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Introduction
The exponential growth of internet and mobile 
communication is driving the ever-increasing use of 
multimedia applications. 

With the need for low channel bandwidth, limited storage 
capacity and low cost in today’s mobile and cloud‑based 
applications, there is a requirement for high quality 
audio and video at low bit rates. This has given rise to 
highly‑efficient compression codecs such as VP9, HEVC 
and others, which involve a large amount of processing 
and complex coding tools. It is also critical that 
multimedia codecs are aggressively optimized to meet 
the needs of low power and cost-sensitive devices.

The MSA (MIPS SIMD Architecture) is designed 
to meet these requirements for multimedia and 
other compute‑intensive applications. This paper 
demonstrates the use of the MSA in optimizing video 
codecs, and highlights other benefits of the MSA such 
as flexibility, programmer friendliness, ‘future proof 
coding’ and scalability.

Simple C programming reduces the time to market, 
facilitates faster upgrades and provides easy maintenance. 
Our simple but superior architecture and smart compiler 
technology leads to fast running, maintainable and 
portable codes in a shorter development time.

Video codecs and SIMD
As you can see from Figure 1, most of the modules in a 
typical video decoder can be optimized using SIMD as it 
involves processing multiple pixels simultaneously.

Video compression has a typical pixel depth of 8-bits  
or 10-bits; further mathematical operations can take 
intermediate results to 16-bits or 32-bits. Hence with  
an implementation of a typical 128-bit vector register 
size SIMD processor, it is possible to make a four to 
eight time reduction to mathematical and data load  
and store operations. 

Due to the inherent scalability, the vectorization will adapt 
to process the required pixels simultaneously, as the 
register width changes.

Figure 1: Block diagram of typical video decoder
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MSA programming features
Frequently used operations in multimedia processing 
which can be vectorized using MSA include:

•	 Addition and subtraction operations

•	 Multiply and accumulate operations (dot product  
and simple multiplications)

•	 Logical and arithmetic shift operations (optional 
rounding)

•	 Other logical operations (AND,OR, XOR, etc.)

•	 Conditional selection or masking

•	 Load and store

•	 Pack-unpack and interleaving operations  

Salient features of the MSA toolchain for fast and 
efficient programming include:

•	 Built-in intrinsics and data-types for all vector 
instructions usable in C and C++ programming

•	 Simple syntax for common operations (+, -,  
* operators can be used on vector data-types)

•	 Complete replacement for hand-coded assembly

•	 Auto scheduling by compiler 

•	 Faster time-to-market, easier maintenance and 
quicker upgrades

The following two sections will demonstrate each of 
the above key features of the MSA using an example of 
a motion compensation filter in one of the latest video 
codec standards by Google – VP9.

MSA approach for optimizing 
video codecs
The VP9 codec, part of the Google-sponsored WebM 
open web media project, is a high-performance codec 
that compresses video files and streams to approximately 
half the size of previous generation encoding 
technologies, making it ideal for addressing HD video. 
VP9 will be used for YouTube and Google Hangouts as 
well as other web‑based video applications.

VP9, with typical video compression blocks and added 
complexities for better compression, is a good example 
for explaining a typical approach to optimizing any video 
codec using the MSA.

Following are the steps taken in optimizing the VP9 
decoder on the MSA:

•	 	Identify compute-intensive modules 

•	 	Identify the compute-intensive functions which can 
be vectorized

•	 Evaluate input, output and intermediate data bit depths

•	 Evaluate a design strategy to combine similar 
operations on multiple data

•	 Implement the design strategy in MSA-C using 
appropriate vector data types and intrinsics

The following section illustrates this with an example of 
VP9 motion compensation vertical filtering.

VP9 motion compensation filter 
using MSA
Description
The example we are discussing is basically a Finite 
Impulse Response (FIR) filter that is used in VP9 for 
motion compensation. It is an 8-tap filter applied 
vertically over the image to derive sub-pixel rows. 

