
Document Number: MD00926
Revision 1.03
April 8, 2014

MIPS® SIMD Architecture

MIPS® SIMD Architecture (MSA) is designed to support general purpose Single Instruction Multiple Data (SIMD) processing
using vectors of 8-, 16-, 32-, and 64-bit integer, 16- and 32-bit fixed-point, or 32- and 64-bit floating-point elements. It is a simple,

yet very efficient instruction set built on the same RISC principles pioneered by MIPS.
This whitepaper introduces MSA and describes its key features.

2 MIPS® SIMD Architecture, Revision 1.03

MIPS® SIMD Architecture, Revision 1.03 3

Contents

Section 1: Introduction... 4

Section 2: Overview.. 4

Section 3: Vector Registers ... 5
3.1: Registers Layout.. 5
3.2: Floating-Point Registers Mapping ... 6
3.3: Register Partitioning .. 7

Section 4: Instruction Syntax .. 7
4.1: Data Format... 7
4.2: Vector Element Selection .. 8
4.3: Examples... 8

Section 5: GNU C Compiler Support... 10
5.1: Vector Data Types and Intrinsics... 10
5.2: MSA ABI Extensions ... 13

5.2.1: ABI Requirements ... 13
5.2.2: Command Line Options and Assembler Directives.. 13
5.2.3: Base O32 Compatibility Mode.. 14
5.2.4: Vector and Floating-Point Register Usage... 14

Section 6: Instruction Description .. 14
6.1: Arithmetic Instructions ... 15
6.2: Floating-Point Instructions ... 19
6.3: Fixed-Point Multiplication Instructions ... 22
6.4: Branch and Compare Instructions ... 23
6.5: Load/Store and Element Move Instructions... 25
6.6: Element Permute Instructions ... 26

Section 7: Evolution ... 26

1 Introduction

4 MIPS® SIMD Architecture, Revision 1.03

1 Introduction

The MIPS® SIMD Architecture (MSA) module adds new instructions to the industry-standard MIPS architecture
that allow efficient parallel processing of vector operations. This functionality is of growing importance across a
range of consumer electronics and enterprise applications.

In consumer electronics, while dedicated, non-programmable hardware aids the CPU and GPU by handling heavy-
duty multimedia codecs such as H.264, there is a recognized trend toward adding a software-programmable solution
in the CPU to handle emerging codecs or a small number of functions not covered by the dedicated hardware. In this
way, SIMD can provide increased system flexibility, and the MSA is ideal for these applications.

However, the MSA is not just another multimedia SIMD extension. Rather than focusing on narrowly defined instruc-
tions that must have optimized code written manually in assembly language in order to be utilized, the MSA is
designed to accelerate compute-intensive applications in conjunction with leveraging generic compiler support.

A new class of emerging applications – including data mining, feature extraction in video, image and video process-
ing, human-computer interaction, and others – have some built-in data parallelism that lends itself well to SIMD.
These new compute-intensive applications will not be written in assembly for any specific architecture, but rather in
C or C++ code using operations on vector data types.

The MSA module was implemented with strict adherence to RISC (Reduced Instruction Set Computer) design princi-
ples. From the beginning, MIPS architects designed the MSA with a carefully selected, simple SIMD instruction set
that is not only programmer- and compiler-friendly, but also hardware-efficient in terms of speed, area, and power
consumption. The simple instructions are also easy to support within high-level languages such as C or OpenCL,
enabling fast and simple development of new code, as well as leverage of existing code.

This paper describes the new instructions that comprise the MSA.

2 Overview

The MSA complements the well-established MIPS architecture with a set of more than 150 new instructions operat-
ing on 32 vector registers of 8-, 16-, 32-, and 64-bit integer, 16-and 32-bit fixed- point, or 32- and 64-bit floating-point
data elements. In the current release, MSA implements 128-bit wide vector registers shared with the 64-bit wide float-
ing-point unit (FPU) registers.

In multi-threaded implementations, MSA allows for fewer than 32 physical vector registers per hardware thread con-
text. The thread contexts have access to as many vector registers as needed, up to the full 32 vector registers set
defined by the architecture. When the hardware runs out of physical vector registers, the OS re-schedules the running
threads or processes to accommodate the pending requests. The actual mapping of the physical vector registers to the
hardware thread contexts is managed by the hardware.

The MSA floating-point implementation is compliant with the IEEE Standard for Floating-Point Arithmetic 754TM-
2008. All standard operations are provided for 32-bit and 64-bit floating-point data. 16-bit floating-point storage for-
mat is supported through conversion instructions to/from 32-bit floating-point data.

For compare and branch, MSA uses no global condition flags: compare instructions write the results per vector ele-
ment as all zero or all one bit values. Branch instructions test for zero or not zero element(s) or vector value.

MIPS® SIMD Architecture, Revision 1.03 5

3 Vector Registers

The MSA operates on 32, 128-bit wide vector registers. If both MSA and the scalar floating-point unit (FPU) are
present, the 128-bit MSA vector registers extend and share the 64-bit FPU registers. MSA and FPU cannot both be
present, unless the FPU has 64-bit floating-point registers.

MSA vector registers have four data formats: byte (8-bit), halfword (16-bit), word (32-bit), doubleword (64-bit). Cor-
responding to the associated data format, a vector register consists of a number of elements indexed from 0 to n,

where the least significant bit of the 0th element is the vector register bit 0 and the most significant bit of the nth ele-
ment is the vector register bit 127.

When both the FPU and the MSA are present, the floating-point registers are mapped on the corresponding MSA vec-

tor registers as the 0th elements.

3.1 Registers Layout

Figure 1 through Figure 4 show the vector register layout for elements of all four data formats, where [n] refers to the

nth vector element and, MSB and LSB stand for the element’s Most Significant and Least Significant Byte.

Figure 1 MSA Vector Register Byte Elements

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

[15] [14] [13] [12] [11] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1] [0]

Figure 2 MSA Vector Register Halfword Elements

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

[7] [6] [5] [4] [3] [2] [1] [0]

MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB

Figure 3 MSA Vector Register Word Elements

127 96 95 64 63 32 31 0

[3] [2] [1] [0]

MSB LSB MSB LSB MSB LSB MSB LSB

3 Vector Registers

6 MIPS® SIMD Architecture, Revision 1.03

MSA vectors are stored in memory starting from the 0th element at the lowest byte address. The byte order of each
element follows the big- or little-endian convention of the system configuration.

3.2 Floating-Point Registers Mapping

The shared FPU register read and write operations are defined as follows.

A read operation from the floating-point register r, where r = 0, …, 31, returns the value of the element with index 0
in the vector register r. The element’s format is word for 32-bit (single precision floating-point) read or double for 64-
bit (double precision floating-point) read.

