such as the way selection RAM, the scratch pad RAM, and the Dirty Bit RAM. The ErrCtl bits determine 
the type internal memory where the CACHE operation will be performed.

The selected bits of the ErrCtl register used to determine the type of CACHE operation are as follows:

• Bit 29, WST: If this bit is set, execution of a cache IndexLoadTag or cache IndexStoreTag instruction 
reads or writes the cache’s internal way-selection RAM instead of the cache tags.

• Bit 28, SPR: If this bit is set, index-type cache instructions work on the data scratch pad (DSPRAM) and instruction 
scratch pad (ISPRAM), if implemented. Read the ConfigDSP and ConfigISP bits to determine if the associated scratch pad 
RAM is present.

• Bit 21, DYT: Setting this bit allows cache load/store data operations to work on the "dirty array" associated with the L1 
data cache.

4.6.2 CACHE Instruction Opcodes

Refer to the implementation-specific CACHE instruction at the back of this manual for a list of CACHE instruction 
opcodes.

4.6.3 Way Selection RAM Encoding

The CACHE Index Load Tag and Index Store Tag instructions can be used to read and write the Way Select (WS) 
RAM by setting the WST bit in the ErrCtl register. Similarly, the SPR bit in the ErrCtl register causes the Index 
Load Tag and Index Store Tag instructions to read the pseudo-tags associated with the scratch-pad RAM 
array. Note that when the WST and SPR bits are zero, the CACHE index instructions access the cache Tag array.

Not all values of the WS field are valid for defining the order in which the ways are selected. This is only an issue, 
however, if the WS RAM is written after the initialization (invalidation) of the Tag array. Valid WS field encodings 
for way selection order is shown in Table 4.15. 

Table 4.15 Way Selection Encoding, 4 Ways

Selection Order1 WS[5:0] Selection Order WS[5:0]

0123 000000 2013 100010

0132 000001 2031 110010

0213 000010 2103 100110

0231 010010 2130 101110

0312 010001 2301 111010
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0321 010011 2310 111110

1023 000100 3012 011001

1032 000101 3021 011011

1203 100100 3102 011101

1230 101100 3120 111101

1302 001101 3201 111011

1320 101101 3210 111111

1. The order is indicated by listing the least-recently used way to the left and the most-
recently used way to the right, etc.

Table 4.15 Way Selection Encoding, 4 Ways(continued)

Selection Order1 WS[5:0] Selection Order WS[5:0]
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4.7 Write Back Buffer

The Bus Interface Unit (BIU) includes a Write Back Buffer (WBB) that holds data from the L1 cache that is going to 
memory. This includes evictions from the data cache, uncached stores, and uncached accelerated stores. The WBB 
consists of eight 32-byte entries. The WBB also holds L2 CACHE instructions that are to be sent out on the bus. The 
WBB gathers uncached accelerated (UCA) stores to allow full line burst writes.

WBB entries are ‘flushed’ under a variety of conditions. When a buffer is flushed, the write command is queued in 
the BIU and the WBB entry will not accept any more activity until the data has been written to the bus and the buffer 
is freed up. Some flush conditions are shown here:

• Uncached (non-accelerated) stores flush immediately

• L2 CACHE instruction commands are also flushed immediately

• Entries for L1 data cache evictions are flushed when all 4 double-words (32B) of data have been gathered

When coherence is enabled, the CPU is the ‘owner’ of a cache line until the self-intervention for the writeback 
request has been seen. The WBB entry cannot be deallocated until that point so that the CPU can respond with the 
data if another CPU requests it. The WBB is also used for staging data responses to interventions. To avoid deadlock, 
one WBB entry must be reserved for this purpose.
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Exceptions and Interrupts 

The proAptiv Multiprocessing System receives exceptions from a number of sources, including arithmetic overflows, 
misses in the translation lookaside buffer (TLB), I/O interrupts, and system calls. When the CPU detects an excep-
tion, the normal sequence of instruction execution is suspended and the processor enters kernel mode, disables inter-
rupts, loads the Exception Program Counter (EPC) register with the location where execution can restart after the 
exception has been serviced, and forces execution of a software exception handler located at a specific address. 

The software exception handler saves the context of the processor, including the contents of the program counter, the 
current operating mode, and the status of the interrupts (enabled or disabled). This context is saved so it can be 
restored when the exception has been serviced. 

Exceptions may be precise or imprecise. Precise exceptions are those for which the EPC can be used to identify the 
instruction that caused the exception. For precise exceptions, the restart location in the EPC register is the address of 
the instruction that caused the exception or, if the instruction was executing in a branch delay slot (as indicated by the 
BD bit in the Cause register), the address of the branch instruction immediately preceding the delay slot. Imprecise 
exceptions, on the other hand, are those for which no return address can be identified. Bus error exceptions and CP2 
exceptions are examples of imprecise exceptions.

This chapter contains the following sections:

• Section 5.1 “Exception Conditions”

• Section 5.2 “TLB Read Inhibit, Execute Inhibit and FTLB Parity Exceptions”

• Section 5.3 “Exception Priority”

• Section 5.4 “Exception Vector Locations”

• Section 5.5 “General Exception Processing”

• Section 5.6 “Debug Exception Processing”

• Section 5.7 “Exception Descriptions”

• Section 5.8 “Exception Handling and Servicing Flowcharts”

• Section 5.9 “Interrupts”

5.1 Exception Conditions

When an exception condition occurs, the instruction causing the exception and all those that follow it in the pipeline 
are cancelled. Accordingly, any stall conditions and any later exception conditions that may have referenced this 
instruction are inhibited.
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When the exception condition is detected on an instruction fetch, the CPU aborts that instruction and all instructions 
that follow. When the instruction graduates, the exception flag causes it to write various CP0 registers with the excep-
tion state, change the current program counter (PC) to the appropriate exception vector address, and clear the excep-
tion bits of earlier pipeline stages.

For most types of exceptions, this implementation allows all preceding instructions to complete execution and pre-
vents all subsequent instructions from completing. Thus, the value in the EPC (or ErrorEPC for errors or DEPC for 
debug exceptions) is sufficient to restart execution. It also ensures that exceptions are taken in program. An instruc-
tion taking an exception may itself be aborted by an instruction further down the pipeline that takes an exception in a 
later cycle.

Imprecise exceptions are taken after the instruction that caused them has completed and potentially after following 
instructions have completed.

5.2 TLB Read Inhibit, Execute Inhibit and FTLB Parity Exceptions

The proAptiv core supports the following new types of exceptions listed below:

• TLB Execute-Inhibit

• TLB Read-Inhibit

• FTLB Parity

The TLB Execute Inhibit exception (TLBXI) is taken when there is a TLB hit during an instruction fetch, the XI bit of 
the entry is set, the Valid (V) bit is set, and the PageGrainEIC bit is set. If the PageGrainEIC bit is cleared, a TLBL 
exception is taken. This type of exception is used by the operating system to prevent execute accesses to a particular 
page. Refer to Section 5.7.12 “TLB Execute-Inhibit Exception” for more information.

The TLB Read Inhibit exception (TLBRI) is taken when there is a TLB hit during a read operation, the RI bit of the 
entry is set, the Valid (V) bit is set, and the PageGrainEIC bit is set. If the PageGrainEIC bit is cleared, a TLBL excep-
tion is taken. This type of exception is used by the operating system to prevent read accesses from a particular page. 
Refer to Section 5.7.13 “TLB Read-Inhibit Exception” for more information.

An FTLB Parity exception is taken whenever a parity error is detected on an FTLB read. The error can occur in either 
the FTLB Tag RAM or FTLB Data RAM. The FTLB parity exception is taken only when bit 31 of the CP0 Error 
Control register (ErrCtl.PE) is set. If this bit is cleared, FTLB parity errors are ignored. Refer to Section 5.7.14 “FTLB 
Parity Exception” for more information.

5.3 Exception Priority

Table 5.1 contains a list and a brief description of all exception conditions, The exceptions are listed in the order of 
their relative priority, from highest priority (Reset) to lowest priority (Load/store bus error). When several exceptions 
occur simultaneously, the exception with the highest priority is taken. 

Table 5.1 Priority of Exceptions

Exception Description

Reset Assertion of SI_Reset signal.

DSS EJTAG Debug Single Step.
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DINT EJTAG Debug Interrupt. Caused by the assertion of the external EJ_DINT input, or 
by setting the EjtagBrk bit in the ECR register.

DDBLImpr/DDBSImpr Debug Data Break Load/Store. Imprecise.

NMI Asserting edge of SI_NMI signal.

Machine Check TLB write that conflicts with an existing entry.

Interrupt Assertion of unmasked hardware or software interrupt signal.

Deferred Watch Deferred Watch (unmasked by K|DM->!(K|DM) transition).

DIB EJTAG debug hardware instruction break matched.

WATCH A reference to an address in one of the watch registers (fetch).

AdEL Fetch address alignment error.
Fetch reference to protected address.

IFTLBPAR FTLB instruction fetch parity error.

TLBL Fetch TLB miss.
Fetch TLB hit to page with V=0.

TLBXI TLB Execute Inhibit.
Occurs when there is an execute access from a page table whose XI bit is set.

I-cache Error Parity error on I-cache access.

IBE Instruction fetch bus error.

DBp EJTAG Breakpoint (execution of SDBBP instruction).

Sys Execution of SYSCALL instruction.

Bp Execution of BREAK instruction.

CpU Execution of a coprocessor instruction for a coprocessor that is not enabled.

CEU Execution of a CorExtend instruction modifying local state when CorExtend is not 
enabled.

RI Execution of a Reserved Instruction.

FPE Floating Point exception.

Ov Execution of an arithmetic instruction that overflowed.

Tr Execution of a trap (when trap condition is true).

DDBL / DDBS EJTAG Data Address Break (address only). 

WATCH A reference to an address in one of the watch registers (data).

AdEL Load address alignment error.
Load reference to protected address.

AdES Store address alignment error.
Store to protected address.

DFTLBPAR FTLB data load/store parity error.

TLBL Load TLB miss.
Load TLB hit to page with V=0

TLBS Store TLB miss.
Store TLB hit to page with V=0.

Table 5.1 Priority of Exceptions(continued)

Exception Description
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5.4 Exception Vector Locations

The location of the exception vector in the proAptiv core depends on the operating mode. If the core is in the legacy 
setting, the exception vector location is the same as in previous MIPS processors. However, if the core is configured 
for Enhanced Virtual Address (EVA), the exception vector can effectively be placed anywhere within kernel address 
space.

The SI_EVAReset pin determines the addressing scheme and whether the device boots up in the legacy setting or the 
EVA setting. The legacy setting is defined as having the traditional MIPS virtual memory map used in previous gen-
eration processors. The EVA setting places the device in the enhanced virtual address configuration, where the initial 
size and function of each segment in the virtual memory map is determined from the segmentation control registers 
(SegCtl0 - SegCtl2).

If the SI_EVAReset pin is deasserted at reset, the proAptiv core comes up in the legacy configuration and hardware 
takes the following actions:

• The CONFIG5.K bit becomes read-write and is programmed by hardware to a value of 0 to indicate the legacy 
configuration. In this case, the cache coherency attributes for the kseg0 segment are derived from the Config.K0 
field as described in the previous subsection. In addition to selecting the location of the cache coherency attri-
butes, the CONFIG5.K bit also causes hardware to generate two boot exception overlay segments, one for kseg0 
and one for kseg1, as described in Section 3.7, "Boot Exception Vector Relocation in Kernel Mode".

• Hardware programs the CP0 memory segmentation registers (SegCtl0 - SegCtl2) for the legacy setting. Note that 
these registers are new in the proAptiv core and are not used by legacy software. However, they are used by hard-
ware during normal operation, so their default values should not be changed. 

If the SI_EVAReset pin is asserted at reset, the proAptiv core comes up in the EVA configuration (default is xkseg0 
space = 3 GB) and hardware takes the following actions:

• The CONFIG5.K bit becomes read-only and is forced to a value of 1 to indicate the EVA configuration. In this 
case, the CONFIG.K0 field is ignored and is no longer used to determine the kseg0 cache coherency attributes 
(CCA). Rather, the values in bits 2:0 (segments 0, 2, and 4) and bits 18:16 (segments 1, 3, and 5) of the SegCtl0 - 
SegCtl2 registers are used to define the CCA for each memory segment. In this case, hardware generates only 
one BEV overlay segment as described in Section 3.7, "Boot Exception Vector Relocation in Kernel Mode".

• Hardware sets the CP0 memory segmentation registers (SegCtl0 - SegCtl2) for the EVA configuration. 

When the SI_UseExceptionBase pin is 0 and the Config5.K bit is cleared, the device is in legacy mode. In this mode 
the exception vector location defaults of 0xBFC0_0000 and the SI_ExceptionBase[31:12] pins are ignored.

When the SI_UseExceptionBase pin is 1 and the Config5.K bit is cleared, the device is still in legacy mode, but the 
SI_ExceptionBase[29:12] pins are used to indicate the location of the exception vector. Bits 31:30 are forced to a 
value of 2’b10, placing the exception vector somewhere in kseg0/kseg1 space. 

TLBRI TLB Read Inhibit.
Occurs when there is an attempt to access a page table whose RI bit is set.

TLB Mod Store to TLB page with D = 0.

D-cache Error Cache parity error. Imprecise.

DBE Load or store bus error. Imprecise.

Table 5.1 Priority of Exceptions(continued)

Exception Description
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If the Config5.K bit is set, the device is in EVA mode. In this case the SI_UseExceptionBase pin is ignored and the 
SI_ExceptionBase[31:12] pins are used to derive the location of the exception vector.

The function of the Config5.K bit and the SI_LegacyUseExceptionBase pin is shown in Table 5.2. For more informa-
tion on EVA mode, refer to the MMU chapter. 

Another degree of flexibility in the selection of the vector base address, for use when StatusBEV equals 1, is provided 
via a set of input pins, SI_UseExceptionBase, SI_ExceptionBase[31:12], and SI_ExceptionBaseMask[27:20].

In the legacy setting, when the SI_UseExceptionBase pin is 0, the Reset, Soft Reset, NMI, and EJTAG Debug excep-
tions are vectored to a specific location, as shown in Table 5.3. Addresses for all other exceptions are a combination 
of a vector offset and a vector base address. In the proAptiv core, software is allowed to specify the vector base 
address via the EBase register for exceptions that occur when StatusBEV equals 0. Table 5.3 shows the vector base 
address when the core is in legacy setting and the SI_UseExceptionBase pin is 0. 

Table 5.4 shows the vector base addresses when the core is in legacy setting and the SI_UseExceptionBase equals 1. 
As can be seen in Table 5.4, when SI_UseExceptionBase equals 1, the exception vectors for cases where StatusBEV = 
0 are not affected.

Table 5.2 SI_UseExceptionBase Pin and CONFIG5.K Encoding

CONFIG5.K Bit
SI_UseExceptionBase 

Pin Condition Action

0 0 Legacy Mode
SI_ExceptionBase[31:12] pins are 
not used.

Use default BEV location of 0xBFC0_0000.

0 1 Legacy Mode
Use only SI_ExceptionBase[29:12] 
for the BEV base location. Bits 31:30 
are forced to a value of 2’b10 to put the 
BEV vector into KSEG0/KSEG1 
virtual address space.

The BEV location is determined as follows:

SI_ExceptionBase[31:12] = 2’b10, 
SI_ExceptionBase[29:12] pins, 12’b0

Bits 31:30 are forced to a value of 2’b10 to 
put the BEV vector into KSEG0/KSEG1 
virtual address space.

1 Don’t care EVA Mode
Use SI_ExceptionBase[31:12] pins.

The SI_ExceptionBase[31:12] pins are used 
directly to derive the BEV location. The 
SI_LegacyUseExceptionBase pin is 
ignored.

Table 5.3 Exception Vector Base Addresses — Legacy Mode, SI_UseExceptionBase = 0 

Exception

StatusBEV

0 1

Reset, NMI 0xBFC0.0000

EJTAG Debug (with ProbEn = 0, in 
the EJTAG_Control_register and 
DCR.RDVec=0)

0xBFC0.0480
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In legacy mode, when the SI_UseExceptionBase pin is 0, the Reset, Soft Reset, NMI, and EJTAG Debug exceptions 
are vectored to a specific location, as shown in Table 5.4. 

Table 5.5 shows the offsets from the vector base address as a function of the exception. Note that the IV bit in the 
Cause register causes interrupts to use a dedicated exception vector offset, rather than the general exception vector. 

EJTAG Debug (with ProbEn = 0, in 
the EJTAG_Control_register and 
DCR.RDVec=1)

DebugVectorAddr[31:7] || 2b0000000

EJTAG Debug (with ProbEn = 1 in the 
EJTAG_Control_register)

0xFF20.0200

Cache Error EBase31 30 || 1 ||
EBase28 12 || 0x000

Note that EBase31 30 have the fixed value of 
2b’10

0xBFC0.0300

Other EBase31 12 || 0x000
Note that EBase31 30 have the fixed value of 
2’b10

0xBFC0.0200

‘||’ denotes bit string concatenation

Table 5.4 Exception Vector Base Addresses — Legacy Mode, SI_UseExceptionBase = 1 

Exception

StatusBEV

0 1

Reset, NMI  0b10 || SI_ExceptionBase [29:12] || 0x000

EJTAG Debug (with ProbEn = 0
in the EJTAG_Control_register and 
DCR.RDVec=0)

0b10 ||SI_ExceptionBase[29:12] || 0x480

EJTAG Debug (with ProbEn = 0
in the EJTAG_Control_register and 
DCR.RDVec=1)

 DebugVectorAddr[31:7] || 2b0000000

EJTAG Debug (with ProbEn = 1 
in the EJTAG_Control_register)

0xFF20.0200

Cache Error EBase31 30 || 1 ||
EBase28 12 || 0x000

Note that EBase31 30 have the fixed value 
2’b10. Exception vector 
resides in kseg1.

0b101 || SI_ExceptionBase[28:12] 
|| 0x300
Exception vector resides in 
kseg1.

Other EBase31 12 || 0x000
Note that EBase31 30 have the fixed value 
2’b10
Exception vector resides in 
kseg0/kseg1.

0b10 || SI_ExceptionBase[29:12] 
|| 0x200
Exception vector resides in 
kseg0/kseg1.

‘||’ denotes bit string concatenation

Table 5.3 Exception Vector Base Addresses — Legacy Mode, SI_UseExceptionBase = 0 (continued)

Exception

StatusBEV

0 1
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Table 5.25 (on page 334) shows the offset from the base address in the case where StatusBEV = 0 and CauseIV = 1. 
Table 5.7 combines these three tables into one that contains all possible vector addresses as a function of the state that 
can affect the vector selection. To avoid complexity in the table, it is assumed that IntCtlVS = 0. 

In EVA mode, when the SI_UseExceptionBase pin is ignored and the Reset, Soft Reset, NMI, and EJTAG Debug 
exceptions are vectored to a location determined by the programming of the three Segment Control registers (SegCtl0 
- SegCtl2), as shown in Table 5.6. 

Table 5.5 Exception Vector Offsets

Exception Vector Offset

TLB Refill, EXL = 0 0x000

General Exception 0x180

Interrupt, CauseIV = 1 0x200 (In Release 3 implementa-
tions, this is the base of the vectored 
interrupt table when StatusBEV = 0)

Reset, NMI None (uses reset base address)

Table 5.6 Exception Vector Base Addresses — EVA Mode 

Exception

StatusBEV

0 1

Reset, NMI  SI_ExceptionBase [31:12] || 0x000

EJTAG Debug (with ProbEn = 0
in the EJTAG_Control_register and 
DCR.RDVec=0)

 SI_ExceptionBase[31:12] || 0x480

EJTAG Debug (with ProbEn = 0
in the EJTAG_Control_register and 
DCR.RDVec=1)

DebugVectorAddr[31:7] || 2b0000000

EJTAG Debug (with ProbEn = 1 
in the EJTAG_Control_register)

0xFF20.0200

Cache Error EBase31 12 || 0x000 SI_ExceptionBase[31:12] || 0x300
(Forced uncached)

Other EBase31 12 || 0x000 SI_ExceptionBase[31:12] || 0x200

‘||’ denotes bit string concatenation
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Table 5.7 Exception Vectors 
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(IntCtlVS = 0)

Reset, NMI 0 0 x x x x 0xBFC0.0000

Reset, NMI 0 1 x x x x  2’b10 || SI_ExceptionBase[29:12] || 0x000

Reset, NMI 1 x x x x x  SI_ExceptionBase[31:12] || 0x000

EJTAG Debug 0 0 x x x 0 0xBFC0.0480 (if DCR.RDVec=0)
DebugVectorAddr[31:7] || 2b0000000 (if DCR.RDVec=1)

EJTAG Debug 0 1 x x x 0 2’b10 || SI_ExceptionBase[29:12] || 0x480 (if DCR.RDVec=0)
DebugVectorAddr[31:7] || 2b0000000 (if DCR.RDVec=1)

EJTAG Debug 1 x x x x 0 SI_ExceptionBase[31:12] || 0x480 (if DCR.RDVec=0)
DebugVectorAddr[31:7] || 2b0000000 (if DCR.RDVec=1)

EJTAG Debug x x x x x 1 0xFF20.0200

TLB Refill x x 0 0 x x EBase[31:12] || 0x000

TLB Refill x x 0 1 x x EBase[31:12] || 0x180

TLB Refill 0 0 1 0 x x 0xBFC0.0200

TLB Refill 0 1 1 0 x x  2’b10 || SI_ExceptionBase[29:12] || 0x200

TLB Refill 1 x 1 0 x x  SI_ExceptionBase[31:12] || 0x200

TLB Refill 0 0 1 1 x x 0xBFC0.0380

TLB Refill 0 1 1 1 x x  2’b10 || SI_ExceptionBase[29:12] || 0x380

TLB Refill 1 x 1 1 x x  SI_ExceptionBase[31:12] || 0x380

Cache Error 0 x 0 x x x EBase[31:30] || 0b1 || EBase[28:12] || 0x100

Cache Error 1 x 0 x x x 0xBFC0.0100

Cache Error 0 0 1 x x x 0xBFC0.0300

Cache Error 0 1 1 x x x  2’b101 || SI_ExceptionBase[28:12] || 0x300

Cache Error 1 x 1 x x x  SI_ExceptionBase[31:12] || 0x300

Interrupt x x 0 0 0 x EBase[31:12] || 0x180

Interrupt x x 0 0 1 x EBase[31:12] || 0x200

Interrupt 0 0 1 0 0 x 0xBFC0.0380

Interrupt 0 1 1 0 0 x  2’b10 || SI_ExceptionBase[29:12] || 0x380

Interrupt 1 x 1 0 0 x  SI_ExceptionBase[31:12] || 0x380

Interrupt 0 0 1 0 1 x 0xBFC0.0400

Interrupt 0 1 1 0 1 x  2’b10 || SI_ExceptionBase[29:12] || 0x400
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Interrupt 1 x 1 0 1 x  SI_ExceptionBase[31:12] || 0x400

All others x x 0 x x x EBase[31:12] || 0x180

All others 0 0 1 x x x 0xBFC0.0380

All others 0 1 1 x x x  2’b10 || SI_ExceptionBase[29:12] || 0x380

All others 1 x 1 x x x  SI_ExceptionBase[31:12] || 0x380

‘x’ denotes don’t care, 
‘||’ denotes bit string concatenation

Table 5.7 Exception Vectors (continued)
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5.5 General Exception Processing

With the exception of Reset, NMI, cache error, and EJTAG Debug exceptions, which have their own special process-
ing as described below, exceptions have the same basic processing flow:

• If the EXL bit in the Status register is zero, the EPC register is loaded with the PC at which execution will be 
restarted, and the BD bit is set appropriately in the Cause register. The value loaded into the EPC register is 
dependent on whether the processor implements the MIPS16 Module, and whether the instruction is in the delay 
slot of a branch or jump which has delay slots. Table 5.8 shows the value stored in each of the CP0 PC registers, 
including EPC.

If the EXL bit in the Status register is set, the EPC register is not loaded and the BD bit is not changed in the 
Cause register. 

• The CE, and ExcCode fields of the Cause registers are loaded with the values appropriate to the exception. The 
CE field is loaded, but not defined, for any exception type other than a coprocessor unusable exception.

• The EXL bit is set in the Status register.

• The processor begins executing at the exception vector.

The value loaded into EPC represents the restart address for the exception and need not be modified by exception 
handler software in the normal case. Software need not look at the BD bit in the Cause register unless it wishes to 
identify the address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. This is noted in the descrip-
tion of each exception type below.

Operation:
/* If StatusEXL is 1, all exceptions go through the general exception vector */
/* and neither the EPC nor CauseBD are modified */
if StatusEXL = 1 then

vectorOffset ← 0x180
else

/* For implementations that include the MIPS16e Module, calculate potential */
/* PC adjustment for exceptions in the delay slot */
if Config1CA = 0 then

restartPC ← PC
branchAdjust ← 4 /* Possible adjustment for delay slot */

else

Table 5.8 Value Stored in EPC, ErrorEPC, or DEPC on Exception

MIPS16 
Implemented?

In Branch/Jump 
Delay Slot? Value stored in EPC/ErrorEPC/DEPC

No No Address of the instruction

No Yes Address of the branch or jump instruction (PC-4)

Yes No Upper 31 bits of the address of the instruction, combined 
with the ISA Mode bit

Yes Yes Upper 31 bits of the branch or jump instruction (PC-2 in 
the MIPS16 ISA Mode and PC-4 in the 32-bit ISA Mode), 
combined with the ISA Mode bit
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restartPC ← PC31..1 || ISAMode
if (ISAMode = 0) or ExtendedMIPS16Instruction

branchAdjust ← 4 /* Possible adjustment for 32-bit MIPS delay slot */
else

branchAdjust ← 2 /* Possible adjustment for MIPS16 delay slot */
endif

endif
if InstructionInBranchDelaySlot then

EPC ← restartPC - branchAdjust/* PC of branch/jump */
CauseBD ← 1

else
EPC ← restartPC /* PC of instruction */
CauseBD ← 0

endif

/* Compute vector offsets as a function of the type of exception */
if ExceptionType = TLBRefill then

vectorOffset ← 0x000
elseif (ExceptionType = Interrupt) then

if (CauseIV = 0) then
vectorOffset ← 0x180

else
if (StatusBEV = 1) or (IntCtlVS = 0) then

vectorOffset ← 0x200
else

if Config3VEIC = 1 then
VecNum ← CauseRIPL

else
VecNum ← VIntPriorityEncoder()

endif
vectorOffset ← 0x200 + (VecNum × (IntCtlVS || 0b00000))

endif /* if (StatusBEV = 1) or (IntCtlVS = 0) then */
endif /* if (CauseIV = 0) then */

endif /* elseif (ExceptionType = Interrupt) then */
endif /* if StatusEXL = 1 then */

CauseCE ← FaultingCoprocessorNumber
CauseExcCode ← ExceptionType
StatusEXL ← 1

if Config1CA = 1 then
ISAMode ← 0

endif

/* Calculate the vector base address */
if StatusBEV = 1 then

vectorBase ← 0xBFC0.0200
else

if ArchitectureRevision ≥ 2 then
/* The fixed value of EBase31..30 forces the base to be in kseg0 or kseg1 */
vectorBase ← EBase31..12 || 0x000

else
vectorBase ← 0x8000.0000

endif
endif

/* Exception PC is the sum of vectorBase and vectorOffset */
PC ← vectorBase31..30 || (vectorBase29..0 + vectorOffset29..0)
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/* No carry between bits 29 and 30 */

5.6 Debug Exception Processing

All debug exceptions have the same basic processing flow:

• The DEPC register is loaded with the program counter (PC) value at which execution will be restarted and the 
DBD bit is set appropriately in the Debug register. The value loaded into the DEPC register is the current PC if 
the instruction is not in the delay slot of a branch, or the PC-4 of the branch if the instruction is in the delay slot 
of a branch.

• The DSS, DBp, DDBL, DDBS, DIB, and DINT bits in the Debug register are updated appropriately, depending on 
the debug exception type.

• Halt and Doze bits in the Debug register are updated appropriately.

• The DM bit in the Debug register is set to 1.

• The processor is started at the debug exception vector.

The value loaded into DEPC represents the restart address for the debug exception and need not be modified by the 
debug exception handler software in the usual case. Debug software need not look at the DBD bit in the Debug regis-
ter unless it wishes to identify the address of the instruction that actually caused the debug exception.

A unique debug exception is indicated through the DSS, DBp, DDBL, DDBS, DIB and DINT bits (D* bits [5:0]) in the 
Debug register.

No other CP0 registers or fields are changed due to the debug exception, and thus no additional state is saved.

Operation:

if InstructionInBranchDelaySlot then
DEPC ← PC-4
DebugDBD ← 1

else
DEPC ← PC
DebugDBD ← 0

endif
DebugD* bits at at [5:0] ← DebugExceptionType
DebugHalt ← HaltStatusAtDebugException
DebugDoze ← DozeStatusAtDebugException
DebugDM ← 1
if EJTAGControlRegisterProbTrap = 1 then

PC ← 0xFF20_0200
else

if DebugControlRegisterRDVec = 1 then
if CacheErr then

PC ← 2#101 || DebugVectorAddr28..7 || 2#0000000
else

PC ← 2#10 || DebugVectorAddr29..7 || 2#0000000
else

if SI_UseExceptionBase
if CacheErr then
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PC ← 2#101 || SI_ExceptionBase[28:12] || 0x000
else

PC ← 2#10 || SI_ExceptionBase[29:12] || 0x000
else

PC ← 0xBFC0_0480
endif

The location of the debug exception vector is determined by the ProbTrap bit in the EJTAG Control register (ECR) and 
the RDVec bit in the Debug Control register (DCR), as shown in Table 5.9. 

The value in the optional drseg register DebugVectorAddr (offset 0x00020) is used as the debug exception vector 
when the ECR ProbTrap bit is 0 and when enabled through the optional RDVec control bit in the Debug Control 
Register (DCR). Bit 0 of DebugVectorAddr determines the ISA mode used to execute the handler. Figure 5.1 shows 
the format of the DebugVectorAddr register; Table 5.10 describes the DebugVectorAddr register fields.

Figure 5.1 DebugVectorAddr Register Format 

Bits 31..30 of the DebugVectorAddr register are fixed with the value 0b10, and the addition of the base address and 
the exception offset is done inhibiting a carry between bit 29 and bit 30 of the final exception address. The combina-
tion of these two restrictions forces the final exception address to be in the kseg0 or kseg1 unmapped virtual address 
segments. For cache error exceptions, bit 29 is forced to a 1 in the ultimate exception base address, so that this excep-
tion always runs in the kseg1 unmapped, uncached virtual address segment.

When MIPS16 is implemented, the power-up state of IM is zero. If the implementation does not include MIPS16, the 
IM field is read-only, should be written with zero and will return 0 on a read. 

If the TAP is not implemented, the debug exception vector location is as if ProbTrap=0.

Table 5.9 Debug Exception Vector Addresses

ProbTrap bit in ECR 
Register

RDVec bit in 
DCR Register Debug Exception Vector Address

0 0 0xBFC0 0480

0 1 DebugVectorAddr31 7 || 0000000

1 0 0xFF20 0200 in dmseg

1 1

31 30 29 7 6 0

1 0 DebugVectorOffset 0 IM

Table 5.10 DebugVectorAddr Register Field Descriptions

Fields

Description Read / Write Reset StateName Bit(s)

1 31 Ignored on write; returns one on read. R 1

DebugVectorOffset 29:7 Programmable Debug Exception Vector Offset R/W Preset to 
0x7F8009

IM 0 ISA mode to be used for exception handler R 0 

0 30,6:1 Ignored on write; returns zero on read. R 0
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5.7 Exception Descriptions

The following subsections describe each of the exceptions listed in the same sequence as shown in Table 5.1.

5.7.1 Reset Exception

A reset exception occurs when the SI_Reset signal is asserted to the processor. This exception is not maskable. When 
a Reset exception occurs, the processor performs a full reset initialization, including aborting state machines, estab-
lishing critical state, and generally placing the processor in a state in which it can execute instructions from uncached, 
unmapped address space. On a Reset exception, the state of the processor is not defined, with the following excep-
tions:

• The Random register is initialized to the number of TLB entries - 1.

• The Wired register is initialized to zero.

• The Config register is initialized with its boot state.

• The RP, BEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.

• The I, R, and W fields of the WatchLo register are initialized to 0.

• The ErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instruc-
tion in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC. Note that this value may or 
may not be predictable.

• PC is loaded with 0xBFC0_0000.

Cause Register ExcCode Value: 

None

Additional State Saved: 

None

Entry Vector Used: 

Reset (exact vector address depends on mode of operation - Legacy/EVA)

Operation:
Random ← TLBEntries - 1
Wired ← 0
Config ← ConfigurationState
StatusRP ← 0
StatusBEV ← 1
StatusTS ← 0
StatusSR ← 0
StatusNMI ← 0
StatusERL ← 1
WatchLoI ← 0
WatchLoR ← 0
WatchLoW ← 0
if InstructionInBranchDelaySlot then

ErrorEPC ← PC - 4
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else
ErrorEPC ← PC

endif
PC ← 0xBFC0_0000

5.7.2 Debug Single Step Exception

A debug single step exception occurs after the CPU has executed one/two instructions in non-debug mode, when 
returning to non-debug mode after debug mode. One instruction is allowed to execute when returning to a non-jump/
branch instruction, otherwise two instructions are allowed to execute since the jump/branch and the instruction in the 
delay slot are executed as one step. Debug single step exceptions are enabled by the SSt bit in the Debug register, and 
are always disabled for the first one/two instructions after a DERET.

The DEPC register points to the instruction on which the debug single step exception occurred, which is also the next 
instruction to single step or execute when returning from debug mode. So the DEPC register will not point to the 
instruction which has just been single stepped, but rather the following instruction. The DBD bit in the Debug register 
is never set for a debug single step exception, since the jump/branch and the instruction in the delay slot is executed in 
one step.

Exceptions occurring on the instruction(s) executed with debug single step exception enabled are taken even though 
debug single step was enabled. For a normal exception (other than reset), a debug single step exception is then taken 
on the first instruction in the normal exception handler. Debug exceptions are unaffected by single step mode, e.g. 
returning to a SDBBP instruction with debug single step exceptions enabled causes a debug software breakpoint 
exception, and DEPC will point to the SDBBP instruction. However, returning to an instruction (not jump/branch) 
just before the SDBBP instruction, causes a debug single step exception with DEPC pointing to the SDBBP instruc-
tion.

To ensure proper functionality of single step, the debug single step exception has priority over all other exceptions, 
except reset and soft reset.

Debug Register Debug Status Bit Set
DSS

Additional State Saved

None

Entry Vector Used

Debug exception vector

5.7.3 Debug Interrupt Exception

A debug interrupt exception is either caused by the EjtagBrk bit in the EJTAG Control register (controlled through the 
TAP), or caused by the debug interrupt request signal to the CPU. 

The debug interrupt exception is an asynchronous debug exception which is taken as soon as possible, but with no 
specific relation to the executed instructions. The DEPC register is set to the instruction where execution should con-
tinue after the debug handler is through. The DBD bit is set based on whether the interrupted instruction was execut-
ing in the delay slot of a branch.

Debug Register Debug Status Bit Set
DINT
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Additional State Saved

None

Entry Vector Used

Debug exception vector

5.7.4 Non-Maskable Interrupt (NMI) Exception

A non maskable interrupt exception occurs when the SI_NMI signal is asserted to the processor. SI_NMI is an edge 
sensitive signal - only one NMI exception will be taken each time it is asserted. An NMI exception occurs only at 
instruction boundaries, so it does not cause any reset or other hardware initialization. The state of the cache, memory, 
and other processor states are consistent and all registers are preserved, with the following exceptions:

• The BEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.

• The ErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instruc-
tion in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC.

• PC is loaded with 0xBFC0_0000.

Cause Register ExcCode Value:

None

Additional State Saved:

None

Entry Vector Used:

Reset (exact vector address depends on mode of operation - Legacy/EVA)

Operation:
StatusBEV ← 1
StatusTS ← 0
StatusSR ← 0
StatusNMI ← 1
StatusERL ← 1
if InstructionInBranchDelaySlot then

ErrorEPC ← PC - 4
else

ErrorEPC ← PC
endif
PC ← 0xBFC0_0000

5.7.5 Machine Check Exception 

A machine check exception occurs when the processor detects an internal inconsistency. The following conditions 
cause a machine check exception:

• A TLBWI instruction to the FTLB and the index and VPN2 are not consistent and the EHINV bit is not set. See 
Section 3.12 of the MMU chapter.
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• A TLBWI instruction to the FTLB and the PageMask register does not correspond to the FTLB page size setting 
in bits 12:8 of the Config4 register (Config4FTLB Page Size)

• A TLBP instruction and a duplicate/overlap is detected across the FTLB/VTLB.

• Any TLB lookup and a duplicate/overlap is detected across the FTLB/VTLB.

The machine check exception can be either precise or imprecise depending on the type of error. 

The machine check exception is imprecise on:

– A Load/Store Unit (LSU) or Instruction Fetch Unit (IFU) lookup matching duplicate entries

The machine check exception is precise on:

– TLBP matching duplicate entries.

– TLBWI to the FTLB with the page size != the FTLB page size.

– TLBWI to the FTLB with EHINV=0 and the FTLB set implied by the VPN not the same as the set implied by 
the index.

Cause Register ExcCode Value:

MCheck

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

5.7.6 Interrupt Exception

The interrupt exception occurs when one or more of the six hardware, two software, or timer interrupt requests is 
enabled by the Status register and the interrupt input is asserted. See 5.9 “Interrupts” on page 328 for more details 
about the processing of interrupts.

Register ExcCode Value:

Int

Additional State Saved: 

Entry Vector Used:

See 5.9.2 “Generation of Exception Vector Offsets for Vectored Interrupts” on page 334 for the entry vector used,
depending on the interrupt mode the processor is operating in.

Table 5.11 Register States an Interrupt Exception

Register State Value

CauseIP Indicates the interrupts that are pending.
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5.7.7 Debug Instruction Break Exception

A debug instruction break exception occurs when an instruction hardware breakpoint matches an executed instruc-
tion. The DEPC register and DBD bit in the Debug register indicate the instruction that caused the instruction hard-
ware breakpoint to match. This exception can only occur if instruction hardware breakpoints are implemented.

Debug Register Debug Status Bit Set:

DIB

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

5.7.8 Watch Exception — Instruction Fetch or Data Access

The Watch facility provides a software debugging vehicle by initiating a watch exception when an instruction or data 
reference matches the address information stored in the WatchHi and WatchLo registers. A Watch exception is taken 
immediately if the EXL and ERL bits of the Status register are both zero and the DM bit of the Debug register is also 
zero. If any of those bits is a one at the time that a watch exception would normally be taken, then the WP bit in the 
Cause register is set, and the exception is deferred until all three bits are zero. Software may use the WP bit in the 
Cause register to determine if the EPC register points at the instruction that caused the watch exception, or if the 
exception actually occurred while in kernel mode.

The Watch exception can occur on either an instruction fetch or a data access. Watch exceptions that occur on an 
instruction fetch have a higher priority than watch exceptions that occur on a data access.

Register ExcCode Value:

WATCH

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

5.7.9 Address Error Exception — Instruction Fetch/Data Access

An address error exception occurs on an instruction or data access when an attempt is made to execute one of the fol-
lowing:

Table 5.12 Register States on Watch Exception

Register State Value

CauseWP Indicates that the watch exception was deferred until after 
StatusEXL, StatusERL, and DebugDM were zero. This bit 
directly causes a watch exception, so software must clear 
this bit as part of the exception handler to prevent a watch 
exception loop at the end of the current handler execution.

WatchHi I,R,W Set for the watch channel that matched, and indicates 
which type of match there was.
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• Fetch an instruction, load a word, or store a word that is not aligned on a word boundary

• Load or store a halfword that is not aligned on a halfword boundary

• Reference the kernel address space from user mode

• Reference to a non-user address space when using the new EVA instructions

Note that in the case of an instruction fetch that is not aligned on a word boundary, PC is updated before the condition 
is detected. Therefore, both EPC and BadVAddr point to the unaligned instruction address. In the case of a data access 
the exception is taken if either an unaligned address or an address that was inaccessible in the current processor mode 
was referenced by a load or store instruction.

Cause Register ExcCode Value:

ADEL: Reference was a load or an instruction fetch

ADES: Reference was a store

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

5.7.10 TLB Refill Exception — Instruction Fetch or Data Access

During an instruction fetch or data access, a TLB refill exception occurs when no TLB entry matches a reference to a 
mapped address space and the EXL bit is 0 in the Status register. Note that this is distinct from the case in which an 
entry matches but has the valid bit off. In that case, a TLB Invalid exception occurs.

Cause Register ExcCode Value:

TLBL: Reference was a load or an instruction fetch

TLBS: Reference was a store

Table 5.13 CP0 Register States on Address Exception Error

Register State Value

BadVAddr Failing address

ContextVPN2 UNPREDICTABLE

EntryHiVPN2 UNPREDICTABLE

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE
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Additional State Saved: 

Entry Vector Used:

TLB refill vector (offset 0x000) if StatusEXL = 0 at the time of exception;

General exception vector (offset 0x180) if StatusEXL = 1 at the time of exception

5.7.11 TLB Invalid Exception — Instruction Fetch or Data Access 

During an instruction fetch or data access, a TLB invalid exception occurs in one of the following cases:

• No TLB entry matches a reference to a mapped address space; and the EXL bit is 1 in the Status register.

• A TLB entry matches a reference to a mapped address space, but the matched entry has the valid bit off.

Cause Register ExcCode Value:

TLBL: Reference was a load or an instruction fetch

TLBS: Reference was a store

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

Table 5.14 CP0 Register States on TLB Refill Exception

Register State Value

BadVAddr Failing address.

Context The BadVPN2 field contains VA31:13 of the failing 
address.

EntryHi The VPN2 field contains VA31:13 of the failing address; 
the ASID field contains the ASID of the reference that 
missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

Table 5.15 CP0 Register States on TLB Invalid Exception

Register State Value

BadVAddr Failing address

Context The BadVPN2 field contains VA31:13 of the failing 
address.

EntryHi The VPN2 field contains VA31:13 of the failing address; 
the ASID field contains the ASID of the reference that 
missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE
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5.7.12 TLB Execute-Inhibit Exception

A TLB execute-inhibit exception occurs when there is a execute access from a TLB entry whose XI bit is set. The TLB 
execute-inhibit exception type can only occur if execute-inhibit exceptions are enabled by setting bit 30 (XIE) in the 
PageGrain register.

In addition, the type of exception taken depends on the state of the PageGrainIEC bit. If the XI bit of the entry is set, 
and the PageGrainIEC bit is set, a TLBXI exception is taken. If the PageGrainIEC bit is cleared, a TLBL exception is 
taken.

Cause Register ExcCode Value:

if PageGrain.IEC == 0 TLBL

if PageGrain.IEC == 1 TLBXI

Additional State Saved: 

Entry Vector Used:

General exception vector (offset 0x180)

5.7.13 TLB Read-Inhibit Exception

A TLB read-inhibit exception occurs when there is an attempt to read a TLB entry whose RI bit is set. The TLB read-
inhibit exception type can only occur if read-inhibit exceptions are enabled by setting bit 31 (RIE) in the PageGrain 
register.

In addition, the type of exception taken depends on the state of the PageGrainIEC bit. If the RI bit of the entry is set, 
and the PageGrainIEC bit is set, a TLBRI exception is taken. If the PageGrainIEC bit is cleared, a TLBL exception is 
taken.

Cause Register ExcCode Value:

if PageGrain.IEC == 0 TLBL

Table 5.16 CP0 Register States on TLB Execute-Inhibit Exception

Register State Value

BadVAddr Failing address.

Context If the Config3.CTXTC bit is set, then the bits of the 
Context register corresponding to the set bits of the Virtu-
alIndex field of the ContextConfig register are loaded 
with the high-order bits of the virtual address that misssed.

If the Config3.CTXTC bit is clear, then the BadVPN2 field 
contains VA31:13 of the failing address.

EntryHi The VPN2 field contains VA31:13 of the failing address; 
the ASID field contains the ASID of the reference that 
missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE
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if PageGrain.IEC == 1 TLBRI

Additional State Saved: 

Entry Vector Used:

General exception vector (offset 0x180)

5.7.14 FTLB Parity Exception

An FTLB parity exception occures when a parity error is detected on an FTLB read operation. The error can occur in 
either the FTLB Tag RAM of the FTLB Data RAM. Note that FTLB parity errors can only occur when the bit 31 (PE) 
of the CP0 Error Control register (ErrCtl.PE) is set, enabling system-wide parity errors.

When an FTLB parity error occurs, hardware sets bits 31:30 of the CP0 Cache Error register (CacheErr.EREC) to a 
value of 2’b11 to indicate that the register contains information based on a TLB error. When the EREC field is set to 
2’b11, bits 29:28 of the Cache Error register (CacheErr.ED and CacheErr.ET) indicate if the error occurred in the 
FTLB data RAM or the FTLB tag RAM respectively.

Cause Register ExcCode Value:

0x10: FTLBPAR

Additional State Saved: 

Entry Vector Used:

General exception vector (offset 0x180)

Table 5.17 CP0 Register States on TLB Read-Inhibit Exception

Register State Value

BadVAddr Failing address.

Context If the Config3.CTXTC bit is set, then the bits of the 
Context register corresponding to the set bits of the Virtu-
alIndex field of the ContextConfig register are loaded 
with the high-order bits of the virtual address that misssed.

If the Config3.CTXTC bit is clear, then the BadVPN2 field 
contains VA31:13 of the failing address.

EntryHi The VPN2 field contains VA31:13 of the failing address; 
the ASID field contains the ASID of the reference that 
missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

Table 5.18 CP0 Register States on an FTLB Parity Exception

Register State Value

CacheErr Error state. Defined in bits 31:28 of this register.

ErrorEPC Restart PC
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5.7.15 Cache Error Exception

A cache error exception occurs when an instruction or data reference detects a cache tag or data error. This exception 
is not maskable. Because the error was in a cache, the exception vector is to an unmapped, uncached address. This 
exception can be imprecise and the ErrorEPC may not point to the instruction that saw the error. Additionally, 
because the caches on the cores within the proAptiv Multiprocessing System are coherent, cache errors detected on 
other cores could indicate data corruption for a process on this CPU. An error on another CPU will still cause a Cache 
Error exception, with the CacheErrEE indicating that the error occurred on another processor.

L2 cache errors are considered to be imprecise. An L2 cache error on a data load operation can potentially corrupt the 
target GPR.

Cause Register ExcCode Value

N/A

Additional State Saved 

Entry Vector Used

Cache error vector (offset 0x100)

5.7.16 Bus Error Exception — Instruction Fetch or Data Access

A bus error exception occurs when an instruction or data access makes a bus request (due to a cache miss or an 
uncacheable reference) and that request terminates in an error. The bus error exception can occur on either an instruc-
tion fetch or a data read. Bus error exceptions cannot be generated on data writes. Bus error exceptions that occur on 
an instruction fetch have a higher priority than bus error exceptions that occur on a data access. 

Instruction errors are precise, will data bus errors can be imprecise. These errors are taken when the ERR code is 
returned on the OC_SResp input.

Cause Register ExcCode Value:

IBE: Error on an instruction reference

DBE: Error on a data reference

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

5.7.17 Debug Software Breakpoint Exception

A debug software breakpoint exception occurs when an SDBBP instruction is executed. The DEPC register and DBD 
bit in the Debug register will indicate the SDBBP instruction that caused the debug exception.

Table 5.19 CP0 Register States on Cache Error Exception

Register State Value

CacheErr Error state

ErrorEPC Restart PC



 

318 MIPS32® proAptiv™ Multiprocessing System Software User’s Manual, Revision 01.22

Debug Register Debug Status Bit Set:
DBp

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

5.7.18 Execution Exception — System Call

The system call exception is one of the execution exceptions. All of these exceptions have the same priority. A system 
call exception occurs when a SYSCALL instruction is executed.

Cause Register ExcCode Value:

Sys

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

5.7.19 Execution Exception — Breakpoint

The breakpoint exception is one of the execution exceptions. All of these exceptions have the same priority. A break-
point exception occurs when a BREAK instruction is executed.

Cause Register ExcCode Value:

Bp

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

5.7.20 Execution Exception — Reserved Instruction

The reserved instruction exception is one of the execution exceptions. All of these exceptions have the same priority. 
A reserved instruction exception occurs when a reserved or undefined major opcode or function field is executed. 
This includes Coprocessor 2 instructions which are decoded reserved in the Coprocessor 2.

Cause Register ExcCode Value:

RI

Additional State Saved:

None
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Entry Vector Used:

General exception vector (offset 0x180)

5.7.21 Execution Exception — Coprocessor Unusable

The coprocessor unusable exception is one of the execution exceptions. All of these exceptions have the same prior-
ity. A coprocessor unusable exception occurs when an attempt is made to execute a coprocessor instruction for one of 
the following:

• a corresponding coprocessor unit that has not been marked usable by setting its CU bit in the Status register

• CP0 instructions, when the unit has not been marked usable, and the processor is executing in user mode

Cause Register ExcCode Value:

CpU

Additional State Saved: 

Entry Vector Used:

General exception vector (offset 0x180)

5.7.22 Execution Exception — CorExtend Block Unusable

The CorExtend block unusable exception is one of the execution exceptions. All of these exceptions have the same 
priority. A CEU exception occurs when an attempt is made to execute a CorExtend instruction when the CEE bit in 
the Status register is not set. It is dependent on the implementation of the CorExtend block, but this exception should 
be taken on any CorExtend instruction that modifies local state within the CorExtend block and can optionally be 
taken on other CorExtend instructions.

Cause Register ExcCode Value:

CEU

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

5.7.23 Execution Exception — DSP ASE State Disabled

The DSP ASE State Disabled exception an execution exception. It occurs when an attempt is made to execute a DSP 
ASE instruction when the MX bit in the Status register is not set. This allows an OS to do “lazy” context switching.

Cause Register ExcCode Value:

Table 5.20 Register States on Coprocessor Unusable Exception

Register State Value

CauseCE Unit number of the coprocessor being referenced
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DSPDis

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180) 

5.7.24 Execution Exception — Floating Point Exception

A floating point exception is initiated by the floating point coprocessor. 

Cause Register ExcCode Value:

FPE

Additional State Saved: 

Entry Vector Used:

General exception vector (offset 0x180)

5.7.25 Execution Exception — Integer Overflow

The integer overflow exception is one of the execution exceptions. All of these exceptions have the same priority. An 
integer overflow exception occurs when selected integer instructions result in a 2’s complement overflow.

Cause Register ExcCode Value:

Ov

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

5.7.26 Execution Exception — Trap

The trap exception is one of the execution exceptions. All of these exceptions have the same priority. A trap exception 
occurs when a trap instruction results in a TRUE value.

Cause Register ExcCode Value:

Tr

Table 5.21 Register States on Floating Point Exception

Register State Value

FCSR Indicates the cause of the floating point exception
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Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180) 

5.7.27 Debug Data Break Exception

A debug data break exception occurs when a data hardware breakpoint matches the load/store transaction of an exe-
cuted load/store instruction. The DEPC register and DBD bit in the Debug register will indicate the load/store instruc-
tion that caused the data hardware breakpoint to match. The load/store instruction that caused the debug exception 
has not completed e.g. not updated the register file, and the instruction can be re-executed after returning from the 
debug handler. 

Debug Register Debug Status Bit Set:

DDBL for a load instruction or DDBS for a store instruction

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

5.7.28 TLB Modified Exception — Data Access

During a data access, a TLB modified exception occurs on a store reference to a mapped address if the following con-
dition is true:

• The matching TLB entry is valid, but not dirty.

Cause Register ExcCode Value:

Mod
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Additional State Saved: 

Entry Vector Used:

General exception vector (offset 0x180)

5.8 Exception Handling and Servicing Flowcharts

The remainder of this chapter contains flowcharts for the following exceptions and guidelines for their handlers:

• General exceptions 

• TLB miss exceptions

• Reset and NMI exceptions

• Debug exceptions

Generally speaking, exceptions are handled by hardware and then serviced by software. Note that unexpected debug 
exceptions to the debug exception vector at 0xBFC0_0200 may be viewed as a reserved instruction since uncon-
trolled execution of an SDBBP instruction caused the exception. The DERET instruction must be used at return from 
the debug exception handler, in order to leave debug mode and return to non-debug mode. The DERET instruction 
returns to the address in the DEPC register.

Table 5.22 Register States on TLB Modified Exception

Register State Value

BadVAddr Failing address

Context The BadVPN2 field contains VA31:13 of the failing 
address.

EntryHi The VPN2 field contains VA31:13 of the failing address; 
the ASID field contains the ASID of the reference that 
missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE
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5.9 Interrupts

Release 3 of the MIPS32 architecture, implemented by the proAptiv Multiprocessing System CPU, includes support 
for vectored interrupts and the implementation of a new interrupt mode that permits the use of an external interrupt 
controller.

Additionally, internal performance counters have been added to the proAptiv Multiprocessing System CPU. These 
counters can be configured to count various events within the CPU. When the MSB of the counter is set, it can trigger 
a performance counter interrupt. This interrupt, like the timer interrupt, is an output from the CPU that can be brought 
back into the CPU’s interrupt pins in a system-dependent manner.

The Fast Debug Channel feature in EJTAG provides a low overhead means for sending data between CPU software 
and the EJTAG probe. It includes a pair of FIFOs for transmit and receive data. Software can define FIFO thresholds 
for generating an interrupt. The fast debug channel interrupt is also routed similarly to the timer and performance 
counter interrupts. The interrupt status is made available on an output pin and can be brought back into the CPU’s 
interrupt pins.

5.9.1 Interrupt Modes

The proAptiv Multiprocessing System CPU includes support for three interrupt modes, as defined by Release 3 of the 
Architecture:

• Interrupt Compatibility mode, in which the behavior of the proAptiv Multiprocessing System is identical to the 
behavior of an implementation of Release 1 of the Architecture.

• Vectored Interrupt (VI) mode adds the ability to prioritize and vector interrupts to a handler dedicated to that 
interrupt. The presence of this mode is denoted by the VInt bit in the Config3 register. Although this mode is 
architecturally optional, it is always present on the proAptiv Multiprocessing System CPU, so the VInt bit will 
always read as a 1.

• External Interrupt Controller (EIC) mode, which redefines the way interrupts are handled to provide full support 
for an external interrupt controller that handles prioritization and vectoring of interrupts. As with VI mode, this 
mode is architecturally optional. The presence of this mode is denoted by the VEIC bit in the Config3 register. On 
the proAptiv Multiprocessing System CPU, the VEIC bit is set externally by the static input, SI_EICPresent, to 
allow system logic to indicate the presence of an external interrupt controller.

Following reset, the proAptiv Multiprocessing System processor defaults to Compatibility mode, which is fully com-
patible with all implementations of Release 1 of the Architecture.

Table 5.23 shows the current interrupt mode of the processor as a function of the Coprocessor 0 register fields that 
can affect the mode. 

Table 5.23 Interrupt Modes

StatusBEV CauseIV IntCtlVS Config3VINT Config3VEIC Interrupt Mode

1 x x x x Compatibility

x 0 x x x Compatibility

x x =0 x x Compatibility

0 1 ≠0 1 0 Vectored Interrupt

0 1 ≠0 x 1 External Interrupt Controller
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5.9.1.1 Interrupt Compatibility Mode

This is the default interrupt mode for the processor and is entered when a Reset exception occurs. In this mode, inter-
rupts are non-vectored and dispatched though exception vector offset 0x180 (if CauseIV = 0) or vector offset 0x200 (if 
Cause IV = 1). This mode is in effect when any of the following conditions are true:

• CauseIV = 0

• StatusBEV = 1

• IntCtlVS = 0, which is the case if vectored interrupts are not implemented or have been disabled.

Here is a typical software handler for compatibility mode:

/*
 * Assumptions:
 *  - CauseIV = 1 (if it were zero, the interrupt exception would have to
 *                 be isolated from the general exception vector before arriving
 *                 here)
 *  - GPRs k0 and k1 are available
 *  - The software priority is IP7..IP0 (HW5..HW0, SW1..SW0)
 *
 * Location: Offset 0x200 from exception base
 */

IVexception:
mfc0 k0, C0_Cause /* Read Cause register for IP bits */
mfc0 k1, C0_Status /* and Status register for IM bits */
andi k0, k0, M_CauseIM /* Keep only IP bits from Cause */
and k0, k0, k1 /* and mask with IM bits */
beq k0, zero, Dismiss /* no bits set - spurious interrupt */
clz k0, k0 /* Find first bit set, IP7..IP0; k0 = 16..23 */
xori k0, k0, 0x17 /* 16..23 => 7..0 */
sll k0, k0, VS /* Shift to emulate software IntCtlVS */
la k1, VectorBase /* Get base of 8 interrupt vectors */
addu k0, k0, k1 /* Compute target from base and offset */
jr k0 /* Jump to specific exception routine */
nop

/*
 * Each interrupt processing routine processes a specific interrupt, analogous
 * to those reached in VI or EIC interrupt mode. Since each processing routine
 * is dedicated to a particular interrupt line, it has the context to know
 * which line was asserted.  Each processing routine may need to look further
 * to determine the actual source of the interrupt if multiple interrupt requests
 * are ORed together on a single IP line. Once that task is performed, the
 * interrupt may be processed in one of two ways:

0 1 ≠0 0 0 Cannot occur because IntCtl VS cannot be non-zero if 
neither Vectored Interrupt nor External Interrupt Con-
troller mode is implemented.

“x” denotes don’t care

Table 5.23 Interrupt Modes(continued)

StatusBEV CauseIV IntCtlVS Config3VINT Config3VEIC Interrupt Mode



 

330 MIPS32® proAptiv™ Multiprocessing System Software User’s Manual, Revision 01.22

 *
 * - Completely at interrupt level (e.g., a simple UART interrupt). The
 *   SimpleInterrupt routine below is an example of this type.
 * - By saving sufficient state and re-enabling other interrupts. In this
 *   case the software model determines which interrupts are disabled during
 *   the processing of this interrupt. Typically, this is either the single
 *   StatusIM bit that corresponds to the interrupt being processed, or some
 *   collection of other StatusIM bits so that “lower” priority interrupts are
 *   also disabled. The NestedInterrupt routine below is an example of this type.
 */

SimpleInterrupt:
/*
 * Process the device interrupt here and clear the interupt request
 * at the device. In order to do this, some registers may need to be
 * saved and restored. The coprocessor 0 state is such that an ERET
 * will simply return to the interrupted code.
 */

eret /* Return to interrupted code */

NestedException:
/*
 * Nested exceptions typically require saving the EPC and Status registers,
 * saving any GPRs that may be modified by the nested exception routine, disabling
 * the appropriate IM bits in Status to prevent an interrupt loop, putting
 * the processor in kernel mode, and re-enabling interrupts. The sample code
 * below cannot cover all nuances of this processing and is intended only
 * to demonstrate the concepts.
 */

/* Save GPRs here, and setup software context */
mfc0 k0, C0_EPC /* Get restart address */
sw k0, EPCSave /* Save in memory */
mfc0 k0, C0_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
li k1, ~IMbitsToClear /* Get IM bits to clear for this interrupt */

/*   this must include at least the IM bit */
/*   for the current interrupt, and may include */
/*   others */

and k0, k0, k1 /* Clear bits in copy of Status */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify mask, switch to kernel mode, */

/*   re-enable interrupts */

/*
 * Process interrupt here, including clearing device interrupt.
 * In some environments this may be done with the core running in
 * kernel or user mode. Such an environment is well beyond the scope of
 * this example.
 */

/*
 * To complete interrupt processing, the saved values must be restored
 * and the original interrupted code restarted.
 */

di /* Disable interrupts - may not be required */
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lw k0, StatusSave /* Get saved Status (including EXL set) */
lw k1, EPCSave /*   and EPC */
mtc0 k0, C0_Status /* Restore the original value */
mtc0 k1, C0_EPC /*  and EPC */
/* Restore GPRs and software state */
eret /* Dismiss the interrupt */

5.9.1.2 Vectored Interrupt Mode

In Vectored Interrupt (VI) mode, a priority encoder prioritizes pending interrupts and generates a vector which can be 
used to direct each interrupt to a dedicated handler routine. VI mode is in effect when all the following conditions are 
true: 

• Config3VInt = 1

• Config3VEIC = 0

• IntCtlVS ≠ 0

• CauseIV = 1

• StatusBEV = 0

In VI interrupt mode, the six hardware interrupts are interpreted as individual hardware interrupt requests. The timer, 
performance counter, and fast debug channel interrupts are combined in a system-dependent way (external to the 
CPU) with the hardware interrupts (the interrupt with which they are combined is indicated by the IntCtlIPTI/IPCI/IPFDCI 
fields) to provide the appropriate relative priority of the those interrupts with that of the hardware interrupts. The pro-
cessor interrupt logic ANDs each of the CauseIP bits with the corresponding StatusIM bits. If any of these values is 1, 
and if interrupts are enabled (StatusIE = 1, StatusEXL = 0, and StatusERL = 0), an interrupt is signaled and a priority 
encoder scans the values in the order shown in Table 5.24. 

A typical software handler for Vectored Interrupt mode bypasses the entire sequence of code following the 
IVexception label shown for the compatibility mode handler above. Instead, the hardware performs the prioritiza-
tion, dispatching directly to the interrupt processing routine.

A nested interrupt is similar to that shown for compatibility mode. Such a routine might look as follows:

Table 5.24 Relative Interrupt Priority for Vectored Interrupt Mode

Relative 
Priority

Interrupt 
Type

Interrupt 
Source

Interrupt Request 
Calculated From

Vector Number 
Generated by 

Priority Encoder

Highest Priority Hardware HW5 IP7 and IM7 7

HW4 IP6 and IM6 6

HW3 IP5 and IM5 5

HW2 IP4 and IM4 4

HW1 IP3 and IM3 3

HW0 IP2 and IM2 2

Software SW1 IP1 and IM1 1

Lowest Priority SW0 IP0 and IM0 0
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NestedException:
/*
* Nested exceptions typically require saving the EPC and Status registers,
* disabling the appropriate IM bits in Status to prevent an interrupt loop,
* putting the processor in kernel mode, and re-enabling interrupts. The sample 
* code below cannot cover all nuances of this processing and is intended only
* to demonstrate the concepts.
*/

mfc0 k0, C0_EPC /* Get restart address */
sw k0, EPCSave /* Save in memory */
mfc0 k0, C0_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
li k1, ~IMbitsToClear /* Get IM bits to clear for this interrupt */

/*   this must include at least the IM bit */
/*   for the current interrupt, and may include */
/*   others */

and k0, k0, k1 /* Clear bits in copy of Status */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify mask, switch to kernel mode, */

/*   re-enable interrupts */

/* Process interrupt here, including clearing device interrupt */

/*
 * To complete interrupt processing, the saved values must be restored
 * and the original interrupted code restarted.
 */

di /* Disable interrupts - may not be required */
lw k0, StatusSave /* Get saved Status (including EXL set) */
lw k1, EPCSave /*   and EPC */
mtc0 k0, C0_Status /* Restore the original value */
mtc0 k1, C0_EPC /*  and EPC */
ehb /* Clear hazard */
eret /* Dismiss the interrupt */

5.9.1.3 External Interrupt Controller Mode

External Interrupt Controller (EIC) mode redefines the way that the processor interrupt logic is configured to provide 
support for an external interrupt controller. The interrupt controller is responsible for prioritizing all interrupts, 
including hardware, software, timer, fast debug channel, and performance counter interrupts, and directly supplying 
to the processor the vector number of the highest priority interrupt. 

EIC interrupt mode is in effect if all of the following conditions are true:

• Config3VEIC = 1

• IntCtlVS ≠ 0

• CauseIV = 1

• StatusBEV = 0

In EIC mode, the processor sends the state of the software interrupt requests (CauseIP1..IP0) and the timer, perfor-
mance counter, and fast debug channel interrupt requests (CauseTI/PCI/FDCI) to the external interrupt controller, which 
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NestedException:
/*
* Nested exceptions typically require saving the EPC and Status registers,
* disabling the appropriate IM bits in Status to prevent an interrupt loop, 
* putting the processor in kernel mode, and re-enabling interrupts. 
* The sample code below can not cover all nuances of this processing and is
* intended only to demonstrate the concepts.
*/

mfc0 k1, C0_Cause /* Read Cause to get RIPL value */
mfc0 k0, C0_EPC /* Get restart address */
srl k1, k1, S_CauseRIPL /* Right justify RIPL field */
sw k0, EPCSave /* Save in memory */
mfc0 k0, C0_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
ins k0, k1, S_StatusIPL, 6 /* Set IPL to RIPL in copy of Status */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify IPL, switch to kernel mode, */

/*   re-enable interrupts */

/* Process interrupt here, including clearing device interrupt */

/*
 * The interrupt completion code is identical to that shown for VI mode above.
 */

5.9.2 Generation of Exception Vector Offsets for Vectored Interrupts

For vectored interrupts (in either VI or EIC interrupt mode), a vector number is produced by the interrupt control 
logic. This number is combined with IntCtlVS to create the interrupt offset, which is added to 0x200 to create the 
exception vector offset. For VI mode, the vector number is in the range 0..7, inclusive. For EIC interrupt mode, the 
vector number is in the range 1..63, inclusive (0 being the encoding for “no interrupt”). The IntCtlVS field specifies 
the spacing between vector locations. If this value is zero (the default reset state), the vector spacing is zero and the 
processor reverts to Interrupt Compatibility mode. A non-zero value enables vectored interrupts. Table 5.25 shows 
the exception vector offset for a representative subset of the vector numbers and values of the IntCtlVS field. 

Table 5.25 Exception Vector Offsets for Vectored Interrupts 

Vector Number

Value of IntCtlVS Field

5’b00001 5’b00010 5’b00100 5’b01000 5’b10000

0 0x0200 0x0200 0x0200 0x0200 0x0200

1 0x0220 0x0240 0x0280 0x0300 0x0400

2 0x0240 0x0280 0x0300 0x0400 0x0600

3 0x0260 0x02C0 0x0380 0x0500 0x0800

4 0x0280 0x0300 0x0400 0x0600 0x0A00

5 0x02A0 0x0340 0x0480 0x0700 0x0C00

6 0x02C0 0x0380 0x0500 0x0800 0x0E00

7 0x02E0 0x03C0 0x0580 0x0900 0x1000
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The general equation for the exception vector offset for a vectored interrupt is:

vectorOffset ← 0x200 + (vectorNumber × (IntCtlVS || 0b00000))

5.9.3 Global Interrupt Controller

The Global Interrupt Controller (GIC) handles the routing and masking of local interrupts, such as the timer, perfor-
mance counter, fast debug channel interrupts, inter-processor interrupts, and external interrupts. This block can be 
configured to support various numbers of external interrupts and to support any of the CPU interrupt modes.

An interactive GUI is available to simplify the setup of desired event-routing through the GIC. The tool outputs a C-
language function covering all required programming registers of the GIC.

•
•
•

61 0x09A0 0x1140 0x2080 0x3F00 0x7C00

62 0x09C0 0x1180 0x2100 0x4000 0x7E00

63 0x09E0 0x11C0 0x2180 0x4100 0x8000

Table 5.25 Exception Vector Offsets for Vectored Interrupts (continued)

Vector Number

Value of IntCtlVS Field

5’b00001 5’b00010 5’b00100 5’b01000 5’b10000
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Programming Concepts

This chapter describes some programming concepts that can be followed when programming in either User mode or 
Kernel mode.

6.1 Ordering and Synchronization

6.1.1 Consistency Model

The proAptiv Multiprocessing System uses weak memory ordering, that is, cacheable loads and stores on a processor 
can be executed out of program order (for example, for hit-under-miss). Software must include SYNC instructions to 
enforce ordering in the cases where it is required.

6.1.2 LL/SC

The Load Linked (LL) and Store Conditional (SC) instructions provide a mechanism that ensures atomic access to a 
memory location. 

An LL instruction reads a memory location and sets an internal state bit called the LL bit. The address read by the LL 
instruction is stored in the LLAddr register. The LL bit can be cleared because of actions on the processor, such as an 
ERET instruction. If the LL bit is cleared before the SC completes, the SC fails and does not update memory. 

On the proAptiv Multiprocessing System, the value in LLAddr is also checked on interventions. If another CPU 
requests write access to the cache line, the LL bit will be cleared. LL instructions always request the line in a Shared 
state, so that an LL itself does not clear the LL bit in another CPU. If the line is installed as Shared, when the SC is 
executed, it must make a CohUpgrade request to obtain write access to the line. If multiple cores are trying to access 
the same location, there can be a race, and the first Upgrade request to be serialized in the CM will win. This will 
cause the other SCs to fail, and the other cores must retry the sequence from the LL.

These actions allow the memory location to appear as though it were atomically updated—the SC will not write the 
location unless the update will appear atomic.

6.1.3 Memory Barriers

The SYNC instruction is used to enforce the ordering of loads and stores. Because the core processes instructions in 
order and generates memory requests in order, these SYNCs can complete with much less delay than the traditional 
heavyweight SYNC. All of the lightweight stypes (0x4, 0x10-0x13) are treated identically by the CPU as follows:

1. The LSU forces any pending evictions to complete their cache reads and send the writes to the BIU.

2. The BIU flushes the write-back buffer.

3. The BIU indicates that it is complete and allows the LSU to resume processing instructions.
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4. No external SYNC request is generated.

Additionally, the CPU supports two implementation-specific stype values as well as the standard stype 0x0. These 
are used to explicitly set the ‘level’, which controls how far into the system SYNCs are propagated:

If Coherence is enabled:

• stype 0x2: A coherent SYNC is sent to the CM. The CM responds when all older coherent requests have com-
pleted their interventions.

• stype 0x3: A Coherent SYNC transaction is sent to the CM. If SI_CM_SyncTxEn is 0 or 
CM_SYNC_TX_DISABLE is 1then the CM responds when all previous coherent requests have completed their 
interventions and all previus requests have been accepted on the L2/Memory interface. If SI_CM_SyncTxEn is 1 
and CM_SYNC_TX_DISABLE is 0, then the CM waits until all previous coherent requests have been completed 
and before issuing a Legacy SYNC transaction to L2/memory (behind all previous coherent and non-coherent 
requests from this CPU) to enforce ordering throughout the system. In this case, the CM responds when it has 
received a response from L2/Memory.

• stype 0x0: The level that normal SYNCs use can be controlled by the SYNCCTL bit in the Global CM2 Control 
register located at offset address 0x0010. Refer to the Global CM2 Control register in the CM2 Registers chapter 
for more information. 

All other stypes are reserved and currently default to type 0x0.

If Coherence is disabled:

• stype 0x0, 0x2, 0x3: A legacy SYNC transaction is issued to the CM. If SI_CM_SyncTxEn is 0 or 
CM_SYNC_TX_DISABLE is 1 then CM responds when all previous requests have been accepted on the L2/Mem-
ory interface. If SI_CM_SyncTxEn is 1 and CM_SYNC_TX_DISABLE is 0 then the CM issues a Legacy SYNC 
transaction to L2/Memory (behind all previous non-coherent requests from this CPU) to enforce ordering 
throughout the system. In this case, the CM responds when it has received a response from L2/Memory.

• All other stypes are reserved and currently default to type 0x0. 

Table 6.1 Supported SYNC stypes

Coherence 
Enabled? stype Behavior

Yes

0x0 Can be configured as level0 or level1, as defined below.

0x2 Level0 - SYNC transaction is sent to the Coherence Man-
ager and waits for all previous coherent transactions to fin-
ish their intervention stage.

0x3 Level1 - After completing level0 steps, memory accesses 
are also completed. Depending on the setting of the 
SyncTxEn and CM_SYNC_TX_DISABLE bits, an 
external SYNC transaction may also be generated to flush 
external devices.

No 0x0, 0x2, 0x3 Core issues Legacy SYNC

-
0x4, 0x10-0x13 Lightweight SYNC - handled entirely within the CPU, 

completes evictions and flushes WBB.

All others Reserved. Default to type 0x0. 
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6.1.4 CACHE and SYNCI Instructions

Coordinating software maintenance of the caches across multiple cores can be rather challenging and involve a lot of 
overhead. To simplify the task of maintaining cache Coherence via software, the proAptiv Multiprocessing System 
includes hardware support for the globalization of a number of cache maintenance operations. When a cache opera-
tion is globalized, it becomes a coherent request and is sent through the Coherence Manager to be performed on all of 
the cores. The decision of whether or not to globalize an operation is based on whether or not the target address for 
the operation is coherent. The operations that are globalized are Hit-type L1 CACHE instructions and SYNCI instruc-
tions.

Several special cases deserve additional consideration and are discussed below.

6.1.4.1 Cache Line Locking

Locking lines into a cache is somewhat counter to the idea of coherence. If a line is locked into a particular cache, it 
is expected that any processes utilizing that data will be locked to that processor and coherence is not needed. Based 
on this usage model, locking coherent lines into the cache is not recommended. If it is done, the cores will use the fol-
lowing rules:

• SYNCI instructions are user-mode instructions. Because locking is a kernel-mode feature (it requires the 
CACHE instruction), SYNCI is not allowed to unlock cache lines. This applies to both local and globalized 
SYNCI instructions.

• Locking overrides coherence. Intervention requests from other cores and I/O devices that match on a locked line 
will be treated as misses.

• Self-intervention requests for globalized CACHE instructions will be allowed to affect a locked line. This is done 
primarily for handling lock and unlock requests for kseg0 addresses when kseg0 is being treated coherently. 

6.1.4.2 Index Type and Optimized Routines

Index-type CACHE instructions are not globalized. Because they refer to a specific cache location, it does not make 
sense to apply them to other caches, particularly if the cache configurations are not homogeneous. 

One case where software may attempt to use index-type CACHE instructions is an optimization used when flushing 
large blocks of memory. If the region to be flushed is larger than the size of the cache, flushing the entire cache could 
be faster than walking through the region and flushing each cache line individually (though the flushing of unrelated 
cache lines may mitigate the benefit of this optimization). Because indexed operations are not globalized, this 
sequence only flushes the local cache. If flushing of the remote caches is also required, the code sequence must also 
run on the remote cores. It is probably better to disable this software optimization and make use of the efficiency of 
the globalized hit-type CACHE instructions.

6.1.4.3 Completion

Globalizing a cache operation changes its timing, compared to a local operation. The external request must be made, 
serialized in the Coherence Manager, and then sent to the cores on the intervention port. This is not a blocking action, 
and subsequent instructions on the requesting CPU will continue to execute. In order to guarantee that the operation 
has been completed, a SYNC instruction must be executed prior to any instruction that requires the updated state. 
This can be a single SYNC after a series of cache operations. This SYNC should also be used on non-coherent cores 
in the Cluster to ensure maximum compatibility moving forward.
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6.1.4.4 L2 CACHE Instructions

It is important to note that L2 CACHE instructions only impact the L2 cache and do not affect the L1 data or instruc-
tion caches. 

6.1.5 PREF Instructions

Prefetch instructions are also impacted by coherence. The different types of PREF react differently, as described 
below. 

• Normal: Load/store(_*) type hint values will cause the appropriate type of request to be issued when a coherent 
CCA is used—a store hint will request Exclusive ownership, and a load hint will request either Shared or Exclu-
sive, depending on the CCA. However, a store-type PREF that hits on a Shared line will not make an Upgrade 
request.

• Writeback_invalidate (also called nudge): This operation behaves the same for both coherent and non-coherent 
CCAs and in both cases will only force a writeback (if needed) from the local cache.

• Prepare for Store: This operation is intended to avoid the memory read when software is going to be writing an 
entire cache line. When a coherent address is used, an Invalidate request is generated to clear the lines of any 
other data caches in the system and acquire Exclusive ownership on the local processor.
Note: This operation changes the state of memory, and the data values are unpredictable until the series of stores 
has completed. If other software (running on other processors) accesses the line before the series of stores has 
completed, this unpredictable intermediate state can be observed.
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6.2 User Mode Programming 

This section contains the following programming concepts relative to user mode programming: 

• Section 6.2.1, "User Mode Accessible CP0 Registers" 

• Section 6.2.2, "Prefetching Data Using the pref and prefx Instructions": how it works. 

• Section 6.2.3, "Using “SYNCI” When Writing Instructions": writing instructions without needing to use privi-
leged cache management instructions. 

• Section 6.2.4, "Integer Multiply and Divide": multiply, multiply/accumulate and divide timings. 

• Section 6.2.5, "Tuning Software for the Pipeline": for determined programmers, and for compiler writers. It 
includes information about the timing of the DSP ASE instructions.

• Section 6.2.6, "Branch Misprediction Delays": the floating-point unit often runs at half speed, and some of its 
interactions (particularly about potential exceptions) are complicated. This section offers some guidance about 
the timing issues you’ll encounter.

• Section 6.2.7, "Load Delayed by (Unrelated) Recent Store"

• Section 6.2.8, "Minimum Load-miss Penalty"

• Section 6.2.9, "Data Dependency Delays"

• Section 6.2.10, "Advice on Tuning Instruction Sequences (particularly DSP)"

• Section 6.2.11, "Multiply/Divide Unit and Timings"

6.2.1 User Mode Accessible CP0 Registers 

In the proAptiv Multiprocessing System architecure, privileged code executed in kernel mode can access any CP0 
register. Conversely, unprivileged user mode code does not have access to any CP0 register. However, there are 
instances where unprivileged user mode programs may need information from some of the CPU registers, normally 
to share information which is worth making accessible to programs without the overhead of a system call. There are 
two ways to allow user mode programs access to CP0 registers.

• Set bit 28 (CU0) of the CP0 Status register located at Register 12, Select 0. Setting this bit allows user mode pro-
grams access to all fields of all CP0 registers. See Section 6.2.1.1 “Setting the CU0 Bit of the Status Register” 
for more information.

• Set selected bits in the CP0 Hardware Enable (HWREna) register located at Register 7, Select 0. See Section 
6.2.1.2 “Programming the HWREna Register” for more information.

6.2.1.1 Setting the CU0 Bit of the Status Register

Setting the CU0 bit of the CP0 Status register allows user mode programs to have unrestricted access to the CP0 reg-
ister set. This permission is granted by the kernel, but this is typically never done. As described in the following sub-
section, the HWREna register can be used by user mode programs to extract selected information from the CP0 
register set.



342 MIPS32® proAptiv™ Multiprocessing System Software User’s Manual, Revision 01.22

 

6.2.1.2 Programming the HWREna Register 

To facilitate non-privileged user mode accesses to selected CP0 registers, the proAptiv Multiprocessing System core 
allows selected information from the CP0 register set to be accessed via the rdhwr instruction. The operating system 
can control access to each register individually, through a bitmask in the CP0 register HWREna - (set bit 0 to enable 
register 0 etc) register. HWREna is cleared to all-zeroes on reset, so software has to explicitly enable user access. 

Figure 6.1 shows the bit assignments for the HWREna register. Note that the entire register is cleared to zero on reset, 
so that no hardware register is accessible without positive OS clearance. 

Figure 6.1 Fields in the HWREna Register

The HWREna register contains five bit-fields that allow access to the following information:

• HWREnaCPUNum (bit 0): Software sets this bit to enable hardware fetch the number of the CPU on which the pro-
gram is currently running. Upon execution of a rdhwr 0 instruction, hardware fetches this information directly 
from the CP0 EBaseCPUNum field and places it into the GPR register designated by the rt field of the rdhwr 0 
instruction. The CPUNum field in the EBase register is initially set by hardware based on the setting of external 
pins at reset. 

• HWREnaSYNCI_Step (bit 1): When this bit is set, execution of a rdhwr 1 instruction returns the effective size of 
an L1 cache line. This information is important to user programs because they can now do things to the caches 
using the synci instruction to make recently written instructions visible for execution. The information returned 
indicates the “step size” — the address increment between successive synci instructions required to cover all 
the instructions in a range. In the proAptiv core, the line size is always 32-bytes.

• HWREnaCC (bit 2): When this bit is set, the proAptiv Multiprocessing System hardware allows user mode read-
only access to the CP0 Count register, for high-resolution counting. Execution of a rdhwr 2 instruction returns 
the current value in the Count register and places it into the GPR register designated by the rt field of the rdhwr 
2 instruction.

• HWREnaCCRes (bit 3): When this bit is set, which tells you how fast Count counts. It’s a divider from the pipeline 
clock. If the rdhwr 3 instruction reads a value of “2”, then the Count register increments every 2 cycles, at half 
the pipeline clock rate. In the proAptiv Multiprocessing System core, the CCRes value is always 2 to indicate that the CC 
register increments every second core cycle. 

• HWREnaUL (bit 29): When this bit is set, hardware allows user mode read-only access to the CP0 UserLocal 
register. The execution of a rdhwr 29 instruction provides a core identifier to user mode programs.

6.2.1.3 Programming Example

The following example shows the flow of information through the proAptiv core when user code accesses the CPU 
number from the CP0 register set. 

31 30 29 28 4 3 2 1 0

Impl UL 0 CCRes CC SYNCI_Step CPUNum

0 0  0 0 0 0
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The pref/prefx instructions come with various possible “hints” which allow the program to express its best guess 
about the likely fate of the cache line. The “load” and “store” variants of the hints for this instruction perform differ-
ently. Specifically, when dealing with coherent addresses, the “store” types will request Exclusive ownership so that 
an eventual store does not need to make an upgrade request before modifying the line.

The proAptiv Multiprocessing System core acts on hints as summarized in Table 6.2.

6.2.3 Using “SYNCI” When Writing Instructions

The synci instruction (introduced with Revision 2 of the MIPS32 architecture specification) ensures that instruc-
tions written by a program (necessarily through the D-cache) get written back from the D-cache and corresponding I-

1. Note that the pref instruction with the “PrepareForStore” hint can zero out some data which wasn’t previously zero. 

Table 6.2 Hints for pref and prefx Instructions 

Hint 

Action Taken by the Core Usage Number Name 

0 load Read the cache line into the D-cache if not 
present. 

When you expect to read the data soon. Use 
“store” hint if you also expect to modify it. 1 store 

4 load_streamed Fetch data, but always use cache way zero - so 
a large sequence of “streamed” prefetches will 
only ever use a quarter of the cache. 

For data you expect to process sequentially, 
and can afford to discard from the cache once 
processed 

5 store_streamed 

6 load_retained Fetch data, but never use cache way zero. 
That means if you do a mixture of “streamed” 
and “retained” operations, they will not dis-
place each other from the cache. 

For data you expect to use more than once, 
and which may be subject to competition 
from “streamed” data. 

7 store_retained 

25 writeback_invalidate/nudge If the line is in the cache, invalidate it (writing 
it back first if it was dirty). 
Otherwise do nothing. 
However (with the proAptiv Multiprocessing 
System CPU only): if this line is in a region 
marked for “uncached accelerated write” 
behavior, then write-back this line. 

When you know you’ve finished with the 
data, and want to make sure it loses in any 
future competition for cache resources. 

30 PrepareForStore If the line is not in the cache, create a cache 
line - but instead of reading it from memory, 
fill it with zeroes and mark it as “dirty”. 
If the line is already in the cache do nothing - 
this operation cannot be relied upon to zero 
the line. 

When you know you will overwrite the 
whole line, so reading the old data from 
memory is unnecessary. 
A recycled line is zero-filled only because its 
former contents could have belonged to a 
sensitive application - allowing them to be 
visible to the new owner would be a security 
breach. 

31 PrepareForStoreNZ As type 30 above, except that the line is not 
filled with zeroes.

Yields the highest possible performance 
when you’re going to overwrite the whole 
line. However, this is at the cost of a security 
leak: a user-mode application which uses this 
prefetch can (somewhat randomly) obtain a 
view of kernel or other-process memory data 
it should not be able to see. An OS can make 
this instruction safe (same as pref 30 
above) by keeping Config7[FPFS] zero — 
see XREF Figure B.3 and notes.
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cache locations invalidated, so that any future execution at the address will reliably execute the new instructions. 
synci takes an address argument, and it takes effect on a whole enclosing cache-line sized piece of memory. User-
level programs can discover the cache line size because it’s available in a “hardware registers” accessed by the rdhwr 
instruction, as described in Section 6.2.1, "User Mode Accessible CP0 Registers" above.

Since synci is modifying the program’s own instruction stream, it’s inherently an “instruction hazard”. Therefore, 
once the last instruction has been written and the last synci has been issues, programmer’s should use a jr.hb or 
equivalent to call the new instructions.

The following code example shows how the synci can be used.

/*
* This routine makes changes to the instruction stream effective to the hardware. It should be called after the instruc-
* tion stream is written. On return, the new instructions are effective.
*
* Inputs:
* a0 = Start address of new instruction stream
* a1 = Size, in bytes, of new instruction stream
*/

beq a1, zero, 20f /* If size==0, */
nop /* branch around */
addu a1, a0, a1 /* Calculate end address + 1 */
rdhwr v0, HW_SYNCI_Step /* Get step size for SYNCI from new */

/* Release 2 instruction */
beq v0, zero, 20f /* If no caches require synchronization, */
nop /* branch around */

10: synci 0(a0) /* Synchronize all caches around address */
addu a0, a0, v0 /* Add step size in delay slot */
sltu v1, a0, a1 /* Compare current with end address */
bne v1, zero, 10b /* Branch if more to do */
nop /* branch around */
sync /* Clear memory hazards */

20: jr hb ra /* Return, clearing instruction hazards */
nop

6.2.4 Integer Multiply and Divide

As is traditional with MIPS CPUs, the integer multiplier is a semi-detached unit with its own pipeline. All MIPS32 
CPUs implement: 

• mult/multu: a 32×32 multiply of two GPRs (signed and unsigned versions) with a 64-bit result delivered in the 
multiply unit’s pseudo-registers hi and lo (readable only using the special instructions mfhi and mflo, which are 
interlocked and stall until the result is available). 

• madd, maddu, msub, msubu: multiply/accumulate instructions collecting their result in hi/lo. 

• mul/mulu: simple 3-operand multiply as a single instruction. 

• div/divu: divide - the quotient goes into lo and the remainder into hi. 

No multiply/divide operation ever produces an exception - even divide-by-zero is silent - so compilers typically insert 
explicit check code where it’s required. 
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The proAptiv Multiprocessing System core multiplier is high performance and pipelined. Multiply/accumulate 
instructions can run at a rate of 1 per clock, but a 32×32 3-operand multiply takes six clocks longer than a simple 
ALU operation. Divides use a bit-per-clock algorithm, which is short-cut for smaller dividends. Multiply/divide 
instructions are generally slow enough that it is difficult to arrange programs so that their results will be ready when 
needed.

6.2.5 Tuning Software for the Pipeline 

This section is addressed to low-level programmers who are tuning software by hand and to those working on effi-
cient compilers or code translators. 

6.2.5.1 Cache Delays

In a typical CPU implementation a cache miss which has to be refilled from DRAM memory will be delayed by a 
some period of time, perhaps long enough to run 50-200 instructions. In addition, a miss or uncached read may easily 
be several times slower. 

Because these delays are so large, there is little that can be done when a cache miss except wait for it to be resolved. 
To mitigate cache misses, the proAptiv Multiprocessing System core supports non-blocking loads. Therefore, if the 
programmer can provide separation in the code stream between a load instruction producer and its consumer, the 
memory delay will not begin until the consuming instruction is executed. 

Compilers and programmers may find it difficult to move fragments of an algorithm around like this, so the proAptiv 
Multiprocessing System architecture also provides prefetch instructions, such as pref an prefx, which fetch desig-
nated data into the D-cache, but do nothing else. Any loop which walks predictably through a large array is a candi-
date for prefetch instructions, which are conveniently placed within one iteration to prefetch data for the next.

The pref PrepareForStore prefetch saves a cache refill read, for cache lines which are intended to be overwritten 
in their entirety. Read more about prefetch in Section 6.2.2, "Prefetching Data Using the pref and prefx Instructions" 
above. 

Tuning Data-Intensive Common Functions 

Bulk operations like bcopy() and bzero() can benefit from CPU-specific tuning. To get excellent performance 
for in-cache data, it’s only necessary to reorganize the software enough to cover the address-to-store and load-to-use 
delays. To get the loop to achieve the best performance when the cache misses, pref instuctions can be used. 

6.2.6 Branch Misprediction Delays 

In a pipelined design with multiple stages like proAptiv Multiprocessing System, branch delays would be lengthy if 
software waited until the branch was executed before fetching any more instructions. In general, the amount of delay 
depends on the type of branch. For example, a conditional branch which closes a tight loop will almost always be pre-
dicted correctly after the first time around.

However, too many branches in too short a period of time can overwhelm the ability of the instruction fetch logic to 
keep ahead with its predictions, even if the predictions are almost always right. Three empty cycles occur between the 
delivery of the branch delay slot instruction and the first instruction(s) from the branch target location. To mitigate the 
effects of ‘branchy’ code, the code can be replaced by conditional moves or tight loops “unrolled” to get at least 6-8 
instructions between branches. This should provide a significant performance benefit.

The branch-likely instructions deprecated by the MIPS32 architecture document are predicted just like any other 
branch. The misprediction of branch-likely instructions costs an extra cycle or two, because the branch and the delay 
slot instruction needs to be re-executed after a mispredict. Branch-likely instructions sometimes improve the perfor-
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mance of small loops on the proAptiv Multiprocessing System core, but they set problems for the designers of com-
plex CPUs, and may one day disappear from the standard. Good compilers for the MIPS32 architecture should 
provide an option to avoid these instructions.

6.2.7 Load Delayed by (Unrelated) Recent Store

Load instructions are handled within the execution unit with “standard” timing, just so long as they hit in the cache. 
When a load misses (or turns out to be uncached) then a dependent operation which has already been issued will have 
to be reissued if the dependent instruction has been dispatched, which can generate additional delay. If the dependent 
instruction has not been dispatched, it remains in the data queue (DDQ) until the load data becomes available.

Conversely, store instructions are graduated before they are completed. This is because store instructions cannot be 
written to the cache (or commit a write to real memory) until they graduate and cease to be speculative. This can pres-
ent a problem in that a programmer may write code which stores a value in memory, then immediately loads the same 
value. The CPU pipeline detects circumstances where instructions are dependent for register values, but cannot do the 
same for addresses. As such, the load can get the right data from an incomplete store as a side-effect of checking 
whether the requested data might be in the FSB (fill/store buffer) attached to the D-cache. In addition, the store data 
can also be in intermediate stages/queues before being written into the FSB. Any data that matches stores in such 
intermediate queues will also be bypassed back to the pipeline as if the load hit in the cache.

6.2.8 Minimum Load-miss Penalty

The proAptiv Multiprocessing System core runs at high frequencies, so any load that misses in the L1 D-cache is 
likely to be substantially delayed, waiting for the memory data to come back from the L2 cache. If the load misses in 
the L2 cache, a much greater delay in incurred. 

If an instruction that consumes the loaded data issues before it is determined that the load has missed, then that 
instruction will have to be re-executed by stopping execution and starting again on the consuming instruction. This is 
likely to occur if the consuming instruction is only a few places behind in the instruction sequence. That means it has 
to be re-fetched from the I-cache, and this involves a delay of approximately 15 cycles.

6.2.9 Data Dependency Delays

The out-of-order pipeline in the proAptiv Multiprocessing System core allows dependent instructions to be executed 
as soon as possible, in hardware. So to some extent the out-of-order pipeline makes it unnecessary to manage data 
delays by moving instructions around in the program sequence.

Compilers might reasonably try to schedule code to create more opportunities for dual-issue and so that instructions 
might be issued at full speed despite dependencies, but should rarely do so if the cost is significant — the hardware is 
already gaining much of this advantage within its out-of-order window, and compiler scheduling will not be worth 
many extra instructions or significant code bloat unless it reaches beyond such a window. Loop unrolling will often 
help, but local scheduling will be unlikely to make a lot of difference.

The MIPS instruction set is efficient for short pipelines because, most of the time, dependent instructions can be run 
nose-to-tail, just one clock apart, without extra delay. Even in the more sophisticated proAptiv Multiprocessing Sys-
tem family CPUs, most dependent instructions can run just two clocks apart. Each register has a “standard” place in 
the pipeline where the producer should deliver its value and another place in the pipeline where the consumer picks it 
up: where those places are 1 cycle apart, the dependent instructions to run in successive cycles. Producer/consumer 
delays happen when either the producer is late delivering a result to the register, or the consumer insists on obtaining 
its operand early. If either of these conditions occurs, the delays can add up.

Most of these delays are hidden by out-of-order execution.
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Different register classes are read/written in different “standard” pipeline slots, so it’s important to be clear what class 
of registers is involved in any of these delays. For non-floating-point user-level code, there are just three: 

• General purpose registers (“GPR”).

• The multiply unit’s hi/lo pair together with the three additional multiply-unit accumulators defined by the MIPS 
DSP ASE (“ACC”). 

The MIPS architecture encourages implementations to provide integer multiply and divide operations in a sepa-
rate pipelined unit capable of doing multiply-accumulate operations at a rate of one per clock. No multiply unit 
operation ever causes an exception, which makes the longer multiply-unit pipeline rather invisible. It shows up in 
late delivery of GPR values by those few multiply-unit instructions which deliver GPR results.

• The fields of the DSPControl register, used for condition codes and exceptional conditions resulting from DSP 
ASE operations. 

So that gives us two tables: Table 6.3 for our consumers, and Table 6.4 for the producers. 

 

Table 6.3 Register → Consumer Delays 

Reg → Consumer Del Applies when... 

GPR → load/store 1 The GPR value is an address operand. Store data is not 
needed early.

ACC → multiply instructions 3 The ACC value came from any multiply instruction 
which saturates the accumulator value. 

ACC → DSP instructions which extract selected bits from an 
accumulator: extp..., extr... etc. 

3 Always

DSP instructions which write a shifted value back to 
the accumulator: mthlip, shilo, shilov. 

Table 6.4 Producer → Register Delays 

Producer → Reg Del Applies when... 

All bitwise logical instructions, including immediate
versions

→ GPR

0

These instructions only are “not lazy”: their result can be 
used in the next cycle by any ALU instruction. Note that 
addu rd,rs,$0 is used for mov.Results from add, 
addi, addi and addiu are available to consumers in ALU 
pipe with 0 delay. Consumers in AGEN pipe will see a 
delay of 1.

lui

addu rd,rs,$0 (add zero, aka mov)

sll with shift amount 8 or less

srl with shift amount 25 or more

set-on-condition (slt, slti, sltiu, sltu)

seb, seh

add, addu, addi, addiu

Any other ALU instruction

→ GPR

1

2-beat ALU for all but the simplest operations
Non-multiply DSP ASE instructions which don’t sat-

urate.
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How to Use the Tables

Assume an instruction sequence like this one: 

addiu $a0, $a0, 8 
lw $t0, 0($a0) # [1] 
lw $t1, 4($a0)    
addu $t2, $t0, $t1# [2]    
mul $v0, $t2, $t3 
sw $v0, 0($a1) # [3] 

A review of the tables above should help determine whether any instructions will be held up. Look at the dependen-
cies where an instruction is dependent on its predecessor. In this example, the following delays will occur: 

[1] The lw will be held up by two clocks. One clock because addiu takes 2 clocks to produce its result, and another 
because its GPR address operand $a0 was computed by the immediately preceding instruction (see the “load/store 
address” box of Table 6.3.) The second lw will be OK. 

[2] The addu will be two clocks late, because the load data from the preceding lw arrives late in the GPR $t1 (see the 
“load” box of Table 6.4.) 

[3] The sw will be 6 clocks late starting while it waits for a result from the multiply pipe (the “multiply” box of Table 
6.4.) 

These can be additive. In the pointer-chasing sequence: 

DSP “ALU” instructions (which neither read nor
write an accumulator, nor do a multiplication), but do

saturate.

→ GPR 2 Always

Conditional move movn, movz → GPR 3 Run in the AGEN pipeline. They create trouble because 
they implicitly have three register operands (the “no-
move” case is handled by reading the original value of the 
destination register and writing it back) — but in proAptiv 
Multiprocessing System CPUs an instruction may only use 
two read ports in the register file. So a conditional move 
instruction is issued in two consecutive clock phases: one 
to do the move, one to fetch the original value and write it 
back again. That makes sure that the right value is avail-
able in the CB entry and the pipeline by-passes. 

Any load → GPR 2 That’s a cached load which hits, of course.

sc (store conditional) → GPR 8 The GPR is receiving the success/failure code. The 
instruction which consumes this code is not issued until 
the store has graduated and been acted on. The delay could 
be longer if there is work queued up in the load/store pipe, 
but in the normal ll/sc busy loop the dependency on the 
ll load will have left the pipe idle.

Integer multiply instructions producing a GPR result
(mul, mulu etc).

→ GPR 

6
Always (because the multiply unit pipeline is longer than 
the integer unit’s). Instructions reading accumulators and writing GPR

(e.g. mflo).

div /divu → ACC 10-20 Dividend 255 or less

10-50 Dividend 256 or more

Table 6.4 Producer → Register Delays 
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lw         $t1, 0($t0)    
lw         $t2, 0($t1)    

The second load will be held up three clocks: two because of the late delivery of load data in $t1 (“load” box of 
Table 6.4), plus another because that data is required to form the address (“load/store address” box of Table 6.3.) 

Delays Caused by Dependencies on DSPControl Fields 

Some DSP ASE instructions are dependent because they produce and consume values kept in fields of the 
DSPControl register. However, the most performance-critical of these dependencies are “by-passed” to make sure no 
delay will occur - those are the dependencies between: 

But other dependencies passed in DSPControl may cause delays; in particular the DSPControl[ouflag] bits set by vari-
ous kinds of overflow are not ready for a succeeding rddsp instruction. The access is interlocked, and will lead to a 
delay of up to three clocks. 

6.2.9.1 More Complicated Dependencies 

There can be delays which are dependent on the dynamic allocation of resources inside the CPU. These delays cannot 
be easily determined by doing a static code analysis. MIPS recommends using a cycle-accurate simulator or other 
trace equipment to help determine these types of delays. 

6.2.10 Advice on Tuning Instruction Sequences (particularly DSP)

DSP algorithm functions are often the subject of intense tuning. There are four basic classes of DSP instructions:

• A group of specially-simple ALU instructions run in one cycle. This includes bitwise logical instructions, mov 
(an alias for addu with $0), shifts up to 8 positions down or up, test-and-set instructions, and sign-extend instruc-
tions. 

• Simple DSP ASE operations (no multiply, no saturation) have 2-cycle latency, the same as most regular MIPS32 
arithmetic.

• Non-multiply DSP instructions which feature saturation or rounding have 3-cycle latency.

• Special DSP multiply operations (or any other access to the multiply unit accumulators): these have timings like 
standard multiply and multiply-accumulate instructions, so they’re in with the multiply operations under the next 
heading.

• Instruction dependencies relating to different fields in the DSPControl register are tracked separately, and effi-
ciently, as if they were separate registers. But any rddsp or wrdsp instruction which reads/writes multiple fields 
at once is dependent on multiple fields, and that can’t be tracked through the CB system. Such a rddsp is not 
issued until all predecessors have graduated, and such a wrdsp must graduate before its successors can issue. 
You can often avoid this by using the “masked” versions of these instructions to read or write only a particular 
field.

addsc → DSPControl[c] → addwc 
cmp.x → DSPControl[ccond] → pick.x 
wrdsp → DSPControl[pos,scount] → insv 
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6.2.11 Multiply/Divide Unit and Timings

As is traditional with MIPS CPUs, the integer multiplier is a semi-detached unit with its own pipeline. This pipeline 
implements: 

• mult/multu: multiply two 32-bit numbers from GPRs (signed and unsigned versions) with a 64-bit result deliv-
ered in the multiply unit’s accumulator. The accumulator was traditionally seen as pseudo-registers hi and lo, 
readable only using the special instructions mfhi and mflo.Operations into the accumulator do not hold up the 
main CPU and run independently, but mfhi/mflo are interlocked and delay execution as required until the result 
is available. 

• madd, maddu, msub, msubu: multiply/accumulate instructions collecting their result in the accumulator. 

• mul/mulu: simple 3-operand multiply as a single instruction. 

• div/divu: divide - the quotient goes into lo and the remainder into hi. 

Many of the most powerful instructions in the MIPS DSP ASE are variants of multiply or multiply-accumulate oper-
ations, and are described in Chapter 13, “MIPS DSP-R2 Application-Specific Extension” on page 549. The DSP ASE 
also provides three additional “accumulators” which behave like the hi/lo pair: the now four accumulators are called 
ac0-3). When we talk about the “multiply/divide” group of instructions we include any instruction which reads or 
writes any accumulator.

No multiply/divide operation ever produces an exception - even divide-by-zero is silent — compilers typically insert 
explicit check code where it’s required. 

Timing varies. Multiply-accumulate instructions (there are many different flavors of MAC in the DSP ASE) have 
been pipelined and tuned to achieve a 1-instruction-per-clock repeat rate, even for sequences of instructions targeting 
the same accumulator. But because that requires a relatively long pipeline, multiply/divide unit instructions which 
produce a result in a GP register are relatively “slow”: for example, an instruction consuming the register value from 
a mflo will not be issued until at least 7 cycles after the mflo.

What that means is that in an instruction sequence like:

mult $1, $2
mflo $3
addu $2, $3, 1

The mflo will be issued 4 cycles after the mult, and the addu will go at least 2 cycles after the mflo. The execution 
unit may (or may not) be able to find other instructions to keep it busy, but each trip through that code sequence will 
take a minimum of 9 cycles.
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6.3 Kernel Mode Programming 

This section covers the following topics:

• Section 6.3.1, "Hazard Barrier Instructions" 

• Section 6.3.2, "MIPS32® Architecture Release 3 - Enhanced Interrupt System(s)" 

• Section 6.3.3 “External Interrupt Controller (EIC) Mode”

6.3.1 Hazard Barrier Instructions

When privileged “CP0” instructions change the machine state, unexpected behavior can occur if an instruction is 
deferred out of its normal instruction sequence. But that can happen because the relevant control register only gets 
written some way down the pipeline, or because the changes it makes are sensed by other instructions early in their 
pipeline sequence: this is called a CP0 hazard.

The proAptiv Multiprocessing System core provides the option of removing many CP0 hazards by setting the 
Config7[IHB] bit. It’s possible to get hazards in user mode code too, and many of the instructions described here are 
not solely for kernel-privilege code. But they’re most often met around CP0 read/writes.

Traditionally, MIPS CPUs left the kernel/low-level software engineer with the job of designing sequences which are 
guaranteed to run correctly, usually by padding the dangerous operation with enough nop or ssnop instructions. 

To help manage pipeline hazards, the proAptiv core implements explicit hazard barrier instructions. If a hazard bar-
rier instruction is executed between the instruction which makes the change (the “producer”) and the instruction 
which is sensitive to it (the “consumer”), you are guaranteed that the change will be seen as complete. Hazards can 
appear when the producer affects even the instruction fetch of the consumer - that’s an “instruction hazard” - or only 
affecting the operation of the consuming instruction (an “execution hazard”). Hazard barriers come in two strengths: 
ehb deals only with execution hazards, while eret, jr.hb and jalr.hb are barriers to both kinds of hazard. 

In most implementations the strong hazard barrier instructions are quite costly, often discarding most or all of the 
pipeline contents: they should not be used indiscriminately. For efficiency you should use the weaker ehb where it is 
enough. Since some implementations work by holding up execution of all instructions after the barrier, it’s preferable 
to place the barrier just before the consumer, not just after the producer.

The following tables list the execution hazards and the instruction hazards for the proAptiv core.

6.3.1.1 Execution Hazards

Execution hazards are those created by the execution of one instruction, and seen by the execution of another instruc-
tion. Table 6.5 lists possible execution hazards and whether they can be resolved via setting of the IHB bit in the CP0 
Config7 register. 

Table 6.5 Execution Hazards 

Producer → Consumer Hazard On
Does Config7.IHB=1 
resolve this Hazard?

TLBWR, TLBWI , 
TLBINV, TLBINVF

→ Load/store using new TLB entry TLB entry No

MTC0 → Load/store affected by new state WatchHi
WatchLo

No
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6.3.1.2 Instruction Hazards

Instruction hazards are those created by the execution of one instruction, and seen by the instruction fetch of another 
instruction. Table 6.6 lists the instruction hazards. Because the fetch unit is decoupled from the execution unit, these 

MTC0 → MFC0 Any CP0 register No

MTC0 → EI/DI Status Yes

MTC0 → RDHWR $3 Count No

MTC0 → Coprocessor instruction execution depends on the 
new value of StatusCU

StatusCU No

MTC0 → ERET EPC
DEPC

ErrorEPC

Yes

MTC0 → ERET Status Yes

EI, DI → Interrupted instruction StatusIE No

MTC0 → Interrupted instruction Status No

MTC0 → User-defined instruction  StatusERL
StatusEXL

No

MTC0 → Interrupted Instruction StatusIM
(CauseIP)

No

TLBR → MFC0 EntryHi,
EntryLo0,
EntryLo1, 
PageMask

Yes

TLBP → MFC0 Index Yes

MTC0
ContextConfig

→ MFC0 Context
ContextConfig

Yes

MTC0 → RDPGPR
WRPGPR

SRSCtlPSS No

MTC0 → Instruction not seeing a Timer Interrupt Compare update 
that clears Timer 

Interrupt

No

MTC0 → Instruction affected by change Any other CP0 reg-
ister

No

CACHE → MFC0 TagHi, TagLo, 
DataHi, DataLo

Yes

Table 6.5 Execution Hazards (continued)

Producer → Consumer Hazard On
Does Config7.IHB=1 
resolve this Hazard?
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hazards are rather large. The use of a hazard barrier instructions is required for reliable clearing of instruction haz-
ards. 

6.3.2 MIPS32® Architecture Release 3 - Enhanced Interrupt System(s) 

The features for handling interrupts include: 

• Vectored Interrupt (VI) mode offers multiple entry points (one for each of the interrupt sources), instead of the 
single general exception entry point. 

External Interrupt Controller (EIC) mode goes further, and reinterprets the six CPU interrupt input signals as a 
64-value field - potentially 63 distinguished interrupts each with their own entry point (the zero code, of course, 
is reserved to mean “no interrupt active”). 

Both these modes need to be explicitly enabled by setting bits in the Config3 register; if you don’t do that, the 
CPU behaves just as the original (release 1) MIPS32 specification required. 

• Shadow registers - alternate sets of registers, often reserved for interrupt handlers, are described in Section 6.5, 
"Saving Power". Interrupt handlers using shadow registers avoid the overhead of saving and restoring user GPR 
values. 

• The Cause[TI], Cause[FDCI], and Cause[PCI] bits provide a direct indication of pending interrupts from the on-
CPU timer, fast debug channel, and performance counter subsystems (these interrupts are potentially shared with 
other interrupt inputs, and it previously required system-specific programming to discover the source of the inter-
rupt and handle it appropriately). 

The new interrupt options are enabled by the IntCtl register, whose fields are shown in Figure 6.3.

Table 6.6 Instruction Hazards 

Producer → Consumer Hazard On

TLBWR, TLBWI, 
TLBINV, TLBINVF

→ Instruction fetch using new TLB entry TLB entry

MTC0 → Instruction fetch seeing the new value including:
• change to ERL followed by an instruction fetch from the useg seg-

ment and
• change to ERL or EXL followed by a Watch exception

Status

MTC0 → Instruction fetch seeing the new value EntryHiASID

MTC0 → Instruction fetch seeing the new value WatchHi
WatchLo

MTC0 (write to Config7) → JR, JALR seeing the new value of IHB of Config7 IHB bit of Config7

Instruction stream write 
via CACHE

→ Instruction fetch seeing the new instruction stream Cache entries

Instruction stream write 
via store

→ Instruction fetch seeing the new instruction stream Cache entries
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Figure 6.3 Fields in the IntCtl Register

IntCtl[IPTI,IPPCI,IPFDCI]: IPTI, IPPCI, and IPFDCI are read-only 3-bit fields. These fields indicate how the internal 
timer, performance counter, and fast debug channel interrupts are wired up.  They are relevant in non-vectored and 
simple-vectored ("VI") interrupt modes, but have no meaning when using an EIC interrupt controller.

Read this field to get the number of the Cause[IPnn] where the corresponding interrupt is seen. Because 
Cause[IP1-0] are software interrupt bits, unconnected to any input, legal values for IntCtl[IPTI], IntCtl[IPPCI] , and 
IntCtl[IPFDCI] are between 2 and 7.

The timer, performance counter, and fast debug channel interrupt signals are taken out to the CPU interface and the 
SoC designer connects them back to one of the CPU’s interrupt inputs. The SoC designer is supposed to hard-wire 
some CPU inputs which show up as the IntCtl[IPTI,IPPCI,IPFDCI] fields to match. 

IntCtl[VS]: is writable to provide software control of the interrupt vector spacing. The spacing is calculated as 
32 × 2(VS-1) bytes.

VS values of 1, 2, 4, 8 and 16 work provide spacings of 32, 64, 128, 256, and 512 bytes respectively. A value of zero 
gives a zero spacing, so all interrupts arrive at the same address. This would be the legacy behavior. 

6.3.2.1 Traditional MIPS® Interrupt Signalling and Priority

In previous generation MIPS processors, the CPU takes an interrupt exception on any cycle where one of the eight 
possible interrupt sources visible in Cause[IP] is active, enabled by the corresponding enable bit in Status[IM], and 
not otherwise inhibited. When that happens control is passed to the general exception handler and is recognized by 
the “interrupt” value in Cause[ExcCode]. All interrupts are equal in the hardware, and the hardware does nothing 
special if two or more interrupts are active and enabled simultaneously. All priority decisions are made by software.

Six of the interrupt sources are hardware signals brought into the CPU, while the other two are “software interrupts” 
taking whatever value is written to them in the Cause register.

The original MIPS32 specification adds an option to this. If you set the Cause[IV] bit, the same priority-blind inter-
rupt handling happens but control is passed to an interrupt exception entry point which is separate from the general 
exception handler.

6.3.2.2 VI Mode - Multiple Entry Points, Interrupt Signalling and Priority 

The traditional interrupt system commonly has a single piece of code which does the housekeeping associated with 
interrupts prior to calling an individual device-interrupt handler. However, a single entry point does not always fit 
well with embedded systems using very low-level interrupt handlers. These types of applications perform best when 
multiple entry points are provided. To accommodate this, the proAptiv architecture implements the “VI interrupt 
mode” where interrupts are despatched to one of eight possible entry points. To make this happen: 

1. Config3[VInt]  must be 1 to indicate that the CPU has the vectored-interrupts feature. This is a read-only bit that is 
always set in the proAptiv core to indicate support for vectored interrupts.

2. Set the Cause[IV] bit to request that interrupts use the special interrupt entry point.

31 29 28 26 25 10 9 5 4 0

IPTI IPPCI IPFDCI 0 VS 0
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3. Set the IntCtl[VS] to a non-zero value, setting the spacing between successive interrupt entry points. The proAptiv 
core allows spacing of 32, 64, 128, 256, and 512 bytes between entry points.

Interrupt exceptions vector to one of eight distinct entry points. The bit-number in Cause[IP] corresponding to the 
highest-numbered active interrupt becomes the “vector number” in the range 0-7. The vector number is multiplied by 
the “spacing” implied by the OS-written field IntCtl[VS] (see above) to generate an offset. This offset is then added to 
the special interrupt entry point (already an offset of 0x200 from the value defined in EBase) to produce the entry 
point to be used.

If multiple interrupts are active and enabled, the entry point will be the one associated with the higher-numbered 
interrupt: in VI mode interrupts are no longer all equal, and the hardware now has some role in interrupt “priority”. 

6.3.3 External Interrupt Controller (EIC) Mode 

Embedded systems have lots of interrupts, typically far exceeding the six input signals traditionally available. Most 
systems have an external interrupt controller to allow these interrupts to be masked and selected. In the proAptiv core, 
EIC mode allows the six interrupt input signals to be encoded to allows up to 63 distinct interrupt entry points. In a 4-
core system, this would allow for up to 256 distinct interrupts.

To do this the same six hardware signals used in traditional and VI modes are redefined as a bus with 64 possible val-
ues: 0 means “no interrupt” and 1 - 63 represent distinct interrupts.   That’s “EIC interrupt mode”, and you’re in EIC 
mode if you would be in VI mode (see previous section) and additionally the Config3[VEIC] bit is set. EIC mode is a 
little deceptive: the programming interface hardly seems to change, but the meaning of fields change quite a bit. 

Firstly, once the interrupt bits are grouped the interrupt mask bits in Status[IM] can’t just be bitwise enables any more. 
Instead this field (strictly, the 6 high order bits of this field, excluding the mask bits for the software interrupts) is 
recycled to become a 6-bit Status[IPL] (“interrupt priority level”) field. Most of the time (when running application 
code, or even normal kernel code)  Status[IPL] will be zero; the CPU takes an interrupt exception when the interrupt 
controller presents a number higher than the current value of Status[IPL] on its “bus” and interrupts are not otherwise 
inhibited. 

As before, the interrupt handler will see the interrupt request number in Cause[IP] bits; the six MS of those bits are 
now relabelled as Cause[RIPL] (“requested IPL”). In EIC mode the software interrupt bits are not used in interrupt 
selection or prioritization: see below. But there’s an important difference; Cause[RIPL] holds a snapshot of the value 
presented to the CPU when it decided to take the interrupt, whereas the old Cause[IP] bits simply reflected the real-
time state of the input signals2. 

When an exception is triggered the new IPL - as captured in Cause[RIPL] - is used directly as the interrupt number; 
it’s multiplied by the interrupt spacing implied by IntCtl[RS] and added to the special interrupt entry point, as 
described in the previous section. Cause[RIPL] retains its value until the CPU next takes any exception. 

Software interrupts: the two bits in Cause[IP1-0] are still writable, but now become real signals which are fed out of 
the CPU CPU, and in most cases will become inputs - presumably low-priority ones - to the EIC-compliant interrupt 
controller. 

In EIC mode the usual association of the internal timer, performance-counter overflow, and fast debug channel inter-
rupts with individual bits of Cause[IP] is lost. These interrupts are turned into output signals from the CPU, and will 
themselves become inputs to the interrupt controller. Ask your system integrator how they are wired.

2. Since the incoming IPL can change at any time - depending on the priority views of the interrupt controller - this is essential 
if the handler is going to know which interrupt it’s servicing. 
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6.4 Exception Entry Points

Early versions of the MIPS architecture had a rather simple exception system, with a small number of architecture-
fixed entry points. 

But there were already complications. When a CPU starts up main memory is typically random and the MIPS caches 
are unusable until initialized; so MIPS CPUs start up in uncached ROM memory space and the exception entry points 
are all there for a while (in fact, for so long as Status[BEV] is set); these “ROM entry points” are clustered near the 
top of kseg1, corresponding to 0x1FC0.0000 physical3, which must decode as ROM. 

ROM is slow and rigid; handlers for some exceptions are performance-critical, and OS’ want to handle exceptions 
without relying on ROM code. So once the OS boots up it’s essential to be able to redirect OS-handled exceptions 
into cached locations mapped to main memory (what exceptions are not OS-handled? well, there are no alternate 
entry points for system reset, NMI, and EJTAG debug). 

So when Status[BEV] is flipped to zero, OS-relevant exception entry points are moved to the bottom of kseg0, start-
ing from 0 in the physical map. The cache error exception is an exception... it would be silly to respond to a cache 
error by transferring control to a cached location, so the cache error entry point is physically close to all the others, 
but always mapped through the uncached “kseg1” region. 

In MIPS CPUs prior to the MIPS32 architecture (with a few infrequent special cases) only common TLB miss excep-
tions got their own entry point; interrupts and all other OS-handled exceptions were all funneled through a single 
“general” exception entry point. 

The CP0 EBase Register

The EBase register provides the ability for software to identify the specific processor within a multi-processor sys-
tem, and allows the exception vectors for each processor to be different. Bits 31:12 of the EBase register are concate-
nated with zeros to form the base of the exception vectors when StatusBEV is 0. The exception vector base address 
comes from the fixed defaults when StatusBEV is 1, or for any EJTAG Debug exception. The reset state of bits 31:12 
of the EBase register initialize the exception base register to 0x8000.0000, providing backward compatibility with 
Release 1 implementations.

The size of the ExcBase field depends on the state of the WG bit. At reset, the WG bit is cleared by default. In this 
case, the ExcBase field is comprised of bits 29:12. Bits 31:30 of the EBase Register are not writeable and are forced 
to a value of 2'b10 by hardware so that the exception handler will be executed from the kseg0/kseg1 segments. 

When the WG bit is set, bits 31:30 of the ExcBase field become writeable and are used to relocate the ExcBase field 
to other segments after they have been setup using the SegCtl0 through SegCtl2 registers. Note that if the WG bit is 
set by software (allowing bits 31:30 to become part of the ExcBase field) and then cleared, bits 31:30 can no longer 
be written by software and the state of these bits remains unchanged for any writes after WG was cleared. Therefore, 
it is the responsibility of software to write a value of 2'b10 to bits 31:30 of the EBase register prior to clearing the WG 
bit if it wants to ensure that future exceptions will be executed from the kseg0 or kseg1 segments.

Refer to Section 2.3.1.10, "Exception Base Address — EBase (CP0 Register 15, Select 1)" for more information.

3. Even this address can be changed by a brave and determined SoC integrator, see the note on RBASE in Section 
6.4.1 “Summary of Exception Entry Points”.
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6.4.1 Summary of Exception Entry Points

The incremental growth of exception entry points has left no one place where all the entry points are summarized; so 
here’s Table 6.7. But first:

BASE is 0x8000.0000, as it will be where the software, ignoring the EBase register, leaves it at its power-on 
value — that’s also compatible with older MIPS CPUs. Otherwise BASE is the 4Kbyte-aligned address found in 
EBase after you ignore the low 12 bits... 

RBASE is the ROM/reset entry point base, usually 0xBFC0.0000. However, proAptiv Multiprocessing System 
family CPUs can be configured to use a different base address by fixing some input signals to the CPU. Specifi-
cally, if the CPU is wired with SI_UseExceptionBase asserted, then RBASE bits 29-12 will be set by the val-
ues of the inputs SI_ExceptionBase[29:12] (the two high bits will be “10” to select the kseg0/kseg1 regions, 
and the low 12 bits are always zero). Relocating RBASE is strictly not compliant with the MIPS32 specification 
and may break all sorts of useful pieces of software, so it’s not to be done lightly.

DebugVectorAddr is an alternative entry point for debug exceptions. It is specified via a drseg memory mapped 
register of the same name and enabled through the Debug Control Register. The probe handler still takes prece-
dence, but this is higher priority than the regular ROM entry points.

6.5 Saving Power

There are just a couple of facilities: 

• The wait instruction causes the CPU to enter a low-power sleep mode until woken by an interrupt. Most of the 
CPU logic is stopped, but the Count register, in particular, continues to run. 

• The Status[RP] bit: this doesn’t do anything inside the CPU, but its state is made available at the CPU interface 
as SI_RP. Logic outside the CPU is encouraged to use this to control any logic which trades off power for speed 
- most often, that will be slowing the master clock input to the CPU. 

Table 6.7 All Exception entry points 
Memory region Entry point Exceptions handled here 

EJTAG probe-mapped 0xFF20.0200 EJTAG debug, when mapped to “probe” memory. 
Alternate Debug Vector DebugVectorAddr EJTAG debug, not probe, relocated, DCR[RDVec]==1
ROM-only entry points RBASE+0x0480 EJTAG debug, when using normal ROM mem-

ory.DCR[RDVec]==1 
RBASE+0x0000 Post-reset and NMI entry point. 

ROM entry points (when
Status[BEV]==1)

RBASE+0x0200 Simple TLB Refill (Status[EXL]==0). 
RBASE+0x0300 Cache Error. Note that regardless of any relocation of RBASE (see 

above) the cache error entry point is always forced into kseg1.
RBASE+0x0400 Interrupt special (Cause[IV]==1). 
RBASE+0x0380 All others 

“RAM” entry points
(Status[BEV]==0)

BASE+0x100 Cache error - in RAM. but always through uncached kseg1 window. 
BASE+0x000 Simple TLB Refill (Status[EXL]==0). 
BASE+0x200 Interrupt special (Cause[IV]==1). 

BASE+0x200+... multiple interrupt entry points - seven more in “VI” mode, 63 in 
“EIC” mode; see Section 6.3.2, "MIPS32® Architecture Release 3 - 
Enhanced Interrupt System(s)". 

BASE+0x180 All others 
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• Via the Cluster Power Controller, it is possible to gate off the clocks or even the power going to an idle CPU. 
This functionality is described in the MIPS32® proAptiv Multiprocessing System™ Multiprocessing System 
Hardware User’s Manual.
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Power Management and the Cluster Power Controller

This chapter describes the Cluster Power Controller (CPC) included in the proAptiv Multiprocessing System. The 
CPC organizes bootstrap, reset, tree root clock gating, and power gating of CPUs. The CPC also manages power 
cycling, reset, and clock gating of the Coherence Manager, dependent on the individual core status and shutdown pol-
icy. 

The chapter contains the following sections:

• Section 7.1 “Introduction to the Cluster Power Controller”

• Section 7.3 “Cluster Power Controller Address Map”

• Section 7.4 “Cluster Power Controller Commands”

• Section 7.5 “proAptiv Core Power Management Options”

• Section 7.6 “proAptiv Core Clock Gating”

• Section 7.7 “proAptiv Core Power Gating”

7.1 Introduction to the Cluster Power Controller

The Cluster Power Controller (CPC) works in conjunction with the power management features of the individual 
proAptiv cores to provide a comprehensive power management scheme.

The main purpose of the Cluster Power Controller (CPC) is to manage static leakage and dynamic power consump-
tion based on system-level power states assigned to the individual components of the proAptiv Multiprocessing Sys-
tem. As such, the CPC acts as a programmable platform peripheral, accessible through cluster CPU software and 
SOC-level hardware protocols.

The CPC is an integral part of the coherent cluster and is designed to boostrap, reset, tree root clock-gate and power- 
gate cluster CPUs and the Coherence Manager. Implementors may or may not chose to support some or all of the 
physical features the CPC is architected to control. The following physical power-management features can be 
selected independently:

• Power gating of selected CPUs and/or the CM. Supported by industry-standard physical design flows, 
supply voltage of individual power domains can be switched on-chip. Currently, the Common Power Format 
(CPF) and Unified Power Format (UPF) are provided for a seamless front to back-end design flow. Besides 
CPF/UPF compliant EDA tools, standard cell libraries are required to provide power-gating header or footer 
cells, as well as isolate-high and isolate-low cells to separate unpowered domains from their active sur-
roundings. The CPC provides a front-end RTL simulation environment and diagnostics to verify power-gat-
ing behavior.

• Tree root clock gating. Independent of CPU internal power-management features such as register-bank 
level clock gating and the sleep and doze modes, the CPC provides controls to gate clocks directly at or after 
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7.1.2.1 Coherent to Non-Coherent Mode Transition

To leave the coherent domain and operate independently or prepare for shutdown, the following sequence should be 
followed:

1. Switch to non-coherent CCA.

2. Flush dirty data from data cache using IndexWritebackInvalidate CACHE instruction on all lines in the cache.

3. If the instruction cache contains lines that are expected to be maintained by software as coherent (via globalized 
CACHE instructions), and the CPU is not going to go through a reset sequence, the instruction cache should be 
flushed using IndexInvalidate CACHE instructions.

4. Write GCR_CL_COHERENCE (Core Local GCR address 0x0008). Write 0 to all bits except bit for "self", 
which should stay set to 1. This is required so that the core can issue a coherent SYNC  (step 6) to make sure all 
previous interventions are complete.

5. Read  GCR_CL_COHERENCE (ensures step 4 has completed).

6. Issue Coherent SYNC (intervention-only SYNC is fine).

7. Write 0 to GCR_CL_COHERENCE to completely remove core from coherence domain.

8. Read GCR_CL_COHERENCE to ensure step 7 is complete.

7.1.2.2 Non-Coherent to Coherent Mode Transition

An independently operating core becomes a member of a coherent cluster.

• Caches must be initialized first (since last reset)

• There should be no data in the caches that will later be accessed coherently. Non-coherent data is treated as 
exclusive/modified which can lead to violations of the coherence protocol if other caches have copies of the data.

• The GCR local coherence control register is programmed to add the core to the coherent domain.

• Switch to coherent Cache Coherence Attribute (CCA).

• Regular coherent programs can now start on this core.

7.1.2.3 Non-Coherent to Power Down Mode Transition

A core which is not member of a coherent domain is powered down. NOTE: When an EJTAG probe is detected, the 
CPC will prevent power down to preserve the connectivity of the TAP scan chain. A power-down command will 
instead cause the core to enter clock off mode.

• The GIC might be programmed to re-route interrupts away from this core.

• The CPC must be programmed to enter power-down mode. 

• Core outputs are held inactive towards the CM. Completion of pending bus traffic is awaited and start of new 
traffic prevented using the SI_LPReq protocol. 



364 MIPS32® proAptiv™ Multiprocessing System Software User’s Manual, Revision 01.22

• The CPC initiates the clock and power shutdown micro-sequence.

7.1.2.4 Non-Coherent to Clock Off Mode Transition

A core is disconnected from bus and stops operation. Dynamic power consumption is removed.

• Programming a CPC ClkOff command will disable the clock tree root for this core. 

• Core outputs are held inactive towards the CM. Completion of pending bus traffic is awaited and start of new 
traffic prevented using the SI_LPReq protocol.

• The GIC might be programmed to re-route interrupts for this core to others.

7.1.2.5 Clock Off to Power Down Mode Transition

Power supply is removed from a disconnected core. Dynamic and leakage power is removed.

• The CPC must be programmed to enter power-off mode. 

• The CPC initiates the clock and power shutdown micro-sequence.

7.1.2.6 Clock Off to Non-Coherent Mode Transition

A disconnected core is reconnected to the bus and starts operation.

• The CPC command register is programmed to bring the core back on-line. A CPC_PwrUp command will let the 
core resume operation immediately, or, if a Reset command given, go through a reset sequence before becoming 
operational. 

• If the core bus was isolated due to earlier power modes, this isolation is removed.

• The clock is applied and the core starts executing instructions.

7.1.2.7 PowerDown to Non-Coherent Mode Transition

A core is powered up and becomes operational.

• The GCR local coherence control register must be set inactive for this core. Powering up into a coherent state 
with uninitialized caches may corrupt coherent data.

• Software on another core can send a PwrUp or Reset command for this core or an SOC hardware signal can 
request for the CPC to schedule a power-up sequence targeting non-coherent mode. 

• The CPC will schedule a power-up sequence and the core becomes operational outside the coherent domain. 
After the core becomes operational, execution continues at the boot vector provided while power-up mode reset.
NOTE: reset is not automatically applied unless the core really was in the power-down state prior to a PwrUp 
command or hardware PwrUp signal. 

• The GIC might be reprogrammed to perform interrupt routing to this core.
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7.2 CPC Register Programming

This section describes some of the programming functions that can be performed via the CPC registers.

7.2.1 Requestor Access to CPC Registers

The CPC allows up to eight requestor’s in a system. A requestor can be either a core or an IOCU. The proAptiv core 
allows up to 8 requestors in a multiprocessing system; six cores and two IOCU’s.

The requestor’s may not have unrestricted access to the CPC registers. During boot time, software determines which 
requestor’s are provided access to the CPC registers by programming the 8-bit CPC_ACCESS_EN field of the Global 
CPC Access Privilege register located at offset 0x000. Each bit in this field corresponds to a specific requestor.

The MIPS default for this field is 0xFF, meaning that all requestor’s in the system have access to the CPC register set. 
To disable access to the registers for a particular requestor, software need only clear the corresponding bit of this field 
to zero and all write requests to the CPC registers by that requestor will be ignored.

7.2.2 Global Sequence Delay Count

The Sequence Delay register (CPC_SEQDEL_REG) located at offset 0x0008 in the CPC Global Control Block, con-
tains a 10-bit field that describes the number of clock cycles each domain micro-sequencer will take to advance. It 
describes a set of worst-case timing of the physical implementation and is used to ensure electrical and bus protocol 
integrity. Typically, the CPC_SEQDEL_REG contents would be defined at IP configuration time. However, runtime 
write capability allows fine tuning to optimize sequencer timing. Domain sequencing begins once the RAILDELAY 
field has counted down to zero. Refer to Section 7.2.3, "Rail Delay" for more information.

The 10-bit MICROSTEP field is encoded as follows: 

Note that the physical implementation might not allow power sequence micro steps to advance with full cluster 
speed. At cluster cold start, the counter divides cluster frequency by a hardcoded IP configuration value to derive a 
micro step width.

**Need to elaborate on the last paragraph. Is this still relevant** How does this fit into the drawing below?**

Table 7.1 Encoding of MICROSTEP Field

Encoding Description

0x000 1-cycle delay

0x001 2-cycle delay

0x002 3-cycle delay

0x003 4-cycle delay

0x004 5-cycle delay

..... .....

0x3FD 1022-cycle delay

0x3FE 1023-cycle delay

0x3FF 1024-cycle delay
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7.2.3 Rail Delay

The Rail Delay register (CPC_RAIL_REG) located at offset 0x010 in the CPC Global Register Block contains a 10-bit 
counter field (RAILDELAY) used to schedule delayed start of power domain sequencing after the RailEnable signal 
has been activated by the CPC. This allows the CPC to compensate for slew rates at the gated rail, since hardware 
interlocks such as SI_VddOk are either unavailable or don’t reflect to complete power up time of a domain.

The 10-bit counter value delays the power-up sequence per domain after the SI_RailStable and VddOK signals 
become active. The power-up micro-sequence starts after RAILDELAY has been loaded into the internal counter and 
a count-down to zero has concluded.