•	 Read 8 pixels vertically (p0 to p7)

•	 Multiply and accumulate each pixel with 
corresponding filter-tap coefficient

•	 Round and divide by total filter weight.

•	 Clip the output in pixel range and write to output buffer

•	 Move the sliding window by one pixel position 
(p1=p0……p6=p7)

•	 Read new pixel position p7

•	 Repeat the above steps to motion compensate the 
block height

Code

Plain C code
Figure 2 on the following page shows an example 
of general purpose C code for the 8-tap Motion 
Compensation (MC) filter in VP9.

You will see that this code processes an 8-tap 
convolution (FIR) over a block of 16 times the number  
of H pixels where H represents the variable height of  
the block.
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#define ROUND_POWER_OF_TWO(value, n)  (((value) + (1 << ((n) - 1))) >> (n))

static inline unsigned char clip_pixel(int i32Val)
{
    return ((i32Val) > 255) ? 255u : ((i32Val) < 0) ? 0u : (i32Val);
}
void vert_filter_8taps_16width_c(unsigned char    *pSrc,      // SOURCE POINTER
                                 int              SrcStride, // SOURCE BUFFER PITCH
                                 unsigned char   *pDst,      // DEST POINTER
                                 int              DstStride, // DEST BUFFER PITCH
                                 char            *pFilter,   // POINTER TO FILTER BANK 
                                 int              Height)    // HEIGHT OF THE BLOCK
{
    unsigned int Row, Col;
    int          FiltSum;
    short        Src0, Src1, Src2, Src3, Src4, Src5, Src6, Src7;

    pSrc -= (8 / 2 - 1) * SrcStride;  // MOVE INPUT SRC POINTER TO APPROPRIATE POSITION

    // LOOP FOR NUMBER OF COLUMNS-16
    for (Col = 0; Col < 16; ++Col)
    {
        Src0 = pSrc[0 * SrcStride];
        Src1 = pSrc[1 * SrcStride];
        Src2 = pSrc[2 * SrcStride];
        Src3 = pSrc[3 * SrcStride];
        Src4 = pSrc[4 * SrcStride];
        Src5 = pSrc[5 * SrcStride];
        Src6 = pSrc[6 * SrcStride];

        // LOOP FOR NUMBER OF ROWS  
        for (Row = 0; Row < Height; Row++)
        {
            Src7 = pSrc[(7 + Row) * SrcStride];

            FiltSum = 0;
            // ACCUMULATED FILTER SUM += PIXEL * FILTER COEFF
            FiltSum += (Src0 * pi8Filter[0]);
            FiltSum += (Src1 * pi8Filter[1]);
            FiltSum += (Src2 * pi8Filter[2]);
            FiltSum += (Src3 * pi8Filter[3]);
            FiltSum += (Src4 * pi8Filter[4]);
            FiltSum += (Src5 * pi8Filter[5]);
            FiltSum += (Src6 * pi8Filter[6]);
            FiltSum += (Src7 * pi8Filter[7]);

            FiltSum = ROUND_POWER_OF_TWO(FiltSum, 7); // ROUNDING
            pDst[Row * DstStride] = clip_pixel(FiltSum);// CLIP RESULT IN 0-255(UNSIGNED CHAR) 

            // PREPARING FOR NEXT CONVOLUTION- SLIDING WINDOW
            Src0 = Src1;
            Src1 = Src2;
            Src2 = Src3;
            Src3 = Src4;
            Src4 = Src5;
            Src5 = Src6;
            Src6 = Src7;
        }
        pSrc += 1;
        pDst += 1;
    }
}

Figure 2:  Example of general purpose C code for the 8-tap Motion 
Compensation (MC) filter in VP9
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SIMD approach
The steps required for the SIMD approach are similar to 
the steps described for the VP9 motion compensation 
(see page 3), except a vector data type of 8 pixels is 
used instead of a single pixel operation.