A write operation of value A to the floating-point register r, where r = 0, …, 31, writes A to the element with index 0
in the vector register r and all remaining elements are UNPREDICTABLE. Figure 5 and Figure 6 show the effect of
writing a 32-bit (single precision floating-point) and a 64-bit (double precision floating-point) value A to a vector reg-
ister.

Figure 4 MSA Vector Register Doubleword Elements

127 64 63 0

[1] [0]

MSB LSB MSB LSB

Figure 5 FPU Word Write Effect on the MSA Vector Register

127 96 95 64 63 32 31 0

UNPREDICTABLE UNPREDICTABLE UNPREDICTABLE Word value A

Figure 6 FPU Doubleword Write Effect on the MSA Vector Register

127 64 63 0

UNPREDICTABLE Doubleword value A

MIPS® SIMD Architecture, Revision 1.03 7

3.3 Register Partitioning

Vector register usage patterns show significant variation between the running threads/processes. A few compute-
intensive threads frequently need a lot more vector registers than the vast majority of running threads. The MIPS
architecture supports up to nine Virtual Processing Elements (VPEs) which, in essence, are virtual CPUs, each with
its own thread context. Rather than outfitting all thread contexts with 32 vector registers, the MSA implements a par-
titioning scheme, where a pool of k vector registers are used for n thread contexts, with k < 32* n. For example, a
four-VPE MIPS CPU could be designed with 72 vector registers instead of the full 128 (32 * 4) registers.

As for any limited hardware resource shared among multiple threads, when all physical vector registers have been
allocated, the OS will re-schedule the running threads to free up enough vector registers for the pending requests. The
OS is also responsible for saving and restoring the vector registers on software context switching. The actual mapping
of the physical registers to the thread contexts is managed by the hardware itself, and it is completely transparent to
software.

The hardware/software interface for vector register allocation and software context switching is based on a few MSA
control registers and the MSA Access Disabled Exception. MSA control registers keep track of the current thread’s
vector register state (e.g., allocated, saved, modified), allowing the OS to implement lazy context switching and on-
demand allocation.

The performance of a multi-threaded MSA implementation with less than 32 vector registers per thread context
depends on the actual register usage at run-time and the OS scheduling strategy. In a typical application, one software
thread might use a lot of vector registers for a longer time, while the other threads sporadically use very few. The OS
could schedule the most demanding software thread on the same thread context, while time-sharing the other contexts
for the software threads with a lighter usage pattern.

4 Instruction Syntax

The MSA assembly language has specific syntax elements to identify the operation/instruction name (ADDS_S for
signed saturated add), specify a destination data format (byte, halfword, word, doubleword, or the vector itself), select
vector registers ($w0, …, $w31) or general purpose registers ($0, …, $31) operands, and select a single vector regis-
ter data element or an immediate value.

4.1 Data Format

MSA instructions have two or three register, immediate, or element operands. One of the destination data format DF

abbreviations shown in Table 1 is appended to the assembler instruction name INSN1 as in INSN.DF. Note that the
data format abbreviation is the same regardless of the instruction’s assumed data type. For example, all integer, fixed-
point, and floating-point instructions operating on 32-bit elements use the same word (‘w’ in Table 1) data format.

1. Instructions names and data format abbreviations are case insensitive.

4 Instruction Syntax

8 MIPS® SIMD Architecture, Revision 1.03

4.2 Vector Element Selection

MSA instructions select the nth element in the vector register ws (ws[n] in assembly language) based on the data for-
mat df. Valid element index values for various data formats and vector register sizes are shown in Table 2.

4.3 Examples

Let us assume that vector registers $w1 and $w2 are initialized to the word values shown in Figure 7, Figure 8, and
that general-purpose register R2 is initialized as shown in Figure 9.

Table 1 Data Format Abbreviations

Data Format Abbreviation

Byte, 8-bit b

Halfword16-bit h

Word, 32-bit w

Doubleword, 64-bit d

Vector v

Table 2 Valid Element Index Values

Data Format Element Index

Byte n = 0, …, 15

Halfword n = 0, …, 7

Word n = 0, …, 3

Doubleword n = 0, 1

Figure 7 Source Vector $w1 Values

127 64 63 0

a b c d

MIPS® SIMD Architecture, Revision 1.03 9

Regular MSA instructions operate element-by-element with identical source, target, and destination data types.
Figure 10 through Figure 13 have the resulting values of destination vectors $w4, $w5, $w6, and $w7 after executing
the following sequence of word additions and move instructions:

addv.w $w5,$w1,$w2
fill.w $w6,$2
addvi.w $w7,$w1,17
splati.w $w8,$w2[2]

Figure 8 Source Vector $w2 Values

127 64 63 0

A B C D

Figure 9 Source GPR $2 Value

31 0

E

Figure 10 Destination Vector $w5 Value for ADDV.W Instruction

127 64 63 0

a + A b + B c + C d + D

Figure 11 Destination Vector $w6 Value for FILL.W Instruction

127 64 63 0

E E E E

Figure 12 Destination Vector $w7 Value for ADDVI.W Instruction

127 64 63 0

a + 17 b + 17 c + 17 d + 17

Figure 13 Destination Vector $w8 Value for SPLAT.W Instruction

127 64 63 0

B B B B

5 GNU C Compiler Support

10 MIPS® SIMD Architecture, Revision 1.03

Other MSA instructions operate on adjacent odd/even source elements, generating results on data formats twice as
wide. The signed doubleword dot product DOTP_S is such an instruction (see Figure 14):

dotp_s.d $w9,$w1,$w2

Note that the actual instruction specifies .D (doubleword) as the destination’s data format. The data format of the
source operands is inferred as being also signed and half the width, i.e. word, in this case.

5 GNU C Compiler Support

GNU C Compiler (GCC) support for SIMD operations is based on a number of standard pattern names used for code
generation. Ideally, the instruction set should implement as many of these operations as possible. In the process of
MSA instruction selection and definition, supporting the standard GCC SIMD patterns was one of the most important
objectives. Most of these patterns translate directly in single MSA instructions.

Another aspect related to efficient vector code compilation for SIMD architectures is the interoperability between the
C language arrays (of scalar data types) and the native vector data types. To support seamless mixing of scalar and
vector data types operations, the MSA provides a rich set of typed data transfer instructions.

5.1 Vector Data Types and Intrinsics

The GCC integer and floating-point vector data types with generic MSA operation support as listed in Table 3 and
Table 4 are defined in the compiler provided header <msa.h>.