After completion of the domain power-up micro-sequence, the DomainReady signal is raised and can be used for 
domain daisy-chaining.

At IP configuration time, the contents of the CPC_RAIL_REG register are preset. However, for fine tuning, the regis-
ter can be written at run time. 

The 10-bit RAILDELAY field is encoded as follows: 

Table 7.2 Encoding of RAILDELAY Field

Encoding Description

0x000 1-cycle delay

0x001 2-cycle delay

0x002 3-cycle delay

0x003 4-cycle delay

0x004 5-cycle delay

..... .....

0x3FD 1022-cycle delay

0x3FE 1023-cycle delay

0x3FF 1024-cycle delay
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7.2.6 Accessing Another Core

To access another core, the number of the core to be accessed is programmed into bits 23:16 of the Core-Other 
Addressing register (CPC_CL_OTHER_REG) located at offset 0x010 of the Core-Local block. This field selects the 
core number of the register set to be accessed in Core-Other address space. Refer to Section 7.3.4.2, "Core-Other 
Addressing Register" for more information.

7.3 Cluster Power Controller Address Map

The CPC uses memory locations within the global, core-local, and core-others address space. The CPC location 
within the CPU address map is determined by the GCR_CPC_BASE register. All address locations in this document 
are relative to this base address. 

In Table 7.3, all registers are accessed using 32-bit aligned uncached load/stores. In addition, the block offsets shown 
are relative to bits 31:15 of the GCR_CPC_Base register located in the CM2. Refer to Chapter 8, CM2 Global Control 
Registers for more information on this register. 

7.3.1 Block Offsets Relative to the Base Address

The block offsets for each of the three blocks listed in Table 7.3 above are relative to a CPC base address and can be 
located anywhere in physical memory. The base address is a 17-bit value that is programmed into the 
GCR_CPE_BASE field of the GCR CPC Base register located at offset address 0x0088 in the Global Control Block 
of the CM2 registers. Note that this Global Control Block is different from the one listed in Table 7.3 above. Refer to 
the GCR_CPC_BASE Register in Chapter 8, CM2 Global Control Registers for more information on this register.

To determine the physical address of each block listed in Table 7.3, the base address written to the GCR_CPC_BASE 
Register this value would be added to the CPC block offset ranges to derive the absolute physical address as shown in 
Table 7.4. Note that an example base address of 0x1BDE_0 is used for these calculations. 

Table 7.3 CPC Address Map (Relative to GCR_CPC_BASE[31:15])

Block Offset Size (bytes) Description

0x0000 - 0x1FFF 8 KB Global Control Block. Contains registers pertaining to the global system 
functionality. This address section is visible to all CPUs.

0x2000 - 0x3FFF 8 KB Core-Local Control Block. Aliased for each proAptiv Multiprocessing 
System core. Contains registers pertaining to the core issuing the request. 
Each core has its own copy of registers within this block.

0x4000 - 0x5FFF 8 KB Core-Other Control Block. Aliased for each proAptiv Multiprocessing 
System core. This block of addresses gives each Core a window into 
another Core’s Local Control Block. Before accessing this space, the 
Core-Other_Addressing Register in the Local Control Block must be 
set to the CORENum of the target Core.

Table 7.4  Example Physical Address Calculation of the CPC Register Blocks 

Example Base 
Address GCR Block Offset Absolute Physical Address

Size 
(bytes) Description

0x1BDE_0 + 0x0000 - 0x1FFF = 0x1BDE_ 0000 - 0x1BDE_1FFF 8 KB CPC Global Control Block. 

0x1BDE_0 + 0x2000 - 0x3FFF = 0x1BDE_ 2000 - 0x1BDE_3FFF 8 KB CPC Core-Local Control Block.
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7.3.2 Register Offsets Relative to the Block Offsets

In addition to the block offsets, the register offsets provided in each register description of this chapter are relative to 
the block offsets shown in Table 7.4 above. To determine the physical address of each register, the base address pro-
grammed into the GCR_CPC_BASE register is added to the corresponding CPC block offset plus the actual register 
offset to derive the absolute physical address as shown in Table 7.5. In this table an example base address of 
0x1BDE_0 is used. 

Table 7.6 shows the absolute physical addresses for the CPC Core-Local block. In this table an example base address 
of 0x1BDE_0 is used. 

Table 7.6 shows the absolute physical addresses for the CPC Core-Other block. In this table an example base address 
of 0x1BDE_0 is used. 

0x1BDE_0 + 0x4000 - 0x5FFF = 0x1BDE_ 4000 - 0x1BDE_5FFF 8 KB CPC Core-Other Control Block.

Table 7.5  Absolute Address of Individual CPC Global Control Block Registers

MIPS Default 
Base

Global Register 
Block Offset

Global Register 
Offset

Absolute Physical 
Address Global Control Register

0x1BDE_0 + 0x0000 + 0x0000 = 0x1BDE_0000 CPC Access Privilege. 

0x1BDE_0 + 0x0000 + 0x0008 = 0x1BDE_0008 CPC Global Sequence Delay. 

0x1BDE_0 + 0x0000 + 0x0010 = 0x1BDE_0010 CPC Rail Delay. 

0x1BDE_0 + 0x0000 + 0x0018 = 0x1BDE_0018 CPC Reset Length. 

0x1BDE_0 + 0x0000 + 0x0020 = 0x1BDE_0020 CPC Revision. 

Table 7.6  Absolute Address of Individual CPC Core-Local Block Registers

MIPS Default 
Base

Core-Local Register 
Block Offset

Core-Local 
Register Offset

Absolute Physical 
Address Core-Local Register

0x1BDE_0 + 0x2000 + 0x0000 = 0x1BDE_2000 CPC Core-Local Command. 

0x1BDE_0 + 0x2000 + 0x0008 = 0x1BDE_2008 CPC Core-Local Status and 
Configuration. 

0x1BDE_0 + 0x2000 + 0x0010 = 0x1BDE_2010 CPC Core-Other Addressing. 

Table 7.7  Absolute Address of Individual CPC Core-Other Block Registers

MIPS Default 
Base

Core-Other Register 
Block Offset

Core-Other 
Register Offset

Absolute Physical 
Address Core-Other Register

0x1BDE_0 + 0x4000 + 0x0000 = 0x1BDE_4000 CPC Core-Other Command. 

0x1BDE_0 + 0x4000 + 0x0008 = 0x1BDE_4008 CPC Core-Other Status and 
Configuration. 

0x1BDE_0 + 0x4000 + 0x0010 = 0x1BDE_4010 CPC Core-Other Addressing. 

Table 7.4  Example Physical Address Calculation of the CPC Register Blocks (continued)

Example Base 
Address GCR Block Offset Absolute Physical Address

Size 
(bytes) Description
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7.3.3 Global Control Block Register Map

All registers in the Global Control Block are 32 bits wide and should only be accessed using aligned 32-bit uncached 
load/stores. Reads from unpopulated registers in the CPC address space return 0x0, and writes to those locations are 
silently dropped without generating any exceptions.

Table 7.8 Global Control Block Register Map (Relative to Global Control Block offset)

7.3.3.1 Global CSR Access Privilege Register

The Access privilege register configures the CPU access rights towards CPC programming registers. Its function is 
defined equally to the GCR Access Privilege Register. The CPU, as it is dedicated to power-management tasks of the 
cluster, should be granted full access to peer CPUs.

Register Offset 
in Block Name Type Description

0x000 CPC Global CSR Access Privilege Register 
(CPC_ACCESS_REG)

R/W Controls which cores can modify the CPC 
Registers.

0x008 CPC Global Sequence Delay Counter
(CPC_SEQDEL_REG)

R/W Time between microsteps of a CPC domain 
sequencer in CPC clock cycles.

0x010 CPC Global Rail Delay Counter Register 
(CPC_RAIL_REG)

R/W Rail power-up timer to delay CPS 
sequencer progress until the gated rail has 
stabilized.

0x018 CPC Global Reset Width Counter Register 
(CPC_RESETLEN_REG)

R/W Duration of any domain reset sequence. 

0x020 CPC Global Revision Register 
(CPC_REVISION_REG)

R RTL Revision of CPC

0x028
0x0F8

CPC Global RESERVED registers. - For Future Extensions

Table 7.9 CPC Global CSR Access Privilege Register (CPC_ACCESS_REG Offset 0x000)  

Register Fields

Description
Read/
Write

Reset 
StateName Bits

RESERVED 31:8 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R 0

CM_ACCESS_EN 7:0 Each bit in this field represents a power domain CPU.

If the bit is set, that requester is able to write to the CPC 
registers (this includes all registers within the Global, 
Core-Local and Core-Other blocks. 
If the bit is clear, any write request from that requestor to 
the CPC registers (Global, Core-Local, Core-Other) will 
be dropped. 

R/W 0xff
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7.3.3.2 Global Sequence Delay Counter

The CPC_SEQDEL_REG describes globally the number of clock cycles each domain micro-sequencer will take to 
advance. It describes a set of worst-case timing of the physical implementation and is used to ensure electrical and 
bus protocol integrity. Mainly, buffer tree delays on SI_Isolate and/or SI_RailEnable can be used to set proper micro 
sequencer delay values.

Typically, the CPC_SEQDEL_REG contents would be defined at IP configuration time. However, runtime write capa-
bility allows fine tuning to optimize sequencer timing.

Table 7.10 Global Sequence Delay Counter Register (CPC_SEQDEL_REG, Offset 0x008)

7.3.3.3 Global Rail Delay Counter

The CPC_RAIL_REG represents a 10-bit counter register to schedule delayed start of domain operation after the 
RailEnable signal has been activated by the CPC. This allows to compensate for slew rates at the gated rail, since 
hardware interlocks such as SI_VddOk are either unavailable or don’t reflect to complete power up time of a domain.

At IP configuration time, the contents of CPC_RAIL_REG is preset. However, for fine tuning, the register can be writ-
ten at run time. 

Register Fields

Description
Read/
Write Reset StateName Bits

RESERVED 31:10 Read as 0x0. Writes ignored. Must be written with a value of 
0x0. 

R 0

MICROSTEP 9:0 This field reflects the delay in clock cycles, taken by each power 
domain micro-sequencer to advance between atomic micro 
steps. Cycles/Step = MICROSTEP[9:0] value + 1; 0 => 1cycle, 
1 => 2cycles...
Physical implementation might not allow power sequence micro 
steps to advance with full cluster speed. At cluster cold start, the 
counter divides cluster frequency by a hardcoded IP configura-
tion value to derive a micro step width.

R/W IP Configuration Value
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Table 7.11 Global Rail Delay Counter Register (CPC_RAIL_REG, Offset 0x010)

7.3.3.4 Global Reset Width Counter

Within the power-up micro-sequence, reset is applied. Typically, reset is active until the domain responds with 
PB_Reset_N feedback. However, the CPC_RESETLEN_REG allows reset to be extended beyond the ResetN feed-
back, or in case the reset feedback is unavailable. Counting down will start after the sequencer has received the 
PB_Reset_N feedback. Domains without PB_ResetN feedback could tie this input low or connect it to an inverted 
reset signal. 

Register Fields

Description
Read/
Write Reset StateName Bits

RESERVED 31:10 Read as 0x0. Writes ignored. Must be written with a value of 
0x0. 

R 0

RAILDELAY 9:0 10-bit counter value to delay power-up sequence per domain 
after RailStable and VddOK signals became active. The 
power-up micro-sequence starts after RAILDELAY has been 
loaded into the internal counter and a counted down to zero has 
concluded.
After completion of the domain power-up micro-sequence, the 
DomainReady signal is raised and can be used for domain 
daisy-chaining.

R/W IP Configuration Value
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Table 7.12 Global Reset Width Counter Register (CPC_RESETLEN_REG, Offset 0x018)

7.3.3.5 Revision Register

7.3.4 Local and Core-Other Control Blocks

All registers in the CPC Local Control Block are 32 bits wide and should only be accessed using aligned 32-bit 
uncached load/stores. Reads from unpopulated registers in the CPC address space return 0x0, and writes to those 
locations are silently dropped without generating any exceptions.

A set of these registers exists for each proAptiv Multiprocessing System core in the proAptiv CPS. These registers 
can also be accessed from other cores by first writing the CPC Core Other Addressing Register (in the Core-Local 
Control Block) with the proper CoreNum and then accessing these registers using the Core Other address space.

The register offsets shown are relative to the offsets listed in Table . 

Register Fields

Description
Read/
Write Reset StateName Bits

RESERVED 31:10 Read as 0x0. Writes ignored. Must be written with a value of 
0x0. 

R 0

RESETLEN 9:0 10-bit counter value to extend reset duration beyond 
PB_Reset_N feedback. The domain behavior after reset is 
determined by the domain local setup register.

R/W IP Configuration Value

Table 7.13 Revision Register (CPC_Revision_REG, Offset 0x020)

Register Fields

Description
Read/
Write Reset StateName Bits

RESERVED 31:16 Reads as 0x0. Writes ignored. Must be written with a value of 0x0. R

MAJOR_REV 15:8 This field reflects the major revision of the CPC block. A major 
revision might reflect the changes from one product generation to 
another. 

R Preset

MINOR_REV 7:0 This field reflects the minor revision of the CPC block. A minor 
revision might reflect the changes from one release to another. 

R Preset

Table 7.14 Core-Local Block Register Map 

Register Offset 
in Block Name Type Description

0x000 CPC Local Command Register 
(CPC_CL_CMD_REG)

R/W Places a new CPC domain state command 
into this individual domain sequencer. 
This register is not available within the CM 
sequencer. Writes to the CM CMD register 
are ignored while reads will return zero.
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The register offsets shown are relative to the offsets listed in Table . 

CPC Local register are used to set power-down conditions. After setup of conditions, the micro-sequencer can be 
activated through the command register. The execution of the micro-sequencer can be observed via the status register. 
Reading the command register retrieves the last executed command and status flags to reflect on recent commands 
given.

0x008 CPC Local Status and Configuration register
(CPC_CL_STAT_CONF_REG)

R/W Individual domain power status and domain 
configuration register. Reflects domain 
micro-sequencer execution. Initiates micro-
sequencer after status register program-
ming. Reflects command execution status.

0x010 CPC Core Other Addressing Register
(CPC_CL_OTHER_REG)

R/W
R/O for 

CM

Used to access local registers of another 
core.

0x018
0x0F8

CPC Local RESERVED registers - For Future Extensions

Table 7.15 Core-Other Block Register Map 

Register Offset 
in Block Name Type Description

0x000 CPC Local Command Register 
(CPC_CO_CMD_REG)

R/W Places a new CPC domain state command 
into this individual domain sequencer. 
This register is not available within the CM 
sequencer. Writes to the CM CMD register 
are ignored while reads will return zero.

0x008 CPC Local Status and Configuration register
(CPC_CO_STAT_CONF_REG)

R/W Individual domain power status and domain 
configuration register. Reflects domain 
micro-sequencer execution. Initiates micro-
sequencer after status register program-
ming. Reflects command execution status.

0x010 CPC Core Other Addressing Register
(CPC_CO_OTHER_REG)

R/W
R/O for 

CM

Used to access local registers of another 
core.

0x018
0x0F8

CPC Local RESERVED registers - For Future Extensions

Table 7.14 Core-Local Block Register Map (continued)

Register Offset 
in Block Name Type Description
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7.3.4.1 Command Register 

Table 7.16 Local Command Register (CPC_CL[CO]_CMD_REG, Offset 0x000)

Register Fields

Description
Read/
Write Reset StateName Bits

RESERVED 31:4 Read as 0x0. Writes ignored. Must be written with a value of 
0x0. 

R 0

CMD 3:0 Requests a new power sequence execution for this domain. 
Read value is the last executed command. 

R/W
Not avail-

able in 
CM

domain

0

Code Meaning

4’d1 ClockOff - 
This command causes the domain to cycle into 
clock-off mode.It disables the clock to this power 
domain. Only successful if 
SI_CoherenceEnable and other protocol inter-
locks are observed. If not, the command remains 
inactive until the protocol barriers subside. After 
that, the command is executed.
Dependent of current sequencer state, the com-
mand either causes power-up of a domain, or a 
domain leaves active duty to become inactive. A 
power-up leads to sequencer state U2, which will 
require the execution of a subsequent Reset or 
PwrUp command to make this domain opera-
tional.

4’d2 PwrDown -
this domain using setup values in 
CPC_STAT_CONF_REG. Only successful if 
SI_CoherenceEnable inactive and all protocol 
interlocks are observed. If not, the command 
remains inactive until the protocol barriers sub-
side. Then, the command is executed.

4’d3 PwrUp -
this domain using setup values in 
CPC_STAT_CONF_REG. Usable only for Core-
Others access. It is the software equivalent to 
SI_PwrUp hardware signal

4’d4 Reset -
This domain is reset if in non-coherent mode. 
After the domain has been reset, the domain 
becomes operational and the CMD field reads as 
PwrUp cmd.

Others Reserved
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Table 7.17 Local Status and Configuration Register (CPC_CL[CO]_STAT_CONF_REG, Offset 0x008)

Register Fields

Description
Read/
Write Reset StateName Bits

RESERVED [31:24] Reserved. R 0

PWRUP_EVENT 23 The SI_PowerUp pin had been activated and caused the 
sequencer to cycle into power up state. The event also caused 
the sequencer to place a PwrUp command into the CMD field. 
Writing a 0 into the PWRUP_EVENT field will clear this bit.

R/W0 0

SEQ_STATE [22:19] Current domain sequencer state. State description: R 0

RESERVED 18 Reserved. R -

CLKGAT_IMPL 17 If set, this domain is implemented with clock tree root gating. 
If cleared, the CPC will still execute power-down/clock-off 
sequences if commanded; however, no physical clock gating is 
performed. 

R IP Configuration Value

PWRDN_IMPL 16 If set, this domain is implemented as power-gated. 
If cleared, the CPC will still execute power-down sequences if 
commanded; however, no physical power switching is per-
formed. 

R IP Configuration Value

EJTAG_PROBE 15 An EJTAG probe connection event has been seen. The domain 
powers up if required and observes a reset sequence. Thereafter 
the core transitions into clock-off mode. After a probe has been 
seen once, the power domain will not assume power-off mode 
until this bit is written to zero or the CPC experiences a cold 
reset.

R/W0 0

Reserved 14:11 Reserved. R 0

Reserved 10 Reserved. R/W 1

Code State

4’h0 D0 - PwrDwn
4’h1 U0 - VddOK
4’h2 U1 - UpDelay
4’h3 U2 - UClkOff
4’h4 U3 - Reset
4’h5 U4 - ResetDly
4’h6 U5 - nonCoherent execution
4’h7 U6 - Coherent execution
4’h8 D1 - Isolate
4’h9 D3 - ClrBus
4’ha D2 - DClkOff
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PWUP_POLICY [9:8] Each CPC domain sequencer is hardwired through the 
SI_ColdPwrUp signal to either power up, remain power-gated, 
go into clock-off mode, or become operational. To influence the 
cold start behavior of the domain, three distinct policies can be 
wired for this domain:

Within a processor cluster, CPU zero would power-up, while 
peer CPU 1-3 remain unpowered until released through a 
PwrUp commands. The PWUP_POLICY field reflects the hard-
wired SI_ColdPwrUp bus.

R Hardwired IP 
Configuration Value

CM domain is hard 
coded to powerUp if any 
CPU domain is powered 

up initially.

RESERVED [7:5] Reads zero. Writes ignored R 0

IO_TRFFC_EN [4] Enable CM for stand alone IOCU traffic. Setting this bit 
changes the low power state of the CM power domain from 
PwrDwn to ClkOff. The CM_IOPwrUp signal can be used by 
an external device to enable the CM to perform IOCU data 
transfers without CPU activities.
Deselecting IO_TRFFC_EN will power down the CM if all 
CPUs are powered down. In this case, CM_IOPwrUp signal 
activity is not observed by the CPC. 
A powered down CM domain will clear all preset CM/IOCU 
control registers. Powering up due to CPU power-up will send 
the CM/IOCU through a reset sequence, together with the CPU.

R/O for 
CPUs,

read zero

R/W for 
CM

0

CMD 3:0 Reflects most recent placed sequencer command. See definition 
in CPC_CMD_REG Table 7.3.4.1. The sequencer will over-
write the field after a Reset command, or SI_PwrUp signal 
caused power up of the domain. The command reads then as 
PwrUp.

R 0

Table 7.17 Local Status and Configuration Register (CPC_CL[CO]_STAT_CONF_REG, Offset 0x008)

Register Fields

Description
Read/
Write Reset StateName Bits

Code Meaning

2’b00 This CPU remains powered down after a sys-
tem cold start. A later PwrUp or Reset com-
mand, or SI_PwrUp signal assertion will 
make this domain operational.

2’b01 Go into Clock-Off mode. Disables domain 
clock after power-up sequence. Core will 
wake up through a CPC PwrUp or Reset 
command or a SI_PwrUp signal assertion. 
In this Clock-Off mode, the core will not be 
initialized and its boundary isolation will be 
maintained.

2’b10 Power up this domain after system cold start. 
The CPU will be reset and become opera-
tional based on its boot vector contents.

2’b11 Reserved
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7.3.4.2 Core-Other Addressing Register

This register must be written with the correct CoreNum value before accessing the Core-Other address segment. This 
register is not available within the CM local domain. Read access to the CM CPC_OTHER_REG will yield zero. 
Writes are ignored.

7.4 Cluster Power Controller Commands

The CPC provides a set of commands to establish a desired power domain state. CPC commands are:

• ClockOff - a power domain is brought into ClockOff state as programmed into the CPC_CMD_REG Table 
7.3.4.1. If the domain was powered down before, the power-on sequence is applied according to 
CPC_STAT_CONF_REG settings. If the domain was active before and was in non-coherent operation, the 
domain is brought into ClockOff state D2. A domain in ClockOff state can be sent into operation using the 
PwrUp command. A ClockOff command given to a domain in coherent operation will remain inactive until 
the CPU has left the coherent mode of operation. Sending a ClkOff command to the CPC before a previous 
command completed will cause the CPC domain target to be redirected towards ClockOff. However, the 
previous steady state can be observed temporarily before the newly programmed state is reached.

• PwrDwn - a power domain is powered down into state D0. CPC_STAT_CONF_REG and CPC_CMD_REG 
settings determine the sequence observed by the CPC. Note, both register settings are observed dynamically. 
The sequencer will preempt an in flight command at the next steady state to execute the newly given com-
mand.

• PwrUp - the execution of this command depends on the previous domain power state. If the domain is pow-
ered down to state D0, a PwrUp command will enable power for the domain and bring the domain into oper-
ational state U5. However, if SI_CoherenceEnable is active, the domain will advance into state U6 - 
coherent operation. Please note, that a set of software initialization needs to complete to safely bring a non-
coherent core into coherent state. If the previous power domain state was ‘ClkOff’, a PwrUp command will 
raise the domain state to either non-coherent or coherent operation, dependent on the GCR coherence status 
settings. This will be domain state U5 and U6 respectively.

When bringing a domain up after a PwrDwn command is executed, the Reset command is generally prefera-
ble to PwrUp. If the domain did not reach state D0 or was prevented from entering D0 because an EJTAG 
probe was connected, the CPC may identify that a reset is not required for PwrUp and will simply restart the 
clocks. This may be fine, but also may cause some problems. One common example where a reset is 
required is if the core enters an infinite loop after requesting PwrDwn.

A PwrUp command given to an active domain in non-coherent or coherent operation U5/U6 has no effect.

Table 7.18 Core-Other Addressing Register (CPC_CL[CO]_OTHER_REG Offset 0x010)

Register Fields

Description
Read/
Write Reset StateName Bits

RESERVED 31:24 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.-

R 0

CORENUM 23:16 CoreNum of the register set to be accessed in the Core-
Other address space. 

R/W 0x0

RESERVED 15:0 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.-

R 0
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7.5 proAptiv Core Power Management Options

In addition to the Cluster Power Controller described in the previous sections, MIPS Technologies provides a mecha-
nism for reducing power in the proAptiv core depending on the work load. The conditions under which the proAptiv 
core is placed in power-down mode are determined by the SOC. 

The information in the following sections should be used only when all cores in the system are shut down. The pro-
cessor and cache states need not be saved for each core shut down as long as their is one core operation. However, 
once the last core is to be shutdown by the SOC, the following procedure can be used to save the processor state.

There are two basic options for power management in the proAptiv core. 

1. Clock gating: Used to stop the clocks and put the core into sleep mode. Refer to Section 7.6, "proAptiv Core 
Clock Gating" for more information. In this mode the VDD levels are maintained and power is preserved, so no 
data is lost.

2. Power gating: Used to shut down power to selected parts of the proAptiv core. In this mode certain elements of 
the core, such as registers, caches, TLB, etc. are saved, allowing for a more efficient power-up process. Refer to 
Section 7.7, "proAptiv Core Power Gating" for more information.

7.6 proAptiv Core Clock Gating

Clock gating provides a way for the proAptiv core to shut down the core clock under certain conditions. The mecha-
nism used to suspend and then resume the core clock depends on the power management options selected during the 
core configuration process. These options include;

• Enabling of ‘top level clock gating’

• Enabling of ‘fine grain clock gating’

7.6.1 Designs Implementing Top Level Clock Gating

Top level clock gating is provided as an option during the core configuration process. For designs implementing top 
level clock gating, there are two ways to place the proAptiv core into sleep mode.

• Instruction-controlled power management

• Register-controlled power management

7.6.1.1 Instruction Controlled Clock Gating

Execution of the WAIT instruction can be used to place the proAptiv core into sleep mode. When the WAIT instruc-
tion is executed during normal operation, the proAptiv core completes all outstanding operations, then freezes the 
pipeline and asserts the SI_SLEEP signal, indicating to external logic that the proAptiv core has entered sleep mode.

If top level clock gating is enabled, the processor turns off the internal clock to most of the proAptiv core automati-
cally once SI_SLEEP is asserted. The clock is maintained only for a small amount of logic that waits for an interrupt 
intended to bring the processor out of sleep mode. In addition to the interrupt logic, the following signals also remain 
active in sleep mode;

• SI_INT[5:0]
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• SI_NMI

• SI_RESET

• EJ_DEBUGM

Once the clocks are suspended, the entire contents of the processor, including registers, caches, and TLB, are saved. 
Once the ‘wake’ interrupt is received, the processor restarts its internal clock and can resume normal operation within 
a few clock cycles. The ‘wake’ interrupt can be any enabled interrupt, NMI, or debug interrupt. This is the fastest and 
most efficient mechanism to transition the proAptiv core in and out of sleep mode.

Note that the SI_RESET signal can also be used to exit sleep mode. However, assertion of SI_RESET causes all 
internal data to be lost and the registers to revert back to their default values.

7.6.1.2 Register Controlled Clock Gating

In addition to instruction controlled clock gating, the MIPS architecture allows for software to initiate entry into sleep 
mode via the register interface. The RP bit in the CP0 Status register can be set by software to indicate the desire to 
place the proAptiv core into sleep mode. Once this bit is set, hardware asserts the SI_RP output signal. 

On receipt of the SI_RP signal, external logic can then decide whether to suspend or reduce the frequency of the 
proAptiv core accordingly. Note that this mechanism is different than instruction controlled clock gating in that the 
core does not determine whether the clock is suspended. Rather, external logic can decide to suspend the clock, 
reduce the clock frequency from its current level, or take no action.

7.6.1.3 Reduction of VDD During Sleep Mode

The information described above deals with clock gating only. In this example, during the time that the clocks are 
powered down, VDD remains at normal power levels. To obtain the maximum power savings during sleep mode, 
external logic can reduce the core VDD voltage once the proAptiv core has asserted SI_SLEEP. This additional step 
can greatly reduce leakage and consequently power consumption during sleep mode. The minimum VDD voltage 
that can be used, and still allow the proAptiv core to retain state, is process dependent.

The reduction of VDD can only be controlled by external means. The proAptiv core does not provide a mechanism to 
reduce VDD internally during sleep mode. Note that if this option is implemented, it will take longer to restart the 
processor since the VDD must be ramped up to appropriate level before asserting the wake interrupt.

Refer to Section 7.7 “proAptiv Core Power Gating” for more information.

Table 7.19 Differences Between Instruction and Register Controlled Power Management

Type Trigger
SIgnal Asserted by 

Hardware
Clock Suspended 

by On-Die Hardware
Interrupt Detection 
During Sleep Mode

Instruction controlled clock gating WAIT 
instruction

SI_SLEEP Yes Yes

Register controlled power management Setting RP bit in 
CP0 Status

SI_RP No Yes
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7.6.1.4 Restart Latency Trade-Offs

Once the decision is made to enter sleep mode, some number of clocks are required to place the proAptiv core into 
sleep mode, and bring the core out of sleep mode. In most designs, once sleep mode is entered, the core must remain 
in sleep mode for at least 100 clock cycles. Otherwise, the trade-off in time and power savings becomes negligible.

7.6.2 Designs Not Implementing Top Level Clock Gating

If top level clock gating was not enabled during the core configuration process, both instruction and register con-
trolled power management can still be used. The main difference is the level of involvement of the proAptiv core in 
either of these processes.

From an instruction standpoint, the WAIT instruction and SI_SLEEP signal can still be used to place the proAptiv 
core into sleep mode. However, since top level clock gating is disabled, it is incumbent upon external logic to suspend 
the input clock to the processor. If the input clock is suspended, it is suspended to the entire proAptiv core. As a 
result, the processor has no way to detect a ‘wake’ interrupt. Therefore, the assertion of SI_RESET is the only way to 
restart the proAptiv core. Note that if this method is used, all data will be lost and the registers will revert back to their 
default values.

From a register standpoint, software can still set the RP bit in the CP0 Status register to initiate the transfer to sleep 
mode. The processor responds by asserting the SI_RP bit to external logic. At this point, the proAptiv core does not 
control the clock behavior. It is incumbent upon external logic to provide the following functions:

• Suspend the core clock

• Reduce the core clock frequency

• Implement the interrupt detect function

7.6.3 Designs Implementing Fine Grain Clock Gating

Fine grain clock gating allows the proAptiv core to shut down the clocks to individual blocks of logic within the chip. 
When the ‘fine grain clock gating’ option is selected during build time, separate clock domains are assigned to the 
various register blocks within the proAptiv core. In the proAptiv core, there is one write enable that is used to write 
all registers at once. If fine grain clock gating is enabled, the clock can be enabled only to the register block that is 
being accessed. The write enable for the other blocks is still driven, but no clock is supplied to those blocks not being 
accessed.

The implementation of fine grain clock gating requires the logic required to implement multiple clock trees within the 
proAptiv core. Therefore, it works best in ASIC implementations where any number of clock domains can be 
assigned. It is less useful in FPGA implementations where the number of clock trees may be limited.

7.7 proAptiv Core Power Gating

In addition to clock gating, power gating can be used to gain additional power savings. The saving and restoring of 
processor state can be used when the power savings provided by clock gating alone are not enough. In clock gating, 
the state of the processor need not be saved externally because even though the clocks are suspended, the power is 
still applied to the proAptiv core, allowing the processor state to be saved internally.

In power gating, some or all of the power to the proAptiv core can be shut down. This causes all data within the cor-
responding power domain(s) to be lost once the voltage falls below the retention value as defined by the process ven-
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dor. As a result, careful consideration must be taken to save some or all of the processor states before the power is 
shut down. Some of the logic blocks that can be saved prior to suspending the processor are:

• Registers (GPR, CP0, CP1, and/or CP2)

• Caches (instruction and/or data)

• Translation Lookaside Buffer (TLB)

• Scratch Pad RAM (Instruction and/or Data)

There are two methods that can be used to implement a suspend/resume mechanism in a proAptiv core. These con-
cepts are described in the following subsections.

• Hardware Suspend/Resume

• Software Suspend/Resume

7.7.1 Hardware Suspend/Resume

The hardware suspend/resume mechanism in the proAptiv core allows the state of the caches, scratch pad RAM, and 
TLB to be transferred to memory via hardware using the suspend/resume (BIST) sideband signals that are defined 
during chip configuration. This process of moving data to and from the proAptiv core is much faster than a pure soft-
ware implementation. This process is covered in more detail in the proAptiv Hardware User’s Manual.

7.7.2 Software Suspend/Resume

For systems that have not implemented any hardware suspend/resume mechanism as described in the previous sec-
tion, a software mechanism can be used to save state and power down the proAptiv core. This section describes the 
tasks that should be performed during the suspend and resume processes.

7.7.2.1 Overview of Suspend/Resume Process

The recommended way of implementing a system suspend/resume in software is having a function that will perform 
a seamless suspend/resume operation. This means that to the rest of the software it looks like the function was entered 
and exited like any normal function, while in reality this function self-terminates in the middle of its execution by 
turning off the power the core, then resumes from where it left off shortly after power is restored.

At a high level, the assembly language skeleton should look like this:

/* Entry point to suspend/resume function, including the function prologue. */

suspend_resume:
...
...

/* Here we start the suspend sequence */

suspend:
...
...
...
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7.7.3 Suspend Process

During a software suspend process, the following tasks are recommended. Each of these tasks is described in the fol-
lowing subsections.

• Save General Purpose Registers (GPR)

• Save some or all CP0 registers

• Flush the L1 data cache dirty lines and L2 cache dirty lines (if applicable)

• Save the return address

• Copy memory power down sequence into cache before switching memory to low-power mode (if applicable)

• Move memory to low-power mode (if applicable)

• Shut down power to the proAptiv core

The GPR and CP0 registers are moved to the memory stack prior so that they can be easily retrieved when power is 
restored to the proAptiv core. In this example, the registers would be moved to the stack and placed at the following 
memory offset addresses shown in Figure 7.7.
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Figure 7.7 GPR and CP0 Register Locations in the Memory Stack

7.7.3.1 Save GPR Registers

MIPS recommends saving those GPR registers shown in the code example below. Note that the register numbers cor-
responding to the scratch registers are not saved. This includes GPR8 - GPR15, GPR24, and GPR25. For each GPR, 
a store word (sw) instruction is used to move the contents of the GPR register to memory. 

sw $1 0x00(sp)
sw $2 0x04(sp)
sw $3 0x08(sp)

GPR1
GPR2
GPR3
GPR4
GPR5
GPR6
GPR7
GPR16
GPR17
GPR18
GPR19
GPR20
GPR21
GPR22
GPR23
GPR26
GPR27
GPR28
GPR29
GPR30
GPR31

Memory Stack

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24
0x28
0x2C
0x30
0x34
0x38
0x3C
0x40
0x44
0x48
0x4C
0x50

Status
Config0
Config1
Config2
Config3
Ebase
Pagemask
Context

0x54
0x58
0x5C
0x60
0x64
0x68
0x6C
0x70

Wired0x74
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sw $4 0x0C(sp)
sw $5 0x10(sp)
sw $6 0x14(sp)
sw $7 0x18(sp)
sw $16 0x1C(sp)
sw $17 0x20(sp)
sw $18 0x24(sp)
sw $19 0x28(sp)
sw $20 0x2C(sp)
sw $21 0x30(sp)
sw $22 0x34(sp)
sw $23 0x38(sp)
sw $26 0x3C(sp)
sw $27 0x40(sp)
sw $28 0x44(sp)
sw $29 0x48(sp)
sw $30 0x4C(sp)
sw $31 0x50(sp)

7.7.3.2 Save CP0 Registers

In the MIPS architecture the CP0 registers cannot be moved directly to memory. Therefore, they must first be moved 
to a GPR register. In this example the registers are moved to the k0 scratch pad register, then from the k0 register to 
memory at the location shown in the corresponding sw instruction. Note that the offset addresses for each sw instruc-
tion correspond to those shown in Figure 7.7.

As shown in the code snippet below, only a partial set of CP0 registers are saved. This is only an example. In some 
cases additional registers may need to be saved depending on the implementation.

mfco k0, CP0_STATUS /*Move from coprocessor 0, CP0_STATUS to k0*/
sw k0, 0x54(sp) /*Store word k0 to offset 0x54 in memory*/
mfco k0, CP0_CONFIG0 /*Move from coprocessor 0, CP0_CONFIG0 to k0*/
sw k0, 0x58(sp) /*Store word k0 to offset 0x58 in memory*/
mfco k0, CP0_CONFIG1 /*Move from coprocessor 0, CP0_CONFIG1 to k0*/
sw k0, 0x5C(sp) /*Store word k0 to offset 0x5C in memory*/
mfco k0, CP0_CONFIG2 /*Move from coprocessor 0, CP0_CONFIG2 to k0*/
sw k0, 0x60(sp) /*Store word k0 to offset 0x60 in memory*/
mfco k0, CP0_CONFIG3 /*Move from coprocessor 0, CP0_CONFIG3 to k0*/
sw k0, 0x64(sp) /*Store word k0 to offset 0x64 in memory*/
mfco k0, CP0_EBASE /*Move from coprocessor 0, CP0_EBASE to k0*/
sw k0, 0x68(sp) /*Store word k0 to offset 0x68 in memory*/
mfco k0, CP0_PAGEMASK /*Move from coprocessor 0, CP0_PAGEMASK to k0*/
sw k0, 0x6C(sp) /*Store word k0 to offset 0x6C in memory*/
mfco k0, CP0_CONTEXT /*Move from coprocessor 0, CP0_CONTEXT to k0*/
sw k0, 0x70(sp) /*Store word k0 to offset 0x70 in memory*/
mfco k0, CP0_WIRED /*Move from coprocessor 0, CP0_WIRED to k0*/
sw k0, 0x74(sp) /*Store word k0 to offset 0x74 in memory*/

7.7.3.3 Flush Dirty Lines in L1 Data Cache

The following routine can be used to flush the dirty lines in a 32 Kbyte, 4-way set associative data cache with a 32-
byte line size in preparation for shut-down. In this routine software examines each cache line and performs an invali-



 

MIPS32® proAptiv™ Multiprocessing System Software User’s Manual, Revision 01.22 389

date on all non-dirty lines, and a writeback-invalidate on all dirty lines. A similar routine must be applied for L2 dirty 
lines in systems implementing a level 2 cache.

#define INDEX_BASE 0x80000000 // We use KSEG0 address as the base address for cache index access
#define WAY_SIZE 0x2000 // size of one way in a 4-way set associative 32K cache (8K)
#define WAYOFFSET 13 // offset of bits which determine the cache way to access
#define ASSOC 4 // associativity (4 ways)
#define LINE_SIZE 32 // size of each cache line
#define IDX_WB_INV_DC 0x01 // code of index write-back invalidate D-cache operation

/* This macro performs the same cache op on 32 consecutive lines. */

#define cache32_unroll32(base,op) \

__asm__ __volatile__( \
".set push \n" \
".set noreorder \n" \
".set mips3 \n" \
"cache %1, 0x000(%0); cache %1, 0x020(%0)\n" \
"cache %1, 0x040(%0); cache %1, 0x060(%0)\n" \

"cache %1, 0x080(%0); cache %1, 0x0a0(%0)\n" \
"cache %1, 0x0c0(%0); cache %1, 0x0e0(%0)\n" \
"cache %1, 0x100(%0); cache %1, 0x120(%0)\n" \
"cache %1, 0x140(%0); cache %1, 0x160(%0)\n" \|
"cache %1, 0x180(%0); cache %1, 0x1a0(%0)\n" \
"cache %1, 0x1c0(%0); cache %1, 0x1e0(%0)\n" \
"cache %1, 0x200(%0); cache %1, 0x220(%0)\n" \
"cache %1, 0x240(%0); cache %1, 0x260(%0)\n" \
"cache %1, 0x280(%0); cache %1, 0x2a0(%0)\n" \
"cache %1, 0x2c0(%0); cache %1, 0x2e0(%0)\n" \
"cache %1, 0x300(%0); cache %1, 0x320(%0)\n" \
"cache %1, 0x340(%0); cache %1, 0x360(%0)\n" \
"cache %1, 0x380(%0); cache %1, 0x3a0(%0)\n" \
"cache %1, 0x3c0(%0); cache %1, 0x3e0(%0)\n" \

".set pop \n" \
: \
: "r" (base), \
  "i" (op));

/* This function scans a 4-way set associative 32K bytes data cache with 32-byte line size and performs an index 
write-back invalidate cache operation on each of the cache lines.*/

static  void flush_32k_4way_32byteline_dcache(void)

{ \
unsigned long start = INDEX_BASE;
unsigned long end = start + WAY_SIZE;
unsigned long ws_inc = 1UL << WAYOFFSET;
unsigned long ws_end = ASSOC << WAYOFFSET;
unsigned long ws, addr;
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/* For every way (ws = the bits in the address which dertmine the cache way to access). */
for (ws = 0; ws < ws_end; ws += ws_inc)

/* In each way go from start to end address. */
for (addr = start; addr < end; addr += LINE_SIZE * 32)

/* Each time we perform the cache op on 32 lines. The address is a
   combination of the cache line offset in side the way (addr) and the way bits (ws).*/
cache32_unroll32(addr|ws, IDX_WB_INV_DC);

7.7.3.4 Save the Resume Address

This routine takes the starting address of the resume sequence and saves it somewhere on the board, external to the 
proAptiv core. Later, after power up and reset, the warm boot sequence retrieves that address and jumps to it. This 
initiates execution of the resume process.

7.7.3.5 Copy Memory Power Down Sequence Into Cache

This piece of code loads the remaining instructions of the suspend sequence into the instruction cache. This is done 
since the memory (e.g. DRAM) is about to be put in low power mode and thus become inaccessible to the core. It is 
important that all instruction fetches hit in the instruction cache because if they miss the core won't be able to fetch 
them from memory.

*/

.set noreorder

/* load the start address and end address of the remaining instructions */

la $8, mem_to_low_power
la $9, post_suspend /*after power is removed*/

/* Now fill the cache line by line starting from the start address and incrementing the address by a line size in each 
iteration until we get beyond the en address.*/

fill_icache:

cache 0x14, 0($8)
addiu $8, $8, 32
bltu $8, $9, fill_icache
nop

mem_to_low_power:

7.7.3.6 Move Memory to Low Power Mode

/* Here we have a sequence of instructions that will move the memory to low power mode. These instructions used to 
perform this function are SOC specific depending on the particular way the memory is implemented and addressed.*/

...

...

...

/* The following label comes after the end of the suspend sequence. We should never get here because we are sup-
posed to loose power earlier.*/
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post_suspend:

7.7.3.7 Shut Down Power to the proAptiv core

Once all of the above tasks have been performed, power to the proAptiv core can be suspended by reducing VDD to 
0V. This task is performed by the SOC and is implementation-dependent.

7.7.4 Resume Process

During the software resume process, the following tasks are recommended. The tasks are handled in the opposite 
order in which they were executed during the suspend operation.

• System Wake-up

• Power-Up VDD to the proAptiv core and Assert Power-On Reset

• Warm/Cold Boot Detection

• Exit memory low-power mode

• Initialize caches and TLB

• Jump to resume address

• Restore CP0 registers

• Restore GPR registers

7.7.4.1 System Wake-Up

In a typical system the power management (PM) module stays active after the system enters suspend mode. This 
component will consume very little power but will keep monitoring external signals that may trigger the system to 
resume normal operation. Once a trigger is detected, the PM block will wake up various system components, one of 
these being the proAptiv core. Since power to the core was shut down earlier, the core must be powered up and 
brought to its Reset state.

7.7.4.2 Power-Up VDD to the proAptiv Core and Assert Power-On Reset

Once the system logic detects a resume condition, the system power management block must raise the VDD levels of 
the proAptiv core to their normal operating levels and allow the voltage to stabilize. Once the voltages are stabilized, 
assert the power-on reset pin to the proAptiv core.

7.7.4.3 Warm/Cold Boot Detection

When a processor core goes to its reset state it starts executing instructions from its Reset vector address. We call the 
initial sequence of instructions "boot" and it typically starts executing off of "boot ROM" memory. At this point the 
system must distinguish between two boot modes: cold boot and warm boot.

• A cold boot is typically performed when the entire system is powered up and has to initialize all of its hardware 
components. In this scenario there is typically no (or little) memory of the system's state prior to boot (although 
some systems will save configuration information in non-volatile memory). After the initial boot the operating 
system has to go through its own complete boot sequence which takes a relatively long time.
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• A warm boot is typically performed to resume a system that was previously suspended for power saving. In this 
case much of the system state prior to boot is available and can be restored (for example, it was saved into a 
memory component which did not loose power or otherwise in non-volatile memory). The warm boot sequence 
is typically short as users expect instant response (from a user point of view the system is available even when it 
was suspended for power saving). A warm boot does not require the operating system to perform its full boot 
sequence. For the most part the OS will continue from where it left off.

In the case of a warm boot, the boot software sequence starts from the same place (the Reset vector address) whether 
it is a cold boot or warm boot condition. However, shortly thereafter it detect its mode whether it is a cold or warm 
boot. If the system resumes from suspend mode, the boot software will detect this and decide to perform a warm boot. 
The indication that the system is coming back from suspend mode may be available in the PM block or in some piece 
of memory. This mechanism is implementation dependent. 

Once a decision is made to perform a warm boot and not a cold boot, the warm boot sequence will perform a basic 
initialization and then jump to the resume address in the suspend/resume function. The resume address will be avail-
able in an implementation dependent location where it was saved by the suspend sequence. Then, as discussed earlier, 
the function will restore some system state and return to its caller as if nothing ever happened. The caller may have no 
indication that the system was suspended for a while.

Examples of basic core initialization that must be carried out regardless of the boot mode are caches and TLB initial-
ization. Many users will opt not to save and restore their cache and/or TLB states. Note that the proAptiv core caches 
and TLB wake-up in a random state and must be initialized before data can be written to them.

7.7.4.4 Exit Memory Low-Power Mode

This is an optional system-dependent function. If the external memory devices were placed in low-power mode dur-
ing the suspend process, the memory must exit its low-power mode before the instructions stored to the stack during 
the suspend process can be fetched by the proAptiv core.

7.7.4.5 Initialize Caches and TLB

The initialize caches and TLB routines are always performed when reset is asserted to the proAptiv core. This is done 
to bring the caches to an initial state. This routine would be exactly the same as the one used in the boot example that 
accompanies the delivery of each proAptiv core. Refer to the boot example associated with the proAptiv core pack-
age. 

7.7.4.6 Jump to Resume Address

At this point the boot process is done with general initialization process initiated by the assertion of reset and is ready 
to start the actual resume sequence. It retrieves the starting address of the resume sequence that was saved earlier (as 
part of the suspend sequence) and jumps to it, thereby initiating execution of the resume sequence.

7.7.4.7 Restore CP0 Registers

In the MIPS architecture the CP0 registers cannot be moved directly from memory. Therefore, they must first be 
moved to a GPR register. In this example the registers are moved to the k0 scratch pad register, then from the k0 reg-
ister to memory at the location shown in the corresponding lw instruction. Note that the offset addresses for each lw 
instruction correspond to those shown in Figure 7.7. 

lw k0, 0x74(sp) /*Load word k0 from offset 0x74 in memory*/
mtco k0, CP0_WIRED /*Move to coprocessor 0, CP0_WIRED from k0*/
lw k0, 0x70(sp) /*Load word k0 from offset 0x70 in memory*/
mtco k0, CP0_CONTEXT /*Move to coprocessor 0, CP0_CONTEXT from k0*/
lw k0, 0x6C(sp) /*Load word k0 from offset 0x6C in memory*/
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mtco k0, CP0_PAGEMASK /*Move to coprocessor 0, CP0_PAGEMASK from k0*/
lw k0, 0x68(sp) /*Load word k0 from offset 0x68 in memory*/
mtco k0, CP0_EBASE /*Move to coprocessor 0, CP0_EBASE from k0*/
lw k0, 0x64(sp) /*Load word k0 from offset 0x64 in memory*/
mfco k0, CP0_CONFIG3 /*Move to coprocessor 0, CP0_CONFIG3 from k0*/
lw k0, 0x60(sp) /*Load word k0 from offset 0x60 in memory*/
mtco k0, CP0_CONFIG2 /*Move to coprocessor 0, CP0_CONFIG2 from k0*/
lw k0, 0x5C(sp) /*Load word k0 from offset 0x5C in memory*/
mtco k0, CP0_CONFIG1 /*Move to coprocessor 0, CP0_CONFIG1 from k0*/
lw k0, 0x58(sp) /*Load word k0 from offset 0x58 in memory*/
mtco k0, CP0_CONFIG0 /*Move to coprocessor 0, CP0_CONFIG0 from k0*/
lw k0, 0x54(sp) /*Load word k0 from offset 0x54 in memory*/
mtco k0, CP0_STATUS /*Move to coprocessor 0, CP0_STATUS from k0*/

7.7.4.8 Restore GPR Registers

MIPS recommends loading those GPR registers shown in the code example below. Note that the register numbers 
corresponding to the scratch pad registers are not loaded. This includes GPR8 - GPR15, GPR24, and GPR25. For 
each GPR, a load word (lw) instruction is used to move the contents of the corresponding memory location into the 
GPR.

lw $31 0x50(sp)|
lw $30 0x4C(sp)
lw $29 0x48(sp)
lw $28 0x44(sp)
lw $27 0x40(sp)
lw $26 0x3C(sp)
lw $23 0x38(sp)
lw $22 0x34(sp)
lw $21 0x30(sp)
lw $20 0x2C(sp)
lw $19 0x28(sp)
lw $18 0x24(sp)
lw $17 0x20(sp)
lw $16 0x1C(sp)
lw $7 0x18(sp)
lw $6 0x14(sp)
lw $5 0x10(sp)
lw $4 0x0C(sp)
lw $3 0x08(sp)
lw $2 0x04(sp)
lw $1 0x00(sp)
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CM2 Global Control Registers

The proAptiv Global Control Registers address space (GCR) contains control/status registers for the entire proAptiv 
Multiprocessing System cluster (see Section 8.3 “Global Control Block”), as well as the individual proAptiv Multi-
processing System CPUs (see Section 8.4 “Core-Local and Core-Other Control Blocks”) in the cluster.

The GCR address space has a total size of 32 KBytes, which is divided into 8 KByte blocks as described in Section 
8.1 “Coherence Manager Address Map”. The location of the GCR block in the system address map is controlled by 
the GCR_BASE register. 

Physically, the registers are located within the GCR block of the Coherence Manager (CM2) and are accessed by the 
proAptiv Multiprocessing System CPUs using 32-bit aligned uncached load/store instructions, or by I/O devices via 
the I/O Coherence Unit (IOCU), using read/write instructions.

This chapter contains the following sections:

• Section 8.1 “Coherence Manager Address Map”

• Section 8.2 “CM2 Programming”

• Section 8.3 “Global Control Block”

• Section 8.4 “Core-Local and Core-Other Control Blocks”

• Section 8.5 “Global Debug Control Block”

8.1 Coherence Manager Address Map

Table 8.1 shows the address map of the four, 8-KB GCR blocks relative to the GCR_BASE as defined in the GCR 
Base Register. Each of these blocks of registers are described in the following sections.

Table 8.1 proAptiv Control Space Address Map (Relative to GCR_BASE[31:15]) 

Address Range Size (bytes) Description

0x0000 - 0x1FFF 8 KB Global Control Block. Contains registers pertaining to the global sys-
tem functionality. All cores can access this block of registers.

0x2000 - 0x3FFF 8 KB Core-Local Control Block (aliased for each proAptiv Multiprocessing 
System CPU core). Contains registers pertaining to the proAptiv Multi-
processing System issuing the request. Each core has its own copy of 
registers within this block.

0x4000 - 0x5FFF 8 KB Core-Other Control Block (aliased for each proAptiv Multiprocessing 
System CPU core). This block of addresses gives each Core a window 
into another CPU’s Core-Local Control Block. Before accessing this 
space, the Core-Other_Addressing Register in the Local Control 
Block must be set with the CORENum of the target Core.

0x6000 - 0x7FFF 8 KB Global Debug Block. Contains global registers useful in debugging the 
proAptiv MPS.
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8.1.1 Block Offsets Relative to the Base Address

The block offsets for each of the four blocks listed in Table 8.1 above are relative to a GCR base address and can be 
located anywhere in physical memory. The base address is a 17-bit value that is programmed into the GCR_BASE 
field of the GCR Base register located at offset address 0x0000 in the Global Control Block. The MIPS default loca-
tion for the GCR_BASE address is 0x1FBF_8. To determine the physical address of each block using the MIPS 
default, this value would be added to the GCR block offset to derive the absolute physical address as shown in Table 
8.2. 

8.1.2 Register Offsets Relative to the Block Offsets

In addition to the block offsets, the register offsets provided in each register description of this chapter are relative to 
the block offsets shown in Table 8.2 above. To determine the physical address of each register, the MIPS default base 
address is added to the corresponding GCR block offset plus the actual register offset to derive the absolute physical 
address as shown in Table 8.3. Note that this example shows only a few selected registers of the Global Control 
Block. 

The registers within the Core-Local blocks would be accessed in a similar manner as shown in Table 8.4. 

Table 8.2  Absolute Address of GCR Register Blocks Using the MIPS Default

MIPS Default Base GCR Block Offset Absolute Physical Address
Size 

(bytes) Description

0x1FBF_8 + 0x0000 - 0x1FFF = 0x1FBF_ 8000 - 0x1FBF_9FFF 8 KB Global Control Block. 

0x1FBF_8 + 0x2000 - 0x3FFF = 0x1FBF_ A000 - 0x1FBF_BFFF 8 KB Core-Local Control Block

0x1FBF_8 + 0x4000 - 0x5FFF = 0x1FBF_ C000 - 0x1FBF_DFFF 8 KB Core-Other Control Block 

0x1FBF_8 + 0x6000 - 0x7FFF = 0x1FBF_ E000 - 0x1FBF_FFFF 8 KB Global Debug Block

Table 8.3  Absolute Address of Individual Global Control Block Registers

MIPS Default 
Base

Global Register 
Block Offset

Global Register 
Offset

Absolute Physical 
Address Global Control Register

0x1FBF_8 + 0x0000 + 0x0000 = 0x1FBF_ 8000 CM2 Configuration. 

0x1FBF_8 + 0x0000 + 0x0008 = 0x1FBF_ 8008 GCR Base. 

0x1FBF_8 + 0x0000 + 0x0010 = 0x1FBF_ 8010 CM2 Control. 

0x1FBF_8 + 0x0000 + 0x0018 = 0x1FBF_ 8018 CM2 Control2. 

0x1FBF_8 + 0x0000 + 0x0020 = 0x1FBF_ 8020 CM2 Access Privilege. 

........ ......... ....... ....... .........

0x1FBF_8 + 0x0000 + 0x0228 = 0x1FBF_ 8228 Attribute-Only Region 3 Mask. 
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The Core-Other block would be accessed in the same manner, just with a different (Core-Other) block offset 
(0x4000).

This concept is described in Figure 8.1 below. For simplicity, the MIPS default value is used for the GCR base 
address. 

Table 8.4  Absolute Address of Individual Core-Local Block Registers

MIPS Default 
Base

Core-Local 
Block Offset

Core-Local 
Register Offset

Absolute Physical 
Address Global Control Register

0x1FBF_8 + 0x2000 + 0x0000 = 0x1FBF_ A000 Reserved. 

0x1FBF_8 + 0x2000 + 0x0008 = 0x1FBF_ A008 Core-Local Coherence Control.

0x1FBF_8 + 0x2000 + 0x0010 = 0x1FBF_ A010 Core-Local Configuration.

0x1FBF_8 + 0x2000 + 0x0018 = 0x1FBF_ A018 Core-Other Addressing.

0x1FBF_8 + 0x2000 + 0x0020 = 0x1FBF_ A020 Core-Local Reset Exception 
Base.

0x1FBF_8 + 0x2000 + 0x0028 = 0x1FBF_ A028 Core-Local Identification.

0x1FBF_8 + 0x2000 + 0x0030 = 0x1FBF_ A030 Core-Local Reset Exception 
Extended Base.

0x1FBF_8 + 0x2000 + 0x0040 = 0x1FBF_ A040 TCID 0 Priority.
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8.2 CM2 Programming

This section provides programming examples based on the capability of the CM2 register set. Some topics described 
are:

• Section 8.2.1, "Verifying Overall System Configuration"

• Section 8.2.2, "Requestor Access to GCR Registers"

• Section 8.2.3, "CM2 Interface Ports"

• Section 8.2.4, "Setting the CM2 Register Block Base Address"

• Section 8.2.5, "Address Regions"

• Section 8.2.6, "Address Map Programming Example"

• Section 8.2.9, "Accessing Another Cores CM2 GCR Registers"

• Section 8.2.10, "Boot Exception Vector Configuration"

• Section 8.2.11, "Coherency Domains"

• Section 8.2.12, "L2-Only SYNC Operation"

• Section 8.2.13, "Handling of Addresses Not Mapped to a Defined Region"

• Section 8.2.14, "Setting the Cache Coherency Attributes for Default Memory Transfers"

• Section 8.2.15, "In-Flight L1 and L2 Cache Operations"

• Section 8.2.16, "MIPS System Trace"

• Section 8.2.17, "Error Processing"

• Section 8.2.18, "Custom GCR Implementation"

• Section 8.2.19, "Attribute-Only Regions"

8.2.1 Verifying Overall System Configuration

At build-time, the developer selects the number of cores in the system, the number of I/O coherency units (IOCU’s), 
and the number of address reqions. When the device is built, these values are hardwired into the Global Configuration 
register at offset address 0x0000. Reading this register provides the following information:

• Bits 7:0 — Number of cores in the system (1, 2, 3, 4, or 6)

• Bits 11:8 — Number of IOCU’s (0, 1, or 2)

• Bits 19:16 — Number of address regions

8.2.2 Requestor Access to GCR Registers

The CM2 allows up to eight requestor’s in a system. A requestor can be either a core or an IOCU. The proAptiv core 
allows up to 8 requestors in a multiprocessing system; six cores and two IOCU’s.

The requestor’s may not have unrestricted access to the CM2 registers. During boot time, software determines which 
requestor’s are provided access to the CM2 registers by programming the CM2_ACCESS_EN field of the Global CSR 
Access Privilege register located at offset 0x0020. Each bit in this field corresponds to a specific requestor.
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The Custom GCR region is fixed at 64 KB. Refer to Section 8.3.2.11, "GCR Custom Base Register 
(GCR_CUSTOM_BASE Offset 0x0060)" for more information on programming the base address for the Custom 
GCR interface.

8.2.5.2 Variable-Size Regions

The proAptiv multiprocessing system may provide four programmable variable size address regions for mapping the 
IOCU’s and memory. The number of regions is determined at IP configuration time. If an IOCU is not present, then 
the regions registers are not used. The number of regions implemented is determined as follows.

For more information, refer to the ADDR_REGIONS field in bits 19:16 of the Section 8.3.2.1, "Global Config 
Register (GCR_CONFIG Offset 0x0000)". For more information on the attribute-only regions, refer to Section 
8.2.19. 

Each region is controlled by a corresponding base and mask register as described below. These registers are used to 
determine not only the location and size of the memory space, but also whether this space is mapped to an IOCU or to 
memory. In addition, the cache coherency attributes (CCA) for each region can be defined as described in Section 
8.2.5.6, "Setting the Cache Coherency Attributes for Region Memory Transfers". 

In a MIPS core, mapped addresses are processed by the memory management unit (MMU) and the cache coherency 
attributes for a given memory page are determined. In this case, the CCA corresponds to both the L1 and L2 caches. 
In some sitations it may be advantageous to have the CCA of the L2 different from that of the L1 cache. In this case, 
software can use the CCA_Override_Value field of each Region Address Mask register to set the CCA for the L2 
cache. This changes the attributes of the cache from what was originally assigned by the core.

The CM2 provides four base address and four address mask registers for controlling variable-size address regions 0 
through 3. These regions control how some transactions are routed by the CM2. The possible routing options for 
requests that map to these variable-size regions are: 

• To/From Memory via the CM2’s system memory OCP port

• To/From the IOCU’s via the CM2’s MMIO OCP port for Memory-Mapped I/O (in hardware I/O coherent 
systems only) 

Refer to Section 8.3.3.3, "CM2 Region [0 - 3] Base Address Register (GCR_REGn_BASE Offsets 0x0090, 0x00A0, 
0x00B0, 0x00C0)" and Section 8.3.3.4, "CM2 Region [0 - 3] Address Mask Register (GCR_REGn_MASK Offsets 
0x0098, 0x00A8, 0x00B8, 0x00C8)" for more information on these registers.

Table 8.5 Setting the Number of Regions

ADDR_REGIONS Field Number of Regions Region Assignments

0x0 0 None (typically used when there is no IOCU).

0x4 4 4 standard regions.

0x6 6 4 standard regions and 2 attribute-only regions.

0x8 8 4 standard regions and 4 attribute-only regions.
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8.2.5.3 Address Region Priorities

The priority for the region decode is as follows:

1. GCR (highest priority)

2. Custom GCR

3. CPC

4. GIC

5. Programmed MMIO regions

6. Programmed memory regions

7. CM2_DEFAULT_TARGET (lowest priority)

The above priority allows for large memory regions to be defined with small IOCU regions carved out. Note that 
these regions can overlap as described in Section 8.2.5.8, "Overlapping Regions".

8.2.5.4 Defining the Base Address Location and Size for Each Region

The address map is programmable through a set of registers located in the GCR as summarized below. Up to 8 vari-
able-size programmable regions can be implemented. When an IOCU is present (i.e., hardware I/O Coherence is 
implemented), these regions determine if requests are routed to memory or to the IOCU via the CM2’s MMIO port. 
The regions can also be used with or without an IOCU for the CCA Override feature as described in Section 
8.2.14 “Setting the Cache Coherency Attributes for Default Memory Transfers”.

• The GCR Base Register defines the address base of the GCR region. The GCR region has a fixed size of 32 
KB (see Table 8.19), hence no corrresponding Mask register is required. Note that this region must reside on 
a 32 KB boundary.

• The Cluster Power Controller Base Address Register defines the address base of the CPC address region. 
This CPC region may be disabled via the CPC_EN bit in that register. When enabled, the CPC address 
region has a fixed size of 32 KB (see Table 8.32), hence no corrresponding Mask register is required. Note 
that this region must reside on a 32KB boundary.

• The Global Interrupt Controller Base Address Register defines the address base of the GIC address region. 
This GIC region may be disabled via the GIC_EN bit in that register. When enabled, the GIC address region 
has a fixed size of 128 KB (see Table 8.31), hence no corrresponding Mask register is required. Note that 
this region must reside on a 128 KB boundary.

• The CM2 Region [0-3] Base Address Registers define the address base for each of the four programmable 
regions. The regions have a programmable base address and a programmable size that is selected via the cor-
responding Mask register.

• The CM2 Region [0-3] Address Mask Registers define the size for each of the four programmable regions. 
These registers work in conjunction with the corresponding CM2 Region [0-3] Base Address Registers to 
configure a given region.

• The Custom GCR Base Register defines the address base of the Custom GCR region. This region defines 
the location of registers that are implemented by the user. This region may be disabled via the GGU_EN bit 
in the Custom GCR Base Register. When enabled, the Custom GCR region has a fixed size of 64 KB (see 
Table 8.28), hence no corrresponding Mask register is required. Note that this region must reside on a 64 KB 
boundary.
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As described above, the base of each region is defined in the corresponding CM2 Region [0,1,2,3] Address Base 
Register (see Table 8.33), and the size of the region is defined in the corresponding CM2 Region [0,1,2,3] Address 
Mask Register (see Table 8.34). Because a base/mask scheme is used, the base must be located on a boundary of its 
size. A region can be sized from 64K to the entire 32-bit address space. 

As described above, some of the blocks are a fixed size, hence there is no corresponding Mask register. Since the 
GCR, GIC, and CPC blocks each contain a dedicated Base Address register, the Region 0 - 3 registers are used to 
access the memory and IOCU peripherals.

8.2.5.5 Defining the Target Device

Each CM2 Region Address Mask register contains a field that determines how the CM2 routes requests whose address 
matches the corresponding region. As defined in the CM2_REGION_TARGET field, the transaction may be routed to 
memory or to an I/O device via the CM2’s MMIO port and IOCU. A region may be disabled by setting the 
CM2_REGION_TARGET in the corresponding CM2 Region Address Mask register to 0.

The CM2_DEFAULT_TARGET field in the GCR Base Register determines how to route the requests that don’t match 
any of the defined regions. Refer to Section 8.2.13, "Handling of Addresses Not Mapped to a Defined Region" for 
more information.

8.2.5.6 Setting the Cache Coherency Attributes for Region Memory Transfers

As described in Section 8.2.4 “Setting the CM2 Register Block Base Address”, the proAptiv core provides a CCA 
override capability that allows the CCA’s for the L2 cache to be different from those of the L1 data cache.

Table 8.6 Setting the Base Address for the CM2 Peripheral Devices 

Block Register Name
Offset 

Address Field Name Bits Description

GCR GCR_BASE 0x0008 GCR_BASE_ADDR 31:15 Sets the base address of the GCR regis-
ters. This field has a fixed size of 32 KB.

Custom 
GCR

GCR_CUSTOM_BASE 0x0060 CUSTOM_ BASE 31:16 Sets the base address of the Customer 
GCR registers. This field has a fixed size 
of 64 KB.

GIC GCR_GIC_BASE 0x0080 GIC_BASE_ADDR 31:17 Sets the base address of the GIC. This 
field has a fixed size of 128 KB.

CPC GCR_CPC_BASE 0x0088 CPC_BASE_ADDR 31:15 Sets the base address of the CPC. This 
field has a fixed size of 32 KB.

Region 0 GCR_REG0_BASE 0x0090 REGION0_BASE_ADDR 31:16 Sets the base address of region 0 in mem-
ory. Minimum size is 64 KB.

GCR_REG0_MASK 0x0098 REGION0_BASE_MASK 31:16 Sets the size of region 0 in memory.

Region 1 GCR_REG1_BASE 0x00A0 REGION1_BASE_ADDR 31:16 Sets the base address of region 1 in mem-
ory. Minimum size is 64 KB.

GCR_REG1_MASK 0x00A8 REGION1_BASE_MASK 31:16 Sets the size of region 1 in memory.

Region 2 GCR_REG2_BASE 0x00B0 REGION2_BASE_ADDR 31:16 Sets the base address of region 2 in mem-
ory. Minimum size is 64 KB.

GCR_REG2_MASK 0x00B8 REGION2_BASE_MASK 31:16 Sets the size of region 2 in memory.

Region 3 GCR_REG3_BASE 0x00C0 REGION3_BASE_ADDR 31:16 Sets the base address of region 3 in mem-
ory. Minimum size is 64 KB.

GCR_REG3_MASK 0x00C8 REGION3_BASE_MASK 31:16 Sets the size of region 3 in memory.
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This capability can be achieved via the CCA override feature in the CM2 Region Address Map Registers listed in 
Table 8.6. Software can establish up to 4 address map regions by programming the CM2 Region Base Register 0-3 
and CM2 Region Mask Register 0-3.

Programming the CCA

Each region has the CCA_Override_Enable and CCA_Override_Value fields which can be used to set the CCA for 
transactions on the system memory OCP port. If the CCA_Override_Enable field is set to 1 for a given region and the 
corresponding CM2_TARGET field in bits 1:0 is set to memory (0x1), then transactions that map to that region and 
proceed to the system memory port will have a CCA value set to the corresponding CCA_Override_Value for that 
region. This field also determines the CCA value driven to system memory.

Any valid CCA value can be programmed into CCA_Override_Value, but because the L2 does not process coherent 
CCAs, a value of CWB (5) or CWBE (4) is automatically changed to WB (3) by the CM2 before being driven on the 
system memory OCP port. The encoding of the CCA_Override_Value field is identical to that shown in Table 8.8. 

8.2.5.7 Issue Request Protocol and Region Masking

The CM2 contains four region mask registers used to set the size of a given region. These mask registers work in con-
junction with their corresponding base address registers as shown in Table 8.6. The requesting address is logically 
ANDed with the value in the selected Region Address Mask register. At the same time, the value in the corresponding 
REGION_BASE_ADDR field is compared to the value in the Region Address Mask register. If both outputs match, the 
request is routed to this region. 

For example, if the requesting address is compared to the value in the CM2_REGION1_BASE_ADDR and the 
CM2_REGION1_ADDR_MASK registers and there is a match, then the requesting address is routed to region 1. This 
concept is shown in Figure 8.4.

The only allowed values in this register are contiguous sets of leading 0x1’s. An 0x1 preceded by a 0x0 is not allowed 
(e.g., the value of 0xFFF0 is allowed, but the value 0xFFEF is not allowed).
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The following programming sequence is used to configure the memory map as shown in Figure 8.6 above.

1. Sofware programs the GIC_BASE field of the GIC Base register located at offset 0x0080 with a value of 
0x1BDC. This sets the base address of the GIC registers. This block has a fixed size of 128 KB. Refer to bits 
31:17 in Section 8.3.3.1, "Global Interrupt Controller Base Address Register (GCR_GIC_BASE Offset 0x0080)" 
for more information. Note that this block must reside on a 128 KB boundary.

2. Sofware programs the CPC_BASE field of the CPC Base register located at offset 0x0088 with a value of 
0x1BDE_0. This sets the base address of the CPC registers. This block has a fixed size of 32 KB. Refer to bits 
31:15 in Section 8.3.3.2, "Cluster Power Controller Base Address Register (GCR_CPC_BASE Offset 0x0088)" 
for more information. Note that this block must reside on a 32 KB boundary.

3. Software programs the GCR_BASE field of the GCR Base register located at offset 0x0008 with a value of 
0x1FBF_8. This sets the base address of the 32 KB block of GCR registers. This block is divided into four 8 KB 
subblocks that contain the Global, Core-Local, Core-Other, and Debug register blocks. Note that if the MIPS 
default address of 0x1FBF_8 is selected for the base address of the GCR registers during IP configuration, this 
field becomes read-only. In this case, hardware writes the default value of 0x1FBF_8 to this field. Refer to bits 
31:15 in Section 8.3.2.2, "GCR Base Register (GCR_BASE Offset 0x0008)" for more information.

4. Software programs the REGION_BASE_ADDR field of the CM2 Region 0 Base register located at offset 0x0090 
with a value of 0x1FD2. This sets the base address of region 0 to 0x1FD2_0000. Refer to bits 31:16 in Section 
8.3.3.3, "CM2 Region [0 - 3] Base Address Register (GCR_REGn_BASE Offsets 0x0090, 0x00A0, 0x00B0, 
0x00C0)" for more information.

5. Software programs the REGION_ADDR_MASK field of the CM2 Region 0 Address Mask register located at off-
set 0x0098 with a value of 0xFFFF_0000. This sets the size of region 0 to 64 KB. Refer to bits 31:16 in Section 
8.3.3.4, "CM2 Region [0 - 3] Address Mask Register (GCR_REGn_MASK Offsets 0x0098, 0x00A8, 0x00B8, 
0x00C8)" for more information. Other values for this field could be 0xFFFE (128 KB), 0xFFFC (256 KB), etc.

6. Software programs the REGION_BASE_ADDR field of the CM2 Region 1 Base register located at offset 0x00A0 
with a value of 0x1FD3. This sets the base address of region 1 to 0x1FD3_0000. Refer to bits 31:16 in Section 
8.3.3.3, "CM2 Region [0 - 3] Base Address Register (GCR_REGn_BASE Offsets 0x0090, 0x00A0, 0x00B0, 
0x00C0)" for more information.

7. Software programs the REGION_ADDR_MASK field of the CM2 Region 1 Address Mask register located at off-
set 0x00A8 with a value of 0xFFFF_0000. This sets the size of region 1 to 64 KB. Refer to bits 31:16 in Section 
8.3.3.4, "CM2 Region [0 - 3] Address Mask Register (GCR_REGn_MASK Offsets 0x0098, 0x00A8, 0x00B8, 
0x00C8)" for more information. Other values for this field could be 0xFFFE (128 KB), 0xFFFC (256 KB), etc.

8. Software programs the CM2_DEFAULT_TARGET field of the GCR Base register with a value of 2’b00, indicat-
ing that memory is the target device for addresses that do not map to any of the address blocks shown in Figure 
8.6. Refer to bits 1:0 in Section 8.3.2.2, "GCR Base Register (GCR_BASE Offset 0x0008)" for more informa-
tion.

9. Software programs the CM2_TARGET field of the CM2 Region 0 Address Mask register located at offset 0x0098 
with a value of 2’b10. This maps region 0 to IOCU0. 

10. Software programs the CM2_TARGET field of the CM2 Region 1 Address Mask register located at offset 0x00A8 
with a value of 2’b11. This maps region 1 to IOCU1. 
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8.2.7 Core-Local GCRs

The Core-Local GCR block contains the configuration and status registers for a given core. Each core has its own 
copy of Core-Local registers. A core can access its own Core-Local block to determine the programmable parameters 
for that core. Parameters include base address assignments for cache coherency attributes, reset exception base, boot 
exception vector mask, etc.

8.2.8 Core-Other GCRs

The Core-Other GCR block is a single block that all of the cores have access to, and provides a way for one core to 
access the Core-Local registers of another core. Before a core can access the Core-Other space, the Core-Other 
Addressing register in that cores own Core-Local Control Block must be set with the core number (CORENUM) of 
the target core. In this case, a particular core would program the Core-Other Addressing register in its own Core-
Local block with the core number to be accessed. The core would then write the contents of the register to be 
accessed into the Core-Other address space. 

8.2.9 Accessing Another Cores CM2 GCR Registers

As shown in Table 8.1, the CM2 provides two blocks of registers. 

• Core-Local (offset range 0x2000 - 0x3FFF)

• Core-Other (offset range 0x4000 - 0x5FFF)

Each core contains a copy of these registers. The Core-Local address space contains the GCR registers for that core. 
The Core-Other address space allows a core to access the GCR registers for another cores Core-Local GCR block. 

As described in Section 8.2.4, these registers can be located anywhere in physical memory if this option is selected 
during IP configuration. If this option is not selected, the location of these registers are located at the MIPS default 
address of 0x1FBF_8000. Refer to Section 8.1 “Coherence Manager Address Map” and related subsection for more 
information on use of the MIPS default memory location.

The Core-Local block represents registers corresponding to that core. If a core wishes to modify the contents of its 
own set of CM2 GCR registers, it writes to the Core-Local block located at the address range shown in Table 8.1. If a 
core wishes to program the GCR registers of another core, it selects the core number and writes this value into the 
Core-Other Addressing register in its own Core-Local block at offset address 0x0018. The actual register in the other 
core to be written would use the corresponding offset in the Core-Other block shown in Table 8.1.

In a multiprocessor system, it is common for one core to boot up first, then have that core boot the other cores in the 
system. In the following example, assume core 0 is booted up first. Then core 0 is used to program the GCR registers 
in core 1. This example examines how core 0 would program the boot exception vector location for core 1. Note that 
this example uses the MIPS default addressing scheme. The programming sequence would be as follows:

1. Core 0 writes a value of 0x0001 to the CORENUM field (bits 31:16) of the Core-Other Addressing register 
located in its own Core-Local block at offset 0x0018 (physical address of 0x1FBF_A018 in Table 8.3). This indi-
cates that the register to be programmed corresponds to core 1. Refer to Section 8.4.1.3, "Core-Other Addressing 
Register" for more information.

2. Core 0 writes the appropriate value into the BEVEXCBase field (bits 31:12) of the Reset Exception Base register 
located in the Core-Other block at offset 0x0020 (physical address of 0x1FBF_C020 in Table 8.4). Because core 
0 is setting the BEV base value for core 1, as opposed to its own core, the write is done to the Core-Other address 
block. Refer to Section 8.4.1.4, "Core Local Reset Exception Base Register (GCR_Cx_RESET_BASE Offset 
0x0020)" for more information. 
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The boot exception vector relocation pins are described in Table 8.7. 

Table 8.7 proAptiv Boot Exception Vector Pins  

Pin Name
Field Size 

in Bits
CM2 GCR Register 

Mapping Description

SI_EVAReset 1 Bit 31 of the
Core-Local Reset 

Exception Extended Base 
Register

(offset = 0x0030)

If this pin is asserted at reset, the proAptiv core comes 
up in the EVA configuration. In this case the 
CONFIG5.K bit becomes read-only with a fixed value 
of 1 to indicate EVA as the addressing scheme. In addi-
tion, the SegCtl0 - SegCtl2 registers are configured 
with values that correspond to the EVA mapping.

If this pin is not asserted at reset, the proAptiv core 
comes up in the legacy setting. In this case the 
CONFIG5.K bit becomes read-write with an initial 
value of 0 to indicate legacy mode. This bit is modified 
by software when switching from legacy mode to EVA 
mode.

This pin is used in both the legacy and EVA settings. 
There is one SI_EVAReset pin per core.

SI_UseExceptionBase 1 Bit 30 of the
Core-Local Reset 

Exception Extended Base 
Register

(offset = 0x0030)

In the legacy configuration, if the 
SI_UseExceptionBase pin is not asserted, then the 
BEV location defaults to 0xBFC0_0000. 

If the SI_UseExceptionBase pin is asserted, address 
bits SI_ExceptionBase[31:30] are forced to a value of 
2’b10 to force the BEV location into the KSEG0/
KSEG1 space.

This pin is only used in the legacy configuration. There 
is one SI_UseExceptionBase pin per core.

SI_ExceptionBaseMask[27:20] 8 Bits 27:20 of the
Core-Local Reset 

Exception Extended Base 
Register

(offset = 0x0030)

Used to determine the size of the boot exception vector 
overlay region from 1 MB to 256 MB in powers of two. 
These pins are used in both the legacy and EVA config-
urations. There is one set of SI_ExceptionBaseMask 
pins per core. 

SI_ExceptionBasePA[31:29] 3 Bits 3:1 of the
Core-Local Reset 

Exception Extended Base 
Register

(offset = 0x0030)

Upper physical address bits. The size of the overlay 
region defined by SI_ExceptionBaseMask[27:20] is 
remapped to a location in physical address space 
pointed to by the SI_ExceptionBasePA[31:29] pins. 
This allows the overlay region to be placed into one of 
the 512 MB segments in physical memory. These pins 
are used in both the legacy and EVA configurations. 
There is one set of SI_ExceptionBasePA pins per 
core. 
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8.2.11 Coherency Domains

The CM2 provides the COH_DOMAIN_EN field in Core-Local Coherence Control register at offset 0x0008 for man-
aging the coherency aspects of each requestor in the system. There is one register per core. A requestor can be either 
a core or an IOCU. 

In the 8-bit COH_DOMAIN_EN field, each bit corresponds to one requestor. Setting a given bit in the 
COH_DOMAIN_EN field for the GCR local register corresponding to a given core puts that core into coherent mode. 
If the same bit in the COH_DOMAIN_EN is 0 for the GCR local register corresponding to a given core, then that core 
is not in coherence mode and will never issue a coherent request. 

For example, if bit 1 of this field is set, then interventions from core 1 to core 0 are enabled and can occur. Note that 
changing the coherence mode for a local core from 0x1 to 0x0 can only be done after flushing and invalidating all the 
cache lines in the core; otherwise, the system behavior is UNDEFINED.

Also note that if bit 1 of the COH_DOMAIN_EN field is set for the GCR local register corresponding to core 0, then 
software should also set bit 0 of the COH_DOMAIN_EN field for the GCR local register corresponding to core 1.

There is no need to program COH_DOMAIN_EN for the GCR local register corresponding to IOCUs.

Section 7.1.2, "Operating Level Transitions" in Chapter 7 of this manual provides examples of how this field is used 
to transition between coherency domains.

SI_ExceptionBase[31:12] 20 Bits 31:12 of the
Core-Local Reset 

Exception Base Register
(offset = 0x0020)

The SI_ExceptionBase[31:12] pins define the boot 
address in virtual address space which is used to define 
the overlay region. These pins, along with the 
SI_ExceptionBaseMask[27:20] pins, determine the 
size and location of the BEV region within virtual 
address space.
Note that the CONFIG5.K CP0 register bit is used to 
determine which pins of the 
SI_ExceptionBase[31:12] address are used to calcu-
late the overlay.
These pins are used in the EVA setting and can also be 
used in the legacy setting. There is one set of 
SI_ExceptionBase pins per core. 

Table 8.7 proAptiv Boot Exception Vector Pins (continued) 

Pin Name
Field Size 

in Bits
CM2 GCR Register 

Mapping Description
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Figure 8.9 Encoding of COH_DOMAIN_EN Field — 2 or 4 Core Package 

Core 0's COH_DOMAIN_EN

If 1 then Core 0 is in coherence mode

If 1 then Coherent requests from Core 1 are sent to Core 0

7 6 5 4 3 2 1 0

If 1 then Coherent requests from Core 2 are sent to Core 0

If 1 then Coherent requests from Core 3 are sent to Core 0

If 1 then Coherent requests from IOCU 0 are sent to Core 0. 

If 1 then Coherent requests from IOCU 1 are sent to Core 0.

Core 1's COH_DOMAIN_EN

If 1 then Core 1 is in coherence mode

If 1 then Coherent requests from Core 0 are sent to Core 1

7 6 5 4 3 2 1 0

If 1 then Coherent requests from Core 2 are sent to Core 1

If 1 then Coherent requests from Core 3 are sent to Core 1

This bit is unused in 2 or 4 core systems.

This bit is unused in 2 or 4 core systems.

If 1 then Coherent requests from IOCU 0 are sent to Core 1. 

If 1 then Coherent requests from IOCU 1 are sent to Core 1.

This bit is unused in 2 or 4 core systems.

This bit is unused in 2 or 4 core systems.
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Figure 8.10 Encoding of COH_DOMAIN_EN Field — 6 Core Package

8.2.12 L2-Only SYNC Operation

In previous generation MIPS processors, the execution of a SYNC instruction would cause the entire core pipeline to 
stall until all read/write requests were completed. This included the L2 pipeline. After all instructions had been com-
pleted, a signal was sent to the L2 cache to continue. This caused a sometimes unnecessary stalling of the L2 cache.

The proAptiv core provides a way to perform a SYNC operation on only the L2 cache. The core defines a fixed 4 KB 
address space for performing L2 only SYNC operations. The base address for the location of this fixed 4 KB segment 
is programmed using bits 31:12 of the L2-Only Sync Base register located at offset 0x0070. 

Bit 0 of the L2-Only Sync Base register enabled the L2-only SYNC function. If this bit is set, the CM2 treats an 
uncached write to anywhere within the 4 KB block as an L2-only SYNC. This operation does not write anything to 
memory, but rather just initiates the L2-only SYNC. 

The L2-only SYNC provides a way for the software to ensure that subsequent uncached loads and stores from a core 
will not pass previous L2 cache operations, such as L2 cacheops.

Note that the L2-Only SYNC is not required, but it can be useful for optimizing performance. Since the L2-Only 
SYNC operation does not synchronize to the L1 caches, care should be taken to ensure correct system functionality.

As an example of how this operation works, assume the 4 KB block is located at offset address 0x8000 as shown in 
Figure 8.11.

If 1 then Core 0 is in coherence mode

If 1 then Coherent requests from Core 1 are sent to Core 0

If 1 then Coherent requests from IOCU 0 are sent to Core 0

If 1 then Coherent requests from Core 3 are sent to Core 0

If 1 then Coherent requests from IOCU 1 are sent to Core 0

If 1 then Core 1 is in coherence mode

If 1 then Coherent requests from Core 3 are sent to Core 1

Core 0's COH_DOMAIN_EN 7 6 5 4 3 2 1 0

If 1 then Coherent requests from Core 2 are sent to Core 0

Core 1's COH_DOMAIN_EN

If 1 then Coherent requests from Core 0 are sent to Core 1

7 6 5 4 3 2 1 0

If 1 then Coherent requests from Core 2 are sent to Core 1

If 1 then Coherent requests from Core 5 are sent to Core 0

If 1 then Coherent requests from Core 4 are sent to Core 0

If 1 then Coherent requests from IOCU 0 are sent to Core 1

If 1 then Coherent requests from IOCU 1 are sent to Core 1

If 1 then Coherent requests from Core 5 are sent to Core 1

If 1 then Coherent requests from Core 4 are sent to Core 1
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The default region determined by the GCR Base Address register described in Section 8.2.4 above contains a mecha-
nism for modifying the cache coherency attributes of the base region relative to that of the L1 cache. The attributes 
are programmed using the CCA_Override_Enable (bit 4) and CCA_Override_Value (bits 7:5) fields in the CM2 GCR 
Base Address Register. Addresses that do not map to any other region are mapped to the default region. 

Any valid CCA value can be programmed into CCA_Override_Value, but because the L2 does not process coherent 
CCAs, a value of CWB (0x5) or CWBE (0x4) is automatically changed to WB (0x3) by the CM2 before being driven 
on the system memory OCP port.

The various coherency options are shown in Table 8.8. Note that the CCA overrides shown below only affect the L2 
cache and not the L1 cache. 

The CCA_Override_Enable (bit 4) must be set in order for the CCA_Override_Value field to have meaning. 

When overriding a CCA value, the CCA used withing the L2 cache and driven to the system memory OCP interface 
is affected. Otherwise, the functionality of the transaction within the CM2 is based on the original CCA. Transactions 
that are not routed to the system memory OCP port, such as accesses to GCRs, GIC, CPC, or MMIO are also unaf-
fected by the CCA Override.

8.2.15 In-Flight L1 and L2 Cache Operations

A core has the ability to issue a steady stream of cache operations and can potentially saturate the CM2 resources. To 
mitigate the possibility of this happening, the CM2 provides a mechanism to limit the number of successive cache 
transactions by a particular core. This limits a single core from issuing cache operations in rapid succession. The 
CM2 provides limits for both the L1 cache and the L2 cache via the Global CM2 Control2 register located at offset 
address 0x0018. The default limit for successive L2 cache operations is four, meaning that a given core can execute a 
maximum of four cache operations (bits 19:16). For the L1 cache the limit is six cache operations (bits 3:0).

Setting a value of 0x0 in either of these fields disables this limitation. In this case the CM2 will not limit the number 
of successive cache operations that can be issued by a single core.

Table 8.8 Cache Coherency Attributes

Encoding Name Descriptions

0x0 WT Write through.

0x1 — Reserved.

0x2 UC Uncached.

0x3 WB Writeback, cacheable, non-coherent.

0x4 CWBE Coherent writeback exclusive. Since the CM2 does not process coher-
ent CCA’s, this encoding automatically maps to WB (0x3).

0x5 CWB Coherent writeback. Since the CM2 does not process coherent CCA’s, 
this encoding automatically maps to WB (0x3).

0x6 — Reserved.

0x7 UCA Uncached accelerated.
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8.2.16 MIPS System Trace

The MIPS System trace is a new feature to the proAptiv Multiprocessing System Multiprocessing System and allows 
the SoC designer to place signals from their non-probe SoC logic directly into the trace funnel for PDTrace to cap-
ture. The logic and registers that controls System Trace are handled by the CM2. Refer to Chapter 8 of the proAptiv 
Multiprocessing System Multiprocessing System Hardware User’s Manual for more information on MIPS System 
Trace.

8.2.17 Error Processing

The CM2 detects, reports, and handles several types of errors that may be caused by errant software or hardware soft 
or hard errors. Table 8.9 lists the errors detected by the CM2. The first 7 errors are invalid requests to the GCR, GIC, 
or MMIO. There are two errors for invalid intervention responses due to inconsistent L1 cache states. And there are 3 
errors due to L2 RAM parity errors.

When an error is detected, information that may be useful in debugging the error is captured in the Global CM2 Error 
Cause Register and Global CM2 Error Address Register. Refer to Section 8.3.2.8, "Global CM2 Error Cause Register 
(GCR_ERROR_CAUSE Offset 0x0048)" and Section 8.3.2.9, "Global CM2 Error Address Register 
(GCR_ERROR_ADDR Offset 0x0050)" for more information.

If these registers already have valid error information and a second error is detected, the error type of the second error 
is captured in the CM2 Error Multiple Register. However, an L2 ram correctable error is overwritten by a 2nd error that 
is not a second L2 ram correctable error. Refer to Section 8.3.2.10, "Global CM2 Error Multiple Register 
(GCR_ERROR_MULT Offset 0x0058)" for more information. Note that for the second error, only the error type is 
captured, not the associated error address.

When the Global CM2 Error Cause Register is loaded, an interrupt may be generated if the corresponding bit for that 
type of error is set in the Global CM2 Error Mask Register (see Table 8.24). If the error was generated by a request that 
requires a response and the corresponding Global CM2 Error Mask Register bit is 0, then the CM2 issues an ERROR 
response. However, if the corresponding Global CM2 Error Mask Register bit is 1, then the CM2 issues a normal 
response and an interrupt will be generated instead. 

Table 8.9 CM2 Error Types 

CM2_ERROR_
TYPE Error Name Description Action

0 - Reserved -

1 GC_WR_ERR Non-Coherent Write of length > 1 to 
GCR or GIC

Drop Write
Signal Interrupt if CM_ERROR_MASK[1] = 1

2 GC_RD_ERR Non_Coherent Read of length > 1 to 
GCR or GIC

No GCR access
Return SResp = ERROR if 
CM_ERROR_MASK[2] = 0
Signal Interrupt if CM2_ERROR_MASK[2] = 1

3 COH_WR_ERR Coherent Writeback, Cacheop, or 
CohWriteInvalidate to GIC, GCR, 
MMIO

Intervention occurs
Signal Interrupt if CM_ERROR_MASK[3] = 1

4 COH_RD_ERR Coherent Read to GIC, GCR, MMIO Intervention occurs
After intervention, return SResp = ERROR to the 
original requestor if CM_ERROR_MASK[4] = 0
Signal Interrupt if CM_ERROR_MASK[4] = 1
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When an error occurs, hardware updates the read-only CM2_ERROR_TYPE field in bits 31:27 of the Global Config 
register with one of the values listed in Table 8.9 above. Refer to Section 8.3.2.1 “Global Config Register 
(GCR_CONFIG Offset 0x0000)” for more information. When this field is written, hardware also updates the 27-bit 
ERROR_INFO field that provides additional information about the error. The organization of this field varies 
depending on the value in the CM2_ERROR_TYPE field. 

5 MMIO_WR_ERR Write to MMIO from the IOCU
(only occurs if 
CM_DISABLE_MMIO_LIMIT = 0)

Drop Write
Signal Interrupt if CM_ERROR_MASK[5] = 1

6 MMIO_RD_ERR Write to MMIO from the IOCU
(only occurs if 
CM_DISABLE_MMIO_LIMIT = 0)

Return SResp = ERROR if 
CM_ERROR_MASK[6] = 0
Signal Interrupt if CM_ERROR_MASK[6] = 1

17 INTVN_WR_ERR Request does not require a response 
and: 
One core responded with M and one or 
more cores responded with E, or S
or 
One core responded with E and one or 
more cores responded with S
or Multiple cores responded with data

If multiple M or E responses then data from core 
with lowest port ID is used.

Signal Interrupt if CM_ERROR_MASK[17] = 1

18 INTVN_RD_ERR Request requires a response and: 
One core responded with M and one or 
more cores responded with E, or S
or 
One core responded with E and one or 
more cores responded with S
or Multiple cores responded with data

If multiple M or E responses then data from core 
with lowest port ID is used.
Return SResp = ERROR if 
CM_ERROR_MASK[18] = 0
Signal Interrupt if CM_ERROR_MASK[18] = 1

24 L2_RD_UNCORR Request requires a response and: 
an uncorrectable parity/ECC error 
occurred during an access to an L2 
RAM

Signal Interrupt if CM_ERROR_MASK[24] = 1

25 L2_WR_UNCORR Request does not require a response 
and: 
an uncorrectable parity/ECC error 
occurred during an access to an L2 
RAM

Signal Interrupt if CM_ERROR_MASK[25] = 1

26 L2_CORR A correctable parity/ECC error 
occurred during an access to an L2 
RAM

Signal Interrupt if CM_ERROR_MASK[26] = 1

Table 8.9 CM2 Error Types (continued)

CM2_ERROR_
TYPE Error Name Description Action
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8.2.17.1 Error Codes 1 - 15

If the decimal value in the CM2_ERROR_TYPE field is between 1 and 15, the ERROR_INFO field in the Global 
CM2 Error Cause register is organized as shown in Table 8.10.

As shown in the above table, the OCP MCmd field in bits 11:7 is further encoded as shown in Table 8.11 below. 

Consider the example where a coherent write error occurs to the MMIO region during a coherent writeback opera-
tion. In this case, the Global Config register would be programmed by hardware as follows:

Table 8.10 State of ERROR_INFO Field for Error Types 1 through 15

Bits Meaning

26:18 Reserved.

17:15 CCA

14:12 Target Region (0: MEM, 1:GCR, 2: GIC, 3: MMIO, 5: CPC)

11:7 OCP MCmd (see Table 8.11)

6:3 Source TagID

2:0 Source Port

Table 8.11 MCmd (Bits 11:7) Encoding for CM2_ERROR_INFO 

MCmd Encoding Description

0x01 Legacy Write

0x02 Legacy Read

0x08 Coherent Read Own

0x09 Coherent Read Share

0x0A Coherent Read Discard

0x0B Coherent Ready Share Always

0x0C Coherent Upgrade

0x0D Coherent Writeback

0x10 Coherent Copyback

0x11 Coherent Copyback Invalidate

0x12 Coherent Invalidate

0x13 Coherent Write Invalidate

0x14 Coherent Completion Sync
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8.2.17.3 Error Codes 24 - 26

If the decimal value in the CM2_ERROR_TYPE field is between 24 and 26, the ERROR_INFO field in the Global 
Config register is organized as shown in Table 8.15.  

For each of the errors types 24 - 26 listed in Table 8.9, the instruction associated with the error is encoded into bits 
22:18 of the ERROR_INFO field as shown in Table 8.15. The encoding for these bits is shown in Table 8.16 below. 

Table 8.15 State of ERROR_INFO Field for Error Types 24 to 26

Bit Meaning

26:24 Reserved (zero)

23 Multiple Uncorrectable

22:18 Instruction[4:0] associated with the error
see Table 8.16

17:16 Array type[1:0]:
00 = None
01 = Tag RAM single/double ECC error
10 = Data RAM single/double ECC error
11 = WS RAM uncorrectable dirty parity

15:12 DWord[3:0] with error, Array type = 2 only

11:9 Way[2:0] associated with the error

8 Multi-way error for Tag or WS RAM

7:0 Syndrome associated with Tag or WS way, or Syndrome associated 
with Data DWord

Table 8.16 Instructions for Error Type 24 to 26 

Bit Meaning

0x00 L2_NOP

0x01 L2_ERR_CORR

0x02 L2_TAG_INV

0x03 L2_WS_CLEAN

0x04 L2_RD_MDYFY_WR

0x05 L2_WS_MRU

0x06 L2_EVICT_LN2

0x08 L2_EVICT

0x09 L2_REFL

0x0A L2_RD

0x0B L2_WR

0x0C L2_EVICT_MRU

0x0D L2_SYNC

0x0E L2_REFL_ERR

0x10 L2_INDX_WB_INV

0x11 L2_INDX_LD_TAG
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Registers (GCR_REGn_ATTR_MASK Offsets 0x0198, 0x1A8, 0x218, 0x228)" contain the size of the region and 
the CCA override information.

These registers are shown starting at offset address 0x0190 in Table 8.17 below:

8.3 Global Control Block

8.3.1 Global Control Block Address Map

All registers in the Global Control Block are 32 bits wide and should only be accessed using 32-bit uncached load/
stores. Reads from unpopulated registers in the GCR address space return 0x0, and writes to those locations are 
silently dropped without generating any exceptions.  

Table 8.17 Global Control Block Register Map (Relative to Global Control Block offset)

Register Address Name Type Description

0x0000 Global Config Register
(GCR_CONFIG)

R Indicates the number of Processor cores, 
number of interrupts, number of IOCUs, 
etc.

0x0008 GCR Base Register
(GCR_BASE)

R/W Base of the Control Register Space

0x0010 Global CM2 Control Register
(GCR_CONTROL)

R/W Control bits for the Coherence Manager

0x0018 Global CM2 Control2 Register
(GCR_CONTROL2)

R/W More Control bits for the Coherence Man-
ager

0x0020 Global CSR Access Privilege Register
(GCR_ACCESS)

R/W Controls which Cores can modify the GCR 
Registers

0x0030 GCR Revision Register
(GCR_REV)

R RevisionID of the GCR hardware

0x0040 Global CM2 Error Mask Register
(GCR_ERROR_MASK)

R/W Controls what Errors are reported as Inter-
rupts

0x0048 Global CM2 Error Cause Register
(GCR_ERROR_CAUSE)

R/W Captures info when an Error occurs within 
the CM2

0x0050 Global CM2 Error Address Register
(GCR_ERROR_ADDR)

R/W Captures address which caused the CM2 
error. 

0x0058 Global CM2 Error Multiple Register
(GCR_ERROR_MULT)

R/W Captures information for subsequent CM2 
errors.

0x0060 GCR Custom Base Register
(GCR_CUSTOM_BASE)

R/W Base address of the custom user-defined 
64KB control register space.

0x0068 GCR Custom Status Register
(GCR_CUSTOM_STATUS)

R/W Existence and status of the custom user-
defined GCR

0x0070 Global L2 only Sync Register
(GCR_L2_ONLY_SYNC_BASE)

R/W Base address of the L2 only Sync 4KB 
address space

0x0080 Global Interrupt Controller Base Address Register
(GCR_GIC_BASE)

R/W GIC Base Address
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0x0088 Cluster Power Controller Base Address Register
(GCR_CPC_BASE)

R/W CPC Base Address

0x0090 CM2 Region0 Base Address Register
(GCR_REG0_BASE)

R/W Address Region0 Base Address
This register is present only when the IOCU 
is present

0x0098 CM2 Region0 Address Mask Register
(GCR_REG0_MASK)

R/W Address Region0 Size and Destination
This register is present only when the IOCU 
is present

0x00A0 CM2 Region1 Base Address Register
(GCR_REG1_BASE)

R/W Address Region1 Base Address
This register is present only when the IOCU 
is present

0x00A8 CM2 Region1 Address Mask Register
(GCR_REG1_MASK)

R/W Address Region1 Size and Destination
This register is present only when the IOCU 
is present

0x00B0 CM2 Region2 Base Address Register
(GCR_REG2_BASE)

R/W Address Region2 Base Address
This register is present only when the IOCU 
is present

0x00B8 CM2 Region2 Address Mask Register
(GCR_REG2_MASK)

R/W Address Region2 Size and Destination
This register is present only when the IOCU 
is present

0x00C0 CM2 Region3 Base Address Register
(GCR_REG3_BASE)

R/W Address Region3 Base Address
This register is present only when the IOCU 
is present

0x00C8 CM2 Region3 Address Mask Register
(GCR_REG3_MASK)

R/W Address Region3 Size and Destination
This register is present only when the IOCU 
is present

0x00D0 Global Interrupt Controller Status Register
(GCR_GIC_STATUS)

R Existence and status of GIC

0x00E0 Cache Revision Register
(GCR_CACHE_REV)

R Revision of cache attached to the coherent 
Cluster.

0x00F0 Cluster Power Controller Status Register
(GCR_CPC_STATUS)

R Existence and status of CPC.

0x0190 CM Attribute-Only Region0 Base Address Register
(GCR_REG0_ATTR_BASE)

R/W Attribute Only Region.

0x0198 CM Attribute-Only Region0 Address Mask Register
(GCR_REG0_ATTR_MASK)

R/W Attribute Only Region.

0x01A0 CM Attribute-Only Region1 Base Address Register
(GCR_REG0_ATTR_BASE)

R/W Attribute Only Region.

0x01A8 CM Attribute-Only Region1 Address Mask Register
(GCR_REG1_ATTR_MASK)

R/W Attribute Only Region.

0x0200 IOCU Revision Register
(GCR_IOCU1_REV)

R Revision of IOCU

0x0210 CM Attribute-Only Region2 Base Address Register
(GCR_REG2_ATTR_BASE)

R/W Attribute Only Region.

0x0218 CM Attribute-Only Region2 Address Mask Register
(GCR_REG2_ATTR_MASK)

R/W Attribute Only Region.

Table 8.17 Global Control Block Register Map (Relative to Global Control Block offset)

Register Address Name Type Description
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8.3.2 CM2 Configuration Registers

This section describes the CM2 configuration registers, including control, error and mask, revision, and custom-GCR 
registers.

8.3.2.1 Global Config Register (GCR_CONFIG Offset 0x0000)

This register provides information on the overall system configuration. These fields are read-only and their reset state 
is determined at IP configuration time. Refer to Section 8.2.5, "Address Regions" for more information on how the 
address regions are used. 

Figure 8.16 Global Configuration Register Format  

0x0220 CM Attribute-Only Region3 Base Address Register
(GCR_REG3_ATTR_BASE)

R/W Attribute Only Region.

0x0228 CM Attribute-Only Region3 Address Mask Register
(GCR_REG3_MASK)

R/W Attribute Only Region.

All Others RESERVED - For Future Extensions

31 20 19 16 15 12 11 8 7 0

R ADDR_REGIONS R NUMIOCU PCORES

Table 8.18 Global Config Register Descriptions 

Name Bits Description
Read/
Write Reset State

RESERVED 31:20 Reserved, Read as 0x0. Writes ignored. Must be written 
with a value of 0x0. 

R -

ADDR_REGIONS 19:16 Number of address regions. Total number of CM2 
Address Regions. Note: only 0, 4, 6, or 8 address regions 
are currently supported. All other encoded values not 
listed below are reserved.
. 

R IP Configuration Value

RESERVED 15:12 Read as 0x0. Writes ignored. Must be written with a 
value of 0x0. 

R -

Table 8.17 Global Control Block Register Map (Relative to Global Control Block offset)

Register Address Name Type Description

Encoding Meaning

0x0 0 Address Regions - no IOCU
0x4 4 Address Regions - standard
0x6 6 Address Regions - 4 standard + 2 

Attribute Only
0x8 8 Address Regions - 4 standard + 4 

Attribute Only
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NUMIOCU 11:8 Total number of IOCUs in the system. Note: only 0, 1, or 
2 IOCU’s are currently supported.

R IP Configuration Value

PCORES 7:0 Total number of proAptiv cores in the system not includ-
ing the IOCUs. All values not shown are reserved.

R IP Configuration Value

Table 8.18 Global Config Register Descriptions 

Name Bits Description
Read/
Write Reset State

Encoding Meaning

0x0 0 IOCU
0x1 1 IOCUs
0x2 2 IOCUs

0x3 - 0xF Reserved

Encoding Meaning

0x00 1 core
0x01 2 cores
0x02 3 cores
0x03 4 cores
0x04 Reserved
0x05 6 cores

No 5-core option
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8.3.2.2 GCR Base Register (GCR_BASE Offset 0x0008)

Within the physical address space, the location of the GCR is set by the GCR_BASE register. The MIPS default 
power-up value produces the physical address 0x1FBF_8000. A different default value may be specified at IP config-
uration time. 

Refer to Section 8.2.4, "Setting the CM2 Register Block Base Address" and Section 8.2.14, "Setting the Cache 
Coherency Attributes for Default Memory Transfers" for more information on how this register is used. 

Figure 8.17 GCR Base Register Format  
31 15 14 8 7 5 4 3 2 1 0

GCR_BASE R CCA CCAEN R CM2_TARGET

Table 8.19 GCR Base Register Descriptions 

Name Bits Description
Read/
Write Reset State

GCR_BASE 31:15 This field sets the base address of the 32KB GCR block of the 
proAptiv MPS. 
This register has a fixed value after reset if configured as Read-
Only (an IP Configuration Option).

R or R/W
(IP Config-

uration)

IP Configuration Value 
MIPS Default: 0x1FBF_8

RESERVED 14:8 Reads as 0x0. Must be written with a value of 0x0. R 0

CCA 7:5 CCA default override value. Used in conjunction with CCAEN 
to force the Cache Coherence Attribute (CCA) value for transac-
tions on the system memory OCP. See CCAEN field.

R/W 0

CCAEN 4 If CCA_DEFAULT_OVERRIDE_ENABLE is set to 1 and 
CM2_DEFAULT_TARGET is set to Memory, then transactions 
with addresses that do not map to any region will have a CCA 
value set to CCA_DEFAULT_OVERRIDE_VALUE when 
driven to system memory.

R/W 0

RESERVED 3:2 Read as 0x0. Must be written with a value of 0x0. - 0x0

Encoding Name Description

0x0 WT Write Through
0x1 - Reserved
0x2 UC Uncached
0x3 WB Writeback, cacheable, 

noncoherent 
0x4 CWBE Mapped to WB
0x5 CWB Mapped to WB
0x6 - Reserved
0x7 UCA Uncached Accelerated
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8.3.2.3 Global CM2 Control Register (GCR_CONTROL Offset 0x0010)

Figure 8.18 Global CM2 Control Register Format  

CM2_DEFAULT_
TARGET

1:0 Determines the target device for addresses which do not match 
any address map entry. 

Only used for hardware I/O-Coherent systems.

R/W Value of signal 
SI_CM_Default_
Target[1:0] 

31 17 16

R SYNCCTL

15 8 7 6 5 4 3 2 1 0

R U SYNCDIS IVU_EN SHST_EN PARK_EN MMIO_LIMIT_DIS SPEC_READ_EN

Table 8.20 Global CM2 Control Register Descriptions 

Name Bits Description
Read/
Write

Reset 
State

RESERVED 31:17 Read as 0x0. Must be written with a value of 0x0. - 0x0

SYNCCTL 16 Determines SYNC behavior when a SYNC level 0x0 is 
executed by a core.
SyncCtl = 1 means Sync0 generates a memory sync 
SyncCtl = 0 means Sync0 generates an intervention sync

RW 0x0

RESERVED 15:8 Read as 0x0. Must be written with a value of 0x0. R 0x0

UNUSED 7:6 These bits are currently unused. When writing to this reg-
ister, software should assign a value of 2’b00 to this field.

R/W 0x0

SYNCDIS 5 SYNC transmit disable. Set to 1 to disable the propagation 
of SYNC transactions on the system memory port. This 
has the same effect as deasserting SI_SyncTxEn. 
Setting to 0 makes the propagation of SYNC transactions 
on the system memory port dependent solely on the state 
of SI_SyncTxEn. Refer to the pin descriptions chapter in 
the proAptiv Hardware User’s Manual for more informa-
tion on this pin.

RW 0x0

Table 8.19 GCR Base Register Descriptions (continued)

Name Bits Description
Read/
Write Reset State

Encoding Meaning

0 Memory
1 Reserved
2 IOCU 0
3 IOCU 1
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IVU_EN 4 Stall until interventions are completed.
Set to 1 to stall serialization when a core’s clock is stop-
ping or is being powered down by the CPC until all previ-
ous interventions are complete. 
Set to 0 for no stalling of serialization when a core is 
going offline.

RW 0x0

SHST_EN 3 Force coherent read data to shared state in L1 data cache.

If set to 1 then Coherent Read Data is always installed in 
the Level 1 cache of the requesting proAptiv Multipro-
cessing System core in the SHARED state.

If set to 0 then Coherent Read Data may be installed in the 
Level 1 cache in the SHARED state (if the data coexists in 
other Level 1 caches) or EXCLUSIVE (if the data does 
not coexist in other Level 1 caches).

RW 0x0

PARK_EN 2 I/O port parking enable.

If set to 1 and the SI<iocu>_CMP_IOC_ParkEn signal 
is 1, then I/O Port Parking is enabled for the correspond-
ing IOCU. I/O Port parking is a mechanism where the 
CM2 only serializes requests from the IOCU for some 
period of time.

If set to 0 or SI<iocu>_CMP_IOC_ParkEn signal is 0, 
then the I/O Port Parking is disabled for the corresponding 
IOCU.

This bit has no effect in systems without an IOCU (i.e., 
they are not hardware I/O coherent). 

RW 0x0

MMIO_LIMIT_DIS 1 Limit requests to memory-mapped I/O.

If set to 0, the CM2 avoids deadlock in systems with hard-
ware I/O coherence by limiting requests issued to Mem-
ory-Mapped I/O. An MMIO request will be selected for 
serialization only if the previous request and write data (if 
applicable) has been accepted by the IOCU.

If set to 1, MMIO requests are not limited and therefore 
deadlock may occur in systems with hardware I/O coher-
ence unless avoided by some other mechanism.

This bit has no effect in systems without an IOCU (i.e., 
they are not hardware I/O coherent) because there are no 
MMIO ports and therefore the limit does not apply.

RW 0x0

Table 8.20 Global CM2 Control Register Descriptions (continued)

Name Bits Description
Read/
Write

Reset 
State
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8.3.2.4 Global CM2 Control2 Register (GCR_CONTROL2 Offset 0x0018)

This register sets limits on how many consecutive cache operations are allowed to the L1 and L2 caches. Refer to 
Section 8.2.15, "In-Flight L1 and L2 Cache Operations" for more information on how this register is used. 

SPEC_READ_EN 0 Speculative coherent read enable.

If set to 1, the CM2 may speculatively read memory for a 
coherent read before the intervention for that read has 
completed. Performance is improved by reading memory 
in parallel with the intervention.
If set to 0, the CM2 will never issue speculative reads to 
memory.

R/W 0x1

Table 8.20 Global CM2 Control Register Descriptions (continued)

Name Bits Description
Read/
Write

Reset 
State
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Figure 8.19 Global CM2 Control2 Register Format  
31 20 19 16 15 4 3 0

R L2_CACEOP_LIMIT R L1_CACEOP_LIMIT

Table 8.21 Global CM2 Control2 Register 

Name Bits Description
Read/
Write

Reset 
State

RESERVED 31:20 Read as 0x0. Writes ignored. Must be written with a value 
of 0x0.

- 0x0

L2_CACHEOP_LIMIT 19:16 L2 CacheOp transaction limit.

The total number of L2 CacheOp transactions allowed by 
the CM2 serialization arbiter to be simultaneously in-
flight. An L2 CacheOp is defined as any transaction with 
MAddrSpace = 0b001 or 0b010. In this context, an L2 
CacheOp transaction is considered in-flight when it is 
selected for serialization by the CM2 until the request is 
issued on the CM2’s system memory OCP Port.

Setting a value of 0x0 disables the limit (i.e., the CM2 
serialization arbiter will not explicitly limit the number of 
in-flight L12 CacheOps). 

Setting a value of 0x1 allows only a single in-flight L2 
CacheOp. Setting a value of 0x2 allows two in-flight L2 
CacheOps, etc...

The purpose of this limit is to avoid the case where one or 
more cores substantially impact the performance of other 
cores by issuing a rapid succession of L2 CacheOps.

R/W 0x4

RESERVED 15:4 Read as 0x0. Writes ignored. Must be written with a value 
of 0x0.

- 0x0
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8.3.2.5 Global CSR Access Privilege Register (GCR_ACCESS Offset 0x0020)

A request can be initiated by either a core or an IOCU. The CM2 allows for a maximum of eight requestors; six cores 
and two IOCU’s. However, these requestors do not have unrestricted access to the CM2 register set and must be 
granted permission by software via this register. Refer to Section 8.2.2, "Requestor Access to GCR Registers" for 
more information on how this register is used. 

Figure 8.20 Global CSR Access Privilege Register Format  

L1_CACHEOP_LIMIT 3:0 L1 CacheOp transaction limit.

The total number of L1 CacheOp transactions allowed by 
the CM2 serialization arbiter to be simultaneously in-
flight. A L1 CacheOp is defined as a transaction with 
MAddrSpace = 0b011 or 0b1xx. In this context, a transac-
tion is considered in-flight when it is selected for serializa-
tion by the CM2 until its intervention response is 
processed by the CM2 (if the cacheOp did not receive a 
DVA intervention response) or until all intervention data 
has been received (if the cacheOp received a DVA inter-
vention response). 

Setting a value of 0x0 disables the limit (i.e., the CM2 
serialization arbiter will not explicitly limit the number of 
in-flight L1 CacheOps). 
Setting a value of 0x1 allows only a single in-flight L1 
CacheOp. Setting a value of 0x2 allows two in-flight L1 
CacheOps, etc...

The purpose of this limit is to avoid the case where one or 
more cores substantially impact the performance of other 
cores by issuing a rapid succession of L1 CacheOps that 
receive an intervention response of DVA.

R/W 0x6

31 8 7 0

R CM2_ACCESS_EN

Table 8.22 Global CSR Access Privilege Register Descriptions  

Name Bits Description
Read/
Write Reset State

RESERVED 31:8 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R 0x0000_00

Table 8.21 Global CM2 Control2 Register (continued)

Name Bits Description
Read/
Write

Reset 
State
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8.3.2.6 CM2 Revision Register (GCR_REV Offset 0x0030)

Figure 8.21 GCR Revision Register Format 

CM2_ACCESS_EN 7:0 Requester access to global control registers. Each bit in 
this field represents a coherent requester. 

If the bit is set, that requester is able to write to the GCR 
registers (this includes all registers within the Global, 
Core-Local, Core-Other, and Global Debug control 
blocks. The GIC is always writable by all requestors). 

If the bit is clear, any write request from that requestor to 
the GCR registers (Global, Core-Local, Core-Other, or 
Global Debug control blocks) will be dropped. 

R/W 0xFF

31 16 15 8 7 0

R MAJOR_REV MINOR_REV

Table 8.23 GCR Revision Register Descriptions

Name Bits Description
Read/
Write

Reset 
State

RESERVED 31:16 Reads as 0x0. Must be written with a value of 0x0. R 0x0000

MAJOR_REV 15:8 CM2 Major revision number.

This field reflects the major revision of the GCR block. A 
major revision might reflect the changes from one product 
generation to another. 

This value changes based on the processor revision. Refer 
to the errata sheet of the proAptiv core for the exact value 
of this field.

R Preset

MINOR_REV 7:0 CM2 Minor revision number.

This field reflects the minor revision of the GCR block. A 
minor revision might reflect the changes from one release 
to another. 

This value changes based on the processor revision. Refer 
to the errata sheet of the proAptiv core for the exact value 
of this field.

R Preset

Table 8.22 Global CSR Access Privilege Register Descriptions(continued) 

Name Bits Description
Read/
Write Reset State
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8.3.2.7 Global CM2 Error Mask Register (GCR_ERROR_MASK Offset 0x0040)

This register is used in conjunction with the Global CM2 Error Cause and Global CM2 Error Address registers to 
determine the type of error and the address which caused the error. Refer to Section 8.2.17, "Error Processing" for 
more information on how this register is used. 

Figure 8.22 Global CM2 Error Mask Register Format  

8.3.2.8 Global CM2 Error Cause Register (GCR_ERROR_CAUSE Offset 0x0048)

This register is used in conjunction with the Global CM2 Error Mask and Global CM2 Error Address registers to deter-
mine the type of error and the address which caused the error. Refer to Section 8.2.17, "Error Processing" for more 
information on how this register is used. 

Figure 8.23 Global CM2 Error Cause Register Format  

 

31 0

CM2_ERROR_MASK

Table 8.24 Global CM2 Error Mask Register Descriptions

Name Bits Description
Read/
Write Reset State

CM2_ERROR_MASK 31:0 CM2 Error Mask field.

Each bit in this field represents an Error Type. If the bit is 
set, an interrupt is generated if an error of that type is 
detected. 

If the bit is set, the transaction for Read-Type Errors com-
pletes with OK response to avoid double reporting of the 
error. 

The Error Types that can be captured are implementation- 
specific.

R/W 0x000A_002A
(write errors cause 

interrupts;
read errors provide 

error response)

31 27 26 0

CM2_ERROR_TYPE ERROR_INFO

Table 8.25 Global CM2 Error Cause Register Descriptions

Name Bits Description
Read/
Write Reset State

CM2_ERROR_TYPE 31:27 Indicates type of error detected. 
When CM2_ERROR_TYPE is zero, no errors have been 
detected. When CM2_ERROR_TYPE is non-zero, another 
error will not be reloaded until a power-on reset or this field 
is written to 0.

R/W 0
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8.3.2.9 Global CM2 Error Address Register (GCR_ERROR_ADDR Offset 0x0050)

This register is used in conjunction with the Global CM2 Error Cause and Global CM2 Error Mask registers to deter-
mine the type of error and the address which caused the error. Refer to Section 8.2.17, "Error Processing" for more 
information on how this register is used. 

Figure 8.24 Global CM2 Error Address Register Format  

8.3.2.10 Global CM2 Error Multiple Register (GCR_ERROR_MULT Offset 0x0058)

The Global CM2 Error Cause, Global CM2 Error Address, and Global CM2 Error Mask registers described above pro-
vide information on the type of error, and the address which caused the error. In addition to this information, the 
proAptiv core also provides a way to determine the type of error should an secondary error occur. However, for the 
secondary error, only the type of error is logged, not the associated address. This register is used to log the type of 
secondary error. Refer to Section 8.2.17, "Error Processing" for more information on how this register is used. 

ERROR_INFO 26:0 Information about the error.
If CM2_ERROR_TYPE = 1 through 15, see Table 8.10
if CM2_ERROR_TYPE = 16 through 23, see Table 8.12
if CM2_ERROR_TYPE = 24 through 26, see Table 8.15

R/W Undefined

31 0

CM2_ERROR_ADDR

Table 8.26 Global CM2 Error Address Register Descriptions

Name Bits Description
Read/
Write Reset State

CM2_ERROR_ADDR 31:0 Request address which caused error. Loaded when the 
Global Error Cause Register is loaded. 
Bits 2:0 should always be 0.

R/W Undefined

Table 8.25 Global CM2 Error Cause Register Descriptions(continued)

Name Bits Description
Read/
Write Reset State
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Figure 8.25 Global CM2 Error Multiple Register Format  

 

8.3.2.11 GCR Custom Base Register (GCR_CUSTOM_BASE Offset 0x0060)

This register allows for the implementation of custom registers that are designed by the customer and instantiated into 
the design at build time. Refer to Section 8.2.18, "Custom GCR Implementation" for more information on how this 
register is used. 

Figure 8.26 Global Custom Base Register Format  

8.3.2.12 GCR Custom Status Register (GCR_CUSTOM_STATUS Offset 0x0068)

Refer to Section 8.2.18, "Custom GCR Implementation" for more information on how this register is used. 

31 5 4 0

R ERROR_2ND

Table 8.27 Global CM2 Error Multiple Register 

Name Bits Description
Read/
Write Reset State

RESERVED 31:5 Reads as 0x0. Must be written with a value of 0x0. R 0x0000_000

CM2_ERROR_2ND 4:0 Type of second error. Loaded when the Global CM2 Error 
Cause Register has valid error information and a second 
error is detected.

R/W 5’b0

31 16 15 1 0

CUSTOM_BASE R GGU_EN

Table 8.28 GCR Custom Base Register Descriptions 

Name Bits Description
Read/
Write Reset State

CUSTOM_BASE 31:16 This field sets the base address of the 64KB GCR 
custom user-defined block of the proAptiv Multipro-
cessing System.

R/W Undefined

RESERVED 15:1 Reads as 0x0. Must be written with a value of 0x0. R 0x0000

GGU_EN 0 If this bit is set, the address region for the Custom 
GCR is enabled. 
This bit cannot be set to 1 if GGU_EX = 0, indicating 
that a custom GCR is not attached to the CM.

R/W
(if GGU_EX = 1)

R
(if GGU_EX = 0)

0



 

MIPS32® proAptiv™ Multiprocessing System Software User’s Manual, Revision 01.22 441

 

Figure 8.27 Global Custom Status Register Format  

8.3.2.13 L2-Only Sync Base Register (GCR_L2_ONLY_SYNC_BASE Offset 0x0070) 

The proAptiv core provides a mechanism to execute a SYNC operation to only the L2 cache, without affecting the 
core. Refer to Section 8.2.12, "L2-Only SYNC Operation" for more information on how this register is used. 

Figure 8.28 L2-Only Sync Base Register Format  

31 1 0

R GGU_EX

Table 8.29 GCR Custom Status Register Descriptions

Register Fields

Description
Read/
Write Reset StateName Bits

RESERVED 31:1 Reads as 0x0. Must be written with a value of 0x0. R 0x0

GGU_EX 0 If this bit is set, the Custom GCR is connected to the 
CM2. The state of this bit is set based on whether or not 
this block is implemented at build time as determined by 
the state of the GU_Present signal.

If a Custom GCR block is not present, the GU_Present 
pin is driven to 0. If there is a custom GCR block present, 
then the user must drive GU_Present = 1 inside their cus-
tom GCR module.

R Build time 
option

31 12 11 1 0

SYNC_BASE R SYNC_EN

Table 8.30 L2-Only Sync Base Register Descriptions

Name Bits Description
Read/
Write Reset State

SYNC_BASE 31:12 L2-only SYNC base address.

This field sets the base address of the 4KB GCR 
L2 only Sync of the proAptiv MPS.

R/W Undefined

RESERVED 11:1 Reads as 0x0. Writes ignored. Must be written 
with a value of 0x0.

R 0x0

SYNC_EN 0 L2-only SYNC enable.

If this bit is set, the CM2 treats an uncached write 
request as an L2 only Sync.

If set to 0, the CM2 treats the uncached write as a 
regular uncached request.

R/W 0x0
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8.3.3 CM2 Region Address Map Registers

8.3.3.1 Global Interrupt Controller Base Address Register (GCR_GIC_BASE Offset 0x0080)

Figure 8.29 Global Interrupt Controller Base Address Register Format  

8.3.3.2 Cluster Power Controller Base Address Register (GCR_CPC_BASE Offset 0x0088)

Figure 8.30 Cluster Power Controller Base Address Register Format   

31 17 16 1 0

GIC_BASE_ADDR R GIC_EN

Table 8.31 Global Interrupt Controller Base Address Register Descriptions

Name Bits Description
Read/
Write Reset State

GIC_BASE_ADDR 31:17 Global Interrupt Controller Base Address.
This field sets the base address of the 128KB Global Inter-
rupt Controller. 

R/W Undefined

RESERVED 16:1 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R 0

GIC_EN 0 Global Interrupt Controller Enable.
If this bit is set, the address region for the GIC is enabled. 
This bit can not be set to 1 if GIC_EX = 0, indicating that 
a GIC is not attached to the CM2.

R/W 
(if GIC_EX = 1)

R
(if GIC_EX = 0)

0

31 15 14 1 0

CPC_BASE_ADDR R CPC_EN

Table 8.32 Cluster Power Controller Base Address Register 

Name Bits Description
Read/
Write Reset State

CPC_BASE_ADDR 31:15 This field sets the base address of the 32K Cluster Power 
Controller. 

R/W Undefined

RESERVED 14:1 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R 0

CPC_EN 0 If this bit is set, the address region for the CPC is enabled. 
This bit can not be set if 1 CPC_EX = 0, indicating that a 
CPC is not attached to the CM2.

R/W 
(if CPC_EX = 1)

R
(if CPC_EX = 0)

0
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8.3.3.3 CM2 Region [0 - 3] Base Address Register (GCR_REGn_BASE Offsets 0x0090, 0x00A0, 
0x00B0, 0x00C0) 

Some or all of these registers may be removed during IP configuration. When an IOCU is present, there may be 4 
CM2 Address Mask Registers implemented. When no IOCU is present, there may be 0 or 4 CM2 Address Mask Reg-
isters. When a register is not present, it is defined as Reserved and Read-Only of 0.

Figure 8.31 CM2 Region [0 - 3] Base Address Register Format  

8.3.3.4 CM2 Region [0 - 3] Address Mask Register (GCR_REGn_MASK Offsets 0x0098, 0x00A8, 
0x00B8, 0x00C8)

Some or all of these registers may be removed during IP configuration. When an IOCU is present, there may be 4 
CM2 Address Mask Registers implemented. When no IOCU is present, there may be 0 or 4 CM2 Address Mask Reg-
isters. When a register is not present, it is defined as Reserved and Read-Only of 0.

31 16 15 14 0

CM2_REGION_BASE_ADDR R

Table 8.33 CM2 Region [0 - 3] Base Address Register Descriptions

Name Bits Description
Read/
Write Reset State

CM2_REGION_BASE_ADDR 31:16 CM2 region base address. 
This field sets the base physical address of the memory 
region. 

R/W Undefined

RESERVED 15:0 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R 0
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Figure 8.32 CM2 Region [0-3] Address Mask Register Format  
31 15 14 8 7 5 4 3 2 1 0

CM2_REGION_ADDR_MASK R CCA_Override
_Value

CCA_Override
_Enable R DROP_L2 CM2_TARGET

Table 8.34 CM2 Region [0 - 3] Address Mask Register Descriptions 

Name Bits Description
Read/
Write Reset State

CM2_REGION_ADDR_MASK 31:16 This field is used to set the size of the CM2 Region. 
This field is used along with its equivalent CM2 Region 
Base Address Register. 
The request address is logically ANDed with the value of 
this register. The value of the associated Base Address 
Register is also logically ANDed with the value of this 
register. If both outputs match, then the request is routed 
to the CM2 region. 
The only allowed values in this register are contiguous 
sets of leading 0x1’s. An 0x1 preceded by a 0x0 is not 
allowed (e.g., the value of 0xFFF0 is allowed, but the 
value 0xFFEF is not allowed). 

R/W Undefined

RESERVED 15:8 Reads as 0x0. Must be written with a value of 0x0. R 0

CCA_Override_Value 7:5 Used with CCA_Override_Enable to force the Cache 
Coherence Attribute (CCA) value for transactions on the 
system memory OCP. See CCA_Override_Enable field. 

R/W 0

CCA_Override_Enable 4 If CCA_Override_Enable is set and the CM2_TARGET 
field is set to Memory (0x1), then transactions with 
addresses that map to this region will have a CCA value 
set to CCA_Override_Value when driven to system 
memory.

R/W 0

Reserved 3 Reads as 0x0. Must be written with a value of 0x0. R 0

DROP_L2 2 Drop L2 CacheOp write.
If this bit is set, the CM2 drops the L2 CacheOp write 
after it has been serialized.
If this bit is cleared, the L2 CacheOp writes behave like a 
regular L2 CacheOp request.

R/W 0

Encoding Name CCA

0x0 WT Write Through
0x1 - Reserved
0x2 UC Uncached
0x3 WB WriteBack cacheable, non-

coherent, 
0x4 CWBE Mapped to WB
0x5 CWB
0x6 - Reserved
0x7 UCA Uncached Accelerated



 

MIPS32® proAptiv™ Multiprocessing System Software User’s Manual, Revision 01.22 445

 

8.3.4 CM2 Status and Revision Registers

This section contains the status registers for the GIC and CPC, and the revision information for the L2 cache.

8.3.4.1 Global Interrupt Controller Status Register (GCR_GIC_STATUS Offset 0x00D0)

Figure 8.33 Global Interrupt Controller Status Register Format  

CM2_TARGET 1:0 Maps this region to the specified device. The IOCU can 
only be mapped to regions 0 - 3, while memory can be 
mapped to all regions. .

R/W 0

31 1 0

R GIC_EX

Table 8.35 Global Interrupt Controller Status Register 

Name Bits Description
Read/
Write Reset State

RESERVED 31:1 Reads as 0x0. Writes ignored. Must be written with a value of 
0x0.

R 0

GIC_EX 0 GIC to CM2 connection.
If this bit is set, the GIC is connected to the CM2.

R 1

Table 8.34 CM2 Region [0 - 3] Address Mask Register Descriptions (continued)

Name Bits Description
Read/
Write Reset State

Encoding Meaning

0x0 Disabled
0x1 Memory
0x2 IOCU 0
0x3 IOCU 1
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8.3.4.2 Cache Revision Register (GCR_CACHE_REV Offset 0x00E0)

Figure 8.34 Cache Revision Register Format   

8.3.4.3 Cluster Power Controller Status Register (GCR_CPC_STATUS Offset 0x00F0)

Figure 8.35 Cluster Power Controller Status Register Format  

8.3.4.4 IOCU Revision Register (GCR_IOCU1_REV Offset 0x0200)

This register gives the existence and revision information for an IOCU which might be connected to the CM2.

Figure 8.36 IOCU Revision Register Format  

31 16 15 8 7 0

R MAJOR_REV MINOR_REV

Table 8.36 Cache Revision Register 

Name Bits Description
Read/
Write Reset State

RESERVED 31:16 Reads as 0x0. Writes ignored. Must be written with a value of 
0x0.

R 0x0

MAJOR_REV 15:8 This field reflects the major revision of the Cache block inside the 
CM2.

R Preset

MINOR_REV 7:0 This field reflects the minor revision of the Cache block inside 
the CM2.

R Preset

31 1 0

R CPC_EX

Table 8.37 Cluster Power Controller Status Register Descriptions

Name Bits Description
Read/
Write Reset State

RESERVED 31:1 Reads as 0x0. Writes ignored. Must be written with a value of 0x0. R 0

CPC_EX 0 This bit is always 1 in the proAptiv core as the CPC is always 
connected to the CM2.

R 1

31 16 15 8 7 0

R MAJOR_REV MINOR_REV

Table 8.38 IOCU Revision Register Descriptions

Name Bits Description
Read/
Write Reset State

RESERVED 31:16 Reads as 0x0. Writes ignored. Must be written with a value of 0x0. R 0x0
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8.3.5 CM2 Attribute-Only Region Address Map Registers

This section contains the base address and address mask registers for CM2 attribute-only regions 0 through 3. These 
register have the same functionality as the normal region registers, except they can not be used to map to MMIO vs. 
memory.

8.3.5.1 CM2 Attribute-Only Region [0 - 3] Base Address Registers (GCR_REGn_ATTR_BASE Offsets 
0x0190, 0x01A0, 0x0210, 0x0220) 

Some or all of these registers may be removed during IP configuration. These registers are similar to the CM2 Region 
Address Register except the attribute-only regions can not be used to determine if a request is routed to memory or 
the IOCU.

Figure 8.37 CM2 Attribute-Only Region [0 - 3] Register Format   

MAJOR_REV 15:8 This field reflects the major revision of the IOCU attached to the 
CM2. A major revision might reflect the changes from one product 
generation to another. 
The value of 0x0 means that no IOCU is attached. 

R Preset

MINOR_REV 7:0 This field reflects the minor revision of the IOCU attached to the 
CM2. A minor revision might reflect the changes from one release 
to another. 

