MIIFPS

Boot-MIPS: Example Boot Code for
MIPS® Cores

This application note describes Boot-MIPS, an example boot code for MIPS processor cores. Boot-MIPS is a stand-alone
executable that runs from reset, initializing core resources to the point where every processing element in the system is
executing shared C code, with its own stack and coherent shared global data.

Document Number: MD00901
Revision 1.02
August 19, 2013

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS Ill, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CorelV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCl, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

Boot-MIPS: Example Boot Code, Revision 01.03

Table of Contents

1 Ta] oo [T ot o] o RO S 7
1.1 =10 3211 0T] Lo =Y SRS 7
1.2 Lo L] L3O TSP P ROV RTOUSOPIINt 8

2 Ta 1 =11 - 14T o TP OO PRR PR PRROT 9

2.1.1 Installing as @ NaVigatorICS ProjeCt......cuiiiiciiee ettt e e e 9
3 BOOT-IMIPS PACKAZE ..eeeevveieiiiieeccitee ettt ettt e ettt e e e ta e e e s eate e e e sbteeeeenbaeeesntaeessnstaeessnseeeennnes 14
3.1.1 B =Tor o] o =L PP PPRRT PPNt 14
3.1.2 (00T I DT =Tor o] VN o 11T RUURN 14
3.1.3 CoOMMON DIrECLOIY FIlBS...uuiiiiiiiiiie ettt et e et re e e e aba e e s e abe e e e ennteeeeennes 15
3.14 (ol o 1 DI =Tot o] Y 11T PSP 15
3.15 Malta Dir€CEOIY filES..ccuiieeieiiie e et e e e e s ette e e e st e e e ssataeessreneeeanes 15
3.1.6 N DT =Yoo VA a1 TSRS 15
3.1.7 Other files in the tOP dir€CLOIYuuiiiii e e e e e 16

4 2 UT1 T [T T=dh o o T=IN o o] [Tt U PURSN 16
4.1 I L= (2L aY=Y [Tt o o PP 16
4.2 S TUN o B g TR =Y ot =Y R I [==Y SRR 18

5 (6o [l B L= - |1 O TPV VPRRUURROURVIR 19
5.1 (olo 0810 aTe 104 Yo To] 21 s HUTUUURT TP TPPRR 22
5.2 L= T A PSP PP OPPRTTSPPRROPPPN 24

5.2.1 =Yoo} Al S5t (el=T o1 u o] TAV/ =T o o] S PP PPPPPPPPN 25
5.2.2 Ot EXCEPTIONS ..ii i ettt ettt ettt e e eee e e e e e e e et tarareeeeeeestbrasaeeeeesasssseseeeeennnsnns 25
5.2.3 Multi -core inter-processor interrupt processing (1004K, 1074K, interAptiv and proAptiv
L0153 0] 1Y) TSR 26
524 Yo =] o1 o] o PSPPSR 27
5.2.5 NMI, ISA, aNd MIPS32 VerifiCatioN....cccceeeeeeiiiiiiiriiiiieiiiiiiisieereeseaeeereseeereesreaeeereeeeeeeeee————.. 27
5.2.6 INitializZing COMMON RESOUICESvvieiiiiieeeiiiieeciteeeete e e e sae e e e tae e e ssabe e e e s sareeeesnsraeesnnaaeeean 28
5.2.7 INitialize SYStEM RESOUICES .. .uviiiiiiiiieciiiee e eitee st e sttt e e et e e e st e e s sabe e e estreeessnbaeeesnseeeens 30
5.2.8 INItIaliZING COME RESOUICESuvvieiiiiieeeiiieee ettt e ettt e e ettt e e s sbreeesenteeessbeeeessnraeeesansaeessnseneennns 32
5.2.9 INitialization COMPIELE ..o e e e e e e e e e e e e e e aae e 33
5.3 Y=L = o g oo To 1 A= 1 [V =0 TSRS 34

Boot-MIPS: Example Boot Code, Revision 01.03

5.3.1 MT ASE Check (34K and 1004K CPS ONIY) .ccciuiiieiiiiieeeciiieeeciteeeeettee e eetee e ee e e e nve e e sanaee e 36

5.3.2 No MT ASE (24K, 74K, 1074K, and ProApLtiv)ccceeeeciueeeeeiieee e e ecireeeecveeeessiveeessaveee s 37
533 Check for Coherent Processing System (1004K, 1074K, interAptiv or proAptiv)................ 37
534 Not a Coherent Processing System (24K, 34K, and 74K).......cccceecererieeriieesiee e esieeseeens 37
5.3.5 Is a Coherent Processing System (1004K, 1074K, interAptiv or proAptiv only)................. 37
5.3.6 Done with set_gpr DOt ValUES.........uuiiiieeeii e e e e e e e enenes 39
54 COMMON/COPY_2C_FAMLS ottt eette et e etee et e eete e ebeeeteeeebeeesabeesabeeeabeeeesseesabeesabaesateeensseesaseesases 40
5.5 COMMON/COPY_2C_SPIAMLS ..eeiiiiiieete ettt ettt et et eteesteeeeeetbeebeebeeabeenbeebeesbeesteestsenseesssenseas 43
5.5.1 Copy to Instruction SCratCh Pad.......c..ceiviieiiiiiiie e e 43
5.5.2 Copy to Data SCratCh Pad..........cuiiiiiiie ettt e e e e e e e e arrae e e e e e e e eannes 47
5.6 common/copy_c2_Spram_MM.S (MICrOAPLIV COMES).....ueiririiiiiiiiiieeitee e eeteeecreeeeteeeereeeveeens 50
5.7 common/init_caches.S (NON-ProAPLIV COTES)ciuiiiiiiiiiieiirieeiieecte et e eeteeeereesreeeereeesareesareeens 57
5.7.1 LTS o= o [P 57
5.7.2 LTS [or= ol L= 60
5.7.3 ol o =T g Yo I O IR oot F S SRR 60
5.7.4 a1 A 72 T USSP 61
5.8 [T a T A 072 ToF- Tl o [E 0 R 63
5.8.1 YL T TP PRORRN 63
5.8.2 S 725 TSRS 64
5.9 common/init_caches2.s (proAptiv and interAptiv Cores only)......coceoveeevreeecreeecieeeeeee e 66
5.9.1 (181 A Lor= [o] o [P USPRRN 66
5.9.2 111 A [or= ol V=TT 68
593 diSADIE_I123 .. e e e e e st 70
594 1011 A . SO TP PR TP PPPP PPN 71
5.10 COMMON/INIT_CPO...uviieerieetie ettt ettt et e et e eetee et e e e eteeeeteeeeaeeeeateeeeteeeesseesaseesnseeeseeessseesseean 71
5.10.1 Initialize the CPO Status FEZISTEI ..cccuuiie ittt ettt esrae e e e arae e e e abe e e e eaneeas 71
5.10.2 Initialize the WatCh REGISTEIS......uiiiiiiieiiiee ettt e e e e aaa e e e 72
5.10.3 Clear the ComPare REGISLEN ...uuiii ittt e e e bre e e s ree e e s snbee e e sneeas 73
5.11 COMMON/INIE_BPI.S curiiiieiieeie ettt etee et et eete e te et e et e et e e s beesbeestsesabesabesabeeabeeabesabeenbeenbeeseebaesens 73
5.12 common/init_tlb (NON ProAPLIV COres ONIY)coveiecueeecee ettt et 74
5.13 common/init_tIb2 (ProAptiv COres ONlY)cc.eoouieiciiiecee et e e 77
5.14 cps/init_cm.S Coherence manager (CPS systems, 1004K and 1074K only)ccceeeeveeecvveenneennee. 79

5.15 cps/init_cpc.S Cluster Power Controller (CPS systems, 1004K, 1074K, proAptiv and interAptiv
only) 81

Boot-MIPS: Example Boot Code, Revision 01.03

5.16 cps/init_gic.S Global Interrupt Controller (CPS systems, 1004K and 1074K only).......ccccceuve..... 82
5.16.1 ENABIE ThE GIC. ..ottt ettt s s bbb ene s 83
5.16.2 DiSable MO TUPES ccicuitieeee ettt ettt e e e et e e e e e eesttbreeeeeeeestsraeeeeeeeessssrasaeeeessannnnes 84
5.16.3 Setting the Global Interrupt Polarity REGIStErsS.....ccccveiiiiiiiiiiriiee et 85
5.16.4 Configuring INterrupt Trigger TYPE cuuuii i iiieeeeiiiee ettt erree e st e s e s bee e s be e e s sbee e e s nanes 86
5.16.5 Interrupt DUl EAZE REGISTEISuueiieiiieeiiieeee ettt e ettt e e e e e s e e e e e e e e saraae e e e e e eenannes 86
5.16.6 Interrupt Set Mask REGISTEISceiiiiiiiieiiiee ettt e e e e e e aae e e e e e e e e eaaes 87
5.16.7 Map Interrupt to Processing UNitccooeeoeiiiiiiiieie e aeaeeees 87
5.16.8 Per-Processor initializationcocueeiieiiiiiiniieec e 90
5.16.9 Map Timer iNterrupPt SOUICEccoiieeiieeeee e ccce e raseseeneesnsnsesnennnnnnes 91

5.17 cps/join_domain (CPS systems, 1004K,1074K, interAptiv and proAptiv only)ccccccccvveennenee. 93

5.18 cps/release_mp (CPS systems, 1004K, 1074K, interAptiv and proAptiv only)........ccccccuvveneeene. 95

5.19 Malta/init_mc_denali (Malta Evaluation Boards ONly)ccccceeeveieiieeciiieeiiecceeecree e e 97

5.20 Mt/init_vpel (mt cores 34K and 1004K ONIY)...c.cccieiieiiieiieiiecieesieecreestee e sresveeveeveeveereereas 97

30 2 R o 4= Y1 o Y o TP 105
5.21.1 mMain.C fOr 24K and 74Koouioieeesie ettt ettt st sttt et 105
5.21.2 MAiN.CTOr 34K ittt s s e 106
5.21.3 main.c for 1074K and proAptiv CPSuiveiiiiiiiiiiiieeee e e e eeetrreeee e e e e esarraeeeeeeeeens 107
5.21.4 main.c for 1004K, interAptiv CPS and interAptivUPcccooeiiiiiniiiie e 111

6 IMIAKEFIES ..ttt e bt e s bt sh e e sat e sat e st e et e et e e beenbeesbeesbeeneen 115

6.1 TOP LEVEI MAKETIIE «.veeeeeeeeeeee e e e e et e e e e e e s bt e e e e e e esnnnaraneeeeean 115

6.2 COre LeVEl IMaKeTilE ... oottt st st st 115
6.2.1 Defines for common ULIlItIES.ooveiiiiiieriiee e 115
6.2.2 Defines for directory Paths ... e 116
6.2.3 Compiler and LINKEr argUmENTS........ceeeiiieeciiiiieee e ecctieree e e e ectrrre e e e e e e e snrare e e e e e e e snnreeneeas 116
6.2.4 SOUICE Il TISTS ..ttt ettt s st et ene e 117
6.2.5 (0] o 1=Tot d 11 LT I 4SS 117
6.2.6 Adding to CFLAGS for Malta Board BUildscccueeeveiiiiiiiiieeciiieeeccieee e eseee e 118
6.2.7 Y]I - [=] SRR 118
6.2.8 Cand ASSEMDBIY FUIESvveeeeeeeeeee e e e e e e e e e e e e e s aareaeeeaee s 119
6.2.9 ClEAN TUIE ..ttt s e s ne e e s s 120

7 YT T Yol T o AR PUUPST 120

7.1 V=YL= T =1 .4 1Y e I U 120

7.2 = = T 2 2= 1 4 18 o USSP 124

Boot-MIPS: Example Boot Code, Revision 01.03

7.2.1 Linking for Scratchpad RAMc..uiiiiiiiie ettt e st e et e e erae e e e ara e e e eattee e e naeeas 124

7.3 SIM_Ram.Id and SiM_SPRAMcoiiiiiiiiiciiie ettt e s e etr e e e sbtr e e s e tree e seataeeesentaeeeeanes 125
8 Downloading to the Malta BOOTt FIaShcooviiiiiiiiiieeee et eearre e e 126
9 Debugging Using NaViSatorICS.........ciiiiiiiiiiiiiieiiiieeerirte e et e s sree e sree e s ssree s s s naeesesareeesenaneeas 128

9.1 Single Core or first Core of a Multi Thread or Multi Core systemcccoecveeeviiieeescieeeesiieenns 128

9.2 Setting Breakpoints in Read-Only flash code.......coovmiiiiiiei e e 134

9.3 Y de) o] o TaY =4 1 A0 =11 oY | PR 135

9.4 Debugging Multi-threaded and Multi-core systems.........ccoccuieeiiiiiiecciiie e 136
10 Creating Debug Scripts for 1004K and 1074K CPScccccveiiiiiieeerieee et eeee e e 144
O R 0V 1Y o T I 1) o PSP 147

Boot-MIPS: Example Boot Code, Revision 01.03

1

Introduction

Boot-MIPS is example code for MIPS32® R1 and R2 Cores. It is intended to aid you in becoming
familiar with the initialization of a MIPS Core.

Building Boot-MIPS results in MIPS32R1/R2 executables suitable for download to a MALTA software
development board or to a system simulator. In addition to runtime initialization, Boot-MIPS
executables include some simple C example code that is copied from the ROM area to a RAM or
Scratchpad and then executed at the end of the boot process. Only one executable is used in any
particular system; where applicable, all code and non-stack C data are shared between all
processing elements.

This document contains hyperlinks in blue that provide links additional information in this
document.

1.1 Terminology

An effort has been made to use terminology consistent with other MIPS documentation. Below is an
explanation of terms used throughout this application note.

e 24K and 74K Cores: Single-core processors.

e TC (Thread Context): Hardware resource to support non-privileged threads of execution (34K,
1004K, or interAptiv only).

e VPE (Virtual Processing Element): One or more TCs bound together to work as if they were a
single processor. For example, an MT Core can contain two VPEs, each with multiple TCs bound
to it. Each VPE has enough independent architectural state to appear as a single processor,
making each VPE capable of running a separate OS.

e 34K Core: An MT Core that implements one or two VPEs.

e 1004K Core: Processor IP block containing one or two VPEs, each with a single TC. This is similar
to a single 34K core.

e 1004K CPS: A CPS made up of one to four 1004K cores, a GIC (Global Interrupt Controller), CM
(Coherence Manager), and optional IOCU (10 Coherence Unit).

e 1074K Core: Processor IP block consisting of a single-threaded processing element. This is similar
to a 74K Core.

e 1074K CPS: CPS consisting of one to four 1074K cores, a GIC, CM, and optional IOCU.

e CM: Coherence Manager.

e CM2: Coherence Manager with non-optional L2 cache.

e CPC (Cluster Power Controller): Power domain control logic. 1004K, 1074K, interAptiv or
proAptiv CPS only.

e CPS (Coherent Processing System): Contains one or more MIPS cores linked together by a
Coherence Manager. 1004K, 1074K, interAptiv or proAptiv CPS only.

e EVA: Enhanced Virtual Addressing scheme enabling software-programmable memory segments.

Boot-MIPS: Example Boot Code, Revision 01.03

e FTLB: Fixed page size TLB.

e |OCU: (I/O Coherence Unit): Interface between CM and coherent I/0 devices. 1004K, 1074K,
interAptiv or proAptiv CPS only.

e IS, DS, and L2S: Primary instruction and data caches and the unified Level 2 cache.

e InterAptiv Core: Processor IP block consisting of one or more VPEs using the EVA memory
architecture and an optional fixed page size TLB.

e InterAptiv CPS: A CPS containing one to four InterAptiv cores, a GIC, CM2, and IOCU.

e MT Multi-threaded Core. Contains one or more VPEs.

e proAptiv Core: Processor IP block consisting of a single-threaded processing element using the
EVA memory architecture and an optional fixed page-size TLB (in addition to a variable page-size
TLB).

e proAptiv CPS: CPS consisting of up to six proAptiv cores, a GIC, CM2, and |IOCU.

e TC: Thread Context in an MT Core. A thread is an execution unit that has its own hardware
context and shares the pipeline with other threads in an MT Core.

e VPE: Virtual Processing Element. A VPE is a virtual processor made up of one or more TC
execution units.

e VTLB: Variable page size TLB.

1.2 Tools

Boot-MIPS was developed using the following hardware and software tools:

e Malta™ / Malta™-R Software Development Boards (MD00048 or MD00627)
e CoreFPGA5A/5B™ Core Cards (MD00632)

e MIPS32 bit files programmed into CoreFPGA5A/5B core cards

e MIPS® NavigatorICS Integrated (Software Development) Component Suite
e MIPS® System Navigator™ / System Navigator PRO™ EJTAG debug probes

e Host PC (Windows 7) with parallel port, Cygwin, and Perl installed

This application note assumes that you are familiar with the listed tools, and that you have a
functional working environment where you are able to build executables and use the Navigator
Console and Navigator ICS to control your target hardware. For additional information, refer to the
documentation for each tool. You should also have an understanding of the MIPS architecture, MIPS
assembly coding, makefiles, linker scripts, and the C language.

Note that information in this application note and the accompanying files may require modification

when used with other processors, boards, or tools. Device and tool behavior may also change as
new versions are added, or features are enhanced.

Boot-MIPS: Example Boot Code, Revision 01.03

2 Installation

2.1.1 Installing as a NavigatorICS Project

The most current archive of the code and scripts referenced in this application note can be
downloaded from the MIPS Technologies website MD00901-2B-Boot MIPS-APP.zip.

This package is provided as a Project that can be directly imported into NavigatorICS. This
application note assumes the use of the NavigatorICS Suite.

Download the zip file and start NavigatorICS.

To install the project, select “Import” from the file menu in NavigatorlCS.

[File Edit Source Refactor Mawvigate Search Project

Mew Alt+5Shift+M »
Open File...

Close Ctrl+W
Close All Ctrl+Shift+W

Save Ctrl+5
Save As...

Sawve All Ctrl+Shift+5
Revert

Maove..,

Rename... F2
Refresh F5

Convert Line Delimiters Ta 3
Print... Ctrl+P

Switch Workspace 3
Restart

Import...
Export... %

Properties Alt+Enter

C. [

1 Makefile [Boot-MIPS/1004K]
2 booth [Boot-MIPS/common]
3 malta_Ram.|d [Boot-MIP5/34K]

4 main-cps.c [boot-cps]

Exit

Then select “Exiting Projects into Workspace”.

10

Select

Choose import source,

Select an import source:

| type filter text

4 = General
IEl Archive File
=% Existing Projects into Warkspace
[, File System @
El Preferences

b= GG+

[= CVS

[» = Plug-in Development

[» [Remote Systems

[» [Run/Debug

[» [Sourcery CodeBench

b | SVN|

[+ [Tasks

[= Team

@ <Back | Net> |[Finish

| ’ Cancel

11

Click “Next”, then select “Select archive file:” and Browse to the Boot_MIPS archive file on your
system and select “Finish”.

Import Projects : .
Select a directory to search for existing Eclipse projects,
-
() Select root directory: | | Browse... |
@ Select archive file: ChUsershchrisrDesktop BootMIPS.zip
Projects:
1 Boot-MIPS (Boot-MIPS) Select All

Deselect All

Refresh

[/] Copy projects into workspace
Working sets
Add project to working sets

Working sets: vl | Select...

@ <Back | Nea> || Finish%J’ Cancel

The Boot-MIPS project will be imported into your workspace.

File Edit Socurce Refactor Mavigate Search Project Run Window Help

IBe @ (9id-a8-E-&-iQ-8-
h ML e "[3[5'!@"5 1
- v°‘:<::lv:v

[Project Explorer &2 = 0O

Gle~
=L Boot-MIPS An outline is not
Includes available.
(7= 1004K
= 1074K
= 24K
= MK
= T4K

[~ common

= cps

= Malta
= mt fE_i, Problems (@ Tasks Mﬂ Propertis}

Dﬁ, Makefile Mo consoles to display at this time,
L1 carbon_test
{= Mavigator Console Startup

Jj F—r—
o

13

3 Boot-MIPS Package

3.1.1 Directories

The Navigator ICS project is divided into directories that are specific to each MIPS core, directories
that contain common elements, and directories that are specific to a particular MIPS ASE.

The Boot-MIPS package contains the following directories:

Includes — standard include files which are used as needed

1004K - files specific to the MIPS32 1004K core

1074K —files specific to the MIPS32 1074K core

24K —files specific to the MIPS32 24K core

34K —files specific to the MIPS32 34K core

74K —files specific to the MIPS32 74K core

common — files common to MIPS32 ISA and to more than one core
cps — files common to a Coherent Processing System core

Malta — files specific the MIPS Malta Evaluation Board

mt - files specific to the MT ASE cores

3.1.2 Core Directory Files

Each core directory contains the following files, which are described in detail in the Code section of
this document:

main.c — A simple C file that is copied from ROM to RAM and later executed.

set gpr boot values.S — The code in this file initializes specific General Purpose Registers for
later use.

start.S — This is the start of the boot code which will be loaded at the boot exception vector
(0OxBFCO 0000). This code is similar for each core; however, it is trimmed to include only what is
needed for that particular core.

Makefile — This is the Makefile for the core. It will be called by the Main Makefile in the top-level
directory. The Makefile contains rules to build four types of executables. These object
executables are described in the Build section of this document.

malta Ram.ld - This is the linker script that will link the code for a MIPS Malta Evaluation Board
that copies the main.c code from ROM to RAM.

malta SPRam.Id - This is the linker script that will link the code for a MIPS Malta Evaluation
Board that copies the main.c code from ROM to Scratchpad RAM. This can be used for systems
that don’t have RAM or caches.

sim_Ram.ld - This is the linker script that will link the code for a simulator such as IASim or
CASim that copies the main.c code from ROM to RAM.

sim_SPRam.ld - This is the linker script that will link the code for a simulator such as IASim or
CASim that copies the main.c code from ROM to Scratchpad RAM. This can be used to simulate
systems that don’t have RAM or caches.

3.1.3 Common Directory Files

The common directory contains files that are common to the MIPS32 ISA or utilities that are
common to all cores. These files are described in detail in the Code section of this document.

boot.h — here is where you can find general #defines and the naming of some of the General
Purpose Registers that make the code easier to follow.

copy c2 ram.S —the code in this file is used to copy the C code in main.c from ROM to RAM.
copy c2 SPram.S —the code in this file is used to set up Scratchpad RAM and copy the C code in
main.c from ROM to SPRAM for cores 24K and up.

copy c2 Spram MM.S —the code in this file is used to set up Scratchpad RAM and copy the C
code in main.c from ROM to SPRAM for microMIPS cores.

init caches.S — (generic) initializes the L1 instruction and data caches and the L2 cache if
present.

init_caches2.S — (implementation-specific) initializes 32K or 64K L1 instruction and data caches
and the L2 cache.

init cp0.S —initializes Coprocessor 0 Registers.

init_gpr.S —initializes General Purpose Registers 1 — 31.

init_itc.S — initializes Inter-Thread Communications Storage if present.

init_tlb.S — (generic) initializes the Translation Look-aside Buffers if present.

init_tlb2.S —initializes the VTLB and FTLB Translation Look-aside Buffers.

srecconv.pl — this is a Perl script that is used to convert a file in Srec format to one that can be
“Flashed” onto a Malta board.

3.1.4 cps Directory Files

The files in the cps directory pertain to a Coherent Processing Core such as the 1004K and 1074K.

init cm.S - initializes the Coherence Manager.

init_cpc.S —initializes the Cluster Power Controller.

init_gic.S —initializes the Global Interrupt Controller.

join_domain.S - joins a processing element to a Coherence Domain.
release mp.S —releases a core for multi-processing.

3.1.5 Malta Directory files

These files are specific to the MIPS Malta Evaluation Board.

init_mc_denali.S —initializes the Denali memory controller.

3.1.6 mt Directory Files

The files in this directory are specific to the MT ASE.

e init vpel.S—initializes the second Virtual processor for an MT Core such as the 34K or 1004K if
present.

3.1.7 Other files in the top directory

e Makefile — this is the top-level Makefile that can be used to build a specific type for a specific
core. See Target Section 4.14.1 for a list of available Targets.

4 Building the Project

The Boot-MIPS project is built using a Makefile (the project does not use the “Generate Makefile
automatically” feature).

4.1 Target Selection
To build the boot code you will need to set the proper target. The targets are:

e 24K _SIM_RAM - Simulator Build with RAM copy for 24K Core Family

e 24K SIM_SPRAM - Simulator Build with Scratchpad RAM copy for 24K Core Family

e 24K_MALTA_RAM - Simulator Build with RAM copy for 24K Core Family

e 24K _MALTA_SPRAM — Malta Build with Scratchpad RAM copy for 24K Core Family

e 34K SIM_RAM - Simulator Build with RAM copy for 34K Core Family

e 34K _SIM_SPRAM - Simulator Build with Scratchpad RAM copy for 34K Core Family

e 34K_MALTA_RAM - Simulator Build with RAM copy for 34K Core Family

e 34K_MALTA_SPRAM — Malta Build with Scratchpad RAM copy for 34K Core Family

e 74K_SIM_RAM - Simulator Build with RAM copy for 74K Core Family

e 74K SIM_SPRAM - Simulator Build with Scratchpad RAM copy for 74K Core Family

o 74K_MALTA_RAM - Simulator Build with RAM copy for 74K Core Family

e 74K_MALTA_SPRAM — Malta Build with Scratchpad RAM copy for 74K Core Family

e 1004K_SIM_RAM — Simulator Build with RAM copy for 1004K Core Family

e 1004K_SIM_SPRAM - Simulator Build with Scratchpad RAM copy for 1004K Core Family
e 1004K_MALTA_RAM - Simulator Build with RAM copy for 1004K Core Family

e 1004K_MALTA_SPRAM — Malta Build with Scratchpad RAM copy for 1004K Core Family
e 1074K_SIM_RAM - Simulator Build with RAM copy for 1074K Core Family

e 1074K_SIM_SPRAM - Simulator Build with Scratchpad RAM copy for 1074K Core Family
e 1074K_MALTA_RAM - Simulator Build with RAM copy for 1074K Core Family

e 1074K_MALTA_SPRAM — Malta Build with Scratchpad RAM copy for 1074K Core Family

There are also clean targets for each core family:

e clean_24K
e clean_1004K
e clean_1074K
e clean_74K
e clean_34K

To set these targets, select the “Boot-MIPS” Project in the “Project Explorer” and press Alt + Enter to
bring up the project properties. Then select “C/C++ Build” and click on “Behavior”. In the Behavior
Dialog, change the “Build (Incremental build)” to the desired build. Also change the “Clean” field to
the corresponding clean command.

Here is an example of setting a 1074K_MALTA_SPRAM target:

(2] C/C++ - MIPS Navigator ICS - CAnavigator-ics-workspac

File Edit Source Refactor Mavigate Search Project Run Window Help

MRS R 9 ErerErer i RS- 7 35 Debug (B C/Cor)
- 0 - r = = & - - - ¥
%) B Properties for Boot-MIPS oo B
_} - ’} - ¥
[Project Explorer | type filter text | CfC++ Build ow v ow
[Resource
£ Builders -
=% Boot-MIPS 4 C/Cor Build] Configuration: | Debug [Active]
&) Includes Build Variables
= 1004K Discovery Option
& ;E::K Environment | |E| Builder Seﬁings| Behaviour
= Legging
= 34K Settings Build settings
& 74K Taol Chain Edital Stop on first build error 3
(& common [CfC++ General
(= cps Project References
& Maita Refactoring History))
= mt Run/Debug Settings Waorkbench Build Behavior
| & Makefile b Tack Repository Workbench build type: Make build target:
L carbon_test WikiText [T Build on resource save (Auto build) | all

"B Mavigator Cg

Mote: See Workbench automatic build preference £

aom | Build {Incremental build) 1074K_MALTA_SPRAM

-
l: U = Bodq Clean C|EE|H_1U?4K -

4 (L 3

17

4.2 Build the selected Target

Next select the Boot-MIPS project and click on the hammer icon |@

I II‘-J1 c_ﬂ:-l--l- - MIPS Mavigator ICS - Cynavigator-ics OrKSpace

Eile Edit 5Scurce Refactor Mavigate Search Project Bun Window Help

N-HEE @ W @ -&-bg-e- |@|§
@B&v & (1 | v i w XD O ow O v

®|e ~
4 =% Boot-MIPS| -
I 3% Binaries @I
[@ Includes
4 = 1004K

b (g mainc
You can click on the “Console” tab to see the results of the build:

(] C:\na

Eile Edit Source Refactor Mavigate Search Project Run Window Help

M-BEE B P g-&--@- Q-8 $-0-Q- G- £ %5 Debug [Bg
@ @' /éa - B (1] W] v 5l v X0 p v o v
[(5 Project Explorer 2 =B =0l ﬂ) =5
<«}=='{>| C @
=% Boot-MIPS - An outline is not
:&', Binaries 7 available,
Includ =
EI%;:KES (2l Problems [Tasks EN % 5 = Propertieq L 9 | R #fB-r5>=08
[main.c C-Build [Boot-MIPS]

mip=z-sde-elf-gcec -03 —-g -EL -c -I ../common -mmt —DDENALI -
[8] set_gpr_boot_valu
.. /common/copy_c2 SPram.5 -o ../common/copy c2 SPram.o

t%;aarl:;ile 1 mips-sde-elf-gcc -03 —-g -EL -c -I ../common -mmt —DDENALI
— ../Malta/init_mc_denali.5 -o ../Malta/init mc denali.o
E] malta_Ram.ld mips-sde-elf-gcc -T malta SPRam.ld -EL -nostdlib -W1l,-Map=malta SPRam map
E_‘ ralta_SPRam.Id main.o ../common/init cachgs.o ../common/init ecp0.o ..,.-"commnfin;t g'pr?o
(E] sim_Ramn.ld ../common/init_itc.o ../common/init tlb.o ../cps/init_cm.o ../cps/init_cpc.o
|Z] sim_SPRam.d | ||| ./eps/init_gic.o ../cps/join_domain.o ../cps/release_mp.o
(= 1074K set_gpr_boot_values.o start.o . .J"commnnfcopy_c2_SPra.m.o
= 4K ../Malta/init_mc denali.o -DDENALI -o malta SPRam.elf
= 34K mips-sde-elf-objdump -d -5 -1 malta SPRam.elf > malta SPRam dasm
= T4K mips-zde-elf-objcopy malta SPRam.elf -0 srec malta SPRam.rec =
7= common il perl ../common/srecconv.pl -E5 L malta SPRam
R lII > cs-make[l]: Leaving directory "C:/navigator-ics-workspace/Boot-MIPS5/1074K' il

D<>

18

5 Code Details

This section will walk through the code contained in the Boot-MIPS project. Flow charts of the major
sections of the code are shown below.