It is recommended aligning the vector data to the size of the vector registers. MSA could operate on vectors of any
alignment, but there will always be multiple cycles performance loss for each load/store of data not aligned to the size
of the vector registers. For interoperability with the standard C arrays, the minimum alignment of a vector data type
should be the size of the element type.

Note that any element aligned MSA vector data type t has an explicit data format suffix df as defined in Table 1 in
the format t_df.

Figure 14 Destination Vector $w9 Value for DOTP_S Instruction

127 64 63 0

a * A + b * B c * C + d * D

MIPS® SIMD Architecture, Revision 1.03 11

Table 3 GCC Integer Vector Data Types Supported in MSA

Vector Data
Type Alignment C Definition

Vector of signed
bytes

Vector
(16-bytes)

typedef signed char v16i8
__attribute__((vector_size(16), aligned(16)));

Byte typedef signed char v16i8_b
__attribute__((vector_size(16), aligned(1)));

Vector of
unsigned bytes

Vector
(16-bytes)

typedef unsigned char v16u8
__attribute__((vector_size(16), aligned(16)));

Byte typedef unsigned char v16u8_b
__attribute__((vector_size(16), aligned(1)));

Vector of signed
halfwords

Vector
(16-bytes)

typedef short v8i16
__attribute__((vector_size(16), aligned(16)));

Halfword
(2-bytes)

typedef short v8i16_h
__attribute__((vector_size(16), aligned(2)));

Vector of
unsigned half-
words

Vector
(16-bytes)

typedef unsigned short v8u16
__attribute__((vector_size(16), aligned(16)));

Halfword
(2-bytes)

typedef unsigned short v8u16_h
__attribute__((vector_size(16), aligned(2)));

Vector of signed
words

Vector
(16-bytes)

typedef int v4i32
__attribute__((vector_size(16), aligned(16)));

Word
(4-bytes)

typedef int v4i32_w
__attribute__((vector_size(16), aligned(4)));

Vector of
unsigned words

Vector
(16-bytes)

typedef unsigned int v4u32
__attribute__((vector_size(16), aligned(16)));

Word
(4-bytes)

typedef unsigned int v4u32_w
__attribute__((vector_size(16), aligned(4)));

Vector of signed
doublewords

Vector
(16-bytes)

typedef long long v2i64
__attribute__((vector_size(16), aligned(16)));

Doubleword
(8-bytes)

typedef long long v2i64_d
__attribute__((vector_size(16), aligned(8)));

Vector of
unsigned double-
words

Vector
(16-bytes)

typedef unsigned long long v2u64
__attribute__((vector_size(16), aligned(16)));

Doubleword
(8-bytes)

typedef unsigned long long v2u64_d
__attribute__((vector_size(16), aligned(8)));

5 GNU C Compiler Support

12 MIPS® SIMD Architecture, Revision 1.03

MSA instructions are available to the C programmer through inline assembly, intrinsics, or vector operators:

• The inline assembly __asm__ directive is documented by the Assembler Instructions with C Expression Oper-
ands section in the Using the GNU GCC Compiler Collection documentation. The operand constraint for the
MSA vector registers is ‘f’. For example, this sequence adds and compares 2 floating point vectors using the
assembler FADD.W and FSLT.W instructions:

v4i32 t;
v4f32 a, b, c;

__asm__ volatile (
" fadd.w %w[a],%w[b],%w[c] \n"
" fslt.w %w[t],%w[b],%w[c] \n"
: [a] "=&f"(a), [t] "=&f"(t)
: [b] "f"(b), [c] "f"(c));

• The intrinsics are declared by the compiler provided header <msa.h>, see Section 6 “Instruction
Description”.For example, the same sequence from above to add and compare 2 floating point numbers can be
written using fadd_w() and fslt_w() intrinsics and the compiler will generate FADD.W and FSLT.W
instructions:

v4i32 t;
v4f32 a, b, c;

a = fadd_w(b, c);
t = fslt_w(b, c);

• The list of supported vector C operators include: +, - (binary, unary), * (multiplication, indirection), /, %, ^, |,
& (bitwise ‘and’, reference), <<, >>, ==, !=, <, <=, >, >=, ~, [] (array subscript), and the ternary operator ?:.
For more details, see the Vector Extensions section in the Using the GNU GCC Compiler Collection documenta-
tion. For example, the above examples of adding and comparing 2 floating point numbers can be written using
the + and < operators and the same FADD.W and FSLT.W instructions being generated:

Table 4 GCC Floating-Point Vector Data Types Supported in MSA

Vector Data
Type Alignment C Definition

Vector of single
precision floating-
point values

Vector
(16-bytes)

typedef float v4f32
__attribute__((vector_size(16), aligned(16)));

Word
(4-bytes)

typedef float v4f32_w
__attribute__((vector_size(16), aligned(4)));

Vector of double
precision floating-
point values

Vector
(16-bytes)

typedef double v2f64
__attribute__((vector_size(16), aligned(16)));

Doubleword
(8-bytes)

typedef double v2f64_d
__attribute__((vector_size(16), aligned(8)));

MIPS® SIMD Architecture, Revision 1.03 13

v4i32 t;
v4f32 a, b, c;

a = b + c;
t = b < c;

5.2 MSA ABI Extensions

The base O32, N32, and N64 MIPS ABIs are extended to allow efficient use of the vector registers and instructions
defined by MSA. The MSA ABI extensions are compatible with the base ABIs in the sense that existing binaries run
unchanged on systems supporting MSA, i.e. there are no incompatibilities between the base O32, N32, and N64 and
the corresponding MSA extended ABI.

In particular, MSA ABI extensions don’t change the base ABI data types layout / alignment, don’t introduce new
callee-saved (aka saved) registers, and preserve the call-clobbered (aka temporary) or callee-saved status of the
aliased floating-point registers. However, vector data types are considered part of the MSA ABI by default.

5.2.1 ABI Requirements

To be compatible with the MSA hardware, an ABI extension for MSA has to support 32 64-bit floating point registers
and a stack frame aligned to the size of the vector registers.

N32 and N64 ABIs satisfy the 64-bit floating point registers requirement. The O32 ABI also permits the use of 64-bit
floating point registers with the command line option -mfr1.

It is possible to adjust the stack alignment at run time using an existing compiler mechanism called dynamic stack
realignment. Any ABI that does not meet the MSA stack alignment will use dynamic stack re-alignment. For exam-
ple, the 16-byte stack alignment of N32 and N64 ABIs is enough for MSA’s 128-bit vector registers. O32 has to do
dynamic stack re-alignment in this case.

