
MIPS SIMD programming
Optimizing multimedia codecs

 	 2 	 Optimizing multimedia codecs v1.0

Introduction
The exponential growth of internet and mobile
communication is driving the ever-increasing use of
multimedia applications.

With the need for low channel bandwidth, limited storage
capacity and low cost in today’s mobile and cloud‑based
applications, there is a requirement for high quality
audio and video at low bit rates. This has given rise to
highly‑efficient compression codecs such as VP9, HEVC
and others, which involve a large amount of processing
and complex coding tools. It is also critical that
multimedia codecs are aggressively optimized to meet
the needs of low power and cost-sensitive devices.

The MSA (MIPS SIMD Architecture) is designed
to meet these requirements for multimedia and
other compute‑intensive applications. This paper
demonstrates the use of the MSA in optimizing video
codecs, and highlights other benefits of the MSA such
as flexibility, programmer friendliness, ‘future proof
coding’ and scalability.

Simple C programming reduces the time to market,
facilitates faster upgrades and provides easy maintenance.
Our simple but superior architecture and smart compiler
technology leads to fast running, maintainable and
portable codes in a shorter development time.

Video codecs and SIMD
As you can see from Figure 1, most of the modules in a
typical video decoder can be optimized using SIMD as it
involves processing multiple pixels simultaneously.

Video compression has a typical pixel depth of 8-bits
or 10-bits; further mathematical operations can take
intermediate results to 16-bits or 32-bits. Hence with
an implementation of a typical 128-bit vector register
size SIMD processor, it is possible to make a four to
eight time reduction to mathematical and data load
and store operations.

Due to the inherent scalability, the vectorization will adapt
to process the required pixels simultaneously, as the
register width changes.

Figure 1: Block diagram of typical video decoder

Blocks of video decoder which can be optimized using SIMD

Entropy
decoder

Inverse
quantization

Inverse
transform

Motion
compensation

Intra
prediction

Deblocking
filter

Bit
stream

Reference
frames

Reconstructed
frames

Inter

Intra

+

+

Optimizing typical video decoder using SIMD

 	 3 	 Optimizing multimedia codecs v1.0

MSA programming features
Frequently used operations in multimedia processing
which can be vectorized using MSA include:

•	 Addition and subtraction operations

•	 Multiply and accumulate operations (dot product
and simple multiplications)

•	 Logical and arithmetic shift operations (optional
rounding)

•	 Other logical operations (AND,OR, XOR, etc.)

•	 Conditional selection or masking

•	 Load and store

•	 Pack-unpack and interleaving operations

Salient features of the MSA toolchain for fast and
efficient programming include:

•	 Built-in intrinsics and data-types for all vector
instructions usable in C and C++ programming

•	 Simple syntax for common operations (+, -,
* operators can be used on vector data-types)

•	 Complete replacement for hand-coded assembly

•	 Auto scheduling by compiler

•	 Faster time-to-market, easier maintenance and
quicker upgrades

The following two sections will demonstrate each of
the above key features of the MSA using an example of
a motion compensation filter in one of the latest video
codec standards by Google – VP9.

MSA approach for optimizing
video codecs
The VP9 codec, part of the Google-sponsored WebM
open web media project, is a high-performance codec
that compresses video files and streams to approximately
half the size of previous generation encoding
technologies, making it ideal for addressing HD video.
VP9 will be used for YouTube and Google Hangouts as
well as other web‑based video applications.

VP9, with typical video compression blocks and added
complexities for better compression, is a good example
for explaining a typical approach to optimizing any video
codec using the MSA.

Following are the steps taken in optimizing the VP9
decoder on the MSA:

•	 	Identify compute-intensive modules

•	 	Identify the compute-intensive functions which can
be vectorized

•	 Evaluate input, output and intermediate data bit depths

•	 Evaluate a design strategy to combine similar
operations on multiple data

•	 Implement the design strategy in MSA-C using
appropriate vector data types and intrinsics

The following section illustrates this with an example of
VP9 motion compensation vertical filtering.