For 24K and 74K single core processors:

init_common_resources

init_gpr
Initialize GPR register
v
init_cp0
Init CPO Status Count Compare Watch Cause.
set_gpr_boot_values
Setregister valuesfor a 24K or 74K
¥
init_tlb

Generate uniqueEntryHi contents perentry pair.

init_mc_denali
Initialize the ROC-it2 MC (Memory Controller)

v
init_I23u

Initializethe unifed L2 and L3 caches

init_icache
Initializethe L1 instruction cache

v

init_dcache
Initializethe L1 data cache

copy_c2_ram
Copy"C"code and datato RAM and zero bss

[init done - eret to main()

19

For 34K single core multi-threaded processors:

init_common_resources init_System_resources

(Al VPEs) (Only VPED)
init_gpr init_mc_denali
Initialize GPR register Initialize the ROC-t2MC (Memory Controller)
v
init_I23u
: Initialize the unifed L2 and L3 caches
set_gpr_boot_values T
Setregister valuesfor a 34K init icache
Initialize the L1 instruction cache
-)
init_cp0 init_dcache
Init CPO Status Count Compare Watch Cause. Initialize the L1 datacache
v
= copy_c2_ram
init—tlb Copy "C"code and datato RAM and zero bss
Generate uniqueEntryHi conterts perentry I
pair. .
init_itc
Initialize Inter-T hread Communications unit
¥
Yes init_vpe1
Setup MT ASE vpelto executethis
hoot code
v
No

init_done

For CPS non-MT Cores 1074K and proAptiv:

init_common_resources (All Cores)

init_gpr
Initialize GPR register

Y
Set_gpr_boot_values
Initialize GPR register

¥

init_cp0
Init CPO Status Count Compare Watch Cause.
Y

init_tlb

Generate uniqueEntryHi contents perentry pair.
¥

init_gic (CPS only)

Configure the globalintemupt controller
K |

init_l23u
Initializethe unifed L2 and L3 caches
Y

init_icache
Initialize the L1 instruction cache
Y

init_dcache
Initializethe L1 data cache

v

init_ite
Initialize Inter-T hread Communications unit

Yes

init_sys_resources
(JustCore 0)

init_cpc
Initializethe CPS CPS (Cluster Power
Controller)

¥

init_cm
Initialize the CPS CM (Coherency Mansger)

¥

init_mc_denali
Initializethe ROC-it2 MC (MemoryCortroller)

¥

copy_c2_ram
Copy "C"code and datato RAM and zero bss

Y

init_I23¢
Initializethe unifed L2 and L3 cachesif

CCAOverrideis available
¥

release_mp
Release othercoresto executethishoot code

A J

jein_demain
Join the coherant domsin

!

IsCore0?

No

I Init_dene - eret to main()

21

For CPS MT Core 1004K and interAptiv:

init_common_resources (All units)

init_gpr
Initialize GPR register

init_core_resources
(All Cores, VPE 0)

|

set_gpr_boot_values
Set reqister valuesfor a 1004k Aintersptiv

init_cp0

Init CPO Status Count CompareWatch Cause.

v

init_tlb

Generate unique EntryHi contents perentry

.

init_I23u
Initializethe unifed L2 and L3 caches
init_icache
Initialize the L1 instruction cache
v
init_dcache
Initializethe L1 data cache
init_itc

Initialize Inter-Thread Communications unit

init_sys_resources
(Just Core 0, VPE0)
¥

pair.
!

init_gic (CPS only)

Configure the globalinterrupt controller

ISVPED? >1es

Mo

init_cpe (CPS only)
Initializethe CPS CPS (Cluster Powver

Controller)
v

init_em (CPS only)
Initializethe CPS CM (Coherency Manager)

i

init_mec_denali
Initialize the ROC-it2 MC (Memory Controller)

¥

copy_c2_ram
Copy "C" code and datato R AM and zero bss

v
init_I23¢c
Y- =,
IE;?& Initializethe unifed L2 and L3 cachesif
CCAOverrideis available
Mo v
Join_domain (CPS only) release_mp (CPS only)
m'. Release otherco resh: execute thisboot code
¥ |
init_vped {(MT or MTICPS only)
T A58 o mcendeine
o
¥
3 Init_dene=- eret to mainj) |

The init_common_resources section is executed by all processing elements. This code initializes
resources that are specific to each processing element, which include the GPRs, element-specific
CPO registers such as Status and Count, the TLB, and the GIC.

The init_core_resources section is executed only once per processor. On a virtual processor MT
system it would be executed by VPEO of all cores in the CPS. This section initializes the caches and
the Inter-Thread Communication Unit (ICU) to join the coherent domain. In a virtual processing core,
the code sets up the second VPE so that the second VPE can also execute the init_vpe_resources

section of the boot code.

The init_sys_resources section is executed only once per system by Core 0 or VPE 0 of Core Oin a
MT system. For Coherent Processing Systems It initializes the coherent processing elements such as
the Cluster Power Controller, Coherence Manager, Memory Controller, and L2 and L3 caches. It also
copies the “C” code to RAM and clears the bss section. When code in this section has completed, all
processors in the system will be released from reset and can begin their boot process using this

same code.

5.1 common/boot.h

22

boot.h — Located in the common directory. Here is where you can find general #defines and the
names of some of the General Purpose Registers that make the code easier to follow.

The file begins with #defines for LEAF and END:

#define LEAF(name)\
JH#text;\
-##globl name;\
_##ent name;\
name:

#define END(name)\
.H##tsize name, .-name;\
H##end name

The LEAF macro is used in this example for assembly functions the make no calls to other functions
and are not passed any arguments (so they don’t require a stack). The return address in the ra
register should not be changed. Using the LEAF and END macros together help a debugger in finding
the source code of the executable being debugged and helps in determining the size of the function.

Next are #defines that control register locations and values for some of the memory-mapped
registers of a Coherent Processing System. These #defines will only be present for use with a CPS
systems such as the 1004K CPS or 1074K CPS. The values for these #defines are dependent on how
the CPS was configured. The values here correspond to the bit file that was used by us for testing.
These are the default values if you have received your bit file from MIPS:

#define GCR_CONFIG_ADDR Oxbfbf8000 // KSEGO address of the GCR registers
#define GIC_P_BASE _ADDR 0x1bdc0000 // physical address of the GIC
#define GIC_BASE_ADDR Oxbbdc0000 // KSEGO address address of the GIC
#define CPC_P_BASE ADDR 0Ox1bde0001 // physical address of the CPC
#define CPC_BASE_ADDR Oxbbde0000 // KSEGO address address of the CPC

The next #defines are used when building a Malta Board target. They are the locations in the
memory map of the Denali memory controller and the 8-segment display on the Malta board.

#define DENALI_CTL_SECTION Oxbbc00000
#define MALTA_DISP_ADDR 0xbf000410

Next is the base address and size increments of the stacks. The base should be placed in KSEGO
where there is no code or data.

#define STACK_BASE_ADDR 0x82000000 /* Change: Based on memory size. */
#define STACK_SIZE_LOG2 22 /* 4Mbytes each */

To improve the readability of the assembly code, the following names have been #defined for some
of the general-purpose registers. These are present as applicable depending on the target core. The
comments tell their intended purpose:

#define r1_all_ones $1 /* at OxFFFFFFFF to simplify bit insertion */

23

// $2 -
#define
#define
#define
#define

// $12 -

$7 (v0, vl a0 - a3) reserved for program use

r8 _core_num vO /* s0 Core number */

r9_vpe_num vl /* sl VPE number that this TC is bound to */
r10_has mt _ase VvO /* vO Core implements the MT ASE. */
rll_is_cps $11 /* vl Core is part of a CPS */

$15 (t4 - t7) are free to use

// CO_CONFIG, $17 (sO and sl1) reserved for program use

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

ri8_tc_num $18 /* s2 MT ASE TC number (O if non-MT.) */
r19 more cores $19 /* s3 Number of cores in CPS —core0 */
r20_more_vpes $20 /* s4 Number of vpes in core -vpe 0. */
r21_more_tcs $21 /* s5 Number of tcs in vpe -TCO */
r22_gcr_addr $22 /* s6 (ksegl) base address of the GCRs */

r23_cpu_num $23 /* s7 (CPO EBASE[CPUNUM]). */

r24 malta_word $24 /* t8 (ksegl) address of Malta display. */
r25_coreid $25 /* t9 Copy of cpO PRiD GLOBAL! */

kO $26 /* kO Interrupt handler scratch address.*/

k1 $27 /* k1 Interrupt handler scratch data. */

// $28 gp and $29 sp

#define

// ra ra

r30_cpc_addr CO_ERRPC /* s8 Address of CPC register block */

5.2 start.S

As the name implies, the code in start.S is the start of the Boot Code. This assembly source file
contains the exception vectors and control code for the boot process and calls other assembly
functions as needed to perform initialization of the sub-components of the core. Each core family

has a start.

S that is tailored for it, so there is a start.S file located in each core family directory. There

are three main differences between the individual start.S files:

1. The simplest is the start.S file for single cores such as the 24K and 74K. This is the smallest
subset of functions that are required to initialize a single core.

2. Ad

ditional functionality is added to initialize a multi-threaded system such as the 34K,

1004K, and interAptiv.

3. Ad
as

ditional functionality is added to initialize a multi-core Coherent Processing System, such
the 1004K, 1074K. proAptiv, or interAptiv.

The complete set of start.S code, which code initializes a multi-threaded Coherent Processing
System, is in the 1004K Core directory. The start.S code in this directory is written so that it can be
used for any core; it does this by making runtime decisions about what Core it is running on.
However, customizing the start.S code for each core family makes it more efficient and improves

readability

The code begins by setting options for the assembler:

#include
#include
#include
#include

<boot.h>
<mips/m32c0.h>
<mips/regdef.h>
<cps.h>

24

.set noreorder # Don"t reorder instructions.
.set noat # Don"t use rl1 (at)

The noreorder directive tells the assembler that it may not change the ordering of the instructions in
the file. The main effect of this option is the filling of the branch/jump delay slots. By default, the
assembler will fill a branch or jump delay slot with an appropriate instruction. In the case of this

boot code, the branch/jump delay slots are filled with precise instructions needed for the boot, so
the no reorder option is used.

The AT register ($1) is used by the assembly for synthetic instructions. This boot code is using AT for
a specific purpose and does not use any synthetic instructions, so it uses the “noat” option. NOTE: If

a program uses a synthetic instruction with the “nonat” option set, the assembly will stop with an
error.

5.2.1 Boot Exception Vector

When a MIPS Core is powered up or is reset, it is in exception mode, so the first instruction is
fetched from the Boot Exception Vector. The boot code loads the address of the first code to call
and then jumps to that address. This jump will go around a Malta board’s ID register, because the
boot code will not fit in the space allotted for the boot exception vector. The jump also serves to
jump to where the code was linked for. This makes it possible for the debugger to find the correct
code to display in the source code window.

LEAF(__reset_vector)

la a2, check_nmi
jr a2
mtco zero, CO_COUNT // Clear cp® Count (Used to measure boot time.)

5.2.2 Other Exceptions

The next section in start.S covers the other exception vectors. The code uses the .org directive to
communicate to the linker where the code should be placed in memory. The value supplied with
.org is the offset from the starting base address of the code. If the code was started at the default
boot exception vector address of 0xBFCO 0000, then .org 0x200 would put the code at 0OxBFCO 2000.
Any exception signaled during this boot indicates a serious error in the code or the hardware, so
here we are not concerned with elaborate exception handlers. For the most part, the code uses the
debug breakpoint instruction “sdbbp” which will halt execution and transfer control to the
debugger, if one is attached. That is what happens with the first three exception vectors below:

.org 0x200 /* TLB refill, 32-bit task. */

sdbbp

.org 0x280 /* XTLB refill, 64-bit task. */
sdbbp

.org 0x300 /* Cache error exception. */
Sdbbp

For the general exceptions (shown in the code below), if the code is executing on a Malta Board, an
“H” will be displayed on the 8-segment display in the column that corresponds to the VPE (34K,

25

1004K, or interAptiv) or the core (1074K or proAptiv) that received the exception. On the other
single cores (24K, 74K) the “H” will be in the first column. If you want the code to just stop and enter
the debugger, change the eret to an sdbbp.

.org 0x380 /* General exception. */
// Malta ASCII character display.
li kO, MALTA_DISP_ADDR

mfcO k1, CO_EBASE // read EBASE

ext ki, ki, 0, 10 // Extract CPUNum

sl ki, ki, 3 // Build offset for display char.
addiu k1, 8

addu kO, kO, k1 // Pointer to a single display character.
// Indicate that this vpe is in the handler.

li k1, “H*®

// Write ASCII char to Malta ASCII display.

sw k1, 0(k0)

eret

nop

If your system contains a single core (24K or 74K), you can skip the next section!

5.2.3 Multi -core inter-processor interrupt processing (1004K, 1074K, interAptiv and
proAptiv CPS only).

This example show how to use inter-processor interrupts for multi-core processors. For those
processors, the code continues.

First the code clears the interrupt condition by writing the interrupt number to the Global Interrupt
Write Edge Register. The interrupt to be cleared is the Core number plus 0x20. (There will be more
about how this was set in the section that details the main.c code.) The code below shows the
loading of the address for the Global Interrupt Write Edge Register (GIC_SH_WEDGE), then
obtaining the Core number from the Exception Base Register (EBASE), and adding the 0x20 offset to
compute the interrupt number to clear. Finally, the interrupt number is written to the Global
Interrupt Write Edge Register to clear the interrupt.

li kO, GIC_SH_WEDGE

mfcO k1, CO_EBASE // read EBASE

ext ki, ki, 0, 10 // Extract CPUNum

addiu k1, 0x20 // Offset to base of IPI interrupts.
sw k1, 0(kO) // Clear this IPI.

There is an external array declared in main.c called start_test. Each element in the array
corresponds to a processing element that is waiting to continue processing after its corresponding
array element has been cleared. The following code clears the element of start_test for the
processor that has taken the exception. It does this by writing the address of start_test to a register,
getting the CORE number from the CPO EBASE register, multiplying it by 4 (shift left 2) to get the
correct byte offset into the start_test array (declared as a integer array, so each element is 4 bytes),
and then writing a 1 to that array element.

26

la kO, start_test

mfcO k1, CO_EBASE // read EBASE

ext ki, ki1, 0, 10 // Extract CPUNum

sl ki, ki, 2 // x 4 for integer element
addu kO, kO, k1 // index into array

li ki, 1

sw k1, 0(kO) // set element of array
eret

nop

5.2.4 Ejtag Exception

For an EJTAG exception (which you should only get on live hardware that includes EJTAG), the code
displays the debug error PC so you can find the location in the code where the error occurred and
then enter a loop.

.org 0x480 /* debug exception (EJTAG Control Register [ProbTrap] == 0.) */

] r24 _malta_word, MALTA DISP_ADDR // $24 is clobbered.
mtcO a0, ra // DeSave $4
mfcO a0, $24 // Read DEPC
sw a0, 0(r24_malta_word) // Display DEPC
mfcO a0, ra // Restore $4

1: b 1b /* Stay here */
nop

5.2.5 NMI, ISA, and MIPS32 Verification

Recall that the code at the boot exception vector just branches to check_nmi that’s because the NMI
exception vector is the same as the boot exception vector.

The NMl is handled in the next Block of code. If this was an NMI exception, the NMI bit (19) in the
Status Register (CPO register 12) will be set. The code first moves the value in the status register to a
temp register, then shifts it to the right to put the NMI bit in the least-significant bit. Then it checks
to see if it’s 0, and if so, branches ahead to the verify_isa label. If not, it executes a sdbbp that will
cause a break into the debugger, if attached.

mfcO a0, $12 // Read CPO Status

srl a0, 19 // Shift [NMI] into LSBs.
andi a0, a0, 1 // Inspect CPO Status[NMI]
beqz a0, verify_isa // Branch if NOT an NMI
nop

sdbbp

This boot code was designed with the MIPS32 Release 2 ISA in mind, so it checks the CPO Config
register (16) to make sure the core is a MIPS32R2 core. If it is a MIPS32 core, the AT field (bits 13
and 14) are 0, and if it is a MIPS32R2 core, the AR field (bits 10 through 12) are 1. Both must be true
for the code to continue. The code below reads the CPO Config register, then shifts it left by 10 bits,
leaving the AT and AR fields in bits 0 through 4. Then it masks off the AT bits (3 and 4) and branches
ahead if they are 0. If they’re not 0, then the code issues a break instruction to stop in the debugger,
if attached. Note that the branch delay slot contains masks of the AR bits for the next step.

27

verify_isa: // Verify device ISA meets code requirements (MIPS32R2)

mfcO a0, CO_CONFIG // Read CPO Config

sri a0, 10 // shift [AT AR] into LSBs.
andi a3, a0, 0x18 // Inspect AT bits

beqz a3, is_mips32 // Branch if MIPS32 (0).
andi a3, a0, Ox07 // lInspect AR bits

sdbbp // Failed so break

The code checks if any of the AR bits are set, which indicate the core is at least Release 2 of the ISA.
If the check fails, the code issues a break instruction to stop in the debugger, if attached. The code is
shown below:

IS _mips32:
bnez a3, iInit _common_resources
nop
sdbbp // Failed assertion

5.2.6 Initializing Common Resources

The next section of start.S initializes resources that are common to every processing element in the
core(s).

e For single-core single-threaded processors like the 24K and 74K, the functions in this section
will be called once.

e For a 34K Core, this section will be executed by each VPE.

e For a 1004K/interAptiv CPS, this section will be executed by each VPE on each
1004K/interAptiv Core.

e For a 1074K/proAptiv CPS, this section will be executed by each 1074K/proAptiv Core.

The actual functions called by the code will be covered in a section specific to the source file that
contains that code. If viewing this electronically, you can follow the links to the section that contains
the function that is called.

Each function call below begins by loading the address of the function name and then jumping to
that address. The Jump and Link Register (jalr) instruction jumps to the address supplied by the
register and puts the address of the instruction after the jump delay slot into the Return Address
(ra/ra) register. This will be used by the called function to jump back to the next code to be
executed.

init_common_resources: // initializes resources

init_gpr function sets all of the General Purpose Registers, including shadow register sets, to a
known value.

la a2, init_gpr // Fill register file with boot info
jalr a2
nop

28

set _gpr boot values sets the values for the General Purpose registers that will be used by the rest
of the code.

la a2, set_gpr_boot_values // Set register info
jalr a2
nop

At this point the code clears the MALTA display. It does this because during the normal boot
process, the MALTA board displays Power UP on the display. It is cleared here to indicate that the
Boot has started and to clean out the display. The display will then be used to report the status of
the boot. On systems that have more than one Core or multiple VPEs, only the first processor clears
the display. A character is written to a column in the display by using the store word instruction to
write the character to the display. The address for the columns start at 0OxBFOO 0418 through OxBF0OO
0450. Each address is 8 bytes higher.

The code tests for processor 0 and loads 0xBFO0 0000 into register 8 and loads a space into register
9. Then it writes to each column in the display.

// Clear Malta display if processor 0O
Bnez r9_vpe_num, clear_done
lui vO, Oxbf00
i vl, 0x20
sw vl, 1048(v0)
sw vl, 1056(v0)
sw vl, 1064(v0)
sw vl, 1072(v0)
sw vl, 1080(v0)
sw vl, 1088(v0)
sw vl, 1096(v0)
sw vl, 1104(v0)
clear_done:

init _cp0 initializes all CPO Watch, Cause, Compare, and Config registers.

la a2, init cp0 // Initialize CPO registers
jJalr a2
nop

init tlb initializes the Translation Look-a-side Buffers.
la a2, init_ tlb // Initialize the TLB
jJalr a2

nop

init_gic is only present for multiprocessor cores (1004K, 1074K, interAptiv and proAptiv). It initializes
the Global Interrupt Controller

la a2, init gic // Initialize Global Interrupt Controller.
jJalr a2
nop

29

This next check is only present for the 34K, 1004K, and interAptiv cores. For these cores, the code
will only continue if it is executing on VPEO, because the rest of the code only needs to be done once
per processor.

bnez r9 vpe num, init_done // If we are not a vpeO, we are done.
nop

The next check is only present for a 1004K or interAptiv CPS. If this is not the first core in a CPS, the
code will branch around the next section of code, because it only needs to be executed once per CPS
(not once for each Core).

bnez r8 core_num, init_core_resources // continue for element O
nop

5.2.7 Initialize System Resources

This next section of code will be executed only once per processor. It will be executed by each single
Core (24K and 74K), only on VPEO of a multithreaded Core (34K), only on VPEO Core 0 of a 1004K or
interAptiv CPS.

init_sys_resources: // for core0/vpeO.

init_cpc is only present for multi-processor systems (1004K, 1074K, interAptiv and proAptiv). It
initializes the Cluster Power Controller.

la a2, init_cpc // Initialize Cluster Power Controller
jalr a2
nop

init_cm is only present for multi-processor systems (1004K, 1074K, interAptiv and proAptiv). It
initializes the Coherence Manager.

la a2, init_cm // Initialize Coherence Manager
jJalr a2
nop

This next section of code is compiled only if the code is being built for a Malta Board. It will initialize
the memory controller. For SEAD boards, if you are adapting this code for your hardware, this is
where you need to put the call to initialize your memory controller.

If you are using a COREFPGAS Daughter card, the address for init_mc_denali will be used. If you are
using the new CoreFPGA6 Daughter cards, then init_CoreFPGA6_mem will be loaded into the
register. (The CoreFPGA6 Daughter card has the initialization built-in, so it uses a much simpler
initialization, whereas the CoreFPGAS5 needs much more to configure the memory.)

#ifdef DENALI
la a2, init_mc_denali // CoreFPGAS

or
la a2, init_CoreFPGA6_mem // CoreFPGA
jalr a2

30

nop
#endi

init _[23u initializes the L2 and L3 caches for multi-processor systems (1004K, 1074K, interAptiv and
proAptiv only).

la a2, init 123u // Init the caches
jalr a2
nop

copy c2 ram will copy the C code in main.c from the ROM memory area to RAM or Scratchpad
RAM, depending on the Makefile target. It also copies initialized data and clears the uninitialized
variables in the bss section.

la a2, copy_c2 ram // Copy code/data to RAM, zero bss
jJalr a2
nop

release_mp is present for multi-processor systems (1004K, 1074K, interAptiv and proAptiv only)
only. It is used to start them processing this boot code.

la a2, release_mp // Release other cores to execute
jJalr a2
nop

31

5.2.8 Initializing Core Resources

This section of code will be executed on a:
e microAptiv, 24K, or 74K Cores always
e 34K Core only by VPEO
e 1004K CPS and interAptiv only VPEO of Core O
e 1074K CPS and proAptiv only Core 0.

init_core_resources:

The next two calls, init_icache and init_dcache, found in common/init_caches.S or
common/init_caches2.S, will initialize the Level 1 Instruction and Data caches so they can be used
from this point on.

la a2, init_icache // Initialize the L1 lIcache
jJalr a2
nop

Before the code calls the init_dcache function, it enables the caches by setting the Cache Coherency
Attribute (CCA) in the KO field of the CPO Config register. The Boot MIPS code executes in KSEGO, and
up to now KSEGO has been operating in uncached mode (CCA = 2). Now that the instruction cache
has been initialized, the code changes the CCA for KSEGO to cacheable (3 or 5). All instructions will
now be cached, so the code will run faster through the processor. All loads and stores will also be
cached, so it is important not to use loads or stores until the Data cache has been initialized (in the
code section following this code).

The trick is, the code that changes the CCA must be executed from KSEG1 addresses (not cacheable).
This is done by setting bit 29 of the register holding the change_kO_ca address jump point and then
uses the JALR instruction to jump to that address.

// The changing of Kernel mode cacheability must be done from KSEG1.
// Since the code is executing from KSEGO It needs to do a jump to KSEG1l
// change KO and jump back to KSEGO
la a2,change_kO_cca
li al, OxfF
ins a2, al, 29, 1 // changed to KSEG1 address by setting bit 29
jalr a2
nop

Next the code calls the init_dcache function to initialize the Data Cache.
la a2, init_dcache // Initialize the L1 D cache

jJalr a2
nop

32

init _I23c initializes the Level 2 and Level 3 caches, when present. The code included here is only for
coherent processors, which can control the cacheability of the L2 and L3 caches and can wait until
the primary caches are turned on before they are initialized.

la a2, init_123c // Initialize L2 and L3 caches
jJalr a2
nop

init_itc will initialize the Inter-thread Communication unit, if present (34K and 1004K/interAptiv CPS
only).

la a2, init_itc // Initialize ITC
jJalr a2
nop

join_domain associates the CORE with a Coherence Domain.

la a2, join_domain // Join the Coherence domain
jJalr a2
nop

init_vpel will setup the second VPE if present to run this boot code (34K and 1004K/interAptiv CPS
only).

la a2, init_vpel // vpel to execute boot code
jJalr a2
nop

5.2.9 Initialization Complete

The initialization is now complete for the executing Core or VPE, and this is the point at which any
setup needed for an OS should take place, after which the OS takes control of the system.

This code example sets up arguments to main and then executes a return from exception (necessary
because all of the code so far has been part of the Boot exception handler).

init_done:

The code will put the address of the all_done label in the Return address register (ra/ra), so if main
returns it will go to that code (which is just a loop).

// Prepare for eret to main (sp and gp set up per vpe in
set_gpr_boot values)
la ra, all _done // main’s return

Before the code executes an eret (exception return), it must first change the address it will return
to. Normally the core uses the address of the instruction that was executing when the exception
occurs, which in this case is the boot exception vector. So if that has not changed, the code will loop
through the boot code forever. In this case, the code places the address of the main function into
the CPO ErrorEPC register, so that when the eret is done, that is the code that will start executing. If
an OS is to be started, then use the address of the start of the OS instead of the address to main.

33

la al, main
mtcO al, CO_ERRPC // ErrorEPC

For Coherent Processing Cores (1004K, 1074K, and proAptiv) and MT cores (34K and interAptiv), the
external variable num_cores is set. num_cores is declared and used in main.c. The code here loads
the address of the variable and makes it an uncached address (by setting bit 29) so that it will be
globally written to memory. Then the code uses the value in r19_more_cores (519/s3) and adds 1 to
it to account for core 0 (r19_more_core was set in set_gpr_boot_values.S).

// initializes global variable num_cores

la al, num_cores

ins al, r1l all ones, 29, 1 // Uncached ksegl
add a0, r19 more_cores, 1

sw a0, 0(al)

Before main() begins executing, the code sets up the arguments it will use. These arguments will
vary depending on the MIPS core family being booted. The temp registers 4 through 7 correspond to
the argument registers in the MIPS 032 ABI (GPR registers 4 — 7, also known as a0 through a3).

// Prepare arguments for main()

move a0, r23_cpu_num // a0/r4 the "cpu' number
move al, r8 core_num // al/r5 the core number
move a2, r9 _vpe_num // a2/r6 the vpe number
addiu a3, r20_more_vpes, 1 // a3/r7 the number of vpes

The boot of the core or VPE is now complete. Executing the eret instruction will bring the core out of
exception mode and start execution at the address in ErrorEPC (which was set to the address of
main above).

eret // Exit reset exception handler

The all_done label is used for the return address of main(). It is not expected that main will return.
main would normally be the stat of the OS and OS'’s usually just go into a control loop that never
exists. If main exited, it would return to this never ending loop.

all _done:
// Looks like main returned. Just busy wait spin.
b all_done
nop

5.3 set_gpr_boot_values.S

The boot code names General Purpose Registers and assigns them specific purposes. The boot.h
section already covered the naming of the registers. The set_gpr_boot_values.S source file assigns
values to many of these registers. The register assignment can be divided into two types, one that
assigns registers according to the 032 API (such as the global pointer), and one that holds an
attribute of the core. The API assignment is standard for every core, but since each core can have
different attributes, each core’s version of set_gpr_boot_values.S can differ.

34

It should also be noted that there is an underlying style in this boot code that you don’t necessarily
have to follow for your system. As discussed previously, this code is designed to run on any core.
The code for the 1004K CPS is a superset of all the cores and could be used on any core. The coding
style is to make a run time decision on which core is being used. To save code space for cores that
don’t need all the features of the 1004K CPS, the boot code is divided into core sections with each
only compiling in what is needed for that core. However, there is still code that makes some runtime
decisions. To make this code even smaller and slightly faster, you can customize it for your specific
core and remove those decision points. That work is left up to the reader.

LEAF (set_gpr_boot values)

The first register assignment is r1_all_ones. This sets GPR 1 to all ones. It will be used many times in
the code in conjunction with the insert instruction. It simplifies the code because we can us it over
and over again without having to set up a register with ones each time we use the insert instruction.

li r1_all_ones, OXFFFFFFFF // Simplify code and improve clarity

The code reads the EBASE register and extracts the core number into r23_cpu_num (r23/s7).

mfcO a0, CO_EBASE // Read CPO EBASE
ext r23_cpu_num, a0, 0, 4 // Extract CPUNum

Malta boards have an 8-segment display that is used by the code to report state. When using a
simulator, you can use the debugger to read the address to check on state. MALTA _DISP_ADDR is a
#define set in boot.h.

li r24_malta_word, MALTA_DISP_ADDR // State reporting

The Global pointer is common to all processing elements. Its address is defined in the linker file and
set by the linker. This address will be used to reference shared global variables. The MIPS API
designates that GPR 28/gp be used to hold the global pointer address, so the code sets it here.

la gp, _gp // Shared globals.

Part of each processing element’s context is its own stack. The stack is used to hold local variables
while executing a function. It also holds other context such as GPR values that are saved to the stack
when a function is called, and then restored when returning from a function call. In this case, a
constant named STACK_BASE_ADDR is #defined in boot.h to point to memory designated for use by
processor stacks. The MIPS API designates that GPR 29/sp be used to hold the stack pointer. The
code first writes the STACK_BASE_ADDR to GPR 29, then manipulates it using the VPE or CORE
number so that each processing element will have its own stack.

hi sp, STACK BASE_ADDR
ins sp, r23_cpu_num, STACK SIZE L0OG2, 3 // stack.

35

5.3.1 MT ASE Check (34K and 1004K CPS Only)

The next sections of code are only present for 34K and 1004K CPS. An MT core has CPO Registers
Config 1, 2, and 3, and the MT bit will be set in the Config 3 register. But you can’t just read the
Config 3 register and see if the MT bit is set, because on non-MT processors, there won’t be a Config
3 register. and the operation of trying to read the Config 3 register will have undetermined results
(in other words, nothing good will happen).

To read Config 3 properly, the code must first read the Config 1 register and check to make sure the
M bit is set. The M bit in the Configl register indicates whether or not there is a Config2 register.
The M bit is bit 31 in the Configl register. If this register is treated as a signed integer, this bit would
be the signed bit, and if the bit is set, the register value would appear as a negative number or a
number less than 0. The simplest way to test the bit is to check if the register value is greater than 0,
using the branch greater than or equal to zero instruction. The code then looks at the Config2
register and its M bit in the same manner. The code reads the config3 register and isolates the MT
bit. Bit 2 tests it and branches to the no MT ASE function if it is not set.

check_mt_ase:

mfcO a0, CO_CONFIG, 1 // read CO_Configl
bgez a0, no_mt_ase // No Config2 register
mfcO a0, CO_CONFIG, 2 // read CO_Config2
bgez a0, no_mt ase // No Config3 register
mfcO a0, CO_CONFIG, 3 // read CO_Config3

and a0, (1 << 2) // MT

beqz a0, no_mt_ase

1 r10_has mt ase, O

If the code has determined that it is executing on an MT processor, it will set GPR 2 to 1. It will use
this register in cases where it needs to do special configuration for MT.