R Preset

31 16 15 0

CM2_REGION_BASE_ADDR R

Table 8.39 CM2 Attribute-Only Region [0 - 3] Base Address Register Format

Name Bits Description
Read/
Write Reset State

CM2_REGION_BASE_ADDR 31:16 This field sets the base physical address of the memory 
region. 

R/W Undefined

RESERVED 15:0 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R 0

Table 8.38 IOCU Revision Register Descriptions

Name Bits Description
Read/
Write Reset State
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8.3.5.2 CM Attribute-Only Region[0 - 3] Address Mask Registers (GCR_REGn_ATTR_MASK Offsets 
0x0198, 0x1A8, 0x218, 0x228)

These registers may be removed during IP Configuration. These registers are similar to the CM Region Address 
Mask registers except they may not be used to route requests to memory or the IOCU.

Figure 8.38 CM2 Attribute Only Region [0-3] Address Mask Register Format  

. 

31 15 14 8 7 5 4 3 2 1 0

CM2_REGION_ADDR_MASK R CCA_Override_Value CCA_Override_EN R DROP_L2 R

Table 8.40 CM Attribute-Only Region [0 - 3] Address Mask Register Descriptions 

Register Fields

Description
Read/
Write Reset StateName Bits

CM2_REGION_ADDR_MASK 31:16 This field is used to set the size of the CM Region. 
This field is used along with its equivalent CM Region 
Base Address Register. 
The request address is logically ANDed with the value of 
this register. The value of the associated Base Address 
Register is also logically ANDed with the value of this 
register. If both outputs match, then the request is routed 
to the CM region. 
The only allowed values in this register are contiguous 
sets of leading 0x1’s. An 0x1 preceded by a 0x0 is not 
allowed (e.g., the value of 0xfff0 is allowed, but the value 
0xffef is not allowed). 

R/W Undefined

RESERVED 15:8 Reads as 0x0. Must be written with a value of 0x0. R 0

CCA_Override_Value 7:5 Used with CCA_Override_Enable to force the Cache 
Coherence Attribute (CCA) value for transactions on the 
system memory OCP. See CCA_Override_Enable field.

R/W 0

CCA_Override_Enable 4 If set CCA_Override_Enable is set to 1 and 
CM_TARGET is set to Memory, then transactions with 
addresses that map to this region will have a CCA value 
set to CCA_Override_Value when driven to system mem-
ory.

R/W 0

RESERVED 3 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R 0

Encoding Name CCA

0x0 WT Write Through

0x1 - Reserved

0x2 UC Uncached

0x3 WB WriteBack cacheable, non-coherent

0x4 CWBE Mapped to WB

0x5 CWB

0x6 - Reserved

0x7 UCA Uncached Accelerated
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8.4 Core-Local and Core-Other Control Blocks

8.4.1 Core-Local and Core-Other Control Blocks Address Map

A set of these registers exists for each proAptiv core in the proAptiv Multiprocessing System. These registers can 
also be accessed from other cores by first writing the Core Other Addressing Register (in the Core-Local Control 
Block) with the proper core number and then accessing these registers using the Core Other Register block.

All registers are 32 bits wide and should only be accessed using 32-bit uncached load/stores. Reads from unpopulated 
registers in the GCR address space return 0x0, and writes to those locations are silently dropped without generating 
any exceptions. 

DROP_L2 2 Set to 1 for the CM to drop L2 CacheOp writes after it has 
been serialized.
If set to 0, the L2 CacheOp writes behaves like a regular 
L2 CacheOp request.

R/W 0x0

RESERVED 1:0 Reads as 0x0. Must be written with a value of 0x0.
Since the attribute-only registers can not be used to map to 
MMIO vs. memory, this field is not needed and is 
reserved.

R/W 0x0

Table 8.41 Core Local and Core Other Block Register Map (Relative to Core-Local/Core-Other CB Offset)

Register Offset Name Type Description

0x0000 Reserved - Reserved

0x0008 Core Local Coherence Control Register
(GCR_CL_COHERENCE
GCR_CO_COHERENCE)

R/W Controls which coherent intervention 
transactions apply to the local core. 

0x0010 Core Local Config Register
(GCR_CL_CONFIG
GCR_CO_CONFIG)

R Contains configuration parameters for the 
Core-Local address space.

0x0018 Core Other Addressing Register
(GCR_CL_OTHER
GCR_CO_OTHER)

R/W Used to access the registers of another 
core.

0x0020 Core Local Reset Exception Base Register
(GCR_CL_RESET_BASE
GCR_CO_RESET_BASE)

R/W Sets the Reset Exception Base for the 
local core.

0x0028 Core Local Identification Register
(GCR_CL_ID
GCR_CO_ID)

R Indicates the proAptiv Multiprocessing 
System Number of the local core. 

0x0030 Core Local Reset Exception Extended Base
(GCR_CL_RESET_EXT_BASE
GCR_CO_RESET_EXT_BASE)

R/W Extends the capabilities of the Core Local 
Reset Exception Base Register.

Table 8.40 CM Attribute-Only Region [0 - 3] Address Mask Register Descriptions (continued)

Register Fields

Description
Read/
Write Reset StateName Bits
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8.4.1.1 Core Local Coherence Control Register (GCR_Cx_COHERENCE Offset 0x0008)

This register allows each core to respond to intervention requests from only a subset of the coherent masters within 
the proAptiv Multiprocessing System (MPS). Software can control entry and exit from the coherence domain by set-
ting the COH_DOMAIN_EN bit in this register for: 

• Initialization during (asynchronous) boot

• Power control for shutting down and bringing up a core 

0x0040 Core Local TCID_0_PRIORITY Register
(GCR_CL_TCID_0_PRIORITY
GCR_CO_TCID_0_PRIORITY)

R/W TCID 0 Priority value (2 bits) if 
IOCU_TYPE=0 in GCR_Cx_CONFIG.

All Others RESERVED - Reserved for future expansion.

Table 8.42 Core Local Coherence Control Register  

Name Bits Description
Read/
Write Reset State

RESERVED 31:8 Reads as 0. Writes ignored. Must be written with a value 
of 0x0.

W 0x0

COH_DOMAIN_EN 7:0 Each bit in this field represents a coherent requester within 
the MPS. Setting a bit within this field will enable inter-
ventions to this Core from that requester. 
The requestor bit which represents the local core is used to 
enable or disable coherence mode in the local core.
Changing the coherence mode for a local core from 0x1 to 
0x0 can only be done after flushing and invalidating all 
the cache lines in the core; otherwise, the system behavior 
is UNDEFINED.
Refer to Section 8.2.11, "Coherency Domains" for more 
information on the encoding of this field.

R/W 0x0

Table 8.41 Core Local and Core Other Block Register Map (Relative to Core-Local/Core-Other CB 
Offset)(continued)

Register Offset Name Type Description
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8.4.1.2 Core Local Config Register

Figure 8.39 Core Local Config Register Format 
31 12 11 10 9 0

R IOCU_TYPE PVPE

Table 8.43 Core Local Config Register (GCR_Cx_CONFIG Offset 0x0010)

Name Bits Description
Read/
Write Reset State

RESERVED 31:12 Reads as 0x0. Writes ignored. Must be written with a value of 
0x0.

R -

IOCU_TYPE 11:10 R IP
Configurable 

Value

PVPE 9:0 Number of VPE’s in the system. Note that in the proAptiv core, 
the term VPE is analogous to a core since there is one VPE per 
core.

R IP
Configurable 

Value

Encoding Meaning

0x0 This is a proAptiv core and not an 
IOCU1. Only the proAptiv core can 
access priority values in the 
GCR_Cx_TCID_n_PRIORITY regis-
ters.

1. Note that the first encoding is redundant informa-
tion for convenience. It is possible for the system 
to determine if a core is an IOCU or not by read-
ing the Global Config register.

0x1 This is a non-caching IOCU (no interven-
tion port). The IOCU does not access the 
GCR_Cx_TCID_n_PRIORITY regis-
ters.

0x2 This is a caching IOCU (not currently 
implemented by MIPS).

0x3 Reserved

Encoding Meaning

0x0 1 VPE
0x1 2 VPE’s
0x2 3 VPE’s
0x3 4 VPE’s
0x5 6 VPE’s
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8.4.1.3 Core-Other Addressing Register

This register must be written with the correct core number before accessing the Core-Other address segment.

Figure 8.40 Core Local Config Register Format  

8.4.1.4 Core Local Reset Exception Base Register (GCR_Cx_RESET_BASE Offset 0x0020)

This register is used to drive the SI_ExceptionBase[31:12] input to the local core. The value is used for placing the 
exception vectors within the virtual address map during core boot-up time (e.g., when COP0 StatusBEV = 1). The 
value in this register is reset only on Cold Reset (not Warm Reset).

Figure 8.41 Core Local Reset Exception Base Register Format  

For Core 0, the user can configure the reset location at IP configuration. 

Core 0 can write the register to force any of the other cores to use a different reset vector. This register write is done 
before releasing the other core from reset. 

This allows a subset of the processor cores to boot one operating system while another subset of the processor cores 
boot a different operating system. 

31 16 15 0

CORENUM R

Table 8.44 Core-Other Addressing Register (GCR_Cx_OTHER Offset 0x0018)

Name Bits Description
Read/
Write Reset State

CORENUM 31:16 Core number of the register set to be accessed in the Core-Other 
address space. 

R/W 0x0

RESERVED 15:0 Reads as 0x0. Writes ignored. Must be written with a value of 
0x0.-

R -

31 12 11 0

BEVEXCBASE R

Table 8.45 Core Local Reset Exception Base Register 

Name Bits Description
Read/
Write Cold Reset State

BEVEXCBase 31:12 Bits [31:12] of the virtual address that the local core will 
use as the exception base in the boot environment (C0P0 
StatusBEV=1). 

R/W IP Configuration 
Value. 
MIPS Default Value 
is 0xBFC00

RESERVED 11:0 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R -
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8.4.1.5 Core Local Identification Register (GCR_Cx_ID Offset 0x0028)

The aliased memory scheme is normally invisible to software when accessing GCR registers within the Core-Local 
control block. What actually happens is that an offset is used to make a subset of the GCR registers appear in the 
Core-Local addressing window. 

This register reports the core number that is used as the addressing offset for the Core-Local control block. 

Figure 8.42 Core Local Identification Register Format  
31 0

CORENUM

Table 8.46 Core Local Identification Register

Name Bits Description
Read/
Write Reset State

CORENUM 31:0 This number is used as an index to the registers within the GCR 
when accessing the Core-local control block for this core.

R -
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8.4.1.6 Core Local Reset Exception Extended Base Register (GCR_Cx_RESET_EXT_BASE Offset 
0x0030)

This register is an extension to the Core-Local Reset Exception Base Register (see Section 8.4.1.4 “Core Local Reset 
Exception Base Register (GCR_Cx_RESET_BASE Offset 0x0020)”). It also is used to drive the SI_ExceptionBase 
input to the local core. The value is used for placing the exception vectors within the virtual address map during core 
boot-up time (e.g., when COP0 StatusBEV=1). The value in this register is reset only on Cold Reset (not Warm Reset).

Figure 8.43 Core Local Exception Extended Base Register Format  
31 30 29 28 27 20 19 8 7 1 0

EVAReset UEB R BEVExceptionBaseMask R BEVExceptionBasePA PRESENT

Table 8.47 Core Local Reset Exception Extended Base Register 

Name Bits Description
Read/
Write Cold Reset State

EVAReset 31 Assertion of this bit indicates to the core to come up in 
the EVA configuration at reset. This bit is originally set 
based on the state of the EVAReset pin during reset.

R/W IP Configuration 
Value. 
MIPS Default 
Value is 0

UseExceptionBase 30 UseExceptionBase address. This bit reflects the state of 
the SI_UseExceptionBase pin at reset.

In the legacy configuration, if the 
SI_UseExceptionBase pin is not asserted, then the 
BEV location defaults to 0xBFC0_0000. 

If the SI_UseExceptionBase pin is asserted, address 
bits SI_ExceptionBase[31:30] are forced to a value of 
2’b10 to force the BEV location into the KSEG0/
KSEG1 space.

Refer to Section 3.7.2 in Chapter 3 for more informa-
tion. This pin is only used in the legacy configuration. 
There is one SI_UseExceptionBase pin per core. 

R/W IP Configuration 
Value.
MIPS Default 
Value is 1

RESERVED 29:28 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R -

BEVExceptionBaseMask 27:20 This field is used to determine the size of the boot 
exception vector overlay region from 1 MB to 256 MB 
in powers of two. This field reflects the state of the 
SI_ExceptionBaseMask[27:20] pins at reset.

This field is used to mask bits [27:20] of the virtual 
address that the local core will use as the exception base 
in the boot environment (C0P0 StatusBEV = 1). 
These pins are used in both the legacy and EVA config-
urations. There is one set of SI_ExceptionBaseMask 
pins per core. 

Refer to Section 3.7.2 in Chapter 3 for more informa-
tion.

R/W IP Configuration 
Value. 
MIPS Default 
Value is 0x00

RESERVED 19:8 Reads as 0x0. Must be written with a value of 0x0. R -
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BEVExceptionBasePA 7:1 BEV exception base physical address. This field con-
tains the upper bits of the physical address that the local 
core will use as the exception base in the boot environ-
ment (C0P0 StatusBEV = 1).and reflects the state of the 
SI_ExceptionBasePA[31:29] pins at reset.

The size of the overlay region defined by 
SI_ExceptionBaseMask[27:20] is remapped to a 
location in physical address space pointed to by the 
SI_ExceptionBasePA[31:29] pins. This allows the 
overlay region to be placed into one of the 512 MB seg-
ments in physical memory. These pins are used in both 
the legacy and EVA configurations. There is one set of 
SI_ExceptionBasePA pins per core. 

Note that the bits of this register correspond to upper 
address bits 35:29. However, in the proAptiv core only 
the lower three bits (31:29) are used, which correspond 
to bits 3:1 of this field. The upper four bits are reserved 
for future cores which implement a 36-bit address. This 
bit should always be driven with a value of 0x0.

Refer to Section 3.7.2 in Chapter 3 for more informa-
tion.

R/W IP Configuration 
Value. 
MIPS Default 
Value is 0x00.

PRESENT 0 Reads as 0x1. Writes are ignored R 1

Table 8.47 Core Local Reset Exception Extended Base Register (continued)

Name Bits Description
Read/
Write Cold Reset State
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8.4.1.7 Core Local TCID Registers (GCR_Cx_TCID_PRIORITY Offset 0x0040)

In the proAptiv core, there is one thread context per core. Hence only one TCID register if required.

Figure 8.44 Core Local TCID Register Format  
31 2 1 0

Reserved TCID_PRIORITY

Table 8.48 Core Local TCID Register Description

Name Bits Description
Read/
Write Reset State

Reserved 31:2 Reads as 0x0. Must be written with a value of 0x0. R 0x0000_000

TCID_PRIORITY 1:0 TCID priority.
This 2-bit value contains the thread context priority level and is 
encoded as follows:
00: Lowest priority
....
11: Highest priority

R 0x0
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8.5 Global Debug Control Block

8.5.1 Global Debug Control Block Address Map

This block holds registers which are used for debugging the CM2 and software which uses the coherence features 
supplied by the CM2. The registers associated with PDTrace are reset upon assertion of the TAP controller reset. The 
other registers in this block are reset when the CM2 is reset. TAP reset occurs when PB_EJ_TRST_N is asserted or 
the Test-Logic-Reset TAP state is entered. 

Table 8.49  Global Debug Block Register Map (Relative to Global Debug Block Offset)

Register Offset Name Type
Reset

Source Description

0x0008 PDTrace TCBControlB Register
(GCR_DB_TCBCONTROLB)

R/W TAP Controls how the TCB deals with the 
trace information. 
This register only exists if the CM2 is 
configured with PDTrace.

0x0010 CM2 PDTrace TCBControlD Register
(GCR_DB_TCBCONTROLD)

R/W TAP Controls CM2 PDTrace.
This register only exists if the CM2 is 
configured with PDTrace.

0x0020 PDTrace TCBControlE Register
(GCR_DB_TCBCONTROLE)

R/W TAP Controls how the TCB deals with trace 
information.
This register only exists if the CM2 is 
configured with PDTrace.

0x0028 PDTrace TCB Config Register
(GCR_DB_TCBConfig)

R/W TAP Contains trace control block configura-
tion information such as probe width, on-
trace memory size, and trace clock ratios.

0x0040 PDTrace TCBSYS Register
(GCR_DB_TCBSYS)

R/W TAP Controls how external logic uses the Sys-
tem Trace interface. Bit 31 is a PRESENT 
bit and bits [30:0] are completely user 
defined. The output of this register is 
available on the TC_Sys_UserCtl pins.
This register only exists if the CM2 is 
configured with PDTrace.

0x0100 CM2 Performance Counter Control Register
(GCR_DB_PC_CTL)

R/W CM2 Controls starting/stopping of Performance 
Counters.

0x0108 PDTrace Trace Word Read Pointer Register
(GCR_DB_TCBRDP)

R/W TAP Pointer into the On-Chip Trace Buffer 
memory for reads from 
GCR_DB_TCBTW_LO and 
GCR_DB_TCBTW_HI registers. 
This register only exists if the CM2 is 
configured with PDTrace.

0x0110 PDTrace Trace Word Write Pointer Register
(GCR_DB_TCBWRP)

R/W TAP Pointer into the On-Chip Trace Buffer 
memory for the next TraceWord write 
from GCR_DB_TCBTW_LO and 
GCR_DB_TCBTW_HI registers. 
This register only exists if the CM2 is 
configured with PDTrace.
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All registers are 32 bits wide and should only be accessed using 32-bit uncached load/stores. Reads from unpopulated 
registers in the GCR address space return 0x0 and writes to those locations should be silently dropped without gener-
ating any exceptions. 

8.5.1.1 CM2 PDTrace TCB ControlB Register (GCR_DB_TCBCONTROLB Offset 0x0008)

The TCB includes a control register, GCR_DB_TCBCONTROLB (0x11). This register configures interfaces to the 
trace buffer. This register only exists if the CM2 is configured with PDTrace.

The format of the GCR_DB_TCBCONTROLB register is shown below, and the fields are described in Table 8.50.

0x0118 PDTrace Trace Word Start Pointer Register
(GCR_DB_TCBSTP) 

R/W TAP Pointer into On-Chip Trace Buffer 
that is used to determine when all 
entries in the trace buffer have been 
filled. 
This register only exists if the CM2 is 
configured with PDTrace.

0x0120 CM2 Performance Counter Overflow Status 
Register
(GCR_DB_PC_OV)

R/W CM2 Indicates which performance counters 
have overflowed.

0x0130 CM2 Performance Counter Event Select Reg-
ister
(GCR_DB_PC_EVENT)

R/W CM2 Selects event type of each performance 
counter.

0x0180 CM2 Performance Cycle Counter Register
(GCR_DB_PC_CYCLE)

R/W CM2 Counts cycles.

0x0190 CM2 Performance Counter 0 Qualifier Regis-
ter
(GCR_DB_PC_QUAL0)

R/W CM2 Performance counter 0 event qualifiers. 

0x0198 CM2 Performance Counter 0 Register
(GCR_DB_PC_CNT0)

R/W CM2 Performance Counter 0 value. 

0x01A0 CM2 Performance Counter 1 Qualifier Regis-
ter
(GCR_DB_PC_QUAL1)

R/W CM2 Performance counter 1 event qualifiers. 

0x01A8 CM2 Performance Counter 1 Register
(GCR_DB_PC_CNT1)

R/W CM2 Performance Counter 1 value. 

0x0200 PDTrace Trace Word Lo Register
(GCR_DB_TCBTW_LO)

R/W TAP Access point to read TraceWords from the 
On-Chip Trace Buffer memory, Least Sig-
nificant 32-bits. 

0x0208 PDTrace Trace Word Hi Register
(GCR_DB_TCBTW_HI)

R/W TAP Access point to read TraceWords from the 
On-Chip Trace Buffer memory, Most Sig-
nificant 32-bits. 

All Others RESERVED

Table 8.49  Global Debug Block Register Map (Relative to Global Debug Block Offset)(continued)

Register Offset Name Type
Reset

Source Description
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Figure 8.45 PDTrace TCB ControlB Register Format 
31 30 28 27 26 25 20 19 18 17 16 15 14 13 12 11 10 8 7 6 2 1 0

WE R TWSrcWidth R STCE TRPAD R RM TR BF TM R CR Cal R OfC EN

Table 8.50 PDTrace TCB ControlB Register 

Fields

Description
Read / 
Write

Reset 
StateName Bits

WE 31 Write Enable. 
Only when set to 1 will the other bits of this register be written.
This bit will always read 0.

R 0

Reserved 30:28 Reserved. Must be written as zero; returns zero on read. R 0

TWSrcWidth 27:26 Used to indicate the number of bits used in the source field of the 
Trace Word. The value for the CM2 is always 2’b10, indicating a four 
bit source field width.

R 2’b10

Reserved 25:20 This field is used by EJTAG to access other PDTtrace registers. 
Although the field is R/W via core accesses, this field has no function 
for core accesses.

R/W 0

STCE 19 System Trace capture enable. When asserted, the System Trace port of 
the Funnel is enabled to capture System Trace stream data. When not 
asserted,
System Trace stream data is not captured regardless of 
TC_Sys_Valid[1:0] input pin state.

R/W 0

TRPAD 18 Trace RAM access disable bit. When set, core reads and writes to the 
on-chip trace RAM using GCR accesses are inhibited. 

If TRPAD is set, memory-mapped writes to the 
GCR_DB_TCBTW_LO and GCR_DB_TCBTW_HI registers have 
no effect, and memory-mapped reads from GCR_DB_TCBTW_LO 
and GCR_DB_TCBTW_HI do not access the Trace RAM and 0 is 
returned. 
Also, when TRPAD is set, then memory-mapped writes to the follow-
ing registers are inhibited:

TCBTW
TCBRDP
TCBWRP
TCBSTP

R/W 0

Reserved 17 Reserved. Must be written as zero; returns zero on read. R 0

RM 16 Read on-chip trace memory.
When this bit is set, the read address-pointer of the on-chip memory in 
register TCBRDP is set to the value held in TCBSTP.
Subsequent access to the TCBTW register (through the TCBDATA 
register), will automatically increment the read pointer in register 
TCBRDP after each read.
When the write pointer is reached, this bit is automatically reset to 0, 
and the TCBTW register will read all zeros.
Once set to 1, writing 1 again will have no effect. The bit is reset by 
setting the TR bit or by reading the last Trace word in TCBTW.

R/W 0
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TR 15 Trace memory reset.
When written to one, the address pointers for the on-chip trace mem-
ory TCBSTP, TCBRDP and TCBWRP are reset to zero. Also the 
RM and BF bits are reset to 0.
This bit is automatically reset back to 0, when the reset specified 
above is completed.

R/W1 0

BF 14 Buffer Full indicator that the TCB uses to communicate to external 
software that the on-chip trace memory is full. This bit is cleared 
when writing a 1 to the TR bit.
This bit has no function if on-chip memory is not implemented.

R 0

TM 13:12 Trace Mode. This field determines how the trace memory is filled 
when using the simple-break control in the PDtrace™ IF to start or 
stop trace. 

In Trace-To mode, the on-chip trace memory is filled, continuously 
wrapping around, overwriting older Trace Words, as long as there is 
trace data coming from the core.
In Trace-From mode, the on-chip trace memory is filled from the 
point that the core starts tracing until the on-chip trace memory is full 
(when the write pointer address is the same as the start pointer 
address). If a TCBTRIGx trigger control register is used to start/stop 
tracing, then this field should be set to Trace-To mode.
These bits have no function if on-chip memory is not implemented.

R/W 0

0 11 Read as Zero. Writes ignored. Must be written with a value of 0x0. R 0

CR 10:8 Off-chip Clock Ratio. Writing this field, sets the ratio of the core 
clock to the off-chip trace memory interface clock. The clock-ratio 
encoding is shown in Table 8.51.
Note: As the Probe interface works in double data rate (DDR) mode, a 
1:2 ratio indicates one data packet sent per core clock rising edge.
These bits have no function if off-chip memory is not implemented.

R/W 3’b100

Table 8.50 PDTrace TCB ControlB Register (continued)

Fields

Description
Read / 
Write

Reset 
StateName Bits

TM Trace Mode

00 Trace-To
01 Trace-From
10 Reserved
11 Reserved
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Cal 7 Calibrate off-chip trace interface.
If set, the off-chip trace pins will produce the following pattern in con-
secutive trace clock cycles. If more than 4 data pins exist, the pattern 
is replicated for each set of 4 pins. The pattern repeats from top to bot-
tom until the Cal bit is de-asserted. 

Note: The clock source of the TCB and PIB must be running.
These bits have no function if off-chip memory is not implemented.

R/W 0

Reserved 6:2 Read as Zero. Writes ignored. Must be written with a value of 0x0. R 0

OfC 1 If set to 1, trace is sent to off-chip memory using TR_DATA pins.
If not set, trace info is sent to on-chip memory.
This bit is read only if one of these options exists.

R/W Preset

EN 0 Funnel Trace Enable. When this bit is set, the trace funnels accepts 
trace information from the CM2, cores, and/or system trace and writes 
the information to off-chip or on-chip memory. 
When this bit is cleared, the trace funnel drops all new trace informa-
tion from the those sources. The trace information already accepted by 
the trace funnel is sent to the off-chip or on-chip memory, but new 
trace information is dropped and not written out.

R/W 0

Table 8.50 PDTrace TCB ControlB Register (continued)

Fields

Description
Read / 
Write

Reset 
StateName Bits

Calibrations pattern

3 2 1 0
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8.5.1.2 CM2 PDTrace TCB ControlD Register (GCR_DB_TCBCONTROLD Offset 0x0010)

Figure 8.46 PDTrace TCB ControlD Register Format 

 

Table 8.51 Clock Ratio Encoding of the CR Field

Encoding of CR Field Trace Clock:Core Clock Ratio

3’b000  1:20 

3’b001  1:16

3’b010  1:12

3’b011  1:10

3’b100  1:2

3’b101  1:4

3’b110  1:6

3’b111  1:8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 2 1 0

R P6_Ctl P5_Ctl P4_Ctl P3_Ctl P2_Ctl P1_Ctl P0_Ctl R TWSrcVal WB STEn IO TLev AE GCE CME

Table 8.52 CM2 PDTrace TCB ControlD Register Descriptions 

Name Bits Description
Read/
Write Reset State

RESERVED 31:30 Reserved. R/W 0x0

P6_Ctl 29:28 Provides specific control over tracing transactions on Port 
6 of the CM. (the IOCU on 6 core configurations).

R/W 0x0

P5_Ctl 27:26 Provides specific control over tracing transactions on Port 
5 of the CM2 (core 5). See encoding for P6_Ctl.

R/W 0x0

P4_Ctl 25:24 Provides specific control over tracing transactions on Port 
4 of the CM2 (core 4 on 6 core configurations or the 
IOCU on 4 core or less configurations). See encoding for 
P6_Ctl.

R/W 0x0

P3_Ctl  23:22 Provides specific control over tracing transactions on Port 
3 of the CM2 (core 3). See encoding for P6_Ctl.

R/W 0x0

Encoding Description

00 Tracing Enabled, no Address Tracing
01 Tracing Enabled with Address Tracing
10 Reserved 
11 Tracing Disabled
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P2_Ctl 21:20 Provides specific control over tracing transactions on Port 
2 of the CM2 (core 2). See encoding for P6_Ctl.

R/W 0x0

P1_Ctl 19:18 Provides specific control over tracing transactions on Port 
1 of the CM2 (core 1). See encoding for P6_Ctl.

R/W 0x0

P0_Ctl 17:16 Provides specific control over tracing transactions on Port 
0 of the CM2 (core 0). See encoding for P6_Ctl.

R/W 0x0

RESERVED 15:12 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R 0x0

TwSrcVal 11:8 The source ID inserted into the Trace Word by the CM.
NOTE: When disabling trace by setting Global_CM_En 
to 0, the value in TWSrcVal continues to be used until all 
trace messages have been flushed from the CM. There-
fore, when writing to this register to disabled, the correct 
value must still be written into the TWSrcVal field.

R/W 0xF

WB 7 When this bit is set, Coherent Writeback requests are 
traced. If this bit is not set, all Coherent Writeback 
requests are suppressed from the CM2 PDTrace Stream.

R/W 0x0

ST_En 6 System Trace Enable. Driven to the CM2 output pin 
TC_Sys_Enable. External logic can use this output to con-
trol generation of the System Trace stream.

R/W 0x0

IO 5 Inhibit Overflow on the CM2 PDTrace FIFO full condi-
tion. When set to 0, the CM2 will drop a new PDTrace 
message if the internal PDTrace FIFOs are full.
When set to 1, the CM2 will not drop PDTrace messages, 
but may stall transactions within the CM2 when the inter-
nal PDTrace FIFOs are full.

R/W 0x0

TLev 4:3 This defines the current trace level being used by CM2 
PDtrace:

R/W 0x0

AE 2 When set to 1, address tracing is always enabled for the 
CM. When set to 0, address tracing may be enabled on a 
per-port basis through the P<x>_Ctl bits.

R/W 0x0

Global_CM_En 1 Setting this bit to 1 enables tracing from the CM2 as long 
as the CM_EN bit is also enabled.

R/W 0x0

CM_EN 0 This is the master trace enable for the CM. When zero, 
tracing from the CM2 is always disabled. When set to one, 
tracing is enabled from whenever the other enabling func-
tions are also true.

R/W 0x0

Table 8.52 CM2 PDTrace TCB ControlD Register Descriptions (continued)

Name Bits Description
Read/
Write Reset State

Encoding Description

00 No Timing Information
01 Include Stall Times, Causes
10 Reserved
11 Reserved
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See Section 8.5.1.2, "CM2 PDTrace TCB ControlD Register (GCR_DB_TCBCONTROLD Offset 0x0010)," for 
more information about how this register is used.

This register only exists if the CM2 is configured with PDTrace.

8.5.1.3 CM2 PDTrace TCB ControlE Register (GCR_DB_TCBCONTROLE Offset 0x0020)

Figure 8.47 PDTrace TCB ControlE Register Format  

This register only exists if the CM2 is configured with PDTrace.

See Section 8.5.1.3, "CM2 PDTrace TCB ControlE Register (GCR_DB_TCBCONTROLE Offset 0x0020)," for 
more information about how this register is used.

8.5.1.4 CM2 PDTrace TCB Config Register (GCR_DB_TCBConfig Offset 0x0028)

This register is also accessible by EJTAG via the TCBDATA instruction as described in the EJTAG Debug Support 
chapter.

Figure 8.48 PDTrace TCB Config Register Format 

31 9 8 7 1 0

R Tridle WB R PeC

Table 8.53 TCBCONTROLE Register 

Name Bits Description
Read / 
Write Reset State

0 31:9 Reserved for future use. Must be written as zero; returns zero on 
read.

0 0

TrIdle 8 Trace Unit Idle. This bit indicates if the trace hardware is currently 
idle (not processing any data). This can be useful when switching 
control of trace from hardware to software and vice versa. The bit is 
read-only and updated by the trace hardware. 
TrIdle is set when the system traces on all cores, and the CM2, have 
disabled PDTrace and the trace funnel has written all outstanding 
trace information to the off-chip or on-chip memory.

R 1

0 7:1 Reserved for future use; Must be written as zero; returns zero on 
read. (Hint to architect, Reserved for future expansion of perfor-
mance counter trace events).

0 0

PeC 0 Performance Control Tracing is not implemented. R 0

31 30 21 20 17 16 14 13 11 10 9 8 6 5 4 3 0

CF1 R SZ CRMax CRMin PW R OnT OfT REV

Table 8.54 TCBCONFIG Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateName Bits

CF1 31 This bit is set if a TCBCONFIG1 register exists. In this revision, 
TCBCONFIG1 does not exist, and this bit reads zero.

R 0
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This register only exists if the CM2 is configured with PDTrace.

Reserved 30:21 Read as Zero. Writes ignored. Must be written with a value of 0x0. R 0 

SZ 20:17 On-chip trace memory size. This field holds the encoded size of the 
on-chip trace memory.
The size in bytes is given by 2(SZ+8). i.e., the lowest value is 256 
bytes, and the highest is 8 MB.
This bit is reserved if on-chip memory is not implemented.

R Preset

CRMax 16:14 Off-chip Maximum Clock Ratio.
This field indicates the maximum ratio of the core clock to the off-
chip trace memory interface clock. The clock-ratio encoding is 
shown in Table 8.51.
This bit is reserved if off-chip trace option is not implemented.

R Preset

CRMin 13:11 Off-chip Minimum Clock Ratio.
This field indicates the minimum ratio of the core clock to the off-
chip trace memory interface clock. The clock-ratio encoding is 
shown in Table 8.51.
This bit is reserved if off-chip trace option is not implemented.

R Preset

PW 10:9 Probe Width: Number of bits available on the off-chip trace inter-
face TR_DATA pins. The number of TR_DATA pins is encoded, as 
shown in the table. 

This field is preset based on input signals to the TCB and the actual 
capability of the TCB. 
This bit is reserved if off-chip trace option is not implemented.

R Preset

Reserved 8:6 Read as Zero. Must be written with a value of 0x0. R 0

OnT 5 When set, this bit indicates that on-chip trace memory is present. 
This bit is preset based on the selected option when the TCB is 
implemented.

R Preset

OfT 4 When set, this bit indicates that off-chip trace interface is present. 
This bit is preset based on the selected option when the TCB is 
implemented, and on the existence of a PIB module 
(TC_PibPresent asserted).

R Preset

REV 3:0 Revision of TCB. R 0x3

Table 8.54 TCBCONFIG Register Field Descriptions (continued)

Fields

Description
Read / 
Write Reset StateName Bits

PW Number of bits used on TR_DATA

00 4 bits
01 8 bits
10 16 bits
11 reserved
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8.5.1.5 CM2 Performance Counter Control Register (GCR_DB_PC_CTL Offset 0x0100)

Figure 8.49 CM2 Performance Counter Control Register Format    
31 30 29 28 10

R Perf-Int_En Perf_OvF_Stop R

9 8 7 6 5 4 3 0

P1_Reset P1_CountOn P1_Reset P1_CountOn Cycl_Cnt_Reset Cycl_Cnt_CountOn Perf_Num_Cnt

Table 8.55 CM2 Performance Counter Control Register

Name Bits Description
Read/
Write Reset State

Reserved 31 Read as Zero. Must be written with a value of 0x0. R 0x0

Perf_Int_En 30 Enable Interrupt on counter overflow. If set to 1, a CM2 per-
formance counter interrupt is generated when any enabled 
CM2 performance counter overflows. 

R/W 0x0

Perf_Ovf_Stop 29 Stop Counting on overflow. If set to 1, all CM2 Performance 
counters stop counting when any enabled CM2 performance 
counter overflows i.e., the counter has reached 
0xFFFF_FFFF.

R/W 0x0

Reserved 28:10 Read as Zero. Must be written with a value of 0x0. R 0x0

P1_Reset 9 If set to 1, CM2 Performance Counter 1 and P1_Overflow 
bit is reset before counting is started. If set to 0 counting is 
resumed from previous value. This bit is automatically set to 
0 when the counter is reset, so P1_Reset is always read as 0.

R/W 0x0

P1_CountOn 8 Start Counting. If this bit is set to 1 then CM2 Performance 
Counter 1 and the P1_Overflow bit starts counting the speci-
fied event. If this bit is set to 0 then CM2 Performance Coun-
ter 1 is disabled. This bit is automatically set to 0 if any 
counter overflows and Perf_Ovf_Stop is set to 1.

R/W 0x0

P0_Reset 7 If set to 1, CM2 Performance Counter 0 and P0_Overflow 
bit is reset before counting is started. If set to 0 counting is 
resumed from previous value. This bit is automatically set to 
0 when the counter is reset, so P0_Reset is always read as 0.

R/W 0x0

P0_CountOn 6 Start/Stop Counting. If this bit is set to 1 then CM2 Perfor-
mance Counter 0 starts counting the specified event. If this 
bit is set to 0 then CM2 Performance Counter 0 is disabled. 
This bit is automatically set to 0 if any counter overflows and 
Perf_Ovf_Stop is set to 1.

R/W 0x0

Cycl_Cnt_Reset 5 If set to 1, the CM2 Cycle Counter Register and the 
Cycl_Cnt_Overflow bit is reset before counting is started. If 
set to 0 counting is resumed from previous value. This bit is 
automatically set to 0 when the counter is reset, so 
Cycl_Cnt_Reset is always read as 0.

R/W 0x0

Cycl_Cnt_CountOn 4 Start/Stop the Cycle Counter. If this bit is set to 1 then CM2 
Cycle Counter starts counting. If this bit is set to 0 then CM2 
Cycle Counter is disabled. This bit is automatically set to 0 if 
any Counter Overflows and Perf_Ovf_Stop is set to 1.

R/W 0x0
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8.5.1.6 CM2 PDTrace TCB Trace Word Read Pointer Register (GCR_DB_TCBRDP Offset 0x0108)

The TCBRDP register is an address pointer to on-chip trace memory. It points to the TW read when reading the 
TCBTW register. When writing the TCBCONTROLBRM bit to 1, this pointer is reset to the current value of TCBSTP.

This register is also accessible by EJTAG via the TCBDATA instruction as described in the EJTAG Debug Support 
chapter.

The format of the TCBRDP register is shown below and the fields are described in Table 8.56. The value of n depends 
on the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always zero.

Figure 8.50 TCBRDP Register Format 

8.5.1.7 CM2 PDTrace TCB Trace Word Write Pointer Register (GCR_DB_TCBWRP Offset 0x0110)

The TCBWRP register is an address pointer to on-chip trace memory. It points to the location where the next new TW 
for on-chip trace will be written.

This register is also accessible by EJTAG via the TCBDATA instruction as described in the EJTAG Debug Support 
chapter.

The format of the TCBWRP register is shown below and the fields are described in Table 8.57. The value of n 
depends on the size of the on-chip trace memory. As the address points to a 64-bit TW, the lower three bits are always 
zero.

Figure 8.51 TCBWRP Register Format 

Perf_Num_Cnt 3:0 The number of performance counters implemented (not 
including the cycle counter). The CM2 has 2 performance 
counters.

R 0x2

31 n+1 n 0

Data Address

Table 8.56 TCBRDP Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateNames Bits

Data 31:(n+1) Reserved. Must be written with zero, reads back zero. 0 0

Address n:0 Byte address of on-chip trace memory word. R/W 0

31 n+1 n 0

Data Address

Table 8.55 CM2 Performance Counter Control Register

Name Bits Description
Read/
Write Reset State
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8.5.1.8 CM2 PDTrace TCB Trace Word Start Pointer Register (GCR_DB_TCBSTP Offset 0x0118)

The TCBSTP register is the start pointer register. This pointer is used to determine when all entries in the trace buffer 
have been filled (when TCBWRP has the same value as TCBSTP ). This pointer is reset to zero when the 
TCBCONTROLBTR bit is written to 1. If a continuous trace to on-chip memory wraps around the on-chip memory, 
TSBSTP will have the same value as TCBWRP.

This register is also accessible by EJTAG via the TCBDATA instruction as described in the EJTAG Debug Support 
chapter.

The format of the TCBSTP register is shown below and the fields are described in Table 8.58. The value of n depends 
on the size of the on-chip trace memory. As the address points to a 64-bit TW, the lower three bits are always zero.

Figure 8.52 TCBSTP Register Format 

8.5.1.9 CM2 PDTrace TCB System Trace User Control Register ( GCR_DB_TCBSYS Offset 0x0040)

The TCBSYS register contents are driven to the TC_Sys_UserCtl[31:0] output signals. This register is also mapped to 
offset 0x0040 in the Global Debug Block of the CM GCRs. Thus, any change to this register will be reflected in these 
output signals. The format of the TCBSYS register is shown below, and the fields are described in Table 8.59.

This register is also accessible by EJTAG via the TCBDATA instruction as described in the EJTAG Debug Support 
chapter.

Figure 8.53 TCBSYS Register Format 

Table 8.57 TCBWRP Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateNames Bits

Data 31:(n+1) Reserved. Must be written zero, reads back zero. 0 0

Address n:0 Byte address of on-chip trace memory word. R/W 0

31 n+1 n 0

Data Address

Table 8.58 TCBSTP Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateNames Bits

Data 31:(n+1) Reserved. Must be written zero, reads back zero. 0 0

Address n:0 Byte address of on-chip trace memory word. R/W 0

31 30 0

STA UsrCtl
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8.5.1.10 CM2 Performance Counter Overflow Status Register (GCR_DB_PC_OV Offset 0x120)

Figure 8.54 Performance Counter Overflow Status Register Format 

 

Table 8.59 TCBSYS Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

STA 31 System Trace Available. Set to 1 if the System Trace Interface is 
present. Otherwise it is set to 0.

R Preset

UsrCtl 30:0 User-defined Control. R/W 0

31 3 2 1 0

R P1_OF P0_OF Cycl_Cnt_OF

Table 8.60 Performance Counter Overflow Status Register 

Register Fields

Description
Read/
Write Reset StateName Bits

Reserved 31:3 Reserved. Must be written zero, reads back zero. R 0x0

P1_OF 2 If this bit is set to 1, CM2 Performance Counter 1 has over-
flowed i.e., the counter has reached 0xFFFF_FFFF.

R
Write 1 to 

clear

0x0

P0_OF 1 If this bit is set to 1, CM2 Performance Counter 0 has over-
flowed i.e., the counter has reached 0xFFFF_FFFF.

R
Write 1 to 

clear

0x0

Cycl_Cnt_OF 0 If this bit is set to 1, the CM2 Cycle Counter Register has 
overflowed.

R
Write 1 to 

clear

0x0
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8.5.1.11 CM2 Performance Counter Event Select Register (GCR_DB_PC_EVENT Offset 0x130)

Figure 8.55 CM2 Performance Counter Event Select Register Format 

8.5.1.12 CM2 Cycle Counter Register

The CM2 Cycle Count Register is a 32-bit register that keeps count of CM2 clock cycles. It is controlled through the 
Cycl_Cnt_CountOn and Cycl_Cnt_Reset bits in the CM2 Performance Counter Control Register. An overflow of the 
cycle counter is indicated by a 1 in the Cycl_Cnt_Overflow bit in the CM2 Performance Counter Overflow Status Reg-
ister. 

Figure 8.56 CM2 Cycle Count Register Format  

31 16 15 8 7 0

R P0_Event P0_Event

Table 8.61 CM2 Performance Counter Event Select Register 

Name Bits Description
Read/
Write Reset State

Reserved 31:16 Reserved. Must be written zero, reads back zero. R 0x0

P1_Event 15:8 Event Selection for CM2 Performance Counter 1. Event num-
bers are defined in Table 15.1.

R/W 0x0

P0_Event 7:0 Event Selection for CM2 Performance Counter 0. Event num-
bers are defined in Table 15.1.

R/W 0x0

31 0

Cycle_Cnt

Table 8.62 CM2 Cycle Counter Register (GCR_DB_PC_CYCLE Offset 0x180) 

Name Bits Description
Read/
Write Reset State

Cycle_Cnt 31:0 32-bit count of CM2 clock cycles. R/W 0x0
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8.5.1.13 CM2 Performance Counter n Qualifier Field Register (GCR_DB_PC_QUALn Offset 0x190, 
0x1a0)

Figure 8.57 Performance Counter n Qualifier Field Register Format  

8.5.1.14 CM2 Performance Counter n Register (GCR_DB_PC_CNTn Offset 0x198, 0x1A8)

Figure 8.58 Performance Counter n Register Format  

8.5.1.15 CM2 PDTrace TCB Trace Word LO Register ( GCR_DB_TCBTW_LO Offset 0x0200)

Reads to this register access the contents of the On-Chip Trace Buffer entry (least significant 32-bits) which is refer-
enced by the GCR_DB_TCBRDP register. Writes to this register modify the On-Chip Trace Buffer entry (least signif-
icant 32-bits) which is referenced by the GCR_DB_TCBWRP register.

A side effect of reading the TCBTW_LO register is that the TCBRDP register increments to the next TW in the on-
chip trace memory. If TCBRDP is at the max size of the on-chip trace memory, the increment wraps back to address 
zero. A side effect of writing the TCBTW_LO register is that the TCBWRP register increments to the next TW in 
the on-chip trace memory. If TCBWRP is at the max size of the on-chip trace memory, the increment wraps back to 
address zero. The use of load half-word or load byte instructions can lead to unpredictable results, and is not recom-
mended.

This register is also accessible by EJTAG via the TCBDATA instruction as described in the EJTAG Debug Support 
chapter.

31 0

Pn_Qualifier

Table 8.63 CM2 Performance Counter n Qualifier Field Register Descriptions

Name Bits Description
Read/
Write Reset State

Pn_Qualifier 31:0 CM2 Performance Counter n Event Qualifier. The qualifier 
corresponds to the event configured through the 
Performance Counter 0 Event Select Register.

R/W 0x0

31 0

Pn_Count

Table 8.64 CM2 Performance Counter n Register

Name Bits Description
Read/
Write Reset State

Pn_Count 31:0 32-bit Performance Counter. The event counted is specified in 
the CM2 Performance Counter Event Select Register and 
by the corresponding Qualifier Register. 

R/W 0x0
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Figure 8.59 TCBTW_LO Register Format  

8.5.1.16 CM2 PDTrace TCB Trace Word HI Register ( GCR_DB_TCBTW_HI Offset 0x0208) 

Reads to this register access the contents of the On-Chip Trace Buffer entry (most significant 32-bits) which is refer-
enced by the GCR_DB_TCBRDP register. Writes to this register modify the On-Chip Trace Buffer entry (most signif-
icant 32-bits) which is referenced by the GCR_DB_TCBWRP register.

To read or write a 64-bit trace word from the Trace Buffer, the GCR_DB_TCBTW_HI register must be accessed first 
before the GCR_DB_TCBTW_LO register. The access of the GCR_DB_TCBTW_LO register causes the appropriate 
pointer register to be incremented. The use of load half-word or load byte instructions can lead to unpredictable 
results, and is not recommended.

This register is also accessible by EJTAG via the TCBDATA instruction as described in the EJTAG Debug Support 
chapter.

Figure 8.60 TCBTW_HI Register Format  

31 0

Data

Table 8.65 TCBTW_LO Register Field Descriptions 

Names Bits Description
Read / 
Write Reset State

Data 31:0 Trace Word, least significant 32-bits. R/W 0

31 0

Data

Table 8.66 TCBTW_HI Register Field Descriptions 

Names Bits Description
Read / 
Write Reset State

Data 31:0 Trace Word, most significant 32-bits. R/W 0
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Global Interrupt Controller

This chapter describes the optional Global Interrupt Controller (GIC) included in the proAptiv Multiprocessing Sys-
tem. The GIC can control up to 256 external interrupt sources in multiples of 8. This chapter describes how software 
controls the configuration and use of the GIC.

The GIC handles the distribution of interrupts between and among the CPUs in the cluster. The GIC has the ability to 
route interrupts to each core independently.

The chapter contains the following sections:

• Section 9.1 “GIC Terminology”

• Section 9.2 “GIC Features”

• Section 9.3 “GIC Address Map Overview”

• Section 9.4 “GIC Programming”

• Section 9.5 “Shared Register Set”

• Section 9.6 “GIC Core-Local and Core-Other Register Set”

• Section 9.7 “GIC User-Mode Visible Section”

9.1 GIC Terminology

In the context of the GIC, the term ‘Processor’ will be used synonymously to refer to a single processor or a virtual 
processor in a Core that implements the MT ASE, such as interAptiv. 

When there is one VPE per core, such as in proAptiv, the processor numbering is as follows:

9.2 GIC Features

To provide support for a multiprocessor environment, the GIC design includes the following features: 

• Accepts interrupts from up to 256 external sources. 

Table 9.1 Processor Numbering with One VPE per Core 

Processor Number Core Number VPE Number

0 0 0

1 1 0

2 2 0

3 3 0
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• Supports active-high, active-low, rising-edge triggered, falling-edge triggered, and dual-edge triggered interrupt 
signaling.

• Distributes/partitions the interrupt sources among the available cores. 

• Steers any interrupt source to any core interrupt input (Interrupt pin, NMI).

• Allows any core to interrupt any other core.

• Backward compatible with pre-defined MIPS Technologies interrupt modes (legacy, vectored, and EIC). 

• Scalable for both the number of interrupt sources as well as the number of cores in the system.

• Able to integrate interrupt messages from peripherals such as PCI-Express.

• Hardware assist features are configurable be software at run-time.

• Provides interval and watchdog timers.

9.3 GIC Address Map Overview

An proAptiv Multiprocessing System can contain up to four cores and eight cores. To avoid the large address space 
needed for core-specific register sets, an aliasing address scheme is used.

The GIC address space is accessed with uncached load/store commands. The physical address and the core number of 
the requester is supplied for each load/store command. The core number is used as an index to reference the appropri-
ate subset of the instantiated control registers. By using the core number information, the hardware writes/reads the 
correct subset of the control registers pertaining to that core. Software does not need to explicitly calculate the regis-
ter index for the core in question; it is done entirely by hardware.

In the proAptiv Multiprocessing System, any core can access the registers of any other core by using the Core-Other 
address spaces. Software must write the Core-Other Addressing Register before accessing these address spaces. The 
value of this register is used by hardware to index the appropriate subset of the control registers. 

Two address “windows” are made available to the programmer:

• A window for the “Local” core (as specified by the core number information). 

• A second window for an “Other” core that allows a core to access the register set belonging to another core. The 
“Other” core is specified by first writing the Core-Other Addressing Register in the “local” core address space.

An additional section called the User-Mode Visible section is used to give quick user-mode read access to specific 
GIC registers. The use of this section is meant to avoid the overhead of system calls to read GIC resources, such as 
counter registers.

The address map of the GIC is shown in Table 9.3. 

Table 9.2 GIC Address Space 

Segment
Base 
Offset Addressing Method

Address 
Space Size

Virtual Address 
Space Type

Shared Section Offset 0x00000 Offset relative to GCR_GIC_Base 32 KB Kernel
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As shown in the table above, the GIC address space is divided into four types:

• A Shared section in which the external interrupt sources are registered, masked, and assigned to a particular core 
and interrupt pin. This section is used by all cores. 

• A Core-Local section in which interrupts local to a core are registered, masked, and assigned to a particular inter-
rupt pin. If External Interrupt Controller Mode (EIC) mode is used for a particular core, the EIC encoder is 
instantiated here. 

• A Core-Other section in which the local core can access the Core-Local section of another core by which the 
interrupt can be registered, masked, and asigned to a particular interrupt pin of the other core. One core can setup 
the GIC for all cores in the system using this section.

• A User Mode Visible section that contains the GIC Hi/Lo counters accessible in user mode for quick user mode 
access. The use of this section is meant to avoid the overhead of system calls to read GIC resources, such as 
counter registers.

In the GIC, the Shared, Core-Local, and Core-Other sections are meant to be located in privileged system virtual 
address space, in which only kernel mode software can initialize and update the interrupt controller.

A separate 64KB address space is allocated so that it may be mapped to User Mode virtual address space. Within this 
address space are aliases for GIC registers that are read so often that it makes sense to make them available to user-
mode programs without requiring a system call. The aliases for these registers are read-only. Currently, the only reg-
isters that are aliased into this space are the shared GIC_SH_CounterLo and GIC_SH_CounterHi registers. Refer to 
Section 9.7 “GIC User-Mode Visible Section” for more information. 

9.3.1 GIC Base Address

The GIC base address is a 17-bit value that is programmed into the GCR_CPE_BASE field of the GCR CPC Base 
register located at offset address 0x0088 in the Global Control Block of the CM2 registers. Refer to the 
GCR_CPC_BASE Register in Chapter 8, CM2 Global Control Registers for more information on this register. 

9.3.2 Block Offsets Relative to the Base Address

The block offsets for each of the three blocks listed in Table 9.3 above are relative to a GIC base address adescribed 
above and can be located anywhere in physical memory. To determine the physical address of each block listed in 
Table 9.4, the base address written to the GCR_GIC_BASE Register this value would be added to the GIC block off-

Core-Local Section Offset 0x08000 Offset relative to GCR_GIC_Base + 
using core number as Index

16 KB Kernel

Core-Other Section Offset 0x0C000 Offset relative to GCR_GIC_Base + 
using Core-Other Addressing Register 
as Index

16 KB Kernel

User-Mode Visible Section Offset 0x10000 Offset relative to GCR_GIC_Base 64 KB User

Table 9.2 GIC Address Space (continued)

Segment
Base 
Offset Addressing Method

Address 
Space Size

Virtual Address 
Space Type
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set ranges to derive the absolute physical address as shown in Table 9.4. Note that an example base address of 
0x1BDC_0 is used for these calculations. 

9.3.3 Register Offsets Relative to the Block Offsets

In addition to the block offsets, the register offsets provided in each register description of this chapter are relative to 
the block offsets shown in Table 9.3 above. To determine the physical address of each register, the base address pro-
grammed into the GCR_GIC_BASE register is added to the corresponding GIC block offset described above, plus the 
actual register offset to derive the absolute physical address as shown in Table 9.5.This table shows the physical 
address for the first few registers of the GIC Shared block. In this table an example base address of 0x1BDC_0 is 
used. 

This concept is described in Figure 9.1 below. In this figure an example base address of 0x1BDE_0 is used.

Table 9.3  Example Physical Address Calculation of the CPC Register Blocks 

Example Base 
Address GCR Block Offset Absolute Physical Address

Size 
(bytes) Description

0x1BDC_0 + 0x0000 - 0x7FFF = 0x1BDE_ 0000 - 0x1BDC_7FFF 32 KB GIC Shared Control Block. 

0x1BDC_0 + 0x8000 - 0xBFFF = 0x1BDE_ 8000 - 0x1BDC_BFFF 16 KB GIC Core-Local Control Block.

0x1BDC_0 + 0xC000 - 0xFFFF = 0x1BDE_ C000 - 0x1BDC_FFFF 16 KB GIC Core-Other Control Block.

0x1BDD_0 + 0x0000 - 0xFFFF = 0x1BDD_ 0000 - 0x1BDD_FFFF 64 KB User-Mode Visible Block.

Table 9.4  Absolute Address of Individual GIC Shared Block Registers

MIPS Default 
Base

Global Register 
Block Offset

Global Register 
Offset

Absolute Physical 
Address Global Control Register

0x1BDC_0 + 0x0000 + 0x0000 = 0x1BDC_0000 GIC Config. 

0x1BDC_0 + 0x0000 + 0x0010 = 0x1BDC_0010 GIC CounterLo. 

0x1BDC_0 + 0x0000 + 0x0014 = 0x1BDC_0014 GIC CounterHi. 

0x1BDC_0 + 0x0000 + 0x0020 = 0x1BDC_0020 GIC Revision. 

0x1BDC_0 + 0x0000 + 0x0100 = 0x1BDC_0100 CPC Interrupt Polarity 0. 

... + ... + ... = ... ...
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9.4 GIC Programming

This section covers the programming for the following tasks.

• Setting the GIC Base Address and Enabling the GIC

• Configuration of interrupt sources:

• External interrupt source configuration: 

• Level Sensitivity, active high or active low

• Edge Sensitivity, dual or single edge  (falling or Rising)

• Routing of Interrupt external interrupts to specific processors.

• Enabling or Disabling interrupts

• Inter-Processor Interrupts

• Local device interrupt configuration 

9.4.1 Setting the GIC Base Address and Enabling the GIC

As described in Section 9.3.1 “GIC Base Address”, the base address for the memory mapped registers of the GIC is 
set using the GIC_BASE_ADDR field of the GCR_GIC_BASE Register. This field is normally programmed by the 
boot code executing outside of the boot process.

To enable the GIC the GIC_EN bit must be set in this same register.

9.4.2 Configuring Interrupt Sources

The triggering of interrupts is configured through several registers in the GIC that are shared by all processors. All 
processors can access these registers but in practice these registers are usually programmed at boot time by processor 
0. There are three register groups that control the interrupt triggering configuration. 

• Trigger type register group 

• Edge type register group 

• Polarity register group

Each interrupt source is represented by one bit in each register group. Each register in a group is 32 bits so each reg-
ister controls 32 interrupt sources. The first register in each group would control interrupts 0 - 31, the next 32 - 63 and 
so on. Since there can be 256 interrupt sources there could be 8 registers in each group. There are enough of these 
registers in each group to control the number of interrupt sources implemented. The number of interrupt sources is a 
fixed value configured at core build time.  This number can be determined by reading the NUMINTERRUPTS field 
of the "GIC Configuration Register", GIC_SH_CONFIG. Refer to Section 9.5.3.1 “Global Config Register” for more 
information.

Each of the interrupt sources can be of either positive (asserted high) or negative (asserted low) polarity. Similarly, 
any of these sources can be either level-sensitive, single-edge-sensitive, or dual-edge-sensitive. Through the polarity 
control registers (GIC_SH_POLx_y), the trigger type control registers (GIC_SH_TRIGx_y) and dual edge control reg-
isters (GIC_SH_DUALx_y), all of the sources are normalized to positive, level-sensitive signals. This is the interrupt 
type supported by the CPU interrupt inputs. 
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For single-edged signaling, the Polarity register denotes which edge is used for setting the interrupt register and which 
edge is ignored. For double-edged signaling, both the rising and falling edges are used to set the interrupt register. 
These three registers work in conjunction with one another to define the characteristics of each specific interrupt in 
the system. Each bit of each register corresponds to an interrupt. So for a given bit, the corresponding interrupt char-
acteristics would be defined as shown in Table 9.6. The ‘n’ in the table entries denotes that it can be any bit of a given 
register, but must be the same bit of each register. 

9.4.2.1 Trigger Type Register Group

The trigger type register group is made up of shared "Global Interrupt Trigger Type Registers", GIC_SH_TRIG. The 
trigger type can be set to level or edge sensitive. Setting the source bit configures the source to be edge sensitive and 
clearing it configures it to be level sensitive. For example to set the interrupt source 32 to edge sensitive bit 0 of the 
second GIC_SH_TRIG Register should be set. Refer to Section 9.5.3.6 “Global Interrupt Trigger Type Registers”, 
for more information on how to assign this parameter.

9.4.2.2 Edge Type Register Group

The edge type register group is made up of shared "Global Dual Edge Registers", GIC_SH_DUAL. This register 
group is used if the Trigger type described in the last section is set to edge sensitive and has no effect if the trigger 
type is level sensitive. The edge type can be either single or dual edge.   Setting the source bit configures the source to 
be dual edge and clearing it configures it to be single edge. For example, to set interrupt source 32 to dual edge sensi-
tive bit 0 of the second Global Dual Edge Registers should be set.

Refer to Section 9.5.3.7 “Global Interrupt Dual Edge Registers” for more information on how to assign this parame-
ters.

9.4.2.3 Polarity Type Register Group

The polarity register group is made up of shared "Global Interrupt Polarity Registers", GIC_SH_POL. This register 
group is used to determine the polarity sensitivity of the source. 

Table 9.5 Selecting Interrupt Polarity, Edge Sensitivity, and Triggering

Polarity
(GIC_SH_POL[n])

Trigger
(GIC_SH_TRIG[n])

Single/Dual Edge
(GIC_SH_DUAL[n]) Description

0 0 x Interrupt is level sensitive and active low. In this case the 
contents of the GIC_SH_DUAL have no meaning 
because level triggering is enabled.

1 0 x Interrupt is level sensitive and active high. In this case 
the contents of the GIC_SH_DUAL have no meaning 
because level triggering is enabled.

0 1 0 Interrupt is single edge triggered on the falling edge of 
the signal.

1 1 0 Interrupt is single edge triggered on the rising edge of 
the signal.

x 1 1 Interrupt is dual edge triggered. In this case the contents 
of the GIC_SH_POL have no meaning because inter-
rupts occur on both the rising and falling edges of the 
signal.



480 MIPS32® proAptiv™ Multiprocessing System Software User’s Manual, Revision 01.22

 

If the interrupt source type is level sensitive then setting the source bit configures the source to be active High, and 
clearing it configures it to be active low.

If the interrupt is single edge sensitive then setting the source bit configures the source to rising edge toggle and set-
ting clearing it configure it to be falling edge toggle.

This register group has no effect if the edge type was set to dual edge sensitive.

Refer to Section 9.5.3.5 “Global Interrupt Polarity Registers”for more information on how to assign this parameter.

9.4.3 Interrupt Routing

The routing of interrupts to a specific input on a specific processor is controlled by the setting of 2 registers.

• Global Interrupt Map to Processor register, GIC_SH_MAP_VPE — maps the interrupt to a processor.

• Global Interrupt Map to Pin Register, GIC_SH_MAP_PIN — maps interrupt to a specific signal on a processor.

There is one of each of these 32 bit registers for each external interrupt source. The mapping of external interrupt pins 
and the registers that control them is listed in Table 9.7. 

Table 9.6 Mapping of External Interrupts  

External 
Interrupt Offset Register Name

External 
Interrupt Offset Register Name

0 0x2000 GIC_SH_MAP0_CORE 248 0x3F00 GIC_SH_MAP248_CORE

0x0500 GIC_SH_MAP0_PIN 0x08E0 GIC_SH_MAP248_PIN

1 0x2020 GIC_SH_MAP1_CORE 249 0x3F20 GIC_SH_MAP249_CORE

0x0504 GIC_SH_MAP1_PIN 0x08E4 GIC_SH_MAP249_PIN

2 0x2040 GIC_SH_MAP2_CORE 250 0x3F40 GIC_SH_MAP250_CORE

0x0508 GIC_SH_MAP2_PIN 0x08E8 GIC_SH_MAP250_PIN

3 0x2060 GIC_SH_MAP3_CORE 251 0x3F60 GIC_SH_MAP251_CORE

0x050C GIC_SH_MAP3_PIN 0x08EC GIC_SH_MAP251_PIN

4 0x2080 GIC_SH_MAP4_CORE 252 0x3F80 GIC_SH_MAP252_CORE

0x0510 GIC_SH_MAP4_PIN 0x08F0 GIC_SH_MAP252_PIN

5 0x20A0 GIC_SH_MAP5_CORE 253 0x3FA0 GIC_SH_MAP253_CORE

0x0514 GIC_SH_MAP5_PIN 0x08F4 GIC_SH_MAP253_PIN

6 0x20C0 GIC_SH_MAP6_CORE 254 0x3FC0 GIC_SH_MAP254_CORE

0x0518 GIC_SH_MAP6_PIN 0x08F8 GIC_SH_MAP254_PIN

7 0x20E0 GIC_SH_MAP7_CORE 255 0x3FE0 GIC_SH_MAP255_CORE

0x051C GIC_SH_MAP7_PIN 0x08FC GIC_SH_MAP255_PIN

8 - 247 0x2100 - 
0x3EE0

GIC_SH_MAP8_CORE - 
GIC_SH_MAP247_CORE

0x0520 - 
0x08DC

GIC_SH_MAP8_PIN - 
GIC_SH_MAP247_PIN
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9.4.3.1 Mapping an Interrupt Source to a Processor

There is one shared "Global Interrupt Map to VPE Register", GIC_SH_MAP_VPE for each interrupt source that 
maps that source to a processor. Bit 0 would map the interrupt source to processor 0; bit 1 would map the interrupt to 
processor 1 and so on. Refer to Section 9.5.3.14 “Global Interrupt Map to Core Registers” for more information. 

9.4.3.2 Mapping and Interrupt Source to a Specific Processor Pin

There is one shared "Global Interrupt Map to Pin Register", GIC_SH_MAP_PIN for each external interrupt source 
that further maps that source to a specific signal on the processor. There are three bits that control the type of signals 
that can be assigned to the interrupt source. Refer to Section 9.5.3.13 “Global Interrupt Map to Pin Registers” for 
more information.

• If set, the MAP_TO_PIN bit will map the external interrupt source to Interrupt Pending bits in the CP0 Cause 
register of the local processor. The actual Interrupt Pending value is set in the MAP field of this register.

• Note that in EIC mode, the MAP Field of this register contains the encoded value of the number (0 -63). For 
example, a value of 0x20 asserts Interrupt 32 (decimal). For vectored interrupt mode, only values of 0x0 
through 0x5 should be used. **Need cross reference to EIC mode**

• If set, the MAP_TO_NMI bit will map the external interrupt source to the NMI bit in the CP0 Status register.  
This in essence will cause the processor to soft boot using the boot exception vector as the start of the interrupt 
routine.

9.4.3.3 Mapping an Interrupt Source to a Register Set

Each processor has one register per interrupt source used when the processor is in "EIC mode" to map the interrupt 
source to a register set. This is the "EIC Shadow Set Register", GIC_VPEi_EICSS, located in the GIC local and other 
sections. NOTE: Even through shadow register sets are not present in the proAptiv core, this register must be initial-
ized. Refer to Section 9.6.3.6 “Local EIC Shadow Set Registers” for more information.

The first register corresponds to interrupt source 0; the second to interrupt source 1 and so on. The EIC_SS field is set 
to the register set number.

9.4.4 Enabling, Disabling, and Polling Interrupts

The Enabling, Disabling and Polling of interrupts is configured through several registers in the GIC that are shared by 
all processors. 

There are 4 shared registers groups for Enabling, Disabling and Polling of interrupts.

• Enabling an interrupt using the "GIC Set Mask Registers", GIC_SH_SMASK

• Disabling an interrupt using the "GIC Reset Mask Registers", GIC_SH_RMASK

• Determining the Enable/Disable state of an interrupt state using "GIC Mask Register", GIC_SH_MASK

• Polling the interrupt active state using the "GIC Pending Register", GIC_PEND_MASK

Like the trigger registers, each interrupt source is represented by one bit in each register group. Each register in a 
group is 32 bits so each controls 32 interrupt sources. The first register in each group would control interrupts sources 
0 - 31, the next 32 - 63 and so on. Since there can be 256 interrupt sources there could be 8 registers in each group. 
There are enough of these registers in each group to control the number of interrupt sources implemented. The num-
ber of interrupt sources is a fixed value configured at core build time.  This number can be determined by reading the 
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NUMINTERRUPTS field of the "GIC Configuration Register", GIC_SH_CONFIG. Refer to Section 9.5.3.1 “Global 
Config Register” for more information. 

9.4.4.1 Enabling External Interrupts

The GIC Set Mask register group is used to enable external interrupts. It is made up of "GIC Set Mask Registers", 
GIC_SH_SMASK For synchronization purposes this is a write only register. Setting the source bit enables the inter-
rupt. Refer to Section 9.5.3.10 “Global Interrupt Set Mask Registers” for more information.

9.4.4.2 Disabling External Interrupts

The GIC Reset Mask register group is used to disable external interrupts. It is made up of "GIC reset Mask Regis-
ters", GIC_SH_RMASK.  For synchronization purposes; this is a write only register. Setting the source bit disables 
the interrupt. Refer to Section 9.5.3.9 “Global Interrupt Reset Mask Registers” for more information.

9.4.4.3 Determining the Enabled or Disabled Interrupt State

The GIC Mask register group is used to determine if an external interrupt is enabled. It is made up of GIC Mask Reg-
isters, GIC_SH_MASK.  For synchronization purposes; this is a read only register. If a bit is set the corresponding 
interrupt source is enable. If it is clear the corresponding interrupt is disabled. Refer to Section 9.5.3.11 “Global 
Interrupt Mask Registers” for more information.

9.4.4.4 Polling for an Active Interrupt

The GIC Pending register group is used to determine if a external interrupt is active. It is made up of GIC Pending 
Registers, GIC_PEND_MASK.  This is a read only register. If a bit is set the corresponding interrupt source is active. 
If it is clear the corresponding interrupt is inactive. Refer to Section 9.5.3.12 “Global Interrupt Pending Registers” 
for more information.

9.4.4.5 Programming Example

Incoming interrupts are registered in the Global Interrupt Pending registers (GIC_SH_PENDx_y). This is the register 
that software needs to probe to discern the source of the interrupt. The Global Interrupt Mask registers 
(GIC_SH_MASKx_y) allow software to temporarily disable any particular interrupt source. 

There are separate set (GIC_SH_SMASKx_y) and reset (GIC_SH_RMASKx_y) mask registers to set/clear individual 
interrupts to avoid any read-modify-write hazards within the system (multiple cores reading/writing the mask register 
simultaneously). This mechanism is shown in Figure 9.2 for interrupts 31:0. For interrupts 64:32, a different set of 
registers is used. Similar for interrupts 95:64, and so on through interrupts 255:224.

When an interrupt occurs, the corresponding bit in the GIC_SH_PEND register is set by hardware. If the correspond-
ing interrupt enable bit in the GIC_SH_MASK bit is set, the GIC delivers the interrupt to the appropriate core. The 
hardware does this by using the GIC_SH_MAP_CORE register to send the interrupt to the appropriate core and the 
GIC_SH_MAP_PIN register to set the interrupt pins for that core.

In the following example: 

• External interrupt 8 is asserted

• All bits of the GIC_SH_SMASK register are set, enabling all 32 interrupts.

• The receiving core is #1, and the receiving interrupt is #15.

This example is shown in Figure 9.2 below.
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9.4.5.2 Inter-Processor Interrupt Code Example

Here is an example on how to set up interrupt sources 32 through 39 for inter-processor interrupts. First here is a table 
of what the #defines are set to.

// First load  GIC base address into the GCR and enable the GIC

li      a1, GCR_CONFIG_ADDR + GCR_GIC_BASE // load the address of the GIC Base Address register

li      a0, (GIC_P_BASE_ADDR | 1) // Physical address + enable

sw    a0, 0(a1) // Store the Physical address of the GIC and the enable
// bit to the GCR

// Configure the source pins for inter-processor interrupts

li       a1, GIC_BASE_ADDR // load GIC base address

li        a0, 0xff // load bits for  interrupts 32..39 lower 8 bits of 2nd  group)

sw     a0, GIC_SH_RMASK63_32(a1) // (disable  interrupts 32..39)

sw     a0, GIC_SH_TRIG63_32(a1) // (set source to be edge sensitive for interrupts 32..39)

sw     a0, GIC_SH_POL63_32(a1)        // (set Polarity to rising edge for interrupts32..39)

sw     a0, GIC_SH_SMASK63_32(a1)// (enable   interrupts 32..39) 

// Map interrupts to a processor

// The register offset into the GIC for the MAP TO VPE register is obtained by multiplying the 

// interrupt number by the spacing size (GIC_SH_MAP_SPACER) and adding the offset for the Global

//  Interrupt Map to VPE Registers (GIC_SH_MAP0_VPE31_0).

li a0, 1            // set bit 0 processor 0

// Map Source 32 processor 0

Table 9.7 Setting Interrupt Sources 32 Through 39

#define Value Description

GIC_BASE_ADDR 0xbbdc0000 Virtual Base memory address of the GIC memory mapped registers

GIC_P_BASE_ADDR 0x1bdc0000 Physical Base address of the GIC memory mapped registers

GIC_SH_RMASK63_32 0x0304 Offset into the GIC registers for the GIC Reset Mask Register

GIC_SH_POL63_32 0x0104 Offset into the GIC registers for the GIC Reset Polarity  Register

GIC_SH_TRIG63_32 0x0184 Offset into the GIC registers for the GIC Trigger Register

GIC_SH_SMASK63_32 0x0384 Offset into the GIC registers for the GIC Set Mask Register

GCR_CONFIG_ADDR 0xbfbf8000 Base address of the Global Configuration Register

GCR_GIC_BASE 0x0080 Offset int the GCR of the GIC base Address

GIC_SH_MAP0_VPE31_0 0x2000 Offset into the GIC for first map register

GIC_SH_MAP_SPACER 0x20 Spacing between map registers
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sw a0,GIC_SH_MAP0_VPE31_0+(GIC_SH_MAP_SPACER * 32)(a1) 

sll a0, a0, 1 // set bit 1 for processor 1

// Source 33 to processor 1

sw a0,GIC_SH_MAP0_VPE31_0+(GIC_SH_MAP_SPACER * 33)(a1) 

sll a0, a0, 1 // set bit 2 for processor 2

// Source 34 to processor 2

sw a0,GIC_SH_MAP0_VPE31_0+(GIC_SH_MAP_SPACER * 34)(a1)   

sll a0, a0, 1 // set bit 3 for processor 3 or for MT vpe3

 // Source 35 to processor 3

sw a0,GIC_SH_MAP0_VPE31_0+(GIC_SH_MAP_SPACER * 35)(a1) 

sll a0, a0, 1 // set bit 4 for processor 4

// Source 36 to processor 4

sw a0,GIC_SH_MAP0_VPE31_0+(GIC_SH_MAP_SPACER * 36)(a1) 

sll a0, a0, 1 // set bit 5 for processor 5

// Source 37 to processor 5

sw a0,GIC_SH_MAP0_VPE31_0+(GIC_SH_MAP_SPACER * 37)(a1) 

sll a0, a0, 1 // set bit 6 for processor 6 

// Source 38 to processor 6

sw a0,GIC_SH_MAP0_VPE31_0+(GIC_SH_MAP_SPACER * 38)(a1) 

sll a0, a0, 1 // set bit 7 for processor 7

// Source 39 to processor 7

sw a0,GIC_SH_MAP0_VPE31_0+(GIC_SH_MAP_SPACER * 39)(a1) 

At this point the Map-to-Pin Registers could be used to map each interrupt source to Interrupt Pending bits in the CP0 
Cause register of a processor. The default values for the "Map to Pin" registers are the MAP_TO_PIN bit is set and 
the MAP field is cleared. This example does not change the default values therefore the interrupts are mapped to IP2, 
Hardware Interrupt 0.

9.4.5.3 Example of Sending an Inter-Processor Interrupt

The following is a C coding example of sending an inter-processor interrupt. First the #defines 

Table 9.8

#define Value Description

GIC_SH_WEDGE *((volatile unsigned int*) (0xbbdc0280)) Address of the GIC_WEDGE_REGISTER.

FIRST_IPI 32 Source number for the first IPI.
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void set_ipi(int cpu_num) {

// Add the enable bit, the first IPI number and the cpu number 

// and write it to the GIC_SH_WEDGE register

    GIC_SH_WEDGE = 0x80000000 + FIRST_IPI + cpu_num ; 

9.4.5.4 Example of Clearing an Inter-Processor Interrupt

Once received, the interrupt routine should do whatever action is intended for the interrupt and clear the interrupt by 
writing the interrupt number to the GIC_SH_WEDGE register before executing the eret instruction. NOTE: only the 
interrupt number is set before the write so the R/W bit will be cleared indicating that the interrupt is to be cleared.

li      k0, (GIC_SH_WEDGE | GIC_BASE_ADDR)

mfc0    k1, C0_EBASE                // Get cp0 EBase

ext     k1, k1, 0, 10       // Extract CPUNum

addiu   k1, 0x20        // Offset to base of IPI interrupts.

sw      k1, 0(k0)       // Clear this IPI.

9.4.6 Local Device Interrupt Configuration

The GIC also controls how devices within the processor and the GIC are configured and mapped locally to the pro-
cessor.

There are 2 devices that are added as part of the GIC described in this section:

• GIC Interval Timer - a 64 bit timer that compares a local compare registers, GIC_VPE_CompareLo/Hi  of a pro-
cessor with a global counter, GIC_SH_CounterLo/Hi in the GIC and activates an interrupt when they match.

• GIC Watchdog Timer - a 32 bit decrementing counter, GIC_CORE_WD_COUNT that can be used as liveliness 
signal for a processor.

9.4.6.1 GIC Interval Timer

The interval timer is similar to the CP0 Count/Compare timer within each processor. The difference is the GIC Coun-
terLo/Hi register is global to the CPS so all processors will have the same time reference.

Both the interval count and interval compare values are 8 bytes wide and are made up of 2 (Lo/HI) registers . For each 
Lo register overflow the Hi register is incremented. If the Hi register overflows, both registers rollover to 0.

Counter Registers

The counter registers, GIC_SH_CounterLo/Hi are in the shared section of the GIC memory map. The counter must be 
stopped before it is set. This is done by setting the COUNTSTOP bit of the GIC_SH_CONFIG register (link to regis-
ter reference of GIC_SH_CONFIG). In practical use the counter is usually set by an OS at boot time by one proces-
sor. These counter registers are also available (read only) in user mode located at offset 0 of the User Mode Visible 
Section of the GIC. 

The COUNTBITS field of the GIC_SH_CONFIG register in Section 9.5.3.1, "Global Config Register" is used to set 
up the width of the GIC_SH_CounterHi register. In the GIC design, this field is fixed at a value of 0x8, indicating a 
total counter size of 64-bits.

The shared counter registers are defined as follows:
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• GIC_SH_CounterLo register in Section 9.5.3.2, "GIC CounterLo". Used in conjunction with the 
GIC_SH_CounterHi register. Sets the lower 32-bits of the starting count value.

• GIC_SH_CounterHi register in Section 9.5.3.3, "GIC CounterHi". Used in conjunction with the 
GIC_SH_CounterLo register. Sets the upper 32-bits of the starting count value.

Compare Registers

The compare registers, GIC_VPE_CompareLo/Hi are located in the local section of the GIC memory map making 
the count specific to each processor. These registers can be written at any time. When the count value equals the com-
pare value an Interval Timer interrupt is asserted. The interrupt is cleared (de-asserted) by writing to either 
GIC_VPE_CompareLo/Hi register. The compare registers are defined as follows:

• GIC_COREi_CompareLo register in Section 9.6.3.4, "CompareLo Register". Used in conjunction with the 
GIC_COREi_CompareHi register to set the count value at which an internal interrupt is generated.

• GIC_COREi_CompareHi register in Section 9.6.3.5, "Core-Local CompareHi Register". Used in conjunction 
with the GIC_COREi_CompareLo register to set the count value at which an internal interrupt is generated.

Determining the Counter Width

The counter used for GIC internal interrupt generation has a minimum width of 32 bits, meaning that all of the 
GIC_SH_CounterLo register is used. In the GIC design, the width of the GIC_SH_CounterHi register is also fixed at 
32 bits as indicated by a value of 0x8 in the 4-bit COUNTBITS field in the GIC_SH_CONFIG register. To derive the 
total width of the counter, the following formula isused:

32 + COUNTBITS x 4

Where:

‘32’ is the width of the GIC_SH_CounterLo register and ‘COUNTBITS’ is the value in the COUNTBITS field of the 
GIC_SH_CONFIG register.

Since the COUNTBITS field contains a fixed value of 0x8, the overall width of the counter would be:

32 + 8 x 4 = 64 bits

In the GIC design, the COUNTBITS field is fixed at a value of 0x8, indicating a total counter size of 64-bits. 

Counter Based Interrupt Example

In the example shown in Figure 9.4, the width of the counter is 64-bits, and the CompareLo/Hi value is 
0x1_FFFF_FFFF which corresponds to 8G clock cycles. When this count is reached, hardware generates an internal 
interrupt.
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9.4.6.2 GIC Watchdog Timer

Each core supports a Watchdog timer that is controlled by the following three registers.

• The "GIC Watchdog Timer Configuration Register", GIC_COREi_WD_CONFIG is local to each processor and 
reports state information and configures the characteristics of the timer.

• The "Watchdog Timer Initial Count Register", GIC_COREi_WD_INITIAL is local to each processor and is used 
to set the timer interval. 

• The "Watchdog Timer Count Register", GIC_COREi_WD_COUNT is a read only register local to each proces-
sor that contains the current value of the countdown.

GIC Watchdog Timer Configuration Register

The GIC Watchdog Timer Configuration register contains bits that control the function of the timer.

• Clearing the WAIT bit of GIC_COREi_WD_CONFIG register (default value) will cause the counter stop count-
ing when the processor is executing a wait instruction or is in a low power stats controlled by the Cluster Power 
Controller. Setting this bit to 1 will cause it to continue counting down in these states. Usually this bit is left 
unset.

• Clearing the Debug bit (default value) will cause the counter to stop the count when the processor enters debug 
mode. When set the count will continue counting down. Usually this bit is left unset.

• The TYPE field in bits 3:1 of this register determines what happens when the timer reaches 0.

Clearing the WDEN bit disables the timer and when it is set it enables the timer. Writing WDEN with a 1 triggers a 
reloads the GIC_CORE_WD_COUNT register with the value in the GIC_COREi_WD_INITIAL register. Refer to 
Section 9.6.3.1, "Watchdog Timer Config Register" for more information.

Table 9.9 GIC Watchdog Timer Modes

Encoding Mode Behavior 

0x2 One Trip An interrupt is asserted and the timer stops.

0x1 Second Countdown An interrupt is asserted and the timer reloads. If the timer expires for the second 
time before being reloaded again all processors in the CPS will be reset. 
This mode provides a way to distinguish between a Software hang and a Hardware 
Hang. Usually the Watchdog Timer Interrupt is routed to NMI. This will cause the 
processor to soft reboot.  In this mode that is what happens when the timer expires 
the first time so if this was a software hang during the reboot the software should 
reload the Watchdog Timer thus avoiding the second expiration. If the processor 
itself does not respond to the interrupt then it is assumed to be a hardware issue so 
when the count expires the second time a reset signal will be sent to all processors in 
the system.

0x3 Programmable 
Interval Timer

An interrupt is asserted, the initial count is reloaded and the time starts counting 
down again interrupting each time the counter reaches 0.
This mode provides a per processor interval timer.  This is one mode where the 
interrupt should not be routed to NMI. It should instead be routed to a normal inter-
rupt where for example the interrupt could be used in a time slicing OS.
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Watchdog Timer Masking and Mapping

Figure 9.5 above shows the process used to configure the Watchdog timer. Once a Watchdog timer interrupt is gener-
ated (output of Figure 9.5), hardware sets bit 0 of the Local Interrupt Pending register (GIC_COREi_PEND) at offset 
address 0x0004. Hardware then reads the state of bit 0 in the Local Interrupt Mask register (GIC_COREi_MASK) at 
offset address 0x0008 to determine whether the Watchdog timer interrupt has been masked. The GIC_COREi_MASK 
register is a read-only register. 

Software can affect the state of this register using the write-only Local Interrupt Set Mask register 
(GIC_COREi_SMASK) at offset address 0x0010 and the Local Interrupt Reset Mask register (GIC_COREi_RMASK) at 
offset address 0x000C. Software sets bit 0 of the SMASK register to enable the Watchdog timer interrupt, or it can set 
bit 0 of the RMASK register to disable Watchdog timer interrupts. Note that when the WatchDog timer is programmed 
to generate a hardware reset, the reset cannot be masked by the Local Interrupt Mask register

Once hardware has determine the masking characteristics of the interrupt, it uses the Watchdog Timer Map-to-Pin reg-
ister at offset address 0x0040 to determine which SI_Int[5:0], or NMI pins the interrupt will be driven onto. In non-EIC 
mode, bits 5:0 of this register are used to select one of 6 core interrupts. For example, if software programs this field 
with a value of 0x2, then the Watchdog timer interrupt will be driven into SI_Int[2]. In non-EIC mode, only encodings 
0 - 5 are valid. 

In EIC mode, the core encodes this field to support up to 64 interrupts. For example, if software programs this field 
with a value of 0x20, then the Watchdog timer interrupt corresponds to interrupt 33. This encoded value is then driven 
onto SI_Int[5:0]. 
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If this bit is set by software, entering low power mode has no effect on the Watchdog timer counting process.

9.4.7 Local Interrupt Routing

9.4.7.1 Routability of Local Interrupts

Local interrupts (except for the Watchdog timer, GIC Interval Timer and software interrupts) can be hardwired to 
local pins when the CPS is configured or can be more flexible and left to software to route the local interrupts to local 
pins on the processor. The "Local Interrupt Control Register", GIC_COREi_CTL (link to register reference of 
GIC_COREi_CTL) reports the routable state of the local interrupts. If the bit for the particular interrupt is set then the 
interrupt is routable within the GIC. The following table describes the behavior if not set.

Bits 4:1 of the GIC_COREi_CTL register determines the routing of the following interrupts. In the proAptiv GIC 
design, these bits are hard-wired to 1. Note that Software Interrupts from the core are routed internally by the CPU in 
vectored interrupt mode, and are only routed through the GIC when the GIC is in EIC mode, regardless of the 
GIC_COREi_CTL register. 

9.4.7.2 Routing Local Interrupts

If a local interrupt is routable it can be routed to a local signal of the local processor, much the same as an external 
interrupt.

There is a Local Interrupt Map to Pin Register (link to register reference of Local WatchDog Timer/Compare/CPU 
Timer/PerfCount/SWInt0-1 Map to Pin Registers) for each local interrupt source that further maps the local interrupt 
to a specific input on the processor. There are two bits, MAP_TO_PIN and MAP_TO_NMI that control the type of 
input that is assigned to the interrupt source.  Only one of these bits can be set at any one time.

• If set the MAP_TO_PIN bit will map the local interrupt source to Interrupt Pending bits in the CP0 Cause regis-
ter of the processor. The actual Interrupt Pending bit is set in the MAP field of this register. The MAP Field of 
this register contains the encoded value of the number (0 -63). For example, a value of 0x20 asserts Interrupt 32 
(decimal). For vectored interrupt mode, only use values of 0x0 to 0x5.

• If set the bit will map the local interrupt source to the NMI bit in the CP0 Status register.  This in essence will 
cause the processor to soft boot using the boot exception vector as the start of the interrupt routine.

Table 9.10 GIC_COREi_CTL Register Fields

Bit Field Name Behavior if cleared

FDC_ROUTABLE The CPU Fast Debug Channel Interrupt is hardwired to one of the SI_Int pins as described by the 
CPU's COP0 IntCtlIPFDCI register field.

SWINT_ROUTABLE The CPU SW Interrupts are routed back to the CPU directly.

PERFCOUNT_ROUTABLE The CPU Performance Counter Interrupt is hardwired to one of SI_Int pins as described by the CPU's 
COP0 IntCtlIPPCI register field.

TIMER_ROUTABLE The CPU Timer Interrupt is hardwired to one of the SI_Int pins, as described by the CPU's COP0 
IntCtlIPTI register field
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Each of these interrupt types is described in the following subsections. Table 9.12 lists the registers and associated 
bits that would be programmed to facilitate each type of interrupt listed above. 

Table 9.11 Local Interrupt Masking and Mapping Register Usage Per Interrupt Type 

Interrupt Register Name Offset Bits Used Function

WatchDog GIC_COREi_PEND 0x0004 0 Set by hardware on a local WatchDog timer interrupt. 

GIC_COREi_MASK 0x0008 0 Set by hardware based on the state of bit 0 of the SMASK and 
RMASK registers. Used to determine whether the interrupt will 
be processed or ignored.

GIC_COREi_RMASK 0x000C 0 Used by software to disable WatchDog timer interrupts.

GIC_COREi_SMASK 0x0010 0 Used by software to enable WatchDog timer interrupts.

GIC_COREi_WD_MAP 0x0040 31, 5:0 Used by software to map the WatchDog timer interrupt to one of 
the SI_Int[5:0] pins of the proAptiv Multiprocessing System 
core.

Count and
Compare

GIC_COREi_PEND 0x0004 1 Set by hardware on a local Count/Compare interrupt. 

GIC_COREi_MASK 0x0008 1 Set by hardware based on the state of bit 1 of the SMASK and 
RMASK registers. Used to determine whether the interrupt will 
be processed or ignored.

GIC_COREi_RMASK 0x000C 1 Used by software to disable Count/Compare interrupts.

GIC_COREi_SMASK 0x0010 1 Used by software to enable Count/Compare interrupts.

GIC_COREi_
COMPARE_MAP

0x044 31, 5:0 Used by software to map the Count/Compare interrupt to one of 
the SI_Int[5:0] pins of the proAptiv Multiprocessing System 
core.

Timer GIC_COREi_PEND 0x0004 2 Set by hardware on a local timer interrupt. 

GIC_COREi_MASK 0x0008 2 Set by hardware based on the state of bit 2 of the SMASK and 
RMASK registers. Used to determine whether the interrupt will 
be processed or ignored.

GIC_COREi_RMASK 0x000C 2 Used by software to disable timer interrupts.

GIC_COREi_SMASK 0x0010 2 Used by software to enable timer interrupts.

GIC_COREi_
TIMER_MAP

0x048 31, 5:0 Used by software to map the timer interrupt to one of the 
SI_Int[5:0] pins of the proAptiv Multiprocessing System core.

Performance 
Counter

GIC_COREi_PEND 0x0004 3 Set by hardware on a performance counter interrupt.

GIC_COREi_MASK 0x0008 3 Set by hardware based on the state of bit 3 of the SMASK and 
RMASK registers. Used to determine whether the interrupt will 
be processed or ignored.

GIC_COREi_RMASK 0x000C 3 Used by software to disable performance counter interrupts.

GIC_COREi_SMASK 0x0010 3 Used by software to enable performance counter interrupts.

GIC_COREi_
PERFCTR_MAP

0x0050 31, 5:0 Used by software to map the performance counter interrupt to 
one of the SI_Int[5:0] pins of the proAptiv Multiprocessing Sys-
tem core.
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Software 
Interrupt 0

GIC_COREi_PEND 0x0004 4 Set by hardware on a software interrupt 0 occurrence.

GIC_COREi_MASK 0x0008 4 Set by hardware based on the state of bit 4 of the SMASK and 
RMASK registers. Used to determine whether the interrupt will 
be processed or ignored.

GIC_COREi_RMASK 0x000C 4 Used by software to disable software interrupt 0 interrupts.

GIC_COREi_SMASK 0x0010 4 Used by software to enable software interrupt 0 interrupts.

GIC_COREi_
SWInt0_MAP

0x0054 31, 5:0 Used by software to map software interrupt 0 to one of the 
SI_Int[5:0] pins of the proAptiv Multiprocessing System core.

Software 
Interrupt 1

GIC_COREi_PEND 0x0004 5 Set by hardware on a software interrupt 1 occurrence.

GIC_COREi_MASK 0x0008 5 Set by hardware based on the state of bit 5 of the SMASK and 
RMASK registers. Used to determine whether the interrupt will 
be processed or ignored.

GIC_COREi_RMASK 0x000C 5 Used by software to disable software interrupt 1 interrupts.

GIC_COREi_SMASK 0x0010 5 Used by software to enable software interrupt 1 interrupts.

GIC_COREi_
SWInt1_MAP

0x0058 31, 5:0 Used by software to map software interrupt 1 to one of the 
SI_Int[5:0] pins of the proAptiv Multiprocessing System core.

Fast Debug 
Channel

GIC_COREi_PEND 0x0004 6 Set by hardware on a Fast Debug Channel (FDC) interrupt.

GIC_COREi_MASK 0x0008 6 Set by hardware based on the state of bit 6 of the SMASK and 
RMASK registers. Used to determine whether the interrupt will 
be processed or ignored.

GIC_COREi_RMASK 0x000C 6 Used by software to disable FDC interrupts.

GIC_COREi_SMASK 0x0010 6 Used by software to enable FDC interrupts.

GIC_COREi_FDC_MAP 0x004C 31, 5:0 Used by software to map the FDC interrupt to one of the 
SI_Int[5:0] pins of the proAptiv Multiprocessing System core.

Table 9.11 Local Interrupt Masking and Mapping Register Usage Per Interrupt Type (continued)

Interrupt Register Name Offset Bits Used Function
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9.4.7.4 Count and Compare Interrupts

A count and compare interrupt occurs when the contents of the of GIC_COREi_CompareLo and 
GIC_COREi_CompareHi registers match the contents of GIC_SH_CounterLo and GIC_SH_CounterHi, the Count/
Compare interrupt is triggered. Refer to Section “Counter Based Interrupt Example” for more information.

When a count and compare interrupt is generated, hardware sets bit 1of the Local Interrupt Pending register 
(GIC_COREi_PEND) at offset address 0x0004. Hardware then reads the state of bit 1 in the Local Interrupt Mask reg-
ister (GIC_COREi_MASK) at offset address 0x0008 to determine whether the count and compare interrupt has been 
masked. The GIC_COREi_MASK register is a read-only register. 

Software can affect the state of this register using the write-only Local Interrupt Set Mask register 
(GIC_COREi_SMASK) at offset address 0x0010 and the Local Interrupt Reset Mask register (GIC_COREi_RMASK) at 
offset address 0x000C. Software sets bit 1 of the SMASK register to enable the count and compare interrupt, or it can 
set bit 1 of the RMASK register to disable count and compare interrupts.

Once hardware has determined the masking characteristics of the interrupt, it uses the Count/Compare Map-to-Pin 
register at offset address 0x0044 to determine which SI_Int[5:0] or NMI pins the interrupt will be driven onto. In vec-
tored interrupt mode, bits 5:0 of this register are used to select one of 6 core interrupts. In this mode, only encodings 
0 - 5 are valid. In EIC mode, the core encodes this field to support up to 63 interrupts. For example, if software pro-
grams this field with a value of 0x20, then the WatchDog timer interrupt corresponds to interrupt level 32. This 
encoded value is then driven onto SI_Int[5:0]. 

9.4.7.5 Timer Interrupts

When a timer interrupt is generated, hardware sets bit 2 of the Local Interrupt Pending register (GIC_COREi_PEND) 
at offset address 0x0004. Hardware then reads the state of bit 2 in the Local Interrupt Mask register 
(GIC_COREi_MASK) at offset address 0x0008 to determine whether the timer interrupt has been masked. The 
GIC_COREi_MASK register is a read-only register. 

Software can affect the state of this register using the write-only Local Interrupt Set Mask register 
(GIC_COREi_SMASK) at offset address 0x0010 and the Local Interrupt Reset Mask register (GIC_COREi_SMASK) at 
offset address 0x000C. Software sets bit 2 of the SMASK register to enable the timer interrupt, or it can set bit 2 of the 
RMASK register to disable timer interrupts.

Once hardware has determine the masking characteristics of the interrupt, it uses the Timer Map-to-Pin register at off-
set address 0x0048 to determine which SI_Int[5:0] or NMI pins the interrupt will be driven onto. In non-EIC mode, bits 
5:0 of this register are used to select one of 6 core interrupts. In non-EIC mode, only encodings 0 - 5 are valid. In EIC 
mode, the core encodes this field to support up to 63 interrupts.

9.4.7.6 Performance Counter Interrupts

When a timer interrupt is generated, hardware sets bit 3 of the Local Interrupt Pending register (GIC_COREi_PEND) 
at offset address 0x0004. Hardware then reads the state of bit 3 in the Local Interrupt Mask register 
(GIC_COREi_MASK) at offset address 0x0008 to determine whether the performance counter interrupt has been 
masked. The GIC_COREi_MASK register is a read-only register. 

Software can affect the state of this register using the write-only Local Interrupt Set Mask register 
(GIC_COREi_SMASK) at offset address 0x0010 and the Local Interrupt Reset Mask register (GIC_COREi_SMASK) at 
offset address 0x000C. Software sets bit 3 of the SMASK register to enable the performance counter interrupt, or it 
can set bit 3 of the RMASK register to disable timer interrupts.
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Once hardware has determine the masking characteristics of the interrupt, it uses the Performance Counter Map-to-
Pin register at offset address 0x0050 to determine which SI_Int[5:0] or NMI pins the interrupt will be driven onto. In 
non-EIC mode, bits 5:0 of this register are used to select one of 6 core interrupts. In non-EIC mode, only encodings 0 
- 5 are valid. In EIC mode, the core encodes this field to support up to 63 interrupts.

9.4.7.7 Software Interrupts

Each core provides two software interrupts; 0 and 1. Software interrupts originiate from the CPU and are only used in 
EIC mode. In non-EIC mode they are routed internally.

When software interrupt 0 is generated, hardware sets bit 4 of the Local Interrupt Pending register 
(GIC_COREi_PEND) at offset address 0x0004. Hardware then reads the state of bit 4 in the Local Interrupt Mask reg-
ister (GIC_COREi_MASK) at offset address 0x0008 to determine whether the performance counter interrupt has been 
masked. The GIC_COREi_MASK register is a read-only register. 

Software can affect the state of this register using the write-only Local Interrupt Set Mask register 
(GIC_COREi_SMASK) at offset address 0x0010 and the Local Interrupt Reset Mask register (GIC_COREi_SMASK) at 
offset address 0x000C. Software sets bit 4 of the SMASK register to enable the software interrupt 0, or it can set bit 4 
of the RMASK register to disable software interrupt 0.

Once hardware has determine the masking characteristics of the interrupt, it uses the Software Interrupt 0 Map-to-Pin 
register at offset address 0x0054 to determine which SI_Int[5:0] or NMI pins the interrupt will be driven onto. In non-
EIC mode, bits 5:0 of this register are used to select one of 6 core interrupts. In non-EIC mode, only encodings 0 - 5 
are valid. In EIC mode, the core encodes this field to support up to 63 interrupts.

The sequence is the same for software interrupt 1, except that bit 5 of each register noted above is set instead of bit 4. 
In addition, software uses the Software Interrupt 1 Map-to-Pin register at offset address 0x0058 to determine which 
SI_Int[5:0] pin the interrupt will be driven onto.

9.4.7.8 Fast Debug Channel Interrupts

When a Fast Debug Channel (FDC) interrupt is generated, hardware sets bit 6 of the Local Interrupt Pending register 
(GIC_COREi_PEND) at offset address 0x0004. Hardware then reads the state of bit 6 in the Local Interrupt Mask reg-
ister (GIC_COREi_MASK) at offset address 0x0008 to determine whether the fast debug channel interrupt has been 
masked. The GIC_COREi_MASK register is a read-only register. 

Software can affect the state of this register using the write-only Local Interrupt Set Mask register 
(GIC_COREi_SMASK) at offset address 0x0010 and the Local Interrupt Reset Mask register (GIC_COREi_SMASK) at 
offset address 0x000C. Software sets bit 6 of the SMASK register to enable the fast debug channel interrupt, or it can 
set bit 6 of the RMASK register to disable fast debug channel interrupts.

Once hardware has determine the masking characteristics of the interrupt, it uses the Fast Debug Channel Map-to-Pin 
register at offset address 0x004C to determine which SI_Int[5:0] or NMI pins the interrupt will be driven onto. In non-
EIC mode, bits 5:0 of this register are used to select one of 6 core interrupts. In non-EIC mode, only encodings 0 - 5 
are valid. In EIC mode, the proAptiv Multiprocessing System core encodes this field to support up to 63 interrupts.
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9.4.8 EIC Mode Setting

EIC mode is controlled through software by setting the EIC_MODE bit in the Local interrupt Control Register, 
GIC_VPE_CTL (link to register reference of GIC_VPE_CTL). Setting this bit enables EIC mode. This bit defaults to 
0, vectored interrupt mode.

9.4.9 Enabling, Disabling, and Polling Local Interrupts

The Enabling, Disabling and Polling of local interrupts is configured through several registers in the GIC that are 
local to each processor.

There are 4 registers for Enabling, Disabling and Polling of local interrupts.

• Enabling an interrupt using the "GIC Local Set Mask Registers", GIC_VPE_SMASK

• Disabling an interrupt using the "GIC Local Reset Mask Registers", GIC_VPE_RMASK

• Determining the Enable/Disable state of an interrupt state using "GIC Local Interrupt Mask Register", 
GIC_VPE_MASK

• Polling the interrupt active state using the "GIC Local Interrupt Pending Register", GIC_VPE_PEND

 

9.4.9.1 Enabling External Interrupts

The "GIC Local Set Mask Register", GIC_VPE_SMASK is used to enable individual local interrupts. For synchroni-
zation purposes this is a write only register. Setting the bit enables the interrupt. The following table shows which 
field to set for each local interrupt. Refer to Section 9.6.2.5 “Local Interrupt Set Mask Register” for more informa-
tion. 

9.4.9.2 Disabling External Interrupts

The "GIC Local Reset Mask Register", GIC_VPE_RMASK is used to disable individual local interrupts.  For CPS 
synchronization purposes this is a write only register. Setting the bit disables the interrupt. The following table shows 
which field to set for each local interrupt. Refer to Section 9.6.2.4 “Local Interrupt Reset Mask Register” for more 
information.

Table 9.12 Enabling External Interrupts

Field Name Interrupt Controlled

FDC_MASK_SET Fast Debug Channel

SWINT1_MASK_SET Software interrupt 1

SWINT2_MASK_SET Software interrupt 2

PERFCOUNT_MASK_SET Local Performance Counter

TIMER_MASK_SET CP0 Local Count/Compare Timer

COMPARE_MASK_SET GIC Local Count/Compare Timer

WD_MASK_SET Watchdog
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9.4.9.3 Determining the Enabled or Disabled Interrupt state

The "GIC Local Mask Register", GIC_VPE_MASK is used to determine if a local interrupt is enabled.  For CPS syn-
chronization purposes this is a read only register. If a bit is set the corresponding interrupt source is enabled. If it is 
clear the corresponding interrupt is disabled. The following table shows which field corresponds to each local inter-
rupt. Refer to Section 9.6.2.3 “Local Interrupt Mask Register” for more information 

9.4.9.4 Polling for an Active Interrupt

The "GIC Pending Register", GIC_VPE_PEND is used to determine if a external interrupt is active. This is a read 
only register. If a bit is set the corresponding local interrupt is active. If it is clear the corresponding interrupt is inac-
tive. The following table shows which field corresponds to each local interrupt. Refer to Section 9.6.2.2 “Local 
Interrupt Pending Register” for more information 

Table 9.13 Disabling External Interrupts

Field Name Interrupt Controlled

FDC_RESET_MASK Fast Debug Channel

SWINT1_RESET_MASK Software interrupt 1

SWINT2_RESET_MASK Software interrupt 2

PERFCOUNT_RESET_MASK Local Performance Counter

TIMER_RESET_MASK CP0 Local Count/Compare Timer

COMPARE_RESET_MASK GIC Local Count/Compare Timer

WD_RESET_MASK Watchdog

Table 9.14 Determining the Enabled of Disabled Interrupt State

Field Name Interrupt Controlled

FDC_MASK Fast Debug Channel

SWINT1_MASK Software interrupt 1

SWINT2_MASK Software interrupt 2

PERFCOUNT_MASK Local Performance Counter

TIMER_MASK CP0 Local Count/Compare Timer

COMPARE_MASK GIC Local Count/Compare Timer

WD_MASK Watchdog

Table 9.15 Polling for an Active Interrupt

Field Name Interrupt Controlled

FDC_PEND Fast Debug Channel

SWINT1_PEND Software interrupt 1

SWINT2_PEND Software interrupt 2

PERFCOUNT_PEND Local Performance Counter
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9.5 Shared Register Set

This section describes the various registers in the Shared register set.

9.5.1 GIC Register Field Types

For each register described below, field descriptions include the read/write properties of the field, and the reset state 
of the field. For single bit fields, the name is truncated to a single character which is then shown outside brackets in 
the Fields|Name column. For the read/write properties of the field, the following notation is used: 

Table 9.16 CP0 Register Field Types 

Notation Hardware Interpretation Software Interpretation

R/W A field in which all bits are readable and writable by software and, potentially, by hardware.
Hardware updates of this field are visible by software reads. Software updates of this field are visible by hardware 
reads.
If the reset state of this field is “Undefined,” either software or hardware must initialize the value before the first 
read will return a predictable value. This should not be confused with the formal definition of UNDEFINED 
behavior.

R A field that is either static or is updated only by hard-
ware.
If the Reset State of this field is either “0” or “Preset”, 
hardware initializes this field to zero or to the appropri-
ate state, respectively, on power up.
If the Reset State of this field is “Undefined”, hardware 
updates this field only under those conditions specified 
in the description of the field.

A field to which the value written by software is 
ignored by hardware. Software may write any value to 
this field without affecting hardware behavior. Software 
reads of this field return the last value updated by hard-
ware.
If the Reset State of this field is “Undefined,” software 
reads of this field result in an UNPREDICTABLE 
value except after a hardware update done under the 
conditions specified in the description of the field.

W A field that can be written by software but which can not be read by software.
Software reads of this field will return an UNDEFINED value.

0 A field that hardware does not update, and for which 
hardware can assume a zero value.

A field to which the value written by software must be 
zero. Software writes of non-zero values to this field 
may result in UNDEFINED behavior of the hardware. 
Software reads of this field return zero as long as all 
previous software writes are zero.
If the Reset State of this field is “Undefined,” software 
must write this field with zero before it is guaranteed to 
read as zero.
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9.5.2 Shared Section Register Map

The register map of the shared section is shown in Table 9.18. These registers are accessible by any core. For the base 
address of this block, see Table 9.3.

All registers are 32 bits wide and should only be accessed using 32-bit uncached load/stores. Reads from unpopulated 
registers in the GCMP address space should return 0x0, and writes to those locations should be silently dropped with-
out generating any exceptions.

The addresses for the registers within the Shared Section of the GIC are calculated as follows:

SharedSection_Register_Physical_Address=GIC_baseaddress+SharedSection_baseoffset+Re
gister_Offset 

Table 9.17 Shared Section Register Map 

 Register Offset Name Type Description

0x0000 GIC Config Register 
(GIC_SH_CONFIG)

R Indicates the number of interrupts, number of 
cores, etc.

0x0010 GIC CounterLo 
(GIC_SH_CounterLo)

R/W Shared Global Counter.

0x0014 GIC CounterHi 
(GIC_SH_CounterHi)

R/W

0x0020 GIC Revision Register
(GIC_RevisionID)

R RevisionID of the GIC hardware.

0x0100 Global Interrupt Polarity Register0 
(GIC_SH_POL31_0)

R/W Polarity of the interrupt. 
For Level Type:
0x0 - Active Low
0x1 - Active High
For Single Edge Type:
0x0 - Falling Edge used to set edge register
0x1 - Rising Edge used to set edge register
At IP configuration time, the appropriate num-
ber of these registers are instantiated to sup-
port the number of External Interrupt Sources. 

0x0104 Global Interrupt Polarity Register1 
(GIC_SH_POL63_32)

R/W

0x0108 Global Interrupt Polarity Register2 
(GIC_SH_POL95_64)

R/W

0x010c Global Interrupt Polarity Register3 
(GIC_SH_POL127_96)

R/W

0x0110 Global Interrupt Polarity Register4 
(GIC_SH_POL159_128)

R/W

0x0114 Global Interrupt Polarity Register5 
(GIC_SH_POL191_160)

R/W

0x0118 Global Interrupt Polarity Register6 
6(GIC_SH_POL223_192)

R/W

0x011c Global Interrupt Polarity Register7 
(GIC_SH_POL255_224)

R/W
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0x0180 Global Interrupt Trigger Type Register0 
(GIC_SH_TRIG31_0)

R/W Edge or Level triggered
0x0 - Level
0x1 - Edge
At IP configuration time, the appropriate num-
ber of these registers are instantiated to sup-
port the number of External Interrupt Sources.

0x0184 Global Interrupt Trigger Type Register1 
(GIC_SH_TRIG63_32)

R/W

0x0188 Global Interrupt Trigger Type Register2 
(GIC_SH_TRIG95_64)

R/W

0x018c Global Interrupt Trigger Type Register3 
(GIC_SH_TRIG127_96)

R/W

0x0190 Global Interrupt Trigger Type Register4 
(GIC_SH_TRIG159_128)

R/W

0x0194 Global Interrupt Trigger Type Register5 
(GIC_SH_TRIG191_160)

R/W

0x0198 Global Interrupt Trigger Type Register6 
(GIC_SH_TRIG223_192)

R/W

0x019c Global Interrupt Trigger Type Register7 
(GIC_SH_TRIG255_224)

R/W

0x0200 Global Interrupt Dual Edge Register 
(GIC_SH_DUAL31_0)

R/W Writing a 0x1 to any bit location sets the 
appropriate external interrupt source to be 
type dual-edged.
At IP configuration time, the appropriate num-
ber of these registers are instantiated to sup-
port the number of External Interrupt Sources.

0x0204 Global Interrupt Dual Edge Register 
(GIC_SH_DUAL63_32)

R/W

0x0208 Global Interrupt Dual Edge Register 
(GIC_SH_DUAL95_64)

R/W

0x020c Global Interrupt Dual Edge Register 
(GIC_SH_DUAL127_96)

R/W

0x0210 Global Interrupt Dual Edge Register 
(GIC_SH_DUAL159_128)

R/W

0x0214 Global Interrupt Dual Edge Register 
(GIC_SH_DUAL191_160)

R/W

0x0218 Global Interrupt Dual Edge Register 
(GIC_SH_DUAL223_192)

R/W

0x021c Global Interrupt Dual Edge Register 
(GIC_SH_DUAL255_224)

R/W

0x0280 Global Interrupt Write Edge Register 
(GIC_SH_WEDGE)

W Used for Interrupt Messages. Writes to this 
register atomically set or clear a specified bit 
in the Edge Detect Register.

Table 9.17 Shared Section Register Map (continued)

 Register Offset Name Type Description
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0x0300 Global Interrupt Reset Mask Register 
(GIC_SH_RMASK31_0)

W Writing a 0x1 to any bit location masks off 
(disables) that interrupt. 
At IP configuration time, the appropriate num-
ber of these registers are instantiated to sup-
port the number of External Interrupt Sources.

0x0304 Global Interrupt Reset Mask Register 
(GIC_SH_RMASK63_32)

W

0x0308 Global Interrupt Reset Mask Register 
(GIC_SH_RMASK95_64)

W

0x030c Global Interrupt Reset Mask Register 
(GIC_SH_RMASK127_96)

W

0x0310 Global Interrupt Reset Mask Register 
(GIC_SH_RMASK159_128)

W

0x0314 Global Interrupt Reset Mask Register 
(GIC_SH_RMASK191_160)

W

0x0318 Global Interrupt Reset Mask Register 
(GIC_SH_RMASK223_192)

W

0x031c Global Interrupt Reset Mask Register 
(GIC_SH_RMASK255_224)

W

0x0380 Global Interrupt Set Mask Register
(GIC_SH_SMASK31_00)

W Writing a 0x1 to any bit location sets the mask 
(enables) for that interrupt. 
At IP configuration time, the appropriate num-
ber of these registers are instantiated to sup-
port the number of External Interrupt Sources.

0x0384 Global Interrupt Set Mask Register
(GIC_SH_SMASK63_32)

W

0x0388 Global Interrupt Set Mask Register
(GIC_SH_SMASK95_64)

W

0x038c Global Interrupt Set Mask Register
(GIC_SH_SMASK127_96)

W

0x0390 Global Interrupt Set Mask Register
(GIC_SH_SMASK159_128)

W

0x0394 Global Interrupt Set Mask Register
(GIC_SH_SMASK191_160)

W

0x0398 Global Interrupt Set Mask Register
(GIC_SH_SMASK223_192)

W

0x039c Global Interrupt Set Mask Register
(GIC_SH_SMASK255_224)

W

Table 9.17 Shared Section Register Map (continued)

 Register Offset Name Type Description



 

MIPS32® proAptiv™ Multiprocessing System Software User’s Manual, Revision 01.22 507

 

0x0400 Global Interrupt Mask Register 
(GIC_SH_MASK31_00)

R Shows the enabled global interrupts. If bit N is 
set, global interrupt N is enabled. 
At IP configuration time, the appropriate num-
ber of these registers are instantiated to sup-
port the number of External Interrupt Sources.

0x0404 Global Interrupt Mask Register 
(GIC_SH_MASK63_32)

R

0x0408 Global Interrupt Mask Register 
(GIC_SH_MASK95_64)

R

0x040c Global Interrupt Mask Register 
(GIC_SH_MASK127_96)

R

0x0410 Global Interrupt Mask Register 
(GIC_SH_MASK159_128)

R

0x0414 Global Interrupt Mask Register 
(GIC_SH_MASK191_160)

R

0x0418 Global Interrupt Mask Register 
(GIC_SH_MASK223_192)

R

0x041c Global Interrupt Mask Register 
(GIC_SH_MASK255_224)

R

0x0480 Global Interrupt Pending Register 
(GIC_SH_PEND31_00)

R Shows the pending global interrupts before 
masking. If bit N is set, the global interrupt N 
is pending. 
At IP configuration time, the appropriate num-
ber of these registers are instantiated to sup-
port the number of External Interrupt Sources.

0x0484 Global Interrupt Pending Register 
(GIC_SH_PEND63_32)

R

0x0488 Global Interrupt Pending Register 
(GIC_SH_PEND95_64)

R

0x048c Global Interrupt Pending Register 
(GIC_SH_PEND127_96)

R

0x0490 Global Interrupt Pending Register 
(GIC_SH_PEND159_128)

R

0x0494 Global Interrupt Pending Register 
(GIC_SH_PEND191_160)

R

0x0498 Global Interrupt Pending Register 
(GIC_SH_PEND223_192)

R

0x049c Global Interrupt Pending Register 
(GIC_SH_PEND255_224)

R

0x0500 Global Interrupt Map Src0 to Pin Register 
(GIC_SH_MAP0_PIN)

R/W Maps this interrupt source to a particular pin - 
within Int[5:0] or NMI.
At IP configuration time, the appropriate num-
ber of these registers are instantiated to sup-
port the number of External Interrupt Sources.

0x0504 Global Interrupt Map Src1 to Pin Register 
(GIC_SH_MAP1_PIN)

R/W

0x0508 Global Interrupt Map Src2 to Pin Register 
(GIC_SH_MAP2_PIN)

R/W

... ... R/W

0x08fc Global Interrupt Map Src255 to Pin Register 
(GIC_SH_MAP255_PIN)

R/W

Table 9.17 Shared Section Register Map (continued)

 Register Offset Name Type Description
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9.5.3 Shared Section Register Descriptions

The physical address for the Shared Section registers is calculated as follows: 

GIC_BaseAddress + SharedSection_BaseAddress + RegisterOffset

9.5.3.1 Global Config Register

Figure 9.9 Global Config Register Format  

0x2000 Global Interrupt Map Src0 to Core Register 
(GIC_SH_MAP0_CORE31_0)

R/W Assigns this interrupt source to a particular 
core. 
At IP configuration time, the appropriate num-
ber of these registers are instantiated to sup-
port the number of External Interrupt Sources 
and the number of cores.

0x2020 Global Interrupt Map Src1 to Core Register 
(GIC_SH_MAP1_CORE31_0)

R/W

0x2040 Global Interrupt Map Src2 to Core Register 
(GIC_SH_MAP2_CORE31_0)

R/W

..... .... R/W

0x3fe0 Global Interrupt Map Src255 to Core Register 
(GIC_SH_MAP255_CORE31_0)

R/W

0x6000 DINT Send to Group Register
(GIC_VB_DINT_SEND)

R/W Sends the DebugInterrupt to the specified 
core. 

All other offsets Reserved for future extensions Reserved for future extensions.

31 29 28 27 24 23 16 15 9 8 0

R COUNT
STOP COUNTBITS NUMINTERRUPTS 0 PVPES

Table 9.18 GIC Config Register (GIC_SH_CONFIG — Offset 0x0000) 

Register Fields

Description
Read/
Write Reset StateName Bits

R 31:29 Reserved. Read as 0x0. Writes ignored. Must be written 
with a value of 0x0. 

R 0

COUNTSTOP 28 Setting this bit will stop GIC_CounterHi and 
GIC_CounterLo. 
Used to freeze the shared counters when cores go into 
power-down or debug modes. 

R/W 0

COUNTBITS 27:24 Number of Implemented Bits in GIC_CounterHi. 
Total Number of Counter Bits = 32 + COUNTBITS*4, 
E.g.:
0x0 = 32bits, GIC_CounterHi not implemented
0x1 = 36bits, GIC_CounterHi width = 4 bits
0x2 = 40bits, GIC_CounterHi width = 8 bits
...
0x7 = 60bits, GIC_CounterHi width = 28 bits
0x8 = 64bits, GIC_CounterHi width = 32 bits
9-15 Reserved

R 0x8

Table 9.17 Shared Section Register Map (continued)

 Register Offset Name Type Description



 

MIPS32® proAptiv™ Multiprocessing System Software User’s Manual, Revision 01.22 509

 

NUMINTERRUPTS 23:16 Number of External Interrupt Sources 

Value is fixed by customer at IP configuration time.

R IP Configuration 
Value

R 15:9 Reserved. Read as 0x0. Writes ignored. Must be written 
with a value of 0x0. 

R 0

PVPES 8:0 Total number of VPEs in the system.Note that in the 
proAptiv core, there is one VPE per core. 

0: 1 VPE

R IP Configuration 
Value

Table 9.18 GIC Config Register (GIC_SH_CONFIG — Offset 0x0000) (continued)

Register Fields

Description
Read/
Write Reset StateName Bits

Encoding Meaning

0x0 8 
0x1 16
0x2 24
0x3 32
0x4 40
...

0x3E 248
0x3F 256

All others Reserved
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9.5.3.2 GIC CounterLo

Figure 9.10 GIC CounterLo Register Format   

9.5.3.3 GIC CounterHi 

Figure 9.11 GIC CounterHi Register Format  

31 0

GIC_SH_CounterLo

Table 9.19 GIC CounterLo (GIC_SH_CounterLo — Offset 0x0010) 

Register Fields

Description
Read/
Write Reset StateName Bits

GIC_SH_CounterLo 31:0 Lower Half of an up-counter. 
When the counter reaches its maximum value, the counter 
rolls over to a value of 0x0.
The counter is running at an implementation-specific fre-
quency which is fixed, that is, not changing dynamically 
due to power management. It is recommended that this 
frequency be as close as possible to the highest clock fre-
quency of the CPU subsystem.
This counter is disabled by writing the COUNTSTOP bit 
in the GIC_SH_CONFIG register. 
This counter should only be written when 
GIC_SH_CONFIGCOUNTSTOP = 1; otherwise, the regis-
ters results after the write are unpredictable. 

R/W 0

31 0

GIC_SH_CounterHi

Table 9.20 GIC CounterHi (GIC_SH_CounterHi — Offset 0x0014) 

Register Fields

Description
Read/
Write Reset StateName Bits

GIC_SH_CounterHi 31:0 Upper Half of an up-counter. 
When the counter reaches its maximum value, the counter 
rolls over to a value of 0x0.
The counter is running at an implementation-specific fre-
quency which is fixed, that is, not changing dynamically 
due to power management. It is recommended that this 
frequency be as close as possible to the highest clock fre-
quency of the CPU subsystem.
This counter is disabled by writing the COUNTSTOP bit 
in the GIC_SH_CONFIG register. 
This counter should only be written when 
GIC_SH_CONFIGCOUNTSTOP = 1; otherwise, the regis-
ter results after the write are unpredictable. 
Unimplemented bits ignore writes and return 0 when read. 

R/W 0
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9.5.3.4 GIC Revision Register

Figure 9.12 GIC Revision Register Format  

9.5.3.5 Global Interrupt Polarity Registers

There are eight Global Interrupt Polarity registers to cover all 256 possible system interrupts. These registers work in 
conjunction with the eight Global Interrupt Trigger Type (GIC_SH_TRIGn) and Global Interrupt Dual Edge 
(GIC_SH_DUALn) registers to select the polarity, active high/low trigger, and single/dual edge for each of the 256 
interrupts. Refer to Section 9.4.2, "Configuring Interrupt Sources" for more informatioin.

They are located at the following eight offsets.

In the register below, the x_y nomenclature indicates the bit range covered by each register shown above. For exam-
ple, GIC_SH_POL63_32 indicates that this register handles the polarity for interrupts 63:32.

31 16 15 8 7 0

0 MAJOR_REV MINOR_REV

Table 9.21 GIC Revision Register (GIC_RevisionID — Offset 0x0020)  

Register Fields

Description
Read/
Write Reset StateName Bits

0 31:16 Reads as 0x0. Writes ignored. Must be written with a value of 
0x0.

R 0x0

MAJOR_REV 15:8 This field reflects the major revision of the GIC block. A major 
revision might reflect the changes from one product generation 
to another. 

R Preset

MINOR_REV 7:0 This field reflects the minor revision of the GIC block. A minor 
revision might reflect the changes from one release to another. 

R Preset

Table 9.22 Global Interrupt Polarity Register Mapping

Offset Acronym Register Name

0x0100 GIC_SH_POL31_0 Polarity selection for interrupt pins 31:0

0x0104 GIC_SH_POL63_32 Polarity selection for interrupt pins 63:32

0x0108 GIC_SH_POL95_64 Polarity selection for interrupt pins 95:64

0x010C GIC_SH_POL127_96 Polarity selection for interrupt pins 127:96

0x0110 GIC_SH_POL159_128 Polarity selection for interrupt pins 159:128

0x0114 GIC_SH_POL191_160 Polarity selection for interrupt pins 191:160

0x0118 GIC_SH_POL223_192 Polarity selection for interrupt pins 223:191

0x011C GIC_SH_POL255_224 Polarity selection for interrupt pins 255:192
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Figure 9.13 GIC Interrupt Polarity Register Format  

9.5.3.6 Global Interrupt Trigger Type Registers

There are eight Global Interrupt Trigger Type registers to cover all 256 possible system interrupts. These registers 
work in conjunction with the eight Global Interrupt Polarity (GIC_SH_POLn) and Global Interrupt Dual Edge 
(GIC_SH_DUALn) registers to select the polarity, active high/low trigger, and single/dual edge for each of the 256 
interrupts. Refer to Section 9.4.2, "Configuring Interrupt Sources" for more informatioin.

They are located at the following eight offsets. 

31 0

GIC_SH_POLx_y

Table 9.23 Global Interrupt Polarity Registers (GIC_SH_POLx_y — See Table 9.23 for Mapping)

Register Fields

Description
Read/
Write Reset StateName Bits

GIC_SH_POLx_y 31:0 Each bit in this register represents an interrupt source. 
The state of the bit indicates the polarity of the interrupt.
If the interrupt type (as denoted by Global Interrupt Trigger 
Type and Global Interrupt Dual Edge registers) is Level:.

If the interrupt type is Single-edge:

If the interrupt type is Dual-edge, this register is not used

R/W 0

Table 9.24 Global Interrupt Trigger Type Register Mapping

Offset Acronym Register Name

0x0180 GIC_SH_TRIG31_0 Interrupt trigger selection for interrupt pins 31:0

0x0184 GIC_SH_TRIG63_32 Interrupt trigger selection for interrupt pins 63:32

0x0188 GIC_SH_TRIG95_64 Interrupt trigger selection for interrupt pins 95:64

0x018C GIC_SH_TRIG127_96 Interrupt trigger selection for interrupt pins 127:96

0x0190 GIC_SH_TRIG159_128 Interrupt trigger selection for interrupt pins 159:128

0x0194 GIC_SH_TRIG191_160 Interrupt trigger selection for interrupt pins 191:160

0x0198 GIC_SH_TRIG223_192 Interrupt trigger selection for interrupt pins 223:191

0x019C GIC_SH_TRIG255_224 Interrupt trigger selection for interrupt pins 255:192

Encoding Meaning

0 Active Low
1 Active High

Encoding Meaning

0 Falling Edge denotes interrupt 
source has toggled.

1 Rising Edge denotes interrupt 
source has toggled.
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In the register below, the x_y nomenclature indicates the bit range covered by each register shown above. For exam-
ple, GIC_SH_TRIG63_32 indicates that this register handles the trigger level for interrupts 63:32.

Figure 9.14 GIC Interrupt Trigger Type Register Format  

9.5.3.7 Global Interrupt Dual Edge Registers

There are eight Global Interrupt Dual Edge registers to cover all 256 possible system interrupts. These registers work 
in conjunction with the eight Global Interrupt Polarity (GIC_SH_POLn) and Global Interrupt Trigger Type 
(GIC_SH_TRIGn) registers to select the polarity, active high/low trigger, and single/dual edge for each of the 256 
interrupts. Refer to Section 9.4.2, "Configuring Interrupt Sources" for more informatioin.

They are located at the following eight offsets. 

In the register below, the x_y nomenclature indicates the bit range covered by each register shown above. For exam-
ple, GIC_SH_DUAL63_32 indicates that this register handles the edge triggering for interrupts 63:32.

31 0

GIC_SH_TRIGx_y

Table 9.25 Global Interrupt Trigger Type Registers (GIC_SH_TRIGx_y — See Table 9.25 for Mapping)

Register Fields

Description
Read/
Write Reset StateName Bits

GIC_SH_TRIGx_y 31:0 Each bit in this register represents an interrupt source.
The state of the bit indicates the nature of the interrupt sig-
naling.

R/W 0

Table 9.26 Global Interrupt Dual Edge Register Mapping

Offset Acronym Register Name

0x0200 GIC_SH_DUAL31_0 Interrupt single/dual edge selection for interrupt pins 31:0

0x0204 GIC_SH_DUAL63_32 Interrupt single/dual edge selection for interrupt pins 63:32

0x0208 GIC_SH_DUAL95_64 Interrupt single/dual edge selection for interrupt pins 95:64

0x020C GIC_SH_DUAL127_96 Interrupt single/dual edge selection for interrupt pins 127:96

0x0210 GIC_SH_DUAL159_128 Interrupt single/dual edge selection for interrupt pins 159:128

0x0214 GIC_SH_DUAL191_160 Interrupt single/dual edge selection for interrupt pins 191:160

0x0218 GIC_SH_DUAL223_192 Interrupt single/dual edge selection for interrupt pins 223:191

0x021C GIC_SH_DUAL255_224 Interrupt single/dual edge selection for interrupt pins 255:192

Encoding Meaning

0 Level
1 Edge

Single edge or dual-edge signaling 
denoted by Global Interrupt Dual Edge 
Register.
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Figure 9.15 GIC Interrupt Dual Edge Register Format  

9.5.3.8 Global Interrupt Write Edge Register

This register is used to support interrupt messages. A write to this register will atomically set or clear one bit in the 
Edge Detect Register. Setting a bit in this register will be treated equivalently to having the edge detection logic see 
an active edge. This bypasses the edge detection logic and thus it does not matter whether the corresponding interrupt 
is configured to be rising, falling, or dual edge sensitive. However, the behavior is undefined unless the equivalent bit 
in the Global Interrupt Trigger Type register is set to 0x1 indicating edge signaling.

Figure 9.16 GIC Interrupt Write Edge Register Format  

9.5.3.9 Global Interrupt Reset Mask Registers 

There are eight Global Interrupt Reset Mask registers to cover all 256 possible system interrupts. These registers 
work in conjunction with the eight Global Interrupt Set Mask (GIC_SH_SMASKn) registers to enable and disable indi-
vidual interrupts. Refer to Section 9.4.2, "Configuring Interrupt Sources" for more informatioin.

31 0

GIC_SH_DUALx_y

Table 9.27 Global Dual Edge Registers (GIC_SH_DUALx_y — See Table 9.27 for Mapping)

Register Fields

Description
Read/
Write Reset StateName Bits

GIC_SH_DUALx_y 31:0 Each bit in this register represents an interrupt source.
This register is only meaningful is the equivalent bit in the 
Global Interrupt Trigger Type register is set to 0x1 = Edge 
signaling. 
Indicates single or dual-edged signaling. 

R/W 0

31 30 0

RW INTERRUPT

Table 9.28 Global Interrupt Write Edge Registers (GIC_SH_WEDGE Offset 0x0280)

Register Fields

Description
Read/
Write Reset StateName Bits

RW 31 Controls whether this write is setting or clearing a bit in the Edge 
Detect Register. 
If this bit is set, the selected bit in the register is set. 
If this bit is cleared, the selected bit in the register is cleared.

W Undefined

Interrupt 30:0 This field is the encoded value of the interrupt that is being cleared 
or set. For example, a value of 0xB means interrupt 11 (decimal). 

W Undefined

Encoding Meaning

0 Single edge
1 Dual Edge
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These registers are located at the following eight offsets. 

In the register below, the x_y nomenclature indicates the bit range covered by each register shown above. For exam-
ple, GIC_SH_RMASK63_32 indicates that this register handles the reset mask for interrupts 63:32.

Figure 9.17 GIC Interrupt Reset Mask Register Format  

9.5.3.10 Global Interrupt Set Mask Registers

There are eight Global Interrupt Set Mask registers to cover all 256 possible system interrupts. These registers work 
in conjunction with the eight Global Interrupt Reset Mask (GIC_SH_RMASKn) registers to enable and disable individ-
ual interrupts. Refer to Section 9.4.2, "Configuring Interrupt Sources" for more informatioin.

These registers are located at the following eight offsets. 

Table 9.29 Global Interrupt Reset Mask Register Mapping

Offset Acronym Register Name

0x0300 GIC_SH_RMASK31_0 Interrupt reset mask for interrupt pins 31:0

0x0304 GIC_SH_RMASK63_32 Interrupt reset mask for interrupt pins 63:32

0x0308 GIC_SH_RMASK95_64 Interrupt reset mask for interrupt pins 95:64

0x030C GIC_SH_RMASK127_96 Interrupt reset mask for interrupt pins 127:96

0x0310 GIC_SH_RMASK159_128 Interrupt reset mask for interrupt pins 159:128

0x0314 GIC_SH_RMASK191_160 Interrupt reset mask for interrupt pins 191:160

0x0318 GIC_SH_RMASK223_192 Interrupt reset mask for interrupt pins 223:191

0x031C GIC_SH_RMASK255_224 Interrupt reset mask for interrupt pins 255:192

31 0

GIC_SH_RMASKx_y

Table 9.30 Global Interrupt Reset Mask Registers (GIC_SH_RMASKx_y — See Table 9.30 for Mapping)

Register Fields

Description
Read/
Write Reset StateName Bits

GIC_SH_RMASKx_y 31:0 Each bit in this register represents an interrupt source.
Writing this register with a 0x1 in any bit position(s) will 
cause only the corresponding bit/interrupt(s) in the Global 
Interrupt Mask Register to be reset (value->0). This is used 
by software to temporarily disable interrupts.

W Undefined

Table 9.31 Global Interrupt Set Mask Register Mapping 

Offset Acronym Register Name

0x0380 GIC_SH_SMASK31_0 Interrupt set mask for interrupt pins 31:0

0x0384 GIC_SH_SMASK63_32 Interrupt set mask for interrupt pins 63:32

0x0388 GIC_SH_SMASK95_64 Interrupt set mask for interrupt pins 95:64

0x038C GIC_SH_SMASK127_96 Interrupt set mask for interrupt pins 127:96
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In the register below, the x_y nomenclature indicates the bit range covered by each register shown above. For exam-
ple, GIC_SH_SMASK63_32 indicates that this register handles the set mask for interrupts 63:32.