VP9 motion compensation filter
using MSA
Description
The example we are discussing is basically a Finite
Impulse Response (FIR) filter that is used in VP9 for
motion compensation. It is an 8-tap filter applied
vertically over the image to derive sub-pixel rows.

•	 Read 8 pixels vertically (p0 to p7)

•	 Multiply and accumulate each pixel with
corresponding filter-tap coefficient

•	 Round and divide by total filter weight.

•	 Clip the output in pixel range and write to output buffer

•	 Move the sliding window by one pixel position
(p1=p0……p6=p7)

•	 Read new pixel position p7

•	 Repeat the above steps to motion compensate the
block height

Code

Plain C code
Figure 2 on the following page shows an example
of general purpose C code for the 8-tap Motion
Compensation (MC) filter in VP9.

You will see that this code processes an 8-tap
convolution (FIR) over a block of 16 times the number
of H pixels where H represents the variable height of
the block.

 	 4 	 Optimizing multimedia codecs v1.0

#define ROUND_POWER_OF_TWO(value, n) (((value) + (1 << ((n) - 1))) >> (n))

static inline unsigned char clip_pixel(int i32Val)
{
 return ((i32Val) > 255) ? 255u : ((i32Val) < 0) ? 0u : (i32Val);
}
void vert_filter_8taps_16width_c(unsigned char *pSrc, // SOURCE POINTER
 int SrcStride, // SOURCE BUFFER PITCH
 unsigned char *pDst, // DEST POINTER
 int DstStride, // DEST BUFFER PITCH
 char *pFilter, // POINTER TO FILTER BANK
 int Height) // HEIGHT OF THE BLOCK
{
 unsigned int Row, Col;
 int FiltSum;
 short Src0, Src1, Src2, Src3, Src4, Src5, Src6, Src7;

 pSrc -= (8 / 2 - 1) * SrcStride; // MOVE INPUT SRC POINTER TO APPROPRIATE POSITION

 // LOOP FOR NUMBER OF COLUMNS-16
 for (Col = 0; Col < 16; ++Col)
 {
 Src0 = pSrc[0 * SrcStride];
 Src1 = pSrc[1 * SrcStride];
 Src2 = pSrc[2 * SrcStride];
 Src3 = pSrc[3 * SrcStride];
 Src4 = pSrc[4 * SrcStride];
 Src5 = pSrc[5 * SrcStride];
 Src6 = pSrc[6 * SrcStride];

 // LOOP FOR NUMBER OF ROWS
 for (Row = 0; Row < Height; Row++)
 {
 Src7 = pSrc[(7 + Row) * SrcStride];

 FiltSum = 0;
 // ACCUMULATED FILTER SUM += PIXEL * FILTER COEFF
 FiltSum += (Src0 * pi8Filter[0]);
 FiltSum += (Src1 * pi8Filter[1]);
 FiltSum += (Src2 * pi8Filter[2]);
 FiltSum += (Src3 * pi8Filter[3]);
 FiltSum += (Src4 * pi8Filter[4]);
 FiltSum += (Src5 * pi8Filter[5]);
 FiltSum += (Src6 * pi8Filter[6]);
 FiltSum += (Src7 * pi8Filter[7]);

 FiltSum = ROUND_POWER_OF_TWO(FiltSum, 7); // ROUNDING
 pDst[Row * DstStride] = clip_pixel(FiltSum);// CLIP RESULT IN 0-255(UNSIGNED CHAR)

 // PREPARING FOR NEXT CONVOLUTION- SLIDING WINDOW
 Src0 = Src1;
 Src1 = Src2;
 Src2 = Src3;
 Src3 = Src4;
 Src4 = Src5;
 Src5 = Src6;
 Src6 = Src7;
 }
 pSrc += 1;
 pDst += 1;
 }
}

Figure 2: Example of general purpose C code for the 8-tap Motion
Compensation (MC) filter in VP9

 	 5 	 Optimizing multimedia codecs v1.0

SIMD approach
The steps required for the SIMD approach are similar to
the steps described for the VP9 motion compensation
(see page 3), except a vector data type of 8 pixels is
used instead of a single pixel operation.