5.2.2 Command Line Options and Assembler Directives

Compiling for MSA, i.e. using the MSA defined instructions and vector registers, is enabled by the -mmsa command
line option. A function compiled for MSA is referred to as a MSA function. This is the list of various actions related
to the -mmsa command line option:

• On O32 ABI, -mmsa sets the floating-point registers mode to 64-bits, mode which is normally selected by the
command line option -mfr1.

• O32 ABI requires 16-byte dynamic stack re-alignment when -mmsa is present.

• Using vector types without the -mmsa option results in a warning stating that a no MSA instructions will be
emitted. This warning can be disabled by the command line option -mno-msa.

• Implicit conversions between vectors with different number of elements and/or incompatible element types are
not allowed with -mmsa. Using -flax-vector-conversions command line option with -mmsa is sig-
naled as an error.

The -mmsa command line option defines the pre-processor symbol __mips_msa as in

6 Instruction Description

14 MIPS® SIMD Architecture, Revision 1.03

#define __mips_msa 1

5.2.3 Base O32 Compatibility Mode

A contingency plan to ensure that MSA can be used with pre-existing base O32 objects using 32-bit floating-point
registers is also required to give access to 64-bit floating-point registers mode for small regions of code contained
within one function.

Essentially, this feature known as “compatibility mode” switches a function into 64-bit floating-point registers mode
in the prologue and switches back to 32-bit floating-point registers mode in the epilogue. It also ensures that any func-
tion calls are made in 32-bit floating-point registers mode. Full details of this feature are beyond the scope of this doc-
ument.

The command line options to trigger the compatibility mode are -mmsa -mfr0. These options are sufficient to say
that the function must operate as if in 32-bit floating-point registers mode and therefore has to use the compatibility
feature to enable use of the MSA instruction set.

5.2.4 Vector and Floating-Point Register Usage

The MSA vector registers are temporary, i.e. all live vector registers must be saved before calling a function. This
ensures MSA functions can call any other function and also maintain compatibility with future MSA extensions. Note
that compilers need to preserve the aliased callee-saved floating-point registers as specified by the base ABIs: even
$f20, $f22, …, $f30 for O32 and N32, and $f24, $f25, …, $f30, $f31 for N64. For example, if the vector register
$w30 is used, the aliased floating point register $f30 has to be preserved under all ABIs.

Compiling for MSA does not change the base ABI’s vector calling conventions. Vector data types passed or returned
by value don’t use the MSA vector registers. Rather, passing and returning vectors by value follow the calling con-
ventions of the base ABI. Floating-point registers are also passed and returned as specified by the base ABIs. For
functions with variable arguments, no vector registers are used to pass vector parameters. This falls back to the origi-
nal variable argument passing scheme from the base ABIs.

The base ABIs incur a substantial overhead when handling vector arguments by value. It is highly recommended to
pass and return pointers to vector data types instead.

6 Instruction Description

True to the RISC design tradition, the MSA implements simple, homogeneous instructions with explicit functionality.
There are no mixed general purpose and vector register operations except for data movement. This simplifies the
hardware implementation, and allows for faster and independent execution of scalar and vector instructions.

In the MSA, complex operations that can be implemented by a sequence of two or three existing instructions are not
implemented as single instructions. This could increase the code size to some extent, but greatly benefits the execu-
tion speed. For example, MSA has no instructions for horizontal arithmetic operations between all elements in the

MIPS® SIMD Architecture, Revision 1.03 15

same vector register because these are complex operations easily implemented with few additional element shuffle
instructions.

Most MSA instructions operate vector element-by-vector element in a typical SIMD manner. Few instructions handle
the operands as bit vectors, because the elements don’t make sense (e.g., bitwise logical operations). For certain
instructions, the source operand could be a scalar immediate value or a vector element selected by an immediate
index. The scalar value is being replicated for all vector elements.

The MSA instruction set implements the following categories of instructions: arithmetic, bitwise, floating-point arith-
metic, floating-point compare, floating-point conversions, fixed-point multiplication, branch and compare, load/store,
element move, and element shuffle.

The following sections briefly describe all MSA instructions with the mnemonics, compiler intrinsics, and, if applica-
ble, the equivalent C expressions. For the complete instruction set descriptions see the MSA manuals.

The mnemonics are not shown with all supported data formats. For example, a slightly more complete description of
the add vector instruction ADDV should list the byte, halfword, word, and doubleword syntax, the associated intrin-
sics, and examples of C expressions using both the + operator and the intrinsic (see Table 5). Obviously the vector
alignment is not relevant, so all combination of vector aligned data, e.g., v4u32, and element aligned data, e.g.,
v4u32_w, are valid but not shown to keep the table at a reasonable size.

If for whatever reason the INSN.DF instruction intrinsic is not available, the compiler generates an external call in the
same data format prefixed by __builtin_ as in __builtin_insn_df().

6.1 Arithmetic Instructions

Arithmetic instructions (Table 6) include additions and subtractions combined with saturation and absolute value
operations. There is also a dedicated saturation instruction for arbitrary clamping at any bit position. Average comput-
ing instructions are provided for full precision (i.e. no wrap-around on overflow) add and shift with or without round-
ing. Minimum and maximum value selection instructions work on signed, unsigned, and absolute values.

Table 5 msa_addv() Intrinsic Formats

Mnemonic Compiler Intrinsic C Examples

ADDV.B v16i8 addv_b(v16i8, v16i8)
v16u8 addv_b(v16u8, v16u8)

v16i8 a, b, c;
c = a + b;
c = addv_b(a, b);

ADDV.H v8i16 addv_h(v8i16, v8i16)
v8u16 addv_h(v8u16, v8u16)

v8i16 a, b, c;
c = a + b;
c = addv_h(a, b);

ADDV.W v4i32 addv_w(v4i32, v4i32)
v4u32 addv_w(v4u32, v4u32)

v4i32 a, b, c;
c = a + b;
c = addv_w(a, b);

ADDV.D v2i64 addv_w(v2i64, v2i64)
v2u64 addv_w(v2u64, v2u64)

v2i64 a, b, c;
c = a + b;
c = addv_d(a, b);

6 Instruction Description

16 MIPS® SIMD Architecture, Revision 1.03

Addition, subtraction, minimum, and maximum instructions also take a small, 5-bit constant value to operate across
all elements.

Multiply, multiply-add/sub, divide, and remainder (modulo) are defined with operands and results of the same size
ranging from bytes to doublewords. A set of dot product instructions perform partitioned multiplication with reduc-
tion: essentially a multiply-add or sub on adjacent elements, with the full-precision result double the size (see the
example Figure 14).

Bitwise instructions (Table 7) include logical (e.g., AND, OR, NOR, and XOR) operations and shifts. All operate on
two vector registers or on a vector register and an immediate constant. More complex logical instructions do selective
bit copy from two source vectors to the destination. Leading zero/one bit counting and population counting (all one
bits) instructions are available as well.