Figure 3: VP9 8-tap vertical MC filter

The following figure demonstrates a SIMD optimized 
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/* MSA VECTOR TYPES */
#define WRLEN               128 // VECTOR REGISTER LENGTH 128-BIT
#define NUMWRELEM           (WRLEN >> 3)

typedef signed char IMG_VINT8 __attribute__ ((vector_size(NUMWRELEM))); //VEC SIGNED BYTES
typedef unsigned char IMG_VUINT8 __attribute__ ((vector_size(NUMWRELEM)));//VEC UNSIGNED BYTES
typedef short IMG_VINT16 __attribute__ ((vector_size(NUMWRELEM))); //VEC SIGNED HALF-WORD

#define LOAD_UNPACK_VEC(pSrc, SrcStride, vi16VecRight, vi16VecLeft)	 \
{									            	 \
    IMG_VUINT8  vu8Src;						          	 \ 
    IMG_VINT16  vi16Vec0;						        	 \ 
    IMG_VINT8   vi8Tmp0;						         	 \ 
    /* LOAD INPUT VECTOR */ 						      \
    vu8Src = *((IMG_VINT8 *)(pSrc));					     \ 
    /* RANGE WARPING TO MAINTAIN 16 BIT PRECISION */ 			   \ 
    vi16Vec0 = __builtin_msa_xori_b(vu8Src, 128);			   \ 
    /* CALCULATE SIGN EXTENSION */ 					     \
    vi8Tmp0 = __builtin_msa_clti_s_b(vi16Vec0, 0);			   \ 
    /* INTERLEAVE RIGHT TO 16 BIT VEC */					    \
    vi16VecRight = __builtin_msa_ilvr_b(vi8Tmp0, vi16Vec0);		  \
    /* INTERLEAVE LEFT TO 16 BIT VEC */		 			   \
    vi16VecLeft = __builtin_msa_ilvl_b(vi8Tmp0, vi16Vec0);		  \
    pSrc += SrcStride;							       \
}

void vert_filter_8taps_16width_msa(unsigned char	   *pSrc,      // SOURCE POINTER
                                   int              SrcStride, // SOURCE BUFFER PITCH
                                   unsigned char   *pDst,      // DEST POINTER
                                   int              DstStride, // DEST BUFFER PITH
                                   char            *pFilter,   // POINTER TO FILTER BANK 
                                   int              Height)    // HEIGHT OF THE BLOCK                                   
{
    int      u32LoopCnt;
    VINT16   vi16Vec0Right, vi16Vec1Right, vi16Vec2Right, vi16Vec3Right;
    VINT16   vi16Vec4Right, vi16Vec5Right, vi16Vec6Right, vi16Vec7Right;
    VINT16   vi16Vec0Left, vi16Vec1Left, vi16Vec2Left, vi16Vec3Left;
    VINT16   vi16Vec4Left, vi16Vec5Left, vi16Vec6Left, vi16Vec7Left;
    VINT16   vi16Temp1Right, vi16Temp1Left;
    VINT16   vi16Filt0, vi16Filt1, vi16Filt2, vi16Filt3;
    VINT16   vi16Filt4, vi16Filt5, vi16Filt6, vi16Filt7;

    pSrc -= (3 * SrcStride);

    // PREPARE FILTER COEFF IN VEC REGISTERS
    vi16Filt0 = __builtin_msa_fill_h(*(pFilter));
    vi16Filt1 = __builtin_msa_fill_h(*(pFilter + 1));
    vi16Filt2 = __builtin_msa_fill_h(*(pFilter + 2));
    vi16Filt3 = __builtin_msa_fill_h(*(pFilter + 3));
    vi16Filt4 = __builtin_msa_fill_h(*(pFilter + 4));
    vi16Filt5 = __builtin_msa_fill_h(*(pFilter + 5));
    vi16Filt6 = __builtin_msa_fill_h(*(pFilter + 6));
    vi16Filt7 = __builtin_msa_fill_h(*(pFilter + 7));