Figure 3: VP9 8-tap vertical MC filter

The following figure demonstrates a SIMD optimized
version of the core convolution code:

Data (pixels) loaded into vector register

MADDV.H (Rn += Cn*Dn)

Coefficient CN replicatied over the entire vector Data (pixel)

Coefficient

Accumulated filter result

MIPS SIMD implementation Generic C implementation

D6

CN

D5

CN

D4

CN

D3

CN

D2

CN

D1

CN

D0

R0

CN

D7

CN

R7 R6 R5 R4 R3 R2 R1 R0

D0

C0

 	 6 	 Optimizing multimedia codecs v1.0

/* MSA VECTOR TYPES */
#define WRLEN 128 // VECTOR REGISTER LENGTH 128-BIT
#define NUMWRELEM (WRLEN >> 3)

typedef signed char IMG_VINT8 __attribute__ ((vector_size(NUMWRELEM))); //VEC SIGNED BYTES
typedef unsigned char IMG_VUINT8 __attribute__ ((vector_size(NUMWRELEM)));//VEC UNSIGNED BYTES
typedef short IMG_VINT16 __attribute__ ((vector_size(NUMWRELEM))); //VEC SIGNED HALF-WORD

#define LOAD_UNPACK_VEC(pSrc, SrcStride, vi16VecRight, vi16VecLeft)	 \
{									 	 \
 IMG_VUINT8 vu8Src;						 	 \
 IMG_VINT16 vi16Vec0;						 	 \
 IMG_VINT8 vi8Tmp0;						 	 \
 /* LOAD INPUT VECTOR */ 						 \
 vu8Src = *((IMG_VINT8 *)(pSrc));					 \
 /* RANGE WARPING TO MAINTAIN 16 BIT PRECISION */ 			 \
 vi16Vec0 = __builtin_msa_xori_b(vu8Src, 128);			 \
 /* CALCULATE SIGN EXTENSION */ 					 \
 vi8Tmp0 = __builtin_msa_clti_s_b(vi16Vec0, 0);			 \
 /* INTERLEAVE RIGHT TO 16 BIT VEC */					 \
 vi16VecRight = __builtin_msa_ilvr_b(vi8Tmp0, vi16Vec0);		 \
 /* INTERLEAVE LEFT TO 16 BIT VEC */		 			 \
 vi16VecLeft = __builtin_msa_ilvl_b(vi8Tmp0, vi16Vec0);		 \
 pSrc += SrcStride;							 \
}

void vert_filter_8taps_16width_msa(unsigned char	 *pSrc, // SOURCE POINTER
 int SrcStride, // SOURCE BUFFER PITCH
 unsigned char *pDst, // DEST POINTER
 int DstStride, // DEST BUFFER PITH
 char *pFilter, // POINTER TO FILTER BANK
 int Height) // HEIGHT OF THE BLOCK
{
 int u32LoopCnt;
 VINT16 vi16Vec0Right, vi16Vec1Right, vi16Vec2Right, vi16Vec3Right;
 VINT16 vi16Vec4Right, vi16Vec5Right, vi16Vec6Right, vi16Vec7Right;
 VINT16 vi16Vec0Left, vi16Vec1Left, vi16Vec2Left, vi16Vec3Left;
 VINT16 vi16Vec4Left, vi16Vec5Left, vi16Vec6Left, vi16Vec7Left;
 VINT16 vi16Temp1Right, vi16Temp1Left;
 VINT16 vi16Filt0, vi16Filt1, vi16Filt2, vi16Filt3;
 VINT16 vi16Filt4, vi16Filt5, vi16Filt6, vi16Filt7;

 pSrc -= (3 * SrcStride);