Table 6 MSA Arithmetic Instructions

Mnemonic Compiler Intrinsic C Expression Instruction Description

ADDV.df1 V2 addv_df(V,V) v3 + v Add

ADDVI.df V addvi_df(V,K4) v + k5 Add Immediate (immediate value is unsigned)

ADD_A.df V add_a_df(V,V) Add Absolute Values

ADDS_A.df V adds_a_df(V,V) Saturated Add Absolute Values

ADDS_S.df V adds_s_df(V,V) Signed Saturated Add

ADDS_U.df V adds_u_df(V,V) Unsigned Saturated Add

HADD_S.df V hadd_s_df(W6,W) Signed Horizontal Add

HADD_U.df V hadd_u_df(W,W) Unsigned Horizontal Add

ASUB_S.df V asub_s_df(V,V) Absolute Value of Signed Subtract

ASUB_U.df V asub_u_df(V,V) Absolute Value of Unsigned Subtract

AVE_S.df V ave_s_df(V,V) Signed Average

AVE_U.df V ave_u_df(V,V) Unsigned Average

AVER_S.df V aver_s_df(V,V) Signed Average with Rounding

AVER_U.df V aver_u_df(V,V) Unsigned Average with Rounding

DOTP_S.df V dotp_s_df(W,W) Signed Dot Product

DOTP_U.df V dotp_u_df(W,W) Unsigned Dot Product

DPADD_S.df V dpadd_s_df(V,W,W) Signed Dot Product Add

DPADD_U.df V dpadd_u_df(V,W,W) Unsigned Dot Product Add

DPSUB_S.df V dpsub_s_df(V,W,W) Signed Dot Product Subtract

DPSUB_U.df V dpsub_u_df(V,W,W) Unsigned Dot Product Subtract

DIV_S.df V div_s_df(V,V) v / v Signed Divide

MIPS® SIMD Architecture, Revision 1.03 17

DIV_U.df V div_u_df(V,V) v / v Unsigned Divide

MADDV.df V maddv_df(V,V) v + v * v Multiply-Add

MAX_A.df V max_a_df(V,V) Maximum of Absolute Values

MIN_A.df V min_a_df(V,V) Minimum of Absolute Values

MAX_S.df V max_s_df(V,V) Signed Maximum

MAXI_S.df V maxi_s_df(V,K) Signed Immediate Maximum

MAX_U.df V max_u_df(V,V) Unsigned Maximum

MAXI_U.df V maxi_u_df(V,K) Unsigned Immediate Maximum

MIN_S.df V min_s_df(V,V) Signed Maximum

MINI_S.df V mini_s_df(V,K) Signed Immediate Maximum

MIN_U.df V min_u_df(V,V) Unsigned Maximum

MINI_U.df V mini_u_df(V,K) Unsigned Immediate Maximum

MSUBV.df V msubv_df(V,V) v - v * v Multiply-Subtract

MULV.df V mulv_df(V,V) v * v Multiply

MOD_S.df V mod_s_df(V,V) v % v Signed Remainder (Modulo)

MOD_U.df V mod_u_df(V,V) v % v Unsigned Remainder (Modulo)

SAT_S.df V sat_s_df(V,V) Signed Saturate

SAT_U.df V sat_u_df(V,V) Unsigned Saturate

SUBS_S.df V subs_s_df(V,V) Signed Saturated Subtract

SUBS_U.df V subs_u_df(V,V) Unsigned Saturated Subtract

HSUB_S.df V hsub_s_df(W,W) Signed Horizontal Subtract

HSUB_U.df V hsub_u_df(W,W) Unsigned Horizontal Subtract

SUBSUU_S.df V subsuu_s_df(V,V) Signed Saturated Unsigned Subtract (both arguments
are unsigned, the result is signed)

SUBSUS_U.df V subsus_u_df(V,V) Unsigned Saturated Signed Subtract from Unsigned
(the first argument is unsigned, the second is signed,
and the result is unsigned)

SUBV.df V subv_df(V,V) v - v Subtract

SUBVI.df V subvi_df(V,K) v - k Subtract Immediate (immediate value is unsigned)

1. df – supported data format abbreviation, see Table 1.
2. V – vector type of integer elements (signed or unsigned based on the instruction’s semantics)
3. v – vector variable of type V
4. K – integer constant (signed or unsigned based on the instruction’s semantics) type
5. k – 5-bit constant of type K
6. W – vector type of integer elements (signed or unsigned based on the instruction’s semantics) half the size of the elements in V

Table 6 MSA Arithmetic Instructions (Continued)

Mnemonic Compiler Intrinsic C Expression Instruction Description

6 Instruction Description

18 MIPS® SIMD Architecture, Revision 1.03

Table 7 MSA Bitwise Instructions

Mnemonic Compiler Intrinsic C Expression Instruction Description

AND.V V1 and_v(V,V) v2 & v Logical And

ANDI.B V andi_b(V,K3) v & k4 Logical And Immediate

BCLR.df5 V bclr_df(V,V) Bit Clear

BCLRI.df V bclri_df(V,K) Bit Clear Immediate

BINSL.df V binsl_df(V,V) Insert Left of Bit Position

BINSLI.df V binsli_df(V,K) Insert Left of Immediate Bit Position

BINSR.df V binsr_df(V,V) Insert Right of Bit Position

BINSRI.df V binsri_df(V,K) Insert Right of Immediate Bit Position

BMNZ.V V bmnz_v(V,V,V) Bit Move If Not Zero

BMNZI.B V bmnzi_b(V,V,K) Bit Move If Not Zero Immediate

BMZ.V V bmz_v(V,V,V) Bit Move If Zero

BMZI.B V bmzi_b(V,V,K) Bit Move If Zero Immediate

BNEG.df V bneg_df(V,V) Bit Negate

BNEGI.df V bnegi_df(V,K) Bit Negate Immediate

BSEL.V V bsel_v(V,V) Bit Select

BSELI.B V bseli_b(V,K) Bit Select Immediate

BSET.df V bset_df(V,V) Bit Set

BSETI.df V bseti_df(V,K) Bit Set Immediate

NLOC.df V nloc_df(V,V) Leading One Bits Count

NLZC.df V nlzc_df(V,V) Leading Zero Bits Count

NOR.V V nor_v(V,V) Logical Negated Or

NORI.B V nori_b(V,K) Logical Negated Or Immediate

PCNT.df V pcnt_df(V,V) Population (Bits Set to 1) Count

OR.V V or_v(V,V) v | v Logical Or

ORI.B V ori_b(V,K) v | k Logical Or Immediate

XOR.V V xor_v(V,V) v ^ v Logical Or

XORI.B V xori_b(V,K) v ^ k Logical Or Immediate

SLL.df V sll_df(V,V) v << v Shift Left

SLLI.df V slli_df(V,K) v << k Shift Left Immediate

SRA.df V sra_df(V,V) v >> v Shift Right Arithmetic

MIPS® SIMD Architecture, Revision 1.03 19

6.2 Floating-Point Instructions

The MSA floating-point implementation is compliant with the IEEE Standard for Floating-Point Arithmetic 754TM-
2008. The floating-point arithmetic operations implemented by dedicated instructions are: addition/subtract, multi-
ply/divide, fused multiply add/sub, base 2 exponentiation and integer logarithm, max/min including for absolute val-
ues, and integer rounding (Table 8).