The rest of the code will save MT-specific data in specific registers.

has_mt_ase:
li r10 _has mt ase, 1

It reads the CPO TCBind register and saves the number of the VPE context in which it is currently
executing into GPR 17. It will save the number of the TC it is executing in GPR 18.

// Every vpe will set up the following to simplify resource
initialization.

mfcO a0, CO_TCBIND // Read CPO TCBind

ext r9 vpe num, a0, 0, 4 // Extract CurVPE

ext ri18 tc num, a0, 21, 8 // Extract CurTC

Next it will read the CPO MVPConf0 and set GPR 21 to the number of TC in the Core and set GPR 20

to the number of VPE contexts in the Core. Then the code will branch to check if this is a coherent
processing system.

36

mfcO a0, CO_MVPCONFO // read CO_MVPConfO
ext r21_more_tcs, a0, 0, 8

b check_cps

ext r20_more_vpes, a0, 10, 4

5.3.2 No MT ASE (24K, 74K, 1074K, and proAptiv)

If the code is executing on a non-MT core, the MT core-specific values will be set to zero.

no_mt_ase: // This processor does not implement the MIPS32 MT ASE.

I r9 vpe_num, O
li r18 tc_num, O
1 r20_more_vpes, O
li r21 _more_tcs, O

5.3.3 Check for Coherent Processing System (1004K, 1074K, interAptiv or proAptiv)

Now the code needs to determine if it is running on a coherent multi-core system. It does this by
reading the CPO Processor ID register into GPR 25. The code extracts the Core ID and
Implementation bits and then compares them with the values for the
1004K/1074K/interAptiv/proAptiv to determine if this is a Coherent Core. If it is, it branches to
setting up the Coherence Manager GPR registers.

check cps: # Determine if there is a Coherence Manager present

mfcO r25 coreid, CO_PRID // CPO PRId.
ext a0, r25 coreid, 8, 16 // Extract 1D
li a3, 0x0199 // MIPS, 1004K
beq a3, a0, is_cps

li a3, 0x01l9a // MIPS, 1074K
beq a3, a0, is_cps

nop

5.3.4 Not a Coherent Processing System (24K, 34K, and 74K)

For non-CPS systems, the code clears the GPR registers that are assigned to deal with a Coherent
Processor.

is_not_cps:
li rl1 _is _cps, O

li r8 core_num, O
b done_init_gpr
li r19 more _cores, O

5.3.5Is a Coherent Processing System (1004K, 1074K, interAptiv or proAptiv only)
If the code determined that it is executing on a Coherent Processor, it sets r11_is_cps (GPR 3/v1) to

1 to indicate we have a Coherent Processor. r1l_is_cps will be used in several places in the code to
branch to the appropriate execution path.

37

is_cps:
li rll is cps, 1

A Coherent Processing System contains a structure called the Global Control Block that determines
the configuration of the system. This structure contains registers, the Global Control Registers or
GCRs, that can be read to determine the configuration of elements within the CPS. Many of the
registers can also be written to change the CPS configuration.

To verify that we have a correct Global Control Block address, the code will compare the given
address of the control block with the one stored within the block itself located in the GCR Base
register. The given address is set by a #define in boot.h. Consult your SOC designer to determine the
value of this “#define”. If the given address is not the same as the address in the GCR Base register,
something is wrong, and this system should not be treated as a Coherent system. If it is equal, the
code loads the given address of the GCR Configuration Block into GPR 5.

// Verify that we can find the GCRs.
la al, GCR_CONFIG // KSEG1(GCRBASE)

The value in the GCR Base register is a physical address, so before the code compares the given
value, it must convert it to a physical address. That’s done by simply clearing the top 3 bits using the
insert instruction and GPR 0. (Note that ERL is set while executing this boot code, so this step turns
the address into a direct mapped address, where virtual equals physical address.) This line of code
takes the first 3 bits of GPR 0, which is always 0, and inserts them starting at bit 29 into GPR register
5.

ins al, zero, 3 //Convert KSEG1l to physical address.

Then it loads the GCR Base register that is located at byte offset 8 into GPR 4.

lw a0, 0x0008(al) // GCR_BASE

The GCRs are located in the memory map on a 32K-byte boundary so the lower 15 bits of the
address will always be 0. The GCR Base register uses these lower bits to store additional
information. Therefore to get the correct physical addres,s the code needs to clear these bits that
are now stored in GPR 4.

ins a0, zero, 0, 15 // lsolate address of GCR.

The code checks to make sure the two GPRs are equal and branches to the gcr_found function if
they are, or issues a debug break instruction to stop execution.

beq al, a0, gcr_found
nop
sdbbp // Can"t find GCR RTL config override of MIPS default

Now that the code has determined it has valid GCRs, it will save their address in GPR 22.

38

gcr_found:

I r22_gcr_addr, GCR_CONFIG

The code stores the GCR_CL_ID in GPR 16. The GCR_CL_ID is the number of the core that is
executing this code within the Coherent Processing system. The GCR_CL _ID is located within the
Core-Local Control Block. The Core-Local Control Block is located at offset 2000 hex from the GCR
Base address, and the GCR_CL_ID is located at offset 28 hex within the Block. Putting these together
results in offset 2028 hex from the GCR Bass address.

Iw r8 core _num, (CORE_LOCAL_CONTROL_BLOCK + GCR_CL_ID)(r22_gcr_addr)

The code now saves the total number of Cores in the system. This information is stored in the
GCR_CONFIG register located at offset 0 from the GCR Base. Bits 0 through 7 contain the value, so
these bits are extracted from the register value and stored in GPR 19.

Iw a0, GCR_CONFIG (r22_gcr_addr) // Load GCR_CONFIG
ext r19 more_cores, a0, PCORES, PCORES_S // Extract PCORES

5.3.6 Done with set_gpr_boot_values

We are now done with the init_gpr function and the code returns to the calling function,
init_common_resources located in start.S in section Initializing Common Resources.

done_init_gpr:

jr ra
nop

39

5.4 common/copy_2c_ram.S

This example boot code shows how to place C code in ROM that will later be copied to RAM or
SPRAM. How to place the code in ROM is covered in the linker file section. This section covers the
copying of the C code from ROM to RAM.

There are a few defines to make the code easier to read.

#define s1_all_ones sl1 /* at Will hold Oxffffffff to simplify bit insertion of 1's. */
#define a0_temp_data a0 /* a0 data to be moved */

#define al_temp_addr al /* from address */

#define a2_temp_dest a2 /* to address */

#define a3_temp_mark a3 /* ending address */

The copy_c2_ram function starts by putting the first address of the “C” code’s text section into GPR
5. Then _zapl, created in the Linker script, locates the area right after all the init code in the flash
memory. The _zapl address is the start of the “C” code that will be copied to RAM. In other words it
is the copy from address.

LEAF(copy_c2_ram)
li sl all _ones, OXFFffffff

// Copy code and read-only/initialized data from FLASH to RAM.
la al temp_addr, _zapl

The _zap1 address is a cached address in KSEGO. Since we haven’t yet initialized the caches, we
don’t want to use this cached address. As you should know, in the MIPS architecture KSEGO and
KSEG1 are two virtual address sections that access the same physical addresses. Accesses to KSEGO
are first looked for in the cache, whereas addresses in KSEG1 go directly to memory and never
access the cache. KSEGO and KSEG1 addresses differ only in their three most-significant bits - the
rest of the address bits are the same. KSEGO addresses have the top three bits set to 100, and KSEG1
addresses have the top three bits set to 101. For example, the KSGEO cacheable address hex 0x8001
0000 and the KSEG1 uncached address hex 0OxA001 0000 access the same physical memory location.
What this code does is convert the KSEGO address into a KSEG1 address by inserting a 1 into bit 29,
changing the top byte from an 8 to an A.

ins al temp_addr, sl1 all_ones, 29, 1

Next the code stores the _ftext_ram value into a2. _ftext_ram is also created in the linker file. It is
the start of the “C” code section that will be copied to. In other words, it is the copy to address. It is
also converted to a KSGE1 address by inserting a 1 into bit 29.

la a2_temp_dest, ftext ram
ins a2 _temp_dest, sl1 all _ones, 29, 1

40

The _edata_ram is stored in a3. _edata_ram is created in the linker file and is the address of the end
of the initialized data section. The code will use this address to end the copy of the code and
initialized data sections.

la a3_temp_mark, _edata_ram
ins a3_temp_mark, rl1 all _ones, 29, 1

The code checks to make sure we have anything to copy by comparing the start of the code and
data address with the end address. If there is nothing to copy, the code will skip around the copy
and proceed to the clearing the uninitialized variable section. (For this example, there should always
be something to copy).

beq a2 _temp_dest, a3, zero _bss
nop

The copy is simply reading from the location where the “C” code and data is stored in flash (al) and
writing it to its destination address (a2) in RAM.

next_ram_word:
Iw a0_temp_data, 0(al_temp_addr)
sw a0 _temp_data, 0(a2_temp_dest)

The source and destination addresses are incremented by 4, the number of bytes in a word and the
code checks to see if it still has more to copy by using a3_temp_mark which is the end address and
the current destination address.

addiu a2_temp_dest, 4
bne a3_temp_mark, a2 temp_dest, next_ram_word
addiu al_temp_addr, 4

Now the code turns its attention to the uninitialized variable section (also known as the bss section,
which strangely enough stands for Block Started by Symbol). It is mandated by the C specification
that the bss section be initialized to 0 before a program starts. This clearing of the bss section
usually is done by the program loader. It is the responsibility of the boot loader to clear the first bss
section before calling the main “C” function.

This code is similar to the code we just went through for the copy. It uses two values created in the
linker script. _fbss is the first address of the bss section and _end is the end address of the bss
section. It converts both those addresses to uncached KSEG1 addresses. Then the code checks to
see if there is bss to clear by seeing if they are equal.

zero_bss:
la al temp_addr, _fbss
ins al temp_addr, sl1 all_ones, 29, 1
la a3_temp_mark, _end
ins a3_temp_mark, sl _all _ones, 29, 1
beq al temp_addr, a3 temp_mark, copy_c2 ram_done
nop

41

The label next_bss_word will be used as a loop point. The code stores a zero using the zero register
to the destination address in al (GPR 5). It then adds 4 bytes to the destination address, checks to
see if it is at the end of the copy by comparing it to the end address stored in a3_temp_mark (GPR
7), and loops back if it is not.

next _bss word:
sw zero, 0(al)
addiu al_temp_addr, 4
bne al_temp_addr, a3_temp_mark, next_bss_word
nop

The code has finished the copy and returns.

copy_c2_ram_done:
jr ra
nop
END(copy_c2_ram)

42

5.5 common/copy_2c_SPram.S

You may have a system that uses Scratchpad RAM instead of regular RAM, or uses both, and you
want to copy the main code to the Scratchpad RAM. The copy_c2_Spram.S should be used in place
of the copy_c2_ram.S. The copy to Scratchpad RAM requires the memory controller to setup the
SRAM for the copy. Also, there is a difference in the layout requirements for SRAM, namely that
there has to be one Scratchpad RAM for instructions and one for data. This means that the code
must be split to copy the instructions to the Instruction Scratchpad RAM using cache instructions,
and the data to the data Scratchpad RAM using regular loads and store instructions.

Here are some #tdefines to make the code easier to read:

#define sO_save_CO_ERRCTL sO /* use sO only to save CO_ERRCTL */

#define vO_all_ones VO /* at Will hold Oxffffffff to simplify bit insertion of 1's. */
#define a0_temp_data a0 /* a0 data to be moved */

#define al_temp_addr al /* from address */

#define a2_temp_dest a2 /* to address */

#define a3_temp_mark a3 /* ending address */

5.5.1 Copy to Instruction Scratch Pad

First check to see if there is an Instruction Scratchpad RAM by reading the CPO Config register. If
there is, the ISP bit in the Config register will be set. So the code extracts the ISP bit (bit 24) and
checks to see if it’s 0. If it is, it assumes there is no Scratchpad RAM and branches to the end of the
function. If it is set, the code falls through to the next instruction.

mfcO vO0,CO_CONFIG

ext vli, vO, 24, 1

blez vl1, copy c2 ram done // no ISPRAM just exit
nop

The next few lines of code set the starting address of the ISPRAM in the ISPRAM controller. To clarify
further, while the physical address of the ISPRAM can be set at core build time, it can be changed by
software to place it anywhere in physical memory. The code here is changing the physical address of
the ISPRAM to match the address where the main.c code was linked. The code assumes that the
system is not using a TLB but instead uses Fixed Mapping Translation (FMT). With FMT, KUSEG starts
at virtual address 0 and maps to Physical address 0x4000 0000. In this example, the main.c code is
linked to virtual address 0x1000 0000, so the ISPRAM is placed at physical address 0x5000 0000
(_ISPram = 0x5000 0000).

The “cache” instruction is used to program the ISPRAM physical address and fill it with instructions.
The “cache” instruction does this by writing the tag registers to the Scratchpad controller. There are
two tag registers for each Scratchpad RAM, one set for the ISPRAM and one set for the DSPRAM.
Tag O is located at offset 0 and tag 1 is located at byte offset 8 into the Scratchpad controller. Here is
a table that shows what bit and tags contain information.

43

l or D Tags

tag 31 20 19 12 7 6 0
0 Physical Base Address E
1 Size 0

As shown in the table, the physical address is located in tag 0, bits 12 through 31 (4K boundary), and
the Enable bit is located in tag O at bit 7. Both of these bits are read/write. The size in 4K sections is
located in tag 1, bits 12 through 19.

The following code will place the physical address of the ISPRAM into the CPO CO_TAGLO register.

The code puts _ISPram in al, then moves it to the CO_TAGLO register.

la al temp addr, _ISPram
mtcO0 al temp addr, CO_TAGLO

The “cache” instruction will then be used to program the instruction Scratchpad controller with the

value stored in the CO_TAGLO register. By default, the cache instruction directs all of it operations to
the cache controller. The code needs to change this, so that the cache operations are directed to the
Scratchpad controller. It does this by setting the SPR bit (28) in the CPO Error Control register (26, 0).

The code reads the CO_ERRCTL register, makes a copy so that later it can be restored to its current
state, sets the SPR bit, and writes the value back to the CO_ERRCTL register.

mfcO0 s0_save CO_ERRCTL,CO_ERRCTL

move sl1, s0_save CO_ERRCTL // make copy so we can restore CO_ ERRCTL
ins sl, vO_all ones, 28, 1

mtcO0 s1, CO_ERRCTL

Now the code can use the cache instruction to write the Instruction Scratchpad tag.
Here is the instruction format of the cache instruction:
cache op, offset(base)

The “op” is encoded with two pieces of information: bits zero and one tell the cache instruction
which Scratchpad block the operation will be performed on:

e 00 sets it for the Instruction Scratchpad
e 01 sets it for the Data Scratchpad

Bits two, three, and four of the “op” tell the instruction which operation to perform:

e 001 will load a tag

44

e (010 will store a tag
e 011 will store data into the Scratchpad blocks memory

The offset and base register control which of the two possible tags the operation will be performed
on, or which address within the Scratchpad block the data will be stored to.

The code will use 8 (010 00) as the op, bits 0, 1 = 00 = Instruction Scratchpad bits 2, 3, and 4 =010 =
store a tag. Since tag 0 is being written the offset is 0 and the Base address is 0O, it uses GPR 0 (which
is always 0).

cache 0x8,0($0)

Next the code sets up the register to hold the virtual ROM address to copy from. First it loads
al_temp_addr with the address to copy from using the value _zap1, which is declared in the linker
and set by the linker at link time. This address is a cached address, and because we might not have
a cache, the code converts the address to an uncached address by setting bit 29.

la al temp_addr, _zapl // starting ROM address
ins al temp_addr, vO_all _ones, 29, 1 // convert to uncached

The code sets up a2 register to hold the virtual memory address to copy to.

la a2_temp_dest, _ftext_ram // starting ram address to copy to

Then the code sets up the a3_temp_mark register to mark the end address of the copy.

la a3_temp_mark, _etext _ram // ending ram address

Now it compares the starting address with the end address and will jump ahead if there is nothing to
copy.

beq a2_temp_dest, a3 temp_mark, zero _bss // equal nothing to do
nop

The Instruction Scratchpad memory cannot use the simple approach of using stores to write to it,
because it is not attached to the load store unit of the core, only to the fetch unit, so the “cache”
instruction must be used to fill the Instruction Scratchpad memory array. Therefore it doesn’t
actually use the destination addresses. Instead, the instruction Scratchpad is treated as an array of
words (4 bytes each). The code uses a register to store the base array element within the Instruction
Scratchpad array where the code will be loaded, which will be used by the “cache” instruction.
According to the way the linker script has laid out the code and the way the code has used values
set in the linker script, the first instruction should be loaded into location 0

The code uses GPR 0 to load the initial value into GPR 11, which will be used as the first index to be
written to.

add sl, zero, zero

45

The code needs to take into account the endianness of the core because it fetches instructions two
at a time. The endianness will affect the order in which the instructions are stored in the Instruction
Scratchpad array. To determine the core endianness, the code uses the value stored in GPR 8,
where it previously stored the CP0O Config register. It extracts the BE (bit 15) from GPR 8. If this bit is
set, the core is big endian; if not, it’s little endian.

ext vli, vi, 15, 1
blez v1, next lram_wordLE
nop

The code for big and little endian is the same except for the order in which instructions are stored in
the Instruction Scratchpad array, so just the big endian version will be described.

Instructions are loaded into the Instruction Scratchpad array by the “cache” instruction, two at a
time, by loading the two instructions into CPO register CO_DATAHI and CO_DATALO before the cache
instruction is executed.

Recall that al_temp_addr holds the current copy-from address, a2 holds the current copy-to
address, and a3_temp_mark holds the ending address (in RAM).

The code loads the data from al_temp_addr into a GPR and then moves that GPR’s value to the
CO_DATAHI register. Then it increments the address by one word (4 bytes), loads the data from
al _temp_addrinto a GPR, and then moves that GPR’s value to the CO_DATALO register.

next_lram wordBE:
Iw a0 _temp_data, 0(al_temp_addr)
mtcO aO0_temp_data,CO_DATAHI
addiu al_temp_addr, 4
Iw a0_temp_data, 0(al_temp_addr)
mtcO aO0_temp data, CO_DATALO

The “op” will use C (011 00) as the op, bits 0, 1 = 00 = Instruction Scratchpad bits 2,3 ,and 4 =011 =
load data into the Scratchpad blocks memory. The base address in the array is stored in GPR 11 and
the offset from the base address is 0.

cache 0xc,0($11)
The Base and the destination addresses are then incremented by two instructions (8 bytes).

addiu sl1, 8
addiu a2_temp_dest, 8

The current destination address is compared to the ending address and branches to the top of the
copy loop if they are not equal.

bne a2_temp_dest, a3 temp_mark, next lram wordBE

The “from” address is incremented by an instruction in the branch delay slot (always executed with
the branch).

46

addiu al_temp_addr, 4

The code branches around the little endian copy when the loop falls through.

b set_dspram

Skipping the little endian copy

5.5.2 Copy to Data Scratch Pad

The next step is to copy the initialized data. Copying to the Data Scratchpad is similar to the
Instruction Scratchpad Copy, but only uses the DDATALO register to load the DSPRAM. Since there is
only one word written at a time, there is no need for a Big/Little version of the code.

First the code reads the CP0O Config register (CPO Register 16,0) and extracts the DSP bit. If it is set,
the code continues setting up the Data Scratchpad.

set_dspram:

mfcO v1,CO_CONFIG

ext wvl, vl, 23, 1

blez v1, copy_c2 _ram_done //no DSPRAM just exit
nop

The code sets the physical address of the Data Scratchpad by moving the DSPRAM value (defined in
the linker script) into a register and then setting the enable bit (7). Then it moves the GPR to the
DDatalo register (CPO Register 28, 2).

la al_temp_addr, _DSPram
// set the enable bit

ins al temp_addr, vO_all _ones, 7, 1
// move it to the tag register

mtcO al_temp_addr, CO_DTAGLO

The “op” for the cache instruction will use 9 (010 01), bits 0, 1 = 01 = Data Scratchpad bits 2, 3 and 4
=010 = store a tag. Since tag 0 is being written, the offset is 0 and the Base address is 0 so it uses
GPR 0 (which is always 0)

// write data tag 0 using the cache instruction
cache 0x9,0(zero)

Next the code sets up the register to hold the virtual ROM address to copy from. First it loads

al _temp_addr with the address to copy from. _zap2 is declared in the linker and set by the linker at
link time. This address is a cached address. Since we may not have a cache the code converts the
address to a cached address by setting bit 29.

la al temp_addr, _zap2 // starting ROM address
ins al temp_addr, vO_all _ones, 29, 1 // uncached address

47

The code sets up a2 to hold the virtual memory address to copy to.

la a2 _temp_dest, fdata ram // starting ram address to copy to

Then the code set up the a3_temp_mark register to mark the end address of the copy.

la a3_temp_mark, _edata_ram // ending ram address

Now it compares the starting address with the ending address and will jump ahead if there is
nothing to copy.

beq a2_temp_dest, a3 temp _mark, zero bss // it = nothing to do
nop

The copy is simply reading from the location where the “C” code is stored in flash (al_temp_addr),
moving that value to the DDatalo register and issuing the cache instruction to write the DSPRAM at
the index stored in $11. Then the index is incremented to the net word to be written in the
DSPRAM.

next Dram word:
Iw a0 _temp_data, 0(al_temp_addr)
mtcO aO0_temp_data, $28, 3
cache 0xd,0(sl)
addiu s1, 4

The source and destination addresses are incremented by 4, the number of bytes in a word and the
code checks to see if it still has more to copy by checking a3_temp_mark which is the end address
and the current destination address to see if they are equal.

addiu a2_temp_dest, 4
bne a2_temp_dest, a3 temp_mark, next Dram word
addiu al_temp_addr, 4

Now the code turns its attention to the uninitialized variable section also known as the bss section
which strangely enough stands for Block Started by Symbol. It is mandated by the C specification
that the bss section be initialized to O before a program starts. This clearing of the bss section
usually is done by the program loader. It is the responsibility of the boot loader to clear the first bss
section before calling the main “C” function.

This code is similar to the code we just went through for the copy. It uses two values created in the
linker script. _fbss is the first address of the bss section and _end is the end address of the bss
section. It converts both those addresses to uncached KSGE1 addresses. Then it checks to see if
there is anything to copy by seeing if they are equal.

zero_bss:
la al temp_addr, _fbss
ins al temp_addr, r1_all_ones, 29, 1
la a3_temp_mark, _end
ins a3 _temp_mark, r1 all _ones, 29, 1
beq al temp_addr, a3 temp_mark, copy c2 ram_done

48

nop

The code moves a 0 to the DDatalo register so that the entries it writes to the DSPRAM will be
initialized to 0.

// assume bss follows the initialized data
// write a O to the DDataLo register
mtcO zero, CO _DDATALO // set to O

The label next_bss_word will be used as a loop point. The code stores a zero using the zero register
to the destination address in GRP 5. It then adds 4 bytes to the destination address, checks to see if
it is at the end of the copy by comparing it to the end address stored in GPR 7, and loops back if it is
not.

next _bss word:

cache 0xd,0(sl) // write DDATA LO to DSPRAM
addiu al_temp_addr, 4

addiu s1, 4 // add 4 to DSPRAM index
bne al temp_addr, a3 temp_mark, next bss_word

nop

The copy is now done, but there is still some cleanup to do. The code needs to enable the
Instruction Scratchpad RAM so that instructions can be fetched from it. The code loads the address
_ISPram into al_temp_addr, sets the enable bit, bit 7, and moves that value to the CO_TAGLO
register. Then it executes an “ehb” instruction to ensure any hazard barrier is cleared before it
issues the cache instruction.

copy_c2_ram_done:
// Enable ISPRAM
la al temp_addr, _I1SPram
// set the enable bit
ins al temp_addr, vO_all _ones, 7, 1
// move it to the tag register
mtcO al temp_addr, CO_TAGLO
ehb

The code then executes the cache instruction with the same op it used to write the Instruction
Scratchpad address.

// write instruction tag lo using the cache instruction
cache 0x8,0(zero)

Finally, to insure that the cache instruction will be directed to the caches instead of the Scratchpads,
the code restores the CO_ERRCTL using the saved value in GPR 9, then returns to the start code.

// restore CO_ERRCTL
mtcO sO_save_CO_ERRCTL,CO_ERRCTL
Jjr ra
nop
END(copy_c2_ram)

49

5.6 common/copy_c2_Spram_MM.S (microAptiv cores)

You may have a system that uses Scratchpad RAM instead of regular RAM or one that uses both, and
you want to copy the main code to the Scratchpad RAM. The copy_c2_Spram.S should be used in
place of the copy_c2_ram.S. For the copy to RAM, the memory controller was setup before the copy
was done. The copy to Scratchpad RAM needs to set up the Scratchpad RAM using the cache
controller before it can perform the copy, so there is an additional step that needs to be done here
to do that setup.

There is also another difference in the Scratchpad memory layout: there must be one Scratchpad
RAM for instructions and another for data. This means that the code needs to be split to copy the
instructions to the Instruction Scratchpad RAM using cache instructions and the data to the data
Scratchpad RAM using regular loads and store instructions.

Here are some #defines to make the code easier to read:

#define sO_save CO_ERRCTL sO /* use sO only to save CO_ERRCTL */

ttdefine vO_all_ones VO /* at Will hold Oxffffffff to simplify bit insertion of 1's. */
#define a0_temp_data a0 /* a0 data to be moved */

#define al_temp_addr al /* from address */

#define a2_temp_dest a2 /* to address */

#define a3_temp_mark a3 /* ending address */

5.6.1 Copy to Instruction Scratch Pad

The next few lines of code set the starting address of the ISPRAM in the ISPRAM controller. To clarify
further, while the physical address of the ISPRAM can be set at core build time, it can also be
changed by software to place it anywhere in physical memory. The code here is changing the
physical address of the ISPRAM to match the address where the main.c code was linked. The code
assumes that the system is not using a TLB but instead uses Fixed Mapping Translation (FMT). With
FMT, KUSEG starts at virtual address 0 and maps to Physical address 0x4000 0000. In this example,
the main.c code is linked to virtual address 0x1000 0000, so the ISPRAM is placed at physical address
0x5000 0000 (_ISPram = 0x5000 0000).

The “cache” instruction is used to program the Scratchpad memory physical address and fill the
instruction Scratchpad. The “cache” instruction does this by writing the tag registers to the
Scratchpad controller. There are two tag registers for each Scratchpad RAM, one set for the ISPRAM
and one set for the DSPRAM. Tag 0 is located at offset 0 and tag 1 is located at byte offset 8 into the
Scratchpad controller. Here is a table that shows what bits and tags contain information.

50

l or D Tags

tag 31 20 19 7 6
12 0

0 Physical Base Address E

1 Size 0

As shown in the table, the physical address is located in tag O bits 12 through 31 (4K boundary), and
the Enable bit is located in tag O at bit 7. Both of these bits are read/write. The size in 4K sections is
located in tag 1 bits 12 through 19.

The following code will place the physical address of the ISPRAM into the CPO CO_TAGLO register.
The code puts the _ISPram value into al then moves it to the CO_TAGLO register.

la al_temp_addr, _ISPram
mtcO al_temp_addr, CO_TAGLO

The “cache” instruction will then be used to program the instruction Scratchpad controller with the
value stored in the CO_TAGLO register. By default, the cache instruction directs all of it operations to
the cache controller. The code needs to change that, so that the cache operations are directed to
the Scratchpad controller. It does this by setting the SPR bit (28) in the CPO Error Control register
(26, 0).

To do this, the code reads the CO_ERRCTL register, makes a copy so it can later restore it to its
current state, sets the SPR bit, and writes the value back to the CO_ERRCTL register.

mfcO0 s0_ save CO ERRCTL,CO ERRCTL
move sl, s0 save CO ERRCTL // make copy so we can restore CO_ERRCTL
ins sl, v0 _all ones, 28, 1
mtcO0 sl1, CO_ERRCTL
Now the code can use the cache instruction to write the Instruction Scratchpad tag.
Here is the instruction format of the cache instruction:

cache op, offset(base)

The “op” is encoded with 2 pieces of information; bits zero and one tell the cache instruction which
Scratchpad block the operation will be performed on:

e 00 sets it for the Instruction Scratchpad
e 01 sets it for the Data Scratchpad

51

Bits two, three and four of the “op” tell the instruction which operation to perform

e 001 will load a tag
e 010 will store a tag
e 011 will store data into the Scratchpad blocks memory

The offset and base register control which of the 2 possible tags the operation will be performed on
or which address within the Scratchpad block data will be stored to.

The code will use 8 (010 00) as the op, bits 0, 1 = 00 = Instruction Scratchpad bits 2, 3 and 4 =010 =
store a tag. Since tag 0 is being written the offset is 0 and the Base address is 0 so it uses GPR 0
(which is always 0)

cache 0x8,0($0)

Now check to see if there is an Instruction Scratchpad RAM. To do this the code reads the CPO
Config register. If there is an Instruction Scratchpad RAM the ISP bit in the Config register will be set
so the code extracts the ISP bit, bit 24 and then checks to see if it’s 0. If it is it assumes that there is
no Scratchpad RAM at all and branches to the end of the function. If it is set then the code will fall
through to the next instruction.

mfcO v0,CO_CONFIG
ext vl1, vO, 24, 1

blez vl1, copy _c2 ram done // no ISPRAM just exit
nop

Next the code sets up the register to hold the virtual ROM address to copy from. First it loads
al_temp_addr with the address to copy from. _zap1 is declared in the linker and set by the linker at
link time. This address is a cached address. Since we may not have a cache the code converts the
address to an uncached address by setting bit 29.

la al temp_addr, _zapl // starting ROM address
ins al_temp_addr, vO_all _ones, 29, 1 // convert to uncached

The code sets up a2 register to hold the virtual memory address to copy to.
la a2_temp_dest, _ftext _ram // starting RAM address to copy to
Then the code sets up the a3_temp_mark register to mark the ending address of the copy.

la a3 _temp_mark, _etext ram // ending RAM address

52

Now it compares the starting address with the ending address and will jump ahead if there is
nothing to copy.

beq a2_temp_dest, a3_temp_mark, zero_bss // equal nothing to do
nop

The Instruction Scratchpad memory cannot use the simple approach of using stores to write to it
because it is not attached to the load store unit of the core, just the fetch unit. The “cache”
instruction must be used to fill the Instruction Scratchpad memory array. Therefore it doesn’t
actually use the destination addresses. Instead the instruction Scratchpad is treated as an array of
words (4 bytes each). The code will need a register for the “cache” instruction to store the base
array element within the Instruction Scratchpad array where the code will be loaded into. The way
the linker script has laid out the code and the code has used values set in the linker script the first
instruction should be loaded into location O for the Instruction Scratchpad memory array.

The code just uses GPR 0 to load the initial value into GPR 11 which will be used as the first index to
be written to.

add sl1, zero, zero

Instructions will be loaded into the Instruction Scratchpad array by the “cache” instruction, 1 at a
time. One instruction is loaded into CPO register CO_DATALO before the cache instruction is
executed.