 // PREPARE FILTER COEFF IN VEC REGISTERS
 vi16Filt0 = __builtin_msa_fill_h(*(pFilter));
 vi16Filt1 = __builtin_msa_fill_h(*(pFilter + 1));
 vi16Filt2 = __builtin_msa_fill_h(*(pFilter + 2));
 vi16Filt3 = __builtin_msa_fill_h(*(pFilter + 3));
 vi16Filt4 = __builtin_msa_fill_h(*(pFilter + 4));
 vi16Filt5 = __builtin_msa_fill_h(*(pFilter + 5));
 vi16Filt6 = __builtin_msa_fill_h(*(pFilter + 6));
 vi16Filt7 = __builtin_msa_fill_h(*(pFilter + 7));

 //LOAD 7 INPUT VECTORS
 LOAD_UNPACK_VEC(pSrc, SrcStride, vi16Vec0Right, vi16Vec0Left)
 LOAD_UNPACK_VEC(pSrc, SrcStride, vi16Vec1Right, vi16Vec1Left)
 LOAD_UNPACK_VEC(pSrc, SrcStride, vi16Vec2Right, vi16Vec2Left)
 LOAD_UNPACK_VEC(pSrc, SrcStride, vi16Vec3Right, vi16Vec3Left)
 LOAD_UNPACK_VEC(pSrc, SrcStride, vi16Vec4Right, vi16Vec4Left)
 LOAD_UNPACK_VEC(pSrc, SrcStride, vi16Vec5Right, vi16Vec5Left)
 LOAD_UNPACK_VEC(pSrc, SrcStride, vi16Vec6Right, vi16Vec6Left)

 // START CONVOLUTION VERTICALLY
 for (u32LoopCnt = Height; u32LoopCnt--;)
 {

MSA C code

Figure 4: Example MSA C code
(continued on next page)

 	 7 	 Optimizing multimedia codecs v1.0

	 //LOAD 8TH INPUT VECTOR
 LOAD_UNPACK_VEC(pSrc, SrcStride, vi16Vec7Right, vi16Vec7Left)

 /* FILTER CALC */
 IMG_VINT16 vi16Tmp1, vi16Tmp2;
 IMG_VINT8 vi8Tmp3;

	 // 8 TAP VECTORIZED CONVOLUTION FOR RIGHT HALF
 vi16Tmp1 = (vi16Vec0Right * vi16Filt0);
 vi16Tmp1 += (vi16Vec1Right * vi16Filt1);
 vi16Tmp1 += (vi16Vec2Right * vi16Filt2);
 vi16Tmp1 += (vi16Vec3Right * vi16Filt3);
 vi16Tmp2 = (vi16Vec4Right * vi16Filt4);
 vi16Tmp2 += (vi16Vec5Right * vi16Filt5);
 vi16Tmp2 += (vi16Vec6Right * vi16Filt6);
 vi16Tmp2 += (vi16Vec7Right * vi16Filt7);
 vi16Temp1Right = __builtin_msa_adds_s_h(vi16Tmp1, vi16Tmp2);

 // 8 TAP VECTORIZED CONVOLUTION FOR LEFT HALF
 vi16Tmp1 = (vi16Vec0Left * vi16Filt0);
 vi16Tmp1 += (vi16Vec1Left * vi16Filt1);
 vi16Tmp1 += (vi16Vec2Left * vi16Filt2);
 vi16Tmp1 += (vi16Vec3Left * vi16Filt3);
 vi16Tmp2 = (vi16Vec4Left * vi16Filt4);
 vi16Tmp2 += (vi16Vec5Left * vi16Filt5);
 vi16Tmp2 += (vi16Vec6Left * vi16Filt6);
 vi16Tmp2 += (vi16Vec7Left * vi16Filt7);
 vi16Temp1Left = __builtin_msa_adds_s_h(vi16Tmp1, vi16Tmp2);

 // ROUNDING RIGHT SHIFT RANGE CLIPPING AND NARROWING
 vi16Temp1Right = __builtin_msa_srari_h(vi16Temp1Right, 7);
 vi16Temp1Right = __builtin_msa_sat_s_h(vi16Temp1Right, 7);
 vi16Temp1Left = __builtin_msa_srari_h(vi16Temp1Left, 7);
 vi16Temp1Left = __builtin_msa_sat_s_h(vi16Temp1Left, 7);
 vi8Tmp3 = __builtin_msa_pckev_b(vi16Temp1Left, vi16Temp1Right);
 vi8Tmp3 = __builtin_msa_xori_b(vi8Tmp3, 128);