The floating-point compare instructions (Table 9) are similar with the integer comparisons: all set destination bits to
zero (false) or one (true). The floating-point specific unordered relations are supported by dedicated quiet compare
unordered instructions and a complete set of signaling compare instructions.

Format conversion instructions (Table 10) cover single (32-bit) to/from double-precision (64-bit) and single to/from
16-bit floating-point format. Integer and fixed-point conversions are also supported.

In the case of a floating-point exception, each faulting vector element is precisely identified without the need for soft-
ware emulation for all vector elements.

SRAI.df V srai_df(V,K) v >> k Shift Right Arithmetic Immediate

SRAR.df V srar_df(V,V) Shift Right Arithmetic with Rounding

SRARI.df V srari_df(V,K) Shift Right Arithmetic with Rounding Immediate

SRL.df V srl_df(V,V) v >> v Shift Right

SRLI.df V srli_df(V,K) v >> k Shift Right Immediate

SRLR.df V srlr_df(V,V) Shift Right with Rounding

SRLRI.df V srlri_df(V,K) Shift Right with Rounding Immediate

1. V – vector type of integer elements
2. v – vector variable of type V
3. K – integer constant type suitable for the instruction’s semantics
4. k – constant of type K
5. df – supported data format abbreviation, see Table 1.

Table 8 MSA Floating-Point Arithmetic Instructions

Mnemonic Compiler Intrinsic C Expression Instruction Description

FADD.df1 F2 fadd_df(F,F) f3 + f Floating-Point Addition

FDIV.df F fdiv_df(F,F) f / f Floating-Point Division

FEXP2.df F fexp2_df(F,V4) Floating-Point Base 2 Exponentiation

FLOG2.df F flog2_df(F,F) Floating-Point Base 2 Logarithm

Table 7 MSA Bitwise Instructions (Continued)

Mnemonic Compiler Intrinsic C Expression Instruction Description

6 Instruction Description

20 MIPS® SIMD Architecture, Revision 1.03

FMADD.df F fmadd_df(F,F) f + f * f Floating-Point Fused Multiply-Add

FMSUB.df F fmsub_df(F,F) f - f * f Floating-Point Fused Multiply-Subtract

FMAX.df F fmax_df(F,F) Floating-Point Maximum

FMIN.df F fmin_df(F,F) Floating-Point Minimum

FMAX_A.df F fmax_a_df(F,F) Floating-Point Maximum of Absolute Values

FMIN_A.df F fmin_a_df(F,F) Floating-Point Minimum of Absolute Values

FMUL.df F fmul_df(F,F) f * f Floating-Point Multiplication

FRCP.df F frcp_df(F,F) Approximate Floating-Point Reciprocal

FRINT.df F frint_df(F,F) Floating-Point Round to Integer

FRSQRT.df F frsqrt_df(F,F) Approximate Floating-Point Reciprocal of Square
Root

FSQRT.df F fsqrt_df(F,F) Floating-Point Square Root

FSUB.df F fsub_df(F,F) f - f Floating-Point Subtraction

1. df – supported data format abbreviation, see Table 1.
2. F – vector type of floating-point elements
3. f – vector variable of type F
4. V – vector type of signed integer elements

Table 9 MSA Floating-Point Compare Instructions

Mnemonic Compiler Intrinsic C Expression Instruction Description

FCLASS.df1 V2 fclass_df(F3) Floating-Point Class Mask

FCAF.df V fcaf_df(F,F) Floating-Point Quiet Compare Always False

FCUN.df V fcun_df(F,F) Floating-Point Quiet Compare Unordered

FCOR.df V fcor_df(F,F) Floating-Point Quiet Compare Ordered

FCEQ.df V fceq_df(F,F) Floating-Point Quiet Compare Equal

FCUNE.df V fcune_df(F,F) Floating-Point Quiet Compare Unordered or Not
Equal

FCUEQ.df V fcueq_df(F,F) Floating-Point Quiet Compare Unordered or Equal

FCNE.df V fcne_df(F,F) Floating-Point Quiet Compare Not Equal

FCLT.df V fclt_df(F,F) Floating-Point Quiet Compare Less Than

FCULT.df V fcult_df(F,F) Floating-Point Quiet Compare Unordered or Less
Than

FCLE.df V fcle_df(F,F) Floating-Point Quiet Compare Less Than or Equal

Table 8 MSA Floating-Point Arithmetic Instructions (Continued)

Mnemonic Compiler Intrinsic C Expression Instruction Description

MIPS® SIMD Architecture, Revision 1.03 21

FCULE.df V fcule_df(F,F) Floating-Point Quiet Compare Unordered or Less
Than or Equal

FSAF.df V fsaf_df(F,F) Floating-Point Signaling Compare Always False

FSUN.df V fsun_df(F,F) Floating-Point Signaling Compare Unordered

FSOR.df V fsor_df(F,F) Floating-Point Signaling Compare Ordered

FSEQ.df V fseq_df(F,F) f4 == f Floating-Point Signaling Compare Equal

FSUNE.df V fsune_df(F,F) Floating-Point Signaling Compare Unordered or Not
Equal

FSUEQ.df V fsueq_df(F,F) Floating-Point Signaling Compare Unordered or
Equal

FSNE.df V fsne_df(F,F) f != f Floating-Point Signaling Compare Not Equal

FSLT.df V fslt_df(F,F) f < f Floating-Point Signaling Compare Less Than

FSULT.df V fsult_df(F,F) Floating-Point Signaling Compare Unordered or
Less Than

FSLE.df V fsle_df(F,F) f <= f Floating-Point Signaling Compare Less Than or
Equal

FSULE.df V fsule_df(F,F) Floating-Point Signaling Compare Unordered or
Less Than or Equal