Recall that al_temp_addr holds the current copy from address, a2 holds the current copy to address
and a3_temp_mark holds the ending address (in RAM).

The code loads the data from al_temp_addr into a GPR and then moves that GPR’s value to the
CO_DATAHI register. Then it increments from the address by one word (4 bytes) loads the data from
al _temp_addr into a GPR and then moves that GPR’s value to the CO_DATALO register.

next_lram_word:
w a0_temp _data, 0(al_temp_addr)
mtcO a0 _temp_data, CO_DATALO

The “op” will use C (011 00) as the op, bits 0, 1 = 00 = Instruction Scratchpad bits 2, 3 and 4 =011 =
will load data into the Scratchpad blocks memory. The base address in the array is stored in GPR 11
and the offset from the base address is 0.

cache Oxc,0(s1)

The Base and the destination addresses are then incremented by 1 instruction (4 bytes).

addiusl, 4
addiu a2_temp_dest, 4

53

The current destination address is compared to the ending address and branches to the top of the
copy loop if they are not equal.

bne a2_temp_dest, a3_temp_mark, next_lram word

The “from” address is incremented by an instruction in the branch delay slot (always executed with
the branch).

addiu al temp_addr, 4

5.6.2 Copy to Data Scratch Pad

The next step is to copy the initialized data. Copying to the Data Scratchpad is similar to the
Instruction Scratchpad Copy, but only uses the DDATALO register to load the DSPRAM. Since there is
only one word written at a time, there is no need for a Big/Little version of the code.

First the code reads the CPO Config register (CPO Register 16,0) and extracts the DSP bit. If it is set,
the code continues setting up the Data Scratch Pad.

set_dspram:
mfcO v1,CO_CONFIG
ext vli, vl, 23, 1
blez vl1, copy _c2 ram done //no DSPRAM just exit
nop

The code sets the physical address of the Data Scratchpad by moving the DSPRAM value (defined in
the linker script) into a register and then setting the enable bit (7). Then it moves the GPR to the
DDatalo register (CPO Register 28, 2)

la al_temp_addr, _DSPram
// set the enable bit

ins al temp_addr, vO_all _ones, 7, 1
// move it to the tag register

mtcO al_temp_addr, CO_DTAGLO

The “op” for the cache instruction will use 9 (010 01), bits 0, 1 = 01 = Data Scratchpad bits 2, 3 and 4
=010 = store a tag. Since tag 0 is being written the offset is 0 and the Base address is 0 so it uses
GPR 0 (which is always 0)

// write data tag O using the cache instruction
cache 0x9,0(zero)

Next the code sets up the register to hold the virtual ROM address to copy from First it loads
al_temp_addr with the address to copy from using the value _zap1, which is declared in the linker
and set by the linker at link time. This address is a cached address, and because we might not have
a cache, the code converts the address to an uncached address by setting bit 29.

54

la al_temp_addr, _zap2 // starting ROM address
ins al_temp_addr, vO_all_ones, 29, 1 // uncached address

The code sets up the a2 register to hold the virtual memory address to copy to.

la a2_temp_dest, _fdata_ram // starting RAM address to copy to
Then the code set up the a3_temp_mark register to mark the ending address of the copy.

la a3 _temp_mark, _edata ram // ending RAM address

Now it compares the starting address with the ending address and will jump ahead if there is
nothing to copy.

beq a2 temp _dest, a3 _temp_mark, zero_bss // if = nothing to do
nop

The copy is simply reading from the location where the “C” code is stored in flash (al_temp_addr),
moving that value to the DDatalo register and issuing the cache instruction to write the DSPRAM at
the index stored in $11. Then the index is incremented to the next word to be written in the
DSPRAM.

next_Dram_word:
Iw a0_temp_data, 0(al_temp_addr)
mtcO a0_temp_data, $28, 3
cache Oxd,0(sl)
addiusl, 4

The source and destination addresses are incremented by 4 (the number of bytes in a word). The
code checks to see if it still has more to copy by checking a3_temp_mark, which is the end address,
and the current destination address to see if they are equal.

addiu a2_temp_dest, 4
bne a2 temp_dest, a3 temp_mark, next Dram word
addiu al_temp_addr, 4

Now the code turns its attention to the uninitialized variable section (also known as the bss section,
which strangely enough stands for Block Started by Symbol). The C specification requires that the
bss section be initialized to 0 before a program starts. This clearing of the bss section is usually done
by the program loader. It is the responsibility of the boot loader to clear the first bss section before
calling the main “C” function.

This code is similar to the code we just used for the copy. It uses two values created in the linker
script: _fbss is the first address of the bss section, and _end is the end address of the bss section. It
converts both those addresses to uncached KSGE1 addresses. Then it checks to see if there is
anything to copy by determining if they are equal.

55

zero_bss:
la al_temp_addr, _fbss
ins al_temp_addr, r1_all _ones, 29, 1
la a3_temp_mark, _end
ins a3 _temp_mark, r1_all _ones, 29, 1
beq al temp _addr, a3 temp_mark, copy c2 ram_done
nop

The code moves a 0 to the DDatalo register to initialize the DSPRAM to 0.

// assume bss follows the initialized data
// write a O to the DDataLo register
mtcO zero, CO_DDATALO // set to O

The label next_bss_word will be used as a loop point. The code stores a zero using the zero register
to the destination address in GRP 5. It then adds 4 bytes to the destination address.

Then it checks to see if it is at the end of the copy by comparing it to the end address stored in GPR
7 and loops back if it is not.

next_bss_word:
cache Oxd,0(sl) // write DDATA LO to DSPRAM
addiu al temp addr, 4
addiusl, 4 // add 4 to DSPRAM index
bne al temp_addr, a3_temp_mark, next _bss word
nop

The copy is now done, but there is still some cleanup to do. The code needs to enable the
Instruction Scratchpad RAM so that instructions can be fetched from it. The code loads the address
_ISPram into al_temp_addr, sets the enable bit, bit 7, and moves that value to the CO_TAGLO
register. Then it executes an “ehb” instruction to ensure any hazard barrier is cleared before it
issues the cache instruction.

copy_c2_ram_done:
// Enable ISPRAM
la al_temp_addr, _ISPram
// set the enable bit
ins al temp addr, vO_all ones, 7, 1
// move i1t to the tag register
mtcO al temp_addr, CO_TAGLO
ehb

The code then executes the cache instruction with the same op it used to write the Instruction
Scratchpad address.

// write instruction tag lo using the cache instruction
cache 0x8,0(zero)

56

Finally, to ensure that cache instructions will once again be directed to the caches instead of the
Scratchpads, the code restores the CO_ERRCTL using the saved value in GPR 9, and then returns to
the start code.

// restore CO_ERRCTL

mtcO s0_save CO_ ERRCTL,CO ERRCTL
jr ra

nop

END (copy c2 ram)

5.7 common/init_caches.S (non-proAptiv cores)

Before use, the cache must be initialized to a known state; that is, all cache entries must be
invalidated. This code example initializes the cache, determines the total number of cache sets, then
loops through the cache sets using the cache instruction to invalidate each set.

The CPO Configl register has fields containing information about the cache, as shown in the figure
below.

2119 1816 1513 12 10 9 7
IL 1A DS DL DA

e IS :|-cache sets per way (cache lines) 0=64, 1 =128,2=256, 3= 512, 4=1024,
5= 2048, 6= 4096

e |IL: I-cache line size 0 = No I-Cache present; 4 = 32 bytes

e |A: always 4-way

e DS :D-cache sets per way (cache lines) 0=64, 1 =128,2=256, 3= 512, 4=
1024,5= 2048, 6= 4096

e DL: D-cache line size 0 = No I-Cache present; 4 = 32 bytes

e DA: always 4 way

5.7.1 init_icache

The init_icache function must first compute the number of sets or cache lines it has to
invalidate. The total number of lines in the cache is equal to the number of ways times the
number of sets per way.

The code starts by moving the contents of the CP0 Configl register (CO_CONFIG, 1) to GPR 10 to
obtain the cache information.

LEAF (init_icache)

// Determine how big the I$ is
mfcO0 vO0, CO_CONFIG, 1 // read CO_Configl

57

Next it determines the line size of the I-cache, using the extract instruction is to extract the line size.
It uses the Configl register value that was saved in general purpose register 10, starting at bit 19,
and extracts 3 bits to the least-significant bits of register 11.

// lsolate 1$ Line Size
ext vl, vO, CFG1_ILSHIFT, 3

The extracted value is tested to see if it is O; if so, there is no Instruction cache, so it branches ahead
without initializing the cache.

// SKkip ahead if No I$
beq vl1, zero, done_icache
nop

Now the code decodes the line size to get the actual number of bytes in a line. It does this by
shifting 2 to the left by the encoded line-size value.

li a2, 2
sllv vl, a2, vl // Now have true I$ line size in bytes

Now the code extracts the number of sets per way from the value read from the Configl register
that was stored in general purpose register 10, using the extract instruction.

ext al, vO, CFG1_ISSHIFT, 3 // extract 1S

The extracted value is converted to the actual number of sets per way by shifting 64 left by the
extracted value.

li a2, 64
sllv a0, a2, a0 // 13 Sets per way

The number of ways is extracted using the extract instruction starting at bit 16 and extracting 3 bits
to the least-significant bits of register 13. The code then adds one to the value to get the actual
number of ways.

// ConfigllA == 1$ Assoc - 1
ext al, vO, CFG1_IASHIFT, 3
add al, 1

Now the sets per way are multiplied by the number of ways to get the total number of sets in the
cache, which will become the number of initialization loops to be performed.

mul a0, a0, al // Total number of sets

GPR 14 will be used as an index into the cache. It will be set to a virtual address, and then translated
to a physical address. Since the address 0x8000 0000 is in KSEGO, the CPU will ignore the top bit, so
virtual 0x8000 0000 will become physical address 0x0000 0000. Since the cache is physically
indexed, the first time through the loop, the cache instruction will write the tag to way 0, index line
0.

58

The lui instruction will load 0x8000 into the upper 16 bits and clear the lower 16 bits of the register.

lui a2, 0x8000 // Get a KSeg0 address for cache ops

Clearing the tag registers does two important things: it sets the Physical Tag address called PTaglLo
to 0, which ensures the upper physical address bits are zeroed out, and it also clears the valid bit for
the set, which ensures that the set is free and may be filled as needed.

The code uses the Move to Coprocessor zero instruction to move the general purpose register zero,
which always contains a zero, to the tag registers.

// Clear TagLo/TagHi registers
mtcO zero, CO_TAGLO // write CO_ITagLo
mtcO zero, CO_TAGHI // write CO_ITagHi

The code is almost ready to start the loop through the cache. This move instruction puts the total
number of sets that the code computed into register 15, which will be decremented each time
through the loop.

move a3, a0

The cache instruction will be using the Index Store tag operation on the Level 1 instruction cache so
the op field is coded with 8. The first two bits are 00 for the level one instruction cache, and the
operation code for Index Store tag is encoded as 010 in bits two, three and four.

next icache_ tag:
// Index Store Tag Cache Op
// Will invalidate the tag entry, clear the lock bit, and clear
// the LRF bit
cache 0x8, 0(a2)

The index type of operation can be used to address a byte in the cache in a specific way of the
cache. This is done by dividing the virtual address argument stored in the base register of the cache
instruction into several fields.

\WEW, Byte
Index
The size of the index field will vary according to the size of a cache way. The larger the way, the
larger the index needs to be. In the table above, the combined byte and page index is 12 bits,

because each way of the cache is 4K. The way number is always the next two bits following the
index.

59

The code does not explicitly set the way bits. Instead it just increments the virtual address by the
cache lines size, so that the next time through the loop, the cache instruction will initialize the next
set in the cache.

Eventually this increment has the effect of setting the cache to index 0 of the next way in the cache,
because it overflows into the way bits.

Now all the code needs to do is loop maintenance. First decrement the loop counter (15/t7).
add a3, -1 // Decrement set counter

Then test it to see if it has reached zero, and if not, branch back to label one.

bne a3, zero, next _icache_ tag

The instruction in the branch delay slot, which is always executed, is used to increment the virtual
address (14/t6) to the next set in the cache. (11/t3) holds the line size in bytes.

add a2, vl // Get next line address

From this point on, the code can be executed from a cached address. This is easily done by changing
the return address from a KSEG1 address to a KSEGO address by simply inserting a 0 into bit 29 of
the address. However, if you are debugging, this will confuse the debugger, and you will no longer
be able to do source-level debugging. That is why it is commented out here. Once you have
debugged your code, you can uncomment the “ins” line.

done_icache:
jr ra
nop
END(init_icache)

The function is complete and returns to start.

5.7.2 init_dcache

The init_dcache code is very similar to the init_icache code. The main difference is the cache
instruction. The cache instruction will be using the Index Store tag operation on the Level 1 data
cache, so the op field is coded with a 9. The first two bits are 01 for the Level 1 data cache, and the
operation code for Index Store tag is encoded as 010 in bits two, three, and four.

The rest of the code is the same as the init_icache and will not be described again.

5.7.3 change_k0_cca

This function will change the Cache Coherency Attribute (CCA) of KSEGO when in Kernel mode. It will
turn caching on.

60

For coherent processor cores (1004K, 1074K, interAptiv and proAptiv), the CCA will be set to 5,
which means that the KSEGO address space will be set to cached write back with write allocate,
coherent, and when a read misses in the cache, the line will become shared.

For non-coherent cores (24K, 34K, 74K, and microAptiv), the CCA will be set to 3, which means that
the KSEGO address space will be set to cached write back with write allocate.

The code will read the CPO Config register. Then it will test to see if it is executing on a coherent
core. The non-coherent CCA of 3 is set in the branch delay slot, so that if it isn’t a coherent core, the
code will branch around the next instruction at sets the coherent CCA of 5 so if it is not a coherent
core the code will fall through and set the CCA to 3. Next it will insert the CCA into the register that
holds the Config Register value that was just read and then write it back to the CPO Config Register.

The non-coherent CCA of 3 is set in the branch delay slot, so that if it isn’t a coherent core, the code
will branch around the next instruction that sets the coherent CCA of 5, so if it is not a coherent

core, the code will fall through and set the CCA to 3. Next it will insert the CCA into the register that
holds the Config Register value that was just read and then write it back to the CPO Config Register.

LEAF(change_kO cca)
// NOTE! This code must be executed in KSEG1 (not KSGEO uncached)
// Set CCA for ksegO to cacheable

mfcO vO, CO_CONFIG // read CO_Config
beqz rll1 is cps, set_ksegO cca

I vli, 3 // CCA for all others

1 vl, 5 // CCA for coherent cores

set_ksegO_cca:

ins vO0, vl, 0, 3 // insert KO field
mtcO vO, CO_CONFIG // write CO_Config
Jjr ra

nop

END(change_kO cca)

5.7.4 init_123u
First a little background on the larger picture:

e |2 and L3 caches are system resources that are used by all cores in a CPS. Initialization of the
L2 and L3 caches is done only by Core 0 in a CPS, because it only needs to be done once.

e The initialization of the L2 and L3 caches can be very time consuming because of their size.
The initialization code will execute a lot faster if it is being run out of the instruction cache,
so it should be done after the instruction cache has been initialized.

e The instruction cache is a Core resource and not initialized in the System initialization
section of the code. Therefore, to be efficient and run the L2 and L3 cache initialization out
of the I-cache, the boot code tries to delay cache initialization until Core resources are
initialized and it has checked to make sure it is only initialized by Core 0. This can only be

61

done if the L2 or L3 caches can be disabled before other cores are released to run this boot
code. Otherwise there is a danger that other cores will use the L2 or L3 caches before Core 0
has initialized them.

e The CCA override feature controls the cache attributes for the L2 cache. It allows disabling
the L2 cache by enabling the CCA override and setting the CCA to uncached.

e The CCA override works along with the L2 cache implementation. If your CPS uses the
current MIPS implementation for the L2 cache, the CCA override feature is supported.
However, your system can implement its own version of the L2 that does not support this
feature. If that is the case, the L2 and L3 caches must be initialized as a system resource
before other cores are released to run.

e MIPS does not have a reference implementation of an L3 cache. If your CPS has an L3 cache
and it can be disabled, you will need to add code here to disable it. If it can’t be disabled, it
will need to be initialized at this point in the code.

The init_I23u function tries to enable the CCA override and set the L2 cache to uncached in the
GCR_BASE register, thus disabling it. On systems that do not support CCA override, writes to the CCA
override field have no effect, and reading back the GCR_BASE register will not show the CCA
override being set.

First the code checks to see if it is executing on a coherent processing system, and if it isn’t, it will
branch around the next piece of code and initialize the L2/L3 caches for a non-coherent system. In
this course, only the code for a coherent system will be covered.

LEAF(init_123u)

// Use MR2 CCA Override to allow cached execution of L2/3 init.
// Check for CCA Override_Enable by writing a one.

beqz rll_is_cps, init_123
nop

The code reads the GCR Base register.

Ilw a0, 0x0008(r22_gcr_addr)// GCR_BASE
The next 3 lines of code are used to enable CCA Override and set the L2 cache CCA to uncached.

I a3, 0x50 // CM_DEFAULT_TARGET Memory

// CCA Override Uncached enabled
ins a0, a3, 0, 8
sw a0, 0x0008(r22_gcr_addr)

Now the code will read back the GCR_BASE register. If the CCA override bit is set, it means the code
above worked, and the L2 cache is set to uncached. If that is the case, the code will skip the
initialization for now and be called again later when operating out of the L1 instruction cache. If not,
the code will branch to the init_I23 function, which will initialize the L2 and L3 cache.

62

Iw a0, 0x0008(r22_gcr_addr)// GCR _BASE

ext a0, a0, 4, 1 // CCA Override_Enable

bnez a0, done_ 123 // Skip if CCA Override is implemented.
nop

b init_I123

nop

END(init_I123u)
5.8 init L23caches.S

5.8.1Init_123c

The code in this function will be called from start.S after the L1 caches have been initialized. It will
check to see if the core implements CCA Override. If it does, it will call the code to initialize the L2
and L3 caches.

Recall from the previous section that the code also checks to see if CCA override was implemented,
and if it wasn’t, it initialized the L2 and L3 caches while the code was executing in uncached mode,.
So there is no need to do it again here.

LEAF(init_123c)
// SKip cached execution if CCA Override is not implemented.
// 1Tt CCA override is not implemented the L2 and L3 caches

// would have already been initialized when init_I123u was called.

beqz rll is_cps, done 123

nop
Iw a0, 0x0008(r22_gcr_addr)// GCR_BASE

bnez r8 core _num, done 123 // Only done from core O.
ext ao, a0, 4, 1 // CCA Override Enable
beqz a0, done_ 123 nop

END(init_123c)

63

5.8.2 init_123

This code initializes the L2 and L3 caches. The init_icache function must first compute the number of
sets or cache lines it has to invalidate. The total number of lines in the cache is equal to the number
of ways times the number of sets per way.

The code starts by moving the contents of the CPO Configl register (CO_CONFIG, 1) to GPR 10 to get
the cache information.

LEAF(init_L23)
// Determine how big the I$ is
mfcO vO, CO_CONFIG, 2// read CO Config2

Next it determines the line size of the I-cache, using the extract instruction is to extract the line size.
It uses the Configl register value that was saved in general purpose register 10, starting at bit 4, and
extracts 4 bits to the least-significant bits of register 11.

// l1solate I$ Line Size
ext vl1, vO, 4, 4

Now the code decodes the line size to get the actual number of bytes in a line. It does this by
shifting 2 to the left by the encoded line-size value.

li a2, 2
sllv vl1, a2, vl // Now have true L2$ line size in bytes

Now the code extracts the number of sets per way from the value read from the Configl register
that was stored in general purpose register 10, using the extract instruction.

ext a0, vO, 8, 4 // extract IS

The extracted value is converted to the actual number of sets per way by shifting 64 left by the
extracted value.

1 a2, 64
sllv a0, a2, a0 // L2$ Sets per way

The number of ways is extracted using the extract instruction starting at bit 0 and extracting 4 bits to
the least-significant bits of register 13. The code then adds one to the value to get the actual
number of ways.

ext al, vO, O, 4
add al, 1

Now the sets per way are multiplied by the number of ways to get the total number of sets in the
cache, which will become the number of loops to be preformed to initialize the cache.

64

mul a0, a0, al // Total number of sets

GPR 14 will be used as an index into the cache. It will be set to a virtual address, and then translated
to a physical address. Since the address 0x8000 0000 is in KSEGO, the CPU will ignore the top bit, so
virtual 0x8000 0000 will become physical address 0x0000 0000. Since the cache is physically
indexed, the first time through the loop, the cache instruction will write the tag to way 0 index line
0.

The lui instruction will load 0x8000 into the upper 16 bits and clear the lower 16 bits of the register.
lui a2, 0x8000 // Get a KSeg0 address for cache ops

Clearing the tag registers does two important things: it sets the Physical Tag address called PTaglLo

to 0, which ensures the upper physical address bits are zeroed out, and it also clears the valid bit for

the set, which ensures that the set is free and may be filled as needed.

The code uses the Move to Coprocessor zero instruction to move the general purpose register zero,
which always contains a zero, to the tag registers.

// Clear L2 TagLo/TagHi registers

mtcO zero, CO_TAGLO, 4 // write CO _ITaglLo

mtcO zero, CO _TAGLO, 4 // write CO_ITagHi
The cache instruction will be using the Index Store tag operation on the Level 2 cache so the op field
is coded with B. The first two bits are 11 for the L2 cache and the operation code for Index Store tag
are encoded as 010 in bits two, three and four.
next_L2cache_tag:

// Index Store Tag Cache Op will invalidate the tag entry
cache O0xB, 0(a2)

Now all the code needs to do is loop maintenance. First decrement the loop counter.
add a3, -1 // Decrement set counter

Then test it to see if it has gotten to zero, and if not branch back to label one.
bne a3, zero, next_icache_tag

The instruction in the branch delay slot, which is always executed, is used to increment the virtual
address (14/t6) to the next set in the cache. The value in (11/t3) is the line size in bytes.

add a2, vl // Get next line address

done_l2cache:
// disable CCA Override to enable L2 cache

65

Iw a0, 0x0008(r22_gcr_addr) // GCR_BASE

ins a0, zero, 0O, 8 // CCA Override
disabled
Sw a0, 0x0008(r22_gcr_addr) // GCR_BASE
jr ra
nop

END(init_L23)

5.9 common/init_caches2.s (proAptiv and interAptiv Cores only)

The functions in this file will be used in place of those in init_caches.S. These functions are an
example of an implementation-specific cache initialization. The code assumes specific cache sizes of
32K or 64K, that the environment is multi-core multiprocessing, and that there an L2 cache.

Before it can be used, the cache must be initialized to a known state; that is, all cache entries must
be invalidated. This code example initializes the cache, finds the total number of cache sets, then
loops through the cache sets using the cache instruction to invalidate each set.

5.9.1 init_icache
LEAF(init_icache)
// For this Core there is always a | cache
// The 1S field determines how may set there are

// 1S 2 there are 256 sets
// 1S 3 there are 512 sets

// v1 set to line size, will be used to increment
// through the cache tags
] vl, 32 // Line size is always 32 bytes.

This core always has a line size of 32 bytes, 4 ways, and can only have a 32 or 64K I-cache. The IS
field (sets per way) of the Configl register will be use to determine the size of the cache. This
field can have one of 2 values: a value of 2 for a 32K cache, or a value of 3 for a 64K cache.

mfcO vO, CO_CONFIG, 1 // Read CO_Configl
ext a3, v0, CFG1 ILSHIFT, 3 // Extract IS
] a2, 2 // Used to test against

If the check is true, the code uses the branch delay slot, which is always executed, to set the set
iteration value to 256 for a 32k cache, and then branchrs ahead to Isets_done. If the check is
false, the code still sets the iteration value to 256 in the branch delay slot, but then falls through
and sets it again to 512 for a 64K cache.

beq a2, a3, lIsets done // if IS =2
li a3, 256 // sets = 256
li a3, 512 // else sets = 512 Skipped if branch taken

66

Isets_done:

GPR 14 will be used as an index into the cache. It will be set to a virtual address, and then
translated to a physical address. Since the address 0x8000 0000 is in KSEGO, the CPU will ignore
the top bit, so virtual 0x8000 0000 will become physical address 0x0000 0000. Since the cache is
physically indexed, the first time through the loop, the cache instruction will write the tag to
way 0 index line 0.

The lui instruction will load 0x8000 into the upper 16 bits and clear the lower 16 bits of the
register.

lui a2, 0x8000 // Get a KSeg0 address for cacheops

Clearing the tag registers does two important things: it sets the Physical Tag address (PTaglo) to
0, which ensures the upper physical address bits are zeroed out, and it also clears the valid bit
for the set, which ensures that the set is free and may be filled as needed.

The code uses the Move to Coprocessor zero instruction to move the general purpose register
zero, which always contains a zero, to the tag register.

// clear the lock bit, wvalid bit, and the LRF bit
mtcO0 zero, CO_TAGLO // Clear CO_ITagLo to invalidate entry

The cache instruction will be using the Index Store tag operation on the Level 1 instruction
cache, so the op field is coded with 8. The first two bits are 00 for the Level 1 instruction cache,
and the operation code for Index Store tag is encoded as 010 in bits two, three, and four.

next icache_ tag:
cache 0x8, 0(a2) // Index Store tag Cache opt

The index type of operation can be used to address a byte in the cache in a specific way of the
cache. This is done by dividing the virtual address argument stored in the base register of the
cache instruction into several fields:

14 13
0

The size of the index field will vary according to the size of a cache way. The larger the way, the
larger the index needs to be. In the table above, the combined byte and page index is 13 bits,
because each way of the cache is 8K. The way number is always the next two bits following the
index.

The code does not explicitly set the way bits. Instead it just increments the virtual address by

the cache lines size, so the next time through the loop the cache instruction will initialize the
next set in the cache.

67

Eventually this increment has the effect of setting the cache to index 0 of the next way in the
cache because it overflows into the way bits.

Now all the code needs to do is loop maintenance. First decrement the loop counter (12/t4).
add a3, -1 // Decrement set counter

Then test it to see if it is zero, and if it has not, branch back to label one.
bne a3, zero, next_icache_tag // Done yet?

The instruction in the branch delay slot, which is always executed, is used to increment the
virtual address (14/t6) to the next set in the cache. (11/t3) holds the line size in bytes

add a2, vi // Increment line address by line size

From this point on, the code can be executed from a cached address. This is easily done by
changing the return address from a KSEG1 address to a KSEGO address by simply inserting a 0

into bit 29 of the address. However, if you are debugging, this will confuse the debugger and you
will no longer be able to do source-level debugging. That is why it is commented out here. Once

you have debugged your code, you can uncomment the “ins” line.

done_icache:
// Modify return address to ksegO which is cacheable
// (for code linked in ksegl.)
// However it make i1t easier to debug if this iIs not
// done so while Debugging this
// this should be commented out

ins ra, zero, 29, 1
jr ra
nop

END(init_icache)

5.9.2 init_dcache

The initialization of the D-cache is very similar to the I-cache initialization.

LEAF(init_dcache)

// For this Core there is always a Dcache

// The DS field determines how may set there are
// DS = 2 there are 256 sets

// DS = 3 there are 512 sets

// vl set to line size, will be used to increment
// through the cache tags
1 vl, 32 // Line size is always 32 bytes.

68

This core always has a line size of 32 bytes, 4 ways, and can only have a 32 or 64K I-cache. The IS
field (sets per way) of the Configl register will be use to determine the size of the cache. This
field can have one of 2 values: a value of 2 for a 32K cache, or a value of 3 for a 64K cache.

mfcO vO, CO_CONFIG1l // Read CO_Configl
ext a3, v0, CFG1_DSSHIFT, 3 // Extract DS
] a2, 2 // Used to test against

If the check is true, the code uses the branch delay slot (which is always executed) to set the set
iteration value to 256 for a 32k cache, and then branches ahead to Isets_done. If the check is
false, the code still sets the iteration value to 256 in the branch delay slot, but then falls through
and sets it again to 512 for a 64K cache.

beq a2, a3, Dsets_done // if DS =2
] a3, 256 // sets = 256
li a3, 512 // else sets = 512 Skipped if branch taken

Dsets _done:

GPR 14 will be used as an index into the cache. It will be set to a virtual address, and then
translated to a physical address. Since the address 0x8000 0000 is in KSEGO, the CPU will ignore
the top bit, so virtual 0x8000 0000 will become physical address 0x0000 0000. Since the cache is
physically indexed, the first time through the loop the cache instruction will write the tag to way
0 index line 0.

The lui instruction will load 0x8000 into the upper 16 bits and clear the lower 16 bits of the
register.

lui a2, 0x8000 // Get a KSegO address for cacheops

Clearing the tag registers does two important things: it sets the Physical Tag address (PTaglLo) to
0, which ensures the upper physical address bits are zeroed out. It also clears the valid bit for
the set, which ensures that the set is free and may be filled as needed.

The code uses the Move to Coprocessor zero instruction to move the general purpose register
zero, which always contains a zero, to the tag register.

// clear the lock bit, valid bit, and the LRF bit
mtcO zero, CO_TAGLO, 2 // Clear CO_DTagLo to invalidate entry

The cache instruction will be using the Index Store tag operation on the Level 1 data cache, so
the op field is coded with 9. The first two bits are 00 for the Level 1 instruction cache, and the
operation code for Index Store tag is encoded as 010 in bits two, three and four.

next_dcache_tag:
cache 0x9, 0(a2) // Index Store tag Cache opt

69

The index type of operation can be used to address a byte in the cache in a specific way of the
cache. This is done by breaking down the virtual address argument stored in the base register of
the cache instruction into several fields.

Way Byte
Index

14 13
0

The size of the index field will vary according to the size of a cache way. The larger the way, the
larger the index needs to be. In the table above, the combined byte and page index is 13 bits
because each way of the cache is 8K. The way number is always the next two bits following the
index.

The code does not explicitly set the way bits. Instead it just increments the virtual address by
the cache lines size so that the next time through the loop, the cache instruction will initialize
the next set in the cache.

Eventually this increment has the effect of setting the cache to index 0 of the next way in the
cache, because it overflows into the way bits.

Now all the code needs to do is loop maintenance. First decrement the loop counter (12/t4).
add a3, -1 // Decrement set counter

Then test it to see if it has gotten to zero and if not, branch back to label one.
bne a3, zero, next dcache tag // Done yet?

The instruction in the branch delay slot, which is always executed, is used to increment the
virtual address (14/t6) to the next set in the cache. (11/t3) holds the line size in bytes.

add a2, vl // Increment line address by line size

At this point the D-cache initialization is done.
done_dcache:

jr ra

nop
END (init_dcache)

5.9.3 disable_123

This core always has an L2 cache and is always part of a CPS. Thus it needs a disable function to
disable the L2 and L3 caches while the L1 cache is being initialized.

70

LEAF (disable L23)

// Use CCA Override to disable the L2 cache

// NOTE: If you have an L3 cache, you must add code here

// to disable it or initialize it if it can't be disabled.

// Disable the L2 cache using CCA override by writing a 0x50 to
// the GCR Base register. 0x50 enables the CCA override bit and
// sets the CCA to uncached.