Figure 9.18 GIC Interrupt Set Mask Register Format  

9.5.3.11 Global Interrupt Mask Registers

There are eight Global Interrupt Reset Mask registers to cover all 256 possible system interrupts. These read-only 
registers are used to indicate when an external interrupt occurs. An individual interrupt bit is set when an interrupt 
occurs and the corresponding Global Interrupt Set Mask bit is set, thereby enabling the interrupt. Refer to Section 
9.5.3.10, "Global Interrupt Set Mask Registers" for more information.

These registers work in conjunction with the eight Global Interrupt Set Mask (GIC_SH_SMASKn) and Global Interrupt 
Reset Mask (GIC_SH_RMASKn) registers to manage and process interrupts. Refer to Section 9.4.2, "Configuring 
Interrupt Sources" for more informatioin.

These registers are located at the following eight offsets.

0x0390 GIC_SH_SMASK159_128 Interrupt set mask for interrupt pins 159:128

0x0394 GIC_SH_SMASK191_160 Interrupt set mask for interrupt pins 191:160

0x0398 GIC_SH_SMASK223_192 Interrupt set mask for interrupt pins 223:191

0x039C GIC_SH_SMASK255_224 Interrupt set mask for interrupt pins 255:192

31 0

GIC_SH_SMASKx_y

Table 9.32 Global Set Mask Registers (GIC_SH_SMASKx_y — See Table 9.32 for Mapping) 

Register Fields

Description
Read/
Write Reset StateName Bits

GIC_SH_SMASKx_y 31:0 Each bit in this register represents an interrupt source.
Writing this register with a 0x1 in any bit position(s) will 
cause only the corresponding bit/interrupt(s) in the Global 
Interrupt Mask Register to be set(value->0x1). This is 
used by software to enable interrupts.

W Undefined

Table 9.33 Global Interrupt Mask Register Mapping 

Offset Acronym Register Name

0x0400 GIC_SH_MASK31_0 Interrupt status for interrupt pins 31:0

0x0404 GIC_SH_MASK63_32 Interrupt status for interrupt pins 63:32

0x0408 GIC_SH_MASK95_64 Interrupt status for interrupt pins 95:64

0x040C GIC_SH_MASK127_96 Interrupt status for interrupt pins 127:96

0x0410 GIC_SH_MASK159_128 Interrupt status for interrupt pins 159:128

0x0414 GIC_SH_MASK191_160 Interrupt status for interrupt pins 191:160

Table 9.31 Global Interrupt Set Mask Register Mapping (continued)

Offset Acronym Register Name
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In the register below, the x_y nomenclature indicates the bit range covered by each register shown above. For exam-
ple, GIC_SH_MASK63_32 indicates that this register handles the masking for interrupts 63:32.

Figure 9.19 GIC Interrupt Mask Register Format  

9.5.3.12 Global Interrupt Pending Registers

There are eight Global Interrupt Pending registers to cover the pending status of all 256 possible system interrupts. 
These read-only registers are set by hardware when an external interrupt is pending. 

These registers work in conjunction with the eight Global Interrupt Set Mask (GIC_SH_SMASKn), Global Interrupt 
Reset Mask (GIC_SH_RMASKn), and Global Interrupt Mask (GIC_SH_MASKn) registers to manage and process inter-
rupts. Refer to Section 9.4.2, "Configuring Interrupt Sources" for more informatioin.

These registers are located at the following eight offsets.  

0x0418 GIC_SH_MASK223_192 Interrupt status for interrupt pins 223:191

0x041C GIC_SH_MASK255_224 Interrupt status for interrupt pins 255:192

31 0

GIC_SH_MASKx_y

Table 9.34 Global Interrupt Mask Registers (GIC_SH_MASKx_y — See Table 9.34 for Mapping) 

Register Fields

Description
Read/
Write Reset StateName Bits

GIC_SH_MASKx_y 31:0 Each bit in this register represents an interrupt source.
Reports which of the external interrupt sources are 
enabled. Used by software to determine which interrupt 
sources are currently enabled.

R 0x00000000

Table 9.35 Global Interrupt Pending Register Mapping

Offset Acronym Register Name

0x0480 GIC_SH_PEND31_0 Interrupt pending status for interrupt pins 31:0

0x0484 GIC_SH_PEND63_32 Interrupt pending status for interrupt pins 63:32

0x0488 GIC_SH_PEND95_64 Interrupt pending status for interrupt pins 95:64

0x048C GIC_SH_PEND127_96 Interrupt pending status for interrupt pins 127:96

0x0490 GIC_SH_PEND159_128 Interrupt pending status for interrupt pins 159:128

0x0494 GIC_SH_PEND191_160 Interrupt pending status for interrupt pins 191:160

0x0498 GIC_SH_PEND223_192 Interrupt pending status for interrupt pins 223:191

0x049C GIC_SH_PEND255_224 Interrupt pending status for interrupt pins 255:192

Table 9.33 Global Interrupt Mask Register Mapping (continued)

Offset Acronym Register Name
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In the register below, the x_y nomenclature indicates the bit range covered by each register shown above. For exam-
ple, GIC_SH_PEND63_32 indicates that this register handles the interrupt pending status for interrupts 63:32.

Figure 9.20 GIC Interrupt Pending Register Format   

9.5.3.13 Global Interrupt Map to Pin Registers

There are up to 256 Global Interrupt Map-to-Pin registers in the GIC to cover the mapping of all 256 possible system 
interrupts. This corresponds to one register per external interrupt signal. The number of registers instantiated at build 
time depends on the number of external system interrupts. These are write-only registers. Software is not expected to 
change these registers frequently. Software is expected to keep a shadow copy of these registers in memory so that 
Read-Modify-Write hazards are avoided. 

Each interrupt pin can be mapped to one of three signal types: SI_Int[5:0] or SI_NMI. Bits 31:30 of this register are 
used to indicate to which signal type the interrupt will be mapped. Only one of these bits can be set at any given time. 
Bits 5:0 indicate the actual mapping for each external interrupt pin. For example, if bit 31 of this register is set, the 
external interrupt is routed to the SI_Int[5:0] pins of the appropriate core . 

For the register offset addresses corresponding to each register, refer Table 9.7, "Mapping of External Interrupts"

Figure 9.21 GIC Interrupt Map to Pin Register Format    

31 0

GIC_SH_PENDx_y

Table 9.36 Global Interrupt Pending Registers (GIC_SH_PENDx_y — See Table 9.36 for Mapping)

Register Fields

Description
Read/
Write Reset StateName Bits

GIC_SH_PENDx_y 31:0 There are eight Interrupt Pending register that are used to 
indicate the pending status of all 256 possible interrupts in 
the system Each bit indicates which of the external inter-
rupt sources are asserted/pending before masking.

Used by software to find the external source that caused 
the CPU interrupt.

R Undefined

31 30 29 6 5 0

MAP_TO_PIN MAP_TO_NMI R MAP

Table 9.37 Global Interrupt Map to Pin Registers (GIC_SH_MAPx_y) 

Register Fields

Description
Read/
Write Reset StateName Bits

MAP_TO_PIN 31 If this bit is set, this interrupt source is mapped to a core interrupt pin 
(specified by the MAP field below). 
Only one of the MAP_TO_PIN or MAP_TO_NMI bits can be set at any 
one time.

RW 0x1

MAP_TO_NMI 30 If this bit is set, this interrupt source is mapped to NMI. 
Only one of the MAP_TO_PIN or MAP_TO_NMI, or MAP_TO_YQ 
bits can be set at any one time.

RW 0

Reserved 29:6 Read as 0x0. Writes ignored. Must be written with a value of 0x0. - 0
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MAP 5:0  When the MAP_TO_PIN bit is set, this field contains the encoded value 
of the core interrupts signals Int[62:0]. 

In EIC mode, this represents one less than the EIC interrupt level (e.g. a 
value of 0x20 represents interrupt level 21). 

For non-EIC mode, the value represents the CPU interrupt to be asserted 
(e.g. a value of 0x03 represents interrupt 3), and only values of 0 to 5 are 
legal.
 

RW 0

Table 9.37 Global Interrupt Map to Pin Registers (GIC_SH_MAPx_y) (continued)

Register Fields

Description
Read/
Write Reset StateName Bits
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9.5.3.14 Global Interrupt Map to Core Registers

There are up to 512 Global Interrupt Map-to-Core registers in the GIC to cover the mapping of all 256 possible sys-
tem interrupts. This corresponds to two registers per external interrupt signal. However, the high-order register is not 
used in the proAptiv Multiprocessing System core as described in Section 9.5.3.14, "Global Interrupt Map to Core 
Registers".

The number of registers instantiated at build time depends on the number of external system interrupts. These are 
write-only registers. Software is not expected to change these registers frequently. Software is expected to keep a 
shadow copy of these registers in memory so that Read-Modify-Write hazards are avoided. 

For the register offset addresses corresponding to each register, refer Table 9.7, "Mapping of External Interrupts"

Figure 9.22 GIC Interrupt Map to Core Register Format  
31 0

GIC_SH_MAPi_COREn

Table 9.38 Global Interrupt Map to Core Registers (GIC_SH_MAP_COREn — See Table 9.7 for Mapping)

Register Fields

Description
Read/
Write Reset StateName Bits

GIC_SH_MAPi_COREn 31:0 Setting any bit in this register causes the interrupt source 
to be routed to the corresponding VPE. 
For all GIC_SH_MAPi_CORE registers, only one bit may 
be set at a time. That is, an interrupt source will be routed 
to one and only one core.

W 0
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9.5.3.15 DINT Send to Group Register

This register allows software to assert the EJ_DINT_GROUP signal directly. Refer to Section 9.4.10 “Debug 
Interrupt Generation” for more information. 

Figure 9.23 DINT Send to Group Register Format  

See Chapter 16, “Multi-CPU Debug” on page 611 for more information about how this register is used.

31 1 0

R SEND_DINT

Table 9.39 DINT Send to Group Register (GIC_VB_DINT_SEND Offset 0x6000)

Register Fields

Description
Read/
Write Reset StateName Bits

R [31:1] Read as Zero. Writes ignored. - 0x0

SEND_DINT [0] If this register field is written with a value of 0x1, the 
EJ_DINT_GROUP signal is asserted in a one-shot manner. 

W 0x0
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9.6 GIC Core-Local and Core-Other Register Set

9.6.1 Core-Local and Core-Other Register Maps

The Core-Local and Core-Other interrupt register maps are described in Table 9.41 below. For the base addresses of 
these blocks, see Table 9.3. Each core in the proAptiv sub-system contains a set of these registers.

The physical address for the registers within the Core-Local section are calculated as follows:

Core-Local_Register_Physical_Address = GIC_BaseAddress + Core-Local_BaseOffset + 
Register Offset

Similarly, for the Core-Other section:

Core-Other_Register_Physical_Address = GIC_BaseAddress + Core-Other_BaseOffset + 
Register Offset

All registers are 32 bits wide and should only be accessed using 32-bit uncached load/stores. Reads from unpopulated 
registers in the GCMP address space will return 0x0, and writes to those locations will be silently dropped without 
generating any exceptions.

Table 9.40 Core-Local and Core-Other Register Maps 

Register Offset Name Type Description

0x0000 Local Interrupt Control Register 
(GIC_COREi_CTL)

R/W Enable EIC Mode.

0x0004 Local Interrupt Pending Register 
(GIC_COREi_PEND)

R Status of the local interrupts before masking.

0x0008 Local Mask Register (GIC_COREi_MASK) R Mask bits, if set will enable the corresponding 
interrupts in the interrupt vector. 

0x000c Local Reset Mask Register 
(GIC_COREi_RMASK)

W Setting a bit in this register causes the corre-
sponding bits in the GIC_COREi_MASK 
register to be cleared atomically with respect 
to other bits.

0x0010 Local Set Mask Register 
(GIC_COREi_SMASK)

W Setting a bit in this register causes the corre-
sponding bits in the GIC_COREi_MASK 
register to be set atomically with respect to 
other bits.

0x0040 Local WatchDog Map-to-Pin Register 
(GIC_COREi_WD_MAP)

R/W This register is used to route the local Watch-
Dog interrupt to the desired core pin.

0x0044 Local GIC Counter/Compare Map-to-Pin 
Register
(GIC_COREi_COMPARE_MAP)

R/W This register is used to route the local GIC 
Compare/Count Interrupt to the desired core 
pin.
This is an optional register instantiated at IP 
configuration time.

0x0048 Local CPU Timer Map-to-Pin Register 
(GIC_COREi_TIMER_MAP)

R/W This register is used to route the local CPU 
Timer interrupt to the desired core pin.
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0x004c Local CPU Fast Debug Channel Map-to-Pin 
Register (GIC_COREi_FDC_MAP)

R/W This register is used to route the local CPU 
Fast Debug Channel interrupt to the desired 
core pin.
This is an optional register instantiated at IP 
configuration time.

0x0050 Local Perf Counter Map-to-Pin Register 
(GIC_COREi_PERFCTR_MAP)

R/W This register is used to route the local Perfor-
mance Counter interrupt to the desired core 
pin.
This is an optional register instantiated at IP 
configuration time.

0x0054 Local SWInt0 Map-to-Pin Register
(GIC_COREi_SWInt0_MAP)

R/W This register is used to route the local SWInt0 
interrupt to the desired core pin. 
This is an optional register instantiated at IP 
configuration time.

0x0058 Local SWInt1 Map-to-Pin Register
(GIC_COREi_SWInt1_MAP)

R/W This register is used to route the local SWInt1 
interrupt to the desired core pin. 
This is an optional register instantiated at IP 
configuration time.

0x0080 Core-Other Addressing Register
(GIC_COREi_OTHER_ADDR)

R/W Sets the VPENum of the register that will be 
accessed through the Core-Other address 
space. 

0x0088 Core-Local Identification Register
(GIC_COREi_IDENT)

R Indicates the Core number of the local Core.

0x0090 Programmable/Watchdog Timer0 Config Reg-
ister
(GIC_COREi_WD_CONFIG0)

R/W Local Programmable or Watchdog Timer0 
related registers. See register description for 
more details.

0x0094 Programmable/Watchdog Timer0 Count Reg-
ister 
(GIC_COREi_WD_COUNT0)

R

0x0098 Programmable/Watchdog Timer0 Initial 
Count Register 
(GIC_COREi_WD_INITIAL0)

R/W

0x00A0 CompareLo Register 
(GIC_COREi_CompareLo)

R/W Compare Register. See register description for 
more details.

0x00A4 CompareHi Register 
(GIC_COREi_CompareHi)

R

0x0100 EIC Shadow Set for Interrupt Src0 
(GIC_COREi_EICSS0)

R/W EIC Shadow Set for Interrupt Source0.

0x0104 EIC Shadow Set for Interrupt Src1 
(GIC_COREi_EICSS1)

R/W EIC Shadow Set for Interrupt Source1.

0x0108 - 0x01F8 EIC Shadow Set for Interrupt Src2 through 
Interrupt Src62 (GIC_VPEi_EICSS2 - 
GIC_COREi_EICSS62)

R/W EIC Shadow Set for Interrupt Source2 through 
Source62.

0x01FC EIC Shadow Set for Interrupt Src63 
(GIC_COREi_EICSS63)

R/W EIC Shadow Set for Interrupt Source63.

Table 9.40 Core-Local and Core-Other Register Maps (continued)

Register Offset Name Type Description
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9.6.2 Core-Local and Core-Other Section Register Description

The following subsections describes the registers of the Core-Local and Core-Other sections.

9.6.2.1 Local Interrupt Control Register

Figure 9.24 Local Interrupt Control Register Format  

0x3000 Core-Local DINT Group Participate Register
(GIC_VL_DINT_PART
GIC_VO_DINT_PART)

R/W Controls whether this Core pays attention to 
the DebugInt_GroupRequest register. 

0x3080 Core-Local DebugBreak Group Register
(GIC_VL_BRK_GROUP
GIC_VO_BRK_GROUP)

R/W Allows multiple Core to simultaneously enter 
Debug Mode. 

All Other Offsets RESERVED Reserved for Future Extensions.

31 5 4 3 2 1 0

R FDC_
ROUTABLE

SWINT_
ROUTABLE

PERFCOUNT_
ROUTABLE

TIMER_
ROUTABLE EIC_MODE

Table 9.41 Local Interrupt Control Register (GIC_COREi_CTL — Offset 0x0000)

Register Fields

Description
Read/
Write Reset StateName Bits

RESERVED 31:5 Read as 0x0. Writes ignored. Must be written with a 
value of 0x0. 

0

FDC_ROUTABLE 4 If this bit is set, the CPU Fast Debug Channel Interrupt is 
routable within the GIC. If this bit is clear, the CPU Fast 
Debug Channel Interrupt is hardwired to one of the 
SI_Int pins as described by the CPU’s COP0 
IntCtlIPFDCI register field.

R IP Configuration 
Value

SWINT_ROUTABLE 3 If this bit is set, the CPU SW Interrupts are routable 
within the GIC. If this bit is clear, then the CPU SW 
Interrupts are routed back to the CPU directly. 

R IP Configuration 
Value

PERFCOUNT_ROUTABLE 2 If this bit is set, the CPU Performance Counter Interrupt 
is routable within the GIC. If this bit is clear, the CPU 
Performance Counter Interrupt is hardwired to one of 
SI_Int pins as described by the CPU’s COP0 IntCtlIPPCI 
register field.

R IP Configuration 
Value

TIMER_ROUTABLE 1 If this bit is set, the CPU Timer Interrupt is route-able 
within the GIC. If this bit is clear, the CPU Timer Inter-
rupt is hardwired to one of the SI_Int pins, as described 
by the CPU’s COP0 IntCtlIPTI register field.

R IP Configuration 
Value

EIC_MODE 0 Writing a 1 to this bit will set this local interrupt control-
ler to EIC (External Interrupt Controller) mode. 

R/W 0

Table 9.40 Core-Local and Core-Other Register Maps (continued)

Register Offset Name Type Description
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9.6.2.2 Local Interrupt Pending Register

Figure 9.25 Local Interrupt Pending Register Format  

9.6.2.3 Local Interrupt Mask Register

This is a read-only register. Refer to Section 9.4.2, "Configuring Interrupt Sources" for more information. 

Figure 9.26 Local Interrupt Mask Register Format  

31 7 6 5 4 3 2 1 0

R FDCPEND SWINT1_
PEND

SWINT0_
PEND

PERFCOUNT_
PEND

TIMER_
PEND

COMPARE
_PEND WQ_PEND

Table 9.42 Local Interrupt Pending Register (GIC_COREi_PEND — Offset 0x0004) 

Register Fields

Description
Read/
Write Reset StateName Bits

R 31:7 Read as 0x0. Writes ignored. Must be written with a value 
of 0x0. 

0

FDC_PEND 6 Indicates the status of the local Fast Debug Channel inter-
rupt prior to masking

R Undefined

SWINT1_PEND 5 Indicates the status of the local SW interrupt1 prior to 
masking.

R Undefined

SWINT0_PEND 4 Indicates the status of the local SW interrupt0 prior to 
masking.

R Undefined

PERFCOUNT_PEND 3 Indicates the status of the local Performance Counter 
interrupt prior to masking. 

R Undefined 

TIMER_PEND 2 Indicates the status of the local CPU Timer interrupt prior 
to masking.

R Undefined

COMPARE_PEND 1 Indicates the status of the local GIC Count/Compare inter-
rupt prior to masking.

R Undefined

WD_PEND 0 Indicates the status of the local WatchDog interrupt prior 
to masking.

R Undefined

31 7 6 5 4 3 2 1 0

R FDC-
MASK

SWINT1_
MASK

SWINT0_
MASK

PERFCOUNT_
MASK

TIMER_
MASK

COMPARE_
MASK WQ_MASK

Table 9.43 Local Interrupt Mask Register (GIC_COREi_MASK — Offset 0x0008) 

Register Fields

Description
Read/
Write Reset StateName Bits

RESERVED 31:7 Read as 0x0 R 0x0

FDC_MASK 6 If this bit is set, the local Fast Debug Channel interrupt is 
enabled

R 0x1

SWINT1_MASK 5 If this bit is set, the local SWInt1 Interrupt is enabled. R 0x1

SWINT0_MASK 4 If this bit is set, the local SWInt0 Interrupt is enabled. R 0x1
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9.6.2.4 Local Interrupt Reset Mask Register

Figure 9.27 Local Interrupt Reset Mask Register Format  

PERFCNT_MASK 3 If this bit is set, the local Performance Counter Interrupt is 
enabled. 

R 0x1

TIMER_MASK 2 If this bit is set, the local CPU Timer Interrupt is enabled. R 0x1

COMPARE_MASK 1 If this bit is set, the local GIC Count/Compare Interrupt is 
enabled. 

R 0x1

WD_MASK 0 If this bit is set, the local WatchDog Interrupt is enabled. R 0x1

31 7 6 5 4 3 2 1 0

R FDC
RMASK

SWINT1_
RMASK

SWINT0_
RMASK

PERFCOUNT_
RMASK

TIMER_
RMASK

COMPARE_
RMASK WQ_RMASK

Table 9.44 Local Interrupt Reset Mask Register (GIC_COREi_RMASK — Offset 0x000C) 

Register Fields

Description
Read/
Write Reset StateName Bits

RESERVED 31:7 Writes ignored. Must be written with a value of 0x0. Undefined

FDC_RMASK 6 Writing a 0x1 to this bit disables the local Fast Debug 
Channel interrupt

W Undefined

SWINT1_RMASK 5 Writing a 0x1 to this bit disables the local SWInt1 Inter-
rupt.

W Undefined

SWINT0_RMASK 4 Writing a 0x1 to this bit disables the local SWInt0 Inter-
rupt. 

W Undefined

PERFCNT_RMASK 3 Writing a 0x1 to this bit disables the local Performance 
Counter Interrupt.

W Undefined

TIMER_RMASK 2 Writing a 0x1 to this bit disables the local Timer Interrupt. W Undefined

COMPARE_RMASK 1 Writing a 0x1 to this bit disables the local GIC Count/
Compare Interrupt.

W Undefined

WD_RMASK 0 Writing a 0x1 to this bit disables the local WatchDog 
Timer Interrupt.

W Undefined

Table 9.43 Local Interrupt Mask Register (GIC_COREi_MASK — Offset 0x0008) 

Register Fields

Description
Read/
Write Reset StateName Bits
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9.6.2.5 Local Interrupt Set Mask Register

This is a write-only register. For more information, refer to Section 9.4.2, "Configuring Interrupt Sources".

Figure 9.28 Local Interrupt Set Mask Register Format  

9.6.2.6 Local Map to Pin Registers

This section includes the local map to pin registers for the interrupt types described in Table 9.47. The bit assign-
ments for each of these registers is identical. There is one register per instantiated core. The ‘i’ indicates a number 
between 1 and 6 depending on the number of cores in the system.

Figure 9.29 GIC Interrupt Map to Pin Register Format   

31 7 6 5 4 3 2 1 0

R FDC
SMASK

SWINT1_
SMASK

SWINT0_
SMASK

PERFCOUNT_
SMASK

TIMER_
SMASK

COMPARE_
SMASK WQ_SMASK

Table 9.45 Local Interrupt Set Mask Register (GIC_COREi_SMASK — Offset 0x0010)

Register Fields

Description
Read/
Write Reset StateName Bits

RESERVED 31:7 Writes ignored. Must be written with a value of 0x0. Undefined

FDC_SMASK 6 Writing a 0x1 to this bit enables the local Fast Debug Channel 
Interrupt

W Undefined

SWINT1_SMASK 5 Writing a 0x1 to this bit enables the local SWInt1 Interrupt. W Undefined

SWINT0_SMASK 4 Writing a 0x1 to this bit enables the local SWInt0 Interrupt. W Undefined

PERFCNT_SMASK 3 Writing a 0x1 to this bit enables the l W Undefined

TIMER_SMASK 2 Writing a 0x1 to this bit enables the local Timer Interrupt. W Undefined

COMPARE_SMASK 1 Writing a 0x1 to this bit enables the local GIC Count/Compare 
Interrupt.

W Undefined

WD_SMASK 0 Writing a 0x1 to this bit enables the local WatchDog Timer 
Interrupt.

W Undefined

Table 9.46 Local Map-to-Pin Register Mapping

Offset Acronym Register Name

0x0040 GIC_COREi_WD_MAP Local Watchdog Map-to-Pin register.

0x0044 GIC_COREi_COMPARE_MAP Local Counter/Compare Map-to-Pin register.

0x0048 GIC_COREi_TIMER_MAP Local Timer Map-to-Pin register.

0x004C GIC_COREi_FDC_MAP Local Fast Debug Channel Map-to-Pin register.

0x0050 GIC_COREi_PERFCTR_MAP Local Performance Counter Map-to-Pin register.

0x0054 GIC_COREi_SWInt0_MAP Local Software Interrupt 0 Map-to-Pin register.

0x0058 GIC_COREi_SWInt1_MAP Local Software Interrupt 1 Map-to-Pin register.

31 30 29 6 5 0

MAP_TO_PIN MAP_TO_NMI R MAP
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9.6.2.7 Core-Other Addressing Register

This register must be written with the correct value before accessing the Core-Other address section.

Figure 9.30 Core-Other Addressing Register Format  

9.6.2.8 Core-Local Identification Register

The aliased memory scheme is normally invisible to software when accessing GIC registers within the Core-Local 
Control Block. What actually happens is that an offset is used to make a subset of the GIC registers appear in the 
Core-Local addressing Window. 

This register reports the Core number that is used as the addressing offset for the Core-Local Control Block. 

Table 9.47 Local Map to Pin Registers (Offset 0x0040 - 0x0058 — See above for mapping)  

Register Fields

Description
Read/
Write Reset StateName Bits

MAP_TO_PIN 31 If this bit is set, this interrupt source is mapped to a VPE 
interrupt pin (specified by the MAP field below). 
Only one of the MAP_TO_PIN, MAP_TO_NMI, or 
MAP_TO_YQ bits can be set at any one time.

- 0x1 for Timer, PerfCount 
and SWIntx;
0x0 for WatchDog

MAP_TO_NMI 30 If this bit is set, this interrupt source is mapped to a VPE 
NMI interrupt pin. 
Only one of the MAP_TO_PIN, MAP_TO_NMI, or 
MAP_TO_YQ bits can be set at any one time.

R/W 0x1 for WatchDog; 0x0 
for Others

R 29:6 Read as 0x0. Writes ignored. Must be written with a value of 
0x0. 

0

MAP 5:0 When the MAP_TO_PIN bit is set, this field contains the 
encoded value of interrupts signals Int[62:0].

In EIC mode, this represents one less than the EIC interrupt 
level (e.g. a value of 0x20 represents interrupt level 21). 

For non-EIC mode, the value represents the CPU interrupt to 
be asserted (e.g. a value of 0x03 represents interrupt 3), and 
only values of 0 to 5 are legal.

W 0

31 16 15 0

R VPENUM

Table 9.48 Core-Other Addressing Register (GIC_COREi_OTHER_ADDRESS — Offset 0x0080)

Register Fields

Description
Read/
Write Reset StateName Bits

R 31:16 Reads as 0x0. Writes ignored. Must be written with a value of 0x0. R 0

VPENUM 15:0 Number of the register set to be accessed in the Core-Other address 
space. Note that in the proAptiv core, there is one VPE per core, 
hence a VPE and a core are the same thing.

R/W 0
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Figure 9.31 Core-Local Addressing Register Format  
31 0

CORENUM

Table 9.49 Core-Local Identification Register (GIC_COREi_IDENT — Offset 0x0088)

Register Fields

Description
Read/
Write Reset StateName Bits

CORENUM 31:0 This number is used as an index to the registers within the GIC 
when accessing the Core-local control block for this core. Note 
that in the proAptiv core, there is one VPE per core, hence a VPE 
and a core are the same thing.

R -
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9.6.3 Local Timer Register Descriptions

9.6.3.1 Watchdog Timer Config Register

For more information on the usage of this register, refer to Section 9.4.6.2, "GIC Watchdog Timer".

Figure 9.32 Watchdog Timer Config Register Format  
31 8 7 6 5 4 3 1 0

R WDRESET WDINTR WAIT DEBUG TYPE WDSTART

Table 9.50 Watchdog Timer Config Register (GIC_COREi_WD_CONFIG — Offset 0x0090)

Register Fields

Description
Read/
Write

Reset 
StateName Bits

R 31:8 Read as 0x0. Writes ignored. Must be written with a value of 
0x0. 

0

WDRESET 7 Status bit which indicates that a Watchdog was responsible for 
resetting the proAptiv sub-system. A write of 0x1 to this bit of 
this register automatically clears this bit. This bit needs to sur-
vive a watchdog triggered reset.

R/WC 0

WDINTR 6 Status bit which indicates that a Watchdog was responsible for 
generating this interrupt. A write of 0x1 to this bit automatically 
clears the bit. Typically this interrupt is routed to the NMI inter-
rupt input of the core, but could be routed to another interrupt as 
well.

R/WC Undefined

WAIT 5 Stop countdown if the core is in an implementation-defined low 
power mode (including the mode which is entered on a WAIT 
instruction).
0x0 - Stop countdown if core is in low power mode.
0x1 - Low power mode has no effect on countdown.

R/W 0

DEBUG 4 Stop countdown if the core is in debug mode.
0x0 - Stop countdown if core is in Debug Mode (CP0 
DEBUGDM bit is set).
0x1 - Debug Mode has no effect on countdown.

R/W 0
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9.6.3.2 Watchdog Timer Count Register

For more information on the usage of this register, refer to Section 9.4.7.3, "Watchdog Timer Interrupts".

Figure 9.33 Watchdog Timer Count Register Format  

TYPE 3:1 There are three ways to setup the watchdog timer: 
1. It can be setup such that if it decrements to 0x0, it causes an 
interrupt and then stops. 
2. It can be setup such that after the first countdown, the initial 
value is reloaded and the countdown continues. If on the second 
trip, the counter reaches 0x0, a reset is broadcast to all cores in 
the system. 
3. The counter can be used as a Programmable Interval Timer 
(PIT).

R/W 0

WD_START 0 Watchdog timer start/stop. Setting this bit starts the Watchdog 
timer, while clearing the bit stops the timer.

0 - Stop the Watchdog timer
1 - Reload the initial count and start the Watchdog timer.

R/W 0

31 0

COUNT

Table 9.51 Watchdog Timer Count Register (GIC_COREi_WD_COUNT — Offset 0x0094)

Register Fields

Description
Read/
Write Reset StateName Bits

COUNT 31:0 This read-only register indicates the state of the decrementing 
counter. The width of the counter is 32 bits.

R Undefined

Table 9.50 Watchdog Timer Config Register (GIC_COREi_WD_CONFIG — Offset 0x0090)(continued)

Register Fields

Description
Read/
Write

Reset 
StateName Bits

Encoding Meaning

0 WD One Trip Mode. This asserts an 
interrupt, typically an NMI, and 
stops.

0x1 WD Second Countdown Mode. This 
asserts SI_Reset on all cores.

0x2 PIT Mode. This asserts an interrupt 
and reloads and keeps going.

0x3..0x7 Reserved
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9.6.3.3 Watchdog Timer Initial Count Register

For more information on the usage of this register, refer to Section 9.4.7.3, "Watchdog Timer Interrupts".

Figure 9.34 Watchdog Timer Initial Count Register Format  

9.6.3.4 CompareLo Register

For more information on the usage of this register, refer to Section 9.4.7.3, "Watchdog Timer Interrupts".

Figure 9.35 CompareLo Register Format  

9.6.3.5 Core-Local CompareHi Register

For more information on the usage of this register, refer to Section 9.4.7.3, "Watchdog Timer Interrupts".

Figure 9.36 CompareHi Register Format  

31 0

INIT

Table 9.52 Watchdog Timer Initial Count Register (GIC_COREi_WD_INITIAL — Offset 0x0098)

Register Fields

Description
Read/
Write Reset StateName Bits

INIT 31:0 Initial value to be loaded into the Watchdog counter. Needs to 
be done with the counter disabled; otherwise, the results are 
UNPREDICTABLE.

R/W Undefined

31 0

COMPARELO

Table 9.53 CompareLo Register (GIC_COREi_CompareLo — Offset 0x00A0)

Register Fields

Description
Read/
Write Reset StateName Bits

COMPARELO 31:0 When the contents of GIC_COREi_CompareLo and 
GIC_COREi_CompareHi registers match the contents of 
GIC_SH_CounterLo and GIC_SH_CounterHi, the 
COREi_Compare interrupt is triggered. 
This registered interrupt can only be deasserted by writing either the 
GIC_COREi_CompareLo or GIC_COREi_CompareHi registers. 

R/W 0xFFFF_FFFF

31 0

COMPAREHI

Table 9.54 Core-Local CompareHi Register (GIC_COREi_CompareHi — Offset 0x00A4)

Register Fields

Description
Read/
Write Reset StateName Bits

COMPAREHI 31:0 See description for GIC_COREi_CompareLo.
The width of this register matches the width of GIC_SH_COUNTER.

R/W All instantiated 
bits = 0x1
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9.6.3.6 Local EIC Shadow Set Registers

These registers are only instantiated if the GIC is configured to include EIC mode. There are 64 EIC Shadow registers 
located at offset addresses 0x0100 - 0x01FC. These registers are mapped as follows:.

Table 9.55 Local Map-to-Pin Register Mapping

Offset
Interrupt 
Source Register Acronym Offset

Interrupt 
Source Acronym

0x0100 0 GIC_COREi_EICSRCSS0 0x0180 32 GIC_COREi_EICSRCSS32

0x0104 1 GIC_COREi_EICSRCSS1 0x0184 33 GIC_COREi_EICSRCSS33

0x0108 2 GIC_COREi_EICSRCSS2 0x0188 34 GIC_COREi_EICSRCSS34

0x010C 3 GIC_COREi_EICSRCSS3 0x018C 35 GIC_COREi_EICSRCSS35

0x0110 4 GIC_COREi_EICSRCSS4 0x0190 36 GIC_COREi_EICSRCSS36

0x0114 5 GIC_COREi_EICSRCSS5 0x0194 37 GIC_COREi_EICSRCSS37

0x0118 6 GIC_COREi_EICSRCSS6 0x0198 38 GIC_COREi_EICSRCSS38

0x011C 7 GIC_COREi_EICSRCSS7 0x019C 39 GIC_COREi_EICSRCSS39

0x0120 8 GIC_COREi_EICSRCSS8 0x01A0 40 GIC_COREi_EICSRCSS40

0x0124 9 GIC_COREi_EICSRCSS9 0x01A4 41 GIC_COREi_EICSRCSS41

0x0128 10 GIC_COREi_EICSRCSS10 0x01A8 42 GIC_COREi_EICSRCSS42

0x012C 11 GIC_COREi_EICSRCSS11 0x01AC 43 GIC_COREi_EICSRCSS43

0x0130 12 GIC_COREi_EICSRCSS12 0x01B0 44 GIC_COREi_EICSRCSS44

0x0134 13 GIC_COREi_EICSRCSS13 0x01B4 45 GIC_COREi_EICSRCSS45

0x0138 14 GIC_COREi_EICSRCSS14 0x01B8 46 GIC_COREi_EICSRCSS46

0x013C 15 GIC_COREi_EICSRCSS15 0x01BC 47 GIC_COREi_EICSRCSS47

0x0140 16 GIC_COREi_EICSRCSS16 0x01C0 48 GIC_COREi_EICSRCSS48

0x0144 17 GIC_COREi_EICSRCSS17 0x01C4 49 GIC_COREi_EICSRCSS49

0x0148 18 GIC_COREi_EICSRCSS18 0x01C8 50 GIC_COREi_EICSRCSS50

0x014C 19 GIC_COREi_EICSRCSS19 0x01CC 51 GIC_COREi_EICSRCSS51

0x0150 20 GIC_COREi_EICSRCSS20 0x01D0 52 GIC_COREi_EICSRCSS52

0x0154 21 GIC_COREi_EICSRCSS21 0x01D4 53 GIC_COREi_EICSRCSS53

0x0158 22 GIC_COREi_EICSRCSS22 0x01D8 54 GIC_COREi_EICSRCSS54

0x015C 23 GIC_COREi_EICSRCSS23 0x01DC 55 GIC_COREi_EICSRCSS55

0x0160 24 GIC_COREi_EICSRCSS24 0x01E0 56 GIC_COREi_EICSRCSS56

0x0164 25 GIC_COREi_EICSRCSS25 0x01E4 57 GIC_COREi_EICSRCSS57

0x0168 26 GIC_COREi_EICSRCSS26 0x01E8 58 GIC_COREi_EICSRCSS58

0x016C 27 GIC_COREi_EICSRCSS27 0x01EC 59 GIC_COREi_EICSRCSS59

0x0170 28 GIC_COREi_EICSRCSS28 0x01F0 60 GIC_COREi_EICSRCSS60

0x0174 29 GIC_COREi_EICSRCSS29 0x01F4 61 GIC_COREi_EICSRCSS61

0x0178 30 GIC_COREi_EICSRCSS30 0x01F8 62 GIC_COREi_EICSRCSS62

0x017C 31 GIC_COREi_EICSRCSS31 0x01FC 63 GIC_COREi_EICSRCSS63
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Figure 9.37 Local EIC Shadow Set Register Format  

9.6.3.7 Core-Local DINT Group Participate Register

When bit 0 of this register is set, the local core monitors the state of the DINT_Send_to_Group register in the Shared 
register set, as well as the EJ_DINT_IN pin for debug activity. Refer to Section 9.4.10, "Debug Interrupt Generation" 
for more information.

Figure 9.38 Core-Local EIC DINT Group Participate Register Format  

See Chapter 16, “Multi-CPU Debug” on page 611 for more information about how this register is used.

9.6.3.8 Core-Local DebugBreak Group Register

When the local core enters Debug Mode (denoted by the local EJTAG_TAP.DebugM bit being asserted), this register 
defines which other cores in the system will subsequently also receive a Debug Interrupt. This allows multiple cores 
to be synchronized to a single software debugger by entering debug mode somewhat simultaneously.

31 4 3 0

R EIC_SSn

Table 9.56 Local EIC Shadow Set Registers (GIC_COREi_EICSSi — Offset 0x0100 - 0x01FC) 

Register Fields

Description
Read/
Write Reset StateName Bits

R 31:4 Read as 0x0. Writes ignored. Must be written with a value of 
0x0. 

- 0

EIC_SSn 3:0 Encoded value that indicates the Shadow Set number to use for 
this particular interrupt.

R/W Undefined

31 1 0

R DINT_GP

Table 9.57 Core-Local DINT Group Participate Register (GIC_Vx_DINT_PART — Offset 0x3000)

Register Fields

Description
Read/
Write Reset StateName Bits

RESERVED 31:1 Reads as 0x0. Writes ignored. Must be written with a value of 0x0. R 0x0

DINT_GP 0 If this bit is set, the local core pays attention to the 
DINT_Send_to_Group register as well as the external EJ_DINT_IN 
signal pin. 
For this case, when the Send_DINT bit within the 
DINT _Send_to_Group register is asserted (or the external 
EJ_DINT_IN signal is asserted), the local core will have its EJ_DINT 
or EJ_DINT_1 signal asserted. 
If this bit is clear, the local core is not affected by the 
DINT_Send_to_Group register nor the external EJ_DINT_IN pin 
signal. 

R/W 0x1
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Figure 9.39 Core-Local EIC DINT Group Participate Register Format  

See Chapter 17, “Multi-CPU Debug” on page 1817 for more information about how this register is used.

31 0

JOIN_DB

Table 9.58 Core-Local DebugBreak Group Register (GIC_Cx_BRK_GROUP — Offset 0x3080)

Register Fields

Description
Read/
Write Reset StateName Bits

JOIN_DB 31:0 Each bit in this register represents a core in the system. 
If the bit is set, the corresponding core will have its EJ_DINT or 
EJ_DINT_1 signal asserted when the local core enters Debug Mode. 
If the bit is clear, the corresponding core is not affected when the core 
enters Debug Mode.
The bit which represents the local core cannot be used to disable 
Debug Mode for the local core. For example, if the local core is repre-
sented by bit i, clearing bit i will NOT disable Debug Mode for the 
local core. 

R/W All zeros
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9.7 GIC User-Mode Visible Section

The Shared, Core-local, and Core-other sections are meant to be located in privileged system virtual address space, in 
which only kernel mode software can initialize and update the interrupt controller.

A separate 64KB address space is allocated so that it may be mapped to user-mode virtual address space. Within this 
address space are aliases for GIC registers that are read so often that it makes sense to make them available to user-
mode programs without requiring a system call. The aliases for these registers are read-only. Currently, the only reg-
isters that are aliased into this space are the shared Counter registers. 

The addresses for the registers within the User-Mode Visible Section of the GIC are calculated as follows:

SharedSection_Register_Physical_Address = GIC_baseaddress + 
UMVisible_Section_baseoffset + Register_Offset

Table 9.59 User-Mode Visible Section Register Map

Register Offset Name Type Description

0x0000 GIC CounterLo
(GIC_SH_CounterLo)

R Read-only alias for GIC Shared CounterLo.

0x0004 GIC CounterHi
(GIC_SH_CounterHi)

R Read-only alias for GIC Shared CounterHi.

Any Other Offsets Reserved Reserved for future extensions.
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Instruction and Data Scratch Pad RAM

The instruction scratchpad RAM (ISPRAM) and data scratchpad RAM (DSPRAM) options on the proAptiv Multi-
processing System™ Multiprocessing System are designed to provide low-latency access to on-chip memories. Sep-
arate SPRAM blocks exist for instruction and data references. The SPRAM ports are accessed in parallel with the 
caches. This saves a number of cycles that would normally be required when going through the BIU and the master 
OCP interface of the proAptiv Multiprocessing System core. Throughout this chapter, the term SPRAM is used to 
refer to the ISPRAM and DSPRAM memories.

This chapter contains details of the SPRAM interfaces and reference designs. The chapter contains the following 
major sections:

• Section 10.1 “Scratchpad RAM (SPRAM) Features”

• Section 10.2 “SPRAM Overview”

• Section 10.3 “SPRAM Initialization”

• Section 10.4 “SPRAM Clocking”

10.1 Scratchpad RAM (SPRAM) Features

The MIPS32® proAptiv Multiprocessing System core scratchpad has the following features:

• SPRAM is supported for instruction and data references.

• Each SPRAM block occupies one continuous region in the physical address space. The SPRAM wrappers con-
tain the base physical address and size information.

• SPRAM is virtually indexed by the core. There is no hardware support to avoid virtual aliasing.

• Size of SPRAM may range from 4 KB to 1 MB in factors of 2. 

• Data Access granularity

• Read: 64-bit (1 doubleword). 

• Write: maximum write width is 64 bits, minimum write width is 8 bits.

• Instruction Access granularity

• Read/Write: 64 bits of instruction plus 6 bits of precode. Smaller writes are not supported.

• SPRAM control supports single or multi-cycle access. For maximum frequency, the SPRAM access time should 
be less than the cache access time. For larger size SPRAMs, the integrator may choose a multi-cycle access
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• For data references, the multi-cycle accesses can be pipelined. SPRAM data needs to be returned in the 
requested order.

• For instruction references, requests will be retried if the data is not available at the single cycle point.

• Multi-cycle data scratchpad RAM access is non-blocking.

• Multi-cycle instruction scratchpad RAM access is blocking (within a TC).

• The scratchpad RAM is not required to hold the last read value. 

• The data scratchpad has independent tag and data ports. The tag and data arrays are always read together for the 
instruction scratchpad. The scratchpad RAM does not have a traditional cache tag array. Instead, it has registers 
holding the SPRAM configuration information.

• SPRAM access hit supersedes cache access hit. 

• User may implement a DMA port to the scratchpad RAM. In the reference designs, an OCP slave port is pro-
vided.

• The proAptiv Multiprocessing System core provides integrated BIST support for single-cycle latency SPRAM.

• Optional parity protection is supported for SPRAM.

• Instruction: 1b per 8b of instruction, 1b for 7b precode

• Data Parity: 1b per 8b of data

10.2 SPRAM Overview

A Scratchpad RAM can be used stand-alone or combined with data or instruction cache. The existence of a scratch-
pad must be selected at build time.

The SPRAM array, like the cache arrays, is indexed with a virtual address and the “tag comparison” (really just 
decode logic for the SPRAM) is performed using a physical address. Since the SPRAM size can be larger than the 4 
KB minimum page size, it is possible to have virtual aliasing in the SPRAM. Virtual aliasing occurs when a single 
physical address is accessed via two different virtual addresses that can simultaneously reside in memory. This is not 
a problem on cores using the Fixed Mapping Translation MMU. For cores with TLB-based MMUs, this can be 
avoided by accessing the SPRAM through unmapped (kseg0/1) addresses or using using a TLB page. This is not han-
dled by hardware and programmers must be aware of it.

The reference designs contain 8 KB SPRAM arrays, with one cycle latency and a simple DMA port. A user can 
choose to implement a custom SPRAM with different size, latency, and other desired characteristics. 

During normal operation, it will be impossible for a reference to hit in both SPRAM and data cache. If this error con-
dition does occur via manipulation of the cache or SPRAM tags, the SPRAM supersedes the data cache hit. Note that 
this also means that a CACHE HitInvalidate operation to such a line that exists in both SPRAM and cache will not 
invalidate the cache entry.

The scratchpad interface consists of a core-side interface as well as an optional DMA interface. MIPS provides a ref-
erence design for the external SPRAM module called imp_sp and imp_isp. These include wrappers that instanti-
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ates a SPRAM SRAM array. The reference module can be replaced with a customized SPRAM implementation. For 
timing reasons, the arbitration logic for the SPRAM DMA interface is located within the imp_cpu hierarchy.

10.2.1 SPRAM Differences Versus a Cache

SPRAM behavior differs from cache in the following key ways: 

• Software must ensure a SPRAM entry has been initialized before it is read, to avoid reading spurious data.

• The SPRAM does not refill automatically. The data SPRAM is normally initialized with stores or DMA writes to 
the desired address range. The instruction SPRAM can be initialized with Index Store Data CACHE ops or DMA 
writes.

• Store operations which hit in the data SPRAM do not produce writes to main memory, unlike write-through 
stores that hit in the cache and write to main memory.

NOTE: The I-Cache Fill and Fetch&Lock cacheops will refill the given line into the I-Cache even if that address hits 
to the ISPRAM. This is not recommended since normal fetches will hit in the ISPRAM and ignore the I-Cache con-
tents.

10.2.2 Uncacheable References to SPRAM

SPRAM can be mapped to either cached or uncached space. The address decode and comparison for SPRAM is done 
regardless of the cacheability attribute.

10.2.3 Independent Tag/Data Accesses

The data SPRAM interface has independent tag and data ports. This is done to aid the efficiency of stores. A store 
must perform a lookup to determine if/where to write the data, then the actual data must be written. Because the 
lookup does not need to access the data array, these operations can occur in parallel if the data writes are buffered 
within the core.

Because there are no stores to the instruction SPRAM, the tag and data ports are linked. Reads will always access 
both the tag and data port at the same index. Writes will target either the tag or data.

10.2.4 SPRAM Tag Reads and Writes

The interface allows for SPRAM “tag” values to be read and written. The tag values are read/written by the CACHE 
instruction. This can optionally provide a mechanism for software to determine the SPRAM base and size configura-
tion and change it. The reference design shows one possible use for this interface - software can probe the SPRAM to 
determine the base address and whether it is enabled. These values are also write-able, allowing software to dynami-
cally configure the SPRAM parameters. 

10.2.5 Multiple Cycle Data SPRAM Access 

For a one-cycle latency SPRAM, the scratchpad interface will achieve cache-like access timing. However, the 
scratchpad interface also supports SPRAM that has a multi-cycle latency. 

For a data scratchpad read, when the data from SPRAM is not ready, the processor will register the load in a load buf-
fer and return data to the main pipeline when data is available from SPRAM. No stall of pipeline is necessary unless 
the result register is used by a following instruction.
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10.2.6 Multiple Cycle Instruction SPRAM Access 

For an instruction scratchpad read, multi-cycle latency causes more of a problem. The instruction fetch pipeline does 
not have the ability to stall. If the instruction data is not returned at the expected time, the request will be retried. This 
will add a minimum of 3 cycles of latency to all ISPRAM fetches.

When the core is operating in multi-threaded mode, this gets even trickier. Fetch requests from the different TCs can 
be intermixed. It is recommended that a multi-cycle ISPRAM have a buffer per TC that holds the last requested fetch 
to allow TCs to make forward progress.

10.2.7 Backstalling the SPRAM Data Port

The backstall mechanism is not really needed if the SPRAM can keep track of all the outstanding requests. If that is 
not the case, SPRAM is allowed to backstall the core if it is busy, via assertion of the SP_ram_busy or 
ISP_ram_busy signals. 

This backstall mechanism may be useful if the customer implements a multi-cycle non-pipelined version of data 
SPRAM. The scratchpad should assert the SP_ram_busy when it cannot accept another request in the next cycle. 
The core will stall its pipeline only if it has a pending SPRAM access and it is about to enter the ER stage of the pipe-
line. 

The above mentioned mechanism only applies to the SPRAM data port, not the tag. The tag port always requires 
fixed single-cycle latency 

10.2.8 Access Granularity

A data SPRAM read returns either 1 word (32b) or 1 doubleword (64b) of data (plus parity/ECC). There are two read 
strobes controlling access to the upper and lower word of the data array. Since many core accesses are 32b or less, 
banking the SPRAM array and only reading the selected bank can yield power savings. Alternatively, the OR of the 
read strobes can be used to access a single wider array. 

For word accesses, the processor core uses the lower 32b of the read data bus. If only the upper read strobe is 
asserted, the upper 32b word be returned on the lower 32b of the data bus. Additional alignment and shifting is han-
dled within the core. The maximum write width is 64 bits and partial write is enabled through the byte enable signals, 
SP_data_wren_ag[7:0].

For DMA access to data SPRAM, the read will always be 64 bits wide. The maximum write width is 64 bits and par-
tial write is enabled using the OC_DMA_MDataByteEn[7:0] signals.

On the instruction SPRAM, both reads and writes will always be 70 bits wide (64b of data + 6b of precode) (plus par-
ity). The additional precode data will be generated by the core during a DMA write. Data on the OCP Slave bus will 
only be 64b wide.

10.2.9 Connecting I/O Devices to the Data Scratchpad Interface

In addition to, or perhaps instead of, an SRAM array, it is possible to connect I/O devices to the SPRAM interface. 
Connecting I/O devices to the scratchpad interface allows low latency, high throughput access to critical I/O devices 
in the system. To accomplish this, the integrator must ensure that the behavior of the I/O devices meets the same 
requirements as the SPRAM. 

Connecting an I/O device to the ISPRAM is not recommended.
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10.2.10 Null Connection to Unused SPRAM Interface

The presence of scratchpads must be chosen when the core is built. Even if one or both of the SPRAM interfaces are 
present, there does not need to be arrays connected to them. If a interface is not going to be used, then the 
[I]SP_Present input signal to the core should be driven low. All other input signals to the core for the unused 
SPRAM interface should also be tied low, to avoid floating inputs. All output signals from the core related to the 
unused SPRAM interface can be left unconnected.

10.3 SPRAM Initialization

Since the scratchpad is really a RAM-based structure, it must be initialized with valid data before it can be used. Fol-
lowing are few ways to initialize the data SPRAM.

• DMA: The RAM array can be initialized from the system using DMA writes.

• Stores: For data SPRAM, the array can be initialized with normal store instructions that hit in the SPRAM 
region.

• CACHE Index Store Data instruction: Indexed cache operations can be forced to go to the SPRAM by setting the 
SPR bit in the Coprocessor0 ErrCtl register. When this bit is set, it is possible to use the Index Store Data flavor 
of the CACHE instruction to move data from the DataLo/DataHi Cop0 registers into the SPRAM. This mecha-
nism does not require any backing memory and can even be used to load the SPRAM from an EJTAG probe for 
early system bringup. For the data SPRAM, using stores to initialize the array is usually a much more efficient 
mechanism.

10.3.1 ISPRAM Boot

Uncached requests can still be serviced by the SPRAMs. On MIPS CPUs, the boot vector is located at an uncacheable 
address. Since the SPRAM has cache-like timing even when responding to uncached accesses, it can run much faster. 
This can make booting directly from the ISPRAM an interesting possibility.

Note: When fetching from uncached addresses, even if they hit in the SPRAM, the core will only use 32b at a time 
instead of 64b. This will reduce the performance versus SPRAM hits in cached space, but will still be much better 
than normal uncached accesses.

In order to boot from the ISPRAM, the instructions must be loaded into the array before the core can start executing 
them. The reference design does include some support for this via the ispram_boot internal signal. By default, this 
signal is statically driven to 0, but commented out RTL shows how to connect it to one of the sideband external sig-
nals to allow it to be dynamically controlled. There is example RTL for either directly connecting it or synchronizing 
the input signal - the latter is recommended.

In order to load the ISPRAM via DMA and boot directly from it: 

• Set ispram_boot = 1 while SI_Reset = 1 

• This sets the base address to the physical address of the boot vector (either 0x1fc0_0000 or 
SI_ExceptionBase if SI_UseExceptionBase = 1) and sets the enable bit. 

• While in reset, the DMA port will be inactive (core deasserts Accept signals)

• After SI_Reset->0, hold ispram_boot = 1 until the ISPRAM has been loaded via DMA.
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• Note: the DMA port is held inactive while the core is in reset, thus the DMA can only happen after reset has 
been deasserted

• This causes ISP_dma_stallreq_xx = 1 which gives the DMA priority over core requests .

• And also sets ISP_datavld_nxt_if = 0, which indicates that the data is not available yet and the core will retry 
any accesses that hit in the ISPRAM.

• Once the ISPRAM has been loaded, ispram_boot should be deasserted, allowing the core accesses to hit out of 
the ISPRAM.

10.3.2 ISPRAM Precode Bits

Six precode bits are included with every 64b of instruction data in the ISPRAM array. These bits contain information 
about branches and jumps. Having this information allows the fetch unit to quickly react to the potential change of 
flow and start fetching along the predicted path. These precode bits are not used when executing MIPS16e™ code. 

When the ISPRAM array is loaded using Index Store Data CACHE instructions or by using the core’s DMA inter-
face, the precode bits are generated automatically and sent out as part of the write data. So, for many systems, nothing 
special will need to be done with the precode bits. In some custom ISPRAM blocks, however, it may not be possible 
to utilize the precode blocks within the core. Two examples are if the ISPRAM block contains a ROM array or if the 
core DMA interface is not used. 

Table 10.1 Precode Bits

Name Bit Description

L/M 6 This bit has two different meanings depending on the state of the B and J bits.

1. If B is set, then this bit is set if the branch is a branch likely instruction. 
2. If J is set, then this bit is set if the Jump instruction is a JALX instruction. 

If either of the B or J bits are set, then the IFU fetches a delay slot instruction.
When both B and J bits are set, this indicates that both instructions decoded to 
look like branches, Jumps, or ERET instructions. This can happen if one 
instruction isn't really an instruction, but is instead data.

X 5 0: branch/jump is in bits[31:0]
1: branch/jump is in bits [63:32]

B 4 Branch instruction

J 3 Jump instruction 

S 2 Indicates a subroutine call. Return address will be pushed onto return predic-
tion stack

G 1 Indicates Jump Register is not predicted

U/R 0 On branches, indicates an unconditional branch
On jumps, indicates a return
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Table 10.2 MIPS32 Control Transfer Instructions

Instruction Precoding Notes

B (BEQ rs==rt) BU Does not use branch predictor. 
BAL (BGEZAL r0) BSU Does not use branch predictor. push PC+8 onto RPS
BC1[TF] B

BC1[TF]L B

BC2[TF] B

BC2[TF]L B

BEQ (rs != rt) B

BEQL B

B[GL][ET]Z B

BGEZAL (rs != r0) B

BLTZAL B

B[GE,LT]ZALL B

B[GL][ET]ZL B

BNE B

BNEL B

BPOSGE32 B Instruction from MIPS DSP ASE
DERET G decode in IS
ERET G decode in IS
J J

JAL JS push PC+8 onto RPS
JALR[.HB] (rd = $31) JSG push PC+8 onto RPS

possible MIPS16e mode change
JALR[.HB] (rd != $31) JG possible MIPS16e mode change
JALX JS push PC+8 onto RPS

switch to MIPS16e mode
JR (rs = $31) JR possible speculative MIPS16e mode change
JR (rs != $31) JGSR possible MIPS16e mode change
JR.HB (rs = $31) JGR possible MIPS16e mode change

pop RPS but don’t use
JR.HB (rs != $31) JG possible MIPS16e mode change
ILLEGAL BJG If both instructions decode as a branch/jump, set this to let fetch unit 

know there is a strange situation that needs resolving.

This can happen when data is packed with instructions, when precod-
ing MIPS16e instruction data, or when there is an illegal code 
sequence.
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10.4 SPRAM Clocking

The SPRAM block receives two clocks from the core, [I]SP_gclk and [I]SP_gfclk. [I]SP_gclk is a global gated 
clock, while [I]SP_gfclk is free-running. When top level clock gating is implemented, [I]SP_gclk is not active in the 
low power sleep mode entered using the WAIT instruction. The processor enters sleep mode only if there are no 
pending SPRAM transactions. When the processor core is in sleep mode, a DMA request will re-enable [I]SP_gclk in 
order to process the request.

For the best power management, most of logic in the SPRAM block should reside on the gated [I]SP_gclk. Only the 
minimal logic needed to detect a DMA request and wake up the core needs to reside on the free-running [I]SP_gfclk.

10.4.1 Scratchpad Reference Design 

The reference scratchpad design (called imp_[i]sp) supports a basic scratchpad implementation. It is configurable 
within certain constraints:

• SPRAM size can range from 4 KByte to 1 MByte. The supported sizes are 4KB, 8KB, 16KB, 32KB, 64KB, 128 
KB, 256 KB, 512 KB, or 1 MB

• SPRAM tag has a base address and a size register used for hit detection. Both base and size register are accessi-
ble through the CACHE instruction.

• The address range must be naturally aligned (i.e. a 64KB SPRAM’s base address must be on a 64KB boundary).

• The array always returns data in a single cycle.

• The scratchpad contains an OCP DMA slave port. 

Following are some considerations of the reference SPRAM design which are not covered in the previous sections.

10.4.2 Tag Registers in the Reference SPRAM

Using the CACHE instruction, it is possible to read or write the “tag” value associated with the SPRAM. To provide 
a common software interface, it is recommended that all SPRAM implementations provide some standard configura-
tion information via this mechanism.

In the reference SPRAM wrapper, the “tag” of SPRAM consists of a base address register and a size register. If the 
SPR bit in the ErrCtl register is set, an Index Load Tag CACHE instruction reads the SPRAM tag and place the con-
tents in the TagLo register, while an Index Store Tag CACHE instruction writes the SPRAM tag with the data from 
TagLo register. Bit3 of the index is used to select between base address and size register; when bit3 =1, the size reg-
ister is selected, otherwise the base address register is selected. The format of the base and size registers are shown in 
Table 10.3 and Table 10.4, respectively.

Table 10.3 Format of the Base Address Register in the Reference SPRAM Wrapper

Field Description 

sp_base_xx[31:12] Base address of the SPRAM region

sp_base_xx[11] SPRAM valid 
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Software can then query or modify these registers to determine the base and size information. An Index Load Tag will 
read bits [31:12] from the base address or size register and write them into bits [31:12] of the TagLo register. Bit [11] 
of the base address register serves as a valid bit for SPRAM and will be written into the valid field (bit [7]) of the 
TagLo register. Similarly, an Index Store Tag will write bits [31:12] of the TagLo register into bits [31:12] of the base 
address or size register, and the TagLo valid field into the valid bit of base address register.

The reset value of base address information is incorporated into the SPRAM via ‘define within the reference 
SPRAM module. The reset value of the size tag is based on the actual size of the array.

10.4.3 Enabling SPRAM Access

After power up, the reference SPRAM is always set to invalid through the reset of bit [11] of the base address register. 
So a CACHE Index Store Tag instruction is needed to enable the SPRAM. The core comparison logic uses bit [11] of 
[I]SP_tag_rdata_xx[31:11] as the valid bit of SPRAM and an access can hit on SPRAM only when this bit is set. 

When a custom SPRAM is implemented, this bit should be set accordingly for the design.

10.4.4 SPRAM BIST Support 

The core includes an integrated SPRAM BIST controller which can provide BIST support for single-cycle latency 
SPRAM. The integrated SPRAM BIST controller is capable of supporting two algorithms, March C+ or IFA-13 
(IFA-13 includes support for retention testing).

When integrated memory BIST is running, the SPRAM array is tested in parallel with other sub arrays of the instruc-
tion and data caches and trace memory.

A custom RAM BIST module is also possible. For a multi-cycle SPRAM implementation, custom BIST is required 
since the integrated controller only accommodates single-cycle access. 

10.4.5 SPRAM Parity Support 

Parity protection is optionally enabled for SPRAM. A parity error on a SPRAM read will either cause a CacheErr 
exception (for a load or fetch) or an error response on the OCP bus (DMA access). The CacheErr parity error detec-

Table 10.4 Format of the Size Register in the Reference SPRAM Wrapper

Field Description

sp_size_xx[31:12] Size of the SPRAM:

SPRAM size Value

4KB 20’h00001
8KB 20’h00002
16KB 20’h00004
32KB 20’h00008
64KB 20’h00010

128KB 20’h00020
256KB 20’h00040
512KB 20’h00080

1M 20’h00100
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tion logic resides in the core. For the reference design, if parity is enabled, it must be supported by the instruction 
cache, data cache and both SPRAM arrays. 

From the reference SPRAM module, the outputs SP_parity_present, SP_ecc_present, and ISP_parity_present 
indicate whether each SPRAM array is parity protected. If a custom SPRAM module is built, users might choose not 
to check parity for SPRAM even though parity checking for instruction and data caches is enabled; in this case, the 
output should be de-asserted and no parity checking will be done for that SPRAM. 
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Hardware and Software Initialization

A proAptiv Multiprocessing System contains only a minimal amount of hardware initialization and relies on software 
to fully initialize the device.

This chapter contains the following sections:

• Section 11.1 “Hardware-Initialized Processor State”

• Section 11.2 “Software-Initialized Processor State”

11.1 Hardware-Initialized Processor State

The proAptiv Multiprocessing System is not fully initialized by hardware reset. Only a minimal subset of the proces-
sor state is cleared. This is enough to bring the CPU up while running in unmapped and uncached code space. All 
other processor state can then be initialized by software. Unlike previous MIPS processors, there is no distinction 
between cold and warm resets (or hard and soft resets). SI_Reset is used for both power-up reset and soft reset.

11.1.1 Coprocessor 0 State

Much of the hardware initialization occurs in Coprocessor 0:

• Random - cleared to maximum value on Reset

• Wired - cleared to 0 on Reset

• StatusBEV - set to 1 on Reset

• StatusTS - cleared to 0 on Reset

• StatusNMI - cleared to 0 on Reset

• StatusERL - set to 1 on Reset

• StatusRP - cleared to 0 on Reset

• CDMMBaseEN - cleared to 0 on Reset

• WatchLoI,R,W - cleared to 0 on Reset

• Config fields related to static inputs - set to input value by Reset

• ConfigK0 - set to 010 (uncached) on Reset
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• ConfigKU - set to 010 (uncached) on Reset

• ConfigK23 - set to 010 (uncached) on Reset

• DebugDM - cleared to 0 on Reset (unless EJTAGBOOT option is used to boot into Debug Mode, as described in 
Chapter 14, “EJTAG Debug Support”. 

• DebugLSNM - cleared to 0 on Reset

• DebugIBusEP - cleared to 0 on Reset

• DebugDBusEP - cleared to 0 on Reset

• DebugIEXI - cleared to 0 on Reset

• DebugSSt - cleared to 0 on Reset

11.1.2 TLB Initialization 

Each TLB entry has a “hidden” state bit, which is set by Reset and is cleared when the TLB entry is written. This bit 
disables matches and prevents “TLB Shutdown” conditions from being generated by the power-up values in the TLB 
array (when two or more TLB entries match a single address). This bit is not visible to software.

11.1.3 Bus State Machines

All pending bus transactions are aborted and the state machines in the bus interface unit are reset when a Reset excep-
tion is taken. 

11.1.4 Static Configuration Inputs

All static configuration inputs (for example, those defining the bus mode and cache size) should only be changed dur-
ing Reset.

11.1.5 Fetch Address

Upon Reset, unless the EJTAGBOOT option is used, the fetch is directed to VA 0xBFC00000 (PA 0x1FC00000). 
This address is in kseg1, which is unmapped and uncached, so that the TLB and caches do not require hardware ini-
tialization.

11.2 Software-Initialized Processor State

Software is required to initialize parts of the device, as described below.

11.2.1 Register File

The register file powers up in an unknown state with the exception of r0, which is always 0. Initializing the rest of the 
register file is not required for proper operation. Good code will generally not read a register before writing to it, but 
the boot code can initialize the register file for added safety.
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11.2.2 TLB 

Because of the hidden bit indicating initialization, the CPU does not initialize the TLB upon Reset. This is an imple-
mentation-specific feature of the proAptiv Multiprocessing System CPU and cannot be relied upon if writing generic 
code for MIPS32/64 processors. 

11.2.3 Caches

The cache tag and data arrays power up to an unknown state and are not affected by reset. Every tag in the cache 
arrays should be initialized to an invalid state using the CACHE instruction (typically the Index Invalidate function). 
This can be a long process, especially because the instruction cache initialization must run in an uncached address 
region.

11.2.4 Coprocessor 0 State

Miscellaneous COP0 states need to be initialized before exiting the boot code. There are various exceptions which are 
blocked by ERL=1 or EXL=1, and which are not cleared by Reset. These can be cleared to avoid taking spurious 
exceptions when leaving the boot code.

• Cause: WP (Watch Pending), and SW0 and SW1 (Software Interrupts) should be cleared.

• Config: K0 should be set to the desired Cache Coherency Algorithm (CCA) prior to accessing kseg0.

• Count: Should be set to a known value if timer tnterrupts are used.

• Compare: Should be set to a known value if timer tnterrupts are used. Note that the write to Compare will also 
clear any pending timer interrupts, so Count should be set before Compare to avoid any unexpected interrupts.

• Status: Desired state of the device should be set.

• Other COP0 state: Other registers should be written before they are read. Some registers are not explicitly write-
able, and are only updated as a by-product of instruction execution or a taken exception. Uninitialized bits should 
be masked off after reading these registers.
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11.3 Boot and CMP Bringup

After the system is reset and released, all cores configured in hardware to power up will execute their boot sequence. 
Typically, CPU0 powers up, while all other CPUs are configured to remain powered down. Alternatively, all CPUs 
can be hardware configured to remain powered down to be awakened through a hardware signal connected to SOC-
specific logic.

After system reset, all caches are in an unknown state and must be initialized. It is advisable for core0 to initialize the 
L2 cache prior to powering up the other cores, but this is not required if other synchronization methods are utilized. 
For L1 caches, this is expected to be done using IndexStTag ops running on the same CPU. Prior to the data cache 
being initialized, processing an intervention would cause unpredictable results, potentially corrupting main memory 
with random data. Thus, the system starts with all of the cores outside the coherence domain until explicitly enabled 
by software. 

Core0:
Initialize cop0 state
Initialize L2 Cache
Initialize GCR state
Startup other cores if needed
CoreN:
Initialize L1 Caches
Enable Coherence
Switch to coherent CCA
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Floating-Point Unit

This chapter describes the optional MIPS32® Floating-Point Unit (FPU) and contains the following sections:

• Section 12.1, "Features Overview"

• Section 12.2 “IEEE Standard 754”

• Section 12.3 “Enabling the Floating-Point Coprocessor”

• Section 12.4 “Architectural Overview”

• Section 12.5 “Data Formats”

• Section 12.6 “Floating-Point General Registers”

• Section 12.7 “Floating-Point Control Registers”

• Section 12.8 “Exceptions”

• Section 12.9 “Latency and Repeat Rates”

• Section 12.10 “FPU Performance Counters”

• Section 12.11 “Instruction Overview”

• Section 12.12 “Alphabetical Listing of Floating Point Instructions”

12.1 Features Overview

The FPU is provided via Coprocessor 1 (CP1). Together with its dedicated system software, the FPU fully complies 
with the ANSI/IEEE Standard 754-1985, IEEE Standard for Binary Floating-Point Arithmetic. The MIPS architec-
ture supports the recommendations of IEEE Standard 754, and the coprocessor implements a precise exception 
model. The key features of the FPU are listed below.

• Full 64-bit operation is implemented in both the register file and functional units.

• Separate and independent arithmetic and data channels

• 1:1 frequency ratio to proAptiv core.

• A 32-bit Floating-Point Control register controls the operation of the FPU, and monitors condition codes and 
exception conditions.
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• Like the main processor core, Coprocessor 1 is programmed and operated using a Load/Store instruction set. The 
processor core communicates with Coprocessor 1 using a dedicated coprocessor interface. The FPU functions as 
an autonomous unit. The hardware is completely interlocked such that, when writing software, the programmer 
does not have to worry about inserting delay slots after loads and between dependent instructions.

• Additional arithmetic operations not specified by IEEE Standard 754 (for example, reciprocal and reciprocal 
square root) are specified by the MIPS architecture and are implemented by the FPU. In order to achieve low 
latency counts, these instructions satisfy more relaxed precision requirements.

• The MIPS architecture further specifies compound multiply-add instructions. These instructions meet the IEEE 
accuracy specification, where the result is numerically identical to an equivalent computation using multiply, 
add, subtract, or subtract from zero instructions.

• Supports dual-issue coprocessor 1 interface.

• Hardware support for denormalized numbers. Denormalized numbers are supported in hardware for the add, sub-
tract, compare, and convert functions, but rely on a software handler to operate on the denormalized multiply, 
divide, and square root functions. 

• A fast Flush-To-Zero mode is provided to optimize performance for cases where IEEE denormalized operands 
and results are not supported by hardware. The fast Flush to Zero mode is enabled through the CP1 FCSR regis-
ter; use of this mode is recommended for best performance.

12.2 IEEE Standard 754

The IEEE Standard 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, is referred to in this chapter as 
“IEEE Standard 754”. IEEE Standard 754 defines the following:

• Floating-point data types

• The basic arithmetic, comparison, and conversion operations

• A computational model

IEEE Standard 754 does not define specific processing resources nor does it define an instruction set.

12.3 Enabling the Floating-Point Coprocessor

Coprocessor 1 is enabled by setting the CU1 bit in the CP0 Status register. When this bit is cleared, Coprocessor 1 is 
disabled, and any attempt to execute a floating-point instruction causes a Coprocessor Unusable exception.

12.4 Architectural Overview

As shown in Figure 12.1, the FPU is divided into two channels, arithmetic and data. The data channel (D-channel) 
handles transferring data to and from the FPU. The arithmetic channel (A-channel) handles all arithmetic operations.
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12.4.1.1 Allocate

When an instruction is received by the Processor Interface Unit (PIU), it is allocated an entry in the buffer. The buffer 
entries serve as holding locations for instruction data as the instruction passes through each phase of the FPU. There 
is one buffer entry per instruction. Subsequent downstream blocks update the associated buffer entry as the instruc-
tion proceeds down the pipeline until it is retired in the retire unit and the buffer entry is de-allocated. 

12.4.1.2 Issue

An instruction is issued when it has all of the data required to execute the instruction. An instruction is retired when 
the instruction has completed and it is safe to write the result to the register file. Instructions that have been allocated 
and not yet retired are considered active. 

Instructions within each channel are issued in order. Issues between the two channels are not necessarily in order. One 
of the channels can often issue ahead of the other channel. 

12.4.1.3 Retire

Instructions within each channel are retired in order. Retires between the two channels may be slightly out of order. 
An instruction is allowed to retire if it is the oldest outstanding instruction, or if there are no RAW or WAR hazards 
with older instructions in the other channel. The retire block is responsible for determining when an instruction can be 
retired and the corresponding buffer entry de-allocated. The retire block is also responsible for cancelling an instruc-
tion in the arithmetic unit if that instruction has been killed or nulled.

Hardware moves ‘To-Coprocessor’ instructions to the Scheduled Load Queue shown in Figure 12.1 if the instruction 
was complete except for receiving the data from the integer core. These instructions are retired and set aside with just 
enough information to complete the register file write when the To-Coprocessor data comes back. 

12.4.2 Processor Interface Units

There is one Processor Interface Unit (PIU) per channel that controls all CP1 interactions on that channel. There is 
one PIU for arithmetic operations and one PIU for load/store operations.

The arithmetic and data channel Processor Interface Units performs the following functions.

• Controls all CP1 interface transactions. 

• Receives instructions from the CP1 interface and performs initial decode

• Allocating queue entries

• Communicates ready/busy status back to the integer core when there are not enough empty shelves

• Receives To-Coprocessor data from the CPU

• Extracts exception information from the shelves and passes it onto the CP1 interface

• Communicates condition code checks and moves From-Coprocessor data to the CPU

Instructions to the FPU are initiated by the CP1 interface in order and enter the PIU. Upon entering the PIU, each 
instruction is decoded and allocated a buffer entry. Logic within the PIU keeps track of which buffer entries have 
been allocated and which ones are free, and also tracks the relative ‘age’ of each instruction in the buffer array 
(whether other instructions were before or after in program order). 
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Two instructions can be allocated each cycle. As instructions enter the queue and are subsequently retired, the Proces-
sor Interface Unit monitors the level of the buffer to determine if a stall must be issued to the CPU when the buffer 
level passes a predetermined threshold.

12.4.3 Issue Unit

There is one issue unit for arithmetic operations and one issue unit for load/store operations.

The arithmetic channel Issue Unit is responsible for determining when an arithmetic instruction can be issued based 
upon retrieving all the source data required for the instruction. This block is also responsible for doing any remaining 
decode required to issue the instruction and for stalling if the arithmetic block requests a stall. The arithmetic Issue 
Unit also maintains an issue pointer that points to the buffer entry of the next instruction to issue.

The data channel Issue Unit is responsible for determining when a load/store instruction can be issued based upon 
retrieving all the source data required for the instruction. This block is also responsible for doing any remaining 
decode required to issue the instruction and for stalling if the load/store block requests a stall. The data channel Issue 
Unit also maintains an issue pointer that points to the buffer entry of the next load/store instruction to issue.

12.4.4 Instruction Buffers

There are two instruction buffers, one for the arithmetic channel and one for the data channel. These buffers are 
defined as holding locations for instruction data for the lifespan of the instruction. There is one buffer entry per 
instruction. The corresponding Processor Interface Unit allocates buffer entries to incoming instructions. Subsequent 
downstream blocks update data in the buffer as the instruction proceeds down the pipeline until the instruction is 
finally retired in the retire unit and the queue entry is de-allocated. 

The issue circuitry may retrieve (bypass) data from the queues (both sets), the register file, intercepting the data com-
ing out of the arithmetic block, or intercepting the To-Coprocessor data coming from the integer core.

Note that buffer entries for a given channel are de-allocated in order. At no time does the FPU ever de-allocate entries 
in the buffer such that there are holes (non-contiguous entries). If an instruction is nullified or killed, that instruction 
will still remain active until it is retired in order and de-allocated. In this way, all pointers can always look ahead to 
the next buffer entry.

12.4.5 Arithmetic Processing Unit

The arithmetic processing unit resides in the arithmetic channel as shown in Figure 12.1. In this block the arithmetic 
instructions are executed and completed. There is independent issue control for the arithmetic channel and for the to-
from (data) channel. An issue pointer within each channel's issue unit keeps track of the buffer entry with the next 
instruction to issue. When an instruction is issued in that channel the issue pointer is incremented. 

12.4.6 Retirement Unit

There are independent retire units for the arithmetic channel and the data channel. Retirement in each channel occurs 
in order. In each retire unit there is a pointer that points to the next instruction in that channel to retire. Retire can hap-
pen out of order with respect to the other channel. An instruction is allowed to retire if it is the oldest outstanding 
instruction, or if there are no older instructions in the other channel that have not yet issued or that write to the same 
destination register.

In addition to checking for older conflicting instructions in the other channel, the instruction must be complete and 
ready to retire. When an instruction is eligible for retirement, the following events occur in each channel:
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For the Arithmetic channel:

• If the instruction has completed successfully and was not nullified for any reason, the data is written to the regis-
ter file. 

• If the instruction was not canceled, then the FCSR Cause, Flag, and CC (condition code) bits are updated.

• If the instruction was canceled, then the FCSR Cause bits are updated.

• The associated buffer entry is de-allocated by turning its Valid bit off. 

For the data channel:

• If the instruction has completed successfully and was not nullified for any reason, the data is written to the regis-
ter file. 

• If the instruction has successfully completed but the associated data has not yet been received, the instruction is 
moved to the Scheduled Load Queue to await the data.

• The associated buffer entry is de-allocated by turning its Valid bit off.

12.4.7 Scheduled Load Queue

The Scheduled Load Queue resides in the data channel and stores instructions waiting for To-Coprocessor data from 
the CP1 interface. This queue allows the To-Data instructions to retire even if they have not yet received their data. 
For example, if a load had a data cache miss. 

Each Scheduled Load Queue entry contains enough information so that the data can be written to the register file once 
it arrives. The scheduled load queue entries are allocated from the retire unit. Upon allocation, the next empty entry in 
the queue is loaded with the contents of the instruction being allocated by the retire unit.

12.4.8 Arithmetic Channel Data Flow

The arithmetic pipe performs all arithmetic computations (e.g., add, multiply, conversions, divide, mov and com-
pare). There are 4 classes of arithmetic instructions. Everything within a given class has the same rules for when an 
instruction can be issued and when an instruction stalls. 

• Multiply and Multiply-add instructions

• Add and Convert instructions

• Divide and Square root instructions

• Quick path instructions (move, C.cond, etc.)

The inputs to the arithmetic pipeline are the opcode (heavily decoded) and the three 64 bit values; fr, fs, and ft. Part of 
the decoded opcode contains information such as data format and rounding mode. Additionally, each instruction will 
be issued with a buffer entry. The buffer entry indicates where all completed instruction data will be saved.

On the output side of the Arithmetic Unit there are independent stalls for each class of instruction indicating whether 
or not the arithmetic pipe can take an instruction of that class in a given clock cycle. Note that the Quick Path instruc-
tions never stall. 
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As shown above, there are four groups of arithmetic instructions. Each group has its own dedicated pipeline. How-
ever, because different instructions can have different latencies, each pipeline contains a different number of stages:

• 4-stage Multiply pipeline

• 4-stage Add pipeline 

• 3-stage Divide and Square Root pipeline merged with a 3 stage buffer pipeline.

• 2-stage Quick Path / Early Trap module. 

These pipelines handle all floating point instructions as described below:

12.4.8.1 Multiply

Multiply instructions are handled in the 4-stage Multiply pipeline. Floating point Multiply (MUL) instructions can be 
single or double precision.

12.4.8.2 Multiply-Add

Multiply-Add instructions require use of both the Multiply pipeline and Add pipeline to complete. The Multiply-Add 
instruction requires more clock cycles to complete than the standard MUL instruction. There are eight varieties of 
Multiply-Add instructions divided into four types; Multiply-add, multiply-subtract, multiply-add-negate, multiply-
subtract-negate.

12.4.8.3 Add/Subtract/Data Conversion Instructions

The Add, Subtract, and Data Conversion instructions are handled in the 4-stage Add pipeline. Add instructions have a 
4 clock execution time, assuming no delays.

12.4.8.4 Divide/Square Root Instructions

The Divide and Square Root instructions are handled in the 3-stage Divide and Square Root pipeline. This is the class 
of instructions that will iterate in order to derive the result. The control for these instructions can cycle through the 
pipeline multiple times. Results are fed back to previous pipeline stages for successive computations. A maximum of 
two divide and square root instructions may be executed concurrently. The Divide/Sqrt operation uses the multiple 
pipeline. The Divide and Square Root instructions include: divide, square root, reciprical, and reciprical square root.

12.4.8.5 Early Trap block / Quick Path 

The Early Trap block is responsible for detecting early traps and unimplemented instructions. All instructions are 
issued to the Quick Path pipeline as well as the appropriate math pipelines listed above. For example, a Multiply 
instruction would go to both the Quick Path pipeline and the Multiply pipeline simultaneously. 

The Quick Path pipeline analyzes the three inputs (fr,fs,ft) and classifies each one as Signaling Nan, infinity, power of 
2, denormal, zero, or other (where ‘other’ is a normal uninteresting number). Based upon the input classification and 
the opcodes, the Quick Path pipeline will signal all early traps. Early traps are cases where the FPU does not need to 
do the full calculation to determine whether an instruction is exceptional.  The no-exception/exception status is sent 
over the CP1 interface to the graduation logic in the core. The Quick Path pipeline stores the trap information to an 
entry in Instruction Buffer 1.

Compare and Move instructions are also executed in the quick path block. All other instructions are executed in the 
Quick Path pipeline if a computation is not required (e.g., there is an NaN input).
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12.5 Data Formats

The FPU provides both floating-point and fixed-point data types, which are described below:

• The single- and double-precision floating-point data types are those specified by IEEE Standard 754.

• The fixed-point types are signed integers provided by the CPU architecture.

12.5.1 Floating-Point Formats

The FPU provides the following two floating-point formats:

• A 32-bit single-precision floating point (type S)

• A 64-bit double-precision floating point (type D)

The floating-point data types represent numeric values as well as the following special entities:

• Two infinities, +∞ and −∞

• Signaling non-numbers (SNaNs)

• Quiet non-numbers (QNaNs)

• Numbers of the form: (-1)s 2E b0.b1 b2..bp-1, where:

– s = 0 or 1

– E = any integer between E_min and E_max, inclusive

– bi = 0 or 1 (the high bit, b0, is to the left of the binary point)

– p is the signed-magnitude precision

The single and double floating-point data types are composed of three fields—sign, exponent, fraction—whose sizes 
are listed in Table 12.1. 

Table 12.1 Parameters of Floating-Point Data Types 

Parameter Single Double

Bits of mantissa precision, p 24 53

Maximum exponent, E_max +127 +1023

Minimum exponent, E_min -126 -1022

Exponent bias +127 +1023

Bits in exponent field, e 8 11

Representation of b0 integer bit hidden hidden

Bits in fraction field, f 23 52

Total format width in bits 32 64

Magnitude of largest representable number 3.4028234664e+38 1.7976931349e+308
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Layouts of these three fields are shown in Figures 12.2 and 12.3 below. The fields are:

• 1-bit sign, s

• Biased exponent, e = E + bias

• Binary fraction, f=.b1 b2..bp-1 (the b0 bit is hidden; it is not recorded)

Figure 12.2 Single-Precision Floating-Point Format (S) 

Figure 12.3 Double-Precision Floating-Point Format (D) 

Values are encoded in the specified format using the unbiased exponent, fraction, and sign values listed in Table 12.2. 
The high-order bit of the Fraction field, identified as b1, is also important for NaNs.

Magnitude of smallest normalized representable number 1.1754943508e-38 2.2250738585e-308

31 30 23 22 0

S Exponent Fraction
1 8 23

63 62 52 51 0

S Exponent Fraction
1 11 52

Table 12.2 Value of Single or Double Floating-Point Data Type Encoding 

Unbiased E f s b1 Value V Type of Value
Typical Single 

Bit Pattern1
Typical Double

Bit Pattern1

E_max + 1 ≠ 0 1 SNaN Signaling NaN
(FCSRNAN2008 = 0) 0x7fffffff 0x7fffffff ffffffff

0 QNaN Quiet NaN
(FCSRNAN2008 = 0) 0x7fbfffff 0x7ff7ffff ffffffff

E_max + 1 ≠ 0 0 SNaN Signaling NaN
(FCSRNAN2008 = 1) 0x7fbfffff 0x7ff7ffff ffffffff

1 QNaN Quiet NaN
(FCSRNAN2008 = 1) 0x7fffffff 0x7fffffff ffffffff

E_max +1 0 1 − ∞ Minus infinity 0xff800000 0xfff00000 00000000

0 + ∞ Plus infinity 0x7f800000 0x7ff00000 00000000

E_max
    to 

E_min

1 - (2E)(1.f) Negative normalized number 0x80800000

 through
0xff7fffff

0x80100000 00000000

through
0xffefffff ffffffff

0 + (2E)(1.f) Positive normalized number 0x00800000

 through
0x7f7fffff

0x00100000 00000000

       through
0x7fefffff ffffffff

Table 12.1 Parameters of Floating-Point Data Types (continued)

Parameter Single Double
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12.5.1.1 Normalized and Denormalized Numbers

For single and double data types, each representable nonzero numerical value has just one encoding; numbers are 
kept in normalized form. The high-order bit of the p-bit mantissa, which lies to the left of the binary point, is “hid-
den,” and not recorded in the Fraction field. The encoding rules permit the value of this bit to be determined by look-
ing at the value of the exponent. When the unbiased exponent is in the range E_min to E_max, inclusive, the number 
is normalized and the hidden bit must be 1. If the numeric value cannot be normalized because the exponent would be 
less than E_min, then the representation is denormalized, the encoded number has an exponent of E_min – 1, and the 
hidden bit has the value 0. Plus and minus zero are special cases that are not regarded as denormalized values.

12.5.1.2 Reserved Operand Values—Infinity and NaN

A floating-point operation can signal IEEE exception conditions, such as those caused by uninitialized variables, vio-
lations of mathematical rules, or results that cannot be represented. If a program does not trap IEEE exception condi-
tions, a computation that encounters any of these conditions proceeds without trapping but generates a result 
indicating that an exceptional condition arose during the computation. To permit this case, each floating-point format 
defines representations (listed in the table above) for plus infinity (+∞), minus infinity (−∞), quiet non-numbers 
(QNaN), and signaling non-numbers (SNaN).

12.5.1.3 Infinity and Beyond

Infinity represents a number with magnitude too large to be represented in the given format; it represents a magnitude 
overflow during a computation. A correctly signed ∞ is generated as the default result in division by zero operations 
and some cases of overflow as described in Section 12.8.2 “Exception Conditions”.

Once created as a default result, ∞ can become an operand in a subsequent operation. The infinities are interpreted 
such that -∞ < (every finite number) < +∞. Arithmetic with ∞ is the limiting case of real arithmetic with operands of 
arbitrarily large magnitude, when such limits exist. In these cases, arithmetic on ∞ is regarded as exact, and exception 
conditions do not arise. The out-of-range indication represented by ∞ is propagated through subsequent computa-
tions. For some cases, there is no meaningful limiting case in real arithmetic for operands of ∞. These cases raise the 
Invalid Operation exception condition as described in Section 12.8.2.1 “Invalid Operation Exception”.

12.5.1.4 Signalling Non-Number (SNaN)

SNaN operands cause an Invalid Operation exception for arithmetic operations. SNaNs are useful values to put in 
uninitialized variables. An SNaN is never produced as a result value.

IEEE Standard 754 states that “Whether copying a signaling NaN without a change of format signals the Invalid 
Operation exception is the implementor’s option.” The MIPS architecture makes the formatted operand move instruc-

E_min -1 ≠ 0 1 - (2E_min)(0.f) Negative denormalized number 0x807fffff 0x800fffff ffffffff

0 + (2E_min)(0.f) Positive denormalized number 0x007fffff 0x000fffff ffffffff

E_min -1 0 1 - 0 Negative zero 0x80000000 0x80000000 00000000

0 + 0 Positive zero 0x00000000 0x00000000 00000000

1. The “Typical” nature of the bit patterns for the NaN and denormalized values reflects the fact that the sign might have either value 
(NaN) and that the fraction field might have any non-zero value (both). As such, the bit patterns shown are one value in a class of poten-
tial values that represent these special values.

Table 12.2 Value of Single or Double Floating-Point Data Type Encoding (continued)

Unbiased E f s b1 Value V Type of Value
Typical Single 

Bit Pattern1
Typical Double

Bit Pattern1
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tions (MOV.fmt, MOVT.fmt, MOVF.fmt, MOVN.fmt, MOVZ.fmt, ABS.fmt, NEG.fmt) non-arith-
metic; they do not signal IEEE 754 exceptions.

12.5.1.5 Quiet Non-Number (QNaN)

QNaNs provide retrospective diagnostic information inherited from invalid or unavailable data and results. Propaga-
tion of the diagnostic information requires information contained in a QNaN to be preserved through arithmetic oper-
ations and floating-point format conversions.

QNaN operands do not cause arithmetic operations to signal an exception. When a floating-point result is to be deliv-
ered, a QNaN operand causes an arithmetic operation to supply a QNaN result. When possible, this QNaN result is 
one1 of the operand QNaN values. QNaNs do have effects similar to SNaNs on operations that do not deliver a float-
ing-point result—specifically, comparisons. (For more information, see the detailed description of the floating-point 
compare instruction, C.cond.fmt.).

When certain invalid operations not involving QNaN operands are performed but do not trap (because the trap is not 
enabled), a new QNaN value is created. Table 12.3 shows the QNaN value generated when no input operand QNaN 
value can be copied. The values listed for the fixed-point formats are the values supplied to satisfy IEEE Standard 
754 when a QNaN or infinite floating-point value is converted to fixed point. There is no other feature of the architec-
ture that detects or makes use of these “integer QNaN” values. 

12.5.2 Fixed-Point Formats

The FPU provides two fixed-point data types:

• A 32-bit Word fixed point (type W), shown in Figure 12.4

• A 64-bit Longword fixed point (type L), shown in Figure 12.5

The fixed-point values are held in 2’s complement format, which is used for signed integers in the CPU. Unsigned 
fixed-point data types are not provided by the architecture; application software can synthesize computations for 
unsigned integers from the existing instructions and data types.

Figure 12.4 Word Fixed-Point Format (W)

1. In case of one or more QNaN operands, a QNaN is propagated from one of the operands according to the following priority: 
1: fs, 2: ft, 3: fr.

Table 12.3 Value Supplied When a New Quiet NaN is Created

Format
New QNaN value

(FCSRNAN2008 = 0)
New QNaN value

(FCSRNAN2008 = 1)

Single floating point 0x7FBF_FFFF 0x7FFF_FFFF

Double floating point 0x7FF7_FFFF_FFFF_FFFF 0x7FFF_FFFF_FFFF_FFFF

Word fixed point 0x7FFF_FFFF 0x7FFF_FFFF

Longword fixed point 0x7FFF_FFFF_FFFF_FFFF 0x7FFF_FFFF_FFFF_FFFF

31 0

Integer
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Figure 12.5 Longword Fixed-Point Format (L) 

12.6 Floating-Point General Registers

This section describes the organization and use of the Floating-Point general Registers (FPRs). The FPU is a 64b 
FPU, but a 32b register mode for backwards compatibility is also supported. The FR bit in the CP0 Status register 
determines which mode is selected:

• When the FR bit is a 1, the 64b register model is selected, which defines thirty-two 64-bit registers with all for-
mats supported in a register.

• When the FR bit is a 0, the 32b register model is selected, which defines thirty-two 32-bit registers with D-format 
values stored in even-odd pairs of registers; thus the register file can also be viewed as having sixteen 64-bit reg-
isters.

12.6.1 FPRs and Formatted Operand Layout

FPU instructions that operate on formatted operand values specify the Floating-Point Register (FPR) that holds the 
value. Operands that are only 32 bits wide (W and S formats) use only half the space in an FPR.

Figures 12.6 and 12.7 show the FPR organization and the way that operand data is stored in them.

Figure 12.6 Single Floating-Point or Word Fixed-Point Operand in an FPR 

Figure 12.7 Double Floating-Point or Longword Fixed-Point Operand in an FPR 

12.6.2 Formats of Values Used in Floating Point Registers 

Unlike the CPU, the FPU neither interprets the binary encoding of source operands nor produces a binary encoding of 
results for every operation. The value held in a floating-point operand register (FPR) has a format, or type, and it can 
be used only by instructions that operate on that format. The format of a value is either uninterpreted, unknown, or 
one of the valid numeric formats: single or double floating point, and word or long fixed point.

The value in an FPR is always set when a value is written to the register as follows:

• When a data transfer instruction writes binary data into an FPR (a load), the FPR receives a binary value that is 
uninterpreted.

• A computational or FP register move instruction that produces a result of type fmt puts a value of type fmt into 
the result register.

63 0

Integer

63 32 31 0

Reg 0 Undefined/Unused Data Word

63 0

Reg 0 Data Doubleword/Longword
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Table 12.5 defines the notation used for the read/write properties of the register bit fields. 

12.7.1 Floating-Point Implementation Register (FIR, CP1 Control Register 0)

The Floating-Point Implementation Register (FIR) is a 32-bit read-only register that contains information identifying 
the capabilities of the FPU, the Floating-Point processor identification, and the revision level of the FPU. Figure 
12.10 shows the format of the FIR; Table 12.6 describes the FIR bit fields.

Figure 12.10 FIR Format  

 

Table 12.5 Read/Write Properties

Read/Write 
Notation Hardware Interpretation Software Interpretation

R/W All bits in this field are readable and writable by software and potentially by hardware.
Hardware updates of this field are visible by software reads. Software updates of this field are visible by hardware 
reads.
If the reset state of this field is “Undefined,” either software or hardware must initialize the value before the first read 
returns a predictable value. This definition should not be confused with the formal definition of UNDEFINED behav-
ior.

R This field is either static or is updated only by hardware.
If the Reset State of this field is either “0” or “Preset”, 
hardware initializes this field to zero or to the appropriate 
state, respectively, on powerup.
If the Reset State of this field is “Undefined”, hardware 
updates this field only under those conditions specified in 
the description of the field.

A field to which the value written by software is ignored 
by hardware. Software may write any value to this field 
without affecting hardware behavior. Software reads of 
this field return the last value updated by hardware.
If the Reset State of this field is “Undefined,” software 
reads of this field result in an UNPREDICTABLE value 
except after a hardware update done under the conditions 
specified in the description of the field.

0 Hardware does not update this field. Hardware can assume 
a zero value.

The value software writes to this field must be zero. Soft-
ware writes of non-zero values to this field might result in 
UNDEFINED behavior of the hardware. Software reads 
of this field return zero as long as all previous software 
writes are zero.
If the Reset State of this field is “Undefined,” software 
must write this field with zero before it is guaranteed to 
read as zero.

31 25 24 23 22 21 20 19 18 17 16 15 8 7 0

0 FC Has2008 F64 L W 3D PS D S ProcessorID Revision

Table 12.6 FIR Bit Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

0 31:25 Reserved. R 0
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FC 24 Indicates that full convert ranges are implemented:
• 0: Full convert ranges not implemented
• 1: Full convert ranges implemented
This bit is always 1 to indicate that full convert ranges are 
implemented. This means that all numbers can be converted to 
another type by the FPU (If FS bit in FCSR is not set Unimple-
mented Operation exception can still happen on denormal oper-
ands though).

R 1

Has2008 23 Indicates that one or more IEEE-754-2008 features are imple-
mented. This bit is always set in proAptiv to indicate that the 
MAC2008, ABS2008, NAN2008 bits within the FCSR register 
exist. For more information, refer to Section 12.7.5 “Floating-
Point Control and Status Register (FCSR, CP1 Control Register 
31)”.

R 1

F64 22 Indicates that this is a 64-bit FPU:
• 0: Not a 64-bit FPU
• 1: A 64-bit FPU.
This bit is always 1 to indicate that this is a 64-bit FPU.

R 1

L 21 Indicates that the long fixed point (L) data type and instructions 
are implemented:
• 0: Long type not implemented
• 1: Long implemented
This bit is always 1 to indicate that long fixed point data types 
are implemented.

R 1

W 20 Indicates that the word fixed point (W) data type and instruc-
tions are implemented:
• 0: Word type not implemented
• 1: Word implemented
This bit is always 1 to indicate that word fixed point data types 
are implemented.

R 1

3D 19 Indicates that the MIPS-3D ASE is implemented:
• 0: MIPS-3D not implemented
• 1: MIPS-3D implemented
This bit is always 0 to indicate that MIPS-3D is not imple-
mented.

R 0

PS 18 Indicates that the paired-single (PS) floating-point data type 
and instructions are implemented:
• 0: PS floating-point not implemented
• 1: PS floating-point implemented
This bit is always 0 to indicate that paired-single floating-point 
data types are not implemented.

R 0

D 17 Indicates that the double-precision (D) floating-point data type 
and instructions are implemented:
• 0: D floating-point not implemented
• 1: D floating-point implemented
This bit is always 1 to indicate that double-precision floating-
point data types are implemented.

R 1

Table 12.6 FIR Bit Field Descriptions(continued)

Fields

Description
Read / 
Write Reset StateName Bits
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12.7.2 Floating-Point Condition Codes Register (FCCR, CP1 Control Register 25)

The Floating-Point Condition Codes Register (FCCR) is an alternative way to read and write the floating-point condi-
tion code values that also appear in the FCSR. Unlike the FCSR, all eight FCC bits are contiguous in the FCCR. 
Figure 12.11 shows the format of the FCCR; Table 12.7 describes the FCCR bit fields.

Figure 12.11 FCCR Format   

12.7.3 Floating-Point Exceptions Register (FEXR, CP1 Control Register 26)

The Floating-Point Exceptions Register (FEXR) is an alternative way to read and write the Cause and Flags fields that 
also appear in the FCSR. Figure 12.12 shows the format of the FEXR; Table 12.8 describes the FEXR bit fields.

Figure 12.12 FEXR Format  

S 16 Indicates that the single-precision (S) floating-point data type 
and instructions are implemented:
• 0: S floating-point not implemented
• 1: S floating-point implemented
This bit is always 1 to indicate that single-precision floating-
point data types are implemented.

R 1

Processor ID 15:8 Identifies the floating-point processor. R

Revision 7:0 Specifies the revision number of the FPU. This field allows 
software to distinguish between different revisions of the same 
floating-point processor type.

R Hardwired

31 8 7 0

0 FCC

Table 12.7 FCCR Bit Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

FCC 7:0 Floating-point condition code. Refer to the description of this 
field in Section 12.7.5 “Floating-Point Control and Status 
Register (FCSR, CP1 Control Register 31)”.

R/W Undefined

0 31:8 These bits must be written as zeros; they return zeros on reads. 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Cause 0 Flags 0

E V Z O U I V Z O U I

Table 12.6 FIR Bit Field Descriptions(continued)

Fields

Description
Read / 
Write Reset StateName Bits
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12.7.4 Floating-Point Enables Register (FENR, CP1 Control Register 28)

The Floating-Point Enables Register (FENR) is an alternative way to read and write the Enables, FS, and RM fields 
that also appear in the FCSR. Figure 12.13 shows the format of the FENR; Table 12.9 describes the FENR bit fields.

Figure 12.13 FENR Format   

Table 12.8 FEXR Bit Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

0 31:18 These bits must be written as zeros; they return zeros on 
reads.

0 0

Cause 17:12 Cause bits. Refer to the description of this field in Section 
12.7.5, "Floating-Point Control and Status Register 
(FCSR, CP1 Control Register 31)".

R/W Undefined

0 11:7 These bits must be written as zeros; they return zeros on 
reads.

0 0

Flags 6:2 Flag bits. Refer to the description of this field in Section 
12.7.5, "Floating-Point Control and Status Register 
(FCSR, CP1 Control Register 31)".

R/W Undefined

0 1:0 These bits must be written as zeros; they return zeros on 
reads.

0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Enables 0 FS RM

V Z O U I

Table 12.9 FENR Bit Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

0 31:12 These bits must be written as zeros; they return zeros on 
reads.

0 0

Enables 11:7 Enable bits. Refer to the description of this field in Section 
12.7.5, "Floating-Point Control and Status Register 
(FCSR, CP1 Control Register 31)".

R/W Undefined

0 6:3 These bits must be written as zeros; they return zeros on 
reads.

0 0

FS 2 Flush to Zero bit. Refer to the description of this field in 
Section 12.7.5, "Floating-Point Control and Status 
Register (FCSR, CP1 Control Register 31)".

R/W Undefined

RM 1:0 Rounding mode. Refer to the description of this field in 
Section 12.7.5, "Floating-Point Control and Status 
Register (FCSR, CP1 Control Register 31)".

R/W Undefined
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12.7.5 Floating-Point Control and Status Register (FCSR, CP1 Control Register 31)

The 32-bit Floating-Point Control and Status Register (FCSR) controls the operation of the FPU and shows the fol-
lowing status information:

• Selects the default rounding mode for FPU arithmetic operations

• Selectively enables traps of FPU exception conditions

• Controls some denormalized number handling options

• Reports any IEEE exceptions that arose during the most recently executed instruction

• Reports any IEEE exceptions that cumulatively arose in completed instructions

• Indicates the condition code result of FP compare instructions

Access to the FCSR is not privileged; it can be read or written by any program that has access to the FPU (via the 
coprocessor enables in the Status register). Figure 12.14 shows the format of the FCSR; Table 12.10 describes the 
FCSR bit fields.

Figure 12.14 FCSR Format  

 

31 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FCC FS FCC 0
MAC
2008

ABS
2008

NAN
2008 Cause Enables Flags RM

7 6 5 4 3 2 1 0 0 0 0 1 1 E V Z O U I V Z O U I V Z O U I

Table 12.10 FCSR Bit Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bit

FCC 31:25, 23 Floating-point condition codes. These bits record the 
result of floating-point compares and are tested for float-
ing-point conditional branches and conditional moves. 
The FCC bit to use is specified in the compare, branch, or 
conditional move instruction. For backward compatibility 
with previous MIPS ISAs, the FCC bits are separated into 
two non-contiguous fields.

R/W Undefined

FS 24 Flush to Zero (FS). The FS bit controls the handling of 
denormalized operands and is encoded as follows:

0: IEEE-compliant mode. Low performance on denormal 
operands and tiny results.
1: Regular embedded applications. High performance on 
denormal operands and tiny results.

Refer to Section 12.7.6 “Operation of the FS Bit” for 
more details on this bit.

R/W Undefined
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0 22:21 These bits must be written as zeros; they return zeros on 
reads.

0 0

MAC2008 20 Fused multiply-add mode compliant with IEEE Standard 
754-2008.The fused multiply-add operation multiplies and 
adds as if with unbounded range and precision, rounding 
only once to the destination format. 

The fused multiply-add is not supported in the proAptiv 
core. proAptiv implements the unfused multiply-add, 
which rounds the intermediary multiplication result to the 
destination format. 

This field applies to the MADD fmt, NMADD fmt, 
MSUB fmt and NMSUB fmt instructions.

0: Unfused multiply-add
1: IEEE 754-2008 fused multiply-add

RO 0

ABS2008 19 ABS fmt & NEG fmt instructions compliant with IEEE 
Standard 754-2008. The IEEE 754-2008 standard requires 
that the ABS and NEG functions accept QNAN inputs 
without trapping. This bit is always set in the proAptiv 
core to indicate support for the IEEE 754-2008 standard.

0: ABS & NEG trap for QNAN input
1: ABS & NEG accept QNAN input without trapping. 
IEEE 754-2008 behavior.

RO 1

NAN2008 18 Quiet and signaling NaN encodings recommended by the 
IEEE Standard 754-2008, i.e. a quiet NaN is encoded with 
the first bit of the fraction being 1 and a signaling NaN is 
encoded with the first bit of the fraction field being 0.

In the proAptiv core, this bit is always set to indicate sup-
port for the IEEE Standard 754-2008 encoding.

0: MIPS NaN encoding
1: IEEE 754-2008 NaN encoding

RO 1

Cause 17:12 Cause bits. These bits indicate the exception conditions 
that arise during execution of an FPU arithmetic instruc-
tion. A bit is set to 1 when the corresponding exception 
condition arises during the execution of an instruction; 
otherwise, it is cleared to 0. By reading the registers, the 
exception condition caused by the preceding FPU arithme-
tic instruction can be determined.
Refer to Table 12.11 for the meaning of each cause bit.

R/W Undefined

Table 12.10 FCSR Bit Field Descriptions(continued)

Fields

Description
Read / 
Write Reset StateName Bit



 

MIPS32® proAptiv™ Multiprocessing System Software User’s Manual, Revision 01.22 571

Enables 11:7 Enable bits. These bits control whether or not a trap is 
taken when an IEEE exception condition occurs for any of 
the five conditions. The trap occurs when both an enable 
bit and its corresponding cause bit are set either during an 
FPU arithmetic operation or by moving a value to the 
FCSR or one of its alternative representations. Note that 
Cause bit E (CauseE) has no corresponding enable bit; the 
MIPS architecture defines non-IEEE Unimplemented 
Operation exceptions as always enabled.
Refer to Table 12.11 for the meaning of each enable bit.

R/W Undefined

Flags 6:2 Flag bits. This field shows any exception conditions that 
have occurred for completed instructions since the flag 
was last reset by software. 
When an FPU arithmetic operation raises an IEEE excep-
tion condition that does not result in a Floating-Point 
Exception (the enable bit was off), the corresponding 
bit(s) in the Flags field are set, while the others remain 
unchanged. Arithmetic operations that result in a Floating-
Point Exception (the enable bit was on) do not update the 
Flags field.
Hardware never resets this field; software must explicitly 
reset this field.
Refer to Table 12.11 for the meaning of each flag bit.

R/W Undefined

RM 1:0 Rounding mode. This field indicates the rounding mode 
used for most floating-point operations (some operations 
use a specific rounding mode).
Refer to Table 12.12 for the encoding of this field.

R/W Undefined

Table 12.11 Cause, Enables, and Flags Definitions

Bit Name Bit Meaning

E Unimplemented Operation (this bit exists only in the Cause field).

V Invalid Operations

Z Divide by Zero

O Overflow

U Underflow

I Inexact

Table 12.10 FCSR Bit Field Descriptions(continued)

Fields

Description
Read / 
Write Reset StateName Bit
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12.7.6 Operation of the FS Bit

The FS bit in the CP1 FCSR register controls handling of denormalized operands and tiny results (i.e. nonzero result 
between ±2E_min), whereby the FPU can handle these cases right away instead of relying on the much slower soft-
ware handler. The trade-off is a loss of IEEE compliance and accuracy because a minimal normalized or zero result is 
provided by the FPU instead of the more accurate denormalized result that a software handler would give. The benefit 
is significantly improved performance in the presence of denormal values.

Use of the FS bit affects handling of denormalized floating-point numbers and tiny results for the instructions listed 
below: 

Instructions not listed above do not cause Unimplemented Operation exceptions on denormalized numbers in oper-
ands or results.

When the Flush To Zero (FS) bit is set, denormal input operands are flushed to zero. Tiny results are flushed to either 
zero or the applied format’s smallest positive normalized number (MinPosNorm) depending on the rounding mode 
settings. Table 12.14 lists the flushing behavior for tiny results..

Table 12.12 Rounding Mode Definitions

RM Field Encoding Meaning

0 RN - Round to Nearest
Rounds the result to the nearest representable value. When two representable 
values are equally near, the result is rounded to the value whose least-signifi-
cant bit is zero (even).

1 RZ - Round Toward Zero
Rounds the result to the value closest to but not greater in magnitude than the 
result.

2 RP - Round Towards Plus Infinity
Rounds the result to the value closest to but not less than the result.

3 RM - Round Towards Minus Infinity
Rounds the result to the value closest to but not greater than the result.

Table 12.13 Handling Denormalized Floating-point Numbers

FS ADD, CEIL, CVT, DIV, FLOOR, MADD, MSUB, MUL, NMADD, NMSUB, 

RECIP, ROUND, RSQRT, SQRT, TRUNC, SUB, ABS, C.cond, and NEG1

1. For ABS, C.cond, and NEG, denormal input operands or tiny results does not result in Unimplemented exceptions 
when FS = 0. Flushing to zero nonetheless is implemented when FS = 1 such that these operations return the same 
result as an equivalent sequence of arithmetic FPU operations.

Table 12.14 Zero Flushing for Tiny Results

Rounding Mode Negative Tiny Result Positive Tiny Result

RN (RM = 0) -0 +0

RZ (RM = 1) -0 +0

RP (RM = 2) -0 +MinPosNorm
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The flushing of results is based on an intermediate result computed by rounding the mantissa using an unbounded 
exponent range; that is, tiny numbers are not normalized into the supported exponent range by shifting in leading 
zeros prior to rounding.

Handling of denormalized operand values and tiny results depends on the FS bit setting as shown in Table 12.15. 

12.7.7 FCSR Cause Bit Update Flow

12.7.7.1 Exceptions Triggered by CTC1

Regardless of the targeted control register, the CTC1 instruction causes the Enables and Cause fields of the FCSR to 
be inspected in order to determine if an exception is to be thrown.

12.7.7.2 Generic Flow

Computations are performed in two steps:

1. Compute rounded mantissa with unbound exponent range. 

2. Flush to default result if the result from Step #1 above is overflow or tiny (no flushing happens on denorms for 
instructions supporting denorm results, such as MOV). 

The Cause field is updated after each of these two steps. Any enabled exceptions detected in these two steps cause a 
trap, and no further updates to the Cause field are done by subsequent steps. 

Step #1 can set cause bits I, U, O, Z, V, and E. E has priority over V; V has priority over Z; and Z has priority over U 
and O. Thus when E, V, or Z is set in Step #1, no other cause bits can be set. However, note that I and V both can be 
set if a denormal operand was flushed (FS = 1). I, U, and O can be set alone or in pairs (IU or IO). U and O never can 
be set simultaneously in Step #1. U and O are set if the computed unbounded exponent is outside the exponent range 
supported by the normalized IEEE format.

Step #2 can set I if a default result is generated. 

12.7.7.3 Multiply-Add Flow

For Multiply-Add type instructions, the computation is extended with two more steps:

1. Compute rounded mantissa with unbound exponent range for the multiply.

2. Flush to default result if the result from Step #1 is overflow or tiny.

RM (RM = 3) -MinPosNorm +0

Table 12.15 Handling of Denormalized Operand Values and Tiny Results Based on FS Bit Setting

FS Bit Handling of Denormalized Operand Values

0 An Unimplemented Operation exception is taken.

1 Instead of causing an Unimplemented Operation exception, operands are flushed to zero, and tiny 
results are forced to zero or MinNorm.

Table 12.14 Zero Flushing for Tiny Results

Rounding Mode Negative Tiny Result Positive Tiny Result
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3. Compute rounded mantissa with unbounded exponent range for the add.

4. Flush to default result if the result from Step #3 is overflow or tiny. 

The Cause field is updated after each of these four steps. Any enabled exceptions detected in these four steps cause a 
trap, and no further updates to the Cause field are done by subsequent steps. 

Step #1 and Step #3 can set a cause bit as described for Step #1 in 12.7.7.2 “Generic Flow”. 

Step #2 and Step #4 can set I if a default result is generated. 

Although U and O can never both be set in Step #1 or Step #3, both U and O might be set after the multiply-add has 
executed in Step #3 because U might be set in Step #1 and O might be set in Step #3. 

12.7.7.4 Cause Update Flow for Input Operands

Denormal input operands to Step #1 or Step #3 always set Cause bit I when FS = 1. For example, SNaN+DeNorm set 
I (and V) provided that Step #3 was reached (in case of a multiply-add type instruction). 

Conditions directly related to the input operand (for example, I/E set due to DeNorm, V set due to SNaN and QNaN 
propagation) are detected in the step where the operand is logically used. For example, for multiply-add type instruc-
tions, exceptional conditions caused by the input operand fr are detected in Step #3. 

12.7.7.5 Cause Update Flow for Unimplemented Operations

Note that Cause bit E is special; it clears any Cause updates done in previous steps. For example, if Step #3 caused E 
to be set, any I, U, or O Cause update done in Step #1 or Step #2 is cleared. Only E is set in the Cause field when an 
Unimplemented Operation trap is taken. 

12.8 Exceptions

FPU exceptions are implemented in the MIPS FPU architecture with the Cause, Enables, and Flags fields of the 
FCSR. The flag bits implement IEEE exception status flags, and the cause and enable bits control exception trap-
ping. Each field has a bit for each of the five IEEE exception conditions. The Cause field has an additional exception 
bit, Unimplemented Operation, used to trap for software emulation assistance. If an exception type is enabled through 
the Enables field of the FCSR, then the FPU is operating in precise exception mode for this type of exception.

12.8.1 Precise Exception Mode

In precise exception mode, a trap occurs before the instruction that causes the trap or any following instruction can 
complete and write its results. If desired, the software trap handler can resume execution of the interrupted instruction 
stream after handling the exception.

The Cause field reports per-bit instruction exception conditions. The cause bits are written during each floating-point 
arithmetic operation to show any exception conditions that arise during the operation. A cause bit is set to 1 if its cor-
responding exception condition arises; otherwise, it is cleared to 0.

A floating-point trap is generated any time both a cause bit and its corresponding enable bit are set. This case occurs 
either during the execution of a floating-point operation or when moving a value into the FCSR. There is no enable 
bit for Unimplemented Operations; this exception always generates a trap.
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In a trap handler, exception conditions that arise during any trapped floating-point operations are reported in the 
Cause field. Before returning from a floating-point interrupt or exception, or before setting cause bits with a move to 
the FCSR, software first must clear the enabled cause bits by executing a move to the FCSR to prevent the trap from 
being erroneously retaken.

If a floating-point operation sets only non-enabled cause bits, no trap occurs and the default result defined by IEEE 
Standard 754 is stored (see Table 12.16). When a floating-point operation does not trap, the program can monitor the 
exception conditions by reading the Cause field.

The Flags field is a cumulative report of IEEE exception conditions that arise as instructions complete; instructions 
that trap do not update the flag bits. The flag bits are set to 1 if the corresponding IEEE exception is raised, otherwise 
the bits are unchanged. There is no flag bit for the MIPS Unimplemented Operation exception. The flag bits are never 
cleared as a side effect of floating-point operations, but they can be set or cleared by moving a new value into the 
FCSR.

12.8.2 Exception Conditions

The subsections below describe the following five exception conditions defined by IEEE Standard 754: 

• Section 12.8.2.1 “Invalid Operation Exception”

• Section 12.8.2.2 “Division By Zero Exception”

• Section 12.8.2.3 “Underflow Exception”

• Section 12.8.2.4 “Overflow Exception”

• Section 12.8.2.5 “Inexact Exception”

• Section 12.8.2.6 “Unimplemented Operation Exception” 

At the program’s direction, an IEEE exception condition can either cause a trap or not cause a trap. IEEE Standard 
754 specifies the result to be delivered in case no trap is taken. The FPU supplies these results whenever the excep-
tion condition does not result in a trap. The default action taken depends on the type of exception condition and, in the 
case of the Overflow and Underflow, the current rounding mode. Table 12.16 summarizes the default results. 

Table 12.16 Result for Exceptions Not Trapped

Bit Description Default Action

V Invalid Operation Supplies a quiet NaN.

Z Divide by zero Supplies a properly signed infinity.

U Underflow Depends on the rounding mode as shown below:
• 0 (RN) and 1 (RZ): Supplies a zero with the sign of the exact result.
• 2 (RP): For positive underflow values, supplies 2E_min (MinNorm). For negative 

underflow values, supplies a positive zero.
• 3 (RM): For positive underflow values, supplies a negative zero. For negative under-

flow values, supplies a negative 2E_min (MinNorm).
Note that this behavior is only valid if the FCSR FN bit is cleared.

I Inexact Supplies a rounded result. If caused by an overflow without the overflow trap enabled, 
supplies the overflowed result. If caused by an underflow without the underflow trap 
enabled, supplies the underflowed result.
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12.8.2.1 Invalid Operation Exception 

An Invalid Operation exception is signaled when one or both of the operands are invalid for the operation to be per-
formed. When the exception condition occurs without a precise trap, the result is a quiet NaN. 

The following operations are invalid:

• One or both operands are a signaling NaN (except for the non-arithmetic MOV.fmt, MOVT fmt, MOVF fmt, 
MOVN fmt, and MOVZ.fmt instructions).

• Addition or subtraction: magnitude subtraction of infinities, such as (+∞) + (−∞) or (−∞) - (−∞).

• Multiplication: 0 × ∞, with any signs.

• Division: 0/0 or ∞/∞, with any signs.

• Square root: An operand of less than 0 (-0 is a valid operand value).

• Conversion of a floating-point number to a fixed-point format when either an overflow or an operand value of 
infinity or NaN precludes a faithful representation in that format.

• Some comparison operations in which one or both of the operands is a QNaN value.

12.8.2.2 Division By Zero Exception

The divide operation signals a Division By Zero exception if the divisor is zero and the dividend is a finite nonzero 
number. When no precise trap occurs, the result is a correctly signed infinity. Divisions (0/0 and ∞/0) do not cause the 
Division By Zero exception. The result of (0/0) is an Invalid Operation exception. The result of (∞/0) is a correctly 
signed infinity.

12.8.2.3 Underflow Exception 

Two related events contribute to underflow:

• Tininess: The creation of a tiny, nonzero result between ±2E_min which, because it is tiny, might cause some other 
exception later such as overflow on division. IEEE Standard 754 allows choices in detecting tininess events. The 
MIPS architecture specifies that tininess be detected after rounding, when a nonzero result computed as though 
the exponent range were unbounded would lie strictly between ±2E_min.

• Loss of accuracy: The extraordinary loss of accuracy occurs during the approximation of such tiny numbers by 
denormalized numbers. IEEE Standard 754 allows choices in detecting loss of accuracy events. The MIPS archi-

O Overflow Depends on the rounding mode, as shown below:
• 0 (RN): Supplies an infinity with the sign of the exact result.
• 1 (RZ): Supplies the format’s largest finite number with the sign of the exact result.
• 2 (RP): For positive overflow values, supplies positive infinity. For negative overflow 

values, supplies the format’s most negative finite number.
• 3 (RM): For positive overflow values, supplies the format’s largest finite number. For 

negative overflow values, supplies minus infinity.

Table 12.16 Result for Exceptions Not Trapped(continued)

Bit Description Default Action
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tecture specifies that loss of accuracy be detected as inexact result, when the delivered result differs from what 
would have been computed if both the exponent range and precision were unbounded.

The way that an underflow is signaled depends on whether or not underflow traps are enabled: 

• When an underflow trap is not enabled, underflow is signaled only when both tininess and loss of accuracy have 
been detected. The delivered result might be zero, denormalized, or ±2E_min. 

• When an underflow trap is enabled (through the FCSR Enables field), underflow is signaled when tininess is 
detected regardless of loss of accuracy.

12.8.2.4 Overflow Exception

An Overflow exception is signaled when the magnitude of a rounded floating-point result (if the exponent range is 
unbounded) is larger than the destination format’s largest finite number.

When no precise trap occurs, the result is determined by the rounding mode and the sign of the intermediate result.

12.8.2.5 Inexact Exception

An Inexact exception is signaled when one of the following occurs:

• The rounded result of an operation is not exact.

• The rounded result of an operation overflows without an overflow trap.

• When a denormal operand is flushed to zero.

12.8.2.6 Unimplemented Operation Exception

The Unimplemented Operation exception is a MIPS-defined exception that provides software emulation support. 
This exception is not IEEE-compliant and is used to signal a need for software emulation of an instruction. Normally 
an IEEE arithmetic operation can cause only one exception condition; the only case in which two exceptions can 
occur at the same time are Inexact With Overflow and Inexact With Underflow.

The MIPS architecture is designed so that a combination of hardware and software can implement the architecture. 
Operations not fully supported in hardware cause an Unimplemented Operation exception, allowing software to per-
form the operation.

There is no enable bit for this condition; it always causes a trap (but the condition is effectively masked for all opera-
tions when FS=1). After the appropriate emulation or other operation is done in a software exception handler, the 
original instruction stream can be continued.

An Unimplemented Operation exception is taken in the following situations:

• when denormalized operands or tiny results are encountered for instructions not supporting denormal numbers 
and where such are not handled by the FS bit.
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12.9 Latency and Repeat Rates

Table 12.17 shows the repeat rate and latency for the FPU instructions. Note that cycles related to floating point oper-
ations are listed in terms of FPU clocks.

Table 12.17 FPU Latency and Repeat Rates 

Instruction1

1. Format: S = Single, D = Double, W = Word, L = Longword

Latency 
(core cycles) 

Repeat Interval 
(core cycles) 

ADD.[S,D], SUB.[S,D], MUL.[S,D] 4 1 

MADD.[S,D], MSUB.[S,D], NMADD.[S.D], NMSUB.[S,D] 7 1 

CVT.S.D, CVT.D.S, CVT.[S,D].[W,L], CVT.[W,L].[S,D], CEIL.[W,L].[S,D],
FLOOR.[W,L].[S,D], ROUND.[W,L].[S,D], TRUNC.[W,L].[S,D]

4 1 

ABS.[S,D], NEG.[S,D], C.cond.[S,D], CABS.cond.[S,D] 2 1 

MOV.[S,D], MOVF.[S,D], MOVN.[S,D], MOVT.[S,D], MOVZ.[S,D] 2 1 

RECIP.S 11 4 

RECIP.D 17 5 

RSQRT.S 14 4 

RSQRT.D 23 10 

DIV.S2

2. Round to the nearest mode and no special operands

12-16 
(avg. 12.25)

9

DIV.D2 18-22 
(avg. 18.25)

15 

SQRT.S2 14-18 
(avg. 14.25) 

11

SQRT.D2 23 - 27
(avg. 23.25) 

20

MTC1, DMTC1, LWC1, LDC1,LDXC1, LUXC1, LWXC1 4 1 

MFC1, DMFC1, SWC1, SDC1, SDXC1, SUXC1, SWXC1 1 1 
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12.10 FPU Performance Counters

The proAptiv architecture contains a wide variety of performance counters as shown in Table 12.18. The event type is 
encoded into the Event field (bits 11:5) of the CP0 Performance Counter Control 0 - 3 registers (CP0 register 25, 
Select 0, 2, 4, and 6). Refer to the CP0 chapter for more information on these registers. 

Table 12.18 FPU Performance Counter Events and Codes 

Event 
Number Counter 0/2 Counter 1/3

112 Counts the number of cycles that the arithmetic 
channel is full and signalling busy to the integer 
core.

Counts the number of cycles the to-from channel is full 
and signalling busy to the integer core

113 Counts the total number of arithmetic instructions 
issued.

Counts the total number of to-from instructions issued.

114 Counts the total number of arithmetic add/multiply 
class instructions (add, sub, cvt, ceil, floor, round, 
trunc, mul).

Counts the total number of arithmetic multiply-add 
instructions (madd, msub, nmadd, nmsub). 

115 Counts the total number of arithmetic iteration class 
instructions (div, recip, sqrt, rsqrt).

Counts the total number of arithmetic compare class 
instructions (C.cond)

116 Counts the total number of arithmetic miscellaneous 
class instructions (abs, neg, move, bra).

Counts the total number of data stall retires due to an 
scheduled load queue preempt write.

117 Counts the total number arithmetic channel conflict 
stalls.  This retire stall occurs if there is an older 
instruction in the other channel with the same desti-
nation register, or if there is an older, unissued, 
instruction in the other channel.

Counts the total number of to-from channel conflict stalls. 
Same as arithmetic condition.

118 Counts the total number of arithmetic channel kill 
received stalls. This retire stall occurs if the instruc-
tion has not received a kill strobe.

Counts the total number of data channel kill received 
stalls. Same as arithmetic condition.

119 Counts the total number of arithmetic channel result 
valid stalls. This retire stall occurs if the result is not 
yet available from the APU.

Counts the total number of data channel retire stalls due to 
no room in the Scheduled Load Queue.

120 Counts the total number of arithmetic channel 
instruction issue stalls. This retire stall occurs if the 
instruction has not yet been issued.

Counts the total number of data channel instruction issue 
stalls. Same as arithmetic condition.

121 Counts the total number of arithmetic channel retire 
stall cycles. This is the sum of all of the retire stall 
conditions on counters 0/2 as described in events 117 
- 120.

Counts the total number of data channel retire stall cycles. 
This is the sum of all of the retire stall conditions on coun-
ters 1/3 as described in events 116 - 120.

122 Counts the total number of arithmetic channel inde-
terminate dependency or format mismatch stalls. A 
stall occurs when:

a. The youngest instruction is unknown due to taking 
an additional clock cycle to determine which of 
many instructions is the youngest.

b. The youngest instruction is unknown because it 
has not yet received a null strobe.

c. The youngest dependent instruction has a format 
mismatch that precludes the bypassing of data.

Counts the total number of data channel indeterminate 
dependency or format mismatch stalls. Stall conditions 
for the data channel are the same as for arithmetic chan-
nel.
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12.11 Instruction Overview

The functional groups into which the FPU instructions are divided are described in the following subsections:

• Section 12.11.1 “Data Transfer Instructions”

• Section 12.11.2 “Arithmetic Instructions”

• Section 12.11.3 “Conversion Instructions”

• Section 12.11.4 “Formatted Operand-Value Move Instructions”

• Section 12.11.5 “Conditional Branch Instructions”

• Section 12.11.6 “Miscellaneous Instructions”

12.11.1 Data Transfer Instructions

The FPU has two separate register sets: floating point coprocessor general registers (FPRs) and floating point copro-
cessor control registers (FCRs). The FPU has a load/store architecture; all computations are done on data held in 
coprocessor general registers. The control registers are used to control FPU operation. Data is transferred between 
registers and the rest of the system with dedicated load, store, and move instructions. The transferred data is treated as 
unformatted binary data; no format conversions are performed, and therefore no IEEE floating-point exceptions can 
occur.

123 Counts the total number of arithmetic channel APU 
stalls. This type of stall occurs when the APU is 
unable to take this class of instruction.

Reserved.

124 Counts the total number of arithmetic channel arith-
metic data stalls. This type of stall occurs when the 
arithmetic unit is waiting for data from an arithmetic 
instruction.

Counts the total number of data channel arithmetic data 
stalls. Same as arithmetic condition.

125 Counts the total number of arithmetic channel to-
data stalls. This type of stall occurs when the arith-
metic unit is waiting for data from a to-from instruc-
tion.

Counts the total number of data channel to-data stalls. 
Same as arithmetic condition.

126 Counts the number of arithmetic channel stalls due to 
execution of a CTC1 or CFC1 instruction. Either the 
instruction is a CTC1/CFC1 and is stalling while 
waiting for all older instructions to retire, or an 
instruction is stalled while waiting for an older 
CTC1/CFC1 instruction to retire.

Counts the number of data channel stalls due to execution 
of a CTC1 or CFC1 instruction. Either the instruction is a 
CTC1/CFC1 and is stalling while waiting for all older 
instructions to retire, or an instruction is stalled while 
waiting for an older CTC1/CFC1 instruction to retire.

127 Counts the number of all arithmetic channel issue 
stall cycles. This is the sum of all of the above arith-
metic channel issue stall conditions on counters 0/2 
as described in events 122 - 126.

Counts the number of all data channel issue stall cycles. 
This is the sum of all of the above data channel issue stall 
conditions on counters 1/3 as described in events 122, 124 
- 126.

Table 12.18 FPU Performance Counter Events and Codes (continued)

Event 
Number Counter 0/2 Counter 1/3
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Table 12.19 lists the supported transfer operations.

12.11.1.1 Data Alignment in Loads, Stores, and Moves

All coprocessor loads and stores operate on naturally aligned data items. An attempt to load or store to an address that 
is not naturally aligned for the data item causes an Address Error exception. Regardless of byte ordering (the endian-
ness), the address of a word or doubleword is the smallest byte address in the object. For a big-endian machine, this is 
the most-significant byte; for a little-endian machine, this is the least-significant byte.

12.11.1.2 Addressing Used in Data Transfer Instructions

The FPU has loads and stores using the same register+offset addressing as that used by the CPU. Moreover, for the 
FPU only, there are load and store instructions using register+register addressing.

Tables 12.20 through 12.22 list the FPU data transfer instructions.  

Table 12.19 FPU Data Transfer Instructions

Transfer Direction Data Transferred

FPU general register ↔ Memory Word/doubleword load/store

FPU general register ↔ CPU general register Word move

FPU control register ↔ CPU general register Word move

Table 12.20 FPU Loads and Stores Using Register+Offset Address Mode

Mnemonic Instruction

LDC1 Load Doubleword to Floating Point

LWC1 Load Word to Floating Point

SDC1 Store Doubleword to Floating Point

SWC1 Store Word to Floating Point

Table 12.21 FPU Loads and Stores Using Register+Register Address Mode

Mnemonic Instruction

LDXC1 Load Doubleword Indexed to Floating Point

LUXC1 Load Doubleword Indexed Unaligned to Floating Point

LWXC1 Load Word Indexed to Floating Point

SDXC1 Store Doubleword Indexed to Floating Point

SUXC1 Store Doubleword Indexed Unaligned to Floating Point

SWXC1 Store Word Indexed to Floating Point

Table 12.22 FPU Move To and From Instructions

Mnemonic Instruction

CFC1 Move Control Word From Floating Point

CTC1 Move Control Word To Floating Point

MFC1 Move Word From Floating Point

MTC1 Move Word To Floating Point
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12.11.2 Arithmetic Instructions

Arithmetic instructions operate on formatted data values. The results of most floating-point arithmetic operations 
meet IEEE Standard 754 for accuracy—a result is identical to an infinite-precision result that has been rounded to the 
specified format using the current rounding mode. The rounded result differs from the exact result by less than one 
Unit in the Least-significant Place (ULP).

Instructions involving multiply, divide, or square root usually take the Umimplemented Operation exception for any 
denormal operand or result. The FS, FO, and FN bits in the CP1 FCSR register can override this behavior as 
described in Section 12.7.6, "Operation of the FS Bit".

Table 12.23 lists the FPU IEEE compliant arithmetic operations.

The two low latency operations, Reciprocal Approximation (RECIP) and Reciprocal Square Root Approximation 
(RSQRT), might be less accurate than the IEEE specification:

• The result of RECIP differs from the exact reciprocal by no more than one ULP.