    //LOAD 7 INPUT VECTORS
    LOAD_UNPACK_VEC(pSrc, SrcStride, vi16Vec0Right, vi16Vec0Left)
    LOAD_UNPACK_VEC(pSrc, SrcStride, vi16Vec1Right, vi16Vec1Left)
    LOAD_UNPACK_VEC(pSrc, SrcStride, vi16Vec2Right, vi16Vec2Left)
    LOAD_UNPACK_VEC(pSrc, SrcStride, vi16Vec3Right, vi16Vec3Left)
    LOAD_UNPACK_VEC(pSrc, SrcStride, vi16Vec4Right, vi16Vec4Left)
    LOAD_UNPACK_VEC(pSrc, SrcStride, vi16Vec5Right, vi16Vec5Left)
    LOAD_UNPACK_VEC(pSrc, SrcStride, vi16Vec6Right, vi16Vec6Left)

    // START CONVOLUTION VERTICALLY
    for (u32LoopCnt = Height; u32LoopCnt--; )
    {

MSA C code

Figure 4: Example MSA C code 
(continued on next page)
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	      //LOAD 8TH INPUT VECTOR
        LOAD_UNPACK_VEC(pSrc, SrcStride, vi16Vec7Right, vi16Vec7Left)

        /* FILTER CALC */
        IMG_VINT16  vi16Tmp1, vi16Tmp2;
        IMG_VINT8   vi8Tmp3;

	      // 8 TAP VECTORIZED CONVOLUTION FOR RIGHT HALF
        vi16Tmp1 =  (vi16Vec0Right * vi16Filt0);
        vi16Tmp1 += (vi16Vec1Right * vi16Filt1);
        vi16Tmp1 += (vi16Vec2Right * vi16Filt2);
        vi16Tmp1 += (vi16Vec3Right * vi16Filt3);
        vi16Tmp2 =  (vi16Vec4Right * vi16Filt4);
        vi16Tmp2 += (vi16Vec5Right * vi16Filt5);
        vi16Tmp2 += (vi16Vec6Right * vi16Filt6);
        vi16Tmp2 += (vi16Vec7Right * vi16Filt7);
        vi16Temp1Right = __builtin_msa_adds_s_h(vi16Tmp1, vi16Tmp2);

        // 8 TAP VECTORIZED CONVOLUTION FOR LEFT HALF
        vi16Tmp1 =  (vi16Vec0Left * vi16Filt0);
        vi16Tmp1 += (vi16Vec1Left * vi16Filt1);
        vi16Tmp1 += (vi16Vec2Left * vi16Filt2);
        vi16Tmp1 += (vi16Vec3Left * vi16Filt3);
        vi16Tmp2 =  (vi16Vec4Left * vi16Filt4);
        vi16Tmp2 += (vi16Vec5Left * vi16Filt5);
        vi16Tmp2 += (vi16Vec6Left * vi16Filt6);
        vi16Tmp2 += (vi16Vec7Left * vi16Filt7);
        vi16Temp1Left = __builtin_msa_adds_s_h(vi16Tmp1, vi16Tmp2);

        // ROUNDING RIGHT SHIFT RANGE CLIPPING AND NARROWING
        vi16Temp1Right = __builtin_msa_srari_h(vi16Temp1Right, 7);
        vi16Temp1Right = __builtin_msa_sat_s_h(vi16Temp1Right, 7);
        vi16Temp1Left = __builtin_msa_srari_h(vi16Temp1Left, 7);
        vi16Temp1Left = __builtin_msa_sat_s_h(vi16Temp1Left, 7);
        vi8Tmp3 = __builtin_msa_pckev_b(vi16Temp1Left, vi16Temp1Right);
        vi8Tmp3 = __builtin_msa_xori_b(vi8Tmp3, 128);