1w a0, 0x0008(r22_gcr_addr)// Read GCR_BASE

1i a3, 0x50 // Enable CCA and set to uncached
ins a0, a3, 0, 8 // Insert bits

swW a0, 0x0008(r22 gcr addr)// Write GCR BASE

jr ra

nop

END (disable L23)

5.9.4 init_L23

This code initializes the L2 and L3 caches. It is very similar to the code that initialized the L1
instruction cache in the init icache section and will not be covered here.

5.10 common/init_cp0

The init_cp0 code will initialize the Status Register, Watch registers, clear watch exceptions, clear
timer exceptions, and set the Cache Coherence Attributes for KSEGO,

5.10.1 Initialize the CPO Status register

Status Register, CP0 12, 0

31 27 26 25 24 22 21 20 19 18 17 15 8 75 4 3 2 1 0
Cu RP FR RE MX BEV TS SR NMI 0 CEE IM(7:0) 0 KSU ERL EXL IE

At this point in the boot, the status register should be set as follows:
e ERLset - the processor is running in kernel mode, Interrupts are disabled, the ERET
instruction will use the return address held in ErrorEPC instead of EP, and the lower 2 bytes

of KUSEG are treated as an unmapped and uncached region.

e BEV set—bootstrap exception mode.
LEAF (init_cp0)

// Initialize Status
1i vl, 0x00400404 // (IM|ERL|BEV)

71

mtcO vl1, $12 // write CO_Status

5.10.2 Initialize the Watch Registers

Next the code will initialize the Watch registers. The Watch registers are undefined following reset
and need to be initialized to avoid getting spurious exceptions after the ERL bit is cleared. The code
reads the CPO Configl register and extracts the WR field, bit 3. If this bit is not set, there are no
Watch registers, so the code checks to see if it is equal to 0, and if it is, the code branches forward
around the Watch register initialization.

// Initialize Watch registers if implemented.

mfcO vO, CO_CONFIG, 1 // read CO_Configl

ext vl1l, vO, 3, 1// bit 3 (WR) Watch registers implemented
beq vl1, $0, done_wr

The code sets up the initialization value for the Watch Registers in the branch delay slot. This value
effectively clears all watch conditions.

] vl, Ox7 // Clear 1, R and W conditions

There are up to 8 Watch Registers. The next 8 segments are all very similar and will initialize up to 8
Watch Registers. Each one begins by writing the initialization value in GPR 11 to the Watch Hi
register.

// Clear Watch Status bits and disable watch exceptions
mtcO v1, CO_WATCHHI // write CO_WatchHiO

Each Watch Hi register contains an M bit (bit 31) to indicate that there are “more” Watch registers if
it is set. Bit 31 is the sign bit for each word, and if set would indicate that the word is a negative
value (less than 0). The code reads the Watch Hi register and checks to see if it is greater than or
equal to zero (no M bit set) and if it is, the code branches ahead around the remaining Watch
register initializations.

mfcO v0, CO_WATCHHI // read CO_WatchHiO
bne zero, vO, done_wr

The code uses the branch delay slot to clear the Watch Lo register to clear the Watch for address.

mtcO zero, CO_WATCHLO // write CO_WatchLoO

The remaining 7 segments are very similar to the one just described, so they will be skipped.

After the Watch registers are initialized, the code clears the CPO Cause register. This register
indicates the cause of the most recent exception and comes up in an undefined state. In the case of
the Watch Register, if the WP bit in the Cause register is set, then after the ERL bit is cleared, it
would cause a spurious Watch exception.

done_wr:

// Clear WP bit to avoid watch exception upon user code entry,

72

// 1V, and software interrupts.
mtcO zero, CO CAUSE // write CO_Cause: Init AFTER init of WatchHi/Lo

5.10.3 Clear the Compare Register

The code clears the CPO Compare register so that the core will not get a Timer interrupt after the
ERL bit is cleared.

// Clear timer interrupt.

mtcO zero, CO_COMPARE // write CO_Compare
Return;

Jr ra

nop

END(init_cp0)
5.11 common/init_gpr.S

init_gpr.S will initialize all of the GPR sets in the core. Each Core has at least one GPR set (set 0) and
may be implemented with additional shadow sets that can be used while taking an interrupt. The
initializing of the GPR registers is not strictly necessary, but may help debug improperly written code
where a value is read without being written.

The code starts out by setting the default value that it will write to each register.

LEAF(init_gpr)
li $1, Oxdeadbeef // (Oxdeadbeef stands out)

Next the code reads the CPO Shadow Register set Control register (CO_SRSCtl) and extracts the HSS
(Highest shadow Set Number). (On a core with only the base shadow set, this will be set to 0). The
code extracts the HSS into GPR 0 of the base register set. The code uses GPR 0 of the base GPR set
as a countdown loop counter. At the end of the loop, the code will check to see if this is 0 and exit if
itis or decrement it if it is not.

mfcO $29, $12, 2 // read CO_SRSCtl
ext CO_ERRPC, $29, 26, 4 // extract HSS

Now the code sets uo the core so the wrpgpr (write register previous general purpose register)
instruction will write to the shadow set number held in GPR 30. It does this by setting the Previous
Shadow Set field (4 bits starting at bit 6) in the Shadow Register Set control register (CPO 29).

next_shadow_set:
// set PSS to shadow set to be initialized
ins $29, $30, 6, 4 // PSS
mtcO $29, CO_SRSCTL // write CO_SRSCtl

The wrpgpr instruction is used to initialize the registers.

wrpgpr $1, $1

73

wrpgpr $2, $1
wrpgpr $3, $1

wrpgpr $29, $1

When the code reaches 30, it checks to see if GPR 30 of the base register set is 0. Since it doesn’t
want to wipe out the return value held in GPR 31 of the base set, it branches around the setting of
registers 30 and 31.

// early exit when we get to set 0 so we don"t clobber return in ra

beqz $30, done_init_gpr
nop

wrpgpr $30, $1

wrpgpr $31, $1

Then it branches back to the beginning of the loop and subtracts 1 from the shadow set number.

b next_shadow_set
add $30, -1

The GPR initialization is complete and the code returns to start.

done_init_gpr:
Jjr ra
nop

END(init_gpr)

5.12 common/init_tlb (non proAptiv cores only)

init_tlb.S will initialize the Translation Look aside Buffer (TLB) if present. The TLB needs to be
initialized so that there are no random translations in it.

The code first checks to see if the core has a TLB. It reads the CPO Config Register (16) and checks
the MT (MMU Type) field (3 bits starting at bit 7) by extracting it to GPR 11, then sees if it is set to 1.
If it’s not, the core doesn’t have a TLB, so the code will go to the end of the function.

LEAF(init_tlb)
check_for_tlb:

// Determine if we have a TLB
mfcO vl, CO_CONFIG // read CO_Config

ext vi, vi, 7, 3 // check MT field
li a3, Ox1 // load a 1 to check against
bne vl, a3, done_init_tlb

In the branch delay slot, the code reads the MMU Size field in the CPO Configl register for later use.

mfcO vO, CO_CONFIG1L // read CO _Configl

74

At this point the code checks to see if this is an MT core, and if not, it skips ahead to start initializing
the TLB. (If you know the core is not an MT core, you can comment out the code from here to the
start_init_tlb label.)

// Check for TLB sharing between vpe.
beqz r10_has mt _ase, start_init_tlb
nop

If it is an MT core, then the code checks to see if it is executing on VPE 0 by checking the VPE
number that was setup in r9_vpe_num (GPR 17). If it is O, it skips ahead to start initializing the TLB.

beqz r9 vpe_num, start_init_tlb

Next the code reads the CPO MVPControl register (CPO 0 select 1) to see if TLB sharing is turned on
by extracting the STLB field (bit 3). If it is, it means it is executing on a VPE other than 0, but since it
is sharing the TLB, the TLB has already been initialized by VPE 0, so it can skip to the end of the
function. If it is not sharing the TLB, it will fall through and initialize the TLB of VPE 1.

mfcO a0, zero, 1 // read MVPControl

ext a0, a0, 3, 1 // extract STLB

bnez a0, done_init_tlb // vpel but sharing tlb
nop

Now the code will use the CPO Configl value stored earlier in GPR 10 and extract the MMU size field
(6 bits starting at bit 25) into GPR 11. This is used as the highest TLB entry and will be used as the
first index into the TLB.

start_init_tlb:
// ConfiglMMUSize == Number of TLB entries - 1
ext vl, vO, CFG1_MMUSSHIFT, 6 // extract MMU Size

Now to clear all entry registers, we initialize all fields in the TLB to 0. To do this we use the same
move to Coprocessor zero instruction using general purpose register 0, which always contains the
value 0, and move its contents to the corresponding Coprocessor 0 register.

mtcO zero, CO_ENTRYLOO // write CO_EntryLoO
mtcO zero, CO_ENTRYLO1 // write CO _EntryLol
mtcO zero, CO_PAGEMASK // write CO_PageMask
mtcO zero, CO_WIRED // write CO_Wired

Now we load $12 with the address to be placed in the entry. Note that it will be marked invalid but
will ensure that the TLB does not have duplicate entries.

Ii a0, 0x80000000

We will now use a loop to initialize each TLB entry.

75

The next_tlb_entry_pair label in the left column is the label of the start of the loop and the point we
will loop back to. To make sure the address that will be written to the TLB entry is unique, the VPE or
core number is inserted into it.

next _tlb_entry pair:

Previously the code stored the highest numbered TLB entry in general purpose register vl. Hereit s
used to program the TLB entry index. The code uses the move to Coprocessor 0 instruction to copy
the contents of general purpose register vl to Coprocessor 0 register, which is the index register.
The index will indicate the TLB entry to be written. The address to be initialized is written to the CPO
EntryHi register.

mtcO v1, CO_INDEX // write CO_Index
mtcO a0, CO_ENTRYHI // write CO_EntryHi

The code needs to make sure all the writes to CPO been completed before writing the TLB entry. It
does this by using the ehb instruction.

ehb

Now the TLB Write Indexed Instruction is used to write the TLB entry.
tibwi

The address is incremented by 16K so there are no duplicates.
add a0, (2<<13)

The branch instruction is used to see if the code has written the last TLB entry (entry 0). Here the
code compares the TLB index value that is in general purpose register 11 with 0, and if they are not
equal, the code branches back to the top of the loop.

bne vl, zero, next_tlb_entry pair

The last instruction is in the branch delay slot and will always be executed. It uses the add
instruction to decrement the index value in the general purpose register 11 by adding a -1.

add vl, -1

When the loop is finished, the function returns to start.

done_init_tlb:
jr ra
nop
END(init_tlb)

76

5.13 common/init_tlb2 (proAptiv cores only)

init_tlb2.S initializes the VTLB and FTLB Translation Look-aside Buffers. This code example is specific
to processors with the VTLB/FTLB feature. In addition, it uses the fact that these cores will always
have a least a 64K VTLB, and if they have the optional FTLB, it will always be 512 entries. The TLB
needs to be initialized so that there are no random translations in it.

LEAF(init_tlb)
compute_TLB_size:

The MT field in the CPO Config register (16, 0) is used to decode what type of TLBs are in the Core. If
CPO Config MT =1, there is only a VTLB and it may be greater than 64K. If CPO Config MT =4, there
is also an FTLB and the VTLB is 64K.

The code reads the CP0O Config register and extracts the MT field.

// Determine if we have an FTLB or just a VTLB and set size accordingly
mfcO v1, CO_CONFIG // read CO_Config
ext wvi, vl, 7, 3 // check MT field

A 1is loaded into GPR 15 to test against. The code checks to see if MT is equal to 1, indicating there
is only a VTLB, and sets the VTLB size to 64 in the branch delay slot. If it was not equal to one, the
only other value it could be is 4, indicating it has an FTLB, so the code jumps ahead to set the total
TLB size with FTLB.

li a3, Ox1 // load a 1 to check against
bne vl, a3, ftlb // if not only VTLB branch
] vl, 64 // set VTLB entries to 64

If the branch falls through, it means that we don’t have an FTLB, but the VTLB may have an extended
size (beyond the default 64 entries). The MMUSizeExt field in CPO config 4 (16, 4) contains 7 bits of
extended entries. These bits are the upper 7 bit of the number of total entries in the VTLB. The code
reads Config 4 and extracts the MMUSizeExt field. It then shifts this value 7 to the left to put the bits
in the correct position. Then it adds the default value of 64 to get the total number of TLB entries.
Once the TLB size is determined, the code loads it into GPR v1 that will be used as a loop counter to
integrate through and initialize TLB entries and branches to the start of the TLB initialization.

mfcO $15, CO_CONFIG, 4 // Read Config 4

ext a3, a3, 0, 7 // get MMUSizeExt

sl a3, a3, 7 // shift to upper bits
add vl, vl, a3 // add to the 64

b start_init_tlb

nop

The code reaches the ftlb label if the MT field was not 1. This means that there is an FTLB. The FTLB
is a set size of 512 entries, so the total number of entries is the addition of the 64 VTLB entries plus
the 512 FTLB entries or 576. The code loads 576 into GPR v1 that will be used as a loop counter to
integrate through and initialize TLB entries.

77

ftilb:
] vl, 576 // set value of 64 + 512 if using FTLB

Now to clear all entry registers, we will initialize all fields in the TLB to 0. To do this we use the same
move to Coprocessor zero instruction using general purpose register 0, which always contains the
value 0, and move its contents to the corresponding Coprocessor O register.

start_init_tlb:
mtcO zero, CO_ENTRYLOO // write CO_EntryLoO
mtcO zero, CO_ENTRYLO1 // write CO_EntrylLol
mtcO zero, CO_PAGEMASK // write CO_PageMask
mtcO zero, CO_WIRED // write CO _Wired

Now we load $12 with the address to be placed in the entry. Note that it will be marked invalid but
will ensure that the TLB does not have duplicate entries.

li a0, 0x80000000

We will now use a loop to initialize each TLB entry.

The next_tlb_entry_pair label in the left column is the label of the start of the loop and the point we
will loop back to. To make sure the address that will be written to the TLB entry is unique, the VPE or
core number is inserted into it.

next_tlb_entry pair:
ins a0, r23 _cpu_num, 20, 4 // add "Core'" number

Previously the code stored the highest numbered TLB entry in general purpose register 11. Here it is
used to program the TLB entry index. The code uses the move to Coprocessor 0 instruction to copy
the contents of general purpose register 11 to Coprocessor 0 register, which is the index register.
The index will indicate the TLB entry to be written. The address to be initialized is written to the CPO
EntryHi register.

mtcO v1, CO_INDEX // write CO_Index
mtcO $12, CO_ENTRYHI // write CO_EntryHi

The code needs to make sure all the writes to CPO been completed before writing the TLB entry. It
does this by using the ehb instruction.

ehb

Now the TLB Write Indexed Instruction is used to write the TLB entry.

tlbwi

The address is incremented by 16K so there are no duplicates.

78

add a0, (2<<13)

The branch instruction is used to see if the code has written the last TLB entry (entry 0). Here the
code compares the TLB index value that is in general purpose register 11 with 0, and if they are not
equal, the code branches back to the top of the loop.

bne vl, zero, next tlb entry pair

The last instruction is in the branch delay slot and will always be executed. It uses the add
instruction to decrement the index value in the general purpose register 11 by adding a -1.

add vl, -1

When the loop is finished, the function returns to start.

done init tlb:
jr ra
nop

END (init_tlb)

5.14 cps/init_cm.S Coherence manager (CPS systems, 1004K and 1074K only)
The code in init_cm.S initializes the Coherence Manager.
First the code checks to see if it is booting a coherent processing system, and if not, will branch to

the end of this function.

LEAF (init_cm)

beqgz rll is cps, done cm _init // skip if not a CPS
nop

Register Fields Global CSR Access Privilege Register (GCR_ACCESS
Offset 0x0020)

Bits

CM_ACCESS_EN Each bit in this field represents a coherent requester.
If the bit is set, that requester is able to write to the
GCR registers (this includes all registers within the
Global, Core-Local, Core-Other, and Global Debug
control blocks). The GIC is always writable by all
requestors.

If the bit is clear, any write request from that
requestor to the GCR registers (Global, Core-Local,
Core-Other, or Global Debug control blocks) will be
dropped.

79

The lower 8 bits of the Global CSR Access Privilege Register controls the write access to the GCR
registers by a processor unit (VPE or single core). If a bit is set, the processor unit can change the
GCR.

Load a 2 into a0.
] a0, 2 // mask for cores in this cps.

Then the code shifts the 2 to the left by the number of processor units previously stored in
r19_more_cores (GPR 19 s3) and then subtracts 1. For example, if there were 4 processor units.
then GCR 19 would contain a 3. Then 2 shifted left by 3 is 16 or 10 hex.

sll a0, a0, rl19 more_cores
Now the code subtracts 1. 16 — 1 is 15 or F hex, so now we have all four lower bits set.
addiu ao, -1 // Complete mask.

These are written to the Global CSR Access Privilege Register, which will now allow all 4 processor
units to change the GCR.

Sw a0, GCR_ACCESS(r22_gcr_addr) // write GCR_ACCESS

The code then checks to see if there is an IOCU. It does this by loading the GCR configuration
register into GPR 4 and extracting the NUMIOCU field.

// Check to see if this CPS implements an 10CU.
Ilw a0, GCR_CONFIG(r22 gcr_addr) // read GCR_CONFIG
ext a0, a0, NUMIOCU, NUMIOCU_S // extract NUMIOCU.

It then jumps around the next section of code to the end of the init_cm function if there are no
IOCUs in the system.

beqz a0, done_cm_init

If there is an I0OCU, then the code will make sure that the CM regions are disabled. The code loads an

upper immediate value into a0, which sets bits 16 through 31 and clears bits 0 through 15. The
lowest bit, bit 0, set to 0 will disable the CM region. The code uses a0 to store the value to all CM
regions and thus disables them.

lui a0, OxFFff
// Disable the CM regions if there is an 10CU.

sw a0, GCR_REGO BASE(r22_gcr_addr) // write GCR_REGO BASE
sw a0, GCR_REGO_MASK(r22_gcr_addr) // write GCR_REGO MASK
sw a0, GCR_REG1 BASE(r22 gcr_addr) // write GCR_REG1 BASE
sw a0, GCR_REG1_MASK(r22_gcr_addr) // write GCR_REG1 MASK
sw a0, GCR_REG2 BASE(r22_gcr_addr) // write GCR_REG2 BASE
sw a0, GCR_REG2 MASK(r22 gcr_addr) // write GCR REG2 MASK
sw a0, GCR_REG3 BASE(r22 gcr_addr) // write GCR_REG3 BASE
sw a0, GCR_REG3 MASK(r22 gcr_addr) // write GCR_REG3 MASK

80

This completes the CM initialization and the code returns to start.

done_cm_init:
Jjr ra
nop

END(init_cm)

5.15 cps/init_cpc.S Cluster Power Controller (CPS systems, 1004K, 1074K,

proAptiv and interAptiv only)

The init_cpc function sets the location of the Cluster Power Controller in the GCR Base Register and
stores the address for further use.

First the code checks to see if this is a coherent processing system by checking GPR 3 that was set in
the beginning. If it’s not, then it will not have a CPC and will skip to the end and return.

LEAF(init_cpc)
beqz rll1 _is_cps, done_init_cpc // Skip if non-CPS.
nop

If there is a CPS, the code checks for a Cluster Power Controller by checking the Cluster Power
Controller Status Register. This register is located within the Global Configuration Registers at offset
0xf0. The code uses the previously stored address of the GCR base and the 0xf0 offset to load the
value of the Cluster Power Controller Status Register into a0 (GPR 4/a0). There is only one field in
the Cluster Power Controller Status Register, called CPC EX, and if that bit is set, then the CPC s
connected into the CPS. So all the code needs to do is test it for 0. If it’s 0, there’s no CPC and it
branches around this code and returns to the initialization function. In the branch delay slot we
ensure GPR 30 is clear to indicate we don’t have a CPC.

Iw a0, GCR_CPC_STATUS(r22_gcr_addr) // GCR_CPC STATUS
andi a0, 1

beqz a0, done_init _cpc // Skip if no CPC
move r30_cpc_addr, zero

If there is a CPC, the code will set the address of the CPC in the Cluster Power Controller Base
Address Register. The address of the Cluster Power Controller Base Address Register is at offset 88
hex of the GCR.

The code uses the known value of the location of CPC is within the system and writes that to the
Cluster Power Controller Base Address Register. This is a physical address. Also, bit 0 is set, to
enable the address region for the CPC.

li a0, CPC_P_BASE_ADDR // Locate CPC
S a0, GCR_CPC BASE (r22_gcr_addr) // GCR_CPC_BASE

Then the code stores this address for later use in GPR 30 using the KSEG1 equivalent address, and is
now done setting up the CPC.

81

1i r30_cpc_addr, CPC_BASE ADDR // copy to register
This completes the CPS initialization and the code returns to start.

done init cpc:
jr ra
nop

END (init_cpc)

5.16 cps/init_gic.S Global Interrupt Controller (CPS systems, 1004K and 1074K
only)

init_gic.S initializes the Global Interrupt controller for this example boot code.

The GIC address space is accessed with uncached load and store commands. For each load or store
command, the hardware supplies the physical address and the Processor/VPE Number of the
requester. The processor/VPE Number is used as an index to reference the appropriate subset of the
instantiated control registers. By using the processor/VPE Number information, the hardware writes
or reads the correct subset of the control registers pertaining to the “local” Core. Software does not
need to explicitly calculate the register index for the “local” Core; it is done entirely by hardware.
The GIC is divided into segments:

Segment Base Addressing Method
Offset

0x0000 Offset relative to GCR_GIC_Base
VPE-Local Section 0x8000 Offset relative to GCR_GIC_Base + using VPE 16K
_ Number as Index
0xc000 Offset relative to GCR_GIC_Base + using VPE- 16K
Other Addressing Register as Index
User-Mode Visible 0x10000 Offset relative to GCR_GIC_Base 64K

The Shared segment starts at the Base address of the GIC. This shared section is where the external
interrupt sources are registered, masked, and assigned to a particular processing element and
interrupt pin. This section is used by all processing elements.

Next is the VPE-local section which starts at the Base address plus 0x8000. This is the section in
which interrupts local to a VPE are registered, masked, and assigned to a particular interrupt pin.
Using the VPE-other segment, the “local” CORE can access the registers of another Core by using the
Core-Other address spaces. Software must write the VPE-Other Addressing Register before
accessing these spaces. The value of this register is used by hardware to index the appropriate
subset of the control registers for the other core(s).

82

An additional section called the User-Mode Visible section is used to give quick user-mode read
access to specific GIC registers. The use of this section is meant to avoid the overhead of system calls
to read GIC resources, such as counter registers.

First the code checks to see if it needs to initialize the global interrupt controller. It checks GPR 3 and
if it is not set, then this is not a Coherent Processing system, so the code will skip the GIC
initialization.

LEAF (init_gic)

beqz rll is cps, done gic // Skip if non-CPS.
Nop

Even though this is a Coherent Processing System, there still may not be a GIC. To find out, the code
reads the Global Control Blocks GIC Status register, offset 0xDO, extracts the GIC_EX bit, and then
tests to see if it is set. If it is not set, there is no GIC, so the code will skip the GIC initialization.

la al, GCR_GIC STATUS + GCR_CONFIG_ ADDR

1w a0, 0(al)

ext a0, a0, GIC EX, GIC EX S

beqgz a0, done gic // If no GIC then skip
nop

There are two parts of the GIC that need to be initialized: a Shared Part that needs to be initialized
by only one core, and a local part that needs to be initialized by each processing unit. This code will
do the shared part only if this is core 0, so it checks GPR 23 for the processing unit number and skips
the shared section if it is not 0.

bnez r23 cpu_num, init vpe gic // Only coreQ vpeO
nop

5.16.1 Enable the GIC

GCR_GIC_BASE Offset 0x0080

Register Fields Description Read/Write Reset
State

Bits
GIC_BaseAddress 31- The base address of the 128KB R/W Undefined
7 Global Interrupt Controller
block
0 Setting to 1 enables GIC R/W 0

As you can see from the table, the address is on a 128K boundary, so the lower 17 bits will always be
0. This leaves space for additional information in the register. The GIC_EN field controls the enabling
of the GIC.

The code loads the address of the GIC Base Address Register into al (GPR 5/al).

83

1i al, GCR_CONFIG _ADDR + GCR_GIC BASE

The code loads a0 (GCR 4/a0) with the address of GIC (Physical address). Then bit 0 is set, which enables the
GIC. This value is stored to the GCR_GIC_BASE register.

1i a0, (GIC_P BASE ADDR | 1) // Physical address + enable
sw a0, 0(al)

Next the code will use the GIC Configuration Register to confirm how many external interrupt
sources we have. To do that, the code will read the register and isolate the NUMINTERRUPTS field,
bits 16 through 23. Interrupt sources are configured in the core in groups of 8. This field tells you
how many groups of 8 minus 1 the core has.

The define GIC_SHARED_OFS is the address of the Shared section of the GIC which is loaded into al
(GPR 5/al). The Shared Configuration register is located at offset 0. The code loads the value of the
register into a0 (GPR 4/a0).

// Verify gic is 5 "slices"™ of 8 interrupts giving 40 interrupts.
1i al, GIC_BASE ADDR // load GIC KSEGO Address
1w a0, GIC_SH CONFIG (al) // GIC_SH CONFIG

Then the code extracts the number of interrupt groups.

ext a0, NUMINTERRUPTS, NUMINTERRUPTS S //extract NUMINTERRUPTS

For this example, the code loads the expected value of NUMINTERRUPTS into a3 (GPR 7/a3). This
example is expecting 40 interrupt sources (4 + 1 times 8). If the code doesn’t get what it expects, it
executes a debug breakpoint to stop at a point where you can use the debug probe to see what’s
going on.

1i a3, 4
beq a0, a3, configure slices
nop

sdbbp // Failed assertion of 40 interrupts.

5.16.2 Disable interrupts

Next the code will disable interrupts for the interrupts used by the example.

Register Offset Reset Mask Register numbers

0-31 Writing a Ox1 to any bit location masks
32-63 off (disables) that interrupt.

64 -95 At IP configuration time, the appropriate
m 96-127 number of these registers is instantiated
[o0x0310 | 128 -159 to support the number of External
m 160 - 191 Interrupt Sources.

84

0x0318 192 -223 These are write-only bits.
224 - 255

To disable interrupts, the code will use the Global interrupt Reset Mask Registers. Each interrupt
source has a corresponding bit in a Reset Mask Register. Setting a bit to one resets and disables the
interrupt in the GIC. The GIC can control up to 256 interrupt sources. Since all registers in the GIC
are 32 bits wide, in order to have enough bits to cover all 256 sources, we will need 8 Reset Mask
Registers. The first register will control interrupts 0 through 31, the second set will control 32
through 63, and so on. The system in our example has external interrupts connected to interrupt
pins 24 through 39. These interrupt sources will use the first two Global interrupt Reset Mask
Registers.

The code that follows configures the interrupts one section at a time. First it will configure interrupts
24 through 31 and then 32 through 39.

The code disables the first 32 interrupt sources by writing a 1 to bits 24 — 31 in the first Global
interrupt Reset Mask Register. The offset of the Global interrupt Reset Mask Registers into the GIC
Section is hex 300.

configure slices:
// Hardcoded to set up the last 16 of 40 external interrupts
// (24..39) for IPI.
1i a0, 0xff000000
SW a0, GIC_SH RMASK31l 0 (al) // (disable 0..31)

5.16.3 Setting the Global Interrupt Polarity Registers

Similar to the Reset Mask Registers, there is a set of registers that configures the polarity of the

interrupt.
Register Interrupt Polarity Description
Offset Register numbers

0x0100 0-31 Polarity of the interrupt.
0x0104 32-63 For Level Type:

0x0108 64 - 95 0x0 - Active Low

BT 6-127 0x1 - Active High
| 0x0110 | 128 -159 For Single Edge Type:

160 - 191 0x0 - Falling Edge used to set edge register

0x0118 192 -223 0x1 - Rising Edg? use.d to set edge reg!ster
294 - 755 At IP configuration time, the appropriate number of these
registers is instantiated to support the number of External
Interrupt Sources. These bits are read/write.

The polarity determines how the interrupt is signaled to the core. Interrupts can be level or edge
sensitive. If level sensitive, setting the interrupt’s corresponding bit to 1 will configure it active high,

85

and setting it to O will configure it active low. If the interrupt is edge sensitive, setting the
corresponding bit to 1 will configure it to interrupt on the rising edge, and setting it to 0 will
configure it to interrupt on the falling edge. The offset of the Global interrupt Polarity Registers in
the GIC Section is hex 100.

The code uses a0 (GPR 4/a0) to write 1’s to bits 24 through 31 of the first interrupt Polarity Register.
This configures interrupt sources 24 through 31 to be rising edge sensitive.

sW a0, GIC_sH POL31 0 (al) // (high/rise 24..31)

5.16.4 Configuring Interrupt Trigger Type

There is a set of registers that configures the Trigger type of the interrupt. Setting the corresponding
bit causes the interrupt to be treated as Edge signaling; if the bit is cleared, the interrupt is level
signaling. The offset of the Global Interrupt Trigger Type Registers in the GIC Section is 0x180.

Register Trigger Type Description
Offset Register
numbers

0-31 Edge or Level triggered
32-63 0x0 - Level
64-95 Ox1 - Edge
96-127 At IP configuration time, the appropriate number of these
128 -159 registers is instantiated to support th_e nurnber of External
160 - 191 Interrupt Sources. These are read/write bits.
192-223
BT 224-255

The code uses GPR 4 to write 1’s to bits 24 through 31 of the first interrupt Trigger Register. This
configures interrupt sources 24 through 31 to be edge sensitive.

sw a0, GIC_SH TRIG31 0 (al) // (edge 24..31)

5.16.5 Interrupt Dual Edge Registers

There is a set of registers that configures the Edge type if the interrupt is edge signaling.

Register Interrupt Dual Description
Offset Register numbers

0-31 Writing a Ox1 to any bit location sets the appropriate
32-63 external interrupt source to be type dual-edged.

64 -95 At IP configuration time, the appropriate number of
| ox020c | 96 - 127 these registers are instantiated to support

128 -159 the number of External Interrupt Sources. These are

160 - 191 read/write bits.

192-223

86

224 - 255

5.16.6 Interrupt Set Mask Registers

There is a set of registers that corresponds to the Global Interrupt Reset Mask registers; these are
the Global Interrupt Set Mask Registers. Where the Reset Mask registers disable interrupts, the Set
Mask Registers enable interrupts.

Register Interrupt Set Mask Description
Offset Register numbers

0-31 Writing a Ox1 to any bit location sets the mask (enables)
0x0384 32-63 for that interrupt.