• The result of RSQRT differs from the exact reciprocal square root by no more than two ULPs. 

Table 12.24 lists the FPU-approximate arithmetic operations. 

Four compound-operation instructions perform variations of multiply-accumulate operations; that is, multiply two 
operands, accumulate the result to a third operand, and produce a result. These instructions are listed in Table 12.25. 
The product is rounded according to the current rounding mode prior to the accumulation. This model meets the IEEE 

Table 12.23 FPU IEEE Arithmetic Operations

Mnemonic Instruction

ABS.fmt Floating-Point Absolute Value

ADD.fmt Floating-Point Add

C.cond.fmt Floating-Point Compare

DIVfmt Floating-Point Divide

MUL fmt Floating-Point Multiply

NEG.fmt Floating-Point Negate

SQRT fmt Floating-Point Square Root

SUB.fmt Floating-Point Subtract

Table 12.24 FPU-Approximate Arithmetic Operations

Mnemonic Instruction

RECIP fmt Floating-Point Reciprocal Approximation

RSQRT fmt Floating-Point Reciprocal Square Root Approximation
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accuracy specification; the result is numerically identical to an equivalent computation using multiply, add, or sub-
tract instructions. 

12.11.3 Conversion Instructions

These instructions perform conversions between floating-point and fixed-point data types. Each instruction converts 
values from a number of operand formats to a particular result format. Some conversion instructions use the rounding 
mode specified in the Floating Control/Status register (FCSR), while others specify the rounding mode directly.

In general, the conversion instructions only take an Umimplemented Operation exception for denormalized numbers. 
The FS and FN bits in the CP1 FCSR register can override this behavior as described in Section 12.7.6, "Operation 
of the FS Bit".

Table 12.26 and Table 12.27 list the FPU conversion instructions according to their rounding mode.  

12.11.4 Formatted Operand-Value Move Instructions

These instructions move formatted operand values among FPU general registers. A particular operand type must be 
moved by the instruction that handles that type. There are three kinds of move instructions:

Table 12.25 FPU Multiply-Accumulate Arithmetic Operations

Mnemonic Instruction

MADD.fmt Floating-Point Multiply Add

MSUB.fmt Floating-Point Multiply Subtract

NMADD fmt Floating-Point Negative Multiply Add

NMSUB fmt Floating-Point Negative Multiply Subtract

Table 12.26 FPU Conversion Operations Using the FCSR Rounding Mode

Mnemonic Instruction

CVT.D fmt Floating-Point Convert to Double Floating Point 

CVT.L fmt Floating-Point Convert to Long Fixed Point 

CVT.S fmt Floating-Point Convert to Single Floating Point 

CVT.W fmt Floating-Point Convert to Word Fixed Point 

Table 12.27 FPU Conversion Operations Using a Directed Rounding Mode

Mnemonic Instruction

CEIL.L fmt Floating-Point Ceiling to Long Fixed Point 

CEIL.W fmt Floating-Point Ceiling to Word Fixed Point 

FLOOR.L fmt Floating-Point Floor to Long Fixed Point 

FLOOR.W.fmt Floating-Point Floor to Word Fixed Point 

ROUND.L fmt Floating-Point Round to Long Fixed Point 

ROUND.W fmt Floating-Point Round to Word Fixed Point 

TRUNC.L fmt Floating-Point Truncate to Long Fixed Point 

TRUNC.W.fmt Floating-Point Truncate to Word Fixed Point 
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• Unconditional move

• Conditional move that tests an FPU true/false condition code

• Conditional move that tests a CPU general-purpose register against zero

Conditional move instructions operate in a way that might be unexpected. They always force the value in the destina-
tion register to become a value of the format specified in the instruction. If the destination register does not contain an 
operand of the specified format before the conditional move is executed, the contents become undefined. (For more 
information, see the individual descriptions of the conditional move instructions in the MIPS32 Architecture Refer-
ence Manual, Volume II.)

Table 12.28 through Table 12.30 list the formatted operand-value move instructions.   

12.11.5 Conditional Branch Instructions

The FPU has PC-relative conditional branch instructions that test condition codes set by FPU compare instructions 
(C.cond fmt).

All branches have an architectural delay of one instruction. When a branch is taken, the instruction immediately fol-
lowing the branch instruction is said to be in the branch delay slot; it is executed before the branch to the target 
instruction takes place. Conditional branches come in two versions, depending upon how they handle an instruction 
in the delay slot when the branch is not taken and execution falls through:

• Branch instructions execute the instruction in the delay slot.

• Branch likely instructions do not execute the instruction in the delay slot if the branch is not taken (they are said 
to nullify the instruction in the delay slot).

Although the Branch Likely instructions are included, software is strongly encouraged to avoid the use of 
the Branch Likely instructions, as they will be removed from a future revision of the MIPS Architecture.

Table 12.28 FPU Formatted Operand Move Instructions

Mnemonic Instruction

MOVfmt Floating-Point Move

Table 12.29 FPU Conditional Move on True/False Instructions

Mnemonic Instruction

MOVF.fmt Floating-Point Move Conditional on FP False

MOVT fmt Floating-Point Move Conditional on FP True

Table 12.30 FPU Conditional Move on Zero/Non-Zero Instructions

Mnemonic Instruction

MOVN.fmt Floating-Point Move Conditional on Nonzero

MOVZ fmt Floating-Point Move Conditional on Zero
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Table 12.31 lists the conditional branch (branch and branch likely) FPU instructions; Table 12.32 lists the deprecated 
conditional branch likely instructions.   

12.11.6 Miscellaneous Instructions

The MIPS32 architecture defines various miscellaneous instructions that conditionally move one CPU general regis-
ter to another, based on an FPU condition code.

Table 12.33 lists these conditional move instructions. 

Table 12.31 FPU Conditional Branch Instructions

Mnemonic Instruction

BC1F Branch on FP False

BC1T Branch on FP True

Table 12.32 Deprecated FPU Conditional Branch Likely Instructions

Mnemonic Instruction

BC1FL Branch on FP False Likely

BC1TL Branch on FP True Likely

Table 12.33 CPU Conditional Move on FPU True/False Instructions

Mnemonic Instruction

MOVN Move Conditional on FP False

MOVZ Move Conditional on FP True
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12.12 Alphabetical Listing of Floating Point Instructions

Table 12.34 shows an alphabetical listing of the floating point unit instruction set, along with the associated instruc-
tion group, the page number location of the actual instruction. The actual instruction can be viewed by clicking on 
either the instruction of the page number reference in the table below. For the definition of each instruction, refer to 
Table 12.20 through Table 12.33 above. 

Table 12.34 Alphabetical Listing of FPU Instructions

Instruction Name Instruction Group

ABS.fmt Move

ADD.fmt Arithmetic

BC1F Conditional Branch

BC1FL Conditional Branch

BC1T Conditional Branch

BC1TL Conditional Branch

C.cond.fmt Arithmetic

CEIL.L fmt Conversion

CEIL.W fmt Conversion

CFC1 Move

CTC1 Move

CVT.D fmt Conversion

CVT.L fmt Conversion

CVT.S fmt Conversion

CVT.W.fmt Conversion

DIVfmt Arithmetic

FLOOR.L.fmt Conversion

FLOOR.W.fmt Conversion

LDC1 Load/Store

LDXC1 Load/Store

LUXC1 Load/Store

LWC1 Load/Store

LWXC1 Load/Store

MADD.fmt Multiply-Accumulate

MFC1 Move

MFHC1 Move

MOVfmt Move

MOVF.fmt Move

MOVN.fmt Move

MOVT fmt Move

MOVZ fmt Move

MSUB.fmt Multiply-Accumulate



 

MIPS32® proAptiv™ Multiprocessing System Software User’s Manual, Revision 01.22 587

MTC1 Move

MUL fmt Arithmetic

NEG.fmt Move

NMADD fmt Multiply-Accumulate

NMSUB fmt Multiply-Accumulate

RECIP fmt Arithmetic

ROUND.L fmt Conversion

ROUND.W fmt Conversion

RSQRT fmt Arithmetic

SDC1 Load/Store

SDXC1 Load/Store

SQRT fmt Arithmetic

SUB.fmt Arithmetic

SUXC1 Load/Store

SWC1 Load/Store

SWXC1 Load/Store

TRUNC.L fmt Conversion

TRUNC.W fmt Conversion

Table 12.34 Alphabetical Listing of FPU Instructions(continued)

Instruction Name Instruction Group
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MIPS DSP-R2 Application Specific Extension

The proAptiv core includes support for the MIPS DSP ASE Revision 2 that provides enhanced performance capabil-
ities for a wide range of signal-processing applications, with computational support for fractional data types, SIMD, 
saturation, and other operations that are commonly used in these applications. The DSP instruction set is a collection 
of special-case instructions, in many cases aimed at the known ‘hot-spots’ of important algorithms that are common 
in DSP applications. The DSP Revision 2 (DSP-R2) is a superset of DSP Revision 1 and includes all of the instruc-
tions in revision 1.

This chapter contains the following sections:

• Section 13.1 “MIPS32® DSP-R2 ASE Features”

• Section 13.2 “Common Applications”

• Section 13.3 “Software Detection of the DSP ASE Revision 2”

• Section 13.4 “DSP-R2 Registers”

• Section 13.5 “DSP-R2 Instruction Types”

• Section 13.6 “DSP-R2 Code Optimization for Performance”

• Section 13.7 “Compiler Usage Model for MIPS DSP-R2”

• Section 13.8 “Code Optimizations for the MIPS DSP-R2”

• Section 13.9 “Programming Examples”

• Section 13.10 “MIPS32 DSP-R2 Intrinsics”

• Section 13.11 “DSP-R2 ASE Instruction Groups”

• Section 13.12 “Listing of DSP-R2 ASE Instruction Groups”

• Section “Repeat rate is measured as number of independent instructions that can be sent in 1 cycle.”

13.1 MIPS32® DSP-R2 ASE Features

The DPS2 ASE contains features that support multiple DSP-R2 functions as described below:

• Q31 and Q15 (signed 16-bit) fractions

• Saturating arithmetic

• Multiplying fractions

• Rounding

• Multiply-accumulate sequences
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• Single Instruction Multiple Data (SIMD) operations

13.1.1 Q31 and Q15 Signed 16-bit Fractions

DSP-R2 applications use fixed-point fractional data types. Such a fraction is a signed integer that represents an inte-
ger divided by some power of two. A 32-bit fractional format where the implicit divisor is 216 (65536) would be 
referred to as a Q15.16 format; that’s because there are 16 bits devoted to fractional precision and 15 bits to the whole 
number range (the highest bit does duty as a sign bit and isn’t counted). 

Using this notation, Q31.0 is a conventional signed integer, and Q0.31 is a fraction representing numbers between -1 
and 1. The Q0.31 notation is the most popular 32-bit format for DSP-R2 applications since it won’t overflow when 
multiplied. Q0.31 is often abbreviated to Q31. 

13.1.2 Saturating Arithmetic

The DSP-R2 instruction set in the proAptiv core provides instruction that perform both saturated and non-saturated 
arithmetic. When a calculation overflows, the saturating (_SA) instructions make the result the most positive or most 
negative representable value.

13.1.3 Multiplying Fractions 

Multiplying two Q31 fractions by re-using a full-precision integer multiplier results in a 64-bit result that consists of 
a Q62 result with (in the very highest bit) a second copy of the sign bit. A left-shift-by-1 must then be performed on 
this value to produce a Q63 format. Similarly, Q15 multiplies that generate a Q31 value must also perform a shift-left. 
This is the function of the MULQ instructions. 

13.1.4 Rounding

Some fractional operations implicitly discard the least-significant bits. To get a better approximation, increment the 
truncated result by one when the discarded bits represent more than a half of the value of a 1 in the new LS position. 
That is how the term ‘rounding’ is defined in this chapter. 

13.1.5 Multiply-Accumulate Sequences

For enhanced performance performing fractional and saturating operations, the proAptiv core contains four accumu-
lators for multiply-accumulate sequences (with fixed-point types, sometimes saturating). For backward compatibility 
with previous generation MIPS processors that have only one accumulator, the new ac0 accumulator functions as the 
previous generation HI/LO. 

13.1.6 SIMD Operations

Many DSP-R2 calculations are a good match for Single Instruction Multiple Data (SIMD) or vector operations, 
where the same arithmetic operation is applied in parallel to several sets of operands. 

In the MIPS DSP-R2 ASE, some operations are SIMD type - two 16-bit operations or four 8-bit operations are carried 
out in parallel on operands packed into a single 32-bit general-purpose register. Instructions operating on vectors can 
be recognized because the name includes.PH (paired-half, usually signed, often fractional) or.QB (quad-byte, 
always unsigned, only occasionally fractional). 
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13.2 Common Applications

Different target applications generally need different data size and precision. The DSP-R2 ASE can be used by the 
following applications.

• 32-bit data: audio (non-hand-held) decoding/encoding - a wide range of “hi-fi” standards for consumer audio or 
television sound. 

• 16-bit data: digital voice for telephony. International telephony code/decode standards include G.723.1 
(8Ksample/s, 5-6Kbit/s data rate, 37ms delay), G.729 (8Kbit/s, 15ms delay) and G.726 (16-40Kbit/s, computa-
tionally simpler and higher quality, good for carrying analogue modem tones). Application-specific filters are 
used for echo cancellation, noise cancellation, and channel equalization. Also used for soft modems and general 
‘DSP’ work such as filters, correlation, and convolution. 

• 8-bit data: processing of printer images, JPEG (still) images and video data. 

13.3 Software Detection of the DSP ASE Revision 2

The presence of the MIPS DSP-R2 ASE in the proAptiv core is indicated by two static bits in the Config3 register: the 
‘DSP Present’ bit (Config3DSPP) indicates the presence of the DSP-R2 ASE, and the ‘DSP Rev2 Present’ bit 
(Config3DSP2P) indicates the presence of the MIPS DSP ASE Rev2. Because all members of the proAptiv family sup-
port both ASEs, these bits are always set to 1. 

The CP0 Status register (StatusMX) must be set to enable access to the extra instructions defined by the DSP-R2 
moduile, as well as to the MTLO/HI, MFLO/HI instructions that access accumulators ac1, ac2, and ac3. Executing 
a DSP-R2 ASE instruction or the MTLO/HI, MFLO/HI instructions with this bit set to zero causes a DSP-R2 State 
Disabled Exception (exception code 26 in the CP0 Cause register). This exception can be used by system software to 
do lazy context-switching. 

13.4 DSP-R2 Registers

The DSP-R2 ASE defines three additional accumulator registers and one additional control/status register, as 
described below. These registers require the operating system to recognize the presence of the DSP-R2 ASE and to 
include these additional registers in the context save and restore operations.

13.4.1 DSP-R2 Accumulator Registers

Whereas a standard MIPS32 architecture CPU has just one 64-bit multiply unit accumulator (accessible as hi/lo), the 
DSP-R2 ASE in the proAptiv core provides four 64-bit accumulators. Instructions accessing the extra accumulators 
specify a 2-bit field as 0 - 3 (0 selects the original accumulator). 

The DSP-R2 ASE includes three HI/LO accumulator register pairs (ac1, ac2, and ac3) in addition to the HI/LO regis-
ter pair (ac0) in the standard MIPS32 architecture. These registers improve the parallelization of independent accu-
mulation routines—for example, filter operations, convolutions, etc. DSP-R2 instructions that target the accumulators 
use two instruction bits to specify the destination accumulator, with the zero value referring to the original accumula-
tor.

13.4.2 DSP-R2 ASE Control Register 

This is a part of the user-mode programming model for the DSP-R2 ASE, and is a 32-bit value read and written with 
the RDDSP/WRDSP instructions. It holds state information for some DSP-R2 sequences. 
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Figure 13.1 DSP-R2 Control Register 
31 28 27 24 23 16 15 14 13 12 7 6 5 0

0 CCOND OUFLAG 0 EFI C SCOUNT 0 POS

Table 13.1 Field Descriptions for DSP-R2 Control Register 

Name Bit(s) Description
Read/ 
Write Reset State

0 31:28 Reserved. Write as zero. Undefined on read. R/W Undefined

CCOND 27:24 Condition bits set by compare instructions (there have to be four to report 
on compares between vector types). "Compare" operations on scalars or 
vectors of length two only touch the lower-numbered bits.

R/W 0

OUFLAG 23:16 Overflow/underflow flags.

One of these bits may be set when a result overflows (whether or not the 
result is saturated depends on the instruction - the flag is set in either 
case). Underflow indicates a value that is negative but with excessive 
absolute value. 
Any overflowed/underflowed result produced by any DSP-R2 ASE 
instruction sets an ouflag bit, except for ADDSC/ADDWC and SHILO/
SHILOV instructions.

See Table 13.2 for a full list of which bits are set by what instructions. 

R/W

0 15 Reserved. Write as zero. Undefined on read. R/W

EFI 14 Extract field of instruction.

This bit is set by any of the accumulator-to-register bit field 
extract instructions (EXTP, EXTPV, EXTPDP, or EXTPDP) only if 
the instruction finds there are insufficient bits to extract. In other 
words, if DSPControlPOS, which is supposed to mark the highest-
numbered bit of the field being extracting, is less than the size 
value specified by the instruction. 

Note that this bit is not sticky, so each invocation of one of the four 
instructions will reset the bit depending on whether or not the instruction 
failed.

R/W

C 13 Carry bit for 32-bit add/carry instructions ADDSC and ADDWC.

This bit is set and used by special add instructions that implement a 64-
bit add across two GPRs. The ADDSC instruction sets the bit and the 
ADDWC instruction uses this bit.

R/W

SCOUNT 12:7 Size count.

This field specifies the size of the bit field to be inserted, while 
DSPControlPOS specifies the insert position. 

This field is used by "variable" bit field insert and extract instructions 
such as INSV (the normal MIPS32 INS/EXT instructions have the 
field size and position hard-coded in the instruction).

R/W

0 6 Reserved. Write as zero. Undefined on read. R/W



 

MIPS32® proAptiv™ Multiprocessing System Software User’s Manual, Revision 01.22 593

The bits of the overflow flag OUFLAG field in the DSPControl register are set by a number of instructions, as 
described in Table 13.2. These bits are sticky and can be reset only by an explicit write to these bits in the register 
(using the WRDSP instruction). Refer to the following section for more information on the DSP-R2 instructions. 

POS 5:0 Insertion position.

This field is used by the variable insert instruction INSV and specifies 
the position of the bit field to be inserted, while DSPControlSCOUNT 
specifies the size of the bit field to be inserted. This field to specify the 
insert position. 

In most insertions (following the lead of the standard MIPS32 insert/
extract instructions) this field is set to the lowest bit number. However, in 
the DSP-R2 ASE extract-from-accumulator instructions (EXTP, 
EXTPV, EXTPDP and EXTPDPV), this field identifies the highest-
numbered bit in the field. 

The EXTPDP and EXTPDPV instructions post-decrement this field (by 
the bit-field length size) to help software which is unpacking a series of 
bit fields from a dense data structure.

The MTHLIP instruction increments the value in this field by 32 after 
copying the value of lo to hi. 

R/W

Table 13.2 Instructions that set the DSPControl OUFLAG Bits 

Bit Number Description 

16 This bit is set when the destination is accumulator (HI-LO pair) zero, and an operation overflow 
or underflow occurs. These instructions are: DPAQ_S, DPAQ_SA, DPSQ_S, 
DPSQ_SA, DPAQX_S, DPAQX_SA, DPSQX_S, DPSQX_SA, MAQ_S, 
MAQ_SA and MULSAQ_S.

17 Same instructions as above, when the destination is accumulator (HI-LO pair) one.

18 Same instructions as above, when the destination is accumulator (HI-LO pair) two.

19 Same instructions as above, when the destination is accumulator (HI-LO pair) three.

20 Instructions that set this bit on an overflow/underflow: 
ABSQ_S, ADDQ, ADDQ_S, ADDU, ADDU_S, ADDWC, SUBQ, SUBQ_S, 
SUBU and SUBU_S.

21 Instructions that set this bit on an overflow/underflow: 
MUL, MUL_S, MULEQ_S, MULEU_S, MULQ_RS, and MULQ_S.

22 Instructions that set this bit on an overflow/underflow: 
PRECRQ_RS, SHLL, SHLL_S, SHLLV, and SHLLV_S.

23 Instructions that set this bit on an overflow/underflow: 
EXTR, EXTR_S, EXTR_RS, EXTRV, and EXTRV_RS.

Table 13.1 Field Descriptions for DSP-R2 Control Register 

Name Bit(s) Description
Read/ 
Write Reset State
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13.5 DSP-R2 Instruction Types

The DSP-R2 instruction set in the proAptiv core is a collection of special-case instructions aimed at addressing 
known ‘hot-spots’ of important DSP algorithms. 

In this section, the DSP-R2 instructions have been divided into the following subsections, which represent their likely 
usage and application and type of the result derived. Most of the multiplication instructions have multiple uses and 
are divided based on the most obvious use. 

• Arithmetic - 64-bit 

• Arithmetic - saturating and/or SIMD Types 

• Bit-shifts - saturating and/or SIMD types 

• Comparison and "conditional-move" operations on SIMD types - includes PICK instructions. 

• Conversions to and from SIMD types 

• Multiplication - SIMD types with result in GP register 

• Multiply Q15s from paired-half and accumulate 

• Load with register+register address 

• DSPControl register access 

• Accumulator access instructions 

• Dot products and building blocks for complex multiplication - includes full-word (Q31) multiply-accumulate 

• Other DSP ASE instructions  - everything else... 

A complete alphabetical list of DSP-R2 instructions is shown in Section 13.11 “DSP-R2 ASE Instruction Groups”, 
followed by a description of each individual instruction. 

13.5.1 Hints in instruction names 

An instruction’s name may have some suffixes which are often informative: 

Q: generally means it treats operands as fractions (which isn’t important for adds and subtracts, but is important for 
multiplications and convert operations); 

_S: usually means the full-precision result is saturated to the size of the destination; _SA is used for instructions which 
saturate intermediate results before accumulating; and R: denotes rounding (see above); 

.W,.PH,.QB: suggest the operation is dealing with 32-bit word, paired-halfword, or quad-byte values respectively. 
Where there are two of these (as in MAQ_S.W.PHL) the first one suggests the type of the result, and the second the 
type of the operand(s). 

V: (in a shift instruction) suggests that the shift amount is defined in a register, rather than being encoded in a field of 
the instruction.

13.5.2 Arithmetic — 64-bit 

ADDSC/ADDWC generate and use a carry bit, for efficient 64-bit add. 
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13.5.3 Arithmetic — Saturating and/or SIMD Types 

• 32-bit signed saturating arithmetic: ADDQ_S.W, SUBQ_S.W and ABSQ_S.W. 

• Paired-half and quad-byte SIMD arithmetic: perform the same operation simultaneously on both 16-bit halves or 
all four 8-bit bytes of a 32-bit register. The “Q” in the instruction mnemonic for the PH operations here is cos-
metic: Q15 and signed 16-bit integer add/subtract operations are bit-identical - Q15 only behaves very differently 
when converted or multiplied. 

The paired half operations are: ADDQ.PH/ADDQ_S.PH, SUBQ.PH/SUBQ_S.PH and ABSQ_S.PH. 

The quad-byte operations (all unsigned) are: ADDU.QB/ADDU_S.QB, SUBU.QB/SUBU_S.QB. 

• Sum of quad-byte vector: RADDU.W.QB does an unsigned sum of the four bytes found in a register, zero extends 
the result and delivers it as a 32-bit value. 

13.5.4 Bit-shifts — Saturating and/or SIMD Types 

All shifts can either have a shift amount encoded in the instruction, or - indicated by a trailing “V” in the instruction 
name - provided as a register operand. PH and 32-bit shifts have optional forms which saturate the result. 

• 32-bit signed shifts: include a saturating version of shift left, SHLL_S.W; and an auto-rounded shift right (just 
the “arithmetic”, sign-propagating form): SHRA_R.W. Recall from above that rounding can be imagined as pre-
adding a half to the least significant surviving bit. 

• Paired-half and quad-byte SIMD shifts: SHLL.PH/SHLLV.PH/SHLL_S.PH/SHLLV_S are as above. For PH 
only there’s a shift-right-arithmetic instruction (“arithmetic” means it propagates the sign bit downward) 
SHRA.PH, which has a variant which rounds the result SHRA_R.PH. 

The quad-byte shifts are unsigned and don’t round or saturate: SHLL.QB/SHLLV.QB, SHRL.QB/SHRLV.QB. 

13.5.5 Comparison and “Conditional-Move” Operations on SIMD Types 

The “cmp” operations simultaneously compare and set flags for two or four values packed in a vector (with equality, 
less-than and less-than-or-equal tests). For PH that’s CMP.EQ.PH, CMP.LT.PH and CMP.LE.PH. The result is left 
in the two LS bits of DSPControl[ccond]. 

For quad-byte values CMPU.EQ.QB, CMPU.LT.QB and CMPU.LE.QB simultaneously compare and set flags for 
four bytes in DSPControl[ccond] - the flag relating to the bytes found in the low-order bits of the source register is in 
the lowest-numbered bit (and so on). There’s an alternative set of instructions CMPGU.EQ.QB, CMPGU.LT.QB and 
CMPGU.LE.QB which leave the 4-bit result in a specified general-purpose register. 

PICK.PH uses the two LS bits of DSPControl[ccond] (usually the outcome of a paired-half compare instruction, see 
above) to determine whether corresponding halves of the result should come from the first or second source register. 
Among other things, this can implement a paired-half conditional move. You can reverse the order of your condi-
tional inputs to do a move dependent on the complementary condition, too. 

PICK.QB does the same for QB types, this time using four bits of DSPControl[ccond]. 
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13.5.6 Conversions to and from SIMD Types 

Conversion operations from larger to smaller fractional types have names which start “PRECRQ...” for “precision 
reduction, fractional”. Conversion operations from smaller to larger have names which start “PRECE...” for “preci-
sion expansion”. 

• Form vector from high/low parts of two other paired-half values: PACKRL.PH makes a paired-half vector from 
two half vectors, swapping the position of each sub-vector. It can be used to acquire a properly formed sub-vec-
tor from a non-aligned data stream. 

• One Q15 from a paired-half to a Q31 value: PRECEQ.W.PHL/PRECEQ.W.PHR select respectively the “left” 
(high bit numbered) or “right” (low bit numbered) Q15 value from a paired-half register, and load it into the 
result register as a Q31 (that is, it’s put in the high 16 bits and the low 15 bits are zeroed). 

• Two bytes from a quad-byte to paired-half: PRECEQU.PH.QBL/PRECEQU.PH.QBR picks two bytes from 
either the “left” (high bit numbered) or “right” (low bit numbered) halves of a quad-byte value, and unpacks to a 
pair of Q15 fractions. 

PRECEQU.PH.QBLA does the same, except that it picks two “alternate” bytes from bits 31-24 and 15-8, while 
PRECEQU.PH.QBRA picks bytes from bits 23-16 and 7-0. 

Similar instructions without the q - PRECEU.PH.QBL, PRECEU.PH.QBR, PRECEU.PH.QBLA” and PRE-
CEU.PH.QBRA - work on the same register fields, but treat the quantities as integers, so the 16-bit results get 
their low bits set. 

• 2×Q31 to a paired-half: both operands and result are assumed to be signed fractions, so PRECRQ.PH.W just 
takes the high halves of the two source operands and packs them into a paired-half; PRECRQ_RS.PH.W rounds 
and saturates the results to Q15. 

• 2×paired-half to quad-byte: you need two source registers to provide four paired-half values, of course. This is a 
fractional operation, so it’s the low bits of the 16-bit fractions which are discarded. 

PRECRQ.QB.PH treats the paired-half operands as unsigned fractions, retaining just the 8 high bits of each 16-
bit component. 

PRECRQU_S.QB.PH treats the paired-half operands as Q15 signed fractions and both rounds and saturates the 
result (in particular, a negative Q15 fraction produces a zero byte, since zero is the lowest representable quan-
tity). 

• Replicate immediate or register value to paired-half: in REPL.PH the value to be replicated is a 10-bit signed 
immediate value (that’s in the range -512 ≤ x ≤ 511) which is sign-extended to 16 bits, whereas in REPLV.PH 
the value - assumed to be already a Q15 value - is in a register. 

• Replicate single value to quad-byte: there’s both a register-to-register form REPLV.QB and an immediate form 
REPL.QB. 

13.5.7 Multiplication - SIMD Types with Result in GP Register 

When a multiply’s destination is a general-purpose register, the operation is still done in the multiply unit, and you 
should expect it to overwrite the hi/lo registers (otherwise known as ac0.) 

• 8-bit×16-bit 2-way SIMD multiplication: MULEU_S.PH.QBL/MULEU_S.PH.QBR picks the “left” (high bit 
numbered) or “right” (low bit numbered) pair of byte values from one source register and a pair of 16-bit values 
from the other. Two unsigned integer multiplications are done at once, the results unsigned-saturated and deliv-
ered to the two 16-bit halves of the destination. 
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The asymmetric use of the source operands is not a bit like a Q15 operation. But 8×16 multiplies are heavily used 
in imaging and video processing (JPEG image encode/decode, for example). 

• Paired-half SIMD multiplication: MULQ_RS.PH multiplies two Q15s at once and delivers it to a paired-half 
value i n a general-purpose register, with rounding and saturation. 

• Multiply half-PH operands to a Q31 result: MULEQ_S.W.PHL/MULEQ_S.W.PHR pick the “left”/”right” Q15 
value respectively from each operand, multiply and store a Q31 value.   

“Precision-doubling” multiplications like this can overflow, but only in the extreme case where you multiply -
1×-1, and can’t represent 1 exactly. 

13.5.8 Multiply Q15s from Paired-Half and Accumulate 

MAQ_S.W.PHL/MAQ_S.W.PHR picks either the left/high or right/low Q15 value from each operand, multiplies 
them to Q31 and accumulates to a Q32.31 result. The multiply is saturated only when it’s -1×-1. 

MAQ_SA.W.PHL/MAQ_SA.W.PHR differ in that the final result is saturated to a Q31 value held in the low half of 
the accumulator (required by some ITU voice encoding standards). 

13.5.9 Load with Register + Register Address 

Previously available only for floating point data1: LWX for 32-bit loads, LHX for 16-bit loads (sign-extended) and 
LBUX for 8-bit loads, zero-extended. 

13.5.10 DSP-R2 Control Register Access 

WRDSP RS,MASK sets DSPControl fields, but only those fields which are enabled by a 1 bit in the 6-bit mask. 

RDDSP reads DSPControl into a GPR; but again it takes a mask field. Bit fields in the GPR corresponding to 
DSPControl fields which are not enabled will be set all-zero. 

The mask bits tie up with fields like this: 

13.5.11 Accumulator Access Instructions 

• Historical instructions which now access new accumulators: the familiar MFHI/MFLO/MTHI/MTLO instructions 
now take an optional extra accumulator-number parameter. 

1. Well, an integer instruction is also included in the MIPS SmartMIPS™ ASE. 

Table 13.3 Mask bits for instructions accessing the DSPControl register 
Mask Bit DSPControl field

0 pos 

1 scount 

2 c 

3 ouflag 

4 ccond 

5 EFI 
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• Shift and move to general register: EXTR.W/EXTR_R.W/EXTR_RS.W gets a 32-bit field from an accumulator 
(starting at bit 0 up to 31) and puts the value in a general purpose register. At your option you can specify round-
ing and signed 32-bit saturation. 

EXTRV.W/EXTRV_R.W/EXTRV_RS.W do the same but specify the field’s starting bit number with a register. 

• Extract bit field from accumulator: EXTP/EXTPV takes a bit field (up to 32 bits) from an accumulator and moves 
it to a GPR. The length of the field can be an immediate value or from a register. The position of the field is 
determined by DSPControl[pos], which holds the bit number of the most significant bit. 

EXTPDP/EXTPDPV do the same, but also auto-decrement DSPControl[pos] to the bit-number just below the field 
you extracted. 

• Accumulator rearrangement: SHILO/SHILOV has a signed shift value between -32 and +31, where positive 
numbers shift right, and negative ones shift left. The “v” version, as usual, takes the shift value from a register. 
The right shift is a “logical” type so the result is zero extended. 

• Fill accumulator pushing low half to high: MTHLIP moves the low half of the accumulator to the high half, then 
writes the GPR value in the low half. Generally used to bring 32 more bits from a bit stream into the accumulator 
for parsing by the various EXT... instructions. 

13.5.12 Dot Products and Building Blocks for Complex Multiplication 

In 2-dimensional vector math (or in any doubled-up step of a multiply-accumulate sequence which has been opti-
mized for 2-way SIMD) you’re often interested in the dot product of two vectors: 

v[0]*w[0] + v[1]*w[1] 

In many cases you take the dot product of a series of vectors and add it up, too. 

Some algorithms use complex numbers, represented by 2D vectors. Complex numbers use i to stand for “the square 
root of -1”, and a vector [a,b] is interpreted as a+ib (mathematicians leave out the multiply sign and use single-
letter variables, habits which would not be appreciated in C programming!) Complex multiplication just follows the 
rules of multiplying out sums, remembering that i*i=-1, so: 

(a + ib)*(c + id) = (a*c - b*d) + i(a*d + b*c) 

Or in vector format: 

[a, b] * [c, d] = [a*c - b*d, a*d + b*c] 

The first element of the result (the “real component”) is like a dot product but with a subtraction, and the second (the 
“imaginary component”) is like a dot product but with the vectors crossed. 

• Q15 dot product from paired-half, and accumulate: DPAQ_S.W.PH does a SIMD multiply of the Q15 halves of 
the operands, then adds the results and saturates to form a Q31 fraction, which is accumulated into a Q32.31 frac-
tion in the accumulator. 

DPSQ_S.W.PH does the same but subtracts the dot product from the accumulator. 

For the imaginary component of a complex multiply, first swap the Q15 numbers in one of the register operands 
with a ROT (bit-rotate) instruction. 
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For the real component of a complex Q15 multiply, you have the difference-of-products instruction 
MULSAQ_S.W.PH, which parallel-multiplies both Q15 halves of the PH operands, then computes the difference 
of the two results and leaves it in an accumulator in Q32.31 format (beware: this does not accumulate the result). 

• 16-bit integer dot-product from paired-half, and accumulate: DPAU.H.QBL/DPAU.H.QBR picks two QB val-
ues from each source register, parallel-multiplies the corresponding pairs to integer 16-bit values, adds them 
together and then adds the whole lot into an accumulator. DPSU.H.QBL/DPSU.H.QBR do the same sum-of-
products, but the result is then subtracted from the accumulator. In both cases, note this is integer (not fractional) 
arithmetic. 

• Q31 saturated multiply-accumulate: is the nearest thing you can get to a dot-product for Q31 values. 
DPAQ_SA.L.W does a Q31 multiplication and saturates to produce a Q63 result, which is added to the accumu-
lator and saturated again. DPSQ_SA.L.W does the same, except that the multiply result is subtracted from the 
accumulator (again, useful for the real component of a complex number). 

13.5.13 Other DSP-R2 ASE Instructions 

• Branch on DSPControl field: BPOSGE32 branches if DSPControl[pos]≥32. 

Typically the test is for “is it time to load another 32 bits of data from the bit stream yet?”. 

• Circular buffer index update: MODSUB takes an operand which packs both a maximum index value and an index 
step, and uses it to decrement a “buffer index” by the step value, but arranging to step from zero to the provided 
maximum. 

• Bit field insert with variable size/position: INSV is a bit-insert instruction. It acts like the MIPS32 standard 
instruction INS except that the position and size of the inserted field are specified not as immediates inside the 
instruction, but are obtained from DSPControl[pos] (which should be set to the lowest numbered bit of the field 
you want) and DSPControl[scount] respectively. 

• Bit-order reversal: BITREV reverses the bits in the low 16 bits of the register. The high half of the destination is 
zero. 

The bit-reverse operation is a computationally crucial step in buffer management for FFT algorithms, and a 16-
bit operation supports up to a 32K-point FFT, which is much more than enough. A full 32-bit reversal would be 
expensive and slow. 

13.6 DSP-R2 Code Optimization for Performance

Some optimization methods are seldom used for general-purpose software, but are often seen in DSP-R2 code. A typ-
ical example is a technique called zipping, which reduces the number of data loads in algorithms like FIR filters. Con-
sider the calculation of the first two output values of an 8-tap FIR filter. The illustration below shows how the 
coefficients get multiplied by the data samples:

 Input data samples: d0  d1  d2  d3  d4  d5  d6  d7  d8  ...
Coefficients for y0: c0  c1  c2  c3  c4  c5  c6  c7
Coefficients for y1:     c0  c1  c2  c3  c4  c5  c6  c7

 First output (y0): c0d0 + c1d1 + c2d2 + c3d3 + c4d4 + c5d5 + c6d6 + c7d7
Second output (y1): c0d1 + c1d2 + c2d3 + c3d4 + c4d5 + c5d6 + c6d7 + c7d8

A very naive implementation will load each coefficient and data sample from memory every time they are needed. A 
more optimized implementation will load the coefficients just once and keep them in registers. It will load data sam-
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ples d0-d7 first, to compute the first output, and then data samples d1-d8 to compute the second output. With zipping, 
an even more optimized implementation will load d0-d8 once and use the loaded values for both output calculations. 
The relatively large number of general-purpose registers in the MIPS architecture is useful for applying this tech-
nique. An even larger number of samples can be kept in registers if the SIMD features of the DSP-R2 ASE are used. 
In this case, another slightly rearranged set of coefficients may be needed, as illustrated below for the case of 16-bit 
coefficients and samples packed into 32-bit words:

 Input data samples: d0:d1  d2:d3  d4:d5  d6:d7  d8:d9
Coefficients for y0: c0:c1  c2:c3  c4:c5  c6:c7
Coefficients for y1: 00:c0  c1:c2  c3:c4  c5:c6  c7:00

The first set of coefficients is used to compute y0 and all even-numbered output samples. The second set is used for 
y1 and all odd-numbered output samples.

Because of the large number of general-purpose registers, especially considering the SIMD features offered by the 
DSP-R2 ASE, the proAptiv cores lend themselves well to algorithms processing more data elements at a time. For 
example, it is easy to meet the requirements of a radix-4 FFT implementation, which is faster than a radix-2 imple-
mentation but needs to keep a large number of values in registers during the calculation.

Many algorithms can be implemented in a variety of different ways and often some of these algorithm transforma-
tions offer performance advantages. The output results are similar in all cases, but an optimal implementation strikes 
the best balance between number of registers needed, number of memory operations, number and type of arithmetic 
operations, regularity of data access patterns, result delays, etc. Make sure the selected algorithm implementation 
approach is the best match to the architecture.

It should be noted that a reasonable degree of familiarity with the DSP-R2 instructions will allow the programmer to 
extract the best performance. The architecture specification and the core programming guide provide the necessary 
information.

If the data type is 16-bit or 8-bit, then attempting to rewrite the algorithm in SIMD style using operations directly sup-
ported by the DSP-R2 ASE instruction set will yield a lower cycle count due to the obtained parallelism. Once the 
number of instructions required to implement the algorithm is minimized, the instructions must be scheduled taking 
into account their result delays. When evaluating the resulting performance, obtaining a trace from one execution will 
illuminate the cause of stalls and also facilitate optimization.

13.6.1 Pixel Unpacking Example

As a simple illustration of efficiently using the SIMD capabilities of the processor, consider the task of unpacking 
YUV image data prior to processing. The YUV color space is commonly used in image and video processing. The 
color components (U and V) are subsampled with respect to the luminosity (Y) by a factor of two or four in the hori-
zontal and/or vertical dimension. A commonly used format is YUV 4:2:2, which has the color components subsam-
pled horizontally by a factor of two. Hence there is one luminosity value for each pixel, but a UV pair is shared 
between two adjacent pixels. Video data in YUV 4:2:2 format is commonly transmitted in the following order:

Pixel data: U0  Y0  V0  Y1  U2  Y2  V2  Y3  U4  Y4  V4  Y5  ...

Video processing algorithms usually perform different tasks on each of the Y, U, and V components. In order to use 
the SIMD capabilities of the proAptiv core, the pixel data needs to be unpacked, i.e., each of the Y, U, and V values 
should be separated out and grouped together. Examining the DSP-R2 ASE instruction set reveals that some instruc-
tions intended for precision reduction and expansion can be used to implement data unpacking:
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lw $t0, 0($a0) # U0:Y0:V0:Y1 - two pixels in YUV 4:2:2
lw $t1, 4($a0) # U2:Y2:V2:Y3 - next two pixels

precequ.ph.qbra $t2, $t0 # 00:Y0:00:Y1 - half the unpacked Ys
precrq.qb.ph $t4, $t0, $t1 # U0:V0:U2:V2 - interleaved Us and Vs
precequ.ph.qbra $t3, $t1 # 00:Y2:00:Y3 - the other unpacked Ys
precequ.ph.qbra $t5, $t4 # 00:V0:00:V2 - unpacked Vs
precequ.ph.qbla $t5, $t4 # 00:U0:00:U2 - unpacked Us

Unpacking the YUV data as illustrated above also has the advantage of converting each data item from 8-bit unsigned 
to 16-bit unsigned format. This ensures there is enough room for performing the video processing calculations with 
enhanced precision.

Note that the example above as well as the following examples have not been scheduled to the proAptiv core pipe-
lines. In a real application other instructions surrounding the illustrated code fragments can be used to fill-in the 
delays caused by result dependencies.

13.6.2 Sum of Absolute Differences Example

Another interesting DSP-R2 ASE example shows the kernel performing the sum of absolute differences (SAD) func-
tion used in motion estimation algorithms for video compression. The function accumulates the absolute difference 
between the pixels from a reference 8x8-pixel block and those from a similar block inside the current video frame. 
Using the DSP-R2 ASE, here is how the SAD of four pixels at a time can be calculated and accumulated:

SUBUH_R.QB $t0, $s0, $s1 # subtract 4 pixels with halving
ABSQ_S.QB $t0, $t0 # find the 4 absolute values
RADDU.W.QB $t0, $t0 # sum the absolute values
ADDU $v0, $v0, $t0 # accumulate the result

The above sequence is four instructions long and will execute in four cycles when properly scheduled. Performing the 
same calculation using the MIPS32 Release 2 instruction set will require approximately 20 instructions. The perfor-
mance advantages offered by the DSP-R2 ASE are obvious.

13.6.3 Bit Stream Unpacking Example

The last example of efficient use of DSP-R2 ASE instructions presented here is bit stream unpacking. Many audio 
and video compression algorithms pack various parameters of different bit widths in a continuous compressed bit-
stream. The decoder has to first unpack-or extract-the individual values from the bit stream before further processing 
them. Recognizing the importance of this task, the DSP-R2 ASE instruction set includes instructions that facilitate 
and accelerate bit stream unpacking. One of the accumulator registers is used as a 64-bit data buffer. The EXTP 
instruction variants extract a specified number of bits and optionally decrement the pos field of the DSPControl regis-
ter. The pos field holds the number of remaining bits in the bit buffer. The BPOSGE32 instructions checks this num-
ber and branches if there are at least 32 bits left. And finally, the MTHLIP instruction is used to reload the bit buffer 
with a new 32-bit word and at the same time increment the number of available bits by 32. This process is illustrated 
in the code fragment below:

loop:
lbu $t0, 0($a0) # size of the data field to extract
extpdpv $v0, ac0, $t0 # extract a value from ac0, pos -= size
addiu $a1, $a1, 4 # increment output data pointer
addiu $a0, $a0, 1 # increment size table pointer
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bposge32 loop # loop back if pos >= 32
sw $v0, -4($a1) # store the extracted value

lw $t1, 0($a2) # load next bitstream word
addiu $a2, $a2, 4 # increment bitstream pointer
bne $a2, $a3, loop # loop until no more data available
mthlip $t1, ac0 # update ac0 bit buffer, pos += 32

The illustrated code loads the size (bit width) of each field to be extracted from memory. The performance of the loop 
can be further improved if the sizes are static and known in advance.

13.7 Compiler Usage Model for MIPS DSP-R2

The MIPS® DSP-R2 ASE allows for performance optimization of signal processing and multimedia applications 
running on the proAptiv core. The DSP-R2 ASE includes a set of instructions that provide computational support for 
fractional data types, SIMD, saturation, and other operations commonly used in DSP applications. This section 
describes a compiler usage model for the MIPS DSP-R2.

Typical DSP applications include certain loops or kernels that take a large percentage of the execution time. Because 
of the sensitivity of DSP application performance to these kernels, programmers have tended to write these functions 
in assembly, hand-scheduling the code for optimal pipeline scheduling. But with the introduction of MIPS DSP-R2 
extensions, compilers like GCC can be used to reduce, and perhaps eliminate, the need to write assembly code. How-
ever, to obtain the best optimizations, a particular coding style and usage must be followed, as explained in this sec-
tion.

For reference, the GCC Compiler 6.03.00-rc3, based on FSF (Free Software Foundation) GCC 3.4, was used for the 
examples in this section. Programmers should use the newest compilers available to ensure that the DSP-R2 ASE is 
supported and to enable the highest performance instruction scheduling. Throughout the section, the term “GCC com-
piler” refers to a compiler that incorporates the DSP-R2 ASE intrinsics, such as the GCC compiler. 

Using a high-level language such as C to develop applications has many advantages:

1. C programmers do not have to manually allocate registers—the compiler can allocate registers for variables.

2. C programmers do not have to manually schedule instructions—the compiler can schedule instructions based on 
given latency information for specific CPU pipelines.

3. C programmers do not have to consider function calling conventions when writing modular programs—the com-
piler saves and restores registers at entries and exits of functions per a pre-defined convention.

4. C programmers can declare SIMD variables and use generic C operators or intrinsics (built-in functions) to man-
age SIMD variables in order to achieve parallelism.

5. Development and debug time is shortened when using a high-level language.

6. Applications are more maintainable when written in a high-level language.

13.7.1 Enabling the DSP-R2 ASE in the Compiler

To enable the MIPS32 DSP-R2 ASE in the GCC compiler, the “-mdsp2” command-line option is required. In addi-
tion to “-mdsp2”, “-mips32r2” is recommended for better performance in accessing elements in SIMD variables, 
because this allows the use of the MIPS32 Release 2 instruction INS for more efficient code. 
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13.7.2 Data Types

In the GCC compiler, the Q15 data type is represented by 16-bit integer data type (short), and the Q31 data type is 
represented by 32-bit integer data type (int). Typedefs can be created for Q15 and Q31 as follows:

typedef short q15;
typedef int q31;

The MIPS32 DSP-R2 ASE implements four 64-bit accumulators which can be represented by a “long long” data 
type.

typedef long long a64;

To declare SIMD data types, typedefs with special vector_size attributes are required. For example,

typedef signed char v4i8 __attribute__ ((vector_size(4)));
typedef short v2q15 __attribute__ ((vector_size(4)));

where “v4i8” defines a SIMD data type containing four 8-bit integer data. “v2q15” defines a type containing two Q15 
fractional data (which is the same as two 16-bit integer data).

13.7.3 Initialization of Q15 and Q31 Variables

To initialize Q15 variables, programmers can multiply the fractional value (e.g., 0.1234) by 32768.0. To initialize 
Q31 variables, programmers can multiply the fractional value by 2147483648.0.

Ex: /* Q15 Example  */
typedef short q15;
q15 a = 0.1234 * 32768.0;
/* ---------------------------------------------------------- */

Ex: /* Q31 Example  */typedef int q31;
q31 b = 0.2468 * 2147483648.0;

13.7.4 Initialization of SIMD Variables

To initialize SIMD variables is similar to initializing aggregate data. The following examples show how to initialize 
SIMD variables.

Ex: /* v4i8 Example  */
v4i8 a = {1, 2, 3, 4};
v4i8 b;
b = (v4i8) {5, 6, 7, 8};
/* ---------------------------------------------------------- */

Ex: /* v2q15 Example  */
v2q15 a = {0x0fcb, 0x3a75};
v2q15 b;
b = (v2q15) {0.1234 * 32768.0, 0.4567 * 32768.0};

Note that CPU endianness affects the ordering of data stored in a register. In a Big Endian CPU, data is stored from 
the left-to-right location of a register. In a Little Endian CPU, data is stored from the right-to-left location of a regis-
ter. For the example of v4i8 a = {1, 2, 3, 4}, a Big Endian CPU stores 1, 2, 3, and 4 from the left-to-right location, but 
a Little Endian CPU stores 1, 2, 3, and 4 from the right-to-left location as shown in Figure 13.2.
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Figure 13.2 Register Values for v4i8 a = {1, 2, 3, 4} in Big Endian and Little Endian CPUs 

Most arithmetic operations will simply work on the SIMD operands in the register irrespective of endianness. But the 
programmer must beware of such instructions in the DSP-R2 ASE that directly refer to the left or right portions of a 
GPR. For example, MAQ_SA.W.PHL.

13.7.5 Accessing Elements in SIMD Variables

The use of SIMD variables enables operations on multiple data in parallel. However, in certain situations, program-
mers need to access elements inside a SIMD variable. This can be done by using a union type that unites a SIMD type 
and an array of a basic type as follows.

typedef union
{
  v4i8 a;
  unsigned char b[4];
} v4i8_union;

typedef short q15;
typedef union
{
  v2q15 a;
  q15 b[2];
} v2q15_union;

As shown in Figure 13.2 for a v4i8 variable, b[0] is used in both big-endian and Little Endian CPUs to access the first 
element in the variable. However, b[0] is stored in the left-most position in a Big Endian CPU, but it is stored in the 
right-most position in a little-endian CPU. The following examples show how to extract or assign elements.

Ex: /* v4i8 Example  */
v4i8 i;
unsigned char j, k, l, m;
v4i8_union temp;

/* Assume we want to extract from i.  */
temp.a = i;
j = temp.b[0];
k = temp.b[1];
l = temp.b[2];
m = temp.b[3];

/* Assume we want to assign j, k, l, m to i.  */
temp.b[0] = j;

2 3 41
Bit 31       b[0]                       b[1]                        b[2]                          b[3]     Bit 0

Bit 31       b[3]                       b[2]                        b[1]                          b[0]     Bit 0

Big Endian CPU

Little Endian CPU
3 2 14
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temp.b[1] = k;
temp.b[2] = l;
temp.b[3] = m;
i = temp.a;
/* ---------------------------------------------------------- */

Ex: /* v2q15 Example  */
v2q15 i;
q15 j, k;
v2q15_union temp;

/* Assume we want to extract from i.  */
temp.a = i;
j = temp.b[0];
k = temp.b[1];

/* Assume we want to assign j, k to i.  */
temp.b[0] = j;
temp.b[1] = k;
i = temp.a;

13.7.6 C Operators

Addition and subtraction on fractional data are similar to addition and subtraction with integer data, but multiplica-
tion requires a post-multiply shift to align the resulting values appropriately. Because fractional data uses integer data 
types in the GCC compiler, users must be very cautious when applying operators upon fractional data. The GCC 
compiler accepts all operators upon Q15 and Q31 data, but only addition and subtraction generate the expected 
results for Q15 and Q31. Note that operators other than “+” and “-” upon Q15 and Q31 are treated as integer arithme-
tic.

Ex: /* Q15 Example  */
typedef short q15;
q15 i, j, k, l;
i = k + l;
j = k - l;
/* ---------------------------------------------------------- */

Ex: /* Q31 Example  */
typedef int q31;
q31 i, j, k, l;
i = k + l;
j = k - l;

Certain C operators can be applied to SIMD variables. They are +, -, *, /, unary minus, ^, |, &, ~. The MIPS32 DSP-
R2 ASE provides SIMD addition and subtraction instructions for v4i8 and v2q15, allowing the GCC compiler to gen-
erate appropriate instructions for addition and subtraction of v4i8 and v2q15 variables. For other operators, the GCC 
compiler synthesizes a sequence of instructions. The examples here show compiler-generated SIMD instructions 
when the appropriate operator is applied to SIMD variables.

Ex: /* v4i8 Addition  */
v4i8 test1 (v4i8 a, v4i8 b)
{
  return a + b;
}

# Generated Assembly
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test1:
  j $31
  addu.qb $2, $4, $5
# ----------------------------------------------------------

Ex: /* v4i8 Subtraction  */
v4i8 test2 (v4i8 a, v4i8 b)
{
  return a - b;
}

# Generated Assembly
test2:
  j $31
  subu.qb $2, $4, $5
# ----------------------------------------------------------

Ex: /* v2q15 Addition  */
v2q15 test3 (v2q15 a, v2q15 b)
{
  return a + b;
}

# Generated Assembly
test3:
  j $31
  addq.ph $2, $4, $5
# ----------------------------------------------------------

Ex: /* v2q15 Subtraction  */
v2q15 test4 (v2q15 a, v2q15 b)
{
  return a - b;
}

# Generated Assembly
test4:
  j $31
  subq.ph $2, $4, $5

In situations where special integer and fractional calculations are needed and the compiler cannot generate them auto-
matically, C intrinsics can be directly used by the programmer as described in the next section.

13.7.7 C Intrinsics for the MIPS32 DSP-R2 ASE

Intrinsics are very similar to function calls in syntax. Programmers need to pass parameters to intrinsics, and intrin-
sics return results to variables. The difference between intrinsics and functions is that the compiler directly maps 
intrinsics to instructions for better performance. Intrinsics for the MIPS32 DSP-R2 ASE use the following data types:

typedef signed char v4i8 __attribute__ ((vector_size(4)));
typedef short v2i16 __attribute__ ((vector_size(4)));
typedef short v2q15 __attribute__ ((vector_size(4)));
typedef int q31;
typedef int i32;
typedef long long a64;
typedef unsigned int ui32;
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NOTE: “q31” and “i32” are actually the same as “int”, but the intrinsic that accepts “q31” processes data as Q31 frac-
tional data, and the intrinsic that accepts “i32” processes data as 32-bit integer data.

NOTE: “a64” is the same as “long long”, but the compiler allocates “a64” variables to accumulators ($ac0, $ac1, 
$ac2, $ac3) ready to be operated on relevant DSP-R2 instructions.

The list of all intrinsics can be found in the MIPS32 DSP-R2 Intrinsics, and Section 13.7.9 will introduce each 
MIPS32 DSP-R2 intrinsic. Programmers should be familiar with the semantics of all MIPS32 DSP-R2 instructions so 
that the corresponding intrinsic can be used appropriately in C programs to achieve better performance.

One example of an intrinsic for the ADDQ.PH instruction is “v2q15 __builtin_mips_addq_ph (v2q15, v2q15).” Two 
v2q15 variables are required to be passed to “__builtin_mips_addq_ph” and one v2q15 variable is needed to receive 
the returned result from this intrinsic. The following C code demonstrates the usage of “__builtin_mips_addq_ph”.

Ex:
v2q15 test5 ()
{
  v2q15 a, b, c;
  a = (v2q15) {0.12 * 32768.0, 0.34 * 32768.0};
  b = (v2q15) {0.56 * 32768.0, 0.78 * 32768.0};
  c = __builtin_mips_addq_ph (a, b);
  return c;
}

# Generated Assembly
        .file   1 "test5.c"
        .section .mdebug.abi32
        .previous
        .section        .rodata.cst4,"aM",@progbits,4
        .align  2
.LC0:
        .half   3921
        .half   11141
        .align  2
.LC1:
        .half   18299
        .half   25559
        .text
        .align  2
        .align  3
        .globl  test5
        .set    nomips16
        .ent    test5
test5:
        .frame  $sp,0,$31               # vars= 0, regs= 0/0, args= 0, gp= 0
        .mask   0x00000000,0
        .fmask  0x00000000,0
        .set    noreorder
        .set    nomacro

        lui     $5,%hi(.LC0)
        lui     $4,%hi(.LC1)
        lw      $2,%lo(.LC0)($5)
        lw      $3,%lo(.LC1)($4)
        j       $31
        addq.ph $2,$2,$3
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        .set    macro
        .set    reorder
        .end    test5
        .ident  "GCC: (GNU) 3.4.4 mipssde-6.03.00-20051020"

13.7.8 Compiler Usage and the DSPControl Register

The MIPS32 DSP-R2 ASE includes a new DSP control register that has six fields as described in Section 
13.4.2 “DSP-R2 ASE Control Register”. These fields are:

• CCOND (condition code bits)

• OUFLAG (overflow/underflow bits)

• EFI (extract fail indicator bit)

• C (carry bit)

• SCOUNT (size count bits)

• POS (position bits). 

The compiler treats the SCOUNT and POS fields as global variables, such that instructions that modify SCOUNT or 
POS are never optimized away. These instructions include WRDSP, EXTPDP, EXTPDPV, and MTHLIP. A function 
call that jumps to a function containing WRDSP, EXTPDP, EXTPDPV, or MTHLIP is also never deleted by the 
compiler.

For correctness, programmers must assume that a function call clobbers all fields of the DSP control register. That is, 
programmers cannot depend on the values in CCOND, OUFLAG, EFI or C across a function-call boundary. They 
must re-initialize the values of CCOND, OUFLAG, EFI or C before using them. Note that because SCOUNT and 
POS fields are treated as global variables, the values of SCOUNT and POS are always valid across function-call 
boundaries and can be used without re-initialization.

The following example shows possibly incorrect code. The first intrinsic “__builtin_mips_addsc” sets the carry bit 
(C) in the DSP control register, and the second intrinsic “__builtin_mips_addwc” reads the carry bit (C) from the DSP 
control register. However, a function call “func” inserted between “__builtin_mips_addsc” and 
“__builtin_mips_addwc” may change the carry bit to affect the correct result of “__builtin_mips_addwc”.

Ex:
int test6 (int a, int b, int c, int d)
{
  __builtin_mips_addsc (a, b);
  func();
  return __builtin_mips_addwc (c, d);
}

The previous example may be corrected by moving “func” before the first intrinsic or after the second intrinsic as fol-
lows.

Ex:
int test7 (int a, int b, int c, int d)
{
  func();
  __builtin_mips_addsc (a, b);
  return __builtin_mips_addwc (c, d);
}
/* ---------------------------------------------------------- */
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int test8 (int a, int b, int c, int d)
{
  int i;
  __builtin_mips_addsc (a, b);
  i = __builtin_mips_addwc (c, d);
  func();
  return i;
}

13.7.9 C-Based Intrinsics for the MIPS32® DSP-R2 ASE

This section provides a basic introduction to all the intrinsics supported for the MIPS32 DSP-R2 ASE. The intrinsics 
are illustrated using examples, and some usage tips are provided as well. They are categorized by function and data 
size type as follows:

• Intrinsics to access and use the DSPControl register

• Intrinsics for signed and unsigned 8-bit integers

• Intrinsics for Q15 data

• Intrinsics for Q31 data

• Intrinsics for mixed data types of 8-bit integers and Q15/16-bit integers

• Intrinsics for mixed data types of Q15 and Q31

• Intrinsics for 64-bit accumulators

• Intrinsics for 32-bit integers

• Intrinsics for 16-bit integers

• Intrinsics for mixed data types of 16-bit integers and 32-bit integers

13.7.9.1 Intrinsics for Instructions that Access and Use the DSPControl Register

Read/Write the DSPControl Register

i32 __builtin_mips_rddsp (imm0_63);
void __builtin_mips_wrdsp (i32, imm0_63);

The immediate parameter, imm0_63 used in the two intrinsics here is a mask value used to specify which fields of the 
DSPControl register should be read or written respectively. The correspondence of the specific bits of the mask to 
specific fields in the DSPControl register is shown in Figure 13.3. As shown, bit 0 of imm0_63 is for the POS field, 
bit 1 of imm0_63 is for the SCOUNT field, bit 2 of imm0_63 is for the C field, bit 3 of imm0_63 is for the OUFLAG, 
bit 4 of imm0_63 is for the CCOND flag, and bit 5 of imm0_63 is for the EFI field. For example, to read the 
SCOUNT field, imm0_63 must be set to 2. To read all fields, imm0_63 must be set to 63 (1 + 2 + 4 + 8 + 16 + 32).

Ex:
int the_scount = (__builtin_mips_rddsp (2)) >> 7; // Read SCOUNT
int all_fields = __builtin_mips_rddsp (63); // Read all fields
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To write the DSPControl register, programmers must pass a 32-bit integer as the first parameter to 
“__builtin_mips_wrdsp”, as well as the imm0_63 mask value that determines which fields are to be updated. The first 
parameter should be a 32-bit value that mimics the format of the DSPControl register fields. Then, based on the mask 
value, the corresponding fields will be copied from this 32-bit value to the DSPControl register. For example, to set 
the SCOUNT field to 63, (63<<7) is passed as the first parameter and second parameter imm0_63 must be 2 so that 
an update of the SCOUNT field is done to the value 63 from the first input. To update all bits of all fields to 1, the first 
parameter can be 0xFFFFFFFF with a second parameter value of 63.

Ex:
__builtin_mips_wrdsp (63<<7, 2); // Update SCOUNT to 63
__builtin_mips_wrdsp (0xFFFFFFFF, 63); // Update all bits of fields to 1

Figure 13.3 Mask Value to Access the MIPS32 DSPControl Register

Branch on Greater Than or Equal to 32 in POS

i32 __builtin_mips_bposge32 ();

This intrinsic returns 1 if the value of the POS field is greater than or equal to 32. Otherwise, the intrinsic returns 0. 
Programmers can use “__builtin_mips_bposge32” inside a condition test, and the compiler will optimize the code to 
generate the “bposge32” instruction as follows.

Ex:
void test9 ()
{
if (__builtin_mips_bposge32())
  result_is_true();
else
  result_is_false();
}
# Generated Assembly
test9:
        .set    noreorder
        .set    nomacro
        bposge32        .L3
        nop
        j       result_is_false
        nop
        .align  3
.L3:
        j       result_is_true
        nop

13.7.9.2 Using Intrinsics for Signed and Unsigned 8-bit Integers

This section introduces intrinsics that operate on signed and unsigned 8-bit integers in register SIMD fashion by using 
a “v4i8” data type. If the programmer wants to perform an operation such as add on a single 8-bit item, then these 
intrinsics can still be used by ignoring the other three un-used elements inside the “v4i8” variable. Each set of intrin-
sics for operations are listed below, with simple examples of their usage.

Bit 31              28 27                24 23                                  16   15   14   13   12                    7   6     5                     0
          0                  CCOND                    OUFLAG              0    EFI  C     SCOUNT           0             POS

IMM0_63 =>                  16                              8                              32      4             2                                     1 
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Unsigned Add/Subtract with Optional Saturation

v4i8 __builtin_mips_addu_qb (v4i8, v4i8);
v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8);
v4i8 __builtin_mips_subu_qb (v4i8, v4i8);
v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8);
#---------------------------------------------------------------------------
Ex:
v4i8 a = {1, 2, 3, 0xFF};
v4i8 b = {2, 4, 6, 8};
v4i8 r1, r2, r3, r4;
r1 = __builtin_mips_addu_qb (a, b);   // r1 will be {3, 6, 9, 7}
r2 = __builtin_mips_addu_s_qb (a, b); // r2 will be {3, 6, 9, 0xFF}
r3 = __builtin_mips_subu_qb (a, b);   // r3 will be {0xFF, 0xFE, 0xFD, 0xF7}
r4 = __builtin_mips_subu_s_qb (a, b); // r4 will be {0, 0, 0, 0xF7}

Unsigned Reduction Add

i32 __builtin_mips_raddu_w_qb (v4i8);
#---------------------------------------------------------------------------
Ex:
v4i8 a = {1, 2, 3, 4};
int sum = __builtin_mips_raddu_w_qb (a); // sum will be 1 + 2 + 3 + 4 = 10

Shift Left/Right Logical

v4i8 __builtin_mips_shll_qb (v4i8, imm0_7);
v4i8 __builtin_mips_shll_qb (v4i8, i32);
v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7);
v4i8 __builtin_mips_shrl_qb (v4i8, i32);
#---------------------------------------------------------------------------
Ex:
v4i8 a = {1, 2, 3, 4};
v4i8 b = {128, 64, 32, 16};
v4i8 r1, r2, r3, r4;
int shift_amount = 2;
r1 = __builtin_mips_shll_qb (a, 1); // r1 will be {2, 4, 6, 8}
r2 = __builtin_mips_shll_qb (a, shift_amount); // r2 will be {4, 8, 12, 16}
r3 = __builtin_mips_shrl_qb (b, 3); // r3 will be {16, 8, 4, 2}
r4 = __builtin_mips_shrl_qb (b, shift_amount); // r4 will be {32, 16, 8, 4}

Dot Product with Accumulate/Subtract

a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8);
a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8);
a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8);
a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8);

NOTES: 
1. The result will be a 64-bit integer.
2. The processor endianness of the data affects the format of the result. 
3. Using the same “a64” variable for both the target and the first parameter could result in better performance.
#---------------------------------------------------------------------------
Ex: /* Assume a big-endian CPU */
v4i8 a = {1, 2, 3, 4};
v4i8 b = {4, 5, 6, 7};
a64 ac1, ac2, ac3, ac4;
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ac1 = ac2 = ac3 = ac4 = 0;
ac1 = __builtin_mips_dpau_h_qbl (ac1, a, b); // ac1 will be 0 + 1*4 + 2*5 = 14
ac2 = __builtin_mips_dpau_h_qbr (ac2, a, b); // ac2 will be 0 + 3*6 + 4*7 = 46
ac3 = __builtin_mips_dpsu_h_qbl (ac3, a, b); // ac3 will be 0 - (1*4 + 2*5) = -14
ac4 = __builtin_mips_dpsu_h_qbr (ac4, a, b); // ac4 will be 0 - (3*6 + 4*7) = -46

Replicate a Fixed Byte Value into SIMD Elements

v4i8 __builtin_mips_repl_qb (imm0_255);
v4i8 __builtin_mips_repl_qb (i32);
#---------------------------------------------------------------------------
Ex:
v4i8 a, b;
int value = 100;
a = __builtin_mips_repl_qb (10); // a will be {10, 10, 10, 10}
b = __builtin_mips_repl_qb (value); // b will be {100, 100, 100, 100}

Compare Unsigned

void __builtin_mips_cmpu_eq_qb (v4i8, v4i8);
void __builtin_mips_cmpu_lt_qb (v4i8, v4i8);
void __builtin_mips_cmpu_le_qb (v4i8, v4i8);
i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8);
i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8);
i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8);
i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8); // DSPR2
i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8); // DSPR2
i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8); // DSPR2

Note that the first three intrinsics update the condition code bits of the DSPControl register, but the middle three 
intrinsics write the condition code bits to a specified general purpose register. The last three intrinsics do the 
both.
#---------------------------------------------------------------------------
Ex: /* Assume a big-endian CPU */
v4i8 a = {1, 4, 10, 8};
v4i8 b = {1, 2, 100, 8};
int r1, r2, r3;
__builtin_mips_cmpu_eq_qb (a, b); // CCOND bits will be 9 (= 1001b)
__builtin_mips_cmpu_lt_qb (a, b); // CCOND bits will be 2 (= 0010b)
__builtin_mips_cmpu_le_qb (a, b); // CCOND bits will be 11 (= 1011b)
r1 = __builtin_mips_cmpgu_eq_qb (a, b); // r1 will be 9
r2 = __builtin_mips_cmpgu_lt_qb (a, b); // r2 will be 2
r3 = __builtin_mips_cmpgu_le_qb (a, b); // r3 will be 11
r1 = __builtin_mips_cmpgdu_eq_qb (a, b); // Both CCOND bits and r1 will be 9
r2 = __builtin_mips_cmpgdu_lt_qb (a, b); // Both CCOND bits and r2 will be 2
r3 = __builtin_mips_cmpgdu_le_qb (a, b); // Both CCOND bits and r3 will be 11

Pick Based on Condition Code Bits

v4i8 __builtin_mips_pick_qb (v4i8, v4i8);

Note that this intrinsic is usually used together with the first three compare intrinsics in Section .
#---------------------------------------------------------------------------
Ex:
v4i8 a = {1, 4, 10, 8};
v4i8 b = {1, 2, 100, 8};
v4i8 r;
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__builtin_mips_cmpu_eq_qb (a, b); // CCOND bits will be 9 (= 1001b)
r = __builtin_mips_pick_qb (a, b); // r will be {1, 2, 100, 8}

Find Absolute Value

v4i8 __builtin_mips_absq_s_qb (v4i8); // DSPR2
#---------------------------------------------------------------------------
Ex:
v4i8 a = {-1, -128, 1, 127};
v4i8 r;
r = __builtin_mips_absq_s_qb (a); // r will be {1, 127, 1, 127}
/* Note that the absolute value of -128 is 128 that is represented by the maximum 
value as 127. */

Unsigned Add and Right Shift to Halve Results with Optional Rounding

v4i8 __builtin_mips_adduh_qb (v4i8, v4i8); // DSPR2
v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8); // DSPR2
#---------------------------------------------------------------------------
Ex:
v4i8 a = {1, 2, 3, 4};
v4i8 b = {0x80, 0x80, 0x80, 0x80};
v4i8 r1, r2;
r1 = __builtin_mips_adduh_qb (a, b); // r1 will be {0x40, 0x41, 0x41, 0x42}
r2 = __builtin_mips_adduh_r_qb (a, b); // r2 will be {0x41, 0x41, 0x44, 0x42}

Shift Right Arithmetic with Optional Rounding

  v4i8 __builtin_mips_shra_qb (v4i8, imm0_7); // DSPR2
  v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7); // DSPR2
  v4i8 __builtin_mips_shra_qb (v4i8, i32); // DSPR2
  v4i8 __builtin_mips_shra_r_qb (v4i8, i32); // DSPR2
#---------------------------------------------------------------------------
Ex:
v4i8 a = {0x40, 0x20, 0x10, 0x0F};
v4i8 r1, r2, r3, r4;
int shift_amount = 2;
r1 = __builtin_mips_shra_qb (a, 2); // r1 will be {0x10, 0x08, 0x04, 0x3}
r2 = __builtin_mips_shra_r_qb (a, 2); // r2 will be {0x10, 0x08, 0x04, 0x4}
r3 = __builtin_mips_shra_qb (a, shift_amount); // r3 will be {0x10, 0x08, 0x04, 0x3}
r4 = __builtin_mips_shra_r_qb (a, shift_amount); // r4 will be {0x10, 0x08, 0x04, 0x4}

Unsigned Subtract and Right Shift to Halve Results with Optional Rounding

v4i8 __builtin_mips_subuh_qb (v4i8, v4i8); // DSPR2
v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8); // DSPR2
#---------------------------------------------------------------------------
Ex:
v4i8 a = {0x80, 0x80, 0x80, 0x80};
v4i8 b = {1, 2, 3, 4};
v4i8 r1, r2;
r1 = __builtin_mips_subuh_qb (a, b); // r1 will be {0x3F, 0x3F, 0x3E, 0x3E}
r2 = __builtin_mips_subuh_r_qb (a, b); // r2 will be {0x40, 0x3F, 0x3F, 0x3E}
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13.7.9.3 Using Intrinsics for Q15 Data Type

This section introduces intrinsics that operate on Q15 data present in register SIMD fashion by using a “v2q15” data 
type. If the programmer wants to perform the specified operation on a single data in the register, then these intrinsics 
can still be used while ignoring the other element inside the “v2q15” variable.

Add/Subtract with Optional Saturation

v2q15 __builtin_mips_addq_ph (v2q15, v2q15);
v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15);
v2q15 __builtin_mips_subq_ph (v2q15, v2q15);
v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15);
#---------------------------------------------------------------------------
Ex:
v2q15 a = {0x0000, 0x8000};
v2q15 b = {0x8000, 0x8000};
v2q15 r1, r2, r3, r4;
r1 = __builtin_mips_addq_ph (a, b); // r1 will be {0x8000, 0x0000}
r2 = __builtin_mips_addq_s_ph (a, b); // r2 will be {0x8000, 0x8000}
r3 = __builtin_mips_subq_ph (a, b); // r3 will be {0x8000, 0x0000}
r4 = __builtin_mips_subq_s_ph (a, b); // r4 will be {0x7FFF, 0x0000}

Find Absolute Value

v2q15 __builtin_mips_absq_s_ph (v2q15);
#---------------------------------------------------------------------------
Ex:
v2q15 a = {0xFFFF, 0x8000};
v2q15 r;
r = __builtin_mips_absq_s_ph (a); // r will be {0x0001, 0x7FFF}
/* Note that the value of 0x8000 is -1 in Q15.  The absolute value of -1 is 1 that 
is represented by the maximum value as 0x7FFF in Q15.  */

Shift Left Logical with Optional Saturation

v2q15 __builtin_mips_shll_ph (v2q15, imm0_15);
v2q15 __builtin_mips_shll_ph (v2q15, i32);
v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15);
v2q15 __builtin_mips_shll_s_ph (v2q15, i32);
#---------------------------------------------------------------------------
Ex:
v2q15 a = {0x0001, 0x8000};
v2q15 r1, r2, r3, r4;
int shift_amount = 2;
r1 = __builtin_mips_shll_ph (a, 1); // r1 will be {0x0002, 0x0000}
r2 = __builtin_mips_shll_ph (a, shift_amount); // r2 will be {0x0004, 0x0000}
r3 = __builtin_mips_shll_s_ph (a, 1); // r3 will be {0x0002, 0x8000}
r4 = __builtin_mips_shll_s_ph (a, shift_amount); // r4 will be {0x0004, 0x8000}

Shift Right Arithmetic with Optional Rounding

v2q15 __builtin_mips_shra_ph (v2q15, imm0_15);
v2q15 __builtin_mips_shra_ph (v2q15, i32);
v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15);
v2q15 __builtin_mips_shra_r_ph (v2q15, i32);
#---------------------------------------------------------------------------
Ex:
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v2q15 a = {0x7FFF, 0x8000};
v2q15 r1, r2, r3, r4;
int shift_amount = 2;
r1 = __builtin_mips_shra_ph (a, 1); // r1 will be {0x3FFF, 0xC000}
r2 = __builtin_mips_shra_ph (a, shift_amount); // r2 will be {0x1FFF, 0xE000}
r3 = __builtin_mips_shra_r_ph (a, 1); // r3 will be {0x4000, 0xC000}
r4 = __builtin_mips_shra_r_ph (a, shift_amount); // r4 will be {0x2000, 0xE000}

Multiply with Rounding and Saturation (Q15 x Q15 => Q15)

v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15);
#---------------------------------------------------------------------------
Ex:
v2q15 a = {0x7FFF, 0x8000};
v2q15 b = {0x7FFF, 0x8000};
v2q15 r;
r = __builtin_mips_mulq_rs_ph (a, b); // r will be {0x7FFE, 0x7FFF}

Dot Product with Accumulate/Subtract (Q15 x Q15 => Q32.31)

a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15);
a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15);

NOTES: 
1. The result will be in the Q32.31 format.
2. Using the same “a64” variable for the target and the first parameter could lead to better performance.
#---------------------------------------------------------------------------
Ex:
v2q15 a = {0x0001, 0x8000};
v2q15 b = {0x0002, 0x8000};
a64 ac1, ac2;
ac1 = ac2 = 0;
ac1 = __builtin_mips_dpaq_s_w_ph (ac1, a, b); // ac1 will be 0 + (1*2)<<1 +
                                              // 0x7FFFFFFF = 0x0000000080000003
ac2 = __builtin_mips_dpsq_s_w_ph (ac2, a, b); // ac2 will be 0 - (1*2)<<1 -
                                              // 0x7FFFFFFF = 0xFFFFFFFF7FFFFFFD

Multiply and Subtract and Accumulate (Q15 x Q15 => Q32.31)

a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15);

NOTES: 
1. The result will be in the Q32.31 format.
2. The processor endianness affects the format of the result.
3. Using the same “a64” variable for the target and the first parameter could lead to better performance.
#---------------------------------------------------------------------------
Ex: /* Assume a big-endian CPU */
v2q15 a = {0x0001, 0x8000};
v2q15 b = {0x0002, 0x8000};
a64 ac1 = 0;
ac1 = __builtin_mips_mulsaq_s_w_ph (ac1, a, b); // ac1 will be 0 + (1*2)<<1 -
                                                // 0x7FFFFFFF = 0xFFFFFFFF80000005

Multiply with Accumulate a Single Element (Q15 x Q15 => Q31)

a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15);
a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15);
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a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15);
a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15);

NOTES: 
1. The result will be in the Q31 format.
2. The processor endianness affects the format of the result. 
3. Using the same “a64” variable for the target and the first parameter could lead to better performance.
#---------------------------------------------------------------------------
Ex: /* Assume a big-endian CPU */
v2q15 a = {0x0001, 0x8000};
v2q15 b = {0x0002, 0x8000};
a64 ac1, ac2, ac3, ac4;
ac1 = ac2 = 0;
ac3 = ac4 = 0x7FFFFFF0;
ac1 = __builtin_mips_maq_s_w_phl (ac1, a, b); // ac1 will be 0 + (1*2)<<1 =
                                              // 0x4
ac2 = __builtin_mips_maq_s_w_phr (ac2, a, b); // ac2 will be 0 + 0x7FFFFFFF =
                                              // 0x7FFFFFFF
ac3 = __builtin_mips_maq_sa_w_phl (ac3, a, b); // ac3 will be 0x7FFFFFF0 +
                                               // (1*2)<<1 = 0x7FFFFFF4
ac4 = __builtin_mips_maq_sa_w_phr (ac4, a, b); // ac4 will be 0x7FFFFFF0 +
                                               // 0x7FFFFFFF = 0x7FFFFFFF

Multiply Vector Fractional Left/Right Half-Words to Expanded Width Product with Saturation 
(Q15 x Q15 => Q31)

q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15);
q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15);

NOTES: 
1. The result will be in the Q31 format.
2. The processor endianness affects the format of the result.
#---------------------------------------------------------------------------
Ex: /* Assume a big-endian CPU */
v2q15 a = {0x1234, 0x8000};
v2q15 a = {0x5678, 0x8000};
q31 r1, r2;
r1 = __builtin_mips_muleq_s_w_phl (a, b); // r1 will be 0x0C4C00C0
r2 = __builtin_mips_muleq_s_w_phr (a, b); // r2 will be 0x7FFFFFFF

Replicate a Fixed Half-word into Elements

v2q15 __builtin_mips_repl_ph (imm_n512_511);
v2q15 __builtin_mips_repl_ph (i32);

Note that for the immediate version, imm_n512_511 will be sign-extended to a 16-bit value and replicated into 
each SIMD element.
#---------------------------------------------------------------------------
Ex:
v2q15 r1, r2;
int value = 0x1234;
r1 = __builtin_mips_repl_ph (-512); // r1 will be {0xFE00, 0xFE00};
r2 = __builtin_mips_repl_ph (value); // r2 will be {0x1234, 0x1234};
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Compare

void __builtin_mips_cmp_eq_ph (v2q15, v2q15);
void __builtin_mips_cmp_lt_ph (v2q15, v2q15);
void __builtin_mips_cmp_le_ph (v2q15, v2q15);
Ex:
v2q15 a = {0x1111, 0x1234};
v2q15 b = {0x4444, 0x1234};
__builtin_mips_cmp_eq_ph (a, b); // CCOND bits will be 1 (= 01b)
__builtin_mips_cmp_lt_ph (a, b); // CCOND bits will be 2 (= 10b)
__builtin_mips_cmp_le_ph (a, b); // CCOND bits will be 3 (= 11b)

Pick Based on Condition Code Bits

v2q15 __builtin_mips_pick_ph (v2q15, v2q15);

Note that this intrinsic is usually used together with the compare intrinsics in Section .
#---------------------------------------------------------------------------
Ex:
v2q15 a = {0x1111, 0x1234};
v2q15 b = {0x4444, 0x1234};
v2q15 r;
__builtin_mips_cmp_eq_ph (a, b); // CCOND bits will be 1 (= 01b)
r = __builtin_mips_pick_ph (a, b); // r will be {0x4444, 0x1234}

Pack from the Right and Left

v2q15 __builtin_mips_packrl_ph (v2q15, v2q15);

Note that the endianness affects the result.
#---------------------------------------------------------------------------
Ex: /* Assume a big-endian CPU */
v2q15 a = {0x1111, 0x2222};
v2q15 b = {0x3333, 0x4444};
v2q15 r;
r = __builtin_mips_packrl_ph (a, b); // r will be {0x2222, 0x3333}

Multiply with Saturation (Q15 x Q15 => Q15)

v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15); // DSPR2
#---------------------------------------------------------------------------
Ex:
v2q15 a = {0x7FFF, 0x8000};
v2q15 b = {0x7FFF, 0x8000};
v2q15 r;
r = __builtin_mips_mulq_s_ph (a, b); // r will be {0x7FFE, 0x7FFF}

Add and Right Shift to Halve Results with Optional Rounding

v2q15 __builtin_mips_addqh_ph (v2q15, v2q15); // DSPR2
v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15); // DSPR2
#---------------------------------------------------------------------------
Ex:
v2q15 a = {0x1000, 0x1000};
v2q15 b = {0x1001, 0x1000};
v2q15 r1, r2;
r1 = __builtin_mips_addqh_ph (a, b); // r1 will be {0x1000, 0x1000}
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r2 = __builtin_mips_addqh_r_ph (a, b); // r1 will be {0x1001, 0x1000}

Subtract and Right Shift to Halve Results with Optional Rounding

v2q15 __builtin_mips_subqh_ph (v2q15, v2q15); // DSPR2
v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15); // DSPR2
#---------------------------------------------------------------------------
Ex:
v2q15 a = {0x1000, 0x1000};
v2q15 b = {0x1001, 0x1000};
v2q15 r1, r2;
r1 = __builtin_mips_subqh_ph (a, b); // r1 will be {0xFFFF, 0x0000}
r2 = __builtin_mips_subqh_r_ph (a, b); // r1 will be {0x0000, 0x0000}

Cross Dot Product with Accumulate/Subtract (Q15 x Q15 => Q32.31)

a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15); // DSPR2
a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15); // DSPR2
a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15); // DSPR2
a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15); // DSPR2

NOTES:
1. The result will be in the Q32.31 format.
2. Using the same “a64” variable for the target and the first parameter could lead to better performance.
#---------------------------------------------------------------------------
Ex:
v2q15 a = {0x0002, 0x8000};
v2q15 b = {0x8000, 0x0003};
a64 ac1, ac2, ac3, ac4;
ac1 = ac2 = ac3 = ac4 = 0;
ac1 = __builtin_mips_dpaqx_s_w_ph (ac1, a, b);  // ac1 will be

  //  0 + (2*3)<<1 + 0x7FFFFFFF
                                                  // = 0x000000008000000B
ac2 = __builtin_mips_dpaqx_sa_w_ph (ac2, a, b); // ac2 will be saturated to

 // 0x000000007FFFFFFF
ac3 = __builtin_mips_dpsqx_s_w_ph (ac3, a, b); // ac3 will be 

// 0 - (2*3)<<1 - 0x7FFFFFFF
                                               // = 0xFFFFFFFF7FFFFFF5
ac4 = __builtin_mips_dpsqx_sa_w_ph (ac4, a, b); // ac4 will be saturated

 // to 0xFFFFFFFF80000000

13.7.9.4 Using Intrinsics for Q31 Data Type

Add/Subtract with Saturation

q31 __builtin_mips_addq_s_w (q31, q31);
q31 __builtin_mips_subq_s_w (q31, q31);
#---------------------------------------------------------------------------
Ex:
q31 a = 0x12345678;
q31 b = 0x7FFFFFFF;
q31 r1, r2;
r1 = __builtin_mips_addq_s_w (a, b); // r1 will be 0x7FFFFFFF
r2 = __builtin_mips_subq_s_w (a, b); // r2 will be 0x92345679 
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Find Absolute Value

q31 __builtin_mips_absq_s_w (q31);
#---------------------------------------------------------------------------
Ex:
q31 a = 0x80000000;
q31 r;
r = __builtin_mips_absq_s_w (a); // r will be 0x7FFFFFFF
/* Note that the value of 0x80000000 is -1 in Q31.  The absolute value of -1 is 1 
that is represented by the maximum value as 0x7FFFFFFF in Q31.  */

Shift Left Logical with Saturation

q31 __builtin_mips_shll_s_w (q31, imm0_31);
q31 __builtin_mips_shll_s_w (q31, i32);
#---------------------------------------------------------------------------
Ex:
q31 a = 0x70000000;
q31 r1, r2;
int shift_amount = 2;
r1 = __builtin_mips_shll_s_w (a, 1); // r1 will be 0x7FFFFFFF
r2 = __builtin_mips_shll_s_w (a, shift_amount); // r2 will be 0x7FFFFFFF

Shift Right Arithmetic with Rounding

q31 __builtin_mips_shra_r_w (q31, imm0_31);
q31 __builtin_mips_shra_r_w (q31, i32);
#---------------------------------------------------------------------------
Ex:
q31 a = 0x7FFFFFFF;
q31 r1, r2;
int shift_amount = 2;
r1 = __builtin_mips_shra_r_w (a, 1); // r1 will be 0x40000000
r2 = __builtin_mips_shra_r_w (a, shift_amount); // r2 will be 0x20000000

Dot Product with Accumulate/Subtract (Q31 x Q31 => Q63)

a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31);
a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31);

NOTES: 
1.The result will be in the Q63 format.
2. Using the same “a64” variable for the target and the first parameter could lead to better performance.
#---------------------------------------------------------------------------
Ex:
q31 a = 0x80000000;
q31 b = 0x80000000;
a64 ac1, ac2;
ac1 = ac2 = 1;
ac1 = __builtin_mips_dpaq_sa_l_w (ac1, a, b); // ac1 will be 0x7FFFFFFFFFFFFFFF
ac2 = __builtin_mips_dpaq_sa_l_w (ac2, a, b); // ac2 will be 0x8000000000000002

Multiply with Rounding and Saturation (Q31 x Q31 => Q31)

q31 __builtin_mips_mulq_rs_w (q31, q31); // DSPR2
#---------------------------------------------------------------------------
Ex:
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q31 a = 0x7FFFFFFF;
q31 b = 0x00000001;
q31 r;
r = __builtin_mips_mulq_rs_w (a, b); // r will be 0x00000001

Multiply with Saturation (Q31 x Q31 => Q31)

q31 __builtin_mips_mulq_s_w (q31, q31); // DSPR2
#---------------------------------------------------------------------------
Ex:
q31 a = 0x80000000;
q31 b = 0x00000001;
q31 r;
r = __builtin_mips_mulq_s_w (a, b); // r will be 0x00000000

Add and Right Shift to Halve Results with Optional Rounding

q31 __builtin_mips_addqh_w (q31, q31); // DSPR2
q31 __builtin_mips_addqh_r_w (q31, q31); // DSPR2
#---------------------------------------------------------------------------
Ex:
q31 a = 0x10000000;
q31 b = 0x10000001;
q31 r1, r2;
r1 = __builtin_mips_addqh_w (a, b); // r1 will be 0x10000000
r2 = __builtin_mips_addqh_r_w (a, b); // r2 will be 0x10000001

Subtract and Right Shift to Halve Results with Optional Rounding

q31 __builtin_mips_subqh_w (q31, q31); // DSPR2
q31 __builtin_mips_subqh_r_w (q31, q31); // DSPR2
#---------------------------------------------------------------------------
Ex:
q31 a = 0x10000000;
q31 b = 0x10000001;
q31 r1, r2;
r1 = __builtin_mips_subqh_w (a, b); // r1 will be 0xFFFFFFFF
r2 = __builtin_mips_subqh_r_w (a, b); // r2 will be 0x00000000

13.7.9.5 Using Intrinsics for Mixed Data Types: 8-bit Integers and Q15/16-bit Integers

Precision Reduce Four Fractional Half-words to Four Bytes

v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15);

Note that the processor endianness affects the format of the result.
#---------------------------------------------------------------------------
Ex: /* Assume a big-endian CPU */
v2q15 a = {0x1234, 0x5678};
v2q15 b = {0x1111, 0x2222};
v4i8 r;
r = __builtin_mips_precrq_qb_ph (a, b); // r will be {0x12, 0x56, 0x11, 0x22}

Precision Reduce Unsigned Four Fractional Half-words to Four Bytes with Saturation

v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15);
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Note that the processor endianness affects the format of the result.
#---------------------------------------------------------------------------
Ex: /* Assume a big-endian CPU */
v2q15 a = {0x7F79, 0xFFFF};
v2q15 b = {0x7F81, 0x2000};
v4i8 r;
r = __builtin_mips_precrqu_s_qb_ph (a, b); // r will be {0xFE, 0x00, 0xFF, 0x40}

Precision Expand Two Unsigned Bytes to Fractional Half-word Values

v2q15 __builtin_mips_precequ_ph_qbl (v4i8);
v2q15 __builtin_mips_precequ_ph_qbr (v4i8);
v2q15 __builtin_mips_precequ_ph_qbla (v4i8);
v2q15 __builtin_mips_precequ_ph_qbra (v4i8);

Note that the processor endianness affects the format of the result.
#---------------------------------------------------------------------------
Ex: /* Assume a big-endian CPU */
v4i8 a = {0x12, 0x34, 0x56, 0x78};
v2q15 r1, r2, r3, r4;
r1 = __builtin_mips_precequ_ph_qbl (a, b); // r1 will be {0x0900, 0x1A00}
r2 = __builtin_mips_precequ_ph_qbr (a, b); // r2 will be {0x2B00, 0x3C00}
r3 = __builtin_mips_precequ_ph_qbla (a, b); // r3 will be {0x0900, 0x2B00}
r4 = __builtin_mips_precequ_ph_qbra (a, b); // r4 will be {0x1A00, 0x3C00}

Precision Expand Two Unsigned Bytes to Unsigned Integer Half-words

v2q15 __builtin_mips_preceu_ph_qbl (v4i8);
v2q15 __builtin_mips_preceu_ph_qbr (v4i8);
v2q15 __builtin_mips_preceu_ph_qbla (v4i8);
v2q15 __builtin_mips_preceu_ph_qbra (v4i8);

Note that the processor endianness affects the format of the result.
#---------------------------------------------------------------------------
Ex: /* Assume a big-endian CPU */
v4i8 a = {0x12, 0x34, 0x56, 0x78};
v2q15 r1, r2, r3, r4;
r1 = __builtin_mips_preceu_ph_qbl (a, b); // r1 will be {0x0012, 0x0034}
r2 = __builtin_mips_preceu_ph_qbr (a, b); // r2 will be {0x0056, 0x0078}
r3 = __builtin_mips_preceu_ph_qbla (a, b); // r3 will be {0x0012, 0x0056}
r4 = __builtin_mips_preceu_ph_qbra (a, b); // r4 will be {0x0034, 0x0078}

Multiply Unsigned Vector Left/Right Bytes with Half-Words to Half Word Products with Saturation 
(Int8 x Q15 => Q15)

v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15);
v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15);

Note that the processor endianness affects the format of the result.
#---------------------------------------------------------------------------
Ex: /* Assume a big-endian CPU */
v4i8 a = {0x1, 0x3, 0x5, 0x7};
v2q15 b = {0x1234, 0x5678};
v2q15 r1, r2;
r1 = __builtin_mips_muleu_s_ph_qbl (a, b); // r1 will be {0x1234, 0xFFFF}
r2 = __builtin_mips_muleu_s_ph_qbr (a, b); // r2 will be {0x5B04, 0xFFFF}
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Precision Reduce Four Integer Half-words to Four Bytes

v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16); // DSPR2

Note that the processor endianness affects the format of the result.
#---------------------------------------------------------------------------
Ex: /* Assume a big-endian CPU */
v2i16 a = {0x7F79, 0xFFFF};
v2i16 b = {0x7F81, 0x2000};
v4i8 r;
r = __builtin_mips_precr_qb_ph (a, b); // r will be {0x79, 0xFF, 0x81, 0x00}

13.7.9.6 Using Intrinsics for Mixed Data Types: Q15 and Q31

Precision Reduce Two Fractional Words to Two Half-Words

v2q15 __builtin_mips_precrq_ph_w (q31, q31);
#---------------------------------------------------------------------------
Ex:
q31 a = {0x12345678};
q31 b = {0x11112222};
v2q15 r;
r = __builtin_mips_precrq_ph_w (a, b); // r will be {0x1234, 0x1111}

Precision Reduce Two Fractional Words to Two Half-Words with Rounding and Saturation

v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31);
#---------------------------------------------------------------------------
Ex:
q31 a = {0x7000FFFF};
q31 b = {0x80000000};
v2q15 r;
r = __builtin_mips_precrq_rs_ph_w (a, b); // r will be {0x7001, 0x8000}

Precision Expand a Fractional Half-word to a Fractional Word Value

q31 __builtin_mips_preceq_w_phl (v2q15);
q31 __builtin_mips_preceq_w_phr (v2q15);

Note that the endianness affects the result.
#---------------------------------------------------------------------------
Ex: /* Assume a big-endian CPU */
v2q15 a = {0x1234, 0x5678};
q31 r1, r2;
r1 = __builtin_mips_preceq_w_phl (a, b); // r1 will be 0x12340000
r2 = __builtin_mips_preceq_w_phr (a, b); // r2 will be 0x56780000

13.7.9.7 Using Intrinsics for 64-bit Accumulators

Extract a Value with Right Shift

i32 __builtin_mips_extr_w (a64, imm0_31);
i32 __builtin_mips_extr_w (a64, i32);
i32 __builtin_mips_extr_r_w (a64, imm0_31);
i32 __builtin_mips_extr_r_w (a64, i32);
i32 __builtin_mips_extr_rs_w (a64, imm0_31);
i32 __builtin_mips_extr_rs_w (a64, i32);



 

MIPS32® proAptiv™ Multiprocessing System Software User’s Manual, Revision 01.22 623

#---------------------------------------------------------------------------
Ex:
a64 ac1 = 0x8123456712345678;
i32 shift_amount = 31;
i32 r1, r2, r3, r4, r5, r6;
r1 = __builtin_mips_extr_w (ac1, 1); // r1 will be 0x891A2B3C
r2 = __builtin_mips_extr_w (ac1, shift_amount); // r2 will be 0x02468ACE
r3 = __builtin_mips_extr_r_w (ac1, 4); // r3 will be 0x71234568
r4 = __builtin_mips_extr_r_w (ac1, shift_amount); // r4 will be 0x02468ACE
r5 = __builtin_mips_extr_rs_w (ac1, 4); // r5 will be 0x80000000
r6 = __builtin_mips_extr_rs_w (ac1, shift_amount); // r6 will be 0x80000000

Extract Half-word with Right Shift and Saturate

i32 __builtin_mips_extr_s_h (a64, imm0_31);
i32 __builtin_mips_extr_s_h (a64, i32);

Note that the 16-bit result is sign-extended to a 32-bit result.
#---------------------------------------------------------------------------
Ex:
a64 ac1 = 0xFFFFF81230000000;
i32 shift_amount = 4;
i32 r1, r2;
r1 = __builtin_mips_extr_s_h (ac1, 28); // r1 will be 0xFFFF8123
r2 = __builtin_mips_extr_s_h (ac1, shift_amount); // r2 will be 0xFFFF8000

Extract Bit from an Arbitrary Position

i32 __builtin_mips_extp (a64, imm0_31);
i32 __builtin_mips_extp (a64, i32);

Note that the “imm0_31” + 1 bits between “POS” and “POS” - “imm0_31” are extracted and zero-extended to a 
32-bit result. So, if X bits are extracted, X-1 should be used as the second parameter. The POS field can be set by 
using “__builtin_mips_wrdsp”. 
#---------------------------------------------------------------------------
Ex:
a64 ac1 = 0x1234567887654321;
i32 r1, r2;
int the_size = 3;
__builtin_mips_wrdsp (35, 1); // Write 35 to the POS field
r1 = __builtin_mips_extp (ac1, 31); // r1 will be 0x88765432
r2 = __builtin_mips_extp (ac1, the_size); // r2 will be 0x8

Extract Bit from an Arbitrary Position and Decrement POS

i32 __builtin_mips_extpdp (a64, imm0_31);
i32 __builtin_mips_extpdp (a64, i32);

Note that this intrinsic is the same as the ones in Section , except that in addition, the POS field is decremented 
by the number of extracted bits, “imm0_31” + 1 or “i32” + 1.
#---------------------------------------------------------------------------
Ex:
a64 ac1 = 0x123456789ABCDEF0;
i32 r1, r2;
int the_size = 7;
__builtin_mips_wrdsp (35, 1); // Write 35 to the POS field
r1 = __builtin_mips_extpdp (ac1, 3); // r1 will be 0x8, and POS will be 31
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r2 = __builtin_mips_extpdp (ac1, the_size); // r2 will be 0x9a, and POS will be 23

Shift an Accumulator Value

a64 __builtin_mips_shilo (a64, imm_n32_31);
a64 __builtin_mips_shilo (a64, i32);

Note that using the same a64 variable for the target and the first parameter could lead to better performance.
#---------------------------------------------------------------------------
Ex:
a64 ac1 = 0x1234567887654321;
int shift_amount = -8;
ac1 = __builtin_mips_shilo (ac1, 8); // ac1 will be 0x0012345678876543
ac1 = __builtin_mips_shilo (ac1, shift_amount); // ac1 will be 0x1234567887654300

Copy the LO to HI and a Value to LO and Increment POS by 32

a64 __builtin_mips_mthlip (a64, i32);

Note that using the same a64 variable for the target and the first parameter could lead to better performance.
#---------------------------------------------------------------------------
Ex:
a64 ac1 = 0x1234567887654321;
int b = 0x11112222
__builtin_mips_wrdsp (0, 1); // Write 0 to the POS field
ac1 = __builtin_mips_mthlip (ac1, b); // ac1 will be 0x8765432111112222,
                                      // and POS will be 32

13.7.9.8 Using Intrinsics for 32-bit Integers

Add and Set Carry/Add with Carry

i32 __builtin_mips_addsc (i32, i32);
i32 __builtin_mips_addwc (i32, i32);

Note that these two intrinsics can be used to add two 64-bit operands, each spread across two GPRs. The lower 
32 bits are calculated first, then the carry from this addition is fed to the add of the upper 32 bit values.
#---------------------------------------------------------------------------
Ex:
int i1 = 0;
int i2 = 0xFFFFFFFF;
int j1 = 1;
int j2 = 1;
int r1, r2;
r2 = __builtin_mips_addsc (i2, j2); // r2 will be 0xFFFFFFFF+1 = 0 and C will be 1
r1 = __builtin_mips_addwc (i1, j1); // r1 will be 0 + 1 + 1(C) = 2

Modular Subtraction on an Index Value

i32 __builtin_mips_modsub (i32, i32);

Note that this intrinsic can be used to implement a circular buffer. The first parameter is the current index, that 
will be checked against zero. If the index is zero, the new index will be rolled back to the top of the buffer, 
assigned from the bit 23 to 8 of the second parameter. If the index is not zero, the new index will be decremented 
by the size of the element, assigned from the bit 7 to 0 of the second parameter.
#---------------------------------------------------------------------------
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Ex:
int index = 20;
int element = 0x1402;
while (1)
{
  index = __builtin_mips_modsub (index, element);
}
/* ‘index’ will be 20, 18, 16, ..., 4, 2, 0, 20, 18, 16, ... */

Bit Reverse a Half-word

i32 __builtin_mips_bitrev (i32);
#---------------------------------------------------------------------------
Ex:
int a = 0x1234; // 0001 0010 0011 0100
int r;
r = __builtin_mips_bitrev (a); // r will be 0x2c48 (0010 1100 0100 1000)

Insert Bit Field Variable

i32 __builtin_mips_insv (i32, i32);

Note that using the same variable for the target and the first parameter could lead to better performance. This 
intrinsic inserts the value of the second parameter to the first parameter. The size to be extracted from the second 
parameter is specified in the SCOUNT field. The position to be inserted in the first parameter is specified in the 
POS field.
#---------------------------------------------------------------------------
Ex:
int a = 0x12345678;
int r = 0xFFFFFFFF;
__builtin_mips_wrdsp ((16<<7)+4, 3); // set SCOUNT to 16, and set POS to 4
r = __builtin_mips_insv (r, a); // The lowest 16-bit value of a is inserted to r
                                // at bit 4. r will be 0xFFF5678F.

Load Unsigned Byte/Halfword/Word Indexed

i32 __builtin_mips_lbux (void *, i32);
i32 __builtin_mips_lhx (void *, i32);
i32 __builtin_mips_lwx (void *, i32);

NOTES: 
1, The first parameter is the base of the array, and the second parameter is the offset in byte.
2.The returned value is zero-extended for “__builtin_mips_lbux”, and sign-extended for “__builtin_mips_lhx” 
and “__builtin_mips_lwx” to 32-bit integers.
#---------------------------------------------------------------------------
Ex:
char array_a[100];
short array_b[100];
int array_c[100];
int offset = 20;
int r1, r2, r3;
r1 = __builtin_mips_lbux ((void *)array_a, offset);
r2 = __builtin_mips_lhx ((void *)array_b, offset);
r3 = __builtin_mips_lwx ((void *)array_c, offset);
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Signed Multiply and Add

a64 __builtin_mips_madd (a64, i32, i32);
#---------------------------------------------------------------------------
Ex:
a64 a = 1;
i32 b = 2;
i32 c = -3;
a = __builtin_mips_madd (a, b, c); // a will be 1 + 2 * (-3) = -5

Unsigned Multiply and Add

a64 __builtin_mips_maddu (a64, ui32, ui32);
#---------------------------------------------------------------------------
a64 a = 1;
ui32 b = 2;
ui32 c = 3;
a = __builtin_mips_maddu (a, b, c); // a will be 1 + 2 * 3 = 7

Signed Multiply and Subtract

a64 __builtin_mips_msub (a64, i32, i32);
#---------------------------------------------------------------------------
Ex:
a64 a = 1;
i32 b = 2;
i32 c = -3;
a = __builtin_mips_msub (a, b, c); // a will be 1 - 2 * (-3) = 7

Unsigned Multiply and Subtract

a64 __builtin_mips_msubu (a64, ui32, ui32);
#---------------------------------------------------------------------------
Ex:
a64 a = 1;
ui32 b = 2;
ui32 c = 3;
a = __builtin_mips_msubu (a, b, c); // a will be 1 - 2 * 3 = -5

Signed Multiply

a64 __builtin_mips_mult (i32, i32);
#---------------------------------------------------------------------------
a64 a;
i32 b = 2;
i32 c = -3;
a = __builtin_mips_mullt (b, c); // a will be 2 * (-3) = -6

Unsigned Multiply

a64 __builtin_mips_multu (ui32, ui32);
#---------------------------------------------------------------------------
Ex:
a64 a;
u32 b = 2;
u32 c = 3;
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a = __builtin_mips_mulltu (b, c); // a will be 2 * 3 = 6

Left Shift and Append Bits

i32 __builtin_mips_append (i32, i32, imm0_31); // DSPR2
#---------------------------------------------------------------------------
Ex:
i32 a = 0x8765ABCD;
i32 b = 0x12345678;
i32 r;
r = __builtin_mips_append (a, b, 4); // r will be 0x765ABCD8

Byte Align Contents from Two Registers

i32 __builtin_mips_balign (i32, i32, imm0_3); // DSPR2
#---------------------------------------------------------------------------
Ex:
i32 a = 0x8765ABCD;
i32 b = 0x12345678;
i32 r;
r = __builtin_mips_balign (a, b, 3); // r will be 0xCD123456

Right Shift and Prepend Bits

i32 __builtin_mips_prepend (i32, i32, imm0_31); // DSPR2
#---------------------------------------------------------------------------
Ex:
i32 a = 0x8765ABCD;
i32 b = 0x12345678;
i32 r;
r = __builtin_mips_prepend (a, b, 4); // r will be 0x88765ABC

13.7.9.9 Using Intrinsics for 16-bit Integers

Unsigned Add/Subtract with Optional Saturation

v2i16 __builtin_mips_addu_ph (v2i16, v2i16); // DSPR2
v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16); // DSPR2
v2i16 __builtin_mips_subu_ph (v2i16, v2i16); // DSPR2
v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16); // DSPR2
#---------------------------------------------------------------------------
Ex:
v2i16 a = {0x0000, 0x8000};
v2i16 b = {0x8000, 0x8000};
v2i16 r1, r2, r3, r4;
r1 = __builtin_mips_addu_ph (a, b); // r1 will be {0x8000, 0x0000}
r2 = __builtin_mips_addu_s_ph (a, b); // r2 will be {0x8000, 0xFFFF}
r3 = __builtin_mips_subu_ph (a, b); // r3 will be {0x8000, 0x0000}
r4 = __builtin_mips_subu_s_ph (a, b); // r4 will be {0x0000, 0x0000}

Dot Product with Accumulate/Subtract

a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16); // DSPR2
a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16); // DSPR2
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NOTES:
1. The result will be a 64-bit integer.
2. Using the same “a64” variable for both the target and the first parameter could result in better performance.
#---------------------------------------------------------------------------
Ex:
v2i16 a = {0x0001, 0x8000};
v2i16 b = {0x0002, 0x8000};
a64 ac1, ac2;
ac1 = ac2 = 0;
ac1 = __builtin_mips_dpa_w_ph (ac1, a, b); // ac1 will be 0 + 1*2 +
                                           // 0x40000000 = 0x0000000040000002
ac2 = __builtin_mips_dps_w_ph (ac2, a, b); // ac2 will be 0 - 1*2 -
                                           // 0x40000000 = 0xFFFFFFFFBFFFFFFE

Multiply with Optional Saturation

v2i16 __builtin_mips_mul_ph (v2i16, v2i16); // DSPR2
v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16); // DSPR2
#---------------------------------------------------------------------------
Ex:
v2i16 a = {0x7FFF, 0x8000};
v2i16 b = {0x7FFF, 0x8000};
v2i16 r1, r2;
r1 = __builtin_mips_mul_ph (a, b); // r1 will be {0x0001, 0x0000}
r2 = __builtin_mips_mul_s_ph (a, b); // r2 will be {0x7FFF, 0x7FFF}

Multiply and Subtract and Accumulate

a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16); // DSPR2

NOTES:
1. The result will be a 64-bit integer.
2. The processor endianness affects the format of the result.
3. Using the same “a64” variable for the target and the first parameter could lead to better performance.
#---------------------------------------------------------------------------
Ex:
v2i16 a = {0x0001, 0x8000};
v2i16 b = {0x0002, 0x8000};
a64 ac1 = 0;
ac1 = __builtin_mips_mulsa_w_ph (ac1, a, b); // ac1 will be 0 + 1*2 -
                                               // 0x40000000 = 0xFFFFFFFFC0000002

Shift Right Logical

v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15); // DSPR2
v2i16 __builtin_mips_shrl_ph (v2i16, i32); // DSPR2
#---------------------------------------------------------------------------
Ex:
v2i16 a = {0x8000, 0x4000};
v2i16 r1, r2;
int shift_amount = 4;
r1 = __builtin_mips_shrl_ph (a, 4); // r1 will {0x0800, 0x0400};
r2 = __builtin_mips_shrl_ph (a, shift_amount); // r2 will {0x0800, 0x0400};
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Cross Dot Product with Accumulate/Subtract

a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16); // DSPR2
a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16); // DSPR2

NOTES:
1. The result will be a 64-bit integer.
2. Using the same “a64” variable for both the target and the first parameter could result in better performance.
#---------------------------------------------------------------------------
Ex:
v2i16 a = {0x0001, 0x0003};
v2i16 b = {0x0002, 0x0004};
a64 ac1, ac2;
ac1 = ac2 = 0;
ac1 = __builtin_mips_dpax_w_ph (ac1, a, b);  // ac1 will be

 //0 + 1*4 + 2*3 = 0x000000000000000A
ac2 = __builtin_mips_dpsx_w_ph (ac1, a, b); // ac2 will be

    // 0 - 1*4 - 2*3 = 0xFFFFFFFFFFFFFFF6

13.7.9.10 Using Intrinsics for Mixed Data Types: 16-bit and 32-bit Integers

Precision Reduce Two Integer Words to Halfwords After a Right Shift with Optional Rounding

v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31); // DSPR2
v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31); // DSPR2
#---------------------------------------------------------------------------
Ex:
i32 a = 0x80000000;
i32 b = 0x7FFFFFFF;
v2i16 r1, r2;
r1 = __builtin_mips_precr_sra_ph_w (a, b, 4); // r1 will be {0x0000, 0xFFFF}
r2 = __builtin_mips_precr_sra_r_ph_w (a, b, 4); // r2 will be {0x0000, 0x0000}

13.8 Code Optimizations for the MIPS DSP-R2

This section provides information on writing efficient C programs using the MIPS32 DSP-R2 ASE. Note that the 
level of optimization is dependent on the specifics of how the particular GCC compiler works.

Programmers must select proper optimization levels to compile C code to suit their purposes. For example, for maxi-
mum speed: “-O3 -funroll-loops”. For good speed with moderate code sizes: “-O2”. For minimum code sizes: “-Os”. 
Note that, to allow the GCC compiler to efficiently schedule instructions based on the latency information, program-
mers must supply correct architecture and CPU options.

13.8.1 The Use of Intrinsics Versus ASM Macros

The assembler has no knowledge of the pipeline and any code written using ASM macros will be treated as a single 
cycle latency instruction by the GCC compiler. This can lead to poor code scheduling and a lot of stalls in the result-
ing execution. On the other hand, the GCC compiler has knowledge of the pipeline latency of instructions and can 
schedule the DSP-R2 instructions correctly when programmers use intrinsics, that is “__builtin_mips_*”. Hence it is 
important to try to avoid the use of ASM macros whenever possible.
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13.8.2 Using Accumulators

To access only HI or LO of an accumulator, programmers are recommended to use a union type as follows.

typedef union
{
  long long a;   // One 64-bit accumulator
  int b[2];      // 32-bit HI and LO
} a64_union;

Note that CPU endianness affects how to access the accumulator as shown in Figure 13.4. To access HI, b[0] is used 
in a Big Endian CPU, but b[1] is used in a Little Endian CPU. To access LO, b[1] is used in a Big Endian CPU, but 
b[0] is used in a Little Endian CPU.

Ex:
int test10 (long long a, v2q15 b, v2q15 c)
{
  a64_union temp;
  temp.a = __builtin_mips_dpaq_s_w_ph (a, b, c);
  return temp.b[0];  // Assume in a little-endian CPU we want to access LO.
}

# Generated Assembly
test10:

mtlo $4
mthi $5
dpaq_s.w.ph $ac0, $6, $7
j $31
mflo $2

Figure 13.4 Accessing HI and LO of Accumulators 

13.8.3 Multiply “32-bit * 32-bit = 64-bit”

To multiply 32 bits by 32 bits to obtain a 64-bit result, we must cast the 32-bit integer to a 64-bit integer (long long) 
and then perform the multiplication operation as follows.

Ex:
long long test11 (int a, int b)
{
  return (long long) a * b;  // Same as (long long) a * (long long) b
                             // NOT the same as (long long) (a * b)
}

# Generated Assembly
test11:

HI

HI

LO

LO

Big Endian CPU

Little Endian CPU
Bit 63               b[0]                                                        b[1]                            Bit 0

Bit 63               b[1]                                                        b[0]                            Bit 0
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mult    $4,$5
mflo    $2
j       $31
mfhi    $3

Combined with Section 13.8.2 we can multiply 32-bit by 32-bit integers and get the highest 32-bit result from HI as 
follows.

Ex:
int test12 (int a, int b)
{
  a64_union temp;
  temp.a = (long long) a * b;
  return temp.b[1];  // Assume a little-endian CPU
}

# Generated Assembly
test12:

mult    $4,$5
j       $31
mfhi    $2

13.8.4 Multiply and Add “32-bit * 32-bit + 64-bit = 64-bit”

To perform multiplication and addition, we must cast the 32-bit integer to 64-bit (long long) and then perform multi-
plication and addition as follows.

Ex:
long long test13 (int a, int b, long long c)
{
  return c + (long long) a * b;
}

# Generated Assembly
test13:

mtlo $6
mthi $7
madd $4, $5
mflo $2
j $31
mfhi $3

13.8.5 Array Alignment and Data Layout

The GCC compiler provides a mechanism to specify the alignment of variables by using “__attribute__ ((aligned 
(bytes)))”. The alignment is important to loading or storing SIMD variables: “v4i8” and “v2q15”. If an array is 
aligned to a 4-byte boundary, that is, word-aligned, the GCC compiler can load or store four 8-bit data for v4i8 vari-
ables (or two 16-bit data for v2q15 variables) at a time using the load word class of instructions. The following exam-
ple shows that when a char array A is aligned to a 4-byte boundary, we can cast this array to a v4i8 array and load four 
items to a v4i8 variable at a time by using the “lwx” instruction. However, if this char array A is not aligned to a 4-
byte boundary, executing the following code will result in an address exception due to a mis-aligned load.

Ex: /* v4i8 Example */
char A[128] __attribute__ ((aligned (4)));
v4i8 test14 (int i)
{
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  v4i8 a;
  v4i8 *myA = (v4i8 *)A;
  a = myA[i];
  return a;
}
# Generated Assembly
test14:

lui     $2,%hi(A)
sll     $4,$4,2
addiu   $2,$2,%lo(A)
j       $31
lwx     $2,$2($4)

After SIMD data is loaded from memory into a register, it is best if the SIMD variables in the register are ready for 
use without requiring any rearrangement of the data. To avoid such data rearrangement which can reduce the benefit 
of parallelism, programmers must design their arrays with efficient data layout that is favorable for SIMD calcula-
tions.

13.8.6 GP-Relative Addressing

The GCC compiler provides an option “-G num” to put global or static data that is at most “num” bytes to the small 
data or BSS sections. This allows using only one instruction to access data via GP-relative addressing to improve the 
performance. Programmers can try to increase “num” to include more data into small data or BSS sections until these 
sections are full. Note that all ASEs should be compiled with the same “-G num”. The following example shows how 
the GCC compiler accesses a 16-byte array. When compiling the example with “-G 4”, calculating the base address of 
the array “C” needs two instructions: “lui $3,%hi(C)” and “addiu $3,$3,%lo(C)”. But, when compiling with 
“-G 16” to put the whole array of “C” into the small data section, only one instruction “addiu 
$3,$28,%gp_rel(C)” is required to get the base address of “C”.

Ex:
int C[4];
void test15 (int index, int value)
{
  C[index] = value;
}

# Generated Assembly when compiling with -G 4
test15:

lui     $3,%hi(C)
addiu   $3,$3,%lo(C)
sll     $4,$4,2
addu    $4,$4,$3
j       $31
sw      $5,0($4)

# ----------------------------------------------------------

# Generated Assembly when compiling with -G 16
test15:

addiu   $3,$28,%gp_rel(C)
sll     $4,$4,2
addu    $4,$4,$3
j       $31
sw      $5,0($4)
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13.8.7 Fixed Registers and Register Variables

Register usage is defined by the Application Binary Interface (ABI). For example, the ABI defines that some registers 
are caller-saved, some are callee-saved, and a few registers are fixed (or called global) and not saved at all. When 
conforming to the ABI, functions are guaranteed to work with each other.

However, in very special cases where performance may be very critical, programmers may want to improve perfor-
mance by avoiding the saving and restoring of registers and hence violating the ABI convention. This undertaking 
should be taken with caution and not normally recommended as general practice. The GCC compiler allows program-
mers to treat a register as fixed by using the command-line option: “-ffixed-reg” where reg must be the name of a reg-
ister. When a register is fixed, the register allocation process does not touch the fixed register.

For example, the ABI defines that four accumulators ($ac0 - $ac3) are caller-saved registers, but programmers may 
want to dedicate one accumulator, $ac1, for a special purpose. Note that because $ac1is a 64-bit register that consists 
of $ac1hi and $ac1lo, “-ffixed-\$ac1hi -ffixed-\$ac1lo” is specified in the command-line options to fix HI and LO of 
$ac1.

The following example demonstrates that under the original ABI, the GCC compiler register allocator will allocate 
64-bit variables to all accumulators. However, when $ac1 is specified to be fixed, The GCC compiler only allocates 
64-bit variables to $ac0, $ac2, and $ac3.

Ex:
typedef long long a64;
typedef short v2q15 __attribute__ ((vector_size(4)));
void test16 (a64 a[4], v2q15 b[4], v2q15 c[4])
{
  a[0] = __builtin_mips_dpaq_s_w_ph (a[0], b[0], c[0]);
  a[1] = __builtin_mips_dpaq_s_w_ph (a[1], b[1], c[1]);
  a[2] = __builtin_mips_dpaq_s_w_ph (a[2], b[2], c[2]);
  a[3] = __builtin_mips_dpaq_s_w_ph (a[3], b[3], c[3]);
}

# Generated Assembly without using “-ffixed-\$ac1hi --fixed-\$ac1lo”
# Note that $ac0, $ac1, $ac2, and $ac3 are all used.
test16:
        lw      $15,4($4)
        lw      $14,0($4)
        lw      $13,12($4)
        lw      $10,8($4)
        lw      $9,20($4)
        lw      $8,16($4)
        lw      $3,28($4)
        lw      $7,24($4)
        lw      $2,0($6)
        lw      $12,12($5)
        lw      $11,12($6)
        mtlo    $15,$ac1
        mthi    $14,$ac1
        mtlo    $13,$ac2
        lw      $25,0($5)
        lw      $15,4($5)
        lw      $24,4($6)
        lw      $13,8($5)
        lw      $14,8($6)
        mthi    $10,$ac2
        mtlo    $9,$ac3
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        mthi    $8,$ac3
        mtlo    $3
        mthi    $7
        dpaq_s.w.ph     $ac1,$25,$2
        dpaq_s.w.ph     $ac2,$15,$24
        dpaq_s.w.ph     $ac3,$13,$14
        dpaq_s.w.ph     $ac0,$12,$11
        mflo    $10
        mfhi    $9
        mflo    $8,$ac1
        mfhi    $7,$ac1
        mflo    $6,$ac2
        mfhi    $5,$ac2
        mflo    $3,$ac3
        mfhi    $2,$ac3
        sw      $10,28($4)
        sw      $9,24($4)
        sw      $8,4($4)
        sw      $7,0($4)
        sw      $6,12($4)
        sw      $5,8($4)
        sw      $3,20($4)
        j       $31
        sw      $2,16($4)
# --------------------------------------------------------------------------

# Generated Assembly when using “-ffixed-\$ac1hi --fixed-\$ac1lo”
# Note that $ac0, $ac2, and $ac3 are used.  But, $ac1 is not touched at all by the
# compiler.
test16:
        lw      $3,4($4)
        lw      $2,0($4)
        lw      $25,12($4)
        lw      $24,8($4)
        lw      $9,20($4)
        lw      $8,16($4)
        lw      $15,12($5)
        lw      $13,0($5)
        lw      $11,0($6)
        lw      $12,4($5)
        lw      $7,4($6)
        lw      $10,8($5)
        lw      $5,8($6)
        mtlo    $3,$ac2
        mthi    $2,$ac2
        lw      $3,28($4)
        lw      $2,24($4)
        mtlo    $25,$ac3
        mthi    $24,$ac3
        mtlo    $9
        mthi    $8
        dpaq_s.w.ph     $ac2,$13,$11
        lw      $14,12($6)
        dpaq_s.w.ph     $ac3,$12,$7
        dpaq_s.w.ph     $ac0,$10,$5
        mflo    $9
        mfhi    $8
        mtlo    $3
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        mthi    $2
        dpaq_s.w.ph     $ac0,$15,$14
        mflo    $25
        mfhi    $24
        mflo    $6,$ac2
        mfhi    $5,$ac2
        mflo    $3,$ac3
        mfhi    $2,$ac3
        sw      $25,28($4)
        sw      $24,24($4)
        sw      $6,4($4)
        sw      $5,0($4)
        sw      $3,12($4)
        sw      $2,8($4)
        sw      $9,20($4)
        j       $31
        sw      $8,16($4)

To use a fixed register, programmers must associate a register variable with the explicit name of the fixed register. For 
example, when $ac1 is fixed, we can declare “register a64 MYACC ASM (“$ac1lo”)” in a Little Endian CPU, or 
“register a64 MYACC ASM (“$ac1hi”)” in a Big Endian CPU. Then, the global variable “MYACC” is ready to be 
used across all functions via directly accessing $ac1.

The following example shows that when no global register variable is used, The GCC compiler needs to load or store 
a 64-bit global variable from or to memory.

Ex:
typedef long long a64;
typedef short v2q15 __attribute__ ((vector_size(4)));
a64 MYACC;
void test17 (v2q15 b, v2q15 c)
{
  MYACC = __builtin_mips_dpaq_s_w_ph (MYACC, b, c);
}

# Generated Assembly
test17:
        lw      $2,%gp_rel(MYACC)($28)
        lw      $3,%gp_rel(MYACC+4)($28)
        mtlo    $2
        mthi    $3
        dpaq_s.w.ph     $ac0,$4,$5
        mflo    $2
        mfhi    $3
        sw      $2,%gp_rel(MYACC)($28)
        j       $31
        sw      $3,%gp_rel(MYACC+4)($28)

However, when a register variable is used for a global variable, the overhead of storing and loading to and from mem-
ory is eliminated as follows, reducing the above 10 instructions to only 2.

Ex:
typedef long long a64;
typedef short v2q15 __attribute__ ((vector_size(4)));
register a64 MYACC asm ("$ac1lo"); /* Assume a little-endian CPU */
void test18 (v2q15 b, v2q15 c)
{
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  MYACC = __builtin_mips_dpaq_s_w_ph (MYACC, b, c);
}

# Generated Assembly by
# “sde-gcc -mips32r2 -mdsp -O4 -S -ffixed-\$ac1hi --fixed-\$ac1lo -EL 18.c”
test18:
        j       $31
        dpaq_s.w.ph     $ac1,$4,$5

There are a few things to note when using the technique of fixing registers for global variables.

1. When fixing accumulators, because $ac0 is the original HI and LO registers for multiplication and division 
instructions in MIPS32, $ac0 cannot be fixed by using “-ffixed-hi -ffixed-lo”. The rest of the accumulators, that 
is $ac1, $ac2, and $ac3 can be fixed.

2. When fixing $ac1, $ac2, or $ac3, programmers must ensure that no third-party or library functions that can clob-
ber $ac1, $ac2 or $ac3 are called between accessing fixed accumulators. To practice safe programming methods, 
it is probably advisable to restrict the use of fixed accumulators inside an optimized kernel that consist of only 
internal functions.

3. The technique of fixing registers for use as global variables can be directly applied to callee-saved registers that 
are $16 to $23 (s0 to s7). Programmers do not need to change s0 to s7 to be fixed registers. 

13.8.8 Conditional Moves

Typically conditional move instructions are used instead of branch instructions to avoid the penalty from branch 
delay slots and mis-predicted branches. For example, the GCC compiler can generate conditional move instructions 
for simple C code as follows.

Ex: 
int test19 (int true_value, int false_value, int cond)
{
if (cond)
  return true_value;
else
  return false_value;
}

# Generated Assembly
test19:
        move    $2,$4
        j       $31
        movz    $2,$5,$6
# ----------------------------------------------------------

Ex:
int test20 (int true_value, int false_value, int cond)
{
  return cond ? true_value : false_value;
}

# Generated Assembly
test20:
        move    $2,$4
        j       $31
        movz    $2,$5,$6
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However, for complicated C code, the GCC compiler may not recognize the C patterns to generate conditional move 
instructions. Programmers can then use ASM macros to force the GCC compiler to use conditional move instructions. 
The following example shows how to use an ASM macro for a “movz” instruction. First, we need to assign a value 
“true_value” (when the condition is true) to a resultant variable “result”. Then, we pass “result”, “false_value” and 
“cond” to the ASM macro of “movz”. Note that the ASM macro uses “+d” for the output format, because the output 
register is also used as an input register.

Ex:
int test21 (int true_value, int false_value, int cond)
{
  int result = true_value;
  asm ("movz %0, %1, %2": "+d" (result): "d" (false_value), "d" (cond));
  return result;
}

# Generated Assembly
test21:
 #APP
        movz $4, $5, $6
 #NO_APP
        .set    noreorder
        .set    nomacro
        j       $31
        move    $2,$4

13.9 Programming Examples

This section describes the programming example for a 16-point FIR filter in three ways: 

• FIR filter in traditional C code without SIMD variables and DSP-R2 intrinsics

• Hand-tuned assembly version

• FIR filter in efficient C code

13.9.1 The FIR Filter in Traditional C

The following C code implements a 16-point FIR filter without using SIMD variables and DSP-R2 intrinsics. The 
arrays of “coeffs” and “delay” store sixteen Q15 coefficients and sixteen Q15 delayed inputs.

Ex:
int i;
short x, y;
long long ac0 = 0;
for (i = 0; i < 16; i++)
{

x = coeffs[i];
y = delay[i];
if ((unsigned short) x == 0x8000 && (unsigned short) y == 0x8000)

ac0 += 0x7fffffff;
else

ac0 += ((x * y) << 1);
}

Inside a loop, a saturation condition needs to be detected when both values of “coeffs” and “delay” are 0x8000 (-1 in 
Q15). Moreover, to perform “Q15 x Q15” multiplication, a left shift is required after integer multiplication. This ver-
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sion of the FIR filter takes 536 cycles to calculate one result. (The tools used for this experiment are SDE 6.03.00-rc3 
and MIPSsim 4.6.23.) The traditional C code produces inefficient binary code, so DSP programmers would write it in 
assembly code.

13.9.2 The FIR Filter in Hand-Tuned Assembly

DSP programmers pack two coefficients to a register and pack two delayed inputs to a register, so a SIMD DSP-R2 
instruction “dpaq_s.w.ph” that performs saturation and “Q15 x Q15” multiplication can be applied efficiently. 
Instruction scheduling is performed by hand to avoid pipeline stalls. This FIR implementation can generate one result 
in 39 cycles which are much faster than the traditional C version in Section 13.9.1. The hand-tuned assembly code for 
the FIR filter is as follows.

Ex:
mult  $0, $0
lw    $8, 0($5)
lw    $10, 0($6)
lw    $9, 4($5)
lw    $11, 4($6)
dpaq_s.w.ph $ac0, $8, $10
dpaq_s.w.ph $ac0, $9, $11
lw    $12, 8($5)
lw    $10, 8($6)
lw    $13, 12($5)
lw    $11, 12($6)
dpaq_s.w.ph $ac0, $12, $10
dpaq_s.w.ph $ac0, $13, $11
lw    $14, 16($5)
lw    $10, 16($6)
lw    $15, 20($5)
lw    $11, 20($6)
dpaq_s.w.ph $ac0, $14, $10
dpaq_s.w.ph $ac0, $15, $11
lw    $16, 24($5)
lw    $10, 24($6)
lw    $4, 28($5)
lw    $11, 28($6)
dpaq_s.w.ph $ac0, $16, $10
dpaq_s.w.ph $ac0, $4, $11

13.9.3 The FIR Filter in Efficient C

Although the hand-tuned assembly code yields good performance, it requires the programmer to manually do register 
allocation and code scheduling. A compromise is to write C code that uses SIMD variables and DSP-R2 intrinsics as 
shown.

Ex:
v2q15 *my_delay = (v2q15 *)delay;
v2q15 *my_coeffs = (v2q15 *)coeffs;
long long ac0 = 0;
ac0 = __builtin_mips_dpaq_s_w_ph (ac0, my_delay[0], my_coeffs[0]);
ac0 = __builtin_mips_dpaq_s_w_ph (ac0, my_delay[1], my_coeffs[1]);
ac0 = __builtin_mips_dpaq_s_w_ph (ac0, my_delay[2], my_coeffs[2]);
ac0 = __builtin_mips_dpaq_s_w_ph (ac0, my_delay[3], my_coeffs[3]);
ac0 = __builtin_mips_dpaq_s_w_ph (ac0, my_delay[4], my_coeffs[4]);
ac0 = __builtin_mips_dpaq_s_w_ph (ac0, my_delay[5], my_coeffs[5]);
ac0 = __builtin_mips_dpaq_s_w_ph (ac0, my_delay[6], my_coeffs[6]);
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ac0 = __builtin_mips_dpaq_s_w_ph (ac0, my_delay[7], my_coeffs[7]);

This C code does not look as clean or as readable as the traditional C version in Section 13.9.1, but it is efficient and 
calculates one result in 42 cycles which is only 7.69% slower than the hand-tuned assembly version in Section 13.9.2. 
Compared to the hand-tuned assembly code, the efficient C code has three significant advantages as follows.

1. Register allocation is done by the compiler.

2. Code scheduling is done by the compiler.

3. Load and store of SIMD data is taken care of by the compiler.

Other DSP kernels can similarly benefit from C code.

13.10 MIPS32 DSP-R2 Intrinsics

This section lists the MIPS32 DSP-R2 instrinsics. Note that some parameters of intrinsics are immediate types. Pro-
grammers must pass a constant that is within the specific range in order to invoke these intrinsics. 

13.10.1 Immediate Intrinsics

The immediate types are as follows:

imm0_3: the parameter must be a constant in the range 0 to 3.
imm0_7: the parameter must be a constant in the range 0 to 7.
imm0_15: the parameter must be a constant in the range 0 to 15.
imm0_31: the parameter must be a constant in the range 0 to 31.
imm0_63: the parameter must be a constant in the range 0 to 63.
imm0_255: the parameter must be a constant in the range 0 to 255.
imm_n512_511: the parameter must be a constant in the range -512 to 511.
imm_n32_31: the parameter must be a constant in the range -32 to 31.