1. df – supported data format abbreviation, see Table 1.
2. V – vector type of integer elements
3. F – vector type of floating-point elements
4. f – vector variable of type F

Table 10 MSA Floating-Point Conversion Instructions

Mnemonic Compiler Intrinsic C Expression Instruction Description

FEXUPL.df1 F2 fexupl_df(G3) Left-Half Floating-Point Format Up-Convert

FEXUPR.df F fexupr_df(G) Right-Half Floating-Point Format Up-Convert

FEXDO.df G fexdo_df(F,F) Floating-Point Format Down-Convert

FFINT_S.df F ffint_s_df(V4) Floating-Point Convert from Signed Integer

FFINT_U.df F ffint_u_df(V) Floating-Point Convert from Unsigned Integer

FFQL.df F ffql_df(W5) Left-Half Floating-Point Convert from Fixed-Point

FFQR.df F ffqr_df(W) Right-Half Floating-Point Convert from Fixed-Point

FTINT_S.df V ftint_s_df(V,V) Floating-Point Round and Convert to Signed Integer

Table 9 MSA Floating-Point Compare Instructions (Continued)

Mnemonic Compiler Intrinsic C Expression Instruction Description

6 Instruction Description

22 MIPS® SIMD Architecture, Revision 1.03

6.3 Fixed-Point Multiplication Instructions

The fixed-point data formats are Q15 and Q31, i.e. one sign bit and 15 or 31 fractional bits, representing values in the
[-1, 1) interval. While the fixed-point add/sub is the regular 2’s complement add/sub with saturation, the multiplica-
tion operation requires scaling (left shift) with saturation.

The MSA has dedicated fixed-point multiplication instructions with optional rounding (Table 11).

FTINT_U.df V ftint_u_df(V,V) Floating-Point Round and Convert to Unsigned Inte-
ger

FTRUNC_S.df V ftrunc_s_df(F) Floating-Point Truncate and Convert to Signed Inte-
ger

FTRUNC_U.df V ftrunc_u_df(F) Floating-Point Truncate and Convert to Unsigned
Integer

FTQ.df W ftq_df(F,F) Floating-Point Round and Convert to Fixed-Point

1. df – supported data format abbreviation, see Table 1.
2. F – vector type of floating-point elements
3. G – vector type of floating-point elements half the size of the elements in F
4. V – vector type of integer or fixed-point (based on the instruction’s semantics) elements the same size as the elements in F
5. W – vector type of integer or fixed-point (based on the instruction’s semantics) elements half the size of the elements in F

Table 11 MSA Fixed-Point Instructions

Mnemonic Compiler Intrinsic C Expression Instruction Description

MADD_Q.df1

1. df – supported data format abbreviation, see Table 1.

V2 madd_q_df(V,V,V)

2. V – vector type of fixed-point elements

Fixed-Point Multiply and Add

MADDR_Q.df V maddr_q_df(V,V,V) Fixed-Point Multiply and Add with Rounding

MSUB_Q.df V msub_q_df(V,V,V) Fixed-Point Multiply and Subtract

MSUBR_Q.df V msubr_q_df(V,V,V) Fixed-Point Multiply and Subtract with Rounding

MUL_Q.df V mul_q_df(V,V) Fixed-Point Multiply

MULR_Q.df V mulr_q_df(V,V) Fixed-Point Multiply with Rounding

Table 10 MSA Floating-Point Conversion Instructions (Continued)

Mnemonic Compiler Intrinsic C Expression Instruction Description

MIPS® SIMD Architecture, Revision 1.03 23

6.4 Branch and Compare Instructions

Branch and compare instructions are based on truth values: zero for false and non-zero for true. There are no dedi-
cated condition flags.

The compare instructions (Table 12) set the destination element to the truth value of the compare operation for the
corresponding source elements. All compare instructions accept a small, 5-bit constant as the second compare oper-
and across all vector elements.

Both branch-on-false and branch-on-true condition instructions are provided (Table 13) because the vector under test
contains multiple truth values that cannot be negated by simply changing the compare operator. As such, there is a
pair of branch-on-false (zero) instructions that test if at least one element is zero or if all elements are zero, and a pair
of branch-on-true (not zero) instructions that test if all elements are not zero, or if at least one element is not zero.
There are no intrinsics for control flow statements.

Table 12 MSA Compare Instructions

Mnemonic Compiler Intrinsic C Expression Instruction Description

CEQ.df1

1. df – supported data format abbreviation, see Table 1.

V2 ceq_df(V,V)

2. V – vector type of integer elements (signed or unsigned based on the instruction’s semantics)

v3 == v

3. v – vector variable of type V

Compare Equal

CEQI.df V ceqi_df(V,K4)

4. K – integer constant (signed or unsigned based on the instruction’s semantics) type

v == k5

5. k – 5-bit constant of type K

Compare Equal Immediate

CLE_S.df V cle_s_df(V,V) v <= v Compare Less-Than-or-Equal Signed

CLEI_S.df V clei_s_df(V,K) v <= k Compare Less-Than-or-Equal Signed Immediate

CLE_U.df V cle_u_df(V,V) v <= v Compare Less-Than-or-Equal Unsigned

CLEI_U.df V clei_u_df(V,K) v <= k Compare Less-Than-or-Equal Unsigned Immediate

CLT_S.df V clt_s_df(V,V) v < v Compare Less-Than Signed

CLTI_S.df V clti_s_df(V,K) v < k Compare Less-Than Signed Immediate

CLT_U.df V clt_u_df(V,V) v < v Compare Less-Than Unsigned

CLTI_U.df V clti_u_df(V,K) v < k Compare Less-Than Unsigned Immediate

Table 13 MSA Branch Instructions

Mnemonic Instruction Description

BNZ.V Branch If Not Zero (at least one bit is not zero)

6 Instruction Description

24 MIPS® SIMD Architecture, Revision 1.03

Based on the branch-on-false and branch-on-true instructions, the intrinsics in Table 14 assign the truth value of vec-
tor conditions to scalars. For example the C statement,

int n = test_bnz_h(v)

is compiled to 3 assembly instructions:

bnz.h $w0,1f
li $2,1
li $2,0

1:

This sequence sets GPR $2 (scalar n in C) to 1 if the condition tested by BNZ.H is true, i.e. the code branches if all
halfword elements in vector register $w0 (vector v in C) are not zero.

The scalar branch condition intrinsics are legal in if() statements, where the assignment of 1 or 0 will often be
eliminated leaving just the corresponding BNZ/BZ instruction.

BZ.V Branch If Zero (all bits are zero)

BNZ.df1 Branch If Not Zero (all elements are not zero)

BZ.df Branch If Zero (at least one element is zero)

1. df – supported data format abbreviation, see Table 1.