At IP configuration time, the appropriate number
0x0388 64 -95 of these registers are instantiated to support the
0x038¢ 96 - 127 number of External Interrupt Sources. These are write

only bits.
0x0390 128 -159
0x0394 160 - 191
0x0398 192 - 223

224 - 255
Here is the code that sets the interrupt mask.
sSW a0, GIC_SH SMASK31l 00 (al) // (enable 24..31)

This next section of code configures interrupts 32 through 39 the same way it configured interrupts
24 through 31. The configuration registers that control this range of interrupts is in the second
register of each set, so you can see the code is offsetting each register by an additional 4 bytes.
Interrupts 32 through 39 are located in the lower 8 bits of the registers, so the code sets GPR 4 to
hex ff and will use this register to set interrupt bits 32 through 39, then disable the interrupts, set
the Polarity Registers, set the Trigger Register, and then enable the interrupts.

1i a0, Oxff

sSW a0, GIC_SH RMASK63 32(al) // (disable 32..39)
SW a0, GIC _SH POL63 32(al) // (high/rise 32..39)
SW a0, GIC_SH TRIG63_32(al) // (edge 32..39)
SW a0, GIC_SH SMASK63 32 (al) // (enable 32..39)

5.16.7 Map Interrupt to Processing Unit

Next the code will configure the Processing unit to which a particular interrupt will be assigned. To
do this, the GIC has registers for each interrupt source. Each bit in those registers corresponds to a
processing unit in the multi-core system. Remember that a processing unit can be a VPE in a multi-
threaded, multi-core system or just a single processor in a multi-core system.

For example, for interrupt source 1 registers, bit 0 would assign the interrupt to core 0 in a single
core system or to VPE 0 in an MT system. The current scheme supports up to 64 different processing

87

units, so there are 2, 32-bit registers for each interrupt. To allow for future expansion, the registers
are spaced 32 bytes apart.

Let’s look at the table.

Register Interrupt Map Src to VPE Description
Offset Register numbers

0x2000 Source 0,0-31 Assigns this interrupt source to a particular VPE.
Source 0, 32 - 63 At IP configuration time, the appropriate number of
Source 1,0-31 these registers is instantiated to support the
Source'1132763 number of External Interrupt Sources and the
B 2: 0-31 number of VPEs. These are read/write bits.

Source 2,32 -63

Source 255,0-31
Source 255, 32 - 63

The Interrupt Map Src to VPE Registers are in the GIC shared section and start at offset 0x2000. The
first interrupt has its registers at 2000 and 2004 hex, thus giving it a 64-bit map area. The next
interrupt starts at the start of the section plus 32 bytes or 0x20, so its registers are at 2020 and 2024
hex and so on.

There is a convention in MIPS Linux to use the last 16 interrupt sources for inter-processor
interrupts. In the system we are configuring, those are interrupts 24 through 39. The system could
contain up to 8 virtual processing units if it is made up of multi-threaded cores, or 4 physical
processing units if it is made up of single-threaded cores.

88

This code assigns 2 interrupt sources to each processing unit in the system. It does this using GPR 4
which is set up with a processor unit number.

So for VPE 0, a0 (GPR 4/a0) is programmed with a 1. Then the code stores the value in a0 in the
appropriate MAP register. In this case, the code divides the interrupt sources into 2 groups, one
group from 24 to 31 and the other from 32 through 39. The code will take one interrupt source from
each group and program it to a processing unit .

For VPE O, the code uses interrupt 24 and 32. The Map registers for 24 will start at GIC offset
0x2300. The number 0x2300 is obtained by multiplying the interrupt number by the spacing size
which is 0x20 and adding the offset for the Global Interrupt Map to VPE Registers which is 0x2000.

The code continues until all 8 possible processing units are configured for these interrupts.
// Initialize configuration of shared interrupts

// Direct GIC_ int24..39 to vpe 0..7

// MIPS Linux convention that last 16 interrupts implemented be set
// aside for IPI signaling.

// (The actual interrupts are tied low and software sends interrupts
// via GIC_SH_WEDGE writes.)

i a0, 1 // set bit 0 for COREO or for MT vpeO

// Source 24 to VPE O

sw a0, GIC_SH MAPO_VPE31 0 + (GIC_SH_MAP_SPACER * 24) (al)

// Source 32 to VPE O

sw a0,GIC_SH MAPO_VPE31_0+(GIC_SH MAP_SPACER * 32)(al)
sll a0, a0, 1 // set bit 1 for CORE1l or for MT vpel

// Source 25 to VPE 1

sw a0,GIC_SH MAPO_VPE31 0+(GIC_SH MAP_SPACER * 25)(al)
// Source 33 to VPE 1

sw a0,GIC_SH MAPO_VPE31 0+(GIC_SH MAP_SPACER * 33)(al)
sll a0, a0, 1 // set bit 2 for CORE2 or for MT vpe2

// Source 26 to VPE 2

sw a0,GIC_SH_MAPO_VPE31_0+(GIC_SH_MAP_SPACER * 26)(al)
// Source 34 to VPE 2

sw a0,GIC_SH MAPO_VPE31 0+(GIC_SH MAP_SPACER * 34)(al)
sll a0, a0, 1 // set bit 3 for CORE3 or for MT vpe3
// Source 27 to VPE 3

sw a0,GIC_SH_MAPO_VPE31_0+(GIC_SH_MAP_SPACER * 27)(al)
// Source 35 to VPE 3

sw a0,GIC_SH MAPO_VPE31 0+(GIC_SH MAP_SPACER * 35)(al)
sll a0, a0, 1 // set bit 4 for CORE4 or for MT vped
// Source 28 to VPE 4

sw a0,GIC_SH_MAPO_VPE31_0+(GIC_SH_MAP_SPACER * 28)(al)
// Source 36 to VPE 4

sw a0,GIC_SH MAPO VPE31 0+(GIC_SH MAP_SPACER * 36)(al)
sll a0, a0, 1 // set bit 5 for CORE5 or for MT vpeb
// Source 29 to VPE 5

sw a0,GIC_SH MAPO_VPE31_0+(GIC_SH _MAP_SPACER * 29)(al)
// Source 37 to VPE 5

sw a0,GIC_SH MAPO VPE31 0+(GIC_SH MAP_SPACER * 37)(al)
sll a0, a0, 1 // set bit 6 for CORE6 or for MT vpeb6

89

// Source 30 to VPE 6

sw a0,GIC_SH MAPO VPE31 0+ (GIC_SH MAP_SPACER * 30) (al)
// Source 38 to VPE 6

sw a0,GIC_SH MAPO VPE31l 0+ (GIC _SH MAP SPACER * 38) (al)
s11 a0, a0, 1 // set bit 7 for CORE7 or for MT vpe7

// Source 31 to VPE 7

sw a0,GIC_SH MAPO VPE31 0+ (GIC_SH MAP SPACER * 31) (al)
// Source 39 to VPE 7

sw a0,GIC_SH MAPO VPE31 0+ (GIC_SH MAP SPACER * 39) (al)

5.16.8 Per-Processor initialization

At this point we have completed initializing the shared section of the GIC. This next section of the
code will initialize the per-processor elements of the GIC. The section of registers being initialized is
called VPE-Local and is located at GIC offset 0x8000.

Register Fields Description of the Local Reset State
Interrupt Control Register

(GIC_VPEi_CTL) 0x8000

Bits

FDC_ROUTABLE If this bit is set, the CPU Fast
Debug Channel Interrupt is
routable within the GIC. If this

bit is clear, it is hardwired to

one of the S/_Int pins as

described by the CORE’s COPO

IntCtlIPFDCI register field.

SWINT_ROUTABLE 3 If this bit is set, the CORE SW IP config value
Interrupts are routable within

the GIC. If this bit is clear, it is

routed back to the CORE

directly.

PERFCOUNT_ROUTABLE 2 If this bit is set, the CORE IP config value
Performance Counter Interrupt

is routable within the GIC. If

this bit is clear, it is hardwired

to one of the SI_Int pins as

described by the CORE’s COPO

IntCtlIPPCI register field.

IP config value

90

TIMER_ROUTABLE 1 If this bit is set, the CORE Timer IP config value
Interrupt is route-able

within the GIC. If this bit is

clear, it is hardwired to one of

the SI_Int pins, as described by

the CORE’s COPO IntCtlIPTI

register field.

EIC_MODE 0 Writing a 1 to this bit will set 0
this VPE local interrupt

controller to EIC (External

Interrupt Controller) mode. It is

a read/write bit.

The code reads the Local Interrupt Control Register which is located at offset 0 in the Local section,
so it is at GIC location 8000 hex. The code will be using some of the values from this register.
init vpe gic:

// Initialize configuration of per vpe interrupts
1i al, (GIC_BASE ADDR | GIC_CORE LOCAL SECTION OFFSET)
1w a3, GIC COREL CTL (al) // GIC_VPEi CTL

5.16.9 Map Timer interrupt Source

The code checks to see if the timer interrupt is routable. It does this by extracting the Timer routable
bit from the Control Register value it just read. Then it checks to see if it’s set. If it’s not set, the
timer interrupt is not routable and the code will branch around routing it.

map_timer int:
// extract TIMER_ROUTABLE

ext a0, a3, TIMER ROUTABLE, TIMER ROUTABLE S
beqz a0, map perfcount int
nop

91

The table below shows the layout of the Registers that will be programmed.

Register Fields Description of the Local WatchDog Reset State
/Compare/PerfCount/SWIntx Map to Pin Registers

MAP_TO_PIN If this bit is set, this interrupt source is mappedtoa 0x1 for Timer,

VPE interrupt pin (specified by the MAP field Perf-Count

below). Only one of the MAP_TO_PIN, and SWintx;

MAP_TO_NMI, or MAP_TO_YQ bits can be set at 0x0 for

any one time. It is a read/write bit. WatchDog
MAP_TO_NMI 30 If this bit is set, this interrupt source is mapped to 0x1 for

NMI. Only one of the MAP_TO_PIN, MAP_TO_NMI, WatchDog;
or MAP_TO_YQ bits can be set at any one time. Itis 0x0
a read/write bit. for Others
MAP_TO_YQ 29 If this bit is set, this interrupt source is mapped to 0

an MT Yield Qualifier pin (specified by the MAP

field below). Only one of the MAP_TO_PIN,

MAP_TO_NMI, or MAP_TO_YQ bits can be set at

any one time. It is a read/write bit.
5:0 When the MAP_TO_PIN bit is set, this field contains 0

the encoded value of the VPE interrupts signals

Int[63:0]. The user should only use values of 0 to 5

(decimal).

When MAP_TO_YP is set, this field contains the

encoded signal selection of the Yield Qualifier.

The code sets up a0 (GPR 4/a0) with the encoding used to route the local CORE timer interrupt to
the desired processor pin. a0 is written with bit 31 set (MAP_TO_PIN) and a 5 in the Map field to
map to pin 5. This will map the local Core’s timer interrupt to the current Processor’s interrupt pin 5.
This value is then stored to the GIC Local CORE Timer Map-to-Pin Register.

1i a0, 0x80000005 // Int5 is selected for timer routing
sw a0, GIC_COREL_TIMER MAP (al)

The code checks to see if the Performance Counter interrupt is routable. It does this by extracting
the Perfcount Routable bit from the Control Register. Then it checks to see if it’s set. If it’s not set,
the performance counter interrupt is not routable and the code will branch around routing it.

map_perfcount int:
// extract PERFCOUNT ROUTABLE
ext a0, a3,PERFCOUNT_ROUTABLE, PERFCOUNT_ROUTABLE S
beqgz a0, done gic
nop

92

1i a0, 0x80000004 // Intd is selected for
sw a0, GIC COREL PERFCTR MAP (al)

This completes the GIC initialization and the code returns to start.

done gic:
jr ra
nop

END (init_gic)

5.17 cps/join_domain (CPS systems, 1004K,1074K, interAptiv and proAptiv
only)

Next the code calls the init function to join this core to the Coherent Domain and the rest of the
system.

The code first checks to see if this is a Coherent Processing System. If it’s not, it will branch to the
end of this function and return.

LEAF (join_domain)

beqgz rll is cps, done_join domain // If CPS then we are done.
nop

The Core Local Coherence Control Register located at offset 8 within the Core-Local control block
located at 0x2000 of the Global Control Registers controls the entry and exit of a core into the
coherent Domain. Bits O through 7 represent a coherent requestor within the system.

Register Fields Core Local Coherence Control Register
(GCR_Cx_COHERENCE)

Bits

Each bit in this field represents a coherent requester
within the CPS. Setting a bit within this field will
enable interventions to this Core from that
requester.

The requestor bit which represents the local core is
used to enable or disable coherence mode in the
local core.

Changing the coherence mode for a local core from
0x1 to 0x0 can only be done after flushing and
invalidating all the cache lines in the core;
otherwise, the system behavior is UNDEFINED.

COH_DOMAIN_EN 7:0

93

The code sets the first 4 bits of GPR 9 to 1. Then it stores it to the Core Local Coherence Control
Register. This enables the other three cores possible in this system to communicate via
interventions to this core.

// Enable coherence and allow interventions from all other cores.

// (Write access enabled via GCR_ACCESS by core 0.)

1i a0, 0xO0f

sw a0, (CORE_LOCAL_CONTROL BLOCK | GCR_CL_COHERENCE) (r22_gcr addr)
ehb

Notice the EHB instruction above. This is needed to clear an instruction hazard barrier and make
sure the write to the Core Local Coherence Control Registers has taken effect before the code
continues.

The code initializes GPR 7 which it will use as a loop counter to 0.

move a3, zero

Next is the loop back label next_coherent_core, which the code will loop back to and join the next
core domain.

next coherent core:

The code sets up the Core-Other Addressing Register, offset 2018 hex from the GCR register base,
with the core number it wants to join with.

Register Fields Core-Other Addressing Register (GCR_Cx_OTHER) Reset
e T -
CoreNum 31:16 CoreNum of the register set to be accessed in the Core-
Other address space.

It first stores the value of the core into a0 (GPR 4/a0), shifts it into the upper 16 bits, and stores it to
the Core-Other Addressing Register.

sl1l a0, a3, 16
sw a0, (CORE_LOCAL CONTROL BLOCK|GCR CL_OTHER) (r22_gcr_ addr)

The code now reads the Core Local Coherence Control Register of the other core. Recall how the
code set this core’s Core Local Coherence Control Register to enable interventions from other cores,
thus entering the domain. The code now needs to wait for the other core to do the same.

busy wait_coherent core:
1w a0, (CORE_OTHER CONTROL BLOCK|GCR_CO COHERENCE) (r22 gcr addr)
beqz a0, busy wait coherent core // Busy wait
nop

94

Once the other core has joined, the code checks to see if there are more cores to wait for and if
there are, it branches back to the next coherent core label. It also increments the other core count.

bne a3, rl19 more_cores, next_coherent core
addiu a3, 1

When all the cores have been waited for, the code returns to start.

done_join_domain:
Jr ra
nop
END(Join_domain)

5.18 cps/release_mp (CPS systems, 1004K, 1074K, interAptiv and proAptiv

only)

After the first processor in an MP system has completed the boot code, it can release the remaining
processors to execute the boot code.

The code checks to see if there are more cores in the system, and if not, it branches to the end of
this section and returns.

LEAF(release_mp)

blez r19 more_cores, done_release_mp // 1T no more cores done.
The code uses a3 (GPR 7/a3) as a counter to decide if it has released all the remaining cores.

li a3, 1

The code checks for a Cluster Power Controller by checking if the address was set for the CPC
register block. If this value is 0, there is no CPC, and the code will skip ahead and just release the
next core so it can begin execution.

beqz r30_cpc_addr, release next_core // 1T no CPC then use
// GCR_CO_RESET_RELEASE
nop // else use CPC Power Up command.

For systems that have a Cluster Power Controller, only one processor should be powered up when
power is first applied. That first processor needs to power up the remaining processors in order for
them to continue the boot process. To do that the code will send the power up signal to each of the
other cores in the system using the Cluster Power Controller. At offset 0x2010 from the base
address of the CPC is the Core-Other Addressing Register shown here. The code needs to place the
number of the other core it wants to power up in this register.

95

To do this the code moves the number of the core it wants to power up into GPR4. Recall that the
first time through, a 1 was stored in a0.

powerup next core:
// Send Perp command to next core causing execution at
// their reset exception vector.
move a0, a3

Next the code shifts that value to the left into the range of the Core Number field of the Core-Other
Addressing Register. Then that value is stored to the Core-Other Addressing Register.

sll a0, 1le
sw a0, (CPS_CORE_LOCAL_CONTROL_BLOCK|CPC_OTHERL REG) (r30_cpc_addr)

Now the code can use the Core-Other Control Block within the CPC located at offset 0x4000 to
control the core whose number it just placed in the Core-Other Addressing Register. The first
register in that block is the CPC Local Command Register. This register is used to power up or down
signals for the core. It has a command field called CMD in its first 4 bits.

Requests a new power sequence execution for this domain. Read
value is the last executed command.

Code Meaning

4'd3 PwrUp - this domain using setup values in
CPC_STAT_CONF_REG. Usable only for
Core-Others access. It is the software
equivalent of the SI_PwrUp hardware signal.

Right now we are interested in powering up the core. That command is 3, so the Code loads a 3 into
GPR 4 and stores that register to the address of the CPC at offset 0x4000. This will power up the
core and it will begin executing at the reset exception vector, which is the start of this boot code.

1i a0, PWR UP // "PwrUp" power domain command.
sSwW aO,(CPS CORE_OTHER CONTROL_ BLOCK|CPC_CMDO REG) (r30_cpc_addr)

Next the code checks to see if there are any other processors in the system by comparing the
current core number with the highest core number that was previously stored in r19_more_cores. If
there are other cores, the code loops back to power up the next processor. The processor count is
incremented in the branch delay slot.

bne rl9 more cores, a3, powerup next core

96

add a3, a3, 1

When all of the processors have been powered up, the function returns to start.

jr ra
nop

The following code is executed in older Coherent Processing Systems without a Cluster Power
Controller. When there is no CPC, the cores other than CoreO are held in reset until CoreO releases
them.

This loop will set the core other value so it can get to the other core’s GCR reset release.

release next_core:
// Release next core to execute at their reset exception vector.

move a0, a3
sl a0, 16
sw a0, (CORE_LOCAL_CONTROL_BLOCK]GCR_CL_OTHER) (r22_gcr_addr)

It then stores a zero to the GCR_CO_RESET_RELEASE register to release that core from reset.
sw zero, 0x4000(r22_gcr_addr) // write GCR_CO RESET RELEASE
It continues looping until all cores are released.

bne r19 more_cores, a3, release next _core
add a3, a3, 1

Once all the cores have been released from reset, the code returns to start.
done_release _mp:

jr ra

nop
END(release_mp)

5.19 Malta/init_mc_denali (Malta Evaluation Boards Only)

The code will initialize the Malta memory controller. It is not covered here since it is unlikely you
would be using the same memory controller as a Malta Board.

5.20 Mt/init_vpel (mt cores 34K and 1004K only)

This code initializes the second VPE of an MT system. It first checks to see if there is an additional TC
to bind to a second VPE and then if there is a second VPE. If neither is true, no action is required so
the code will jump to the done point.

LEAF(init_vpel)

beqz r21_more_tcs, done_init_vpel
nop

97

beqz r20_more_vpes, done_init vpel
nop

To setup the second VPE will require access to some registers that are usually non-writable. To write
to these registers, the code needs to enable Virtual Processor Configuration. This is done by setting
the VPC bit in the MVPControl register (CPO register 0, select 1). The code reads the Register.

// This is executing on TCO bound to VPEO.
// Therefore VPEConfO.MVP is set to enter config mode
mfcO vO, CO_MVPCTL // CO_MVPCtl

Then it sets the VPC bit (bit 1),

or V0, (1 << 1) // M_MVPCtIVPC

writes it back to CPO, and executes an ehb to ensure the write has been completed before it
continues.

mtcO vO, CO_MVPCTL // CO_MVPCtl
ehb

Defines are created to make it easier to follow the code. NTCS is a register that will hold the number
of TCs in the system, NVPES will hold the number of VPEs in the system, and TC will hold the current
number of the TC being initialized.

#define a0 NTCS a0
#define a2_NVPES a2
#define a3 TC a3

The MVPConf0 register (CPO register 0 select 2) holds the number of TCs and VPEs that were
configured into the system at build time. The code reads the register.

// Get number of TC"s and VPE"s
mfcO vO, CO_MVPCONFO // CO_MVPConf0

Then it extracts the highest TC number (total number of TCs -1) and the highest VPE number (total
number of VPEs -1) into the registers noted above. Next it initializes the TC count to 0.

ext a0 NTCS, vO, 0, 8 , // extract PTC

ext a2 NVPES, vO, 10, 4 // extract PVPE
// Initialize TC"s/VPE"s

move TC, zero

98

nexttc:

The next loop will initialize the remaining TCs in the system. The code sets up the target TC field in
the VPEControl register (CPO register 1 select 1). It does this by reading the register, inserting the TC
number into the TargTC field, writing it back to the VPE Control register, and executing an ehb to
ensure the write took effect before it continues.

// Select TC

mfcO vO, CO_VPECTL // read CO_VPECtI
ins v0, TC, 0O, 8 // insert TargTC
mtcO vO, CO_VPECTL // write CO_VPECtI
ehb

The code checks to see if the current TC in the loop is TC 0. If it is, it branches forward to the next
section since it doesn’t want to re-initialize itself.

// Bind TC to next VPE
beqz a3 _TC, nextvpe // Don"t rebind TCO
nop

The TC should be halted before the code starts changing its configuration. To do that, a 1 is placed in
GPR 8 and then moved to the CO_TCHalt register (CPO register 2 select 4). The code executes an ehb
to ensure the move has taken effect.

// Halt TC being configured

] vOo, 1 // TCHalt
mttcO vO, CO_TCHALT // CO_TCHalt
ehb

The code tests to see if this TC is the first TC to be bound to a VPE. If not, it branches to the binding
code. This is done because this example sets up only one TC to be executable on each VPE.

If there are more TCs than VPEs, the branch will be taken and the TC will be bound to the last VPE in
the system (set in the delay slot).

slt vl, a2 NVPES, TC // NVPE < TC?
bnez v1, 2f // Bind spare TC"s to VPElast

Now the branch delay slot is used to save the number of VPEs in a2_NVPES.

move Vv1, a2 NVPES // last VPE to bind to

Next set this TC to be the only TC runnable on the VPE. For current cores, this effectively sets TC 1 to
run exclusively on VPE 1. To do this, the XTC field (bits 21 — 28) in the VPEConfO0 register (CPO
register 1 select 2) is set to the TC number. The code reads the VPEConfO register, inserts the TC
number into the XTC field, and writes the register back.

// Set XTC for active TC"s
mftcO vO, CO_VPECONFO // read CO_VPEConf0
ins v0, a3_TC, 21, 8 // insert TC -> XTC

99

mttcO vO, CO_VPECONFO

// write CO_VPEConfO

Now set v1 to the current TC so the TC will be bound to its corresponding VPE. (This overwrites the
value set in the branch delay slot above.)

move vl1, a3 TC

The code will now bind the TC to the VPE.

If the TC number was equal to or greater than NVPES, then v1 = NVPES, and the TC will be bound to
the last VPE in the system.

If the TC Number was less than NVPES, then vl = TC, and the TC will be bound to the corresponding

VPE.

It does this by reading the TCBind register, inserting the VPE number into the CurVPE Field, and

writing it back.

2:
//

mftcO vO, CO_TCBIND
ins
mttcO vO, CO_TCBIND

Bind TC to a VPE

// read CO_TCBind
vo, vli, 0, 4 // insert VPE -> CurVPE
// write CO_TCBind

Next the code sets this TC to prevent it from taking interrupts and clears all other status and control
bits in the TCStatus register. It does this by setting up vO to all Os except for the IXMT bit (10). Then it

writes that value to the TCStatus register (CPO register 2 select 1).

//
//
//
//
/7/
/7/
//
//
/7/
1

Set up TCStatus register:
Disable Coprocessor Usable bits
Disable MDMX/DSP ASE
Clear Dirty TC
not dynamically allocatable
not allocated
Kernel mode
interrupt exempt
ASID O
vo, (1 << 10) // IXMT bit 10 =

mttcO vO, CO_TCSTATUS // CO_TCStatus

1

100

The code now initializes the TC's GPR registers using the same method used in init_gpr.S.

li vO, Oxdeadbeef

// Initialize the TC"s register file

mttgpr
mttgpr
mttgpr
mttgpr
mttgpr
mttgpr
mttgpr
mttgpr
mttgpr
mttgpr
mttgpr
mttgpr
mttgpr
mttgpr
mttgpr
mttgpr
mttgpr
mttgpr
mttgpr
mttgpr
mttgpr
mttgpr
mttgpr
mttgpr
mttgpr
mttgpr
mttgpr
mttgpr
mttgpr
mttgpr
mttgpr

vO,
vO,
vO,
vO,
vO,
vO,
vO,
vO,
vO,
vO,
vO,
vO,
vO,
vO,
vO,
vO,
vO,
vO,
vO,
vO,
vO,
vO,
vO,
vO,
vO,
vO,
vO,
vO,
vO,
vO,
vO,

$1
$2
$3
$4
$5
$6

101

nextvpe:

The code checks to see if there any more VPEs to initialize. The code checks to see if the number of
VPEs left is less than the number of TCs. If it is, all the VPEs have already been initialized, so the code
branches forward to donevpe (where it will check to see if there are any more TCs to initialize).

slt vl1, a2 NVPES, a3_TC // NVPE < a3_TC?
bnez vl1, donevpe // No more VPE"s
nop

The code will now initialize the VPE. In fact, on current cores there are at most 2 VPEs, so this code
will be executed only if this core has a second VPE.

First the code makes sure multi-threading is disabled. It needs to do this because only one TC should
be executing this code at a time. It does this by clearing the TE bit (15) in the VPEControl register
(CPO register 1 select 1). The code reads the register, inserts a 0 into to the bit, and writes the
register back.

// Disable multi-threading with TC"s

mftcO vO, CO_VPECTL // read CO_VPECtl
ins v0, zero, 15, 1 // insert TE
mttcO vO, CO_VPECTL // write CO_VPECtI

The code checks to see if this is TC 0. If it is, it branches around the initialization to the end of the
function, because this has already been done for TC 0.

beqz a3 _TC, 1f
nop

The code needs to make sure that no TC is running on the VPE it is initializing. It does this by reading
the VPEConfO (CPO register 1, select 2) of the VPE it is initializing and inserting a 0 into the VPA Field
(Virtual Processor Activated). It also needs to ensure that it is the Master Virtual Processor by setting
the MVP bit. This enables the writing of registers associated with the VPE. Then the code writes it
back to the VPEConfO register of the VPE.

// For VPEl..n

// Clear VPA and set master VPE

mFtcO vO, CO_VPECONFO // read CO_VPEConfO
ins v0, zero, 0, 1 // clear VPA

or vo, (1 << 1) // set MVP

mttcO vO, CO_VPECONFO // write CO_VPEConfO

Next copy the Status register of the running TC to the Status register of the TC being initialized.

mFcO vO, CO_STATUS // read CO_Status
mttcO vO, CO_STATUS // write CO_Status

Initialize the Error PC to a dummy value.

102

li v0, 0x12345678
mttcO vO, CO_EPC // write CO_EPC

Clear the Cause register.

mttcO zero, CO_CAUSE // write CO_Cause

Copy the Config register of the running TC to the Status register of the TC being initialized.

mfcO vO, CO_CONFIG // read CO_Config
mttcO vO, CO_CONFIG // write CO_Config

The code now puts the Core number into GPR 23 of the TC being initialized. It does this by reading
the EBASE register (CPO register 15, select 1) and extracting the Cpu_num field. Then it copies the
CPUNum to the TC’'s GPR 23.

mftcO vO, CO_EBASE // read CO_EBASE
ext vO, vO, 0, 10 // extract CPUNum
mttgpr vO0, r23 _cpu_num

The code programs the TC's reset vector so that when it is set to run, it will start executing the boot
code. It loads the address of the reset_vector from the label created in the linker file. It sets bit 29 to
convert the address to a KSEGO address so it will execute from a cacheable address. Then it writes
this value to the TC’s TCRestart register (CPO 2 select 3).

// vpel of each core can execute cached as it"s L1 1$ has

// already been initialized.

// and the L2% has been initialized or "disabled™ via CCA override.
la al, _ reset vector

ins al, 29, 1 // Convert to cached ksegO address

mttcO al, CO_TCRESTART // write CO _TCRestart

Now the first thread for this VPE is ready to run, so the code sets it to start running . However, it will
not run until all TCs have been initialized and the code exits VPE config mode and enables virtual
processing, which is does at the end of this function.

The code reads the TCStatus register and enables the TC for handling interrupts by clearing the IXMT
bit (10). (This doesn’t really enable interrupts; it just makes it possible for this TC to access them.) It
also activates the TC by setting the A bit (13). Then it writes the value to the TC's TCStatus register.

mftcO vO, CO_TCSTATUS // read TCStatus
ins Vv0, zero, 10, 1 // clear IXMT

ori vo, (1 << 13) // set A

mttcO vO, CO_TCSTATUS // write TCStatus

Now the code un-halts the TC by clearing the H field in its TCHalt register. (No other bit needs to be
set, so it just clears the whole register.)

103

mttcO zero, CO_TCHALT // clear H in TCHalt

The code then sets the Virtual Processor Activated (VPA) bit in the VPEConfO register to activate the
VPE and allow the TC it has just initialized to start running. It does this by reading the initialized
VPE’s VPEConfO register and setting the VPA bit, then writing it back.

mftcO vO, CO_VPECONFO // read VPEConfO

ori vo, 1 // set VPA

mttcO vO, CO_VPECONFO // write VPEConfO
1:

Next the code will check to see if there are any more TCs in the system to initialize.

It adds 1 to the current TC being initialized, and then tests to see if it is still within the limits of the
number of TCs that are in the system. If it is, it branches back to the top of the loop

donevpe:

addu a3 TC, 1

sltu vl1l, a0 _NTCS, TC

beqz v1, nexttc

nop
At this point, all TCs and VPEs have been initialized. The code needs to “Enable Virtual Processing”
and take the processor out of “Virtual Processor Configuration” mode. The code will read the

MVPCtl register (CPO register O select 1), set the EVP bit (1), and clear the VPC bit.

// Exit config mode

mfcO vO, CO_MVPCTL // read MVPCtl

ori vo, 1 // set EVP to enable execution by vpel
ins v0, zero, 1, 1 // VPC

mtcO vO, CO_MVPCTL // write MVPCtl

ehb

Now for some clean-up of the code to remove the “//defines” it created in the beginning of this file.
#undef a0_NTCS

#undef a2 NVPES

#undef a3_TC

This function is done and returns to start.

done_init_vpel:

jr ra
nop

END(init_vpel)

104

5.21 main.c

The main.c code that is located in each core’s directory differs depending on the core and the
capabilities being demonstrated. This section contains subsections that describe each core’s main.c.
All are intended to use the Malta display to display VPE or CORE numbers. There is no output for
simulators.

For all Cores, main.c contains a #define for a macro that the code will use to write to the Malta
Board’s address for its 8-segment display. This display is used to display the VPE or CORE number.

#define MALTA_CHAR(index) *((volatile unsigned int*) \
(0xbf000418 + ((index) * 8)))

Also for all cores, the boot_count array is intended to hold the cycle time it took to boot.

volatile int boot_count[8];//global variable zeroed in start.S when bss is
zeroed

5.21.1 main.c for 24K and 74K

The number of the CORE that is executing this code is passed in the cpu_num argument. In the case
of the 24K and 74K, this will always be 0.