13.10.2 Intrinsics for DSPControl Register

void __builtin_mips_wrdsp (i32, imm0_63);
i32 __builtin_mips_rddsp (imm0_63);
i32 __builtin_mips_bposge32 ();

13.10.3 Intrinsics for Signed and Unsigned 8-bit Integers

v4i8 __builtin_mips_addu_qb (v4i8, v4i8);
v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8);
v4i8 __builtin_mips_subu_qb (v4i8, v4i8);
v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8);
i32 __builtin_mips_raddu_w_qb (v4i8);
v4i8 __builtin_mips_shll_qb (v4i8, imm0_7);
v4i8 __builtin_mips_shll_qb (v4i8, i32);
v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7);
v4i8 __builtin_mips_shrl_qb (v4i8, i32);
a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8);
a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8);
a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8);
a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8);
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v4i8 __builtin_mips_repl_qb (imm0_255);
v4i8 __builtin_mips_repl_qb (i32);
void __builtin_mips_cmpu_eq_qb (v4i8, v4i8);
void __builtin_mips_cmpu_lt_qb (v4i8, v4i8);
void __builtin_mips_cmpu_le_qb (v4i8, v4i8);
i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8);
i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8);
i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8);
i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8); // DSPR2
i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8); // DSPR2
i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8); // DSPR2
v4i8 __builtin_mips_pick_qb (v4i8, v4i8);
v4i8 __builtin_mips_absq_s_qb (v4i8); // DSPR2
v4i8 __builtin_mips_adduh_qb (v4i8, v4i8); // DSPR2
v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8); // DSPR2
v4i8 __builtin_mips_shra_qb (v4i8, imm0_7); // DSPR2
v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7); // DSPR2
v4i8 __builtin_mips_shra_qb (v4i8, i32); // DSPR2
v4i8 __builtin_mips_shra_r_qb (v4i8, i32); // DSPR2
v4i8 __builtin_mips_subuh_qb (v4i8, v4i8); // DSPR2
v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8); // DSPR2

13.10.4 Intrinsics for Q15

v2q15 __builtin_mips_addq_ph (v2q15, v2q15);
v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15);
v2q15 __builtin_mips_subq_ph (v2q15, v2q15);
v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15);
v2q15 __builtin_mips_absq_s_ph (v2q15);
v2q15 __builtin_mips_shll_ph (v2q15, imm0_15);
v2q15 __builtin_mips_shll_ph (v2q15, i32);
v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15);
v2q15 __builtin_mips_shll_s_ph (v2q15, i32);
v2q15 __builtin_mips_shra_ph (v2q15, imm0_15);
v2q15 __builtin_mips_shra_ph (v2q15, i32);
v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15);
v2q15 __builtin_mips_shra_r_ph (v2q15, i32);
v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15);
a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15);
a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15);
a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15);
a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15);
a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15);
a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15);
a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15);
q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15);
q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15);
v2q15 __builtin_mips_repl_ph (imm_n512_511);
v2q15 __builtin_mips_repl_ph (i32);
void __builtin_mips_cmp_eq_ph (v2q15, v2q15);
void __builtin_mips_cmp_lt_ph (v2q15, v2q15);
void __builtin_mips_cmp_le_ph (v2q15, v2q15);
v2q15 __builtin_mips_pick_ph (v2q15, v2q15);
v2q15 __builtin_mips_packrl_ph (v2q15, v2q15);
v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15); // DSPR2
v2q15 __builtin_mips_addqh_ph (v2q15, v2q15); // DSPR2
v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15); // DSPR2
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v2q15 __builtin_mips_subqh_ph (v2q15, v2q15); // DSPR2
v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15); // DSPR2
a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15); // DSPR2
a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15); // DSPR2
a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15); // DSPR2
a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15); // DSPR2

13.10.5 Intrinsics for Q31

q31 __builtin_mips_addq_s_w (q31, q31);
q31 __builtin_mips_subq_s_w (q31, q31);
q31 __builtin_mips_absq_s_w (q31);
q31 __builtin_mips_shll_s_w (q31, imm0_31);
q31 __builtin_mips_shll_s_w (q31, i32);
q31 __builtin_mips_shra_r_w (q31, imm0_31);
q31 __builtin_mips_shra_r_w (q31, i32);
a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31);
a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31);
q31 __builtin_mips_mulq_rs_w (q31, q31); // DSPR2
q31 __builtin_mips_mulq_s_w (q31, q31); // DSPR2
q31 __builtin_mips_addqh_w (q31, q31); // DSPR2
q31 __builtin_mips_addqh_r_w (q31, q31); // DSPR2
q31 __builtin_mips_subqh_w (q31, q31); // DSPR2
q31 __builtin_mips_subqh_r_w (q31, q31); // DSPR2

13.10.6 Intrinsics for Mixed Data Types: 8-bit Integers and Q15/16-bit Integers

v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15);
v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15);
v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16); // DSPR2
v2q15 __builtin_mips_precequ_ph_qbl (v4i8);
v2q15 __builtin_mips_precequ_ph_qbr (v4i8);
v2q15 __builtin_mips_precequ_ph_qbla (v4i8);
v2q15 __builtin_mips_precequ_ph_qbra (v4i8);
v2q15 __builtin_mips_preceu_ph_qbl (v4i8);
v2q15 __builtin_mips_preceu_ph_qbr (v4i8);
v2q15 __builtin_mips_preceu_ph_qbla (v4i8);
v2q15 __builtin_mips_preceu_ph_qbra (v4i8);
v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15);
v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15);

13.10.7 Intrinsics for Mixed Data Types: Q15 and Q31

v2q15 __builtin_mips_precrq_ph_w (q31, q31);
v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31);
q31 __builtin_mips_preceq_w_phl (v2q15);
q31 __builtin_mips_preceq_w_phr (v2q15);

13.10.8 Intrinsics for 64-bit Accumulators

i32 __builtin_mips_extr_w (a64, imm0_31);
i32 __builtin_mips_extr_w (a64, i32);
i32 __builtin_mips_extr_r_w (a64, imm0_31);
i32 __builtin_mips_extr_r_w (a64, i32);
i32 __builtin_mips_extr_rs_w (a64, imm0_31);
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i32 __builtin_mips_extr_rs_w (a64, i32);
i32 __builtin_mips_extr_s_h (a64, imm0_31);
i32 __builtin_mips_extr_s_h (a64, i32);
i32 __builtin_mips_extp (a64, imm0_31);
i32 __builtin_mips_extp (a64, i32);
i32 __builtin_mips_extpdp (a64, imm0_31);
i32 __builtin_mips_extpdp (a64, i32);
a64 __builtin_mips_shilo (a64, imm_n32_31);
a64 __builtin_mips_shilo (a64, i32);
a64 __builtin_mips_mthlip (a64, i32);

13.10.9 Intrinsics for 32-bit Integers

i32 __builtin_mips_addsc (i32, i32);
i32 __builtin_mips_addwc (i32, i32);
i32 __builtin_mips_modsub (i32, i32);
i32 __builtin_mips_bitrev (i32);
i32 __builtin_mips_insv (i32, i32);
i32 __builtin_mips_lbux (void *, i32);
i32 __builtin_mips_lhx (void *, i32);
i32 __builtin_mips_lwx (void *, i32);
i32 __builtin_mips_append (i32, i32, imm0_31); // DSPR2
i32 __builtin_mips_balign (i32, i32, imm0_3); // DSPR2
i32 __builtin_mips_prepend (i32, i32, imm0_31); // DSPR2
a64 __builtin_mips_madd (a64, i32, i32);
a64 __builtin_mips_maddu (a64, ui32, ui32);
a64 __builtin_mips_msub (a64, i32, i32);
a64 __builtin_mips_msubu (a64, ui32, ui32);
a64 __builtin_mips_mult (i32, i32);
a64 __builtin_mips_multu (ui32, ui32);

13.10.10 Intrinsics for 16-bit Integers

v2i16 __builtin_mips_addu_ph (v2i16, v2i16); // DSPR2
v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16); // DSPR2
v2i16 __builtin_mips_subu_ph (v2i16, v2i16); // DSPR2
v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16); // DSPR2
a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16); // DSPR2
a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16); // DSPR2
v2i16 __builtin_mips_mul_ph (v2i16, v2i16); // DSPR2
v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16); // DSPR2
a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16); // DSPR2
v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15); // DSPR2
v2i16 __builtin_mips_shrl_ph (v2i16, i32); // DSPR2
a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16); // DSPR2
a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16); // DSPR2

13.10.11 Intrinsics for Mixed Data Types: 16-bit and 32-bit Integers

v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31); // DSPR2
v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31); // DSPR2
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13.11 DSP-R2 ASE Instruction Groups

The following tables list the DSP-R2 instructions per function group. The input and output data type for each instruc-
tion is included, as well as the intended application. Refer to Section 13.12, "Listing of DSP-R2 ASE Instruction 
Groups" for an alphabetical listing of DSP-R2 instructions and associated links to the corresponding instruction. 
Refer to Section “Repeat rate is measured as number of independent instructions that can be sent in 1 cycle.” for a 
definition and encoding of each individual DSP-R2 instruction.

Table 13.4 through Table 13.11 in this section list all the instructions in the DSP-R2 ASE. In each table below, the 
column entitled “Writes GPR / ac / DSPControl“, indicates the explicit write performed by each instruction. This col-
umn indicates the writing of a field in the DSPControl register other than the ouflag field (which is written by a large 
number of instructions). 

Table 13.4 List of Instructions in MIPS® DSP-R2 ASE in Arithmetic Sub-class 

Instruction Mnemonics 
Input Data 

Type
Output Data 

Type

 Writes GPR 
/ ac / 

DSPControl App Description 

ADDQ.PH rd,rs,rt
ADDQ_S.PH rd,rs,rt

Pair Q15 Pair Q15 GPR VoIP 
SoftM

Element-wise addition of two vectors of Q15 
fractional values, with optional saturation. 

ADDQ_S.W rd,rs,rt Q31 Q31 GPR Audio Add two Q31 fractional values with satura-
tion. 

ADDU.QB rd,rs,rt
ADDU_S.QB rd,rs,rt

Quad 
Unsigned Byte

Quad 
Unsigned Byte

GPR Video Element-wise addition of vectors of four 
unsigned byte values. Results may be option-
ally saturated to 255. 

ADDUH.QB rd,rs,rt
ADDUH_R.QB rd,rs,rt

Quad 
Unsigned Byte

Quad 
Unsigned Byte

GPR Video Element-wise addition of vectors of four 
unsigned byte values, halving each result by 
right-shifting by one bit position. Results may 
be optionally rounded up in the least-signifi-
cant bit. 

ADDU.PH rd,rs,rt
ADDU_S.PH rd,rs,rt

Pair Unsigned 
Halfword

Pair Unsigned 
Halfword

GPR Video Element-wise addition of vectors of two 
unsigned halfword values, with optional satu-
ration on overflow. 

ADDQH.PH rd,rs,rt
ADDQH_R.PH rd,rs,rt

Pair Signed 
Halfword

Pair Signed 
Halfword

GPR Misc Element-wise addition of vectors of two 
signed halfword values, halving each result 
with right-shifting by one bit position. Results 
may be optionally rounded up in the least-sig-
nificant bit. 

ADDQH.W rd,rs,rt
ADDQH_R.W rd,rs,rt

Signed Word Signed Word GPR Misc Add two signed word values, halving the 
result with right-shifting by one bit position. 
Result may be optionally rounded up in the 
least-significant bit. 

SUBQ.PH rd,rs,rt
SUBQ_S.PH rd,rs,rt

Pair Q15 Pair Q15 GPR VoIP Element-wise subtraction of two vectors of 
Q15 fractional values, with optional satura-
tion. 

SUBQ_S.W rd,rs,rt Q31 Q31 GPR Audio Subtraction with Q31 fractional values, with 
saturation. 
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SUBU.QB rd,rs,rt
SUBU_S.QB rd,rs,rt

Quad 
Unsigned Byte

Quad 
Unsigned Byte

GPR Video Element-wise subtraction of unsigned byte 
values, with optional unsigned saturation. 

SUBUH.QB rd,rs,rt
SUBUH_R.QB rd,rs,rt

Quad 
Unsigned Byte

Quad 
Unsigned Byte

GPR Video Element-wise subtraction of unsigned byte 
values, shifting the results right one bit posi-
tion (halving). The results may be optionally 
rounded up by adding 1 to each result at the 
most-significant discarded bit position before 
shifting. 

SUBU.PH rd,rs,rt
SUBU_S.PH rd,rs,rt

Pair Unsigned 
Halfword

Pair Unsigned 
Halfword

GPR Video Element-wise subtraction of vectors of two 
unsigned halfword values, with optional satu-
ration on overflow. 

SUBQH.PH rd,rs,rt
SUBQH_R.PH rd,rs,rt

Pair Signed 
Halfword

Pair Signed 
Halfword

GPR Misc Element-wise subtraction of vectors of two 
signed halfword values, halving each result 
with right-shifting by one bit position. Results 
may be optionally rounded up in the least-sig-
nificant bit. 

SUBQH.W rd,rs,rt
SUBQH_R.W rd,rs,rt

Signed Word Signed Word GPR Misc Subtract two signed word values, halving the 
result with right-shifting by one bit position. 
Result may be optionally rounded up in the 
least-significant bit. 

ADDSC rd,rs,rt Signed Word Signed Word GPR & 
DSPControl 

Audio Add two signed words and set the carry bit in 
the DSPControl register. 

ADDWC rd,rs,rt Signed Word Signed Word GPR Audio Add two signed words with the carry bit from 
the DSPControl register. 

MODSUB rd,rs,rt Signed Word Signed Word GPR Misc Modulo addressing support: update a byte 
index into a circular buffer by subtracting a 
specified decrement (in bytes) from the index, 
resetting the index to a specified value if the 
subtraction results in underflow.

RADDU.W.QB rd,rs Quad 
Unsigned Byte

Unsigned 
Word

GPR Misc Reduce (add together) the 4 unsigned byte val-
ues in rs, zero-extending the sum to32 bits 
before writing to the destination register. For 
example, if all 4 input values are 0x80 (deci-
mal 128), then the result in rd is 0x200 (deci-
mal 512). 

ABSQ_S.QB rd,rt Quad Q7 Quad Q7 GPR Misc Find the absolute value of each of four Q7 
fractional byte elements in the source register, 
saturating values of -1.0 to the maximum posi-
tive Q7 fractional value. 

ABSQ_S.PH rd,rt Pair Q15 Pair Q15 GPR Misc Find the absolute value of each of two Q15 
fractional halfword elements in the source reg-
ister, saturating values of -1.0 to the maximum 
positive Q15 fractional value. 

Table 13.4 List of Instructions in MIPS® DSP-R2 ASE in Arithmetic Sub-class (continued)

Instruction Mnemonics 
Input Data 

Type
Output Data 

Type

 Writes GPR 
/ ac / 

DSPControl App Description 
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ABSQ_S.W rd,rt Q31 Q31 GPR Misc Find the absolute value of the Q31 fractional 
element in the source register, saturating the 
value -1.0 to the maximum positive Q31 frac-
tional value. 

PRECR.QB.PH rd,rs,rt Two Pair Inte-
ger Halfwords

Four Integer 
Bytes

GPR Misc Reduce the precision of four signed integer 
halfword input values by discarding the eight 
most-significant bits from each to create four 
signed integer byte output values. The two 
halfword values from register rs are used to 
create the two left-most byte results, allowing 
an endian-agnostic implementation. 

PRECRQ.QB.PH rd,rs,rt 2 Pair Q15 Quad Byte GPR Misc Reduce the precision of four Q15 fractional 
input values by truncation to create four Q7 
fractional output values. The two Q15 values 
from register rs are written to the two left-
most byte results, allowing an endian-agnostic 
implementation. 

PRECR_SRA.PH.W rt,rs,sa
PRECR_SRA_R.PH.W rt,rs,sa

Two Integer 
Words

Pair Integer 
Halfword

GPR Misc Reduce the precision of two integer word val-
ues to create a pair of integer halfword values. 
Each word value is first shifted right arithmet-
ically by sa bit positions, and optionally 
rounded up by adding 1 at the most-significant 
discard bit position. The 16 least-significant 
bits of each word are then written to the corre-
sponding halfword elements of destination 
register rt. 

PRECRQ.PH.W rd,rs,rt
PRECRQ_RS.PH.W rd,rs,rt

2 Q31 Pair halfword GPR Misc Reduce the precision of two Q31 fractional 
input values by truncation to create two Q15 
fractional output values. The Q15 value 
obtained from register rs creates the left-most 
result, allowing an endian-agnostic implemen-
tation. Results may be optionally rounded up 
and saturated before being written to the desti-
nation. 

PRECRQU_S.QB.PH rd,rs,rt 2 Pair Q15 Quad 
Unsigned Byte

GPR Misc Reduce the precision of four Q15 fractional 
values by saturating and truncating to create 
four unsigned byte values. 

PRECEQ.W.PHL rd,rt
PRECEQ.W.PHR rd,rt

Q15 Q31 GPR Misc Expand the precision of a Q15 fractional value 
to create a Q31 fractional value by adding 16 
least-significant bits to the input value. 

PRECEQU.PH.QBL rd,rt
PRECEQU.PH.QBR rd,rt
PRECEQU.PH.QBLA rd,rt
PRECEQU.PH.QBRA rd,rt

Unsigned Byte Q15 GPR Video Expand the precision of two unsigned byte 
values by prepending a sign bit and adding 
seven least-significant bits to each to create 
two Q15 fractional values. 

Table 13.4 List of Instructions in MIPS® DSP-R2 ASE in Arithmetic Sub-class (continued)

Instruction Mnemonics 
Input Data 

Type
Output Data 

Type

 Writes GPR 
/ ac / 

DSPControl App Description 
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PRECEU.PH.QBL rd,rt
PRECEU.PH.QBR rd,rt
PRECEU.PH.QBLA rd,rt
PRECEU.PH.QBRA rd,rt

Unsigned Byte Unsigned half-
word

GPR Video Expand the precision of two unsigned byte 
values by adding eight least-significant bits to 
each to create two unsigned halfword values. 

Table 13.5 List of Instructions in MIPS® DSP ASE in GPR-Based Shift Sub-class 

Instruction Mnemonics
Input Data 

Type
Output 

Data Type

 Writes GPR / 
ac / 

DSPControl App Description 

SHLL.QB rd, rt, sa
SHLLV.QB rd, rt, rs

Quad 
Unsigned 

Byte

Quad 
Unsigned 

Byte

GPR Misc Element-wise left shift of eight signed bytes. 
Zeros are inserted into the bits emptied by the 
shift. The shift amount is specified by the three 
least-significant bits of sa or rs. 

SHLL.PH rd, rt, sa
SHLLV.PH rd, rt, rs
SHLL_S.PH rd, rt, sa
SHLLV_S.PH rd, rt, rs

Pair Signed 
halfword

Pair Signed 
halfword

GPR Misc Element-wise left shift of two signed halfwords, 
with optional saturation on overflow. Zeros are 
inserted into the bits emptied by the shift. The 
shift amount is specified by the four least-signif-
icant bits of sa or rs. 

SHLL_S.W rd, rt, sa
SHLLV_S.W rd, rt, rs

Signed Word Signed Word GPR Misc Left shift of a signed word, with saturation on 
overflow. Zeros are inserted into the bits emptied 
by the shift. The shift amount is specified by the 
five least-significant bits of sa or rs. Use the 
MIPS32 instructions SLL or SLLV for non-satu-
rating shift operations.

SHRL.QB rd, rt, sa
SHRLV.QB rd, rt, rs

Quad 
Unsigned 

Byte

Quad 
Unsigned 

Byte

GPR Video Element-wise logical right shift of four byte val-
ues. Zeros are inserted into the bits emptied by 
the shift. The shift amount is specified by the 
three least-significant bits of sa or rs.  

SHRL.PH rd, rt, sa
SHRLV.PH rd, rt, rs

Pair Half-
words

Pair Half-
words

GPR Video Element-wise logical right shift of two halfword 
values. Zeros are inserted into the bits emptied 
by the shift. The shift amount is specified by the 
four least-significant bits of rs or the sa argu-
ment.  

SHRA.QB rd,rt,sa
SHRA_R.QB rd,rt,sa
SHRAV.QB rd,rt,rs
SHRAV_R.QB rd,rt,rs

Quad Byte Quad Byte GPR Misc Element-wise arithmetic (sign preserving) right 
shift of four byte values. Optional rounding may 
be performed, adding 1 at the most-significant 
discard bit position. The shift amount is speci-
fied by the three least-significant bits of rs or by 
the argument sa.  

Table 13.4 List of Instructions in MIPS® DSP-R2 ASE in Arithmetic Sub-class (continued)

Instruction Mnemonics 
Input Data 

Type
Output Data 

Type

 Writes GPR 
/ ac / 

DSPControl App Description 
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SHRA.PH rd, rt, sa
SHRAV.PH rd, rt, rs
SHRA_R.PH rd, rt, sa
SHRAV_R.PH rd, rt, rs

Pair Signed 
halfword

Pair Signed 
halfword

GPR Misc Element-wise arithmetic (sign preserving) right 
shift of two halfword values. Optionally, round-
ing may be performed, adding 1 at the most-sig-
nificant discard bit position. The shift amount is 
specified by the four least-significant bits of rs 
or by the argument sa.  

SHRA_R.W rd, rt, sa
SHRAV_R.W rd, rt, rs

Signed Word Signed Word GPR Video Arithmetic (sign preserving) right shift of a word 
value. Optionally, rounding may be performed, 
adding 1 at the most-significant discard bit posi-
tion. The shift amount is specified by the five 
least-significant bits of rs or the argument sa.  

Table 13.6 List of Instructions in MIPS® DSP-R2 ASE in Multiply Sub-class 

Instruction Mnemonics Input Data Type
Output 

Data Type

 Writes GPR / 
ac / 

DSPControl App Description

MULEU_S.PH.QBL rd,rs,rt
MULEU_S.PH.QBR rd,rs,rt

Pair Unsigned 
Byte, Pair 

Unsigned Half-
word, 

Pair 
Unsigned 
Halfword

GPR Still 
Image

Element-wise multiplication of two 
unsigned byte values from register rs with 
two unsigned halfword values from regis-
ter rt. Each 24-bit product is truncated to 
16 bits, with saturation if the product 
exceeds 0xFFFF, and written to the corre-
sponding element in the destination regis-
ter.  

MULQ_RS.PH rd,rs,rt Pair Q15 Pair Q15 GPR Misc Element-wise multiplication of two Q15 
fractional values to create two Q15 frac-
tional results, with rounding and satura-
tion. After multiplication, each 32-bit 
product is rounded up by adding 
0x00008000, then truncated to create a 
Q15 fractional value that is written to the 
destination register. If both multiplicands 
are -1.0, the result is saturated to the maxi-
mum positive Q15 fractional value. 
To stay compliant with the base architec-
ture, this instruction leaves the base HI-LO 
pair UNPREDICTABLE after the opera-
tion. The other DSP-R2 ASE accumulators 
ac1-ac3 are untouched. 

Table 13.5 List of Instructions in MIPS® DSP ASE in GPR-Based Shift Sub-class (continued)

Instruction Mnemonics
Input Data 

Type
Output 

Data Type

 Writes GPR / 
ac / 

DSPControl App Description 
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MULEQ_S.W.PHL rd,rs,rt
MULEQ_S.W.PHR rd,rs,rt

Pair Q15 Q31 GPR VoIP Multiplication of two Q15 fractional val-
ues, shifting the product left by 1 bit to cre-
ate a Q31 fractional result. If both 
multiplicands are -1.0 the result is satu-
rated to the maximum positive Q31 value. 
To stay compliant with the base architec-
ture, this instruction leaves the base HI-LO 
pair UNPREDICTABLE after the opera-
tion. The other DSP-R2 ASE accumulators 
ac1-ac3 must beareuntouched. 

DPAU.H.QBL
DPAU.H.QBR

Pair Bytes Halfword Acc Image Dot-product accumulation. Two pairs of 
corresponding unsigned byte elements 
from source registers rt and rs are sepa-
rately multiplied, and the two 16-bit prod-
ucts are then summed together. The 
summed products are then added to the 
accumulator.

DPSU.H.QBL
DPSU.H.QBR

Pair Bytes Halfword Acc Image Dot-product subtraction. Two pairs of cor-
responding unsigned byte elements from 
source registers rt and rs are separately 
multiplied, and the two 16-bit products are 
then summed together. The summed prod-
ucts are then subtracted from the accumu-
lator.

DPA.W.PH ac,rs,rt Pair Signed Half-
word

Pair Signed 
Halfword

ac VoIP / 
SoftM

Dot-product accumulation. The two pairs 
of corresponding signed integer halfword 
values from source registers rt and rs are 
separately multiplied to create two separate 
integer word products. The products are 
then summed and accumulated into the 
specified accumulator. 

DPAX.W.PH ac,rs,rt Pair Signed Half-
word

Doubleword ac VoIP Dot-product with crossed operands and 
accumulation. The two crossed pairs of 
signed integer halfword values from source 
registers rt and rs are separately multiplied 
to create two separate integer word prod-
ucts. The products are then summed and 
accumulated into the specified accumula-
tor. 

Table 13.6 List of Instructions in MIPS® DSP-R2 ASE in Multiply Sub-class (continued)

Instruction Mnemonics Input Data Type
Output 

Data Type

 Writes GPR / 
ac / 

DSPControl App Description
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DPAQ_S.W.PH ac,rs,rt Pair Q15 Q32.31 ac VoIP / 
SoftM

Dot-product accumulation. Two pairs of 
corresponding Q15 fractional values from 
source registers rt and rs are separately 
multiplied and left-shifted 1 bit to create 
two Q31 fractional products. For each 
product, if both multiplicands are equal to -
1.0 the product is clamped to the maximum 
positive Q31 fractional value. 
The products are then summed, and the 
sum is then sign extended to the width of 
the accumulator and accumulated into the 
specified accumulator. 
This instruction may be used to compute 
the imaginary component of a 16-bit com-
plex multiplication operation after first 
swapping the operands to place them in the 
correct order.

DPAQX_S.W.PH ac,rs,rt Pair Signed Half-
word

Q32.31 ac VoIP Dot-product with saturating fractional mul-
tiplication and using crossed operands, 
with a final accumulation. The two crossed 
pairs of signed fractional halfword values 
from source registers rt and rs are sepa-
rately multiplied to create two separate 
fractional word products. The products are 
then summed and accumulated into the 
specified accumulator. 

DPAQX_SA.W.PH ac,rs,rt Pair Signed Half-
word

Q32.31 ac VoIP Dot-product with saturating fractional mul-
tiplication and using crossed operands, 
with a final saturating accumulation. The 
two crossed pairs of signed fractional half-
word values from source registers rt and rs 
are separately multiplied to create two sep-
arate fractional word products. The prod-
ucts are then summed and accumulated 
with saturation into the specified accumu-
lator. 

DPS.W.PH ac,rs,rt Pair Signed Half-
word

Doubleword ac VoIP / 
SoftM

Dot-product subtraction. The two pairs of 
corresponding signed integer halfword val-
ues from source registers rt and rs are sep-
arately multiplied to create two separate 
integer word products. The products are 
then summed and subtracted from the 
specified accumulator. 

Table 13.6 List of Instructions in MIPS® DSP-R2 ASE in Multiply Sub-class (continued)

Instruction Mnemonics Input Data Type
Output 

Data Type

 Writes GPR / 
ac / 

DSPControl App Description
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DPSX.W.PH ac,rs,rt Pair Signed Half-
word

Q32.31 ac VoIP Dot-product with crossed operands and 
subtraction. The two crossed pairs of 
signed integer halfword values from source 
registers rt and rs are separately multiplied 
to create two separate integer word prod-
ucts. The products are then summed and 
subtracted into the specified accumulator.

DPSQ_S.W.PH ac,rs,rt Pair Q15 Q32.31 ac VoIP / 
SoftM

Dot-product subtraction. Two pairs of cor-
responding Q15 fractional values from 
source registers rt and rs are separately 
multiplied and left-shifted 1 bit to create 
two Q31 fractional products. For each 
product, if both multiplicands are equal to -
1.0 the product is clamped to the maximum 
positive Q31 fractional value. 
The products are then summed, and the 
sum is then sign extended to the width of 
the accumulator and subtracted from the 
specified accumulator. 
This instruction may be used to compute 
the imaginary component of a 16-bit com-
plex multiplication operation after first 
swapping the operands to place them in the 
correct order.

DPSQX_S.W.PH ac,rs,rt Pair Signed Half-
word

Q32.31 ac VoIP Dot-product with saturating fractional mul-
tiplication and using crossed operands, 
with a final subtraction. The two crossed 
pairs of signed fractional halfword values 
from source registers rt and rs are sepa-
rately multiplied to create two separate 
fractional word products. The products are 
then summed and subtracted from the 
specified accumulator. 

DPSQX_SA.W.PH ac,rs,rt Pair Signed Half-
word

Q32.31 ac VoIP Dot-product with saturating fractional mul-
tiplication and using crossed operands, 
with a final saturating subtraction. The two 
crossed pairs of signed fractional halfword 
values from source registers rt and rs are 
separately multiplied to create two separate 
fractional word products. The products are 
then summed and subtracted with satura-
tion into the specified accumulator. 

Table 13.6 List of Instructions in MIPS® DSP-R2 ASE in Multiply Sub-class (continued)

Instruction Mnemonics Input Data Type
Output 

Data Type

 Writes GPR / 
ac / 

DSPControl App Description
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MULSAQ_S.W.PH ac,rs,rt Pair Q15 Q32.31 ac SoftM Complex multiplication step. Performs ele-
ment-wise fractional multiplication of the 
two Q15 fractional values from registers rt 
and rs, subtracting one product from the 
other to create a Q31 fractional result that 
is added to accumulator ac. The intermedi-
ate products are saturated to the maximum 
positive Q31 fractional value if both multi-
plicands are equal to -1.0.

DPAQ_SA.L.W ac,rs,rt Q31 Q63 ac Audio Fractional multiplication of two Q31 frac-
tional values to produce a Q63 fractional 
product. If both multiplicands are -1.0 the 
product is saturated to the maximum posi-
tive Q63 fractional value. The product is 
then added to accumulator ac. If the addi-
tion results in overflow or underflow, the 
accumulator is saturated to the maximum 
positive or minimum negative value.

DPSQ_SA.L.W ac,rs,rt Q31 Q63 ac Audio Fractional multiplication of two Q31 frac-
tional values to produce a Q63 fractional 
product. If both multiplicands are -1.0 the 
product is saturated to the maximum posi-
tive Q63 fractional value. The product is 
then subtracted from accumulator ac. If 
the addition results in overflow or under-
flow, the accumulator is saturated to the 
maximum positive or minimum negative 
value.

MAQ_S.W.PHL ac,rs,rt
MAQ_S.W.PHR ac,rs,rt

Q15 Q32.31 ac SoftM Fractional multiply-accumulate. The prod-
uct of two Q15 fractional values is sign 
extended to the width of the accumulator 
and added to accumulator ac. The interme-
diate product is saturated to the maximum 
positive Q31 fractional value if both multi-
plicands are equal to -1.0.

MAQ_SA.W.PHL ac,rs,rt
MAQ_SA.W.PHR ac,rs,rt

Q15 Q31 ac speech Fractional multiply-accumulate with satu-
ration after accumulation. The product of 
two Q15 fractional values is sign extended 
to the width of the accumulator and added 
to accumulator ac. The intermediate prod-
uct is saturated to the maximum positive 
Q31 fractional value if both multiplicands 
are equal to -1.0. 
If the accumulation results in overflow or 
underflow, the accumulator value is satu-
rated to the maximum positive or mini-
mum negative Q31 fractional value.

Table 13.6 List of Instructions in MIPS® DSP-R2 ASE in Multiply Sub-class (continued)

Instruction Mnemonics Input Data Type
Output 

Data Type

 Writes GPR / 
ac / 

DSPControl App Description
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MUL.PH rd,rs,rt
MUL_S.PH rd,rs,rt

Pair Signed Half-
word

Pair Signed 
Halfword

GPR speech Element-wise multiplication of two vectors 
of signed integer halfwords, writing the 16 
least-significant bits of each 32-bit product 
to the corresponding element of the desti-
nation register. Optional saturation clamps 
each 16-bit result to the maximum positive 
or minimum negative value if the product 
cannot be accurately represented in 16 bits.

MULQ_S.PH rd,rs,rt Pair Q15 Pair Q15 GPR speech Element-wise multiplication of two vectors 
of Q15 fractional halfwords, writing the 16 
most-significant bits of each Q31-format 
product to the corresponding element of 
the destination register. Each result is satu-
rated to the maximum positive Q15 value 
if both multiplicands were equal to -1.0 
(0x8000 hexadecimal). 

MULQ_S.W rd,rs,rt Q31 Q31 GPR speech Fractional multiplication of two Q31 for-
mat words to create a Q63 format result 
that is truncated by discarding the 32 least-
significant bits before being written to the 
destination register. The result is saturated 
to the maximum positive Q31 value if both 
multiplicands were equal to -1.0 
(0x80000000 hexadecimal).

MULQ_RS.W rd,rs,rt Q31 Q31 GPR speech Multiplication of two Q31 fractional words 
to create a Q63-format intermediate prod-
uct that is rounded up by adding a 1 at bit 
position 31. The 32 most-significant bits of 
the rounded result are then written to the 
destination register. If both multiplicands 
were equal to -1.0 (0x80000000 hexadeci-
mal), rounding is not performed and the 
result is clamped to the maximum positive 
Q31 value before being written to the des-
tination.

MULSA.W.PH ac,rs,rt Pair Signed Half-
word

Doubleword ac speech Element-wise multiplication of two vectors 
of signed integer halfwords to create two 
32-bit word intermediate results. The right 
intermediate result is subtracted from the 
left intermediate result, and the resulting 
sum is accumulated into the specified 
accumulator.

MADD, MADDU, MSUB, 
MSUBU, MULT, MULTU

Word DoubleWord ac Misc Allows these instructions to target accumu-
lators ac1, ac2, and ac3 (in addition to the 
original ac0 destination).

Table 13.6 List of Instructions in MIPS® DSP-R2 ASE in Multiply Sub-class (continued)

Instruction Mnemonics Input Data Type
Output 

Data Type

 Writes GPR / 
ac / 

DSPControl App Description
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Table 13.7 List of Instructions in MIPS® DSP-R2 ASE in Bit Manipulation Sub-class

Instruction Mnemonics
Input Data 

Type
Output 

Data Type

 Writes GPR / 
ac / 

DSPControl App Description

BITREV rd,rt Unsigned 
Word

Unsigned 
Word

GPR Audio / 
FFT

Reverse the order of the 16 least-significant bits 
of register rt, writing the result to register rd. The 
16 most-significant bits are set to zero.

INSV rt,rs Unsigned 
Word

Unsigned 
Word

GPR Misc Like the Release 2 INS instruction, except that 
the 5 bits for pos and size values are obtained 
from the DSPControl register. size = 
scount[14:10], and pos = pos[20:16].

REPL.QB rd,imm
REPLV.QB rd,rt

Byte Quad Byte GPR Video / 
Misc

Replicate a signed byte value into the four byte 
elements of register rd. The byte value is given 
by the 8 least-significant bits of the specified 10-
bit immediate constant or by the 8 least-signifi-
cant bits of register rt.

REPL.PH rd,imm
REPLV.PH rd,rt

Signed half-
word

Pair Signed 
halfword

GPR Misc Replicate a signed halfword value into the two 
halfword elements of register rd. The halfword 
value is given by the 16 least-significant bits of 
register rt, or by the value of the 10-bit immedi-
ate constant, sign-extended to 16 bits.

Table 13.8 List of Instructions in MIPS® DSP-R2 ASE in Compare-Pick Sub-class

Instruction Mnemonics
Input Data 

Type
Output 

Data Type

 Writes GPR / 
ac / 

DSPControl App Description

CMPU.EQ.QB rs,rt
CMPU.LT.QB rs,rt
CMPU.LE.QB rs,rt

Quad 
Unsigned 

Byte

Quad 
Unsigned 

Byte

DSPControl Video Element-wise unsigned comparison of the four 
unsigned byte elements of rs and rt, recording 
the boolean comparison results to the four right-
most bits in the ccond field of the DSPControl 
register.

CMPGDU.EQ.QB rd,rs,rt
CMPGDU.LT.QB rd,rs,rt
CMPGDU.LE.QB rd,rs,rt

Quad 
Unsigned 

Byte

Quad 
Unsigned 

Byte

GPR
DSPControl

Video Element-wise unsigned comparison of the four 
right-most unsigned byte elements of rs and rt, 
recording the boolean comparison results to the 
four least-significant bits of register rd and to the 
four right-most bits in the ccond field of the 
DSPControl register.

CMPGU.EQ.QB rd,rs,rt
CMPGU.LT.QB rd,rs,rt
CMPGU.LE.QB rd,rs,rt

Quad 
Unsigned 

Byte

Quad 
Unsigned 

Byte

GPR Video Element-wise unsigned comparison of the four 
right-most unsigned byte elements of rs and rt, 
recording the boolean comparison results to the 
four least-significant bits of register rd.

CMP.EQ.PH rs,rt
CMP.LT.PH rs,rt
CMP.LE.PH rs,rt

Pair Signed 
halfword

Pair Signed 
halfword

DSPControl Misc Element-wise signed comparison of the two half-
word elements of rs and rt, recording the bool-
ean comparison results to the two right-most bits 
in the ccond field of the DSPControl register.
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PICK.QB rd,rs,rt Quad 
Unsigned 

Byte

Quad 
Unsigned 

Byte

GPR Video Element-wise selection of unsigned bytes from 
the four bytes of registers rs and rt into the corre-
sponding elements of register rd, based on the 
value of the four right-most bits of the ccond 
field in the DSPControl register. If the corre-
sponding ccond bit is 1, the byte value is copied 
from register rs, otherwise it is copied from rt.

PICK.PH rd,rs,rt Pair Signed 
halfword

Pair Signed 
halfword

GPR Misc Element-wise selection of signed halfwords from 
the two halfwords in registers rs and rt into the 
corresponding elements of register rd, based on 
the value of the two right-most bits of the ccond 
field in the DSPControl register. If the corre-
sponding ccond bit is 1, the halfword value is 
copied from register rs, otherwise it is copied 
from rt.

APPEND rt,rs,sa Two Words Word GPR Misc Shifts the 32-bit word in register rt left by sa bits, 
inserting the sa least-significant bits from regis-
ter rs into the bit positions emptied by the shift. 
The 32-bit result is then written to register rt.

PREPEND rt,rs,sa Two Words Word GPR Misc Shifts the 32-bit word in register rt right by sa 
bits, inserting the sa least-significant bits from 
register rs into the bit positions emptied by the 
shift. The 32-bit result is then written to register 
rt.

BALIGN rt,rs,bp Two Words Word GPR Misc Packs bp bytes from register rt and (4-bp) bytes 
from register rs into a 32-bit word and writes it 
to register rt.

PACKRL.PH rd,rs,rt Pair Signed 
Halfwords

Pair Signed 
Halfword

GPR Misc Pack two halfwords taken from registers rs and 
rt into destination register rd.

Table 13.8 List of Instructions in MIPS® DSP-R2 ASE in Compare-Pick Sub-class(continued)

Instruction Mnemonics
Input Data 

Type
Output 

Data Type

 Writes GPR / 
ac / 

DSPControl App Description
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Table 13.9 List of Instructions in Accumulator and DSPControl Access Sub-class

Instruction Mnemonics
Input Data

Type
Output 

Data Type

 Writes GPR / 
ac / 

DSPControl App Description

EXTR.W rt,ac,shift
EXTR_R.W rt,ac,shift
EXTR_RS.W rt,ac,shift

Q63 Q31 GPR Misc Extract a Q31 fractional value from the 32 least-
significant bits of 64-bit accumulator ac. The 
accumulator value may be shifted right logically 
by shift bits prior to the extraction, and the 
extracted value may be optionally rounded or 
rounded and saturated before being written to 
register rt. 
The shift argument value ranges from 0 to 31. 
The optional rounding step adds 1 at the most-
significant bit position discarded by the shift. 
The optional saturation clamps the extracted 
value to the maximum positive Q31 value if the 
rounding step results in overflow. 

EXTR_S.H rt,ac,shift Q63 Q15 GPR Misc Extract a Q15 fractional value from the 16 least-
significant bits of 64-bit accumulator ac. The 
accumulator value may be shifted right logically 
by shift bits prior to the extraction, and the 
extracted value is saturated before being written 
to register rt. 
The shift argument value ranges from 0 to 31. 
The saturation clamps the extracted value to the 
maximum positive or minimum negative Q15 
value if the shifted accumulator value cannot be 
represented accurately as a Q15 format value. 

EXTRV_S.H rt,ac,rs Q63 Q15 GPR Misc Extract a Q15 fractional value from the 16 least-
significant bits of 64-bit accumulator ac. The 
accumulator value may be shifted right logically 
by shift bits prior to the extraction, and the 
extracted value is saturated before being written 
to register rt. 
The shift argument ranges from 0 to 31 and is 
given by the five least-significant bits of register 
rs. The saturation clamps the extracted value to 
the maximum positive or minimum negative 
Q15 value if the shifted accumulator value can-
not be represented accurately as a Q15 format 
value. 
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EXTRV.W rt,ac,rs
EXTRV_R.W rt,ac,rs
EXTRV_RS.W rt,ac,rs

Q63 Q31 GPR Misc Extract a Q31 fractional value from the 32 least-
significant bits of 64-bit accumulator ac. The 
accumulator value may be shifted right logically 
by shift bits prior to the extraction, and the 
extracted value may be optionally rounded or 
rounded and saturated before being written to 
register rt. 
The shift argument value is provided by the five 
least-significant bits of rs and ranges from 0 to 
31. The optional rounding step adds 1 at the 
most-significant bit position discarded by the 
shift. The optional saturation clamps the 
extracted value to the maximum positive Q31 
value if the rounding step results in overflow. 

EXTP rt,ac,size
EXTPV rt,ac,rs
EXTPDP rt,ac,size
EXTPDPV rt,ac,rs

Unsigned 
DWord

Unsigned 
Word

GPR / 
DSPControl

Audio / 
Video

Extract a set of size+1 contiguous bits from 
accumulator ac, right-justifying and sign-
extending the result to32 bits before writing the 
result to register rt. 
The position of the left-most bit to extract is 
given by the value of the pos field in the 
DSPControl register. The number of bits (less 
one) to extract is provided either by the size 
immediate operand or by the five least-signifi-
cant bits of rs. 
The EXTPDP and EXTPDPV instructions also 
decrement the pos field by size+1 to facilitate 
sequential bit field extraction operations.

SHILO ac,shift
SHILOV ac,rs

Unsigned 
DWord

Unsigned 
DWord

ac Misc Shift accumulator ac left or right by the speci-
fied number of bits, writing the shifted value 
back to the accumulator. The signed shift argu-
ment is specified either by the immediate oper-
and shift or by the six least-significant bits of 
register rs. A negative shift argument results in a 
right shift of up to 32 bits, and a positive shift 
argument results in a left shift of up to 31 bits. 

MTHLIP rs, ac Unsigned 
Word

Unsigned 
Word

ac / 
DSPControl

Audio / 
Video

Copy the LO register of the specified accumula-
tor to the HI register, copy rs to LO, and incre-
ment the pos field in DSPcontrol by 32.

MFHI/MFLO/MTHI/MTLO Unsigned 
Word

Unsigned 
Word

GPR/ac Misc Copy an unsigned word to or from the specified 
accumulator HI or LO register to the specified 
GPR.

WRDSP rt,mask Unsigned 
Word

Unsigned 
Word

DSPControl Misc Overwrite specific fields in the DSPControl 
register using the corresponding bits from the 
specified GPR. Bits in the mask argument corre-
spond to specific fields in DSPControl; a value 
of 1 causes the corresponding DSPControl field 
to be overwritten using the corresponding bits in 
rt, otherwise the field is unchanged.

Table 13.9 List of Instructions in Accumulator and DSPControl Access Sub-class(continued)

Instruction Mnemonics
Input Data

Type
Output 

Data Type

 Writes GPR / 
ac / 

DSPControl App Description
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13.12 Listing of DSP-R2 ASE Instruction Groups

Table 13.12 shows an alphabetical listing of the DSP-R2 instruction set, along with the associated instruction group, 
the page number location of the actual instruction. The actual instruction can be viewed by clicking on either the 
instruction of the page number reference in the table below. For the definition of each instruction, refer to Table 13.4 
through Table 13.11 above. 

RDDSP rt,mask Unsigned 
Word

Unsigned 
Word

GPR Misc Copy the values of specific fields in the 
DSPControl register to the specified GPR. Bits 
in the mask argument correspond to specific 
fields in DSPControl; a value of 1 causes the 
corresponding DSPControl field to be copied to 
the corresponding bits in rt, otherwise the bits in 
rt are unchanged.

Table 13.10 List of Instructions in MIPS® DSP-R2 ASE in Indexed-Load Sub-class

Instruction Mnemonics
Input Data 

Type
Output 

Data Type

 Writes GPR / 
ac / 

DSPControl App Description

LBUX rd,index(base) - Unsigned 
byte

GPR Misc Index byte load from address base+(index). 
Loads the byte in the low-order bits of the desti-
nation register and zero-extends the result.

LHX rd,index(base) - Signed half-
word

GPR Misc Index halfword load from address base+(index). 
Loads the halfword in the low-order bits of the 
register and sign-extends the result.

LWX rd, index(base) - Signed Word GPR Misc Indexed word load from address base+(index). 

Table 13.11 List of Instructions in MIPS® DSP-R2 ASE in Branch Sub-class

Instruction Mnemonics
Input Data 

Type
Output 

Data Type

 Writes GPR / 
ac / 

DSPControl App Description

BPOSGE32 offset - - - Audio / 
Video

Branch if the pos value is greater than or equal to 
integer 32.

Table 13.12 Alphabetical Listing of DSP-R2 Instructions 

Instruction Name
Instruction

Group

ABSQ_S.PH Arithmetic

Table 13.9 List of Instructions in Accumulator and DSPControl Access Sub-class(continued)

Instruction Mnemonics
Input Data

Type
Output 

Data Type

 Writes GPR / 
ac / 

DSPControl App Description
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ABSQ_S.W Arithmetic

ADDQ_S.W Arithmetic

ADDQH[_R].PH Arithmetic

ADDQH[_R].W Arithmetic

ADDSC Arithmetic

ADDU[_S].PH Arithmetic

ADDU[_S].QB Arithmetic

ADDUH[_R].QB Arithmetic

ADDWC Arithmetic

APPEND Compare-Pick

BALIGN Compare-Pick

BPOSGE32 Branch

BITREV Bit Manipulation

CMP.cond.PH Compare-Pick

CMPGDU.cond.QB Compare-Pick

CMPGU.cond.QB Compare-Pick

CMPU.cond.QB Compare-Pick

DPA.W.PH Multiply

DPAQ_S.W.PH Multiply

DPAQ_SA.L.W Multiply

DPAQX_S.W.PH Multiply

DPAQX_SA.W.PH Multiply

DPAU.H.QBL Multiply

DPAU.H.QBT Multiply

DPAX.W.PH Multiply

DPS.W.PH Multiply

DPSQ_S.W.PH Multiply

DPSQ_SA.L.W Multiply

DPSQX_S.W.PH Multiply

DPSQX_SA.W.PH Multiply

DPSU.H.QBL Multiply

DPSU.H.QBR Multiply

DPSX.W.PH Multiply

EXTPV Accumulator/DSPControl Access

EXTPDP Accumulator/DSPControl Access

EXTPDPV Accumulator/DSPControl Access

EXTPV Accumulator/DSPControl Access

Table 13.12 Alphabetical Listing of DSP-R2 Instructions (continued)

Instruction Name
Instruction

Group
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EXTR[_RS].W Accumulator/DSPControl Access

EXTR_S.H Accumulator/DSPControl Access

EXTRV[_RS].W Accumulator/DSPControl Access

EXTRV_S.H Accumulator/DSPControl Access

INSV Bit Manipulation

LBUX Indexed Load

LHX Indexed Load

LWX Indexed Load

MADD Multiply

MADDU Multiply

MAQ_S[A].W.PHL Multiply

MAQ_S[A].W.PHR Multiply

MFHI Accumulator/DSPControl Access

MFLO Accumulator/DSPControl Access

MODSUB Arithmetic

MSUB Multiply

MSUBU Multiply

MTHI Accumulator/DSPControl Access

MTHILIP Accumulator/DSPControl Access

MTLO Accumulator/DSPControl Access

MUL[_S].PH Arithmetic

MULEQ_S.W.PHL Arithmetic

MULEQ_S.W.PHR Arithmetic

MULEU_S.PH.QBL Arithmetic

MULEU_S.PH.QBR Arithmetic

MULQ_RS.W Arithmetic

MULQ_S.PH Arithmetic

MULQ_RS.PH Arithmetic

MULQ_S.W Arithmetic

MULSA.W.PH Arithmetic

MULSAQ_S.W.PH Arithmetic

MULT Arithmetic

MULTU Arithmetic

PACKRL.PH Compare-Pick

PICK.PH Compare-Pick

PICK.QB Compare-Pick

PRECEQ.W.PHL Arithmetic

Table 13.12 Alphabetical Listing of DSP-R2 Instructions (continued)

Instruction Name
Instruction

Group
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PRECEQ.W.PHR Arithmetic

PRECEQU.PH.QBL Arithmetic

PRECEQU.PH.QBLA Arithmetic

PRECEQU.PH.QBR Arithmetic

PRECEQU.PH.QBRA Arithmetic

PRECEU.PH.QBL Arithmetic

PRECEU.PH.QBLA Arithmetic

PRECEU.PH.QBR Arithmetic

PRECEU.PH.QBRA Arithmetic

PRECR.QB.PH Arithmetic

PRECRQ.PH.W Arithmetic

PRECRQ_RS.PH.W Arithmetic

PRECRQU_S.QB.PH Arithmetic

PRECR_SRA[_R].PH.W Arithmetic

PREPEND Compare-Pick

RADDU.W.QB Arithmetic

RDDSP Accumulator/DSPControl Access

REPL.PH Bit Manipulation

REPL.QB Bit Manipulation

REPLV.PH Bit Manipulation

REPL.QB Bit Manipulation

SHILO Accumulator/DSPControl Access

SHILOV Accumulator/DSPControl Access

SHLL[_S].PH GPR-Based Shift

SHLL.QB GPR-Based Shift

SHLLV.QB GPR-Based Shift

SHLL_S.W GPR-Based Shift

SHLLV[_S].PH GPR-Based Shift

SHLLV_S.W GPR-Based Shift

SHRA[_R].PH GPR-Based Shift

SHRAV[_R].PH GPR-Based Shift

SHRA[_R].QB GPR-Based Shift

SHRAV[_R].QB GPR-Based Shift

SHRAV[_R].W GPR-Based Shift

SHRL.PH GPR-Based Shift

SHRLV.PH GPR-Based Shift

SHRL.QB GPR-Based Shift

Table 13.12 Alphabetical Listing of DSP-R2 Instructions (continued)

Instruction Name
Instruction

Group
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SHRLV.QB GPR-Based Shift

SUBQ[_S].PH Arithmetic

SUBQ_S.W Arithmetic

SUBQH[_R].PH Arithmetic

SUBQH[_R].W Arithmetic

SUBU[_S].PH Arithmetic

SUBU[_S].QB Arithmetic

SUBUH[_R].QB Arithmetic

WRDSP Accumulator/DSPControl Access

Table 13.12 Alphabetical Listing of DSP-R2 Instructions (continued)

Instruction Name
Instruction

Group
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13.13 DSP Instruction Latencies and Repeat Rates

Latency is defined with respect to instruction pair, but for ease of documenting they are defined for the instruction. If 
the behavior per instruction differs from that of an instruction pair, this difference is mentioned in the Notes column. 
If the instruction does not loads any general purpose register (GPR) then it is shown as not applicable (n/a).

Repeat rate is measured as number of independent instructions that can be sent in 1 cycle.  

Table 13.13 proAptiv DSP Instruction Latencies and Repeat Rates 

Instruction Latency
Repeat 

Rate Notes

ADDQ{_S}.PH, ADDQ_S.W, 2 1

ADDU{_S}.PH, ADDU{_S}.QB 2 1

ADDUH{_R}.QB, 2 1

ADDQH{_R}.PH, ADDQH{_R}.W 2 1

ADDSC, ADDWC 2 1

SUBQ{_S}.PH, SUB_S.W 2 1

SUBU{_S}.PH, SUBU{_S}.QB 2 1

SUBUH{_R}.QB 2 1

SUBQH{_R}.PH, SUBQH{_R}.W 2 1

MODSUB, RADDU.W.QB 2 1

ABSQ_S.QB, ABSQ_S.PH, ABSQ_S.W 2 1

PRECR.QB.PH 2 1

PRECRQ.QB.PH 2 1

PRECR_SRA{_R}.PH.W 2 1

PRECRQ{_RS}.PH.W 2 1

PRECRQU_S.QB.PH 2 1

PRECEQ.W.PHL, PRECEQ.W.PHR 2 1

PRECEQU.PH.QBL{A}, PRECEQU.PH.QBR{A} 2 1

PRECEU.PH.QBL{A}, PRECEU.PH.QBR{A} 2 1

SHLL.QB, SHLLV.QB 2 1

SHLL{_S}.PH, SHLLV{_S}.PH 2 1

SHLL_S.W, SHLLV_S.W 2 1

SHRL.QB, SHRLV.QB 2 1

SHRL.PH, SHRLV.PH 2 1

SHRA{_R}.QB, SHRAV{_R}.QB 2 1

SHRA{_R}.PH, SHRAV{_R}.PH 2 1

SHRA_R.W, SHRAV_R.W 2 1

MULEU_S.PH.QBL, MULEU_S.PH.QBR 6 1

MULQ_RS.PH 6 1

MULEQ_S.W.PHL, MULEQ_S.W.PHR 6 1
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DPAU.H.QBL, DPAU.H.QBR 6/1 1 DPA to MADD/DPA is 1 while 
MFHI/MFLO is 6.DPSU.H.QBL, DPSU.H.QBR 6/1 1

DPA.W.PH, DPAX.W.PH 6/1 1

DPAQ_S.W.PH, DPAQX_S.W.PH, DPAQX_SA.W.PH 6/1 1

DPS.W.PH, DPSX.W.PH 6/1 1

DPSQ_S.W.PH, DPSQX_S.W.PH, DPSQX_SA.W.PH 6/1 1

DPAQ_SA.L.W, DPSQ_SA.L.W 6/1 1

MAQ_S{A}.W.PHL, MAQ_S{A}.W.PHR 6/1 1

MADD, MADDU, MSUB, MSUBU, MULT, MULTU 6/1 1

MULSAQ_S.W.PH 6 1

MUL{_S}.PH 6 1

MULQ_S.PH, MULQ_S.W, MULQ_RS.W 6 1

MULSA.W.PH 6 1

BITREV 2 1

INSV 2 1

REPL{V}.QB, REPL{V}.PH 2 1

CMPU.EQ.QB, CMPU.LT.QB, CMPU.LE.QB 2 1

CMPGDU.EQ.QB, CMPGDU.LT.QB, CMPGDU.LE.QB 2 1

CMPGU.EQ.QB, CMPGU.LT.QB, CMPGU.LE.QB 2 1

CMP.EQ.PH, CMP.LT.PH, CMP.LE.PH 2 1

PICK.QB, PICK.PH 2 1

APPEND, PREPEND 2 1

BALIGN 2 1

PACKRL.PH 2 1

EXTR.W, EXTR_R.W, EXTR_RS.W 6 1

EXTR_S.H, EXTRV_S.H 6 1

EXTRV{_R,_RS}.W 6 1

EXTP, EXTPV, EXTPDP, EXTPDPV 2 1

SHILO, SHILOV 5 5

MTHLIP 5/13 5 5 cycles for acc register, while 13 cycles 
for DSPCTL.POS register. 

MFHI 2 1

MFLO 2 1

MTHI 5 5

MTLO 5 5

WRDSP n/a 1

RDDSP 2 1

LBUX, LHX, LWX 4 1 Assuming L1 data cache hit.

BPOSGE32 n/a 1

Table 13.13 proAptiv DSP Instruction Latencies and Repeat Rates (continued)

Instruction Latency
Repeat 

Rate Notes
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EJTAG Debug Support 

The EJTAG block of the proAptiv Multiprocessing System provides a system debug facility for the device. The 
EJTAG functions are not normally controlled by the end user, but rather are controlled by a debugger. This chapter is 
meant to be read in conjunction with the MIPS EJTAG Specification that was included as part of the release.

An EJTAG debug block is present in all cores available from MIPS Technologies, Inc. It contains support for things 
like hardware and software breakpoints, hardware single-step, and a JTAG based debug TAP for debug probe connec-
tion.

This chapter is used for debug of the proAptiv CPU core. For more information on the debugging of the Multipro-
cessing System, including the CM2 and CPC, refer to the next chapter entitled “Multi-CPU Debug”.

This chapter contains the following sections:

• Section 14.1 “Overview”

• Section 14.2 “Trace Funnel and Trace Types”

• Section 14.3 “Detecting Debug Mode”

• Section 14.4 “Ways of Entering Debug Mode”

• Section 14.5 “Exiting Debug Mode”

• Section 14.6 “EJTAG and PDTrace Revisions”

• Section 14.7 “Connection Options”

• Section 14.8 “Hardware Breakpoints”

• Section 14.10 “Test Access Port (TAP)”

• Section 14.11 “PDTrace”

• Section 14.12 “PDtrace Cycle-by-Cycle Behavior”

• Section 14.13 “PC Sampling”

• Section 14.14 “EJTAG Registers”

• Section 14.15 “Fast Debug Channel”

• Section 14.16 “TCB Trigger Logic”
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14.1 Overview

The EJTAG debug logic in the proAptiv Multiprocessing System core is compliant with EJTAG Specification 5.0 and 
includes:

1. Standard core debug features

2. Optional hardware breakpoints

3. Standard Test Access Port (TAP) for a dedicated connection to a debug host

4. Optional PDtrace capability for program counter/data address/data value trace to On-chip memory or to Trace 
probe

EJTAG debug resources are often controlled via high level debugger commands. The following is a brief overview of 
some EJTAG features.

• PCSAMPLE: A feature allowing for non-intrusive reading of recently completed instruction addresses. The 
PCSAMPLE TAP instruction selects the TAP data register “PCSAMPLE” which contains an execution address 
and a flag indicating whether or not a new instruction has completed since the last read of the PCSAMPLE TAP 
data register.

• EJTAG TAP: The optional JTAG TAP associated with an EJTAG debug block used for communications with an 
EJTAG probe and debugger.

• ECR (EJTAG Control Register): This register is used mostly by probe developers and can only be accessed via a 
probe.

• DCR (Debug Control Register): This register is located in the drseg memory segment and can only be accessed 
in Debug mode. 

• DINT (Debug Interrupt): an interrupt which causes a debug exception and entry into debug mode.

• DRSEG (Debug Register Segment): A memory overlay, present only while executing in debug mode, that allows 
access to registers controlling various EJTAG debug features.

• DMSEG (Debug Memory Segment): A memory overlay, present only while in debug mode and ECR.ProbEn is 
set, that an EJTAG probe emulates by satisfying processor accesses (fetches, loads, and stores.) The emulation is 
carried out via TAP data registers CONTROL, ADDRESS, and DATA.

• Single-Step: A debug setting that results in a debug exception after execution of a single12 non-debug mode 
instruction has completed.

• Hardware Breakpoint: A hardware resource capable of detecting execution or data access at virtual addresses.

• Software Breakpoint: The instruction “sdbbp” which causes a debug exception on execution. Debuggers will 
temporarily replace an instruction of your program with this instruction on setting a breakpoint in writeable 
memory.
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14.2.1 Trace Types

The proAptiv Multiprocessing System support three types of trace:

1. Core Trace

2. CM2 Trace

3. System Trace

Core Trace — Core trace allows CPU signals to be traced and routed to the trace funnel for processing. The function-
ality of core trace and the registers used to control it are described throughout this chapter.

CM2 Trace — The CM2 has its own trace and also manages the trace funnel. The functionality of CM2 trace and the 
registers used to control it are described in the CM2 chapter. Refer to 8 of this manual for more information.

MIPS System Trace — The MIPS System trace is a new feature to the proAptiv Multiprocessing System and allows 
the SoC designer to place signals from their non-probe SoC logic directly into the trace funnel for PDTrace to cap-
ture. The logic and registers that controls System Trace are handled by the CM2. Refer to Chapter 8 of the proAptiv 
Multiprocessing System Hardware User’s Manual for more information on MIPS System Trace. For additional infor-
mation, refer to Section 7.6.2 of the proAptiv Multiprocessing System Hardware User’s Manual.

14.2.2 EJTAG TAP Interface

Every TAP register access (also referred to as a “scan”) is a read-before-write operation. A TAP register access cap-
tures (reads) a register value from the target and then that value is serially shifted out to the tool as a new value is 
simultaneously shifted in. After all of the bits of the register have been shifted the input value is updated (written.)

There are two main paths through an EJTAG TAP state machine. One provides access to the single, 5-bit instruction 
register and the other provides access to the currently selected data register(s). Every TAP instruction access should 
result in the 5 bit binary value “00001” being read. Most EJTAG TAP instructions’ sole purpose is to select which 
data register is accessed during a data scan. EJTAG TAP instructions not intended to select specific TAP data regis-
ters will select the BYPASS data register.

In a multi-device target system, the term “scan chain” is used to describe the serial (daisy-chained) set of TAPS which 
are read/written in a single scan.

14.2.3 EJTAGBOOT vs NORMALBOOT

The EJTAGBOOT TAP instruction modifies the reset value of the ECR.ProbTrap, ECR.ProbEn, and ECR.EjtagBrk, 
thereby changing device reset behavior. Subsequent warm resets result in a debug exception after release from reset. 
Any EJTAG TAP reset will clear the EJTAGBOOT indication as will sending a NORMALBOOT TAP instruction.

14.3 Detecting Debug Mode

The DM bit of the CP0 Debug register (CP0 Register 23, Select 0) indicates if the processor is operating in debug 
mode. If this bit is set, the processor is operating in debug mode. This bit is set on any debug exception and is cleared 
by executing a DERET instruction. Refer to Chapter 2, CP0 Registers, for more information on the Debug register.

This bit is available to both probe and non-probe related configurations and can be read at any time. The user does not 
need to be in Debug mode in order to read this bit. This bit, along with the associated fields in this register, can be 
used by software to determine the conditions under which Debug mode was entered. 
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14.4 Ways of Entering Debug Mode

There are five ways to enter Debug mode. Each of these ways can be entered from either software, or from a debug 
probe. All of these ways cause the DM bit in the CP0 Debug register to be set.

1. EJTAG Debug Single Step

2. EJTAG Debug Interrupt. Caused by the assertion of the external EJ_DINT input, or by setting the EJTAGBrk bit 
in the ECR register.

3. EJTAG debug hardware data breakpoint match

4. EJTAG debug hardware instruction breakpoint match

5. EJTAG Breakpoint (execution of SDBBP instruction)

14.4.1 EJTAG Debug Single Step

To enter Debug single step mode, the core must implement the single step mode. This can be determined by reading 
the NoSST bit (9) of the CP0 Debug register. If this bit is zero, the debug single step feature is implemented in the 
core. In the proAptiv Multiprocessing System, this bit is always zero to indicate that the single step feature is imple-
mented by the core.

Single step mode can be enabled or disabled by writing to the SST bit (8) of the CP0 Debug register. If the SST bit is 
set, the single step function is available once the core enters debug mode using any of the ways listed above. For 
implementation that include a probe, the common way is to generate the EJTAG DINT signal, which causes a debug 
interrupt to the core. For non-probe implementations, software can set the EJTAGBRK bit. Both of these methods are 
described in the following subsection.

14.4.2 EJTAG Debug Interrupt

The EJTAG DINT signal is an implementation dependent feature that is determined at build time. The DINTsup bit 
(24) in the Implementation register indicates whether the DINT signal is supported. This bit is written by the 
EJ_DINTsup signal at reset depending on whether this option is selected at build time. This is a common way for 
probe or logic analyzer implementations to enter debug mode. Refer to Section 14.14.4.5 “Implementation Register” 
for more information.

Software can enter debug mode by setting the EJTAGbrk bit (12) or the EJTAG Control register. Setting this bit to 1 
causes a debug exception to the processor, unless the CPU was in debug mode or another debug exception occurred. 
When the debug exception occurs, the processor core clock is restarted if the CPU was in low power mode. This bit is 
cleared by hardware when the debug exception is taken. Refer to Section 14.14.4.6 “EJTAG Control Register” for 
more information. 

14.4.3 EJTAG Hardware Data Breakpoint Match

Data breakpoints occur on load/store transactions. Breakpoints are set on virtual address and ASID values, similar to 
the Instruction breakpoint. Data breakpoints can be set on a load, a store or both. Data breakpoints can also be set 
based on the value of the load/store operation. Finally, masks can be applied to both the virtual address and the 
load/store value. Refer to Section 14.8 “Hardware Breakpoints” for more information and a list of registers used to 
set up a data breakpoint. 
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14.4.4 EJTAG Hardware Instruction Breakpoint Match

Instruction breaks occur on instruction fetch operations and the break is set on the virtual address used by the instruc-
tion fetch unit. Instruction breaks can also be made on the ASID value used by the MMU. Finally, a mask can be 
applied to the virtual address to set breakpoints on a range of instructions. Instruction breakpoints compare the virtual 
address of the executed instructions (PC) and the ASID with the registers for each instruction breakpoint including 
masking of address and ASID. When an instruction breakpoint matches, a trigger is generated and a debug exception 
is optionally signalled. An internal bit in the instruction breakpoint registers is set to indicate that the match occurred.

Refer to Section 14.8 “Hardware Breakpoints” for more information and a list of register used to set up an instruction 
breakpoint. 

14.4.5 EJTAG Software Breakpoint

Software can execute a software debug breakpoint using the SDBBP instruction. When this instruction is executed, 
the debugger temporarily replaces the program instruction with the SDBBP instruction when setting a breakpoint in 
memory.

14.5 Exiting Debug Mode

As described above, there are five basic ways to enter debug mode. On in debug mode, the mode can only be exited 
in one of three ways:

• Execution of a Debug Exception Return (DERET) instruction.

• Reset the core

• Power cycle the core

During normal operation, execptions are taken by the core and processed. Once the exception processing is complete, 
software executes an Exception Return (ERET) instruction. When in debug mode, software executes a Debug Excep-
tion Return (DERET) instruction. This causes the core to exit debug mode and return to previous mode as determined 
by the programmer (normal, kernel, supervisor, etc.).

Note that for a DERET instruction to be executed, the core must be in a state where it is fetching instructions. If for 
any reason the instruction stream has been halted and cannot resume, then the DERET instruction cannot be executed. 
In this case, the only other options are resetting the core, or cycling the power to the proAptiv Multiprocessing Sys-
tem.
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14.6 EJTAG and PDTrace Revisions

This chapter is intended to be used in conjunction with the EJTAG specification (MIPS document number MD00047) 
and the MIPS PDTrace specification (MIPS document number MD00439). These documents contain information for 
multiple types of MIPS cores, so the EJTAG and PDTrace versions of the core in question must be known in order to 
use these documents.

• EJTAG version with probe: When using the MIPS Debug facility with a debug probe, the EJTAG version used 
in the proAptiv core can be determined by reading the EJTAGver field in bits 31:29 of the Implementation regis-
ter. This is a TAP controller register that is only accessible through an EJTAG probe. The proAptiv core imple-
ments EJTAG revision 5.0. Refer to Section 14.14.4.5 “Implementation Register” for more information. Note 
that the probe can read either the Implementation register of the CP0 Debug register described below to deter-
mine the EJTAG revision number.

• EJTAG version without probe: When using the MIPS Debug facility without a debug probe, the EJTAG version 
used in the proAptiv core can be determined by reading the EJTAGver field in bits 17:15 of the CP0 Debug regis-
ter located at CP0 register 23, select 0. The proAptiv core implements EJTAG revision 5.0. Refer to Chapter 2 of 
this manual for more information on the CP0 Debug register. Note that the kernel can only read the CP0 Debug 
register to determine the EJTAG version and does not have access to the EJTAG Implementation register 
described above. 

• PDTrace version with probe: When using the MIPS Debug facility with a debug probe, the PDTrace version 
used in the proAptiv core can be determined by reading the REV field in bits 3:0 of the Trace Buffer 
Configuration (TCBCONFIG) register located in the EJTAG TAP controller. Refer to the Section 
14.14.11.2 “TCBCONFIG Register (Reg 0)” for more information on this register. The current revision is 3.0 as 
noted by the default value. Note that this register can only be read when an EJTAG probe is connected to the 
device.

• PDTrace version without probe: When using the MIPS Debug facility without a debug probe, the PDTrace ver-
sion used in the proAptiv core can be determined by reading the REV field in bits 3:0 of the Trace Buffer 
Configuration (TCBCONFIG) register located in the EJTAG TAP controller. 

However, since a probe is not attached in this case, the core must be in Debug mode in order to read this register. 
Debug mode can be entered in any of the ways described in Section 14.4 “Ways of Entering Debug Mode”. 
Refer to the Section 14.14.11.2 “TCBCONFIG Register (Reg 0)” for more information on this register. 

It should be noted that the Device Identification register located in Section 14.14.4.4 on page 713 contains version and 
part number information. This register is only accessible when an EJTAG probe is attached, but does not provide 
EJTAG or PDTrace revision information. This register is used to by the manufacturer for their own device identifica-
tion purposes and should not be used in an attempt to determine the EJTAG or PDTrace revisions.

14.7 Connection Options

The EJTAG debug port of the proAptiv core can be accessed either via a TAP (five JTAG pins), or the EJTAG debug 
block through the CP0 Debug register, the DCR, and drseg space. If the TAP is used, no ROM monitor is required and 
there is no interference with the customers code. If there is no TAP, then the user must write their own ROM monitor.

There are two ways to connect to access the EJTAG debug facility:

• Software via the General Control Registers (GCR)

• Debug probe via the EJTAG Test Access Port (TAP)
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The DCR (Debug Control Register) can be used to access the EJTAG debug port via software. This register is located 
in the drseg memory segment and can only be accessed in Debug mode. This register can be accessed by anyone that 
enters Debug mode and does not require that a probe be attached. 

Access via software would mostly be performed during normal operation. As described in Section 14.4 “Ways of 
Entering Debug Mode” above, the CP0 Debug register (CP0 Register 23, Select 0) indicates whether or not the device 
is in Debug mode and the cause as to how it got there. Bit 30 of this register indicates if the core has entered Debug 
mode. If the core is not in Debug mode, the other bits have no meaning. If the core is in Debug mode, the other bits 
are used to provide additional information about how the device got into Debug mode. For example, setting a soft-
ware breakpoint allows thc core to enter Debug mode. 

The ECR (EJTAG Control Register) is used mostly by probe developers and can only be accessed via a probe. Refer 
to Section 14.14.4.6 “EJTAG Control Register” for more information.

14.8 Hardware Breakpoints

Hardware breakpoints provide for the comparison by hardware of executed instructions and data load/store transac-
tions. It is possible to set instruction breakpoints on addresses even in ROM area. Data breakpoints can be set to cause 
a debug exception on a specific data transaction. Instruction and data hardware breakpoints are alike for many 
aspects, and are thus described in parallel in the following. The term hardware is not applied to breakpoint, unless 
required to distinguish it from software breakpoint.

There are two types of simple hardware breakpoints implemented in the proAptiv Multiprocessing System core; 
Instruction breakpoints and Data breakpoints.

A core may be configured with the following breakpoint options:

• Zero, two, or four instruction breakpoints

• Zero, one, or two data breakpoints

14.8.1 Instruction Breakpoints

Instruction breaks occur on instruction fetch operations and the break is set on the virtual address used by the instruc-
tion fetch unit. Instruction breaks can also be made on the ASID value used by the TLB-based MMU. Finally, a mask 
can be applied to the virtual address to set breakpoints on a range of instructions.

Instruction breakpoints compare the virtual address of the executed instructions (PC) and the ASID with the registers 
for each instruction breakpoint including masking of address and ASID. When an instruction breakpoint matches, a 
trigger is generated and a debug exception is optionally signalled. An internal bit in the instruction breakpoint regis-
ters is set to indicate that the match occurred.

14.8.2 Data Breakpoints

Data breakpoints occur on load/store transactions. Breakpoints are set on virtual address and ASID values, similar to 
the Instruction breakpoint. Data breakpoints can be set on a load, a store or both. Data breakpoints can also be set 
based on the value of the load/store operation. Finally, masks can be applied to both the virtual address and the 
load/store value.

Data breakpoints compare the transaction type (TYPE), which may be load or store, the virtual address of the transac-
tion (ADDR), the ASID, accessed bytes (BYTELANE) and data value (DATA), with the registers for each data 
breakpoint including masking or qualification on the transaction properties. When a data breakpoint matches, a trig-
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ger is generated and a debug exception is optionally signalled. An internal bit in the data breakpoint registers is set to 
indicate that the match occurred.

14.8.3 Instruction Breakpoint Registers Overview

The register with implementation indication and status for instruction breakpoints in general is shown in Table 14.1. 

Up to four instruction breakpoints are available and are numbered 0 to 3 for registers and breakpoints, and the number 
is indicated by n. The registers for each breakpoint are shown in Table 14.2. 

14.8.4 Data Breakpoint Registers Overview

The register with implementation indication and status for data breakpoints in general is shown in Table 14.3. 

Up to two data breakpoints are available and are numbered 0 and 1 for registers and breakpoints, and the number is 
indicated by n. The registers for each breakpoint are shown in Table 14.4. 

14.8.5 Conditions for Matching Breakpoints

A number of conditions must be fulfilled in order for a breakpoint to match on an executed instruction or a data trans-
action, as described in this section. Breakpoints only match for instructions executed in non-debug mode, never on 
instructions executed in debug mode.

Table 14.1 Overview of Status Register for Instruction Breakpoints

Register Mnemonic Register Name and Description

IBS Instruction Breakpoint Status

Table 14.2 Overview of Registers for Each Instruction Breakpoint

Register Mnemonic Register Name and Description

IBAn Instruction Breakpoint Address n

IBMn Instruction Breakpoint Address Mask n

IBASIDn Instruction Breakpoint ASID n

IBCn Instruction Breakpoint Control n

Table 14.3 Overview of Status Register for Data Breakpoints

Register Mnemonic Register Name and Description

DBS Data Breakpoint Status

Table 14.4 Overview of Registers for Each Data Breakpoint

Register Mnemonic Register Name and Description

DBAn Data Breakpoint Address n

DBMn Data Breakpoint Address Mask n

DBASIDn Data Breakpoint ASID n

DBCn Data Breakpoint Control n

DBVn Data Breakpoint Value n
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The match of an enabled breakpoint always generates a trigger indication and can also generate a debug exception. 
The BE and/or TE bits in the IBCn or DBCn registers are used to enable the breakpoints.

Debug software should not configure breakpoints to compare on an ASID value unless a TLB is present in the imple-
mentation.

14.8.5.1 Conditions for Matching Instruction Breakpoints

When an instruction breakpoint is enabled, that breakpoint is evaluated for the address of every executed instruction 
in non-debug mode, including execution of instructions at an address causing an address error on an instruction fetch. 
The breakpoint is not evaluated on instructions from a speculative fetch or execution, nor for addresses which are 
unaligned with an executed instruction.

A breakpoint match depends on the virtual address of the executed instruction (PC), which can be masked at the bit 
level, The match can also include an optional compare of the ASID value. The registers for each instruction break-
point contain the values and mask used in the compare, and the equation that determines the match is shown below in 
C-like notation.

IB_match = 
( ! IBCnASIDuse || ( ASID == IBASIDnASID ) ) &&
( <all 1’s> == ( IBMnIBM | ~ ( PC ^ IBAnIBA ) &&
( (IBMnISAM | ~(ISAMode ^ IBAnISA))) )

The match indication for instruction breakpoints is always precise, i.e., indicated on the instruction causing the 
IB_match to be true.

14.8.5.2 Conditions for Matching Data Breakpoints

When a data breakpoint is enabled, that breakpoint is evaluated for every data transaction due to a load/store instruc-
tion executed in non-debug mode, including coprocessor loads/stores and transactions causing an address error on 
data access. The breakpoint is not evaluated due to a PREF instruction or other transactions which are not part of 
explicit load/store transactions in the execution flow, nor for addresses which are not the explicit load/store source or 
destination address.

A breakpoint match depends on the transaction type (TYPE) as load or store, the address, and optionally the data 
value of a transaction.  The registers for each data breakpoint contain the values and mask used in the compare, and 
the equation that determines the match is shown below in C-like notation.

The overall match equation is the DB_match.

DB_match = 
( ( ( TYPE == load ) && ! DBCnNoLB ) ||

( ( TYPE == store ) && ! DBCnNoSB ) ) &&
DB_addr_match && ( DB_no_value_compare || DB_value_match )

The match on the address part, DB_addr_match, depends on the virtual address of the transaction (ADDR), the 
ASID value, and the accessed bytes (BYTELANE) where BYTELANE[0] is 1 only if the byte at bits [7:0] on the bus is 
accessed, and BYTELANE[1] is 1 only if the byte at bits [15:8] is accessed, etc. The DB_addr_match is shown 
below.

DB_addr_match =
( ! DBCnASIDuse || ( ASID == DBASIDnASID ) ) &&
( <all 1’s> == ( DBMnDBM | ~ ( ADDR ^ DBAnDBA ) ) ) &&
( <all 0’s> != ( ~ BAI & BYTELANE ) )
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The size of DBCnBAI and BYTELANE is 8 bits. They are 8 bits to allow for data value matching on doubleword float-
ing point loads and stores. For non-doubleword loads and stores, only the lower 4 bits will be used.

Data value compare is included in the match condition for the data breakpoint depending on the bytes (BYTELANE as 
described above) accessed by the transaction, and the contents of breakpoint registers. The 
DB_no_value_compare is shown below.

DB_no_value_compare = 
( <all 1’s> == ( DBCnBLM | DBCnBAI | ~ BYTELANE ) )

The size of DBCnBLM, DBCnBAI and BYTELANE is 8 bits.

In case a data value compare is required, DB_no_value_compare is false, then the data value from the data bus 
(DATA) is compared and masked with the registers for the data breakpoint. The endianess is not considered in these 
match equations for value, as the compare uses the data bus value directly, thus debug software is responsible for 
setup of the breakpoint corresponding with endianess.

DB_value_match = 
( ( DATA[7:0] == DBVnDBV[7:0] ) || !BYTELANE[0] || DBCnBLM[0] || DBCnBAI[0] ) &&
( ( DATA[15:8] == DBVnDBV[15:8] ) || !BYTELANE[1] || DBCnBLM[1] || DBCnBAI[1] ) &&
( ( DATA[23:16] == DBVnDBV[23:16] ) || !BYTELANE[2] || DBCnBLM[2] || DBCnBAI[2] )&&
( ( DATA[31:24] == DBVnDBV[31:24] ) || !BYTELANE[3] || DBCnBLM[3] || DBCnBAI[3] )&&
( ( DATA[39:32] == DBVnDBV[39:32] ) || !BYTELANE[4] || DBCnBLM[4] || DBCnBAI[4] )&&
( ( DATA[47:40] == DBVnDBV[47:40] ) || !BYTELANE[5] || DBCnBLM[5] || DBCnBAI[5] )&&
( ( DATA[55:48] == DBVnDBV[55:48] ) || !BYTELANE[6] || DBCnBLM[6] || DBCnBAI[6] )&&
( ( DATA[63:56] == DBVnDBV[63:56] ) || !BYTELANE[7] || DBCnBLM[7] || DBCnBAI[7] ))

The match for a data breakpoint without value compare is always precise, since the match expression is fully evalu-
ated at the time the load/store instruction is executed. A true DB_match can thereby be indicated on the very same 
instruction causing the DB_match to be true. The match for data breakpoints with value compare is always impre-
cise.

14.8.6 Debug Exceptions from Breakpoints

Instruction and data breakpoints may be set up to generate a debug exception when the match condition is true, as 
described below.

14.8.6.1 Debug Exception by Instruction Breakpoint

If the breakpoint is enabled by the BE bit in the IBCn register, then a debug instruction break exception occurs if the 
IB_match equation is true. The corresponding BS[n] bit in the IBS register is set when the breakpoint generates the 
debug exception.

The debug instruction break exception is always precise, so the DEPC register and the DBD bit in the Debug register 
point to the instruction that caused the IB_match equation to be true. 

The instruction receiving the debug exception does not update any registers due to the instruction, nor does any load 
or store by that instruction occur. Thus a debug exception from a data breakpoint cannot occur for instructions receiv-
ing a debug instruction break exception.

The debug handler usually returns to the instruction causing the debug instruction break exception, whereby the 
instruction is executed. Debug software is responsible for disabling the breakpoint when returning to the instruction; 
otherwise the debug instruction break exception reoccurs.
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14.8.6.2 Debug Exception by Data Breakpoint

If the breakpoint is enabled by BE bit in the DBCn register, then a debug exception occurs when the DB_match condi-
tion is true. The corresponding BS[n] bit in the DBS register is set when the breakpoint generates the debug excep-
tion. A matching data breakpoint generates either a precise or imprecise debug exception.

Debug Data Break Load/Store Exception as a Precise Debug Exception

A precise debug data break exception occurs when a data breakpoint without value compare indicates a match. In this 
case the DEPC register and DBD bit in the Debug register points to the instruction that caused the DB_match equa-
tion to be true. 

The instruction causing the debug data break exception does not update any registers due to the instruction, and the 
following applies to the load or store transaction causing the debug exception:

• A store transaction is not allowed to complete the store to the memory system.

• A load transaction with no data value compare, i.e. where the DB_no_value_compare is true for the match, 
is not allowed to complete the load. 

The result of this is that the load or store instruction causing the debug data break exception appears as not executed.

If both data breakpoints without and with data value compare would match the same transaction and generate a debug 
exception, then the rules shown in Table 14.5 apply with respect to updating the BS[n] bits. 

Any BS[n] bit set prior to the match and debug exception are kept set, since BS[n] bits are only cleared by debug soft-
ware.

The debug handler usually returns to the instruction causing the debug data break exception, whereby the instruction 
is re-executed. Debug software is responsible for disabling breakpoints when returning to the instruction, otherwise 
the debug data break exception will reoccur.

Table 14.5 Rules for Update of BS Bits on Data Breakpoint Exceptions

Instruction

Breakpoints that Match
Update of BS Bits for Matching Data 

Breakpoints

Without Value 
Compare With Value Compare

Without Value 
Compare With Value Compare

Load/Store One or more None BS bits set for all (No matching break-
points)

Load One or more One or more BS bits set for all Unchanged BS bits since 
load of data value does 

not occur so match of the 
breakpoint cannot be 

determined

Load None One or more (No matching break-
points)

BS bits set for all

Store One or more One or more BS bits set for all BS bits set for all

Store None One or more (No matching break-
points)

BS bits set for all
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Debug Data Break Load/Store Exception as a Imprecise Debug Exception

An Debug Data Break Load/Store Imprecise exception occurs when a data breakpoint indicates an imprecise match. 
Imprecise matches are generated when data value compare is used. In this case, the DEPC register and DBD bit in the 
Debug register point to an instruction later in the execution flow rather than at the load/store instruction that caused 
the DB_match equation to be true.

The load/store instruction causing the Debug Data Break Load/Store Imprecise exception always updates the destina-
tion register and completes the access to the external memory system. Therefore this load/store instruction is not 
re-executed on return from the debug handler, because the DEPC register and DBD bit do not point to that instruction.

Several imprecise data breakpoints can be pending at a given time, if the bus system supports multiple outstanding 
data accesses. The breakpoints are evaluated as the accesses finalize, and a Debug Data Break Load/Store Imprecise 
exception is generated only for the first one that matches. Both the first and succeeding matches cause corresponding 
BS bits and DDBLImpr/DDBSImpr to be set, but no debug exception is generated for succeeding matches, because the 
processor is already in Debug Mode. Similarly, if a debug exception had already occurred at the time of the first 
match (for example, due to a precise debug exception), then all matches cause the corresponding BS bits and 
DDBLImpr/DDBSImpr to be set, but no debug exception is generated because the processor is already in Debug Mode.

The SYNC instruction, followed by appropriate spacing must be executed before the BS bits and 
DDBLImpr/DDBSImpr bits are accessed for read or write. This delay ensures that these bits are fully updated.

Any BS bit set prior to the match and debug exception remains set, because only debug software can clear the BS bits.

14.8.7 Breakpoint used as Triggerpoint

When an enabled instruction or data breakpoint matches, the corresponding bit in the IBS.BS or DBS.BS field is set. 
These fields are externalized on the SI_Ibs and SI_Dbs core outputs, respectively. These outputs are intended to be 
used to trigger external devices such as logic analyzers. Furthermore, breakpoint matches can also be used to start or 
stop PDtrace. See Section 14.11.8 “Enabling PDtrace” for details.

If the breakpoints are to be used only as trigger events, the signalling of the debug exception can be suppressed by 
clearing the IBCn/DBCn.BE field and setting the IBCn/DBCn.TE field. 

14.9 Debug Vector Addressing

The debug vector address size is managed by the Debug Vector Address register as described in Section 
14.14.1.2 “DebugVectorAddr Register”. The Debug Vector Address register is a read/write register containing the 
base address of the debug exception vectors in bits 31:7, and a WG bit that determines whether the bits 31:30 of this 
field are a fixed value, or are programmable.

Bits 31:12 of the DebugVectorAddress register are concatenated with zeros to form the base of the debug exception 
vector. The exception vector base address comes from the fixed defaults for any EJTAG Debug exception. The reset 
state of bits 31:12 of the DebugVectorAddress register initialize the exception base register to 0xFC00.0480.

The size of the DebugVectorAddr field depends on the state of the WG bit. At reset, the WG bit is cleared by default. 
In this case, the DebugVectorAddr field is comprised of bits 29:7. Bits 31:30 of the DebugVectorAddr Register are not 
writeable and are forced to a value of 2'b10 by hardware so that the debug exception handler will be executed from 
the kseg0/kseg1 segments.

When the WG bit is set, bits 31:30 of the DebugVectorAddr field become writeable and are used to relocate the 
DebugVectorAddr field to other segments after they have been setup using the SegCtl0 through SegCtl2 registers. 
Note that if the WG bit is set by software (allowing bits 31:30 to become part of the DebugVectorAddr field) and then 
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cleared, bits 31:30 can no longer be written by software and the state of these bits remains unchanged for any writes 
after WG was cleared. Therefore, it is the responsibility of software to write a value of 2'b10 to bits 31:30 of the 
DebugVectorAddr register prior to clearing the WG bit if it wants to ensure that future debug exceptions will be exe-
cuted from the kseg0 or kseg1 segments.

Note that the WG bit is different from the CV bit in the SegCtl0 register located in Section 2.3.3.1, "Segmentation 
Control 0 — SegCtl0 (CP0 Register 5, Select 2)". Although their functions are similar, the CV bit applies only to 
cache error exceptions, whereas the WG bit applies to all exceptions. 

If the value of the exception base register is to be changed, this must be done with StatusBEV equal to 1. The opera-
tion of the processor is UNDEFINED if the exception base field is written with a different value when StatusBEV is 
0.

Table 14.11 shows the different debug exception vector locations that are possible.

As shown in the table above, if the ECRProbeTrap bit (14) is set in the EJTAG Control register, then all other bits or sig-
nals that determine the location of the debug vector address have no meaning and the location of the debug exception 
vector default to 0xFF20_0200. Note that the ECRProbeEn bit (15) must be set in order for this bit to have meaning.

14.10 Test Access Port (TAP)

The TAP is used only when a probe is connected to the proAptiv Multiprocessing System. 

The following main features are supported by the TAP module:

• 5-pin industry standard JTAG Test Access Port (TCK, TMS, TDI, TDO, TRST_N) interface which is compatible 
with IEEE Std. 1149.1.

• Target chip and EJTAG feature identification available through the Test Access Port (TAP) controller.

• The processor can access external memory on the EJTAG Probe serially through the EJTAG pins. This is 
achieved through Processor Access (PA), and is used to eliminate the use of the system memory for debug rou-
tines.

• Support for both ROM based debugger and debugging both through TAP.

Table 14.6 Debug Exception Vectors

ECRProbTrap DCRRdVec Config5K SI_UseExceptionBase Cache Error? Debug Exception Vector

1 x x x x 0xFF20_0200

0 1 0 x 0 2’b10 || DebugVectorAddr[29:0]

0 1 1 x 0 DebugVectorAddr[31:0]

0 1 0 x 1 3’b101 || DebugVectorAddr[28:0]

0 1 1 x 1 DebugVectorAddr[31:0]

0 0 0 1 0 2’b10 || SI_ExceptionBase[29:12] || 0x480

0 0 1 1 0 SI_ExceptionBase[31:12] || 0x480

0 0 0 1 1 3’b101 || SI_ExceptionBase[28:12] || 0x480

0 0 1 1 1 SI_ExceptionBase[31:12] || 0x480

0 0 x 0 x 0xBFC0_0480
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14.10.1 EJTAG Internal and External Interfaces

The external interface of the EJTAG module consists of the 5 signals defined by the IEEE standard.

14.10.2 Test Access Port Operation

The TAP controller is controlled by the Test Clock (TCK) and Test Mode Select (TMS) inputs. These two inputs deter-
mine whether an the Instruction register scan or data register scan is performed. The TAP consists of a small control-
ler, driven by the TCK input, which responds to the TMS input as shown in the state diagram in Figure 14.2. The TAP 
uses both clock edges of TCK. TMS and TDI are sampled on the rising edge of TCK, while TDO changes on the falling 
edge of TCK.

At power-up the TAP is forced into the Test-Logic-Reset by low value on TRST_N. The TAP instruction register is 
thereby reset to IDCODE. No other parts of the EJTAG hardware are reset through the Test-Logic-Reset state.

When test access is required, a protocol is applied via the TMS and TCK inputs, causing the TAP to exit the 
Test-Logic-Reset state and move through the appropriate states. From the Run-Test/Idle state, an Instruction register 
scan or a data register scan can be issued to transition the TAP through the appropriate states shown in Figure 14.2.

The states of the data and instruction register scan blocks are mirror images of each other adding symmetry to the pro-
tocol sequences. The first action that occurs when either block is entered is a capture operation. For the data registers, 
the Capture-DR state is used to capture (or parallel load) the data into the selected serial data path. In the Instruction 
register, the Capture-IR state is used to capture status information into the Instruction register. 

Table 14.7 EJTAG Interface Pins

Pin Type Description

TCK I Test Clock Input
Input clock used to shift data into or out of the Instruction or data registers. The TCK clock is 
independent of the processor clock, so the EJTAG probe can drive TCK independently of the 
processor clock frequency.
The core signal for this is called EJ_TCK

TMS I Test Mode Select Input
The TMS input signal is decoded by the TAP controller to control test operation. TMS is sam-
pled on the rising edge of TCK.
The core signal for this is called EJ_TMS

TDI I Test Data Input
Serial input data (TDI) is shifted into the Instruction register or data registers on the rising 
edge of the TCK clock, depending on the TAP controller state.
The core signal for this is called EJ_TDI

TDO O Test Data Output
Serial output data is shifted from the Instruction or data register to the TDO pin on the falling 
edge of the TCK clock. When no data is shifted out, the TDO is 3-stated.
The core signal for this is called EJ_TDO with output enable controlled by EJ_TDOzstate.

TRST_N I Test Reset Input (Optional pin)
The TRST_N pin is an active-low signal for asynchronous reset of the TAP controller and 
instruction in the TAP module, independent of the processor logic. The processor is not reset 
by the assertion of TRST_N.
The core signal for this is called EJ_TRST_N
This signal is optional, but power-on reset must apply a low pulse on this signal at power-on 
and then leave it high, in case the signal is not available as a pin on the chip. If available on 
the chip, then it must be low on the board when the EJTAG debug features are unused by the 
probe.
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When TMS is sampled HIGH on the rising edge of TCK, the controller transitions to the Select_DR state.

14.10.2.3 Select_DR_Scan State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, then the controller transitions to the Capture_DR state. 
A HIGH on TMS causes the controller to transition to the Select_IR state. The instruction cannot change while the 
TAP controller is in this state. 

14.10.2.4 Select_IR_Scan State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW on the rising edge of TCK, the controller transitions to the Capture_IR state. A 
HIGH on TMS causes the controller to transition to the Test-Reset-Logic state. The instruction cannot change while 
the TAP controller is in this state. 

14.10.2.5 Capture_DR State

In this state the boundary scan register captures the value of the register addressed by the Instruction register, and the 
value is then shifted out in the Shift_DR. If TMS is sampled LOW at the rising edge of TCK, the controller transitions 
to the Shift_DR state. A HIGH on TMS causes the controller to transition to the Exit1_DR state. The instruction can-
not change while the TAP controller is in this state. 

14.10.2.6 Shift_DR State

In this state the test data register connected between TDI and TDO as a result of the current instruction shifts data one 
stage toward its serial output on the rising edge of TCK. If TMS is sampled LOW on the rising edge of TCK, the con-
troller remains in the Shift_DR state. A HIGH on TMS causes the controller to transition to the Exit1_DR state. The 
instruction cannot change while the TAP controller is in this state. 

14.10.2.7 Exit1_DR State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Pause_DR state. A 
HIGH on TMS causes the controller to transition to the Update_DR state which terminates the scanning process. The 
instruction cannot change while the TAP controller is in this state. 

14.10.2.8 Pause_DR State

The Pause_DR state allows the controller to temporarily halt the shifting of data through the test data register in the 
serial path between TDI and TDO. All test data registers selected by the current instruction retain their previous state. 
If TMS is sampled LOW on the rising edge of TCK, the controller remains in the Pause_DR state. A HIGH on TMS 
causes the controller to transition to the Exit2_DR state. The instruction cannot change while the TAP controller is in 
this state. 

14.10.2.9 Exit2_DR State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Shift_DR state to allow 
another serial shift of data. A HIGH on TMS causes the controller to transition to the Update_DR state which termi-
nates the scanning process. The instruction cannot change while the TAP controller is in this state. 
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14.10.2.10 Update_DR State

When the TAP controller is in this state the value shifted in during the Shift_DR state takes effect on the rising edge of 
the TCK for the register indicated by the Instruction register.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Run-Test/Idle state. A HIGH on 
TMS causes the controller to transition to the Select_DR_Scan state. The instruction cannot change while the TAP 
controller is in this state and all shift register stages in the test data registers selected by the current instruction retain 
their previous state.

14.10.2.11 Capture_IR State

In this state the shift register contained in the Instruction register loads a fixed pattern (000012) on the rising edge of 
TCK. The data registers selected by the current instruction retain their previous state. 

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Shift_IR state. A HIGH on TMS 
causes the controller to transition to the Exit1_IR state. The instruction cannot change while the TAP controller is in 
this state. 

14.10.2.12 Shift_IR State

In this state the instruction register is connected between TDI and TDO and shifts data one stage toward its serial out-
put on the rising edge of TCK. If TMS is sampled LOW at the rising edge of TCK, the controller remains in the 
Shift_IR state. A HIGH on TMS causes the controller to transition to the Exit1_IR state.

14.10.2.13 Exit1_IR State

This is a temporary controller state in which all registers retain their previous state. If TMS is sampled LOW at the ris-
ing edge of TCK, the controller transitions to the Pause_IR state. A HIGH on TMS causes the controller to transition 
to the Update_IR state which terminates the scanning process. The instruction cannot change while the TAP control-
ler is in this state and the instruction register retains its previous state.

14.10.2.14 Pause_IR State

The Pause_IR state allows the controller to temporarily halt the shifting of data through the instruction register in the 
serial path between TDI and TDO. If TMS is sampled LOW at the rising edge of TCK, the controller remains in the 
Pause_IR state. A HIGH on TMS causes the controller to transition to the Exit2_IR state. The instruction cannot 
change while the TAP controller is in this state. 

14.10.2.15 Exit2_IR State

This is a temporary controller state in which the instruction register retains its previous state. If TMS is sampled LOW 
at the rising edge of TCK, then the controller transitions to the Shift_IR state to allow another serial shift of data. A 
HIGH on TMS causes the controller to transition to the Update_IR state which terminates the scanning process. The 
instruction cannot change while the TAP controller is in this state. 

14.10.2.16 Update_IR State

The instruction shifted into the instruction register takes effect on the rising edge of TCK.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Run-Test/Idle state. A HIGH on 
TMS causes the controller to transition to the Select_DR_Scan state.
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14.10.3 Test Access Port (TAP) Instructions

The TAP Instruction register allows instructions to be serially input into the device when TAP controller is in the 
Shift-IR state. Instructions are decoded and define the serial test data register path that is used to shift data between 
TDI and TDO during data register scanning.

The Instruction register is a 5-bit register. In the current EJTAG implementation only some instructions have been 
decoded; the unused instructions default to the BYPASS instruction. 

14.10.3.1 BYPASS Instruction

The required BYPASS instruction allows the processor to remain in a functional mode and selects the Bypass register 
to be connected between TDI and TDO. The BYPASS instruction allows serial data to be transferred through the pro-
cessor from TDI to TDO without affecting its operation. The bit code of this instruction is defined to be all ones by the 
IEEE 1149.1 standard. Any unused instruction is defaulted to the BYPASS instruction.

14.10.3.2 IDCODE Instruction

The IDCODE instruction allows the processor to remain in its functional mode and selects the Device Identification 
(ID) register to be connected between TDI and TDO. The Device ID register is a 32-bit shift register containing infor-
mation regarding the IC manufacturer, device type, and version code. Accessing the Identification Register does not 
interfere with the operation of the processor. Also, access to the Identification Register is immediately available, via a 
TAP data scan operation, after power-up when the TAP has been reset with on-chip power-on or through the optional 
TRST_N pin.

Table 14.8 Implemented EJTAG Instructions

Value Instruction Function

0x01 IDCODE Select Chip Identification data register

0x03 IMPCODE Select Implementation register

0x08 ADDRESS Select Address register

0x09 DATA Select Data register

0x0A CONTROL Select EJTAG Control register

0x0B ALL Select the Address, Data and EJTAG Control registers

0x0C EJTAGBOOT Set EjtagBrk, ProbEn and ProbTrap to 1 as reset value

0x0D NORMALBOOT Set EjtagBrk, ProbEn and ProbTrap to 0 as reset value

0x0E FASTDATA Selects the Data and Fastdata registers

0x10 TCBCONTROLA Selects the TCBTCONTROLA register in the Trace Control Block

0x11 TCBCONTROLB Selects the TCBTCONTROLB register in the Trace Control Block

0x12 TCBDATA Selects the TCBDATA register in the Trace Control Block

0x13 TCBCONTROLC Selects the TCBTCONTROLC register in the Trace Control Block

0x14 PCSAMPLE Selects the PCSAMPLE register

0x15 TCBCONTROLD Selects the TCBTCONTROLD register in the Trace Control Block

0x16 TCBCONTROLE Selects the TCBTCONTROLE register in the Trace Control Block

0x17 FDC Select Fast Debug Channel

0x1F BYPASS Bypass mode
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There is no restriction on the contents of the Data register. It is expected that the transfer size is negotiated between 
the download/upload transfer code and the probe software. Note that the most efficient transfer size is a 32-bit word.

The Rocc bit of the Control register is not used for the FASTDATA operation.

14.10.3.11 TCBCONTROLA Instruction

This instruction is used to select the TCBCONTROLA register to be connected between TDI and TDO. This register 
is only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the 
Bypass register.

14.10.3.12 TCBCONTROLB Instruction

This instruction is used to select the TCBCONTROLB register to be connected between TDI and TDO. This register is 
only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the 
Bypass register.

14.10.3.13 TCBCONTROLC Instruction

This instruction is used to select the TCBCONTROLC register to be connected between TDI and TDO. This register is 
only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the 
Bypass register.

14.10.3.14 TCBDATA Instruction

This instruction is used to select the TCBDATA register to be connected between TDI and TDO. This register is only 
implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the Bypass 
register. It should be noted that the TCBDATA register is only an access register to other TCB registers. The width of 
the TCBDATA register is dependent on the specific TCB register.

14.10.3.15 PCSAMPLE Instruction

This instruction is used to select the PCSAMPLE register to be connected between TDI and TDO. This register is 
always implemented.

14.10.3.16 TCBCONTROLD Instruction

This instruction is used to select the TCBCONTROLD register to be connected between TDI and TDO. This register 
is only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the 
Bypass register.

Upload using 
FASTDATA

Fails x x none unchanged 0 invalid

Passes 1 1 none unchanged 1 invalid

1 0 read data 0 (SPrAcc) 1 valid data

0 x none unchanged 0 invalid

Table 14.9 Operation of the FASTDATA Access (continued)

Probe 
Operation

Address 
Match 
Check

PrAcc in 
the Control 

Register

LSB 
(SPrAcc) 
Shifted In

Action in 
the Data 
Register

PrAcc 
Changes to

Lsb Shifted 
Out

Data 
Shifted Out
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14.10.3.17 TCBCONTROLE Instruction

This instruction is used to select the TCBCONTROLE register to be connected between TDI and TDO. This register is 
only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the 
Bypass register.

14.10.3.18 FDC Instruction

This instruction is used to select the Fast Debug Channel register to be connected between TDI and TDO. This register 
is always implemented

14.10.4 TAP Processor Accesses

The TAP modules support handling of fetches, loads and stores from the CPU through the dmseg segment, whereby 
the TAP module can operate like a slave unit connected to the on-chip bus. The core can then execute code taken 
from the EJTAG Probe and it can access data (via a load or store) which is located on the EJTAG Probe. This occurs 
in a serial way through the EJTAG interface: the core can thus execute instructions e.g. debug monitor code, without 
occupying the memory.

Accessing the dmseg segment (EJTAG memory) can only occur when the processor accesses an address in the range 
from 0xFF20.0000 to 0xFF2F.FFFF, the ProbEn bit is set, and the processor is in debug mode (DM=1). In addition 
the LSNM bit in the CP0 Debug register controls transactions to/from the dmseg.

When a debug exception is taken, while the ProbTrap bit is set, the processor will start fetching instructions from 
address 0xFF20.0200.

A pending processor access can only finish if the probe writes 0 to PrAcc or by a reset.

14.10.4.1 Fetch/Load and Store From/To the EJTAG Probe Through dmseg

1. The internal hardware latches the requested address into the Address register (in case of the Debug exception: 
0xFF20.0200). 

2. The internal hardware sets the following bits in the EJTAG Control register:
PrAcc = 1 (selects Processor Access operation)
PRnW = 0 (selects processor read operation)
Psz[1:0] = value depending on the transfer size

3. The EJTAG Probe selects the EJTAG Control register, shifts out this control register’s data and tests the PrAcc 
status bit (Processor Access): when the PrAcc bit is found 1, it means that the requested address is available and 
can be shifted out. 

4. The EJTAG Probe checks the PRnW bit to determine the required access.

5. The EJTAG Probe selects the Address register and shifts out the requested address.

6. The EJTAG Probe selects the Data register and shifts in the instruction corresponding to this address.

7. The EJTAG Probe selects the EJTAG Control register and shifts a PrAcc = 0 bit into this register to indicate to 
the processor that the instruction is available.

8. The instruction becomes available in the instruction register and the processor starts executing.

9. The processor increments the program counter and outputs an instruction read request for the next instruction. 
This starts the whole sequence again.
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Using the same protocol, the processor can also execute a load instruction to access the EJTAG Probe’s memory. For 
this to happen, the processor must execute a load instruction (e.g. a LW, LH, LB) with the target address in the appro-
priate range.

Almost the same protocol is used to execute a store instruction to the EJTAG Probe’s memory through dmseg. The 
store address must be in the range: 0xFF20.0000 to 0xFF2F.FFFF, the ProbEn bit must be set and the processor has to 
be in debug mode (DM=1). The sequence of actions is found below:

1. The internal hardware latches the requested address into the Address register

2. The internal hardware latches the data to be written into the Data register.

3. The internal hardware sets the following bits in the EJTAG Control register:
PrAcc = 1 (selects Processor Access operation)
PRnW = 1 (selects processor write operation)
Psz[1:0] = value depending on the transfer size

4. The EJTAG Probe selects the EJTAG Control register, shifts out this control register’s data and tests the PrAcc 
status bit (Processor Access): when the PrAcc bit is found 1, it means that the requested address is available and 
can be shifted out. 

5. The EJTAG Probe checks the PRnW bit to determine the required access.

6. The EJTAG Probe selects the Address register and shifts out the requested address.

7. The EJTAG Probe selects the Data register and shifts out the data that was written.

8. The EJTAG Probe selects the EJTAG Control register and shifts a PrAcc = 0 bit into this register to indicate to 
the processor that the write access is finished.

9. The EJTAG Probe writes the data to the appropriate address in its memory.

10. The processor detects that PrAcc bit = 0, which means that it is ready to handle a new access.

The above examples imply that no reset occurs during the operations, and that Rocc is cleared.

14.11 PDTrace

PDTrace enables the ability to trace program flow, load/store addresses and load/store data. Several run-time options 
exist for the level of information which is traced, including tracing only when in specific processor modes (e.g., User-
Mode or KernelMode). PDtrace is an optional block in the proAptiv Multiprocessing System core. If PDtrace is not 
implemented, the rest of this chapter is irrelevant. If PDtrace is implemented, the CP0 Config3TL bit is set.

There are two primary blocks involved in the PDtrace solution. The pipeline specific part of PDtrace is called the 
PDtrace module. It extracts the trace information from the processor pipeline, and presents it to a pipeline-indepen-
dent module called the Trace Control Block (TCB). While working closely together, the two parts of PDtrace are con-
trolled separately by software. Figure 14.5 shows an overview of the PDtrace modules within the core.
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• Only instructions which complete at the end of the pipeline are traced, and indicated with a completion-flag. 
The PC is implicitly pointing to the next instruction.

• Load instructions are indicated with a load-flag.

• Store instructions are indicated with a store-flag1.

• Taken branches are indicated with a branch-taken-flag on the target instruction.

• New PC information for a branch is only traced if the branch target is unpredictable from the static program 
image.

• When branch targets are unpredictable, only the delta value from current PC is traced, if it is dynamically 
determined to reduce the number of bits necessary to indicate the new PC. Otherwise the full PC value is 
traced.

• When a completing instruction is executed in a different processor mode from the previous one, the new pro-
cessor mode is traced.

• The first instruction is always traced as a branch target, with processor mode and full PC.

• Periodic synchronization instructions are identified with a sync-flag, and traced with the processor mode and 
full PC.

All the instruction flags above are combined into one 3-bit value, to minimize the bit information to trace. The possi-
ble processor modes are explained in Section 14.11.1 “Processor Modes”.

The target address is statically predictable for all branch and all jump-immediate instructions. If the branch is taken, 
then the branch-taken-flag will indicate this. All jump-register instructions and ERET/DERET are instructions which 
have an unpredictable target address. These will have full/delta PC values included in the trace information. Also 
treated as unpredictable are PC changes which occur due to exceptions, such as an interrupt, reset, etc. 

Trace regeneration software is required to know the static program image in memory, in order to reproduce the 
dynamic flow with the above information. Only the virtual value of the PC is used. Physical memory location will 
typically differ.

It is possible to turn on PC delta/full information for all branches, but this should not normally be necessary. As a 
safety check for trace regeneration software, a periodic synchronization with a full PC is sent. The period of this syn-
chronization is cycle based and programmable.

14.11.4 Load/Store Address and Data Trace Information

In addition to PC flow, it is possible to get information on the load/store addresses, as well as the data read/written. 
When enabled, the following information is optionally added to the trace.

• When load-address tracing is on, the full load address of the first load instruction is traced (indicated by the 
load-flag). For subsequent loads, a dynamically-determined delta to the previous load address is traced to 
compress the information which must be sent.

1. A SC (Store Conditional) instruction is not flagged as a store instruction if the load-locked bit prevented the actual store.
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• When store-address tracing is on, the full store address of the first store instruction is traced (indicated by the 
store-flag). For subsequent stores, a dynamically-determined delta to the previous store address is traced.

• When load-data tracing is on, the full load data read by each load instruction is traced (indicated by the 
load-flag). Only actual read bytes are traced.

• When store-data tracing is on, the full store data written by each store instruction is traced (indicated by the 
store-flag). Only written bytes are traced.

After each synchronization instruction, the first load address and the first store address following this are both traced 
with the full address if load/store address tracing is enabled.

14.11.5 Programmable Processor Trace Mode Options

To enable tracing, a global Trace On signal must be set. When trace is on, it is possible to enable tracing in any com-
bination of the processor modes described in Section 14.11.1 “Processor Modes”. In addition to this, trace can be 
turned on globally for all processes, or only for specific processes by tracing only specific masked values of the ASID 
found in EntryHiASID.

Additionally, an EJTAG Simple Break trigger point can override the processor mode and ASID selection and turn 
them all on. Another trigger point can disable this override again.

14.11.6 Programmable Trace Information Options

The processor mode changes are always traced:

• On the first instruction.

• On any synchronization instruction.

• When the mode changes and either the previous or the current processor mode is selected for trace.

The amount of extra information traced is programmable to include:

• PC information only.

• PC and cross product of load/store address/data

• Performance counter values, if the optional performance counter trace is enabled.

If the full internal state of the processor is known prior to trace start, PC and load data are the only information 
needed to recreate all register values on an instruction by instruction basis.

14.11.6.1 User Data Trace

Two special CP0 registers, UserTraceData1 and UserTraceData2, can generate a data trace. When either of these reg-
isters is written, and the global Trace On is set, then the 32-bit data written is put in the trace as special User Data 
information. Since writing these registers is performed via an MTC0 operation, only one register is updated in any 
given cycle. Thus in the same cycle, only one of the UserTraceData registers is traced. However in back to back 
cycles, the tracing of the two registers can alternate, and is handled correctly.

Remark: The User Data is sent even if the processor is operating in an un-traced processor mode.
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14.11.7 Enable Trace to Probe On-Chip Memory

When trace is On, based on the options listed in Section 14.11.5 “Programmable Processor Trace Mode Options”, 
the trace information is continuously sent on the PDtrace™ interface to the TCB. The TCB must be enabled to trans-
mit the trace information to the Trace funnel by having the TCBCONTROLBEN bit set. It is possible to enable and dis-
able the TCB in a number of ways:

• Set/clear the TCBCONTROLBEN bit via an EJTAG TAP operation.

• Initialize a TCB trigger to set/clear the TCBCONTROLBEN bit.

• Use the drseg mapping of TCBCONTROLB to clear TCBCONTROLBEN via a store to drseg space.

14.11.8 Enabling PDtrace

As there are several ways to enable tracing, it can be quite confusing to figure out how to turn tracing on and off. This 
section should help clarify the enabling of trace.

14.11.8.1 Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints 

If hardware instruction/data simple breakpoints are implemented in the proAptiv Multiprocessing System core, then 
these breakpoints can be used as triggers to start/stop trace. When used for this, the breakpoints need not also generate 
a debug exception, but are capable of only generating an internal trigger to the trace logic. This is done by only set-
ting the TE bit and not the BE bit in the Breakpoint Control register. Please see Section 14.14.2.5 “Instruction 
Breakpoint Control n (IBCn) Register” and Section 14.14.3.5 “Data Breakpoint Control n (DBCn) Register” for 
details on breakpoint control.

In connection with the breakpoints, the Trace BreakPoint Control (TraceBPC) register is used to define the trace 
action when a trigger happens. When a breakpoint is enabled as a trigger (TE = 1), it can be selected to be either a 
start or a stop trigger to the trace logic. 

14.11.8.2 Turning On PDtrace™ Trace

Trace enabling and disabling from software is similar to the hardware method, with the exception that the bits in the 
control register are used instead of the input enable signals from the TCB. The TraceControlTS bit controls whether 
hardware (via the TCB), or software (via the TraceControl register) controls tracing functionality.

Trace is turned on when the following expression evaluates true:

(
(

(TraceControlTS and TraceControlOn) or 
((not TraceControlTS) and TCBCONTROLAOn)

)
and 
(MatchEnable or TriggerEnable)

)

where,

MatchEnable ← 
( 

TraceControlTS 
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and
((TraceControl2TCV and (TraceControl2TCNUM equal TCIDofCompletedInst)) or
 ((not TraceControl2TCV) and TraceControl2CPUIdV and 

 (TraceControl2CPUId equal CPUIDofCompletedInst )) or
 (TraceControl2TCV nor TraceControl2CPUIdV )) 

and
(

TraceControlG or
(((TraceControlASID xor EntryHiASID) and (not TraceControlASID_M)) = 0)

)
and
(

(TraceControlU and UserMode) or 
(TraceControlS and SupervisorMode) or 
(TraceControlK and KernelMode) or 
(TraceControlE and ExceptionMode) or 
(TraceControlD and DebugMode)

)
)
or
(

(not TraceControlTS)
and

((TCBCONTROLCTCV and (TCBCONTROLCTCNUM equal TCIDofCompletedInst)) or
 ((not TCBCONTROLCTCV) and TCBCONTROLCCPUIdV and

 (TCBCONTROLCCPUId equal CPUIDofCompletedIns )) or
 (TCBCONTROLCTCV nor TCBCONTROLCCPUIdV )) 

and
(TCBCONTROLAG or (TCBCONTROLAASID = EntryHiASID))
and
(

(TCBCONTROLAU and UserMode) or
(TCBCONTROLAS and SupervisorMode) or
(TCBCONTROLAK and KernelMode) or 
(TCBCONTROLAE and ExceptionMode) or
(TCBCONTROLADM and DebugMode)

)
)

and where, 

TriggerEnable ← 
(

DBCiTE and
DBSBS[i] and 
TraceBPCDE and 
(TraceBPCDBPOn[i] = 1)

)        
or
(

IBCiTE and
IBSBS[i] and 
TraceBPCIE and 
(TraceBPCIBPOn[i] = 1)

)
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As seen in the expression above, trace can be turned on only if the master switch TraceControlOn or 
TCBCONTROLAOn is first asserted.

Once this is asserted, there are two ways to turn on tracing. The first way, the MatchEnable expression, uses the input 
enable signals from the TCB or the bits in the TraceControl register. This tracing is done over general program areas. 
For example, all of the user-level code for a particular process (if ASID is specified), and so on.

The second way to turn on tracing, the TriggerEnable expression, is from the processor side using the EJTAG hard-
ware breakpoint triggers. If EJTAG is implemented, and hardware breakpoints can be set, then using this method 
enables finer grain tracing control. It is possible to send a trigger signal that turns on tracing at a particular instruction. 
For example, it would be possible to trace a single procedure in a program by triggering on trace at the first instruc-
tion, and triggering off trace at the last instruction.

The easiest way to unconditionally turn on trace is to assert either hardware or software tracing and the corresponding 
trace on signal with other enables. For example, with TraceControlTS=0, i.e., hardware controlled tracing, assert 
TCBCONTROLAOn, TCBCONTROLAG, and all the other signals in the second part of expression MatchEnable. To 
only trace when a particular process with a known ASID is executing, assert TCBCONTROLAOn, the correct 
TCBCONTROLAASID value, and all of TCBCONTROLAU, TCBCONTROLAK, TCBCONTROLAE, and 
TCBCONTROLADM. (If it is known that the particular process is a user-level process, then it would be sufficient to 
only assert TCBCONTROLAU for example). When using the EJTAG hardware triggers to turn trace on and off, it is 
best if TCBCONTROLAOn is asserted and all the other processor mode selection bits in TCBCONTROLA are turned 
off. This would be the least confusing way to control tracing with the trigger signals. Tracing can be controlled via 
software with the TraceControl register in a similar manner.

14.11.8.3  Turning Off PDtrace™ Trace

Trace is turned off when the following expression evaluates true:

(
(TraceControlTS and (not TraceControlOn))) or
((not TraceControlTS) and (not TCBCONTROLAOn))

)
or
(

(not MatchEnable) and
(not TriggerEnable) and
TriggerDisable

)

where,

TriggerDisable ← 
(

DBCiTE and
DBSBS[i] and 
TraceBPCDE and 
(TraceBPCDBPOn[i] = 0)

)        
or
(

IBCiTE and
IBSBS[i] and 
TraceBPCIE and 
(TraceBPCIBPOn[i] = 0)



 

MIPS32® proAptiv™ Multiprocessing System Software User’s Manual, Revision 01.22 695

 

)

Tracing can be unconditionally turned off by de-asserting the TraceControlOn bit or the TCBCONTROLAOn signal. 
When either of these are asserted, tracing can be turned off if all of the enables are de-asserted, irrespective of the 
TraceControlG bit (TCBCONTROLAG) and TraceControlASID (TCBCONTROLAASID) values. EJTAG hardware break-
points can be used to trigger trace off as well. Note that if simultaneous triggers are generated, and even one of them 
turns on tracing, then even if all of the others attempt to trigger trace off, then tracing will still be turned on. This con-
dition is reflected in presence of the “(not TriggerEnable)” term in the expression above.

14.12 PDtrace Cycle-by-Cycle Behavior

A key reason for using trace, and not single stepping to debug a software problem, is often to get a picture of the 
real-time behavior. However the trace logic itself can, when enabled, affect the exact cycle-by-cycle behavior,

14.12.1 FIFO Logic in PDtrace and TCB Modules

Both the PDtrace module and the TCB module contain a fifo. This might seem like extra overhead, but there are good 
reasons for this. The vast majority of the information compression happens in the PDtrace module. Any data informa-
tion, like PC and load/store address values (delta or full), load/store data and processor mode changes, are all sent on 
the same 32-bit data bus to the TCB on the internal PDtrace™ interface. When an instruction requires more than 32 
bits of information to be traced properly, the PDtrace fifo will buffer the information, and send it on subsequent clock 
cycles.

In the TCB, the on-chip trace memory is defined as a 64-bit wide synchronous memory running at core-clock speed. 
In this case the FIFO is not needed. For off-chip trace through the Trace Probe, the FIFO comes into play, because 
only a limited number of pins (4, 8 or 16) exist. Also the speed of the Trace Probe interface can be different (either 
faster or slower) from that of the proAptiv Multiprocessing System core. So for off-chip tracing, a specific TCB TW 
FIFO is needed.

14.12.2 Handling of FIFO Overflow in the PDtrace Module

Depending on the amount of trace information selected for trace, and the frequency with which the 32-bit data inter-
face is needed, it is possible for the PDtrace FIFO to overflow from time to time. There are two ways to handle this 
case:

1. Allow the overflow to happen, and thereby lose some information from the trace data.

2. Prevent the overflow by back-stalling the core until the FIFO has enough empty slots to accept new trace data.

The PDtrace fifo option is controlled by either the TraceControlIO or the TCBCONTROLAIO bit, depending on the set-
ting of TraceControlTS bit.

The first option is free of any cycle-by-cycle change whether trace is turned on or not. This is achieved at the cost of 
potentially losing trace information. After an overflow, the fifo is completely emptied, and the next instruction is 
traced as if it was the start of the trace (processor mode and full PC are traced). This guarantees that only the 
un-traced fifo information is lost.

The second option guarantees that all the trace information is traced to the TCB. In some cases this is then achieved 
by back-stalling the core pipeline, giving the PDtrace fifo time to empty enough room in the fifo to accept new trace 
information from a new instruction. This option can obviously change the real-time behavior of the core when tracing 
is turned on.
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If PC trace information is the only thing enabled (in TraceControl2MODE or TCBCONTROLCMODE, depending on the 
setting of TraceControlTS), and Trace of all branches is turned off (via TraceControlTB or TCBCONTROLATB, depend-
ing on the setting of TraceControlTS), then the fifo is unlikely to overflow very often, if at all. This is of course very 
dependent on the code executed, and the frequency of exception handler jumps, but with this setting there is very little 
information overhead.

14.12.3 Handling of FIFO Overflow in the TCB

The TCB also holds a fifo, used to buffer the TW’s which are sent off-chip through the Trace Probe. The data width of 
the probe can be either 4, 8 or 16 pins, and the speed of these data pins can be from 16 times the core-clock to 1/4 of 
the core clock (the trace probe clock always runs at a double data rate multiple to the core-clock). See Section 
14.12.3.1 “Probe Width and Clock-ratio Settings” for a description of probe width and clock-ratio options. The com-
bination between the probe width (4, 8 or 16) and the data speed, allows for data rates through the trace probe from 
256 bits per core-clock cycle down to only 1 bit per core-clock cycle. The high extreme is not likely to be supported 
in any implementation, but the low one might be.

The data rate is an important figure when the likelihood of a TCB fifo overflow is considered. The TCB will at maxi-
mum produce one full 64-bit TW per core-clock cycle. This is true for any selection of trace mode in 
TraceControl2MODE or TCBCONTROLCMODE. The PDtrace module will guarantee the limited amount of data. If the 
TCB data rate cannot be matched by the off-chip probe width and data speed, then the TCB fifo can possibly over-
flow. Similar to the PDtrace module FIFO, this can be handled in two ways:

1. Allow the overflow to happen, and thereby lose some information from the trace data.

2. Prevent the overflow by asserting a stall-signal back to the core (PDI_StallSending). This will in turn stall the 
core pipeline.

As a practical matter, the amount of data to the TCB can be minimized by only tracing PC information and excluding 
any cycle accurate information. This is explained in Section 14.12.2 “Handling of FIFO Overflow in the PDtrace 
Module” and below in Section 14.12.4 “Adding Cycle Accurate Information to the Trace”. With this setting, a data 
rate of 8-bits per core-clock cycle is usually sufficient. No guarantees can be given here, however, as heavy interrupt 
activity can increase the number of unpredictable jumps considerably.

14.12.3.1 Probe Width and Clock-ratio Settings

Note: the registers called out in this section are located in the Coherence Manager TAP described in Chapter 15, 
Multi-CPU Debug. All of these fields are reserved in the proAptiv core TAP registers.

The actual number of data pins (4, 8 or 16) is defined by the CM TAP TCBCONFIGPW field. Furthermore, the fre-
quency of the Trace Probe can be different from the core-clock frequency. The trace clock (TR_CLK) is a double data 
rate clock. This means that the data pins (TR_DATA) change their value on both edges of the trace clock. When the 
trace clock is running at clock ratio of 1:2 (one half) of core clock, the data output registers are running a core-clock 
frequency. The clock ratio is set in the CM TAPTCBCONTROLBCR field. The legal range for the clock ratio is 
defined in CM TAP TCBCONFIGCRMax and CM TAP TCBCONFIGCRMin (both values inclusive). If the CM 
TAPTCBCONTROLBCR bit is set to an unsupported value, the result is UNPREDICABLE. The maximum possible 
value for CM TAP TCBCONFIGCRMax field is 8:1 (TR_CLK is running 8 times faster than core-clock). The minimum 
possible value for CM TAP TCBCONFIGCRMin field is 1:8 (TR_CLK is running at one eighth of the core-clock). 
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14.12.4 Adding Cycle Accurate Information to the Trace

Depending on the trace regeneration software, it is possible to obtain the exact cycle time relationship between each 
instruction in the trace. This information is added to the trace, when the TCBCONTROLBCA bit is set. The overhead 
on the trace information is a little more than one extra bit per core-clock cycle.

This setting only affects the TCB module and not the PDtrace module. The extra bit therefore only affects the likeli-
hood of the TCB FIFO overflowing.

14.13 PC Sampling

The PC sampling feature enables sampling of the PC value periodically. This information can be used for statistical 
profiling of the program akin to gprof. This information is also very useful for detecting hot-spots in the code. 

In PC sampling, the PC is sampled periodically and sent to the TAP register. Note that although the PC sampling 
function can be used both with and without a probe, if a probe is not connected, the sampled information cannot be 
read out since the TAP registers can only be read when a probe is connected. Therefore, MIPS recommends using the 
PC sampling capability only when a probe is connected.

The presence or absence of the PC Sampling feature is available in the Debug Control register as bit 9 (PCS).The 
sampled PC values are written into a TAP register. The old value in the TAP register is overwritten by a new value 
even if this register has not be read out by the debug probe. The sample rate is specified in a manner similar to the 
PDtrace synchronization period, with three bits. These bits in the Debug Control register are 8:6 and called PCSR (PC 
Sample Rate). These three bits take the value 25 to 212 similar to SyncPeriod. Note that the processor samples PC 
even when it is asleep, that is, in a WAIT state. This permits an analysis of the amount of time spent by a processor in 
WAIT state which may be used for example to revert to a low power mode during the non-execution phase of a 
real-time application.

The sampled values includes a new data bit, the PC, the ASID of the sampled PC as well as the Enhanced Virtual 
Address (EVA) K/U bit. Figure 14.6 shows the format of the sampled values in the TAP register PCsample. The new 
data bit is used by the probe to determine if the PCsample register data just read out is new or already been read and 
must be discarded. 

Figure 14.6 TAP Register PCsample Format  

The sampled PC value is the PC of the graduating instruction in the current cycle. If the processor is stalled when the 
PC sample counter overflows, then the sampled PC is the PC of the next graduating instruction. The processor contin-
ues to sample the PC value even when it is in Debug mode.

14.13.1 PC Sampling in Wait State

When the processor is in a WAIT state to save power for example, an external agent might want to know how long it 
stays in the WAIT state. But counting cycles to update the PC sample value is a waste of power. Hence, when in a 
WAIT state, the processor must simply switch the New bit to 1 every time it is set to 0 by the probe hardware. Hence, 
the external agent or probe reading the PC value will detect a WAIT instruction for as long as the processor remains 
in the WAIT state. When the processor leaves the WAIT state, then counting is resumed as before.

49 42 41 40 33 32 1 0

R K/U ASID PC New
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14.14 EJTAG Registers

The following subsections describe the EJTAG register interface.

14.14.1 General Purpose Control and Status

The following register provide general control and status information for EJTAG.

14.14.1.1 Debug Control Register

The Debug Control Register (DCR) register controls and provides information about debug issues and is always pro-
vided with the proAptiv Multiprocessing System core. The register is memory-mapped in drseg at offset 0x0.

The DataBrk and InstBrk bits indicate if hardware breakpoints are included in the implementation, and debug soft-
ware is expected to read hardware breakpoint registers for additional information.

Hardware and software interrupts are maskable for non-debug mode with the INTE bit, which works in addition to 
the other mechanisms for interrupt masking and enabling. NMI is maskable in non-debug mode with the NMIE bit, 
and a pending NMI is indicated through the NMIP bit.

The SRE bit allows implementation dependent masking of some sources for reset. The proAptiv Multiprocessing 
System core does not distinguish between soft and hard reset, but typically only soft reset sources in the system 
would be maskable and hard sources such as the reset switch would not be. The soft reset masking should only be 
applied to a soft reset source if that source can be efficiently masked in the system, thus resulting in no reset at all. If 
that is not possible, then that soft reset source should not be masked, since a partial soft reset may cause the system to 
fail or hang. There is no automatic indication of whether the SRE is effective, so the user must consult system docu-
mentation.

The PE bit reflects the ProbEn bit from the EJTAG Control register (ECR), whereby the probe can indicate to the 
debug software that the probe will service dmseg accesses. The reset value in the table below takes effect on any CPU 
reset.

Figure 14.7 Debug Control Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 ENM 0 PCIM PCno 
ASID DASQ DASe DAS 0 FDC 

Impl
Data 
Brk

Inst 
Brk

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IVM DVM 0 RD 
Vec CBT PCS PCR PCSe IntE NMIE NMI

pend SRstE Prob 
En

Table 14.10 Debug Control Register Field Descriptions 

Fields

Description
Read / 
Write

Reset 
StateName Bits

0 31:30 Must be written as zeros; return zeros on reads. 0 0
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ENM 29 Endianess in which the processor is running in kernel 
and Debug Mode: 

R Preset

0 28:27 Must be written as zeros; return zeros on reads. 0 0

PCIM 26 Configure PC Sampling to capture all executed 
addresses or only those that miss the instruction cache
This feature is not supported and this bit will read as 0..

R 0

PCnoASID 25 Controls whether the PCSAMPLE scan chain includes 
or omits the ASID field
ASID is always included so this bit will read as 0.

R 0

DASQ 24 Qualifies Data Address Sampling using a data break-
point.
Data address sampling is not supported so this bit will 
read as 0

R 0

DASe 23 Enables Data Address Sampling
Data address sampling is not supported so this bit will 
read as 0

R 0

Table 14.10 Debug Control Register Field Descriptions (continued)

Fields

Description
Read / 
Write

Reset 
StateName Bits

Encoding Meaning

0 Little endian
1 Big endian

Encoding Meaning

0 All PC’s captured
1 Capture only PC’s that miss the cache.

Encoding Meaning

0 ASID included in PCSAMPLE scan
1 ASID omitted from PCSAMPLE scan

Encoding Meaning

0 All data addresses are sampled
1 Sample matches of data breakpoint 0

Encoding Meaning

0 Data Address sampling disabled.
1 Data Address sampling enabled.
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DAS 22 Indicates if the Data Address Sampling feature is imple-
mented.
Data address sampling is not supported so this bit will 
read as 0.

R 0

0 21:19 Must be written as zeros; return zeros on reads. 0 0

FDCImpl 18 Indicates if the fast debug channel is implemented R 1

DataBrk 17 Indicates if data hardware breakpoint is implemented: R Preset

InstBrk 16 Indicates if instruction hardware breakpoint is imple-
mented: 

R Preset

IVM 15 Indicates if inverted data value match on data hardware 
breakpoints is implemented: 

R 0

Table 14.10 Debug Control Register Field Descriptions (continued)

Fields

Description
Read / 
Write

Reset 
StateName Bits

Encoding Meaning

0 No DA Sampling implemented
1 DA Sampling implemented

Encoding Meaning

0 No fast debug channel implemented
1 Fast debug channel implemented

Encoding Meaning

0 No data hardware breakpoint imple-
mented

1 Data hardware breakpoint imple-
mented

Encoding Meaning

0 No instruction hardware breakpoint 
implemented

1 Instruction hardware breakpoint 
implemented

Encoding Meaning

0 No inverted data value match on data 
hardware breakpoints implemented

1 Inverted data value match on data 
hardware breakpoints implemented
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DVM 14 Indicates if a data value store on a data value breakpoint 
match is implemented: 

R 0

0 13:12 Must be written as zeros; return zeros on reads. 0 0

RDVec 11 Enables relocation of the debug exception vector. The 
value in the DebugVectorAddr register is used for 
EJTAG exceptions when ProbTrap = 0,and RDVec = 1.