        // STORE OUTPUT VEC
        *((IMG_VINT8 *)(pDst)) = (vi8Tmp3);

        pDst += DstStride;

        // PREPARING FOR NEXT CONVOLUTION- SLIDING WINDOW
        vi16Vec0Right = vi16Vec1Right;
        vi16Vec1Right = vi16Vec2Right;
        vi16Vec2Right = vi16Vec3Right;
        vi16Vec3Right = vi16Vec4Right;
        vi16Vec4Right = vi16Vec5Right;
        vi16Vec5Right = vi16Vec6Right;
        vi16Vec6Right = vi16Vec7Right;

        vi16Vec0Left = vi16Vec1Left;
        vi16Vec1Left = vi16Vec2Left;
        vi16Vec2Left = vi16Vec3Left;
        vi16Vec3Left = vi16Vec4Left;
        vi16Vec4Left = vi16Vec5Left;
        vi16Vec5Left = vi16Vec6Left;
        vi16Vec6Left = vi16Vec7Left;
    }
} 

Figure 4: Example MSA C code 
(continued)

vi16Tmp1 += (vi16Vec1Left * vi16Filt1); GENERATES FOLLOWING ASSEMBLY
MADDV.H    w4 w31 w29 // VECTOR MULTIPLY AND ACCUMULATE IN DEST.  

vu8Src = *((IMG_VINT8 *)(pu8Src)); GENERATES FOLLOWING ASSEMBLY
LD.B       w1 0($4) // VECTOR LOAD

Figure 5: Using generic  ‘ * ’ operators on two vector variables to complete 
multiplication operation
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Analysis

MSA specific compiler friendly C code
The use of built-in data types and intrinsics makes 
C code quickly portable across all MSA core 
implementations, and hence developers need not worry 
about a particular MSA core implementation and its 
subtle properties. 

The use of built-in data types and built-in intrinsics also 
indirectly instructs the compiler to make the best use 
of the SIMD instructions and architecture. The compiler 
will then efficiently use the available number of vector 
registers and instruction throughputs to generate the 
best possible code.

Use of simple syntax for common operations

In Figure 5 on the previous page, you can see that the 
multiplication operation has been done using generic  
‘ * ’ operators on two vector variables. Similarly, it is also 
evident that this can be used for load/store and other 
simple operations.

Maintain a readable order of processing

Programmers can maintain a readable order of 
processing as far as possible while the compiler 
takes care of efficiently rearranging or scheduling the 
instructions as per latencies. 

Complete replacement for hand-coded assembly

•	 No manual register management is required, as the 
efficient code is produced by the complier itself, 
eliminating the need to depend on hand-written 
assembly, manual register management and other 
time consuming tasks.

•	 All instructions can be generated using built-ins  
and intrinsics.

•	 As use of MSA is not dependent on hand-crafted 
assembly and varying assembler syntax, this will give 
faster portability across platform specific compilers 
for operating systems like iOS, Android etc. 

Quick time-to-market, easy maintenance and faster 
upgrades

The use of MSA built-in data types and intrinsics 
in C code enhances the ability to generate MSA 
optimizations in a faster turnaround time, unlike 
competing processors. It also enhances the 
maintainability, the ability to upgrade and the portability 
of the code to any future MSA architecture. This is ideal 
for the implementation of evolving standards and rapidly 
varying functionality, so that modifications and bug fixing 
can be done quickly. 

Performance measurement 

In the above example of an MC 8-tap vertical filter, the 
total instruction count for the plain C code is 10310 
instructions compared to 850 instructions for MSA 
optimized C code.

Summary 
Simply writing C code using MSA‑built-ins and 
data‑types yields fast-running, maintainable and 
portable code that can be created in a shorter 
development time. Meeting the real-time targets for 
compute-intensive applications like video codecs on 
low-power and cost-sensitive devices is easier to 
achieve using the MSA.
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