// Global variables.

//

// main():

//

int main(unsigned int cpu_num) {

int j, temp;

The inline assembly code reads the Count register (CPO register 9) into the temp variable. Then it
writes it to the element of the boot_count array that corresponds to cpu_num.

// End timing of boot for this "Core™.
asm volatile ('mfcO %[temp], v1'": [temp] *=r"(temp) :) ;
boot_count[cpu_num] = temp ;

The code uses the MALTA_CHAR macro to clear the display.

// clear display
for =0; J <9; j++)
MALTA_CHAR(J) = " *;

Next it displays the CORE number on the display by writing to it. It does this in a loop, so it will
display for a time, then the next code will blank the display in a similar loop, and then go back to the
top of the while loop. The effect will be a blinking 0 on the Malta display.

105

while (1) {
for g =0 ; J < @ *1024) ; j++) {
MALTA_CHAR(cpu_num) cpu_num + 0x30 ; // ASCII char for Core number.

for g =0 ; j < (4 *1024) ; j++t) {
MALTA_CHAR(cpu_num) = * *; // blank out display position for "Core".

}
The code should never get to this point, because the while loop above is endless.

return 0 ;

5.21.2 main.c for 34K

For the 34K, VPEO will wait until VPE1 (if present) has gone through this boot code and is executing
in main.c. The Malta display is used to display status and (in the end) the VPE number as the VPE
works through the code.

// Global variables.
//

// main():

//

int main(unsigned int vpe_num, unsigned int num_vpe_this core) {
int j, temp;

The inline assembly code reads the Count register (CPO register 9) into the temp variable. Then it
writes it to the 0 element of the boot_count array.

// End timing of boot for this "Core™.
asm volatile ("mfcO %[temp], v1": [temp] "=r"(temp) :) ;
boot_count[vpe_num] = temp ;

The code uses the MALTA_CHAR macro to clear the display.

// clear display
for (J =0; J < 9; j++)
MALTA_CHAR(@) = " * ;

If the code is executing on VPEQ, it will wait for any other VPEs to set their ready bit in the ready
array. While it’s waiting, it will display a “W” in its segment on the Malta display.

// VPEO synchronizes test code execution.
it (vpe_num== 0) {

// Wait for other VPEs to indicate they are ready.

for (i = 1; 1 < num_vpe_this_core; i++) {
MALTA_CHAR(vpe_num) = "W® ; // “W" for Waiting.
while (Yready[i]) ; // Busy wait for all VPEs

106

o"_n
r

If the code is executing on VPE1, then it will display an (for ready) in its segment of the Malta
display and write a 1 to its element of the ready array. The ready array is used in the code above by
VPEO.

} else {
// Other VPE indicates ready and waits...
MALTA_CHAR(vpe_num) = "r" ; // display "r® for ready.

ready[vpe_num] = 1 ;

}

Both VPEs will now display a “t’. This code is just a place holder, and it’s a good place for you to put
test code.

// Put test code here:
MALTA_CHAR(vpe_num) = "t° ; // "t° for test.

Next it displays the VPE number on the display by writing to it. It does this in a loop, so it will display
for a time, and then the next code will blank the display in a similar loop and go back to the top of
the while loop. The effect will be a blinking 0 on the display.

while (1) {
for g =0 ; J < @ *1024) ; j++) {
MALTA_CHAR(vpe_num) = vpe_num+ 0x30 ; // ASCIl Core number.

3
for g =0 ; J < (@ *1024) ; j++) {

MALTA_CHAR(vpe_num) = * *; // blank position for "Core™.
}

}

The code should never get to this point, because the while loop above is endless.

return 0 ;

5.21.3 main.c for 1074K and proAptiv CPS

For the 1074K and proAptiv CPS, Core0 will wait until the remaining CPUs (if present) have gone
through this boot code and are executing in main(). All CPUs except CPUO will wait for an Inter-
processor Interrupt before they continue. CPUO will just wait until all other CPUs have set their

ready element in the ready array. Then CPUO will continue.

All Cores will display their CORE number in their corresponding segment on the Malta display.

The set_ipi function will send an interrupt through the Global Interrupt Controller to a specific CORE
number provided by cpu_num. The init_gic.S code sets up the GIC to wire each interrupt to a
specific CORE.

#define FIRST_IPI 32 // GIC interrupts 32+ are used to signal
// interrupts between cores.

107

// set_ipi(): Send an inter-processor interrupt
// to the specified Core.

void set_ipi(int cpu_num) {
// Use external interrupts 32..39 for ipi

GIC_SH_WEDGE = 0x80000000 + FIRST_IPI + cpu_num;}

Interrupts 23 through 39 correspond to a CORE, so CPUO uses interrupt 32, CPU1 uses interrupt 33,
and so on.

#define GIC_SH WEDGE *((volatile unsigned int*) (0Oxbbdc0280))

The #define GIC_SH_WEDGE sets up a pointer to the GIC Global Interrupt Write Edge Register. It
does so by combining the address of the GIC register control block, which in this case is at Oxbbdc
0000 with the offset 0x280 of the Global Interrupt Write Edge Register.

The value written to the Global Interrupt Write Edge Register has two parts: bit 31 is set to indicate

that the code is sending the interrupt signal, and bits 0 through 30 determine to which interrupt the
signal will be sent. The code calculates the proper interrupt by using the #define FIRST_IPI as a base
interrupt number and adding the CORE number.

Once this value is written, the corresponding CORE will receive an interrupt which will wake it up to
continue executing.

Main has the single argument cpu_num. This is the processor number of the 1074K or proAptiv Core
that is executing this code.

//

// main(): Synchronized run of shared test code coordinated by cpuO
//

int main(unsigned int cpu_num) {

int i, j, k ;
int num cpus = 0 ;
int temp;

The inline assembly code reads the Count register (CPO register 9) into the temp variable. Then it
writes it to the 0 element of the boot_count array.

// End timing of boot for this "Core"
asm volatile ('mfcO %[temp], v1": [temp] "=r"(temp) :) ;
boot count[cpu_num] = temp ;

The code uses the MALTA_CHAR macro to clear the display.
// clear display

for (i = 1; 1 < 9; i++)
MALTA CHAR(i) = " *;

108

If the code is executing on CPUQ, it will wait for any other Cores to set their ready bit in the ready
array. While it’s waiting, it will display a “W” in its segment on the Malta display.

// cpu0 synchronizes test code execution.
it (cpu_num == 0) {
numM_Cpus = Nnum_cores;
// Wait for other Cores to indicate they are ready.
for (i = 1; i < num_cpus; i++) {
MALTA CHAR(cpu_num) = "W* ; // "W" for Waiting.
// Busy wait for all Core to be ready.
while (Iready[il]) ;
}

When a core reports it is ready, it will call the wait instruction which will stop the core until the core
receives an interrupt. It is CORE 0’s job to send the interrupt to wake up the other cores so they can
continue processing. It does this by using inter-processor interrupts that were set up in the
init_gic.S code. The code first changes the segment display by writing an “I” to the corresponding
element for the core it is going to interrupt. Then it calls the set_ipi function to send the interrupt.
Once CPUO finishes this loop, it can continue and execute test code and/or the OS.

// Release other Core to run their tasks.

for (i = 1; 1 < num_cpus; i++) {
// display "i" for interrupted (from cpuO)
MALTA CHAR(i) = "i" ;
set_ipi(i) ; // Send the ipi

}

All CPUs other than CORE 0 will halt and wait for CORE 0 to synchronize them. First the code makes
sure the interrupt source bit corresponding to its CORE number is cleared by writing to the
GIC_SH_WEDGE register. Notice that bit 31 is not set, so this clears any interrupt that might be
pending. Then it enables interrupts.

} else {

// Clear this Core’s IPl source

GIC_SH_WEDGE = FIRST_IPI1 + cpu_num ;

// Enable interrupts and wait to be released
// via ipi from cpuO

asm volatile (ei™) ;

Next each CORE will write an “r” to the segment display to indicate it is ready. Then it will write to
the global array to indicate to CORE 0 that it is ready.

// Other Core indicates ready and waits...
MALTA CHAR(cpu_num) = "r-" ; // display "r" for ready.
ready[cpu_num] = 1 ;

Next interrupts are disabled for the CORE. This avoids any race condition between the testing of the
start_test array and the wait instruction.

asm volatile ('di"™) ;

109

The code will loop, testing its element of the start_test array, and call wait to wait for an interrupt
(send by CPUO).

while (Istart_test[cpu_num]) {
// This code will only work reliably if the
// WIl bit is set in config7.
// When this bit is set, any interrupt even
// when they are disabled will cause
// wait to return. This avoids a race condition.

// Wait for interrupt (qualified with "start_test').
asm volatile ('wait') ;

Once an interrupt occurs, the code enables interrupts so its interrupt service routine can run and
process the interrupt. The interrupt routine will set the start_test element for this CORE.

// enable interrupts so interrupt routine can run
// and set the start_test bit

asm volatile (ei™) ;
asm volatile ('ehb™) ;

By the time the code gets here, the interrupt routine will have run. The code will disable interrupts
before it goes back to the top of the loop. The top of the loop is where the start_test array is
checked and just as before, interrupts need to be disabled to avoid a race condition. The start_ array
needs to be checked, because any interrupt could have caused termination of the wait instruction.

// Disable interrupts again so there is not race

// condition between testing the

// start _test bit variable and going back to wait.
// NOTE for this code we are only expecting IPI that
// interrupt.

asm volatile ('di'™) ;

asm volatile ('ehb™) ;

}

All CPUs will now display a “t’. This code is just a place holder, and it’s a good place for you to put
test code.

// Put test code here:
MALTA CHAR(cpu_num) = "t" ; // "t° for test.

Next it displays the CORE number on the display by writing to it. It does this in a loop, so it will
display for a time, and then the next code will blank the display in a similar loop and go back to the
top of the while loop. The effect will be a blinking 0 on the display.

while (1) {
for g =0 ; J <@ *1024) ; j++t) {
MALTA_CHAR(cpu_num) = cpu_num + 0x30 ; // cpu
}

for 3 =0 ; J <@ *1024) ; j++) {

110

MALTA CHAR(cpu_num) = * *; // blank out display

}

return 0 ;

}
5.21.4 main.c for 1004K, interAptiv CPS and interAptivUP

For the 1004K and interAptiv CPS, main() defines a macro that it uses to write to the Malta Board’s
address for its 8-segment display. VPEO will wait until the remaining VPEs (if present) have gone
through this boot code and are executing in main. All VPEs except VPEO will wait for an
interprocessor Interrupt before they continue. VPEO will just wait until all other VPEs have set their
ready element in the ready array. Then VPEO will continue.

All VPEs will display their number in their segment on the Malta display.

NOTE: For a CPS, the VPE number will be a combination of the VPE number within a Core and the
Core number + 1. For example, VPEO of Core 0 is numbered 0, and VPE 0 of Core 1 is numbered 2.

The set_ipi function will send an interrupt through the Global Interrupt Controller to a specific VPE
number provided by cpu_num. The init_gic.S code sets up the GIC to wire each interrupt to a
specific VPE.

Interrupts 32 through 39 correspond to a VPE, so VPEO uses interrupt 32, VPE1 interrupt 33, and so
on.

The #define GIC_SH_WEDGE sets up a pointer to the GIC Global Interrupt Write Edge Register. It
does so by combining the address of the GIC register control block, which in this case is at Oxbbdc
0000, with the offset 0x280 of the Global Interrupt Write Edge Register.

The value written to the Global Interrupt Write Edge Register has two parts: bit 31 is set to indicate
that the code is sending the interrupt signal, and bits 0 through 30 determine which interrupt the
signal will be sent to. The code calculates the proper interrupt by using the #define FIRST IPl as a
base interrupt number and adding the CPU number.

After this value has been written, the corresponding VPE will receive an interrupt that will wake it up
to continue executing code where it left off.

#define GIC_SH WEDGE *((volatile unsigned int*) (0Oxbbdc0280))
#define FIRST_IPI 32 // GIC interrupts 32+ are used to signal
interrupts between cores.
//
// set_ipi(): Send an inter-processor interrupt to the specified VPE.
//
void set_ipi(int cpu_num) {
// Use external interrupts 32..39 for ipi

GIC_SH WEDGE = 0x80000000 + FIRST_IPI + cpu_num ; }

111

//
// main(): Synchronized run of shared test code coordinated by cpuO.
//
int main(unsigned int cpu_num, unsigned int core_num, unsigned int
vpe_num, unsigned int num_vpe_this_core) {

int i, j, k ;

int num_cpus = 0 ;

int temp;

The inline assembly code reads the Count register (CPO register 9) into the temp variable. Then it
writes it to the 0 element of the boot_count array.

// End timing of boot for this "VPE"™.
asm volatile ('mfcO %[temp], v1'": [temp] *=r"(temp) :) ;
boot_count[cpu_num] = temp ;

If the code is executing on CPUO (VPEOQ), it waits for each core to report the number of VPEs on a
core. The code tallies the number of VPEs each core reports in num_cpus, which it will use a little
later in this loop.

// cpu0 synchronizes test code execution.
it (cpu_num == 0) {

// Tally number of "VPEs"™ there are in this CPS.

for (i = 0; 1 < num_cores; i++) {
while (lvpe_on_core[i]) {
3} // Busy wait for core to report number of vpe.
num_cpus += vpe_on_core[i];

It will wait for any other VPEs to set their ready bit in the ready array. While it’s waiting, it will
display a “W” in its segment on the Malta Display.

// Wait for other VPEs to indicate they are ready.
for (i = 1; 1 < num_cpus; i++) {
MALTA_CHAR(cpu_num) = "W® ; // "W" for Waiting.
// Busy wait for all VPEs to be ready.
while (Iready[i]) :
}

When a VPE reports it is ready, it will call the wait instruction, which will stop the VPE until the VPE
receives an interrupt. It is VPE Q’s job to send the interrupt to wake up the other cores so they can
continue processing. It does this by using inter-processor interrupts that were set up in the init_gic.S
code. The code first changes the segment display by writing an “I” to the corresponding element for
the core it is going to interrupt. Then it calls the set_ipi function to send the interrupt. Once CPUO
finishes this loop, it can continue and execute test code and/or the OS.

// Release other VPE to run their tasks.

112

for (i = 1; i < num_cpus; i++) {

// display "i" for interrupted (from cpu0.)
MALTA _CHAR(i) = "i" ;
set_ipi(i) ; // Send the ipi

}

All VPEs other than VPE 0 will Stop and wait for VPE 0 to synchronize them. First the code makes
sure the interrupt source bit corresponding to its VPE number is cleared by writing to the
GIC_SH_WEDGE register. Notice that bit 31 is not set, so this clears any interrupt that might be
pending. Then it enables interrupts.

} else {
// Clear this "VPE""s ipl source
GIC_SH _WEDGE = FIRST_IPI + cpu_num;
// Enable interrupts and wait to be released
// via ipi from cpuO
asm volatile (ei') ;
Next each VPE will write an “r” to the segment display to indicate it is ready. Then it will write to the
global array to indicate to VPE O that it is ready.

// Other VPE indicate ready and wait...
MALTA CHAR(cpu_num) = "r-" ; // display "r" for ready.
ready[cpu _num] = 1 ;

Next interrupts are disabled for the VPE. This avoids any race condition between the testing of the
start_test array and the wait instruction.

asm volatile (C'di'™) ;

The code will loop, testing its element of the start_test array and calling wait to wait for an interrupt
(sent by CPUO).

while (Istart_test[cpu_num]) {
// This code will only work reliably if the
// Wil bit is set in config7.
// When this bit is set any interrupt even
// when they are disabled will cause
// wait to return. This avoids a race condition

// Wait for interrupt (qualified with "start_test').
asm volatile ('wait') ;

When an interrupt is signaled, it enables interrupts so that its interrupt service routine can run and
process the interrupt. The interrupt routine will set the start_test element for this CPU.

// enable interrupts so interrupt routine can run
// and set the start_test bit

asm volatile (ei™) ;

113

By the time the reaches this point, the interrupt routine will have run. The code will disable
interrupts before it returns to the top of the loop. The top of the loop is where the start_test array is
checked and just as before, interrupts need to be disabled to avoid a race condition. The start_ array
needs to be checked because any interrupt could have terminated the wait instruction.

// Disable interrupts again so there is no race
// condition between testing the

// start_test bit variable and going back to wait.
// NOTE: for this code we are only expecting an
// interprocessor interrupt.

asm volatile ('di'™) ;

}

All CPUs will now display a “t’. This code is just a place holder, and it’s a good place to put your test
code.

// Put test code here:
MALTA CHAR(cpu_num) = "t" ; // "t° for test.

Next it displays the VPE number on the display by writing to it. It does this in a loop, so it will display
for a time, then the next code will blank the display in a similar loop and go back to the top of the
while loop. The effect will be a blinking 0 on the Malta display.

while (1) {
for =0 ; jJ <@ *1024) ; j++) {
MALTA_CHAR(cpu_num) = cpu_num + 0x30 ; // VPE
}

for g =0 ; jJ < @@ *1024) ; j+t) {
MALTA_CHAR(cpu_num) = * *; // blank out display
}

}

return 0 ;

114

6 Makefiles

There are two Makefiles used with each core’s build: a top-level Makefile and a core-level Makefile.
6.1 Top Level Makefile

The top level Makefile contains 5 targets for each core.

Using the 24K core as an example, the targets are:
e 24K SIM_RAM will build a simulator version with the main function copied to normal RAM.

24K_SIM_RAM:
${MAKE} -C 24K SIM_RAM

e 24K _SIM_SPRAM will build a simulator version with the main function copied to Scratchpad
RAM.

24K_SIM_SPRAM:
${MAKE} -C 24K SIM_SPRAM

e 24K _MALTA_RAM will build a Malta Board version with the main function copied to normal
RAM.

24K_MALTA_RAM:
${MAKE} -C 24K MALTA_RAM

o 24K MALTA SPRAM RAM will build a Malta Board version with the main function copied
to Scratchpad RAM.

24K_MALTA_SPRAM:
${MAKE} -C 24K MALTA_SPRAM

e clean_24K will clean all object files in common areas and all built files for the 24K.

clean_24K:
${MAKE} clean -C 24K

6.2 Core Level Makefile

Each Core has a Makefile customized for the code elements needed for it. In other wordsm these
files differ in which source files are used. Each source file is covered in the Code Details section. The
24K core Makefile will be used as an example in the following description of the different sections of

the Makefile.

6.2.1 Defines for common utilities

115

At the top of the Makefile are defines for common utilities. If you are using a different toolchain,
you may have to change these defines to correspond to your tool chain’s names. “CC” is set to the
name of the C compiler, “LD” is set to the name of the Linker, “OD” is set to the object dump utility
used to produce a disassembly of the code, and “OC” is set to the name of the object copy utility,
which is used for a Malta Board build to convert the elf file to an S-record file needed to download
to the Board’s Flash memory.

// 24K Makefile

CC=mips-sde-elf-gcc
LD=mips-sde-elf-Id
OD=mips-sde-elf-objdump
OC=mips-sde-elf-objcopy

6.2.2 Defines for directory paths

The next defines are used to find directories for the source and object files. BASE is the path to the
top-level directory of the project. COMMON is the path to the common source and object files.
MALTA is the path to the files that are specific to the Malta Board. Other make files will have
additional defines for the CPS, which is the path to the source and object files specific to the
Coherent Processing System, and for MT, which is the path to the Multi-threaded source and object
files.

BASE=. ./
COMMON=$(BASE)common
MALTA=$(BASE)Malta

6.2.3 Compiler and Linker arguments

Next are the defines used as arguments to the build commands:
e CFLAGS=-03 -g -EL -c -| S(COMMON) -mmt.

CFLAGS are the arguments to the C command line. For this example these arguments are:

0 -03thisis the optimization level. O3 is the highest level of optimization. This causes
problems when using the source-level debugger because of the nature of the
optimizations. It will cause the debugger to look like it is repeating lines of code and
jumping forward and backward in the code as you step through it. If you find this
hard to follow, you can change or remove the —O argument. This will cause the
compiler to optimize less or not at all, but it will make debugging easier. Once you
have debugged the code, you can change it back to —03 for the production build.

0 —g isused to produce debugger information that is needed if you want to debug
with a source-level debugger. This may be removed for the final production build.

0 —EL causes the code to be built for Little Endian. If you want to build for Big Endian,
then change this to —EB.

0 —1 tells the Makefile where to find the include files (other than the system include
files). Here it points to the common directory that contains the boot.h file

116

0 —mmt tells the compiler to use MT instructions. This should only be present for
multi-threaded cores.

e LDFLAGS SIM RAM=-T sim_Ram.ld -EL -nostdlib -Wl,-Map=sim_Ram_map

e LDFLAGS_SIM_SPRAM=-T sim_SPRam.ld -EL -nostdlib -WI,-
Map=sim_SPRam_map

e LDFLAGS MALTA RAM=-T malta Ram.ld -EL -nostdlib -WI,-
Map=malta_Ram_map

e LDFLAGS_MALTA_ SPRAM=-T malta_SPRam.ld -EL -nostdlib -WI,-
Map=malta_SPRam_map

There are several LDFLAG defines, one for each type of build:

0 -—Tis used to pass the name of the linker script file to the linker. There will be
more information on the linker script in the next section.

0 —EL links for Little Endian. To link for Big Endian, change this to —EB.

0 -—nostdlib tells the linker to not use standard libraries. The boot code does not
support standard library calls (like printf). By using the —nostdlib option, the
linker will report an error if a standard library call is made.

0 -WI,-Map=<MAP file Name> this option tells the linker to produce a Map file
with the given name. The map file is useful in determining to which addresses
the linker has linked the code and data.

6.2.4 Source file lists
There are several source file lists that correspond to different builds:

e ASOURCES is a list of the assembly files common to all targets in this Makefile. The list
differs from core to core depending on the source needed to boot that particular core.

e MALTASOURCES is a list of assembly files that are specific to a Malta Board build.

e ASOURCES_SP is used to combine common sources with a specific source to build for the
Scratchpad RAM version.

e ASOURCES_RAM is used to combine common sources with a specific source to build for the

non-Scratchpad RAM version.
e CSOURCES is a list of C source files in the build.

6.2.5 Object file lists

The object file lists are built using built-in make rules that convert the source file lists into object file

lists. There is a corresponding OBJECT file define for each source file list.

e MALTAOBJECTS=$(MALTASOURCES: .S=.0)
e COBJECTS=$(CSOURCES: .c=.0)

e AOBJECTS=$(ASOURCES: .S=.0)

e AOBJECTS_SP=$(ASOURCES SP:.S=.0)

e AOBJECTS_ RAM=$(ASOURCES RAM: .S=.0)

117

The object file lists will be used in the different target builds.

6.2.6 Adding to CFLAGS for Malta Board Builds

In order to have a more generic start.S file, the code contains a #define for the Denali memory
controller present on Malta boards. For Malta Board target builds, the define “DENALI” needs to be
added to the CFLAGS.

ifeq ($(Findstring MALTA_, $(MAKECMDGOALS)), MALTA)
CFLAGS += -DDENALI
Endif

To do this, the Makefile built-in command “findstring” is used to search the target name passed to
the make command (MAKECMDGOALS) for MALTA _. If it finds it, it adds -DDENALI to the CFLAGS
define.

6.2.7 Make Targets

As discussed previously, there are four make targets for each core.

6.2.7.1 MALTA_SPRAM

This target builds for a Malta Board using Scratchpad RAM:

MALTA_SPRAM : $(COBJECTS) $(AOBJECTS_SP) $(MALTAOBJECTS)

$(0C) malta_SPRam.elf -0 srec malta_SPRam.rec
perl $(COMMON)/srecconv.pl -ES L malta SPRam

This target depends on the common C objects (COBJECTS), the Scratchpad-specific Assembly objects
(AOBIJECTS_SP), and the Malta Board-specific objects (MALTAOBJECTS):

$(CC) S$(LDFLAGS_MALTA_SPRAM) $(COBJECTS) $(AOBJIECTS_SP)\
$(MALTAOBJECTS) -0 malta_SPRam.elf

The CC rule line will build the malta_SPRam.elf executable file using the object lists and Linker flags
appropriate to the Malta and Scratchpad build.

$(0OD) -d -S -1 malta_SPRam.elf > malta_SPRam_dasm
The OD rule will produce a disassembly file.

$(0C) malta_SPRam.elf -0 srec malta_SPRam.rec
perl $(COMMON)/srecconv.pl -ES L malta_SPRam

118

The last two lines use object copy and a perl script to convert the elf file into a flashable file called
malta_SPRam.fl.

6.2.7.2 MALTA_RAM

This rule differs from the previous one by using object lists, a linker file script, and output names to
produce a Malta Board RAM version of the flash file (malta_RAM.fl).

MALTA_RAM : $(COBJECTS) $(AOBJECTS_RAM) $(MALTAOBJECTS)
$(CC) $(LDFLAGS_MALTA_RAM) $(COBJECTS) $(AOBJIECTS_RAM) \
$(MALTAOBJECTS) -o malta_Ram.elf
$(0D) -d -S -1 malta Ram.elf > malta Ram dasm
$(0C) malta Ram.elf -0 srec malta_Ram.rec
perl $(COMMON)/srecconv.pl -ES L malta_Ram

6.2.7.3 SIM_RAM

This rule will produce an elf file which is suitable to be used with a simulator with normal RAM.

SIM_RAM : $(COBJECTS) $(AOBJECTS_RAM)

The rule depends on the C objects (COBJECTS) and the Assembly Objects for RAM (AOBJECTS_RAM).

$(CC) $(LDFLAGS_SIM_RAM) $(COBJECTS) $(AOBJIECTS_RAM) -0
sim_Ram.elf

The CC rule uses the linker script and object file list appropriate to build a Simulator RAM version of
the elf file sim_Ram.elf.

$(0D) -d -S -1 sim_Ram.elf > sim_Ram_dasm

The OD rule produces a disassembly file from the elf file.

6.2.7.4 SIM_SPRAM

This rule differs from the SIM_RAM rule by using objects lists, a linker file script, and output name to
produce a Simulator Scratchpad version of the elf file sim_SPRam.elf.

6.2.8 C and Assembly rules

These rules will build the objects file needed for the CC rule from the dependency list for the target.

.C.0:
$(CC) $(CFLAGS) $< -0 $@

119

The .c.o rule takes an object name from the provided object list and compiles it from the
same- named file ending in .c instead of .o.

.S.o:
$(CC) $(CFLAGS) $< -0 %@

The .S.o rule takes an object name from the provided object list and assembles it from the
same- named file ending in .S instead of .o.

6.2.9 Clean rule

The clean rule removes all traces of files produced from all target builds. It does this by using the
shell commands listed in the clean rule.

7 LinKker scripts

The linker scripts are used by the linker to locate the code properly during the link step. They also
provide symbols that are used in the boot code to perform the copy from flash memory to RAM or
SPRAM. There are four linker scripts per core, one for each make target.

All linker scripts use 0x9fc0 0000 as the starting address of the boot code. This is a KSEGO address
that mirrors the KSEG1 boot exception vector address, OxbfcO 0000, in all MIPS systems, i.e., the
memory location of the first instruction that will be fetched. The difference between using a KSEGO
address and a KSEG1 address is that KSEG1 is a non-cached memory region whereas KSEGO is a
cacheable region that first starts out as uncached and can then be switched to cacheable. (The
switch is done after the I-cache has been initialized in start.S.)

7.1 Malta_Ram.ld

This linker script is used in the MALTA_RAM target builds for a Malta Board with a copy of the main
code from flash to normal RAM.

_monitor_flash = 0xbe000000 ;
-text_init 0x9fc00000 :
AT(_monitor_Fflash)

The script tells the linker to create a symbol called _monitor_flash with a value of the address of the
monitor flash on the Malta board, which is the starting address of the Malta Board’s flash. The Malta

Board is setup to alias the normal boot vector, OxbfcO 0000, to this address.

The .text_init 0x9fc0 0000 : gives the linker the starting address for linking the object files that
follow.

The “AT” command directs the linker to load the code at the _monitor_flash address. Thus the code
will be linked to execute starting at the boot vector, but will be loaded into the flash at the

120

_monitor_flash address, which on the Malta Board also appears to the VPE as the boot exception
vector OxbfcO 0000.

The next part of the linker script is a list of object files that will be linked into the .text_init section.
Here is an example of the list for a 24K core:

{
_ftext_init = ABSOLUTE(.) ; /* Start of init code. */
start.o(.text) /* Reset entry point */
. ./common/init_gpr.o(.text)
set_gpr_boot_values.o(.text)
-./common/init_cpO.o(.text)
../common/Zinit_tlb.o(.text)
../Malta/Zinit_mc_denali.o(.text)
../common/init_caches.o(.text)
. ./common/copy_c2_ram.o(.text)
. = ALIGN(8);
_etext_init = ABSOLUTE(.); /* End of init code. */
}=20

This list is the main reason there are different sets of linker scripts for each Core, i.e., because each
Core can have a different set of object files. The list for the 24K is the smallest subset of objects files.
The other Cores will have a superset of object files, depending on the code that needs to be
included to boot that Core.

There are two symbols, ftext_init and _etext_init, that are set in accordance with the list of object
files. These are seen in the section above in the beginning and end of the list:

_ftext_init = ABSOLUTE(.) ; /* Start of init code. */

_ftext_init is a symbol that is set to the current link location. In this case, that location is 0x9fc0
0000, because the symbol is at the start of the text_init section (0x9fc0O 0000).

_etext_init = ABSOLUTE(.); /* End of init code. */

_etext_init is the symbol set to the last link location of the text_init section.

The next part of the script will be used to link and load any object files not in the above list. This
happens to be the main.o file for this boot code. The code in main.o will be copied from flash to
some type of RAM, so it will be loaded at a flash location but linked for a RAM location. Along the
way it will create symbols that will be used by the copy code to copy the code from flash to RAM.

_zapl = _etext_init - _ftext init + _monitor_flash;

The _zapl symbol will be computed at link time. This is the address where main.o code will be
loaded into the flash and be used by the copy code as a starting address for the source of the copy
to RAM. It is computed by taking the starting address of the monitor flash (_monitor_flash) and
adding the difference between the start of the text_init section (_ftext_init) and the ending address

121

of the text_init section (_etext_init). In other words, the _zap1 symbol is computed as the starting
address of the flash plus the size of the text_init section.

-text_ram 0x80100000 :
AT(_zapl)

The .text_ram line tells the linker to link the text_ram section to the 0x8010 0000 RAM address. The
AT line tells the linker to load it into memory at the address in the symbol _zap1.

{
_ftext_ram = ABSOLUTE(.) ; /* Start of code and read-only data */

(text)(.text.*)

. = ALIGN(8);

_etext_ram = ABSOLUTE(.); /* End of code and read-only data */
}=0

The above line tells the linker what goes into the text_ram section. First it sets the _ftext_ram
symbol to point to the current link address, which in this case is the start of the text_ram section.
The code will use this address as the starting destination address for the copy.

Next the *(.text) line tells the linker what to put into this section. The .text sections from any object
files on the linker command line (in the Makefile) that are not specifically named will go into the
.text_ram output section.