R/W 0

CBT 10 Indicates if complex breakpoint block is implemented: R 0

PCS 9 Indicates if the PC Sampling feature is implemented. R 1

PCR 8:6 PC Sampling rate. Values 0 to 7 map to values 25 to 212 
cycles, respectively. That is, a PC sample is written out 
every 32, 64, 128, 256, 512, 1024, 2048, or 4096 cycles 
respectively. The external probe or software is allowed 
to set this value to the desired sample rate.

R/W 7

PCSe 5 If the PC sampling feature is implemented, then indi-
cates whether PC sampling is initiated or not. That is, a 
value of 0 indicates that PC sampling is not enabled and 
when the bit value is 1, then PC sampling is enabled and 
the counters are operational.

R/W 0

IntE 4 Hardware and software interrupt enable for Non-Debug 
Mode, in conjunction with other disable mechanisms: 

R/W 1

Table 14.10 Debug Control Register Field Descriptions (continued)

Fields

Description
Read / 
Write

Reset 
StateName Bits

Encoding Meaning

0 No data value store on a data value 
breakpoint match implemented

1 Data value store on a data value break-
point match implemented

Encoding Meaning

0 No complex breakpoint block imple-
mented

1 Complex breakpoint block imple-
mented

Encoding Meaning

0 No PC Sampling implemented
1 PC Sampling implemented

Encoding Meaning

0 Interrupt disabled
1 Interrupt enabled depending on other 

enabling mechanisms
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14.14.1.2 DebugVectorAddr Register

This register allows an alternate debug exception vector address to be specified, which can enable placing a debug 
monitor program into RAM for much faster execution than the default ROM address. This register is memory 
mapped at an offset of 0x00020 within the DRSEG memory segment.

Figure 14.8 shows the register format and Table 14.12 describes the fields in this register.

Table 14.11 shows the different debug exception vector locations that are possible.

NMIE 3 Non-Maskable Interrupt (NMI) enable for Non-Debug 
Mode:

R/W 1

NMIpend 2 Indication for pending NMI: R 0

SRstE 1 Controls soft reset enable: R/W 1

ProbEn 0 Indicates value of the ProbEn value in the ECR register: 

Bit is read-only (R) and reads as zero if not imple-
mented.

R Same value 
as ProbEn 

in ECR

Table 14.11 Debug Exception Vectors

ECRProbTrap DCRRdVec Config5K SI_UseExceptionBase Cache Error? Debug Exception Vector

1 x x x x 0xFF20_0200

0 1 0 x 0 2’b10 || DebugVectorAddr[29:0]

0 1 1 x 0 DebugVectorAddr[31:0]

Table 14.10 Debug Control Register Field Descriptions (continued)

Fields

Description
Read / 
Write

Reset 
StateName Bits

Encoding Meaning

0 NMI disabled
1 NMI enabled

Encoding Meaning

0 No NMI pending
1 NMI pending

Encoding Meaning

0 Soft reset masked for soft reset sources 
dependent on implementation

1 Soft reset is fully enabled

Encoding Meaning

0 No access should occur to the dmseg 
segment

1 Probe services accesses to the dmseg 
segment
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Figure 14.8 DebugVectorAddr Register Format 

0 1 0 x 1 3’b101 || DebugVectorAddr[28:0]

0 1 1 x 1 DebugVectorAddr[31:0]

0 0 0 1 0 2’b10 || SI_ExceptionBase[29:12] || 0x480

0 0 1 1 0 SI_ExceptionBase[31:12] || 0x480

0 0 0 1 1 3’b101 || SI_ExceptionBase[28:12] || 0x480

0 0 1 1 1 SI_ExceptionBase[31:12] || 0x480

0 0 x 0 x 0xBFC0_0480

31 7 6 5 1 0

DebugVectorAddr WG 0 ISA

Table 14.12 DebugVectorAddr Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bit(s)

DebugVectorAddr 31 Programmable Debug Exception Vector Address. 
Note that bits 31:30 have default values of 1 and 0 respectively and 
can only be written when the WG bit is set. If the WG bit is cleared, 
these bits are read-only and retain their previous values. These two 
bits can be written whenever the WG bit is set, regardless of the state 
of Config5K.

R/W 1

30 R/W 0

29:7 R/W 0x7f8009
(corresponds to 

0xbfc00480)

WG 6 Write gate. 

When the WG bit is set, the DebugVectorAddr field is expanded to 
include bits 31:30 to facilitate programmable memory segmentation 
controlled by the SegCtl0 through SegCtl2 registers.

When the WG bit is cleared, bits 31:30 of this register are not write-
able and remain unchanged from the last time that WG was cleared.

R/W Externally Set

0 5:1 Ignored on write, returns zero on read. R 0

ISA 0 ISA mode to be used for debug exception handler. 
Only used on cores implementing microMIPS.

R 0

Table 14.11 Debug Exception Vectors

ECRProbTrap DCRRdVec Config5K SI_UseExceptionBase Cache Error? Debug Exception Vector
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14.14.2 Instruction Breakpoint Registers

The registers for instruction breakpoints are described below. These registers have implementation information and 
are used to set up the instruction breakpoints. All registers are in drseg with addresses as shown in Table 14.13. 

An example of some of the registers; IBA0 is at offset 0x1100 and IBC2 is at offset 0x1318.

14.14.2.1 Instruction Breakpoint Status (IBS) Register

Compliance Level: Implemented only if instruction breakpoints are implemented.

The Instruction Breakpoint Status (IBS) register holds implementation and status information about the instruction 
breakpoints.

The ASID applies to all the instruction breakpoints. 

Figure 14.9 IBS Register Format 

Table 14.13 Addresses for Instruction Breakpoint Registers

Offset in drseg
Register 

Mnemonic Register Name and Description

0x1000 IBS Instruction Breakpoint Status

0x1100 + n * 0x100 IBAn Instruction Breakpoint Address n

0x1108 + n * 0x100 IBMn Instruction Breakpoint Address Mask n

0x1110 + n * 0x100 IBASIDn Instruction Breakpoint ASID n

0x1118 + n * 0x100 IBCn Instruction Breakpoint Control n

n is breakpoint number in range 0 to 3

31 30 29 28 27 24 23 4 3 0

Res ASIDsup Res BCN Res BS

Table 14.14 IBS Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bit(s)

Res 31 Must be written as zero; returns zero on read. R 0

ASIDsup 30 Hardware and software interrupt enable for Non-Debug Mode, in 
conjunction with other disable mechanisms: 

R 1

Res 29:28 Must be written as zero; returns zero on read. R 0

BCN 27:24 Number of instruction breakpoints implemented. R 2 or 4

Res 23:4 Must be written as zero; returns zero on read. R 0

Encoding Meaning

0 ASID compare not supported
1 ASID compare supported (IBASIDn 

register implemented)
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14.14.2.2 Instruction Breakpoint Address n (IBAn) Register

Compliance Level: Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Address n (IBAn) register has the address used in the condition for instruction breakpoint 
n.

Figure 14.10 IBAn Register Format 

14.14.2.3 Instruction Breakpoint Address Mask n (IBMn) Register

Compliance Level: Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Address Mask n (IBMn) register has the mask for the address compare used in the condi-
tion for instruction breakpoint n.

Figure 14.11 IBMn Register Format 

BS 3:0 Break status for breakpoint n is at BS[n], with n from 0 to 3. The bit 
is set to 1 when the corresponding breakpoint is enabled and the con-
dition has matched. If only two instruction breakpoints are imple-
mented, bits 2 and 3 must be written as zero and will return zero on 
read.

R/W Undefined

31 1 0

IBA ISA

Table 14.15 IBAn Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bit(s)

IBA 31:1 Instruction breakpoint address for condition. R/W Undefined

ISA 0 Instruction breakpoint ISA mode for condition R/W Undefined

31 1 0

IBM ISAM

Table 14.14 IBS Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bit(s)
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14.14.2.4 Instruction Breakpoint ASID n (IBASIDn) Register

Compliance Level: Implemented only for implemented instruction breakpoints.

This register is used to define an ASID value to be used in the match expression. 

Figure 14.12 IBASIDn Register Format 

14.14.2.5 Instruction Breakpoint Control n (IBCn) Register

Compliance Level: Implemented only for implemented instruction breakpoints. 

The Instruction Breakpoint Control n (IBCn) register controls the setup of instruction breakpoint n.

Figure 14.13 IBCn Register Format  

Table 14.16 IBMn Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bit(s)

IBM 31:1 Instruction breakpoint address mask for condition: R/W Undefined

ISAM 0 Instruction breakpoint ISA mode mask for condition:
condition:

0: ISA mode considered for match condition
1: ISA mode masked

R/W Undefined

31 8 7 0

Res ASID

Table 14.17 IBASIDn Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bit(s)

Res 31:8 Must be written as zero; returns zero on read. R 0

ASID 7:0 Instruction breakpoint ASID value for a compare. R/W Undefined

31 24 23 22 3 2 1 0

R ASIDuse R TE R BE

Encoding Meaning

0 Corresponding address bit not masked
1 Corresponding address bit masked

Encoding Meaning

0 Corresponding address bit not masked
1 Corresponding address bit masked
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14.14.3 Data Breakpoint Registers

The registers for data breakpoints are described below. These registers have implementation information and are used 
the setup the data breakpoints. All registers are in drseg, and the addresses are shown in Table 14.19. 

An example of some of the registers; DBM0 is at offset 0x2108 and DBV1 is at offset 0x2220.

14.14.3.1 Data Breakpoint Status (DBS) Register

Compliance Level: Implemented if data breakpoints are implemented.

Table 14.18 IBCn Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

R 31:24 Must be written as zero; returns zero on read. R 0

ASIDuse 23 Use ASID value in compare for instruction breakpoint n: R/W Undefined

R 22:3 Must be written as zero; returns zero on read. R 0

TE 2 Trigger-only Enable. This field is ignored when BE is set. When BE 
is cleared and TE is set, instruction breakpoint n is enabled, but will 
not signal a debug exception.

R/W 0

R 1 Must be written as zero; returns zero on read. R 0

BE 0 Breakpoint Enable. When set, instruction breakpoint n is enabled 
and will signal a debug exception when its condition matches.

R/W 0

Table 14.19 Addresses for Data Breakpoint Registers

Offset in drseg
Register 

Mnemonic Register Name and Description

0x2000 DBS Data Breakpoint Status

0x2100 + 0x100 * n DBAn Data Breakpoint Address n

0x2108 + 0x100 * n DBMn Data Breakpoint Address Mask n

0x2110 + 0x100 * n DBASIDn Data Breakpoint ASID n

0x2118 + 0x100 * n DBCn Data Breakpoint Control n

0x2120 + 0x100 * n DBVn Data Breakpoint Value n

0x2124 + 0x100*n DBVHn Data Breakpoint Value High n

n is breakpoint number as 0 or 1

Encoding Meaning

0 Don’t use ASID value in compare
1 Use ASID value in compare
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The Data Breakpoint Status (DBS) register holds implementation and status information about the data breakpoints.

The ASIDsup field indicates whether ASID compares are supported. 

Figure 14.14 DBS Register Format 

14.14.3.2 Data Breakpoint Address n (DBAn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Address n (DBAn) register has the address used in the condition for data breakpoint n.

Figure 14.15 DBAn Register Format 

31 30 29 28 27 24 23 2 1 0

Res ASIDsup Res BCN Res BS

Table 14.20 DBS Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bit(s)

Res 31 Must be written as zero; returns zero on read. R 0

ASID 30 Indicates that ASID compares are supported in data breakpoints.
n:

0: Not supported
1: Supported

R TLB MMU - 1

Res 29:28 Must be written as zero; returns zero on read. R 0

BCN 27:24 Number of data breakpoints implemented. R 1 or 2

Res 23:2 Must be written as zero; returns zero on read. R 0

BS 1:0 Break status for breakpoint n is at BS[n], with n from 0 to 1. The bit 
is set to 1 when the condition for the corresponding breakpoint has 
matched and the condition has matched. If only one data breakpoint 
is implemented, bit 1 must be written as 0 and will return 0 on reads.

R/W0 Undefined

31 0

DBA

Table 14.21 DBAn Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bit(s)

DBA 31:0 Data breakpoint address for condition. R/W Undefined

Encoding Meaning

0 Don’t use ASID value in compare
1 Use ASID value in compare
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14.14.3.3 Data Breakpoint Address Mask n (DBMn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Address Mask n (DBMn) register has the mask for the address compare used in the condition for 
data breakpoint n.

Figure 14.16 DBMn Register Format 

14.14.3.4 Data Breakpoint ASID n (DBASIDn) Register

Compliance Level: Implemented only for implemented data breakpoints.

For processors with a TLB based MMU, this register is used to define an ASID value to be used in the match expres-
sion. For cores with the FM MMU, this register is reserved and reads as 0.

Figure 14.17 DBASIDn Register Format 

31 0

DBM

Table 14.22 DBMn Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bit(s)

DBM 31:0 Data breakpoint address mask for condition:
n:

0: Corresponding address bit not masked
1: Corresponding address bit masked

R/W Undefined

31 8 7 0

Res ASID

Table 14.23 DBASIDn Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bit(s)

Res 31:8 Must be written as zero; returns zero on read. R 0

ASID 7:0 Data breakpoint ASID value for compares. R/W Undefined

Encoding Meaning

0 Don’t use ASID value in compare
1 Use ASID value in compare
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14.14.3.5 Data Breakpoint Control n (DBCn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Control n (DBCn) register controls the setup of data breakpoint n.

Figure 14.18 DBCn Register Format 
31 24 23 22 21 14 13 12 11 4 3 2 1 0

R ASIDuse R BAI NoSB NoLB BLM R TE R BE

Table 14.24 DBCn Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

R 31:24 Must be written as zero; returns zero on read. R 0

ASIDuse 23 Use ASID value in compare for data breakpoint n: R/W Undefined

R 22 Must be written as zero; returns zero on read. R 0

BAI 21:14 Byte access ignore controls ignore of access to a specific byte. 
BAI[0] ignores access to byte at bits [7:0] of the data bus, BAI[1] 
ignores access to byte at bits [15:8], etc.:

R/W Undefined

NoSB 13 Controls if condition for data breakpoint is fulfilled on a store trans-
action:

R/W Undefined

NoLB 12 Controls if condition for data breakpoint is fulfilled on a load trans-
action:

R/W Undefined

Encoding Meaning

0 Don’t use ASID value in compare
1 Use ASID value in compare

Encoding Meaning

0 Condition depends on access to corre-
sponding byte

1 Access for corresponding byte is 
ignored

Encoding Meaning

0 Condition may be fulfilled on store 
transaction

1 Condition is never fulfilled on store 
transaction

Encoding Meaning

0 Condition may be fulfilled on load 
transaction

1 Condition is never fulfilled on load 
transaction
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14.14.3.6 Data Breakpoint Value n (DBVn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Value n (DBVn) register has the value used in the condition for data breakpoint n.

Figure 14.19 DBVn Register Format 

14.14.3.7 Data Breakpoint Value High n (DBVHn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Value High n (DBVHn) register has the value used in the condition for data breakpoint n.

Figure 14.20 DBVHn Register Format 

BLM 11:4 Byte lane mask for value compare on data breakpoint. BLM[0] 
masks byte at bits [7:0] of the data bus, BLM[1] masks byte at bits 
[15:8], etc.:

R/W Undefined

R 3 Must be written as zero; returns zero on reads. R 0

TE 2 Trigger-only Enable. This field is ignored when BE is set. When BE 
is cleared and TE is set, data breakpoint n is enabled, but will not 
signal a debug exception.

R/W 0

R 1 Must be written as zero; returns zero on reads. R 0

BE 0 Breakpoint Enable. When set, data breakpoint n is enabled and will 
signal a debug exception when its condition matches.

R/W 0

31 0

DBV

Table 14.25 DBVn Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bit(s)

DBV 31:0 Data breakpoint value for condition. R/W Undefined

31 0

DBVH

Table 14.24 DBCn Register Field Descriptions(continued)

Fields

Description
Read / 
Write Reset StateName Bits

Encoding Meaning

0 Compare corresponding byte lane
1 Mask corresponding byte lane
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14.14.4 EJTAG TAP Registers

The EJTAG TAP Module has one Instruction register and a number of data registers, all accessible through the TAP:

14.14.4.1 Instruction Register

The Instruction register is accessed when the TAP receives an Instruction register scan protocol. During an Instruc-
tion register scan operation the TAP controller selects the output of the Instruction register to drive the TDO pin. The 
shift register consists of a series of bits arranged to form a single scan path between TDI and TDO. During an Instruc-
tion register scan operations, the TAP controls the register to capture status information and shift data from TDI to 
TDO. Both the capture and shift operations occur on the rising edge of TCK. However, the data shifted out from the 
TDO occurs on the falling edge of TCK. In the Test-Logic-Reset and Capture-IR state, the instruction shift register is 
set to 000012, as for the IDCODE instruction. This forces the device into the functional mode and selects the Device 
ID register. The Instruction register is 5 bits wide. The instruction shifted in takes effect for the following data register 
scan operation. A list of the implemented instructions are listed in Table 14.8.

14.14.4.2 Data Registers Overview

The EJTAG uses several data registers that are arranged in parallel from the primary TDI input to the primary TDO 
output. The Instruction register supplies the address that allows one of the data registers to be accessed during a data 
register scan operation. During a data register scan operation, the addressed scan register receives TAP control signals 
to capture the register and shift data from TDI to TDO. During a data register scan operation, the TAP selects the out-
put of the data register to drive the TDO pin. The register is updated in the Update-DR state with respect to the write 
bits.

This description applies in general to the following data registers:

• Bypass Register

• Device Identification Register

• Implementation Register

• EJTAG Control Register (ECR)

• Address Register

• Data Register

• FastData Register

14.14.4.3 Bypass Register

The Bypass register consists of a single scan register bit. When selected, the Bypass register provides a single bit scan 
path between TDI and TDO. The Bypass register allows abbreviating the scan path through devices that are not 

Table 14.26 DBVHn Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bit(s)

DBVH 31:0 Data breakpoint value high for condition. This register provides the 
high order bits [63:32] for data value on double-word floating point 
loads and stores.

R/W Undefined
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involved in the test. The Bypass register is selected when the Instruction register is loaded with a pattern of all ones to 
satisfy the IEEE 1149.1 Bypass instruction requirement. 

14.14.4.4 Device Identification (ID) Register

The Device Identification register is defined by IEEE 1149.1, to identify the device's manufacturer, part number, revi-
sion, and other device-specific information. Table 14.27 shows the bit assignments defined for the read-only Device 
Identification Register, and inputs to the core determine the value of these bits. These bits can be scanned out of the 
ID register after being selected. The register is selected when the Instruction register is loaded with the IDCODE 
instruction. Note that this register contains only device manufacturer information and should not be used in an 
attempt to determine the EJTAG or PDTrace revisions of the device.

Figure 14.21 Device Identification Register Format 

14.14.4.5 Implementation Register

This 32-bit read-only register is used to identify the features of the EJTAG implementation. Some of the reset values 
are set by inputs to the core. The register is selected when the Instruction register is loaded with the IMPCODE 
instruction. The EJTAG probe uses this TAP register to determine the EJTAG version of the device. Software has no 
access to this register and must use the CP0 Debug register to determine the EJTAG version.

Figure 14.22 Implementation Register Format 

31 28 27 12 11 1 0

Version PartNumber ManufID R

Table 14.27 Device Identification Register

Fields

Description
Read / 
Write Reset StateName Bit(s)

Version  31:28 Version (4 bits)
This field identifies the version number of the processor 
derivative.

 R EJ_Version[3:0]

PartNumber  27:12 Part Number (16 bits)
This field identifies the part number of the processor 
derivative.

 R EJ_PartNumber[15:0]

ManufID 11:1 Manufacturer Identity (11 bits)
Accordingly to IEEE 1149.1-1990, the manufacturer iden-
tity code shall be a compressed form of the JEDEC Publi-
cations 106-A. 

 R EJ_ManufID[10:0]

R  0 reserved R 1

31 29 28 25 24 23 21 20 17 16 15 14 13 11 10 1 0

EJTAGver reserved DINTsup ASIDsize reserved MIPS16 0 NoDMA TYPE TYPEINFO R

Table 14.28 Implementation Register Descriptions

Fields

Description
Read / 
Write Reset StateName Bit(s)

EJTAGver 31:29 Indicates EJTAG version 5.0. R 5

reserved 28:25 Reserved. Must be written as zeros; returns zeros on reads. R 0



714 MIPS32® proAptiv™ Multiprocessing System Software User’s Manual, Revision 01.22

 

DINTsup 24 DINT Signal Supported from Probe
This bit indicates if the DINT signal from the probe is supported:

R EJ_DINTsup

ASIDsize 23:21 Size of ASID field in implementation: R 2

R 20:17 Reserved R 0

MIPS16 16 Indicates whether MIPS16 is implemented: R 1

R 15 Reserved. Must be written as zeros; returns zeros on reads. R 0

NoDMA R 1

TYPE  13:11 Indicates what type of entity is associated with this TAP
and whether the TypeInfo field exists.

R 1

Table 14.28 Implementation Register Descriptions(continued)

Fields

Description
Read / 
Write Reset StateName Bit(s)

Encoding Meaning

0 DINT signal from the probe is not supported.
1 Probe can use DINT signal to make debug inter-

rupt.

Encoding Meaning

0 No ASID in implementation
1 Reserved
2 8-bit ASID
3 Reserved

Encoding Meaning

0 No MIPS16 support
1 MIPS16 implemented

Encoding Meaning

0 TYPEINFO field not implemented.
Legacy value - probably attached to a CPU.

1 This TAP is attached to a CPU and the 
TYPEINFO field reflects EBaseCPUNUM.

2 This TAP is attached to a Trace-Master and the 
TypeInfo field is not used.

3 Reserved
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14.14.4.6 EJTAG Control Register

This 32-bit register controls the various operations of the TAP modules. This register is selected by shifting in the 
CONTROL instruction. Bits in the EJTAG Control register can be set/cleared by shifting in data; status is read by 
shifting out the contents of this register. This EJTAG Control register can only be accessed by the TAP interface.

The EJTAG Control register is not updated in the Update-DR state unless the Reset occurred (Rocc) bit 31, is either 0 
or written to 0. This is in order to ensure prober handling of processor accesses.

The value used for reset indicated in the table below takes effect on CPU resets, but not on TAP controller resets (e.g. 
TRST_N). TCK clock is not required when the CPU reset occurs, but the bits are still updated to the reset value when 
the TCK is supplied. The first 5 TCK clocks after CPU reset may result in reset of the bits, due to synchronization 
between clock domains.

Figure 14.23 EJTAG Control Register Format 

TYPEINFO  10:1 Identifier information specific to the type of entity associated
with this TAP. The attached entity is specified by the TYPE field.

R 1

R 0 Reserved. Must be written as zeros; returns zeros on reads. R 0

31 30 29 28 24 23 22 21 20 19 18 17 16 15 14 13 12 11 4 3 2 0

Rocc Psz Res R Doze Halt PerRst PRnW PrAcc Res PrRst ProbEn ProbTrap Res EjtagBrk Res DM Res

Table 14.28 Implementation Register Descriptions(continued)

Fields

Description
Read / 
Write Reset StateName Bit(s)

Encoding Meaning

CPU Reflects EBaseCPUNUM of the associated
CPU.

Others Reserved.
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Table 14.29 EJTAG Control Register Descriptions 

Fields

Description
Read / 
Write Reset StateName Bit(s)

Rocc 31 Reset Occurred
The bit indicates if a CPU reset has occurred:

The Rocc bit will remain set to 1 as long as reset is applied. 
This bit must be cleared by the probe to acknowledge that the inci-
dent was detected.
The EJTAG Control register is not updated in the Update-DR state 
unless Rocc is 0 or written to 0, in order to ensure proper handling of 
processor access following reset.

R/W 1

Psz[1:0] 30:29 Processor Access Transfer Size
These bits are used in combination with the lower two address bits 
of the Address register to determine the size of a processor access 
transaction. The bits are only valid when processor access is pend-
ing. 

Note: LE=little endian, BE=big endian, the byte# refers to the byte 
number in a 32-bit register, where byte 3 = bits 31:24; byte 2 = bits 
23:16; byte 1 = bits 15:8; byte 0=bits 7:0, independently of the endi-
aness.

R Undefined

Res 28:24 Reserved. R 0

VPED 23  This bit is implemented and must be tied to zero. R 1

Encoding Meaning

0 No reset occurred since bit last cleared
1 Reset occurred since bit last cleared

PAA[1:0] Psz[1:0] Transfer Size

00 00 Byte (LE, byte 0; BE, byte 3)
01 00 Byte (LE, byte 1; BE, byte 2)
10 00 Byte (LE, byte 2; BE, byte 1)
11 00 Byte (LE, byte 3; BE, byte 0)
00 01 Halfword (LE, bytes 1:0; BE, bytes 3:2)
10 01 Halfword (LE, bytes 3:2; BE, bytes 1:0)
00 10 Word (LE, BE; bytes 3, 2, 1, 0)
00 11 Triple (LE, bytes 2, 1, 0; BE, bytes 3, 

2,1)
01 11 Triple (LE, bytes 3, 2, 1; BE, bytes 2, 1, 

0)
All others Reserved
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Doze 22 Doze state
The Doze bit indicates any type of low-power mode. The value is 
sampled in the Capture-DR state of the TAP controller:

Doze includes the Reduced Power (RP) and WAIT power-reduction 
modes.

R 0

Halt 21 Halt state
The Halt bit indicates if the internal system bus clock is running or 
stopped. The value is sampled in the Capture-DR state of the TAP 
controller:

R 0

PerRst 20 Peripheral Reset 
When the bit is set to 1, it is only guaranteed that the peripheral reset 
has occurred in the system when the read value of this bit is also 1. 
This is to ensure that the setting from the TCK clock domain takes 
effect in the CPU clock domain and in peripherals.
When the bit is written to 0, it must also be read as 0 before it is 
guaranteed that the indication is also cleared in the CPU clock 
domain.
This bit controls the EJ_PerRst signal on the core.

R/W 0

PRnW 19 Processor Access Read and Write
This bit indicates if the pending processor access is for a read or 
write transaction, and the bit is only valid while PrAcc is set:

R Undefined

Table 14.29 EJTAG Control Register Descriptions (continued)

Fields

Description
Read / 
Write Reset StateName Bit(s)

Encoding Meaning

0 CPU not in low power mode
1 CPU is in low power mode

Encoding Meaning

0  Internal system clock is running
1 Internal system clock is stopped

Encoding Meaning

0 Read transaction
1 Write transaction
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PrAcc 18 Processor Access (PA)
Read value of this bit indicates if a Processor Access (PA) to the 
EJTAG memory is pending:

The probe’s software must clear this bit to 0 to indicate the end of 
the PA. A write of 1 is ignored.
A pending Processor Access is cleared when Rocc is set, but 
another PA may occur just after the reset if a debug exception 
occurs. 
Finishing a Processor Access is not accepted while the Rocc bit is 
set. This is to avoid a Processor Access occurring after the reset is 
finished because of an indication of a Processor Access that 
occurred before the reset.
The FASTDATA access can clear this bit.

R/W0 0

Res 17 Reserved R 0

PrRst 16 Processor Reset (Implementation dependent behavior)
When the bit is set to 1, then it is only guaranteed that this setting 
has taken effect in the system when the read value of this bit is also 
1. This is to ensure that the setting from the TCK clock domain gets 
effect in the CPU clock domain, and in peripherals.
When the bit is written to 0, then the bit must also be read as 0 
before it is guaranteed that the indication is cleared in the CPU clock 
domain also.
This bit controls the EJ_PrRst signal. If the signal is used in the 
system, then it must be ensured that both the processor and all 
devices required for a reset are properly reset. Otherwise the system 
may fail or hang. The bit resets itself, since the EJTAG Control reg-
ister is reset by a reset.

R/W 0

Table 14.29 EJTAG Control Register Descriptions (continued)

Fields

Description
Read / 
Write Reset StateName Bit(s)

Encoding Meaning

0 No pending processor access
1 Pending processor access
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ProbEn 15 Probe Enable
This bit indicates to the CPU if the EJTAG memory is handled by 
the probe so processor accesses are answered:

It is an error by the software controlling the probe if it sets the Prob-
Trap bit to 1, but resets the ProbEn to 0. The operation of the pro-
cessor is UNDEFINED in this case.
The ProbEn bit is reflected as a read-only bit in the ProbEn bit, bit 0, 
in the Debug Control Register (DCR).
The read value indicates the effective value in the DCR, due to syn-
chronization issues between TCK and CPU clock domains; how-
ever, it is ensured that change of the ProbEn prior to setting the 
EjtagBrk bit will have effect for the debug handler executed due to 
the debug exception.
The reset value of the bit depends on whether the EJTAGBOOT 
indication is given or not:
No EJTAGBOOT indication given: 0
EJTAGBOOT indication given: 1

R/W 0 or 1
from

EJTAGBOOT

ProbTrap 14 Probe Trap 
This bit controls the location of the debug exception vector:

Valid setting of the ProbTrap bit depends on the setting of the Pro-
bEn bit, see comment under ProbEn bit.
The ProbTrap should not be set to 1 unless the ProbEn bit is also set 
to 1 to indicate that the EJTAG memory may be accessed.
The read value indicates the effective value to the CPU, due to syn-
chronization issues between TCK and CPU clock domains; how-
ever, it is ensured that change of the ProbTrap bit prior to setting the 
EjtagBrk bit will have effect for the EjtagBrk.
The reset value of the bit depends on whether the EJTAGBOOT 
indication is given or not:

R/W 0 or 1
from

EJTAGBOOT

Res 13 reserved R 0

Table 14.29 EJTAG Control Register Descriptions (continued)

Fields

Description
Read / 
Write Reset StateName Bit(s)

Encoding Meaning

0 Probe does not handle EJTAG memory 
transactions

1 Probe does handle EJTAG memory 
transactions

Encoding Meaning

0 In normal memory. Vector is located as described in 
Section 14.14.1.2 “DebugVectorAddr Register”

1 In EJTAG memory at 0xFF20.0200 in dmseg
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14.14.5 Processor Access Registers

14.14.5.1 Processor Access Address Register

The Address register is used to provide the address of the processor access in the dmseg, and the register is only valid 
when a processor access is pending. The length of the Address register is 32 bits, and this register is selected by shift-
ing in the ADDRESS instruction. 

14.14.5.2 Processor Access Data Register

The Data register is used to provide data value to and from a processor access. The length of the Data register is 32 
bits, and this register is selected by shifting in the DATA instruction.

The register has the written value for a processor access write due to a CPU store to the dmseg, and the output from 
this register is only valid when a processor access write is pending. The register is used to provide the data value for a 
processor access read due to a CPU load or fetch from the dmseg. The register will be updated with a new value when 
a processor access write is pending. 

The Data register is 32 bits wide. Data alignment is not used for this register, so the value in the Data register matches 
data on the internal bus. The unused bytes for a processor access write are undefined, and for a Data register read, 0 
(zero) must be shifted in for the unused bytes.

The organization of bytes in the Data register depends on the endianess of the core, as shown in Figure 14.24. The 
endian mode for debug/kernel mode is determined by the state of the SI_Endian input at power-up.

EjtagBrk 12 EJTAG Break
Setting this bit to 1 causes a debug exception to the processor, unless 
the CPU was in debug mode or another debug exception occurred.
When the debug exception occurs, the processor core clock is 
restarted if the CPU was in low power mode. This bit is cleared by 
hardware when the debug exception is taken.
The reset value of the bit depends on whether the EJTAGBOOT 
indication is given or not:

R/W 0 or 1
from

EJTAGBOOT

Res 11:4 Reserved R 0

DM 3 Debug Mode
This bit indicates the debug or non-debug mode:

The bit is sampled in the Capture-DR state of the TAP controller.

R 0

Res 2:0 Reserved R 0

Table 14.29 EJTAG Control Register Descriptions (continued)

Fields

Description
Read / 
Write Reset StateName Bit(s)

Encoding Meaning

0 No EJTAGBOOT indication given
1 EJTAGBOOT indication given

Encoding Meaning

0 Processor is in non-debug mode
1 Processor is in debug mode
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Figure 14.24 Endian Formats for the Data Register

The size of the transaction and thus the number of bytes available/required for the Data register is determined by the 
Psz field in the ECR.

14.14.6 Fastdata Registers

14.14.6.1 Fastdata Register (TAP Instruction FASTDATA)

The width of the Fastdata register is 1 bit. During a Fastdata access, the Fastdata register is written and read, i.e., a bit 
is shifted in and a bit is shifted out. During a Fastdata access, the Fastdata register value shifted in specifies whether 
the Fastdata access should be completed or not. The value shifted out is a flag that indicates whether the Fastdata 
access was successful or not (if completion was requested). 

Figure 14.25 Fastdata Register Format  
31 1 0

R SPrAcc

Table 14.30 Fastdata Register Field Description

Fields

Description
Read / 
Write

Power-up 
StateName Bits

SPrAcc 0 Shifting in a zero value requests completion of the Fastdata access. 
The PrAcc bit in the EJTAG Control register is overwritten with 
zero when the access succeeds. (The access succeeds if PrAcc is 
one and the operation address is in the legal dmseg Fastdata area.) 
When successful, a one is shifted out. Shifting out a zero indicates 
a Fastdata access failure.
Shifting in a one does not complete the Fastdata access and the 
PrAcc bit is unchanged. Shifting out a one indicates that the access 
would have been successful if allowed to complete and a zero indi-
cates the access would not have successfully completed.

R/W Undefined

A[n:0]=7 6 5 4

012A[n:0]=3

A[n:0]=4 5 6 7

321A[n:0]=0

0781516232431

0781516232431

LSB
bit

MSB

LSB
bit

MSB

A[n:2]=1

A[n:2]=0

A[n:2]=1

A[n:2]=0

Most significant byte is at lowest address.
Word is addressed by byte address of most significant byte.

BIG-ENDIAN

LITTLE-ENDIAN

Least significant byte is at lowest address.
Word is addressed by byte address of least significant byte.
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14.14.7 FDC TAP Register

The FDC TAP instruction performs a 38 bit bidirectional transfer of the FDC TAP register. The register format is 
shown in Figure 14.26 and the fields are described in Figure 14.31

Figure 14.26 FDC TAP Register Format 

37 36 35 32 31 0

In Probe Data 
Accept

Data In 
Valid

ChannelID Data
Out Receive 

Buffer Full
Data Out 

Valid

Table 14.31 FDC TAP Register Field Descriptions

Fields

Description
Read / 
Write

Reset 
StateName Bits

Probe Data 
Accept

37 Indicates to core that the probe is accepting the data that 
was scanned out.

W Undefined

Data In Valid 36 Indicates to core that the probe is sending new data to the 
receive FIFO.

W Undefined

Receive Buf-
fer Full

37 Indicates to probe that the receive buffer is full and the 
core will not accept the data being scanned in. Analagous 
to ProbeDataAccept, but opposite polarity

R 0

Data Out 
Valid

36 Indicates to probe that the core is sending new data from 
the transmit FIFO

R 0

ChannelID 35:32 Channel number associated with the data being scanned in 
or out. This field can be used to indicate the type of data 
that is being sent and allow independent communication 
channels

Scanning in a value with ChannelID=0xd and Data In 
Valid = 0 will generate a receive interrupt. This can be 
used when the probe has completed sending data to the 
core.

R/W Undefined

Data 31:0 Data value being scanned in or out R/W Undefined
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14.14.8 Fast Debug Channel Registers

This section describes the Fast Debug Channel registers. CPU access to FDC is via loads and stores to the FDC 
device in the Common Device Memory Map (CDMM) region. These registers provide access control, configuration 
and status information, as well as access to the transmit and receive FIFOs. The registers and their respective offsets 
are shown in Table 14.32

14.14.8.1 FDC Access Control and Status (FDACSR) Register (Offset 0x0)

This is the general CDMM Access Control and Status register which defines the device type and size and controls 
user and supervisor access to the remaining FDC registers. The Access Control and Status register itself is only acces-
sible in kernel mode. Figure 14.27 has the format of an Access Control and Status register (shown as a 64-bit regis-
ter), and Table 14.33 describes the register fields.

Figure 14.27 FDC Access Control and Status Register

Table 14.32 FDC Register Mapping

Offset in CDMM 
device block

Register 
Mnemonic Register Name and Description

0x0 FDACSR FDC Access Control and Status Register

0x8 FDCFG FDC Configuration Register

0x10 FDSTAT FDC Status Register

0x18 FDRX FDC Receive Register

0x20 + 0x8* n FDTXn FDC Transmit Register n (0 ≤ n ≤ 15)

63 32 31 24 23 22 21 16 15 12 11 4 3 2 1 0

0 DevID 0 DevSize DevRev 0 Uw Ur Sw Sr

Table 14.33 FDC Access Control and Status Register Field Descriptions

Fields

Description
Read / 
Write

Reset 
StateName Bits

DevType 31:24 This field specifies the type of device. R 0xfd

DevSize 21:16 This field specifies the number of extra 64-byte blocks 
allocated to this device. The value 0x2 indicates that this 
device uses 2 extra, or 3 total blocks.

R 0x2

DevRev 15:12 This field specifies the revision number of the device. The 
value 0x0 indicates that this is the initial version of FDC

R 0x0

Uw 3 This bit indicates if user-mode write access to this device 
is enabled. A value of 1 indicates that access is enabled. A 
value of 0 indicates that access is disabled. An attempt to 
write to the device while in user mode with access dis-
abled is ignored.

R/W 0

Ur 2 This bit indicates if user-mode read access to this device is 
enabled. A value of 1 indicates that access is enabled. A 
value of 0 indicates that access is disabled. An attempt to 
read from the device while in user mode with access dis-
abled will return 0 and not change any state.

R/W 0
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14.14.8.2 FDC Configuration (FDCFG) Register (Offset 0x8)

The FDC configuration register holds information about the current configuration of the Fast Debug Channel mecha-
nism. Figure 14.28 has the format of the FDC Configuration register, and Table 14.34 describes the register fields.

Figure 14.28 FDC Configuration Register

Sw 1 This bit indicates if supervisor-mode write access to this 
device is enabled. A value of 1 indicates that access is 
enabled. A value of 0 indicates that access is disabled. An 
attempt to write to the device while in supervisor mode 
with access disabled is ignored.

R/W 0

Sr 0 This bit indicates if supervisor-mode read access to this 
device is enabled. A value of 1 indicates that access is 
enabled. A value of 0 indicates that access is disabled. An 
attempt to read from the device while in supervisor mode 
with access disabled will return 0 and not change any 
state..

R/W 0

0 11:4 Reserved for future use. Ignored on write; returns zero on 
read.

R 0

31 20 19 18 17 16 15 8 7 0

0 Tx_IntThresh Rx_IntThresh TxFIFOSize RxFIFOSize

Table 14.34 FDC Configuration Register Field Descriptions

Fields

Description
Read / 
Write

Reset 
StateName Bits

0 31:20 Reserved for future use. Read as zeros, must be written as 
zeros.

R 0

TxIntThresh 19:18 Controls whether transmit interrupts are enabled and the 
state of the TxFIFO needed to generate an interrupt.

R/W 0

Table 14.33 FDC Access Control and Status Register Field Descriptions

Fields

Description
Read / 
Write

Reset 
StateName Bits

Encoding Meaning

0 Transmit Interrupt Disabled
1 Empty
2 Not Full
3 Almost Empty - zero or one entry in 

use*(see 14.15.2 for specifics)
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14.14.8.3 FDC Status (FDSTAT) Register (Offset 0x10)

The FDC Status register holds up to date state information for the FDC mechanism. Figure 14.29 has the format of 
the FDC Status register, and Table 14.35 describes the register fields.

Figure 14.29 FDC Status Register

RxIntThresh 17:16 Controls whether receive interrupts are enabled and the 
state of the RxFIFO needed to generate an interrupt.

R/W 0

TxFIFOSize 15:8 This field holds the total number of entries in the transmit 
FIFO.

R Preset

RxFIFOSize 7:0 This field holds the total number of entries in the receive 
FIFO.

R Preset

31 24 23 16 15 8 7 4 3 2 1 0

Tx_Count Rx_Count 0 RxChan RxE RxF TxE TxF

Table 14.35 FDC Status Register Field Descriptions

Fields

Description
Read / 
Write

Reset 
StateName Bits

Tx_Count 31:24 This optional field is not implemented and will read as 0 R 0

Rx_Count 23:16 This optional field is not implemented and will read as 0 R 0

0 15:8 Reserved for future use. Must be written as zeros and read 
as zeros.

R 0

RxChan 7:4 This field indicates the channel number used by the top 
item in the receive FIFO. This field is only valid if RxE=0.

R Undefined

RxE 3 If RxE is set, the receive FIFO is empty. If RxE is not set, 
the FIFO is not empty.

R 1

RxF 2 If RxF is set, the receive FIFO is full. If RxF is not set, the 
FIFO is not full.

R 0

TxE 1 If TxE is set, the transmit FIFO is empty. If TxE is not set, 
the FIFO is not empty.

R 1

TxF 0 If TxF is set, the transmit FIFO is full. If TxF is not set, the 
FIFO is not full.

R 0

Table 14.34 FDC Configuration Register Field Descriptions(continued)

Fields

Description
Read / 
Write

Reset 
StateName Bits

Encoding Meaning

0 Receive Interrupt Disabled
1 Full
2 Not empty
3 Almost Full - zero or one entry free
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14.14.8.4 FDC Receive (FDRX) Register (Offset 0x18)

This register exposes the top entry in the receive FIFO. A read from this register returns the top item in the FIFO and 
removes it from the FIFO itself. The result of a write to this register is UNDEFINED. The result of a read when the 
FIFO is empty is also UNDEFINED so software must check the FDSTATRxE flag prior to reading. Figure 14.30 has 
the format of the FDC Receive register, and Table 14.36 describes the register fields.

Figure 14.30 FDC Receive Register

14.14.8.5 FDC Transmit n (FDTXn) Registers (Offset 0x20 + 0x8*n)

These sixteen registers all access the bottom entry in the transmit FIFO. The different addresses are used to generate 
a 4b channel identifier that is attached to the data value. This allows software to track different event types without 
needing to reserve a portion of the 32b data as a tag. A write to one of these registers results in a write to the transmit 
FIFO of the data value and channel ID corresponding to the register being written. Reads from these registers are 
UNDEFINED. Attempting to write to the transmit FIFO if it is full has UNDEFINED results. Hence, the software 
running on the core must check the FDSTATTxF flag to ensure that there is space for the write. Figure 14.31 has the 
format of the FDC Transmit register, and Table 14.37 describes the register fields.

Figure 14.31 FDC Transmit Register

31 0

RxData

Table 14.36 FDC Receive Register Field Descriptions

Fields

Description
Read / 
Write

Reset 
StateName Bits

RxData 31:0 This register holds the top entry in the receive FIFO R Undefined

31 0

TxData

Table 14.37 FDC Transmit Register Field Descriptions

Fields

Description
Read / 
Write

Reset 
StateName Bits

TxData 31:0 This register holds the bottom entry in the transmit FIFO W, Unde-
fined 

value on 
read

Undefined

Table 14.38 FDTXn Address Decode

Addr Chan Addr Chan Addr Chan Addr Chan

0x20 0x0 0x40 0x4 0x60 0x8 0x80 0xc

0x28 0x1 0x48 0x5 0x68 0x9 0x88 0xd

0x30 0x2 0x50 0x6 0x70 0xa 0x90 0xe
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14.14.9 PDtrace™ Registers (Software Control)

The CP0 registers associated with PDtrace are listed in Table 14.39 and described in Chapter 2, “CP0 Registers” on 
page 73.

14.14.10 Trace Control Block (TCB) Registers (Hardware Control)

The TCB registers used to control its operation are listed in Table 14.40 and Table 14.41. These registers are accessed 
via the EJTAG TAP interface, or by software through mapping to dsseg memory space.  

0x38 0x3 0x58 0x7 0x78 0xb 0x98 0xf

Table 14.39 A List of Coprocessor 0 Trace Registers

Register Number Sel Register Name

23 1 TraceControl

23 2 TraceControl2

24 2 TraceControl3

23 3 UserTraceData1

24 3 UserTraceData2

Table 14.40 TCB EJTAG Registers

EJTAG 
Register Name Description Implemented

0x10 TCBCONTROLA Control register in the TCB mainly used for controlling the trace input 
signals to the core on the PDtrace interface. See Section 
14.14.10.1 “TCBCONTROLA Register”.

Yes

0x11 TCBCONTROLB Control register in the TCB that is mainly used to specify what to do with 
the trace information. The REG [25:21] field in this register specifies the 
number of the TCB internal register accessed by the TCBDATA register. 
A list of all the registers that can be accessed by the TCBDATA register is 
shown in Table 14.41. See Section 14.14.10.2 “TCBCONTROLB 
Register”.

Yes

0x12 TCBDATA This is used to access registers specified by the REG field in the 
TCBCONTROLB register. See Section 14.14.10.3 “TCBDATA 
Register”.

Yes

0x13 TCBCONTROLC Control Register in the TCB used to control and hold tracing information. 
See Section 14.14.10.4 “TCBCONTROLC Register”.

Yes

0x16 TCBCONTROLE Control Register in the TCB used to control tracing for the performance 
counter tracing feature. See Section 14.14.11.1 “TCBCONTROLE 
Register”.

Yes

Table 14.38 FDTXn Address Decode

Addr Chan Addr Chan Addr Chan Addr Chan
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14.14.10.1 TCBCONTROLA Register

The TCB is responsible for asserting or de-asserting the trace input control signals on the PDtrace interface to the 
core’s tracing logic. Most of the control is done using the TCBCONTROLA register.

The TCBCONTROLA register is written by an EJTAG TAP controller instruction, TCBCONTROLA (0x10). This 
register is also mapped to offset 0x3000 in drseg. .

The format of the TCBCONTROLA register is shown below, and the fields are described in Table 14.42.

Figure 14.32 TCBCONTROLA Register Format 

Table 14.41 Registers Selected by TCBCONTROLBREG 

TCBCONTROLBREG field  Name Reference Implemented

0 TCBCONFIG Section 14.14.11.2 “TCBCONFIG Register (Reg 0)” Yes

4 - 7 Values are undefined. No

16-23 TCBTRIGx Section 14.14.11.3 “TCBTRIGx Register (Reg 16-23)” Only the number 
indicated by 

TCBCONFIGTRIG 
are implemented.

31 30 29 26 25 24 23 22 20 19 18 17 16 15 14 13 12 5 4 3 2 1 0

SyPExt 0 VModes ADW SyP TB IO D E S K U ASID G TFCR TLSM TIM On

Table 14.42 TCBCONTROLA Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

SyPExt 31:30 These two bits used to be Implementation specific until PDtrace 
spec revision 06.00 when it reverts to architecturally defined bits to 
extend the SyP (sync period) field for implementations that need 
higher numbers of cycles between synchronization events.
The value of SyP is extended by assuming that these two bits are 
juxtaposed to the left of the three bits of SyP (SyPExt.SyP). When 
only SyP was used to specify the synchronization period, the value 
was 2x, where x was computed from SyP by adding 5 to the actual 
value represented by the bits. A similar formula is applied to the 5 
bits just obtained by the juxtaposition of SyPExt and SyP. Sync 
period values greater than 231 are UNPREDICTABLE. Since the 
value of 11010 represents the value of 31 (with +5), all values 
greater than 11010 are UNPREDICTABLE.
Note that with these new bits, a sync period range of 25 to 231 cycles 
can now be obtained.

R/W 0

0 29:26 Reserved. Must be written as zero; returns zero on read. R 0
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VModes 25:24 This field specifies the type of tracing that is supported by the pro-
cessor, as follows: 

This field is preset to the value of PDO_ValidModes.

R 10

ADW 23 PDO_AD bus width.
0: The PDO_AD bus is 16 bits wide.
1: The PDO_AD bus is 32 bits wide.

R 1

SyP 22:20 Used to indicate the synchronization period.
The period (in cycles) between which the periodic synchronization 
information is to be sent is defined as shown in the table below. 

This field defines the value on the PDI_SyncPeriod signal.

R/W 000

TB 19 Trace All Branches. When set to one, this field indicates that the 
core must trace either full or incremental PC values for all branches. 
When set to zero, only the unpredictable branches are traced.
This field defines the value on the PDI_TraceAllBranch signal.

R/W Undefined

IO 18 Inhibit Overflow. This bit is used to indicate to the core trace logic 
that slow but complete tracing is desired. Hence, the core tracing 
logic must not allow a FIFO overflow and discard trace data. This is 
achieved by stalling the pipeline when the FIFO is nearly full so that 
no trace records are ever lost.
This field defines the value on the PDI_InhibitOverflow signal.

R/W Undefined

D 17 When set to one, this enables tracing in Debug mode, i.e., when the 
DM bit is one in the Debug register. For trace to be enabled in 
Debug mode, the On bit must be one, and either the G bit must be 
one, or the current process must match the ASID field in this regis-
ter.
When set to zero, trace is disabled in Debug mode, irrespective of 
other bits.
This field defines the value on the PDI_DM signal.

R/W Undefined

Table 14.42 TCBCONTROLA Register Field Descriptions(continued)

Fields

Description
Read / 
Write Reset StateName Bits

Encoding Meaning

00 PC tracing only
01 PC and Load and store address tracing only
10 PC, load and store address, and load and store data.
11 Reserved

SyP Sync Period

000 25

001 26

010 27

011 28

100 29

101 210

110 211

111 212



730 MIPS32® proAptiv™ Multiprocessing System Software User’s Manual, Revision 01.22

 

E 16 This controls when tracing is enabled. When set, tracing is enabled 
when either of the EXL or ERL bits in the Status register is one, 
provided that the On bit (bit 0) is also set, and either the G bit is set, 
or the current process ASID matches the ASID field in this register.
This field defines the value on the PDI_E signal.

R/W Undefined

S 15 When set, this enables tracing when the core is in Supervisor mode 
as defined in the MIPS32 or MIPS64 architecture specification. This 
is provided the On bit (bit 0) is also set, and either the G bit is set, or 
the current process ASID matches the ASID field in this register.
This field defines the value on the PDI_S signal.

R/W Undefined

K 14 When set, this enables tracing when the On bit is set and the core is 
in Kernel mode. Unlike the usual definition of Kernel Mode, this bit 
enables tracing only when the ERL and EXL bits in the Status reg-
ister are zero. This is provided the On bit (bit 0) is also set, and either 
the G bit is set, or the current process ASID matches the ASID field 
in this register.
This field defines the value on the PDI_K signal.

R/W Undefined

U 13 When set, this enables tracing when the core is in User mode as 
defined in the MIPS32 or MIPS64 architecture specification. This is 
provided the On bit (bit 0) is also set, and either the G bit is set, or 
the current process ASID matches the ASID field in this register.
This field defines the value on the PDI_U signal.

R/W Undefined

ASID 12:5 The ASID field to match when the G bit is zero. When the G bit is 
one, this field is ignored.
This field defines the value on the PDI_ASID signal.

R/W Undefined

G 4 When set, this implies that tracing is to be enabled for all processes, 
provided that other enabling functions (like U, S, etc.,) are also true.
This field defines the value on the PDI_G signal.

R/W Undefined

TFCR 3 When set, this indicates to the PDtrace interface that complete infor-
mation about instruction if it can be a function call or return should 
be traced, that is signal PDI_TraceFuncCR is asserted as long as 
this value is set to 1. It also indicates to the TCB that the optional Fcr 
bit must be traced in the appropriate trace formats

R/W Undefined

TLSM 2 When set, this indicates to the PDtrace interface that complete infor-
mation about Load and Store data cache miss should be traced, that 
is signal PDI_TraceLSMiss is asserted as long as this value is set to 
1. It also indicates to the TCB that the optional LSm bit must be 
traced in the appropriate trace formats.

R/W Undefined

TIM 1 When set, this indicates to the PDtrace interface that complete infor-
mation about instruction cache miss should be traced, that is signal 
PDI_TraceIMiss is asserted as long as this value is set to 1. It also 
indicates to the TCB that the optional Im bit must be traced in the 
appropriate trace formats.

R/W Undefined

Table 14.42 TCBCONTROLA Register Field Descriptions(continued)

Fields

Description
Read / 
Write Reset StateName Bits



 

MIPS32® proAptiv™ Multiprocessing System Software User’s Manual, Revision 01.22 731

 

14.14.10.2 TCBCONTROLB Register

The TCB includes a second control register, TCBCONTROLB (0x11). This register generally controls what to do with 
the trace information received. This register is also mapped to offset 0x3008 in drseg.

The format of the TCBCONTROLB register is shown below, and the fields are described in Table 14.43.

Figure 14.33 TCBCONTROLB Register Format  

 

On 0 This is the global trace enable switch to the core. When zero, tracing 
from the core is always disabled, unless enabled by core internal 
software override of the PDI_* input pins.
When set to one, tracing is enabled whenever the other enabling 
functions are also true.
This field defines the value on the PDI_TraceOn signal.

R/W 0

31 30 28 27 26 25 21 20 19 18 17 12 11 10 7 6 3 2 1 0

WE 0 TWSrcWidth REG WR 0 TRPAD 0 TLSIF 0 0 CA 0 EN

Table 14.43 TCBCONTROLB Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateName Bits

WE 31 Write Enable. 
Only when set to 1 will the other bits be written in TCBCONTROLB.
This bit will always read 0.

R 0

0 30:28 Reserved. Must be written as zero; returns zero on read. R 0

TWS-
rcWidth

27:26 Used to indicate the number of bits used in the source field of the Trace Word, 
this is a configuration option of the core that cannot be modified by software.
00 - zero source field width
01 - two bit source field width
10 - four bit source field width
11 - reserved for future use
This field can only be 10 for the proAptiv Multiprocessing System core.

R 10

REG 25:21 Register select: This field select the registers accessible through the 
TCBDATA register. Legal values are shown in Table 14.41.

R/W 0

WR 20 Write Registers: When set, the register selected by REG field is read and writ-
ten when TCBDATA is accessed. Otherwise the selected register is only read.

R/W 0

0 19 Reserved. Must be written as zero; returns zero on read. R 0

TRPAD 18 Trace RAM access disable bit, disables program software access to the 
on-chip trace RAM using load/store instructions. If probe access is not pro-
vided in the implementation, then this register bit must be tied to zero value to 
allow software to control access.

R/W 0

0 17:12 Reserved. Must be written as zero; returns zero on read. R 0

Table 14.42 TCBCONTROLA Register Field Descriptions(continued)

Fields

Description
Read / 
Write Reset StateName Bits
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14.14.10.3 TCBDATA Register

The TCBDATA register (0x12) is used to access the registers defined by the TCBCONTROLBREG field; see Table 
14.41. Regardless of which register or data entry is accessed through TCBDATA, the register is only written if the 
TCBCONTROLBWR bit is set. For read-only registers, TCBCONTROLBWR is a don’t care.

The format of the TCBDATA register is shown below, and the field is described in Table 14.44. The width of 
TCBDATA is 64 bits when on-chip trace words (TWs) are accessed (TCBTW access).

Figure 14.34 TCBDATA Register Format 

TLSIF 11 When set, this indicates to the TCB that information about Load and Store 
data cache miss, instruction cache miss, and function call are to be taken from 
the PDtrace interface and trace them out in the appropriate trace formats as the 
three optional bits LSm, Im, and Fcr.

R/W 0

0 10:7 Reserved. Must be written as zero; returns zero on read. R 0

TWSrcVal 6:3 These bits are used to indicate the value of the TW source field that will be 
traced if TWSrcWidth indicates a source bit field width of 2 or 4 bits. Note 
that if the field is 2 bits, then only bits 4:3 of this field will be used in the TW.

R Preset

CA 2 Cycle accurate trace. 
When set to 1, the trace will include stall information.
When set to 0, the trace will exclude stall information, and remove bit zero 
from all transmitted TF’s. 
The stall information included/excluded is:
• TF6 formats with TCBcode 0001 and 0101.
• All TF1 formats.

R/W 0

OfC 1 This bit is always set to 1, indicating that the trace is sent to off-chip memory 
using TR_DATA pins.

R 1

EN 0 Enable trace.
This is the master enable for trace to be generated from the TCB. This bit can 
be set or cleared, either by writing this register or from a start/stop/about trig-
ger.
When set to 1, Trace Words are generated and sent to the trace funnel.
When set to 0, trace information is ignored. A potential TF6-stop (from a stop 
trigger) is generated as the last information, the TCB pipe-line is flushed, and 
trace output is stopped.

R/W 0

31(63) 0

Data

Table 14.43 TCBCONTROLB Register Field Descriptions (continued)

Fields

Description
Read / 
Write Reset StateName Bits
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14.14.10.4 TCBCONTROLC Register

The trace output from the processor on the PDtrace interface can be controlled by the trace input signals to the proces-
sor from the TCB. The TCB uses a control register, TCBCONTROLC, whose values are used to change the signal val-
ues on the PDtrace input interface. External software (i.e., debugger) can therefore manipulate the trace output by 
writing to this register.

The TCBCONTROLC register is written by the EJTAG TAP controller instruction, TCBCONTROLC (0x13). This 
register is also mapped to offset 0x3010 in drseg. 

The format of the TCBCONTROLC register is shown below, and the fields are described in Table 14.45.

Figure 14.35 TCBCONTROLC Register Format  

Table 14.44 TCBDATA Register Field Descriptions 

Fields

Description Read/Write Reset StateNames Bits

Data 31:0
63:0

Register fields or data as defined by the 
TCBCONTROLBREG field

Only writable if 
TCBCONTROLBWR 

is set

0

31 30 29 28 27 23 22 0

Res NumDO Mode R

31 30 29 28 27 23 22 21 15 14 13 12 9 8 5 4 2 1 0

Res NumDO Mode CPUValid Res CPUId TCValid Res TCNum TCbits MTraceType MTraceTC

Table 14.45 TCBCONTROLC Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

Res 31:30 Reserved for future use. Must be written as zero; returns zero on 
read.

0 0

NumDO 29:28 Specifies the number of bits needed by this implementation to spec-
ify the DataOrder:
10 - Six bits

R 10
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14.14.11 TCBCONTROLD Register

The TCB includes a control register, TCBCONTROLD, whose values are used to enable tracing of the Coherence 
Manager. External software (i.e., debugger) can therefore manipulate the trace output by writing to this register. Each 
of the cores in the proAptiv has this register, and the Core_CM_En field is considered from each of the cores.

The TCBCONTROLD register is written by an EJTAG TAP controller instruction, TCBCONTROLD (0x14). This reg-
ister is also mapped to offset 0x3018 in drseg. The format of the TCBCONTROLD register is shown below, and the 
fields are described in Table 14.46.

Mode 27:23 When tracing is turned on, this signal specifies what information is 
to be traced by the core. It uses 5 bits, where each bit turns on a trac-
ing of a specific tracing mode. 

The table shows what trace value is turned on when that bit value is 
a 1. If the corresponding bit is 0, then the Trace Value shown in col-
umn two is not traced by the processor.
On the proAptiv Multiprocessing System core PC tracing is always 
enabled, regardless of the value on bit 23.
This field defines the value on the PDI_TraceMode signal.

R/W 0

R 22:0 Reserved for future use. Must be written as zero; returns zero on 
read.

R/W 0

Table 14.45 TCBCONTROLC Register Field Descriptions(continued)

Fields

Description
Read / 
Write Reset StateName Bits

Bit # Set Trace The Following

0 PC
1 Load address
2 Store address
3 Load data
4 Store data
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Figure 14.36 TCBCONTROLD Register Format   

14.14.11.1 TCBCONTROLE Register

The trace output from the processor on the PDtrace interface can be controlled by the trace input signals to the proces-
sor from the TCB. The TCB uses a control register, TCBCONTROLE, whose values are used to change the signal val-
ues on the PDtrace input interface. External software (i.e., debugger), can therefore manipulate the trace output by 
writing the TCBCONTROLE register.

The TCBCONTROLE register is written by an EJTAG TAP controller instruction, TCBCONTROLE (0x16).This regis-
ter is also mapped to offset 0x3020 in drseg.

The format of the TCBCONTROLE register is shown below, and the fields are described in Table 14.47.

Figure 14.37 TCBCONTROLE Register Format 

31 2 1 0

0 Gore_CM_En 0

Table 14.46 TCBCONTROLD Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

0 31:2 Reserved. Must be written as zero; returns zero on read. R 0

Core_CM_En 1 Core_CM_Enable: The CM looks at this bit coming from each of the 
cores. Allows cores other than the master to enable tracing if other 
conditions are met.

R/W 0

0 0 Reserved. Must be written as zero; returns zero on read. R 0

31 9 8 7 6 5 4 3 2 1 0

0 TdIDLE 0 PecOvf PeCFCR PeCBP PeCSync PeCE PeC

Table 14.47 TCBCONTROLE Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateName Bits

0 31:9 Reserved for future use. Must be written as zero; returns zero on 
read.

0 0

TrIDLE 8 Trace Unit Idle. This bit indicates if the trace hardware is cur-
rently idle (not processing any data). This can be useful when 
switching control of trace from hardware to software and vice 
versa. The bit is read-only and updated by the trace hardware.

R 1

0 7:6 Reserved for future use; Must be written as zero; returns zero on 
read. (Hint to architect, Reserved for future expansion of perfor-
mance counter trace events).

0 0

PeCOvf 5 Trace performance counters when one of the performance coun-
ters overflows its count value. Enabled when set to 1.

R/W 0

PeCFCR 4 Trace performance counters on function call/return or on an 
exception handler entry. Enabled when set to 1.

R/W 0
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14.14.11.2 TCBCONFIG Register (Reg 0)

The TCBCONFIG register holds information about the hardware configuration of the TCB. The format of the 
TCBCONFIG register is shown below, and the fields are described in Table 14.48.

Figure 14.38 TCBCONFIG Register Format  

14.14.11.3 TCBTRIGx Register (Reg 16-23)

Up to eight Trigger Control registers are possible. Each register is named TCBTRIGx, where x is a single digit number 
from 0 to 7 (TCBTRIG0 is Reg 16). The actual number of trigger registers implemented is defined in the 
TCBCONFIGTRIG field. An unimplemented register will read all zeros and writes are ignored.

PeCBP 3 Trace performance counters on hardware breakpoint match trig-
ger. Enabled when set to 1.

R/W 0

PeCSync 2 Trace performance counters on synchronization counter expira-
tion. Enabled when set to 1.

R/W 0

PeCE 1 Performance counter tracing enable. If performance counter 
hardware is present, this field is read/write. If not present, this 
field is read-only. When set to 0, the tracing out of performance 
counter values as specified is disabled. To enable, this bit must be 
set to 1. This bit is used under software control. When trace is 
controlled by an external probe, this enabling is done via the 
TCB Control register.

Config 
Option

0

PeC 0 Specifies whether or not Performance Control Tracing is imple-
mented. This is an optional feature that may be omitted by imple-
mentation choice.

R Preset

31 30 25 24 21 20 17 16 14 13 11 10 9 8 6 5 4 3 0

CF1 0 TRIG SZ CRMax CRMin PW PiN 0 OfT REV

Table 14.48 Clock Ratio Encoding of the CR Field

CR/CRMin/CRMax Clock Ratio

000 8:1 (Trace clock is eight times that of CPU clock)

001 4:1 (Trace clock is four times that of CPU clock)

010 2:1 (Trace clock is two times that of CPU clock)

011 1:1 (Trace clock is same as CPU clock)

100 1:2 (Trace clock is one half of CPU clock)

101 1:4 (Trace clock is one fourth of CPU clock)

110 1:6 (Trace clock is one sixth of CPU clock)

111 1:8 (Trace clock is one eighth of CPU clock)

Table 14.47 TCBCONTROLE Register Field Descriptions (continued)

Fields

Description
Read / 
Write Reset StateName Bits
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Each Trigger Control register controls when an associated trigger is fired, and the action to be taken when the trigger 
occurs. Please also read Section 14.16 “TCB Trigger Logic”, for detailed description of trigger logic issues.

The format of the TCBTRIGx register is shown below, and the fields are described in Table 14.49.

Figure 14.39 TCBTRIGx Register Format 
31 24 23 22 16 15 14 13 7 6 5 4 3 2 1 0

TCBinfo Trace 0 CHTro PDTro 0 DM CHTri PDTri Type FO TR

Table 14.49 TCBTRIGx Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateNames Bits

TCBinfo 31:24 This field is to be used in a possible TF6 trace format when this trig-
ger fires.

R/W 0

Trace 23 When set, generate TF6 trace information when this trigger fires. 
Use TCBinfo field for the TCBinfo of TF6 and use Type field for 
the two MSB of the TCBtype of TF6. The two LSB of TCBtype are 
00.
The write value of this bit always controls the behavior of this trig-
ger.
When this trigger fires, the read value will change to indicate if the 
TF6 format was ever suppressed by a simultaneous trigger. If so, the 
read value will be 0. If the write value was 0, the read value is 
always 0. This special read value is valid until the TCBTRIGx regis-
ter is written.

R/W 0

0 22:16 Reserved. Must be written as zero; returns zero on read. R 0

CHTro 15 When set, generate a single cycle strobe on TC_ChipTrigOut when 
this trigger fires.

R/W 0

PDTro 14 When set, generate a single cycle strobe on TC_ProbeTrigOut 
when this trigger fires.

R/W 0

0 13:7 Reserved. Must be written as zero; returns zero on read. R 0

DM 6 When set, this Trigger will fire when a rising edge on the Debug 
mode indication from the core is detected.
The write value of this bit always controls the behavior of this trig-
ger.
When this trigger fires, the read value will change to indicate if this 
source was ever the cause of a trigger action (even if the action was 
suppressed). If so the read value will be 1. If the write value was 0 
the read value is always 0. This special read value is valid until the 
TCBTRIGx register is written.

R/W 0

CHTri 5 When set, this Trigger will fire when a rising edge on 
TC_ChipTrigIn is detected.
The write value of this bit always controls the behavior of this trig-
ger.
When this trigger fires, the read value will change to indicate if this 
source was ever the cause of a trigger action (even if the action was 
suppressed). If so the read value will be 1. If the write value was 0 
the read value is always 0. This special read value is valid until the 
TCBTRIGx register is written.

R/W 0
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PDTri 4 When set, this Trigger will fire when a rising edge on 
TC_ProbeTrigIn is detected.
The write value of this bit always controls the behavior of this trig-
ger.
When this trigger fires, the read value will change to indicate if this 
source was ever the cause of a trigger action (even if the action was 
suppressed). If so the read value will be 1. If the write value was 0 
the read value is always 0. This special read value is valid until the 
TCBTRIGx register is written.

R/W 0

Type 3:2 Trigger Type: The Type indicates the action to take when this trigger 
fires. The table below show the Type values and the Trigger action. 

The actual action is to set or clear the TCBCONTROLBEN bit. A 
Start trigger will set TCBCONTROLBEN, a End trigger will clear 
TCBCONTROLBEN. The About trigger will clear 
TCBCONTROLBEN half way through the trace memory, from the 
trigger. The size determined by the TCBCONFIGSZ field for 
on-chip memory. Or from the TCBCONTROLASyP field for 
off-chip trace.
If Trace is set, then a TF6 format is added to the trace words. For 
Start and Info triggers this is done before any other TF’s in that same 
cycle. For End and About triggers, the TF6 format is added after any 
other TF’s in that same cycle.
If the TCBCONTROLBTM field is implemented it must be set to 
Trace-To mode (00), for the Type field to control on-chip trace fill.
The write value of this bit always controls the behavior of this trig-
ger.
When this trigger fires, the read value will change to indicate if the 
trigger action was ever suppressed. If so the read value will be 11. If 
the write value was 11 the read value is always 11. This special read 
value is valid until the TCBTRIGx register is written.

R/W 0

FO 1 Fire Once. When set, this trigger will not re-fire until the TR bit is 
de-asserted. When de-asserted this trigger will fire each time one of 
the trigger sources indicates trigger.

R/W 0

Table 14.49 TCBTRIGx Register Field Descriptions (continued)

Fields

Description
Read / 
Write Reset StateNames Bits

Type Trigger action

00 Trigger Start: Trigger start-point of trace.
01 Trigger End: Trigger end-point of trace.
10 Trigger About: Trigger center-point of trace.
11 Trigger Info: No action trigger, only for trace info.
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14.14.12 Register Reset State

Reset state for all register fields is entered when either of the following occur:

1. TAP controller enters/is in Test-Logic-Reset state.

2. EJ_TRST_N input is asserted low.

14.15 Fast Debug Channel

The Fast Debug Channel (FDC) mechanism provides an efficient means to transfer data between the core and an 
external device using the EJTAG TAP pins. The FDC was created to allow for faster communication between the core 
and the probe. In previous generation MIPS processors, whenever the core wanted to communicate with the probe, 
the core would be halted and data send to the probe because the probe had no way to read the core. The FDC provides 
a mechanism using FIFO’s, whereby the probe can read the core without requiring that the core be halted. These 
FIFO’s provide a cross boundary between the core and the EJTAG regions of the proAptiv Multiprocessing System.

In the FDC, when the probe wishes to read and FDC register, the core gets an interrupt from the probe requesting this 
information. The core then places the requested information into the FIFO and continues operation. The core places 
information in the top of the FIFO, and the probe reads information from the bottom of the FIFO. The data contains 
information such as transmit versus receive, status of the operation, etc.

The external device would typically be an EJTAG probe and that is the term used here, but it could be something else. 
FDC utilizes two First In First Out (FIFO) structures to buffer data between thecore and probe. The probe uses the 
FDC TAP instruction to access these FIFOs, while the core itself accesses them using memory accesses. To transfer 
data out of the core, the core writes one or more pieces of data to the transmit FIFO. At this time, the core can resume 
doing other work. An external probe would examine the status of the transmit FIFO periodically. If there is data to be 
read, the probe starts to receive data from the FIFO, one entry at a time. When all data from the FIFO has been 
drained, the probe goes back to waiting for more data. The core can either choose to be informed of the empty trans-
mit FIFO via an interrupt, or it can choose to periodically check the status. Receiving data works in a similar manner 
- the probe writes to the receive FIFO. At that time, the core is either interrupted, or finds out via polling a status bit. 
The core can then do load accesses to the receive FIFO and receive data being sent to it by the probe. The TAP trans-
fer is bidirectional - a single shift can be pulling transmit data and putting receive data at the same time. 

TR 0 Trigger happened. When set, this trigger fired since the TR bit was 
last written 0.
This bit is used to inspect whether the trigger fired since this bit was 
last written zero.
When set, all the trigger source bits (bit 4 to 13) will change their 
read value to indicate if the particular bit was the source to fire this 
trigger. Only enabled trigger sources can set the read value, but more 
than one is possible.
Also when set the Type field and the Trace field will have read val-
ues which indicate if the trigger action was ever suppressed by a 
higher priority trigger.

R/W0 0

Table 14.49 TCBTRIGx Register Field Descriptions (continued)

Fields

Description
Read / 
Write Reset StateNames Bits
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The primary advantage of FDC over normal processor accesses or fastdata accesses is that it does not require the core 
to be blocked when the probe is reading or writing to the data transfer FIFOs. This significantly reduces the core 
overhead and makes the data transfer far less intrusive to the code executing on the core.

The FDC memory mapped registers are located in the common device memory map (CDMM) region. FDC has a 
device ID of 0xFD.

14.15.1 Common Device Memory Map

Software on the core accesses FDC through memory mapped registers. These memory mapped registers are located 
within the Common Device Memory Map (CDMM). The CDMM is a region of physical address space that is 
reserved for mapping IO device configuration registers within a MIPS processor. The base address and enabling of 
this region is controlled by the CDMMBase CP0 register.

14.15.2 Fast Debug Channel Interrupt

The FDC block can generate an interrupt to inform software of incoming data being available or space being avail-
able in the outgoing FIFO. This interrupt is handled similarly to the timer or performance counter interrupts. The 
CauseFDCI bit indicates that the interrupt is pending. The interrupt is also sent to the core outputs SI_FDCI[_1] where 
it is combined with one of the SI_Int pins. For non-EIC mode, the SI_IPFDCI input indicates which interrupt pin is has 
been combined with and this information is reflected in the IntCtlIPFDCI field. Note that this interrupt is a regular inter-
rupt and not a debug interrupt.

The FDC Configuration Register (see Section 14.14.8.2 “FDC Configuration (FDCFG) Register (Offset 0x8)”) 
includes fields for enabling and setting the threshold for generating each interrupt. Receive and transmit interrupt 
thresholds are specified independently, but transmit/receive interrrupts are ORed together to form a single interrupt 
per core.

The following interrupt thresholds are supported: 

• Interrupts Disabled: No interrupt will be generated and software must poll the status registers to determine if 
incoming data is available or if there is space for outgoing data.

• Minimum core Overhead: This setting minimizes the core overhead by not generating an interrupt until the 
receive FIFO (RxFIFO) is completely full or the transmit FIFO (TxFIFO) is completely empty.

• Minimum latency: To have the core take data as soon as it is available, the receive interrupt can be fired when-
ever the RxFIFO is not empty. There is a complimentary TxFIFO not full setting although that may not be quite 
as useful.

• Maximum bandwidth: When configured for minimum core overhead, bandwidth between the probe and core can 
be wasted if the core does not service the interrupt before the next transfer occurs. To reduce the chances of this 
happening, the interrupt threshold can be set to almost full or almost empty to generate an interrupt earlier. This 
setting causes receive interrupts to be generated when there are 0 or 1 unused RxFIFO entries. Transmit inter-
rupts are generated when there are 0 or 1 used TxFIFO entries (see note in following section about this condition)

14.15.3 Core FDC Buffers

Figure 14.40 shows the general organization of the transmit and receive buffers on the proAptiv Multiprocessing Sys-
tem core. 
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condition is met, there will be 0 or 1 valid entries. However, the interrupt will not be asserted when there is only 
one valid entry if it is an SI_ClkIn entry

• The RxFIFO has similar characteristics but these are even less visible to software since SI_ClkIn must be running 
to access the FDC registers.

14.15.4 Sleep mode

FDC data transfers do not prevent the core from entering sleep mode and will proceed normally in sleep mode. The 
FDC block monitors the TAP interface signals with a free-running clock. When new receive data is available or trans-
mit data can be sent, the gated clock will be enabled for a few cycles to transfer the data and then allowed to stop 
again. If FDC interrupts are enabled, transferring data may cause an interrupt to be generated which can wake the 
core up.

14.16 TCB Trigger Logic

The TCB is optionally implemented with trigger unit. If this is the case, then the TCBCONFIGTRIG field is non-zero. 
This section will explain some of the issues around triggers in the TCB.

14.16.1 TCB Trace Enabling

The TCB must be enabled in order to produce a trace to the trace funnel, when trace information is sent on the 
PDtrace interface. The main switch for this is the TCBCONTROLBEN bit. When set, the TCB will send trace informa-
tion to the trace funnel.

The TCB can optionally include trigger logic, which can control the TCBCONTROLBEN bit. Please see Section 
14.16 “TCB Trigger Logic” for details.

14.16.2 Tracing a Reset Exception

Tracing a reset exception is possible. However, the TraceControlTS bit is reset to 0 at core reset, so all the trace control 
must be from the TCB (using TCBCONTROLA and TCBCONTROLB). The PDtrace fifo and the entire TCB are reset 
based on an EJTAG reset. It is thus possible to set up the trace modes, etc., using the TAP controller, and then reset 
the core.

14.16.3 Trigger Units Overview

TCB trigger logic features three main parts:

1. A common Trigger Source detection unit.

2. 1 to 8 separate Trigger Control units.

3. A common Trigger Action unit.

Figure 14.41 show the functional overview of the trigger flow in the TCB.
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Sources as possible trigger event and they can fire one or more of the Trigger Actions. This is all defined in the Trig-
ger Control register TCBTRIGx (see Section 14.14.11.3 “TCBTRIGx Register (Reg 16-23)”).

14.16.6 Trigger Action Unit

The TCB has four possible trigger actions:

1. Chip-level trigger output (TC_ChipTrigOut).

2. Probe trigger output (TR_TRIGOUT).

3. Trace information. Put a programmable byte into the trace stream from the TCB.

4. Start, End or About (delayed end) control of the TCBCONTROLBEN bit.

The basic function of the trigger actions is explained in Section 14.14.11.3 “TCBTRIGx Register (Reg 16-23)”. 
Please also read the next Section 14.16.7 “Simultaneous Triggers”.

14.16.7 Simultaneous Triggers

Two or more triggers can fire simultaneously. The resulting behavior depends on trigger action set for each of them, 
and whether they should produce a TF6 trace information output or not. There are two groups of trigger actions: Pri-
oritized and OR’ed.

14.16.7.1 Prioritized Trigger Actions

For prioritized simultaneous trigger actions, the trigger control unit which has the lowest number takes precedence 
over the higher numbered units. The x in TCBTRIGx registers defines the number. The oldest trigger takes precedence 
over everything.

The following trigger actions are prioritized when two or more units fire simultaneously:

• Trigger Start, End and About type triggers (TCBTRIGxType field set to 00, 01 or 10), which will assert/de-assert 
the TCBCONTROLBEN bit. The About trigger is delayed and will always change TCBCONTROLBEN because it 
is the oldest trigger when it de-asserts TCBCONTROLBEN. An About trigger will not start the countdown if an 
even older About trigger is using the Trace Word counter.

• Triggers which produce TF6 trace information in the trace flow (Trace bit is set).

Regardless of priority, the TCBTRIGxTR bit is set when the trigger fires. This is so even if a trigger action is sup-
pressed by a higher priority trigger action. If the trigger is set to only fire once (the TCBTRIGxFO bit is set), then the 
suppressed trigger action will not happen until after TCBTRIGxTR is written 0.

If a Trigger action is suppressed by a higher priority trigger, then the read value, when the TCBTRIGxTR bit is set, for 
the TCBTRIGxTrace field will be 0 for suppressed TF6 trace information actions. The read value in the TCBTRIGxType 
field for suppressed Start/End/About triggers will be 11. This indication of a suppressed action is sticky. If any of the 
two actions (Trace and Type) are ever suppressed for a multi-fire trigger (the TCBTRIGxFO bit is zero), then the read 
values in Trace and/or Type are set to indicate any suppressed action.

About Trigger

The About triggers delayed de-assertion of the TCBCONTROLBEN bit is always executed, regardless of priority from 
another Start trigger at the time of the TCBCONTROLBEN change. This means that if a simultaneous About trigger 
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action on the TCBCONTROLBEN bit (n/2 Trace Words after the trigger) and a Start trigger hit the same cycle, then the 
About trigger wins, regardless of which trigger number it is. The oldest trigger takes precedence.

However, if an About trigger has started the count down from n/2, but not yet reached zero, then a new About trigger, 
will NOT be executed. Only one About trigger can have the cycle counter. This second About trigger will store 11 in 
the TCBTRIGxType field. But, if the TCBTRIGxTrace bit is set, a TF6 trace information will still go in the trace.

14.16.7.2 OR’ed Trigger Actions

The simple trigger actions CHTro and PDTro from each trigger unit, are effectively OR’ed together to produce the 
final trigger. One or more expected trigger strobes on i.e. TC_ChipTrigOut can thus disappear. External logic should 
not rely on counting of strobes, to predict a specific event, unless simultaneous triggers are known not to occur.
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Multi-CPU Debug

This section describes the debug features of the proAptiv Coherent Processing System. The following sections are 
included in this chapter:

• Section 15.1 “CM Performance Counters”

• Section 15.2 “Debug Mode Triggering”

• Section 15.3 “PDTrace Software Architecture”

15.1 CM Performance Counters

15.1.1 CM Performance Counter Functionality

Performance characteristics of the CM can be measured via the CM performance counters. Two sets of identical pro-
grammable 32-bit performance counters in addition to a 32-bit cycle counter are implemented. The counters are con-
trolled and accessed via GCR registers described in Chapter 8, “CM2 Global Control Registers” on page 395. This 
section describes the operation of those registers. 

The counters are started by writing a 1 to the P0_CountOn, P1_CountOn and Cycl_Cnt_CountOn bits in the CM 
Performance Counter Control Register (see Table 8.49 for a description of this register). Each counter can be reset to 
0, and the corresponding overflow bit (P0_Overflow, P1_Overflow, Cyc_Cnt_Overflow) is reset to 0 prior to the start of 
counting by writing a 1 to the P0_Reset, P1_Reset and Cycl_Cnt_Reset bits in the same access that sets the corre-
sponding start bits. This functionality allows all three counters to be reset and started with a single GCR write. 

The CM Performance Counter Control Register also controls how a counter overflow is handled. If the Perf_Ovf_Stop 
bit is set to 1, then all CM Performance counters will stop when one of the counters (including the Cycle Counter) 
reaches its maximum value of 0xFFFFFFFF. If instead the Perf_Ovf_Stop bit is set to 0, when a counter overflows, it 
rolls over and continues counting from 0. 

If the Perf_Int_En bit is set to 1, an interrupt is generated when one of the counters (including the cycle counter) 
reaches its maximum value of 0xFFFFFFFF. The CM asserts the CM_PCInt signal which generates an interrupt only 
if the System Integrator has connected CM_PCInt to one bit of SI_CMInt. 

When a performance counter overflows, the corresponding bit is automatically set in the CM Performance Counter 
Overflow Status Register. A status bit is cleared by writing a 1 to it. 

The event to be counted by each performance counter is designated by the event number set in the Event_Sel_0 and 
Event_Sel_1 fields of the CM Performance Counter Event Selection Register. The events corresponding to the event 
numbers are listed and described in Table 15.1. Each event is further specified by the CM Performance Counter 
Qualifier Register. The meaning of the CM Performance Counter Qualifier Register is different for each event. The col-
umn labeled “Qualifier” in Table 15.1 shows the qualifiers that can be specified for each event. For example, the 
qualifiers for the Request_Count event (Event 0) are the request port, CCA, Burst Length, Command, and Target. The 
details of the qualifiers for the Request_Count event are defined in Table 15.2.
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The qualifiers for some events are composed of several groups. A performance counter will increment if the specified 
event occurs and the qualifier criteria is matched in all groups. For example, assume the Event_Sel_0 field in the CM 
Performance Counter Event Selection Register is set to 0 (Request_Count). This event occurs when the CM serializes 
a request. However, the performance counter for this event will only count if the request meets the criteria pro-
grammed in all 5 groups in the Request Qualifier (see Table 15.2):

The port that issued the request has the corresponding Request Port qualifier bit 
set to 1 

AND 
The Cacheability attribute (CCA) for the request has the corresponding CCA 
qualifier bit set to 1

AND
The Burst Length of the request (in dwords) has the corresponding qualifier bit set 
to 1

AND 
The OCP MCmd Type for the request has the corresponding Request Command qualifier 
bit set to 1

AND
The target of the request has the corresponding Target qualifier bit set to 1

Multiple bits within a qualification group may be set. In this case, the OR of all bits set within the group. For exam-
ple, by setting the request port qualifier for Port 0 and Port 1, then a request will be counted if it originated from Port 
0 or Port 1.

A qualifier group can be set to “don’t care” by setting all bits within the group to 1. For example, to have performance 
counter 0 count all requests from port 1, program the CM Performance Counter Event Selection Register and CM 
Performance Counter Qualifier 0 Register as follows:

Set Event_Sel_0 to 0 (Request_Count)
Set Request Port Qualifer bit to 1 for Port 1
Set Requeset Port Qualifier bits to 0 for all other Ports
Set all other qualifer bits to 1 (causing the CCA, Burst Length, Command and Target 
to be ignored)

The two counters can be programmed to count a different event or the same event with different qualifiers. For exam-
ple, to measure the ratio of requests from Port 1 vs. all Ports, set program Counter 0 to count requests from Port 1 (see 
previous example) and program Counter 1 to count all request from all Ports by setting Event_Sel_1 to 0 
(Request_Count) and set all bits in the CM Performance Counter Qualifier 1 Register to 1. 

The cycle counter can be used to calculate the average rates of specified events. Continuing the above example, 
assuming the cycle counter is reset, started, and stopped simultaneously with the two performance counters, then the 
rate of requests from port 1 and all ports can be easily computed (value of each performance counter / value in cycle 
counter).

15.1.2 Performance Counter Usage Models

There are several model for using the CM performance counters. This sections discusses 3 possible models:

• Periodic Sampling - take many measurement samples of specific duration

• Stop and Interrupt when counter overflows - counters run until one overflows, then interrupt CPU

• Large count capability - enables unrestricted sample periods
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One model for making performance measurements is for the software to set up and gather samples for a set period of 
time. The code sequence could follow the following steps:

start:
Write CM Event and Qualifier Registers for particular event of interest
Write CM Performance Counter Control Register to reset and start counters

Perf_Int_En = 0 (no interrupt on overflow)
Perf_Ovf_Stop = 0(no stop on overflow).
P1_Reset = 1, P1_CountOn = 1
P0_Reset = 1, P0_CountOn = 1
Cycl_Cnt_Reset = 1, Cycl_Cnt_CountOn = 1

Wait for some relatively small period of time (i.e., 2 seconds)
Write CM Performance Counter Control Register to stop counters

P1_Counton = 0, P0_CountOn=0, Cycl_Cnt_CountOn = 0
Read CM Performance Counter 0, Counter 1, and Cycle Counter Registers
If more events, go to start (or if measuring same counter go to step 2 instead)

A second CM performance counter usage model involves setting up the counters to stop and interrupt on overflow. 
This runs the counters until one of the counters (usually the cycle counter) reaches the 32-bit limit. An example of 
such a code sequence is:

start:
Write CM Event and Qualifier Registers for particular event of interest
Write CM Performance Counter Control Register to reset and start counters

Perf_Int_En = 1 (interrupt on overflow)
Perf_Ovf_Stop = 1(stop on overflow).
P1_Reset = 1, P1_CountOn = 1
P0_Reset = 1, P0_CountOn = 1
Cycl_Cnt_Reset = 1, Cycl_Cnt_CountOn = 1

When interrupt occurs:
Read CM Performance Counter Status Register
Read CM Performance Counter 0, Counter 1, and Cycle Counter Registers
Write CM Performance Counter Control Register to reset counters

(clears status register and interrupt)
P0_Reset = 1, P1_Reset = 1, Cycl_Cnt_Reset = 1

If more events, go to start (or if measuring same counter go to step 2 instead)

If larger counts than can fit into the 32-bit counters are required, the counters can be set up to interrupt, but not stop, 
on overflow. Memory variables can then count the number of overflows, as shown below:

start:
Write CM Event and Qualifier Registers for particular event of interest
Write CM Performance Counter Control Register to reset and start counters

Perf_Int_En = 1 (interrupt on overflow)
Perf_Ovf_Stop = 0 (do not stop on overflow).
P1_Reset = 1, P1_CountOn = 1
P0_Reset = 1, P0_CountOn = 1
Cycl_Cnt_Reset = 1, Cycl_Cnt_CountOn = 1

When interrupt occurs:
<status>=Read CM Performance Counter Status Register
Increment <overflow_count>[counter] for each counter with <status> = 1
Write <status> to CM Performance Counter Status Register to clear interrupt
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When run limit is reached then :
Write CM Performance Counter Control Register to stop counters

P1_Counton = 0, P0_CountOn=0, Cycl_Cnt_CountOn = 0
Read CM Performance Counter 0, Counter 1, and Cycle Counter Registers
Write CM Performance Counter Control Register to reset counters

(clears status register and interrupt)
P0_Reset = 1, P1_Reset = 1, Cycl_Cnt_Reset = 1

If more events, go to start (or if measuring same counter go to step 2 instead)

In the above model, the final counts are calculated for each counter by multiplying <overflow_count>[counter] 
by 4G and adding the final values in the performance counter register.
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15.1.3 CM Performance Counter Event Types and Qualifiers

This section describes the Performance Counter Event Types and associated qualifiers.

Table 15.1 CM Performance Counter Event Types

Event # Related Events Use Qualifiers Description/Comments

0 Request_Count Measuring Load Request Port
Request CCA
Request Cmd
Request Length
Request Target
See Table 15.2

Can be used in conjunction with a cycle count to 
determine number of requests received in a given 
period of time. 

1 Coh_Req_Resp Track coherent 
requests or responses, 
and measure sharing

Intervention State
Speculation
Intervention Cmd
Store Conditional
See Table 15.3

Gives a count of the specified coherent request 
and response types. 

2 L2_WR_Data_Util L2 Write Data Bus 
Usage

Accept State
See Table 15.4

Counts number of cycles the L2/Memory write 
data bus is occupied. The qualifier determines if 
stall cycles are counted or not.

3 L2_Cmd_Util L2 Command Bus 
Usage

Accept State
See Table 15.4

Counts number of cycles the L2/Memory com-
mand data bus is occupied. The qualifier deter-
mines if stall cycles are counted or not.

4 L2_RD_Data_Util L2 Read Data Bus 
Usage

L2 Data Width
See Table 15.5

Counts number of cycles the L2/Memory read 
data bus is occupied. Qualifier determines if 64-
bit cycles, 256-bit cycles, or both are counted.

5 Sharing_Miss Sharing Frequency Request Source Port 
Data Source Port
See Table 15.6

Counts source of data for coherent read requests 
only (i.e., CohReadShare, CohReadDiscard, 
CohReadOwn, and CohReadAlways).

Useful to determine how many cache misses were 
satisfied by other processors. 

6 RSU_Util RSU Usage Port to measure
Response Type
See Table 15.7

Counts number of d-words on the processor/iocu 
read data bus. A counter can only measure one 
port at a time. The port number is specified as the 
qualifier.

8 L2_Util L2 Pipeline Usage L2 Pipeline starts
See Table 15.8

Counts starts into the TA stage of the L2 pipeline.

9 L2_Hit L2 Hit/Miss Usage Hit/Miss Type
Source Port
See Table 15.9

Counts different types of L2 Cache Hits and 
Misses, crossed with Source Port ID.

16 IOCU_Request IOCU Request Transaction ID
I/O Parking
CM Transaction Cnt
BurstLength
L2 allocation
Posted
Cacheability
Request Type
See Table 15.10

Counts requests receive by the IOCU.
The CM receives a sideband signal, 
SI_CMP_IOC_PerfInfo from the IOCU as 
described in Table 15.10.
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17 IOCU1_Request 2nd IOCU Request Transaction ID
I/O Parking
CM Transaction Cnt
BurstLength
L2 allocation
Posted
Cacheability
Request Type
See Table 15.10

Counts requests receive by the 2nd IOCU.
The CM receives a sideband signal, 
SI_CMP_IOC1_PerfInfo from the 2nd IOCU as 
described in Table 15.10.

Table 15.2 CM Performance Counter Request Count Qualifier

Bit Qualifier Group Qualifier Value Description/Comments

31

Request Port

Port 7 Request originated from port 7

30 Port 6 Request originated from port 6

29 Port 5 Request originated from port 5

28 Port 4 Request originated from port 4

27 Port 3 Request originated from port 3

26 Port 2 Request originated from port 2

25 Port 1 Request originated from port 1

24 Port 0 Request originated from port 0

23

Request CCA1

WT Request had Write Through Cacheability Attribute

22 UC/UCA Request had Uncached Cacheability Attribute

21 WB Request had Cached (non-coherent) Attribute

20 CWBE Request had Coherent (Exclusive) Attribute

19 CWB Request had Coherent (Shared) Attribute

18

Burst Length2

(# of dwords)

1 dword

Request was for 1 dword of data
Note: This counts the burst length as seen by the Coherent Man-
ager. Requests from the I/O Subsystem may be longer, but the 
IOCU may break these into multiple smaller requests.

17 2 dwords Request was for 2 dwords of data
See Note for 1 dword.

16 4 dwords Request was for 4 dwords of data
See Note for 1 dword

Table 15.1 CM Performance Counter Event Types(continued)

Event # Related Events Use Qualifiers Description/Comments
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15

Request Command

Legacy WR

Request is a legacy Write command. This is used for all non-
coherent writes. Note: When a processor is in coherent mode, L1 
cache writebacks are always considered coherent, so they result in 
a cohWriteBack command, not a WR command.

14 Legacy RD Request is a legacy Read command. This is used for all non-coher-
ent reads, including code fetches.

13 CohReadShare
CohReadShareAlways

Request is a coherent read share generated by the processor on a 
load that misses its L1 cache.
Currently CohReadShareAlways is unused.

12 CohReadOwn Request is a coherent read own generated by the processor on a 
store that misses its L1 cache.

11 CohReadDiscard Request is a coherent read discard generated by the IOCU for 
coherent requests.

10 CohUpgrade Request is a coherent upgrade request generated by the the proces-
sor on a store that hits a shared line in its L1 cache.

9 CohWriiteBack
Request is coherent writeback generated by the processor when 
evicting a line from the L1 cache. The line may have been 
installed in the cache from a coherent or non-coherent transaction. 

8 CohWriteInval 
(Partial Line)

Request is a coherent write invalidate (not a full line of data) gen-
erated by the IOCU. 

7 CohWriteInval 
(Full Line)

Request is a coherent write invalidate (full line of data) generated 
by the IOCU. 

6 CohInvalidate Request is an invalidate request from a processor executing a 
PREF Prepare for Store or a CACHE Hit Invalidate.

5 CohCopyBack Request from a processor executing a CACHE hit writeback 

4 CohCopyBackInv Request from a processor executing a CACHE hit CACHE Write-
BackInvalidate

3 CohCompletionSync Request is from a processor executing a SYNC instruction

2

Target

Memory Request targets memory (coherent or non-coherent)

1 GCR/GIC/CPC Request targets the Interrupt controller or Global Control Regis-
ters

0 MMIO Request targets Memory Mapped I/O space

1. CCA qualifier group is ignored on non-coherent cache-ops
2. Burst Length only used when Request Command is Legacy Read, Legacy Write, CohReadDiscard or CohWriteInval.

Table 15.3 CM Performance Counter Coherent Request/Response Qualifier

Bit Qualifier Group Qualifier Value Description/Comments

31:25 Reserved

Table 15.2 CM Performance Counter Request Count Qualifier(continued)

Bit Qualifier Group Qualifier Value Description/Comments
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24

Intervention State

Exclusive
with data

A processor has an exclusive copy in its L1 cache and returned 
data (all commands except CohInvalidate)

23 Exclusive
with no data

A processor has an exclusive copy in its L1 cache but no data 
was returned (occurs on a CohInvalidate)

22 Modified
with data

A processor has a modified copy in its L1 cache and returned 
data (all commands except CohInvalidate)

21 Modified
with no data

A processor has a modified copy in its L1 cache but no data 
was returned (occurs on a CohInvalidate)

20 Shared One or more processors have a shared copy in its L1 cache

19 Invalid No processor has a copy of the data in its L1 cache

18

Speculation

Speculate

Request was a CohReadShare, CohReadOwn, CohReadDiscard 
or CohReadAlways and the CM issued a speculative read 
request to L2/Memory. This qualifier group is ignored when the 
request is not one of the commands listed above.

17 No Speculate

Request was a CohReadShare, CohReadOwn, CohReadDiscard 
or CohReadAlways and the CM did not issue a speculative read 
request to L2/Memory. This qualifier group is ignored when the 
request is not one of the commands listed above.

16

Intervention Cmd

Reserved Currently a don’t care.

15 Reserved Currently a don’t care.

14 CohReadShare
Request is a coherent read share generated by the processor on 
a load that misses its L1 cache.

13 CohReadShareAlways Currently CohReadShareAlways is unused.

12 CohReadOwn Request is a coherent read own generated by the processor on a 
store that misses its L1 cache.

Table 15.3 CM Performance Counter Coherent Request/Response Qualifier(continued)

Bit Qualifier Group Qualifier Value Description/Comments
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11

Intervention Cmd 
(cont.)

CohReadDiscard Request is a coherent read discard generated by the IOCU for 
coherent requests.

10 CohUpgrade
(OK Response)

Request is a coherent upgrade request generated by the proces-
sor on a store that hits a shared line in its L1 cache. There is no 
intervening request to the same line so an OK response is 
given.

9 CohUpgrade
(Data Response)

Request is a coherent upgrade request generated by the proces-
sor on a store that hits a shared line in its L1 cache. There is an 
intervening request to the same line so a data response is given.

8 CohWriteBack

Request is coherent writeback generated by the processor when 
evicting a line from the L1 cache. The line may have been 
installed in the cache from a coherent or non-coherent transac-
tion. 

7 CohWriteInval 
(Partial Line)

Request is a coherent write invalidate (not a full line of data) 
generated by the IOCU. 

6 CohWriteInval 
(Full Line)

Request is a coherent write invalidate (full line of data) gener-
ated by the IOCU. 

5 CohInvalidate Request is an invalidate request from a processor executing a 
PREF Prepare for Store or a CACHE Hit Invalidate.

4 CohCopyBack Request from a processor executing a CACHE hit writeback 

3 CohCopyBackInv Request from a processor executing a CACHE hit CACHE 
WriteBackInvalidate

2

Store Conditional
(only used when cmd is 

CohUpgrade or 
CohReadOwn)

Not due to a Store Condi-
tional

CohUpgrade or CohReadOwn is not due to a store conditional 
instruction. This qualifier group is ignored when the command 
is not a CohUpgrade or CohReadOwn.

1 Store Conditional that 
was not Cancelled

CohUpgrade or CohReadOwn is due a store conditional 
instruction and the intervention was not cancelled.
This qualifier group is ignored when the command is not a 
CohUpgrade or CohReadOwn.

0 Store Conditional that 
was Cancelled

CohUpgrade or CohReadOwn is due a store conditional 
instruction and the intervention was cancelled due to livelock 
avoidance scheme. This qualifier group is ignored when the 
command is not a CohUpgrade or CohReadOwn.

Table 15.4 CM Performance Counter Accept State Qualifier

Bit Qualifier Group Qualifier Value Description/Comments

31:1 Reserved

0 Accept State Count_Stalls

Setting this value to 0 for the L2_WR_Data_Util or 
L2_Cmd_Util events cause a count of cycles when a data 
word or command is accepted by the L2/Memory. 

Setting this value to 1 for L2_WR_Data_Util or 
L2_Cmd_Util cause a count of cycles when a data word or 
command is valid on the bus, i.e., the count includes cycles 
where the command or data bus is stalled.

Table 15.3 CM Performance Counter Coherent Request/Response Qualifier(continued)

Bit Qualifier Group Qualifier Value Description/Comments
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Table 15.5 CM Performance Counter L2 Data Width Qualifier

Bit Qualifier Group Qualifier Value Description/Comments

31:2 Reserved

1
L2 Data Width

256 Counts cycles where the L2/Memory returns data in 256-bit 
mode

0 64 Counts cycles where the L2/Memory returns data in 64-bit 
mode

Table 15.6 CM Performance Counter CM Data Source Qualifier

31:15 Reserved

14

Request Port

7 Request originated from port 7

13 6 Request originated from port 6

12 5 Request originated from port 5

11 4 Request originated from port 4

10 3 Request originated from port 3

9 2 Request originated from port 2

8 1 Request originated from port 1

7 0 Request originated from port 0

6

Response Port

5 Data returned by processor connected to port 5

5 4 Data returned by processor connected to port 4

4 3 Data returned by processor connected to port 3

3 2 Data returned by processor connected to port 2

2 1 Data returned by processor connected to port 1

1 0 Data returned by processor connected to port 0

0 L2/Mem Data returned by L2/Memory

Table 15.7 CM Performance Counter CM Port Response Qualifier

Bit Qualifier Group Qualifier Value Description/Comments

31:6 Reserved

5

Response Type

Read Data Response Response was a dword of data.

4 Write Acknowledge 
Response

Response was a write acknowledge (DVA response for a 
write).

3 OK Response Response was an OK response (due to a CohUpgrade).

2:0
Port Number

Port to measure Encoded value of port number to measure. For example, 
a value of 2 will only count responses on response port 
2.
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Table 15.8 L2 Utilization Qualifier

Bit Qualifier Group Qualifier Value Description/Comments

31:6 Reserved

5

Pipeline Start Type

L2 Pipeline start was stalled Any type of pipeline request start (new, replay,refill) was 
refused due to a stall (ram or global stall)

4 L2 Pipeline start is taken Use to calculate L2 utilization
Any type of pipeline request start (new, replay,refill)

3 New request waiting for 
Sync to clear

A new request is waiting to be dispatched to the L2 until 
a preceeding Sync has guaranteed ordering

2 New L2 request stalled New request to the L2 was not accepted due to a stall 
(ram or global stall)

1 New L2 request denied New request to the L2 was not accepted due to replay, 
refill, or a stall.

0 New L2 request started Use to calculate L2 bandwidth

Table 15.9 L2 Hit Qualifier

Bit Qualifier Group Qualifier Value Description/Comments

31:20 Reserved

19 Allocation
(for Write or Read 

misses only)

Line allocated A miss caused an allocation by the L2. This occurs either for a full line 
write miss or a read miss, depending on the L2 allocation policy.

18 Line not allocated A miss did not cause an allocation by the L2.

17

Hit/Miss Type
(these are mutially 

exclusive)

Other Index L2 cacheop or Fetch&Lock.

16 Non-index cache-op hit Non-index L2 cacheop hit the L2 cache.

15 Non-index cache-op miss Non-index L2 cacheop missed the L2 cache.

14 Full line write hit Full line write hit the L2 cache.

13 Partial line write hit Partial line write hit the L2 cache. The line will be read, merged with 
the original write data, and replayed to complete the write.

12 Full line write miss Full line write missed the L2 cache. Either allocates or writes through 
to memory depending on the L2 allocation policy.

11 Partial line write miss Partial line write missed the L2 cache. Writes through to memory 
regardless of the L2 allocation policy.

10 Read into CRQ Read matched a pending L2 miss. Data is returned when the pending 
line is refilled. It is not a Read hit or a Read miss.

9 Read hit Read hit the L2 cache.

8 Read miss Read missed the L2 cache. Either allocates or reads through to mem-
ory, depending on the L2 allocation policy.
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7

Source Port

7 Request originated from port 7

6 6 Request originated from port 6

5 5 Request originated from port 5

4 4 Request originated from port 4

3 3 Request originated from port 3

2 2 Request originated from port 2

1 1 Request originated from port 1

0 0 Request originated from port 0

Table 15.10 IOCU Performance Counter Request Count Qualifier

Bit Qualifier Group Qualifier Value Description/Comments

31 Reserved

30:27

Transaction ID

TID Value of IC_MTagID to match when the All_TID qualifier bit is 
set to 0. This field is unused when All_TID is 1.

26 All_TID
If 1 then the all values of IC_MTagID will match. If 0 then only 
transactions with IC_MTagID equal to the TID specified above 
will match.

25

I/O Parking

Start and Stop Parking Request will start and stop I/O Parking.

24 Stop Parking Request will stop I/O parking (but not start it).

23 Start Parking Request will start I/O Parking (but not stop it).

22 No parking Request will not start or stop I/O parking.

21

CM Transaction Count

5 CM Transactions Request resulted in 5 CM transactions.

20 4 CM Transactions Request resulted in 4 CM transactions.

19 3 CM Transactions Request resulted in 3 CM transactions.

18 2 CM Transactions Request resulted in 2 CM transactions.

17 1 CM Transaction Request resulted in 1 CM transaction.

16

BurstLength

13-16 IC_MBurstLength is 13, 14, 15, or 16 dwords.

15 9-12 IC_MBurstLength is 9, 10, 11, or 12 dwords.

14 5-8 IC_MBurstLength is 5, 6, 7, or 8 dwords.

13 4 IC_MBurstLength is 4 dwords.

12 3 IC_MBurstLength is 3 dwords.

11 2 IC_MBurstLength is 2 dwords.

10 1 IC_MBurstLength is 1 dword.

Table 15.9 L2 Hit Qualifier(continued)

Bit Qualifier Group Qualifier Value Description/Comments
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15.2 Debug Mode Triggering

This section describes the how to control the cores when entering debug mode. 

15.2.1 Selecting CPUs to Enter Debug Mode

The proAptiv Multiprocessing System contains a set of registers and logic that controls when the proAptiv Multipro-
cessing System cores enter Debug mode. The logic allows software to:

• Specify which proAptiv Multiprocessing System the CPU enters debug mode on assertion of the EJ_DINT_IN 
signal (generally asserted by a debug probe).

• Force one or more proAptiv Multiprocessing System CPUs to enter debug mode by writing to the DINT Send to 
Group Register.

15.2.2 Debug Mode Groups and Cross Triggering

The proAptiv Multiprocessing System (MPS) allows software to define debug mode groups so that when one proAp-
tiv Multiprocessing System core enters debug mode, all other cores within the group also enter debug mode. 

Software creates debug mode groups by writing to each CPU’s CPU-Local DebugBreak Group Register. Each bit in 
the Join_DebugM field of the CPU-Local DebugBreak Group Register represents a CPU in the system. If the bit is set, 
the corresponding CPU will enter debug mode. If the bit is clear, the corresponding CPU is not affected by Debug 
Mode.

Only the positive edge of a CPU’s EJ<cpu>_DebugM signal can cause the other CPUs to also enter the Debug Mode 
as a group. When there is no positive edge on the DebugM signals, the Join_DebugM fields in the DebugBrk_Group 
registers can be written without causing spurious glitches on the EJ<cpu>_DINT signals.

9

L2 Allocation

L2 Allocation with Pre-
pare for Store

Request will cause an L2 allocation and the request is a write with 
L2 Prepare For Store. This bit will never cause a match for read 
requests.

8 L2 Allocation without 
Prepare for Store

Request will cause an L2 allocation and the request is either a read 
or a write with L2 Prepare For Store not asserted.

7 No L2 Allocation Request will not cause an L2 allocation.

6
Posted

Non-posted Write Write is non-posted. Not used on reads.

5 Posted Write Write is posted. Not used on reads.

4

Cacheability

Uncached Request is uncached.

3 Cached Request is Cached, non-coherent.

2 Coherent Request is Coherent.

1
Request Type

Read Request is a read.

0 Write Request is a write.

Table 15.10 IOCU Performance Counter Request Count Qualifier(continued)

Bit Qualifier Group Qualifier Value Description/Comments
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15.2.3 Debug Cross Trigger Facility and Power Management

Due to power management of proAptiv Multiprocessing System components, CPUs might not be powered or clocked 
when receiving a DINT via the debug cross trigger facility. However, the power controller observes all DINT events 
and will start up domains as requested. Depending on the programming of the power controller and time constants of 
the physical design, a delay between DINT event and a target CPU participating in the debug session might occur. To 
inquire about the current power status of a CPU, the debug handler can poll the power controller status registers. Gen-
erally, an EJTAG debug probe attached and recognized by the system will shorten the wake-up delay, while debug 
events without debug probe attachment might show more wake-up latency.

15.3 PDTrace Software Architecture

The proAptiv MPS enables debug trace information from the proAptiv Multiprocessing System CPUs, the Coherence 
Manager, and a System Trace Interface to be streamed off chip or stored in on-chip RAM. As shown in Figure 15.1, 
each proAptiv Multiprocessing System CPU produces a 64-bit debug trace stream describing its program and data 
flow. The CM produces a 64-bit stream describing the flow of transactions within the CM. If a System Trace Interface 
is part of the build, it captures a 128-bit stream describing activity supplied externally by the System. The Trace Fun-
nel muxes the CPU, CM, and System Trace streams into a single debug trace stream which is either stored in an on-
chip buffer or passed onto a Probe Interface Block (PIB). A PIB is the on-chip link between the Trace Funnel and 
debug probe interface, and may include functionality such as time multiplexing the 64-bit TCtrace data onto a nar-
rower, slower probe interface. 
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Register. Alternatively, by setting CM_EN and clearing Global_CM_En, the CM will only trace if at least one other 
core is tracing, i.e., Core_CM_En in at least one core’s TCBCONTROLD register is set to 1. A core’s Core_CM_En 
bit may be asserted/deasserted based on debug triggers as defined in The MIPS32® proAptiv Multiprocessing 
System™ Processor Core Family Software User’s Manual. The value of each core’s Core_CM_En bit is communi-
cated to the CM on the TC<core>_Trace_CM_En signal.

15.3.1.2 System Trace Interface Configuration and Control

The System Trace Interface stream is generated and controlled by external logic. The CM has control output pins to 
support design of this logic. There are 2 specific control outputs and one 32-bit user-defined output. These outputs 
and the trace data/contol pins associated with the trace stream are shown in Table 15.12. All the signals are timed rel-
ative to the SI_CMClk. 

Table 15.11 CM Trace Enable

CM TCBCONTROLD Reg Cores’ TCBCONTROLD Reg
CM PDTrace Enabled/Disabled

CM_EN Global_CM_En Core_CM_En

0 x x Disabled

1 1 x Enabled

1 0 All 0 Disabled

1 0 not All 0 Enabled

Table 15.12 System Trace Interface Stream and Control Pins

Signal Direction/Type Usage

SI_TC_Sys_Data[127:0] CM stream input

System Trace stream data for 128-bit stream
SI_TC_Sys_Data[71:68] must contain a Source Port ID
and SI_TC_Sys_Data[7:4] must contain a Source Port ID.
Legal values of either Source Port ID are: 4’hc or 4’hd.
All other bits are completely user defined

SI_TC_Sys_Valid[1:0] CM stream input

System Trace stream valid bits for upper and lower streams
Bit 1 qualifies SI_TC_Sys_Data[127:64]
Bit 0 qualifies SI_TC_Sys_Data[63:0]
A value of 2’b10 is illegal

SI_TC_Sys_Stall CM stream output System Trace stream flow control.

SI_TC_Sys_Enable CM control output

System Trace control advisory, driven from the CM 
TCBCONTROLDST_En. Its purpose is to advise the exter-
nal logic of the state of this control bit. If desired, external 
logic can stop generation of the stream if this output is a 
zero, and allow generation of the stream if it is a 1. How-
ever, external logic may choose to continue sending stream 
data after de-assertion until it has flushed all its collected 
stream data.

SI TC Sys AnyCore Enabled CM control output System Trace control advisory that at least one core is 
enabled to trace, derived from Cores’ TCBCONTROLD

SI TC Sys CM Enabled CM control output System Trace control advisory that the CM2 is enabled to 
trace, derived from CM2’s TCBCONTROLD
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In addition to the System Trace Interface pins, there are internal control register bits that impact operation of the Sys-
tem Trace stream. Assertion of CM TCBCONTROLBSTCE allows the System Trace funnel port to capture stream data; 
de-assertion of this bit causes the Trace Funnel to stop capturing the System Trace stream from within the Trace Fun-
nel in case the external logic is problematic. In addition, de-assertion of CM TCBCONTROLBEN stops capture of all 
the streams (Cores, CM, System).

Thus the System Trace stream is enabled to capture the System Trace stream when these controls are asserted: CM 
TCBCONTROLBSTCE and CM TCBCONTROLBEN. The control outputs SI_TC_Sys_Enable and 
SI_TC_Sys_UserCtl[31:0] are available to the external logic to further control generation of the System Trace stream 
by allowing or disallowing assertion of the SI_TC_Sys_Valid[1:0] inputs. If any trace stream is being generated with-
out enabling that stream to capture, then that stream is not captured and the data is dropped.

15.3.1.3 Trace Funnel Enable

When trace on the System, CM and/or Cores is enabled then trace information is continuously sent to the Trace Fun-
nel. However, the trace funnel will only send the trace information to the trace probe or to the on-chip trace memory 
if it is enabled by setting the CM TCBCONTROLBEN bit. The Trace Funnel can be subsequently disabled by clearing 
the CM TCBCONTROLBEN bit. See “TCBCONTROLB Register Field Descriptions” on page 774 for more informa-
tion.

15.3.1.4 CM Trace Formats

Trace information is captured at two points within the CM:

• Information about requests is captured by the Request Unit (RQU) after serialization, thus providing a view 
of the global order of requests.

• Information about L1 interventions is captured by the Intervention Unit (IVU) after all intervention 
responses have been received. This provides information about the state of the cache line in all L1 caches for 
coherent requests.

The type and amount of content in each Trace Format created by the CM depends on the source of the packet (RQU 
or IVU) and the configuration (TLev, AE, P<port>_Ctl control bits). Refer to The PDtrace™ Interface and Trace 
Control Block Specification for the detailed description of the CM Trace Formats.

15.3.1.5 CM / CPU Core Trace Correlation

In the proAptiv, trace information is provided from each of the CPUs as well as the Coherence Manager. In order to 
correlate transactions from the CM to the instruction stream, an identifier is used in both the CPU and CM traces.

The CM trace includes the core ID and CosID for each request. The CosID changes relatively slowly - it is generally 
incremented after PCSync in the CPU or if an overflow is detected in the CM. Typically several requests in a row will 
use the same CosID value, and the intermediate correlation is enabled by the requests appearing in the same order in 
the CM and CPU traces. Because of this, and the fact that the CosID is traced as a part of the instruction completion 

SI_TC_Sys_UserCtl[31:0] CM control output

User defined control advisory bits, from TCBSYS.
Bit 31 is a 1 when the Trace Funnel was configured with the 
System Trace present and is a 0 when the System Trace is 
not present. Bits [30:0] are completely user defined output 
values.

Table 15.12 System Trace Interface Stream and Control Pins

Signal Direction/Type Usage
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record, correlating instructions to CM transactions is possible only when PC tracing is enabled for all TCs executing 
on the CPU.

The PDtrace™ Interface and Trace Control Block Specification includes a more detailed description of the correla-
tion process.

15.3.2 Controlling Trace in a Multi-CPU Multiprocessing System

The proAptiv MPS enables debug trace information from the proAptiv Multiprocessing System CPUs and the Coher-
ence Manager to be streamed off chip or stored in on-chip RAM. As shown in Figure 15.1, each proAptiv Multipro-
cessing System CPU produces a 64-bit debug trace stream describing its program and data flow. The CM produces a 
stream describing the flow of transactions within the CM2. The Trace Funnel muxes the CPU and CM trace streams 
into a single debug trace stream which is either stored in an on-chip buffer or passed onto a Probe Interface Block 
(PIB). A PIB is the on-chip link between the Trace Funnel and debug probe interface, and may include functionality 
such as time multiplexing the 64-bit TCtrace data onto a narrower, slower probe interface. 

Since the proAptiv Multiprocessing System core streams PDTrace data directly to the trace funnel, the core TCB sys-
tem is configured as if only off-chip trace is present. Core TCB register bits which refer to control of on-chip trace 
resources will behave as it on-chip trace is not implemented.

The CM has its own set of TCBControl registers. It is designated as the ‘master’ which controls trace functionality 
for the CM, the on-chip trace buffer, and the PIB interface. In addition to the CM2 as trace master, the GCR block 
itself can function as the trace master in the proAptiv Multiprocessing System . This is done through memory mapped 
CM_GCR global control registers. 

15.3.3 EJTAG Debug Support in the proAptiv Coherence Manager

The EJTAG debug logic in the Coherence Manager is compliant with EJTAG Specification 5.0 and includes:

1. Standard Test Access Port (TAP) for a dedicated connection to a debug host

2. Optional PDtrace capability for program counter/data address/data value trace to On-chip memory or to Trace 
probe

The following sub-sections describe the TAP and EJTAG operation and registers.

15.3.3.1 Test Access Port (TAP)

The following main features are supported by the TAP module:

• 5-pin industry standard JTAG Test Access Port (TCK, TMS, TDI, TDO, TRST_N) interface which is compatible 
with IEEE Std. 1149.1.

• Target chip and EJTAG feature identification available through the Test Access Port (TAP) controller.
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EJTAG Internal and External Interfaces

The external interface of the EJTAG module consists of the 5 signals defined by the IEEE standard.

Test Access Port Operation

The TAP controller is controlled by the Test Clock (TCK) and Test Mode Select (TMS) inputs. These two inputs deter-
mine whether an the Instruction register scan or data register scan is performed. The TAP consists of a small control-
ler, driven by the TCK input, which responds to the TMS input as shown in the state diagram in Figure 15.2. The TAP 
uses both clock edges of TCK. TMS and TDI are sampled on the rising edge of TCK, while TDO changes on the falling 
edge of TCK.

At power-up the TAP is forced into the Test-Logic-Reset by low value on TRST_N. The TAP instruction register is 
thereby reset to IDCODE. No other parts of the EJTAG hardware are reset through the Test-Logic-Reset state.

When test access is required, a protocol is applied via the TMS and TCK inputs, causing the TAP to exit the Test-
Logic-Reset state and move through the appropriate states. From the Run-Test/Idle state, an Instruction register scan 
or a data register scan can be issued to transition the TAP through the appropriate states shown in Figure 15.2.

The states of the data and instruction register scan blocks are mirror images of each other adding symmetry to the pro-
tocol sequences. The first action that occurs when either block is entered is a capture operation. For the data registers, 
the Capture-DR state is used to capture (or parallel load) the data into the selected serial data path. In the Instruction 
register, the Capture-IR state is used to capture status information into the Instruction register. 

Table 15.13 EJTAG Interface Pins

Pin Type Description

TCK I Test Clock Input
Input clock used to shift data into or out of the Instruction or data registers. The TCK clock is 
independent of the CM clock, so the EJTAG probe can drive TCK independently of the CM 
clock frequency.
The CM signal for this is called EJ_TCK

TMS I Test Mode Select Input
The TMS input signal is decoded by the TAP controller to control test operation. TMS is sam-
pled on the rising edge of TCK.
The CM signal for this is called EJ_TMS

TDI I Test Data Input
Serial input data (TDI) is shifted into the Instruction register or data registers on the rising 
edge of the TCK clock, depending on the TAP controller state.
The CM signal for this is called EJ_TDI

TDO O Test Data Output
Serial output data is shifted from the Instruction or data register to the TDO pin on the falling 
edge of the TCK clock. When no data is shifted out, the TDO is 3-stated.
The CM signal for this is called EJ_TDO with output enable controlled by EJ_TDOzstate.

TRST_N I Test Reset Input (Optional pin)
The TRST_N pin is an active-low signal for asynchronous reset of the TAP controller and 
instruction in the TAP module, independent of the main CM logic. The CM’s transaction pro-
cessing logic is not reset by the assertion of TRST_N.
The CM signal for this is called EJ_TRST_N
This signal is optional, but power-on reset must apply a low pulse on this signal at power-on 
and then leave it high, in case the signal is not available as a pin on the chip. If available on 
the chip, then it must be low on the board when the EJTAG debug features are unused by the 
probe.
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When TMS is sampled HIGH on the rising edge of TCK, the controller transitions to the Select_DR state.

Select_DR_Scan State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, then the controller transitions to the Capture_DR state. 
A HIGH on TMS causes the controller to transition to the Select_IR state. The instruction cannot change while the 
TAP controller is in this state. 

Select_IR_Scan State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW on the rising edge of TCK, the controller transitions to the Capture_IR state. A 
HIGH on TMS causes the controller to transition to the Test-Reset-Logic state. The instruction cannot change while 
the TAP controller is in this state. 

Capture_DR State

In this state the boundary scan register captures the value of the register addressed by the Instruction register, and the 
value is then shifted out in the Shift_DR. If TMS is sampled LOW at the rising edge of TCK, the controller transitions 
to the Shift_DR state. A HIGH on TMS causes the controller to transition to the Exit1_DR state. The instruction can-
not change while the TAP controller is in this state. 

Shift_DR State

In this state the test data register connected between TDI and TDO as a result of the current instruction shifts data one 
stage toward its serial output on the rising edge of TCK. If TMS is sampled LOW on the rising edge of TCK, the con-
troller remains in the Shift_DR state. A HIGH on TMS causes the controller to transition to the Exit1_DR state. The 
instruction cannot change while the TAP controller is in this state. 

Exit1_DR State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Pause_DR state. A 
HIGH on TMS causes the controller to transition to the Update_DR state which terminates the scanning process. The 
instruction cannot change while the TAP controller is in this state. 

Pause_DR State

The Pause_DR state allows the controller to temporarily halt the shifting of data through the test data register in the 
serial path between TDI and TDO. All test data registers selected by the current instruction retain their previous state. 
If TMS is sampled LOW on the rising edge of TCK, the controller remains in the Pause_DR state. A HIGH on TMS 
causes the controller to transition to the Exit2_DR state. The instruction cannot change while the TAP controller is in 
this state. 

Exit2_DR State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Shift_DR state to allow 
another serial shift of data. A HIGH on TMS causes the controller to transition to the Update_DR state which termi-
nates the scanning process. The instruction cannot change while the TAP controller is in this state. 
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Update_DR State

When the TAP controller is in this state the value shifted in during the Shift_DR state takes effect on the rising edge of 
the TCK for the register indicated by the Instruction register.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Run-Test/Idle state. A HIGH on 
TMS causes the controller to transition to the Select_DR_Scan state. The instruction cannot change while the TAP 
controller is in this state and all shift register stages in the test data registers selected by the current instruction retain 
their previous state.

Capture_IR State

In this state the shift register contained in the Instruction register loads a fixed pattern (000012) on the rising edge of 
TCK. The data registers selected by the current instruction retain their previous state. 

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Shift_IR state. A HIGH on TMS 
causes the controller to transition to the Exit1_IR state. The instruction cannot change while the TAP controller is in 
this state. 

Shift_IR State

In this state the instruction register is connected between TDI and TDO and shifts data one stage toward its serial out-
put on the rising edge of TCK. If TMS is sampled LOW at the rising edge of TCK, the controller remains in the 
Shift_IR state. A HIGH on TMS causes the controller to transition to the Exit1_IR state.

Exit1_IR State

This is a temporary controller state in which all registers retain their previous state. If TMS is sampled LOW at the ris-
ing edge of TCK, the controller transitions to the Pause_IR state. A HIGH on TMS causes the controller to transition 
to the Update_IR state which terminates the scanning process. The instruction cannot change while the TAP control-
ler is in this state and the instruction register retains its previous state.

Pause_IR State

The Pause_IR state allows the controller to temporarily halt the shifting of data through the instruction register in the 
serial path between TDI and TDO. If TMS is sampled LOW at the rising edge of TCK, the controller remains in the 
Pause_IR state. A HIGH on TMS causes the controller to transition to the Exit2_IR state. The instruction cannot 
change while the TAP controller is in this state. 

Exit2_IR State

This is a temporary controller state in which the instruction register retains its previous state. If TMS is sampled LOW 
at the rising edge of TCK, then the controller transitions to the Shift_IR state to allow another serial shift of data. A 
HIGH on TMS causes the controller to transition to the Update_IR state which terminates the scanning process. The 
instruction cannot change while the TAP controller is in this state. 

Update_IR State

The instruction shifted into the instruction register takes effect on the rising edge of TCK.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Run-Test/Idle state. A HIGH on 
TMS causes the controller to transition to the Select_DR_Scan state.
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15.3.3.2 Test Access Port (TAP) Instructions

The TAP Instruction register allows instructions to be serially input into the device when TAP controller is in the 
Shift-IR state. Instructions are decoded and define the serial test data register path that is used to shift data between 
TDI and TDO during data register scanning.

The Instruction register is a 5-bit register. In the current EJTAG implementation only some instructions have been 
decoded; the unused instructions default to the BYPASS instruction. 

BYPASS Instruction

The required BYPASS instruction selects the Bypass register to be connected between TDI and TDO. The BYPASS 
instruction allows serial data to be transferred through the CM from TDI to TDO without affecting its operation. The 
bit code of this instruction is defined to be all ones by the IEEE 1149.1 standard. Any unused instruction is defaulted 
to the BYPASS instruction.

IDCODE Instruction

The IDCODE instruction selects the Device Identification (ID) register to be connected between TDI and TDO. The 
Device ID register is a 32-bit shift register containing information regarding the IC manufacturer, device type, and 
version code. Accessing the Identification Register does not interfere with the operation of the CM. Also, access to 
the Identification Register is immediately available, via a TAP data scan operation, after power-up when the TAP has 
been reset with on-chip power-on or through the optional TRST_N pin.

Table 15.14 Implemented EJTAG Instructions

Value Instruction Function

0x01 IDCODE Select Chip Identification data register.

0x03 IMPCODE Select Implementation register.

0x08 Reserved Instructions using this code select bypass register.

0x09 Reserved Instructions using this code select bypass register.

0x0A CONTROL Select EJTAG Control register.

0x0B Reserved Instructions using this code select bypass register.

0x0C Reserved Instructions using this code select bypass register.

0x0D Reserved Instructions using this code select bypass register.

0x0E Reserved Instructions using this code select bypass register.

0x10 Reserved Instructions using this code select bypass register.

0x11 TCBCONTROLB Selects the TCBCONTROLB register in the Trace Control Block.

0x12 TCBDATA Selects the TCBDATA register in the Trace Control Block.

0x13 Reserved Instructions using this code select bypass register.

0x14 Reserved Instructions using this code select bypass register.

0x15 TCBCONTROLD Selects the TCBCONTROLD register in the Trace Control Block.

0x16 TCBCONTROLE Selects the TCBCONTROLE register in the Trace Control Block.

0x17 Reserved Instructions using this code select bypass register.

0x1F BYPASS Bypass register.
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IMPCODE Instruction

This instruction selects the Implementation register for output, which is always 32 bits.

CONTROL Instruction

This instruction is used to select the EJTAG Control register to be connected between TDI and TDO. The EJTAG 
Probe shifts 32 bits of TDI data into the EJTAG Control register and shifts out the EJTAG Control register bits via 
TDO.

TCBCONTROLB Instruction

This instruction is used to select the TCBCONTROLB register to be connected between TDI and TDO. This register is 
only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the 
Bypass register.

TCBDATA Instruction

This instruction is used to select the TCBDATA register to be connected between TDI and TDO. This register is only 
implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the Bypass 
register. It should be noted that the TCBDATA register is only an access register to other TCB registers. The width of 
the TCBDATA register is dependent on the specific TCB register.

TCBCONTROLD Instruction

This instruction is used to select the TCBCONTROLD register to be connected between TDI and TDO. This register 
is only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the 
Bypass register.

TCBCONTROLE Instruction

This instruction is used to select the TCBCONTROLE register to be connected between TDI and TDO. This register is 
only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the 
Bypass register.

15.3.3.3 EJTAG TAP Registers

The EJTAG TAP Module has one Instruction register and a number of data registers, all accessible through the TAP:

Instruction Register

The Instruction register is accessed when the TAP receives an Instruction register scan protocol. During an Instruc-
tion register scan operation the TAP controller selects the output of the Instruction register to drive the TDO pin. The 
shift register consists of a series of bits arranged to form a single scan path between TDI and TDO. During an Instruc-
tion register scan operations, the TAP controls the register to capture status information and shift data from TDI to 
TDO. Both the capture and shift operations occur on the rising edge of TCK. However, the data shifted out from the 
TDO occurs on the falling edge of TCK. In the Test-Logic-Reset and Capture-IR state, the instruction shift register is 
set to 000012, as for the IDCODE instruction. This forces the device into the functional mode and selects the Device 
ID register. The Instruction register is 5 bits wide. The instruction shifted in takes effect for the following data register 
scan operation. A list of the implemented instructions are listed in Table 15.14.
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15.3.3.4 Data Registers Overview

The EJTAG uses several data registers, which are arranged in parallel from the primary TDI input to the primary TDO 
output. The Instruction register supplies the address that allows one of the data registers to be accessed during a data 
register scan operation. During a data register scan operation, the addressed scan register receives TAP control signals 
to capture the register and shift data from TDI to TDO. During a data register scan operation, the TAP selects the out-
put of the data register to drive the TDO pin. The register is updated in the Update-DR state with respect to the write 
bits.

This description applies in general to the following data registers:

• Bypass Register

• Device Identification Register

• Implementation Register

• EJTAG Control Register (ECR)

Bypass Register

The Bypass register consists of a single scan register bit. When selected, the Bypass register provides a single bit scan 
path between TDI and TDO. The Bypass register allows abbreviating the scan path through devices that are not 
involved in the test. The Bypass register is selected when the Instruction register is loaded with a pattern of all ones to 
satisfy the IEEE 1149.1 Bypass instruction requirement. 

Device Identification (ID) Register

The Device Identification register is defined by IEEE 1149.1, to identify the device's manufacturer, part number, revi-
sion, and other device-specific information. Table 15.15 shows the bit assignments defined for the read-only Device 
Identification Register, and inputs to the CM determine the value of these bits. These bits can be scanned out of the ID 
register after being selected. The register is selected when the Instruction register is loaded with the IDCODE instruc-
tion.

Figure 15.3 Device Identification Register Format 
31 28 27 12 11 1 0

Version PartNumber ManufID R

Table 15.15 Device Identification Register

Fields

Description
Read / 
Write Reset StateName Bit(s)

Version  31:28 Version (4 bits)
This field identifies the version number of the CM.

 R EJ_Version[3:0]

PartNumber  27:12 Part Number (16 bits)
This field identifies the part number of the CM.

 R EJ_PartNumber[15:0]

ManufID 11:1 Manufacturer Identity (11 bits)
Accordingly to IEEE 1149.1-1990, the manufacturer iden-
tity code shall be a compressed form of the JEDEC Publi-
cations 106-A. 

 R EJ_ManufID[10:0]

R  0 reserved R 1
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Implementation Register

This 32-bit read-only register is used to identify the features of the EJTAG implementation. Some of the reset values 
are set by inputs to the CM2. The register is selected when the Instruction register is loaded with the IMPCODE 
instruction.

Figure 15.4 Implementation Register Format 

EJTAG Control Register

This 32-bit register controls the various operations of the TAP modules. This register is selected by shifting in the 
CONTROL instruction. Bits in the EJTAG Control register can be set/cleared by shifting in data; status is read by 
shifting out the contents of this register. This EJTAG Control register can only be accessed by the TAP interface.

The EJTAG Control register is not updated in the Update-DR state unless the Reset occurred (Rocc) bit 31, is either 0 
or written to 0. 

The value used for reset indicated in the table below takes effect on CM2 resets, but not on TAP controller resets by 
e.g. TRST_N. TCK clock is not required when the CM2 reset occurs, but the bits are still updated to the reset value 
when the TCK is applied. The first 5 TCK clocks after CM2 resets may result in reset of the bits, due to synchroniza-
tion between clock domains.