 // STORE OUTPUT VEC
 *((IMG_VINT8 *)(pDst)) = (vi8Tmp3);

 pDst += DstStride;

 // PREPARING FOR NEXT CONVOLUTION- SLIDING WINDOW
 vi16Vec0Right = vi16Vec1Right;
 vi16Vec1Right = vi16Vec2Right;
 vi16Vec2Right = vi16Vec3Right;
 vi16Vec3Right = vi16Vec4Right;
 vi16Vec4Right = vi16Vec5Right;
 vi16Vec5Right = vi16Vec6Right;
 vi16Vec6Right = vi16Vec7Right;

 vi16Vec0Left = vi16Vec1Left;
 vi16Vec1Left = vi16Vec2Left;
 vi16Vec2Left = vi16Vec3Left;
 vi16Vec3Left = vi16Vec4Left;
 vi16Vec4Left = vi16Vec5Left;
 vi16Vec5Left = vi16Vec6Left;
 vi16Vec6Left = vi16Vec7Left;
 }
}

Figure 4: Example MSA C code
(continued)

vi16Tmp1 += (vi16Vec1Left * vi16Filt1); GENERATES FOLLOWING ASSEMBLY
MADDV.H w4 w31 w29 // VECTOR MULTIPLY AND ACCUMULATE IN DEST.

vu8Src = *((IMG_VINT8 *)(pu8Src)); GENERATES FOLLOWING ASSEMBLY
LD.B w1 0($4) // VECTOR LOAD

Figure 5: Using generic ‘ * ’ operators on two vector variables to complete
multiplication operation

 	 8 	 Optimizing multimedia codecs v1.0

Analysis

MSA specific compiler friendly C code
The use of built-in data types and intrinsics makes
C code quickly portable across all MSA core
implementations, and hence developers need not worry
about a particular MSA core implementation and its
subtle properties.

The use of built-in data types and built-in intrinsics also
indirectly instructs the compiler to make the best use
of the SIMD instructions and architecture. The compiler
will then efficiently use the available number of vector
registers and instruction throughputs to generate the
best possible code.

Use of simple syntax for common operations

In Figure 5 on the previous page, you can see that the
multiplication operation has been done using generic
‘ * ’ operators on two vector variables. Similarly, it is also
evident that this can be used for load/store and other
simple operations.

Maintain a readable order of processing

Programmers can maintain a readable order of
processing as far as possible while the compiler
takes care of efficiently rearranging or scheduling the
instructions as per latencies.

Complete replacement for hand-coded assembly

•	 No manual register management is required, as the
efficient code is produced by the complier itself,
eliminating the need to depend on hand-written
assembly, manual register management and other
time consuming tasks.

•	 All instructions can be generated using built-ins
and intrinsics.

•	 As use of MSA is not dependent on hand-crafted
assembly and varying assembler syntax, this will give
faster portability across platform specific compilers
for operating systems like iOS, Android etc.

Quick time-to-market, easy maintenance and faster
upgrades

The use of MSA built-in data types and intrinsics
in C code enhances the ability to generate MSA
optimizations in a faster turnaround time, unlike
competing processors. It also enhances the
maintainability, the ability to upgrade and the portability
of the code to any future MSA architecture. This is ideal
for the implementation of evolving standards and rapidly
varying functionality, so that modifications and bug fixing
can be done quickly.

Performance measurement

In the above example of an MC 8-tap vertical filter, the
total instruction count for the plain C code is 10310
instructions compared to 850 instructions for MSA
optimized C code.

Summary
Simply writing C code using MSA‑built-ins and
data‑types yields fast-running, maintainable and
portable code that can be created in a shorter
development time. Meeting the real-time targets for
compute-intensive applications like video codecs on
low-power and cost-sensitive devices is easier to
achieve using the MSA.

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