In the above code, the . = ALIGN(8); aligns the end of the section to an 8-byte boundary.
The _etext_ram symbol is set to the end of the text_ram section.

The next section covers the initialized data section. It contains external variables that are initialized
in the code.

_zap2 = _etext _ram - _ftext ram + _zapl ;

The _zap2 symbol is computed to contain the load address of the next section (data). It is computed
by taking the end load address of the text_init, _zapl and adding the difference between the first
address of the text_ram section, _ftext_ram, and the ending address, _etext_ram. In other words,
_zap2 equals the ending load address of the first section text_init and the size of the next section
text_ram.

.data _etext _ram :
AT(_zap2)

Next the .data line tells the linker where to link the .data section. Here it is set to _etext_ram, which
is the ending link address of the last section, text_ram.

The AT line tells the linker where to load the data section. This is going to be an address in RAM.

The next part describes what’s in the data section.

122

{

_fdata_ram = ABSOLUTE(.); /* Start of initialised data */
*(.rodata)

(.rodata.)

*(.data)

- = ALIGN(8);

_gp = ABSOLUTE(. + Ox7ff0); /* Base of small data */
*(.1it8)

*(.litd)

*(.sdata)

- = ALIGN(8);

_edata_ram = ABSOLUTE(.); /* End of initialised data */
}

Once again the symbols for the beginning and end link points for the section are set up (_fdata_ram
and _edata_ram).

In between these symbols is the list of subsections that go into the data section. It also sets up the
Global Pointer symbol. This data area is 64K, with the _gp symbol pointing to the middle of it, so
address offsets will be no larger than 16 bits plus or minus the Global pointer. This fits with the
number of bits allowed for the offset field of instructions like sw. The _gp will be written to GPR $28
before the code in main() is called.

123

Next are the uninitialized variable sections, sbss and bss.

_fbss = _;
.sbss :

*(.sbss)
*(.scommon)

}

.bss :

*(.bss)
*(COMMON)
}end = . ;

What'’s important here is that _fbss contains the starting link address (in RAM) for the bss section,
and _end contains the ending address of the bss section. These will be used in the copy code to zero
out the uninitialized variables to comply with the C standard.

7.2 malta_SPRam.ld

The malta_SPRam.ld linker script is almost the same as the malta_Ram.|d described above. There
are two differences:
o Inthe object file list for the text_init section, the copy_c2_ram.o has been swapped out for
copy_c2_SPram.o.
e There are additional symbols used to set up the Scratchpad RAMs and to aid in the copy to
Scratchpad RAM.

7.2.1 Linking for Scratchpad RAM

The Scratchpad RAM example boot code is an example of a system that has Instruction and Data
Scratchpad RAM, no normal RAM, and uses Fixed Mapping Translation (FMT). The boot code will
program the Scratchpad RAM controller with the physical address of the ISPRAM and DSPRAM
memory regions. Then it will copy the code in main.c into the ISPRAM, the initialized data into the
DSPRAM, and clear the uninitialized variables.

The linker script controls where in memory the Scratchpads are placed and links the code and data
for those addresses. It does this by defining and computing additional symbols used in the script.
Below are the additional symbols and how they are used.

_FMT_offset = 0x40000000 ;

The symbol _FMT_offset is the translation from virtual address 0 to an address in physical memory
using Fixed Mapping Translation (FMT). The value, 0x4000 0000 is defined by the MIPS Architecture
and cannot be changed.

0x50000000

_ISPram ;
0x60000000 ;

_DSPram

124

The symbols _ISPram and _DSPram are the physical address where the Scratchpad RAM will be
located in the system. They will be used by the code in the common/copy_c2_SPram.S to position
the Scratchpad RAMs in the physical memory map. These are not fixed addresses. They can be
changed, usually to a physical address in the KUSEG region.

_code_start
_data_start

_ISPram - FMT offset
_DSPram - FMT offset

The symbols _code_start and _data_start will be used as the starting link addresses for the code and

data in main.c. These are computed by using the difference between the start of the SPRam and the
_FMT _offset. The difference in these 2 physical addresses translates into a virtual address in KUSEG.

-text_ram _code_start :
.data _data_start :

The address for the SPRAM computed above is used as the link address for the text_ram and data
sections.

7.3 sim_Ram.ld and sim_SPRam

The only differences in these two linker scripts from their Malta counterparts is the value of the
_monitor_flash symbol. Recall the Malta board has flash that starts at Oxbe0 0000, which is aliased
to the boot exception vector at OxbfcO 0000. There is no aliasing done in the simulators, so
_monitor_flash has the value of the boot exception vector OxbfcO 0000.

125

8 Downloading to the Malta Boot Flash

To download the boot code to the Malta Board, attach a parallel cable between the Malta Board
and your PC. Configure your PC’s parallel port for printing. Open the “malta_Ram.Id” file in a editor.

On Windows, use the WordPad editor. Be sure that “Print Page Numbers” is turned off
in the “Page setup”:

Page Setup ﬁ

e
:’-;':-_-u'-_—';f:ﬁ-u- ar |
=
e
:E—*?_-?_ :
e
AT |
ey |
:’-;':-_-u'-_—';f:ﬁ-u- ar |
Paper
Size: ’Letter T]
Source: ’Automatically Select v]
Crientation Margins (inches)
@ Portrait Left: 1.25 Right: 1.25
() Landscape Top: 1 Bottorn: 1
["] Print Page Mumbers
oK l ’ Cancel

126

Next flip the PROG switch on the S5 switch block to PROG. You should see the display change to
“Flash DL”.

I

e

— T ——

Then click on print. The download should be very fast for this example code, because it is very small.
“FINISHED” is displayed when the printing is complete:

Flip the PROG switch back and the system should boot. If it doesn’t boot, power cycle the board.

127

9 Debugging Using NavigatorICS

This section covers setting up a Debug session for single, multi-threaded, and multiprocessor Cores.
NavigatorICS version 2.8.2 or newer is required.

9.1 Single Core or first Core of a Multi Thread or Multi Core system

This setup will start a debug session that resets the Core or CPS, sets the PC to the reset vector
(0xBFCO 0000), and suspends execution.

If you are using a Malta Board with an FPGA, you will need to increase the connection time-out
before you can debug. Go to the “Window” menu at the top of the Workspace View and select
Preferences -> C/C++ ->Debug ->GDB M, and increase the “Debugger timeout (MS):”. You can
experiment, but it’s safe to just add a 0 to the end.

NOTE: The debugger needs to come up once before in order for the “GDB MI” selection to appear in
the menu (see figure below), so you might need to start a debug session and have it fail before you
can change this value.

[Preferences = 2=
type filter text GDBE MI = - w
Genera| n General settings for GDBE ML
Ant
CfC++
Appearance = Communication
Build Debugger timeout (ms):

Code Style 10000

Debug Launch timeout (ms):
Breakpoint Actio
9000
Commaon Source
Debugger Types Shutdown timeout
Disassembly 30000

GDE

[/] Automatically refresh modules

Tracepoint Actio ’ Restore Defaults] ’ Apply]

4 1Ll I

1l @ | ok || cance | |F

W

128

Create a Debug configuration:

Main . 69= Arguments | %% Debugger MavCon Initializatio | & Source| £ Commen)

C/C++ Application:

1074k malta_Ram.elf ’5earch Pro_iect...” Browse...]

Project:

Build (if required) before launching

Build configuration: | Debug v]
71 Enable aute build (7 Disable auto build
(@ Use workspace settings Configure Workspace Settings...

Open a debug dialog and make sure the “C/C++ Application” field is filed in. If not, “Search Project
or “Browse” to the elf file that was built for the project.

7

129

Then click on the “Debugger” tab at the top of the dialog.

Mame:

Probe cni

Main | 69= Arguments | ¥ Debugger NavCon Initializatic | B Source "

Target Interface [MIPS Probe(EITAG/Pro/IFlow) v] [Conacte CRE Joi o

GDB Executable ’mips-sde-elf-gdb v]
General Options

Launch1res Debug Bootcode -

Reset Action |EJTAG Boot -

Run bootcode and attach after] | Seconds
2 ownload Code
Set PC To Cu;rent PC Location (Resume)
Stop At First Instruction First Instruction

Set Endian To({Little) 3

Target Configuration and Device Selection

m

Configuration nam

10
Device name 6 : ‘Eﬂuﬂ TD

5canforProbes| }47 41203 7

04k 3c2v)| Auto |

8[Debug || Close |

PwNE

Change “Launch Preset” to the “Debug Bootcode” drop down.

Uncheck “Download Code” (the code is in Flash, so it can’t be downloaded).

Select the correct endianness for you project.

Click on “Scan for Probes” and select the probe serial number you are using (this may take
some time).

Select the configuration you are using. If you are using a 1004K or 1074K, a configuration
will need to be created. See section Creating Debug Scripts for 1004K and 1074K CPS for
information on how to do that.

Select the device name (should be core0).

Click on the “Test” button to see if the probe will connect successfully. If it doesn’t, the
debug session will not work so you need to resolve any connection problem before you can
continue.

130

8. If you are using a singl- core system, just click on “Debug” to save the script and start your
debug session. For 34K, 1004K, 1074K, interAptiv, and proAptiv systems, continue with the
next steps.

131

Debugging additional VPE (34K, 1004K, and interAptiv):

To debug the second VPE you need to create another and slightly different Debug configuration.

Here are the changes you need to make:

Mame: Probe civl

f Main ((KF Arguments ﬁﬁi Debugger MavCon Initializaticq E. Source Py

"

Target Interface | MIPS Probe(EITAG/Pro/TFlow) ~| | Generate GDE Init File |

GDE Executable ’mips-sde-elf-gdb v]

General Options

L

Launch Presdt | Advanced

) 1

[Run bootcode and attach after 0 = Seconds
[Download Code

Reset Action (| Mo Reset -

Set PC Tu3 Custom PC/Symbol

0xBFC00000)

Stop At 4 First Instructicn - First Instruction

Get Emdian in

Target Configuration and Device Selection

Scan for Probes & 11203 Test

Configuration name % ’10041(_3::21.-' v] ’Auto]

Device name 5 %dcﬂ?l vj])

[V Ignore RESET event naotification during launch.

[Open Mavigator Console Window after successful launch.

Close Mavigator Console Window when launch is terminated.

m

Select “Advanced” for “Launch Preset”
The “Reset Action” should be “No Reset”

vk wnNeE

Pick the correct “Device name”

You shouldn’t have to “Scan for Probes” or run the Test; otherwise, this Dialog should look the

same. Create a debug configuration for all VPEs in your system.

Select “Custom PC/Symbol” and enter the boot vector address for “Set PC to”
For “Stop At” select “First Instruction” or in newer versions of NavigatorICS “Don’t Resume”

132

Debugging additional Cores (1004K, 1074K, interAptiv, and proAptiv):

To debug additional cores or VPEO on additional Cores, the debug dialog should look like this:

Mame: Probe vl

K Main ((XF Argurnents ﬁﬁi Debuggm MavCon Initializati:ﬂ 'E.y/ SU-urcew Py

-,

Target Interface | MIPS Probe(EITAG/Pro/IFlow) ~ | | Generate GDE Init File |

GDE Executable ’mips-sde-elf-gdb T]

General Opticns

Launch Presaﬂ[}ebug Bootcode TD 1
Feset Acton (ot =))

| Run bootcode and attach after 0 ~| Seconds

[Download Code

Set PC To Current PC Location (Resume)

Stop At First Instruction First Instruction

et Enadian b

Target Configuration and Device Selection

Eeoniacnabe | o [411207

Configuration name % ’10041(_3::21.-' v] ’Auto]

Device name 3 é clwll)

Ignore RESET event notification during launch.

[] Open Navigator Console Window after successful launch.

m

1. For “Launch Preset” select “Debug Bootcode”
2. The “Reset Action” should be “No Reset”
3. Pick the correct “Device name”

133

9.2 Setting Breakpoints in Read-Only flash code

To set breakpoints in code located in read-only memory, you need to use hardware breakpoints. Do
this by right-clicking in the grey column next to the instruction line you want to break on and select

“Toggle Hardware Breakpoints”.

init common resources: # initializes r

- - — "1 re
Toggle Breakpoint

Enable Breakpoint

Breakpoint Properties... -_va

Toggle Hardware Breakpoint

Add Bookmark...

=or
Add Task...
v Show Quick Diff Ctrl+5hift+ G
v Show Line Mumbers
Preferences...
112 3w 23, 1072 (%8)
113 3w 53, 1080(%8)
You will see a check in the column:
Slinit common resources: # initialize=s resources
r,.-a a8 la r& temp dest,init gpr # Fill register £
] 95 jalr r& temp dest

Selecting the “Breakpoints” tab will show that the breakpoint is a hardware breakpoint.

)= Variables | ®s Breakpoints &3 %] Interactive Console | =4 Modules
@ Chnavigator-ics-workspace'\Boot-MIPS\ 34K start.5 [line: 98] [type: Hardware]

NOTE: There are a limited number of hardware breakpoints, and the debugger does not tell you
when you have run out, so you may need to delete old breakpoints after they have been hit.

134

9.3 Stopping at main()

Once you complete debugging your boot code, you can reconfigure the debug session to stop at
main() instead of at the first instruction. This is not as straightforward as it would seem. To stop at
main(), the debugger will default to setting a software breakpoint when it starts up. In this example,
the main code is being copied from flash to RAM, which will overwrite the software breakpoint and
the debugger will not stop at main. The solution is to get the debugger to set a hardware breakpoint
instead.

In the Debug dialog select “Additional GDB Commands”. In the “Additional Postload Commands”
text box enter:

set mem inaccessible-by-default off
mem 0x10000000 0x10000007 ro

Mame: Boot-MIPS Debug 34K

= Main | (= Arguments ﬁ% Debugger MavCeon Initialization C E'y/ Source |] Comm :l-n ‘@1 Additional GDE Commands

Additional Preload Commands

m

Additional Postload Commands

set mem inaccessible-by-default off
mem 0x10000000 0:10000007 ro

[Debug] | Close

NOTE: If you change the linker script to link main at a different address, the address for the “mem”
line above will also need to be adjusted.

135

9.4 Debugging Multi-threaded and Multi-core systems

When debugging Multi-threaded or Multi-core systems, you need to be aware of when a thread or
additional core is ready to run before you can initiate a debug session for it. Always start the first
core for a multi-core system and the first core’s first VPE in an MT multi-core system. Then you need
to pick a spot in your code when additional cores or VPEs are at the point where they are ready to
run so you can start them.

For this boot code example (1004K):

Start the first Core:

%5 Debug 2 — 0|z K — O
£ | 2. =)=~ v
m Boot-MIPS Debug profptiv 2C [MIPS ICS Application]
MIPS SDE GDE (6/15/12 4:18 PM) (Suspended) W,
g# Thread [1] (Suspended)
= 1 =symbol is not available> 0xbfc00000 + = Gé} | J;—;

g mips-sde-elf-gdb (5/15/12 4:17 PM)
g Chwnavigator-ics-workspace\Boot-MIPS\proAptivimalta_Ram.elf

‘ M bl e b
[c] 2 — O ||z=" Disassembly 2 - O

Mo source available for ™"

’Vie‘wx[}isassembly... Enter location here - | & -E% il

B Bxbfcoapea lui a2,ex9fce -
@xbfcpeaad addiu a2,a2,1238
@xbfcoaees: jr a2
@xbfceaesc: mtc® zero,c® count
@xbfceaale: Bx13b28
Bxbfceaals: nop
Bxbfcea813: nop

At the start of the boot code, you will only see the code in the assembler view. This is because the
code has been linked for the KSEGO address 0x9fc0 0000. This address mirrors the boot vector at
Oxbfc0 0000. However, the debugger has no reference to this address to correlate with the linked
source code, so you will see” No source available” in the source window. You will need to step
through the next few instructions in instruction single-step mode before you will see source code in
the source window.

136

Step about 3 instructions and you will see the source appear in the source view:

%% Debug 7

= O

W=V [Br i

% & £ e

| 2. =

= @)=~

STE || mAM |

XR# S BES

a Boot-MIPS Debug proAptiv 2C [MIPSICS Application]
4 &2 MIPS SDE GDB (5/15/12 4:18 PM) (Suspended)
4 o Thread [1] (Suspended)

|= 1 <symbol is not available> (x3fc00500 |

p| mips-sde-elf-gdb (6/15/12 4:17 PM)
o Chnavigator-ics-workspace\Boot-MIPS\profptivimalta_Ram.elf

4 |

1] |

3

4

(@ start.5 53

-,

= B8

187 .org @486 /* EITAG debug exception { =

== Disassembly &2

r24 malta_word, MALTA_DIS
a@, C@ _DESAVE
a@, (@ _DEPC

Enter location here

- & wEE)

B @x9fceasaa:

1les 1i

leg mitci@

11e mfce

111 SW

112 mfce

1131: b 1b
114 nap

115

1159

a@, 8(r24 malta_word)
a@d, C8_DESAVE
/* stay here */

116 e T T E L

117 k*FkFErkrrkrkkhkhkkkkkhkkkhrhkbkekrks

118 .org @x508 /* Resume code past the bo

128 check_nmi: // Verify we are here due

121 mfce al@, C@_STATUS
122 srl a@, 19
23 andi aR. af. 1

mfc@ al,cd status

122 srl a@, 19
Bxafceased srl a@,ad,8xl3

123 andi a@d, ad@, 1
Bx9fceeses: andi a@,ad,dxl

124 beqz a@, verify isa
Bx9fceasec: beqz a@,@x9fcessls

125 nap

Bx9fceas1a: nop

126 sdbbp

Bxo9fcBasla: sdbbp

129 mfc@ a@, C@ _CONFIG
BxofcBB518: mfc@ ad,cd_config

LT

-=1 Y A

At this point you can set hardware breakpoints or just step to the next line of the source code.
Before you can start the next core, you need to get to the point in the code where the first core is
waiting for additional cores to join the CPS Domain. This point is in the join_domain function in the

join_domain.S file. You can debug to this point or you can just click on the continue button ¥ .

Then after a short time click on the pause button (i . You should now be in the wait loop in the

join_domain function:

137

%ot A0 WS 2 e R|id P T = 0O|[%e 3
4 Probe o0 [MIPS ICS Application] ® % g
4 5@ MIPS SDE GDEB (5/8/12 11:08 AM) (Suspended) -
4 f® Thread [1] (Suspended: Signal 'SIGINT' received. Description: Interrupt.)
|= 1 «<symbolis not available> Oxbfc01008 |
| mips-sde-elf-gdb (5/8/12 11:08 AM)
.E Chnavigator-ics-workspace\Boot-MIPS\1004 K malta_Ram.elf (5/8/12 11:08 AM)

[&] join_domain.5 &2

53 ‘,-'**

54 **f

55 LEAF(join_domain)

56

57 beqgz r3 is cps, done join_domain # If this is not a CP5 then we are done.
58 nap

59

68 # Enable coherence and allow interwventions from all other cores.

61 # (Write access enabled via GCR_ACCESS by core 8.)

a2 1i %9, @wat # Set Coherent domain enable for 4 cores
B3 sw $9, (CORE_LOCAL_CONTROL_BLOCK | GCR_CL_COHERENCE)(r22_gcr_addr) # GCR_CL_COHEF
64 ehb

65

66 # Cores other than core @ can relingquish write access to CM regs here.

a7

Ga

69

78 mowve r7_temp_mark, $8

71

72 next_coherent_core:

73 s11 r4 temp_data, r7_temp_mark, 16

74 sw r4 temp data, (CORE_LOCAL CONTROL BLOCK | GCR_CL OTHER)(r22 gcr addr) # GCR_CL
75

76 busy_wait_coherent_core:

77 1w r4_temp data, (CORE_OTHER CONTROL BLOCK | GCR_CO COHERENCE)(r22 gcr addr) # GC
78 beqz r4_temp_data, busy wait_coherent_core # Busy wait on cores joining.
79 nop

a8

51 bre r7_temp_mark, rl9 more_cores, next_coherent_core

52 addiu r7_temp mark, 1

83

54 done_join_domain:

85 jr r31_return_addr

86 nop

DT ERINS S Ammmma e b

138

Now you can start all other cores (not the second VPEs yet). Each debug session for each core will
stop at the boot exception vector:

%5 Debug £ % &t F v EX-N A=)
4 Probe clvl [MIPS ICS Application]
4 ﬁ MIPS SDE GDE (5/8/12 11:08 AM) (Suspended)
4 o Thread [1] (Suspended: Signal 'SIGINT' received. Description: Interrupt.)
= 1 =symbol is not available> Oxbfc01008
p| mips-sde-elf-gdb (5/8/12 11:08 AM)
gl Chnavigator-ics-workspaceBoot-MIPSWI004K malta_Ram.elf (5/8/12 11:08 AM)
Fi Probe c1vl [MIPS ICS Application]
4 .ﬁ MIPS SDE GDE (5/8/1211:20 AM) (Suspended)
4 III@ Thread [1] (Suspended]
(= 1 <symbol is not available> Oxbfc00000 | e select to
o5 mips-sde-elf-gdb (5/8/1211:29 AM) debug
gl Chnavigator-ics-workspace\Boot-MIPSW004K malta_Rarn.elf (5/8/12 11:29 AM)
4 Probe c2v [MIPS ICS Application]
4 ﬁ MIPS SDE GDE (5/8/12 11:30 AM) (Suspended)
4 @ Thread [1] (Suzpended)
= 1 =symbol is not available> Oxbfc00000
p| mips-sde-elf-gdb (5/8/12 11:30 AM)
gl Chnavigator-ics-workspace\Boot-MIPSWI004K malta_Ram.elf (5/8/12 11:30 AM)

55
36
57 LEAF(__ reset wector)

» 53 b check nmi # Mote: Real systems might want to sa
59 mtcl i@, %9 # Clear cp@® Count (Used to measure boot time.
a8
61 # Note: adding code here may conflict with Malta board ID register at
62
63 END(__reset_vector)
a4

You can debug each core by selecting its thread in the “Debug” pane. After you have finished

debugging each core, select continue U for all debug sessions. The display on the Malta Board will
show Core 1 and 2 are ready:

139

T 3

If you pause Core 1 or 2 at this point, you will see they are in main().

— :

115 GIC_SH_WEDGE = FIRST_IPI + cpu_num ; J/ Clear this “"cpu"™'s ipi source
116

117 /{ Enable interrupts and wait to be released via ipi from cpu@

118 asm volatile ("ei") ; // smm check: verify ipl source is cleare
119

12a / Other cpy indicate ready and wait...

121 1 MALTA_CHAR{cpu_num) = 'r' 3 /M display 'r' for ready.

122 ready[cpu_num] = 1 ;

123 asm volatile (di") ;

124

125 while (!start_test[cpu_num]} {

126 // This code will only work reliably if the WII bit is set in config:
127 £/ When this bit is set any interrupt even when they are disabled wil
128 {f wait to return. This aveids a race condition

129 asm volatile (“"wait™) // Wait for interrupt (qualified with "st
138 :2 /f enable interrupts sclinterrupt routine can run and set the start_f
131 asm volatile ("ei") ;

132 2

133 // Disable interrupts again so there is not race condition between te
134 ff start_test bit variable and going back to wait.

135 Jf NOTE for this code we are only expecting IPI that interrupt.

138 asm volatile (“"di") ;

137 asm volatile (“"ehb") ;

138

139 }

o“_n
r

1. Hereis where the “r” gets displayed.
2. Here s the wait loop where the core waits to receive an interrupt. When the interrupt is
received, the start_test[cpu_num] will be set and the core will continue.

At this point, If you are working with a multi-threaded multi-Core system, all cores have setup their
VPE1s to start executing, and you can now start their debug sessions:

140

45 Debug i % &t £ » a2 ¢S |[BxY =0
4 Probe c0l [MIPS ICS Application]
4 & MIPS SDE GDB (5/8/12 11:08 AM)
¥ Thread [1] (Running)
g mips-sde-elf-gdb (5/8/12 11:08 AM)
] Chnavigator-ics-workspace'Boot-MIPS\1004K malta_Ram.elf (5/8/12 11:08 AM)
4 Probe ¢l [MIPS ICS Application]
4 & MIPS SDE GDB (5/8/12 11:29 AM)
¥ Thread [1] (Running)
p| mips-sde-elf-gdb (5/8/12 11:29 AM)
] Chnavigator-ics-workspace'Boot-MIPS\1004K malta_Ram.elf (5/8/12 11:29 AM)
4 Probe e [MIPS ICS Application]
4 & MIPS SDE GDB (5/8/12 11:30 AM)
p® Thread [1] (Running)
p| mips-sde-elf-gdb (5/8/12 11:30 AM)
gl Cinavigator-ics-workspace\Boot-MIPSW1004K malta_Rarm.elf (5/8/12 11:30 AM)
4 Probe clvl [MIPS ICS Application]
4 ﬁ' MIPS SDE GDE (5/8/12 12:03 PM) (Suspended)
4 o Thread [1] (Suspended)
= 1 ==ymbol is not available> 0xbfc00000
p| mips-sde-elf-gdb (5/8/12 12:03 PM]
g Cihnavigator-ics-workspace\Boot-MIPSW1004K malta_Ram.elf (5/8/12 12:03 PM)
4 Probe c1vl [MIPSICS Application]
a 58 MIPS SDE GDB (5/8/12 12:04 PM) (Suspended)

4 current thread
being debugged

gl Chnavigator-ics-workspace\Boot-MIPS1004 K malta_Ram.elf (5/8/12 12:04 PM)
4 Probe vl [MIPS ICS Application]
4 & MIPS SDE GDB (5/8/12 12:04 PM) (Suspended)
4 f® Thread [1] (Suspended)
= 1 <symbol is not availablex Oxbfc00000
p| mips-sde-elf-gdb (5/8/12 12:04 PM)
g Cinavigator-ics-workspace\Boot-MIPSW1004K malta_Ram.elf (5/8/12 12:04 PM)

=

[5] start.5 &2
55
56
57 LEAF(__ reset wector)

» 53 b check_nmi # Note: Real systems might want 1
59 mtce %8, %9 # Clear cp@ Count (Used to measure boot 1
10
61 # Note: adding code here may conflict with Malta board ID registe
B2

4 | m |

141

At this point you can debug the remaining VPEs form the beginning of the boot code.

You will also notice that the Malta display has changed:

You can now see the “W” for Core 0 displayed. If you pause W core 0, you will see it is in this
section of code:

I main.c 2
95 num_cpus += wpe_on_core[i] ;
9% 1
188
181 // Wait for other VPEs to indicate they are ready.
182 for (1 = 1; 1 < num_cpus; i++) {
183 MALTA CHAR({cpu_num) = "W" 3 // "W for Waiting.
184 while (!ready[i]) ; J// Busy wait for all cpy to be ready.
185 1
186
187 /f Release other WPEs to run their tasks.
183 for (1 = 1; 1 < num_cpus; i++) {
189 MALTA CHAR(1) = 'i' ; // display 'i' for interrupted (from cpu
118 set_ipi(i) ; /f Send the ipi
111 1
1172

Core 0 is waiting for all other processing units to report they have gotten the IPl interrupt.

After you have debugged the remaining VPEs, you can let all debug sessions continue Ob

The display will change:

The display should continue to blink the processor numbers indefinitely.

142

Pausing any processor should show it is in the while loop at the end of main():

while (1) {

for (j =8 ; 7 < (4 * 1824)

MALTA _CHAR({cpu_num)

148 1
for (j =8 ; 7 < (4 * 1824)

MALTA _CHAR{ cpu_num)

j+H) {
cpu_num + @x38 ; // ASCII char for cpu numt

j+) 1
'; [/ blank out display position for thi:

143

10 Creating Debug Scripts for 1004K and 1074K CPS

Before you can create a debug configuration for the 1004K and 1074K systems, you need to create

debug scripts.

You will need to use the Navigator Console. Select “Start Navigator Console and select script” from
your Start menu. On Windows it looks like this:

Cygwin-X
FileZilla FTP Client
Games

Glary Utilities
Google Earth
iTunes
Maintenance
Microsoft Office
MinGW

MIPS Technologies

; Documentation

. Mavigater Conscle

Start Mavigator Conscle and select s

m

Start Mavigator Conscle

m Uninstall Mavigator Console
. MavigaterlCs

MetBeans

Path Editor

Photo Pos Pro

PrimcPDF

144

The “Select script” dialog will come up:

Select a script file to run:

alchemy_aul.tcl -
altera_mp32.tel
becm_lcoretcl
bern_bmips5000.tcl

mips_34k_1v.tcl
rnips_3dk_2v.tel

Mew name for script file:

2 mips_1004k 2V 2TC4cl)

1. Select “mips_1004K.tcl” if you want to configure for a 1004K, or “mips_1074K.tcl” if you want to
configure for a 1074K.

2. Inthe “New name for script file:” text box complete the name of the script file you are creating.
For this example, _2V_2TC.tcl was added because the example configures for a 2-VPE and 2-TC
system. The name is whatever you want it to be, but it must end in .tcl.

3. Once that’s done, click on “Setup”

145

The Dialog will change:

Select a script file to run:

alcherny_aul.tcl -
altera_mp32.tcl

beom_lcore.tcl
bom_bmips5000.tcl
blank_script.tcl
microchip_pic32.tcl
mips_1004k.tcl

mips_1074k.tcl
mips_1074k_c2.tcl

mips_24k.tcl P
mips_24ke.tcl

mips_3dk_lv.tcl
mips_34k_2v.tcl

mips_dk.tcl

mips_dke.tcl -
Kl :

Mew name for script file:

|mips_1004k_2V_2TCutel

Set 1004K configuration:

1 q Murnber of CPUs: ¢ 1 & 2 3 4)
2 (Murnber of VPEs per CPU: 1 & 2)

Order of devices in jtag chain:

= TDI-» c0v0-> c0vl-> clvl-= clvl...-> TDO

'3 & TDI-» cOv0-> c0vl-> clvl-> clvl...-> CM->TDO)

rd

7 TDI-» 3v0-> Bvl-» c2v0-> c2vl... -» cOvl->TDO

4 Save and Run Script Save Quitl

1. Select the “Number of CPUs” that you have in your FPGA or Chip.

2. Select the “Number of VPEs per CPU:” that you have in your FPGA or Chip. (NOTE: For a 1074K,

you will not have this choice.)

For “Ordering of devices in the jtag chain” choice 2 will be correct for most systems.

4. If you have your probe connected between your computer and board and the board is powered
up, you can select “Save and Run Script” to test to see if the script is correct. If it is, you should
get no errors. If you get errors, you have chosen something wrong in the first 3 steps, and you
will need to redo the setup with correct values.

w

Now that when you have created the script, you will see it in the drop-down for “Configuration
name” under the “Debugger” tab in your “Debug dialog”.

146

11 Revision History

Change bars (vertical lines) in the margins of this document indicate significant changes in the
document since its last release. Change bars are removed for changes that are more than one

revision old.

Revision Date Description

01.00 March 3, 2012 Initial release

01.01 July 16, 2012 Added support for
interAptiv and
proAptiv.
Improved debug
session bring up,
reflecting code
changes done for
readability.

01.02 February 1, 2013 Minor fixes

01.03 August 19, 2013 Added interAptiv UP

147

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