Figure 15.5 EJTAG Control Register Format 

31 29 28 14 13 11 10 1 0

EJTAGver reserved Type TypeInfo r

Table 15.16 Implementation Register Descriptions

Fields

Description
Read / 
Write Reset StateName Bit(s)

EJTAGver 31:29 Indicates EJTAG Version 5.0. R 5

reserved 28:14 reserved R 0

Type 13:10 Type of Entity associated with this TAP.
2: TAP is attached to a Trace-Master. TypeInfo field is not used.

R 2

TypeInfo 10:1 Identifier Information.
Unused because this TAP is conected to a Trace-Master as indicated 
by the Type field.

R 0

reserved 0 reserved R 0

31 28 23 22 21 20 0

Rocc reserved Doze Halt reserved
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15.3.3.5 CM2 Trace Control Block (TCB) Registers

The TCB registers used to control its operation are listed in Table 15.18 and Table 15.19. These registers, except for 
TCBDATA, are accessed via the EJTAG TAP interface as well as by the proAptiv Core via memory-mapped accesses 
to the Global Debug Control Block in the CM GCRs. TCBDATA can only be accessed via the EJTAG TAP interface. 
Note that none of the TCB registers are implemented if PDTrace is not configured at build time.  

Table 15.17 EJTAG Control Register Descriptions

Fields

Description
Read / 
Write Reset StateName Bit(s)

Rocc 31 Reset Occurred
The bit indicates if a CM reset has occurred:
0: No reset occurred since bit last cleared.
1: Reset occurred since bit last cleared.
The Rocc bit will keep the 1 value as long as reset is applied. 
This bit must be cleared by the probe, to acknowledge that the inci-
dent was detected.
The EJTAG Control register is not updated in the Update-DR state 
unless Rocc is 0, or written to 0. This is in order to ensure proper 
handling of processor access.

R/W 1

Res 30:23 reserved R 0

Doze 22 Tied to 0. R 0

Halt 21 Halt state
The Halt bit indicates if the internal system bus clock is running or 
stopped. The value is sampled in the Capture-DR state of the TAP 
controller:
0: Internal CM clock is running
1: Internal CM clock is stopped

R 0

Res 20:0 reserved R 0

Table 15.18 TCB EJTAG Registers

EJTAG 
Register

Memory-
Mapped 

Address* Name Description

0x11 0x0008 TCBCONTROLB Control register in the TCB that is mainly used to specify what to do with 
the trace information. The REG [25:21] field in this register specifies the 
number of the TCB internal register accessed by the TCBDATA register. 
A list of all the registers that can be accessed by the TCBDATA register is 
shown in Table 15.19. See Section “TCBCONTROLB Register”.

0x15 0x0010 TCBCONTROLD Control register in the TCB used to control tracing from the Coherence 
Manager Section “TCBCONTROLD Register”

0x16 0x0020 TCBCONTROLE Control Register in the TCB used to control tracing for the performance 
counter tracing feature. See Section “TCBCONTROLE Register”.
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* Memory-Mapped Address relative to the Global Debug Block in the CM GCRs.
** Memory-Mapped Access for TCBTW is split into two 32-bit registers: TCBTW_LO (address 0x0200) accesses TCBTW[31:0]. 

TCBTW_HI (address 0x0208) accesses TCBTW[63:32]

TCBCONTROLB Register

The TCB includes a second control register, TCBCONTROLB (EJTAG Register 0x11). This register generally con-
trols what to do with the trace information received. This register is also mapped to offset 0x0008 in the Global 
Debug Block of the CM GCRs. 

The format of the TCBCONTROLB register is shown below, and the fields are described in Table 15.20.

Figure 15.6 TCBCONTROLB Register Format 

Table 15.19 Registers Selected by TCBCONTROLBREG

TCBCONTROLBREG 
Field

Memory 
Mapped 

Address*  Name Reference Notes

0 0x0028 TCBCONFIG Section “TCBCONFIG Register (Reg 0)”

4 0x0200/0x0208** TCBTW Section “TCBTW Register (Reg 4)” These registers have 
no function if on-
chip memory does 

not exist.

5 0x0108 TCBRDP Section “TCBRDP Register (Reg 5)”

6 0x0110 TCBWRP Section “TCBWRP Register (Reg 6)”

7 0x0118 TCBSTP Section “TCBSTP Register (Reg 7)”

17-29 reserved

30 0x0040 TCBSYS Section “TCBSYS Register (Reg 30)”

31 TCBBYPASS

31 30 28 27 26 25 21 20 19 18 17 16 15 14 13 12 11 10 8 7 6 3 2 1 0

WE 0 TWSrcWidth REG WR STCE TRPAD 0 RM TR BF TM 0 CR Cal 0 CA OfC EN

Table 15.20 TCBCONTROLB Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

WE 31 Write Enable. 
Only when set to 1 will the other bits be written in TCBCONTROLB.
This bit will always read 0.

R 0

Reserved 30:28 Reserved. Must be written as zero; returns zero on read. R 0

TWS-
rcWidth

27:26 Used to indicate the number of bits used in the source field of the Trace Word. 
The value for the CM is always 0b10 indicationg a four bit source field width.

R 10

REG 25:21 Register select: This field select the registers accessible through the 
TCBDATA register. Legal values are shown in Table 15.19. 
Note: Although this field can be written via memory-mapped GCR or EJTAG 
accesses, the TCBDATA register is only accessible via EJTAG access.

R/W 0

WR 20 Write Registers: When set, the register selected by REG field is read and writ-
ten when TCBDATA is accessed. Otherwise the selected register is only read. 
Note: Although this field can be written via memory-mapped GCR or EJTAG 
accesses, the TCBDATA register is only accessible via EJTAG access.

R/W 0
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STCE 19 System Trace capture enable. When asserted, the System Trace port of the 
Funnel is enabled to capture System Trace stream data. When not asserted,
System Trace stream data is not captured regardless of SI_TC_Sys_Valid[1:0] 
input pin state.

R/W 0

TRPAD 18 Trace RAM access disable bit. When set to 1 core reads and writes to the on-
chip trace RAM using GCR accesses are inhibited. If TRPAD is set, memory-
mapped writes to the GCR_DB_TCBTW_LO and GCR_DB_TCBTW_HI 
registers have no effect, and memory-mapped reads from 
GCR_DB_TCBTW_LO and GCR_DB_TCBTW_HI do not access the Trace 
RAM and 0 is returned. 
Also, when TRPAD is set, then memory-mapped writes to all CM TCB regis-
ters listed in Table 15.19 are inhibited.

R/W 0

Reserved 17 Reserved. Must be written as zero; returns zero on read. R 0

RM 16 Read on-chip trace memory.
When written to 1, the read address-pointer of the on-chip memory in register 
TCBRDP is set to the value held in TCBSTP.
Subsequent access to the TCBTW register (through the TCBDATA register), 
will automatically increment the read pointer in register TCBRDP after each 
read.
When the write pointer is reached, this bit is automatically reset to 0, and the 
TCBTW register will read all zeros.
Once set to 1, writing 1 again will have no effect. The bit is reset by setting the 
TR bit or by reading the last Trace word in TCBTW.
This bit has no function if on-chip memory is not implemented.

R/W1 0

TR 15 Trace memory reset.
Trace memory reset.
When written to one, the address pointers for the on-chip trace memory 
TCBSTP, TCBRDP and TCBWRP are reset to zero. Also the RM and BF 
bits are reset to 0.
This bit is automatically reset back to 0, when the reset specified above is 
completed.

R/W1 0

BF 14 Buffer Full indicator that the TCB uses to communicate to external software in 
the situation that the on-chip trace memory is being deployed in the trace-
from and trace-to mode. 
This bit is cleared when writing 1 to the TR bit.
This bit has no function if on-chip memory is not implemented.

R 0

Table 15.20 TCBCONTROLB Register Field Descriptions(continued)

Fields

Description
Read / 
Write Reset StateName Bits



776 MIPS32® proAptiv™ Multiprocessing System Software User’s Manual, Revision 01.22

 

TM 13:12 Trace Mode. This field determines how the trace memory is filled when using 
the simple-break control in the PDtrace interface to start or stop trace. 

In Trace-To mode, the on-chip trace memory is filled, continuously wrapping 
around and overwriting older Trace Words, as long as there is trace data com-
ing from the CPU.
In Trace-From mode, the on-chip trace memory is filled from the point that the 
core starts tracing until the on-chip trace memory is full.
In both cases, de-asserting the EN bit in this register will also stop fill to the 
trace memory.
If a TCBTRIGx trigger control register is used to start/stop tracing, then this 
field should be set to Trace-To mode.
These bits have no function if on-chip memory is not implemented.

R/W 0

Reserved 11 Reserved. Must be written as zero; returns zero on read. R 0

CR 10:8 Off-chip Clock Ratio. Writing this field, sets the ratio of the CPU clock to the 
off-chip trace memory interface clock. The clock-ratio encoding is shown in 
Table 15.21.
Note: As the Probe interface works in double data rate (DDR) mode, a 1:2 
ratio indicates one data packet sent per CPU clock rising edge.
These bits have no function if off-chip memory is not implemented.

R/W 1002

Table 15.20 TCBCONTROLB Register Field Descriptions(continued)

Fields

Description
Read / 
Write Reset StateName Bits

TM Trace Mode

00 Trace-To
01 Trace-From
10 Reserved
11 Reserved
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The Probe Interface Block (PIB) has been an available component with many previous MIPS cores, including the 
proAptiv. The proAptiv Multiprocessing System brings two significant changes to the PIB. First, the PIB is now 
instantiated in mips_css. Second, this new version of the PIB, referred to as PIB2, provides additional clock ratios. 

Cal 7 Calibrate off-chip trace interface.
If set to one, the off-chip trace pins will produce the following pattern in con-
secutive trace clock cycles. If more than 4 data pins exist, the pattern is repli-
cated for each set of 4 pins. The pattern repeats from top to bottom until the 
Cal bit is de-asserted. 

Note: The clock source of the TCB and PIB must be running.
These bits have no function if off-chip memory is not implemented.

R/W 0

Reserved 6:2 Reserved. Must be written as zero; returns zero on read. R 0

OfC 1 If set to 1, trace is sent to off-chip memory using TR_DATA pins.
If set to 0, trace info is sent to on-chip memory.
This bit is read only if a single memory option exists (either off-chip or on-
chip only). 

R/W Preset

EN 0 Funnel Trace Enable. When this bit is set, the trace funnels accepts trace infor-
mation from the CM and/or cores and writes the information to off-chip or on-
chip memory. 
When this bit is cleared, the trace funnel drops all new trace information from 
the CM and/or cores . The trace information already accepted by the trace fun-
nel is sent to the off-chip or on-chip memory, but new trace information is 
dropped and not written out.

R/W 0

Table 15.20 TCBCONTROLB Register Field Descriptions(continued)

Fields

Description
Read / 
Write Reset StateName Bits

Calibrations pattern

3 2 1 0
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The PIB2 provides available TR_CLK to processor clock ratios of 1:2, 1:4, 1:6, 1:8, 1:10, 1:12, 1:16, and 1:20.  The 
PIB1 supplied by MIPS has only the ratios 1:2, 1:4, 1:6, and 1:8.  The PIB1 architecture also has provision for clock 
multiples, 1:1, 2:1, 4:1, and 8:1, but these are not supported in PIB2.

The PIB2 reports the minimum CR (TC_CRMin) as 3’b111 and maximum (TC_CRMax) as 3’b000 as shown in the 
table below.  This is how software identifies a PIB2 as opposed to PIB.

TCBDATA Register

The TCBDATA register (0x12) is used to access the registers defined by the TCBCONTROLBREG field; see Table 
15.19. Regardless of which register or data entry is accessed through TCBDATA, the register is only written if the 
TCBCONTROLBWR bit is set. For read-only registers, TCBCONTROLBWR is a don’t care.

The format of the TCBDATA register is shown below, and the field is described in Table 15.22. The width of 
TCBDATA is 64 bits when on-chip trace words (TWs) are accessed (TCBTW access).

Figure 15.7 TCBDATA Register Format 

TCBCONTROLD Register

The TCB includes a second control register, TCBCONTROLD (EJTAG Register 0x14), whose values are used to 
control the tracing functions of the Coherence Manager. External software (i.e., debugger) can therefore manipulate 
the trace output by writing to this register. This register is also mapped to offset 0x0010 in the Global Debug Block of 
the CM GCRs. 

The format of the TCBCONTROLD register is shown below, and the fields are described in Table 15.23

Table 15.21 Clock Ratio Encoding of the CR field

TC_ClockRatio TR_CLK : gclk

3’b000  1:20 

3’b001  1:16

3’b010  1:12

3’b011  1:10

3’b100  1:2

3’b101  1:4

3’b110  1:6

3’b111  1:8

31(63) 0

Data

Table 15.22 TCBDATA Register Field Descriptions 

Fields

Description Read/Write Reset StateNames Bits

Data 31:0
63:0

Register fields or data as defined by the 
TCBCONTROLBREG field

Only writable if 
TCBCONTROLBWR 

is set

0
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Figure 15.8 TCBCONTROLD Register Format.

Table 15.23 TCBCONTROLD Register Definition

31 26 25 24 23 22 21 20 19 18 17 16 15 12 9 8 6 5 4 3 2 1 0

Reserved P4_Ctl P3_Ctl P2_Ctl P1_Ctl P0_Ctl Reserved TWSrcVal WB ST_En IO TLev AE Global_CM_En CM_EN

Fields

Description
Read / 
Write

Reset 
StateName Bits

Reserved 31:30 Reserved for future use. Must be written as 0. R 0

P6_Ctl 29:28 Implementation specific finer grained control over tracing 
Port 6 traffic at the CM. See Table 15.24.

R/W 0

P5_Ctl 27:26 Implementation specific finer grained control over tracing 
Port 5 traffic at the CM. See Table 15.24.

R/W 0

P4_Ctl 25:24 Implementation specific finer grained control over tracing 
Port 4 traffic at the CM. See Table 15.24.

R/W 0

P3_Ctl 23:22 Implementation specific finer grained control over tracing 
Port 3 traffic at the CM. See Table 15.24.

R/W 0

P2_Ctl 21:20 Implementation specific finer grained control over tracing 
Port 2 traffic at the CM. See Table 15.24.

R/W 0

P1_Ctl 19:18 Implementation specific finer grained control over tracing 
Port 1 traffic at the CM. See Table 15.24.

R/W 0

P0_Ctl 17:16 Implementation specific finer grained control over tracing 
Port 0 traffic at the CM. See Table 15.24.

R/W 0

Reserved 15:12 Reserved for future use. Must be written as 0 and read as 0. R 0

TWSrcVal 11:8 The source ID of the CM. R/W 0

WB 7 When this bit is set, Coherent Writeback requests are traced. 
If this bit is not set, all Coherent Writeback requests are sup-
pressed from the CM trace stream.

R/W 0

ST_En 6 System Trace Enable. Driven to the CM ouput pin 
SI_TC_Sys_Enable. External logic can use this output to 
control generation of the System Trace stream.

R/W 0

IO 5 Inhibit Overflow on CM FIFO full condition. When set to 1 
the CM never drops trace words, but instead will stall the 
request and/or intervention processing until forward prog-
ress can be made.
When set to 0 the CM will drop trace words when the trace 
word FIFO overflows.

R/W 0

TLev 4:3 This defines the current trace level being used by CM trac-
ing

R/W 0

Encoding Meaning

00 No Timing Information
01 Include Stall Times, Causes
10 Reserved
11 Reserved
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The TCBCONTROLD.AE bit enables addresses to be supplied when any request is serialized. This is not typically 
required because addresses issued from processor CPUs can be inferred from the CPU PDTrace stream.

The TCBCONTROLB.TLev bit controls the amount of information to be included the CM trace. Setting TLev to 1 may 
be useful when debugging performance problems.

The TCBCONTROL.IO bit determines the action taken by the CM with its internal trace buffers overflow. If the IO bit 
is 0 then trace information is lost when the trace buffer overflows. In this case, the CM temporarily stops producing 
trace messages, waits until the trace buffer becomes empty, performs a trace resynchronization with the CPUs and 
then starts producing new trace words. 

However, if TCBCONTROL.IO bit is 1 then trace information is never lost, but the system performance may be 
impacted when the trace buffer becomes full and the additional trace words are required. In this case, the CM stalls 
the processing of requests and/or L1 intervention responses until a trace buffer becomes available.

The TCBCONTROL.WB determines if L1 writebacks are traced or not. L1 writebacks are not software visible and do 
not appear in the CPU PDTrace, so typically writebacks are not traced in the CM (WB set to 0).

The value in the TCBCONTROLD.TWSrcVal field appears in all trace words produced by the CM, thus tagging the 
trace word as coming from the CM. A unique value must be programmed in this field and TCBCONTROLB.TWSrcVal 
for all cores. 

AE 2 When set to 1, address tracing is always enabled for the CM. 
This affects trace output from the serialization unit of the 
CM. When set to 0, address tracing may be enabled through 
the implementation specific P[x]_Ctl bits.

R/W 0

Global_CM_En 1 Each CPU core can enable or disable CM tracing using this 
bit. This bit is not routed through the master core, but is 
individually controlled by each core. Setting this bit can 
enable tracing from the CM even if tracing is being con-
trolled through software, if all other enabling functions are 
true.

R/W 0

CM_EN 0 This is the master trace enable switch to the CM. When 
zero, tracing from the CM is always disabled. When set to 
one, tracing is enabled if other enabling functions are true.

R/W 0

Fields

Description
Read / 
Write

Reset 
StateName Bits

Table 15.24 P<port>_Ctl Trace Control Bits

Value Meaning

0 Tracing Enabled, No Address Tracing, assuming AE = 0

1 Tracing Enabled, Address Tracing Enabled, independent of AE

2 Reserved

3 Tracing Disabled
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The five P<port>_Ctl fields in TCBCONTROLD give the ability to control the amount of trace information provided 
for requests received on the specified port. As shown in Table 15.24, requests from a given CM request port can be 
traced normally, always traced with addresses, or not traced. Typically, the CM request ports connected to CPUs will 
be traced normally (P0_Ctl, P1_Ctl, P3_Ctl, P4_Ctl set to 0) because the address is traced by the CPU itself. How-
ever, requests from the IOCU are only traced by the CM and therefore should have their addresses traced by the CM 
(P4_Ctl should be set to 2). 

TCBCONTROLE Register

The TCBCONTROLE register is used top control tracing functions of the Coherence Manager performance counters. 
The TCBCONTROLE register is written by an EJTAG TAP controller instruction, TCBCONTROLE (0x16). This reg-
ister is also mapped to offset 0x0020 in the Global Debug Block of the CM GCRs. The format of the 
TCBCONTROLE register is shown below, and the fields are described in Table 15.25.

Figure 15.9 TCBCONTROLE Register Format 

TCBCONFIG Register (Reg 0)

The TCBCONFIG register holds information about the hardware configuration of the TCB. This register is also 
mapped to offset 0x0028 in the Global Debug Block of the CM GCRs. The format of the TCBCONFIG register is 
shown below, and the field is described in Table 15.26.

Figure 15.10 TCBCONFIG Register Format 

31 9 8 7 1 0

0 TdIDLE Res PeC

Table 15.25 TCBCONTROLE Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

0 31:9 Reserved for future use. Must be written as zero; returns 
zero on read.

0 0

TrIdle 8 Trace Unit Idle. This bit indicates if the trace hardware is 
currently idle (not processing any data). This can be useful 
when switching control of trace from hardware to software 
and vice versa. The bit is read-only and updated by the 
trace hardware. 
TrIdle is set when the all cores and the CM have disabled 
PDTrace and the trace funnels has written all outstanding 
trace information to the off-chip or on-chip memory.

R 1

0 7:1 Reserved for future use; Must be written as zero; returns 
zero on read. (Hint to architect, Reserved for future expan-
sion of performance counter trace events).

0 0

PeC 0 Performance counter tracing is not implemented. R 0

31 30 25 24 21 20 17 16 14 13 11 10 9 8 6 5 4 3 0

CF1 0 0 SZ CRMax CRMin PW PiN OnT OfT REV
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Table 15.26 TCBCONFIG Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

CF1 31 This bit is set if a TCBCONFIG1 register exists. In this revision, 
TCBCONFIG1 does not exist and this bit always reads zero.

R 0

0 30:21 Reserved. Must be written as zero; returns zero on read. R 0

SZ 20:17 On-chip trace memory size. This field holds the encoded size of the 
on-chip trace memory.
The size in bytes is given by 2(SZ+8), implying that the minimum 
size is 256 bytes and the largest is 8Mb.
This bit is reserved if on-chip memory is not implemented.

R Preset

CRMax 16:14 Off-chip Maximum Clock Ratio.
This field indicates the maximum ratio of the CPU clock to the off-
chip trace memory interface clock. The clock-ratio encoding is 
shown in Table 15.21.
This bit is reserved if off-chip trace option is not implemented.

R Preset

CRMin 13:11 Off-chip Minimum Clock Ratio.
This field indicates the minimum ratio of the CPU clock to the off-
chip trace memory interface clock.The clock-ratio encoding is 
shown in Table 15.21.
This bit is reserved if off-chip trace option is not implemented.

R Preset

PW 10:9 Probe Width: Number of bits available on the off-chip trace interface 
TR_DATA pins. The number of TR_DATA pins is encoded, as 
shown in the table. 

This field is preset based on input signals to the TCB and the actual 
capability of the TCB. 
This bit is reserved if off-chip trace option is not implemented.

R Preset

PiN 8:6 Pipe number.
Indicates the number of execution pipelines.

R 0

OnT 5 When set, this bit indicates that on-chip trace memory is present. 
This bit is preset based on the selected option when the TCB is 
implemented.

R Preset

OfT 4 When set, this bit indicates that off-chip trace interface is present. 
This bit is preset based on the selected option when the TCB is 
implemented, and on the existence of a PIB module 
(TC_PibPresent asserted).

R Preset

REV 3:0 Revision of TCB. R 0

PW Number of bits used on TR_DATA

00 4 bits
01 8 bits
10 16 bits
11 reserved
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TCBTW Register (Reg 4)

The TCBTW register is used to read Trace Words from the on-chip trace memory. The TW read is the one pointed to 
by the TCBRDP register. A side effect of reading the TCBTW register is that the TCBRDP register increments to the 
next TW in the on-chip trace memory. If TCBRDP is at the max size of the on-chip trace memory, the increment 
wraps back to address zero.

This register is also mapped to offset 0x0200 (lower 32 bits) and 0x0208 (upper 32 bits) in the Global Debug Block of 
the CM GCRs.

The format of the TCBTW register is shown below, and the field is described in Table 15.27.

Figure 15.11 TCBTW Register Format 

TCBRDP Register (Reg 5)

The TCBRDP register is the address pointer to on-chip trace memory. It points to the TW read when reading the 
TCBTW register. When writing the TCBCONTROLBRM bit to 1, this pointer is reset to the current value of TCBSTP.

This register is also mapped to offset 0x0108 in the Global Debug Block of the CM GCRs.

The format of the TCBRDP register is shown below, and the field is described in Table 15.28. The value of n depends 
on the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always zero.

Figure 15.12 TCBRDP Register Format 

TCBWRP Register (Reg 6)

The TCBWRP register is the address pointer to on-chip trace memory. It points to the location where the next new 
TW for on-chip trace will be written.

63 0

Data

Table 15.27 TCBTW Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateNames Bits

Data 63:0 Trace Word R/W 0

31 n+1 n 0

Address

Table 15.28 TCBRDP Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateNames Bits

Data 31:(n+1) Reserved. Must be written zero, reads back zero. 0 0

Address n:0 Byte address of on-chip trace memory word. R/W 0
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This register is also mapped to offset 0x0110 in the Global Debug Block of the CM GCRs.

The format of the TCBWRP register is shown below, and the fields are described in Table 15.29. The value of n 
depends on the size of the on-chip trace memory. As the address points to a 64-bit TW, the lower three bits are always 
zero.

Figure 15.13 TCBWRP Register Format 

TCBSTP Register (Reg 7)

The TCBSTP register is the start pointer register. This pointer is used to determine when all entries in the trace buffer 
have been filled (when TCBWRP has the same value as TCBSTP ). This pointer is reset to zero when the 
TCBCONTROLBTR bit is written to 1. If a continuous trace to on-chip memory wraps around the on-chip memory, 
TSBSTP will have the same value as TCBWRP.

This register is also mapped to offset 0x0118 in the Global Debug Block of the CM GCRs.

The format of the TCBSTP register is shown below, and the fields are described in Table 15.30. The value of n 
depends on the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always 
zero.

Figure 15.14 TCBSTP Register Format 

TCBSYS Register (Reg 30)

The TCBSYS register contents are driven to the SI_TC_Sys_UserCtl[31:0] output signals. This register is also 
mapped to offset 0x0040 in the Global Debug Block of the CM GCRs. Thus, any change to this register will be 
reflected in these output signals. The format of the TCBSYS register is shown below, and the fields are described in 
Table 15.31.

31 n+1 n 0

Address

Table 15.29 TCBWRP Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateNames Bits

Data 31:(n+1) Reserved. Must be written zero, reads back zero. 0 0

Address n:0 Byte address of on-chip trace memory word. R/W 0

31 n+1 n 0

Address

Table 15.30 TCBSTP Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateNames Bits

Data 31:(n+1) Reserved. Must be written zero, reads back zero. 0 0

Address n:0 Byte address of on-chip trace memory word. R/W 0
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Figure 15.15 TCBSYS Register Format 

Register Reset State

Reset state for all register fields is entered when either of the following occur:

1. TAP controller enters/is in Test-Logic-Reset state.

2. EJ_TRST_N input is asserted low.

15.3.4 MIPS Trace Capability

There are several build-time options for trace support within the proAptiv Multiprocessing System Multiprocessing 
System (MPS):

1. No trace logic included.

2. Trace logic to support an on-chip trace memory (embedded within the MPS). 

3. Trace logic to support an off-chip trace probe (with off-chip trace memory).

4. Combination of options 2 and 3.

15.3.5 Memory-Mapped Access to PDtrace™ Control and On-Chip Trace RAM

PDtrace can be controlled entirely through software and the on-chip trace memory can be accessed directly by soft-
ware using load and store instructions. 

15.3.6 On-Chip Trace Buffer Usage

In order to direct trace data to the on-chip buffer instead of the off-chip interface, the OfC bit in the TCBControlB 
register of the trace master must be cleared. Once this is done, the trace funnel will combine trace data it receives 
from the CM and CPUs and write it to the on-chip memory. Tracing can be enabled or disabled on a per CM/CPU 
basis by setting or clearing the EN bits in the corresponding TCBControlB registers.

To initialize the on-chip trace buffer, the TR bit of the TCBControlB register of the trace master is set by software. 
This will initialize TCBRDP, TCBWRP and TCBSTP pointers to zero. These pointers do not have to explicitly writ-
ten by software for initialization, the reset function that is caused by setting the TR bit is sufficient. 

31 30 0

STA UsrCtl

Table 15.31 TCBSYS Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

STA 31 System Trace Available. Set to 1 if the System Trace Interface is 
present. Otherwise it is set to 0.

R present: 1
not present: 0

UsrCtl 30:0 User-defined Control. R/W 0
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When it is desired to read out the Trace Words from the on-chip buffer, software first sets the RM bit.within TCBCon-
trolB. This will load the TCBRDP register with the value held in the TCBSTP register. The TraceWord pointed by 
TCBRDP can be then read out through the TCBTW register. The read will automatically update the TCBRDP value 
to point to the next newer entry. A subsequent read from TCBTW register will thus read out the next newer Trace-
Word. Software does not have to explicitly update the TCBRDP register. 

If the TM field of TCBControlB register is set to Trace-From mode, the trace-buffer contents stop being updated 
when the trace-buffer is full (when TCBWRP points to the same entry as TCBSTP). This event is denoted by the BF 
bit of TCBControlB register. The BF bit can be polled by software to decide when to read out the trace buffer con-
tents. 

For production testing, such as stuck-at testing of memory cells within the trace buffer, the TCBRDP and TCBWRP 
registers can be explicitly written by software to write and read specific entries within the trace buffer. As previously 
stated, for normal usage these pointer registers do not have to be explicitly written by software. 
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o32 Binary Interface and General Purpose Registers

The MIPS32 ABI provide the application binary interface to the proAptiv Multiprocessing System Multiprocessing 
System. The 32 general purpose registers (GPR) are used by the compiler and provide a set of temporary storage 
locations used for function calls and other software functions. Some register have unique functions, while others can 
be used for any purpose.

This chapter contains the following sections:

• Section 16.1 “o32 ABI Parameters” 

• Section 16.2 “Compiler Goals”

• Section 16.3 “Register Naming Conventions and Usage”

• Section 16.4 “Conventional Naming and General Purpose Register Usage”

• Section 16.5 “Floating Point Register Conventions”

• Section 16.6 “Virtual Memory Layout Overview”

• Section 16.7 “Mapping Data Types into Memory”

• Section 16.8 “Calling Conventions”

16.1 o32 ABI Parameters

This chapter contains information on the o32 binary interface. The o32 ABI contains calling and linkage conventions 
for the MIPS32 architecture.

Table 16.1 shows the o32 ABI parameters. 

Table 16.1 MIPS o32 ABI Parameters

Parameter Value

Registers saved and restored as 32-bit

Argument structure 4-byte slots
8-byte alignment
at least 4 slots long

Argument registers 4 integer, 2 FP

Arguments in FP registers? Leading FP arguments only (doesn’t 
need correct function prototypes)

Return values Only scalars are ever returned in registers; 
v1 is used only for long long data.

long long type Implemented with register pairs and 
hardware type library calls
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16.2 Compiler Goals

Compilation systems should adhere to following standards (‘‘ABIs’’) in order to achieve the following goals:

• Inter-calling : a binary program built with one compiler should be able to call a subroutine defined in another (so 
long as address resolution problems are solved). The standards relevant to this are called the ‘‘calling conven-
tions’’; they describe how subroutines pass parameters, return values, and co-operate to share the register set and 
stack resources. Refer to Section 16.8 “Calling Conventions”.

• Interlinkable: object files built with one compiler can be linked successfully with those produced by another. 
The standard relevant to this is the object code definition, in particular the definition of symbols and relocation 
mechanisms.

• Runnable: a binary produced with a compliant tool kit can be successfully executed on a compliant OS (Linux 
in particular). For more information, refer to Section 16.6.3 “Linux Application”.

• Debuggable: more conventions and standards are required before a program build with a tool kit can be success-
fully debugged.

• Profilable: where available, code profilers have their own requirements - related to but not identical to those of 
debuggers.

16.3 Register Naming Conventions and Usage

Each proAptiv Multiprocessing System core offers 32 general purpose registers available for program use. They are 
numbered $0 to $31. 

Two, of these registers behave as follows::

• $0 always returns zero, no matter what is stored in it.

• $31 is always used by the normal subroutine-calling instruction (jal) for the return address. Note that the call-by 
register version (jalr) can use any register for the return address, though use of anything except $31 is not recom-
mended .

In all other respects the general purpose registers are identical and can be used in any instruction (it is legal to use $0 
as the destination of instructions, though the result data will not be saved).

The return address of a jal is the next instruction, but one in sequence:
...
jal printf
move $4, $6
xxx # return here after call

The floating point math coprocessor (called FPA for floating point accelerator), if included, adds 32 floating point 
registers with their own conventions: see Section 16.5 “Floating Point Register Conventions”.

gp register in PIC code Not preserved over calls

Table 16.1 MIPS o32 ABI Parameters

Parameter Value



 

MIPS32® proAptiv™ Multiprocessing System Software User’s Manual, Revision 01.22 789

 

16.4 Conventional Naming and General Purpose Register Usage

Although the hardware makes few rules about the use of registers, their practical use is governed by a number of con-
ventions. As part of those conventions, the registers are referred to by conventional names — typically defined in a 
header file2 and implemented by using the C preprocessor on assembler files.

MIPS hardware ignores these conventions, but all the benefits of software by register name and associated common 
name. These common name functions are described in the following subsections. 

Table 16.2 CP0 Registers Grouped by Number 

Register Name Common Name Description

$0 zero Always has the value 0. Any writes to this register are ignored.

$1 AT Assembler temporary.

$2 v0 Function result register. Functions return integer results in v0, and 64-bit integer results in v0 and 
v1 when using 32-bit registers. In cases where floating-point hardware is not present, or when 
compiler options enable floating-point emulation, functions return single precision floating-point 
results in v0 and double precision floating-point results in v0 and v1 when using 32-bit registers. 
v0 and v1 can be temporary registers. Not preserved across function calls.

$3 v1

$4 a0 Function argument registers that hold the first four words of integer type arguments. Functions 
use these registers to hold floating-point arguments. When floating-point hardware is not present, 
or compiler options enable floating-point emulation, functions use a0 to hold the first single preci-
sion floating-point argument and a1 to hold the second single precision floating-point argument. 
Functions use a0-a1 for the first double precision floating-point argument, and a2-a3 to hold the 
second double precision floating-point argument. Not preserved across function calls.

$5 a1

$6 a2

$7 a3

$8 t0 Temporary registers. Can be used for any puepose. Not preserved across function calls.

$9 t1

$10 t2

$11 t3

$12 t4

$13 t5

$14 t6

$15 t7

$24 t8

$25 t9

$16 s0 Saved registers to use freely. Preserved across function calls. This register must be saved before 
use by the called function.$17 s1

$18 s2

$19 s3

$20 s4

$21 s5

$22 s6

$23 s7

$30 s8
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16.4.1 Common Name — AT (GPR $1)

GPR $1 is reserved for the synthetic instructions generated by the assembler. When using this register, such as when 
saving or restoring registers in an exception handler, there is an assembler directive to stop the assembler from using 
it without permission (but then some of the assembler’s macro instructions won’t be available.) The assembler direc-
tive’s existence is the reason why this name is traditionally used in upper case.

16.4.2 Common Name — v0, v1 (GPR $2, $3)

GPR $2 and $3 are used when returning non-floating-point values from a subroutine. If the value returned is too large 
to fit in two registers, the compiler will allocate a memory buffer whose address will be passed as an invisible first 
argument.

While a function is running v0-v1 can be freely used as temporaries. Integer values are returned in these registers. 
Structure or array types (even if small enough to fit in the two registers) are always returned through a data area 
defined by the caller and whose address is an invisible first argument.

16.4.3 Common Name — a0 - a3 (GPR $4 - $7)

GPR $4 - $7 are used to pass the first four non-FP parameters to a subroutine. Argument registers which are unused 
or whose value is no longer needed can be freely used as temporaries. For more information, refer to Section 
16.8 “Calling Conventions”

16.4.4 Common Name — t0 - t9 (GPR $8 - $15, GPR $24 - $25

By convention, subroutines may use these registers without doing anything to preserve their previous contents. This 
makes them a good choice for ‘‘temporaries’’ when evaluating expressions. However, the compiler/programmer must 
remember that values stored in them may be destroyed by a subroutine call.

16.4.5 Common Name — s0 - s8 (GPR $16 - $23, GPR $30)

By convention, subroutines must guarantee that the values of these registers on exit are the same as they were on 
entry. This can be accomplished by either not using them, or by saving them on the stack and restoring before exit.

$26 k0 Reserved for use by the operating system kernel and for exception return.

$27 k1

$28 gp Global pointer. May be used as save register for called functions.

$29 sp Stack pointer.

$31 ra Return address register, saved by the calling function. Available for use after saving.

$f0 Function return register used to return float and double values from function calls.

($f12, $f13) and
($f14 and $f15)

Two pairs of registers used to pass float and double valued parameters to functions. Pairs of regis-
ters are parenthesized because they have to pass double values. To pass float values, only 
$f12 and $f14 are used.

Table 16.2 CP0 Registers Grouped by Number (continued)

Register Name Common Name Description
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This makes them eminently suitable for use as ‘‘register variables’’ or for storing any value which must be preserved 
over a subroutine call.

16.4.6 Common Name — k0, k1 (GPR $26, $27)

GPR $26 and GPR $27 are reserved for use by the trap/interrupt handlers in an operating system, which uses them 
and does not restore their original value. Hence they are of little use to other code. These registers are not used at all 
by application code.

16.4.7 Common Name — gp (GPR $28)

GPR $28 has two quite different roles. These registers are used in position-independent (PIC) code and non-PIC 
code. Each case is described below.

16.4.7.1 Position Independent Code (PIC)

In PIC code, typically used only for application and library code in a large OS, it is used in the double-indirection 
used to reach variables and functions whose location is not known until the program and its libraries are loaded.

In position-independent code, gp acts as a pointer to the GOT (‘‘global offset table’’), as described in Section 
16.6.4 “PIC Code and the Global Offset Table”. The GOT pointer is loaded by code in the prologue of every func-
tion which makes a reference through the GOT. A function call may overwrite the value in gp and the compiler must 
ensure it’s reloaded after any such call. 

16.4.7.2 Non-Position Independent Code (Non-PIC)

In non-PIC code, typically used for all non-Linux embedded applications, this register is sometimes used to provide 
efficient access to C static/extern data.

If used, the gp register is initialized to point to a load-time-determined location of the static data. This means that 
loads and stores to data lying within 32 KBytes on either side of the gp value can be performed in a single instruction 
using gp as the base register. Note that the pointer in gp is a constant. No application code ever writes to the register 
once it has been initialised.

Without the global pointer, loading data from a static memory area takes two instructions: one to load the most signif-
icant bits of the 32-bit constant address computed by the compiler and loader, and one to do the data load.

To use gp, a compiler must know at compile time that a datum will end up linked within a 64 KByte range of memory 
locations. In practice this cannot be known, only estimated. The usual practice is to put ‘‘small’’ global data items (8 
bytes and less in size) in the gp area, and to get the linker to complain if it still gets too big. The compiler -Gnn flag 
can be used to adjust the threshold of what is considered ‘‘small’’.

16.4.8 Common Name — sp (GPR #29)

The GPR #29 register functions as a stack pointer. It takes explicit instructions to raise and lower the stack pointer, so 
MIPS code usually adjusts the stack only on subroutine entry and exit; and it is the responsibility of the subroutine 
being called to do this. 

sp is normally adjusted, on entry, to the lowest point that the stack will need to reach at any point in the subroutine. 
Now the compiler can access stack variables by a constant offset from sp.
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16.4.9 Common Name — fp (GPR #30)

A subroutine will use a ‘‘frame pointer’’ to keep track of the stack if it wants to do things which involve extending the 
stack by an amount which is determined at run-time. Some languages, including C++, may do this implicitly. 

If the stack bottom can’t be computed at compile time, the stack variables cannot be accessed from sp, so fp is initial-
ized by the function prologue to a constant position relative to the function’s stack frame. Efficient use of register 
conventions means that this behavior is local to the function, and doesn’t affect either the calling code, or any nested 
function calls.

16.4.10 Common Name — ra (GPR #31)

The GPR #30 register is used to store the return address. On entry to any subroutine, ra holds the address to which 
control should be returned. Therefore, a subroutine typically ends with the instruction: jr ra. Subroutines which them-
selves call subroutines must first save ra, usually on the stack.

16.5 Floating Point Register Conventions

In addition to the 31 general purpose registers, the MIPS32 architecture also includes a corresponding set of standard 
floating point registers.

16.5.1 MIPS Floating Point Registers

The proAptiv Multiprocessing System architecture contains 32 floating point registers, whose assembler names are 
$f0 - $f31. The architecture also supports the 64-bit IEEE double-precision format.

The o32 ABI generates code that is compatible with not only previous generation 32-bit MIPS I and MIPS II CPUs, 
but also the MIPS III CPU’s such as the proAptiv Multiprocessing System Multiprocessing System. All of these 
architectures do floating point arithmetic using the 16 even-numbered registers $f0 - $f30. 

The odd-numbered registers are referred to in move and load/store instructions; but the assembler provides synthetic 
‘‘macro’’ instructions for move and load/store double, so the odd-numbered registers will normally not be required 
when writing o32 code.

16.5.2 Floating Point Register Software Use and Calling Conventions

Like the general-purpose registers, the MIPS calling conventions contains restrictions about register use that have 
nothing to do with the hardware. These restrictions include which FP registers are used for passing arguments, which

ones’ values are expected to be preserved over function calls, and so on. The division of functions is much as for the 
integer registers, less the special cases.

Table 16.3 shows the floating point register usage conventions. Note that the o32 ABI assumes that the CPU either 
has a MIPS II or earlier FP unit or that the CPU has the SR[FR] compatibility bit cleared to zero; in either case only 
16 registers are usable for arithmetic, so there are no odd-numbered registers in the table. 

Table 16.3 Floating Point Register Usage Conventions

Parameter Value

Function return values $f0, $f2
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16.6 Virtual Memory Layout Overview

Although this section is not technically part of the ABI definition, it is useful to examine the interaction between the 
various pieces of code and data which might make up an ABI-compliant application. The following subsections 
describe some aspects of how the virtual address may be used. 

16.6.1 Memory Regions and Object Code Naming Conventions

Some of the memory region and object code naming conventions are as follows:

• Module: A compilation unit (the assembler is seen as just another compiler...), and also used for an object file 
generated from one compilation unit.

• Program: all the addressable data and code associated with an application. Strictly speaking, that associated with 
an instance of an application; in Linux there may be many copies of the shell running, and they’re distinct pro-
grams in this sense. For Linux applications, this excludes the kernel and other parts of the memory map which 
are not accessible to the application.

• Link unit: a part of a program which has been bound together so that its components are at fixed offsets from 
each other.

• Segment3: a part of a program which is contiguous in the memory image of the running program, and which is 
distinguished for link/build purposes. By ancient convention segment names begin with a dot, and are called 
things like .text and .bss. When several modules are being combined into a single link unit during the build pro-
cess, sections of the same name in different modules are brought together and various sections concatenated to 
make a segment.

• _main4: C programmers often think execution begins with main(); but in reality there’s always a more primitive, 
machine-dependent startup routine supplied by the build environment. This does things like initializing the sp 
register to mark the stack region, and zero-ing the memory region which contains the ‘‘uninitialised’’ C vari-
ables. If you write C++, this will also arrange for initialization routines to be run.

16.6.2 Simple Standalone Application

Figure 16.1 describes the memory map of a statically linked application.

Argument registers $f12, $f14

Saved over function call (suitable for register variables) Events $f20 - $f30

Temporaries (not saved over function call, or “caller-saved” Evens $f4 - $f10, $f16, $f18

Table 16.3 Floating Point Register Usage Conventions

Parameter Value
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Figure 16.1 Memory Map of a Statically Linked Application 

The memory segments used in Figure 16.1 are described below.

• Code (including initialiaed and uninitialiaed data): This space forms a single link unit; and their relative posi-
tions are fixed when the software is built. In fact, their absolute locations in program memory are also typically 
fixed at build-time. This code is position-dependent.

• Stack: The stack is assigned by the start-up program in accordance with OS and tool chain conventions. It grows 
down, so is typically placed at the top of the program’s memory space.

• Heap: The heap defines the data space allocated by the program through C setbrk() or (slightly higher level) mal-
loc() calls. The heap usually starts at the lowest suitably aligned location available after allowing for the linked 
code and data.

• Small data area: For this space, it takes two MIPS instructions to load from or store to a C location declared at 
module level or as static. When the ‘‘small’’ data area is used, the gp register is set to point to the middle of it by 
__main(). This allows load and store to variables in that area to be accessed with a single instruction.

Note that for some programs, the entire data set will not fit within the 64 KByte address range limit imposed by 
the MIPS load/store instruction’s 16-bit offset. Therefore, during compilation and build, only data items below a 
certain size are considered as candidates for this area. That’s why it’s called ‘‘small’’ data. The small data area, if 
provided, overlaps both the initialized and uninitialized segments (and is implemented as a pair of sub-seg-
ments).

• Common segment names:

.text all the code

.data initialised data possibly excluding...

.sdata initialised data for the ‘‘small’’ area

.bss uninitialised data possibly excluding

.sbss uninitialised data for the ‘‘small’’ area.
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Note that in some embedded operating systems, all the software runs in the same address space and does not take 
advantage of the MIPS memory management facilities. Such systems have complicated memory maps which are 
deeply OS dependent.

16.6.3 Linux Application

Many Linux applications are built without their library functions. In this case, the library routines are linked in as the 
program is loaded into memory. The library routine may have been updated since the application was built, and it 
should still work. The result is a much more complicated memory map with a number (perhaps quite a large number) 
of separately linked pieces. This complexity if illustrated in Figure 16.2.

Figure 16.2 Memory Map for a Typical Linux Application 

In the memory map shown in Figure 16.2 above, all the link units except the base application are shared libraries of 
some kind, either built-in shared libraries or dynamically loaded by explicit programming. They are loaded into pro-
gram memory working upward on a first-come first-served basis. 

While the base application runs at program addresses which were known at build time, the libraries must be able to 
run at arbitrary memory addresses. The requirement that library modules should link in just anywhere and still work 
(‘‘position-independent code’’ or PIC) forces considerable changes to the way code is generated. 

In the MIPS architecture, the preferred subroutine call instruction is jal, and that instruction is not PC-relative; it 
encodes (most of) the absolute virtual address of the subroutine entry point. Moreover, Linux standards require that 
the shared libraries should also be able to share extern data.
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16.6.4 PIC Code and the Global Offset Table

An application’s binary code is built before it is known where data or subroutines in other link units will reside in the 
program’s memory map. Both the absolute and relative position of each link unit depends on what versions of what 
libraries get loaded in what order. It is not possible for the run-time loader to fix up these addresses in the code itself, 
because the code itself must be shared between different instances of the application program (and each instance may 
have a different library layout). As a result, an application’s or library’s binary will contain the address information 
needed to reference functions and data in a different link unit.

16.6.4.1 Global Offset Table (GOT)

Instead, the compiler generates code which makes every function call and every reference to static/extern data indi-
rect, via a table of pointers. The table of pointers are the Global Offset Table or ‘‘GOT’, which reside in a data seg-
ment. Separate copies are kept for each instance of the application, so it can be and is fixed up by the loader. 

Figure 16.3 shows an example of a global offset table. The GOT contains an entry for each function or data item that 
is accessed by any code in the link unit (the loader finds each item by its name, so there is an entry for each symbol). 
The table offset for a particular symbol is known at build time, and is a constant in the binary code.

For MIPS code, the gp register is maintained as a pointer to the GOT of the link unit.

Figure 16.3 Example of a Global Offset Table

The the gp register is set to point to the GOT by code included as part of the prologue of each function (at least, each 
function which makes any use of the GOT.) This is suboptimal, since for intra-link-unit calls it will already hold the 
right value. However, the compiler cannot (in general) distinguish intra- and inter-link-unit calls.

In the o32 ABI, the calling code must be aware that a function call might overwrite the value in the gp register, and 
the caller must preserve or recalculate the value after the call if required.
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16.6.4.2 Loading a PIC Application and its Libraries

The program loader is the Linux application, which runs when any binary is loaded which uses shared libraries. The 
program loader maps the application code and data and any libraries it needs into the program’s address space. The 
build system leaves a list of required library names in the application’s object file, and the program loader finds the 
library files via a series of search path mechanisms. Conventions about file names (if followed correctly) make sure 
the program finds the ‘‘right’’ library. 

The program loader maintains symbol tables for the data items and subroutine entry points which are exported by the 
application and each library, so it can tie up references between separate link units.

16.6.4.3 Loading and Binding of Libraries

While it is not necessary to read in all the code of the libraries required by an application (the ordinary virtual mem-
ory paging system takes care of that), the process of binding in a link unit, fixing up its GOT and getting it ready for 
use, is relatively time-consuming. This penalty is paid even for libraries which provide facilities which the applica-
tion rarely uses. That can slow the application startup.

To optimize the initialization process, Linux defers loading and fixing up libraries until they are first used. By the 
nature of the PIC code the unresolved references are all in the GOT. Where the first reference to the new library is a 
function call this is relatively straightforward; the GOT entry for an unresolved subroutine reference is set to point to 
a function in the run-time loader which then loads the library, patches the GOT so that future calls will go direct, and 
calls the library function.

There are other more subtle issues. For example, when the same symbol is provided by two different libraries, this 
can make loading problematic. As a result, the build system is charged with identifying which libraries are safe to 
load, and to identify them in the application binary. The loader can then load unsafe libraries at startup.

16.6.4.4 Dynamic (explicit) Loading of Libraries - dlopen()

It is also possible to get software to pick its own shared library and then build an explicit software-visible table of 
calls to it. This mechanism fits naturally onto the object/class concepts of C++, and libraries loaded like this are 
referred to as ‘‘dynamic shared objects’’.

It is not necessary to build a Linux shared library in a special way to make it fit for dlopen(), any library will do. At 
the lowest level, a call to dlopen() to grab the library and dlsym() calls to obtain pointers to named data items or func-
tions in the dynamic shared object. But because dynamic libraries are just shared libraries, some unexpected ‘‘bonus’’ 
semantics may be observed.

Firstly, the explicitly-loaded library will gain access to any public symbols in the application (or its pre-loaded librar-
ies). Perhaps more unexpectedly, a straightforward extern function pointer reference in the application can bind to a 
symbol from a library which wasn’t mentioned at all at build time, but only brought in with dlopen(). 

16.6.4.5 PIC and GOT Constraints

There are some PIC and GOT constrains that are worth mentioning.

1. What to do when your GOT overflows: On MIPS, GOT pointer loads are usually compiled to a single load rel-
ative to the gp register; but this can only span a table 64 Kbytes in size (16K pointer entries). Large applications 
and libraries can use more symbols than that.

There are two approaches. One is to just let the GOT grow above 64 Kbytes, and require the compiler to generate 
code which can load/store arbitrary entries in it. This generally uses the gcc -PIC option - it’s trouble-free and 
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portable but generates truly awful code.

Some compilers support an option that generates one GOT to each module in a link unit (gcc -multigot). Done 
properly, this is no trouble, but the dynamic loader has to know about it.

2. Managing the overheads of PIC code: Nothing in the ABI obliges the compiler to go through the GOT when 
accessing data or calling subroutines which are in the same link unit; neither is it strictly necessary for a function 
to reset the gp register on an intra-link-unit call.

However, there are several reasons why this hasn’t been done:

• Even within the link unit only relative addresses are known; the MIPS architecture lacks efficient PCrelative 
call and load instructions.

• The compiler doesn’t know which references are in the link unit. While it’s possible to get the linker to do 
some instruction re-writing to simplify intra-link-unit calls and references, it’s bad practice.

• The PIC calling convention for MIPS requires that on entry to a function the t9 register holds the address of 
the function’s entry point. Since calls made through the GOT mean the address may be in some register, this 
seems acceptible — but this requirement is burdensome to any possible future intra-link-unit (or even intra-
module) call mechanism.

16.7 Mapping Data Types into Memory

Memory is taken as an array of unsigned 8-bit quantities, whose index is the virtual address. For all MIPS CPU’s, this 
corresponds to a C definition unsigned char [].

MIPS uses 2s-complement representation for signed integers - so in any data size ‘‘-1’’ is represented by binary all-
ones. The overwhelming advantage of 2s-complement numbers is that the basic arithmetic operations (add, subtract, 
multiply, divide) have the same implementation for signed and unsigned data types.

16.7.1 Sizes of C Data Types

Table 16.4 lists fundamental C data types and how they’re implemented for MIPS architecture CPUs.

Note that all of the primitive data types shown in Table 16.4 can only be directly handled by standard MIPS instruc-
tions if they are naturally aligned: that is, a 2-byte datum starts at an address which is even (zero modulo 2), a 4-byte 
datum starts at an address which is zero modulo 4, and an 8-byte datum starts at an address which is zero modulo 8.

Table 16.4 Data Types and Memory Representations

C Type MIPS ASM Name Size in Bytes

char byte 1

short half 2

int word 4

long long dword 8

float word 4

double dword 8
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16.7.2 Basic Type Memory Layout and Endianness

Figure 16.4 shows how each basic type is laid out in byte-addressed memory. Note that the arrangement is different 
for bigendian and little-endian software.

Figure 16.4 C Data Types in Memory — Big Endian and Little Endian 

In Figure 16.4, I’ve given in to the temptation to reverse the bit-numbering within each byte for the big-endian lay-
outs. For memory addressing purposes this is meaningless; bytes are indivisible 8-bit objects. However, reversing the 
bit numbers as above makes the bitwise depiction of the fields of floating point numbers easier to absorb (and pret-
tier). Each of these data types is naturally aligned, as described above. ‘‘Endianness’’ can be a troubling subject. If 
you are uneasy about it, read it up in [SMR].

16.7.3 Memory Layout and Alignment of Structure and Array Types

Complex types are built by concatenating simple types, but inserting unused (‘‘padding’’) bytes between items so as 
to respect the alignment rules.

The following shows the byte offsets of data items in a struct mixed:

struct mixed {
char c; /* byte 0 */
/* bytes 1-14 are ‘‘padding’’ */
double d; /* bytes 8-15 */
short s; /* bytes 16-17 */

};
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Note that the byte offsets of the fields of constructed data types (other than those using C bitfields, see Section 
16.7.3 “Memory Layout and Alignment of Structure and Array Types” below) are unaffected by endianness. 

Constructed data types are aligned in memory to the largest alignment boundary required by the data type defined 
inside them. So a struct mixed will start on an 8-byte boundary; which means that if an array is built using these struc-
tures, padding will be required between each array element. C compilers provide for this by ‘‘tail padding’’ the struc-
ture to make it usable for an array, so sizeof(struct mixed) == 24 and the structure should reallybe annotated:

struct mixed {
char c; /* byte 0 */
/* bytes 1-14 are ‘‘padding’’ */
double d; /* bytes 8-15 */
short s; /* bytes 16-17 */
/* bytes 18-23 are ‘‘tail padding’’ */

};

16.7.4 Bit Fields in Structures

C allows the user to define structures which pack several short ‘‘bit field’’ members into one or more locations of a 
standard integer type. This is a useful feature for emulation, hardware interfacing, and perhaps for defining dense data 
structures, but is fairly incomplete. Bitfield definitions are nominally CPU-dependent but also genuinely endianness-
dependent.

One can, for example, define a data structure which permits access to the various fields of a MIPS single-precision-
floating point number as shown below:

#if BYTE_ORDER == BIG_ENDIAN

struct ifloat {
unsigned int sign:1;
unsigned int bexp:8;
unsigned int mant:23;

};

#else /* little-endian */

struct ifloat {
unsigned int mant:23;
unsigned int bexp:8;
unsigned int sign:1;

};

#endif

In this case the three fields are packed into one 32-bit int storage unit. These two cases are the same in that, for both 
Endian formats, the bitfields are allocated with the first-defined field occupying the lowest byte-addressed part of the 
int. 

These two examples differ as follows: For big-endian, the high-order bits are occupied first. For little-endian, the 
low-order bits are occupied first.

If one tries to implement bitfields in a less endianness-dependent way, then in the following example struct fourbytes 
would have a different memory layout from struct fouroctets as shown:
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struct fourbytes {
signed char a; signed char b; signed char c; signed char d;

}

struct fouroctets {
int a:8; int b:8; int c:8; int d:8;

}

A field can only be packed inside one storage unit of its defined type. When trying to define a structure for a MIPS 
double-precision floating point number, the mantissa field contains part of two 32-bit int storage units and can’t be 
defined in one attemp. The best that can be done is something similar to the following:

struct ieee754dp_konst {
unsigned sign:1;
unsigned bexp:11;
unsigned manthi:20; /* cannot get 52 bits into... */
unsigned mantlo:32; /* .. a regular C bitfield */

};

16.7.5 Alignment Rules

The full alignment rules for bit-fields are as follows:

• A bit-field must reside entirely in a storage unit that is appropriate for its declared type. Thus a bit-field never 
crosses its unit boundary.

• Bit-fields can share a storage unit with other struct/union members, including members that are not bit-fields (to 
pack together, the adjacent structure member must be of a smaller integer type).

• Structures generally inherit their own alignment requirement from the alignment requirement of their most 
demanding type. Named bit-fields will cause the structure to be aligned (at least) as well as the type requires. 

Unnamed fields - regardless of their defined type - only force the storage unit or overall structure alignment to 
that of the smallest integer type which can accommodate that many bits.

• It may be adventageous to force subsequent structure members to occupy a new storage unit. In some compilers 
this can be done with an unnamed zero-width field. Zero-width fields are otherwise illegal.

16.8 Calling Conventions

The calling convention describes how arguments are passed to functions, and how values are returned. It’s also a con-
venient place to describe the stack frame structure which builds up to represent the current function nest.

ANSI C permits pretty much any value - structures and arrays as well as scalars - to be passed as arguments or 
returned by a function.

16.8.1 Stack Maintenance and Alignment

When the stack is adjusted by functions to make space for local variables, register saves and argument passing, it is 
always adjusted by a multiple of 8 bytes so that the stack base is aligned to the greatest extent required by any vari-
able.
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16.8.2 Registers and the Argument Structure

For efficiency, it is recommended to pass arguments in registers and avoid data loads/stores. But C permits pretty 
much any non-array data type - no matter how large or complex - to be passed as an argument. It is not‘‘obvious’’ 
how such arguments should be passed. To make sure the corner cases are handled correctly, the set of arguments 
passed to a function is mapped as it would be to a memory-based argument structure, and then as much of that struc-
ture as will fit is pasted into the available registers. For any arguments left over after all available argument registers 
have been used up, a copy of that part of the argument structure is placed onto the stack.

The rules are as follows:

1. Each argument is aligned to the start of a new argument slot within the argument structure. These slots are 4 
bytes in size, chosen to match the size of the general-purpose registers. If the next slot doesn’t have the correct 
alignment for a value (for example, a double on o32 requires 8-byte alignment), it is skipped to find a slot which 
is correctly aligned. Skipped slots remain unused. Large arguments may spill over into more than one slot.

2. Integer values are first converted to the type of the argument (if there is a function prototype) using standard C 
rules. Where there is no function prototype, the rules are that integer and floating point values are coerced to 
signed int and double respectively.

3. Integers smaller than int are expanded to int by zero- or sign-extending them in accordance with C rules.

4. Non-integer arguments smaller than a register-sized slot are aligned to the lowest addressed part of the slot.

5. Float arguments are 8-byte aligned and occupy two slots (even though there’s nothing useful in the second four 
bytes).

6. The argument registers are identified with a particular slot in the argument structure. If for alignment or other 
reasons a slot cannot be used, then the corresponding register won’t be used to pass an argument.

7. The caller will always build an argument data structure, even though it may remain unused in whole or part. 
Moreover, the data structure is always a minimum of 16 bytes (four register-sized slots) in size.

8. The first 4 x register-sized (ie 4 byte) slots of the structure are mapped to registers a0-3.

9. o32 does not assume the existence of function prototypes. For reasons to do with the implementation of functions 
with variable numbers of arguments, it is difficult to ensure that the caller and the called function always agree 
when to use a floating point rather than a general-purpose register for an argument.

o32’s rule is that up to two leading floating point arguments will be passed in FP registers, but if the first argu-
ment is not an FP a second FP argument will not be put in an FP register. In functions like printf() the first argu-
ment is a pointer, so floating point values will be passed in integer registers or on the stack.

16.8.3 Returning Values from a Function

In the o32 ABI, a simple scalar value is returned in a register; v0 for integers, and fv0 for floating point values. A sec-
ond integer register is defined for returning larger values, and is used when returning a long long value in o32.

For all other structures or larger values which are not accommodated in the registers, the caller must provide a pointer 
to a memory buffer (usually on the stack, but that’s not mandatory). The caller prepends a pointer to the memory buf-
fer as an implicit first argument, followed by its explicit arguments. The called function should copy the return value 
to the supplied address.
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16.8.4 Calling Conventions Extended for Linux (‘‘MIPS ABI’’) PIC Code.

In PIC code functions are not called directly; instead the compiler/assembler generate code which loads the function 
address from the GOT table (see Section 16.6.4 “PIC Code and the Global Offset Table” above). The disassembled 
code looks something like this:

/* (caller) */
lw t9, <function symbol offset in GOT>(gp)
# nop
jalr t9
# nop
...

/* function */
/* _gp_disp is magic symbol for offset between start of
function and gp pointer into GOT */
li gp, _gp_disp
addu gp, gp, t9
...

It’s mandatory that the t9 register should be used to compute the function address; the function itself depends on it to 
recalculate the GOT base register gp. _gp_disp is calculated so as to place gp 32 KBytes on from the start of the GOT, 
to maximise the amount of the table which is in reach of a MIPS load instruction (which has a ±32K offset range).
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Instruction Set Overview

This chapter provides an overview of the proAptiv Multiprocessing System™ CPU instruction set, including the 
instruction formats and the basic instruction types. 

This chapter discusses the following topics:

• Section 17.1 “CPU Instruction Formats”

• Section 17.2 “Load and Store Instructions”

• Section 17.3 “Computational Instructions” 

• Section 17.4 “Jump and Branch Instructions”

• Section 17.5 “Control Instructions”

• Section 17.6 “Coprocessor Instructions”

• Section 17.7 “New Instructions for the proAptiv™ Core”

• Section 17.8 “Base Instruction Set for the proAptiv™ CPU”

• Section 17.9 “Instruction Latencies and Repeat Rates”

17.1 CPU Instruction Formats

A CPU instruction consists of a single 32-bit word, aligned on a word boundary. There are three instruction formats: 
immediate (I-type), jump (J-type), and register (R-type). The use of a small number of instruction formats simplifies 
instruction decoding, allowing the compiler to synthesize more complicated (and less frequently used) operations and 
addressing modes from these three formats as needed. The instruction formats are shown in Figure 17.1.
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Instruction fetches are either halfword accesses (MIPS16e™ code) or word accesses (32b code). These references 
will be impacted by endianness in the same way as load/store references of those sizes. 

17.3 Computational Instructions

Computational instructions can be either in register (R-type) format, in which both operands are registers, or in imme-
diate (I-type) format, in which one operand is a 16-bit immediate. 

Table 17.1 Byte Access Within a Doubleword

Access Type

Low-Order
Address Bits

Bytes Accessed

Big Endian
(63----------------31-------------------0)

Little Endian
(63----------------31-------------------0)

2 1 0 Byte Byte

Doubleword 0 0 0 0 1 2 3 4 5 6 7 7 6 5 4 3 2 1 0

Word 0 0 0 0 1 2 3 3 2 1 0

1 0 0 4 5 6 7 7 6 5 4

Triplebyte 0 0 0 0 1 2 2 1 0

0 0 1 1 2 3 3 2 1

1 0 0 4 5 6 6 5 4

1 0 1 5 6 7 7 6 5

Halfword 0 0 0 0 1 1 0

0 1 0 2 3 3 2

1 0 0 4 5 5 4

1 1 0 6 7 7 6

Byte 0 0 0 0 0

0 0 1 1 1

0 1 0 2 2

0 1 1 3 3

1 0 0 4 4

1 0 1 5 5

1 1 0 6 6

1 1 1 7 7
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Computational instructions perform the following operations on register values:

– Arithmetic

– Logical

– Shift

– Count Leading Zeros/Ones

– Multiply

– Divide

17.4 Jump and Branch Instructions

Jump and branch instructions change the control flow of a program. All MIPS32 R3 jump and branch instructions 
occur with a delay of one instruction: that is, the instruction immediately following the jump or branch (the instruc-
tion in the so-called delay slot) always executes while the target instruction is being fetched from storage.

17.4.1 Overview of Jump Instructions

Subroutine calls in high-level languages are usually implemented with Jump (J) or Jump and Link (JAL) instructions, 
both of which have the J-type format. In J-type format, the 26-bit target address shifts left 2 bits and combines with 
the high-order 4 bits of the current program counter to form an absolute address.

Returns and large cross-page jumps are usually implemented with the Jump Register (JR) or Jump and Link Register 
(JALR) instructions. Both are R-type instructions that use the 32-bit byte address contained in one of the general pur-
pose registers.

For more information about jump instructions, refer to the individual instructions in MIPS32® Architecture Reference 
Manual, Volume II: The MIPS32® Instruction Set.

17.4.2 Overview of Branch Instructions

All branch instruction target addresses are computed by adding the address of the instruction in the delay slot to the 
16-bit offset (shifted left 2 bits and sign-extended to 32 bits). All MIPS32 R3 branches occur with a delay of one 
instruction.

If a conditional branch likely is not taken, the instruction in the delay slot is nullified.

Branches, jumps, ERET, and DERET instructions should not be placed in the delay slot of a branch or jump.

17.5 Control Instructions

Control instructions allow the software to initiate traps; they are always R-type. 
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17.6 Coprocessor Instructions

CP0 instructions perform operations on the System Control Coprocessor registers to manipulate the memory manage-
ment and exception handling facilities of the processor. 

CP1 instructions perform operations on the floating point unit (FPU).

CP2 instructions are not implemented in proAptiv.

17.7 New Instructions for the proAptiv™ Core

This section describes the new instructions added to the MIPS32 Release 3 architecture. Table 17.2 lists the instruc-
tions in alphabetical order. Additional instruction information in theMIPS32® Architecture Reference Manual is not 
duplicated here. 

Table 17.2 proAptiv Multiprocessing System™ CPU Instruction Set 

Instruction Description Function

CACHEE Cache Instruction EVA See the description of the CACHE/CACHEE instruction in Chap-
ter 19.

LBE Load Byte EVA Same as the LB instruction, except that it allows kernel addess to 
user addresses. Refer to the LB instruction in Table 17.3 for func-
tional information.

LBUE Load Byte Unsigned EVA Same as the LBU instruction, except that it allows kernel addess 
to user addresses. Refer to the LBU instruction Table 17.3 for 
functional information.

LHE Load Halfword EVA Same as the LH instruction, except that it allows kernel addess to 
user addresses. Refer to the LH instruction Table 17.3 for func-
tional information.

LHUE Load Halfword Unsigned EVA Same as the LB instruction, except that it allows kernel addess to 
user addresses. Refer to the LH instruction Table 17.3 for func-
tional information.

LLE Load Linked EVA Same as the LL instruction, except that it allows kernel addess to 
user addresses. Refer to the LL instruction Table 17.3 for func-
tional information.

LWE Load Word EVA Same as the LW instruction, except that it allows kernel addess to 
user addresses. Refer to the LW instruction in Table 17.3 for 
functional information.

LWLE Load Word Left EVA Same as the LWL instruction, except that it allows kernel addess 
to user addresses. Refer to the LWL instruction in Table 17.3 for 
functional information.

LWRE Load Word Right EVA Same as the LWR instruction, except that it allows kernel addess 
to user addresses. Refer to the LWR instruction in Table 17.3 for 
functional information.

PREFE Prefetch EVA Load Specified Line into Cache. See also the description of the 
PREF / PREFE instruction in.Chapter 19.
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SBE Store Byte EVA Same as the SB instruction, except that it allows kernel addess to 
user addresses. Refer to the SB instruction in Table 17.3 for func-
tional information.

SCE Store Conditional EVA Same as the SC instruction, except that it allows kernel addess to 
user addresses. Refer to the SC instruction in Table 17.3 for func-
tional information.

SHE Store Halfword EVA Same as the SH instruction, except that it allows kernel addess to 
user addresses. Refer to the SH instruction in Table 17.3 for func-
tional information.

SWE Store Word EVA Same as the SW instruction, except that it allows kernel addess to 
user addresses. Refer to the SW instruction in Table 17.3 for 
functional information.

SWLE Store Word Left EVA Same as the SWL instruction, except that it allows kernel addess 
to user addresses. Refer to the SWL instruction in Table 17.3 for 
functional information.

SWRE Store Word Right EVA Same as the SWR instruction, except that it allows kernel addess 
to user addresses. Refer to the SWR instruction in Table 17.3 for 
functional information.

TLBINV TLB Invalidate TLBINV invalidates a set of TLB entries based on ASID 
and Index match. On execution of the TLBINV instruc-
tion, the set of TLB entries with matching ASID are 
marked invalid, excluding those TLB entries which have 
their G bit set to 1. For more informaiton, refer to the TLB-
INV instruction in Chapter 19.

TLBINVF TLB Invalidate Flush TLBINV invalidates a set of TLB entries based on ASID 
and Index match. On execution of the TLBINVF instruc-
tion, all entries within range of Index are invalidated. For 
more informaiton, refer to the TLBINVF instruction in 
Chapter 19.

Table 17.2 proAptiv Multiprocessing System™ CPU Instruction Set (continued)

Instruction Description Function
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17.8 Base Instruction Set for the proAptiv™ CPU

This section describes the base instructions for the MIPS32 Release 3 architecture. Table 17.3 lists the instructions in 
alphabetical order. Following the table, the instructions that have implementation-dependent behavior in the proAptiv 
Multiprocessing System CPU are described individually. The descriptions of other instructions that exist in 
theMIPS32® Architecture Reference Manual are not duplicated here. 

Refer to Volume II of the MIPS32® Architecture Reference Manual for more information about the instruction 
descriptions. That document contains a description of the instruction fields, a definition of terms, and a description 
function notation. 

Table 17.3 proAptiv Multiprocessing System™ CPU Instruction Set 

Instruction Description Function

ADD Integer Add Rd = Rs + Rt

ADDI Integer Add Immediate Rt = Rs + Immed

ADDIU Unsigned Integer Add Immediate Rt = Rs +U Immed

ADDIUPC Unsigned Integer Add Immediate to PC (MIPS16 only) Rt = PC +u Immed

ADDU Unsigned Integer Add Rd = Rs +U Rt

AND Logical AND Rd = Rs & Rt

ANDI Logical AND Immediate Rt = Rs & (016 || Immed)

B Unconditional Branch
(Assembler idiom for: BEQ r0, r0, offset)

PC += (int)offset

BAL Branch and Link
(Assembler idiom for: BGEZAL r0, offset)

GPR[31] = PC + 8
PC += (int)offset

BEQ Branch On Equal if Rs == Rt
PC += (int)offset

BEQL Branch On Equal Likely if Rs == Rt
PC += (int)offset

else
Ignore Next Instruction

BGEZ Branch on Greater Than or Equal To Zero if !Rs[31]
PC += (int)offset

BGEZAL Branch on Greater Than or Equal To Zero And Link GPR[31] = PC + 8
if !Rs[31]

PC += (int)offset

BGEZALL Branch on Greater Than or Equal To Zero And Link 
Likely

GPR[31] = PC + 8
if !Rs[31]

PC += (int)offset
else

Ignore Next Instruction

BGEZL Branch on Greater Than or Equal To Zero Likely if !Rs[31]
PC += (int)offset

else
Ignore Next Instruction
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BGTZ Branch on Greater Than Zero if !Rs[31] && Rs != 0
PC += (int)offset

BGTZL Branch on Greater Than Zero Likely if !Rs[31] && Rs != 0
PC += (int)offset

else
Ignore Next Instruction

BLEZ Branch on Less Than or Equal to Zero if Rs[31] || Rs == 0
PC += (int)offset

BLEZL Branch on Less Than or Equal to Zero Likely if Rs[31] || Rs == 0
PC += (int)offset

else
Ignore Next Instruction

BLTZ Branch on Less Than Zero if Rs[31]
PC += (int)offset

BLTZAL Branch on Less Than Zero And Link GPR[31] = PC + 8
if Rs[31]

PC += (int)offset

BLTZALL Branch on Less Than Zero And Link Likely GPR[31] = PC + 8
if Rs[31]

PC += (int)offset
else

Ignore Next Instruction

BLTZL Branch on Less Than Zero Likely if Rs[31]
PC += (int)offset

else
Ignore Next Instruction

BNE Branch on Not Equal if Rs != Rt
PC += (int)offset

BNEL Branch on Not Equal Likely if Rs != Rt
PC += (int)offset

else
Ignore Next Instruction

BREAK Breakpoint Break Exception

CACHE Cache Operation See the description of the CACHE instruc-
tion.Refer to the Caches chapter for more infor-
mation.

CLO Count Leading Ones Rd = NumLeadingOnes(Rs)

CLZ Count Leading Zeroes Rd = NumLeadingZeroes(Rs)

COP0 Coprocessor 0 Operation See Software User’s Manual

DERET Return from Debug Exception PC = DEPC
Exit Debug Mode

DI Atomically Disable Interrupts Rt = Status; StatusIE = 0

DIV Divide LO = (int)Rs / (int)Rt
HI = (int)Rs % (int)Rt

Table 17.3 proAptiv Multiprocessing System™ CPU Instruction Set (continued)

Instruction Description Function
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DIVU Unsigned Divide LO = (uns)Rs / (uns)Rt
HI = (uns)Rs % (uns)Rt

EHB Execution Hazard Barrier Stop instruction execution until execution haz-
ards are cleared

EI Atomically Enable Interrupts Rt = Status; StatusIE = 1

ERET Return from Exception if SR[2]
PC = ErrorEPC

else
PC = EPC
SR[1] = 0

SR[2] = 0
LL = 0

EXT Extract Bit Field Rt = ExtractField(Rs, pos, size)

INS Insert Bit Field Rt = InsertField(Rs, Rt, pos, size)

J Unconditional Jump PC = PC[31:28] || offset<<2

JAL Jump and Link GPR[31] = PC + 8
PC = PC[31:28] || offset<<2

JALR Jump and Link Register Rd = PC + 8
PC = Rs

JALR.HB Jump and Link Register with Hazard Barrier Like JALR, but also clears execution and 
instruction hazards

JALRC Jump and Link Register Compact - do not execute 
instruction in jump delay slot (MIPS16 only)

Rd = PC + 2
PC = Rs

JR Jump Register PC = Rs

JR.HB Jump Register with Hazard Barrier Like JR, but also clears execution and instruc-
tion hazards

JRC Jump Register Compact - do not execute instruction in 
jump delay slot (MIPS16 only)

PC = Rs

LB Load Byte Rt = (byte)Mem[base+offset]

LBU Unsigned Load Byte Rt = (ubyte)Mem[base+offset]

LH Load Halfword Rt = (half)Mem[base+offset]

LHU Unsigned Load Halfword Rt = (uhalf)Mem[base+offset]

LL Load Linked Word Rt = Mem[base+offset]
LL = 1

See also the description of the LL instruction 
on page 837.

LUI Load Upper Immediate Rt = immediate << 16

LW Load Word Rt = Mem[Rs+offset]

LWPC Load Word, PC relative Rt = Mem[PC+offset]

Table 17.3 proAptiv Multiprocessing System™ CPU Instruction Set (continued)

Instruction Description Function
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LWL Load Word Left See Architecture Reference Manual

LWR Load Word Right See Architecture Reference Manual

MADD Multiply-Add HI | LO += (int)Rs * (int)Rt

MADDU Multiply-Add Unsigned HI | LO += (uns)Rs * (uns)Rt

MFC0 Move From Coprocessor 0 Rt = CPR[0, Rd, sel]

MFHI Move From HI Rd = HI

MFLO Move From LO Rd = LO

MOVN GPR Conditional Move on Not Zero if Rt ≠ 0 then
Rd = Rs

MOVZ GPR Conditional Move on Zero if Rt = 0 then
Rd = Rs

MSUB Multiply-Subtract HI | LO -= (int)Rs * (int)Rt

MSUBU Multiply-Subtract Unsigned HI | LO -= (uns)Rs * (uns)Rt

MTC0 Move To Coprocessor 0 CPR[0, n, Sel] = Rt

MTHI Move To HI HI = Rs

MTLO Move To LO LO = Rs

MUL Multiply with register write HI | LO =Unpredictable
Rd = ((int)Rs * (int)Rt)31..0

MULT Integer Multiply HI | LO = (int)Rs * (int)Rd

MULTU Unsigned Multiply HI | LO = (uns)Rs * (uns)Rd

NOP No Operation
(Assembler idiom for: SLL r0, r0, r0)

NOR Logical NOR Rd = ~(Rs | Rt)

OR Logical OR Rd = Rs | Rt

ORI Logical OR Immediate Rt = Rs | Immed

PREF Prefetch Load Specified Line into Cache. See also the 
description of the PREF instruction on 
page 839.

RDHWR Read Hardware Register Allows unprivileged access to registers enabled 
by HWREna register

RDPGPR Read GPR from Previous Shadow Set Rt = SGPR[SRSCtlPSS, Rd]

RESTORE Restore registers and deallocate stack frame (MIPS16 
only)

See Architecture Reference Manual

ROTR Rotate Word Right Rd = Rtsa-1..0 || Rt31..sa

ROTRV Rotate Word Right Variable Rd = RtRs-1..0 || Rt31..Rs

Table 17.3 proAptiv Multiprocessing System™ CPU Instruction Set (continued)

Instruction Description Function
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SAVE Save registers and allocate stack frame (MIPS16 only) See Architecture Reference Manual

SB Store Byte (byte)Mem[base+offset] = Rt

SC Store Conditional Word if LL = 1
   mem[base+offset] = Rt
Rt = LL

See also the description of the SC instruction 
on page 841.

SDBBP Software Debug Break Point Trap to SW Debug Handler

SEB Sign Extend Byte Rd = (byte)Rs

SEH Sign Extend Half Rd = (half)Rs

SH Store Half (half)Mem[base+offset] = Rt

SLL Shift Left Logical Rd = Rt << sa

SLLV Shift Left Logical Variable Rd = Rt << Rs[4:0]

SLT Set on Less Than if (int)Rs < (int)Rt
Rd = 1

else
Rd = 0

SLTI Set on Less Than Immediate if (int)Rs < (int)Immed
Rt = 1

else
Rt = 0

SLTIU Set on Less Than Immediate Unsigned if (uns)Rs < (uns)Immed
Rt = 1

else
Rt = 0

SLTU Set on Less Than Unsigned if (uns)Rs < (uns)Immed
Rd = 1

else
Rd = 0

SRA Shift Right Arithmetic Rd = (int)Rt >> sa

SRAV Shift Right Arithmetic Variable Rd = (int)Rt >> Rs[4:0]

SRL Shift Right Logical Rd = (uns)Rt >> sa

SRLV Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]

SSNOP Superscalar Inhibit No Operation NOP

SUB Integer Subtract Rt = (int)Rs - (int)Rd

SUBU Unsigned Subtract Rt = (uns)Rs - (uns)Rd

SW Store Word Mem[base+offset] = Rt

SWL Store Word Left See Architecture Reference Manual

SWR Store Word Right See Architecture Reference Manual

Table 17.3 proAptiv Multiprocessing System™ CPU Instruction Set (continued)

Instruction Description Function
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SYNC Synchronize See the description of the SYNC instruction on 
page 843.

SYNCI Synchronize Caches to Make Instruction Writes Effec-
tive

For D-cache writeback and I-cache invalidate 
on specified address

SYSCALL System Call SystemCallException

TEQ Trap if Equal if Rs == Rt
TrapException

TEQI Trap if Equal Immediate if Rs == (int)Immed
  TrapException

TGE Trap if Greater Than or Equal if (int)Rs >= (int)Rt
  TrapException

TGEI Trap if Greater Than or Equal Immediate if (int)Rs >= (int)Immed
  TrapException

TGEIU Trap if Greater Than or Equal Immediate Unsigned if (uns)Rs >= (uns)Immed
  TrapException

TGEU Trap if Greater Than or Equal Unsigned if (uns)Rs >= (uns)Rt
  TrapException

TLBWI Write Indexed TLB Entry See the description of the TLBWI instruction 
on page 853.

TLBWR Write Random TLB Entry See the description of the TLBWR instruction 
on page 855.

TLBP Probe TLB for Matching Entry See Software Users Manual 

TLBR Read Index for TLB Entry See the description of the TLBR instruction on 
page 851.

TLT Trap if Less Than if (int)Rs < (int)Rt
  TrapException

TLTI Trap if Less Than Immediate if (int)Rs < (int)Immed
  TrapException

TLTIU Trap if Less Than Immediate Unsigned if (uns)Rs < (uns)Immed
  TrapException

TLTU Trap if Less Than Unsigned if (uns)Rs < (uns)Rt
  TrapException

TNE Trap if Not Equal if Rs != Rt
  TrapException

TNEI Trap if Not Equal Immediate if Rs != (int)Immed
  TrapException

WAIT Wait for Interrupts Stall until interrupt occurs. See the description 
of the WAIT instruction on page 857.

WRPGPR Write to GPR in Previous Shadow Set SGPR[SRSCtlPSS, Rd] = Rt

Table 17.3 proAptiv Multiprocessing System™ CPU Instruction Set (continued)

Instruction Description Function
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WSBH Word Swap Bytes Within HalfWords Rd = Rt23..16 || Rt31..24 || Rt7..0 || 

Rt15..8

XOR Exclusive OR Rd = Rs ^ Rt

XORI Exclusive OR Immediate Rt = Rs ^ (uns)Immed

ZEB Zero extend byte (MIPS16 only) Rt = (ubyte) Rs

ZEH Zero extend half (MIPS16 only) Rt = (uhalf) Rs

Table 17.3 proAptiv Multiprocessing System™ CPU Instruction Set (continued)

Instruction Description Function



 

818 MIPS32® proAptiv™ Multiprocessing System Software User’s Manual, Revision 01.22

17.9 Instruction Latencies and Repeat Rates

Latency is defined with respect to instruction pair, but for ease of documenting they are defined for the instruction. If 
the behavior per instruction differs from that of an instruction pair, this difference is mentioned in the Notes column. 
If the instruction does not loads any general purpose register (GPR) then it is shown as not applicapble (n/a). Note 
that the DSP instruction latencies are listed in the DSP chapter.

Repeat rate is measured as number of independent instructions that can be sent in 1 cycle. 

Table 17.4 proAptiv Instruction Latencies and Repeat Rates 

Instruction Latency
Repeat 

Rate Notes

Optimized Operations

ADD, ADDU, ADDI, ADDIU, AND, ANDI, LUI, OR, ORI, 
XOR, XORI, NOR, SLL (shift_amount<=8), SRL 
(24<shift_amount<=31), SEB, SEH, SLT, SLTU, SLTI, SLTIU, 
SUB, SUBU

1 2

Larger Shifts and Rotates

ROTR, ROTRV, SLL (shift_amount>8), SLLV, SRA, SRAV, 
SRL (shift_amount<=24), SRLV

2 1

Counting

CLO, CLZ 2 1

Data Dependent

DIV, DIVU n/a blocking

Multiply

MUL 6 1

CPU Branch and Jump without Link 

B, BEQ, BNE, BGEZ, BGTZ, BLEZ, BLTZ, J, JR n/a 1

CPU Branch and Jump with Link 

BAL, BGEZAL, BLTZAL, JAL, JALR, JALX n/a, 2 1

Obsolete CPU Branch Instructions without Link

BEQL, BNEL, BGEZL, BGTZL, BLEZL, BLTZL n/a 1

Obsolete CPU Branch Instructions with Link

BGEZALL, BLTZALL n/a, 2 1

FPU Branch Instructions

BC1F, BC1T n/a 1

Obsolete FPU Branch Instructions

BC1FL, BC1TL n/a 1

Hazard Barriers

JR.HB, EHB n/a 1

Hazard Barriers with Link

JALR.HB n/a 2 + 1

No Operation
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NOP, SSNOP, PAUSE n/a 2

Loads

LB, LBU, LH, LHU, LW, LWL, LWR, LL 4 1 Assuming L1 data cache.

Stores

SB, SH, SW, SWL, SWR, PREF, PREFX, SYNC, SYNCI n/a 1

EXT, INS, WSBH 2 1

SC 13 1

Integer Move Based On Floating Point Condition Code

MOVF, MOVT 1 1

Integer Move Based On Integer Register Value

MOVN, MOVZ 1 1

Read Hardware Register

RDHWR 5 1

FPU Move Instructions 

CFC1, MFC1, MFHC1, CTC1, MTC1, MTHC1

Trap Instructions

TEQ, TEQI, TGE, TGEI, TGEIU, TGEU n/a 1

TLT, TLTI, TLTIU, TLTU, TNE, TNEI, BREAK, SYSCALL n/a 1

FPU Load/Store Instructions

LDC1, LDXC1, LUXC1, LWC1, LWXC1, SDC1, SDXC1, 
SUXC1, SWC1, SWXC1

Privileged Instructions

CACHE, ERET n/a 1

MFC0 5 1

RDPGPR n/a 1 Waits for the instruction to graduate before 
issuing dependents.

MTC0 n/a 1

TLBP, TLBR, TLBWI, TLBWR n/a 1

WAIT, WRPGPR n/a 1

DI, EI n/a 1 Since this instruction causes execution haz-
ard barrier, software should handle it so the 
latency is not applicable.

EJTAG Instructions

DERET, SDBBP n/a 1

Table 17.4 proAptiv Instruction Latencies and Repeat Rates (continued)

Instruction Latency
Repeat 

Rate Notes
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MIPS16e Application-Specific Extension to the MIPS32® 
Instruction Set

This chapter describes the MIPS16e ASE as implemented in the proAptiv core. Refer to Volume IV-a of the MIPS32 
Architecture Reference Manual for a general description of the MIPS16e ASE and detailed descriptions of the 
instructions. 

 This chapter covers the following topics:

• Section 18.1 “Instruction Bit Encoding”

• Section 18.2 “Instruction Listing”

18.1 Instruction Bit Encoding

Table 18.2 through Table 18.9 describe the encoding used for the MIPS16e ASE. Table 18.1 describes the meaning of 
the symbols used in the tables.

Table 18.1 Symbols Used in the Instruction Encoding Tables

∗ Operation or field codes marked with this symbol are reserved for future use. Executing such an 
instruction causes a Reserved Instruction Exception.

δ (Also italic field name.) Operation or field codes marked with this symbol denote a field class. The 
instruction word must be further decoded by examining additional tables that show values for another 
instruction field.

β Operation or field codes marked with this symbol represent a valid encoding for a higher-order MIPS 
ISA level. Executing such an instruction causes a Reserved Instruction Exception.

θ Operation or field codes marked with this symbol are available to licensed MIPS partners. To avoid 
multiple conflicting instruction definitions, the partner must notify MIPS Technologies, Inc. when one 
of these encodings is used. If no instruction is encoded with this value, executing such an instruction 
must cause a Reserved Instruction Exception (SPECIAL2 encodings or coprocessor instruction encod-
ings for a coprocessor to which access is allowed) or a Coprocessor Unusable Exception (coprocessor 
instruction encodings for a coprocessor to which access is not allowed).

σ Field codes marked with this symbol represent an EJTAG support instruction and implementation of 
this encoding is optional for each implementation. If the encoding is not implemented, executing such 
an instruction must cause a Reserved Instruction Exception. If the encoding is implemented, it must 
match the instruction encoding as shown in the table.

ε Operation or field codes marked with this symbol are reserved for MIPS Application Specific Exten-
sions. If the ASE is not implemented, executing such an instruction must cause a Reserved Instruction 
Exception.

φ Operation or field codes marked with this symbol are obsolete and will be removed from a future revi-
sion of the MIPS64 ISA. Software should avoid using these operation or field codes.
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Table 18.2 MIPS16e Encoding of the Opcode Field

opcode  bits 13..11
0 1 2 3 4 5 6 7

bits 15..14 000 001 010 011 100 101 110 111
0 00 ADDIUSP1

1. The ADDIUSP opcode is used by the ADDIU rx, sp, immediate instruction

ADDIUPC2

2. The ADDIUPC opcode is used by the ADDIU rx, pc, immediate instruction

B JAL(X) δ BEQZ BNEZ SHIFT δ β

1 01 RRI-A δ ADDIU83

3. The ADDIU8 opcode is used by the ADDIU rx, immediate instruction

SLTI SLTIU I8 δ LI CMPI β

2 10 LB LH LWSP4

4. The LWSP opcode is used by the LW rx, offset(sp) instruction

LW LBU LHU LWPC5

5. The LWPC opcode is used by the LW rx, offset(pc) instruction

β

3 11 SB SH SWSP6

6. The SWSP opcode is used by the SW rx, offset(sp) instruction

SW RRR δ RR δ EXTEND δ β

Table 18.3 MIPS16e JAL(X) Encoding of the x Field

x  bit 26
0 1

JAL JALX

Table 18.4 MIPS16e SHIFT Encoding of the f Field

f  bits 1..0
0 1 2 3
00 01 10 11

SLL β SRL SRA

Table 18.5 MIPS16e RRI-A Encoding of the f Field

f  bit 4
0 1

ADDIU1

1. The ADDIU function is used by 
the ADDIU ry, rx, immediate 
instruction

β

Table 18.6 MIPS16e I8 Encoding of the funct Field

funct  bits 10..8
0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111
BTEQZ BTNEZ SWRASP1

1. The SWRASP function is used by the SW ra, offset(sp) instruction

ADJSP2

2. The ADJSP function is used by the ADDIU sp, immediate instruction

SVRS δ MOV32R3

3. The MOV32R function is used by the MOVE r32, rz instruction

* MOVR324
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18.2 Instruction Listing

The MIPS16e instructions are listed by instruction type in Table 18.12 through Table 18.19.

4. The MOVR32 function is used by the MOVE ry, r32 instruction

Table 18.7 MIPS16e RRR Encoding of the f Field

f  bits 1..0
0 1 2 3

00 01 10 11
β ADDU β SUBU

Table 18.8 MIPS16e RR Encoding of the Funct Field

funct  bits 2..0
0 1 2 3 4 5 6 7

bits 4..3 000 001 010 011 100 101 110 111
0 00 J(AL)R(C) δ SDBBP SLT SLTU SLLV BREAK SRLV SRAV
1 01 β * CMP NEG AND OR XOR NOT
2 10 MFHI CNVT δ MFLO β β * β β
3 11 MULT MULTU DIV DIVU β β β β

Table 18.9 MIPS16e I8 Encoding of the s Field when funct=SVRS

s  bit 7
0 1

RESTORE SAVE

Table 18.10 MIPS16e RR Encoding of the ry Field when funct=J(AL)R(C)

ry  bits 7..5
0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111
JR rx JR ra JALR * JRC rx JRC ra JALRC *

Table 18.11 MIPS16e RR Encoding of the ry Field when funct=CNVT

ry  bits 7..5
0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111
ZEB ZEH β * SEB SEH β *
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Table 18.12 MIPS16e Load and Store Instructions

Mnemonic Instruction
Extensible 
Instruction

LB Load Byte Yes

LBU Load Byte Unsigned Yes

LH Load Halfword Yes

LHU Load Halfword Unsigned Yes

LW Load Word Yes

SB Store Byte Yes

SH Store Halfword Yes

SW Store Word Yes

Table 18.13 MIPS16e Save and Restore Instructions

Mnemonic Instruction
Extensible 
Instruction

RESTORE Restore Registers and Deallocate Stack Frame Yes

SAVE Save Registers and Setup Stack Frame Yes

Table 18.14 MIPS16e ALU Immediate Instructions

Mnemonic Instruction
Extensible 
Instruction

ADDIU Add Immediate Unsigned Yes

CMPI Compare Immediate Yes

LI Load Immediate Yes

SLTI Set on Less Than Immediate Yes

SLTIU Set on Less Than Immediate Unsigned Yes

Table 18.15 MIPS16e Arithmetic Two or Three Operand Register Instructions

Mnemonic Instruction
Extensible 
Instruction

ADDU Add Unsigned No

AND AND No

CMP Compare No

MOVE Move No

NEG Negate No
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NOT Not No

OR OR No

SEB Sign-Extend Byte No

SEH Sign-Extend Halfword No

SLT Set on Less Than No

SLTU Set on Less Than Unsigned No

SUBU Subtract Unsigned No

XOR Exclusive OR No

ZEB Zero-Extend Byte No

ZEH Zero-Extend Halfword No

Table 18.16 MIPS16e Special Instructions

Mnemonic Instruction
Extensible 
Instruction

BREAK Breakpoint No

SDBBP Software Debug Breakpoint No

EXTEND Extend No

Table 18.17 MIPS16e Multiply and Divide Instructions

Mnemonic Instruction
Extensible 
Instruction

DIV Divide No

DIVU Divide Unsigned No

MFHI Move From HI No

MFLO Move From LO No

MULT Multiply No

MULTU Multiply Unsigned No

Table 18.18 MIPS16e Jump and Branch Instructions

Mnemonic Instruction
Extensible 
Instruction

B Branch Unconditional Yes

BEQZ Branch on Equal to Zero Yes

BNEZ Branch on Not Equal to Zero Yes

Table 18.15 MIPS16e Arithmetic Two or Three Operand Register Instructions

Mnemonic Instruction
Extensible 
Instruction
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BTEQZ Branch on T Equal to Zero Yes

BTNEZ Branch on T Not Equal to Zero Yes

JAL Jump and Link No

JALR Jump and Link Register No

JALRC Jump and Link Register Compact No

JALX Jump and Link Exchange No

JR Jump Register No

JRC Jump Register Compact No

Table 18.19 MIPS16e Shift Instructions

Mnemonic Instruction
Extensible 
Instruction

SRA Shift Right Arithmetic Yes

SRAV Shift Right Arithmetic Variable No

SLL Shift Left Logical Yes

SLLV Shift Left Logical Variable No

SRL Shift Right Logical Yes

SRLV Shift Right Logical Variable No

Table 18.18 MIPS16e Jump and Branch Instructions

Mnemonic Instruction
Extensible 
Instruction
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Implementation-specific Instructions

This chapter describes the architectural definition for the following implementation-specific instructions in the 
proAptiv Multiprocessing System. 

• CACHE: Cache Operation

• LL: Load Linked Word

• PREF: Prefetch 

• SC: Store Conditional

• SYNC: Synchronize Shared Memory

• TLBR: Read Indexed TLB Entry

• TLBWI: Write Indexed TLB Entry

• TLBWR: Write Random TLB Entry

• WAIT: Enter Standby Mode

• CACHEE: Cache Operation EVA

• LLE: Load Link EVA

• PREFE: Prefetch EVA

• SCE: Store Conditional EVA
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Error Exception due to an non-aligned address.

A Cache Error exception may occur as a by-product of some operations performed by this instruction. For example, if
a Writeback operation detects a cache or bus error during the processing of the operation, that error is reported via a
Cache Error exception. Similarly, a Bus Error Exception may occur if a bus operation invoked by this instruction is
terminated in an error. However, cache error exceptions must not be triggered by an Index Load Tag or Index Store
tag operation, as these operations are used for initialization and diagnostic purposes.

An address Error Exception (with cause code equal AdEL) occurs if the effective address references a portion of the
kernel address space which would normally result in such an exception. The preferred implementation is not to match
on the cache instruction.

Bits [17:16] of the instruction specify the cache on which to perform the operation, as follows

Some of the operations use coprocessor0 registers as either sources or destinations. Each of the caches has a separate
set of Tag and Data registers. The last column in Table 19.2 lists which registers are used by operations to each cache. 

Bits [20:18] of the instruction specify the operation to perform.On Index Load Tag and Index Store Data operations,
the specific word (primary D) or double-word (primary I, secondary) that is addressed is loaded into or read from the
DDataLo (primary D), L23DataLo, and L23DataHi (secondary), or IDataLo and IDataHi (primary I) registers. All
other cache instructions are line-based, and the word and byte indexes will not affect their operation 

Table 19.3 shows the normal mode condition where the ErrCtlWST, ErrCtlSPR, and ErrCtlDYT bits of the CP0 ErrCtl reg-
ister are all cleared. Refer to the ErrCtl register of the CP0 chapter for more information. 

Table 19.2 Encoding of Bits[17:16] of CACHE Instruction

Code Name Cache Cop0 Registers Used

2’b00 I Primary Instruction ITagLo, ITagHi, IDataLo, IDataHi, ErrCtl

2’b01 D Primary Data DTagLo, DTagHi, DDataLo, ErrCtl

2’b10 T Tertiary - Not supported

2’b11 S Secondary L2TagLo

Table 19.3  Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST, SPR, DYT] Cleared 

Code Caches Name

Effective 
Address 
Operand 

Type Operation

3’b000 I Index Invalidate Index Set the state of the cache line at the specified index to invalid.
This encoding may be used by software to invalidate the entire 
instruction cache by stepping through all valid indices.

D, S Index Writeback 
Invalidate

Index If the state of the cache line at the specified index is valid and dirty, 
write the line back to the memory address specified by the cache tag. 
After that operation is completed, set the state of the cache line to 
invalid. If the line is valid but not dirty, set the state of the line to 
invalid.

This encoding may be used by software to invalidate the entire data 
cache by stepping through all valid indices. Note that Index Store 
Tag should be used to initialize the cache at powerup.
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3’b001 I Index Load Tag Index • Read the tag for the cache line at the specified index into the 
ITagLo and ITagHi registers.

• Read the data corresponding to the dword index into the 
IDataLo and IDataHi registers.

• If parity is implemented, read the parity bits corresponding to the 
data into the ErrCtlPI field.

3’b001 D Index Load Tag Index • Read the tag for the cache line at the specified index into the CP0 
DTagLo register. 

• Read the data corresponding to the word index into the 
DDataLo register. 

• Data array parity bits are read into the ErrCtl register.

3’b001 S Index Load Tag Index • Read the tag for the cache line at the specified index into theCP0 
L23TagLo register. 

• Read the data corresponding to the dword index into the 
L23DataLo and L23DataHi registers. 

3’b010 I Index Store Tag Index • Write the tag for the cache block at the specified index from the 
ITagLo and ITagHi registers. 

• Parity written into the cache is generated by the hardware if 
ErrCtlPO = 0, or it is obtained from ITagLo if ErrCtlPO = 1.

3’b010 D Index Store Tag Index Write the tag for the cache line at the specified index from the CP0 
DTagLo (data cache) register.

By default, the tag parity value will be automatically calculated. For 
test purposes, the parity bits from the DTagLo register will be used 
if ErrCtlPO is set.

This encoding may be used by software to initialize the entire 
instruction or data caches by stepping through all valid indices. 
Doing so requires that the DTagLo register associated with the 
cache be initialized first.

3’b010 S Index Store Tag Index Write the tag for the L2 cache line at the specified index from the 
CP0 L23TagLo (L2 cache) register.

By default, the tag parity value will be automatically calculated. For 
test purposes, the parity/ECC bits from the L23TagLo register will 
be used if ErrCtlPO is set. The L2 cache ECC bits come from the 
L23TagLo register. 

3’b011 I, D Index Store Data Unspecified Write the data for the cache line at the specified index from the 
associated DataHi/DataLo Coprocessor 0 registers. Writes to 
instruction cache are doubleword wide and use IDataLo/IDataHi
Coprocessor 0 registers. Writes to data cache are word wide and 
use the data from DDataLo register. 

3’b011 S Index Store Data Index Write the L23DataHi and L23DataLo Coprocessor 0 register 
contents at the way and dword index specified. 

The ECC bits are always generated by the hardware (if present).

Table 19.3  Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST, SPR, DYT] Cleared (continued)

Code Caches Name

Effective 
Address 
Operand 

Type Operation
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3’b100 All Hit Invalidate Address If the cache line contains the specified address, set the state of the 
cache line to invalid.
This encoding may be used by software to invalidate a range of 
addresses from the instruction cache by stepping through the 
address range by the line size of the cache.

3’b101 I Fill Address Fill the cache from the specified address.

The cache line is refetched even if it is already in the cache. In that 
case, the existing copy in the cache is invalidated

D, S Hit WriteBack 
Invalidate

Address If the cache line contains the specified address and it is valid and 
dirty, write the contents back to memory. After that operation is 
completed, set the state of the cache line to invalid. If the line is 
valid but not dirty, set the state of the line to invalid.

This encoding may be used by software to invalidate a range of 
addresses from the data cache by stepping through the address 
range by the line size of the cache.

3’b110 D, S Hit WriteBack Address If the cache line contains the specified address and it is valid and 
dirty, write the contents back to memory. After the operation is 
completed, leave the state of the line valid, but clear the dirty state.

3’b111 All Fetch and Lock Address If the cache does not contain the specified address, fill it from 
memory, performing a writeback if required, and set the state to 
valid and locked. If the cache already contains the specified address, 
set the state to locked. The way selected on fill from memory is the 
least recently used.

The lock state is cleared by executing an Index Invalidate, Index 
Writeback Invalidate, Hit Invalidate, or Hit Writeback Invalidate 
operation to the locked line, or via an Index Store Tag operation with 
the lock bit reset in the associated TagLo register.

It is illegal to lock all ways at a given cache index. If all ways are 
locked, subsequent references to that index will displace one of the 
locked lines.

Table 19.3  Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST, SPR, DYT] Cleared (continued)

Code Caches Name

Effective 
Address 
Operand 

Type Operation
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Table 19.4 shows the condition for the way select test where the ErrCtlWST bit is set, and the ErrCtlSPR and ErrCtlDYT
bits of the CP0 ErrCtl register are cleared. Refer to the ErrCtl register of the CP0 chapter for more information. 

Table 19.4 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST] Set, ErrCtl[SPR, DYT] Cleared 

Code Caches Name

Effective 
Address 
Operand 

Type Operation

3’b001 All Index Load WS Index Read the WS RAM at the specified index into the associated ItagLo, 
DTagLo, or L23TagLo CP0 register.

3’b010 I Index Store WS Index Update the WS RAM at the specified index from the ITagLo CP0 
register.

3’b010 D Index Store WS Index Update the WS RAM at the specified index from the DTagLo CP0 
register.

If ErrCtlPO is set, the dirty parity values in the DTagLo register 
will be written to the WS RAM. Otherwise, the parity will be cal-
culated for the write data.

3’b010 S Index Store WS Index Update the WS RAM at the specified index from the L23TagLo 
CP0 register.

If ErrCtlPO is set, the dirty parity values in the L23TagLo register 
will be written to the WS RAM. Otherwise, the parity will be 
calculated for the write data.

3’b011 I Index Store Data Index Write the IDataLo and IDataHi CP0 register contents at the way 
and dword index specified. 

If ErrCtlPO is set, the dirty parity values in the ITagLo register will 
be written to the WS RAM. Otherwise, the parity will be calculated 
for the write data.

3’b011 D Index Store Data Index Write the DDataLo CP0 register contents at the way and word index 
specified. 

3’b011 S Index Store ECC Index Write the L23DataLo register contents to the ECC bits at the way 
and dword index specified. 

All 
Others

All Other codes should not be used while ErrCtlWST is set.
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Table 19.5 shows the condition for the SPRAM access test where the ErrCtlSPR bit is set, and the ErrCtlWTS and 
ErrCtlDYT bits of the CP0 ErrCtl register are cleared. Refer to the ErrCtl register of the CP0 chapter for more informa-
tion. 

Table 19.5 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[SPR] Set, ErrCtl[WST, DYT] Cleared

Code Caches Name

Effective 
Address 
Operand 

Type Operation

3’b001 I Index Load Tag Index Read the SPRAM tag at the specified index into the ITagLo 
Coprocessor 0 register. Also read the instruction data and precode 
information corresponding to the byte index into the 
IDataHi,IDataLo, and ErrCtl registers

3’b001 D Index Load Tag Index Read the SPRAM tag at the specified index into the TagLo1 
Coprocessor 0 register. 

3’b010 I Index Store Tag Index Update the SPRAM tag at the specified index from the TagLo 
Coprocessor 0 register.

3’b010 D Index Store Tag Index Update the SPRAM tag at the specified index from the TagLo 
Coprocessor 0 register.

3’b011 I Index Store Data Index Write the IDataLo and IDataHi Coprocessor 0 register contents 
into the SPRAM at the dword index specified. 

If ErrCtlPO is set, the dirty parity values in the ITagLo register 
will be written to the WS RAM. Otherwise, the parity will be cal-
culated for the write data.

3’b011 D Index Store Data Index Write the DDataLo Coprocessor 0 register contents into the 
SPRAM at the word index specified. 

If ErrCtlPO is set, ErrCtlPI is used for the parity value. Otherwise, 
the parity value is calculated for the write data. If ECC is enabled, 
the ECC value comes from the DTagHi register. 

All 
Others

D Other codes should not be used while ErrCtlSPR is set.

All S Secondary (L2) cache operations should not be performed while 
ErrCtlSPR is set.
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Table 19.6 shows the condition for the duplicate tag array access where the ErrCtlWST and ErrCtlSPR bits are set, and 
the ErrCtlDYT bit of the CP0 ErrCtl register is cleared. Refer to the ErrCtl register of the CP0 chapter for more informa-
tion. 

Table 19.6 shows the condition for the duplicate tag array access where the ErrCtlDYT bit is set, and the ErrCtlWST and 
ErrCtlSPR bits of the CP0 ErrCtl register are cleared. Refer to the ErrCtl register of the CP0 chapter for more informa-
tion. 

Table 19.6 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST, SPR] Set, ErrCtl[DYT] Cleared

Code Caches Name

Effective 
Address 
Operand 

Type Operation

3’b001 D Index Load Tag Index Read the duplicate tag array into the CP0 DTagLo register.

3’b010 D Index Store Tag Index Writes the duplicate tag array from the CP0 DTagLo register.

By default, the tag parity value will be automatically calculated. For 
test purposes, the parity bits from the DTagLo register will be used if 
ErrCtlPO is set. 

All 
Others

D Other codes should not be used while ErrCtlWST and ErrCtlSPR are 
set.

Table 19.7 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[DYT] Set, ErrCtl[WST, SPR] Cleared

Code Caches Name

Effective 
Address 
Operand 

Type Operation

3’b001 D Index Load Tag Index Read the dirty RAM at the specified index into the DTagLo1 CP0 
register.

3’b010 D Index Store Tag Index Update the dirty RAM at the specified index from the DTagLo1 CP0 
register.

All 
Others

D Other codes should not be used while ErrCtlDYT is set.
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Restrictions:

The operation of this instruction is UNDEFINED for any operation/cache combination that is not implemented.

The operation of this instruction is UNDEFINED if the operation requires an address, and that address is
uncacheable.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:
if IsCoprocessorEnabled(0) then

vAddr ♦ GPR[base] + sign_extend(offset)
(pAddr, uncached) ♦ AddressTranslation(vAddr, DataReadReference)
CacheOp(op, vAddr, pAddr)

else
SignalException(CoprocessorUnusable, 0)

endif

Exceptions:

TLB Refill Exception.

TLB Invalid Exception

Coprocessor Unusable Exception

Address Error Exception

Cache Error Exception

Bus Error Exception
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Format: LL rt, offset(base) MIPS32
LLE rt, offset(base) — Extended Virtual Address (EVA)

Purpose:  Load Linked Word

To load a word from memory for an atomic read-modify-write. The LL and LLE instructions perform identical oper-
ations with one exception — when the processor is configured in Enhanced Virtual Address (EVA) mode, the LLE
instruction is used to perform the virtual address translation using the user mapping of the address rather than the ker-
nel mapping. The LL instruction can be used with unmapped addresses, in non-EVA mode, or when the kernel map-
ping is required.

Description: GPR[rt] ♦ memory[GPR[base] + offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
written into GPR rt. The 16-bit signed offset is added to the contents of GPR base to form an effective address. 

This begins a RMW sequence on the current CPU. There can be only one active RMW sequence per CPU. When an
LL is executed, it starts an active RMW sequence replacing any other sequence that was active. The read-modify-
write (RMW) sequence is completed by a subsequent SC instruction that either completes the RMW sequence atomi-
cally and succeeds, or does not and fails.

Executing LL on one CPU does not cause an action that, by itself, causes an SC for the same block to fail on another
CPU.

An execution of LL does not have to be followed by execution of SC; a program is free to abandon the RMW
sequence without attempting a write.

Restrictions: 

The addressed location must be synchronizable by all CPU’s and I/O devices sharing the location; if it is not, the
result is UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective address is non-
zero, an Address Error exception occurs. 

Operation:
vAddr ♦ sign_extend(offset) + GPR[base]
if vAddr1..0 … 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ♦ AddressTranslation (vAddr, DATA, LOAD)
memword ♦ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ♦ memword
LLbit ♦ 1

Exceptions: 

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Watch

31 26 25 21 20 16 15 0

LL
110000 base rt offset

6 5 5 16
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Programming Notes:

There is no Load Linked Word Unsigned operation corresponding to Load Word Unsigned.
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Format: PREF hint, offset(base) MIPS32
PREFE hint, offset(base) — Extended Virtual Address (EVA)

Purpose:  Prefetch

To move data between memory and cache. The PREF and PREFE instructions perform identical operations with one
exception — when the processor is configured in Enhanced Virtual Address (EVA) mode, the PREFE instruction is
used to perform the virtual address translation using the user mapping of the address rather than the kernel mapping.
The PREF instruction can be used with unmapped addresses, in non-EVA mode, or when the kernel mapping is
required.

Description: prefetch_memory(GPR[base] + offset)

PREF adds the 16-bit signed offset to the contents of GPR base to form an effective byte address. The hint field sup-
plies information about the way that the data is expected to be used.

PREF does not cause addressing-related exceptions, including TLB exceptions. If the address specified would cause
an addressing exception, the exception condition is ignored and no data movement occurs. However, even if no data
is moved, some action that is not architecturally visible, such as writeback of a dirty cache line, can take place.

It is implementation-dependent whether a Bus Error or Cache Error exception is reported, if such an error is detected
as a by-product of the action taken by the PREF instruction.

PREF neither generates a memory operation nor modifies the state of a cache line for a location with an uncached
memory access type, whether this type is specified by the address segment (e.g., kseg1), the programmed coherency
attribute of a segment (e.g., the use of the K0, KU, or K23 fields in the Config register), or the per-page coherency
attribute provided by the TLB.

If PREF results in a memory operation, the memory access type and coherency attribute used for the operation are
determined by the memory access type and coherency attribute of the effective address, just as it would be if the
memory operation had been caused by a load or store to the effective address. 

 

31 26 25 21 20 16 15 0

PREF
110011 base hint offset

6 5 5 16

Table 19.8 Values of hint Field for PREF Instruction

Value Name Data Use and Desired Prefetch Action

0 load Use: Prefetched data is expected to be read (not modified).
Action: Fetch data as if for a load.

1 store Use: Prefetched data is expected to be stored or modified.
Action: Fetch data as if for a store.

2-3 Reserved

4 load_streamed Use: Prefetched data is expected to be read (not modified) but not reused 
extensively; it “streams” through cache.

5 store_streamed Use: Prefetched data is expected to be stored or modified but not reused 
extensively; it “streams” through cache.
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Restrictions:

None

Operation:
vAddr ♦ GPR[base] + sign_extend(offset)
(pAddr, CCA) ♦ AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Bus Error, Cache Error

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

Prefetch cannot move data to or from a mapped location unless the translation for that location is present in the TLB.
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so prefetch
may not be effective for such locations.

Prefetch does not cause addressing exceptions. A prefetch may be used using an address pointer before the validity of
the pointer is determined without worrying about an addressing exception.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a by-product of the action taken by the PREF instruction. Typically, this only occurs in systems which have high-
reliability requirements.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

6 load_retained Use: Prefetched data is expected to be read (not modified) and reused exten-
sively; it should be “retained” in the cache.

7 store_retained Use: Prefetched data is expected to be stored or modified and reused exten-
sively; it should be “retained” in the cache.

8-24 Reserved

25 writeback_invalidate (also 
known as “nudge”)

26-29 Reserved

30

31

Table 19.8 Values of hint Field for PREF Instruction
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Format: SC rt, offset(base) MIPS32
SCE rt, offset(base) — Extended Virtual Address (EVA)

Purpose:  Store Conditional Word

To store a word to memory to complete an atomic read-modify-write. The SC and SCE instructions perform identical
operations with one exception — when the processor is configured in Enhanced Virtual Address (EVA) mode, the
SCE instruction is used to perform the virtual address translation using the user mapping of the address rather than the
kernel mapping. The SC instruction can be used with unmapped addresses, in non-EVA mode, or when the kernel
mapping is required.

Description: if atomic_update then memory[GPR[base] + offset] ♦ GPR[rt], GPR[rt] ♦ 1 else 
GPR[rt] ♦ 0

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for syn-
chronizable memory locations.

The 32-bit word in GPR rt is conditionally stored in memory at the location specified by the aligned effective
address. The 16-bit signed offset is added to the contents of GPR base to form an effective address.

The SC completes the RMW sequence begun by the preceding LL instruction executed on the processor. To complete
the RMW sequence atomically, the following occur:

• The 32-bit word of GPR rt is stored into memory at the location specified by the aligned effective address.

• A 1, indicating success, is written into GPR rt.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt.

If the following event occurs between the execution of LL and SC, the SC fails:

• An ERET instruction is executed.

If either of the following events occurs between the execution of LL and SC, the SC may succeed or it may fail; the
success or failure is not predictable. Portable programs should not cause one of these events.

• A memory access instruction (load, store, or prefetch) is executed on the processor executing the LL/SC.

• The instructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous 
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

The following conditions must be true or the result of the SC is UNPREDICTABLE:

• Execution of SC must have been preceded by execution of an LL instruction.

• An RMW sequence executed without intervening events that would cause the SC to fail must use the same 
address in the LL and SC. The address is the same if the virtual address, physical address, and cache-coherence 
algorithm are identical.

31 26 25 21 20 16 15 0

SC
111000 base rt offset

6 5 5 16
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Restrictions: 

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs. 

Operation:
vAddr ♦ sign_extend(offset) + GPR[base]
if vAddr1..0 … 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ♦ AddressTranslation (vAddr, DATA, STORE)
dataword ♦ GPR[rt]
if LLbit then

StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endif
GPR[rt] ♦ 0 || LLbit

Exceptions: 

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

LL and SC are used to atomically update memory locations, as shown below. 

L1:
LL T1, (T0) # load counter
ADDI T2, T1, 1 # increment
SC T2, (T0) # try to store, checking for atomicity
BEQ T2, 0, L1 # if not atomic (0), try again
NOP # branch-delay slot

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided. Some examples of
these are arithmetic operations that trap, system calls, and floating point operations that trap or require software emu-
lation assistance.

LL and SC function on a single processor for cached noncoherent memory so that parallel programs can be run on
uniprocessor systems that do not support cached coherent memory access types.
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Format: SYNC (stype = 0 implied) MIPS32
SYNCE (stype = 0 implied) — Extended Virtual Address (EVA)

Purpose:  Synchronize Shared Memory

To order loads and stores. The SYNC and SYNCE instructions perform identical operations with one exception —
when the processor is configured in Enhanced Virtual Address (EVA) mode, the SYNCE instruction is used to per-
form the virtual address translation using the user mapping of the address rather than the kernel mapping. The SYNC
instruction can be used with unmapped addresses, in non-EVA mode, or when the kernel mapping is required.

Description: 

These types of ordering guarantees are available through the SYNC instruction:

• Completion Barriers

• Ordering Barriers 

Simple Description of Completion Barrier:

• SYNC affects only uncached and cached coherent loads and stores. The specified memory instruction (loads or 
stores or both) that occur before the SYNC / SYNCE instruction must be completed before the loads and stores 
after the SYNC / SYNCE are allowed to start.

• Loads are completed when the destination register is written. Stores are completed when the stored value is visi-
ble to every other processor in the system.

Detailed Description of Completion Barrier:

• Every synchronizable specified memory instruction (loads or stores or both) that occurs in the instruction stream 
before the SYNC instruction must be already globally performed before any synchronizable specified memory 
instruction that occurs after the SYNC are allowed to be performed, with respect to any other processor or coher-
ent I/O module.

• The barrier does not guarantee the order in which instruction fetches are performed.

• A stype value of zero will always be defined such that it performs the most complete set of synchronization oper-
ations that are defined.This means stype zero always does a completion barrier that affects both loads and stores 
preceding the SYNC instruction and both loads and stores that are subsequent to the SYNC instruction. Non-zero 
values of stype may be defined by the architecture or specific implementations to perform synchronization 
behaviors that are less complete than that of stype zero. If an implementation does not use one of these non-zero 
values to define a different synchronization behavior , then that non-zero value of stype must act the same as 
stype zero completion barrier. This allows software written for an implementation with a lighter-weight barrier to 
work on another implementation which only implements the stype zero completion barrier.

• A completion barrier is required, potentially in conjunction with SSNOP (in Release 1 of the Architecture) or 
EHB (in Release 2 of the Architecture), to guarantee that memory reference results are visible across operating 

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0
00 0000 0000 0000 0 stype SYNC

001111
6 15 5 6
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mode changes. For example, a completion barrier is required on entry to and exit from Debug Mode to guarantee 
that memory affects are handled correctly.

• For the purposes of this description, the CACHE (CACHEE), PREF (PREFE) and PREFX instructions are 
treated as loads and stores. That is, these instructions and the memory transactions sourced by these instructions 
obey the ordering and completion rules of the completion barrier SYNC instruction.

Completion Barrier Types:

All completion barrier types will flush any pending writes and generate an external SYNC request. The core will wait 
for all pending reads to complete as well as the SYNC response.

• 0x2 - Implementation specific stype. Intervention SYNC. When coherence is enabled, this SYNC will generate a 
CoherentSync request. The CoherenceManager will respond to the SYNC when the interventions for all older 
coherent requests have been completed. If coherence is not enabled, will default to stype 0x0.

• 0x3 - Implementation specific stype. Memory SYNC. When coherence is enabled, this SYNC will also generate 
a CoherentSync request. When interventions for all older coherent requests have completed, the sync will be sent 
to memory interface unit. All pending transactions will be sent out. If the next level device (L2 or system) sup-
ports legacy SYNC transactions, as indicated by SI_CM_SyncTxEn = 1, and CM_SYNC_TX_DISABLE in the 
CM Control GCR is 0, an external SYNC request will also be generated. The CM will send a response to the 
CoreType-lowercase when all prior requests have completed and a SYNC response is received (if it was external-
ized). If coherence is not enabled, will default to stype 0x0.

• 0x0 - If coherence is enabled, this will be mapped to either a type 0x2 or 0x3 based on the value of the SYNC-
CTL bit in the CM Control GCR. If coherence is not enabled, a legacy SYNC request will be generated. This will 
bypass the intervention pipeline in the CM and go directly to the memory unit. If SyncTxEn = 1 and 
CM_SYNC_TX_DISABLE in the CM Control GCR is 0, an external SYNC request will be generated.

Simple Description of Ordering Barrier:

• The specified memory instructions (loads or stores or both) that occur before the SYNC instruction must 
always be ordered and globally visible to all cores before the specified memory instructions after the SYNC.

• Memory instructions which are ordered before other memory instructions are processed by the load/store 
datapath first before the other memory instructions. 

Detailed Description of Ordering Barrier:

• Every synchronizable specified memory instruction (loads or stores or both) that occurs in the instruction 
stream before the SYNC instruction must reach a stage in the load/store datapath after which no instruction 
re-ordering is possible before any synchronizable specified memory instruction which occurs after the 
SYNC instruction in the instruction stream reaches the same stage in the load/store datapath. 

NOTE: cached and uncached operations proceed down different data paths within the Coherence Manager. 
Because of that, this type of barrier will not enforce the ordering between cached and uncached requests. A 
Completion Barrier should be used if that ordering is required.

• If any memory instruction before the SYNC instruction in program order, generates a memory request to the 
external memory and any memory instruction after the SYNC instruction in program order also generates a 
memory request to external memory of the same type (cached or uncached), the memory request belonging 
to the older instruction must be globally performed before the time the memory request belonging to the 
younger instruction is globally performed. 
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• The barrier does not guarantee the order in which instruction fetches are performed. 

• This barrier does not enforce the ordering of CACHE instructions. To ensure ordering of a CACHE instruc-
tion with other operations, a completion barrier type of SYNC should be used.

• For the purposes of this description, PREF and PREFX instructions are treated as loads and obey the same 
ordering rules as loads.

As compared to the completion barrier, the ordering barrier is a lighter-weight operation as it does not require the
specified instructions before the SYNC to be already completed. Instead it only requires that those specified instruc-
tions which are subsequent to the SYNC in the instruction stream are never re-ordered for processing ahead of the
specified instructions which are before the SYNC in the instruction stream. This potentially reduces how many cycles
the barrier instruction must stall before it completes. 

The Acquire and Release barrier types are used to minimize the memory orderings that must be maintained and still 
have software synchronization work. 

The proAptiv Multiprocessing System core handles all ordering barriers identically.

• No external SYNC request will be generated and the CoreType-lowercase will not wait for pending transactions to 
complete.

• The LSU will complete any pending evictions and wait until self interventions have been received for all Fill Store 
Buffers before proceeding. 

NOTE: globalized CACHE instructions do not use an FSB entry, thus an Ordering Barrier will not wait for those to 
be completed. A Completion Barrier should be used to ensure that all prior CACHE instructions have completed.

• The BIU will stop merging on all Write Back Buffer (WBB) entries and put them into the external request queue.

Table 19.9 lists the available completion barrier and ordering barriers behaviors that can be specified using the stype 
field. 

Table 19.9 Encodings of the Bits[10:6] of the SYNC Instruction; the SType Field 

Code Name Type

Older instructions 
which must reach the 
load/store ordering 

point before the SYNC 
instruction completes

Younger instructions 
which must reach the 

load/store ordering point 
only after the SYNC 

instruction completes

Older instructions which 
must be globally 

performed when the SYNC 
instruction completes

0x0 SYNC
or 

SYNC(0)

Completion Loads, Stores Loads, Stores Loads, Stores

0x2 SYNC(2) Completion Loads, Stores Loads, Stores Loads, Stores
0x3 SYNC(3) Completion Loads, Stores Loads, Stores Loads, Stores
0x4 SYNC_WMB

or 
SYNC(4)

Ordering Stores Stores

0x10 SYNC_MB
or 

SYNC(16)

Ordering Loads, Stores Loads, Stores
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Restrictions: 

None

Operation:
SyncOperation(stype)

Exceptions: 

None 

Software written to use a SYNC instruction with a non-zero stype value, expecting one type of barrier behavior,
should only be run on hardware that actually implements the expected barrier behavior for that non-zero stype value
or on hardware which implements a superset of the behavior expected by the software for that stype value. If the
hardware does not perform the barrier behavior expected by the software, the system may fail.

0x11 SYNC_ACQUIRE
or 

SYNC(17)

Ordering Loads Loads, Stores

0x12 SYNC_RELEASE
or

SYNC(18)

Loads, Stores Stores

0x13 SYNC_RMB
or

SYNC(19)

Loads Loads

All Others RESERVED

Table 19.9 Encodings of the Bits[10:6] of the SYNC Instruction; the SType Field 

Code Name Type

Older instructions 
which must reach the 
load/store ordering 

point before the SYNC 
instruction completes

Younger instructions 
which must reach the 

load/store ordering point 
only after the SYNC 

instruction completes

Older instructions which 
must be globally 

performed when the SYNC 
instruction completes
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Format: TLBINV  

Purpose:  TLB Invalidate

TLBINV invalidates a set of TLB entries based on ASID and Index match. The virtual address is ignored in the entry
match. TLB entries which have their G bit set to 1 are not modified. 

Description:

On execution of the TLBINV instruction, the set of TLB entries with matching ASID are marked invalid, excluding
those TLB entries which have their G bit set to 1. 

The EntryHIASID field has to be set to the appropriate ASID value before executing the TLBINV instruction.

Behavior of the TLBINV instruction applies to all applicable TLB entries and is unaffected by the setting of the
Wired register.

For JTLB-based MMU(ConfigMT = 1): 

All matching entries in the JTLB are invalidated. Index is unused. 

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of avail-
able TLB entries (Config4IE = 2).

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

The TLB invalidate instruction invalidates all entries of the TLB starting from 0. 

for (i = 0 to Config1MMU_SIZE - 1) 
if (EntryHiASID = TLB[i].ASID) then 

TLB[i]VPN2_invalid ♦ 1
endif

endfor

Exceptions:

Coprocessor Unusable

31 26 25 24 6 5 0

COP0
010000

CO
1

0
000 0000 0000 0000 0000

TLBINV
000011

6 1 19 6
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Format: TLBINVF  

Purpose:  TLB Invalidate Flush

TLBINVF invalidates a set of TLB entries based on Index match. The virtual address and ASID are ignored in the
entry match. 

Description:

On execution of the TLBINVF instruction, all entries within range of Index are invalidated. 

Behavior of the TLBINV instruction applies to all applicable TLB entries and is unaffected by the setting of the
Wired register.

For JTLB-based MMU(ConfigMT=1): 

TLBINVF causes all entries in the JTLB to be invalidated. Index is unused.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of avail-
able TLB entries (Config4IE=2).

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:
for (i = 0 to Config1MMU_SIZE - 1) 

TLB[i]VPN2_invalid ♦ 1
endfor

Exceptions:

Coprocessor Unusable

31 26 25 24 6 5 0
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010000
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0
000 0000 0000 0000 0000
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Format: TLBR MIPS32

Purpose:  Read Indexed TLB Entry

To read an entry from the TLB.

Description:

The EntryHi, EntryLo0, EntryLo1, and PageMask registers are loaded with the contents of the TLB entry pointed 
to by the Index register. Note that the value written to the EntryHi, EntryLo0, and EntryLo1 registers may be differ-
ent from that originally written to the TLB via these registers in that:

• The value returned in the G bit in both the EntryLo0 and EntryLo1 registers comes from the single G bit in the 
TLB entry. Recall that this bit was set from the logical AND of the two G bits in EntryLo0 and EntryLo1 when 
the TLB was written.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:
if IsCoprocessorEnabled(0) then
i ♦ Index
if i > (TLBEntries - 1) then

UNDEFINED
endif
PageMaskMask ♦ TLB[i]Mask
EntryHi ♦ TLB[i]VPN2 ||

02 || TLB[i]VPN2_invalid || 0
2 || TLB[i]ASID

EntryLo1 ♦ TLB[i]RI1 || TLB[i]XI1 ||
TLB[i]PFN1 ||
TLB[i]C1 || TLB[i]D1 || TLB[i]V1 || TLB[i]G

EntryLo0 ♦ TLB[i]RI0 || TLB[i]XI0 ||
TLB[i]PFN0 ||
TLB[i]C0 || TLB[i]D0 || TLB[i]V0 || TLB[i]G

else
SignalException(CoprocessorUnusable, 0)

endif

Exceptions:

Coprocessor Unusable

31 26 25 24 6 5 0

COP0
010000

CO
1

0
000 0000 0000 0000 0000
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6 1 19 6
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Format: TLBWI MIPS32

Purpose:  Write Indexed TLB Entry

To write a TLB entry indexed by the Index register.

Description:

The TLB entry pointed to by the Index register is written from the contents of the EntryHi, EntryLo0, EntryLo1, and
PageMask registers. If multiple TLB matches are detected on a TLBWI, the existing entries are sliently invalidated
The information written to the TLB entry may be different from that in the EntryHi, EntryLo0, and EntryLo1 regis-
ters, in that:

• The single G bit in the TLB entry is set from the logical AND of the G bits in the EntryLo0 and EntryLo1 regis-
ters.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:
if IsCoprocessorEnabled(0) then
i ♦ Index
TLB[i]Mask ♦ PageMaskMask

TLB[i]VPN2_invalid ♦ EntryHiVPN2_invalid
TLB[i]VPN2 ♦ EntryHiVPN2 
TLB[i]ASID ♦ EntryHiASID
TLB[i]G ♦ EntryLo1G and EntryLo0G
TLB[i]PFN1 ♦ EntryLo1PFN 
TLB[i]C1 ♦ EntryLo1C
TLB[i]D1 ♦ EntryLo1D
TLB[i]RI1 ♦ EntryLo1RI
TLB[i]XI1 ♦ EntryLo1XI
TLB[i]V1 ♦ EntryLo1V
TLB[i]PFN0 ♦ EntryLo0PFN 
TLB[i]C0 ♦ EntryLo0C
TLB[i]D0 ♦ EntryLo0D
TLB[i]RI0 ♦ EntryLo0RI
TLB[i]XI0 ♦ EntryLo0XI
TLB[i]V0 ♦ EntryLo0V
else

SignalException(CoprocessorUnusable, 0)
endif

Exceptions:

Coprocessor Unusable

Machine Check
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Format: TLBWR MIPS32

Purpose:  Write Random TLB Entry

To write a TLB entry indexed by the Random register.

Description:

The TLB entry pointed to by the Random register is written from the contents of the EntryHi, EntryLo0, EntryLo1,
and PageMask registers. If multiple TLB matches are detected on a TLBWR, the entries are sliently invalidated.
The information written to the TLB entry may be different from that in the EntryHi, EntryLo0, and EntryLo1 regis-
ters, in that:

• The single G bit in the TLB entry is set from the logical AND of the G bits in the EntryLo0 and EntryLo1 regis-
ters.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:
if IsCoprocessorEnabled(0) then

i ♦ Random
TLB[i]Mask ♦ PageMaskMask
TLB[i]VPN2_invalid ♦ 0
TLB[i]VPN2 ♦ EntryHiVPN2 and not PageMaskMask # Implementation dependent
TLB[i]ASID ♦ EntryHiASID
TLB[i]G ♦ EntryLo1G and EntryLo0G
TLB[i]PFN1 ♦ EntryLo1PFN and not PageMaskMask # Implementation dependent
TLB[i]C1 ♦ EntryLo1C
TLB[i]D1 ♦ EntryLo1D
TLB[i]RI1 ♦ EntryLo1RI
TLB[i]XI1 ♦ EntryLo1XI
TLB[i]V1 ♦ EntryLo1V
TLB[i]PFN0 ♦ EntryLo0PFN and not PageMaskMask # Implementation dependent
TLB[i]C0 ♦ EntryLo0C
TLB[i]D0 ♦ EntryLo0D
TLB[i]RI0 ♦ EntryLo0RI
TLB[i]XI0 ♦ EntryLo0XI
TLB[i]V0 ♦ EntryLo0V

else
SignalException(CoprocessorUnusable, 0)

endif

Exceptions:

Coprocessor Unusable
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Format: WAIT MIPS32

Purpose:  Enter Standby Mode

Wait for Event

Description:

  If the pipeline restarts as the result of an interrupt, that interrupt is taken between the WAIT instruction and the fol-
lowing instruction (EPC for the interrupt points to the instruction following the WAIT instruction).

Restrictions:

The operation of the processor is UNDEFINED if a WAIT instruction is placed in the delay slot of a branch or a
jump.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:
I: Enter  lower power mode
I+1:/* Potential interrupt taken here */

Exceptions:

Coprocessor Unusable Exception

31 26 25 24 6 5 0
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