Table 14 MSA Scalar Branch Condition Intrinsics

Compiler Intrinsic C Expression Intrinsic Description

N1 test_bnz_v(V2)

1. N – scalar integer type
2. V – vector type of integer, floating-point, or fixed-point elements

Test Branch Not Zero condition: return 1 if at least one bit
is not zero, otherwise return 0

N test_bz_v(V) Test Branch Zero condition: return 1 if all bits are zero,
otherwise return 0

N test_bnz_df3(V)

3. df – supported data format abbreviation, see Table 1.

Test Branch Not Zero condition: return 1 if all elements
are not zero, otherwise return 0

N test_bz_df(V) Test Branch Zero condition: return 1 if at least one ele-
ment is zero, otherwise return 0

Table 13 MSA Branch Instructions (Continued)

Mnemonic Instruction Description

MIPS® SIMD Architecture, Revision 1.03 25

6.5 Load/Store and Element Move Instructions

The MSA is very flexible and consistent regarding data transfers between the vector registers and the general-purpose
registers (GPRs) or memory. Data transfer instructions (Table 15) include vector memory load/store and element
move instructions such as vector element data copy to GPR, all vector elements fill with GPR or immediate data, and
insert GPR data to a specific element. The load/store instructions do not require 128-bit (16-byte) memory address
alignment.

All data transfer instructions are typed, i.e., the data format is explicitly specified. This is particularly important for
the vector load/store instructions, because it allows any halfword, word, or doubleword data to make the round-trip
between GPRs, memory, and vector registers without any need for endian related byte swaps. For example, a store
halfword (source) vector register will write the eight halfword values to memory, which then can be loaded as half-
words one-by-one in GPRs, which then can be transferred one-by-one to another (destination) vector register. The
source vector register from which the halfword values were initiated is identical to the destination vector register,
regardless of the endian memory mode.

Table 15 MSA Load/Store and Move Instructions

Mnemonic Compiler Intrinsic C Expression Instruction Description

CFCMSA N1 cfcmsa(K2)

1. N – scalar integer type
2. K – integer constant type suitable for the instruction’s semantics

Copy from MSA Control Register

CTCMSA void ctcmsa(N,K) Copy to MSA Control Register

LD.df3

3. df – supported data format abbreviation, see Table 1.

V4 ld_df(*V)

4. V – vector type of integer, floating-point, or fixed-point elements

v5 = *pv6

5. v – vector variables of type V
6. pv – pointer to a vector of type V

Load Vector

LDI.df V ldi_df(K) v = (V){k7,…,k}

7. k – integer constant of type K

Load Immediate

MOVE.V V move_v(V) v = v Vector to Vector Move

SPLAT.df V splat_df(V,N) v = (V){v[n8],…,v[n]}

8. n – integer variable of type N

Replicate Vector Element

SPLATI.df V splati_df(V,K) v = (V){v[k],…,v[k]} Replicate Vector Element Immediate

FILL.df V fill_df(N) v = (V){n,…,n} Fill Vector from GPR

INSERT.df V insert_df(V,K,N) v[k] = n Insert GPR to Vector Element

INSVE.df V insve_df(V,K,V) v[k] = v[0] Insert Vector element 0 to Vector Element

COPY_S.df N copy_s_df(V,K) n = v[k] Copy element to GPR Signed

COPY_U.df N copy_u_df(V,K) n = v[k] Copy element to GPR Unsigned

ST.df V st_df(*V,V) *pv = v Store Vector

7 Evolution

26 MIPS® SIMD Architecture, Revision 1.03

6.6 Element Permute Instructions

Vector elements can be shuffled based on either a pre-defined pattern or an arbitrary mapping function. Pre-defined
patterns are more efficient because no prior set-up is required. Mapping functions provide the most general shuffling,
but could take an extra vector register to specify where each source element will be put in the destination vector.

The MSA has both generic mapping and pre-defined pattern-shuffle instructions (Table 16). Pre-defined pattern
instructions interleave odd or even elements from two source vectors, or pack all odd or all even elements from two
source vectors into the upper half and the lower half of a destination vector.

Note that the MSA VSHF instruction is semantically compatible with the architecture independent GCC intrinsic
__builtin_shuffle().

A second class of predefined patterns are geometrical in nature: the two source vectors seen as byte arrays (of one line
by eight columns, two lines by four columns, or four lines by two columns) are horizontally concatenated. The desti-
nation is a byte array selected by a sliding window of similar shape (array of one by eight, two by four, or four by
two) over the concatenation of the source arrays.

7 Evolution

The SIMD architectures have been continuously evolving and likely will continue to do so. However, it remains chal-
lenging to program and create compiler support for instructions that continue to grow in complexity over time.

Table 16 MSA Element Permute Instructions

Mnemonic Compiler Intrinsic C Expression Instruction Description

ILVEV.df1

1. df – supported data format abbreviation, see Table 1.

V2 ilvev_df(V,V)

2. V – vector type of integer, floating-point, or fixed-point elements

Interleave Even

ILVOD.df V ilvod_df(V,V) Interleave Odd

ILVL.df V ilvl_df(V,V) Interleave Left

ILVR.df V ilvr_df(V,V) Interleave Right

PCKEV.df V pckev_df(V,V) Pack Even Elements

PCKOD.df V pckod_df(V,V) Pack Odd Elements

SHF.df V shf_df(V,K3)

3. K – integer constant type suitable for the instruction’s semantics

Set Shuffle

SLD.df V sld_df(V,N) Element Slide

SLDI.df V sldi_df(V,K) Element Slide Immediate

VSHF.df V vshf_df(V,V,V) Vector shuffle

MIPS® SIMD Architecture, Revision 1.03 27

One of the main attributes of the MIPS SIMD Architecture is scalability. The MSA scales nicely with the number of
threads using the vector register partitioning scheme. Adding more hardware threads to increase the performance
does not result in a proportional increase of the vector registers count.

A wider vector register set of 256 bits is another path to increasing performance. The MSA scales with the vector reg-
ister width. The instruction set is designed to be independent of the vector register size, allowing for source code
(even binary code) compatibility when upgrading to wider vector registers.

With SIMD moving toward mainstream computing, MSA is well positioned to address the emerging compute-inten-
sive applications. MSA is future-proof and extensible through scalability and multithreading rather than an increase
in complexity. The MIPS instruction set has pre-defined scalable extensions that can take advantage of future chips
with more gates/transitions available, giving it longevity for multiple generations.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCI, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

 aLt{ϯ {La5 !ǊŎƘƛǘŜŎǘǳǊŜΣ wŜǾƛǎƛƻƴΥ мΦло

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

